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Finite-time transport between distinct flow regions is of great relevance to many scientific applications,

yet quantitative studies remain scarce to date. The primary obstacle is computing the evolution of material

volumes, which is often infeasible due to extreme interfacial stretching. We present a framework for

describing and computing finite-time transport in n-dimensional (chaotic) volume-preserving flows that

relies on the reduced dynamics of an (n� 2)-dimensional ‘‘minimal set’’ of fundamental trajectories. This

approach has essential advantages over existing methods: the regions between which transport is

investigated can be arbitrarily specified; no knowledge of the flow outside the finite transport interval

is needed; and computational effort is substantially reduced. We demonstrate our framework in 2D for an

industrial mixing device.
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Introduction.—Lagrangian transport, in its most general
sense, consists of the transfer of material from one region
to another over time. It is of fundamental importance to a
wide variety of scientific and engineering disciplines,
including fluid dynamics [1,2], chemical kinetics [3],
heat transfer [4], and plasma confinement [5]. Here we
focus on volume-preserving flows, which include compre-
ssible steady flows, incompressible (un)steady flows, mag-
netohydrodynamic representations of plasmas, and all
Hamiltonian flows. Transport in such flows is notoriously
difficult to quantify, particularly in the presence of chaos.
Methods exist for computing transport across boundaries
of approximately invariant flow regions of steady or peri-
odic systems [6–10], but these fail in the presence of
aperiodic time dependence. Recent studies of aperiodic
systems give new techniques for identifying finite-time
coherent sets [11–14], but few quantify transport between
them [15–18]. A generic framework for computing trans-
port was proposed in [19,20] but was restricted to the case
of transitory flows, i.e., two autonomous flow states con-
nected by a time-dependent transition. Notwithstanding
these efforts, describing and computing finite-time trans-
port in general aperiodic systems remains largely an open
problem.

The primary obstacle is the enormous cost of computing
the required trajectories. An initial material volume
deforms under the action of a dynamical system, and a
Lagrangian transport analysis consists of characterizing its
evolution with respect to a second distinct region at some
later time (see Fig. 1). In chaotic flows, the initial region
typically stretches exponentially fast as it evolves, result-
ing in a rapid growth of the number of trajectories required
to track it [21,22]. Computing these trajectories can be
costly, especially in multidimensional systems, making
associated transport computations extremely expensive
or, in some cases, precluding them altogether.

Here we present a general framework for describing
and computing finite-time transport in (chaotic)
n-dimensional volume-preserving flows. Our technique
minimizes the number of required trajectories, thereby
greatly reducing the computational effort compared to
existing methods. It is also independent of any infinite-
time asymptotic quantities (e.g., hyperbolic manifolds or
elliptic islands); only knowledge of the dynamics inside
the finite transport interval is required. Moreover, the
regions between which transport is computed can be
specified arbitrarily. These qualities greatly extend the
scope of our framework compared to existing methods,
enabling an analysis of transport (i) in systems known
only for finite time and (ii) distinct from measures of
mixing by chaotic advection.
Finite-time transport.—Finite-time transport in ‘‘transi-

tory’’ volume-preserving flows was computed in [19,20];
however, these methods relied on the steadiness of the flow
outside the compact transport interval itself, and this pre-
cluded application to systems known only for finite time.
In addition the initial and final transport regions were
assumed invariant under the steady flow. Here, we remove
these restrictions, providing a general framework for the
computation of finite-time transport in any volume-
preserving flow.
Let ’ be a volume-preserving flow on an n-dimensional

(nD) phase space M and a finite-time interval T ¼ ½0; ��.
In particular, the associated vector field V is also volume-
preserving, with r � V ¼ 0 with respect to a volume form
�. We consider the problem of computing the volume �
of the set of trajectories transported from a region P 0 to a
region F � (see Fig. 1 for the case n ¼ 2). The subscripts
denote time-slices of orbits in the extended phase space
M� T; e.g., P � denotes the evolution of P 0 under ’ from
t ¼ 0 to t ¼ �. We assume that the boundaries @P 0 and
@F � are known explicitly.
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Assuming that � ¼ d� is exact on M (e.g., � ¼ dx1 ^
dx2 . . . ^ dxn and� ¼ x1dx2 ^ . . . ^ dxn forM � Rn) and
defining R� ¼ P � \F �, the total transported volume is

� ¼ volðR�Þ ¼
Z
R�

� ¼
Z
@R�

�; (1)

by Stokes’s Theorem. Thus, computing finite-time trans-
port amounts to computing the integral of the (n� 1) form
� along the boundary of the intersection set R�.

Whenever @P � intersects @F � transversely, � � 0. In
this case, the boundary @R� can always be decomposed
into two sets: p� ¼ @R� \ @P � and f� ¼ @R� \ @F �.
Their (n� 2)-dimensional intersection I� is nonempty,
and continuity implies that

I� ¼ @P � \ @F � ¼ p� \ f� ¼ @p� ¼ @f�: (2)

For example, p� and f� are curve segments in the 2D case
depicted in Fig. 1, and I� consists of the two points I1�
and I2�. In chaotic flows, computing p� is costly due to the
exponential stretching of @P 0 in time. However, if the flow
is volume-preserving, p� need not be computed explicitly
to evaluate (1); indeed, the necessary trajectory informa-
tion for computing � is concentrated in the orbit of the
lower-dimensional set I�.

The reason is that, for volume-preserving flows, the
integral of � over @R� is related to the ‘‘action’’ of the
trajectories in I� ¼ @p� ¼ @f� ([20], Theorem 3.1). In
particular,

Z
p�

� ¼
Z
p0

�þ
Z �

0

Z
@ps

�ds; (3)

where � is the Lagrangian form; it is defined such that its
differential, d�, is the time derivative of � along the flow
(i.e., the Lie derivative). The differential form � is a gen-
eralization of the (phase space) Lagrangian of classical
mechanics, and the two coincide in 2D. For example,
taking M ¼ R2, � ¼ dx ^ dy, and � ¼ ydx, the Lie
derivative of � along the incompressible vector field
V ¼ ð@yc ;�@xc Þ with stream function c is given by

LV�¼{Vðd�Þþdð{V�Þ¼dðy@yc�c Þ:¼d� (cf. [20] for

more details).

Essentially, Eq. (3) allows the integration of � to be
performed over the simpler set p0 instead of integrating
over p� � @R�, provided a Lagrangian ‘‘adjustment’’
term is added. Combining (3) with (1), the total finite-
time transport becomes

� ¼
Z
f�

�þ
Z
p0

�þ
Z �

0

Z
@ps

�ds: (4)

Since @P 0 and @F � are known a priori, the only trajecto-
ries needed for this computation are those of @p� ¼ I�.
A key advantage of (4) is that the dimension of the

required trajectory information is reduced compared to
direct evaluation of (1). To see this, consider again the
2D example of Fig. 1. From (1), � ¼ R

f�
�þ R

p�
�.

To evaluate the second integral, one must track the evolu-
tion of p0 over the interval T, since only @P 0 is known
a priori. The associated cost (i.e., number of trajectories
computed) is directly related to the length, curvature,
and desired resolution of the final curve, p�, and the
computed set covers a surface in the extended phase
spaceM� T. However, in (4), @p� ¼ I� can be computed
much more efficiently; we use a root-finding method to
identify the intersections [19,20]. In this case, the number
of trajectories that must be computed decouples from
the length, curvature, and resolution of p�. It depends
only on the number of points in I�, and these trajectories
form only a 1D set in the extended phase space. Thus,
the Lagrangian information required to compute the orbit
of I� is one dimension less than that required to compute
p�. This dimension-reduction also generalizes to the case
of n>2; the dimension of the set of trajectories required
to compute � using (4) will always be one less than that
using (1) and two less than that using a naive volume
integration.
Once the orbit of I� is known, the third integral in (4) is

immediately computable since @ps ¼ I s and � is derived
directly from the flow. Two factors contribute to the ease of
computing the first two integrals in (4). First, the regions
P 0 andF � between which transport is studied are typically
quite regular, and integrals along portions of their boun-
daries are often analytically tractable or otherwise easily
computed. Naturally, integrating over p0 is much easier
than integrating over p�, which can be exponentially
stretched and folded by a chaotic flow.
Secondly, since both @P 0 and @F � are known, p0 �

@P 0 and f� � @F � may be specified by just their oriented
boundaries (end points when n ¼ 2). From (2), these are
precisely I0 and I�, respectively. Thus, once the orbit of
I� is known, (4) may be evaluated without computing any
additional trajectories. Furthermore, it would be impos-
sible to compute � from fewer trajectories; this would
amount to determining a line segment from a single point.
Hence, the cardinality of I� is a lower bound on the
trajectory count—i.e., computational effort—needed to
compute �, and (4) achieves this lower bound.

FIG. 1 (color online). The lobe R� (shaded) comprises the
Lagrangian transport from P 0 at t ¼ 0 to F � at t ¼ � under the
flow ’.
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It should be noted that the dimension reduction and
trajectory minimization arguments outlined above are in-
dependent both of numerical implementation and of any
aspect of the dynamics outside the interval T. In particular,
they are independent of the asymptotic notions of
hyperbolicity and invariant manifolds (key components
of existing formalisms), and the flow need not even be
volume-preserving outside T. The framework for comput-
ing transport we present here is truly a consequence of the
finite-time volume-preserving dynamics [23].

Example: Rotated arc mixer.—As a simple illustrative
example, we compute transport in a 2D unsteady model of
the rotated arc mixer (RAM), a novel industrial mixing
device developed on the basis of scientific insight into
chaotic advection. Though previous studies have investi-
gated global asymptotic mixing in periodic versions of the
RAM [24,25], none have considered local transport or
finite-time effects, both of which have important practical
design implications for the device.

The RAM consists of a stationary inner cylinder, punc-
tured by windows, and a rotating outer cylinder that fits
snugly over the inner one [see Fig. 2(a)]. As fluid flows
axially through the RAM, it contacts the rotating outer
cylinder through the windows, inducing a secondary trans-
verse flow [see Fig. 2(b)]. Successive repositioning of the
windows in the axial direction effectively reorients this
transverse flow, enabling chaotic dynamics and highly
efficient mixing [25].

The effect of window reorientation along the RAM’s
main axis can be modeled in cross section by a 2D,
unsteady, cellular flow [24,25], assuming a unit uniform
axial velocity profile [26]. Each flow cell is a reorientation
of a steady base flow and corresponds to a single window of
axial length �; assuming a Stokes flow regime, the ana-
lytical stream function c from [29] describes its dynamics.
The resulting flow is thus volume preserving and the vector
field is given by ð _x; _yÞ ¼ ð@yc ;�@xc Þ. We assume a unit

rotation rate of the outer cylinder, fix the window opening
angle � ¼ �=3, and reorient successive window locations
by � ¼ �2�=3 around the RAM’s circumference.
This results in a periodic flow of period length 3� and
three distinct flow cells whose streamlines are overlaid
in Fig. 2(b).

The axial window length � and the (possibly nonin-
teger) number k of windows over the device length are
the primary control parameters for the full cellular flow.
For the 2D model,� denotes the time duration of each flow
cell, and the flow is active for a total transport time � ¼ k�.
In the infinite-time case,�was shown to strongly influence
global flow topology and asymptotic mixing in the RAM
[25]; here we illustrate its importance to finite-time trans-
port. We study transport outward from the core of the
RAM, letting P 0 be the central disk containing half the
cross-sectional area and letting the target F � be the sur-
rounding annulus (see Fig. 3, � ¼ 0). The total transport
between P 0 and F � is computed via (4) as a function of
both � and �. Note that, despite the periodicity of the flow
cells, the flow must be treated as aperiodic since only
finitely many periods are encountered on [0, �] for any
nonzero �.
The length of @P �, the number of lobes comprisingR�,

and the number of intersection points in I� all typically
grow exponentially with �. For the case � ¼ 4 of Fig. 3,
they all grow as e0:12�. Nonetheless, � can still be com-
puted over a large range of � by employing (4). As noted
above, the number of points in I� represents a lower bound
on the trajectories required to compute �. Of course, to
determine I� we must compute some trial trajectories
outside the set itself; these are then refined by root-finding
methods to determine the true intersections. By choosing
the trials appropriately, the number of trajectories needed
to compute � can be close to the theoretical lower bound.
We note that when n > 2, dimðI�Þ> 0, and so I� must be
approximated numerically; this contributes computational
error to �. In 2D, however, I� comprises finitely many
discrete points and such approximation error is absent. In
this case, I� and its orbit—and thus � itself—are com-
puted accurately and efficiently using standard root-finding
and integration techniques, as described in [19,20].
By contrast, there is effectively no upper bound on the

number of trajectories necessary to compute � according
to (1); finite-resolution effects must be accounted for even

FIG. 2. (a) Schematic of the RAM. (b) Cross section of
the RAM and streamline overlay for three different window
configurations. FIG. 3. P � (shaded) andR��P � (black) for �¼4, various �.
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when n ¼ 2. That is, under (1), the accuracy of the com-
puted transport is always tied directly to the numerical
resolution of @P �. Both the global length and the local
curvature of this set typically increase dramatically with �,
resulting in a corresponding increase in the number of
trajectories needed for accurate numerics [22]. In the cases
we examined, the number of trajectories required to
resolve @P � was about two orders of magnitude greater
than the number of points in I�. For example, when � ¼ 4
and � ¼ 35, about 16 000 points were needed to resolve
@P � whereas I� contains only 166 points.

The results of our transport computations are shown in
Fig. 4, displayed as the fraction of the area of P � that
intersects F � for various � and �. Solid lines indicate
evaluation of (4) and dots represent validation by Monte
Carlo (MC) sampling as described in [19,20]. Notably,
transport depends nonmonotonically on both � and �,
and identifying local and global transport maxima could
have important design implications. We also note that MC
validation was computationally infeasible for large �. For
example, the single MC data point at � ¼ 5 and � ¼ 18:2
took about 20 cpu hr, while evaluating (4) took less than
2 min. Moreover, the statistical error in the MC computa-

tions is around 0.1%. Computing ��¼ areaðP �\fMnF �gÞ
according to (4), the error in the computation of � can be

estimated by 1=2ð�=2��� ��Þ. This error is less than
0.003% for most values of � and � in Fig. 4, and is every-
where less than the MC error.

Conclusions.—We have presented a theoretical frame-
work for describing and efficiently computing finite-time
transport between arbitrary regions in nD, volume-
preserving flows with arbitrary time dependence. Its es-
sence is the reduction of the transport problem to the
dynamics of an ðn� 2ÞD ‘‘minimal set’’ of fundamental
trajectories. Our framework requires no knowledge of the
flow outside the finite transport interval and is independent
of any notions of hyperbolicity or invariant manifolds.

Moreover, it offers a tremendous reduction in computa-
tional effort compared to existing methods.
We have demonstrated the theory and its various advan-

tages via a study of transport in a 2D unsteady model of a
realistic mixing flow and have exposed nontrivial depen-
dence of the transport on the control parameters. The gene-
rality of the theory facilitates similar Lagrangian transport
studies in generic nD systems. Additionally, efforts to
extend the framework to diffusive processes, such as those
involved in heat transfer and chemical kinetics applica-
tions, are currently underway. The Lagrangian formalism
for advective-diffusive transport proposed in [4] may offer
some indications on how to proceed.
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