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Extremal geometry of a Brownian porous medium

Jesse Goodman Frank den Hollander ∗

Abstract

The path W [0, t] of a Brownian motion on a d-dimensional torus Td run for
time t is a random compact subset of Td. We study the geometric properties of the
complement Td\W [0, t] as t→∞ for d ≥ 3. In particular, we show that the largest
region in this complement has linear scale ϕd(t) = [(d log t)/(d − 2)κdt]

1/(d−2),
where κd is the capacity of the unit ball. More specifically, we identify the sets E
for which Td \W [0, t] contains a translate of ϕd(t)E, and we count the number of
such translates. Furthermore, we derive large deviation principles for the largest
inradius as t → ∞ and the ε-cover time as ε ↓ 0. Our results, which generalise
laws of large numbers proved in [9], are based on a large deviation principle for the
shape of the component with largest capacity in Td\Wρ(t)[0, t], where Wρ(t)[0, t] is

the Wiener sausage of radius ρ(t) chosen such that ϕd(t)/(log t)1/d � ρ(t)� ϕd(t)
as t→∞. The idea behind this choice is that Td\W [0, t] consists of “lakes” whose
linear size is of order ϕd(t), connected by narrow “channels” whose linear size is
of order at most ϕd(t)/(log t)1/d. We also derive large deviation principles for the
principal Dirichlet eigenvalue and for the maximal volume of the components of
Td \Wρ(t)[0, t] as t→∞.

MSC 2010: 60D05, 60F10, 60J65.
Key words: Brownian motion, random set, capacity, largest inradius, cover time,
principal Dirichlet eigenvalue, large deviation principle.
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1 Introduction

1.1 Motivation

Our basic object of study is the complement of a random path:

Question 1. Run a Brownian motion W = (W (t))t≥0 on a d-dimensional torus Td,
d ≥ 3. What is the geometry of the random set Td \W [0, t] for large t?

Regions with a random boundary have been studied intensively in the literature,
and questions such as Question 1 have been approached from a variety of perspectives.
Sznitman [20] studies the principal Dirichlet eigenvalue when a Poisson cloud of obsta-
cles is removed from Euclidean space Rd, d ≥ 1. Van den Berg, Bolthausen and den
Hollander [5] consider the large deviation properties of the volume of a Wiener sausage
on Rd, d ≥ 2, and identify the geometric strategies for achieving these large deviations.
Probabilistic techniques also play a role in the analysis of deterministic shapes, such as
strong circularity in rotor-router and sandpile models shown by Levine and Peres [13],
and heat flow in the von Koch snowflake and its relatives analysed by van den Berg
and den Hollander [7], van den Berg [3], and van den Berg and Bolthausen [4]. The
discrete analogue to Question 1, random walk on a large discrete torus, is connected to
the random interlacements model of Sznitman [21].

Question 1 is studied by Dembo, Peres and Rosen [9] for d ≥ 3 and Dembo, Peres,
Rosen and Zeitouni [10] for d = 2. In both cases, a law of large numbers is established
for the ε-cover time (the time for the Brownian motion to come within distance ε of every
point) as ε ↓ 0. For d ≥ 3, also the multifractal spectrum of late points is obtained. In
the present paper we will consider a large but fixed time t, and we will use a key lemma
from [9] to obtain global information about Td \W [0, t]. Furthermore, throughout the
paper we restrict to d ≥ 3. The behaviour in d = 2 is expected to be quite different
(see the discussion in Section 1.6.8 below).

A random set is an infinite-dimensional object. Hence issues of measurability may
become delicate. In general, events are defined in terms of whether a random closed set
intersects a given closed set, or whether a random open set contains a given closed set:
see Matheron [14] or Molchanov [16] for a general theory of random sets and questions
related to their geometry. On the torus we will parametrize these basic events as

{(x+ ϕE) ∩W [0, t] = ∅} =
{
x+ ϕE ⊂ Td \W [0, t]

}
, x ∈ Td, E ⊂ Rd closed

(1.1)
(see (1.5) below), where ϕ > 0 acts as a scaling factor. The set E in (1.1) plays a role
similar to that of a test function, and we will restrict our attention to suitably regular
sets E, for instance, compact sets with non-empty interior.

In giving an answer to Question 1, we must distinguish between global properties,
such as the size of the largest inradius or the principal Dirichlet eigenvalue of the random
set, and local properties, such as whether or not the random set is locally connected.
In the present paper we focus on the global properties of Td \W [0, t]. We will therefore
be interested in the existence of subsets of Td \W [0, t] of a given form:
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Question 2. For a given compact set E ⊂ Rd, what is the probability of the event{
∃x ∈ Td : x+ ϕE ⊂ Td \W [0, t]

}
=
⋃
x∈Td

{
x+ ϕE ⊂ Td \W [0, t]

}
(1.2)

formed as the uncountable union of events from (1.1)?

For instance, questions about the inradius can be formulated in terms of Question 2 by
setting E to be a ball.

The answer to Question 2 depends on the scaling factor ϕ. To obtain a non-trivial
result we are led to choose ϕ = ϕd(t) depending on time, where

ϕd(t) =

(
d

(d− 2)κd

log t

t

)1/(d−2)

, t > 1, (1.3)

and κd is the constant

κd =
2πd/2

Γ(d/2− 1)
. (1.4)

We will see that ϕd(t) represents the linear size of the largest subsets of Td \W [0, t],
in the sense that the limiting probability of the event in (1.2) decreases from 1 to 0
as the set E increases from small to large in the sense of small or large capacity (see
Section 1.3.3 below).

For a typical point x ∈ Td, the event
{
x+ ϕd(t)E ⊂ Td \W [0, t]

}
in (1.1) is unlikely

to occur even when E is fairly small. However, given E ⊂ Rd, the points x ∈ Td for
which x + ϕd(t)E ⊂ Td \ W [0, t], i.e., the points that realize the event in (1.2), are
atypical, and we can ask whether the subset x + ϕd(t)E is likely to form part of a
considerably larger subset:

Question 3. Are the points x ∈ Td for which x + ϕd(t)E ⊂ Td \W [0, t] reasonably
likely to satisfy x+ ϕd(t)E

′ ⊂ Td \W [0, t] for some substantially larger set E ′ ⊃ E?

Question 3 aims to distinguish between the two qualitative pictures shown in Figure 1,
which we call sparse and dense, respectively. We will show that the answer to Question 3
is no, i.e., the picture is dense as in part (b) of Figure 1.

In a similar spirit, we can ask about temporal versus spatial avoidance strategies:

Question 4. For a given x ∈ Td, does the unlikely event
{
x+ ϕd(t)E ⊂ Td \W [0, t]

}
arise primarily because the Brownian motion spends an unusually small amount of time
near x, or because the Brownian motion spends a typical amount of time near x and
simply happens to avoid the set x+ ϕd(t)E?

Questions 3 and 4, though not equivalent, are interrelated: if the Brownian motion
spends an unusually small amount of time near x, then it may be plausibly expected
to fill the vicinity of x less densely, and vice versa. We will show that the Brownian
motion follows a spatial avoidance strategy (the second alternative in Question 4) and
that, indeed, the Brownian motion is very likely to spend approximately the same
amount of time around all points of Td.
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(a)

x+ ϕd(t)E

(b)

x+ ϕd(t)E

Figure 1: The vicinity of x+ϕd(t)E ⊂ Td \W [0, t]. The set in part (a) can be enlarged
substantially while remaining a subset of Td \W [0, t], the set in part (b) cannot.

The negative answer to Question 3, and the heuristic picture in Figure 1(b), suggest
that regions of Td where W [0, t] is relatively dense nearly separate the large subsets
x + ϕd(t)E ⊂ Td \W [0, t] into disjoint components. Making sense of this heuristic is
complicated by the fact that Td\W [0, t] is connected almost surely (see Proposition 1.12
below), so that all large subsets belong to the same connected component in Td\W [0, t].

Question 5. Can the approximate component structure of the large subsets of Td \
W [0, t] be captured in a well-defined way?

We will provide a positive answer to Question 5 by enlarging the Brownian path W [0, t]
to a Wiener sausage Wρ(t)[0, t] of radius ρ(t) = o(ϕd(t)). Under suitable hypotheses on
the enlargement radius ρ(t) (see (1.16) below) we are able to control certain properties
of all the connected components of Td \ Wρ(t)[0, t] simultaneously: for instance, we
compute the asymptotics of their maximum possible volume. The well-definedness of
this component structure is the fact that (subject to the hypothesis in (1.16)) these
properties do not depend on the precise choice of ρ(t).

The existence of a connected component of Td\Wρ(t)[0, t] having a given property, for
instance, having at least a specified volume, involves an uncountable union of the events
in (1.2) as E runs over a suitable class of connected sets. Central to our arguments is a
discretization procedure that reduces such an uncountable union to a suitably controlled
finite union (see Section 3 below).

1.2 Outline

Our main results concern the extremal geometry of the set Td \W [0, t] as t→∞. Our
key result is a large deviation principle for the shape of the component with largest
capacity in Td \Wρ(t)[0, t] as t → ∞, where Wρ(t)[0, t] is the Wiener sausage of radius
ρ(t). We also derive a large deviation principle for the maximal volume and principal
Dirichlet eigenvalue of the components of Td \Wρ(t)[0, t], and identify the number of
disjoint translates of ϕd(t)E in Td \W [0, t] for suitable sets E. It turns out that the
costs of the various large deviations are asymmetric: polynomial in one direction and
stretched exponential in the other direction.
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Apart from settling the questions raised in Section 1.1, we are interested in the
asymptotic behaviour of the following quantities: the largest inradius as t → ∞ and
the ε-cover time as ε ↓ 0. Laws of large numbers for these quantities were derived
in Dembo, Peres and Rosen [9], and we extend these laws of large numbers to large
deviation principles.

The remainder of the paper is organised as follows. In Section 1.3 we give defini-
tions and introduce notations. In Sections 1.4 and 1.5 we state our main results: four
theorems and six corollaries. In Section 1.6 we discuss these results and state some
conjectures. Section 2 contains various estimates on hitting times, hitting numbers
and hitting probabilities for Brownian excursions between the boundaries of concentric
balls, which serve as key ingredients in the proofs of the main results. Section 3 looks
at hitting probabilities of lattice animals, which serve as discrete approximations to
continuum sets. The proofs of the main results are given in Sections 4–5. Appendix A
contains the proof of two lemmas that are used along the way.

1.3 Definitions and notations

1.3.1 Torus

The d-dimensional unit torus Td is the quotient space Rd/Zd, with the canonical
projection map π0 : Rd → Td. We consider Td as a Riemannian manifold in such
a way that π0 is a local isometry. The space Rd acts on Td by translation: given
x = π0(y0) ∈ Td, y0, y ∈ Rd, we define x + y = π0(y0 + y) ∈ Td. (Having made this
definition, we will no longer need to refer to the projection map π0, nor to the particular
representation of the torus Td.) Given a set E ⊂ Rd, a scale factor ϕ > 0, and a point
x ∈ Td or x ∈ Rd, we can now define

x+ ϕE = {x+ ϕy : y ∈ E} . (1.5)

Distances in Td and in Rd are denoted by d(·, ·). The distance from a point x to
a set E is d(x,E) = inf {d(x, y) : y ∈ E}. The closed ball of radius r around a point
x is denoted by B(x, r), for x ∈ Td or x ∈ Rd. We will only be concerned with the
case 0 < r < 1

2
, so that B(x, r) = x + B(0, r) for x ∈ Td and the local isometry

B(0, r)→ B(x, r), y 7→ x+ y, is one-to-one.

1.3.2 Brownian motion and Wiener sausage

We write Px0 for the law of the Brownian motion W = (W (t))t≥0 on Td started at
x0 ∈ Td, i.e., the Markov process with generator −1

2
∆Td , where ∆Td is the Laplace

operator for Td. We can always take W (t) = x0 + W̃ (t), where W̃ = (W̃ (t))t≥0 is the
standard Brownian motion on Rd started at 0. For that reason, when x0 ∈ Rd we will
also use Px0 for the law of the Brownian motion on Rd. When the initial point x0 is
irrelevant we will write P instead of Px0 . The image of the Brownian motion over the
time interval [a, b] is denoted by W [a, b] = {W (s) : a ≤ s ≤ b}.

For r > 0 and E ⊂ Rd or E ⊂ Td, we write Er = ∪x∈EB(x, r) and E−r =
[∪x∈EcB(x, r)]c. The Wiener sausage of radius r run for time t is the r-enlargement
Wr[0, t] = ∪s∈[0,t]B(W (s), r).
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1.3.3 Capacity

The (Newtonian) capacity of a Borel set E ⊂ Rd, denoted by CapE, can be defined as

CapE =

(
inf

µ∈P(E)

∫∫
E×E

dµ(x) dµ(y)G(x, y)

)−1

, (1.6)

where the infimum runs over the set of probability measures µ on E, and

G(x, y) =
Γ(d/2− 1)

2πd/2d(x, y)d−2
(1.7)

is the Green function associated with Brownian motion on Rd (throughout the paper
we restrict to d ≥ 3). In terms of the constant κd from (1.4), we can write G(x, y) =
1/κd d(x, y)d−2, and it emerges that κd = CapB(0, 1) is the capacity of the unit ball.1

The function E 7→ CapE is non-decreasing in E and satisfies the scaling relation

Cap(ϕE) = ϕd−2 CapE, ϕ > 0, (1.8)

and the union bound

Cap(E ∪ E ′) + Cap(E ∩ E ′) ≤ CapE + CapE ′. (1.9)

Capacity has an interpretation in terms of Brownian hitting probabilities:

lim
d(x,0)→∞

d(x, 0)d−2 Px
(
W [0,∞) ∩ E 6= ∅

)
=

CapE

κd
, E ⊂ Rd bounded Borel.

(1.10)
Thus, capacity measures how likely it is for a set to be hit by a Brownian motion that
starts far away. We will make extensive use of estimates similar to (1.10).

If a set E is polar – i.e., with probability 1, E is not hit by a Brownian motion
started away from E – then CapE = 0. For instance, any finite or countable union of
(d− 2)-dimensional subspaces has capacity zero.

1.3.4 Sets

The boundary of a set E is denoted by ∂E, the interior by int(E), and the closure by
clo(E). We write

Ec =
{
E ⊂ Rd compact and connected: Rd \ E is connected

}
(1.11)

for those compact sets that can arise as a component of Rd \ U with U a connected
open set, and we define

E∗ =
{
E ⊂ Rd compact: CapE = Cap(int(E))

}
∪
{
E ⊂ Rd bounded open: CapE = Cap(clo(E))

}
. (1.12)

1See Port and Stone [18, Section 3.1]. The alternative normalization CapB(0, 1) = 1 is used also,
for instance, in Doob [11, Chapter 1.XIII]. This corresponds to replacing G(x, y) by 1/d(x, y)d−2 in
(1.6–1.7).

6



The condition Cap(int(E)) = Cap(clo(E)) in the definition of E∗ is satisfied when every
point of ∂E is a regular point for int(E), which in turn is satisfied when E satisfies a
cone condition at every point (see Port and Stone [18, Chapter 2, Proposition 3.3]). In
particular, any finite union of cubes, or any r-enlargement Er of a compact set, belongs
to E∗.

1.3.5 Maximal capacity of a component

A central role will be played by the largest capacity κ∗(t, ρ) for a component of Td \
Wρ[0, t], defined by

κ∗(t, ρ) = sup
{

CapE : x+ E ⊂ Td \Wρ[0, t] for some x ∈ Td, E ⊂ Rd connected
}
.

(1.13)
Note that by rescaling we have

κ∗(t, ρ)

ϕd(t)d−2
(1.14)

= sup
{

CapE : x+ ϕd(t)E ⊂ Td \Wρ[0, t] for some x ∈ Td, E ⊂ Rd connected
}
.

1.4 Component structure

Our first results describe the component structure of our random set. In formulating
these results we will use the abbreviation (see Figure 2(a))

Jd(κ) =
d

d− 2

(
1− κ

κd

)
, κ ≥ 0. (1.15)

(a)

Jd(κ)

κκd

d

d− 2

(b)

Id(κ)

κκd

∞

Figure 2: (a) The function κ 7→ Jd(κ) in (1.15). (b) The rate function κ 7→ Id(κ) in
(1.17).

Our first theorem quantifies the likelihood of finding sets of large capacity that are
not hit by the Wiener sausage.

Theorem 1.1. Fix a positive function t 7→ ρ(t) satisfying

lim
t→∞

ρ(t)

ϕd(t)
= 0, lim

t→∞
(log t)1/dρ(t)

ϕd(t)
=∞. (1.16)
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Then the family P(κ∗(t, ρ)/ϕd(t)
d−2 ∈ ·), t > 1, satisfies the LDP on [0,∞] with rate

log t and rate function (see Figure 2(b))

Id(κ) =

{
−Jd(κ), κ ≥ κd,

∞, κ < κd,
(1.17)

with the convention that Id(∞) =∞.

The counterpart of Theorem 1.1 for small capacities is contained in the following
two theorems, which show that components of small capacity are very likely to exist
and to be numerous. Let χρ(t, κ) denote the number of components C of Td \Wρ[0, t]
such that C contains some ball of radius ρ and has the form C = x + ϕd(t)E for a
connected open set E with CapE ≥ κ.

Theorem 1.2. Fix a positive function t 7→ ρ(t) satisfying (1.16), and let κ < κd. Then

lim
t→∞

logχρ(t)(t, κ)

log t
= Jd(κ) in P-probability. (1.18)

Theorem 1.3. Fix positive functions t 7→ ρ(t) and t 7→ h(t) satisfying

lim
t→∞

ρ(t)

ϕd(t)
= 0, lim

t→∞
log[h(t)/ϕd(t)]

log t
= 0, (1.19)

and collections of points (S(t))t>1 in Td such that maxx∈Td d(x, S(t)) ≤ h(t) for all
t > 1. Then, for any E ⊂ Rd compact with CapE < κd,

logP
(
(x+ ϕd(t)E) ∩Wρ(t)[0, t] 6= ∅ ∀x ∈ S(t)

)
≤ −tJd(CapE)+o(1), t→∞. (1.20)

The next two theorems identify the shapes of components of Td \ Wρ(t)[0, t]. For
E ⊂ E ′ a pair of nested compact connected subsets of Rd we say that a component C
of Td \Wρ[0, t] satisfies condition (C(t, ρ, E,E ′)) when

C = x+ ϕd(t)U where x ∈ Td and E ⊂ U ⊂ E ′. (C(t, ρ, E,E ′))

Define χρ(t, E,E
′) to be the number of components of Td \Wρ[0, t] satisfying condition

(C(t, ρ, E,E ′)), and define Fρ(t, E,E
′) to be the event

Fρ(t, E,E
′) =

There exists a component C = x+ϕd(t)U of Td \Wρ[0, t]
satisfying condition (C(t, ρ, E,E ′)), and any other com-
ponent C ′ = x′ + ϕd(t)U

′ has CapU ′ < CapU .

 (1.21)

In words, Fρ(t, E,E
′) is the event that Td \Wρ[0, t] contains a component sandwiched

between x + ϕd(t)E and x + ϕd(t)E
′, and any other component has smaller capacity

(when viewed as a subset of Rd).
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Theorem 1.4. Fix a positive function t 7→ ρ(t) satisfying (1.16), let E ∈ Ec, and let
δ > 0. If CapE ≥ κd, then

lim
t→∞

logP
(
Fρ(t)(t, E,Eδ)

)
log t

= Jd(CapE) = −Id(CapE), (1.22)

while if CapE < κd, then

lim
t→∞

logχρ(t)(t, E,Eδ)

log t
= Jd(CapE) in P-probability. (1.23)

The following corollary is the special case of Theorem 1.3 with S(t) = Td and
ρ(t) = 0.

Corollary 1.5. Let E ⊂ Rd be compact with CapE < κd. Then

logP
(
@x ∈ Td : x+ ϕd(t)E ⊂ Td \W [0, t]

)
≤ −tJd(CapE)+o(1), t→∞. (1.24)

Theorems 1.1–1.4 allow us to answer Question 2, subject to a regularity condition
on the set E. For E ⊂ Rd, let χ(t, E) denote the maximal number of disjoint translates
x+ ϕd(t)E in Td \W [0, t].

Corollary 1.6. Suppose that E ∈ E∗. Then

lim
t→∞

P
(
∃x ∈ Td : x+ ϕd(t)E ⊂ Td \W [0, t]

)
=

{
1, CapE < κd,

0, CapE > κd.
(1.25)

Furthermore,

lim
t→∞

logP(∃x ∈ Td : x+ ϕd(t)E ⊂ Td \W [0, t])

log t
= Jd(CapE) ∨ 0, (1.26)

and if CapE < κd, then

lim
t→∞

logχ(t, E)

log t
= Jd(CapE) in P-probability. (1.27)

1.5 Geometric structure

Having described the components in terms of their capacities in Section 1.4, we are
ready to look at the geometric structure of our random set. Our first corollary concerns
the maximal volume of a component of Td\Wρ[0, t], which we denote by V (t, ρ). Volume
is taken w.r.t. the d-dimensional Lebesgue measure, and we write Vd = VolB(0, 1) for
the volume of the d-dimensional unit ball.

Corollary 1.7. Subject to (1.16), the family P(V (t, ρ(t))/ϕd(t)
d ∈ ·), t > 1, satisfies

the LDP on (0,∞) with rate log t and rate function

Ivolume
d (v) = Id

(
κd(v/Vd)

(d−2)/d
)
. (1.28)

Moreover, for v < Vd,

logP
(
V (t, ρ(t))/ϕd(t)

d < v
)
≤ −tJd(κd(v/Vd)(d−2)/d)+o(1), t→∞. (1.29)
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Our second corollary concerns λ(t, ρ) = λ(Td \ Wρ[0, t]), the principal Dirichlet
eigenvalue of Td \ Wρ[0, t], where by λ(E) (for E ⊂ Td or E ⊂ Rd) we mean the
principal eigenvalue of the operator −1

2
∆E with Dirichlet boundary conditions on ∂E.

We write λd = λ(B(0, 1)) for the principal Dirichlet eigenvalue of the d-dimensional
unit ball.

Corollary 1.8. Subject to (1.16), the family P(ϕd(t)
2λ(t, ρ(t)) ∈ ·), t > 1, satisfies the

LDP on (0,∞) with rate log t and rate function

IDirichlet
d (λ) = Id

(
κd(λd/λ)(d−2)/2

)
. (1.30)

Moreover, for λ > λd,

logP
(
ϕd(t)

2λ(t, ρ(t)) ≥ λ
)
≤ −tJd(κd(λd/λ)(d−2)/2)+o(1), t→∞. (1.31)

Our last two corollaries concern the largest inradius of Td \W [0, t],

ρin(t) = sup
x∈Td

d(x,W [0, t]) = sup
{
ρ ≥ 0: Td \Wρ[0, t] 6= ∅

}
, (1.32)

and the ε-cover time,

Cε = sup
x∈Td

inf
{
t ≥ 0: d(x,W [0, t]) ≤ ε

}
= inf

{
t ≥ 0: ρin(t) ≤ ε

}
. (1.33)

For the latter we need the scaling function

ψd(ε) =
ε−(d−2) log(1/ε)

κd
. (1.34)

Corollary 1.9. The family P(ρin(t)/ϕd(t) ∈ · ), t > 1, satisfies the LDP on (0,∞) with
rate log t and rate function

I inradius
d (r) = Id(κd r

d−2). (1.35)

Moreover, for 0 < r < 1,

logP
(
ρin(t)/ϕd(t) < r

)
≤ −tJd(κd r

d−2)+o(1), t→∞. (1.36)

Corollary 1.10. The family P(Cε/ψd(ε) ∈ · ), 0 < ε < 1, satisfies the LDP on (0,∞)
with rate log(1/ε) and rate function

Icover
d (u) =

{
u− d, u ≥ d,

∞, 0 < u < d.
(1.37)

Moreover, for 0 < u < d,

logP
(
Cε/ψd(ε) < u

)
≤ −ε−(d−u)+o(1), ε ↓ 0. (1.38)

Corollary 1.10 is equivalent to Corollary 1.9 because of the relation {ρin(t) > ε} =
{Cε > t} and the asymptotics

ϕd(uψd(ε)) ∼
(u
d

)1/(d−2)

ε, ψd(rϕd(t)) ∼
t

drd−2
, ε ↓ 0, t→∞, u, r > 0.

(1.39)
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1.6 Discussion

1.6.1 Upward versus downward deviations and the role of Jd(κ)

Theorem 1.1 says that the region with largest capacity not hit by the Wiener sausage
of radius ρ(t) lives on scale ϕd(t), and that upward large deviations on this scale have
a cost that decays polynomially in t. Theorem 1.2 identifies how many components of
small capacity exist. This number grows polynomially in t.

According to Corollary 1.5, the number χ(t, E) of scaled translates x + ϕd(t)E is
extremely unlikely to be zero: the cost is stretched exponential in t. Theorem 1.3
strengthens this result and thereby indicates its essential ingredients: the bound remains
valid even when the Brownian motion is enlarged to a Wiener sausage of radius ρ(t) and
the points x are restricted to lie on grid of spacing h(t). The second part of condition
(1.19) says that h(t) can be as large as ϕd(t)t

o(1)(� 1), i.e., the number of translates
can be as small as 1/[ϕd(t)t

o(1)]d(� 1). For smaller grids, i.e., for larger numbers of
translates, the event is even more unlikely.

Theorems 1.1–1.3 are linked by the heuristic that components of the form x+ϕd(t)E
appear according to a Poisson point process with total intensity tJd(CapE)+o(1). When
CapE > κd we have Jd(CapE) < 0, and the likelihood of even a single such component
is t−|Jd(CapE)|+o(1), as in Corollary 1.6. When CapE < κd we have Jd(CapE) > 0, and
a Poisson random variable X of mean tJd(CapE)+o(1) will satisfy X = tJd(CapE)+o(1) with
high probability and P(X = 0) = exp

[
−tJd(CapE)+o(1)

]
, as in Theorems 1.2–1.3. Based

on this heuristic, we conjecture that the inequality in (1.20), and the corresponding
inequalities in (1.29), (1.31), (1.36) and (1.38), are all equalities asymptotically.

Theorem 1.4 completes the picture from Theorems 1.1–1.3 by showing that compo-
nents can approximate any shape E ∈ Ec.

1.6.2 Components and the role of ρ(t)

Theorems 1.1–1.4 concern components of the form x+ϕd(t)E. We begin by remarking
that, with high probability, all components have this form:

Proposition 1.11. Assume (1.16). Let Wrap(t, ρ) be the event that Td \Wρ[0, t] has a
component C that, when considered as a Riemannian manifold with its intrinsic metric,
is not the isometric image x+ E of a bounded subset E of Rd. Then

lim
t→∞

logP (Wrap(t, ρ(t)))

log t
= −∞. (1.40)

Informally, such a component must “wrap around” the torus, so that the local isometry
from Rd to Td is not a global isometry. Proposition 1.11 means that, apart from a
negligible event, we may sensibly consider the components as subsets of Rd and discuss
their capacities as defined in (1.6).

Collectively, Theorems 1.1–1.4, Corollaries 1.7–1.8 and Proposition 1.11 show that
Td \Wρ(t)[0, t] has a component structure, with well-defined bounds on the capacities,
volumes and principal Dirichlet eigenvalues of these components. These results provide
an answer to Question 5.

By contrast, the choice ρ(t) = 0 does not give a component structure at all:
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Proposition 1.12. With probability 1, the set Td \W [0, t] is path-connected, open and
dense for every t, and the set Td \W [0,∞) is path-connected, locally path-connected
and dense.

The picture linking Propositions 1.11–1.12 is that the set Td \ W [0, t] consists of
“lakes” whose linear size is of order ϕd(t), connected by narrow “channels” whose linear
size is at most ϕd(t)/(log t)1/d. By inflating the Brownian motion to a Wiener sausage of
radius ρ(t) with ϕd(t)/(log t)1/d � ρ(t)� ϕd(t), we effectively block off these channels,
so that Td \Wρ(t)[0, t] consists of disjoint lakes.

Proposition 1.12 shows that some lower bound on ρ(t) is necessary for the results
of Theorems 1.1–1.4, Corollaries 1.7–1.8 and Proposition 1.11 to hold.2 It would be
of interest to know whether the condition ρ(t) � ϕd(t)/(log t)1/d can be relaxed, i.e.,
whether the true size of the channels is of smaller order than ϕd(t)/(log t)1/d. By analogy
with the random interlacements model (see Section 1.6.3 below), the relevant regime to
study would be ϕd(t)/(log t)1/(d−2) � ρ(t)� ϕd(t)/(log t)1/d.

1.6.3 A comparison with random interlacements

The discrete analogue of Td \W [0, t] is the complement TdN \ S[0, n] of the path of a
random walk S = (S(n))n∈N0 on a large discrete torus TdN = (Z/NZ)d. The spatial scale
being fixed by discretization, it is necessary to take N →∞ and n→∞ simultaneously,
and the choice n = uNd for u ∈ (0,∞) has been extensively studied: see for instance
Benjamini and Sznitman [2], Sznitman [21] and Sidoravicius and Sznitman [19]. Teixeira
and Windisch [22] prove that the law of TdN \S[0, uNd], seen locally from a typical point,
converges in law as N →∞: with X drawn uniformly from TdN ,

lim
N→∞

Px0
(
X + E ⊂ TdN \ S[0, uNd]

)
= e−uCapZd E, E ⊂ Zd finite, (1.41)

where CapZd E is the discrete capacity. The right-hand side of (1.41) is the hitting
probability

P(E ⊂ Zd \ Iu = ∅) = e−uCapZd E (1.42)

for the random interlacements model with parameter u introduced by Sznitman [21].
Here, the set Iu ⊂ Zd is the union of a certain Poisson point process of random walk
paths, with an intensity proportional to the parameter u. The random interlacements
model has a critical value u∗ ∈ (0,∞) such that Zd \ Iu has an unbounded component
a.s. when u < u∗ and has only bounded components a.s. when u > u∗.

The continuous analogue of (1.41) is the probability of the event in (1.1) with the
scaling factor ϕ = t−1/(d−2) instead of ϕ = ϕd(t). Our methods (see Propositions 2.1
and 2.4 below) yield

lim
t→∞

Px0
(
X + t−1/(d−2)E ⊂ Td \W [0, t]

)
= e−CapE, E ⊂ Rd compact (1.43)

2The choice ρ(t) = 0 makes the eigenvalue result in Corollary 1.8 false for d ≥ 4, since Brownian
motion is a polar set for d ≥ 4. However, for d = 3 the eigenvalue λ(t, 0) is non-trivial even when
ρ(t) = 0, and we conjecture that Corollary 1.8 remains valid, i.e., the eigenvalue is determined primarily
by the large unhit lakes in Td \W [0, t], and not by the narrow channels connecting them. See the
rough estimates in van den Berg, Bolthausen and den Hollander [6].
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for X drawn uniformly from Td, which implies that the random set Td \W [0, t], seen
locally from a typical point, converges in law (see Molchanov [16, Theorem 6.5] for a
discussion of convergence in law for random sets). As with the random interlacements
Iu, the limiting random set for (1.43) can be constructed from a Poisson point process
of Brownian motion paths.

Because of scale invariance, no parameter is needed in (1.43). Indeed, the continuous
model corresponds to a rescaled limit of the discrete model when N and u are replaced
by kN and u/kd−2, respectively, with k →∞. In this rescaling the parameter u tends
to zero. Thus, Zd \ Iu must lose its finite component strucure, which is in accordance
with the connectedness result Proposition 1.12.

Expanding to a Wiener sausage can be interpreted as reintroducing a kind of dis-
cretization. However, because of (1.16), the spatial scale ρ(t) of this discretization is
much larger than the spatial scale t−1/(d−2) corresponding to (1.43) (cf. Section 1.6.2).

1.6.4 Corollaries of the capacity bounds

Corollary 1.6 summarizes for which set E a subset x + ϕd(t)E ⊂ Td \W [0, t] can be
expected to exist: according to Theorems 1.1–1.4, subsets of large capacity are unlikely
to exist, whereas subsets of small capacity are numerous. In particular, Corollary 1.6
answers Question 2 subject to the regularity condition E ∈ E∗.

Corollaries 1.7–1.8 follow from Theorems 1.1–1.4 with the help of the isoperimetric
inequalities

CapE

κd
≥
(

VolE

Vd

)(d−2)/d

≥
(

λd
λ(E)

)(d−2)/2

, E ⊂ Rd bounded open, (1.44)

where we recall that κd, Vd, λd are the capacity, volume and principal Dirichlet eigenvalue
of B(0, 1). The first inequality is the Poincaré-Faber-Szegö inequality, which says that
among all sets with a given volume the ball has the smallest capacity. The second
inequality is the Faber-Krahn theorem, which says that among all sets of a given volume
the ball has the smallest Dirichlet eigenvalue.3 Comparing with Theorem 1.1, the most
efficient way to produce a component having a given large volume (or small principal
Dirichlet eigenvalue) is for that component to be a ball.

Equality holds throughout (1.44) when E is a ball, and the lower bounds in Corollar-
ies 1.7–1.8, together with Corollaries 1.9–1.10, follow by specializing Theorems 1.1–1.4
to that case.

The large deviation principles in Theorem 1.1 and Corollaries 1.7–1.10 each im-
ply a weak law of large numbers, e.g. limt→∞ κ∗(t, ρ(t))/ϕd(t)

d−2 = 1 in P-probability.
The weak laws of large numbers implied by Corollaries 1.9–1.10 were proved in Dembo,
Peres and Rosen [9] in the stronger form limt→∞ ρin(t)/ϕd(t) = 1 and limt→∞ Cε/ψd(ε) =
d P-almost surely. The L1-version of this convergence is proved in van den Berg,
Bolthausen and den Hollander [6]. Note that none of these forms are equivalent: for
instance, almost sure convergence does not follow from Corollaries 1.9–1.10, since the
sum

∑
t∈N exp[−Id(κ) log t] fails to converge when Id(κ) is small.

3See e.g. Bandle [1, Theorems II.2.3 and III.3.8] or Pólya and Szegö [17, Section I.1.12]. These
references consider the capacity only when d = 3, but their methods apply for all d ≥ 3.
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1.6.5 The maximal diameter of a component

There is no analogue of Corollary 1.7 for the maximal diameter instead of the maximal
volume. The capacity and the diameter are related by CapE ≤ κd(diamE)d−2. How-
ever, there is no inequality in the reverse direction: a set of fixed capacity can have an
arbitrarily large diameter. It turns out that the maximal diameter of the components of
Td\Wρ(t)[0, t] is of larger order than ϕd(t). More precisely, suppose that ρ(t) = o(ϕd(t)),
and let D(t, ρ(t)) denote the largest diameter of a component of Td \Wρ(t)[0, t]. Then
limt→∞D(t, ρ(t))/ϕd(t) =∞ in P-probability. Indeed, choose a compact connected set
E of zero capacity and large diameter, say E = [0, L]× {0}d−1 with L large. Then, by
Theorem 1.3, Td \Wρ(t)[0, t] has a component containing x + ϕd(t)E, for some x, with
a very high probability.

Furthermore, we conjecture that the “actual” asymptotic size of D(t, ρ(t)) (which,
as we have just shown, must be of larger order than ϕd(t)) depends on the choice of
ρ(t), and is therefore ill-defined in the sense of Question 5.

1.6.6 The second-largest component

The component of second-largest capacity (or second-largest volume, principal Dirichlet
eigenvalue, or inradius) has a different large deviation behaviour, due to the fact that
E 7→ CapE is not additive. Indeed, typically Cap(E(1)∪E(2)) < Cap(E(1))+Cap(E(2)),
even for disjoint sets E(1), E(2). In the case of concentric spheres, Cap(∂B(0, r1) ∪
∂B(0, r2)) = max {Cap(∂B(0, r1)),Cap(∂B(0, r2))}. It follows that the most efficient
way to produce two large but disjoint components is to have them almost touching.

1.6.7 Answers to Questions 1–5

The results in this paper give a partial answer to Question 1.
Question 2 is answered by Corollary 1.6 subject to E ∈ E∗, CapE 6= κd (see also

Section 3 for results that are simultaneous over a certain class of sets E).
The resolution to Question 3, namely, the fact that the dense picture in Figure 1(b)

applies, is provided by Corollary 1.6. If E ⊂ E ′ with CapE ′ ≥ CapE + δ, δ > 0,
and E,E ′ ∈ E∗, then, compared to subsets of the form x+ ϕd(t)E, subsets of the form
x + ϕd(t)E

′ are much less numerous (when CapE < κd) or much less probable (when
CapE ≥ κd). Moreover, if (1.16) holds, then Theorems 1.1–1.2 answer Question 3
simultaneously over all possible sets E ′.

The answer to Question 4, namely, that the Brownian motion follows a spatial
avoidance strategy, will follow from Proposition 2.1 below.

Finally (with the caveat discussed in Section 1.6.5), Theorems 1.1–1.4, Corollar-
ies 1.7–1.8 and Proposition 1.11 provide the answer to Question 5.

1.6.8 Two dimensions

It remains a challenge to extend the results in this paper to d = 2. In contrast to d ≥ 3,
the large subsets of T2 \W [0, t] are expected to arise because of a temporal avoidance
strategy and to resemble the sparse picture of Figure 1(a) (see Questions 3–4). A law of
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large numbers for the cover time is derived in Dembo, Peres, Rosen and Zeitouni [10].
By the relation {ρin(t) > ε} = {Cε > t}, this implies a law of large numbers for a
certain rescaled function of the inradius. However, differences in scaling properties
mean that this law of large numbers gives much less precise geometric information.
Rough asymptotics for the average principal Dirichlet eigenvalue are derived in van den
Berg, Bolthausen and den Hollander [6].

2 Brownian excursions

In this section we list a few properties of Brownian excursions that will be needed as
we go along. Section 2.1 looks at the times and the numbers of excursions between
the boundaries of two concentric balls, Section 2.2 estimates the hitting probabilities
of these excursions in terms of capacity, while Section 2.3 collects a few elementary
properties of capacity.

2.1 Counting excursions between balls

Excursion times. Let x ∈ Td and 0 < r < R < 1
2
. Regard these values as fixed for

the moment. Set T0 = inf {t ≥ 0: W (t) ∈ ∂B(x,R)} and, for i ∈ N, define recursively
the hitting times (see Figure 3)

T ′i = inf {t ≥ Ti−1 : W (t) ∈ ∂B(x, r)} ,
Ti = inf {t ≥ T ′i : W (t) ∈ ∂B(x,R)} . (2.1)

We call W [T ′i , Ti] the ith excursion from ∂B(x, r) to ∂B(x,R), and write ξ′i(x) = W (T ′i ),
ξi(x) = W (Ti) for its starting and ending points.4

Set
τ0(x, r, R) = τ ′0(x, r, R) = T0(x),

τi(x, r, R) = Ti − Ti−1, τ
′
i(x, r, R) = T ′i − Ti−1, i ∈ N.

(2.2)

Thus, τi(x, r, R) is the duration of the ith excursion from ∂B(x,R) to itself via ∂B(x, r),
while τ ′i(x, r, R) < τi(x, r, R) is the duration of the ith excursion from ∂B(x,R) to
∂B(x, r).
(All the variables Ti, T

′
i , ξi, ξ

′
i, τi, τ

′
i depend on all the parameters x, r, R. Nevertheless,

in our notation we only indicate some of these dependencies.)

Excursion numbers. Define

N(x, t, r, R) = max {i ∈ N0 : Ti ≤ t} = max

{
j ∈ N0 :

j∑
i=0

τi(x, r, R) ≤ t

}
, (2.3)

N ′(x, t, r, R) = max

{
j ∈ N0 :

j∑
i=0

τ ′i(x, r, R) ≤ t

}
. (2.4)

4If the starting point x0 lies inside B(x,R), then the Brownian motion may travel from ∂B(x, r) to
∂B(x,R) before time T0. To simplify the application of Dembo, Peres and Rosen [9, Lemma 2.4], we
do not call this an excursion from ∂B(x, r) to ∂B(x,R).
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Figure 3: Hittings that define the times Ti, i ∈ N0, and T ′i , i ∈ N. The open circles
indicate the locations of the starting and ending points ξ′i(x) = W (T ′i ), ξi(x) = W (Ti)
of the excursions.

Thus, N(x, t, r, R) is the number of completed excursions from ∂B(x, r) to ∂B(x,R)
by time t, while N ′(x, t, r, R) is the number of (necessarily completed) excursions when
the total time spent not making an excursion reaches t.

As we will see in Proposition 2.1 below, N(x, t, r, R) and N ′(x, t, r, R) have very
similar scaling bahaviour for t → ∞ and r � R � 1. Indeed, the times τi(x, r, R)
and τ ′i(x, r, R) are typically large (since the Brownian motion typically visits the bulk
of Td many times before travelling from ∂B(x,R) to ∂B(x, r)), whereas τi(x, r, R) −
τ ′i(x, r, R) = Ti(x) − T ′i (x) scales as R2. The advantage of N ′(x, t, r, R) is that it
is independent of hitting events within B(x, r) given the starting and ending points
ξ′i(x),ξi(x) of the excursions.

Define

Nd(t, r, R) =
κdt

r−(d−2) −R−(d−2)
. (2.5)

The following proposition shows that Nd(t, r, R) represents the typical size for the ran-
dom variables N(x, t, r, R) and N ′(x, t, r, R).

Proposition 2.1. For any δ ∈ (0, 1) there is a c = c(δ) > 0 such that, uniformly in
x, x0 ∈ Td, t > 1 and 0 < r1−δ ≤ R ≤ c,

Px0
(
N(x, t, r, R) ≥ (1 + δ)Nd(t, r, R)

)
≤ e−cNd(t,r,R), (2.6)

Px0
(
N ′(x, t, r, R) ≥ (1 + δ)Nd(t, r, R)

)
≤ e−cNd(t,r,R), (2.7)

Px0
(
N(x, t, r, R) ≤ (1− δ)Nd(t, r, R)

)
≤ e−cNd(t,r,R). (2.8)

Proof. The result follows from a lemma in Dembo, Peres and Rosen [9], which we
reformulate in our notation. (Note that the constant κd defined by (1.4) corresponds
to the quantity 1/κTd from [9, page 2] rather than κTd .)

Lemma 2.2 ([9, Lemma 2.4]). There is a constant η > 0 such that if N ≥ η−1,
0 < δ < δ0 < η and 0 < 2r ≤ R < R0(δ), then for some c = c(r, R) > 0 and uniformly
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in x, x0 ∈ Td,

Px0

(
1− δ ≤ κd

N(r−(d−2) −R−(d−2))

N∑
i=0

τi(x, r, R) ≤ 1 + δ

)
≥ 1− e−cδ2N . (2.9)

Moreover, c can be chosen to depend only on δ0 as soon as R > r1−δ0. The same result
holds when τ ′i(x, r, R) is replaced by τi(x, r, R).

(The same result for τ ′i is not included in [9], but follows from the estimates in that
paper. Indeed, τi − τ ′i is shown to be an error term.)

To prove Proposition 2.1, we begin with (2.8). Fix δ > 0. We may assume with-
out loss of generality that δ < 1

2
and 1/(1 − 1

2
δ) < 1 + 2

3
δ < 1 + η. Set N =

b(1− δ)Nd(t, r, R)c + 1. Since N/Nd(t, r, R) → 1 − δ as Nd(t, r, R) → ∞, we can
choose r small enough so that 1

2
Nd(t, r, R) ≤ N ≤ (1 − 1

2
δ)Nd(t, r, R) and N ≥ η−1,

uniformly in R and t > 1. We have{
N(x, t, r, R) ≤ (1− δ)Nd(t, r, R)

}
= {N(x, t, r, R) < N} = {TN ≥ t} . (2.10)

Since TN =
∑N

i=0 τi(x, r, R), it follows that

Px0
(
N(x, t, r, R) ≤ (1− δ)Nd(t, r, R)

)
= Px0

(
N∑
i=0

τi(x, r, R) ≥ t

)
= Px0

(
κd
∑N

i=0 τi(x, r, R)

N(r−(d−2) −R−(d−2))
≥ Nd(t, r, R)

N

)

≤ Px0

(
κd
∑N

i=0 τi(x, r, R)

N(r−(d−2) −R−(d−2))
≥ 1

1− 1
2
δ

)
. (2.11)

Hence (2.8) follows from Lemma 2.2 with δ and δ0 replaced by 1
2
δ/(1 − 1

2
δ) and 2

3
δ,

respectively, with the constant c in Proposition 2.1 chosen small enough so that 2r ≤
R < R0[1

2
δ/(1− 1

2
δ)].

The proof of (2.7) is similar. Let δ > 0 be such that 1
2
δ/(1 + 1

2
δ) < η and set

N ′ = d(1 + δ)Nd(t, r, R)e. As before, we have

Px0
(
N ′(t, x, r, R) ≥ (1+δ)Nd(t, r, R)

)
≤ Px0

( κd
∑N ′

i=0 τ
′
i(x, r, R)

N ′(r−(d−2) −R−(d−2))
≤ 1

1 + 1
2
δ

)
(2.12)

and we can apply the version of Lemma 2.2 with τ ′i(x, r, R) instead of τi(x, r, R) and δ
replaced by 1

2
δ/(1 + 1

2
δ).

Finally, because N ′(t, x, r, R) ≤ N(t, x, r, R), (2.6) follows from (2.7).

Proposition 2.1 forms the link between the global structure of Td, notably the fact
that a Brownian motion on Td has a finite mean return time to a small ball, and the
excursions of W within small balls, during which W cannot be distinguished from a
Brownian motion on all of Rd.
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2.2 Hitting sets by excursions

The concentration inequalities in Proposition 2.1 will allow us to treat the number of
excursions as deterministic. This observation motivates the following definition.

Definition 2.3. Let 0 < r < R < 1
2
, ϕ > 0 and N ∈ N. A pair (x,E) with x ∈ Td,

E ⊂ Rd Borel, will be called (N,ϕ, r, R)-successful if none of the first N excursions of
W from ∂B(x, r) to ∂B(x,R) hit x+ ϕE.

Proposition 2.4. Let 0 < ε < r < R < 1
2
. Then, uniformly in ϕ > 0, x0, x ∈ Td and

E ⊂ Rd a Borel set with ϕE ⊂ B(0, ε), and uniformly in (ξ′i(x), ξi(x))Ni=1,

Px0
(
(x,E) is (N,ϕ, r, R)-successful

∣∣ (ξ′i(x), ξi(x))Ni=1

)
= exp

[
−N

(ϕ
r

)d−2 CapE

κd
[1 + o(1)]

]
, r/ε, R/r →∞.

(2.13)

Since the error term is uniform in (ξ′i(x), ξi(x))Ni=1, Proposition 2.4 also applies to the
unconditional probability Px0((x,E) is (N,ϕ, r, R)-successful).

To prove Proposition 2.4 we need the following lemma for the hitting probability of
a single excursion given its starting and ending points. For ξ′ ∈ ∂B(x, r), ξ ∈ ∂B(x,R),
write Pξ′,ξ for the law of an excursion W [0, ζR], ζR = inf {t ≥ 0: d(x,W (t)) ≥ R}, from
∂B(x, r) to ∂B(x,R), started at ξ′ and conditioned to end at ξ.

Lemma 2.5. Let 0 < ε < r < R < 1
2
. Then, uniformly in x ∈ Td, ξ′ ∈ ∂B(x, r), ξ ∈

∂B(x,R) and E a Borel set with E ⊂ B(0, ε),

Pξ′,ξ((x+ E) ∩W [0, ζR] 6= ∅) =
CapE

κd rd−2
[1 + o(1)], r/ε, R/r →∞. (2.14)

Lemma 2.5 is a more elaborate version of (1.10): it states that the asymptotics
of (1.10) remain valid when we stop the Brownian motion upon exiting a sufficiently
distant ball, and hold conditionally and uniformly, provided the balls and set are well
separated. In the proof we use the relation∫

∂B(0,r)

Px(E ∩W [0,∞) 6= ∅) dσr(x) =
CapE

κd rd−2
, E a Borel subset of B(0, r),

(2.15)
where σr denotes the uniform measure on ∂B(0, r). Equation (2.15) becomes an identity
as soon as B(0, r) contains E, and as such it is a more precise version of (1.10): see
Port and Stone [18, Chapter 3, Theorem 1.10] and surrounding material.

We defer the proof of Lemma 2.5 to Section A.1. We can now prove Proposition 2.4.

Proof. Conditional on their starting and ending points (ξ′i(x), ξi(x))Ni=1, the successive
excursions from ∂B(x, r) to ∂B(x,R) are independent with laws Pξ′i(x),ξi(x). Applying
Lemma 2.5, we have

Px0
(
(x,E) is (N,ϕ, r, R)-successful

∣∣ (ξ′i(x), ξi(x))Ni=1

)
=

N∏
i=1

Pξ′i(x),ξi(x)((x+ ϕE) ∩W [0, ζR] = ∅) =

(
1− Cap(ϕE)

κd rd−2
[1 + o(1)]

)N
. (2.16)
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Since Cap(ϕE) ≤ κd ε
d−2 = o(rd−2) as r/ε→∞, we can rewrite the right-hand side of

(2.16) as

exp

[
−NCap(ϕE)

κd rd−2
[1 + o(1)]

]
, (2.17)

so that the scaling relation in (1.8) implies the claim.

2.3 Properties of capacity

In this section we collect a few elementary properties of capacity.

2.3.1 Continuity

Proposition 2.6. Let E denote a Borel subset of Rd.

(a) If E is compact, then CapEr ↓ CapE as r ↓ 0.

(b) If E is open, then CapE−r ↑ CapE as r ↓ 0.

(c) If E is bounded with Cap(clo(E)) = Cap(int(E)), then CapEr ↓ CapE and
CapE−r ↑ CapE as r ↓ 0.

Proof. For r ↓ 0 we have Er ↓ clo(E) and E−r ↑ int(E) for any set E. By Port and
Stone [18, Chapter 3, Proposition 1.13], it follows that CapE−r ↑ Cap(int(E)) and, if
E is bounded, CapEr ↓ Cap(clo(E)). The statements about E follow depending on
which inequalities in Cap(int(E)) ≤ CapE ≤ Cap(clo(E)) are equalities.

Proposition 2.6 is a statement about the continuity of E 7→ CapE with respect to
enlargement and shrinking. The assumptions on E are necessary, since there are sets
E with Cap(clo(E)) > Cap(int(E)). Note that E 7→ CapE is not continuous with
respect to the Hausdorff metric, even when restricted to reasonable classes of sets. For
instance, the finite sets B(0, 1) ∩ 1

n
Zd converge to B(0, 1) in the Hausdorff metric, but

have zero capacity for all n.

2.3.2 Separation

Lemma 2.7. Let 0 < ε < r. Then, uniformly in x1, x2 ∈ Rd with d(x1, x2) ≥ r and
E(1), E(2) Borel subsets of Rd with E(1), E(2) ⊂ B(0, ε),

Cap
(
(x1 +E(1))∪(x2 +E(2))

)
=
(
CapE(1) +CapE(2)

)
[1−o(1)], r/ε→∞. (2.18)

Proof. Fix r̃ large enough so that (x1 + E(1)) ∪ (x2 + E(2)) ⊂ B(0, r̃). On the event{
W hits xj + E(j)

}
, write Yj for the first point of xj + E(j) hit by W . Applying (1.9),
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(2.15), and the Markov property, we get

0 ≤ Cap(x1 + E(1)) + Cap(x2 + E(2))− Cap
(
(x1 + E(1)) ∪ (x2 + E(2))

)
= κd r̃

d−2

∫
∂B(0,r̃)

Px
(
W hits x1 + E(1) and x2 + E(2)

)
dσr̃(x)

≤
∑

{j,j′}={1,2}
κd r̃

d−2

∫
∂B(0,r̃)

Ex
(
1{W hits xj + E(j)}PYj

(
W hits B(xj′ , ε)

))
dσr̃(x)

≤
∑

{j,j′}={1,2}
κd r̃

d−2

∫
∂B(0,r̃)

Px
(
W hits xj + E(j)

) εd−2

(r − ε)d−2
dσr̃(x)

=
εd−2

(r − ε)d−2

(
CapE(1) + CapE(2)

)
, (2.19)

where the second inequality uses that every Yj ∈ xj + E(j) is at least a distance r − ε
from xj′ . But (ε/(r − ε))d−2 = o(1) for r/ε ↓ 0, and so the claim follows.

3 Hitting probabilities of lattice animals

An event such as {
∃x ∈ Td : (x+ ϕd(t)E) ∩W [0, t] = ∅

}
(3.1)

is a simultaneous statement about an infinite collection (x + ϕd(t)E)x∈Td of sets. In
this section, we apply the results of Section 2 to prove simultaneous statements for a
finite collection of discretized sets. Section 3.1 proves a bound for sets of large capacity
that forms the basis for Theorem 1.1, while Section 3.2 does the same for sets of small
capacity that form the basis for Theorems 1.2–1.3.

Definition 3.1. A lattice animal is a connected set A ⊂ Rd that is the union of a finite
number of closed unit cubes with centres in Zd. We write A� for the collection of all
lattice animals, and A�

Q for the collection of lattice animals A ∈ A� that contain 0 and
consist of at most Q unit cubes.

It is readily verified that, for any d ≥ 2, there is a constant C <∞ such that∣∣A�
Q

∣∣ ≤ eCQ, Q ∈ N. (3.2)

In fact, subadditivity arguments show that
∣∣A�

Q

∣∣ grows exponentially, in the sense that

limQ→∞
∣∣A�

Q

∣∣1/Q exists in (1,∞) for any d ≥ 2. See, for instance, Klarner [12] for the
case d = 2, or Mejia Miranda and Slade [15, Lemma 2] for a general upper bound that
implies (3.2).

Lattice animals are commonly considered as discrete combinatorial objects. In our
context, we can identify A ∈ A� with the collection A ∩ Zd of lattice points in A.
Requiring A to be a connected subset of Rd is then equivalent to requiring the vertices
A ∩ Zd to form a connected subgraph of the lattice Zd. (Because of the details of our
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definition, the relevant choice of lattice structure is that vertices x, y ∈ Zd are adjacent
when their `∞-distance is 1.)

For n ∈ N, set Gn = x + 1
n
Zd to be a grid of nd points in Td, for some x ∈ Td.

The choice of x (i.e., the alignment of the grid) will generally not be relevant to our
purposes.

3.1 Hitting large lattice animals

Proposition 3.2. Fix an integer-valued function t 7→ n(t) such that

lim
t→∞

n(t)ϕd(t)

(log t)1/d
= 0. (3.3)

Given A ∈ A�, write E(A) = n(t)−1ϕd(t)
−1A. Then, for each κ,

lim sup
t→∞

logPx0
(
∃x ∈ Gn(t), A ∈ A� : CapE(A) ≥ κ, (x+ ϕd(t)E(A)) ∩W [0, t] = ∅

)
log t

≤ Jd(κ). (3.4)

Proposition 3.2 gives an upper bound on the probability of finding unhit sets of large
capacity, simultaneously over all sets of the form E(A), A ∈ A�. Note that x+ϕE(A)
is a finite union of cubes of side length 1/n centred at points of Gn. In Section 4 we
will use x+ ϕE(A) as a lattice approximation to a generic set x+ ϕE. The fineness of
this lattice approximation is determined by the relation between the lengths 1/n and ϕ.
The hypothesis in (3.3) means that the lattice scale 1/n is a factor of order o((log t)1/d)
smaller compared to the scale ϕ. This order is chosen so that the number of lattice
animals does not grow too quickly.

Before proving Proposition 3.2, we give some definitions and make some remarks
that we will use throughout Section 3. We abbreviate

ϕ = ϕd(t), n = n(t), E(A) = n−1ϕ−1A. (3.5)

For x ∈ Td, we introduce the nested balls B(x, r) and B(x,R), where

r = ϕ1−δ, R = ϕ1−2δ, (3.6)

and δ ∈ (0, 1
2
) is fixed. We have ϕ� r � R → 0 as t→∞, and we will always take t

large enough so that ϕ < 1 and R < 1
2
.

Suppose that A ∈ A� is such that CapE(A) is bounded. By (1.44), it follows that
VolE(A) is also bounded. Consequently, we may assume that A consists of at most
Q = Q(t) unit cubes, where Q is suitably chosen with

Q = O(ndϕd). (3.7)

Suppose, instead, that A ∈ A� is minimal subject to the condition CapE(A) ≥ κ, and
suppose that nϕ→∞. By (1.9), upon removing a single unit cube from A the capacity
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CapE(A) decreases by at most O(1/nϕ), and so it follows that κ ≤ CapE(A) ≤
κ+O(1/nϕ). In particular, CapE(A) is bounded, and we may again assume (3.7).

Given x ∈ Gn and A ∈ A�, the translate x + ϕE(A) can always be written as
x′ + ϕE(A′), where x′ ∈ Gn and 0 ∈ A′. By the above, we have A′ ∈ A�

Q. Since A′ is

connected and 0 ∈ A′, it follows that ϕE(A′) ⊂ B(0, ϕQ
√
d). If Q = to(1) (in particular,

if (3.3) is assumed, or the weaker hypothesis in (3.16)), then r/ϕQ → ∞ as t → ∞.
We may therefore always take t large enough so that B(0, ϕQ

√
d) ⊂ B(0, r), and we

may apply Proposition 2.4 to ϕE(A), uniformly over A ∈ A�
Q.

Proof. Note that if we replace n by a suitable multiple kn = k(t)n(t) for k(t) ∈ N, we
can only increase the probability in (3.4). Thus it is no loss of generality to assume
that nϕ→∞.

The event that W hits x + ϕE(A) is decreasing in A. Therefore we may restrict
our attention to lattice animals A that are minimal subject to CapE(A) ≥ κ. By the
remarks above, we may assume that A ∈ A�

Q. Combining (3.3) and (3.7), we have
Q = o(log t).

Set N = (1 − δ)Nd(t, r, R). Recalling (2.5) and (3.6), we have Nd(t, r, R) = tδ+o(1)

as t → ∞. If the event in (3.4) occurs, then there must exist a point x ∈ Gn with
N(x, t, r, R) < N or a pair (x,A) ∈ Gn ×A�

Q such that CapE(A) ≥ κ and (x,E(A)) is
(bNc , ϕ, r, R)-successful. Write χ̃� for the number of such pairs. Then

Px0
(
∃x ∈ Gn, A ∈ A� : CapE(A) ≥ κ, (x+ ϕE(A)) ∩W [0, t] = ∅

)
≤ |Gn|max

x∈Gn
Px0(N(x, t, r, R) < N) + Px0(χ̃� ≥ 1)

≤ td/(d−2)+o(1)e−ct
δ+o(1)

+ Px0(χ̃� ≥ 1) (3.8)

by Proposition 2.1. The first term in the right-hand side is negligible. For the second
term, Q = o(log t) implies that

∣∣A�
Q

∣∣ ≤ eO(Q) = to(1) by (3.2), and so Proposition 2.4
gives

E(χ̃�) ≤ |Gn|
∣∣A�

Q

∣∣ max
x∈Gn,A∈A�

Q

Px0((x,E(A)) is (bNc, ϕ, r, R)-successful)

≤ (td/(d−2)+o(1))(to(1))(t−dκ/[(d−2)κd]+O(δ)) ≤ t−d(κ/κd−1)/(d−2)+O(δ), (3.9)

and the Markov inequality completes the proof.

Proposition 3.2 bounds the probability that a single rescaled lattice animal x +
ϕd(t)E(A) is not hit. We will also need the following bounds, for finite unions of lattice
animals that are relatively close, and for pairs of lattice animals that are relatively
distant.

Lemma 3.3. Assume (3.3). Fix a capacity κ ≥ κd, a positive integer k ∈ N and a
positive function t 7→ h(t) > 0 satisfying

lim
t→∞

log(h(t)/ϕd(t))

log t
= 0. (3.10)
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Then the probability that there exist a point x ∈ Gn(t) and lattice animals A(1), . . . , A(k) ∈
A�, such that the union E = ∪kj=1E(A(j)) satisfies CapE ≥ κ, ϕd(t)E ⊂ B(0, h(t)),

and (x+ ϕd(t)E) ∩W [0, t] = ∅, is at most t−Id(κ)+o(1).

Proof. The proof is the same as for Proposition 3.2. Abbreviate h = h(t). Since
h = to(1)ϕ, it follows that r/h → ∞ as t → ∞, so that Proposition 2.4 applies to ϕE.
Similarly, writing A(j) = yj + Ã(j) with Ã(j) ∈ A�

Q and yj ∈ B(0, nh)∩Zd, we have that

there are at most O((nh)dk)
∣∣A�

Q

∣∣k possible choices for A(1), . . . , A(k). This number is

to(1) by (3.3) and (3.10), so that a counting argument applies as before.

Lemma 3.4. Assume (3.3). Fix a positive function t 7→ h(t) > 0 satisfying

lim inf
t→∞

h(t)

ϕd(t) log t
> 0, (3.11)

and let κ(1), κ(2) > κd, x1 ∈ Td. Then the probability that there exist a point x2 ∈ Gn(t)

with d(x1, x2) ≥ h(t) and lattice animals A(1), A(2) ∈ A� with CapE(A(j)) ≥ κ(j) such

that (xj + ϕd(t)E(A(j))) ∩W [0, t] = ∅, j = 1, 2, is at most t−[dκ(1)/(d−2)κd]−Id(κ(2))+o(1).

Proof. We resume the notation and assumptions from the proof of Proposition 3.2, this
time taking δ < 1

4
. Abbreviate h = h(t).

For x2 ∈ Gn such that d(x1, x2) ≥ 2R, the events of (xj, E(Aj)) being (bNc , ϕ, r, R)-
successful, j = 1, 2, are conditionally independent given (ξ′i(xj), ξi(xj))i,j. The required
bound for the case d(x1, x2) ≥ 2R therefore follows by the same argument as in the
proof of Proposition 3.2.

For x2 ∈ Gn such that d(x1, x2) ≤ 2R, set r̃ = ϕ1−3δ, R̃ = ϕ1−4δ and Ñ = (1 −
δ)Nd(t, r̃, R̃). We have ϕE(Aj) ⊂ B(0, ϕQ

√
d) for j = 1, 2, with Q = o(log t) (without

loss of generality, as in the proof of Proposition 3.2). Write x2 = x1 +ϕy, where y ∈ Rd

with h/ϕ ≤ d(0, y) ≤ 2R/ϕ. The hypothesis (3.11) implies that h/ϕQ→∞. Hence we
can apply Lemma 2.7 (with ε = ϕQ

√
d and h playing the role of r), to conclude that

Cap
(
E(A1) ∪ (y + E(A2))

)
=
(

CapE(A1) + CapE(A2)
)
[1− o(1)]. (3.12)

We also have E(A1) ∪ (y + E(A2)) ⊂ B(0, 2R + ϕQ
√
d) with r̃/R, r̃/ϕQ → ∞. In

particular, x1 + ϕ(E(A1) ∪ (y +E(A2))) ⊂ B(x1, r̃) for t large enough. As in the proof
of Proposition 3.2, (xj + ϕE(Aj)) ∩ W [0, t] = ∅ implies that N(x1, t, r̃, R̃) < N or
(x1, E(A1) ∪ (y + E(A2))) is (

⌊
Ñ
⌋
, ϕ, r̃, R̃)-successful. By (3.12) and Proposition 2.4,

Px0
((
x1, E(A1) ∪ (y + E(A2))

)
is (
⌊
Ñ
⌋
, ϕ, r̃, R̃)-successful

)
≤ exp

[
−Ñ(ϕ/r̃)d−2(κ(1) + κ(2) − o(1))/κd

]
, (3.13)

and the rest of the proof is the same as for Proposition 3.2.
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3.2 Hitting small lattice animals

The bound in Proposition 3.2 is only meaningful when κ > κd. For κ < κd, there are
likely to be many unhit sets of capacity κ. The next two propositions quantify this
statement.

Proposition 3.5. Fix an integer-valued function t 7→ n(t) satisfying condition (3.3)
such that limt→∞ n(t)ϕd(t) = ∞. For E ⊂ Rd, write χ(t, n(t), E) for the number of
points x ∈ Gn(t) such that (x + ϕd(t)E) ∩ W [0, t] = ∅, and write χdisjoint(t, n(t), E)
for the maximal number of disjoint translates x + ϕd(t)E such that x ∈ Gn(t) and
(x+ ϕd(t)E) ∩W [0, t] = ∅. For κ > 0, define

χ�
+(t, n(t), κ) =

∑
A∈A� : 0∈A,
CapE(A)≥κ

χ(t, n(t), E(A)),

χ�
−(t, n(t), κ) = min

A∈A� :
CapE(A)≤κ

χdisjoint(t, n(t), E(A)).
(3.14)

Then, for 0 < κ < κd,

lim
t→∞

logχ�
+(t, n(t), κ)

log t
= Jd(κ), lim

t→∞
logχ�

−(t, n(t), κ)

log t
= Jd(κ), in Px0-probability.

(3.15)

Proposition 3.6. Assume the hypotheses of Theorem 1.3, and fix an integer-valued
function t 7→ n(t) such that

lim
t→∞

log[n(t)ϕd(t)]

log t
= 0. (3.16)

Given A ∈ A�, write E(A) = n(t)−1ϕd(t)
−1A. Then, for each κ ∈ (0, κd),

Px0
(
∃A ∈ A� : CapE(A) ≤ κ and (x+ ϕd(t)E(A)) ∩W [0, t] 6= ∅ ∀x ∈ S(t)

)
≤ exp

[
−tJd(κ)−o(1)

]
. (3.17)

In Proposition 3.6, the scale of the lattice need only satisfy (3.16) instead of the
stronger condition (3.3). This reflects the difference in scaling between the probabilities
in Proposition 3.6 compared to Proposition 3.2.

3.2.1 Proof of Proposition 3.5

Proof. Let δ ∈ (0, 1
2
) be given. It suffices to show that tJd(κ)−O(δ) ≤ χ�

−(t, n, κ) and
χ�

+(t, n, κ) ≤ tJd(κ)+O(δ) with high probability. (Given κ < κ′, the assumption nϕ→∞
implies the existence of some A with κ ≤ CapE(A) ≤ κ′, and therefore χ�

−(t, n, κ′) ≤
χ�

+(t, n, κ).)
For the upper bound, recall N and χ̃� from the proof of Proposition 3.2. On the

event {N(x, t, r, R) < N ∀x ∈ Gn} (whose probability tends to 1) we have χ�
+(t, κ, n) ≤

χ̃�. From (3.9) it follows that χ̃� ≤ tJd(κ)+O(δ) with high probability.
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For the lower bound, let {x1, . . . , xK} denote a maximal collection of points in Gn

satisfying d(xj, xk) > 2R for j 6= k, so that K = R−d+o(1) = td/(d−2)−O(δ). Write N− =
(1+δ)Nd(t, r, R). By Proposition 2.1, in the same way as in the proof of Proposition 3.2,
N(xj, t, r, R) ≤ N− for each j = 1, . . . , K, with high probability. Moreover we may
take t large enough so that ϕE(A) ⊂ B(0, R), so that the translates xj + ϕE(A)
are disjoint. Let χ̃�

−(A) denote the number of points xj, j ∈ {1, . . . , K}, such that
(xj, E(A)) is (dN−e, ϕ, r, R)-successful. We have χ�

−(t, n(t), E(A)) ≥ χ̃�
−(A)− 1 on the

event {N(xj, t, r, R) ≤ N− ∀j}, since at most one translate xj + ϕE(A) may have been
hit before the start of the first excursion, in the case x0 ∈ B(xj, R). On the other
hand, since the balls B(xj, R) are disjoint, the excursions are conditionally independent
given the starting and ending points (ξ′i(xj), ξi(xj))i,j. It follows that, for each A with
CapE(A) ≤ κ, χ̃�

−(A) is stochastically larger than a Binomial(K, p) random variable,
where p ≥ t−dκ/(d−2)−O(δ) by Proposition 2.4. A straightforward calculation shows that
P(Binomial(K, p) < 1

2
Kp) ≤ e−cKp for some c > 0, so that

Px0(χ̃�
−(A) ≤ tJd(κ)−O(δ)) ≤ exp

[
−ctJd(κ)−O(δ)

]
. (3.18)

As in the proof of Proposition 3.2, there are at most to(1) animals A to consider, so a
union bound completes the proof.

As with Lemma 3.3, we may modify Proposition 3.5 to deal with a finite union of
lattice animals.

Lemma 3.7. Assume the hypotheses of Proposition 3.5, let k ∈ N, and let t 7→ h(t) > 0
be a positive function satisfying (3.10). Define

χ�
+(t, n(t), κ, k, h(t)) =

∑
χ(t, n(t), E),

χ�
−(t, n(t), κ, k, h(t)) = minχdisjoint(t, n(t), E),

(3.19)

where the sum and minimum are over sets E = ∪kj=1E(A(j)) such that ϕd(t)E ⊂
B(0, h(t)); (x+ϕd(t)E)∩W [0, t] = ∅; and CapE ≥ κ (for χ�

+) or CapE ≤ κ (for χ�
−),

respectively. Then (logχ�
+(t, n(t), κ, k, h(t)))/ log t and (logχ�

−(t, n(t), κ, k, h(t)))/ log t
converge in Px0-probability to Jd(κ) as t→∞.

3.2.2 Proof of Proposition 3.6

The proof of Proposition 3.5 compares χ�
−(t, n(t), κ) to a random variable that is ap-

proximately Binomial(td/(d−2), t−dκ/(d−2)). If this identification were exact, then the
asymptotics in Proposition 3.6 would follow in a similar way. However, the bound
for each individual probability Px0(N(xj, t, r, R) ≥ (1 + δ)Nd(t, r, R)), j = 1, . . . , K,
although relatively small, is still much larger than the probability in Proposition 3.6.
Therefore an additional argument is needed.

Proof. Abbreviate h = h(t), S = S(t).
Recall that the condition CapE(A) ≤ κ implies that A consists of at most Q

cubes, where because of (3.7) and (3.16) we have Q = to(1). Fix such an A, and write
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A = p + A′, where p ∈ Zd and A′ ∈ A�
Q. In particular, E(A′) ⊂ B(0, Q

√
d). Since

x+ ϕE(A) = x+ 1
n
p+ ϕE(A′), we can assume by periodicity that p ∈ {0, . . . , n− 1}d.

Let δ ∈ (0, 1
3
), take r, R as in (3.6), and choose ñ = ñ(t) ∈ N such that 1/ñ =

ϕ1−3δ+o(1) and 1/ñ ≥ 2R. Let {x̃1, . . . , x̃ñd} denote a grid of points in Td with spacing
1/ñ (i.e., a translate of Gñ), chosen in such a way that d(x0, x̃j) > R. To each grid
point x̃j, j = 1, . . . , ñd, associate in some deterministic way a point xj ∈ S with
d(xj + 1

n
p, x̃j) = d(xj, x̃j − 1

n
p) ≤ h (this is always possible by the hypothesis on S).

The choice of x̃j, xj depends on t, but we suppress this dependence in our notation.
Since h/ϕ = to(1), we have r/h = ϕ−δ+o(1) → ∞. Since also r/ϕQ → ∞, we may

take t large enough so that h + ϕQ
√
d < r < R < 1/ñ, implying that xj + ϕE(A) =

xj + 1
n
p + E(A′) ⊂ B(x̃j, r) for j = 1, . . . , ñd, and so we can apply Lemma 2.5 to the

sets xj + ϕE(A), uniformly in the choice of A and j.
Let σ(s) be the total amount of time, up to time s, during which the Brownian

motion is not making an excursion from ∂B(x̃j, r) to ∂B(x̃j, R) for any j = 1, . . . , ñd.

In other words, σ(s) is the Lebesgue measure of [0, s]\(∪ñdj=1∪∞i=1 [T ′i (x̃j), Ti(x̃j)]). Define
the stopping time T ′′ = inf {s : σ(s) ≥ t}. Clearly, T ′′ ≥ t. Define N ′′j to be the number
of excursions from ∂B(x̃j, r) to ∂B(x̃j, R) by time T ′′, and write (ξ′i(x̃j), ξi(x̃j))i=1,...,N ′′j
for the starting and ending points of these excursions.

If (x+ϕE(A))∩W [0, t] 6= ∅ for each x ∈ S, then necessarily, for each j = 1, . . . , ñd,
at least one of the N ′′j excursions from ∂B(x̃j, r) to ∂B(x̃j, R) must hit xj + ϕE(A).
(Here we use that d(x0, x̃j) > R, which implies that the Brownian motion cannot hit
xj + ϕE(A) before the start of the first excursion.) These excursions are conditionally
independent given (ξ′i(x̃j), ξi(x̃j)) for i = 1, . . . , N ′′j , j = 1, . . . , ñd. Applying Lemma 2.5
and (1.8), we get

Px0
(
(x+ ϕE(A)) ∩W [0, t] 6= ∅ ∀x ∈ S

∣∣ (N ′′j )j, (ξ
′
i(x̃j), ξi(x̃j))i,j

)
≤ Px0

(
(xj + ϕE(A)) ∩W [0, T ′′] 6= ∅ ∀j

∣∣ (N ′′j )j, (ξ
′
i(x̃j), ξi(x̃j))i,j

)
=

ñd∏
j=1

1−
N ′′j∏
i=1

(
1− ϕd−2 CapE(A)

κd rd−2
(1 + o(1))

)
≤ exp

 ñd∑
j=1

log
(

1− (1− (ϕ/r)d−2(κ/κd + o(1)))N
′′
j

) . (3.20)

In this upper bound, which no longer depends on (ξ′i(x̃j), ξi(x̃j))i,j, the function y 7→
log(1 − ecy) is concave, and hence we can replace each N ′′j by the empirical mean

N̄ ′′ = ñ−d
∑ñd

j=1N
′′
j :

Px0
(
(x+ ϕE(A)) ∩W [0, t] 6= ∅ ∀x ∈ S

∣∣ (N ′′j )j
)

≤ exp
(
ñd log

(
1− (1− (ϕ/r)d−2(κ/κd + o(1)))N̄

′′
))

≤ exp
[
−ñd(1− (ϕ/r)d−2(κ/κd + o(1)))N̄

′′
]
. (3.21)

Write M = (1 + δ)Nd(t, r, R). On the event
{
N̄ ′′ ≤M

}
, the relations (ϕ/r)d−2M ∼
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(1 + δ)d(d− 2)−1 log t and ñd = td/(d−2)−O(δ) imply that

1{N̄ ′′≤M}Px0
(
(x+ ϕE(A)) ∩W [0, t] 6= ∅ ∀x ∈ S

∣∣ (N ′′j )j
)

≤ exp
[
−td/(d−2)−O(δ) exp

[
−(ϕ/r)d−2M(κ/κd + o(1))

]]
= exp

[
−tJd(κ)−O(δ)

]
. (3.22)

Next, we will show that Px0(N̄ ′′ ≥ M) ≤ exp[−ctd/(d−2)−O(δ)]. To that end, let
π(ñ) denote the projection map from the unit torus Td to a torus of side length 1/ñ.
Under π(ñ), every grid point x̃j maps to the same point π(ñ)(x̃j), and σ(s) is the total
amount of time the projected Brownian motion π(ñ)(W ) in π(ñ)(Td) spends not making
an excursion from ∂B(π(ñ)(x̃j), r) to ∂B(π(ñ)(x̃j), R), by time s. Moreover, ñdN̄ ′′ =∑ñd

j=1N
′′
j can be interpreted as the number of such excursions in π(ñ)(Td) completed by

time T ′′.
Write x 7→ ñx for the dilation that maps the torus π(ñ)(Td) of side length 1/ñ to the

unit torus Td. By Brownian scaling, (W̃ (u))u≥0 = (ñπ(ñ)(W (ñ−2u)))u≥0 has the law of a
Brownian motion in Td. Moreover, ñdN̄ ′′ can be interpreted as the number of excursions
of W̃ (u) from ∂B(ñπ(ñ)(x̃j), ñr) to ∂B(ñπ(ñ)(x̃j), ñR) until the time spent not making
such excursions first exceeds ñ2t, i.e., precisely the quantity N ′(ñπ(ñ)(x̃j), ñ

2t, ñr, ñR)
from Section 2.1. We have Nd(ñ

2t, ñr, ñR) = ñdNd(t, r, R), so Proposition 2.1 gives

Px0(N̄ ′′ ≥M) = Px0(ñdN̄ ′′ ≥ ñdM) = Pñπ(ñ)(x0)

(
N ′(ñπ(ñ)(x̃j), ñ

2t, ñr, ñR) ≥ ñdM
)

= Pñπ(ñ)(x0)

(
N ′(ñπ(ñ)(x̃j), ñ

2t, ñr, ñR) ≥ (1 + δ)Nd(ñ
2t, ñr, ñR)

)
≤ exp

[
−cNd(ñ

2t, ñr, ñR)
]

= exp
[
−ctd/(d−2)−O(δ)

]
. (3.23)

Equations (3.22)–(3.23) imply that, for each fixed A = p + A′ with CapE(A) ≤ κ,
we have

Px0((x+ ϕE(A)) ∩W [0, t] 6= ∅ ∀x ∈ S) ≤ exp
[
−td(1−κ/κd)/(d−2)−O(δ)

]
. (3.24)

But the number of pairs (p,A′) is at most nd
∣∣A�

Q

∣∣ = td/(d−2)+o(1)eO(Q), by (3.2) and

(3.16). Since Q = to(1), a union bound completes the proof.

4 Proofs of Theorems 1.1–1.4

In proving Theorems 1.1–1.4, we bound hitting probabilities for Wiener sausages, e.g.

P
(
∃x ∈ Td : (x+ ϕd(t)E) ∩Wρ(t)[0, t] = ∅

)
, E ⊂ Rd, (4.1)

in terms of the Brownian hitting probabilities estimated in Propositions 3.2 and 3.5–
3.6, in which E is a rescaled lattice animal. In Section 4.1 we prove an approximation
lemma for lattice animals, which leads directly to the proofs of Theorems 1.1–1.3 and
Proposition 1.11. Proving Theorem 1.4 requires an additional argument to show that
a component containing a given set is likely not to be much larger, and we prove this
in Section 4.2. Finally in Section 4.3 we give the proof of Proposition 1.12.
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4.1 Approximation by lattice animals

Lemma 4.1. Let ρ > 0 and n ∈ N satisfy ρn ≥ 2
√
d, and let ϕ > 0. Then, given a

bounded connected set E ⊂ Rd, there is an A ∈ A� such that E(A) = n−1ϕ−1A satisfies
E ⊂ E(A) ⊂ Eρ/ϕ and, for any x ∈ Td, 0 ≤ ρ̃ ≤ 1

4
ρ,

x+ ϕE ⊂ x′ + ϕE(A) ⊂ x+ (ϕE)ρ for some x′ ∈ Gn, (4.2){
(x+ ϕE) ∩Wρ[0, t] = ∅

}
⊂{∃x′ ∈ Gn : (x′ + ϕE(A)) ∩W [0, t] = ∅} , (4.3){

(x+ ϕE) ∩Wρ̃[0, t] 6= ∅
}
⊂{(x+ ϕE(A)) ∩W [0, t] 6= ∅} . (4.4)

Proof. Let A be the union of all the closed unit cubes with centres in Zd that intersect
nϕEρ/4ϕ. This set is connected because E is connected, and therefore A ∈ A�. Every

cube in A is within distance
√
d of some point of nϕEρ/4ϕ, so that E ⊂ Eρ/4ϕ ⊂

E(A) ⊂ Eρ/4ϕ+
√
d/nϕ. By assumption,

√
d/n ≤ ρ/2, so that E(A) ⊂ E3ρ/4ϕ ⊂ Eρ/ϕ (see

Figure 4(a)).

(a)

0

(b)

x′

x

Figure 4: (a) From inside to outside: an F-shaped set E; the enlargement Eρ/4ϕ; E(A),
the union of the rescaled cubes intersecting Eρ/4ϕ; the bounding set E3ρ/4ϕ. The grid
shows the cubes in the definition of E(A), rescaled to have side length 1/nϕ. The
parameters ρ, n satisfy ρn = 2

√
d. (b) From inside to outside (scaled by ϕ compared to

part (a)): the prospective subset x+ϕE of Td \Wρ[0, t]; the approximating grid-aligned
set x′ + ϕE(A); the taboo set x+ (ϕE)ρ that the Brownian motion must not visit.

Given x ∈ Td, let x′ ∈ Gn satisfy d(x, x′) ≤
√
d/2n. Then x+ϕE ⊂ x′+(ϕE)√d/2n ⊂

x′+ϕE(A) ⊂ x+(ϕE(A))√d/2n ⊂ x+(ϕE)ρ since
√
d/2n ≤ ρ/4 and ϕE(A) ⊂ (ϕE)3ρ/4.

See Figure 4(b). This proves (4.2); (4.3) follows immediately because (x + ϕE) ∩
Wρ[0, t] = ∅ is equivalent to (x+ (ϕE)ρ) ∩W [0, t] = ∅.

Similarly, since (ϕE)ρ/4 ⊂ ϕE(A) and since (x+ϕE)∩Wρ̃[0, t] 6= ∅ is equivalent to
(x+ (ϕE)ρ̃) ∩W [0, t] 6= ∅, the inclusion in (4.4) follows.

4.1.1 Proof of Theorem 1.3

Proof. Fix E ⊂ Rd compact with CapE < κd, and let δ > 0 be arbitrary with CapE+
δ < κd. By Proposition 2.6(a), we can choose r > 0 so that Cap(Er) ≤ CapE+ 1

2
δ. If Er
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is not already connected, then enlarge it to a connected set E ′ ⊃ Er by adjoining a finite
number of line segments (this is possible because Er is the r-enlargement of a compact
set). Doing so does not change the capacity, so we may apply Proposition 2.6(a) again
to find r′ > 0 so that Cap((E ′)r′) ≤ CapE + δ.

Define ρ0(t) = r′ϕd(t) and n(t) =
⌈
2
√
d/ρ0(t)

⌉
, so that ρ0(t)n(t) ≥ 2

√
d and the

condition (3.16) from Proposition 3.6 holds. Since ρ(t)/ϕd(t) → 0, we may choose t
sufficiently large so that ρ(t) ≤ 1

4
ρ0(t).

Apply Lemma 4.1 to E ′ with ρ = ρ0(t), ρ̃ = ρ(t), and ϕ = ϕd(t). Note that if
(x + ϕd(t)E) ∩ Wρ(t)[0, t] 6= ∅ for all x ∈ S(t), then (x + ϕd(t)E(A)) ∩ W [0, t] 6= ∅
for all x ∈ S(t), where CapE(A) ≤ Cap((E ′)ρ/ϕ) = Cap((E ′)r′) ≤ CapE + δ. By
Proposition 3.6 with κ = CapE + δ, this event has a probability that is at most
exp[−tJd(CapE)−O(δ)], and taking δ ↓ 0 we get the desired result.

4.1.2 Proof of Theorem 1.1

Proof. First consider κ < κd. Since Id(κ) is infinite for such κ, it suffices to show that
limt→∞ logP(κ∗(t, ρ(t)) ≤ κϕd−2)/ log t = −∞. Let κ < κ′ < κd, and take E to be a
ball of capacity κ′. If κ∗(t, ρ(t)) ≤ κϕd−2, then no translate x + ϕd(t)E, x ∈ Td, can
be a subset of Td \Wρ(t)[0, t]. Applying Theorem 1.3 with S(t) = Td, we conclude that
P(κ∗(t, ρ(t)) ≤ κϕd−2) ≤ exp[−tJd(κ)+o(1)], which implies the desired result.

Next consider the LDP upper bound for κ ≥ κd. Since κ 7→ I(κ) is increasing and
continuous on [κd,∞], it suffices to show that P(κ∗(t, ρ(t)) ≥ κϕd−2) ≤ t−Id(κ)+o(1) for
κ > κd. Therefore, suppose that x + ϕd(t)E ⊂ Td \ Wρ(t)[0, t] for some x ∈ Td and
E ⊂ Rd compact with CapE ≥ κ. As in the proof of Theorem 1.3, define n(t) =⌈
2
√
d/ρ(t)

⌉
. Lemma 4.1 gives (x′ + ϕd(t)E(A)) ∩W [0, t] = ∅ for some x′ ∈ Gn(t) and

CapE(A) ≥ CapE ≥ κ. The condition in (1.16) on ρ(t) implies the condition in (3.3)
on n(t), and therefore we may apply Proposition 3.2 to conclude that P(κ∗(t, ρ(t)) ≥
κϕd−2) ≤ t−Id(κ)+o(1).

Finally, the LDP lower bound for κ ≥ κd will follow (with E the ball of capacity κ,
say) from the lower bound proved for Theorem 1.4 (see Section 4.2).

4.1.3 Proof of Theorem 1.2

Proof. As in the proof of Theorem 1.1, the lower bound will follow from the more
specific lower bound proved for Theorem 1.4 (see Section 4.2).

Choose n(t) such that n(t) ≥ 2
√
d/ρ(t) and the hypotheses of Proposition 3.5 hold.

(The conditions on n(t) are mutually consistent because 2
√
d/ρ(t) = O(1/ϕd(t)).) Given

any component C containing a ball of radius ρ(t) and having the form C = x+ϕd(t)E
for CapE ≥ κ, apply Lemma 4.1 to find x′C ∈ Gn(t) and AC ∈ A� such that C ⊂
x′C +ϕd(t)E(AC) ⊂ Cρ(t) ⊂ Td \W [0, t]. The pairs (x′C , E(AC)) so constructed must be
distinct: for C ′ 6= C, we have x′C′+ϕd(t)E(AC′) ⊂ C ′ρ(t) ⊂ (Td \C)ρ(t) = Td \C−ρ(t), and

since C−ρ(t) is non-empty by assumption, it follows that C * x′C′ + ϕd(t)E(AC′). We
therefore conclude that χρ(t)(t, κ) ≤ χ�

+(t, n(t), κ), so the required upper bound follows
from Proposition 3.5.
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4.1.4 Proof of Proposition 1.11

Proof. Abbreviate ϕ = ϕd(t), ρ = ρ(t). It suffices to bound the probability that Td \
Wρ[0, t] has a component of diameter at least 1

2
, since the mapping x + y 7→ y from

B(x, r) ⊂ Td to B(0, r) ⊂ Rd is a well-defined local isometry if r < 1
2
.

Suppose that x ∈ Td \ Wρ[0, t] belongs to a connected component intersecting
∂B(x, 1

2
). Then there is a bounded connected set E ⊂ Rd such that (x+ϕE)∩Wρ[0, t]

and E ∩ ∂B(0, 1
2
ϕ−1) 6= ∅ (see Figure 5). Define n = n(t) =

⌈
2
√
d/ρ
⌉

and apply
Lemma 4.1 to conclude that (x′+ϕE(A))∩W [0, t] = ∅ with E ⊂ E(A), A ∈ A�, x′ ∈
Gn. Since E(A) contains E, it has diameter at least 1

2
ϕ−1, so A has diameter at least 1

2
n

and must consist of at least n/(2
√
d) unit cubes. Since ρ = o(ϕ) and ϕ = t−d/(d−2)+o(1),

we have n ≥ td/(d−2)+o(1). The hypothesis in (1.16) implies that nϕ = o((log t)1/d),
as in condition (3.3) from Proposition 3.2. Therefore VolE(A) ≥ (nϕ)−dn/(2

√
d) ≥

td/(d−2)+o(1), and in particular VolE(A)→∞. By (1.44), CapE(A)→∞ also. Thus, if
Td \Wρ[0, t] has a component of diameter at least 1

2
, then the event in Proposition 3.2

occurs, with κ arbitrarily large for t → ∞. By Proposition 3.2, the probability of this
occuring is negligible, as claimed.

x

Figure 5: A large connected component of Td \Wρ[0, t] that is not isometric to a subset
of Rd (shading) and a possible choice of the set x+ ϕE (dark shading).

This proof is unchanged if the radius 1
2

is replaced by any δ ∈ (0, 1
2
), which shows

that the maximal diameter D(t, ρ(t)) satisfies D(t, ρ(t)) → 0 in P-probability when
(1.16) holds (see Section 1.6.5).

4.2 Proof of Theorem 1.4

In Theorems 1.1–1.3 we deal with components that contain a subset x + ϕd(t)E of a
given form. Theorem 1.4 adds the requirement that the component containing such a
subset should not extend further than distance δϕd(t) from x + ϕd(t)E. In the proof,
we will bound the probability that the component extends no further than distance ρ(t)
from x+ ϕd(t)E, but only for sets E ∈ E�

c of the following kind: define

E�
c =

{
E ∈ Ec: E = 1

n
A for some A ∈ A�} (4.5)

to be the collection of sets in Ec that are rescalings of lattice animals.
Note that, unlike in Section 3, the scaling factor 1

n
in (4.5) is fixed and does not

depend on t. We begin by showing that the collection E�
c is dense in Ec.

Lemma 4.2. Given E ∈ Ec and δ > 0, there exists E� ∈ E�
c with E ⊂ E� ⊂ Eδ.
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Lemma 4.2 will allow us to prove Theorem 1.4 only for E ∈ E�
c .

Proof. For y /∈ E, define

b(y) = sup
{
r > 0: y belongs to the unbounded component of Rd \ Er

}
. (4.6)

Since Rd \ E is open and connected, b(y) is continuous and positive on Rd \ E. By
compactness, we may choose η ∈ (0, δ) such that b(y) > η for y /∈ Eδ. Apply Lemma 4.1
(with ρ and ϕ replaced by η and 1, and n sufficiently large) to find E ′ = 1

n
A with

E ⊂ E ′ ⊂ Eη. The set E ′ is a rescaled lattice animal, but Rd \ E ′ might not be
connected. However, if y belongs to a bounded component of Rd \E ′, then b(y) ≤ η by
construction: since E ′ ⊂ Eη, y cannot belong to the unbounded component of Rd \Eη.
By choice of η, it follows that every bounded component of Rd \ E ′ is contained in Eδ.
Thus, if we define E� to be E ′ together with these bounded components (see Figure 6),
then E� ∈ E�

c and E� ⊂ Eδ, as claimed.

E

Figure 6: A set E (white) and its enlargement Eδ (dark shading). Every bounded
component of Rd \Eδ can reach infinity without touching Eη (medium shading). A set
E ′ (light shading) with E ⊂ E ′ ⊂ Eη may disconnect a region from infinity (diagonal
lines), but this region must belong to Eδ.

In the proof of Theorem 1.4, we adapt the concept of (N,ϕ, r, R)-successful from
Definition 2.3 to formulate the desired event in terms of excursions. To this end we
next introduce the sets and events that we will use. In the remainder of this section,
we abbreviate ϕ = ϕd(t), ρ = ρ(t), Id(κ) = I(κ) and Jd(κ) = J(κ).

Fix E ∈ E�
c and δ > 0. We may assume that E ⊂ B(0, a) with a > δ. Let

η ∈ (0, 1
2
) be small enough that κdη

d−2 < CapE. Set r = ϕ1−η, R = ϕ1−2η, and let
{x0, . . . , xk} ⊂ Td denote a maximal collection of points in Td satisfying d(x0, xj) > R
and d(xj, xk) > 2R for j 6= k, so that

K = R−d−o(1) = td/(d−2)+O(η) (4.7)

Take t large enough that ρ < 1
2
δϕ and R < 1

2
. Set N = (1 + η)Nd(t, r, R) (see (2.5)).

Choose q = q(t) with q > 2a + δ, q ≥ log t, and q = (log t)O(1). Let {y1, . . . , yL} ⊂
B(0, 2q)\Eδ denote a maximal collection of points in B(0, 2q)\Eδ satisfying d(y`, E) ≥ δ,
d(y`, ym) ≥ 1

2
ρ/ϕ for ` 6= m, so that L = O((qϕ/ρ)d) = (log t)O(1) by (1.16).
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Let Z = ∂(Eρ/ϕ)∪(∪z∈B(0,2a)∩ηZd∂B(z, η)\Eρ/ϕ) (see Figure 7: Z consists of a (d−1)-
dimensional shell around E together with a finite number of (d−1)-dimensional spheres).
Let {z1, . . . , zM} ⊂ Z denote a maximal collection of points in Z with d(zm, zp) ≥ 1

2
ρ/ϕ

for m 6= p. Since Z is (d− 1)-dimensional, we have M = O((ρ/ϕ)d−1).

E

Figure 7: The set E (shaded) and part of the (d− 1)-dimensional set Z.

For j = 1, . . . , K, define the following events.

• F1(j) =
{

1
2
N ≤ N(xj, t, r, R) ≤ N

}
is the event that W makes between 1

2
N and

N excursions from ∂B(xj, r) to ∂B(xj, R) by time t.

• F2(j) is the event that (xj, Eρ/ϕ) is (bNc , ϕ, r, R)-successful.

• F3(j) is the event that, for each ` = 1, . . . , L, the ith excursion from ∂B(xj, r) to
∂B(xj, R) hits xj +B(ϕy`,

1
2
ρ) for some i = i(`) ∈ {1, . . . , bN/4c}.

• F4(j) is the event that, for each m = 1, . . . ,M , the ith excursion from ∂B(xj, r)
to ∂B(xj, R) hits xj +B(ϕzm,

1
2
ρ) for some i = i(m) ∈ {bN/4c+ 1, . . . , bN/2c}.

• F5(j) is the event that Td \Wρ[0, t] contains no component of capacity at least
ϕd−2 CapE disjoint from B(xj, 2qϕ).

• F (j) = F1(j) ∩ F2(j) ∩ F3(j).

• Fmax(j) = F1(j) ∩ F2(j) ∩ F3(j) ∩ F4(j) ∩ F5(j).

Lemma 4.3. On F (j), the component of Td \ Wρ[0, t] containing xj + ϕE satisfies
condition (C(t, ρ, E,E ′)) with E ′ = Eδ. Furthermore, Fmax(j) ⊂ Fρ(t, E,Eδ) for t
sufficiently large.
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Proof. Note that if F1(j) ∩ F2(j) occurs, then xj + ϕE ⊂ Td \Wρ[0, t]. If F1(j) ∩ F3(j)
occurs, then the set xj + ∪L`=1B(ϕy`,

1
2
ρ) is entirely covered by the Wiener sausage.

By choice of {y1, . . . , yL}, this set contains xj + (B(0, 2qϕ) \ ϕEδ), and consequently(
Td \Wρ[0, t]

)
∩B(xj, 2qϕ) ⊂ xj + ϕEδ.

We have therefore shown that, on F (j), Td\Wρ[0, t] has a component containing xj+
ϕE and satisfying condition C(t, ρ, E,Eδ). To show further that Fmax(j) ⊂ Fρ(t, E,Eδ),
we will show any other component must have capacity smaller than ϕd−2 CapE.

If F1(j) ∩ F4(j) occurs, then xj + ϕZ is entirely covered by the Wiener sausage, by
choice of {z1, . . . , zM}. By choice of Z, all components of B(xj, aϕ) \ (xj + ϕZ), other
than any components that are subsets of xj + ϕEρ/ϕ = xj + (ϕE)ρ, must be contained
in a ball of radius ηϕ, and in particular have capacity at most κd(ηϕ)d−2 < ϕd−2 CapE.

Finally, if F5(j) occurs, then the component of largest capacity cannot occur outside
B(xj, 2qϕ), and therefore must be the component of largest capacity contained in xj +
(ϕE)ρ.

It therefore remains to show that the component of largest capacity in xj + (ϕE)ρ
is in fact the component containing xj + ϕE. Suppose that a ∈ xj + ϕE is the centre
of a (d − 1)-dimensional ball of radius ρ that is completely contained in some face of
xj +ϕE, and let b be a point at distance at most ρ from a along the line perpendicular
to the face (see Figure 8). If both xj +ϕE and b are contained in Td \Wρ[0, t], then so
is the line segment from a to b, so that b belongs to the same component as xj + ϕE.

xj + ϕE

c
b

a

Figure 8: A point b near the centre a of a ball (thicker line) on a face of xj + ϕE, and
a point c near the boundary of a face. The Brownian path must not touch the dotted
lines, but the Wiener sausage can fill the shaded circles by visiting the crossed points.
The point c can belong to a different component than xj + ϕE, but b cannot.

We therefore conclude that, on Fmax(j), any point of xj + (ϕE)ρ that is not in the
same component as xj +ϕE must lie within distance 2ρ of the boundary of some face of
xj+ϕE. Write H for the set of boundaries of faces of E. Since H is (d− 2)-dimensional,
its capacity is 0, and therefore Cap((ϕH)2ρ) = ϕd−2 Cap(H2ρ/ϕ) = o(ϕd−2) by Proposi-
tion 2.6(a), since ρ/ϕ→ 0. In particular, for t sufficiently large the component of largest
capacity in xj + (ϕE)ρ must be the component containing xj + ϕE, which completes
the proof of Lemma 4.3.

Proof of Theorem 1.4. Because of the upper bound proved for Theorems 1.1–1.2, we
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need only prove the lower bounds

P (Fρ(t, E,Eδ)) ≥ t−I(CapE)−o(1), CapE ≥ κd, δ > 0. (4.8)

and

χρ(t, E,Eδ) ≥ tJ(CapE)−o(1) with high probability, CapE < κd, δ > 0. (4.9)

Moreover, it suffices to prove (4.8)–(4.9) under the assumption that E ∈ E�
c and, in

(4.8), that CapE > κd. Indeed, given any δ′ ∈ (0, 1
2
δ), apply Lemma 4.2 to find

E� ∈ E�
c with E ⊂ E� ⊂ Eδ′ . By adjoining, if necessary, a sufficiently small cube to

E�, we may assume that CapE� > CapE. Apply (4.8)–(4.9) with E and δ replaced
by E� and δ′, respectively. Proposition 2.6(a) implies that CapE� ↓ CapE as δ′ ↓ 0.
Since κ 7→ J(κ) is continuous, we conclude that the bounds for E ∈ Ec follows from
those for E ∈ E�

c .
We next relate the left-hand side of (4.8) to the events F1(j), . . . , F5(j). Noting that

F1(j) ∩ F2(j) ∩ F1(k) ∩ F2(k) ⊂ F5(j)c for j 6= k, Lemma 4.3 implies that

P (Fρ(t, E,Eδ)) ≥
K∑
j=1

Px0(F (j))

≥
K∑
j=1

Px0(F2(j) ∩ F3(j) ∩ F4(j))−
K∑
j=1

Px0(F1(j)c)−
K∑
j=1

Px0(F1(j) ∩ F2(j) ∩ F5(j)c).

(4.10)

We will bound each of the sums in the right-hand side of (4.10).
Applying Proposition 2.1 and (4.7) (and noting that Nd(t, r, R) = tη+o(1) and that

1
2
N/Nd(t, r, R) = 1

2
(1 + η) < 3

4
), we see that the second sum in the right-hand side of

(4.10) is at most td/(d−2)+O(η) exp[−ctη+o(1)]. This term will be negligible compared to
the scale of (4.8).

For the last sum in (4.10), we assume that CapE > κd and use Lemma 3.4.
Set h(t) = 2qϕ, and note that h(t)/(ϕ log t) ≥ 1 by assumption on q. If F1(j) ∩
F2(j) ∩ F5(j)c occurs, then, by Lemma 4.1, there are lattice animals A,A′ ∈ A� with
CapE(A),CapE(A′) ≥ CapE and a point x′ ∈ Td \ B(xj, 2qϕ) with (xj + ϕE(A)) ∩
W [0, t] = (x′ + ϕE(A′)) ∩W [0, t] = ∅. By Lemma 3.4 with κ(1) = κ(2) = CapE, we
have

Px0(F1(j) ∩ F2(j) ∩ F5(j)c) ≤ t−dCap(E)/[(d−2)κd]−I(CapE)+o(1). (4.11)

Hence the last sum in (4.10) is at most t−2I(CapE)+O(η). Since I(CapE) > 0, this term
is also negligible, for η sufficiently small, compared to the scale of (4.8). (This is the
only part of the proof where CapE > κd is used.)

We have therefore proved that (4.8) will follow if we can give a suitable lower bound
for the first sum on the right-hand side of (4.10). Using again the asymptotics (4.7) for
K, (4.8) will follow from

Px0
(
F2(j) ∩ F3(j) ∩ F4(j)

∣∣ ((ξ′i(xj), ξi(xj))Ni=1)Kj=1

)
≥ t−dCapE/[(d−2)κd]−O(η). (4.12)
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In fact, (4.12) also implies (4.9). On the event ∩Kj=1F1(j) (which occurs with high
probability, by Proposition 2.1), Lemma 4.3 implies that χρ(t, E,Eδ) is at least as large
as the number of j ∈ {1, . . . , K} for which F2(j) ∩ F3(j) occurs. Since the events
F2(j)∩F3(j) are conditionally independent for different j given the starting and ending
points ((ξ′i(xj), ξi(xj))

N
i=1)Kj=1, (4.12) and (4.7) immediately imply that χρ(t, E,Eδ) ≥

tJd(κ)−O(η) with high probability (cf. the proof of Proposition 3.5 in Section 3.2.1).
It therefore remains to prove (4.12). To do so, we will condition on not hitting

xj+(ϕE)ρ and use the following lemma to estimate the conditional probability of hitting
small nearby balls. Note that, conditional on the occurence of F2(j) and the starting
and ending points (ξ′i(xj), ξi(xj))

N
i=1, the events F3(j) and F4(j) are independent.

Lemma 4.4. Fix E ∈ E�
c and δ > 0, and let 0 < ρ < ϕ < r < R < 1

2
. Then there

is an ε > 0 such that if ρ/ϕ < ε, ϕ/r < ε and r/R ≤ 1
2
, then, uniformly in x ∈ Td,

ξ′ ∈ ∂B(x, r), and ξ ∈ ∂B(x,R),

Pξ′,ξ
(

(x+B(ϕy, 1
2
ρ)) ∩W [0, ζR] 6= ∅

∣∣ (x+ (ϕE)ρ) ∩W [0, ζR] = ∅
)

≥
{
ε(ϕ/r)d−2(ρ/ϕ)d−2, if y ∈ B(0, r/ϕ) \ Eδ,
ε(ϕ/r)d−2(ρ/ϕ)α, if y ∈ Eδ \ Eρ/ϕ,

(4.13)

where α > d− 2 is some constant depending only on d.

We give the proof of Lemma 4.4 in Section A.2.
The event F3(j) says that all (xj, B(y`,

1
2
ρ/ϕ)), ` = 1, . . . , L, are not (bN/4c , ϕ, r, R)-

successful. Lemma 4.4 implies (as in the proof of Proposition 2.4) that, uniformly in
`,

Px0
(

(xj, B(y`,
1
2
ρ/ϕ)) is (bN/4c , ϕ, r, R)-successful

∣∣F2(j)
)

≤
(
1− ε(ρ/r)d−2(ρ/ϕ)

)bN/4c
= exp

[
−ε bN/4c (ϕ/r)d−2(ρ/ϕ)d−1(1 + o(1))

]
. (4.14)

Recalling (1.3) and (2.5), we have N(ϕ/r)d−2 ≥ (d/(d− 2) +O(η)) log t, so that

Px0
(

some (xj, B(y`,
1
2
ρ/ϕ)) is (bN/4c , ϕ, r, R)-successful

∣∣F2(j)
)

≤ L exp

[
−ε
(

1
4
d/(d− 2) +O(η)

)((log t)1/dρ

ϕ

)d−2

(log t)2/d

]
. (4.15)

By (1.16), (log t)1/dρ/ϕ → ∞, whereas L = (log t)O(1). Hence, the conditional proba-
bility in (4.15) is o(1) and P (F3(j) |F2(j)) = 1− o(1).

For F4(j), write k = bN/2c − bN/4c and p = ε(ϕ/r)d−2(ρ/ϕ)α. Lemma 4.4 states
that, conditional on F2(j), each ball xj + B(ϕzm,

1
2
ρ) has a probability at least p of

being hit during each of the k excursions from ∂B(xj, r) to ∂B(xj, R) in the definition
of F4(j). It follows that P (F4(j) |F2(j)) is at least the probability that a Binomial(k, p)
random variable has value M or larger. We have p→ 0 and k−M →∞ as t→∞, so
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using Stirling’s approximation, we get

Px0(F4(j) |F2(j)) ≥
(
k

M

)
pM(1− p)k−M =

kkpM(1− p)k−M
MM(k −M)k−M(

√
2π + o(1))

≥
(
kp

M

)M
(1− p)k√
2π + o(1)

= exp [−M log(M/kp)−O(kp)−O(1)]. (4.16)

Observe that kp = eO(1)Nd(t, r, R)(ϕ/r)d−2(ρ/ϕ)α = eO(1)(ρ/ϕ)α log t. The as-
sumption ρ/ϕ → 0 implies that kp = o(log t). On the other hand, recall that M =
O((ϕ/ρ)d−1), so that M/kp = eO(1)(ϕ/ρ)α+d−1/ log t. The hypothesis (1.16) means that
ϕ/ρ = o((log t))1/d. Consequently, M = o((log t)(d−1)/d) and log(M/kp) ≤ O(log log t).
In particular, M log(M/kp) ≤ o(log t), and we conclude that

Px0(F4(j) |F2(j)) = exp (−o(log t)) = to(1). (4.17)

Combining (4.15), (4.17), and Proposition 2.4, we obtain

Px0(F2(j) ∩ F3(j) ∩ F4(j)) = Px0(F2(j))Px0 (F3(j) |F2(j))Px0 (F4(j) |F2(j))

= t−dCap(Eρ/ϕ)/[(d−2)κd]+O(η) [1− o(1)] to(1) = t−dCap(E)/[(d−2)κd]+O(η). (4.18)

We have therefore verified (4.12), and this completes the proof.

4.3 Proof of Proposition 1.12

Proof. Td \W [0, t] is open since W [0, t] is the (almost surely) continuous image of a
compact set.

Consider first a Brownian motion W̃ in Rd. Define

Z̃ =
⋃

q,q′∈Q

⋃
1≤i<j≤d

{
(x1, . . . , xd) ∈ Rd : xi = q, xj = q′

}
(4.19)

and note that Z̃ is the inverse image π−1
0 (Z) of a path-connected, locally path-connected,

dense subset Z = π0(Z̃) ⊂ Td (where π0 : ,Rd → Td is the canonical projection map).
Since Z̃ is the countable union of (d − 2)-dimensional subspaces, W̃ [0,∞) does not
intersect Z̃, except perhaps at the starting point, with probability 1. Projecting onto
Td, it follows that W [0,∞) intersects Z in at most one point, and in particular Td \
W [0,∞) contains a path-connected, locally path-connected, dense subset. This implies
the remaining statements in Proposition 1.12.

5 Proofs of Corollaries 1.6–1.10

5.1 Proof of Corollary 1.6

Proof. (1.25) follows immediately from the more precise statements in (1.26)–(1.27).
By monotonicity and continuity, it suffices to show (1.26) for CapE > κd.

36



Consider first the lower bounds in (1.26)–(1.27). Replace E by the compact set
clo(E) (by hypothesis, this does not change the value of CapE). Let κ > CapE be
arbitrary and use Proposition 2.6(a) to find r > 0 such that Cap(Er) ≤ κ. Adjoin
finitely many lines to Er to make it into a connected set E ′ (as in the proof of Theo-
rem 1.3) and then adjoin any bounded components of Rd \ E ′ to form a set E ′′ ∈ Ec
that satisfies the conditions of Theorem 1.4. For CapE ≥ κd, Theorem 1.4 implies
that x + ϕd(t)E ⊂ Td \W [0, t] for some x ∈ Td, with probability at least tJd(κ)−o(1). If
instead CapE < κd, then it is no loss of generality to assume that κ < κd also. Then
Theorem 1.4 shows that there are at least tJd(κ)−o(1) components containing translates
x+ϕd(t)E; these translates are necessarily disjoint. In both cases we conclude by taking
κ ↓ CapE.

For the upper bounds, we will shrink the set E. The results nearly follow from
Theorems 1.1–1.2, since the existence of x+ϕd(t)E ⊂ Td \W [0, t] implies the existence
of x + (ϕd(t)E)−ρ(t) ⊂ Td \Wρ(t)[0, t]. However, the set E might not be connected. To
handle this possibility, we will appeal directly to Lemmas 3.3 and 3.7.

Let κ ∈ (κd,CapE) (for (1.26)) or κ ∈ (0,CapE) (for (1.27)) be arbitrary. Apply
Proposition 2.6(c) to find an r > 0 such that Cap(E−2r) > κ. The enlargement (E−2r)r
has a finite number k of components, by boundedness. Set ρ = ρ(t) = rϕd(t) and choose
n = n(t) such that n(t) ≥ 2

√
d/ρ(t) and the hypotheses of Proposition 3.5 hold. (As

in the proof of Theorem 1.2, these conditions on n(t) are mutually consistent.) Apply
Lemma 4.1 to each of the k components of (E−2r)r to obtain a set E� = ∪kj=1E(A(j))
satisfying (E−2r)r ⊂ E� ⊂ (E−2r)2r ⊂ E. Thus, CapE� ≥ κ. Furthermore, given
x ∈ Td there is x′ ∈ Gn(t) such that x′ + ϕd(t)E

� ⊂ x + ϕd(t)((E−2r)2r) ⊂ x +
ϕd(t)E. Define h(t) = Cϕd(t), where C is a constant large enough so that E ⊂ B(0, C).
For CapE > κd, we can then apply Lemma 3.3 to conclude that P(∃x ∈ Td : x +
ϕd(t)E ⊂ Td \W [0, t]) ≤ tJd(κ)+o(1). For CapE < κd, Lemma 3.7 implies that χ(t, E) ≤
χ�

+(t, n(t), κ, h(t)) ≤ tJd(κ)+o(1) with high probability. In both cases take κ ↑ CapE.

5.2 Proof of Corollaries 1.7–1.8

Proof. Note the scaling relation

λ(ϕD) = ϕ−2λ(D). (5.1)

Corollaries 1.7–1.8 follow from Theorems 1.1, 1.4 and 1.3 because of the inequality
in (1.44). Indeed, apart from the fact that the principal Dirichlet eigenvalue λ(E) is
decreasing in E rather than increasing, the proofs are identical and we will prove only
Corollary 1.8.

Since λ 7→ IDirichlet
d (λ) is continuous and decreasing on (0, λd], it suffices to prove

(1.31) and to show that P(ϕd(t)
2λ(t, ρ(t)) ≤ λ) = t−I

Dirichlet
d (λ)+o(1) for λ < λd.

For (1.31), note that Td \Wρ(t)[0, t] cannot contain a ball of capacity strictly larger
than κd(λd/λ(t, ρ(t)))(d−2)/2: by (1.8) and (5.1), the component of Td\Wρ(t)[0, t] contain-
ing such a ball would have an eigenvalue strictly smaller than λ(t, ρ(t)). In particular, if
λ > λd and λ(t, ρ(t)) ≥ λϕd(t)

−2, then Td \Wρ(t)[0, t] cannot contain a ball of capacity
κd ϕd(t)

d−2((λd/λ)(d−2)/2 +δ) for any δ > 0. Taking δ small enough so that (λd/λ)(d−2)/2
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+δ < 1, applying Theorem 1.3 with E the ball of capacity κd((λd/λ)(d−2)/2 + δ), and
letting δ ↓ 0, we obtain (1.31).

Now take λ < λd. By Proposition 1.11, apart from an event of negligible prob-
ability, every component C of Td \ Wρ(t)[0, t] can be isometrically identified (under
its intrinsic metric) with a bounded open subset E of Rd, via C = x + E for some
x ∈ Td. In particular, λ(C) = λ(E), and we can apply (1.44) to conclude that

κ∗(t, ρ(t)) ≥ CapE ≥ κd (λd/λ(C))(d−2)/2. Applying Theorem 1.1,

P(ϕd(t)
2λ(t, ρ(t)) ≤ λ) ≤ P(κ∗(t, ρ(t)) ≥ κd(λd/λ)(d−2)/2ϕd(t)

d−2)

≤ t−I
Dirichlet
d (λ)+o(1). (5.2)

For the reverse inequality, note that Theorem 1.4 implies that Td\Wρ(t)[0, t] contains

a ball of capacity κd ϕd(t)
d−2(λd/λ)(d−2)/2 with probability at least t−I

Dirichlet
d (λ)−o(1).

5.3 Proof of Corollary 1.9

Proof. Since r 7→ I inradius
d (r) is continuous and strictly increasing on [1,∞) and is infinite

elsewhere, it suffices to verify (1.36) and show P(ρin(t) > rϕd(t)) = t−I
inradius
d (r)+o(1) for

r ≥ 1. But the events {ρin(t) ≤ rϕd(t)} and {ρin(t) > rϕd(t)} are precisely the event{
(x+ ϕd(t)B(0, r)) ∩W [0, t] 6= ∅ ∀x ∈ Td

}
(5.3)

and its complement {
∃x ∈ Td : (x+ ϕd(t)B(0, r)) ∩W [0, t] = ∅

}
(5.4)

from Corollary 1.5 and equation (1.26) from Corollary 1.6, with E = B(0, r).

5.4 Proof of Corollary 1.10

Proof. Recall that {ρin(t) > ε} = {Cε > t}, so that setting t = uψd(ε), r = ε/ϕd(uψd(ε))
rewrites the event {Cε > uψd(ε)} as {ρin(t) > rϕd(t)}. By (1.39), r → (u/d)1/(d−2)

as ε ↓ 0. It follows that P(Cε > uψd(ε)) = t−I
inradius
d ((u/d)1/(d−2))+o(1) for u > d, since

r 7→ I inradius
d (r) is continuous on (1,∞). Noting that t = ε−(d−2)+o(1), this last expression

is εI
cover
d (u)+o(1). A similar argument proves (1.38). Because u 7→ Icover

d (u) is continuous
and strictly increasing on [d,∞) and Icover

d (v) =∞ otherwise, these two facts complete
the proof.

A Hitting probabilities for excursions

A.1 Unconditioned excursions: proof of Lemma 2.5

Proof. Since R < 1
2
, we may consider x, ξ′, ξ,W (t) to have values in Rd instead of Td.

Furthermore, w.l.o.g. we may assume that x = 0.
We first remove the effect of conditioning on the exit point ξ ∈ ∂B(0, R). Define T =

sup {t < ζ : d(0,W (t)) ≤ r} to be the last exit time from B(0, r) before time ζ; note that
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E ∩W [0, ζR] = E ∩W [0, T ]. Let r̃ ∈ (r, R) and define τ̃ = inf {t > T : d(0,W (t)) = r̃}
to be the first hitting time of ∂B(0, r̃) after time T .

Under Pξ′ (i.e., without conditioning on the exit point W (ζR)) we can express
(W (t))0≤t≤ζR as the initial segment (W (t))0≤t≤τ̃ followed by a Brownian motion, condi-
tionally independent given W (τ̃), started at ξ̃ = W (τ̃) and conditioned to exit B(0, R)
before hitting B(0, r). Let fr̃,R(ξ̃, ·) denote the density, with respect to the uniform mea-
sure σR on ∂B(0, R), of the first hitting point W (ζR) on ∂B(0, R) for this conditioned
Brownian motion. Then for S ⊂ ∂B(0, R) measurable, we have

Pξ′(E ∩W [0, ζR] 6= ∅,W (ζR) ∈ S) = Eξ′
(
1{E∩W [0,T ] 6=∅}

∫
S

fr̃,R(W (τ̃), ξ)dσR(ξ)

)
.

(A.1)
From (A.1) it follows that the conditioned measure Pξ′,ξ satisfies

Pξ′,ξ(E ∩W [0, ζR] 6= ∅) =
Eξ′
(
1{E∩W [0,T ]6=∅}fr̃,R(W (τ̃), ξ)

)
Eξ′(fr̃,R(W (τ̃), ξ))

. (A.2)

(More precisely, we would conclude (A.2) for σR-a.e. ξ, but by a continuity argument
we can take (A.2) to hold for all ξ.)

Now choose r̃ in such a way that R/r̃ →∞, r̃/r →∞, for instance, r̃ =
√
rR. Since

R/r̃ →∞, we have fr̃,R(ξ̃, ξ) = 1 + o(1), uniformly in ξ̃, ξ. Therefore

Pξ′,ξ(E ∩W [0, ζR] 6= ∅) = [1 + o(1)]Pξ′(E ∩W [0, ζR] 6= ∅)

= [1 + o(1)]
(
Pξ′(E ∩W [0,∞) 6= ∅)− Pξ′(E ∩W [ζR,∞) 6= ∅)

)
. (A.3)

By the Markov property, the last term in (A.3) is the probability of hitting E when
starting from some point W (ζR) ∈ ∂B(0, R) (averaged over the value of W (ζR)). Since
R/r → ∞, this will be shown to be an error term, and the proof will have been
completed once we show that

Pξ′(W [0,∞) ∩ E 6= ∅) =
CapE

κd rd−2
[1 + o(1)] as r/ε→∞. (A.4)

Note that (A.4) is essentially the limit in (1.10), taken uniformly over the choice of
E ⊂ B(0, ε).

To show (A.4), let gε(ξ
′, ·) denote the density, with respect to the uniform measure

σε on ∂B(0, ε), of the first hitting point of ∂B(0, ε) for a Brownian motion started at ξ′

and conditioned to hit B(0, ε). Then

Pξ′(W [0,∞) ∩ E 6= ∅) =
εd−2

rd−2

∫
∂B(0,ε)

Py(W [0,∞) ∩ E 6= ∅) gε(ξ
′, y)dσε(y). (A.5)

Since r/ε→∞, we have gε(ξ
′, y)→ 1 uniformly in ξ′, y. Hence (A.4) follows from (A.5)

and (2.15).
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A.2 Excursions avoiding an obstacle: proof of Lemma 4.4

Proof. It suffices to bound from below

Pξ′,ξ
(
W [0, ζR] intersects x+B(ϕy, 1

2
ρ) but not x+ (ϕE)ρ

)
, (A.6)

since conditioning on (x + (ϕE)ρ) ∩W [0, ζR] = ∅ can only increase the probability in
(A.6). Moreover, as in the proof of Lemma 2.5, we may replace Pξ′,ξ by Pξ′ , using now
that the densities fr̃,R and gε are bounded away from 0 and ∞ when r ≤ 1

2
R.

Fix E ∈ E�
c , so that E = 1

n
A for some A ∈ A� ∩ Ec and n ∈ N, and fix δ > 0 (we

may assume that δ < 1/(2n)). By assumption, E is bounded, say E ⊂ B(0, a). By
adjusting ε, we may assume that ρ/ϕ < a (so that (ϕE)ρ ⊂ B(0, 2aϕ)) and r > 4aϕ.
We distinguish between three cases:

y ∈ B(0, 3a) \ Eδ. Consider w ∈ Zd \ A. Because A ∈ Ec, there is a finite path of

open cubes with centres w0, w1, . . . , wk ∈ Zd such that w0 ∈ Zd \ B(0, 3an), wk = w,
d(wj−1, wj) = 1 and int

(
∪kj=0(wj + [−1

2
, 1

2
]d)
)
∩ A = ∅. By compactness, the length k

of such paths may be taken to be uniformly bounded. Hence, if ρ/ϕ < δ/2, then, given
ξ′′ ∈ ∂B(x, 3aϕ), there is a path Γ ⊂ B(x, 3aϕ) from ξ′′ to x+ ϕy consisting of a finite
number of line segments, each of length at most ϕ, such that Γδϕ/2 ∩ (x + (ϕE)ρ) =
Γδϕ/2 ∩ (x+ ϕ(Eρ/ϕ)) = ∅. Moreover, the number of line segments can be taken to be
bounded uniformly in y and ξ′′. In fact, Γ can be chosen as the union of line segments
between points x + ϕw0/n, . . . , x + ϕwk/n as above, together with a bounded number
of line segments to join ξ′′ to x+ϕw0/n in B(x, 3aϕ)\B(x, 2aϕ) and to join x+ϕwk/n
to x+ ϕy in the cube x+ (ϕ/n)(w + [−1

2
, 1

2
]d) containing y (see Figure 9)

x+ ϕE

Γ

Γδϕ/2

x+ (ϕE)ρ

ϕ/n

x+ ϕw/n

B(x+ ϕy, 1
4
δϕ)

Figure 9: The path Γ reaching x+ϕy. The sets Γδϕ/2 and x+ (ϕE)ρ = x+ϕ(Eρ/ϕ) are
depicted for the worst-case scenario where the parameters ρ/ϕ < δ/2 < 1/4n are equal.

From ξ′ ∈ ∂B(x, r), the Brownian path reaches ∂B(x, 3aϕ) before ∂B(x,R) with
probability (r−(d−2) −R−(d−2))/((3aϕ)−(d−2) −R−(d−2)). By our assumptions, this is at
least c1(ϕ/r)d−2 for some c1 > 0. Uniformly in the first hitting point ξ′′ of ∂B(x, 3aϕ),
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there is a positive probability of hitting ∂B(x + ϕy, 1
4
δϕ) via Γδϕ/2 before hitting

∂B(x, 4aϕ). The probability of next hitting ∂B(x + ϕy, 1
2
ρ) before ∂B(x + ϕy, 1

2
δϕ)

is
[(1

4
δϕ)−(d−2) − (1

2
δϕ)−(d−2)]/[(1

2
ρ)−(d−2) − (1

2
δϕ)−(d−2)], (A.7)

which is at least c2(ρ/ϕ)d−2 for some c2 > 0. Thereafter there is a positive probability of
returning to ∂B(x, r) without hitting x+(ϕE)ρ, via Γδϕ/2. Combining these probabilities
gives the required bound.

y ∈ Eδ \ Eρ/ϕ. We have y ∈ 1
n
(w + [−1

2
, 1

2
]d) for some w ∈ Zd. Write Cθ(y,

1
n
w) for the

cone with vertex y, central angle θ, and axis the ray from y to 1
n
w. We can choose

the angle θ and a constant c3 > 0 small enough (in a manner depending only on d) so
that Cθ(y,

1
n
w) ∩ Eρ/ϕ ∩B(y, (1 + c3)d(y, w)) = ∅. With θ and c3 fixed, we can choose

c4 > 0 so that every point of B( 1
n
w, c4) is a distance at least c5 > 0 from ∂Cθ(y,

1
n
w)

and ∂B(y, (1 + c3)d(y, 1
n
w)) (see Figure 10).

y2

y1

y3

y2

y1

y3

Figure 10: Cones Cθ(y,
1
n
w) and parts of balls B(y, ρ/(2ϕ)) and B(y, (1 + c3)d(y, 1

n
w))

for three choices of y. The outer square is the cube 1
n
(w + [−1

2
, 1

2
]d) containing y. The

dashed line shows the greatest possible extent of Eρ/ϕ. At least one face of the cube
is not contained in E, resulting in a conduit to the outside of the cube (dotted lines).
The ball B( 1

n
w, c4) in the centre is uniformly bounded away from the sides of the cones

and from the other balls. On the left the parameters ρ/ϕ < 1/4n are depicted as equal.
On the right is the more relevant situation ρ/ϕ� 1/(4n).

Under these conditions, there is a probability at least c6(ρ/ϕ)α for a Brownian path
started from a point of ∂B(x + ϕw/n, c4ϕ) to reach ∂B(x + ϕy, 1

2
ρ) before hitting

∂B(x+ϕy, ϕ(1+c3)d(y, w))∪∂(x+ϕCθ(y, w)), and then to reach ∂B(x+ϕy, ϕd(y, w))
before hitting ∂(x+ϕCθ(y, w)).5 The rest of the proof proceeds as in the previous case.

y ∈ B(0, r/ϕ) \B(0, 3a). Let b = d(0, y) ∈ [3a, r/ϕ]. The probability that a Brow-
nian path started from ξ′ first hits ∂B(x, bϕ) without hitting ∂B(x,R), then hits

5This follows from hitting estimates for Brownian motion in a cone. For instance, via the notation of

Burkholder [8, pp. 192–193], the harmonic functions on C(0, z0) given by u1(z) = rp+d−2
0 (|z|−(p+d−2)−

|z|p)h(ϑ) and u2(z) = |z|p h(ϑ) (with ϑ the angle between z and z0 and the value p > 0 chosen so that
u1(z) = u2(z) = 0 on ∂C(0, z0)) are lower bounds for the probabilities, starting from z ∈ C(0, z0), of
hitting ∂B(0, r0) before ∂B(0, 1) ∪ ∂C(0, z0) and of hitting ∂B(0, 1) before ∂C(0, z0), respectively.
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∂B(x + ϕy, 1
12
bϕ) without hitting ∂B(x, 2

3
bϕ), then hits ∂B(x + ϕy, 1

2
ρ) before hit-

ting ∂B(x + ϕy, 1
6
bϕ), and finally exits B(x,R) without hitting ∂B(x, 2

3
bϕ), is at least

[c7(bϕ/r)d−2][c8][c9(ρ/(bϕ))d−2][c10]. Since x + (ϕE)ρ ⊂ B(x, 2aϕ) ⊂ B(x, 2
3
bϕ), this is

the required bound.
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