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Abstract

Shelf-stacking represents the daily store process of manually refilling the shelves with
products from new deliveries. For most retailers, this handling operation is usually labor-
intensive and often very costly. This paper presents an empirical study of the shelf-stacking
process in retail stores. We examine the complete process at the level of individual sub-
activities and study the main factors that affect the execution time of this common store
operation. Based on insights from different sub-activites, a simple prediction model is
developed that allows estimating the total stacking time per order line, only on the basis of the
number of case packs and consumer units. The model is tested and validated using real-life
data from two European retailers and may serve as a useful tool for evaluating the amount of
workload the usual shelf-stacking operation requires. Furthermore, we illustrate the benefit of
the model in quantifying analytically the potential time savings in the stacking process, which
offers interesting opportunities for extending existing inventory control rules with a handling
component.

Keywords: retail operations, stacking process, store processes

1. Introduction

In today's highly competitive market environment, many retailers are concentrating on
controlling costs, as a means of achieving operational excellence and their business success as
a whole. In a recent logistics survey (Butner, 2005), an overwhelming 83% of participants
ranked logistics cost reduction as their primary objective, competing with the permanent
strive to provide a high customer service. Proper control of store operating expenses typically
requires balancing transportation, inventory, shelf space and handling costs. Currently,
models that assess the overall operational costs in retail stores on multiple dimensions are not
available. Existing research in retail operations mainly concentrates on inventory, marketing,
or planograming decisions (Corstjens and Doyle, 1981; Dréze et al, 1994; Urban, 1998;
Cachon, 2001; Hoare and Beasley, 2001). Typically, in these models the handling time and its
related costs are not considered explicitly (see e.g. Themido et al. 2000, where handling costs
are treated in an aggregate way). This research focuses exclusively on the handling cost
component of retail operations, an area, we believe, still largely overlooked.

For most retailers, the store handling operations are not only labor-intensive, but also very
costly. Empirical studies (see e.g. Saghir and Jonson, 2001, Broekmeulen et al., 2004) suggest
that the handling costs in the retail chain represent the largest share of operational costs with
high shares in the retail stores. There is however, a general lack of understanding of what
drives handling costs in retail stores, and little evidence exists in the academic literature on
this topic. An early study that considers both inventory and handling costs comes from 1960's
(Chain Store Age, 1963). SLIM (Store Labor and Inventory Management), a system widely
promoted in the mid-1960's, focused on minimizing store handling expense, by reducing
backroom inventories and the double handling of goods (Chain Store Age, 1965). Two other
studies carried out by the Swedish group DULOG in 1976 and 1997, measured package
handling time in the store, in order to gather information about the impact of the type of
package on handling efficiency in the grocery retail supply chain (DULOG, 1997).

More recently, Van Zelst et al. (2005) showed that significant efficiency in terms of shelf
stacking time could be gained once the impact of most important drivers is well understood.
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This paper builds upon the analysis of Van Zelst et al. (2005) by extending and deepening
their analysis: Van Zelst et al. (2005) looked at the total stacking time per consumer unit,
while we extend this approach towards the individual sub-activities constituting the total
stacking time. On top of this, analytical expressions for the potential gains are derived, while
the paper of Van Zelst et al. (2005) was strictly empirical. In this study, we specifically focus
on the shelf-stacking process in retail stores and study the key factors that drive the execution
time of this store operation. Shelf-stacking represents the daily process of manually refilling
the shelves in the store with products from new deliveries. As most manual activities, such
process is often time consuming and costly. Furthermore, unless clear and reliable work
standards are implemented, such activities may well suffer from a lot of variation, which
possibly will negatively affect the overall store performance.

We conduct an empirical analysis in which, by means of a traditional motion and time study
(Barnes, 1968), we examine the entire shelf-stacking process at the level of individual
subtasks and propose a regression-based methodology for predicting order-stacking times in
retail stores. Similar time-study approaches are sometimes reported in the warehouse
operations research for estimating order-picking times. Gray (1992) uses basic multiple
regression to derive estimations of the necessary time to pick all items from a pick list for a
customer order, and applies it for establishing labor productivity standards. Gray et al. (1992)
consider the general problem of warehouse design and operation, and propose a model in
which order-picking time includes three components: walking, stopping and grabbing. Varila
et al. (2004) uses order-picking in a warehouse as a case activity to illustrate, using regression
analysis, that a time-based accounting system is often suitable in tracing the cost behavior of
an activity, especially when this is directly proportional to time.

The main contributions of this paper are threefold:

First, we gain a deeper insight into the characteristics of the shelf-stacking process itself by
analyzing the impact of different logistical drivers (number of case packs and consumer units)
on the shelf-stacking time. While warehouse handling operations received considerable
attention in the literature (Rouwenhorst et al., 2000, Tompkins et al., 2003), there is still
much opportunity for research in the field of store handling operations. This study looks into
the specifics of the shelf-stacking process and analyzes, using empirical data, the effects of
key variables on the shelf-stacking times. Compared to previous work, the sub-activities for
the complete process are also analyzed in detail.

Secondly, we investigate whether it is possible to derive a reliable estimation of the shelf-
stacking time beforehand, using only a set of key time-drivers. Using multiple regressions, a
simple prediction model is developed, which allows estimating the shelf-stacking time to a
large extent only on the basis of the number of case packs per order line and the number of
consumer units. Real-life data was used to test the model and assure it has face validity.
Overall, this study suggests a simple, inexpensive and adaptable tool for quantifying the
amount of workload the regular shelf-stacking operation requires. Moreover, for each sub-
activity available in the data, the drivers are quantitatively analyzed.

Thirdly, closed-form analytical expressions for the expected gains are developed and analyzed
in detail. The expressions are important as it gives a general idea of the potential gains that
can be achieved in the stacking process. Moreover, these analytical expressions can be used to
augment currently available inventory models with a handling component, which is an
interesting path from a future research point of view.

The remainder of the paper is organized as follows: In Section 2, we describe the process of
restacking the retail shelves and derive a conceptual model for estimating the time required to
fulfill this common store activity based on a set of potential variables. Section 3 introduces
the methodology we used to test the proposed model and describes the dataset supporting our
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analyses. Section 4 presents the results of our study, while the last sections of the paper are
devoted to discussions and conclusions.

2. Conceptual model and hypotheses development

This study focuses on improving our understanding about the handling activities in the retail
stores, more specifically the process of refilling of shelves. Generally, each store undertakes
the following process of replenishing the products on the shelves: upon the arrival of a new
shipment, the truck is unloaded; next, the store clerks move the deliveries into the store and
then restock the shelves with the newly arrived products. This process usually consumes a
significant amount of store resources (such as paid workforce), which makes this activity
rather costly. Therefore, it is beneficial that store management identifies the key drivers of
handling workload in order to better control the related costs.

In the present study, we concentrate on one specific aspect of the store handling process: the
shelf stacking, and study the main factors that affect its efficiency. The shelf stacking process
starts after the incoming products are moved into the store and are taken to the shelves' areas
(usually by rolling containers). Next, for each article (or Stock Keeping Unit (SKU)), the
store clerks unpack the case packs and stock the consumer units on the shelves at the assigned
shelf location (as indicated in the planogram, which is a diagram of fixtures and products that
illustrates where and how every SKU should be displayed on a store shelf, in order to increase
customer purchases (Levy and Weitz, 2001)). The shelf maintenance is an important sub-
activity in this process: in preparing the shelves, for some products, the store clerks need to
check the 'best before' date of the products on the shelf and remove old inventory, if
necessary, before one can stack new items on the shelves. Also, to promote First-In-First-Out
(FIFO) retrievals from the shelves, and to improve the display, consumer units are sometimes
rearranged on the shelves placing the oldest inventory in front. For each SKU, the shelf
stacking process ends with disposing the empty case packs.

Although apparently simple, the shelf stacking process at retail stores is manually executed
and thus may suffer from a lot of variation. If time drives costs, then it becomes valuable to
understand what drives time. In this study, we are aiming at developing a model for the
estimation of the total time required for a worker to refill the shelves with the deliveries from
a shipment. We are particularly interested in estimating the Total Stacking Time per order line
(TST) (i.e. for each individual SKU), based on a reduced set of underlying factors. A similar
approach used in motion and time studies (Barnes, 1968) is adopted here to better examine the
causes and effects of time variation, by examining the total stacking process at the levels of
individual subtasks. Breaking down the entire operation into small components allows, on the
one hand, assessing the contribution of each individual sub-activity to the 7ST, and on the
other hand, gives a better indication of the potential variables affecting the 7ST.

Therefore, we have divided the shelf-stacking activity, as previously described, into seven
subtasks: grabbing/opening a case pack (QG), searching for the assigned location (S), walking
to the assigned location (W), preparing the shelf for stacking the new items (P), filling new
inventory on the shelves (Fn), filling the old inventory back on the shelves (Fo) and disposing
the waste package (D). The difference between filling old versus new inventory is important
as depending upon the inventory level just before filling, the activity filling old inventory will
become important for higher levels. The total time for stacking an order line on the shelves
(TST) has thus been divided into seven time components, and for each component, the key
variables that could logically influence the execution time of each subtask were identified. It
is expected that the time needed to stack new inventory on the shelves depends on the number
of units being handled, while grabbing and unpacking a case pack, traveling within the shelf
aisle to and from the right location, or disposing the wasted case packs depend on the number
of case packs being handled per order line. Lastly, searching for the right shelf location,
preparing the shelf or restacking old inventory if necessary, are normally executed only once,
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for each SKU, independent of the number of case packs or consumer units. The set of
potential drivers of time variation identified for each individual sub-activity are summarized
in Table 2.1.

Table 2.1. Potential drivers of time variation, for each sub-activity

Sub-activity Order line Product
information information
Number of CP° Number of CU Product category
1 Grabbing/Opening (G) X X X
2 Searching (S) - - -
3 Walking (W) X - X
4  Preparing (P) - - X
5 Filling New Inventory (Fn) X X X
6 Filling Old Inventory (Fo) - - -
7 Disposing waste (D) X - -

In reality, there could be many other potential factors affecting the duration of shelf-stacking
time (such as SKU volume, weight or type of packaging, the distance traveled within the
aisle, the old inventory position just before new replenishment, the labor, the environment,
etc.). In our subsequent analysis, we concentrate only on order line-related and product-
related characteristics, as the key drivers of the time variation of the shelf staking process: the
number of case packs (CP) and the number of consumer units (CU) per order line, while also
taking into account possible variation between different product categories. While CP and
CU are rather straightforward factors, the product subgroup variable captures any time
variation that could be attributed to differences in product-related characteristics not measured
specifically in this study (such as total weight of volume of products being handled, or the
type of packaging). In general, the order line information refers to the number of items (case
packs or consumer units) being handled, while the product information approximates the
difficulty in handling products from different categories. These variables are selected as
potential predictors in our subsequent analyses.

The dependent variables are the individual times per sub-activities (7°,
withs € {G,S,W,P,Fn,Fo,D} = A) and the Total Stacking Time (7ST), all expressed in
seconds. The explanatory variables are hypothesized to have the following influence on the
execution time of each sub-activity:
Hypothesis 1: The number of case packs (CP) has a positive effect on the individual
times 79, 7", 7™ ,T” and TST.
Hypothesis 2: The number of consumer units to be stacked (CU) has a positive effect on
sub-activities' execution times 7%, T"" and TST:

We expect that CP and CU have no significant effect on7®,T",T™ . Under these
hypotheses, the Search, Prepare and Fill Old sub-activities could be regarded as fixed
activities, while only the remaining activities are variable, depending on the set of
hypothesized factors.

3. Study design and data description
Data collection
The store operation under study is the replenishment of shelves in the retail stores with new
items. Two grocery retail chains (denoted here by A and B) agreed to participate in this study.
Empirical data on the stacking process in the two retail companies were collected using a
motion and time study approach (Barnes, 1968). Data from chain A are used to test the
hypotheses, and data from chain B are used to validate the results. In four stores, (two for
each supermarket chain) employees who were familiar with the operation, were videotaped
during the shelf stacking process. The product subgroups were selected such that items:

= contain both fast- and slow movers;

= contain different case pack sizes;
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= contain SKU’s for which sufficient shelf space is available to accommodate more
than one case pack in a delivery (see also Broekmeulen et al., 2004).
=  All selected product groups should contain items that are comparable in terms of the
handling process and productivity. For this reason, we did not consider product
groups such as soft drinks, beers as well as dairy products.
Finally, we note that the data collection period did not include days with peak or dropping
demand, and the stores were consistent in their operations.

The stacking of items on the shelves is observed for each delivery (i.e. an order line) in the
store. Each order line consists of taking a case pack from a rolling container, unpacking the
case pack and placing the consumer units on the shelf at the assigned location. The entire
stacking process was divided into smaller sub-activities, such that the elements are as short as
possible and can be accurately timed and that constant elements can be separated from the
variable ones (Barnes, 1968). The shelf stacking process was broken down into the following
subtasks:

= grab and unpack the case pack;

= search for the assigned location on the shelf;

= walk to the shelf;

= prepare the location on shelf for stacking and check the shelf life of the inventory on

the shelf;

= fill the new inventory on the shelf;

= fill the old inventory back on the shelf;

= dispose the waste;
Appendix 1 gives a complete description of each sub-activity. After the recording process, the
execution time of each individual sub-activity and the Total Stacking Time per order (7ST)
line was registered using a computerized time registration tool, and results were recorded into
a database. Additional information necessary to identify the stacking process for each order
line was added as well, such as the SKU type, the number of case packs and case pack size
per order line or the product category each SKU belong to.

Data description

The final dataset contains 1048 observations, for chain A, across nine product categories, and
563 observations, for chain B, across five different product categories (see Tables 2.1 and 2.3
from Appendix 2). The first set of data is selected to develop a predictive model of the total
time required by a store clerk to stack an order line onto the shelves. The second dataset is
used to test and validate the results.

Table 2.1 (Appendix 2) contains descriptive statistics of the variables used in this study, for
the first dataset. The average total time to stack an order line into the shelves is 57.31 seconds,
ranging from a low 10 seconds per order line (personal care category) to a high 334 seconds
(coffee), with a standard deviation of 36.6 seconds. This reveals the degree of variation that
exists in the TST between different order lines and this study aims at gaining a better
understanding of the factors underpinning this variation. We further note that some degree of
variation exists also between the 7ST corresponding to different product categories. The
average TST line varies between 35.47 seconds (products of personal care) and 80.86 seconds
(coffee milk). With reference to the explanatory variables of this study, we note that the
average number of case packs per order line varies between 1 CP (all categories) to 9 CP
(coffee), with an average of 1.3 CP and a standard deviation of 0.7 CP. The average number
of consumer units per order line exhibits quite some variation, ranging from 3 CU (personal
care) to 135 CU (coffee), with an average of 16.78 CU per order line.

Based on this empirical data, we also derive the distribution of the Total Stacking Time and
the relative contribution of each individual sub-activity to the 757, as illustrated in Figure 3.1.
We note that the most time consuming sub-activity in the shelf-stacking process is the
Stacking of new inventory (Fn) (about 48% of the 7ST), followed by the Grabbing and
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unpacking the case packs (G) (about 20% of TST) and Disposing the waste (D) (about 13% of
TST), respectively. Together, they account for almost 81% of the 7ST. Table 2.2 (Appendix 2)
provides descriptive statistics of the dependent variables used in this study. The
corresponding average times for execution of the three most time consuming sub-activities are
27.32 seconds (Stacking new inventory), 11.65 seconds (Grabbing / opening a case pack) and
7.28 seconds (Disposing waste) respectively.

Stack new inventory | 48%

Grab and unpack case | 20%

Dispose waste 13%

Walking 8%

Prepare the shelf 6%

Activity

Search [ ]4%

Stack old inventory || 1%

0% 10% 20% 30% 40% 50% 60%

% of total shelf stacking time

Figure 3.1 Distribution of the Total Stacking Time (Chain A)

4. Analysis and Results

4.1 Model Testing

In order to test our hypotheses and analyze the duration of each individual sub-activity and of
the entire shelf stacking process, we performed several regression analyses with
T (se{G,S,W,P,Fn,Fo,D}) and TST as dependent variables. In this study, we adopt
two different strategies for estimating the Total Stacking Time per order line (7ST), which we
shall refer to as sequential regression and overall regression, respectively. Both approaches
allow one to predict the 75T as a function of the identified drivers of time variation using
multiple linear regressions. The general models for each case are introduced next.

Sequential regression

TST=)'T*, (1)
seAd
where the duration of each individual sub-activities 7" per order line is estimated using the

following general linear regression model:
PC-1

T’ =by+b)CP+b,CU+ Y ). D, +¢, ()
pe=1
for every sub-activity s € 4 and where PC represents the number of different product
categories considered in the analysis. One set of dummy variables is used to account for

differences between product categories {EPC} .To avoid perfect multicolliniarity, which will

make the OLS parameter estimation impractical, one category from the group of product
categories must stand as a reference for others (Gujarati, 1995).



Modeling Handling Operations in Retail Stores: an Empirical Analysis

Overall regression

PC-1

TST =, +¢,CP+c,CU+ Y 7,

pe=1
Both models, (1)-(2) and (3), give an estimation of the expected 7ST (in seconds) required by
a store clerk to handle the workload of restacking an order line onto the shelves. Sequential
regression requires the TST be estimated in two steps: first, an estimation of individual
subactivites' times per order line is necessary, which then add up naturally into the Total
Stacking Time according to (2). The overall regression on the other hand, allows one to
predict the 7ST directly on the basis of the key drivers identified. If (2) gives an accurate
estimation of the time for each individual subtask, then (3) follows as a consequence of
models (1) and (2), with the following relationships between coefficients of models (1)-(3):

D, +e, (3)

C

co=2.by.c,=).b .c;=Db, 7, =D a, (forpc=1,2,.., PC). (4)

sed sed sed sed

Therefore, under the assumption of accurate estimation of individual times, we expect both
models will perform equally well.

Starting from the sequential regression model formulation introduced by equation (2), we
derived three predictive models to test the effect of each explanatory variables used in this
study. We first estimate each model for the first dataset (chain A) and then validate the results
on the second dataset (chain B). The tested models for each individual sub-activity are

specified next. Similar models are used for the analysis of the total stacking time, too.
PC-1
Model 1: T;" = by + Za;CD

pe=1

pci + gi 4

PC-1
Model 2: ;" = b; + b/CP +b;CU, + Za;CD

pe=1
Model 3: T = b; +b/CP +b,CU, +¢,,

where ¢, is the error term for each order line i =1: N .

pci + gi 4

Model 1 is an ANOVA model with only the product category identifier as an explanatory
variable, which is modeled here by the group of dummy variables {D .} , ¢, - To avoid

perfect multicollinearity, one product category is used as a reference, as detailed in our
subsequent analysis. Therefore, this model estimates differences in execution time across
products categories and is used as a reference in our analysis. Model 2 includes the main
effects of the number of case packs (CP) and the number of consumer units (CU) per
orderline, respectively. Thus, this model tests the effect of the explanatory variables from our
Hypotheses, while controlling for differences across product categories. Model 3 is a simple
regression model with only CP and CU as explanatory variables. It is derived from Models 2
by removing the product subgroup-effect. Thus, Models 2 and 3 by comparison show if the
product grouping has a significant effect on the execution times.

4.1.1 Sequential regression
For the derivation of the 7S7, we carried out a two-phase sequential analysis. First, for each
individual sub-activity, we tested the regression models 1 to 3 and derived estimates of the

execution times 7' for each sub-activity. These estimates are then used to approximate the
TST, as indicated by equation (1). Separate analyses for each individual sub-activity
correspond to our motivation of identifying which sub-activities are mostly affected by the
selected order line- and product-related factors. The final derivation of the 757 is in line with
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our purpose of deriving a predictive model for estimating the total time necessary to stack the
products from an order line into the shelves.

Estimating the time for individual sub-activities

Models 1 and 2 are analyzed using hierarchical regression. The group of dummy variables
representing the merchandising category was considered as a control variable, and it was
introduced in the first step of hierarchical regressions. The reference category was chosen to
be the one with the largest number of samples in the dataset. The first empirical dataset
contains nine product subgroups and the largest category in this dataset is Personal care (see
Appendix 2, Table 2.1). In the second step of hierarchical regression, we added together the
main effects CP and CU.

The results of ordinary least squares estimation for the first data set are presented in Table 4.1.
Relevant collinearity diagnosis (such as coefficient of correlation, variance inflation factors)
indicated no significant problems with respect to multicollineariry. For each of the three
models, Table 4.1. gives the standardized coefficient estimates, for each individual sub-
activity together with some measures of goodness of fit. Overall, results for Model 1 indicate
that the product category variable explain only a small proportion of the total variance in the
execution times of corresponding sub-activity. The three largest adjusted R’, obtained for Fill
New, Prepare and Dispose in this sequence, varies from 10% to almost 17%. We also note
that although some product categories dummies are not significant predictors, the group of
dummies is overall significant (as confirmed by the overall F-statistics), and this holds true
for every individual sub-activity.

Results from the 2™ regression step indicate that Model 2 explains a significantly higher
proportion of the variance in sub-activities' times. The adjusted R* ranges from .008 (for
Search sub-activity) to as high as .679 (for Fill New sub-activity). The three largest proportion
of variance in the dependent variable accounted for by the explanatory variables of Model 2
belong to Fill New (R*adj equals 67.9%), Grab and unpack (R*adj of 41.6%) and Dispose
(R%adj of 31.6%) sub-activity, respectively. Recall from Figure 3.1 that these are also the
three most influential sub-activities with respect to their relative contribution to the Total
Stacking Time. The overall F-statistics indicate a significant joint contribution of the variables
in predicting the execution times for all sub-activities (at p<.05). However, we notice that the
explanatory variables CP and CU do not contribute significantly in explaining the time for
searching, and have only a marginal contribution in explaining the time for preparing the
shelves, filling old inventory and walking, respectively (R°change of 0.011 and 0.057).

Further, we notice that when the subgroup effect is removed from the analysis (Model 3), the
adjusted R* for the Fn, G and D drops marginally from the previous model to 63.3%, 39.8%
and 25.4%, respectively. The F-statistics show that the joint contribution of CP and CU is
statistically significant for Fn, G and D and their standardized coefficients are both positive,
thus showing support for our hypotheses for these sub-activities. Note that these results are
also rather consistent between models 2 and 3. Comparing models 2 and 3 we also find no
support for S being affected by CP or CU. Although the results show a statistically significant
effect of CP or CU for W, P and Fo, by inspecting the adjusted R* we conclude that the
impact of these variables on the execution times of the aforementioned sub-activities is weak.
This result is consistent with our prediction that CP and CU do not affect the Search, Prepare
and Fill old sub-activities.

In summary, we conclude that the results provide evidence that the execution time for Fill
new, Grab/unpack and Dispose are mostly explained by CP and CU, while we found little
evidence that these variables affect substantially the other sub-activities.
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Table 4.1. Regression results for each individual sub-activity (standardized coefficients)

Step Variables Model 1
G S w P Fn Fo D

1 Baby food .033 -.039 -.052 .075* .065* .028 .065*
Chocolate .205*** -.085* A1 .207** .238*** .083* .284***
Coffee 271 -.065 -.027 .320** .368*** .103** .051
Coffee milk .106** -.043 .062* 165%* .283*** .083* A81**
Candy .076* .007 201 042 247** .004 .165***
Sugar .045 -.040 -.060* .079* .165*** -.002 .040
Canned meat .080* -.091** 38 .090** 231%* -.003 271%*
Canned fruits .071* .011 -.032 .040 161+ -.003 .080**
R? .072 .017 .071 .109 A72 .018 122
RZadj .065 .010 .064 .103 .166 .010 115
Mean SS Err. 111.167 13.520 13.855 49.434 405.135 12.581 39.847
Overall F 10.117**  2.284* 9.933***  15.949***  27.048*** 2.329* 17.998***
df 8, 1039 8,1039  8,1039 8, 1039 8, 1039 8, 1039 8, 1039

Statistical significance at *p<.05, also **p<.01, *** p<.001; Reference category: Personal care (N = 285)

Table 4.1. (continued) Regression results for each individual subactivity (standardized coefficients)

Step  Variables Model 2
G S W P Fn Fo D

2 Baby food .031 -.039 -.052 .077* .057** .031 .064*
Chocolate .037 -.084* .051 .262** -.086*** 146%* 195%**
Coffee 24 -.062 -.084* .338*+* 147+ .128** -.044
Coffee milk .001 -.041 .023 .188*** .104*+* A1+ A19%
Candy -.005 .006 AT5 .092* .043 .057 A35%
Sugar -.032 -.037 -.092** .072* .083** -.005 -.019
Canned meat -.055* -.087** .085** .077** .052** .008 ATTH*
Canned fruits -.030 .014 -.072* .262 .030 .004 .008
CP 422%** -.023 87+ .338*+* .184*** 144* A401***
CuU 253 .003 .082 .188*** .647*+* = 171% .090*
R? 422 .018 128 121 .682 .028 .322
RZadj 416 .008 120 112 .679 .019 .316
R? change .350 .000 .057 .011 .510 .011 .200
F change 313.815*** 214 33.932%**  6.710** 832.809*** 5.678** 153.239***
Mean SS Err. 69.387 13.540 13.029 48.896 155.751 12.468 30.816
Overall F 75.730*** 1.867* 15.237***  14.241** 222 .847*** 3.016*** 49.266***
df 10, 1037 10, 1037 10, 1037 10, 1037 10, 1037 10, 1037 10, 1037

Statistical significance at *p<.05, also **p<.01, *** p<.001; Reference category: Personal care (N = 285)

Table 4.1. (continued) Regression results for each individual subactivity (standardized coefficients)

Variables Model 3

G S W P Fn Fo D
CP .409*** -.025 .085* .120%* .241%** .090* 313
CuU 271 -.030 183** -.007 .606** -.072 . 232%**
R? .399 .003 .063 .013 .634 .004 .256
RZad;j .398 .001 .061 .011 .633 .002 .254
Mean SS Err. 71.616 13.643 13.894 54.455 178.035 12.681 33.568
Overall F 346.724*** 1.361 35.157** 7.007*** 905.874*** 2.118 179.629**
df 2, 1045 2, 1045 2, 1045 2, 1045 2, 1045 2, 1045 2, 1045

Statistical significance at *p<.05, also **p<.01, *** p<.001

Estimating TST
We derive the TST simply as the sum of the estimated execution times for each individual
subactivity, derived under models 2 and 3. Thus the estimated 757 is derived as follows:
IST=T° +T5 +T" +T" +T" +T™ +T? ,
where 7' , § € A stands for the estimated execution time of the corresponding sub-activity, as
given by Models 2 or 3. To estimate the accuracy of this prediction we compare the estimated
TST with the actual 7ST (obtained from empirical data) and the results are included in Table
3.1 from Appendix 3. Both variables have the same mean (57.31 seconds) as confirmed by a
paired-samples t-test. The correlation coefficient between the predicted and the measured 7ST
is .819 (Model 2) and .798 (Model 3) and thus 67% (respectively 63.7%) of the variance in
the measured 7'ST per order line is explained by the sum of time estimates for individual sub-
activities. Thus, results show a slightly better performance of Model 2 as compared with
Model 3 but the increase in adjusted R” is marginal. Therefore, given the simplicity of Model
3, we recommend choosing it for forecasting purposes.
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4.1.2 Overall regression

Similar regression models as described by Models 1-3 are analyzed for the dependent variable
TST. The prediction models 1 and 2 are also analyzed using hierarchical regression in two
steps and then compared with the prediction model 3. The results of ordinary least squares
estimation for the first dataset (1048 observations) are presented in Table 4.3. Collinearity
tests (correlation coefficients, variance inflation factors) indicated no significant problems
with respect to multicollinearity for the estimated models. In addition, upon preliminary
inspection of the results, no significant outliers or influential points were detected, and thus
the results included in Table 4.3 reflect the entire dataset. An alternative model formulation
where interactions between the explanatory variable and the product category were included
did not improve the model specification and were not significant. (Aiken and West, 1991).

Table 4.3. Regression analyses results for TST (Chain A)

Model 1 Model 2 Model 3
Step Variables Unstd. Std. Std. Unstd. Std. Std. Unstd. Std. Std.
Coeff. Err.  Coeff. Coeff Err.  Coeff. Coeff Err.  Coeff
1 (Constant) 35.474**  1.973 3.902 * 1.785 10.240**  1.447
Baby food 14978 * 6.298 .069 13.898***  3.995 .064
Chocolate 30.872***  3.239 .310 5896 * 2.375 .059
Coffee 38.063***  3.270 377 18.471***  2.166 .183
Coffee milk 45.383***  4.868 279 21.527**  3.227 132
Candy 19.968***  2.892 232 7.932**  2.007 .092
Sugar 35.360***  8.093 .126 10.517 * 5.176 .037
Canned meat 41.697***  5.243 .236 12.016*** 3.418 .068
Canned fruits 29.401**  6.209 .138 2.922 3.998 .014
2 CP 19.614***  1.471 .375 19.052***  1.396 .364
CU 1.180*** .081 442 1.327*** .071 .496
R? 178 .670 .637
RZad;j 172 .667 .636
R? change 178 492 .637
F change 28.130*** 773.434*** 916.178***
Mean SS Err. 1108.989 445.936 487.185
Overall F 28.130*** 210.651*** 916.178***
df 8, 1039 10, 1037 2, 1045

Statistical significance at *p<.05, **p<.01, *** p<.001; Reference category: Personal care (N=285)

Results for Model 1 indicate that the product category variable alone explains in proportion of
17.2% the variance in TST, while Model 2 yields a significantly larger adjusted R’ (66.7%),
with a significant 49.2% of the total variability in 7ST accounted for by the group of variables
CP and CU. Model 3 shows that the explanatory variables CP and CU together have a
significantly high joint contribution in predicting the TS7, accounting for 63.7% of the
variability in the 7ST. The F-statistics for all three models are statistically significant
(p=<.001). Thus, results provide evidence that the 7ST is systematically explained in large
measure by our model. Furthermore, comparing models 2 and 3, we note that when the
subgroup-effect is excluded from the model, the adjusted R’ decreases only marginally and in
both cases the hypotheses of our study are supported.

The coefficient estimates presented in Table 4.3. show that 7ST is positively correlated with
CP and CU, thus providing support for our hypotheses at p<.001. They also are fairly
consistent between models 2 and 3. The standardized values of the coefficients indicate that
most of the explanatory power comes from the variables CP and CU, with a higher influence
of CU. While all significant in Model 1, the coefficients of dummy variables for product
category remain significant (at p<.05), with one exception (Canned fruits), in Model 2.
Compared with CP and CU however, they indicate a relatively small explanatory power.
Also, recall that in our modeling we used Personal care as a reference category for the group
of dummy variables (with the largest number of observations), and therefore the positive
coefficients for the dummy variables confirm our expectations from previous descriptive
statistics (see Table 2.1, Appendix 2): according to this dataset, the personal care category is
the fastest to handle on order line basis.

10
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Based on these results, we conclude that models 2 and 3 explain already a large portion of the
Total Stacking Time and the variables CP and CU are important predictors of 7S7. Due to the
simplicity of the model and its good accuracy, we recommend using Model 3 for forecasting
TST.

4.2 Validation of results

To validate the results from the previous section, we use the empirical data from chain B and
replicate the analysis conducted for chain A. We do this in order to verify the reliability of the
previously obtained results and the accuracy of the predictive models (Wang, 1994).

Summary statistics for the variables in this study using the second dataset are included in
Tables 2.3, 2.4 from Appendix 2. The average 7ST across all five product categories is 49.29
seconds with a standard deviation of 27.06. The smallest average TST is recorded for the
products from the wine subgroup (39.69 seconds), while the most time consuming products in
this set for handling are those from category cookies (mean 7ST equals 60.62 seconds). The
TST shows significant variation between order lines, ranging from a minimum of 6 seconds
(wine) to a maximum of 212 seconds per order line (canned vegetables). The variable CP
ranges from 1 CP (all categories) to 8 CP (cookies) with an average of 1.22 CP across all
categories, and a standard deviation of 0.6 CP. The variable CU has an overall mean of 15.5
consumer units (standard deviation = 8.86), ranging from 6 to 80 CU per order line.

To assure the general applicability of the approach proposed in this study, we are interested in
how consistently the previous results replicate for the second data set. Regarding individual
sub-activities, regression results (see Table 4.1 from Appendix 4) for models 1 to 3 confirm to
a high extent previous findings: the CP, CU have a positive effect on execution times of sub-
activities Fn, G and D and are the most important predictors of time variation for these sub-
activities (adjusted R2 is 52.6%, 48.3% and 20.4%, respectively for Model 2, and 50.9%,
47.6% and 19.6%, respectively for Model 3). When sequential regression is then used to
estimate the 7ST (see Table 4.2 from Appendix 4), we found that the correlation coefficient
between the predicted and the measured 7ST is 0.724 (R2 = 52.4%) using Model 2 and 0.684
(R2 = 46.7%) for Model 3. The high values of these correlation coefficients indicate that the
TST for chain B is also explained to a large degree by the chosen models. Furthermore,
comparing results for models 2 and 3, we are again in favor of the simplest model 3 to be used
for deriving good estimations of the 757.

For forecasting purposes, the overall regression for estimating 7.S7 provides a simple and less
time-consuming procedure. Therefore, we tested the reliability of the results on the second
data set as well. We found consistent support for our hypotheses regarding 7ST (see Table 4.3
from Appendix 4). While the group of dummy variables related to product category have a
significant, but small contribution in predicting 7ST (adjusted R2 about 10%), the most
explanatory power comes again from the group of variables CP and CU, which affect
significantly and positively the 7S7. Compared to Model 2 (R2adj = 51.9%), CP and CU
alone explain 46.5% of the variance in 757, thus indicating only a marginal decrease in
adjusted R2. Their coefficients are both statistically significant at p<.001 and consistent
between the two models. Moreover, note that they have also comparable sizes with
coefficients' estimates for CP and CU derived for the first dataset (see Table 4.3). We can,
therefore, be confident that the effects of both CP, and CU are needed to model the 7ST to a
large extent and that Model 3 represents a simple and reliable alternative for predicting 7.S7.

We performed a final verification of the results, in which we used the data collected for chain
B and the coefficients estimates for Model 3 derived for chain A (see again Table 4.3) to
compute predicted values of 7ST for each order line. We restate here for reference the model
used for prediction:

IST =a, +a,CP+a,CU, where a;=10.240, a;= 19.052 and a, = 1.327.

11
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Table 4.4 presents the results obtained by comparing the predicted and the measured values of
the 7ST. The high values of the correlation coefficient between the measured and predicted
TST (R = 0.683, R* = 46.6%) provide additional evidence that the TST for chain B is also
explained to a large degree by our model.

Table 4.4. Validation results for 7ST using coefficient estimates of Model 3 from the first
dataset and empirical values for CP and CU for chain B

Regression results
Intercept (Std. Err)  Slope (Std. Err.)

1.104 (2.331) .891***(.040)
Correlation coefficient .683
R? 466
RZadj 465
Mean SS Err. 391.423
Overall F 490.139**
df 1, 561

Overall, the results confirm that Model 3 represents a simple and reliable method for
predicting the 7ST. The stacking-times for each order line can be estimated inexpensively in
this way, and ultimately be used for management decisions. For example, one can assess the
amount of work necessary during a day to execute the restocking of the shelves, or can assess
the individual labor performance of store employees.

5. Analytical expressions for efficiency gains

We showed that the shelf-stacking time per order line (i.e. for each SKU) can be estimated
based on the number of case packs (CP) and consumer units (CU) per order line, according to
the following model:

IST =a,+a,CP+a,CU, %)
where the parameters a,, a; and a, have been estimated and are shown to be positive (ag =
10.240, a;= 19.052 and a, = 1.327). Considering that CU = CP - Q, with Q the case pack

size, and rewriting (5) we obtain:

TST(CP,Q) = a, + a,CP + a,CP-Q (6)

The TST per SKU is thus linearly dependent on CP and CU, but not directly proportional with
CP and CU (due to the constant parameter ay). For each order line, a fixed 'setup time' (a) is
incurred, additionally to the positive time related to the number of units being handled. This
structure of the 7ST can be exploited in order replenishment decisions, for a better time and
cost management of the overall store operations. For example, the model allows quantifying
the time savings obtained when it is possible to reduce the frequency of the replenishments,
by ordering more products at once, rather than the same amount multiple times. Let n (n = 1,
2, 3, ...) be the number of order lines for the same SKU in a replenishment order in the
subsequent analysis. Two situations can then be considered:

Order more case packs per order line

The effect of reducing the replenishment size (i.e. the number of order lines) by ordering
more CP per order line, while keeping the same case pack size (Q) can be evaluated. We
compare the time savings obtained if, instead of ordering n order lines with CP of size Q per
order line, it is possible to order the entire amount at once (i.e. in one order line), by ordering
nCP, each of size Q.

The total time needed for stacking n order lines with CP of size O per order line can be
written as:

IT(CP,Q) =nIST(CP,Q) =na, +na,CP+a,nCP-Q. (7)
The total time needed for stacking the same amount at once is expressed as:
TST'(CP,Q) = TST(nCP,Q) = a, + a,nCP + a,nCP-Q . (®)

12
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Then the time savings can be derived as:

TT —TST' =(n—1)a, >0, for n > 1, 9)
which implies that we may save stacking time if we order, in each replenishment, more case
packs at once, instead of ordering one case pack at a time, and this saving is due to the
constant 'setup time' a,. The efficiency gain, compared with the case of multiple
replenishments is then:

TT —TST' (n—1)a,

1T na, +na,CP +a,nCP-Q
Increase the case pack size O
We evaluate the time savings obtained if, instead of ordering » order lines with CP of size O
per order line, it is possible to order the entire amount at once (i.e. in one order line), by

ordering CP case packs, each of size nQ. In this case, the shelf-stacking time is derived as
follows:

S'(CP,0,n) = 100% , for n>1. (10)

TST*(CP,Q) = TST(CP,nQ) = a, + a,CP + a,CP-nQ . (11)
Then the time gains are now:
TT —TST* =(n—1)a, +(n—1)a,CP >0, for n > 1, (12)

and the percentage of time saving is then:

TT —TST* _ (n—Da, +(n—1)a,CP
TT  na,+na,CP+a,nCP-Q

Again, in this case, reducing the frequency of the replenishments may result in time savings

and efficiency gains as given by (12) and (13). Furthermore, by comparing equations (10) and

(13), we notice that the time saving is always higher in the second case, when the strategy is
to increase the case pack size (Q) instead of the number of case packs (CP) per order line.

S*(CP,Q,n) = -100%, for n > 1. (13)

The efficiency gains derived from (10) and (13) are illustrated in Figure 3.2, for two particular
choices of CP and Q. Typically, case pack sizes take values of 6, 12 or 24 consumer units. In
Figure 3.2, the effect of n on S and §” is illustrated for one and respectively four case packs
per order line, each of size six. We note that the higher the reduction in the number of order
lines, the higher the savings. Reducing one order line for the same SKU (n = 2 in Figure 3.2)
as a consequence of ordering two times more case packs results in efficiency gains of 13% (if
CP = 1) and 4% (if CP = 4), respectively. Alternatively, we observe higher potential gains, up
to 40%, when it is possible to place orders for higher case pack sizes.
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Figure 3.2 Effect of n on S” and §° for two particular choices of CP and Q

Note again from (10) and (13) that n, CP and O have a combined effect on S’ and S°.
Particular joint effects are illustrated in figures 3.3 and 3.4. Generally as n increases, S” and S°
reach steady values, with a maximum around 30% (for S’) and 80% (for S°), respectively.
However, as CP and Q increases, the efficiency gains are decreasing. Notable is the behavior
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of S’ with respect to n and CP, when the savings may drop significantly as CP increases,
indicating that in formula (10), the estimated time due to CP and Q, far outweighs the fixed
'setup-time' (due to ay).
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Figure 3.3 Effect of (n, Q) (left; CP=1) and (n, CP) (right; 0 = 1) on §’

Although in practice the case pack sizes are usually set by the manufacturers, it is still
valuable to recognize the impact of reduced sizes on handling efficiency, perhaps especially
for retailers that also carry their own private labels.
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Figure 3.4 Effect of (n, Q) (left; CP = 1) and (n, CP) (right; Q= 1) on §°

These preliminary insights into the potential efficiency gains derived from the proposed
model, offer interesting opportunities for developing adapted inventory control rules that take
into account the handling component. Building new inventory replenishment policies that
recognize the handling efficiency, should of course consider the possible tradeoffs (such as
the shelf space availability and physical constraints of the shelves, the demand pattern, or
restrictions with respect to possible case pack sizes). We recognize this as an interesting area
for further research.

6. Conclusions and Discussions

In this study, we focus on the shelf stacking process in retail stores and study the factors that
drive the shelf stacking time. Three major contributions are recognized: first, a conceptual
model based on the actual process is described; secondly, this conceptual model is tested and
verified based on the empirical data collected at two retailers; thirdly, analytical expressions
are derived to quantify the time gains. All analysis presented in this paper is based on both the
aggregate total stacking time as well as on the individual sub-activity times available.

14
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We proposed a methodology based on multiple regressions for deriving a prediction model
for the Total Stacking Time. To gain a better understanding of the shelf stacking process and
of the underlying factors affecting this process, we adopted two strategies for estimating the
TST per order line (sequential vs. overall regression). On one hand, the two approaches may
serve two different practical purposes. The sequential approach, allows one for a better insight
into the details of the process of shelf-stacking, identifying those sub-activities that are likely
to be mostly affected by the number of items being handled, and those for which the variation
in workload is potentially affected by other factors. At the same time, detailed insight into the
shelf staking process indicates which sub-activities contribute mostly to the total variation in
the stacking time of a new order line. The three most relevant are: stacking new inventory,
grabbing and opening of a case pack, and waste disposal, in this order.

On the other hand, the overall regression strategy offers a less time consuming procedure for
predicting the T.ST per order line, since it allows one to predict the 7.ST on the basis of a set of
key factors using one model only. In this study, we found enough support to conclude that a
simple prediction model, depending only on the number of case packs and the number of
consumer units, offers already a reliable estimate of the 7S7. Results from testing and
validation show that the model is stable and it explains the 75T to a large extent. Therefore,
this model offers a useful tool for forecasting the 7.ST per order line.

Limitations of this study and future research

In this study, we were primarily interested in estimating the time necessary to execute the
restacking of shelves with new deliveries in the stores, based on a reduced set of item-related
characteristics. Therefore, while we illustrate the impact of some key drivers on time
variation, we recognize there are more potential factors that may affect the execution time of a
certain activity, which worth further investigation. It seems reasonable for example to assume
that the type of package, the distance traveled within the aisle, the SKUs volume or weight,
and the inventory level of the products on the shelves just before restocking might have an
impact on the Total Stacking Time. Such analysis requires however further investigation.
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Appendix 1

Sub-activity Starting/ Ending point of sub-activity

Grab/ open case pack (G) |Start |The filler stands in front of the rolling container and reaches for a case pack.
End |The filler prepares to walk away from the rolling container (case pack is or is not opened).

or Start |The filler has arrived at the shelf location and starts opening the case pack.
End |The filler is ready with opening the case pack and an other sub-activity starts.
Search (S) Start |The filler starts with checking the product and he/ she lookes for the right shelf location.
End |The filler sees the right shelf location and prepares to approach it (walk).
Walk (W) Start |The filler prepares to walk away from the rolling container or walks after searching the right shelf
location.
End |The filler stands still in front of the shelves.
and Start |The filler prepares to walk away from the shelf location or waste disposal place, to the rolling
container.

End |The filler stands in front of the rolling container and reaches for a case pack.

Prepare the shelves/ check |Start |The filler reaches for the old inventory on the shelves and start to check the 'best before' date (if
'best before' date needed).

(P) End |The filler is ready with preparing the shelves. This means that old inventory is straightened or is
removed from the shelves.
Fill new inventory (Fn) Start |The filler reaches for the new inventory in the case pack.

End |The filler reaches for the old inventory or grabs the empty box or plastic.

Fill old inventory (Fo) Start |In case old inventory was removed from the shelves, the filler starts with putting old inventory back
on the shelves.

End |The filler is ready with putting old inventory back on the shelves en grabs the empty box or plastic.

Waste disposal (D) Start |The filler holds an empty box (or plastic) and starts to flatten it (sometimes the box is preserved for
customers).

End |The moment the filler prepares to leave the waste disposal place (a trolley or a place near the
rolling container).

Extra (E) Any activity not part of the first sub-activities, e.g. help a customer, customer is in the way, get or put
away crate, process inventory remainder, organise labels, general cleaning, discuss with a colleague,
take away waste, bring empy boxes for customers to check out area, get a new rolling container, take
away misplaced products, repare a broken product, remove cord from rolling container, take a product to
the kiosk, straighten seperation plate.

Nota bene:

* Grabbing and opening the case pack are taken together, because the individual activities were difficult to seperate.

** Walking does not include walking with the rolling container from the storage area to the right aisle or walking with the rolling
container between the aisles. But it does include (in exceptional cases) walking with the rolling container when the rolling container is
moved to bring certain case packs to the right shelf location (e.g. heavy products).

Hkk

It is possible that a filler performs multiple sub-activities at once, e.g. walking while opening the case pack , searching or disposing
waste. When this took place, the following reasoning was used: if the walking time was significantly influenced by the attention focused
on opening the case pack (or searching or waste disposal), the time for e.g. opening the case pack was measured as sub-activitity "G",
and the remaining time as sub-activity "W". If the walking time was not significantly influenced by one of these sub-activities, then the
total time was measured as walking time (W).
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Appendix 2. Descriptive statistics of the empirical datasets

Table 2.1 Descriptive statistics for the first sample (N=1048): Chain A

Number Number of CP per Number of CU per TST per Order Line [sec]
Category of Order Order Line Order Line
Lines Avg. SD Min Max Avg. SD. Min Max Avg. SD Min  Max
Baby food 31 1.13 0.34 1 2 8.90 4.03 4 16 50.45 17.47 20 88
Chocolate 168 1.36 0.72 1 4 25.26 16.58 6 80 66.35 41.22 15 294
Personal care 285 1.14 0.37 1 3 7.80 3.86 3 36 35.47 14.93 10 94
Coffee 163 1.47 1.08 1 9 18.88 18.74 6 135 73.54 48.62 20 334
Coffee milk 56 1.45 0.81 1 5 22.93 12.27 10 60 80.86 35.34 34 211
Candy 248 1.15 0.39 1 3 17.92 9.17 8 72 55.44 26.69 16 74
Sugar 18 1.83 0.99 1 4 17.33 9.43 8 40 70.83 32.25 22 151
Canned meat 47 1.77 0.96 1 5 22.55 15.20 6 72 7717 51.23 12 245
Canned fruit 32 1.72 0.81 1 4 20.63 13.10 6 48 64.88 31.09 11 125
Aggregate statistics 1048 1.30 0.70 1 9 16.78 13.69 3 135 57.31 36.59 10 334
Table 2.2 Descriptive Statistics of the response variables: Chain A
N Mean  Std. Dev. Std. Error
Mean
TST 1048 57.31 36.59 1.13
Grab/Open 1048 11.65 10.91 0.34
Search 1048 2.31 3.70 0.11
Prepare 1048 3.54 7.42 0.23
Fill New 1048 27.32 22.04 0.68
Dispose 1048 7.28 6.71 0.21
Walking 1048 4.77 3.85 0.12
Fill Old 1048 0.44 3.57 0.11
Table 2.3 Descriptive statistics for the second sample (N = 563): Chain B
Number Number of CP per Number of CU per TST per Order Line [sec]
Category of Order Order Line Order Line
Lines Avg. SD Min  Max Avg. SD. Min  Max Avg. SD Min  Max
Sandwich spread 56 1.25 0.47 1 3 17.11 9.71 8 48 48.73 25.02 18 148
Canned vegetables 57 1.28 0.67 1 5 14.74 7.83 8 60 52.67 31.88 17 212
Cookies 179 1.22 0.68 1 8 18.41 9.60 8 80 60.62 27.34 19 194
Candy/Chocolate 142 1.13 0.35 1 3 18.05 7.22 6 50 42.59 20.04 13 132
Wine 129 1.29 0.69 1 5 8.29 4.36 6 30 39.69 26.29 6 168
Aggregate statistics 563 1.22 0.60 1 8 15.50 8.86 6 80 49.29 27.06 6 212

Table 2.4 Descriptive Statistics of the response variables: Chain B

N Mean Std. Dev. Std. Error
Mean

TST 563 49.29 27.06 1.14
Grab/open 563 7.49 6.92 0.29
Search 563 0.67 3.09 0.13
Prepare 563 5.87 7.51 0.32
FillNew 563 21.94 12.97 0.55
Dispose 563 4.56 4.57 0.19
Walking 563 7.26 5.78 0.24
Fillold 563 1.50 4.93 0.21
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Stack new inventory | 45%
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Figure 2.1. Distribution of Total Stacking Time (Chain B)
Appendix 3: Regression results

Table 3.1. Estimating 75T by sequential regression using models 2 and 3(Chain A)

Model 2 Model 3
Unstd. Std. Std. Unstd. Std. Std.
Coeff. Err. Coeff. Coeff Err.  Coeff.
(Constant)  5.008E-08 1.403 1,163E-08 1,502
SumPRE_Subactivities 1.000*** .022 .819 1,000%** ,023 ,798
R .819 ,798
R? .670 ,637
RZadj .670 ,636
Mean SS Err. 442.099 486,720
Overall F 2124.795 1834,109***
df 1, 1046 1, 1046

Appendix 4: Validation of results for the second dataset

Table 4.1. Regression results for each individual subactivity (standardized coefficients)

step Variables Model 1 (Only Product categories)
G S W P Fn Fo D

1 Sandwich spread -.073 -.002 -.188*** -.056 -.033 -.218*+* -.009
Canned vegetables  -.002 .058 =152+ -.016 -.050 -257%* .076
Candy/Chocolate -.053 .002 -.106* -.376*+* -168*** -.351%+* -.028
Wine .030 2417 - 130%* -.333*** -.339** -.343** -.091
R? .009  .056 .041 157 .094 142 .016
R2adj .002 .049 .034 151 .088 136 .009
Mean SS Err. 47.715 9.069 32.253 47.865 153.305 20.975 20.722
Overall F 1.298 8.279***  6.015***  25.955** 14.546* 23.039**  2.340
df 4,558 4,558 4, 558 4, 558 4, 558 4, 558 4, 558

Statistical significance *p<.05, also **p<.01, *** p<.001; Reference category = Cookies (N =179)
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Table 4.1 (continued). Regression results for each individual subactivity (standardized coefficients)

step Variables Model 2 (Product categories, CP, CU)
G S W P Fn Fo D

2 Sandwich spread -.075* -.006 =194 -.053 -.014 =223 -.015
Canned vegetables -.001 .049 -.165%** -.005 .008 = 271%%* .064
Candy/Chocolate -.011 .007 -.088 =372%* =143 -.345%* .001
Wine .076 22129 - 159** -.288*** -.099* -.389* -.106*
CP 591%** .084 .282%* .031 .245%* A17 436**
CuU 1565* -.051 -.032 .097 .523** -.083 .014
R? 489 .060 1109 .169 531 148 213
RZadj 483 .050 .100 .160 .526 139 .204
Rz change 480 .004 .068 .012 437 .007 .196
F change 260.917*** 1.075 21.264***  4.036* 258.759***  2.200 69.314***
Mean SS Err. 24.702 9.067 30.069 47.350 79.686 20.885 16.646
Overall F 88.644** 5.879**  11.389*** 18.837*** 104.909"** 16.159***  25.046™**
df 4, 558 4, 558 4, 558 4, 558 4, 558 4, 558 4, 558

Statistical significance *p<.05, also **p<.01, *** p<.001; Reference category = Cookies (N =179)

Table 4.1 (continued). Regression results for each individual subactivity (standardized coefficients)

Variables Model 3 (Only CP, CU)

G S W P Fn Fo D
CP 634 93 .220%* -.004 .238%** .008 .388%*
CU .089* -211%* .054 180 .546*** .091 .087
R? 478 .033 .066 .032 510 .009 199
R2adj 476 .030 .062 .028 .509 .006 196
Mean SS Err.  25.053 9.256 31.326 54.780 82.599 24128 16.825
Overall F 256.308*** 9.594*** 19.646*** 9.137*** 291.821***  2.588 69.384***
df 2, 560 2, 560 2, 560 2, 560 2, 560 2, 560 2, 560

Statistical significance *p<.05, also **p<.01, *** p<.001;

Table 4.2. Sequential regression for estimating 757 models 2 and 3(Chain B)

Model 2 Model 3
Unstd. Std. Std. Unstd. Std. Std.
Coeff. Err. Coeff. Coeff Err.  Coeff.
(Constant) -8.443E-14  2.133 2,337E-14 2,373
SumPRE_Subactivities 1.000*** .040 1,000%** ,045 ,684
R 724 ,684
R? 524 ,467
RZadj 523 ,466
Mean SS Err. 348.965 390,733
Overall F 618.031*** 491,994***
df 1, 561 1,561

Table 4.3. Overall regression results for chain B: comparison of Models 1-3.

Model 1 Model 2 Model 3
Step Variables Unst Std. Std. Unstd. Std. Std. Unstd. Std. Std.
Coeff. Err.  Coeff. Coeff Err. Coeff. Coeff Err.  Coeff
1 (Constant) 60.620***  1.923 19.981***  2.361 9.960*** 1.971
Sandwich spread -11.888**  3.940 -132  -11.367** 2.883 -.126
Canned vegetables -7.953* 3.914 -.089 -5.929* 2.920 -.066
Candy/Chocolate -18.029***  2.892 -290 -15.897** 2.113 -.255
Wine -20.930***  2.972 -325 -13.282*** 2.661 -.206
2 CP 19.890*** 1.887 441 18.526*** 1.732 411
CcuU .892*** 143 .292 1.079*** 117 .353
R? .102 .524 467
RZadj .095 519 .465
R? change .102 422 467
F change 15.820*** 246.753*** 245.558***
Mean SS Err. 662.247 352.103 391.431
Overall F 15.820*** 102.087** 245.558***
df 4,558 6, 556 2, 560

Statistical significance *p<.05, also **p<.01, *** p<.001; Reference category = Cookies (N =179)
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