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Printed on: 90g chlorine-free Biotop paper
Typeset in: 10pt Palatino (mathematics in Computer Modern)

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.fsc.nl/
http://ic.fsc.org/
http://www.fsc.nl/
http://dx.doi.org/10.6100/96ec9f06-75df-4a6f-92f6-3f531b56155e
http://dx.doi.org/10.4121/uuid:5462c006-ecce-412a-b350-c1a009a78149


Platonic Maps of Low Genus

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op maandag 4 februari 2013 om 16.00 uur

door

Maximiliaan Hendriks

geboren te Leiden



Dit proefschrift is goedgekeurd door de promotor:

prof.dr. A.M. Cohen



Preface

SYMMETRY AND BEAUTY have always been driving forces and sources of inspira-
tion in mathematics. Symmetric shapes therefore occupy a special place in a

mathematician’s heart. The classical platonic solids are ancient examples of this.
Plato even considered them to be possible building blocks of the universe. It is
no wonder then, that mathematicians have studied those objects, and related ones,
since antiquity. The first of these related objects were the archimedean solids. For
them, one relinquishes some of the symmetry constraints. Almost two millennia
later, Johannes Kepler and his contemporaries again enlarged the set of especially
symmetric objects by allowing non-convexity. With the arrival of the study of Rn
in the 19th century, symmetric polytopes in higher-dimensional spaces were sought.
The development of topology led to the quest for symmetric tilings of even more
general (metrized) spaces. The first interesting case that arises is that of a compact
surface. Symmetric tilings of these surfaces are the objects of study in this thesis:
platonic maps. The platonic solids are (part of) the special case where the underlying
surface is the sphere. The combinatorial and topological viewpoint is exemplified
in work of Henry Brahana and Harold Scott MacDonald Coxeter. These tilings re-
mained somewhat of a curiosity until a firm connection between them and algebraic
curves over number fields was realized by Belyı̆’s theorem and the work of Alexan-
der Grothendieck on his dessins d’enfants. The field then absorbed earlier results
by pioneers such as Felix Klein and Walther von Dyck. In the late 20th century, a
‘Japanese school’ constructed algebraic descriptions of platonic maps of genus 2 and
3. And starting in 2001 Marston Conder, with help from Peter Dobscányi, has been
compiling complete lists of platonic maps for an ever-growing range of genera. The
resulting zoo of objects provides us with a plethora of specimens to study. For a
more detailed overview of the history of the subject, see e.g. the survey article by
Jozef Širáň [Š2006].

Thesis roadmap / What’s new? New results obtained in this thesis are: the intro-
duction of polynomial families in Chapter 2 as a handy tool to classify some platonic
maps and bundle them together; understanding the relation between triangle group
inclusions and platonic maps (see Chapter 3); several classification results, most no-
tably that of reflexive platonic maps with a prime number of vertices and of reflexive
platonic maps with high density (to be found in Chapter 4); presentation of the ex-
plicit map structure on several well-known curves in Chapter 5; the computation of

v
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canonical models for reflexive platonic maps of genus g ≤ 8 (and various others with
9 ≤ g ≤ 15 in Chapter 6 and Appendix A; and finally, the construction of canonical
models for the first Hurwitz triplet, the way to distinguish between the three, and
the computation of Weierstraß points and their weights on these and other platonic
maps. As an innovation in exposition, I propose the covering theory of platonic maps
in Section 1.6, the concise but complete classification of genus 1 maps in Section 1.7
and the classification of hyperelliptic platonic maps in Section 6.3.

The use of computer algebra. I would not have been able to obtain many of the re-
sults in this thesis without the substantial use of computer algebra packages, specif-
ically MAGMA, GAP, and MATHEMATICA. I stress that in most cases, the computer
work produced a certificate at several steps during the computation, so that the re-
sults can be verified independently. The certificates and some additional MAGMA
code are available online via

DOI:10.4121/uuid:5462c006-ecce-412a-b350-c1a009a78149

Notation and terminology. Platonic maps have up to now been studied under the
name “regular maps”, but the author finds this terminology bland and generic. The
term “platonic surface” is already in use for the Riemann surface determined by a
platonic map, and of course the adjective “platonic” has been used for the platonic
solids since ancient times. We therefore propose in this thesis to re-evaluate the ter-
minology and replace “regular map” with the more evocative “platonic map”. We
can then differentiate these into “reflexive” and “chiral” platonic maps on an ori-
entable surface. Logically then, the Riemann surface corresponding to a platonic
map is a platonic surface. These notions are all defined and explained in Chapter 1.

All our group actions will be right actions. One reason was to avoid headaches when
converting between left and right, since a lot of computation was done with the com-
puter algebra system MAGMA, which uses right actions. Another reason is that right
actions make sense in the context of left-to-right script, when interpreting a word in
a map automorphism group as acting on a cell or fundamental triangle of a platonic
map. So we will write RS, meaning “first apply R, then S”. For commutators, it
follows that we use [x, y] = x−1y−1xy and for conjugation xy = y−1xy. We also
abbreviate conjugation actions as cony(x). If G is a group and H C G, then we will
denote the equivalence class of x in the quotient G/H as [x], and work only with
right cosets, not left ones.

Two minor words of warning: we will use the letters e1, . . . , en to denote edges
of platonic maps (in Chapter 4), but also as the standard basis vectors of an n-
dimensional vector space (in Appendix A). Another recurring issue is the embed-
ding of a number field into C. We will generally work with roots of unity by letting
ζn := e2πi/n. But whenever multiple embeddings are at stake, we might for the mo-
ment consider ζn to be any primitive n-th root of unity. For both ambiguities, the
context will hopefully make the intention clear.

Isotypic components of representations occur throughout Appendix A, and also in

http://dx.doi.org/10.4121/uuid:5462c006-ecce-412a-b350-c1a009a78149
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Chapter 7. They are subscripted with numbers, distinguishing different isotypics for
irreducible representations of the same degree. We will mostly omit a description
of the character making precise which representation is at stake, but will often give
bases of the invariant subspaces to make up for this loss of precision.
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Ĉ Riemann sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

Cg.n Chiral platonic map n of genus g in the Conder list . . . . . . . . . . . . . . . . . . . . . . . . 5

Cub Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D2 Open (unit) disk, topologically or as a Riemann surface . . . . . . . . . . . . . . . . . . . 1

dij Valency (i, j) of a map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

xiii



xiv Contents

∆(p, q, r) Full triangle group of type (p, q, r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

∆+(p, q, r) Orientation preserving triangle group of type (p, q, r) . . . . . . . . . . . . . . . . . .7

DiaMat Diagonal matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Dih(n) The n-th Dihedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Dod Dodecahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

F (p,q)
n Polynomial family of platonic maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Fer(n) The n-th Fermat map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Hos(n) The n-th Hosohedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Humk(n) The n-th Humbert map of type k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

H2 Hyperbolic plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Ico Icosahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Kul(n) The n-th Kulkarni map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

M(X) Set of meromorphic functions on X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

M Map on a surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

M∨ Dual of the map M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Mr Platonic surface for the map M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Ma Algebraic curve for the map M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Mod(n) The n-th modular map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

MonMat Monomial matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

µij Multiplicity (i, j) of a map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

O(X) Set of holomorphic functions on X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

O∗(X) Set of (anti)holomorphic functions on X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Oct Octahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Rg.n Reflexive platonic map n of genus g in the Conder list . . . . . . . . . . . . . . . . . . . . . 5

R Reflexive platonic map on a surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Σg Closed orientable surface of genus g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

Tet Tetrahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Wi1(n) The n-th Wiman type I map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Wi2(n) The n-th Wiman type II map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



1
Introduction

PLATONIC maps stand at a crossroads of various branches of mathematics: group
theory, incidence geometry, topology, Riemann surface theory, and algebraic ge-

ometry, to name a few. The possible range of background material to include is thus
fairly wide, and inroads to the subject are numerous. The most intuitive way to think
of a map is as a combinatorial and topological object. This will be our starting point
in Section 1.1. In Section 1.2 we offer a starters of Riemann surface theory in order
to whet the appetite for their connection to platonic maps in Section 1.3. Next, the
group theory of platonic maps is explored in Section 1.4, to get a more computa-
tional grip on matters. After quickly highlighting the algebraic aspects of platonic
maps in Section 1.5, to which we return in greater detail in later chapters, we treat
their morphism / covering theory in Section 1.6. We conclude the introduction with
the classification of genus 0 and genus 1 maps.

1.1 Platonic maps on surfaces

Consider a finite graph. When we say ‘graph’, we mean it may contain loops, or
multiple edges between the same two vertices. We will think of the graph as a topo-
logical graph, which is to say realized as a compact topological space, each edge
homeomorphic to R. Our interest lies in embedding a connected graph into a sur-
face.

Definition 1.1.1. A map M is a surface (closed connected 2-manifold) Σ together
with an embedded connected finite graph Γ with nonempty vertex and edge set,
such that its complement is a finite disjoint union of open disks:

Σ− Γ =

n⋃
k=1

Dk, D1
∼= · · · ∼= Dn

∼= D2.

1
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Example 1.1.2. The surface defined by a 2-dimensional polyhedron; the graph is
formed by its vertices and edges. Or the map on a torus drawn in Figure 1.1.

Figure 1.1: An example of a closed orientable surface with a map on it.

The embedding of the graph induces a natural decomposition of Σ into a finite num-
ber of disjoint open cells. We let cellsi(M) be the (nonempty) set of i-cells (those of
dimension i), and cells(M) = ∪2

i=0cellsi(M). But we will also refer to 0-cells, 1-cells
and 2-cells as ‘vertices’, ‘edges’ and ‘faces’, respectively. The vertices and edges are
of course those of the embedded graph. We say that two cells c1, c2 are incident, writ-
ten c1 ∗ c2, if as point sets c1 ⊆ c2 ∨ c2 ⊆ c1, the bars denoting closure. It is clear that
two incident cells are either equal or have different dimension, the one of smaller
dimension contained in the closure of the other. For a set of cells C, define the residue

C∗ := {d ∈ cells(M) | ∃c ∈ C, d ∗ c} − C.

Note that for a cell c, its topological boundary ∂c is equal to c∗∩ (∪i<dim(c)cellsi(M)).
A flag is a collection of distinct mutually incident cells. We speak of a flag of type S or
an S-flag if the dimensions of its cells form the sequence S. A (0, 1, 2)-flag will also
be called a maximal flag, since it cannot be extended to a larger flag. An oriented flag is
a flag F with orientations on its members of positive dimension that are compatible,
i.e. such that for c, d ∈ F with dim(c) < dim(d), the orientation on c can be induced
on it from d as the positive orientation. Note that a vertex v determines a compatible
orientation (going away from the vertex) on an incident edge e, unless the edge is a
loop, i.e. ∂e = {v}. Similarly, an oriented edge −→e uniquely determines a compatible
orientation on an incident face f , unless the face lying on either side of e is f . We
denote the edge e with opposite orientation from −→e as←−e . The tail vertex of −→e is the
one that extends it to an oriented (0, 1)-flag. Its head vertex is the one extending←−e to
an oriented (0, 1)-flag.

One more noteworthy construction is that of the dual map M∨. To construct it, place
one new vertex Pf in each 2-cell f . Next, choose a point pe in the interior of every
edge e and connect each vertex Pf to all pe ∈ ∂f by a simple arc. The new vertices
and arcs define the cell decomposition of the dual map. If there is a cellular homeo-
morphism from a map to its dual, we call the map self-dual. We now come to the
special kind of maps that are the focus of this thesis, namely those maps that have
sufficiently many automorphisms.

Definition 1.1.3. Let M be a map. A map automorphism of M is an equivalence
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class of cellular homeomorphisms under isotopy. We denote the group of map auto-
morphisms of M by Aut(M).

A map automorphism induces maps on the (oriented) vertex set, edge set and face
set of M, and thereby also on oriented flags.

Definition 1.1.4. A map M is platonic if Aut(M) acts transitively on its set of ori-
ented (0, 1)-flags.

Example 1.1.5. The map in Figure 1.1 is not platonic. One reason is the vertex with
only one incident edge. Another is that the vertical edges are contained in circuits
of length two, while the horizontal edges are not. There can be no automorphism of
the surface mapping one to the other.

Each face of a map M has an edge on its boundary, and this edge is contained in
precisely two oriented (0, 1)-flags. So for a platonic map, any face can be mapped to
any other by Aut(M). It follows that a traversal of the boundary of each face will
encounter the same number p of incident vertices, and as many edges. Note that
the same vertices and edges may occur multiple times, but we distinguish them for
the count. We will come back to this multiplicity in Section 1.4. The faces are then
named p-gons. We also see that the face is contained in exactly 2p oriented (0, 1, 2)-
flags: there are p edges on its boundary, contained in a set of 2p oriented (0, 1)-flags,
and each one can be extended with the face in one compatible way.

Similarly, each vertex can be mapped to all others by Aut(M), so a traversal of a
small loop around each vertex will go through the same number q of incident faces
and as many edges, both counted with multiplicity. We say that the vertex has va-
lency q. A vertex is contained in exactly 2q oriented (0, 1, 2)-flags: each of the q in-
cident edges has a unique orientation compatible with the vertex, and each of the
resulting (0, 1)-flags can be extended in two ways to an oriented (0, 1, 2)-flag. Count-
ing the number of oriented (0, 1, 2)-flags in three different ways, namely per vertex,
per edge or per face, leads to the following fundamental flag counting equalities for
platonic maps:

qv = 2e = pf =
1

2
|{oriented (0, 1, 2)-flags}|. (1.1)

The pair (p, q) is called the type of a platonic map. Because of the transitivity, for
each face f there is an automorphism that acts on the edges e1, . . . , ep encountered
by a counterclockwise traversal of ∂f as the p-cycle (e1 · · · ep). (We choose a local
orientation for a neighborhood of the face to define the notion of counterclockwise.)
We call this automorphism the primitive counterclockwise rotation around the face and
denote it by Rf . Similarly, orienting a neighborhood of a vertex gives us a primitive
counterclockwise rotation around the vertex, denoted Sv , that acts as a q-cycle (e1 · · · eq)
and (f1 · · · fq) on the counterclockwise sequence of incident edges and faces respec-
tively. For an edge e, there is a unique automorphism that switches its two oriented
(0, 1)-flags and also the incident faces (locally). We call this the rotation around the
edge e, but do not use a separate symbol, because we can obtain it as follows: choose
a face f and vertex v incident to e. Then also v ∗ f , and the automorphism men-
tioned is RfSv – first execute Rf and then Sv . This is illustrated in Figure 1.2 (left).
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We leave out the indices when unnecessary. Note that this automorphism has order
two, because its square fixes the oriented (0, 1, 2)-flags containing the edge.

a

b

c

R

S
RS

Figure 1.2: Left The primitive rotations R, S and RS around a face, vertex, and edge.
Right The reflections a, b, c in the sides of a fundamental triangle of a reflexive map.

Lemma 1.1.6. Choose a (0, 2)-flag and let S and R be its primitive vertex and face
rotations. The subgroup 〈R,S〉 < Aut(M) is transitive on the oriented (0, 1)-flags.

Proof. We use induction on the set of oriented edges on the graph Γ(M). Choose
the edge −→e0 to be the one with edge rotation RS and tail at the rotation vertex of S.
Assume that φ ∈ 〈R,S〉 satisfies φ(−→e0) = −→e . First of all, we can then map −→e0 to ←−e
(same edge, the other orientation) by RSφ. Second, we can then map −→e0 to an edge
incident to the tail vertex of −→e by Skφ for a suitable k ∈ Z/qZ. And third, we can
then map−→e0 to an edge incident with the head vertex of−→e by Sk(RS)φ for a suitable
k ∈ Z/qZ. Since Γ(M) is connected, this implies we can map −→e0 to any edge with
any orientation using 〈R,S〉.

The lemma shows that if Σ is non-orientable, then Aut(M) = 〈R,S〉. We will restrict
our attention to platonic maps on orientable surfaces though, called orientable pla-
tonic maps. This means that the underlying surface of a map is a g-holed torus Σg for
some g ∈ Z≥0. We call g the genus of the map and surface. The group Aut(M) of an
orientable map has a natural subdivision: there is the subgroup Aut+(M) of orien-
tation preserving ones and the coset Aut−(M) of orientation reversing ones. Since
an oriented (0, 1)-flag on an orientable surface is contained in precisely two oriented
(0, 1, 2)-flags, and only an orientation reversing automorphism could switch them,
we see that Aut+(M) = 〈R,S〉 and that it makes sense to distinguish two types of
orientable platonic maps.

Definition 1.1.7. An orientable platonic map M is called reflexive if Aut(M) acts
transitively on its set of oriented (0, 1, 2)-flags. Otherwise it is called chiral.

We will often indicate reflexive platonic maps using R, and chiral ones using C.
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Every reflexive platonic map R is also simply a platonic map: we may forget the
existence of reflections if we so desire. When M is chiral, then Aut−(M) = ∅
and Aut(M) = Aut+(M), whereas if M is reflexive, then Aut+(M) < Aut(M) is a
subgroup of index 2. If the map is reflexive, then there is an (orientation reversing)
automorphism a switching the two oriented (0, 1, 2)-flags containing an edge-face
pair. Such an element is called a reflection, as are b := aR and c := aRS. These
elements satisfy a2 = b2 = c2 = 1. We can recover our pair (R,S) as{

R = ab
S = bc

Other relations that follow are ord(ab) = ord(R) = p, ord(bc) = ord(S) = q and
ord(ac) = ord(abbc) = ord(RS) = 2. Since Aut(M) = 〈a, b, c〉, it is a quotient of the
Coxeter group with diagram

a

p

b

q

c

and Aut(M) = Aut+(M)oZ2, a semi-direct product defined by the complement 〈a〉
with conjugation action

cona : (R,S) 7→ (R−1, R2S).

We call the closure of a connected, simply connected fundamental domain of Σ un-
der Aut(R) that contains no point of a reflection axis a fundamental triangle. This is
illustrated in Figure 1.2 (right), along with the three reflections in its sides a, b, c. For
a chiral map, we can still define a fundamental triangle, as will be clear after the next
two sections. But then a fundamental domain under Aut(C) consists of two fun-
damental triangles glued together along one of their sides. This will be justified in
Section 1.3. A fundamental triangle corresponds uniquely to an oriented (0, 1, 2)-flag
of M.

Marston Conder has enumerated all reflexive and chiral platonic maps of low genus.
His enumeration started with all maps of genus g ≤ 15 in [CD2001] and has been
extended steadily, now ranging up to genus 301. For the most recent update, refer to
[Con2001]. Counting duals, there are 6104 reflexive platonic maps of genus 2 ≤ g ≤
101. Of these, 652 are self-dual. In this same range of genera, there are 1061 chiral
platonic maps, of which 127 are self-dual. We identify the n-th reflexive (chiral) map
of genus g by his numbering (for g ≥ 2) using Rg.n (Cg.n). A table of maps with
g ≤ 15 with improvements on the extra relators is found in Appendix B.

When M is a reflexive platonic map, Aut(M) acts simply transitively on the set of
oriented (0, 1, 2)-flags. If the map is chiral, Aut(M) acts simply transitively on the
set of oriented (0, 1)-flags. This suggests that the action of Aut+(M) on the oriented
(0, 1)-flags of M already contains all the information of the map, something we in-
vestigate now.
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1.2 Riemann surfaces and triangle groups

In the next Section, we will see that a platonic map determines a Riemann surface.
We therefore introduce the necessary concepts from Riemann surface theory, but we
only have space to sketch the flow of the theory. For a more elaborate introduction,
see [FK1980] and [Mir1995].

Definition 1.2.1. Complex differentiable functions between open sets in C are called
holomorphic. A Riemann surface is a connected topological spaceX with a maximal
atlas of charts (Ui, xi)i∈I such that Ui ⊆ X is an open set, the Ui cover X , xi : Ui → C
is a homeomorphism onto an open set, and the transition functions xj ◦x−1

i : xi(Ui∩
Uj)→ xj(Ui∩Uj) are holomorphic. (This last condition is vacuous whenUi∩Uj = ∅.)
We call the atlas a complex structure on the underlying space.

On a Riemann surface X , one can sensibly speak of the set of complexly differen-
tiable functions. They are called holomorphic functions, their collection denoted as
O(X). More generally, the suitable morphisms for the category of Riemann surfaces
are holomorphisms, which preserve holomorphy of functions. They also give rise to
the automorphism group Aut(X), consisting of biholomorphisms X → X . Holomor-
phic functions on domains in C are conformal: they preserve angles between curves
when measured in a chart in C. This property transfers to a Riemann surface, and
equips it with a constant curvature metric. Holomorphic automorphisms thus act by
isometries. Riemann surfaces are automatically oriented because C is, and holomor-
phic maps are orientation preserving. Also of interest to us are anticonformal mappings
(also antiholomorphic). These preserve the absolute size of angles locally, but reverse
orientation. The canonical example is complex conjugation z 7→ z on C. Geometri-
cally, this is reflection in the real axis. We denote the set of (anti)conformal functions
on X by O∗(X) and the group of (anti)conformal automorphisms of X , its extended
automorphism group, by Aut∗(X).

The Riemann mapping theorem tells us that there are exactly three simply-connected
Riemann surfaces: the Riemann sphere Ĉ, the complex plane C and the hyperbolic
plane H2. The curvature of the metric on the Riemann sphere is 1, whereas it is 0 for
the complex plane. The hyperbolic plane has constant curvature −1. It has several
models, amongst which are the upper-halfplane model {z ∈ C : Im(z) > 0} with
metric defined by ds2 = dz dz/y2 where z = x + yi, and the Poincaré disk model D2

with metric ds2 = dz dz/(1 − |z|)2. An illustration of the latter will follow shortly,
the former is shown in Figure 5.3. For more on the beautiful geometry of hyperbolic
spaces, see e.g. [Bea1983] and [CFKP1997].

Next, the uniformization theorem says that a Riemann surface X is isomorphic to a
quotient of its universal cover X̃ by a properly discontinuous fixed point free action
of a subgroup Γ < Aut(X̃). If the surface is compact, this action has a compact
fundamental domain in X̃ . The automorphism groups of the three simply-connected
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Riemann surfaces all consist of Möbius transformations:

Aut(Ĉ) = PGL(2,C) (all Möbius transformations on Ĉ)

Aut(C) = {z 7→ az + b | a, b ∈ C} = Borel(PGL(2,C))

Aut(H2) ∼= Aut(U2) = PSL(2,R)

Discrete subgroups of the third are called Fuchsian groups. A very important family
of automorphism subgroups of simply-connected Riemann surfaces acting properly
discontinuously are triangle groups. Their well-definedness is guaranteed by the
well-known Poincaré polygon theorem [And2005].

Definition 1.2.2. We say that a geodesic triangle with angles (πp ,
π
q ,

π
r ) is a (p, q, r)-

triangle. Let U be Ĉ, C or H2, depending on whether 1
p + 1

q + 1
r − 1 is positive, zero,

or negative. Given a (p, q, r)-triangle4 ⊂ U , the (full) triangle group ∆(p, q, r) is the
group of isometries generated by the reflections in the three sides of4. The triangle
group ∆+(p, q, r) is its index 2 subgroup of orientation preserving maps.

Remark 1.2.3. If we define the sides opposite the angles (πp ,
π
q ,

π
r ) to be c, b, a respec-

tively (see Figure 1.3), then ∆(p, q, r) has the presentation

∆(p, q, r) ∼= 〈a, b, c | a2 = b2 = c2 = (ab)p = (bc)q = (ca)r = 1〉.

This is the Coxeter group that we saw in Section 1.1. Defining R := ab and S := bc,
we find

∆+(p, q, r) ∼= 〈R,S | Rp = Sq = (RS)r = 1〉.

The group ∆+(p, q, r) consists of products of an even number of reflections. For us,
the important triangle groups will be those with r = 2.

b

c

a

π
q

π
p

Figure 1.3: A hyperbolic (p, q, 2)-triangle. The letters a, b, c denote both the side and
the reflections in the side they are juxtaposed to.

Proposition 1.2.4. According to whether the sign of 1
p + 1

q −
1
2 is +1, 0 or −1, the

triangle group is a subgroup of Aut(Ĉ), Aut(C) or Aut(H2).

A few triangle group actions are illustrated in Figure 1.4.
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(a) ∆(3, 4, 2) (b) ∆(4, 4, 2) (c) ∆(4, 5, 2)

Figure 1.4: The three triangle groups ∆(3, 4, 2), ∆(4, 4, 2) and ∆(4, 5, 2) induce tilings
of the respective spaces Ĉ, C and H2 with (the interiors of) fundamental domains of
the actions as tiles.

1.3 Platonic maps are Riemann surfaces

Let Σg be an orientable surface. Its mapping class group is the group of isotopy
classes of homeomorphisms. The solution of the Nielsen Realization problem (in
[Ker1983]) showed that every finite subgroup G of the mapping class group can be
realized as a subgroup of Homeo(Σg). In fact, there is a Riemann surface structure on
Σg with respect to whichG∩Homeo+(Σg) acts conformally andG∩Homeo−(Σg) an-
ticonformally. As such, the action consists of isometries with respect to the induced
constant curvature metric. The curvature is either 1 (for g = 0, the elliptic case), 0 (if
g = 1, the parabolic case) or −1 (if g ≥ 2, the hyperbolic case).

We apply this result to Aut+(M) of a platonic map M. Platonicity as defined in
Section 1.1 then implies that we may consider the surface underlying M to have
a complex structure and a conformal group action transitive on the oriented (0, 1)-
flags. If we uniformize this Riemann surface Mr, it leads us to the conclusion that
Mr = M̃r/Γ with Γ < Aut+(M̃r) acting properly discontinuously, as we saw in the
last section. As a group,

Γ ∼= π1(Σg) = 〈α1, β1, . . . , αg, βg | πgi=1[αi, βi]〉.

The projection π̃ : M̃r → Mr gives us a discrete inverse image π̃−1(Aut+(Mr)) <

Aut+(M̃r) acting discontinously. By cellularity and the transitivity of the group on
the (0, 1)-flags this has to be the triangle group ∆+(p, q, 2). Since Γ < ker(π̃∗) (the
action on the automorphism groups) we find Γ C∆+(p, q, 2) of finite index and π̃∗ :
∆+(p, q, 2) → ∆+(p, q, 2)/Γ ∼= Aut+(Mr). If the map is reflexive, then a reflection
can be realized conformally and lifts to one of the universal cover. We then get Γ C
∆(p, q, 2) and Aut(Mr) = ∆(p, q, 2)/Γ.

The surface Σg has many possible complex structures on it for g ≥ 1. These structures
are parametrized by the Teichmüller space of genus g, homeomorphic to R6g−6 when
g ≥ 2. In most cases, the possible complex structures making a finite group action



1.4 – Platonic maps are coset geometries 9

conformal is also far from unique. In fact, this structure is unique precisely in the
case where Mr = M̃r/Γ with ΓC∆+(p, q, 2). See [Woo2007].

We conclude that a platonic map M defines a unique complex structure. If it is re-
flexive, then the conformal action can be extended from Aut+(M) to one of Aut(M)

where orientation reversing automorphisms act anticonformally, so that Mr = M̃r/Γ
with ΓC∆(p, q, 2). To summarize:

Theorem 1.3.1. A platonic map M determines a unique Riemann surface Mr such
that Aut+(M) ≤ Aut(Mr) and Aut(M) ≤ Aut∗(Mr).

We call Mr the platonic surface of the platonic map M.

Remark 1.3.2. On Mr we can execute the procedure to obtain the dual cell division
with the following extra constraints: we take the dual vertices to be the centers of the
old faces (i.e. a dual vertex is the unique point of a face equidistant from the vertices
on its boundary) and let the dual edges be geodesic segments. Conformality then
ensures that Aut+(Mr) also preverves the new cell division, so that (M∨)r = Mr.

Viewed the other way around, most Riemann surfaces do not have a large automor-
phism group that gives rise (see below) to a cell division on which this group acts
platonically. This brings us to the following definition.

Definition 1.3.3. A compact Riemann surface is platonic if it is of the form U/Γ,
where U ∈ {Ĉ,C,H2} and ΓC∆+(p, q, 2) acts fixed point freely on U . It is reflexive
platonic if ΓC∆(p, q, 2).

When do we have M1,r = M2,r? It is not difficult to show that two Riemann surfaces
H2/Γ1 and H2/Γ2 are isomorphic if and only if Γ1 is conjugate to Γ2 in Aut(H2). So
we may assume Aut+(Mi,r) = ∆i/Γ for i = 1, 2. The Riemann surface H2/Γ has full
automorphism group ∆/Γ for some Fuchsian group ∆. But this implies that ∆i ≤ ∆
of finite index. All such inclusions have been determined by David Singerman in
[Sin1972]. From his list we deduce that our two triangle groups ∆1 and ∆2 are not
incomparable, but one can be included in the other. When ∆1 = ∆2, the maps are
either the same or each other’s dual. When ∆1 6= ∆2 one map is in some sense a
refinement of the other. We shall study these inclusions in more detail in Chapter 3.

1.4 Platonic maps are coset geometries

We can reconstruct the platonic map from the finite group G with a generator pair
(R,S) satisfying ord(R) = p, ord(S) = q and ord(RS) = 2 as follows: by definition,
such a group is a quotient of the ∆+(p, q, 2) triangle group, i.e. G = ∆+(p, q, 2)/Γ
with ΓC∆+(p, q, 2) of finite index. Since the orders of R and S and RS are the same
in ∆+(p, q, 2) as in the quotient G, the subgroup Γ contains no conjugate of one of
these three elements, and therefore no non-trivial elements with fixed points at all.
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So let U be Ĉ, C or H2 according to the type of triangle group. The natural projection
π : U → U/Γ is apparently an unramified cover. The quotient is endowed with
a platonic map M with Aut+(M) ∼= G by projecting the axes of conjugates of the
reflection c of a fundamental triangle in U . Thus we can abstract from the topology
of M and just consider the group Aut+(M).

Equivalence between platonic maps and standard map presentations. A platonic
map M is uniquely defined by a triple (G,R, S) where G is a finite group, R,S ∈
G, ord(RS) = 2 and 〈R,S〉 = G. A standard map presentation for M is a group
presentation for G in terms of the standard generator pair (R,S).

Three relations that hold in any standard map presentation are Rp = 1, Sq = 1 and
(RS)2 = 1. We assume the corresponding relators as understood, and designate
others as extra relators. The triple (R,S,RS) is a special case of what Wootton terms
a generating vector for the group action in [Woo2007].

Remark 1.4.1. There is a similar equivalence between reflexive platonic maps and
standard map group presentations by a standard generator triple (a, b, c) satisfying
ord(a) = ord(b) = ord(c) = ord(ca) = 2. The reflexive structure can be deduced
automatically from the platonic structure if it exists, as we saw in Section 1.1, so
for uniformity we will use standard map presentations in (R,S) even for reflexive
platonic maps.

In fact we could generalize our concept of a platonic map to correspond to a quotient
of a general ∆(p, q, r) instead of ∆(p, q, 2). This gives the theory of hypermaps. More
information can be found in [BCM2001]. We will not pursue this train of thought.

Remark 1.4.2. In case you are wondering whether R = S is allowed: it is, but oc-
curs for only one platonic map. If equality holds, then 2 = ord(RS) = ord(R2) so
ord(R) = ord(S) = 4. We find G = 〈R〉 ∼= Z4. This is indeed a correct map presenta-
tion, namely that of R1.3:1 which we will encounter in Section 1.7.

The equivalence allows us to define a map succinctly and to work with it compu-
tationally. All concepts determined by the topology of the map are captured by the
group structure in some way. We proceed to demonstrate the usefulness of a stan-
dard map presentation concretely.

The incidence structure

Let M be platonic. If it is reflexive, let W0 := 〈b, c〉, W1 := 〈a, c〉, W2 := 〈a, b〉, and
W+
i := Wi ∩ Aut+(M). Otherwise, set W+

0 := 〈S〉, W+
1 := 〈RS〉, W+

2 := 〈R〉. We
note that ∩2

i=0Wi and ∩2
i=0W

+
i are both trivial, corresponding to the fact that the first

action is simple on oriented (0, 1, 2)-flags and the second on oriented (0, 1)-flags.

The action of Aut+(M) on oriented (0, 1)-flags is simply transitive. Within Aut+(M),
the stabilizers of the i-cell in the fundamental (0, 1, 2)-flag are exactly the subgroups
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W+
i . So we can identify the i-cells with (right) cosets of W+

i . Incidence between cells
is determined by

W+
i g1 ∗W+

j g2 :⇐⇒ ∃h ∈ Aut+(M), g1h ∈W+
i ∧ g2h ∈W+

j .

If the map is reflexive, then we have an alternative description. Now Aut(R) acts
simply transitive on the oriented (0, 1, 2)-flags, and the stabilizers of the i-cell in
the fundamental (0, 1, 2)-flag are the subgroups Wi. We can identify the i-cells with
(right) cosets of Wi and find the simpler incidence criterion

Wig1 ∗Wjg2 :⇐⇒ g1g
−1
2 ∈Wi ·Wj .

Either of these criteria allows us to compute all properties and functions on a platonic
map expressible in terms of the incidence relation. We have interpreted the incidence
structure as a coset geometry.

Fixed point counting

Let Fixi(g) be the set of i-cells that an element g ∈ Aut+(M) fixes on the platonic
map M, and Fix(g) = ∪2

i=0Fixi(g).

Lemma 1.4.3 (Fixed point counting). Let M be a platonic map. For g ∈ Aut+(M):

|Fixi(g)| = |{h ∈ Aut+(M) | hgh−1 ∈W+
i }|/|W

+
i |.

If M is reflexive, then for g ∈ Aut(M):

|Fixi(g)| = |{h ∈ Aut(M) | hgh−1 ∈Wi}|/|Wi|.

Proof. A cell W+
i h is fixed by g precisely when W+

i (hg) = (W+
i h)g = Wih, so when

hgh−1 ∈ W+
i . There are exactly |W+

i | (right) coset representatives wh (w ∈ W+
i ) of

W+
i h. When M is reflexive, one has to take into account that g ∈ Aut−(M) will not

fix W+
i . The cells are then identified with cosets of Wi instead.

We note that the lemma reinforces our knowledge that g ∈ Aut+(M) fixes a cell if
and only if g is conjugate to an element of W+

0 ∪W
+
1 ∪W

+
2 . The latter is clear from

the triangle group action on the universal cover.

Corollary 1.4.4. Suppose that the Riemann surface Mr satisfies Aut(Mr) = Aut+(M).
The only points of Mr fixed by non-trivial elements of Aut(Mr) are the cell centers
in the cell division of Mr, and only conjugates to elements of W+

0 ∪W
+
1 ∪W

+
2 fix

points. Any g ∈ Aut(Mr) that fixes the center x of a cell W+
i h acts as a rotation

z 7→ ζ
rot(g,x)
ord(g) z in a suitable chart. The rotation index rot(g, x) ∈ {0, . . . , ord(g) − 1}

is independent of the choice of chart, and equals the exponent of hgh−1 ∈ W+
i with

respect to the generator S, RS or R. �
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The genus formula

The number of oriented (0, 1)-flags on an orientable map is |Aut+(M)|. Combining
the flag counting equalities

v = |Aut+(M)|/q e = |Aut+(M)|/2 f = |Aut+(M)|/p

with the formula χ(M) = 2− 2g relating the Euler characteristic χ(M) := v − e+ f
of the map to its genus, we find the genus formula of the map:

g(M)− 1 =
|Aut+(M)|

2

(
1

2
− 1

p
− 1

q

)
. (1.2)

From this formula we can read off immediately that we have an elliptic map (g = 0),
parabolic map (g = 1) or hyperbolic map (g ≥ 2) according to whether 1

p + 1
q −

1
2 is pos-

itive, zero, or negative. We see that the first two yield only a finite number of types.
Also, it is not difficult to find the smallest positive value that this last expression can
assume. This is 1/42, attained when (p, q) = (3, 7). Thus for a hyperbolic map, we
find:

The Hurwitz bound. When g(M) ≥ 2, then Aut+(M) ≤ 84(g(M)− 1).

As is well known, the Hurwitz bound holds in general for the group Aut(X) of a
Riemann surface X . A surface that lies close to the bound is automatically platonic:
if |Aut(X)| > 24(g − 1), then the Riemann-Hurwitz formula implies the area of a
fundamental domain is at most 1/12, which implies that its uniformizing Fuchsian
group must be a triangle group.

There has been a great deal of interest in Riemann surfaces attaining the Hurwitz
bound, appropriately called Hurwitz surfaces. A group is called a Hurwitz group if
it is the automorphism group of a Hurwitz surface. This is equivalent to the group
having a generator set (g1, g2, g3) of orders (3, 7, 2) such that g1g2g3 = 1. For an
overview of known results, see [Con2010], which also has many pointers to further
literature.

Theorem 1.4.5. Of the 26 sporadic finite simple groups, the 12 groups J1, J2, J4, Fi22,
Fi24′ , Co3, He, Ru, HN, Ly, Th and M are Hurwitz groups.

Tuplets

The uniqueness of a conformal action for the topological group action on a platonic
map M does not imply uniqueness of a conformal action for the group, even if we
specify the genus and type of the map. The counterexamples are interesting enough
to warrant special attention.

Definition 1.4.6. A set of platonic maps of genus g and the same type (p, q) that have
pairwise isomorphic groups Aut+(M) is a tuplet.
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We shall also say the members of a tuplet are siblings.

Example 1.4.7. The first tuplet consists of the two maps R8.1 and R8.2, with Aut+(R)
∼= PGL(2, 7). The second that occurs is the first Hurwitz triplet R14.1, R14.2, and
R14.3, with Aut+(R) ∼= PSL(2, 13). The latter tuplet is discussed extensively in
Chapter 7.

The tuplet notion comes into play when constructing algebraic models for platonic
maps, as done in Chapter 6. We submit the following question about their behavior.
It requires reading about the canonical character (Section 6.1) first.

Question 1.4.8. Are two platonic maps members of a tuplet if and only if their canon-
ical characters are equal?

Remark 1.4.9. A group can also act as Aut+(M) for maps with the same genus but
of different type. From the genus formula, we see that there is a restriction that such
types (p1, q1) and (p2, q2) must satisfy: p−1

1 + q−1
1 = p−1

2 + q−1
2 . Concrete exam-

ples of this phenomenon are the maps R56.1, R56.2, R56.3 with automorphism group
PSL(2, 11)oZ2

2. The first two form a tuplet of type (3, 12) with 〈R,S2〉 ∼= PSL(2, 11),
the third is of type (4, 6) with 〈R2, S〉 ∼= PSL(2, 11). In all instances there is the com-
plement 〈a,RS〉. The maps R92.1, R92.2, R92.3 exhibit exactly the same behavior
with PSL(2, 11) replaced by PSL(2, 13). As a final example we give the maps R101.9

of type (4, 24) and R101.18 of type (6, 8), both with group Z2×(Alt5o(Z8o−1Z2)). For
R101.9, Alt5 = 〈R2, S8〉 with complement 〈b, S3, (S−1R)3〉 – the reader can compute
the conjugation action on Alt5 from the standard map presentation.

Suppose we are given a finite group G and a signature (g; p, q, 2) prescribing the type
and genus of its action as a map automorphism group G ∼= Aut+(M). We can com-
pute the number of such maps by noticing that two generator pairs (R1, S1) and
(R2, S2) of G, satisfying ord(R1S1) = ord(R2S2) = 2, both describe Aut+(M) if and
only if they satisfy precisely the same relations. Hence, the maps are isomorphic if
and only if there exists φ ∈ Aut(G) such that (R2, S2) = (φ(R1), φ(S1)). The number
of different platonic maps M with Aut+(M) ∼= G and of type (p, q) is therefore∣∣{(R,S) ∈ G2 | G = 〈R,S〉 ∧ ord(R) = p ∧ ord(S) = q ∧ ord(RS) = 2

}∣∣ / |Aut(G)|.

Similary, the number of reflexive platonic maps R of type (p, q) with Aut(R) ∼= G is:∣∣{(a, b, c) ∈ G3 | G = 〈a, b, c〉 ∧ ord(ab) = p ∧ ord(bc) = q ∧ ord(ac) = 2
}∣∣ / |Aut(G)|.

The orientability, self-duality and chirality criteria

A standard map presentation allows us to quickly test the orientability of a platonic
map. Let M be a platonic map. Choose a fundamental vertex and face and orient the
face. Suppose (R,S) is the corresponding standard map generator pair and let e0 be
the resulting fundamental edge (see Section 1.1). If we change the orientation, then
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R and S are suddenly rotations clockwise instead of counterclockwise, and a standard
generator pair for the new map is (R−1, S−1). If the surface is non-orientable, then
there is a path along Γ(M) with a Möbius strip as tubular neighborhood. We can
construct an element g ∈ 〈R,S〉 that transports the edge e0 around this path back to
S(e0) and reverses the local orientation of the face. This entails that the map induced
by (R,S) 7→ (R−1, S−1) is an inner automorphism of 〈R,S〉 = Aut(M).

The orientability criterion. A platonic map is non-orientable if and only if for any
standard map presentation, (R,S) 7→ (R−1, S−1) extends to an element of Inn(〈R,S〉).
In this case, Aut(M) = 〈R,S〉.

Suppose M is orientable with Aut+(M) = 〈R,S〉. The mapping inv : (R,S) 7→
(R−1, S−1) is now not an element of Inn(〈R,S〉). If it is still contained in the group
Aut(Aut+(M)), then Aut(M) > Aut+(M). Choose a fundamental flag (v0, e0, f0)
and identify f0 with a planar regular polygon so that the vertices of f0 are identified
with vertices of the polygon. Define the mapping b on f0 to correspond to reflection
of the polygon in the b-axis of the fundamental triangle, compare Figure 1.2 (right).
Extend it to the whole surface with the recipe

b(g(x)) = inv(g)(b(x)) (g ∈ Aut+(M), x ∈ v0 ∪ e0 ∪ f0).

Is b independent of the choice of g? Clearly g1(x) = g2(x) is equivalent to g1g
−1
2 (x) =

x. There are only three possible values for the pair (g1g
−1
2 , x): it is either (Si, v0) or

(RS,midpoint(e0)) or (Ri,midpoint(f0)). In the first case inv(Si)(b(x)) = S−i(x) =
x = b(x). In the second, inv(RS)(b(x)) = R−1S−1(b(x)) = b(x). And in the third,
inv(Rk)(b(x)) = R−k(x) = b(x). So inv(g1)inv(g2)−1(b(x)) = inv(g1g

−1
2 )(b(x)) =

b(x), proving well-definedness of b. It is clear that b is bijective on cells, and we
conclude it is a homeomorphism, and orientation reversing. The map is apparently
reflexive.

In the other direction, an easy computation shows that for a reflexive platonic map
with standard map generators (a, b, c), the conjugation action of b on 〈R,S〉 = 〈ab, bc〉
inverts R and S. We have thus derived the following handy criterion.

The chirality criterion. An orientable platonic map M is reflexive if for a standard
map presentation, (R,S) 7→ (R−1, S−1) extends to an element of Aut(Aut+(M)), or
chiral if this is not the case.

For a chiral map C, the application of (R,S) 7→ (R−1, S−1) to the relators of a stan-
dard map presentation of Aut(C) produces a standard map presentation for its mir-
ror image.

The last criterion we treat concerns the dual map. Consider the conformal action of
Aut+(M) on Mr and construct the dual as in Section 1.3. Then Aut+(M) acts simul-
taneously on the cell divisions corresponding to M and M∨. A standard generator
pair for M∨ is given by (S,R). So the map is self-dual precisely when the mapping
induced by (R,S) 7→ (S,R) is a group automorphism.
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The self-duality criterion. A platonic map M is self-dual if for any standard map
presentation, (R,S) 7→ (S,R) defines an element of Aut(Aut+(M)).

If M is not self-dual, then the application of (R,S) 7→ (S,R) to a standard map
presentation of Aut(M) produces a standard map presentation for M∨.

Self-adjacencies, multiplicities and valencies

There are various multiplicities with respect to the incidence relation that can occur
for (platonic) maps. For example, the graph Γ(M) need not be simple. We introduce
them here to be able to distinguish degenerate kinds of maps.

Definition 1.4.10. The platonic map M is called loop-free if |∂e| = 2 for any edge e.
It is said to be dual-loop-free if |{f ∈ cells2(M) | f ∗ e}| = 2 for any edge e.

Because of platonicity, both properties hold for all edges if and only if they hold for
one edge. It is easy to see that M is loop-free precisely when M∨ is dual-loop-free. In
terms of a standard map presentation, M contains loops if RS fixes the fundamental
vertex. Because of the coset geometry description, this is when R ∈ 〈S〉. Dually, M
is not dual-loop-free exactly when S ∈ 〈R〉. Maps with (dual-)loops are classified in
Section 4.1.

Lemma 1.4.11. Let M1, M2 be platonic maps. If M2 is loop-free and dual-loop-free,
then a map morphism f : M1 → M2 is uniquely determined by the induced map-
pings on cells (including orientation information).

Proof. Under these conditions, the image of an oriented (0, 1, 2)-flag is uniquely de-
termined by the cells it contains.

We continue by defining valencies and multiplicities.

Definition 1.4.12. The (i, j)-degree (or valency) dij of M is (for i, j ∈ {0, 2}) the
number of different j-cells incident to an edge incident to a given i-cell:

dij = |{c2 ∈ cellsi(M) | ∃e ∈ cells1(M), c1 ∗ e ∗ c2}| (c1 ∈ cells0(M)).

The (i, j)-multiplicity is defined by µij = q/dij if i = 0 and µij = p/dij if i = 2.

Platonicity implies that dij and µij are independent of the choice of c1. If we choose
c0 ∈ cells0(M) and an oriented −→c2 ∈ cells2(M) such that c0 ∗ c2, then drawing two
pictures makes it clear that

µ20 =
∣∣{−→e ∈ cells1(M) | c0 = tail(−→e ) ∧ e ∗ c2 ∧ −→e compatible with −→c2

}∣∣ = µ02.

We can compute the multiplicities and hence the valencies from a standard map
presentation of Aut+(M) with Proposition 1.4.13.
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Proposition 1.4.13. For a platonic map M with standard generator pair (R,S), the
following equalities hold:

µ00 = |{g ∈ 〈S〉 | R−1gR ∈ 〈S〉}|
µ22 = |{g ∈ 〈R〉 | S−1gS ∈ 〈R〉}|
µ02 = |〈R〉 ∩ 〈S〉|

Proof. Take v1 to be the fundamental vertex and e the fundamental edge, between
v1 and v2. The group of rotations around v2 is R−1〈S〉R and hence the set of edges
between v1 and v2 is the orbit of e under the group 〈S〉 ∩ R−1〈S〉R. This proves the
first equality. The second follows by duality. The parameter µ02 is equal to the num-
ber of occurrences of the fundamental face around v1 locally, which is the number of
elements in 〈S〉 that also fix the fundamental face and hence lie in 〈R〉.

To bring the related geometry into even clearer focus, consider the cycle (w1, . . .) of
end points of edges going out from a vertex v, ordered counterclockwise. Whenever
Siv(w1) = w1, we also have Si+jv (w1) = Sjv(w1) for any j. So the cycle repeats with
primitive period d00. Similarly, the cycle of incident faces around vertex v repeats
with period d02. The cycles of incident vertices and neighboring faces (via a common
edge) of a face repeat with primitive periods d20 and d22, respectively. Also, since
Sd02v fixes v and its incident faces, and the vertices along the boundary of an incident
face have period d20, this rotation fixes the neighboring vertices as well. Similarly,
Rd20f fixes the neighboring faces. We have shown:

Lemma 1.4.14. The map valencies of a platonic map satisfy d00 | d02 and d22 | d20. �

The reduced graph Γ(M) of M is the simple graph that we get if we identify all µ00

edges between every pair of adjacent vertices of Γ(M). It is We will use multiplicities
and valencies extensively in the classification efforts of Chapter 4.

Geodesic walls and Petrie paths

The cell division that a platonic map M induces on its underlying surface has a re-
finement that is of great use. To construct it we consider Mr. The group ∆(p, q, 2) has
a (p, q, 2)-triangle of M̃r as fundamental domain, which induces a cell division of M̃r

like the ones seen in Figure 1.4. We know that Mr = M̃r/Γ for some ΓC∆+(p, q, 2),
and even ΓC∆(p, q, 2) if M is reflexive. The cell division is therefore Γ-invariant and
projects down to an Aut(Mr)-invariant cell division of M. We call it the barycentric
subdivision of M. Its vertex set splits naturally into three types: the vertices, edge
centers and face centers of the map Mr. In the barycentric graph, these have de-
grees 2q, 4, and 2p, respectively. The barycentric faces are the fundamental triangles
of M. An extra property is now also clear: in M̃r, any edge of a fundamental tri-
angle lies on a unique geodesic. This geodesic is a reflection axis for an element of
∆(p, q, 2), and is contained within the graph of the tiling of M̃r. It must project down
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to a geodesic loop on Mr contained within the graph of the barycentric subdivision.
Platonic maps can be viewed as chamber complexes. In that comparison, the funda-
mental triangles are apartments and these geodesic loops are walls. Hence, we name
them geodesic walls. The geodesic walls will help us in Chapter 7.

We could have specified the incidence structure of the barycentric subdivision topo-
logically, by putting a new vertex in each edge and face, and connecting them up
in the obvious way. In this setting, the geodesic walls are paths within the graph of
the barycentric subdivision for which one continues ‘straight ahead’ at each vertex,
i.e. two consecutive edges of the path divide the edges at their common vertex into
two sets, those to the left and those to the right, and the two sets are of equal size.
We have the following simple but important lemma.

Lemma 1.4.15. The geodesic walls of a reflexive platonic map do not self-intersect.

Proof. For any geodesic wall γ on Rr there is a reflection of Rr in γ. This reflection
is an isometry of Mr. Let p be any point on γ and restrict the reflection to a disk
around p that is reflected to itself. A reflection on a disk has exactly one axis, so there
can be no self-intersection at p.

One should contrast this with a generic geodesic on a compact Riemann surface,
which need neither be a closed loop nor simple.

Depending on the parity of p and q, the barycentric subdivision has different types
of geodesic walls. Each wall γ has a periodic pattern of barycentric vertex types,
that we denote v, e, and f according to the cell type of M they are the center of.
There is an automorphism Tγ ∈ Aut+(M) that acts as a translation of γ along itself
by one primitive period of this vertex pattern. Table 1.1 lists a word of Aut+(M)
that accomplishes the primitive translation in each case. The number of barycentric

Parity of (p, q) Cell center pattern Primitive translation word

(0,0) ef Rp/2+1S
ev RSq/2+1

vf Rp/2Sq/2

(0,1) ef RSRp/2

evfv RS(q+1)/2Rp/2S(q+1)/2

(1,0) ev SRSq/2

efvf SR(p+1)/2Sq/2R(p+1)/2

(1,1) vevfef R(p+1)/2SR(p+1)/2S(q−1)/2R−1S(q−1)/2

Table 1.1: Translations along the different types of geodesic walls that border a fun-
damental triangle, in terms of the rotations R and S around the incident vertex and
face center (of the original map).

vertices (or equivalently, edges) on each wall type can be counted by computing the
order of its primitive translation word and multiplying by the number of occurrences
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within each period.

Now let R be a reflexive platonic map. Look back at Figure 1.3 and mark each
barycentric edge as an a-, b- or c-edge according to the type of cell centers it connects.
Every barycentric edge can be expressed uniquely as g(x) for x an edge of a chosen
fundamental triangle and g ∈ Aut+(R). This allows us to compute, for w ∈ {a, b, c},
the set Fixbar

w (r) of barycentric w-edges that a reflection r ∈ Aut−(R) fixes. We are
mainly interested in its size:

|Fixbar
w (r)| = |{(g, x) ∈ Aut+(R)× {a, b, c} | r = g−1xg}|.

From this we infer that the number of w-walls (walls containing a w-edge) fixed by a
reflection r is |Fixbar

w (r)|/length(w-wall). One reflection can fix multiple walls, even
of different type, e.g. on R3.8, where the reflection a fixes one a-wall and one c-wall.

In Chapter 7, we will also have occasion to use a different kind of path from a
geodesic one on the barycentric graph.

Definition 1.4.16. A Petrie path on the barycentric graph is a path formed by alter-
natingly choosing the first edge left and the first edge right at each successive vertex.

Unless q = 2, there are two different Petrie paths through a (directed) edge, depend-
ing on whether the first turn after it is left or right. For any two succesive edges −→e 1,
−→e 2 the map automorphism that maps −→e 1 7→ −→e 2 moves the Petrie path to the other
Petrie path through−→e 2. Because we also know that Aut(M) is transitive on oriented
(0, 1)-flags, it is transitive on Petrie paths, and so the Petrie path length is uniquely de-
fined. From a picture one sees that applying (abc)2 to a barycentric triangle moves
it along two edges of a Petrie path, whence ord(abc) = 2ord(R2S2) = 2ord([R,S]) is
the Petrie path length.

Example 1.4.17. In [CM1980], Coxeter and Moser define the map {p, q}r as having
type (p, q) with [R,S]r as only extra relator. This extra relator is not sufficient to
define a finite group if p, q, r are all big. If the group is finite, then {p, q}r defines a
platonic map, it will be reflexive automatically and have Petrie path length r by de-
cree. The following six polynomial families are definable as a {p, q}r-map: Fer(n),
F (4,2n)

(n−1)2 , F1.4:n, F∨1.4:n, F1.2:n, and F∨1.2:n. Confer Chapter 2 for the definition of
these families. We conjecture that the only other solutions (p, q, r) are (3, 7, 4) (R3.1),
(3, 7, 6) (R14.1), (3, 7, 7) (R14.3), (3, 7, 8), (3, 8, 4) (R8.1), (3, 8, 5), (3, 9, 5), (3, 10, 4),
(3, 11, 4), (3, 12, 2) (same map as (3, 6, 2)), (4, 5, 3) (R4.2), (4, 5, 4), (4, 7, 3), (5, 5, 2),
(5, 6, 2) (R9.16), (5, 8, 2), (5, 9, 2), and (6, 7, 2).

Example 1.4.18. The sporadic finite simple group J1 has seven inequivalent pre-
sentations as a Hurwitz group. These cannot all be distinguished by their Petrie
path lengths. We can determine them by using two word orders, e.g. (ord([R,S]),
ord(R2SR2S2R2S3)). The seven curves belong to the values (10, 6), (10, 10), (11, 5),
(11, 10), (15, 5), (15, 6), and (19, 10). For some of these one needs still more relators
to define the group.
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1.5 Platonic maps are algebraic curves

That platonic maps have a unique Riemann surface structure is surprising. But
the surprise gets bigger: our topological objects define algebraic curves! By Jean-
Pierre Serre’s GAGA theorem [Ser1955], the category of Riemann surfaces with holo-
morphic maps is equivalent to the category of smooth complex projective algebraic
curves with rational mappings as morphisms. And there is more. Let us take a pla-
tonic map M and consider the cover π : Mr →Mr/Aut+(Mr) ∼= M̃r/∆

+(p, q, 2) ∼=
Ĉ. By cellularity and the transitivity of the group on the (0, 1)-flags, all vertices are
identified, as are the edge centers and the face centers. These are also the only points
at which π ramifies, since any elements with fixed points in M̃r is conjugate to either
R, S or RS. Thus, the ramification points yield only three branch points on Ĉ, which
we can take to be {0, 1,∞}. The edges of a fundamental triangle of Mr are mapped
to edges between these three vertices, dividing Ĉ into two triangles. This is shown
in Figure 1.5.

Figure 1.5: Left. The Riemann sphere Mr/Aut+(Mr) ∼= Ĉ. Right. The two triangles

on Ĉ result from glueing the edges of a fundamental triangle and an adjacent mirror
image.

Perhaps the simplest algebraic curve is P1, the complex projective line. It is equivalent
to Ĉ under GAGA. In 1979, Russian mathematician Gennadii Vladimirovich Belyı̆
published the astonishing result (cf. [Bel1979]) that a complex projective algebraic
curve is definable over Q precisely when it admits a rational mapping to P1 that
branches over at most three points. Such a map is called a Belyı̆ function. We have
exhibited just such a mapping by our holomorphic Mr → Ĉ. The conclusion is
inevitable.

Theorem 1.5.1. A platonic map M defines a unique algebraic curve Ma up to iso-
morphism. The curve Ma is definable over a number field K ⊆ Q and admits a
canonical Belyı̆ function π : Ma →Ma/Aut(Ma) ∼= P1.

The theorem leads to a number of research projects. Can we prove that a certain
algebraic curve C supports a platonic map? According to the previous discussion,
this is precisely the case when C/Aut(C) ∼= P1 and the projection C → C/Aut(C)
branches over three points. Therefore, a positive solution is obtained by finding an
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Aut(C)-invariant Belyı̆ function. This is a route taken in Chapter 5. Another problem
is to find an algebraic model for a given platonic map. One construction strategy is
described in Chapter 6 and worked out for all reflexive platonic maps of genus g ≤ 8
and various other cases. This work makes the GAGA correspondence effective for
the platonic surfaces under consideration, which it is not in general.

1.6 Map morphisms and platonic covers

With a little extra effort, the concept of map automorphism introduced in Section 1.1
can be broadened to that of a morphism between different maps.

Definition 1.6.1. A map morphism or map cover is a branched cellular cover π :
M1 → M2. The map M2 is a quotient map of M1. We call two map morphisms
equivalent if there is a homotopy H : M1 × [0, 1] → M2 between them, for which
every H(·, t) is a cellular branched cover.

We remark that every map morphism is surjective, being a cover. One can proceed
to define the notion of automorphism as a morphism with an inverse. The new def-
inition for automorphism coincides with the earlier one, since an automorphism in
the new sense is forced to be a homeomorphism; this will follow from the Riemann-
Hurwitz formula discussed below.

A map cover π : M1 →M2 has a ramification locusRπ ⊂M1. This is the set of points
in M1 at which π is not a local homeomorphism. The branch locus Bπ ⊂M2 is the set
of points in M2 at which the covering property fails. In other words, Bπ = π(Rπ).
BothRπ and Bπ are discrete subspaces and hence finite.

Because a branched cover is a local homeomorphism away from the finitely many
ramification points, dim(π(c)) = dim(c) for all c ∈ cells(M1). Thus, π also induces a
mapping on (oriented) flags, preserving their type. Continuity of a map morphism
guarantees that π(c) = π(c) and hence ∀c1, c2 ∈ cells(M1),

(
c1∗c2 =⇒ π(c1)∗π(c2)

)
.

Because of cellularity and surjectivity, we also see that ∀c ∈ cells(M1), π(c∗) = π(c)∗.
But we can determine the behavior of a map morphism even more accurately.

Lemma 1.6.2. Let π : M1 → M2 be a map morphism. An edge of M2 contains no
branch point, and an edge of M1 no ramification point.

Proof. If the edge e ∈ cells1(M2) contained a branch point q, then for any p ∈ π−1(q),
the inverse image π−1(e) 3 p would not be contained in the edge of M1 containing
p, so π would not be cellular.

Inside a 2-cell of M1 a map cover can have multiple branch points. This is exempli-
fied by covers D

2 → D
2

given by so-called finite Blaschke products, holomorphic
functions of the form

f(z) =
z − z1

1− z1z
· · · z − zn

1− znz
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for a sequence of points z1, . . . , zn ∈ D2 that may contain repetitions. If a point zi oc-
curs di times, then locally around zi there is di-fold ramification. We note, however,
that we can let zi → 0 continuously by a homotopy of f . Doing this for all points of
the sequence, we ‘move all difficult behavior to one point’. We prove a topological
lemma extending this trick to general maps.

Lemma 1.6.3. Let π : M1 → M2 be a map morphism. There exists an equivalent
morphism that has at most one ramification point in any face of M1 and one branch
point in any face of M2.

Proof. Take c ∈ cells2(M1) and suppose π(c) = d. First, we treat exceptional cases.
If ∂c contains no embedded S1, then ∂c is a tree. Contracting this tree to a point
shows that g(M1) = 0 and that c is its only 2-cell. The same must then hold for M2.
A loop close to ∂c then gets mapped to a loop close to ∂d with a certain winding
number n. This shows that π is homotopic to z 7→ zn on Ĉ with at most one of its
two ramification points in c. So now suppose ∂c does contain an embedded S1. We
identify c with D

2
and simply forget any degree 1 vertices and ‘internal edges’ that

happen to lie in its interior D2. The other exception that can still occur is that ∂d is
a tree. In that case, g(M2) = 0 and we choose a projection pr : D

2 → S2 ∼= Σ(M2)

mapping D2 ∼→ d. Lift the cellular structure on d and replace π|c by a pr-lift. If we
prove the statement for this map, it is also true for the original. Thus, we identify d
with D

2
, and forget about possible internal edges and vertices of d.

We may thus assume the cover on the cell c is equivalent to π|c : D
2
� D

2
. Without

loss of generality π|c preserves orientation. We now orient ∂c counterclockwise and
label its cells as (vc,0,

−→ec,0, vc,1, . . . ,−−−−→ec,m−1, vc,0). We label ∂d similarly with indices
from 0 to n− 1, and may suppose π(vc,0) = vd,0 and π(−→ec,0) = −−→ed,0. By induction we
prove that π(−→ec,i) = −−−−−−→ed,i mod n for all i. Assume it is true for i− 1. Either π(−→ec,i) = −→ed,i
or π(−→ec,i) = ←−−−ed,i−1 because π is cellular. If the second option is true, take distinct
points p1 ∈ ec,i−1, p2 ∈ ec,i with π(p1) = π(p2) ∈ ed,i−1: an arc from p1 to p2 inside c
maps to a loop winding around vd,i, implying π(c) 6⊆ d. From this fact we learn that
π|∂c is homotopic to z 7→ zn. Extend this homotopy to a homotopy of D

2
with the

Alexander trick:

H(x, t) =

{
t π|c(x/t) if 0 ≤ ||x|| < t

π|c(x/||x||) if t ≤ ||x|| ≤ 1
.

Apply this procedure to each 2-cell of M1 in turn. This vindicates the first claim.
The second follows by composing πc with a suitable Möbius transformation for each
c ∈ cells2(M1) to ensure that for any d ∈ cells2(M2), the ramification points of the
cells in π−1(d) are all sent to the same point of d.

Up to equivalence, map morphisms exhibit a strong rigidity. From Lemma 1.6.3 we
readily deduce that two map morphisms that agree on all oriented (0, 1, 2)-flags are
equivalent. What is more, the behavior on a single oriented (0, 1, 2)-flag already
determines a map morphism’s equivalence class.
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Proposition 1.6.4 (Rigidity of map morphisms). Two map morphisms π1, π2 : M1 →
M2 that agree on one oriented (0, 1, 2)-flag are equivalent.

Proof. We prove that the morphisms agree on all oriented (0, 1, 2)-flags by induction
over the graph Γ(M1). Assume that π1 = π2 on the oriented flag (c0,

−→c1 ,−→c2). There
are two induction steps. First, take a small disk D around c0 and consider the subdi-
vision induced by the cells of M1. Label these regions as e0, f0, e1, f1, . . ., where e0 is
the part containing the ‘tail’ of c1 and f0 the region of c2 to the left of that tail. Sim-
ilarly, we label the cells of π1(c0)∗ = π2(c0)∗ as e′0, f ′0, e′1, f ′1, . . . where e′0 = π1(e0).
Note that multiple regions can belong to the same cell of M1 (cf. Section 1.4, map
multiplicities). But because π1 and π2 agree on the oriented (0, 1, 2)-flag (c0,

−→c1 ,−→c2),
also π2(e0) = e′0. The two morphisms send the region f0 to ‘the same’ region as well
(the two images have non-empty intersection), and hence also the regions e1 and
f1. This means they agree on the oriented (0, 1, 2)-flag (c0,

−→e1 ,
−→e2). By induction they

agree on all oriented (0, 1, 2)-flags containing c0.

Second, we consider the head vertex c′0 of −→c1 and suppose c′0 6= c0. Take a neigh-
borhood D of c1 homeomorphic to a disk and subdivide it into regions as above. We
have π1(c′0) = π2(c′0) and we can orientD such that c2, π1(c2), and π2(c2) have points
on the left of c1, π1(c1), and π2(c1) when inducing the positive orientation on these
respective edges. This implies that (c′0,

←−c1 ,←−c2) has the same image under π1 and π2.
This finishes the second induction step. Because |cells(M)| < ∞ and Γ(M1) is con-
nected, we conclude from the two steps that π1 and π2 agree on all (0, 1, 2)-flags.

Remark 1.6.5. The necessity of oriented (0, 1, 2)-flags in Proposition 1.6.4 stems from
the fact that either M1 or M2 may contains loops or dual-loops (see Section 1.4).
A map cover of R1.3:1 (the torus map with one face, see Section 1.7) for example,
cannot be defined by only specifying the images of cells. If both maps are loop-free
and dual-loop-free, all mention of orientations in the proof can be dispensed with.

To correctly define the subcategory of platonic maps, we want map covers that com-
bine with Aut(M). The definition also involves the orientation.

Definition 1.6.6. A map cover π : M1 →M2 between platonic maps is platonic if it
preserves positive orientation and

∀g ∈ Aut(M1) ∀c1, c2 ∈ cells(M1), (π(c1) = π(c2) =⇒ π ◦ g(c1) = π ◦ g(c2)).

From general covering theory we know that fiber size is constant for any cover, when
counted with multiplicity. This size is the degree of the cover. For a map cover π we
can also speak of the set of inverse cells π−1(c) ⊆ cells(M1) of a cell c ∈ cells(M2).
If π is platonic, the number of inverse images is constant per cell type. This follows
by noting that if we take two inverse images c1, c2 of d1, d2 ∈ cellsi(M2), there is
a g ∈ Aut(M1) for which g(c1) = c2. Since π(c) = d1 = π(c1) implies π(g(c)) =
π(g(c1)) = π(c2) = d2, we obtain a (non-canonical) bijection

π−1(d1)
∼−→ π−1(d2) .

c 7→ g(c)
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One can realize a map cover π : M1 → M2 as a cellular Riemann surface cover
(M1)r → (M2)r: a Riemann surface structure on M2 lifts via π to a unique Riemann
surface structure on M1 such that π is holomorphic [For1977, Theorem 4.6]. With-
out loss of generality we can choose an equivalent map cover that has at most one
ramification point in each cell of M1. For a ramification point x ∈ Σ(M1), there are
then suitable charts around x and π(x) such that π(z) = zn locally. If the map cover
is platonic, then the exponent n is equal to p1/p2 if x lies inside a 2-cell of M1 , and
equal to q1/q2 if x is a vertex of M1. Hence, the ramification and branching orders
only depend on the type of cell in the respective maps, and we have the two ramifica-
tion indices mult0(π) := q1/q2 and mult2(π) := p1/p2. If both indices are 1, the cover
is unbranched. If only mult2(π) = 1 we say the cover “branches/ramifies (only)
over vertices”. If only mult0(π) = 1 we say the cover “branches/ramifies (only) over
faces”. A platonic map cover π is a normal cover (also called Galois or regular).

The Riemann-Hurwitz formula for platonic covers. The famous Riemann-Hurwitz
formula for ramified covers (see e.g. [Mir1995]) takes on a special form for platonic
covers. Let π : M1 →M2 be a map cover. We have

χ(M1) = deg(π)χ(M2)−
∑
p∈M1

(mult(π, p)− 1)

= deg(π)χ(M2) + f1

(
1− p1

p2

)
+ v1

(
1− q1

q2

)
.

Remark 1.6.7. If g(M2) ≥ 1, then χ(M2) ≤ 0 and since deg(π) ≥ 2 unless M2 = M1,
we find that χ(M1) ≤ 2χ(M2) ≤ 0, so that g(M1) ≥ 2g(M2) + 1.

The group theory behind platonic covers is what we wanted to investigate next. We
derived the following results.

Proposition 1.6.8. A map cover π : M1 → M2 induces an epimorphism πAut :
Aut+(M1)� Aut+(M2).

Proof. Let g ∈ Aut+(M1). We define πAut(g)(x) := π◦g◦π−1(x). This is well-defined
as a function M2 → M2, since two different points y1, y2 ∈ π−1(x) satisfy π(y1) =
π(y2) and hence π(g(y1)) = π(g(y1)) by the definition of platonic map covers. It is
continuous because around y ∈ π−1(x) we can find a neighborhood in which π is
a homeomorphism. Furthermore, take c ∈ cells(M2) and x1, x2 ∈ c. Connect the
two points by a path γ within c. Since π is cellular, any π-lift of γ will lie within
one cell of M1, hence so will πAut(g)(γ). This shows that πAut(g) is cellular as well.
Finally, because π ◦ g−1 ◦ π−1 is clearly an inverse of our mapping, we conclude
πAut(g) ∈ Aut(M2).

The mapping πAut is a homomorphism because πAut(g)πAut(h) satisfies the defining
equation for πAut(gh) and this defines the map uniquely. The remaining task is to
prove surjectivity. Take g ∈ Aut(M2) and let F be an oriented (0, 1)-flag of M2.
The flags F and g(F ) have lifts to oriented (0, 1)-flags F̃1, F̃2 on M1. By platonicity
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F̃2 = g̃(F̃1) for some g̃ ∈ Aut(M1), and so

πAut(g̃)(F ) = π ◦ g̃(F̃1) = π(F̃2) = g(F ).

This implies πAut(g̃) = g.

Proposition 1.6.9. For a platonic cover π : M1 →M2, we have

kerπAut = {g ∈ Aut(M1) | ∀c ∈ cells(M1), π(g(c)) = π(c)},

This normal subgroup of Aut+(M1) does not contain a rotation around an edge of
M1. For the converse, let M be a platonic map. A normal subgroup N C Aut+(M)
containing no edge rotation gives rise to a platonic quotient map M/N , and the
natural projection π : M →M/N is a platonic cover of degree |N |with kerπAut = N .

Proof. (=⇒) If g ∈ kerπAut, then for any c ∈ cells(M1) one has π◦g(c) = πAut(g)(π(c))
= π(c). Vice versa, if g ∈ Aut+(M1) and for all cells c ∈ cells(M1) we have π(c) =
π ◦ g(c) = πAut(g)(π(c)), then πAut(g) fixes all oriented (0, 1)-flags and so it must
be the identity. Suppose g ∈ kerπAut is an edge rotation around e ⊂ M1. From
Lemma 1.6.2 we know e contains no ramification points. Choose an open neigh-
borhood U of e containing no ramification points and such that g(U) = U . Then
πAut(g) = π ◦ g ◦ π−1 sends π(U) to itself and flips π(e) around. Hence πAut(g) 6= 1.

(⇐=) If N C Aut+(M), consider Mr = H2/Γ, with Γ C ∆+(p, q, 2) and natural pro-
jection ν : H2 →Mr. We have an induced homomorphism ν∗ on the automorphism
groups and Γ′ := (ν∗)

−1(N) C ∆+(p, q, 2). Certainly Γ ≤ Γ′. We therefore have the
platonic surface M′r = H2/Γ′ with natural projection ν′ : H2 → M′r, and this yields
a unique branched cover π : Mr →M′r completing the factorization ν′ = π ◦ ν. This
π is the map cover we are after. If N contains no edge rotations, neither does Γ′. The
map ν′ thus has no ramification on (ν pullbacks of) edges. Therefore, π has the same
property. Since M′r is divided into disks by the images of all the edges, it follows
that π is cellular. That π is platonic follows from the fact that for any x1, x2 ∈ H2,

π(x1Γ) = π(x2Γ)⇐⇒ ν′(x1) = π ◦ ν(x1) = π ◦ ν(x2) = ν′(x2)

=⇒ ∀g ∈ ∆+(p, q, 2), ν′(g(x1)) = ν′(g(x2))

=⇒ ∀g ∈ Aut(Mr), π(g(x1)Γ) = π(g(x2)Γ).

The second step is valid because Γ′ C∆+(p, q, 2). The kernel of πAut is N , since two
points x1Γ, x2Γ ∈Mr areN -related precisely when x1, x2 are Γ′-related. Such points
have the same image under π. This also proves that the degree of π is |N |.

The proof of 1.6.9 shows us that the Riemann surface structures on M1 and M2 of a
platonic map cover for which Aut(M1) and Aut(M2) act holomorphically are those
for which the map cover that has at most one ramification point in each 2-cell of
M1 and at most one branch point in each 2-cell of M2 is holomorphic. Even more
important is that Proposition 1.6.9 enables us to work wholly group-theoretically
with platonic covers, something of great use. As a side note, a platonic cover π :
M1 → M2 has an associated dual platonic cover π∨ : M∨1 → M∨2 . This is easily
understood by considering the dual maps as cell divisions on the same Riemann
surfaces.
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Corollary 1.6.10. A platonic map cover π is unbranched if and only if ker(πAut) ∩
(〈S〉 ∪ 〈R〉) = 1. �

Remark 1.6.11. Reflexive maps can have chiral quotients, but these are rare in low
genus. The first example is R19.14/〈R3S2RS−1〉 = C7.1.

Remark 1.6.12. A platonic map that does not platonically cover another platonic
map is a basic building block of the category. We call such a map irreducible. Platonic
maps with Aut+(R) a simple group are certainly irreducible, but there are others.
Appendix E lists the irreducible reflexive platonic maps of genus 2 ≤ g ≤ 101.

Remark 1.6.13. After having seen map covers, it is an opportune moment to intro-
duce the gonality gon(X) of a Riemann surface X . This is the smallest degree of a
branched cover X → Ĉ. A Riemann surface of gonality 2 is called hyperelliptic (see
also Chapter 6), and if the gonality is 3 it is called trigonal. We transport gonality to
platonic maps in the obvious way. A known upper bound for gon(X) is b(g + 3)/2c
(cf. [KL1972]). The degree gon(M) is not always realized by a platonic cover. An
example is R3.3 of type (3, 12), which is trigonal. However, the only platonic cover
to the Riemann sphere it admits is a 4-cover R3.3/〈S3〉 = Tet. Platonic covers can
improve on the above-mentioned generic upper bound. The resulting possible range
of gonalities is listed in Appendix C. That table incorporates knowledge of platonic
covers, the canonical models discussed in Chapter 6, and the diagonal map construc-
tions from Chapter 3.

Example 1.6.14. In Section 1.7 we will encounter the hosohedra Hos(n) (n ∈ Z≥1).
There is a platonic cover Hos(n) → Hos(m) exactly when m | n, equivalent to the
branched cover z 7→ zn/m on Ĉ.

There are also examples of platonic covers between whole polynomial families of
platonic maps (introduced in Chapter 2). One is given in the following proposition.

Proposition 1.6.15. There is a platonic 2-cover F (2n+2,2n+2)
n (2k) → F (2n+1,4n+2)

n (k)
branched over faces.

Proof. Let R1 be the map of genus 2k in the statement. From the standard map
presentation

Aut+(R1) =
〈
R,S

∣∣R4k+2, S4k+2, (RS)2, [R,S]
〉

we see that 〈R2k+1〉 C Aut+(R1). Form the quotient map M2 = R1/〈R2k+1〉. It has
the standard map presentation

Aut+(R2) =
〈
R,S

∣∣∣R2k+1
, S

4k+2
, (RS)2, [R,S]

〉
.

Since [R,S] = 1, we find 1 = (RS)2 = R2S2, which implies R2k+1 = S−2kR in
Aut(R1). This yields the relation R = S

2k
for M2, which is the extra relator for

F (2n+1,4n+2)
n . This shows that the quotient map is the purported one. In particular it

is reflexive again.
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Multiplicity quotients

One obtains several particularly important platonic covers and quotient maps by
trying to identify all edges that have the same set of incident vertices, or satisfy a
similar condition.

Proposition 1.6.16. Let M be a platonic map with standard generator pair (R,S).
The subgroups 〈Sd00〉, 〈Sd02〉 = 〈Rd20〉, and 〈Rd22〉 are normal in Aut(M).

Proof. Let Sv be the primitive counterclockwise rotation around v. The subgroup
〈Sd00v 〉 also fixes all neighboring vertices of v. Hence, for a neighbor w we have
Sd00v ∈ 〈Sw〉. Comparing orders, we see that Sd00v generates 〈Sd00w 〉, so Sd00w ∈ 〈Sd00v 〉.
By induction (or appealing to platonicity), we find that the subgroup 〈Sd00v 〉 is the set
of automorphisms in Aut+(M) that fixes all vertices. Any conjugate by an element
of Aut(M) will lie in this set as well. This proves 〈Sd00〉CAut(M). Similar reasoning
holds for the other two subgroups.

The proposition shows that multiplicity quotients even preserve reflexivity. We call
the quotient maps (and the map covers) by the type of valency / multiplicity present
in their description: the µ00-quotient, the µ02-quotient and the µ22-quotient.

Proposition 1.6.17. The µ00-quotient is a map of type (p/µ20, q/µ00) with the reduced
graph Γ(M) as graph. The µ22-quotient is a map of type (p/µ22, q/µ02) with dual
graph the reduced graph Γ∨(M).

Proof. Since 〈Sd00〉 ∩ 〈R〉 = 〈Rd20〉, the µ00-cover has ramification index q/d00 =
µ00 over vertices and p/d20 = µ20 over faces. From this the claim about the map
type follows. The subgroup fixes all vertices, so M/〈Sd00〉 has the same number of
vertices as M, but between two vertices there is only one edge. The proof for the
other quotient is similar.

1.7 Platonic maps of genus 0 or 1

Platonic maps of genus 0 satisfy the inequality 1
p + 1

q >
1
2 by the genus formula. The

only solutions (p, q) are found to be (2, n), (3, 3), (3, 4), and (3, 5) up to duality. If
p = 2 the above equation yields v = 2 and e = f , resulting in the family of hosohedra
Hos(n) defined by the map automorphism group

Aut(Hos(n))+ =
〈
R,S

∣∣Rn, S2, (RS)2
〉
.

Such a map is easily visualized (as a beach ball), and so is its dual dihedron Dih(n):
The others solution give platonic maps with the combinatorial structure of the clas-
sical platonic solids. We abbreviate their names to Tet for the tetrahedron; Oct for
the octahedron and Cub for its dual, the cube; Ico for the icosahedron and Dod for
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Figure 1.6: The hosohedron Hos(12) and the dihedron Dih(12).

its dual, the dodecahedron. They are defined by the map presentations

Aut+(Tet) =
〈
R,S

∣∣R3, S3, (RS)2
〉

Aut+(Oct) =
〈
R,S

∣∣R3, S4, (RS)2
〉

Aut+(Ico) =
〈
R,S

∣∣R3, S5, (RS)2
〉

Combinatorial data of these objects, which is standard fare, is listed in Appendix
B. The genus formula implies that platonic maps of genus 1 obey 1

p + 1
q = 1

2 . The
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Figure 1.7: The platonic solids as platonic maps: Tet, Cub, Oct, Dod, and Ico.

only solutions for (p, q) are (4, 4), (3, 6), and (6, 3). We leave the last case out of
consideration by taking the dual. The group Aut+(R) is thus a quotient of ∆+(3, 6, 2)
or ∆+(4, 4, 2), both of which are realized as discrete translation subgroups of the
euclidean plane E2 (subgroups of affine Coxeter groups):

∆+(3, 6, 2) =
〈

(1, 0),
(

1
2 ,

1
2

√
3
)〉

= A2

∆+(4, 4, 2) = 〈(1, 0), (0, 1)〉 = A2
1

Our map is thus a quotient π : E2 → E2/Λ by a sublattice Λ of A2
1 or A2. This

situation is illustrated in Figure 1.8. A subgroup Λ that yields a torus E2/Λ is a
lattice generated by two independent integral linear combinations of the lattice basis
〈b1, b2〉. Without loss of generality, we may assume that π((0, 0)) is a vertex of the
map. We analyze the two lattices separately.

For the lattice A2, the supposed existence of a rotation S around π((0, 0)) over π/3
forces the sublattice to be of the form 〈mb1 + nb2,−nb1 + (m + n)b2〉 (with (m,n) ∈
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b1

b2

(0, 0)

(m,n)

(−n,m+ n)

b1

b2

(0, 0)

(m,n)

(−n,m)

Figure 1.8: The lattices A2
1 and A2 in E2, yielding platonic maps of type (3, 6) (left)

and (4, 4) (right) with a fundamental domain indicated (grey).

Z2
≥0 − {(0, 0)}). Calling the rotation over π/3 around (the image under π of) the

triangle wedged in by the basis vectors R, we find that the translations S−2R : v 7→
v + b1 and S2R−1 : v 7→ v + b2 generate the whole translation group, leading to a
collection of platonic maps we call M1.1:(m,n) with standard map presentation

Aut+(M1.1(m,n)) =
〈
R,S

∣∣R3, S6, (RS)2, (S−2R)m(S2R−1)n, (S−2R)−n(S2R−1)m+n
〉

To write down its isomorphism type explicitly, we study the translation subgroup.
Its order equals m2 +mn+n2, the area of a fundamental domain. Let d = gcd(m,n).
We show that ord(π((1, 0))) = (m2+mn+n2)/d. For if i(m,n)+j(−n,m+n) = (k, 0),
then in/(m+n) = −j ∈ Z, so (m+n)/d divides i. Writing k = im−jn = (m2 +mn+
n2)i/(m + n), we see that k must be an integral multiple of (m2 + mn + n2)/d ∈ Z.
Since (m + n)/d(m,n) − n/d(−n,m + n) = ((m2 + mn + n2)/d, 0), we have proved
the claim. The quotient group is

(Z2/Λ)/〈π((1, 0))〉 ∼= Z2/〈(1, 0), (m,n), (−n,m+ n)〉 ∼= Z/〈n,m+ n〉 ∼= Zd

The quotient Zd can actually be found as a complementary subgroup, and so we find

Aut+(M(m,n)) ∼= (Z(m2+mn+n2)/d × Zd) o Z6.

Some extra combinatorial data is readily computed: v = (m2 +mn+n2), e = 3(m2 +
mn + n2), f = 2(m2 + mn + n2). A map of this family is reflexive if and only if the
reflection of E2 switching b1 and b2 leaves Λ invariant. This is equivalent to (n,m) ∈
Λ, and assuming without loss of generality m ≤ n, we see that either (n,m) = (m,n)
or (n,m) = (−n,m + n). This leads to the cases m = n and n = 0 respectively.
We can simplify the relators under one of these assumptions, and arrive at the two
1-parameter families R1.1:n, and R1.2:n (illustrated in Figure 1.9) defined by:

Aut+(R1.1:n) =
〈
R,S

∣∣R3, S6, (RS)2, [R,S2]n
〉
,

Aut+(R1.2:n) =
〈
R,S

∣∣R3, S6, (RS)2, [R,S]n
〉
.
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For the lattice A2
1, the supposed existence of a rotation S around π((0, 0)) over π/2

forces the sublattice to be of the form 〈mb1 + nb2,−nb1 +mb2〉 (with (m,n) ∈ Z2
≥0 −

{(0, 0)}). Calling the rotation over π/2 around (the image under π of) the square
wedged in by the basis vectors R, we find that the translations S−1R : v 7→ v + b1
and SR−1 : v 7→ v + b2 generate the whole translation group, leading to a collection
of platonic maps we call M1.2:(m,n) with standard map presentation

Aut+(M1.2(m,n)) =
〈
R,S

∣∣R4, S4, (RS)2, (S−1R)m(SR−1)n, (S−1R)−n(SR−1)m
〉

To write down its isomorphism type explicitly, we study the translation subgroup.
Its order equals m2 + n2, the area of a fundamental domain. Let d = gcd(m,n).
We show that ord(π((1, 0))) = (m2 + n2)/d. For if i(m,n) + j(−n,m) = (k, 0), then
in/m = −j ∈ Z, so m/d divides i. Writing k = im− jn = (m2 + n2)i/m, we see that
k must be an integral multiple of (m2 + n2)/d ∈ Z. Since m/d(m,n)− n/d(−n,m) =
((m2 + n2)/d, 0), we have proved the claim. The quotient group is

(Z2/Λ)/〈π((1, 0))〉 ∼= Z2/〈(1, 0), (m,n), (−n,m)〉 ∼= Z/〈n,m〉 ∼= Zd

The quotient Zd can actually be found as a complementary subgroup, and so we find

Aut+(M(m,n)) ∼= (Z(m2+n2)/d × Zd) o Z4.

Again, extra combinatorial data is readily computed: v = (m2 +n2), e = 2(m2 +n2),
f = (m2 + n2). Like we saw before, a map of this family is reflexive if and only
if the reflection of E2 switching b1 and b2 leaves Λ invariant. This is equivalent to
(n,m) ∈ Λ. We assume again without loss of generality that m ≤ n, but this time we
see that either (n,m) = (−n,m) or (n,m) = (m,n). This leads to the cases n = 0 and
m = n respectively. We can simplify the relators under one of these assumptions,
and arrive at the two 1-parameter families R1.3:n, and R1.4:n (illustrated in Figure
1.9) defined by:

Aut+(R1.3:n) =
〈
R,S

∣∣R4, S4, (RS)2, (RS−1)n
〉
,

Aut+(R1.4:n) =
〈
R,S

∣∣R4, S4, (RS)2, [R,S]n
〉
.
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Figure 1.9: The torus maps R1.1:3, R1.2:3, R1.3:3, and R1.4:3.
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2
Polynomial families of platonic maps

THIS chapter contains the defining building blocks for the rest of the thesis: poly-
nomial families of platonic maps. These recur again and again in attempts at

classification, examples of which can be found in Chapter 4 or Section 6.3, but to our
knowledge, the concept has not been formalized yet. We do so here. In the rest of
the chapter we list, in order of increasing complexity, polynomial families of maps
that we discovered, and ones that were already known.

The starting point is: can one find any pattern in the somewhat bewildering set of
(reflexive) platonic maps? Coxeter and Moser [CM1980] already indicated a few
general group-theoretic recipes for constructing whole families of maps. The Wiman
type I/II maps, and later on the Accola-Maclachlan maps and Kulkarni maps (see
Chapter 5) were discovered as forming sequences, each admitting of one coherent
description. From a more geometrical viewpoint, Sequin [Seq2010] recently con-
structed topological realizations in R3 of the Wiman type I/II and Accola-Maclachlan
maps that not only bring out their combinatorial patterns, but are also beautiful to
look at.

Inspired by these results, we stared long and hard at Marston Conder’s list of pla-
tonic maps of genus at most 101, and found additional patterns. Most importantly,
we want to make their existence crystal clear and describe the pattern in an exact
way. To this end, we formalize these patterns group-theoretically with the notion of
a polynomial family of platonic maps. One advantage gained by defining such a fam-
ily is that it furnishes us with succinct standard map presentations for all members
at once. The discovery of a new family also naturally leads to the follow-up ques-
tions “Can we visualize this family in an understandable way?” and “Can we find
(parametrized) algebraic models for all members of this family?”. We have not yet
gotten around to exploring those questions.

Definition 2.0.1. A (t-parameter) polynomial family of platonic maps F (p(n),q(n))
g(n) is

31
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a collection of platonic maps M(n), indexed by n = (n1, . . . , nt) ∈ Zt≥0 and defined
by map automorphism groups

Aut+(M(n)) =
〈
R,S

∣∣∣Rp(n), Sq(n), (RS)2, w1(n), . . . , wk(n)
〉

such that the following conditions hold:

1. p(n), q(n) ∈ Q[n] are integer-valued polynomials;
2. every relator wi(n) is a finite product of subwords wi(n) = wei1i1 · · ·w

eim(i)

im(i) with
m(i) ∈ Z≥0, the wij fixed words in the free group on R and S, and eij ∈ Q[n]
integer-valued polynomials;

3. each member F (p(n),q(n))
g(n) (n) is a platonic map of type (p(n), q(n)).

When there are multiple families with the same parameters, we affix numbers (1),
(2) etcetera to the family name, e.g. F (4,16n)(1)

32n−7 .

If p(n), q(n), and all eij(n) are constant, we get the same map for all parameter val-
ues. This degenerate case shall not be used. The group size |Aut+(M(n))| need
not be a polynomial. An example occurs in Section 2.10. Given the group size, the
genus formula allows one to compute the genera g(n). The Hurwitz bound implies
that g(n) can only be constant if it is 0 or 1. In Section 1.7 we have already met the
polynomial families living within these genera: the maps Hos(n) and R1.k:n.

To define a polynomial family of maps, it is not enough to simply write down a
random set of words wi(n). The group

Γ(n) := 〈w1(n), . . . , wk(n)〉∆
+(p(n),q(n),2) C∆+(p(n), q(n), 2)

must act torsion freely for all n ∈ Zt≥0. We also wish to get a good handle on our
polynomial families. Specifically, we want to know their group orders, from which
we can compute their genera. To prove that all members of a polynomial family have
a certain group order is a separate problem in each case; one has to analyze the group
structure of Aut+(M(n)). One way to do this is to look for a normal subgroup H(n)
with quotient Q(n) = Aut+(M(n))/H(n), such that both subgroup and quotient are
amenable to easy description. The group Aut+(M(n)) is then an extension of Q(n).
To define this extension, we have several tools at our disposal. If the subgroup is
abelian, we can define it with the conjugation action ofQ(n) onH(n) and a 2-cocycle
in H2(Q(n), H(n)). For completeness, we introduce these notions in the next section.
In most cases, we can even find Q(n) as a complement inside Aut+(M(n)) and can
use a semi-direct product for description. For some polynomial families of reflexive
platonic maps we prove the structural claims of Aut+(M(n)) by taking recourse to
Aut(M(n)). Identities that are useful in all of the proofs are RS = S−1R−1 and
others derived from the three standard relators. Besides these, the use of the extra
relator number one will be indicated in a formula manipulation step by e1, etcetera.

Remark 2.0.2. For some polynomial families, one can add or leave out a relator and
get another polynomial family. In this way, a whole family tree may be constructed.
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Our definition might be too general in the following way. The only polynomial fam-
ilies we have found can be described with one or two parameters. Whether any
family exists that can not be described with fewer than three parameters is doubtful:
varying the type (p, q) requires at most two parameters and it seems unlikely that
∆+(p, q, 2) contains a sequence of normal subgroups parametrizable by some words
with polynomial exponents in the two generators. But who knows?

We could have made our definition more general in the following way. The relators
we allow for a polynomial family are built up as a finite product of words whose base
is a constant word and exponent a polynomial. These expressions have “depth” 1.
We could also have allowed finite products of powers with polynomial exponent but
base a depth 1 expression, forming depth 2 expressions, and so on. The general class
of polynomial words of depth n is then defined recursively starting from {R,S} and
building up with either a product operation or taking a polynomial power. But since
we have not discovered families of higher depth, we have no need for this generality.

2.1 Group extensions

The group structure of a polynomial family may involve a non-split group extension.
We list the concepts relevant to us here. See [Rob1982, Ch.11] for a thorough study.

Definition 2.1.1. A group G is called a group extension of the group Q by the group
N if there is an exact sequence

1 −→ N
i−→ G

π−→ Q −→ 1

In this situationN ≤ G. Let us identifyN with its image i(N) for simplicity. Because
N = ker(π) it is normal in G. A set-theoretic function σ : Q→ G for which σπ = 1 is
called a transversal function. If one can find a transversal function that is a homomor-
phism, or in other words if σ is a section of π, then we call the sequence split. We can
then write G as a semi-direct product G ∼= N oc Q with the conjugation action c on
N defined by c(g) : n 7→ σ(g)−1nσ(g).

If the sequence is not split, but N is abelian, then any transversal function still gives
us a homomorphism G → Aut(N) because the conjugation action of an element
g ∈ G on N is well-defined and depends only on the coset Ng. But we need the
extra information of a 2-cocycle to specify the extension. Because we shall need more
terminology from this field in Chapter 6, we give a slightly broader setup. We write
the operation of N as addition.

Definition 2.1.2. Let N,Q be groups, N abelian, with a homomorphism σ : Q →
Aut(N). The cochain group Ck(Q,N) is the set of all maps Qk → N with pointwise
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addition. The coboundary operator ∂ = ∂q : Ck(Q,N)→ Ck+1(Q,N) is defined by

∂(c)(q1, . . . , qk+1) := c(q2, . . . , qk+1)q1 +

i=k∑
i=1

(−1)ic(q1, . . . , qiqi+1, . . . , qk+1)

+ (−1)k+1c(q1, . . . , qk).

We define the k-cocycle groupZk(Q,N) to be ker(∂k) ≤ Ck(Q,N). The k-coboundary
group Bk(Q,N) is im(∂k−1) ≤ Ck(Q,N).

The coboundary operator is a chain map, i.e. ∂ ◦ ∂ = 0. Hence Bk(Q,N) ≤ Zk(Q,N)
and we can define the k-th cohomology group

Hk(Q,N) := Zk(Q,N)/Bk(Q,N).

In the special case k = 2, we find the following condition on a 2-chain c for it to be a
2-cocycle:

c(q2, q3)q1 − c(q1q2, q3) + c(q1, q2q3)− c(q1, q2) = 0 (∀q1, q2, q3 ∈ Q).

Fact 2.1.3. A 2-cocycle c ∈ Z2(Q,N) determines a group extension by the multiplica-
tion law

(q1, n1) · (q2, n2) = (q1q2, c(q1, q2) + nq21 + n2) (qi ∈ Q,ni ∈ N).

Two 2-cocycles determine the same group extension if they differ by a 2-coboundary,
and we have a bijection between the extensions of Q by an abelian group N with
fixed conjugation action (Q-module structure) and the cohomology groupH2(Q,N).

Fact 2.1.4. The group extension determined by a 2-cocycle is split if and only if the
2-cocycle is a coboundary.

Below, we shall write down a 2-cocycle C = (c(q1, q2))q1,q2∈Q as an array of group
elements.

2.2 Polynomial families with v = 1

2.2.1 — The polynomial family Wi1(n) = F (2n+1,4n+2)
n (Wiman type I maps)

Proposition 2.2.1. The group

G(n) =
〈
R,S

∣∣R2n+1, S4n+2, (RS)2, RS−2n
〉

is isomorphic to Z4n+2. These groups define a polynomial family of reflexive platonic
maps with v = 1, e = 2n+ 1, and f = 2.
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Proof. The extra relator shows that R ∈ 〈S〉. Moreover, it implies R2n+1 = S2n(2n+1)

= 1 and (RS)2 = S4n+2 = 1, so the presentation is equivalent to
〈
S
∣∣S4n+2

〉
. To

show reflexivity we compute that R−1S2n e1
= S−2nS2n = 1 and apply the chirality

criterion.

Remark 2.2.2. In fact, Aut(F (2n+1,4n+2)
n (n)) ∼= Dih8n+4. A few members of this

family from the Conder list are: Dih(1), R1.2:1, R2.4, R3.9.

2.2.2 — The polynomial family F (4n,4n)
n (Diagonal Wiman type II maps)

Proposition 2.2.3. The group

G(n) =
〈
R,S

∣∣∣R4n, S4n, (RS)2, RS−(2n−1)
〉

is isomorphic to Z4n. These groups define a polynomial family of reflexive platonic
maps with v = 1, e = 2n and f = 1.

Proof. The extra relator shows thatR ∈ 〈S〉. Moreover, it impliesR4n = S4n(2n−1) =
1 and (RS)2 = S4n = 1, so the presentation is equivalent to

〈
S
∣∣S4n

〉
.

Remark 2.2.4. In fact, Aut(R) ∼= Dih8n. A few members of this family are: R1.3:1,
R2.6, R3.12. For n = 0 we get the cell decomposition of the sphere without 1-cells,
which we have excluded as a map because it has no edges. These maps are the D1-
maps (cf. Chapter 3) of the polynomial family Wi2(n) = F (4,4n)

n called the “Wiman
type II maps”. That name will be clarified in Chapter 5. The present family thus
consists of “diagonal Wiman type II maps”. The Wiman type II maps satisfy v = 2.
A visualization of the first few is shown in Figure 2.1. Such visualizations bring out
how a pattern in group structure translates into a pattern in topological structure.
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Figure 2.1: The maps R1.4:1, R2.3, R3.7, and R4.5 of the polynomial family F (4,4n)
n of

Wiman type II maps.
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2.3 Polynomial families with v = 2

All maps with two vertices are determined by two parameters (q, k), as derived in
Section 4.2. Any 2-vertex map R has a standard map presentation of the form

Aut+(R) =
〈
R,S

∣∣∣Rp(q), Sq, (RS)2, R−1SRS−k
〉
.

The number of polynomial families within this set is most likely infinite. The reason
to indicate some of them is that these polynomial families can appear in the solution
to other classification problems. Because of Theorem 4.2.1, their polynomiality is
clear once the relations k2 ≡ 1 mod q and p = 2q/ gcd(k+ 1, q) have been verified. In
Table 2.1 we list the families we found by the parameters (p, q, k) and the genus g for
each family.

2.4 Polynomial families with v = 4

2.4.1 — The polynomial family AM(n) = F (4,2n)
n−1 (Accola-Maclachlan maps)

This family will be encountered again in Chapters 5 and 6. Its Riemann surface
realizations are the Accola-Maclachlan curves. In this chapter we only present a
group-theoretical analysis. We also note that this is a subfamily of Coxeter’s family
{p, q | 2}, presented later as family 2.10.3.

Proposition 2.4.1. The groups

G(n) =
〈
R,S

∣∣R4, S2n, (RS)2, (RS−1)2
〉

have order 8n. They define a polynomial family of reflexive platonic maps with
v = 4, e = 4n, f = 2n.

Proof. The subgroup H(n) := 〈R2, S〉 is normal in G(n) because clearly S−1R2S ∈
H(n) and R−1SR = R−2S−1 ∈ H(n). It has the complement 〈RS〉. Moreover,

[R2, S] = R−2S−1R2S = R(RS−1R)RS
e1
= RSRS = 1

and we conclude that G(n) = (〈R2〉 × 〈S〉) o 〈RS〉 ∼= (Z2 × Z2n) o Z2 of order 8n.
The conjugation action that specifies the semi-direct product is

conRS : (R2, S) 7→ (R2, R2S−1)

The proof shows that the subgroup 〈S,R−1SR〉 = 〈S,R−2S−1〉 = H(n) has index 2
in G(n). Therefore, each member has a diagonal map. The resulting diagonal family
of type (2n, 2n) satisfies v = 2 and [R,S] = 1, see Table 2.1. Some members from the
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p(n) q(n) k(n) g(n) Conder list maps
2 n −1 0 Hos(n)
4 4n 2n− 1 n R1.4:1,R2.3,R3.7

6 9n− 6 6n− 5 3n− 2 R∨1.2:1,R4.9,R7.8

6 9n− 3 3n− 2 3n− 1 R2.5,R5.11,R8.6

10 25n− 20 10n− 9 10n− 8 R∨2.4,R12.6,R22.14

10 25n− 15 5n− 4 10n− 6 R4.11,R14.9,R24.8

10 25n− 10 20n− 9 10n− 4 R6.10,R16.13,R26.11

10 25n− 5 15n− 4 10n− 2 R8.8,R18.6,R28.29

2n 2n 1 n− 1 Hos(2),R1.4:1,R2.5

4n− 2 8n− 4 4n− 1 4n− 4 Hos(4),R4.9,R8.8

6n− 4 18n− 12 12n− 7 9n− 9 Hos(6),R9.25,R18.8

6n− 2 18n− 6 6n− 1 9n− 6 R3.7,R12.6,R21.31

8n− 6 32n− 24 24n− 31 16n− 16 Hos(8),R16.13,R32.9

8n− 2 32n− 8 8n− 1 16n− 8 R8.6,R24.10,R40.17

8n 8n 4n+ 1 4n− 1 R3.10,R7.11,R11.13

12n− 10 18n− 15 6n− 4 9n− 9 Hos(3),R9.29,R18.11

12n− 2 18n− 3 12n− 1 9n− 3 R6.10,R15.19,R24.14

16n− 4 32n− 8 24n− 13 16n− 6 R10.21,R26.13

16n 32n 8n− 9 16n− 14 R2.3,R18.9

20n− 18 50n− 45 30n− 26 25n− 25 Hos(5),R25.40,R50.14

20n− 14 50n− 35 10n− 6 25n− 20 R5.11,R30.9,R55.53

20n− 6 50n− 15 40n− 11 25n− 10 R15.17,R40.20,R65.138

20n− 2 50n− 5 20n− 1 25n− 5 R20.9,R45.34,R70,14

24n− 16 72n− 48 12n− 7 36n− 27 R9.24,R45.32,R81.173

24n− 8 72n− 24 60n− 19 36n− 15 R21.30,R57.66,R93.25

2n− 2 n2 − 1 n 1
2 (n+ 1)(n− 2) [CM1980]

2n+ 2 n2 − 1 −n 1
2n(n− 1) [CM1980]

Table 2.1: Several polynomial families of (reflexive) platonic maps with v = 2.

Conder list are: Dih(4), R1.3:2,R2.2, R3.6, R4.4; four of them are shown in Figure 2.2.

2.4.2 — The polynomial family Kul(n) = F (4,8n)
4n−1 (Kulkarni maps)

The maps of this family correspond to the Kulkarni curves, also discussed in Chap-
ters 5 and 6.

Proposition 2.4.2. The groups

G(n) =
〈
R,S

∣∣∣R4, S8n, (RS)2, R−2SR2S−(4n+1)
〉

have order 32n. They define a polynomial family of reflexive platonic maps with
v = 4, e = 16n, f = 8n.
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Figure 2.2: The maps R1.3:2, R2.2, R3.6, and R4.4 of the polynomial family F (4,2n)
n−1 of

Accola-Maclachlan maps (top row) and their D1-maps (bottom row).

Proof. Just like for the Accola-Maclachlan maps, the subgroup H(n) := 〈R2, S〉 is
normal in G(n) because clearly S−1R2S ∈ H(n) and R−1SR = R−2S−1 ∈ H(n). It
has the complement 〈RS〉, which acts by the following conjugations:

RS(R2)RS = RSR−1S = S−1R−2S,

RS(S)RS = RSR−1 = S−1R−2.

Mimicking this structure, we can instantiate H(n) as a semi-direct product Z8n o Z2

with cyclic generators x, y respectively and conjugation action y−1xy = x−(4n+1).
This group can be extended by Z2 = 〈z〉 with conjugation action z−1xz = x−1y−1

and z−1yz = x−1y−1x. Setting R := zx−1 and S := x, we get back our original
relators, whence

G(n) = (〈S〉o 〈R2〉) o 〈RS〉 ∼= (Z8n o Z2) o Z2.

The parameters are thus proved correct.

Some members from the Conder list are: R3.5, R7.3, R11.2, R15.6.

2.5 Polynomial families with v = 6

2.5.1 — The polynomial family F (6,2n)
2n−2 of type (6, g + 2)
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This family is also a subfamily of the family 2.10.3.

Proposition 2.5.1. The groups

G(n) :=
〈
a, b, c

∣∣ a2, b2, c2, (ab)6, (bc)2n, (ca)2, (abcb)2
〉

have order 24n. They define a polynomial family of reflexive platonic maps of genus
2n− 2 and type (6, 2n), with parameters v = 6, e = 6n, and f = 2n. Furthermore,

Aut+(R(n)) =
〈
R,S

∣∣R6, S2n, (RS)2, (RS−1)2
〉
.

Proof. The subgroup 〈(ab)3c〉 of G(n) is normal by the following computations:

a((ab)3c)a = bababac = (ab)−3c = (ab)3c,

b((ab)3c)b = baba(babcb)
e1
= babacba

e1
= cbababa = ((ab)3c)−1,

c((ab)3c)c = c(ab)3 = c(ab)−3 = ((ab)3c)−1.

It has the complement 〈a, b〉 ∼= Dih12, as can readily be checked by computing a
presentation for the quotientG(n)/H(n). The conjugation action was just computed.

Taking Z2n = 〈x〉 and Dih12 =
〈
a, b
∣∣ a2, b2, (ab)6

〉
with conjugation action of the latter

on x analogous to the one above, we get a semi-direct product with the presentation
of G(n) by defining c := (ab)−3x:

c2 = (ab)−3x(ab)3x = x−1x = 1,

ac = a(ab)3x = (ba)3ax = (ab)3xa = ca,

(bc)2 = (b(ab)3x)2 = (ab)3bxb(ab)3x = (ab)3x−1(ab)3x = x2 =⇒ (bc)2n = 1,

(abcb)2 = (ab)4xb(ab)4xb = (ab)4x(ba)4bxb = xbxb = xx−1 = 1.

This proves that
G(n) = 〈(ab)3c〉o 〈a, b〉 ∼= Z2n o Dih12

is of order is 24n. The other claims are now straightforward.

A few members from the Conder list are: Dih(6), R∨2.2, R4.7, R6.7.

2.5.2 — The polynomial family F (6,3n)
3n−2 of type (6, g + 2)

Proposition 2.5.2. The groups

G(n) =
〈
R,S

∣∣R6, S3n, (RS)2, [R2, S], (RS−2)2
〉

have order 18n. They define a polynomial family of reflexive platonic maps of genus
3n− 2 and type (6, 3n). The maps have parameters v = 6, e = 9n, and f = 3n.
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Proof. Let H(n) := 〈R2, S〉, which is abelian by relator (e1). Some deliberation tells
one that H(n)CG(n), the most difficult part of which is

R−1SR = R−2S−1 ∈ H(n).

Clearly, H(n) has the complement 〈RS〉. We now set Z3 = 〈x〉, Z3n = 〈y〉, and
Z2 = 〈z〉, we form (Z3×Z3n)oZ2 with conjugation action conz : (x, y) 7→ (x, y−1x−1).
Then (think zy−1 = R and y = S)

(zy−1)2 = (zy−1z)y−1 = yxy−1 = x =⇒ (zy−1)6 = 1,

(zy−1)2 = xy = yx = y(zy−1)2 and

(zy−3)2 = (zy−3z)y−3 = (xy)3y−3 = x3y3y−3 = 1

show that 〈zy−1, y〉 has our original presentation for 〈R,S〉. We conclude that

G(n) = (〈R2〉 × 〈S〉) o 〈RS〉 ∼= (Z3 × Z3n) o Z2.

The resulting platonic map is reflexive, since (R−1S2)2 = (R−1(RS−2)−1R)2 = 1
and obviously [R−2, S−1] = 1. The other claims are straightforward.

A few members from the Conder list are: R∨1.1:1, R4.8, R7.6, R10.18, R13.12.

2.6 Polynomial families with v = 8

2.6.1 — The polynomial family F (6,9n−3)
12n−7 of type (6, 3

4 (g + 3))

Proposition 2.6.1. The groups

G =
〈
R,S

∣∣∣R6, S9n−3, (RS)2, (RS−2)2, R−3SR3S−(3n−2)
〉

have order 24(3n−1). They define a polynomial family of reflexive platonic maps of
genus 12n− 7 and type (6, 9n− 3). The maps have parameters v = 8, e = 12(3n− 1),
and f = 4(3n− 1).

Proof. Note that
R−1S3R = R−1S2SR

e1
= S−2RSR = S−3,

so 〈S3〉CG(n). The quotient has presentation

G(n)/〈S3〉 =
〈
R,S

∣∣∣R6
, S

3
, (RS)2, (RS

−2
)2, [R

3
, S]
〉
.

The quotient group turns out to be isomorphic to Alt4 × Z2, the center being 〈R3〉.
Some more manipulation shows that this quotient group can be realized as the com-
plement 〈R2, RS〉, and so

G(n) = 〈S3〉o 〈R2, RS〉 ∼= Z3n−1 o (Alt4 × Z2)
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with conjugation action defined by conR2 : S3 7→ S3 and conRS : S3 7→ S−3. The
fact that the maps are reflexive follows from (R−1S2)2 = (R−1(RS−2)−1R)2 = 1 and
taking the inverse of the second extra relator. The other claims are straightforward.

A few members from the Conder list are: R5.10, R17.23, R29.13, R41.34.

2.6.2 — The polynomial family F (4,3n)
3n−3 of type (4, g + 3)

Proposition 2.6.2. The groups

G(n) =
〈
R,S

∣∣R4, S3n, (RS)2, (RS−2)2
〉

have order 24n. They define a polynomial family of reflexive platonic maps of genus
3n− 3 and type (4, 3n). These maps have parameters v = 8, e = 12n, and f = 6n.

Proof. We derive

R−1S3R = (R−1S2)SR
e1
= S−2RSR = S−2S−1 = S−3.

This shows that 〈S3〉 C G(n). Computing a presentation for the quotient yields
quickly that G(n)/〈S3〉 ∼= Sym4. We have shown the existence of an exact sequence

1 −→ 〈S3〉 −→ G(n) −→ Sym4 −→ 1.

When 3 - n, then 〈S3〉 has 〈R,Sn〉 as a complement: the computations

(RSn)2 = RSn−1SRSSn−1 = RSn−1R−1Sn−1 = S−(n−1)Sn−1 = 1 if n ≡ 1 mod 3

(RS−n)2 = RS−n−1SRSS−n−1 = RS−n−1R−1S−n−1 = Sn+1S−n−1 = 1 if n ≡ 2 mod 3

together with R4 = (Sn)3 = 1 show that |〈R,Sn〉| ≤ 24, but all cosets of 〈S3〉 are
readily checked to contain a representative of 〈R,Sn〉. Therefore 〈R,Sn〉 ∼= Sym4

and the group Zn o Sym4 are seen to have the presentation of G(n) when taking
the conjugation action following from the above. Hence, whenever 3 - n, the exact
sequence splits and

G(n) = 〈S3〉o 〈R,Sn〉 ∼= Zn o Sym4.

All claims then follow. But the case 3 | n needs special treatment. We deduce

R−2S3R2 = R−1S−3R = S3 =⇒ [R2, S3] = 1,

S−3[R2, S]S3 = [R2, S]S−3S3 = [R2, S] =⇒ [[R2, S], S3],

[S,R2] = S−1R−2SR2 = S−1RS−1R
e1
= SR−1SR = SR−2S−1 = SR2S−1 =

= R−1S−1RS−1 e1
= R−1SR−1S = R−2S−1R2S = [R2, S],

R2[R2, S]R2 = S−1R2SR2 = [S,R2] = [R2, S].
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It follows that H(n) = 〈R2, [R2, S], S3〉 is abelian. We find the quotient G(n)/H(n) ∼=
Sym3 and with some more work the conjugation action

conR : (R2, [R2, S], S3) 7→ (R2, [S,R2], S−3)

conS : (R2, [R2, S], S3) 7→ ([S,R2], R2, S3)

and 2-cocycle (rows and columns indexed by ([1], [S−1], [R], [S], [RS−1], [RS])):
· · · · · ·
· S−3 RSR−1S · RSR−1S RSR−1S−2

· · R2 · R2 R2

· · R2 S3 R2S3 R2

· S3 RSR−1S · RSR−1S RS−1RS2

· · · S−3 S−3 ·


Taking the group Z2

2 × Zn and constructing an extension by the above cocycle and
conjugation action yields a group with our presentation, so |G(n)| = 24n and the
other parameters follow. Admittedly, this description also works when 3 - n, but is
more involved than the analysis as a direct product.

Reflexivity of all resulting platonic maps is a consequence of the fact that (R−1S2)2 =
(R−1(RS−2)−1R)2 = 1.

Some members from the Conder list are: Cub, R3.4, R6.3, R9.11, R12.1, R15.5.

Each family member R(n) is a platonic cover of F (4,3n)
3n−3 (1) = Cub: form the quotient

map R(n)/〈S3〉. Computing a presentation for the quotient G(n)/〈S,R−1SR〉G(n)

shows quickly that [G(n) : 〈S,R−1SR〉] = 2. By Theorem 3.1.1, every family member
R(n) has a diagonal map D(R(n)) of type (3n, 3n). This gives rise to a new reflexive
polynomial family F (3n,3n)

3n−3 with standard map presentation

Aut+(D(R(n))) =
〈
R,S

∣∣R3n, S3n, (RS)2, R3S3
〉

of order 12n and parameters v = 4, e = 6n, f = 4. Some members from the Conder
list are: Tet,R3.8, R6.9, R9.27, R12.8, R15.18. A map R(n) of this new family is an
n-cover of F (3n,3n)

3n−3 (1) = Tet: form the quotient map R(n)/〈R3, S3〉 = R(n)/〈S3〉.

2.6.3 — The polynomial family F (4,4n)
4n−3 of type (4, g + 3)

Proposition 2.6.3. The groups

G(n) =
〈
R,S

∣∣R4, S4n, (RS)2, [R2, S2]
〉

are of order 32n. They define a polynomial family of reflexive platonic maps of
genus 4n− 3 and type (4, 4n). The maps have parameters v = 8, e = 16n = 4g + 12,
f = 8n = 2g + 6.
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Proof. Note first that RS−2R = R−1R2S−2R = R−1S−2R2R = R−1S−1S−1R−1 =
[R,S]. From this we deduce four identities:

R−1S2R = R−1S2R−1R2 = [R,S]−1R2

R−1[R,S]R = R−2S−1(RSR) = R−2S−2

S−1R2S = S−1R−1R−1S = S−1R−1SRS2 = [R,S]−1S2

S−1[R,S]S = S−1R−1S−1RS2 = RSS−1RS2 = R2S2

Together, these prove that H(n) := 〈R2, S2, [R,S]〉 C G(n). The quotient is quickly
seen to be Z2

2. The structure of H(n) is analyzed by computing

R−2[R,S]R2 = R−2R−1S−1RSR2 = RS−1S−1R−1R2 = RS−2R = [R,S]

S−2[R,S]S2 = S−2(SR2S)S2 = S−2S2(SR2S) = [R,S]

This shows that H(n) is abelian. Now [R,S]2 = SR2SSR2S = SS2R2R2S = S4 tells
us that ([R,S]S−2)2 = 1 and hence H(n) is a quotient of 〈R2〉 × 〈[R,S]S−2〉 × 〈S2〉.
The extension

1 −→ H(n) −→ G(n) −→ Z2
2 −→ 1

is described by the following conjugation action (as just proven) and 2-cocycle (by
some additional effort, rows/columns indexed by ([1], [R], [S], [RS])):

conR : (R2, [R,S]S−2, S2) 7→ (R2, [R,S]S−2, R2S−2)
conS : (R2, [R,S]S−2, S2) 7→ ([R,S]−1S2, R2, S2)


· · · ·
· R2 · R2

· RS−2R S2 R2

· S−2 RS2R−1 ·


Defining the extension of Z2

2×Z2n by the analogous conjugation and 2-cocycle gives
it the presentation above and this completes our analysis: |G(n)| = 32n, ord(R) = 4,
ord(S) = 4n and the other parameters follow. It is immediate from the presentation
that the chirality criterion is satisfied.

Members from the Conder list include: R1.4:2, R5.6, R9.10, R13.4.

A computation of a presentation forG(n)/〈S,R−1SR〉G(n) yields that the index [G(n) :
〈S,R−1SR〉] = 2, so each family member R(n) has a diagonal map D(R(n)). This
gives rise to a diagonal family F (4n,4n)

4n−3 with standard map presentation

Aut+(D(R(n))) =
〈
R,S

∣∣R4n, S4n, (RS)2, [R,S2], [R2, S], R4S4
〉

of order 16n and parameters v = 4, e = 8n = 2g + 6, f = 4. (We could leave out
the third extra relator.) Some members from the Conder list are: R1.3:2, R5.13, R9.28,
R13.19.
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2.7 Polynomial families with v = 16

2.7.1 — The polynomial family F (4,4n)
8n−7 of type (4, 1

2 (g + 7))

Proposition 2.7.1. The groups

G(n) =
〈
R,S

∣∣R4, S4n, (RS)2, (RS−1)4, (RS−3)2
〉

have order 64n. They define a polynomial family of reflexive platonic maps of genus
8n − 7 and type (4, 4n). These maps have parameters v = 16, e = 32n = 4(g + 7),
f = 16n = 2(g + 7).

Proof. We deduce

R−1 = SRS
e2
= S(S3R−1S3)S = S4R−1S4 =⇒ R−1S4R = S−4,

and so 〈S4〉CG(n). The quotient group Q(n) = G(n)/〈S4〉 has presentation

Q(n) =
〈
R,S

∣∣∣R4
, S

4
, (RS)2, (RS

−1
)4, (RS

−3
)2
〉
.

We can delete the last relator because RS
−3

= RS. Either by coset enumeration (us-
ing a computer algebra system), or by noticing that this is Aut+(R1.3:4) and looking
back at Section 1.7, we gain the insight that Q(n) is of order 64 and isomorphic to a
semi-direct product Z2

4oZ4. To finish a complete description of the structure ofG(n)
and thereby a proof that its order is as claimed, we need to describe the extension of
Q(n) by 〈S4〉. Note that we have already deduced the conjugation action of R and
S on 〈S4〉, so it suffices to find the 2-cocycle describing this extension. This can be
done, but the result is a bit unwieldy. An alternative proof is furnished as follows.
Consider the group

G∞ =
〈
R,S, T

∣∣R4, (RS)2, (RS−1)4, (RS−3)2, TS−4
〉
.

We know that G(n) = G∞/〈Tn〉 and 〈T 〉CG∞ is of index 64. Set

t(n) :=

(
1 0
n 1

)
.

We can extend the assignment T 7→ t(1) to a linear representation of 〈T 〉. This repre-
sentation can be induced up to a representation ρ of G∞ having degree 128. We have
t(1)n = t(n) for any n ∈ Z, so reducing mod n yields a representation over Z/nZ
with ord(ρ(T )) = n. This implies |G(n)| = 64n. Reflexivity of the maps follows from
(R−1S)4 = (R−1(RS−1)−1R)2 = 1 and (R−1S3)2 = (R−1(RS−3)−1R)2 = 1.

Some members from the Conder list are: R1.3:4, R9.7, R17.12.

Computation of a presentation for the quotient group G(n)/〈R−1SR, S〉G(n) quickly
yields that [G(n) : 〈R−1SR, S〉] = 2. So each family member R(n) has a diagonal
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map D(R(n)), giving rise to a polynomial family F (4n,4n)
8n−7 of type (4n, 4n). It has the

standard map presentation

Aut+(D(R(n))) =
〈
R,S

∣∣R4n, S4n, (RS)2, [RS, SR], R4S4
〉

of order 32n with parameters v = 8, e = 16n = 2(g + 7) and f = 8. Some members
from the Conder list are: R1.4:2, R9.22, R17.36.

2.7.2 — The polynomial family F (4,6n)
12n−7 of type (4, 1

2 (g + 7))

Proposition 2.7.2. The groups

G(n) =
〈
R,S

∣∣R4, S6n, (RS)2, R−1S6RS6, [R2, S3]
〉

have order 96n. They form a polynomial family of reflexive platonic maps of genus
12n − 7 and type (4, 6n). These maps have parameters v = 16, e = 48n = 4(g + 7),
and f = 24n = 2(g + 7).

Proof. The relator (e1) immediately shows us that 〈S6〉CG(n). The quotientQ(n) :=
G(n)/〈S6〉 ∼= G(1) has presentation

Q(n) =
〈
R,S

∣∣∣R4
, S

6
, (RS)2, [R

2
, S

3
]
〉
.

Coset enumeration and some extra computations show that this is isomorphic to a
semi-direct product 〈R2

, S
3
, S
−1
R

2
S,RS

2
R
−1
S

2〉 o 〈RS,R2
S

2
R

2〉 ∼= Z4
2 o Sym3 of

order 96, but we will step over the details. In the same way as in Proposition 2.7.1 one
proves that |G(n)| ≥ 96n. This completes the proof that the groups have the order as
claimed. The map parameters follow easily. Reflexivity of the maps is made clear by
the computations RS−6R−1S−6 e1

= RR−1S6RR−1S−6 = 1 and [R−2, S−3]
e2
= 1.

Some members from the Conder list are: R5.4, R17.10, R29.2.

Computation of a presentation for the quotient group G(n)/〈R−1SR, S〉G(n) quickly
yields that [G(n) : 〈R−1SR, S〉] = 2. So each family member R(n) has a diagonal
map D(R(n)), giving rise to a polynomial family of reflexive platonic maps F (6n,6n)

12n−7

of type (6n, 6n). Its members have the standard map presentation

Aut+(D(R(n))) =
〈
R,S

∣∣R6n, S6n, (RS)2, [RS, SR], SR4SR−2
〉

of order 48n with parameters v = 8, e = 24n = 2(g+ 7), f = 8. Some members of the
Conder list are: R5.10, R17.34, R29.26.

2.7.3 — The polynomial family F (4,8n)
16n−7 of type (4, 1

2 (g + 7))

Proposition 2.7.3. The groups

G(n) =
〈
R,S

∣∣R4, S8n, (RS)2, (RS−3)2, (RS−1)4S4n
〉
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have order 128n. They define a polynomial family of reflexive platonic maps of
genus 16n − 7 and type (4, 8n). These maps have parameters v = 16, e = 64n =
4(g + 7), f = 32n = 2(g + 7).

Proof. Exactly like in Proposition 2.7.1 we derive R−1S4R = S−4 and thereby that
〈S4〉CG(n). The quotient Q(n) = G(n)/〈S4〉 has presentation

Q(n) =
〈
R,S

∣∣∣R4
, S

4
, (RS)2, (RS

−3
)2, (RS

−1
)4
〉
,

which is isomorphic to Aut+(R1.3:4) ∼= Z2
4 o Z4, as in aforementioned proposition.

To complete the proof that the extension G(n) of Q(n) by 〈S4〉 has order 128n, we
construct a matrix representation for it by viewing the group as the equivalent

G̃(n) =
〈
R,S, T

∣∣R4, TS−4, T 2n, (RS)2, (RS−3)2, (RS−1)4Tn
〉
.

We have shown above that 〈T 〉C G̃(n) is of index 64. Now again set

t(k) :=

(
1 0
k 1

)
∈ GL2(Z/2nZ)

and consider the linear representation T k 7→ t(1)k = t(k). We induce it up to a
faithful representation ρ of G̃(n) having degree 128. The representation satisfies
ord(ρ(T )) = 2n and by inspection it becomes clear that the image ρ(G(n)) fullfills
all group relations. This finishes the proof that |G(n)| = 128n and defines a platonic
map of the claimed type. The other parameters follow readily. Reflexivity of the
maps follows from (R−1S3)2 = (R−1(RS−3)−1R)2 = 1 and

(R−1S)4 = (R−1(RS−1)−1R)4 = R−1(RS−1)4R
e2
= R−1S−4nR = S4n.

Some members from the Conder list are: R9.8, R25.12, R41.14.

Computation of a presentation for the quotient group G(n)/〈R−1SR, S〉G(n) quickly
yields that [G(n) : 〈R−1SR, S〉] = 2. So each family member R(n) has a diagonal
map D(R(n)), giving rise to a polynomial family F (8n,8n)

16n−7 of type (8n, 8n). It has the
standard map presentation

Aut+(D(R(n))) =
〈
R,S

∣∣R8n, S8n, (RS)2, (R2S2)2, R4S4
〉

of order 64n with parameters v = 8, e = 32n = 2(g + 7), f = 8. Some members from
the Conder list are: R9.23, R25.37, R41.67.

2.7.4 — The polynomial family F (4,12n)
24n−7 of type (4, 1

2 (g + 7))

Proposition 2.7.4. The groups

G(n) =
〈
R,S

∣∣R4, S12n, (RS)2, (RS−5)2, R2S3R2S6n−3
〉

have order 192n. They define a polynomial family of reflexive platonic maps of
genus 24n − 7 and type (4, 12n). These maps have parameters v = 16, e = 96n =
4(g + 7), f = 48n = 2(g + 7).
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Proof. Parallel to the reasoning in Proposition 2.7.1 we deduce

R−1 = SRS
e2
= S(S5R−1S5)S = S6R−1S6 =⇒ R−1S6R = S−6,

showing that 〈S6〉CG. The quotient Q(n) = G(n)/〈S6〉 ∼= G(1) has presentation

Q(n) =
〈
R,S

∣∣∣R4
, S

6
, (RS)2, (RS

−5
)2, [R

2
, S

3
]
〉

It can be computed by coset enumeration and some analysis to be isomorphic to a
semi-direct product Z4

2 o Sym3 of order 96. To complete the proof that the extension
G(n) of Q(n) by 〈S6〉 has order 192n, we construct a matrix representation for it by
viewing the group as the equivalent

G̃(n) =
〈
R,S, T

∣∣R4, TS−6, T 2n, (RS)2, (RS−5)2, [R2, S3]Tn
〉
.

We have shown above that 〈T 〉C G̃(n) is of index 96. Now again set

t(k) :=

(
1 0
k 1

)
∈ GL2(Z/2nZ)

and consider the linear representation defined by T k 7→ t(1)k = t(k). We induce it
up to a faithful representation ρ of G̃(n) having degree 192. This representation will
have ord(ρ(T )) = 2n and fullfill all group relations; all this can readily be checked by
taking a specific instance of n and considering that the form of ρ(R) and ρ(S) will be
analogous for all n. This finishes the proof that |G(n)| = 192n and defines a platonic
map of the claimed type. The other parameters follow readily. Reflexivity of the
maps follows from (R−1S5)2 = (R−1(RS−5)−1R)2 = 1 and R−2S−3R−2S−(6n−3) e2=
S6n−3S−(6n−3) = 1.

Some members from the Conder list are: R17.11, R41.10, R65.43.

Computation of a presentation for the quotient group G(n)/〈R−1SR, S〉G(n) quickly
yields that [G(n) : 〈R−1SR, S〉] = 2. So each family member R(n) has a diagonal
map D(R(n)), giving rise to a polynomial family F (12n,12n)

24n−7 of type (12n, 12n). It has
the standard map presentation

Aut+(D(R(n))) =
〈
R,S

∣∣∣R12n, S12n, (RS)2, R−1S3RS−(6n+3), SRS−1R2SR−1S
〉

of order 96n with parameters v = 8, e = 48n = 2(g + 7), f = 8. Some members from
the Conder list are: R17.35, R41.63, R65.136.

2.7.5 — The polynomial family F (4,16n)(1)
32n−7 and F (4,16n)(2)

32n−7

Proposition 2.7.5. The groups

G1(n) =
〈
R,S

∣∣∣R4, S16n, (RS)2, R−1S4RS−(8n−4), (RS−1)4
〉
,

G2(n) =
〈
R,S

∣∣∣R4, S16n, (RS)2, R−1S4RS−(8n−4), (RS−1)4S8n
〉
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both have order 256n. They define two polynomial families of reflexive platonic
maps of genus 32n − 7 and type (4, 16n). These maps have parameters v = 16,
e = 128n = 4(g + 7), f = 64n = 2(g + 7).

Proof. In both cases we learn from the relator (e1) that 〈S4〉 C Gi(n) for i = 1, 2.
Moreover, for either group the quotient Gi(n)/〈S4〉 has presentation

Q(n) =
〈
R,S

∣∣∣R4
, S

4
, (RS)2, (RS

−1
)4
〉
.

By coset enumeration and some more computations one finds that Q(n) is isomor-
phic to a semi-direct product Z2

4 o Z4 of order 64. By the same procedure as in
the proof of Proposition 2.7.4, with T = S4, we construct a faithful linear repre-
sentation for both G1(n) and G2(n) over Z/4nZ that shows there is no more col-
lapse than claimed and hence |G1(n)| = |G2(n)| = 256n. Reflexivity follows from
RS−4R−1S8n−4 e1

= S−(8n−4)S8n−4 = 1 and (R−1S)4 = (R−1(RS−1)−1R)4 = 1 in the
first case; in the second

(R−1S)4S−8n = (R−1(RS−1)−1R)4S−8n = R−1(RS−1)4RS−8n

e2
= RS−8nRS−8n e1

= S8nS−8n = 1.

Some members from the Conder list are: R25.10, R57.8, R89.11 for the familyF (4,16n)(1)
32n−7

and R25.11, R57.6, R89.9 for F (4,16n)(2)
32n−7 .

Computation of a presentation for the quotient groupG(n)/〈R−1SR, S〉G(n) for both
families yields that [G(n) : 〈R−1SR, S〉] = 2. So each family member R(n) has
a diagonal map D(R(n)), giving rise to two polynomial families F (16n,16n)(1)

32n−7 and
F (16n,16n)(2)

32n−7 of type (16n, 16n). The first has the standard map presentation

Aut+(D(R(n)) =
〈
R,S

∣∣R16n, S16n, (RS)2, R8n−4S−4, [R,S]2
〉

and the second

Aut+(D(R(n))) =
〈
R,S

∣∣R16n, S16n, (RS)2, R8n−4S−4, [R2, S2]
〉

Both groups are of order 128n with parameters v = 8, e = 64n = 2(g + 7), f = 8.
Some members from the Conder list are: R25.36, R57.63, R89.67 for F (16n,16n)(1)

32n−7 and
R25.39, R57.61, R89.65 for F (16n,16n)(2)

32n−7 .

2.7.6 — The polynomial family F (4,16n−8)(1)
32n−23 and F (4,16n−8)(2)

32n−23

Proposition 2.7.6. The groups

G1(n) =
〈
R,S

∣∣R4, S16n−8, (RS)2, R−1S8RS8, R2SR−1S−5RS8n−10
〉
,

G2(n) =
〈
R,S

∣∣R4, S16n−8, (RS)2, R−1S8RS8, [R,S]2S8n−8
〉

both have order 128(2n − 1). They define two polynomial families of reflexive pla-
tonic maps of genus 32n − 23 and type (4, 16n − 8). These maps have parameters
v = 16, e = 128n− 64 = 4(g + 7), f = 64n− 32 = 2(g + 7).
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Proof. In both cases the relator (e1) tells us that 〈S8〉CG·(n). The quotients that we
find are

Q1(n) =
〈
R,S

∣∣R4, S8, (RS)2, R2SR−1S−5RS−2
〉
,

Q2(n) =
〈
R,S

∣∣R4, S8, (RS)2, [R,S]2
〉
.

They are non-isomorphic 2-groups (order 128). Each is isomorphic to a central ex-
tension (Z4

2 o Z4) · Z2. By the same procedure as in the proof of Proposition 2.7.4,
this time with T = S8, we construct a faithful linear representation for both G1(n)
and G2(n) over Z/(2n − 1)Z that shows there is no more collapse than claimed and
hence |G1(n)| = |G2(n)| = 128(2n − 1). Reflexivity is established as follows. For
both we compute RS−8R−1S−8 e1

= S8S−8 = 1. The relator (e2) of G1(n) is the most
troublesome. We note that it equals R(RS)R−1 · S−5(RS)S5 · S8n−16 and compute
its image under (R,S) 7→ (R−1, S−1) to be

((RS)−1)R·((RS)−1)S
5

·S−(8n−16) e2= (RS)R·(RS)S
5

·(RS)S
−5

·(RS)R
−1

= (RS)R·(RS)R
−1

= 1.

For the group G2(n) we check that

[R−1, S−1]2S−(8n−8) e2= [R−1, S−1]2[R,S]2 = (RSR−1S−1)2(R−1S−1RS)2

= (RS2R)2(R−1S−2R−1)2 = 1.

Some members from the Conder list are: R9.5, R41.12, R73.31 for F (16n−8,16n−8)(1)
32n−23

and R9.6, R41.13, R73.32 for F (16n−8,16n−8)(2)
32n−23 .

Computation of a presentation for the quotient groupG·(n)/〈R−1SR, S〉G(n) for both
families yields that [G·(n) : 〈R−1SR, S〉] = 2. So each family member R(n) has a
diagonal map D(R(n)), giving rise to two polynomial families F (16n−8,16n−8)(1)

32n−23 and
F (16n−8,16n−8)(2)

32n−23 of type (16n− 8, 16n− 8). Their standard map presentations are

Aut+(R) =
〈
R,S

∣∣R16n−8, S16n−8, (RS)2, R−1S4RS−4, [R2, S2], S−1R2S−3R8n−10
〉

for the first and

Aut+(R) =
〈
R,S

∣∣R16n−8, S16n−8, (RS)2, R−1S4RS−4, [R2, S2], S−1RS−1R8n−7
〉

for the second. Both these families have order 128n − 64 and parameters v = 8,
e = 64n − 32 = 2(g + 7), f = 8. Some members from the Conder list are: R9.21,
R41.68, R73.115 for F (16n−8,16n−8)(1)

32n−23 and R9.19, R41.64, R73.111 for F (16n−8,16n−8)(2)
32n−23 .

2.8 Polynomial families with more vertices

2.8.1 — The polynomial family F (4,8n−4)
100n−99 and four subfamilies

Conjecture 2.8.1. The groups

G(n) =
〈
R,S

∣∣R4, S8n−4, (RS)2, (RS−3)2, [R2, S]5
〉
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have order 400(2n− 1). They define a polynomial family of reflexive platonic maps
of genus 100n − 99 and type (4, 8n − 4) with data v = 100, e = 200(2n − 1), f =
100(2n− 1). Four suitable quotients yield four families of chiral platonic maps with
Aut = Aut+ of sizes 80(2n− 1), 80(2n− 1), 40(2n− 1), and 40(2n− 1) respectively:

Aut+(F (4,8n−4)
100n−99 (n)) =

〈
R,S

∣∣R4, S8n−4, (RS)2, (RS−3)2, [R2, S]5
〉

Aut(F (4,8n−4)
20n−19(1)(n)) =

〈
R,S

∣∣R4, S8n−4, (RS)2, R2S(R−1S)3SR−1S
〉

Aut(F (4,8n−4)
20n−19(2)(n)) =

〈
R,S

∣∣R4, S8n−4, (RS)2, (SR−1)2(S−1R)4
〉

Aut(F (4,8n−4)
10n−9(1)(n)) =

〈
R,S

∣∣R4, S8n−4, (RS)2, R2S2R−1S−2RS4k−6
〉

Aut(F (4,8n−4)
10n−9(2)(n)) =

〈
R,S

∣∣∣R4, S8n−4, (RS)2, RSR−1S−2RS2R−1S−(4k−7)
〉

The combinatorial properties of the four quotient families are:

F (4,8n−4)
20n−19(1) : v = 20, e = 40(2n− 1), f = 20(2n− 1)

F (4,8n−4)
20n−19(2) : v = 20, e = 40(2n− 1), f = 20(2n− 1)

F (4,8n−4)
10n−9(1) : v = 10, e = 20(2n− 1), f = 10(2n− 1)

F (4,8n−4)
10n−9(2) : v = 10, e = 20(2n− 1), f = 10(2n− 1)

We can summarize the data as a family tree (pun intended) of sorts.

F (4,8n−4)
20n−19(1)

// F (4,8n−4)
10n−9(1)

F (4,8n−4)
100n−99

99

%%
F (4,8n−4)

20n−19(2)
// F (4,8n−4)

10n−9(2)

2.9 Polynomial families with v non-constant

2.9.1 — The polynomial family F (3,2n)

(n−1
2 )

(Fermat family)

This family of platonic maps was discovered by Coxeter and Moser [CM1980]. There
is a surprise that we already spoiled in the heading: the family members have the
Fermat curves as planar algebraic models. This is discussed in Chapter 5. Here we
content ourselves with a group-theoretical analysis.
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Proposition 2.9.1. The groups

G(n) :=
〈
R,S

∣∣R3, S2n, (RS)2, (R2S2)3
〉

are of order 6n2. They define a polynomial family Fer of reflexive platonic maps of
genus

(
n−1

2

)
and type (3, 2n). The maps have parameters v = 3n, e = 3n2, f = 2n2.

Proof. Define the subgroup H(n) := 〈S2, R−1S2R〉. The computations

R−1(R−1S2R)R = RS2R−1 = RS2R2 r2
= R(RS−2)2 = (R−1S2R)−1S−2

S−1(R−1S2R)S = RSS2S−1R−1 = RS2R−1 = (R−1S2R)−1S−2

show thatH(n)CG(n). To analyze the structure ofH(n), we prove that [S2, R−1S2R]
= 1:

S−2(R−1S2R)S2 = S−2R(RS2R)S2 = S−2RS−1R−1R−1S−1S2 = S−2R(S−1RS) =

= S−2RS−2R−1 = (S−2R)2R
e2
= R−1S2R.

So H(n) is abelian. It is certainly a quotient of Z2
n, but we will see it is in fact isomor-

phic to it. It has the complement

H⊥(n) := 〈RS, SR2S〉 ∼= Sym3.

That H⊥(n) ∼= Sym3 is proved by noting

(SR2S)3 = S(R2S2)3S−1 e1
= 1,

(RS)−1(SR2S)(RS) = S−1R−1SR(RS)2 = S−1R−2S−1 = (SR2S)−1.

By writing down the presentation G(n)/H(n) =
〈
R,S

∣∣∣R3
, S

2
, (RS)2

〉
we see that

the cosets of H(n) all contain a representative lying in H⊥(n), showing that H(n) ∩
H⊥(n) = 1. We have thereby determined that G(n) ∼= H(n) o Sym3. A little extra
computation tells us that the conjugation action of Sym3 on H(n) is given by

conRS : (S2, R−1S2R) 7→ ((R−1S2R)S−2, R−1S2R),

conSR−1S : (S2, R−1S2R) 7→ (R−1S2R, (R−1S2R)S2).

Now take Z2
n := 〈x, y〉 and let Sym3 =

〈
z1, z2

∣∣ z2
1 , z

3
2 , (z1z2)2

〉
act on Z2

n by z−1
1 xz1 =

yx−1, z−1
1 yz1 = y, z−1

2 xz2 = y, z−1
2 yz2 = yx. If we then set R := z1z

−1
2 xz−1

1 and
S := z1x

−1z2, we find back our original relators for R and S. This finishes the
demonstration that G(n) ∼= Z2

n o Sym3 and proves all numerical claims. To see that
the maps defined are reflexive, note that R−2S−2 = R−2(R2S2)−1)R2 has order 3 by
(e1). Hence G(n) satisfies the chirality criterion.

The proof showed that [G(n) : H(n)] = 6. Since H(n) = ∩g∈〈R〉〈S,R−1S2R〉g , we
find [G(n) : 〈S,R−1S2R〉] = 2. So each Fermat family member has a diagonal D2-
map (see Section 3.2) with standard map presentation

Aut+(D(Fer(n))) =
〈
R,S

∣∣Rn, S2n, (RS)2, [R,S2]
〉
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of order 2n2 and parameters v = n, e = n2, f = 2n. As Fer(n) has a diagonal
map, we infer that its graph Γ(Fer(n)) is tripartite. As a consequence of v = 3n and
e = 3n2 we find that Γ(Fer(n)) = Kn,n,n, the complete tripartite graph on n vertices.

Some members of Fer from the Conder list are: Dih(3), Oct, R1.2:3, R3.2 (Dyck’s
map), R6.1, R10.2, R15.2. Some members of D(Fer) are: Hos(1) = Dih(1), Hos(4),
R1.1:1, R3.5, R6.6, R10.16, R15.10.

Remark 2.9.2. The extra relator (R2S2)3 forces Petrie-polygon length at most 6. In
fact equality holds.

2.9.2 — The polynomial family F (4,2n)
(n−1)2

This family was also discovered by Coxeter and Moser [CM1980]. Our statement is
in terms of Aut(R) instead of Aut+(R) because the group structure of the latter is
less straightforward.

Proposition 2.9.3. The groups

G(n) :=
〈
a, b, c

∣∣ a2, b2, c2, (ab)4, (bc)2n, (ca)2, (abc)4
〉

are of order 16n2. They define a polynomial family of reflexive platonic maps of
genus (n−1)2 and type (4, 2n). The maps have parameters v = 4n, e = 4n2, f = 2n2.
Furthermore, the family members have standard map presentation

Aut+(R(n)) ∼=
〈
R,S

∣∣R4, S2n, (RS)2, (R2S2)2
〉
.

Proof. Define the subgroup H(n) := 〈c, bcb, abcba〉. Conjugations of its generators
by a, b, c all lie in H(n) again. The most difficult computation involved is

(abcba)b = b(cba)3bab = (bcb)acbac(babab) = (bcb)cabac(aba) = (bcb)c(abcba).

We conclude that H(n) C G(n), and we analyze H(n) as follows. Use the abbrevia-
tions R := ab, S := bc for simplicity. The extra relator translates to (R2S2)2 = 1 and
within the group H(n) ∩ 〈R,S〉 = 〈(bcb)c, (abcba)c〉 = 〈S2, RS−1RS〉 we deduce the
identity

(RS−1RS)S
2

= S−2RS−1(R)SS2 = S−2R(S−1R−1)(R2S2)S = S−2R(RS)(S−2R2)S

= S−2R2SS−2R2S = R2S2SS−2R2S = R(RSR)RS = RS−1RS.

So H(n) ∩ 〈R,S〉 is abelian. It is clear that 〈c〉 is a complement in H(n) of this sub-
group. The conjugation action is computed to be

conc : (S2, RS−1RS)) 7→ (S−2, (RS−1RS)−1).

WithinG(n), the subgroupH(n) in turn has the complement 〈ac, cbc〉. This is readily
seen to be isomorphic to Dih8. We conclude that G(n) ∼= (H(n)∩〈R,S〉oZ2)oDih8.
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A few extra computations yield the conjugation action

conac : (S2, RS−1RS, c) 7→ (RS−1RS, S2, c),

concbc : (S2, RS−1RS, c) 7→ (S−2, RS−1RS, cS2).

Now substitute the group Z2
n = 〈x, y〉 for H(n) and extend it first by Z2 = 〈z〉 and

then by Dih8 = 〈w1, w2〉 with conjugation actions corresponding to the above. We
can compute that the triple (w1z, zw2z, z) satisfies the same relations as (a, b, c). So
apparently 16n2 is a lower bound for the order and hence H(n) ∼= Z2 and equality of
orders holds.

The quotient group Aut+(R(n))/〈S,R−1SR〉Aut+(R(n)) is quickly found to be iso-
morphic to Z2 by computing a presentation for it. Thus 〈S,R−1SR〉 C Aut+(R(n))
of index 2. So each family member has a diagonal map D(R(n)) with standard map
presentation

Aut+(D(R(n))) =
〈
R,S

∣∣R2n, S2n, (RS)2, (RS−1)2
〉

of order 4n2 and parameter v = 2n, e = 2n2, f = 2n. Some members of F (4,2n)
(n−1)2 from

the Conder list are: Dih(4), R1.4:2, R4.3, R9.6, and some members of D(F (4,2n)
(n−1)2) are:

Dih(2), R1.3:2, R4.7, R9.19.

Remark 2.9.4. The extra relator (R2S2)2 forces Petrie-polygon length at most 4. In
fact equality holds.

Conjecture 2.9.5. Could this family have a simple corresponding family of alge-
braic planar models just like the Fermat family? One hunch would be that they are
polynomial lemniscates. A polynomial lemniscate is an algebraic curve constructed as
follows. Let n ∈ Z≥0 and pick a polynomial p ∈ C[z] with deg(p) = n. For c ∈ R, the
level set |p(x+ yi)| = c is defined by a polynomial equation P = 0 with P ∈ C[x, y],
as one finds by expanding. The curve P = 0 is generically of degree 2n and genus
(n − 1)2. Polynomial lemniscates therefore seem a reasonable candidate space to
search for planar models of this family of maps.

2.10 Two-parameter families

2.10.1 — The polynomial family F (m(2n−1),2m(2n−1))

m2(n−1)+ 1
2 (m−2)(m−1)

Proposition 2.10.1. The groups

G(m,n) :=
〈
R,S

∣∣∣Rm(2n−1), S2m(2n−1), (RS)2, [Rm, S], [R,S2]
〉

satisfy ord(R) = m(2n−1), ord(S) = 2m(2n−1), and |G(m,n)| = 2m2(2n−1). They
define a polynomial family of reflexive platonic maps of genusm2(n−1)+

(
m−1

2

)
and
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type (m(2n− 1), 2m(2n− 1)). These maps have parameters v = m, e = m2(2n− 1),
f = 2m.

Proof. The last relator implies that 〈S2〉 C G(m,n). The quotient group Q(m,n) :=
G(m,n)/〈S2〉 permits of the presentation〈

R,S
∣∣∣Rm(2n−1)

, S
2
, (RS)2, [R

m
, S]
〉
.

We infer that S
−1
RS = SRS = R

−1
, so that 〈R〉 is a normal subgroup of Q(m,n).

One readily computes that
Q(m,n)/〈R〉 ∼= Z2.

Moreover, the relators imply

R
m

= S
−1
R
m
S = (S

−1
RS)m = R

−m

so that R
2m

= 1. But since also R
(2n−1)m

= 1, we must have R
m

= 1. We can now
refine the presentation of Q(m,n) to

Q(m,n) =
〈
R,S

∣∣∣Rm, S2
, (RS)2

〉
which shows that Q(m,n) ∼= Dih2m. This implies the exactness of the sequence

1 −→ 〈S2〉 −→ G(m,n)
π−→ Dih2m −→ 1

and proves all the numerical claims of the proposition. The chirality criterion is
satisfied, since [x, y] = 1 implies [x−1, y−1] = 1 and this can be applied to both extra
relators. So the family is reflexive.

Remark 2.10.2. When m is odd, we can elucidate the structure of G(m,n) more.
The subgroup 〈RS, Sm(2n−1)〉 then satisfies π(RSSm(2n−1)) = R and π(RS) = RS,
whence it has π-image Dih2m. Its order is therefore at least 2m. We can bound it from
above by exploiting the group relators. First off,

Rm = S−1RmS = (S−1RS)m = (S−2R−1)m = S−2mR−m.

This implies R2m = S−2m and hence

Rm = R2mn = S−2mn.

We can use this to show (using that m is odd in the second and third step):

(RSSm(2n−1))m = (RSm(2n−1)+1)m = RmSm
2(2n−1)+m = RmSm(2n−1)+m = RmS2mn = 1.

So the group 〈RS, Sm(2n−1)〉 has two generators of order 2 with product of order at
most m. Combining that with our lower bound on its size, we see that Dih2m. We
know that |G(m,n)| = m|〈S〉|, so 〈R〉∩〈S〉 = 〈Rm〉. This means that (RSSm(2n−1))j =
RjSm(2n−1)j+j /∈ 〈S〉 for j = 1, . . . ,m− 1. Neither can a product of such an element
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with Sm(2n−1) lie in 〈S〉. We conclude that 〈RS, Sm(2n−1)〉 ∩ 〈S2〉 = {1}. Because
S2 ∈ Z(G(m,n)), the structure of the group G(m,n) for odd m is

G(m,n) = 〈S2〉 × 〈RS, Sm(2n−1)〉 ∼= Zm(2n−1) ×Dih2m.

Remark 2.10.3. The 1-parameter subfamily obtained by setting n = 1 is D(Fer(n)).
The 1-parameter family obtained by setting n = 2 also satisfies the conditions stated
in Section 3.2 for it to be the diagonal map of another map (of type (3, 6m)). This
leads to another polynomial family F (3,6m)

3
2m

2− 3
2m+1

with standard map presentation

Aut+(F (3,6m)
3
2m

2− 3
2m+1

(m)) =
〈
R,S

∣∣R3, S6m, (RS)2, (RS−2)3, [R,S2m]
〉
.

The two mentioned 1-parameter subfamilies of F (m(2n−1),2m(2n−1))

m2(n−1)+ 1
2 (m−2)(m−1)

are its only
maps that satisfy the D2-map conditions. The proof of this is as follows. Define
x := R, y := S2, z := SRS−1. Now consider H = 〈R,S2, SRS−1〉 = 〈x, y, z〉
and rewrite the relators of G(m,n) in (x, y, z). The relation (RS)2 = 1 translates
into z = x−1y−1, and [Rm, S] = 1 into zmx−m = 1. We therefore write down a
presentation for H in terms of x and y only:

H =
〈
x, y

∣∣∣xm(2n−1), ym(2n−1), [x, y], y−mx−2m
〉
.

So in this abelian subgroup we have ym = x−2m. If the permutation (xyz) defines an
automorphism of H , as is necessary if it is to be a D2-map, then also (x−1y−1)m =
zm = y−2m, so x−m = y−m = x−2m. This implies x3m = 1, and we infer that
2n− 1 | 3, which only happens if n ∈ {1, 2}.

Remark 2.10.4. This family produces platonic maps with any number m of vertices,
something our previous families had not yet achieved. We will see in Section 4.3 that
if m is an odd prime, the maps produced by this family are all maps with v = m.

Remark 2.10.5. There are 161 maps belonging to this family with 2 ≤ g ≤ 101, which
is 4.77% of the total.

2.10.2 — The polynomial family F (2mn,2mn)
m2n−2m+1

For this family, we work with Aut(R) instead of Aut+(R) since the former has a less
complicated group structure.

Proposition 2.10.6. The groups

G(m,n) :=
〈
a, b, c

∣∣ a2, b2, c2, (ab)2mn, (bc)2mn, (ca)2, [(ab)m, bc], [ab, (bc)2]
〉

have order 8m2n. They define a polynomial family of reflexive platonic maps of
genus m2n − 2m + 1 and type (2mn, 2mn). These maps have parameters v = 2m,
e = 2m2n, f = 2m. Furthermore

Aut+(R(n)) =
〈
R,S

∣∣R2mn, S2mn, (RS)2, [Rm, S], [R,S2]
〉
.
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Proof. Let H(m,n) := 〈S2, abc〉. The computations

aS2a = abc(bca) = abcS2(abc)−1 a(abc)a = bca = S2(abc)−1

bS2b = cbcb = S−2 b(abc)b = bac(cbcb) = bcaS−2 = S2(abc)−1S−2

cS2c = cbcb = S−2 c(abc)c = cab = abcS−2

show that H(m,n) C G(m,n). Note that R2 = (abc)2S−2 ∈ H(m,n). Therefore the
quotient group Q(m,n) := G(m,n)/H(m,n) has presentation

Q(m,n) =
〈
a, b, c

∣∣ a2, b2, c2, (ab)2, (bc)2, (ca)2, [(ab)m, bc], [ab, (bc)2], abc
〉

=
〈
a, b, c

∣∣ a2, b2, c2, [a, b], [b, c], [c, a], abc
〉 ∼= Z3

2/Z2
∼= Z2

2.

Indeed, the subgroup H⊥(m,n) := 〈a, c〉 is a complement, since its elements repre-
sent all four cosets ofH(m,n). To analyze the structure ofH(m,n), first note that the
second extra relator implies that

(abc)−1S2abc = cba(bcbc)(ab)c = cba(ab)(bcbc)c = cbcb = S−2.

We therefore have 〈S2〉CH(m,n). A concern is whether 〈S2〉 ∩ 〈abc〉 = 1. But if we
take Zmn = 〈x〉 and extend it first by Z2m = 〈y〉 acting by xy = x−1 and then by
Z2

2 = 〈z1, z2〉 with (z1, z2) acting on x and y like (a, c) on S2 and abc, then the triple
(z1, z1yz2, z2) can be computed to satisfy the same relations as (a, b, c). We conclude
that H(m,n) = 〈S2〉o 〈abc〉 and hence

G(m,n) = (〈S2〉o 〈abc〉) o 〈a, c〉 ∼= (Zmn o Z2m) o Z2
2.

Remark 2.10.7. The 1-parameter subfamilies obtained by setting m = 1 or m = 2 are
readily seen to consist of self-dual maps (by the self-duality criterion from Section
1.4). In fact, G(1, n) = F (2n,2n)

n−1 = D(F (4,2n)
n−1 and G(2, n) = F (4n,4n)

4n−3 = D(F (4,4n)
4n−3 ).

These are in fact the only self-dual maps of this 2-parameter family. For suppose that
(R,S) 7→ (R−1, S−1) defines an automorphism of G+(m,n). Then [R2, S] = 1 and
so |G(m,n)| = 8m2n divides the order of G(2, n) = 32n. Apparently therefore m | 2,
and the only self-dual family members are the ones discussed.

2.10.3 — The polynomial family F (2m+2,2n+2)
mn (also Coxeter’s {p, q | 2})

Proposition 2.10.8. The groups

G(m,n) =
〈
R,S

∣∣R2m+2, S2n+2, (RS)2, (R−1S)2
〉

(m,n ≥ 1)

have order 4(m + 1)(n + 1). They define a polynomial family of reflexive platonic
maps of genusmn and type (2m+2, 2n+2). These maps have parameters v = 2m+2,
e = 2(m+ 1)(n+ 1), f = 2n+ 2.

Proof. The computations

S−1R2S
e1
= R−1SRS = R−1R−1S−1S = R−2

R−1S2R
e1
= S−1RSR = S−1S−1R−1R = S−2

R−2S2R2 = R−1(R−1S2R)R = R−1S−2R = (R−1S2R)−1 = S2
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prove that 〈R2, S2〉 = 〈R2〉 × 〈S2〉 is normal in G(m,n). Write down a presentation
for the quotient group to conclude G(m,n)/〈R2, S2〉 ∼= Z2

2. In general, the subgroup
〈R2, S2〉 has no Z2

2 complement. The best we can do is to write G(m,n) as a group
extension

1 −→ 〈R2, S2〉 −→ G(m,n) −→ Z2
2 −→ 1

described by the conjugation action computed above and 2-cocycle (after some more
work) 

· · · ·
· R2 · R2

· R−2S2 S2 R−2

· S−2 S−2 ·


where rows and columns are indexed by the elements (1, [R], [S], [RS]) of the quo-
tient group G(m,n)/〈R2, S2〉. We can instantiate a group with this presentation as
an extension of Z2

2 by Zm+1 × Zn+1, which shows that |G(m,n)| = 2(m + 1)(n + 1)
as claimed. The rest of the map parameters follow. The mapping on Aut+(R(m,n))
induced by (R,S) 7→ (R−1, S−1) sends (R−1S)2 to (RS−1)2 = SR−1RS−1 = 1, so
the chirality criterion is satisfied and the maps are reflexive.

The number of maps of genus g in F (2m+2,2n+2)
mn is the number of ways to write g as

a product of two numbers: |{d ∈ Z : d | g ∧ d ≤ b√gc}|.

Remark 2.10.9. This family was discovered by Coxeter and Moser [CM1980]. They
called it {p, q | 2}. The reason is that the relator (R−1S)2 (or equivalently, (RS−1)2)
signifies geometrically that all the “2-turn-paths” have length 2. To construct such
a path, walk along the graph of the map and at each vertex, take the second turn to
your left. Because the map is reflexive, the same holds for the −2-turn-paths, where
you take the second turn right instead of left.

Remark 2.10.10. This family contains the 1-parameter subfamiliesF (4,4n)
n andF (6,2n)

2n−2

by setting m = 1 and m = 2, respectively.

2.10.4 — The polynomial family F (2m,2n)
1+gcd(m,n)(mn−m−n)

Proposition 2.10.11. The groups

G(m,n) :=
〈
R,S

∣∣R2m, S2n, (RS)2, [R2, S2]
〉
.

are of order 4mn gcd(m,n). They define a polynomial family of reflexive platonic
maps of genus 1 + gcd(m,n)(mn − m − n) and type (2m, 2n). These maps have
parameters v = 2m gcd(m,n), e = 2mn gcd(m,n), f = 2n gcd(m,n).

Because this thesis deals with topology, we include the following proof of genus 1,
i.e. a proof with a hole in it.
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Proof. With a healthy appetite for computation, we deduce four identities within
such a group:

R−1S2R = R−2RSSR = R−2S−1R−1SR = R−2[R,S]−1,

R−1[R,S]R = R−2S−1(RSR) = R−2S−2,

S−1R2S = S−2SRRS = S−2R−1S−1RS = S−2[R,S],

S−1[R,S]S = S−1R−1S−1RS2 = RSS−1RS2 = R2S2.

Together, these prove that H(m,n) := 〈R2, S2, [R,S]〉 C G(m,n). The quotient is
quickly seen to be Z2

2. The structure of H(m,n) is analyzed by computing

R−2[R,S]R2 = R−2R−1S−1S−1R−1R2 = R−1R−2S−2R2R−1 = R−1S−2R−1 = [R,S],

S−2[R,S]S2 = S−2SRRSS2 = SS−2R2S2S = SR2S = [R,S].

Thus, all three of the generators of H(m,n) commute, i.e. H(m,n) is abelian. This
is, alas, where we fail to demonstrate that 〈R2〉 ∩ 〈S2〉 = 1. If we could, we would
continue by computing

[R,S]k = (SR2S)k = SR2S2R2 · · ·R2S = (S−1R2kS)S2k,

[R,S]k = (R−1S−2R−1)k = R−1S−2R−2S−2 · · ·S−2R−1 = (RS−2kR−1)R−2k.

This leads to ([R,S]R2)k = R−1S−2kR = (R−1S−2R)k, showing that ord([R,S]R2) =
n. Similarly, ord([R,S]S−2) = m. Also,

(S−1R2kS)S2k = 1⇔ R2kS2k = 1⇔ R2k = S2k = 1⇔ k ≡ 0 mod lcm(m,n),

which tells us that ord([R,S]) = lcm(m,n). Suppose a, b ∈ Z satisfy am + bn =
gcd(m,n). Then

[R,S]gcd(m,n) = [R,S]am+bn = S2amR−2bn = S2 gcd(m,n)R−2 gcd(m,n).

Therefore, ord([R,S]R2S−2) = gcd(m,n). We have now analyzed the subgroup as
H(m,n) ∼= Zm × Zn × Zgcd(m,n). The extension

1 −→ H(m,n) −→ G(m,n) −→ Z2
2 −→ 1

is described by the following conjugation action (as proven above) and 2-cocycle (by
some additional effort, rows/columns indexed by (1, [R], [S], [RS])):

conR : (R2, S2, [R,S]) 7→ (R2, [R,S]−1R2, R2S−2)
conS : (R2, S2, [R,S]) 7→ ([R,S]−1S2, S2, R2S2)


· · · ·
· R2 · R2

· RS−2R S2 R2

· S−2 RS2R−1 ·


As a byproduct of our analysis of the group G(m,n), we have proved |G(m,n)| =
4mn gcd(m,n), ord(R) = 2m, ord(S) = 2n. That the chirality criterion is satisfied is
immediate from the presentation.



2.10 – Two-parameter families 59

Remark 2.10.12. Clearly,

F (2m,2n)
1+gcd(m,n)(mn−m−n)(n,m) = F (2m,2n)

1+gcd(m,n)(mn−m−n)(m,n)∨.

For m = 1 we find F (2m,2n)
1+gcd(m,n)(mn−m−n)(1, n) = Hos(2n). For m,n ≥ 2, we have

g(m,n) ≥ 1 +mn−m− n = (m− 1)(n− 1) ≥ max{m− 1, n− 1},

and we can use this to list the number of family members occurring in each genus
up to a given bound (within reason). Below is a table with this data for small genera
(counting duals).

genus 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# maps 1 2 0 2 2 4 0 4 2 3 0 6 2 4 0

Since mn − m − n ≡ 0 mod 2 if and only if m,n ≡ 0 mod 2, we see that g(m,n) =
1 + gcd(m,n)(mn −m − n) 6≡ 3 mod 4, also visible in the above table. The number
of family members with 2 ≤ g ≤ 101 is 349 out of a total of 6104, or about 5.72% of
all reflexive maps in these genera (counting duals).
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3
Triangle groups and diagonal maps

IN this chapter we study three geometric procedures that create new (reflexive) pla-
tonic maps from existing ones. These procedures stem from inclusions of triangle

groups. Each inclusion leads to a group-theoretic link between two maps of cer-
tain types. The geometry behind the constructions is surprisingly elegant. We will
name them the D1-map, D2-map and D4-map, or ‘diagonal maps’. Like polynomial
families, these constructs help in detecting structure within the set of platonic maps.

We describe each of the three diagonal maps in the three respective Sections 3.1, 3.2,
and 3.3. One may compare the diagonal maps to the ideas of Singerman and Syddall
from [Syd1997] and [BCM2001, p.64]. They already made efforts to relate triangle
group inclusions to platonic maps. We believe however, that our procedures have a
broader range of applicability. Furthermore, the discussions shed some new light on
the triangle group inclusions under consideration.

An application of diagonal maps will appear in Section 3.4. The construction of a
diagonal map out of the original can be executed with geodesic edges, as will follow
naturally from the discussion. As a consequence, the diagonal map has the same
platonic surface as the original. In fact, Proposition 3.4.1 resolves the matter of which
platonic maps have the same platonic surface. This knowledge saves us work when
constructing algebraic models for platonic surfaces in Chapter 6.

Triangle group inclusions

As mentioned in Section 1.2, triangle groups are examples of Fuchsian groups. All
inclusions between Fuchsian groups have been determined by David Singerman in
[Sin1972]. The ones relevant to platonic maps are those where both groups are tri-
angle groups of the form ∆(p, q, 2). Going over all the triangle groups in Singer-
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man’s list case by case, it is easy to determine all inclusions ∆(p′, q′, 2) < ∆(p, q, 2)
and ∆+(p′, q′, 2) < ∆+(p, q, 2). There are three inclusions between elliptic triangle
groups, which give group inclusions for platonic maps of genus 0. We list them with
subgroup index indicated, and consider the group theory and geometry behind the
inclusion in detail:

∆(2, 2, 2)
3
< ∆(3, 3, 2), ∆(2, n, 2)

2
C ∆(2, 2n, 2), ∆(2, 2, 2)

6
< ∆(3, 4, 2).

For the first inclusion, we have Aut(Tet) = ∆(3, 3, 2) ∼= Sym4, which contains three
conjugate self-normalizing subgroups Z2

2 oZ2 of order 8/index 3. One can partition
the vertex set of Tet into two pairs of (adjacent) vertices. The three subgroups corre-
spond to the three possible partitions. For such a partition, the two vertices in each
set bound an edge. Take the two midpoints of these edges. One of the three sub-
groups leaves this set of two points invariant and contains the rotation over π fixing
them both, resulting in the group structure of Aut(Hos(2)). We can realize that map
by choosing one of the two vertices, dropping perpendiculars to opposite sides of
the adjacent triangles, and continuing these to the other vertex.

The second inclusion is instantiated by Aut(Hos(2n)) = ∆(2, 2n, 2) ∼= Dih2n × Z2,
which contains Dihn × Z2

∼= Aut(Hos(n)) as a normal subgroup. To construct the
latter out of the former geometrically, partition the 2n digons of Hos(2n) into n ad-
jacent pairs. Joining up each pair to one new digon yields Hos(n).

The third inclusion is best understood by seeing it as part of the chain of inclusions
∆(2, 2, 2) C ∆(2, 4, 2) < ∆(3, 4, 2). The first of these finer inclusions is the one be-
tween hosohedra we just described. The second arises from Aut(Oct) = ∆(3, 4, 2) ∼=
Sym4 × Z2. It contains three conjugate self-normalizing subgroups Aut(Hos(4)) of
order 16. Geometrically speaking, there are three pairs of opposite vertices. Each
pair has a corresponding subgroup leaving it invariant. That subgroup contains
four rotations fixing them both, resulting in the group structure of Hos(4). Let the
vertex pair be {v1, v2}. It is tempting to view the faces of Hos(4) as the amalgam of
two faces of Oct with a common edge, one face adjacent to v1, the other to v2. In
fact, the way that we can generalize this construction is by drawing new edges: drop
perpendiculars from v1, v2 onto the opposite sides of the triangles they are in to get
four edges.

There are also two inclusions between the parabolic triangle groups:

∆(4, 4, 2)
4
< ∆(4, 4, 2) and ∆(3, 6, 2)

4
< ∆(3, 6, 2).

These give rise to infinite chains of group inclusions of platonic maps of genus 1. We
leave them till the end of Sections 3.1 and 3.2, for they are part of the general corre-
spondences that follow. The other inclusions include hyperbolic triangle groups, and
certainly the first two have a much broader range of application to platonic maps.
These two are:

∆(n, 2n, 2)
3
< ∆(3, 2n, 2) and ∆(n, n, 2)

2
< ∆(4, n, 2).
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Finally, one inclusion applies only to an orientation preserving triangle group:

∆(7, 7, 2)+ 9
< ∆(3, 7, 2)+.

The relevant construction for platonic maps is slightly different from the two previ-
ous ones. It is the last three that we will discuss in the coming sections. The only
chain of multiple inclusions that can be built up is

∆(8, 8, 2)
2
< ∆(4, 8, 2)

3
< ∆(3, 8, 2)

and it is easy to check in any particular case whether this happens.

3.1 ∆(4, n, 2) and the D1-map

Consider the triangle group

∆(4, n, 2) = 〈a, b, c | a2, b2, c2, (ab)4, (bc)n, (ca)2〉.

The subgroup 〈aba, c, b〉 is readily seen to be normal. Computing the quotient group
∆(4, n, 2)/〈aba, c, b〉, we find that it has index 2. The subgroup has complement 〈a〉,
so we find

∆(4, n, 2) = 〈aba, c, b〉o 〈a〉,

with a acting as the permutation (13) on the given sequence of generators of the nor-
mal subgroup. Moreover, our index 2 subgroup satisfies all relations of ∆(n, n, 2) =
〈a′, b′, c′〉, and is in fact isomorphic to that group by (a′, b′, c′) 7→ (aba, c, b). Injectiv-
ity of this mapping follows because the subgroup generators are the reflections in a
(n, n, 2)-triangle created as an amalgam of two (4, n, 2)-triangles adjacent along an
‘a-side’ (opposite the π/n angle). Abstractly therefore,

∆(4, n, 2) ∼= ∆(n, n, 2) o Z2.

Because ∆(n, n, 2) = 〈a′, b′, c′〉 admits the involution (a′, b′, c′) 7→ (c′, b′, a′), we could
also have utilized the isomorphism (a′, b′, c′) 7→ (b, c, aba) with our subgroup. For
the orientation preserving subgroup

∆+(4, n, 2) = 〈R,S | R4, Sn, (RS)2〉,

generated by R := ab and S := bc, the situation is comparable but a little more
complicated. The index 2 subgroup

∆+(n, n, 2) = ∆+(4, n, 2) ∩∆(n, n, 2) = 〈S,R−1SR〉

gives the same quotient ∆+(4, n, 2)/∆+(n, n, 2) ∼= Z2, but this time there is no com-
plementary Z2. Instead, we can recover G = ∆+(4, n, 2) as an extension

1 −→ ∆+(n, n, 2) −→ G −→ Z2 −→ 1
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in the following way: Let F = F (r) be the free group on the indicated symbol, Z2 =
〈r | r2〉 and πF : F → Z2 the natural projection. Define φ : F → Aut(∆+(n, n, 2)) by

φ(r) : (S,R−1SR) 7→ (R−1SR, (R−1SR)S(R−1SR)−1)

Note that ord(φ(r)) = 4. This follows from the fact that it mimics conjugation in
∆+(4, n, 2) by R. Also, ord(conS) = n and ord(φ(r)conS) = 2. Let

σ : Aut(∆+(n, n, 2))→ Out(∆+(n, n, 2))

be the natural projection. Because φ(r)2 6= 1, we do not get a homomorphism Z2 →
Aut(∆+(n, n, 2)). This was to be expected, otherwise we would get a split sequence
and hence a semi-direct product. But since φ(r)2 = conS−1(R−1SR)−1 ,

σφ : F → Out(∆+(n, n, 2))

satisfies ord((σφ)(r)) = 2 and this mapping factors through Z2 as σφ = πFφ. Put
otherwise, φ is a lift of πFφ over σ. This allows us to define

G := (F φn ∆+(n, n, 2))/N

by dividing out the normal closure N of 〈(r2, R−2)〉. We get an isomorphism G →
∆+(4, n, 2) determined by (r, 1) mod N 7→ R and (1, S) mod N 7→ S. That this con-
struction works is a basic result on group extensions, see e.g. [Rob1982, Ch. 11].

To understand the geometry behind both group inclusions better, consider that an
inclusion ∆(4, n, 2) < Aut(H2) induces a tiling of H2 by quadrilaterals. The graph
of that tiling is bipartite. Choosing one of the vertex sets of the partition, one can
draw diagonals between two vertices in this set that lie across a square to create a
∆(n, n, 2)-tiling. The two choices of vertex set correspond to the two isomorphisms
∆(n, n, 2) → 〈aba, c, b〉 < ∆(4, n, 2) discussed above. The inclusion is illustrated in
Figure 3.1.

Suppose now that we have a reflexive platonic map R defined by Γ C ∆(4, n, 2) of
finite index. We always have Γ ∩∆(n, n, 2) C∆(n, n, 2) and get a reflexive platonic
map R′ of type (n, n) and genus

g′ = 1 + 2
|∆(n, n, 2) : Γ ∩∆(n, n, 2)|

|∆(4, n, 2) : Γ|
(g − 1)

defined by Aut(R′) = ∆(n, n, 2)/(Γ ∩ ∆(n, n, 2)). Whenever Γ < ∆(n, n, 2), we get
g′ = g. We delve deeper into the latter situation.

Proposition 3.1.1. Let R be a reflexive platonic map of genus g and type (4, n), and
let (a, b, c) be standard generators of Aut(R). If

[Aut(R) : 〈aba, c, b〉] = 2

then with a′ = aba, b′ = c, c′ = b, the group 〈a′, b′, c′〉 is the standard map pre-
sentation of a new reflexive platonic map R′ of genus g and type (n, n). The map
∨ : (a′, b′, c′) 7→ (c′, b′, a′) defines an automorphism of Aut(R′).
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Figure 3.1: The inclusion ∆(n, n, 2) < ∆(4, n, 2) for the case n = 5. A fundamental
(2, 5, 5)-triangle inside the 5-gon consists of two adjacent (4, 5, 2)-triangles. Note the
bipartition of the vertex set for the (2, 4, 5)-tiling, one set indicated by black dots.
Each choice corresponds to an embedding ∆(n, n, 2) < ∆(4, n, 2).

Conversely, let R′ be a reflexive platonic map of genus g and type (n, n) such that
Aut(R′) = 〈a′, b′, c′〉 admits the automorphism ∨ : (a′, b′, c′) 7→ (c′, b′, a′). Then the
semi-direct product Aut(R′) o Z2 with Z2 = 〈a〉 and conjugation action

a−1a′a = c′ a−1b′a = b′ a−1c′a = a′

defines a reflexive platonic map of genus g and type (4, n) with standard generators
(a, a′, b′).

Proof. Let ∆(4, n, 2) = 〈ã, b̃, c̃〉 and Aut(R) = 〈ã, b̃, c̃〉/Γ, where ΓC∆(4, n, 2). By the
subgroup correspondence theorem Γ < 〈ãb̃ã, c̃, b̃〉C∆(4, n, 2). The second inclusion is
of index 2. So the middle group is isomorphic to ∆(n, n, 2) and we identify it as such.
Since ΓC∆(4, n, 2) it is certainly normal in ∆(n, n, 2), and we get a reflexive platonic
map ∆(n, n, 2)/Γ with standard generators (a′, b′, c′) = (ãb̃ãΓ, c̃Γ, b̃Γ) = (aba, c, b).
The type is (n, n) because ord(abac) = ord(abca) = ord(bc) = n and ord(cb) = n.

For the proof of the second statement, note that the inner automorphism conã of
∆(4, n, 2) normalizes ∆(n, n, 2) = 〈ã′, b̃′, c̃′〉 with ã′ = ãb̃ã, b̃′ = c̃, c̃′ = b̃, and acts
on it as the permutation (ã′ c̃′). Since conã normalizes Γ as well, it factors through
π : ∆(n, n, 2)→ ∆(n, n, 2)/Γ, yielding the automorphism ∨.

The converse assumes that we have ΓC∆(n, n, 2). We embed ∆(n, n, 2) < ∆(4, n, 2)
as above. That ∨ is an automorphism implies that conã restricted to ∆(n, n, 2) fac-
tors through π : ∆(n, n, 2) → ∆(n, n, 2)/Γ, hence conã(Γ) = Γ. It follows that
Γ C ∆(n, n, 2) · 〈a〉 = ∆(4, n, 2). We thus have a platonic map R = ∆(4, n, 2)/Γ.
The existence of ∨ also implies that a := ã acts on Aut(R) = Aut(R′)o 〈a〉with con-
jugation action as claimed. Obviously a is an involution, and (aa′)2 = ∨(a′)a′ = c′a′

and (ab′)2 = ∨(b′)b′ = (b′)2 = 1, so that ord(aa′) = 4 and ord(ab′) = 2, proving that
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R is of type (4, n) with map presentation as claimed.

The same remarks and reasoning as above apply mutatis mutandis for any platonic
map M and its group Aut+(M), with some extra cumbersome details. We leave its
proof to the reader.

Proposition 3.1.2. Let M be a platonic map of genus g and type (4, n), and let (R,S)
be standard generators of Aut+(M). If

[Aut+(M) : 〈S,R−1SR〉] = 2

then with R′ = S and S′ = R−1SR, the group 〈R′, S′〉 is the standard map presen-
tation of a new platonic map M′ of genus g and type (n, n). The map ∨ : (R′, S′) 7→
((S′)−1, (R′)−1) defines an automorphism of Aut+(M′).

Conversely, let M′ be a platonic map of genus g and type (n, n) such that Aut+(M′) =
〈R′, S′〉 admits the automorphism ∨ : (R′, S′) 7→ ((S′)−1, (R′)−1). Then the group

G := F (R) φn Aut+(M) / 〈(R2, S′R′)〉F (R) φnAut+(M)

with conjugation action

φ(R) : (R′, S′) 7→ (S′, S′R′(S′)−1)

is a degree 2 extension of Aut+(M) by Z2 that defines a new platonic map of genus
g and type (4, n) with standard map generators (R,R′). �

The geometric interpretation of these propositions is more enlightening.

Proposition 3.1.3. Let M be a platonic map of genus g and type (4, n) with a bipartite
graph (cells0, cells1). There is a unique self-dual platonic map M′ of genus g and
type (n, n) with standard map presentation for Aut+(M′) that of 〈S,R−1SR〉. If M
is reflexive, then so is M′ and we have Aut(M′) = 〈aba, c, b〉.

Conversely, if M′ is a self-dual platonic map of genus g and type (n, n), then there is
a unique platonic map of type (4, n) and genus g with a bipartite graph and standard
map presentation as found in Proposition 3.1.2. If M′ is reflexive so is M, and then
Aut(M) has standard map presentation as found in Proposition 3.1.1.

Again we only prove the reflexive version.

Proof. Suppose R is of type (4, n) and choose a fundamental triangle T with reflec-
tions in its sides (a, b, c) generating Aut(R). The elements b and c fix the vertex v of
this triangle that is also a vertex of the map. The element aba fixes the vertex of the
map opposite to v on the 4-gon in which T lies. Consequently, if V1 t V2 (disjoint
union) is a bipartition of the vertices and v ∈ V1 (without loss of generality), then
〈aba, c, b〉 fixes V1 setwise and is thus a strict subgroup of Aut(R). It must have in-
dex 2. Apply the previous proposition and construct R′. Taking duals induces the
homomorphism Aut(R′) → Aut((R′)∨) with (a′, b′, c′) 7→ (c′, b′, a′). According to
the previous proposition, this is an automorphism. Thus, R′ ∼= (R′)∨.
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Conversely, for a self-dual platonic map R′, the map (a′, b′, c′) 7→ (c′, b′, a′) induces a
group automorphism. The previous propositions then allow the construction of the
platonic map R of type (4, n) whose existence is claimed now. That map will have a
bipartite graph, since Aut(R) contains the index two subgroup Aut(R′).

Definition 3.1.4. Given a platonic map M of type (4, n) with a bipartite graph, we
define the D1-map D1(M) (diagonal map across one face) to be the platonic map of
type (n, n) constructed above.

The name D1-map is justified by the geometric interpretation of the construction.
Suppose you have a platonic map M of type (4, n) with a bipartite 1-skeleton and
vertex set V = V1 t V2. Across every 4-gon, draw the diagonal between the two
vertices of V1 incident to it. Each vertex of V2 will be the center of an n-gon defined
by these diagonals. Around each vertex of V1 lie n such 2-cells, so we get a new
map of type (n, n). The proposition says this map is again platonic and self-dual.
A fundamental triangle consists of two fundamental triangles of M, glued together
along their a-side. One can also choose V2 and glue along c-sides. This yields an
isomorphic map. Conversely, given a self-dual platonic map M′ of type (n, n), draw
the barycentric subdivision. The four fundamental triangles that are incident to a
given edge of the map form a regular 4-gon with angles 2π/n. The map of type (4, n)
so obtained will be platonic because self-duality allows for a reflection that fixes such
a square but interchanges vertices and face centers of M′. One could write down an
explicit combinatorial definition of the cells and the incidence relation of M′ in terms
of that of M and vice versa, but we leave that to the reader.

The two constructions described are each others inverses and we have proved that

D1 : {Type (4, n) maps with a bipartite graph} → {self-dual maps of type (n, n)}

is a bijection (graded by the genus).

Remark 3.1.5. The condition of bipartiteness can be reformulated as the existence
of a coclique of size v/2 inside the graph (cells0, cells1) of R. Compare the D2-map,
described in the next section.

Remark 3.1.6. Since Mr = (D1(M))r, the D1-map construction apparently yields
geodesic edges again when applied to a platonic map on a Riemann surface. This
‘miracle’ occurs because two hyperbolic (4, n, 2)-triangles glued along their ‘a-side’
yield a (n, n, 2)-triangle.

Example 3.1.7. Not all platonic maps of type (4, n) are bipartite. A counterexample
is R6.2, of type (4, 6). Indeed, there is no self-dual map of genus 6 and type (6, 6).
And not all platonic maps of type (n, n) are self-dual. The smallest example of that
is R4.8 of type (6, 6).

Example 3.1.8. In the case n = 3, the correspondence is between any map with a
bipartite graph of type (4, 3) and the set of self-dual maps of type (3, 3). Indeed we
find that D1(Cub) = Tet. One can actually execute the procedure for the cube by
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cutting off four pyramids to get a tetrahedron, as is well known. In the case n = 4,
there is the infinite normal chain Aut(R1.3:1) C Aut(R1.4:1) C Aut(R1.3:2) C · · · C
Aut(R1.3:n)CAut(R1.4:n)CAut(R1.3:n+1)C · · ·

3.2 ∆(3, 2n, 2) and the D2-map

Consider the triangle group

∆(3, 2n, 2) = 〈a, b, c | a2, b2, c2, (ab)3, (bc)2n, (ca)2〉

and its action on H2 after fixing a (3, 2n, 2)-triangle. The subgroup 〈abcba, c, b〉 is
generated by reflections in a (n, 2n, 2)-triangle consisting of three suitable chosen
adjacent (3, 2n, 2)-triangles, and so 〈abcba, c, b〉 ∼= ∆(n, 2n, 2). Study Figure 3.2 to see
this. The geometry also proves that the subgroup is of index 3, and that it is not
normal. In fact,

Core(∆(n, 2n, 2)) =

2⋂
k=0

(ab)−k∆(n, 2n, 2)(ab)k = 〈bcb, c, abcba〉.

The normal core has a complement 〈a, b〉 ∼= 〈a, b | a2, b2, (ab)3〉 ∼= Sym3 and we can
have the isomorphism

∆(3, 2n, 2) = Core(∆(n, 2n, 2)) oφ Sym3

with conjugation action φ : (a, b) 7→ ((13), (23)), the images permuting the given
generators of the normal core. For the orientation preserving subgroup

∆+(3, 2n, 2) = 〈R,S | R3, S2n, (RS)2〉

the situation is comparable, but a little more complicated. The index 3 subgroup

∆+(n, 2n, 2) = ∆+(3, 2n, 2) ∩∆(n, 2n, 2) = 〈S2, R−1SR〉

has normal core

Core(∆+(n, 2n, 2)) =

2⋂
k=0

R−k∆(n, 2n, 2)Rk = 〈S2, R−1S2R,R−2S2R2〉.

We still obtain the quotient ∆+(3, 2n, 2)/Core(∆+(n, 2n, 2)) ∼= Sym3, but this time
there is no complementary Sym3. Instead, we can recover ∆+(3, 2n, 2) as an exten-
sion

1 −→ Core(∆+(n, 2n, 2)) −→ G −→ Sym3 −→ 1

in the following way: Let F = F (r, s) be the free group on the indicated symbols,
Sym3 = 〈r, s | r3, s2, (rs)2〉 and πF : F → Sym3 the natural projection. Define
φ : F → Aut(Core(∆+(n, 2n, 2))) by

φ(r) : (S2, R−1S2R,R−2S2R2) 7→ (R−1S2R,R−2S2R2, S2),

φ(s) : (S2, R−1S2R,R−2S2R2) 7→ (S2, R−2S2R2, S−2(R−1S2R)S2).
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Note that ord(φ(r)) = 3, ord(φ(s)) = 2n and ord(φ(rs)) = 2. This follows from the
fact that they mimic conjugation in ∆+(3, 2n, 2) by R, S, and RS respectively. It is
also visible directly from their definition. Let

σ : Aut(Core(∆+(n, 2n, 2)))→ Out(Core(∆+(n, 2n, 2)))

be the natural projection. Because ord(φ(s)) 6= 2, conjugation in ∆+(3, 2n, 2) re-
stricted to Core(∆+(n, 2n, 2)) does not factor through a homomorphism Sym3 →
Aut(Core(∆+(n, 2n, 2))). But since φ(s)2 = conS2 ,

σφ : F → Out(Core(∆+(n, 2n, 2)))

satisfies ord((σφ)(s)) = 2, and this map does factor through Sym3 as σφ = πFφ. Put
otherwise, φ is a lift of πFφ over σ. This allows us to define

G := (F φn Core(∆+(n, 2n, 2)))/N

by dividing out the normal subgroup

N := 〈(r3, 1), (s2, S−2), ((rs)2, 1)〉FφnCore(∆+(n,2n,2)).

We have an isomorphism G → ∆+(3, 2n, 2) by (r, 1) mod N 7→ R and (s, 1) mod
N 7→ S. That this construction works is a basic result on group extensions, see
e.g. [Rob1982, Ch. 11].

To understand the geometry behind both group inclusions better, consider that an
inclusion ∆(3, 2n, 2) < Aut(H2) induces a tiling of H2 by triangles. The graph of this
tiling is tripartite. Choosing one of the vertex sets of the partition, one can draw di-
agonals between vertices in this set lying across two triangles to create a ∆(n, 2n, 2)-
tiling. This is illustrated in Figure 3.2.

Suppose now that we have a reflexive platonic map R defined by Γ C ∆(3, 2n, 2),
Γ ≤ ∆+(3, 2n, 2) of finite index. Writing ∆k = (ab)−k∆(n, 2n, 2)(ab)k, we have Γ ∩
∆k C ∆k (k = 0, 1, 2). Thus, we get three new reflexive platonic maps R′k of type
(n, 2n) and genus

g′ = 1 + 3
|∆k : Γ ∩∆k|
|∆(3, 2n, 2) : Γ|

(g − 1),

where Aut(R′k) = ∆k/(Γ ∩ ∆k). Since all three subgroups ∆k are conjugate within
∆(3, 2n, 2), these three maps are identical. In the case where Γ < ∆k for some k,
it holds for all k, and we get a map with g′ = g. We delve deeper into the latter
situation.

Proposition 3.2.1. Let R be a reflexive platonic map of genus g and type (3, 2n),
and let (a, b, c) be standard generators of Aut(R). If 〈abcba, c, b〉 has index 3 in
Aut(R), then it generates a standard map presentation of a new reflexive platonic
map R′ of genus g and type (n, 2n). Let (a′, b′, c′) = (abcba, c, b). The subgroup
〈a′, b′, c′b′c′〉 < Aut(R′) has index 2 and the automorphism conab restricts to this
subgroup and cyclically permutes its three generators.
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Figure 3.2: The inclusion ∆(n, 2n, 2) < ∆(3, 2n, 2) for the case n = 4. A fundamental
(4, 8, 2)-triangle inside the 4-gon consists of three adjacent (3, 8, 2)-triangles. Note the
three cocliques of vertices for the (3, 8, 2)-tiling, one set indicated by black, another
by grey dots. Each choice corresponds to an embedding ∆(n, 2n, 2) < ∆(3, 2n, 2).

Conversely, let R′ be a reflexive platonic map of genus g and type (n, 2n) such that

[Aut(R′) : 〈a′, b′, c′b′c′〉] = 2.

Suppose that the subgroup permits of the automorphisms of order 3 that cyclically
permute its generators. Then the semi-direct product 〈a′, b′, c′b′c′〉 o Sym3 with
Sym3 =

〈
a, b
∣∣ a2, b2, (ab)3

〉
and conjugation action

a : (a′, b′, c′b′c′) 7→ (c′b′c′, b′, a′) b : (a′, b′, c′b′c′) 7→ (a′, c′b′c′, b′)

defines a reflexive platonic map R of genus g and type (3, 2n) with standard gener-
ators (a, b, b′).

Proof. Let ∆(3, 2n, 2) = 〈ã, b̃, c̃〉 and Aut(R) = 〈ã, b̃, c̃〉/Γ. By the subgroup corre-
spondence theorem from group theory, the assumption implies that Γ < 〈ãb̃c̃b̃ã, c̃, b̃〉 <
∆(3, 2n, 2), the second inclusion being of index 3. This index 3 subgroup is iso-
morphic to ∆(n, 2n, 2) and we identify it as such. Since Γ C ∆(3, 2n, 2), certainly
Γ C ∆(n, 2n, 2) and we get a platonic map ∆(n, 2n, 2)/Γ with standard generators
(a′, b′, c′) = (ãb̃c̃b̃ãΓ, c̃Γ, b̃Γ) = (abcba, c, b). The automorphism conãb̃ of ∆(3, 2n, 2)
normalizes the subgroup⋂

k∈{0,1,2}

(ãb̃)−k∆(n, 2n, 2)(ãb̃)k = 〈ãb̃c̃b̃ã, c̃, b̃c̃b̃〉 = 〈ã′, b̃′, c̃′b̃′c̃′〉

and so induces an automorphism of order 3 on it. Since conãb̃ also normalizes Γ,
it factors through the projection π : ∆(n, 2n, 2) → ∆(n, 2n, 2)/Γ, yielding conab of
〈a′, b′, c′b′c′〉. It is easy to check that [〈a′, b′, c′〉 : 〈a′, b′, c′b′c′〉] = 2 and that the action
cyclically permutes the three generators of the smaller group.
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The converse assumes that we have ΓC∆(n, 2n, 2). We embed ∆(n, 2n, 2) in ∆(3, 2n, 2)
as ∆1 above. The conjugation conãb̃ normalizes H̃ = ∆1 ∩∆2 ∩∆3 and permutes its
generators (ãb̃c̃b̃ã, c̃, b̃c̃b̃) as a cycle (123). The assumption on the existence of the or-
der 3 automorphisms of H = H̃/Γ implies that conãb̃ factors through π : H̃ → H̃/Γ,
hence that conãb̃(Γ) = Γ. Also, Γb̃ = Γ because b̃ ∈ ∆1. Taken together, we see that
Γ C ∆1 · 〈ãb̃, b̃〉 = ∆(3, 2n, 2). We thus have a platonic map R = ∆(3, 2n, 2)/Γ.
The structure of the second factor is Sym3, since ord(ãb̃) = 3, ord(b̃) = 2, and
ord(ãb̃b̃) = ord(ã) = 2. Setting a := (ã′b̃′)b̃′ and b = b̃′ yields the presentation of
Sym3 as in the proposition. Obviously a and b are involutions and (ab)3 = 1. Also,
(ab′)2 = (ab′a)b′ = (b′)2 = 1 and (bb′)2 = (bb′b)b′ = c′b′c′b′, so that ord(ab′) = 2
and ord(bb′) = 2n, proving that R is of type (3, 2n) with the map presentation as
claimed.

The same construction and reasoning applies mutatis mutandis for a general platonic
map M and its group Aut(M) = Aut+(M). We therefore leave the proof of the
following proposition to the reader.

Proposition 3.2.2. Let M be a platonic map of genus g and type (3, 2n), and let
(R,S) be standard generators of Aut(M). If 〈S2, R−1SR〉 has index 3 in Aut(M),
then it is the automorphism group of a new platonic map M′ of genus g and type
(n, 2n). Writing (R′, S′) = (S2, R−1SR), the subgroup 〈R′, (S′)2, S′R′(S′)−1〉 =
〈S2, R−1S2R,R−2S2R2〉 of Aut(M′) has index 2 and the automorphism conR re-
stricts to this subgroup and cyclically permutes its three generators.

Conversely, let M′ be a platonic map of genus g and type (n, 2n) with standard map
generators (R′, S′), such that the subgroup

H := 〈R′, (S′)2, S′R′(S′)−1〉 < Aut(M′)

is of index 2. Suppose H permits of the automorphisms of order 3 that cyclically
permute its generators. Then we can form a group extension G of H by Sym3 in the
following way: Let F = F (R,S) be the free group on the indicated symbols, and
Sym3 = 〈R,S | R3, S2, (RS)2〉. Define φ : F → Aut(H) by

φ(R) : (R′, (S′)2, S′R′(S′)−1) 7→ ((S′)2, S′R′(S′)−1, R′)

φ(S) : (R′, (S′)2, S′R′(S′)−1) 7→ (R′, S′R′(S′)−1, (R′)−1(S′)2R′)

For π : F (R,S) → Sym3 and π′ : Aut(H) → Out(H) we have φπ′ = πφ′ Define
G := (F (R,S) φnH)/N , where

N = 〈(R3, 1), (S2, (R′)−1), ((RS)2, 1)〉.

Then G is the map automorphism group of a new platonic map of type (3, 2n) with
standard map generators (R, 1) mod N and (S, 1) mod N . �

Remark 3.2.3. Working with platonic maps of low genus, one at first gets the idea
that the subgroup 〈S2, R−1S2R,R−2S2R2〉 always has a complement isomorphic to
Sym3 in Aut+(M). The first counterexamples are the maps R28.2 and C28.2.
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Again, a geometric version of these propositions can help us attain a better grasp
of what’s going on. We introduce new terminology to facilitate formulation of the
result.

Definition 3.2.4. Let M be a platonic map of type (n, 2n) whose dual has a bipartite
graph. A map trial M∨3 of M is formed as follows. Consider the Riemann surface
(M)r = (M∨)r and realize the two maps on it. Take the vertices of one set of the
bipartition of cells0(M∨). Whenever two of these vertices lie in 2-cells of M incident
to a common vertex of M, connect them by a geodesic segment that lies within the
fundamental triangles of M incident to this common vertex. If M∨3 ∼= M, then M is
called self-trial.

The map trial M∨3 is seen to be platonic and reflexive if M is, because we can apply
the elements of Aut(M) to it, and this action is transitive on the oriented (0, 1)-flags
of M∨3, and on the oriented (0, 1, 2)-flags if M is reflexive. Further consideration of
Figure 3.2 makes this clear.

Proposition 3.2.5. Let M be a platonic map of genus g and type (3, 2n) with a tri-
partite graph (cells0(M), cells1(M)). There is a unique self-trial platonic map M′ of
genus g and type (n, 2n) with standard map presentation Aut+(M) = 〈S2, R−1SR〉.
If M is reflexive, so is M′, and then Aut(M′) = 〈abcba, c, b〉.

Conversely, if M′ is a self-trial platonic map of type (n, 2n) and genus g, there is
a unique platonic map M of type (3, 2n) and genus g with a bipartite graph and
standard map presentation given by the group extension of Proposition 3.2.2. If M′

is reflexive, so is M, and then Aut(M) is as found in Proposition 3.2.1.

Proof. If M is of type (3, 2n) and has a tripartite graph, then 〈S2, R−1SR〉 is the
subgroup of all elements fixing one specific maximal vertex coclique. It therefore has
index 3 in Aut+(M) and Proposition 3.2.2 applies. Self-triality of the resulting map
M′ of type (n, 2n) is evident by the existence of the rotation R on (M)r: it permutes
the three map trials of M′. Conversely, if M′ is self-trial, the Riemann surface M′r
apparently has an order 3 automorphism that permutes the three point sets formed
by the vertices of M′r and either set of the bipartition that the set of face centers
allows. The index 2 subgroup H of Proposition 3.2.2 consists of the automorphism
fixing each of those three sets setwise, and we can apply this proposition to extend
Aut+(M′).

Definition 3.2.6. Given a platonic map M of type (3, 2n) with a tripartite graph, we
define the D2-map D2(M) (diagonal map across two faces) to be the platonic map
of type (n, 2n) constructed in the foregoing propositions.

The name D2-map is justified by the geometric interpretation of the construction.
The edges of D2(M) are (geodesic) segments crossing two triangles of M. They
connect vertices of one of the three cocliques of cells0(M). The construction forms a
bijection

D2 : {Type (3, 2n) maps with a tripartite graph} → {self-trial maps of type (n, 2n)}.
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We can also rephrase the result in terms of platonic covers by forming the quotient of
a reflexive platonic map R by the normal index 6 subgroup 〈abcba, c, bcb〉 appearing
in the proof of Proposition 3.2.1.

Proposition 3.2.7. If a reflexive platonic map R of genus g and type (3, 2n) allows a
platonic cover π : R → Dih(3), then it has a diagonal map D2(R). The map D2(R)
is a platonic cover of Dih(1), and there is such a platonic cover π′ for which the
following diagram commutes:

Aut(R)
π // Aut(Dih(3))

Aut(D2(R))
π′ //

OO

OO

Aut(Dih(1))

OO

OO

For chiral platonic maps, one replaces Aut by Aut+ in the formulation. �

The simplest example of this proposition is

Oct //

D2

��

Dih(3)

D2

��

Hos(4) // Dih(1)

Example 3.2.8. Not all maps of type (3, 2n) have a coclique necessary for the above
construction. The smallest counterexamples are R3.3 of type (3, 12) and R5.2 of type
(3, 10). And not all maps of type (n, 2n) are self-trial. For example, none of the maps
in the polynomial family Wi1(n) is. Two other small counterexamples are R5.5 and
R8.8.

Example 3.2.9. In the case n = 2, we get the genus 0 example Hos(4) = D2(Oct).
To construct the diagonal map, start with Oct realized on the sphere, take the north
and south pole to be two (opposite) vertices, and draw the four meridians through
the midpoints of the equatorial edges. In the case n = 3, there are infinitely many
inclusions Aut(R1.1:n)CAut(R1.2:3n) and Aut(R1.2:n)CAut(R1.1:n), all of index 3.

Remark 3.2.10. In Chapter 2 we saw many polynomial families that have diagonal
D1-maps and D2-maps, so there are infinitely many instances of both these diagonal
maps. We do not know if there are infinitely many instances of the composition
of a D2-map and a D1-map, which can only happen by the inclusion ∆(8, 8, 2) <
∆(4, 8, 2) < ∆(3, 8, 2).

3.3 ∆+(3, 7, 2) and the D4-map

Consider the triangle group ∆+(3, 7, 2) = 〈R,S | R3, S7, (RS)2〉 and its action on
H2 given by choosing a (3, 7, 2)-triangle. Computation most easily executed by a
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computer shows that the normal core of the subgroup

H := 〈S, SR
−1S3R〉 = 〈S, (R−1S3R)−1S(R−1S3R)〉

with respect to either ∆+(3, 7, 2) or ∆(3, 7, 2) is the intersection of the subgroups Hg ,
where g ∈ {1, R,R2, R2SR,R2S2R,R2SR2, R2S3R,R2S4R2, R2S4R}. This normal
core can in fact be written as the normal closure of a cyclic subgroup:

Core∆(3,7,2)(H) = 〈 (R2S4RS4R2S)2 〉∆
+(3,7,2).

Its index in ∆(3, 7, 2) is 1008, and ∆(3, 7, 2)/Core∆(3,7,2)(H) ∼= PSL(2, 8) × Z2. In
fact, H2/Core∆(3,7,2)(H) ∼= (R7.1)r, and the quotient group acts by the standard map
presentation of this platonic map, the Fricke-Macbeath map. It is quite remarkable
that this platonic map is so closely connected to the present triangle group inclusion.
Additional computation tells us that [∆+(3, 7, 2) : H] = 9, and that the conjugates we
found form the whole ∆+(3, 7, 2)-orbit of H under conjugation. Surprisingly, they
even form the whole ∆(3, 7, 2)-orbit, because conjgation by the hyperbolic isometry
(abc)9 also fixes H . If we embed ∆+(3, 7, 2) � Aut+(H2), the action of H contains
rotations about the center and vertices of a regular hyperbolic 7-gon as depicted
in Figure 3.3. Because the angles of the 7-gon are readily seen to be 2π/7, the line
segments to its center divide it into seven equilateral (7, 7, 7)-triangles, and we find
that

〈S, SR
−1S3R〉 ∼= ∆+(7, 7, 2).

There is no complementary PSL(2, 8) × Z2 to ∆+(7, 7, 2) in ∆(3, 7, 2), nor a comple-
mentary PSL(2, 8) to it in ∆+(3, 7, 2). If there were, all its non-trivial elements would
be of finite order, so would have to be elliptic isometries of H2 around the same point.
The point stabilizers of ∆(3, 7, 2) have order at most 14, though. Instead, we can re-
cover ∆+(3, 7, 2) as an extension of PSL(2, 8) by Core(∆+(7, 7, 2)) in the following
way. First, we elaborate on the description above of Core(∆+(7, 7, 2)) as a normal
closure by giving explicit generators. If we set t := (R2S4RS4R2S)2, then

Core(∆+(7, 7, 2)) = 〈th : h = RiSj , i ∈ {0, 1, 2}, j ∈ {0, . . . , 6}〉.

We can even generate it by 14 elements, but the above generating set is sufficient
for our purpose of succinctly specifying a conjugation action on the subgroup. Let
F = F (r, s) be the free group on the indicated symbols, consider

PSL(2, 8) = 〈r, s | r3, s7, (rs)2, (r2s4rs4r2s)2〉

and let πF : F → PSL(2, 8) be the natural projection. In order to write down a ho-
momorphism φ : F → Aut(Core(∆+(7, 7, 2))), we leave out mention of the element t
and define φ on the two generators while writing e.g. (tR)3(tRS)−1 as 3R−RS. The
automorphism φ(r) is given as by the following table:

w 1 R R2 S RS R2S S2 RS2 R2S2 S3

φ(r)(w) R R2 1 R2S6 S6 RS6 −R2S5+RS −R2S6 −R2+S4 −R2S6+RS2+R2S4−RS6+1+RS

w RS3 R2S3 S4 RS4

φ(r)(w) −RS+R2S5 −R2S−S3+R2S6 −RS−R2S2−S4+R2+1+RS −RS−1+RS6−R2S4−RS2+R2S6

w R2S4 S5 RS5 R2S5

φ(r)(w) −R2S3+1+RS −S5+R2S+1+RS −RS−1−R2+S4+R2S2+RS −R2S5+S2+R2+1+RS

w S6 RS6 R2S6

φ(r)(w) −RS−1−R2+1+RS −RS−1−R2S+S5 −R2S6−S+1+RS
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The definition of φ(s) is easier in comparison: RiSj 7→ RiSj+1 mod 7. Some orders of
φ-images are clear: ord(φ(r)) = 3, ord(φ(s)) = 7 and ord(φ(rs)) = 2. This follows
from the fact that they mimic conjugation in ∆+(3, 7, 2) by R, S, and RS respec-
tively. The order of φ(r2s4rs4r2s) is bigger than 2, so conjugation in ∆+(3, 7, 2) re-
stricted to Core(∆+(7, 7, 2)) does not factor through a homomorphism PSL(2, 8) →
Aut(Core(∆+(7, 7, 2))). Its square is an inner automorphism of Core(∆+(7, 7, 2)),
though:

φ((r2s4rs4r2s))2 = cont−2(tRS)−3 .

Therefore, letting

σ : Aut(Core(∆+(7, 7, 2)))→ Out(Core(∆+(7, 7, 2)))

be the natural projection, σφ : F → Out(Core(∆+(7, 7, 2))) satisfies ord((σφ)(s)) = 2,
and this homomorphism does factor through PSL(2, 8) as σφ = πFφ. Put otherwise,
φ is a lift of πFφ over σ. This allows us to define

G := (Fφn Core(∆+(7, 7, 2)))/N

by dividing out the normal closure N of the subgroup

〈(r3, 1), (s7, 1), ((rs)2, 1), ((r2s4rs4r2s)2, (tRS)3t2)〉.

We have an isomorphism G → ∆+(3, 7, 2) by (r, 1) mod N 7→ R and (s, 1) mod
N 7→ S. That this construction works is a basic result on group extensions, see
e.g. [Rob1982, Ch. 11].

The geometry of the inclusion ∆+(7, 7, 2) ⊂ ∆(3, 7, 2)+ is illustrated in Figure 3.3.
Note that there is no reflection in ∆(3, 7, 2) that fixes ∆+(7, 7, 2). This is in contrast
to the previous two triangle group inclusions. In spite of this, there is no mirror
version of the group inclusion, because of the orientation reversing isometry (abc)9

mentioned above.

Suppose now that we have a platonic map M defined by Γ C ∆(3, 7, 2)+ of finite
index. For any ∆ ∼= ∆(7, 7, 2)+ embedded in ∆(3, 7, 2)+, we have Γ ∩∆ C∆. Thus,
we get a new platonic map M′ = ∆/(Γ ∩∆) of type (7, 7) and genus

g′ = 1 + 9
|∆ : Γ ∩∆|
|∆(3, 7, 2)+ : Γ|

(g − 1).

When Γ < ∆, then g′ = g. In this case, Γ < ∆h for any conjugate ∆h of ∆ by
h ∈ ∆+(3, 7, 2), since conjugation leaves Γ invariant. So Γ < Core∆+(3,7,2)(∆). On
the level of platonic maps, the latter situation has a different description.

Proposition 3.3.1. Let M be a platonic map of genus g and type (3, 7), and let (R,S)

be standard map generators. If 〈S, SR−1S3R〉 has index 9 in Aut+(M), then its gen-
erators form a standard generator pair (r, s) for a chiral platonic map M′ of genus
g and type (7, 7). We have (R2S4RS4R2S)2 = s4rs−1r2 and the group Aut(M′) has
the normal index 56 subgroup

H := 〈(s4rs−1r2)h : h = RiSj , i ∈ {0, 1, 2}, j ∈ {0, . . . , 6}〉
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Figure 3.3: The inclusion ∆(7, 7, 2)+ < ∆(3, 7, 2)+. A fundamental (7, 7, 2)-triangle
inside the 7-gon has the same area as nine (3, 7, 2)-triangles. The vertices for the
(3, 7, 2)-tiling are partitioned into nine equivalence classes mod ∆+(7, 7, 2), one of
which (indicated by black dots) forms the vertices for the (7, 7, 2)-tiling. The vertices
inside the 7-gon are representatives of the other eight.

on which the automorphisms conR and conS act as φ described on the previous page.
Conversely, let M′ be a chiral platonic map of genus g and type (7, 7) such that the
subgroup H has index 56 in Aut(M′) and permits of two automorphisms φR and φS
acting as conR and conS respectively. Suppose also that ord(φR) = 3, ord(φS) = 7
and ord(φRφS) = 2. Then there is a reflexive platonic map of genus g and type (3, 7)
defined by the group extension of H described on the previous page.

Proof. Let ∆+(3, 7, 2) = 〈R̃, S̃〉 and Aut+(M) = 〈R̃, S̃〉/Γ. By the subgroup corre-
spondence theorem, the assumptions imply that

Γ < 〈S̃, S̃R̃
−1S̃3R̃〉

9
< ∆+(3, 7, 2).

This index 9 subgroup is isomorphic to ∆+(7, 7, 2) and we label it as such. Since
ΓC∆+(3, 7, 2), certainly ΓC∆+(7, 7, 2) and we get a chiral platonic map ∆+(7, 7, 2)/Γ
with standard generators

(R′, S′) = (S̃Γ, S̃R̃
−1S̃3R̃Γ) = (S, SR

−1S3R).

The conjugations conR̃ and conS̃ induce automorphisms on Core(∆+(7, 7, 2)) as de-
scribed in the analysis of the inclusion ∆+(7, 7, 2) < ∆+(3, 7, 2). Since Γ < ∆+(7, 7, 2)
is normal in ∆+(3, 7, 2) we find Γ < Core(∆+(7, 7, 2)) and the conjugations factor
through respective conjugations conR and conS of H = Core(∆+(7, 7, 2))/Γ, exhibit-
ing the claimed behavior.

For the converse, the existence of the prescribed automorphisms allows us define the
group extension of H discussed before the proposition.

The condition on a platonic map of type (3, 7) from Proposition 3.3.1 has a geometric
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equivalent:

(*) its graph has a nine-coloring for which ‘being of the same color’ is Aut(M)-
invariant and such that it contains a subgraph isomorphic to that contained in
the grey part of Figure 3.3, such that the black vertices in the figure correspond
to graph vertices of the same color.

Whether it is enough for the graph to be nine-colorable, we do not know. Still, the
proposition leads us to a diagonal map construction, just like in the previous two
sections.

Definition 3.3.2. Given a platonic map M of type (3, 7) with graph satisfying (*), we
define the D4-map D4(M) (diagonal map across four faces) to be the platonic map
of type (7, 7) constructed in Proposition 3.3.1.

One could work out how to construct eight ‘map nonals’ of type (7, 7) out of a given
platonic map of type (7, 7) in a way similar to the construction of map trials in the
previous section, and go on to define ‘self-nonality’ for platonic maps of type (7, 7).
We have not done so and settle instead for a proposition relating the D4-map to
platonic covers, analogous to Proposition 3.2.7.

Proposition 3.3.3. If M is a platonic map of genus g and type (3, 7) with a platonic
cover π : M → R7.1, then it has a diagonal map D4(M). The map D4(M) is a
platonic cover of C7.2, and there is such a cover π′ for which the following diagram
commutes:

Aut(M)
π // Aut(R7.1)

Aut(D4(M))
π′ //

OO

OO

Aut(C7.2)

OO

OO

�

The morphism π′ is determined up to an element of Aut(C7.2). This is the reason for
the existential statement in the proposition.

The Fricke-Macbeath map R7.1 is the only example of the D4-map that we know
of. One can check there is no other type (3, 7) map satisfying the condition (*) for
2 ≤ g ≤ 301. We expect there to be an infinite number of examples, since it seems
reasonable that Core(∆+(7, 7, 2)) contains many subgroups normal in ∆+(3, 7, 2).

Problem 3.3.4. To construct an infinite sequence of platonic maps of type (3, 7) that
have a D4-map.

We remark that no map with automorphism group Aut+(R) = PSL(2, q) except
R7.1 will have a D4-map. The explanation is that an epimorphism φ : PSL(2, q) �
PSL(2, 8) would give rise to the normal subgroup ker(φ) of the simple group PSL(2, q).
Since φ is supposed to be surjective, ker(φ) = 1 and q = 8. Since a platonic cover of
R7.1 satisfies 3 | ord(R) and 7 | ord(S), we must in fact have ord(R) = 3, ord(S) = 7
and hence g = 7; we conclude that R = R7.1.
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3.4 Application: platonic maps vs. platonic surfaces

With the diagonal map constructions in hand, we can now analyze the relationship
between the map automorphism group Aut+(M) of an orientable platonic map and
the group Aut(Mr) of Riemann surface automorphisms of the corresponding pla-
tonic surface.

Proposition 3.4.1. The group Aut+(M) of a platonic map M on an orientable surface
of genus g ≥ 2 is also the full automorphism group of Mr, except when M satisfies
the converse conditions of one of the Propositions 3.1.2, 3.2.2, 3.3.1. Equivalently, the
exceptional cases can be described as:

1. M is of type (n, n) and self-dual;
2. M is of type (n, 2n) and self-trial (or equivalently, a platonic cover of Dih(1));
3. M is of type (7, 7) and a platonic cover of C7.2.

In the first case, Aut(Mr) is an extension of Z2 by Aut+(M) of degree 2. In the second
case, Aut(M) contains the index 2 subgroup 〈S2, R−1S2R,R−2S2R2〉 < Aut+(M)
and there is an extension of Sym3 by this subgroup that contains Aut(M) and acts on
Mr. This extension is either the full group Aut(Mr), or exceptional case 1 applies. In
the third case, Aut(Mr) is a degree 2 extension of PSL(2, 8) by the index 56 subgroup
HAut+(M) from proposition 3.3.1.

Proof. Let Mr be uniformized as H2/Γ, where Γ C ∆+(p, q, 2) and ∆+(p, q, 2)/Γ ∼=
Aut+(M). If Aut(Mr) > ∆+(p, q, 2)/Γ, then there is a Fuchsian groupF > ∆+(p, q, 2)
such that Aut(Mr) = F/Γ and [F : ∆+(p, q, 2)] <∞. But by [Sin1972], ∆+(p, q, 2) <
F must be one of the triangle group inclusions discussed in Sections 3.1, 3.2, or
3.3. Hence, we find ourselves in one of the exceptional cases. Because g ≥ 2, the
type of the triangle group F is different from that of ∆+(p, q, 2) and either F is a
finitely maximal Fuchsian group, or it is ∆+(4, 8, 2) and we can extend once more to
∆+(3, 8, 2).
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Geometric classification theorems

IN this chapter we undertake several classification attempts. After looking at the
simple cases of platonic maps with one or two vertices in Sections 4.1 and 4.2, we

classify all reflexive platonic maps whose vertex number is an odd prime in Section
4.3. In Section 4.4 we study the concept of density of a platonic map, which we im-
port from graph theory. This leads to a combinatorial characterization of the Fermat
maps. In the last few sections we investigate maps of various types that occur a lot.
We then show that such maps must belong to one of a certain set of polynomial fam-
ilies described in Chapter 2. Tools we use are the genus formula (see Section 1.4),
multiplicity quotients and the study of the local incidence structure.

The notation we use througout is V for the vertex set, sometimes F for the set of
faces. These are indexed, but we tailor the indices to the task at hand.

4.1 One-vertex maps

Platonic maps with few vertices are easiest to study. Of course the same holds for
their duals, maps with few faces. So we start with one-vertex maps.

Theorem 4.1.1. A platonic map with v = 1 is a member of one of the two polynomial
families Wi1(n) and D1(Wi2(n)).

Proof. For any standard map presentation, R fixes the unique vertex, whence R =
Sk for some k ∈ Z. This implies that RS = Sk+1 and this element has to have order
2. Since 〈R,S〉 is cyclic and generated by S, q must be even and R = S

1
2 q−1. If

q = 4n + 2, then gcd(q, 1
2q − 1) = 2 and p = q/2 = 2n + 1. Since we now find the

relator RS−2n, the map is a member of Wi1(n). If q = 4n, then gcd(q, 1
2q − 1) = 1

79
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and p = q = 4n. Because we find the relator RS−(2n−1), we end up with a member
of D1(Wi2(n)).

Remark 4.1.2. One-vertex maps are the only platonic maps that are not loop-free. If
a platonic map has a vertex v1 with an incident loop e1, then Sk1 (e1) is a loop for each
k, so v1 is not connected to other vertices. Connectedness of the map graph implies
V = {v1}. Dually, the only platonic maps that are not dual-loop-free are one-face
maps, and such a map must be a member of Wi1(n)∨ or D1(Wi2(n))∨.

4.2 Two-vertex maps

After one-vertex maps come two-vertex maps.

Theorem 4.2.1. A platonic map with v = 2 has the map presentation

Aut+(R) =
〈
R,S

∣∣Rp, Sq, (RS)2, R−1SRS−k
〉

with k2 ≡ 1 mod q and p = 2q
gcd(k+1,q) . Every pair (q, k) satisfying these conditions

yields a reflexive platonic map v = 2.

Proof. Let the vertex set be {v1, v2}. Any rotation around a vertex is one around
both vertices, so S2 = Sk1 . By platonicity, also S1 = Sk2 so that S1 = Sk

2

1 , entailing
k2 ≡ 1 mod q. Since Sk1 = S2 = R−1S1R, the map has the relator R−1SRS−k. From
this we derive

(RS)2 = 1 =⇒ SR = R−1S−1 =⇒ 1 = R−1SRS−k = R−2S−k−1 =⇒ R2 = S−k−1.

It follows that p = 2q/ gcd(k + 1, q). Also, since [Aut+(R) : 〈S〉] = 2 we know that
〈S〉CAut+(R) with complement 〈RS〉, and hence

Aut+(R) ∼= 〈S〉o 〈RS〉

of order 2q. Because the presentation in the theorem yields the same group struc-
ture (i.e. no additional relators are needed), we have shown that the map group is
isomorphic to the group presented. Conversely, a group G with such a presentation
defines a platonic map with two vertices, since [G : 〈S〉] = 2.

Using the chirality criterion (Section 1.4), we note that (R,S) 7→ (R−1, S−1) maps the
extra relator of the presentation to RS−1R−1Sk = RRSSk = S−k−1SSk = 1. It is
thus a group homomorphism and the map must be reflexive.

The computation (RS)−1S(RS) = (RS)S(S−1R−1) = RSR−1 = Sk completes the
description of Aut+(R) as the semi-direct product displayed above. We also see

e =
|Aut+(R)|

2
= q, f =

|Aut+(R)|
p

= gcd(k + 1, q)
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and from this derive

g = 1− 1

2
(v − e+ f) =

1

2
(q − gcd(k + 1, q)) .

Remark 4.2.2. There are two solutions for k that work for any q, namely k ≡ ±1 mod
q. The solution k ≡ −1 mod q leads to R2 = 1, and we see that the map is Hos(q).
The solution k ≡ 1 mod q yields the family F (2n,2n)

n−1 . The number of possible k for a
given q is well known. It is

m(q)2# odd prime divisors of q

with m(q) = 1 if val2(q) ≤ 1, m(q) = 2 if val2(q) = 2 and m(q) = 4 if val2(q) ≥ 3,
where val2 is valuation at the prime 2. For example, for q = 23 · 5 · 23, there are
4 ·2 ·2 = 16 solutions. To express the number of solutions for a given g in closed form
is not so easy, but all solutions are quickly computed using the fact that q ≤ 4g + 2.

4.3 Reflexive platonic maps with v an odd prime

After looking at the set of platonic maps for some time, one notices that for most
maps v is even. A problem that might thus be amenable to solution is to classify all
platonic maps for which v is odd. We take a first step by determining all reflexive
platonic maps for which v is an odd prime.

Theorem 4.3.1. Let v ≥ 3 be an odd prime. The unique platonic map with v vertices
and g = 0 is the platonic map Dih(v). The only platonic maps with v vertices and
genus g ≥ 1 are the members R(v,n) of the familyF (v(2n−1),2v(2n−1))

v2n−v2+ 1
2 (v−2)(v−1)

of type ( 1
v (2g+

3v − 2), 2
v (2g + 3v − 2)) defined by:

Aut(F (v(2n−1),2v(2n−1))

v2n−v2+ 1
2 (v−2)(v−1)

)+ =
〈
R,S

∣∣∣Rv(2n−1), S2v(2n−1), (RS)2, [Rv, S], [R,S2]
〉

See Subsection 2.10.1 for a proof that the group G(v, n) defines a platonic map with
the parameters displayed.

Proof. To start with, we form the µ00-quotient map R of R, see Section 1.4. The map
R still has v vertices. But it also satisfies µ00 = µ02 = 1. Let us therefore classify
the reflexive platonic maps with this extra constraint first. We will show that R =
Dih(v). The action of φ ∈ Aut+(R) on the vertex set V determines the local action
of φ around a vertex unequivocally and therefore the automorphism itself, because
µ00 = 1. Thus, Aut+(R) is a permutation group on V . Since v | qv = |Aut+(R)|
and v is prime, there is an orientation preserving automorphism T of order v. The
map R satisfies q < v, so none of T, T 2, . . . , T v−1 can be a vertex rotation, all of
them being of order v. Again using µ00 = 1, it follows that T acts as a v-cycle on
the vertex set. Without loss of generality, we now label the vertices using Z/vZ and
replace T by a suitable power such that T : i 7→ i + 1 and there is an edge e01.
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Since |Aut+(R)| ≤ v(v − 1), the group 〈T 〉 is a Sylow v-subgroup of it. Because its
order is prime, it is disjoint from its conjugates. This number of conjugates is 1 mod v
by the Sylow theorems, but it cannot be bigger than v, again by the size constraint
on Aut+(R). We find that 〈T 〉 C Aut+(R) with complement the rotation subgroup
around one vertex. In other words,

Aut+(R) ∼= 〈T 〉o 〈S〉.

Let Si be the rotation around vertex i. For some k ∈ Z/vZ then, S−1
0 TS0 = T k. Thus,

for any vertex iwe have S0(i+1) = S0(i)+k. Applying the knowledge that S0(0) = 0
we find S0(i) = ki for all i ∈ Z/vZ. The action of a power is therefore defined by
Sj0 : i 7→ kji, and because ord(S0) = q we get the equality kq ≡ 1 mod v. Now q is
even because qv = 2e and v is odd. The fact that v is prime implies that 1 mod v only
has two square roots, and considering the order of S0 we see that kq/2 ≡ −1 mod v.
But geometrically, this means that −1 lies straight across from 1 when considered
as neighbors of vertex 0. The transformation T thus preserves the geodesic wall
through e01, and the vertices on this wall are exactly 0, 1, 2, . . . , v − 1. This finishes
the game: there is supposedly a reflection in this geodesic wall, but we also know it
fixes all vertices. The two vertices S0(1) and S−1

0 (1) are therefore identical and hence
q ≤ 2. We conclude that R = Dih(v).

We return to the situation of the platonic cover π of R to its µ00-quotient R. It is now
clear that R = Dih(v) and we work our way back up to R in two steps. We have the
group homomorphisms

Aut(R)
π1−→ Aut(R)/〈Sq/µ02〉 π2−→ Aut(R)/〈Sq/µ00〉 = Aut(Dih(v)).

The platonic cover π2 is branched over cells0. The platonic map R′ with automor-
phism group Aut(R)/〈Sq/µ02〉 has parameter µ′00 = deg π2. Also, no two vertices
of R′ are identified by π2, hence v′ = v, e′ = vµ′00, f ′ = 2µ00, p′ = v, q′ = 2µ00,
µ′02 = 1. The graph Γ(V ′, E′) is a v-cycle, with µ′00 edges ei,i+1 between to suc-
cesive vertices. Therefore, S2

i fixes all vertices. Platonicity implies that S2
i = S2k

i±1

for some k ∈ Z/µ′00Z, independently of i. Applying this twice going from i to
i + 1 and back yields S2

0 = S2k
1 = S2k2

0 . Going around the whole v-cycle yields
S2

0 = S2k
1 = · · · = S2kv−1

v−1 = S2kv

0 . So k2 ≡ 1 mod µ′00 and kv ≡ 1 mod µ′00. Since v is
odd, this means k ≡ 1 mod µ′00 and hence

S2
i = S2

j for all i, j.

We see that each face appears around all v vertices exactly once, since p′ = v′ and
µ′02 = 1. Let us number the faces around v0 as f1, . . . , f2µ00

counterclockwise. The
relationship just derived implies that the odd-numbered faces are grouped in ex-
actly the same way around all vi: spaced two apart, in ascending numerical order
f1, f3, . . . , f2µ00−1 counterclockwise. The same holds for the even-numbered faces.
Consider an edge ei i+1. Suppose faces f2j−1, and f2k border it right and left respec-
tively, around vi. Then around vi+1, f2k borders it on the right, so the edge it borders
on the left around vi+1 is f2j+1. One sees that the even-numbered faces are ‘rotated
counterclockwise by two’ relative to the odd-numbered ones, when passing from vi
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to vi+1. Following f2k along its boundary, the neighbor sequence must repeat after
p′ steps, whence v = p′ ≡ 0 mod µ′00, or in other words µ′00 | v. Since v is prime,
the only non-trivial such covering has degree µ′00 = v and its incidence structure
was just described. These maps are in fact those in the proposition with parameters
(m,n) = (v, 1).

The map π1 is branched over cells0 ∪ cells2 of the map R′, and degvi(π1) = degfj (π1).
The covering is of degree µ02, we may therefore conclude we still have v vertices, and
e = v2µ02, f = 2v, p = vµ02, q = 2vµ02. It follows that 2−2g(R) = χ(R) = 3v−v2µ02.
So µ02 has to be odd for R to be a well-defined (platonic) map.

Lastly, let (R,S) be a standard generator pair for R. By steps 1 and 2 we know that
R mod 〈Sq/µ00〉 has order v. That implies Rv ∈ 〈Sq/µ00〉, so [Rv, S] = 1. Also, since
S2 = Sq/µ00 ∈ Z(Aut(R)+), we have [R,S2] = 1. This finishes the proof that R
belongs to the family described in our theorem.

That reflexivity is necessary is shown e.g. by chiral torus maps M1.1(m,n) with v =
m2 + mn + n2 or chiral chiral torus maps M1.2(m,n) with v = m2 + n2. One can
generate maps with p vertices for any prime p ≡ 1 mod 4 in this way. There are also
plenty of higher genus chiral maps satisfying the condition, although more structure
might be discovered in this set yet.

Remark 4.3.2. The reflexive platonic maps with v and odd prime and 2 ≤ g ≤ 101 are
R10.20, R19.31, R28.34, R37.50, R46.34, R55.52, R64.39, R73.116, R82.78, R91.67, R100.49

(v = 3); R6.6, R31.15, R56.18, R81.170 (v = 5); R15.10, R64.36 (v = 7); R45.25 (v = 11);
and R66.12 (v = 13).

4.4 Dense platonic maps

We take up the study of the density of a platonic map, which is meant to measure the
ratio of its number of edges to its number of vertices. We will classify maps with high
density. In general, the graph of a platonic map is not a simple graph. For example,
for a polynomial family of platonic maps with increasing genus the number of edges
increases without bound, whereas we have seen families for which the number of
vertices stays fixed. Thus, their ratio tends to infinity. A more informative measure
is the number of different vertices to which a vertex is connected. This suggests the
following definition.

Definition 4.4.1. The (graph) density of a platonic map M is defined to be δ(M) :=
d00/v.

First, it is obvious that δ(M) ∈ (0, 1], and that the only way to get density 1 is if Γ(M)
has loops. These are the one-vertex maps, see Section 4.1. We will exclude them from
further consideration.
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Second, if a platonic map M of type (p, q) has multiplicity µ00 > 1, we can form the
µ00-quotient map M′, as described in Section 1.6. The quotient map has the same
density as the original:

d′00/v
′ = q′/v′ = (q/µ00)/v = d00/v

Therefore we assume in this section that µ00 = 1, in which case δ(M) = q/v. We can
generalize results for such maps to all platonic maps afterwards via platonic covers
branched over cells0. Because our graph is loop-free, the µ00-quotient map has a
simple graph.

Third, reflexivity turns out to be a necessary and sufficient condition to get a handle
on matters. To summarize, we may and will now assume that we have a reflexive
platonic map R for which Γ(R) is simple, v ≥ 2, p ≤ q, and δ(R) ∈ (0, 1).

How close can we get to δ(R) = 1? The densest simple graph on any number v of
vertices is of course the complete graph Kv , with density δ(Kv) = (v − 1)/v. But the
number of reflexive platonic maps with a complete graph is very limited.

Proposition 4.4.2. Let R be a reflexive platonic map that has graph Γ(R) ∼= Kv . Then
R is one of Hos(2) (and v = 2), Dih(3) (and v = 3) or Tet (and v = 4).

Proof. If v ≤ 3 then q ≤ 2 so we have a genus 0 map. This case is quickly dealt with
and yields the first two maps from the theorem. Assume v ≥ 4. Two vertices vi, vj
have the same set of neighbors, excepting each other. We define the permutation
πij ∈ Sym(Z/(v − 1)Z×) by the equation

end point of Ski (eij) = end point of Sπij(k)
j (eji) (k = 1, . . . , v − 2).

Platonicity implies that πij = π is independent of the pair (i, j). Also, it is obvious

z

x

y
k

−k

π(k)

−π(k)

π(−k)

π(−π(k))

Figure 4.1: A constraint on the neighbor permutation π

that πji = π−1
ij , so π2 = 1. Now consider a vertex x and two of its neighbors y, z with

Skx(exy) = exz ; refer to Figure 4.1. The vertex z is also a neighbor of y, and using
π = πxy we find Sπ(k)

y (eyx) = eyz . So eyx = S
−π(k)
y (eyz). Since x is not only a neigbor

of y but also of z, it follows that Sπ(−π(k))
z (ezy) = ezx by using πyz . But considering

πxz we find that Sπ(−k)
z (ezx) = ezy . Since y and z can be chosen arbitrarily, this

implies the equality
π(−π(k)) = −π(−k)
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for all k. Platonicity simplifies this equation for us, since reflection in an edge shows
us that π(−k) = −π(k). Combining this with the previous equality and π2 = 1, we
conclude that R satisfies

π(k) = −k.
Now label the vertices p1, . . . , pv such that the end points of edges around p1 are
p2, . . . , pv counterclockwise. The end points occurring around p2 are then pv, . . . , p3, p1

counterclockwise. Around p3 the end points must then be p2, p4, . . . , pv, p1. Fo-
cussing on the edge e31 we see, using π31(−1) = 1, that the edge e14 must equal
the edge e3v . Hence v = 4. The construction also gave us a triangle p1p2p3, so p = 3.
We quickly find f = 4 and recover the map Tet.

Remark 4.4.3. Numerous chiral platonic maps have graphKv . For 2 ≤ g ≤ 101 these
are C7.2 (v = 8), C10.3 (v = 9), C12.1/C12.2 (v = 11), C27.7 (v = 13), C45.2 (v = 16),
C52.2/C52.3 (v = 17), C58.6/C58.7/C58.8 (v = 19), and C93.2/C93.3/C93.4/C93.5/C93.6

(v = 23). Presumably there is no bound on the genera for which a complete graph
occurs.

In the preceding proposition, the highest density occurring was 3
4 . Any platonic map

with this density will have graph K4 if its graph is simple, so this value only occurs
for the tetrahedron. In fact, it seems to be a global maximum, as a glance at a plot of
the density spectra (Figure 4.2) for 1 ≤ g ≤ 101 indicates. We will proceed to prove

Figure 4.2: Density spectra of reflexive platonic maps of genus 1 ≤ g ≤ 101 (top) and
those with simple graph (bottom).

this and more in the next propositions, where we study reflexive platonic maps with
density δ(R) > 1

2 . The plan is as follows:

1. prove that such a map consists of triangles (like in the previous proof);
2. show that the only such density occurring for g ≥ 1 is 2

3 ;
3. classify all maps of density 2

3 with simple graph.

For convenience, denote the set of vertices of Γ at graph distance at most r from a
given vertex v by D(v, r), and the vertices at distance exactly r by ∂D(v, r). We start
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with a graph-theoretic lemma.

Lemma 4.4.4. Let Γ be a d-regular simple graph on v-vertices. If d ≥ b 1
2vc, then

diam(Γ) ≤ 2.

Proof. Take a vertex v ∈ V (Γ). The assumption implies |D(v, 1)| ≥ b 1
2vc+ 1, so that

|V (Γ) − D(v, 1)| ≤ b 1
2vc. Thus, any vertex in V (Γ) − D(v, 1) must be connected to

some vertex in ∂D(v, 1) and therefore has distance 2 to v.

We proceed to prove that reflexive platonic maps of density greater than 1
2 have

triangular faces.

Proposition 4.4.5. Let R be a platonic map with simple graph and δ(R) > 1/2. Then
p = 3.

Proof. Take a vertex v and an incident face f , and suppose that v 6∼ R2
f (v). By

platonicity this non-adjacency holds for any choice of v and f such that f ∗ v. We
count all triples (v, f,R2

f (v)). Around any vertex we have q different choices for f ,
since µ02 = 1. If no pair of vertices occurs twice, then there are at least qv triples.
This means that the complementary graph Γ(R)c has at least qv edges. However,
since Γ(R) is simple and δ(R) > 1

2 , we also know that it has at most 1
2v(v−1)− 1

2qv,
which leads to the inequality

3

2
qv ≤ 1

2
v(v − 1) ⇐⇒ q ≤ 1

3
(v − 1).

This is contrary to assumption. Apparently some pair of vertices (v,R2
f (v)) occurs in

v 0

1
i

−1

i

−i

i+ 1

−i+ 1

0

Figure 4.3: Vertex i and the edge ~e0i occur twice.

more than one triple. Therefore, there is a j ∈ {1, . . . , q− 1} such that Sjv fixes R2
f (v).

But by platonicity, Sjv(R2
f (v)) = R2

f (v) for all v, f such that v ∗ f . So let w ∼ v be a
neighbor. By induction, going aroundw in clockwise order, it follows that Sjv fixes all
neighbors of w. This implies that all these neighbors lie in ∂D(v, 2), since Sjv fixes no
vertex in ∂D(v, 1). However, because Γ(R) is simple, we now conclude |∂D(v, 2)| ≥
q − 1. Since |∂D(v, 2)| = v − q − 1, we find that v ≥ 2q, again a contradiction to our
assumption on the density.
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The inevitable conclusion is that v ∼ R2
f (v) for all vertices v and incident faces f .

Number the vertices around v counterclockwise with Z/qZ and consider the face
with counterclockwise vertex sequence starting (v, 0, i, . . .). Using the rotations and
reflections fixing v, the numbers of all the vertices R±2

f (v) for incident f then be-
comes clear, as illustrated in Figure 4.3. The (oriented) edge ~e0i occurs again in this
figure, at neighor i of v. Since the surface is orientable, the face locally to its left must
be the same for both occurrences. Thus v is doubly incident to that face – which
µ02 = 1 tells us is false – unless the two occurrences of the edge are in fact the same.
We conclude that i = 1 and p = 3.

Example 4.4.6. A counterexample to this theorem for chiral platonic maps is given by
C41.22. It has a simple graph, is of type (12, 12) and has v = 20, wherefore δ(C41.22) =
3/5.

In the situation p = 3 the following notion is a handy abbreviation.

Definition 4.4.7. Two vertices of a map with p = 3 are diagonal neighbors if they are
non-adjacent but are incident to two adjacent faces.

We continue by showing that the graph of a high-density map is tripartite, unless
the map is the tetrahedron. This also gives an upperbound on the density.

Proposition 4.4.8. Let R be a reflexive platonic map with simple graph and δ(R) >
1
2 . Either R is Tet, or its vertex set is the union of three Γ(R)-cocliques of size v

3 and
δ(R) ≤ 2

3 .

Proof. By the previous proposition we know that p = 3. Take a vertex v and consider
a diagonal neighbor w across triangles ∆1 ∗v and ∆2 ∗w. There are three possibilities
for the distance d(v, w). If w = v, maybe we should have said that v had no diagonal
neighbors at all. Still, consider a vertex u, common to ∆1 and ∆2. There are two
instances of the edge euv , one incident to each ∆i. They must coincide because Γ(R)
is simple, and we find q = 2. This implies R = Dih(v). We already know v ≥ 3,
and because δ(R) > 1

2 we conclude v = 3 and hence R = Dih(3) of density 2
3 . The

coclique property of the graph is clear.

If w ∈ ∂D(v, 1), then the reflection in the angle bisector of ∆1 through v fixes w, so
the edge vw lies on the reflection axis (which is this bisector) on the opposite side
from ∆1, and so q must be odd. We number the vertices of ∂D(v, 1) with Z/qZ coun-
terclockwise and apply rotations around v to arrive at Figure 4.4. The oriented edge
~e0 q−1

2
appears twice, so the triangles appearing to its right are identical. Considering

their vertices, we find the equality

q + 1

2
≡ q − 1 mod q ⇐⇒ 3 ≡ 0 mod q ⇐⇒ q = 3.

We conclude that R = Tet.

The remaining possibility is that w ∈ ∂D(v, 2). Now consider the set W = {Siv(w) :
i = 0, . . . , q−1}. If these are all different vertices, then |V (R)| ≥ |∂D(v, 1)|+|W | = 2q,
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v 0

1
q−1

2

q+1
2

0

q−1
2

q+1
2

q − 1

Figure 4.4: If w ∈ ∂D(v, 1), we find the tetrahedron.

which contradicts our assumption. So there is a well-defined minimal J ∈ {1, . . . , q−
1} such that SJv (w) = w. The diagonal neighbors of v then repeat with primitive
period J . Also, SJv = SkJw for some k ∈ Z/ qJZ. By platonicity therefore, SJv fixes
every vertex that can be reached by a path consisting of steps from a vertex to a
diagonal neighbor. Specifically, we can walk around a neighbor u ∼ v with such
steps. This forces q to be even, for otherwise SJv would fix all neighbors of u, hence
also the common neighbors of v and u, of which there are at least two. But then
SJv = 1, which is not the case. Still, SJv fixes at least the q

2 different vertices S2m
u (v),

m = 0, . . . , 1
2q − 1, which shows that |∂D(v, 2)| ≥ q

2 . This implies q ≤ 2
3v.

Moreover, the primitive period J allows us to define a relation ≈ on V (Γ(R)) by
v ≈ w whenever SJv (w) = w. It is not hard to see that this is an equivalence relation.
Because adjacent vertices are not equivalent, each equivalence class is a coclique.
Also, since p = 3, the number of equivalence classes it at least three. Pick a base
triangle and consider a vertex of any other triangle. We can move from that vertex
to a ≈-equivalent vertex of an adjacent triangle by either doing nothing or taking
a diagonal neighbor. Since the surface is connected, we can repeat this to produce
an equivalent vertex of the base triangle. The number of ≈-equivalence classes is
thus exactly three. By platonicity, all three have the same cardinality and we have
partitioned the vertex set of Γ(R) into three cocliques of size v

3 as promised.

The last case in the above proof is in need of further inspection. Let us restate the
assumptions we can now make. We have p = 3, 2 | q and the vertex set V (R) has a
tripartition into cocliques of Γ(R). These cocliques have size v/3. We will name them
A,B,C and denote their respective vertices by (indexed) a’s, b’s and c’s. We remark
that the tripartition allows us to form the diagonal map D(R), and that diagonal
neighbors are indeed neighbors in this map if we choose their coclique to be the
vertex set. The primitive period J is of prime significance. A convenient number
for us will be j := lcm(J, 2), instead of J itself. It will avoid complications, since at
various points we will use that a rotation Sjv fixes A,B,C setwise. Note that j | q.
Our primary goal now will be to establish j = 2. As a byproduct, it will become
clear that there exist no reflexive platonic maps with density in the interval ( 1

2 ,
2
3 ).

The steps we take are:
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1. demonstration that Sja = Sja′ for diagonal neighbors a, a′;
2. Proof of the formula SjaS

j
bS

j
c = 1;

3. construction of a quotient R/H , leading by descent to q = 2
3v;

4. proof that j = 2;
5. classification of the maps with j = 2.

One more remark before we execute this program. If a ∈ A is a vertex then Sja
fixes all diagonal neighbors of a, and by induction the whole coclique A. Because
it is not the identity, it cannot fix any vertex from either B or C (Γ(R) is simple).
If a and a′ are two diagonal neighbors, then Sja = Skja′ for some k ∈ Z/ qjZ. By

platonicity, also Sja′ = Skja and hence Sja = Sk
2j
a , from which we deduce the equation

k2 ≡ 1 mod q
j . It will be our job to prove k ≡ 1 mod q

j . We do already know that if
a′′ is a diagonal neighbor of a′ and a′ of a, then Sja = Sja′′ . Also, [Sja, S

j
b ] = 1 because

this automorphism fixes all vertices from A and B. And for two vertices in different
cocliques, say a ∈ A and b ∈ B, we can compute [Sja, S

4
b ] = S−ja Sj

S4
b (a)

= S−ja Sja = 1.

Demonstration that Sja = Sja′ . Take a ∈ A, b ∈ B, c ∈ C such that a ∼ b, a ∼ c.
Suppose that Sjb (c) 6∼ a. Certainly Sjb = Sjb′ for any b′ = S4m

a (b), m = 0, . . . , q4 − 1.
Hence by platonicity, Sjb′(S

4m
a (c)) 6∼ a. So none of the images of the vertices S4m

a (c)

under Sjb are connected to a, and they are all different. Because j is even all these
vertices lie in C. Adding the vertices of ∂D(a, 1) ∩ C, we find that

|C| ≥ q

2
+
q

4
=

3

4
q >

3

8
v >

v

3
,

an impossibility. If follows that Sjb (c) ∼ a. So take a vertex a ∈ A and number
its neighbors counterclockwise b0, c0, b1, c1, . . . , bq/2−1, cq/2−1. The automorphism
Sjb0 fixes all neighbors bi and permutes the neighbors ci. By platonicity, there are
mo,me ∈ Z/ q2Z such that Sjbk(cl) = cl+mo if |k− l| is odd and Sjbk(cl) = cl+me if |k− l|
is even. Thus, Sjb0 also acts on the parity of the indices of the vertices ci, wherefore
mo ≡ me mod 2. We prove that 2me ≡ 0 mod j by distinguishing the two parity
cases.

mo,me ≡ 0 mod 2. It now follows that Snjb0 (c0) = cnme . Consideration of the order
q/j of Sjb0 implies directly that 2me ≡ 0 mod j.

mo,me ≡ 1 mod 2. The computations

S
(k−1)j
b0

(c0) = Skjb0 S
−j
b0

(c0) = Skjb0 (c−mo) = Sjb1(c−mo) = cme−mo

S
(1−k)j
b0

(c0) = S−kjb0
Sjb0(c0) = S−kjb0

(cme) = S−jb1 (cme) = cme−mo

force us to conclude S(k−1)j
b0

= S
(1−k)j
b0

, since both automorphism fix B ver-
texwise and have the same effect on c0. Hence, 2(k − 1) ≡ 0 mod q/j. If
q/j ≡ 1 mod 2 this immediately implies k ≡ 1 mod q/j already; we can skip
that case. If q/j ≡ 0 mod 2, we note that k ≡ 1 mod 2, since k2 ≡ 1 mod q/j.
We then compute S(k+1)j

b0
(c0) = Skjb0 (cme) = Sjb1(cme) = c2me , and again con-
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sideration of the order (of S(k+1)j
b0

) implies 2me ≡ 0 mod (q/2)/(q/2j), which is
the claim.

From 2me ≡ 0 mod j we deduce that S−2me
a Sjb0 ∈ 〈Sc0〉 and that [S−2me

a , Sjb0 ] = 1.
The order of S−2me

a Sjb0 divides q/j by the commutation relation, and order consider-
ation tells us S−2me

a Sjb0 = Snjc0 . This implies that the automorphism also fixes c1 and
we see

c1 = Snjc0 (c1) = S−2me
a Sjb0(c1) = S−2me

a (c1+mo) = c1+mo−me ,

making it clear that mo = me. This knowledge in turn leads to Sjb0(c0) = cme =

cmo = Sjb1(c0). But then S−jb1 S
j
b0

fixes c0 and all vertices of B, so it must be the
identity. The upshot is that Sjb = Sjb′ for any two diagonal neighbors, or in other
words k ≡ 1 mod q/j.

c0

a0

b0

a−1

c0

aim

bim

aim−1

bj/2

cj/2

a0

cj/2−1

bj/2

cj/2+m

aj/2

cj/2+m−1

Sijc0

Sjb0

Figure 4.5: Diagrams helping to prove
that SjaS

j
bS

j
c = 1.

Proof that SjaS
j
bS

j
c = 1. We show that

SjaS
j
bS

j
c = 1 for any choice of vertices in

the respective cocliques. Label the ver-
tices, this time the neighbors of a0 ∈ A as
b0, c0, b1, c1, . . . , bq/2−1, cq/2−1 and the ver-
tices of ∂D(b0, 1) ∩ A as a0, a1, . . . , aq/2−1,
both sets counterclockwise. One the one
hand Sjc0(bi) = bi+m for some m ∈ Z/ q2Z
(look around a0) and Sjc0(ai) = ai+m (look
around b0). Applying that automorphism i
times yields the first part of Figure 4.5. Con-
sideration of ord(Sjc0) implies that we may
choose i to obtain im = j

2 mod q
2 . On the

other hand, applying Sjb0 to results in the
transformation shown in the second part of
Figure 4.5. We see that the triangles ∆aj/2bj/2c0 and ∆aj/2bj/2cj/2+m have to be the
same, so that m ≡ − j2 mod q

2 . We now compute

SjaS
j
bS

j
c (ai) = SjaS

j
b (ai+m) = Sja(ai+m+j/2) = ai+m+j/2 = ai.

The second step is by definition of the numbering. Similar computations yield that
SjaS

j
bS

j
c fixes bi and ci, so SjaS

j
bS

j
c = 1.

Reduction to the quotient R/H . Our next step is to define the subgroup

H = 〈Sjv : v ∈ V (R)〉.

Its non-trivial elements are those automorphisms that fix all three cocliques setwise
and fix all the vertices in one of them. Clearly then, H C Aut(R) and H contains
no edge rotations. By the previous step H = 〈Sja, S

j
b 〉 for any fixed a ∈ A, b ∈ B.

Because [Sja, S
j
b ] = 1 this group is abelian. We form the quotient map R := R/H .

First of all q = j: take the vertex labelling from the previous paragraph and write
H = 〈Sja0 , S

j
b0
〉. Since Γ(R) is simple the only edges ea0· identified with ea0b0 under



4.4 – Dense platonic maps 91

H are the edges ea0bi with i a multiple of j. Second, R has a simple graph: b0 gets
identified only with those same neighbors bi of a0 with i a multiple of j for which
the edges are also identified. Third, this same argument shows v = vj/q. As a
consequence, we find the density of the quotient map:

δ(R) =
q

v
=

j

vj/q
=
q

v
= δ(R).

We can repeat this procedure until at some point q/j = 1. In this case we must have
J ∈ {q, q/2}, but the first possibility was excluded in the proof of Proposition 4.4.8.
If J = q/2, form the diagonal map D(R), with primitive vertex rotation S′. Take
its µ00-quotient D(R) = D(R)/〈S′J〉. This has a simple graph because S′J fixes
all vertices of D(R) and the edges identified are precisely those between the same
vertices. Its parameters satisfy v = v/3 and q = q/2 > 1

4v = 3
4v. We proved that this

density is not possible unless v = 1. So apparently we had v = 3 and thus q = 2,
which together lead to R = Dih(3). In this terminal situation a vertex coincides with
its diagonal neighbors, but that is irrelevant. The important conclusion is that by this
descent δ(R) = 2

3 holds for the original map. As a consequence, any two vertices of
different cocliques are connected by an edge. On a side note, this implies that there
are no reflexive platonic maps with density in the interval ( 1

2 ,
2
3 ).

Demonstration that j = 2. Label the vertices as before. Since Sa0 fixes A setwise
and all vertices of A have been labelled (because q = 2

3v), for any i 6= 0 we have
Sa0(ai) = ak for some k 6= 0. Let c = Sa0(b0). We deduce

Sa0(ai+lj/2) = Sa0S
lj
b0

(ai) = SljSa0 (b0)Sa0(ai) = Sljc (ak) = ak−lj/2.

The last step uses Sja0S
j
b0
Sjc = 1. So Sa0 induces an action on the sets of vertices in

A with the same residue mod j/2. By definition Sa0(a1) = a−1: look at the local
picture around b0. Therefore Sa0(a1+lj/2) = a−1−lj/2 = a−(1+lj/2), or in other words
Sa0(ai) = a−i if i ≡ 1 mod j/2. The residue classes repeat with some primitive
period i > 0, i.e. i is the smallest such number for which Sia0(a1) = ak with k ≡
1 mod j/2. Obviously, i ≤ j/2. But because k ≡ 1 mod j/2 we find Si+1

a0 (a1) =
Sa0(ak) = a−k = S−i+1

a0 (a1). Therefore S2i
a0(a1) = a1 and hence J | 2i, so j =

lcm(J, 2) | 2i. We find that i ≥ j/2, so equality holds: i = j/2. All residue classes
therefore appear as diagonal neighbors of a0. However, residue class 0 mod j/2 is
fixed by Sa0 , so this must be the only class present, which implies j/2 = 1.

The conclusion is now inescapable: j = 2. This means that J ∈ {1, 2}. The maps
with J = 1 are easy to determine, because all diagonal neighbors of a vertex a are
now identical. If such a diagonal neighbor is a itself (as in the first case treated in
Proposition 4.4.8) we find, like we did there, R = Dih(3) = Fer(1). Otherwise, we
see that ord(Sb) = 4 for a neighboring vertex b ∼ a, which leads to q = 4 and hence
R = Oct = Fer(2). What about the remaining maps, for which J = 2? We just
hinted at the outcome. . .

Classification of the maps with J = 2. Draw the familiar local picture around a0

with the knowledge J = 2, see Figure 4.6. We alternately apply S−1
b0

and Sa0 and see
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what happens to the vertices in the figure:

a0 7→ c0 7→ b1 = S−1
b0

(b−1) 7→ S−2
b0

(b−1) = b−1 7→ c−1 7→ a0 7→ a0,

b0 7→ b0 7→ c0 7→ a−1 7→ ak = a1 7→ c−1 7→ b0.

a0

b−1

c−1

b0c0

b1

al = a−1

a1a−1

ak = a1

Figure 4.6: We can derive a relator
when J = 2.

This shows that (S−1
b0
Sa0)3 fixes both a0

and b0, and hence that (S−1
b0
Sa0)3 = 1.

If we choose the standard generator pair
(R4a0b0c0 , Sa0), then (S−1

b0
Sa0)3 = 1 is equiva-

lent to [R,S]3 = 1. Taken together with p = 3
and q = 2n, we conclude that Aut+(R) must
be a quotient of〈

R,S
∣∣R3, S2n, (RS)2, [R,S]3

〉
.

Referring back to polynomial family 2.9.1, we
see the presented group is Aut+(Fer(n)) of
order 6n2. But since q = 2

3v, we must have
|Aut+(R)| = qv = 2n · 3n = 6n2. So the relators found form a complete set, and
R = Fer(n).

Combining all the work, we have proved the following characterization of the Fer-
mat maps as satisfying a combinatorial extremal property.

Platonic density theorem. The only reflexive platonic maps with simple graph and
density δ > 1

2 are the tetrahedron (δ = 3
4 ) and the Fermat maps (δ = 2

3 ). �

Remark 4.4.9. The assumption δ(R) > 1
2 was used once more in the induction step

to conclude δ(R) = 2
3 . We mention this because there are other reflexive platonic

maps with graph diameter 2, p = 3 and three cocliques of vertices, as exemplified
by R13.2 with density exactly 1

2 . The reflexivity was essential again in the proof that
j = 2. For example the chiral map C28.2 of type (3, 18) has δ = 2/3 and simple graph
with its vertex set divided into three cocliques, but satisfies j = 6.

4.5 Platonic maps of type (4, 2g + 2)

Proposition 4.5.1. A platonic map of genus g and type (4, 2g + 2) is a member of
AM(n) or Kul(n).

Proof. With the genus formula, we compute that a platonic map of type (4, 2g + 2)
has automorphism group Aut+(M) of order 8(g + 1). It follows that v = 4, e =
4(g + 1), and f = 2(g + 1). Suppose that a vertex is adjacent to all three others. Then
the edges e0, . . . , e2g+1 around v1 will alternately have v2, v3, v4 as their other end
point. Platonicity implies that each quadrangle has all four vertices on its boundary.
Three cycles of vertices will now occur when traversing the boundary of each face
counterclockwise: (v1v2v4v3), (v1v3v2v4), and (v1v4v3v2). A rotation R around a face



4.6 – Platonic maps of type (g + 3, g + 3) 93

of the first type acts sends a face of the third type to a face with vertices (v2v3v1v4) on
its boundary. This cycle will occur counterclockwise, since R preserves orientation.
But such a face does not exist on the map.

We conclude that a vertex cannot be connected to all others by edges. Since it must
be connected to at least two in order for Γ(M) to be connected, the graph is bipartite.
Proposition 3.1.2 implies that we can construct a (self-dual) platonic D1-map of type
(2g+2, 2g+2) out of M. This map will have two vertices. We have already classified
all such platonic maps. The only solutions are from the families D1(AM(n)) and
D1(Kul(n)). This in turn implies that any map of type (4, 2g + 2) belongs to one of
the two families AM(n) or Kul(n).

4.6 Platonic maps of type (g + 3, g + 3)

We would like to classify all platonic maps of type (g+ 3, g+ 3). With the genus for-
mula, we find that such a map has automorphis group Aut+(M) of order 4(g + 3),
and so v = 4, e = 2g + 6, f = 4. The most difficult thing is then to find the right con-
jecture to prove. We first introduce some new families by their map automorphism
groups:

Aut+
(
F (3n,3n)

3n−3

)
=
〈
R,S

∣∣R3n, S3n, (RS)2, R3S3〉 ,
Aut+

(
F (4n,4n)

4n−3

)
=
〈
R,S

∣∣R4n, S4n, (RS)2, R4S4, [R2, S], [R,S2]
〉
,

Aut+
(
F (8n,8n)

8n−3

)
=
〈
R,S

∣∣R8n, S8n, (RS)2, R4S4, R4n−3S−1RS−1, S4n−3R−1SR−1〉 ,
Aut+

(
F (16n,16n)

16n−3

)
=
〈
R,S

∣∣R16n, S16n, (RS)2, [R2, S], R8n−4S−4〉 ,
Aut+

(
F (12n,12n)

12n−3

)
=
〈
R,S

∣∣R12n, S12n, (RS)2, [R3, S], [R,S3], R6n−3S−3〉 ,
Aut+

(
F (24n,24n)(1)

24n−3

)
=
〈
R,S

∣∣R24n, S24n, (RS)2, [R3, S], [R,S3], R18n−3S−3〉 ,
Aut+

(
F (24n,24n)(2)

24n−3

)
=
〈
R,S

∣∣R24n, S24n, (RS)2, [R3, S], [R,S3], R6n−3S−3〉 .
The notation Aut+(F (p(n),q(n))

n ) is a slight abuse, but of course we mean the auto-
morphism group of the n-th family member.

Remark 4.6.1. Some members of the Conder list are:

F (3n,3n)
3n−3 R3.8, R6.9, R9.27, R12.8 F (12n,12n)

12n−3 R9.26, R21.34, R33.78

F (24n,24n)(1)
24n−3 R21.33, R45.35, R69.43 F (24n,24n)(2)

24n−3 R21.32, R∨45.35, R69.44

F (4n,4n)
4n−3 R5.13, R9.28, R13.19 F (8n,8n)

8n−3 R5.12, R13.18, R21.37

F (16n,16n)
16n−3 R13.17, R29.28, R45.39

Not all relators displayed are necessary to define the families. Some are chosen to
make the presentation symmetric in (R,S), so self-duality can be read off directly.
This makes the burden of proof heavier in computing the group orders for these
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families. Alas, we did not finish proofs of the orders of all of them. Listing many
cases by computer did assure us that they are correct, though. Assuming this, the
members of the two families F (24n,24n)(1)

24n−3 and F (24n,24n)(2)
24n−3 coincide when n is odd.

Apart from that, the families are disjoint. Now we can state the classification.

Proposition 4.6.2. A platonic map of type (g + 3, g + 3) belongs to one of the self-
dual families M1.2(m,n) (torus maps), F (3n,3n)

3n−3 , F (4n,4n)
4n−3 , F (8n,8n)

8n−3 , or F (12n,12n)
12n−3 , or

it’s a member of one of the families F (24n,24n)(1)
24n−3 , F (24n,24n)(2)

24n−3 , or F (16n,16n)
16n−3 or their

respective dual families.

Proof. Topologically, we want to glue together four (g+3)-gons around four vertices.
Each vertex is either connected to two or three others by edges, i.e. d00 ∈ {2, 3}.
First we consider the case d00 = 2, which will yield F (4n,4n)

4n−3 ,F (8n,8n)
8n−3 ,F (16n,16n)

16n−3 , and
F (16n,16n)∨

16n−3 . We see that a face must be incident to all four vertices by following its
boundary. That implies that around each vertex, the faces alternate with period 4,
and hence g+3 ≡ 0 mod 4. Let us number them like in Figure 4.7. We see that around

1 2

3

4

3
2

4

2

4

f1

f2f3

f4

f1

Figure 4.7: A local figure if d00 = 2.

v2 and v4, the faces will alternate as f1, f4, f3, f2 counterclockwise, and around v1 and
v3 as f1, f2, f3, f4 counterclockwise. Likewise, on ∂f1 and ∂f3 the vertices alternate as
v1, v2, v3, v4 counterclockwise, and on ∂f2 and ∂f4 as v1, v4, v3, v2 counterclockwise.
From the local figure, we quickly see that

R2
2 = S−1

j+1S
−1
j = R2

4 R2
1 = S−1

j S−1
j+1 = R2

3

S2
2 = R−1

j+1R
−1
j = S2

4 S2
1 = R−1

j R−1
j+1 = S2

3

where the indices are taken from Z/4Z. Since Ri switches fi+1 and fi−1 (deduce this
from the local figures around v1,2), it fixes both fi and fi+2. Analogously, Si fixes
both vi and vi+2. We find

Ri = Ru1
i+2

Si = Su2
i+2

and squaring these equations implies u1,2 ∈ {1, g+3
2 + 1} mod (g+ 3). (One may also

note that the squared equations imply that [R2
i , S

2
j ] = 1 for all (i, j).) Taking the dual

of the map under consideration doesn’t change any of the assumptions, so we are
left with the following trichotomy:
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u1 = u2 = 1 Because Si+2 = R−2
j SiR

2
j (for any j) we find that [R2

j , Si] = 1. Similarly,

[Rj , S
2
i ] = 1. We conclude from this that we have a member of F (4n,4n)

4n−3 . The
relators defining the map are symmetric in (R,S), so the maps are self-dual.

u1 = g+3
2 + 1, u2 = 1 Just like in the first case we deduce [R2

i , Sj ] = 1. The equation

Ri = R
g+3
2 +1

i+2 implies that g+ 3 ≡ 0 mod 8, since the action on the vertices (per-
mutation (v1, v2, v3, v4)) implies that 1 ≡ g+3

2 + 1 mod 4. Notice that R4
i fixes

all vertices, and hence R4
i = S4k

j , k being independent of (i, j) by platonicity.
And k must be odd because ord(R4

i ) = ord(S4
j ). Since 4 | g+3

2 , we can write

R
1
2 (g+3)
i = S

1
2 (g+3)k
j = S

1
2 (g+3)
j . We now deduce

S2
1 = R−1

1 R−1
2 = R−1

1 R−1
4 R

1
2 (g+3)
4 = S2

2S
1
2 (g+3)
2 = S

1
2 (g+7)
2 .

This generalizes to S2
i = S

1
2 (g+7)
i±1 . Easier is that

R2
1 = S−1

1 S−1
2 = S−1

1 S−1
4 = R2

2,

which generalizes to R2
i = R2

j . This allows us to prove

S4
1 = S−2

1 S−2
1 = R−1

1 R−1
2 R−1

2 R−1
3 = R−1

1 R−2
1 R

− 1
2 (g+3)−1

1 = R
1
2 (g−5)
1 ,

which generalizes by platonicity to S4
i = R

1
2 (g−5)
j . Finally, from this last equa-

tion we glean that 1
2 (g−5) = (2m+1)·4, so g+3 = (2m+2)·8 ≡ 0 mod 16, since

the orders of both elements must be equal. We must therefore have a member
of the family F (16n,16n)

16n−3 or its dual.
u1 = u2 = g+3

2 + 1 Like in the second case we know that g+ 3 ≡ 0 mod 8, R4
i = S4k

j ,

R
1
2 (g+3)
i = S

1
2 (g+3)
j , and S2

i = S
1
2 (g+7)
i±1 . This time, because the conditions are

symmetric in Ri and Si, also R2
i = R

1
2 (g+7)
i±1 . This allows us to prove

S−4
1 = S−2

1 S−2
1 = R4R3R3R2 = R4R

1
2 (g+7)
4 R

1
2 (g+3)+1
4 = R4

4,

which generalizes by platonicity to R4
i = S−4

j . Furthermore,

S1R
−1
1 S1 = S2

1(S−1
1 R−1

1 S1) = S2
1R
−1
2 = R−1

1 R−2
2 = R

−1− 1
2 (g+7)

1 = R
1
2 (g−3)
1 ,

generalizing to SiR
−1
j Si = R

1
2 (g−3)
j . This demonstrates that all relations of

F (8n,8n)
8n−3 hold.

This finishes treatment of the case d00 = 2. We now proceed with the case d00 = 3,
implying that any two vertices are connected by edges. Let the end points of edges
incident to v1 be v2, v3, v4 periodically, counterclockwise. Note that the condition
thus implies 3 | ord(S1) = g + 3. We proceed to prove that exactly three faces are
incident to v1. If there were only 2, then they would repeat with period 2 around, and
a face would be incident to all vertices. By platonicity, all four faces would then be
incident to v1, contrary to assumption. Assume that indeed all four faces are incident
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to v1. Then a face f would again be incident to all four vertices, and these would thus
repeat with period 4 around ∂f . But there would be a face with both (v3, v1, v2) and
(v4, v1, v3) as part of this pattern (counterclockwise), which is impossible. It follows
that exactly three faces are incident with v1, and hence three vertices occur on a face
boundary ∂f . We number the faces so that fi is not incident to vi. We can now
fill in the local figures (stars) around each vertex and face. Next, since S3

i fixes all

1 2

3

3

2
4

2

3

4

f4

f2f3

f4

f2

Figure 4.8: A local figure if d00 = 3.

vertices, S3
i = S3k

j (k ∈ Z/
(

1
3 (g + 3)

)
Z independent of (i, j) by platonicity). We

have S3
1 = S3k

2 = S3k2

1 and S3
1 = S3k

2 = S3k2

3 = S3k3

1 , whence k ≡ 1 mod 1
3 (g + 3) and

S3
i = S3

j for all i, j.

Similarly, we find that
R3
i = R3

j for all i, j.

Now we compute

R4
1S

4
1 = R1R

3
4S

4
1 = R1R4(S−1

3 S−1
1 )S4

1 = R1R4S
−1
3 S3

1

= R1R4S
2
3 = R1R4R

−1
4 R−1

1 = 1

where the equalities R2
4 = S−1

3 S−1
1 and S2

3 = R−1
4 R−1

1 follow by looking at the local
figures. Of course this generalizes to R4

iS
4
i = 1. The crucial step for determining

the structure of these maps completely is to notice that Ri fixes vi, and thus Ri = Ski
(with k ∈ Z/(g + 3)Z independent of i by platonicity). First of all, this implies R3

i =
S3k
i = S3k

j , which shows that [R3
i , Sj ] = 1 and [Ri, S

3
j ] = 1 for all i, j. Second, we can

deduce that
S

4(k+1)
1 = R4

1S
4
1 = 1,

so that 4(k + 1) ≡ 0 mod (g + 3). There are four possibilities:

k ≡ 1
4 (g + 3)− 1 mod (g + 3) We must have g+ 3 ≡ 0 mod 4 for this value of k to be
defined. But then ord(Ri) = g + 3 is even, and because ord(Ski ) = ord(Ri), k
must be odd. This means that g+ 3 ≡ 0 mod 8 and factoring in the congruence
modulo 3, we find that g + 3 ≡ 0 mod 24. The relators found now imply that
we must have a member of F (24n,24n)(1)

24n−3 or F (24n,24n)(2)
24n−3 .
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k ≡ 2
4 (g + 3)− 1 ≡ 1

2 (g − 3) mod (g + 3) We must have g + 3 ≡ 0 mod 2, and again
k must therefore be odd, so that we get the condition g + 3 ≡ 0 mod 12. This
yields a member of the family F (12n,12n)

12n−3 .
k ≡ 3

4 (g + 3)− 1 mod (g + 3) The same reasoning as in the first case implies we have

a member of F (24n,24n)(1/2)
24n−3 .

k ≡ −1 mod (g + 3) The presence of the relatorR3
iS

3
j with i 6= j immediately implies

we have a member of F (3n,3n)
3n−3 .

Remark 4.6.3. The families F (3n,3n)
3n−3 , F (4n,4n)

4n−3 , F (8n,8n)
8n−3 , and F (12n,12n)

12n−3 are self-dual.
This implies that they are families ofD1-maps of familiesF (4,3n)

3n−3 ,F (4,4n)
4n−3 ,F (4,8n)

8n−3 , and
F (4,12n)

12n−3 , respectively. The two families F (24n,24n)(1)
24n−3 and F (24n,24n)(2)

24n−3 show special
behavior: their members coincide and are self-dual for n odd, but for n even they are
each other’s duals and different. By the D1-map construction, we know that there is
a related family F (4,48n−24)

48n−27 .

Remark 4.6.4. The families F (3n,3n)
3n−3 , F (12n,12n)

12n−3 , F (24n,24n)(1)
24n−3 , and F (24n,24n)(2)

24n−3 are
covers of Tet, branched over cells0 ∪ cells2.

4.7 Platonic maps of type (4, g + 3)

We want to classify all platonic maps of type (4, g + 3). For this purpose, we again
introduce a few new polynomial families, by standard map presentations:

Aut+
(
F (4,3n)

3n−3

)
=
〈
R,S

∣∣R4, S3n, (RS)2, R−1S3RS3〉 ,
Aut+

(
F (4,4n)

4n−3

)
=
〈
R,S

∣∣R4, S4n, (RS)2, R−1S4RS4, [S2, R−1SR], [S,R−1S2R]
〉

Aut+
(
F (4,8n)

8n−3

)
=
〈
R,S

∣∣R4, S8n, (RS)2, R−1S4RS4, S4n−2R2S2R2〉 ,
Aut+

(
F (4,12n)

12n−3

)
=
〈
R,S

∣∣R4, S12n, (RS)2, [S3, R−1SR], [S,R−1S3R], S6n−3R−1S−3R
〉
,

Aut+
(
F (4,48n−24)(1)

48n−27

)
=
〈
R,S

∣∣∣R4, S48n−24, (RS)2, [S3,R−1SR], [S,R−1S3R], S3(12n−7)R−1S−3R
〉
,

Aut+
(
F (4,48n−24)(2)

48n−27

)
=
〈
R,S

∣∣∣R4, S48n−24, (RS)2, [S3, R−1SR], [S,R−1S3R], S3(4n−3)R−1S−3R
〉
.

Remark 4.7.1. Some members of the Conder list are:

F (4,3n)
3n−3 R3.4, R6.3, R9.11, R12.1 F (4,4n)

4n−3 R5.6, R9.10, R13.4

F (4,8n)
8n−3 R5.5, R13.5, R21.11 F (4,12n)

12n−3 R9.9, R21.6, R33.27

Now we are in a position to state:
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Proposition 4.7.2. A platonic map of type (4, g + 3) belongs to one of the families
M1.2(m,n), F (4,3n)

3n−3 , F (4,4n)
4n−3 , F (4,8n)

8n−3 , F (4,12n)
12n−3 , F (4,48n−24)(1)

48n−27 , or F (4,48n−24)(2)
48n−27 .

Proof. With the genus formula, we find that platonic maps of type (4, g + 3) satisfy
|Aut+(M)| = 8(g + 3) and hence v = 8. Its µ00-quotient map M/〈Sd00〉 will have
p | 4, so p 6= 3. It will thus have density at most 1

2 by our density theorems of Section
4.4. We conclude that the reduced graph Γ(M) is an arc-transitive graph on eight
vertices with valency q ∈ {2, 3, 4}. The only such graphs are the cyclic graph C8

(q = 2), the cubic graph Q3 (q = 3), and the complete bipartite graph K4,4 (q = 4).
All three are bipartite, and we can lift the bipartition to M. So we know that we can
form the D1-map of M, which will be of type (g + 3, g + 3). We have classified those
maps in Section 4.6 and from the presentations for the families listed there we derive
presentations for those claimed and completeness of the list. We note that the cyclic
graph C8 does not in fact occur.

Remark 4.7.3. The families F (4,3n)
3n−3 F

(4,12n)
12n−3 , F (4,48n−24)(1)

48n−27 , and F (4,48n−24)(2)
48n−27 consists

of platonic covers of Cub branched over cells0. The last two demonstrate that a
platonic cover is not uniquely determined by its degree and the branching orders for
vertices and faces.

4.8 Platonic maps of type (6, g + 2)

We want to classify all platonic maps of type (6, g + 2). With the genus formula,
we find that such a map has map automorphism group Aut(M) of order 12(g + 2).
It follows that v = 6, e = 3g + 6, and f = g + 2. The most difficult step is again
formulating the right proposition. We introduce a few more polynomial families:

Aut+
(
F (6,2n)

2n−2

)
=
〈
R,S

∣∣R6, S2n, (RS)2, (RS−1)2
〉
,

Aut+
(
F (6,3n)

3n−2

)
=
〈
R,S

∣∣R6, S3n, (RS)2, [R2, S]
〉
,

Aut+
(
F (6,18n−12)

18n−14

)
=
〈
R,S

∣∣R6, S18n−12, (RS)2, [R2, S2], RS−3RS6n−7
〉
,

Aut+
(
F (6,18n−6)

18n−8

)
=
〈
R,S

∣∣R6, S18n−6, (RS)2, RS−1RS6n−3
〉
,

Aut
(
F (6,18n−9)

18n−11

)
=
〈
R,S

∣∣∣R6, S18n−9, (RS)2, R3SR−1S−(6n−4)
〉
,

Aut
(
F (6,18n)

18n−2

)
=
〈
R,S

∣∣R6, S18n, (RS)2, R3S−1RS6n−1
〉
.

Note that the last two families are chiral. Again, we have not verified the group
orders for all these families, but computer experiments give us confidence of the
correctness. This puts us in a position to state a conjecture, but we did not manage
to finish a proof.

Conjecture 4.8.1. A platonic map of type (6, g+ 2) is either R6.8 or R22.11, which are
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defined by

Aut+(R6.8) =
〈
R,S

∣∣R6, S8, (RS)2, (R2S−1)2, R3S4
〉
,

Aut+(R22.11) =
〈
R,S

∣∣R6, S24, (RS)2, (R2S−1)2, RS−3RS5
〉
.

or is a member of one of the eight familiesF∨1.1:n,F∨1.2:n,F (6,2n+2)
2n ,F (6,3n+3)

3n+1 ,F (6,18n+6)
18n+4 ,

F (6,18n+12)
18n+10 , F (6,18n−9)

18n−11 (chiral), or F (6,18n)
18n−2 (chiral).

Remark 4.8.2. The map R22.11 is a platonic cover of R6.8 branched over cells0, corre-
sponding to the exact sequence

1 −→ 〈S8〉 −→ Aut(R22.11) −→ Aut(R6.8) −→ 1

The map R22.11 is thereby also seen to be a platonic cover of Oct, branched over
cells0 ∪ cells2, by

1 −→ 〈R3, S8〉 −→ Aut(R22.11) −→ Aut(Oct) −→ 1
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5
From algebraic curves to platonic maps

SEVERAL algebraic curves well known to the mathematical community are platonic
surfaces. This chapter lists the ones known to the author at the time of writing.

In Sections 5.1–5.7 we treat the Wiman curves of type I/II, the Accola-Maclachlan
curves, Kulkarni curves, Fermat curves and modular curves X(N).

The strategy to prove that a curve C is indeed platonic is to exhibit an Aut(C)-
invariant Belyı̆ function on it. In each case we construct such a function, with three
branch points, such that their pre-images form one Aut(C)-orbit. The ramification is
then the same in the whole orbit. In general, this gives a (p, q, r)-hypermap structure,
but we will find r = 2 in all cases. Moreover, our branch points will be found to lie
on a straight line of P1 ∼= Ĉ. The pre-image of this line is then the graph of our pla-
tonic map. So we are in each case assigned the task of constructing a smart function
and computing its ramification. For a more hands-on understanding of each curve
as a platonic surface, we also try to compute the explicit cell structure by using the
extended automorphism group Aut∗(C). This enables us to present a valid standard
map presentation for the curve.

To give a Belyı̆ function on the Fermat curves is not that hard, see e.g. [LZ2004,
Sec.2.5.3], but we have not seen an Aut(Fer(n))-invariant one. I therefore believe
Section 5.5 to be slightly more comprehensive than previous treatments. The modu-
lar curves have been added for completeness.

5.1 The Wiman type I maps Wi1(n)

Proposition 5.1.1 (Wiman type I maps). The algebraic curves y2 = x2n+1 − 1 are pla-
tonic surfaces. They support a polynomial family of reflexive platonic maps Wi1(n)

101
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of genus n and type (2n+ 1, 4n+ 2), the Wiman type I maps.

Proof. We projectivize to y2z2n−1 = x2n+1 − z2n+1. This hyperelliptic curve has a
singular point at (0 : 1 : 0) and is of genus n. The automorphism group is cyclic of
order 4n+ 2:

Aut(Wi1(n)) = 〈(x : y : z) 7→ (ζ2n+1x : −y : z)〉.
Define the function β : Wi1(n) → P1 by (x : y : z) 7→ (y2 : z2). It is well-defined
everywhere on the curve and its invariance under Aut(Wi1(n)) is immediate. The
function’s degree is 4n+ 2: for a generic point (y2 : 1) ∈ P1 there are two choices for
y and then 2n+ 1 choices for x according to the equation. It remains to calculate the
ramification. Locally x is a function of y on the curve, unless x = 0 (with the implicit
function theorem). So on {z = 1}we find the critical points with x 6= 0 where

0 =
d

dy
β(x(y) : y : 1) = 2y.

The solutions to this equation are the 2n + 1 points (ζk2n+1 : 0 : 1), which all map to
(0 : 1) ∈ P1. The other possibilities x = 0 and z = 0 also turn out to be critical points.
They result in the branch data

Vertex β−1
(
(1 : 0)

)
= {(0 : 1 : 0)}

Edge centers β−1
(
(0 : 1)

)
=
{

(ζk2n+1 : 0 : 1) | k = 1, . . . , 2n+ 1
}

Face centers β−1
(
(−1 : 1)

)
=
{

(0 : ±i : 1)
}

We have thus exhibited β as a Belyı̆ function defining a platonic map of type (2n +
1, 4n+ 2).

5.2 The Wiman type II maps Wi2(n)

Proposition 5.2.1 (Wiman type II maps). The algebraic curves y2 = x(x2n−1) are pla-
tonic surfaces. They support a polynomial family of reflexive platonic maps Wi2(n)
of genus n and type (4, 4n), the Wiman type II maps.

Proof. The cases n = 0 and n = 1 are trivial, so let n ≥ 2. We projectivize to
y2z2n−1 = x(x2n − z2n). This curve has a singular point at (0 : 1 : 0) and is of genus
n. Its automorphism group contains the order 8n subgroup (and is in fact equal to
it) generated by

R : (x : y : z) 7→ (−xnz : yzn : xn+1) and S : (x : y : z) 7→ (ζ2nx : ζ4ny : z).

One computes that R2 = S2n and so ord(R) = 4. Let us define the function β0(x :
y : z) = (y2 : xz), which is invariant under S. Because apart from a finite number of
points, we can consider β0 to be a function into C, we can average it and set

β :=

3∑
k=0

β0 ◦Rk : (x : y : z) 7→ (y4z2n−2 : x2n+2).
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This expression for β is well-defined everywhere on the curve except at (0 : 0 : 1) and
(0 : 1 : 0). The function isR-invariant and also still S-invariant, because 〈S〉C 〈R,S〉;
or one verifies it directly. To compute the ramification, we first establish that the
degree of β is 8n: without loss of generality suppose z = 1 and β((x : y : 1)) = (λ : 1).
Then y4 = λx2n−2 together with y2 = x(x2n−1) lead to x2(x4n−2x2n+1) = λx2n−2.
Since x = 0 (and z = 1) implies (x : y : z) = (0 : 0 : 1) and this is not generically
in the fiber β−1((λ : 1)), we are left with x4n − 2x2n + 1 = λx2n−4. There are 4n
solutions for x and to each belong two solutions for y.

Now we compute the critical points. We stay in the chart {z = 1}. Locally y is a
function of x, unless y = 0 (with the implicit function theorem). The critical points
of β with x, y 6= 0 are those for which

0 =
d

dx
β(x : y(x) : 1) =

d

dx

(
y4

x2n+2

)
=

d

dx

(
x2(x2n − 1)

x2n+2

)
.

This is equivalent to

x2n(4nx4n−1 − 4nx2n−1)− 2nx2n−1(x4n − 2x2n + 1) = 0

which reduces to x = 0 or x = ζk4n (with k = 0, . . . , 4n − 1). We had excluded
the first possibility. The others yield y2 = ζk4n((−1)k − 1) and separate into two
sets. When k is even, then y = 0 and β maps these points to (0 : 1). At each
the ramification is 4-fold. When k is odd, then y = ±

√
2ζk+2n

8n and β maps these
points to (−4 : 1). At each the ramification is 2-fold. The remaining points to be
investigated are (0 : 0 : 1) and (0 : 1 : 0). For these one can use the alternative
expressions β(x : y : z) = ((x2n− z2n)2 : x2nz2n) and β(x : y : z) = (y4 : xz(y2 + zx))
respectively. We find β((0 : 0 : 1)) = β((0 : 1 : 0)) = (1 : 0) and the ramification
at both is 4n. Summing up, there are exactly three branch points with the following
inverse images:

Vertices β−1
(
(1 : 0)

)
= {(0 : 1 : 0), (0 : 0 : 1)},

Edge centers β−1
(
(−4 : 1)

)
=
{

(ζ2k+1
4n : ±

√
2ζ2n+2k+1

8n : 1) | k = 1, . . . , 2n
}
,

Face centers β−1
(
(0 : 1)

)
=
{

(ζk2n : 0 : 1) | k = 1, . . . , 2n
}
.

We have thus exhibited this algebraic curve as a platonic map of type (4, 4n).

Remark 5.2.2. As we know from Chapters 2 and 3, the family Wi2(n) has a polyno-
mial family of diagonal maps D1(Wi2(n)).

5.3 The Accola-Maclachlan maps AM(n)

Proposition 5.3.1 (Accola-Maclachlan maps). The algebraic curves y2 = x2n+2 − 1
are platonic surfaces. They support a polynomial family of reflexive platonic maps
AM(n) of genus n and type (4, 2n+ 2), the Accola-Maclachlan maps.
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Proof. We projectivize to y2z2n = x2n+2 − z2n+2. This hyperelliptic curve has a
unique singular point at (0 : 1 : 0) and is of genus n. Its automorphism group
contains the order 8n+ 8 subgroup (and is in fact equal to it) generated by

R : (x : y : z) 7→ (−xnz : iyzn : xn+1) and S : (x : y : z) 7→ (ζ2n+2x : y : z)

A function invariant under these two operations is quickly found to be β : (x : y :
z) 7→ (x2n+2 : y4z2n−2). The expression is well-defined everywhere except at the
unique singular point (0 : 1 : 0) ∈ AM(n). The degree of β is 8n + 8: without loss
of generality assume that z = 1 and β((x : y : 1)) = (λ : 1). Then x2n+2 = λy4.
Combine this with y2 = x2n+2 − 1 to find y2 = λy4 − 1. So generically there are 4
solutions for y, and to each belong 2n+ 2 values of x.

We compute the critical points on {z = 1}. Locally, we can write x = f(y) (with the
implicit function theorem) unless x = 0. Thus, the critical points for which x 6= 0 are
those for which

0 =
d

dy
β(x(y) : y : 1) =

d

dy

(
y4

x2n+2

)
=

d

dy

(
y4

y2 + 1

)
.

This is equivalent to
4y3(y2 + 1) = 2y5

which reduces to y = 0 or y = ±i
√

2. The first case yields the 2n + 2 points (ζk2n+2 :
0 : 1) that β all maps to (1 : 0). At each the ramification is 4-fold. The second case
leads to the 4n + 4 points (ζ2k+1

4n+4 : ±i
√

2 : 1). They are all mapped to (−1 : 4) by
β, and at each the ramification is 2-fold. Scheduled for separate consideration were
the points with x = 0. These are (0 : ±i : 1) and (0 : 1 : 0), which together form
β−1((0 : 1)). To see that indeed β((0 : 1 : 0)) = (0 : 1), use the alternative expression
β((x : y : z)) = (z2(y2 + z2) : y4). At the first two the ramification is 2n + 2-fold, at
the third 4n + 4-fold; two of the four vertices of the platonic map lie on top of each
other. To summarize:

Vertices β−1
(
(0 : 1)

)
= {(0 : 1 : 0), (0 : ±i : 1)}

Edge centers β−1
(
(−1 : 4)

)
=
{

(ζ2k+1
4n+4 : ±i

√
2 : 1) | k = 1, . . . , 2n+ 2

}
Face centers β−1

(
(1 : 0)

)
=
{

(ζk2n+2 : 0 : 1) | k = 1, . . . , 2n+ 2
}

We have thus exhibited this algebraic curve as a platonic map of type (4, 4n+ 4).

Remark 5.3.2. As we know from Chapters 2 and 3, the family AM(n) has a polyno-
mial family of diagonal maps D1(AM(n)).

Remark 5.3.3. For infinitely many n, the Accola-Maclachlan curve AM(n) has the
largest automorphism group (order |Aut(AMn)| = 8n + 8) of all curves of genus n,
cf. [Acc1968]. The genera g ≤ 101 for which this occurs form the set {20, 23, 32, 35,
38, 44, 47, 59, 62, 68, 74, 80, 83, 88, 95, 98}.
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5.4 The Kulkarni maps Kul(n)

In 1991, Ravi Kulkarni [Kul1991] discovered the only Riemann surfaces X besides
the Accola-Maclachlan surface (AM(n))r for which |Aut(X)| = 2g+ 2. In [Tur1997],
Peter Turbek found the following planar algebraic models y2g+2 − x(x − 1)g−1(x +
1)g+2 = 0 for these Kulkarni curves and computed explicit expressions for their
automorphisms. They form the polynomial family of reflexive platonic maps Kul(n)
that we have met in Chapter 2.

Proposition 5.4.1. The algebraic curves y8n = x(x − z)4n−2(x + z)4n+1 are platonic
surfaces. They support the polynomial family of reflexive platonic maps Kul(n) of
genus 4n − 1 and type (4, 8n). Standard complex conjugation is a reflection in the
real wall of each map. �

We have not computed a standard map presentation. The article [Tur1997] explicit
expressions for the automorphisms.

5.5 The Fermat maps Fer(n)

In Section 2.9.1 we described the family of platonic maps Fer(n) of type (3, 2n) and
its family of diagonal maps D2(Fer(n)) of type (n, 2n). This paragraph justifies the
names of these families by demonstrating the following proposition.

Proposition 5.5.1. The algebraic curves xn + yn + zn = 0 are platonic surfaces. They
support the polynomial family of reflexive platonic maps Fer(n) of genus

(
n−1

2

)
and

type (3, 2n). A standard map presentation of Fer(n) on this model is defined by

R = ab : (x : y : z) 7→ (ζnz : x : y),

S = bc : (x : y : z) 7→ (y : ζ−1
n x : z).

The complex conjugation c : (x : y : z) 7→ (ζnx : y : z) defines a reflection of the map.

Proof. Let us temporarily use F (n) to denote the n-th Fermat curve. The group
Aut(F (n)) consists entirely of the following projectivities (see [Tze1995]). There is
the normal subgroup of diagonal elements of the form

DiaMat(ζin, ζ
j
n, ζ

k
n).

This subgroup is naturally isomorphic to Z3
n/Zn = Z2

n. It has a complementary
subgroup consisting of the coordinate permutations, which we will denote by per-
mutations. As a consequence, Aut(F (n)) ∼= Z2

n o Sym3
∼= Aut+(Fer(n)). We remind

the reader that every member of Fer(n) has a D2-map (see Chapter 2). Each of the
three transpositions σ ∈ Sym3 gives rise to one of the three conjugate subgroup
Z2
n o 〈σ〉 that will be the groups Aut+(D2(Fer(n))) for the three conjugate realiza-

tions of the mapD2(Fer(n)) on the planar algebraic curve F (n). We pick one and set
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Aut+(D2(Fer(n))) = Z2
n o 〈(23)〉. To construct an Aut(Fer(n))-invariant Belyı̆ func-

tion β on F (n) we work our way up. First we exhibit an Aut+(D2(Fer(n)))-invariant
Belyı̆ function βD. We then average βD to construct β. The points for which (at least)
one coordinate is zero will be important for us. The only such points on the curve
are easily seen to be the 3n points

(0 : ζ2k−1
2n : 1) (ζ2k−1

2n : 0 : 1) (ζ2k−1
2n : 1 : 0) (for k = 1, . . . , n).

Without further ado, we present:

βD : (x : y : z) 7→ (x2n : 4ynzn).

What about well-definedness? The expressions are certainly homogeneous of the
same degree. Suppose that x2n = 0. Then x = 0, so (y : z) = (ζ2k−1

2n : 1) and
4ynzn = −4 6= 0. Therefore, βD is indeed a well-defined function Fer(n)a → P1. It is
also clearly Aut+(D(Fer(n)))-invariant. Now restrict attention to the affine subspace
{x = 1}. Then we can compute

βD(1 : y : z) = (1 : 4ynzn) = (1 : 4yn(−1− yn)) = (1 : −4y2n − 4yn).

This shows that generically, a point of P1 has 2n2 inverse images under βD: there are
2n possible values for y, and for each an additional n values for z. Hence, deg(βD) =
2n2. The critical points on the curve that lie in {x = 1} are those for which

−4nyn−1(2yn + 1) =
d

dy
βD(1 : y : z(y)) = 0.

The equation implies that either y = 0 or yn = − 1
2 . The first option yields (1 : 0) as

critical value, the second (1 : 4 · − 1
2 ( 1

2 − 1)) = (1 : 1). So the critical values on the
whole of P1 are at most these two and (0 : 1). In fact, we have

(βD)−1
(
(0 : 1)

)
=
{

(0 : ζ2k−1
2n : 1) | k = 1, . . . , n

}
(βD)−1

(
(1 : 0)

)
=
{

(ζ2k−1
2n : 0 : 1) | k = 1, . . . , n

}
∪
{

(ζ2k−1
2n : 1 : 0) | k = 1, . . . , n

}
(βD)−1

(
(1 : 1)

)
=
{

(21/n : ζ2k−1
2n : ζ2l−1

2n ) | k, l = 1, . . . , n
}

of size n, 2n and n2 respectively. So they are indeed critical values. This proves that
βD is an Aut+(D2(Fer(n)))-invariant Belyı̆ function. We can use (βD)−1((0 : 1)) as
vertex set, (βD)−1((1 : 0)) as the set of face centers and (βD)−1((1 : 1)) as the edge
centers. The graph embedded on F (n) is the inverse image (βD)−1

(
{(t : 1) : t ∈

[0, 1]}
)
.

To obtain an Aut+(Fer(n))-invariant Belyı̆ function we average βD, just like we did
earlier for the Wiman type II maps in Section 5.2. Addition on P1 is not defined, but it
is on {y = 1} = C. The resulting formula can be checked for correctness afterwards.
The first attempt ∑

σ∈〈(123)〉

β ◦ σ
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is a constant function. Using (βD)2 is the next best thing, and we set

β :=
1

3

∑
σ∈〈(123)〉

(4βD)2 ◦ σ : (x : y : z) 7→ (x6n + y6n + z6n : 3x2ny2nz2n).

If 3x2ny2nz2n = 0, then at least one coordinate is zero and hence x6n+y6n+z6n = 0 as
well. So β is well-defined. It is also clear that β is Aut+(Fer(n))-invariant, and that
deg(β) = max{6n, 2n} · n = 6n2. For the latter, given a generic point (λ : µ) ∈ P1, set
z = 1, solve β((x : y : z)) = (λ : µ) for y and then compute x using xn + yn + zn = 0.
The computation of the critical points and critical values of β is somewhat more
involved. To make the formulas less cumbersome, we introduce a := xn, b := yn,
c := zn. Our algebraic curve is given by a + b + c = 0 and our image point is
(a6 + b6 + c6 : 3a2b2c2). For what (λ : µ) ∈ P1 are there fewer than 6n2 pre-images?
This certainly happens for (1 : 0), which yields the 3n points for which one of the
coordinates is zero. To find the other critical values, assume µ = 1. The question is
then when

a6 + b6 + c6 − 3λa2b2c2

has fewer than 6 solutions. We know that c 6= 0, since points with c = zn = 0 are in
the pre-image of (1 : 0). So we assume z = 1 and hence c = 1. We can now rewrite
the above polynomial modulo 〈a+ b+ c, c− 1〉 as

fλ(a) = 2a6 + 6a5 + (15− 3λ)a4 + (20− 6λ)a3 + (15− 3λ)a2 + 6a+ 2

and the question is for which λ it has multiple roots. We are thus lead to compute

f ′λ(a) = 12a5 + 30a4 + 4(15− 3λ)a3 + 3(20− 6λ)a2 + 2(15− 3λ)a+ 6.

The ideal 〈fλ(a), f ′λ(a)〉 of C[a, λ] contains

λ2 − 13

2
λ+

11

2
= (λ− 1)

(
λ− 11

2

)
,

so there are only two more critical values, (1 : 1) and (11 : 2). This proves we
have a Belyı̆ function. The first solution for λ leads us to f(a) = (a2 + a + 1)3. The
only solutions for (a : b : c) are then (ζ3 : ζ2

3 : 1) and (ζ2
3 : ζ3 : 1). This results

in 2n2 pre-images. At each of these the ramification index is 3, as we can read off
from the multiplicity of the factor in f(a). The second solution for λ brings us to
f(a) = (a − 1)2(a + 2)2(a + 1

2 )2. We find the solutions (1 : −2 : 1), (−2 : 1 : 1) and
(1 : 1 : −2) for (a : b : c), which give rise to 3n2 pre-images. At each of these, the
ramification index is 2. Summarizing, we have constructed the platonic map Fer(n)
on F (n) with vertices, edge centers and face centers the following sets:

Vertices β−1
(
(1 : 0)

)
=
{

(0 : ζ2k−1
2n : 1) | k = 1, . . . , n

}Sym3

Edge centers β−1
(
(11 : 2)

)
=
{

(21/n : ζ2k−1
2n : ζ2l−1

2n ) | k, l = 1, . . . , n
}Sym3

Face centers β−1
(
(1 : 1)

)
=
{

(ζ3k±1
3n : ζ3l∓1

3n : 1) | k, l = 1, . . . , n
}

Because both F (n) and P1 are invariant under standard complex conjugation, our
two Belyı̆ functions satisfy

β(D)(z) = β(D)(z).
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Hence, they are Aut(Fer(n))-invariant and both platonic maps must be reflexive.
The transformation c : (x : y : z) 7→ (ζnx : y : z) is an involution in Aut−(Fer(n))
and fixes points, so it is a reflection. We determine the exact cell structure of Fer(n)
on F (n). The invariant set of the reflection c from the proposition is{

(t1ζ2n : t2 : t3) | (t1 : t2 : t3) ∈ P2(R)
}
∩ Fer(n),

and this is the solution set of the real algebraic equation

tn2 + tn3 = tn1 .

It turns out that the solution set is connected, so it is in fact only one geodesic wall
of Fer(n). Since it clearly contains none of the face centers, it is a wall that consists
entirely of edges. For even n, the wall has length 4 and the vertices on it are (±ζ2n :
0 : 1) and (±ζ2n : 1 : 0). For odd n, the wall has length 3, and the vertices on it are
(0 : −1 : 1), (ζ2n : 1 : 0) and (ζ2n : 0 : 1). In both cases, there is an edge between
(ζ2n : 0 : 1) and (ζ2n : 1 : 0). It is definable as{

(ζ2n : y : z) | yn + zn = 1, y, z ∈ [0, 1]
}
.

All this is illustrated in Figure 5.1. There is a unique involution that fixes the wall

(ζ2n : 0 : 1)

(−ζ2n : 0 : 1)

(−
ζ 2
n

:
1

:
0) (ζ

2
n

:
1

:
0)

(ζ2n : 0 : 1)

(ζ2n : 1 : 0)

(0 : −1 : 1)

(0 : −1 : 1)

Figure 5.1: The geodesic walls of the map Fer(n), for n even (left) and n odd, with a
point at infinity in the chart {x = ζ2n} indicated by the asymptote (right).

Fix(c) and switches (ζ2n : 1 : 0) and (ζ2n : 0 : 1). We can freely choose this to be the
reflection a for a standard map presentation in terms of reflections (a, b, c):

a : (x : y : z) 7→ (ζnx : z : y).

Next, we derive that a point (ζ2n : y : z) ∈ Fix(a) satisfies y = z and since it has to lie
on Fer(n) we have zn+zn = 1. This is equivalent to Re(zn) = 1

2 and we find that the
invariant set consists of n geodesic walls (numbered with variable k) parametrized
as {(

ζ2n : 2n
√

1
4 +t2e− arctan(2t)i/nζ−kn : 2n

√
1
4 +t2earctan(2t)i/nζkn

) ∣∣∣ t ∈ R
}
.

Our wall has the edge center Fix(a) ∩ Fix(c) = {(ζ2n : 2−1/n : 2−1/n)} at value t = 0,
which forces the choice k = 0. The face centers that this wall contains are (ζ2n : ζ−1

6n :
ζ6n) = (1 : ζ−2

3n : ζ−1
3n ), reached at t = 1

2

√
3, and (ζ2n : ζ6n : ζ−1

6n ) = (1 : ζ−1
3n : ζ−2

3n ),



5.5 – The Fermat maps Fer(n) 109

reached at t = − 1
2

√
3. Let’s pick the first one for our fundamental triangle; this fixes

an orientation on xn + yn + zn = 0. The final result is that

a : (x : y : z) 7→ (ζnx : z : y)

b : (x : y : z) 7→ (ζny : ζnx : z)

c : (x : y : z) 7→ (ζnx : y : z)

represent three standard reflections in a fundamental triangle of Fer(n). Simple
checks yield that a2 = b2 = c2 = 1, ord(ab) = 3, ord(bc) = 2n and ord(ac) = 2.
The formules for the rotations R = ab and S = bc are easy to compute.

When n is odd, standard complex conjugation con = S−2 ◦ c = cbcbc is also a reflec-
tion, this time in the real geodesic wall. This gives an even simpler standard map
presentation of Aut(Fer(2n+ 1)) than the one given in the proof. The vertices on the
real wall are then (0 : −1 : 1), (−1 : 0 : 1), and (−1 : 1 : 0). But this is a less uniform
description, for Fer(2n) map has no real points. Complex conjugation is then a fixed
point free involution. Incidentally, we can compute the number of such fixed point
free involutions. This is done by calculating the centralizer CAut(Fer(n))(con). Ob-
viously permutations of the coordinates commute with con. The diagonal automor-
phisms (x : y : z) 7→ (ζe1n x : ζe2n y : ζe3n z) that commute with con are those for which
ζ
ei
n : ζ

ej
n = ζ

−ei
n : ζ

−ej
n for all choices of (i, j). This is equivalent to ei + ej ∈ {0, n/2}

for all these pairs, and we find (up to a scalar) the diagonal automorphisms with
factors (1 : ±1 : ±1). Adding con itself as a last generator of this centralizer, we
conclude

|CAut(R)(con)| = 6 · 4 · 2 = 48

from which we conclude that the size of the conjugacy class of con is n2/4.

Remark 5.5.2. In the foregoing description of the Belyı̆ function β we encounter the
hyperplane {a+ b+ c = 0} ⊂ P2 with 3 vertices, 3 edge centers and 2 face centers on
it. This hyperplane is itself a P1, and the Belyı̆ function (a : b : c) 7→ (a6 + b6 + c6 :
3a2b2c2) yields the platonic map Dih(3) on it. This shows directly that there is the
platonic cover (x : y : z) 7→ (xn : yn : zn) of Fer(n) → Dih(3), for each n ∈ N. This
is an instance of Proposition 3.2.7.

Remark 5.5.3. In Chapter 7 we will see the notion of a Weierstraß point. The points
β−1((1 : 0)) and β−1((11 : 2)) are Weierstraß points of Fer(n). Members of the first
set are sometimes called trivial Weierstraß points, the others the Leopoldt points. For
uniformity, we simply refer to them as the vertices and edge centers of the (platonic
map described by β on the) Fermat curve.

Problem 5.5.4. A fascinating problem which we consider to be in the intersection
of mathematics and art is: can we comprehensibly visualize the Fermat maps? The
maps Fer(1) = Dih(3), Fer(2) = Oct and Fer(3) = R1.2:3 are not so difficult.
The first non-trivial case is Fer(4), which is Dyck’s platonic map R3.2. A linear
realization of this map was made in 1987 by Ulrich Brehm [Bre1987] and is shown in
Figure 5.2. Can we give an elegant (linear) realization for higher n?
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Figure 5.2: Brehm’s linear realization in R3 of the map Fer(4).

5.6 The Humbert maps Humk(n)

In [CGAHR2008], a family of algebraic curves is defined by a property of their auto-
morphism group.

Definition 5.6.1. Let n ∈ Z≥3 and letMg(n) be the moduli space of curves of genus
g(n) = 1 + 2n−2(n− 3). The set of generalized Humbert curves of size n is the locus
inMg(n) consisting of those curves X for which Zn2 is a subgroup of Aut(X).

The authors show that the generalized Humbert curves of size n are parametrized
by λ1, . . . , λn−2 ∈ C, and thus we can denote such a curve as Hum(λ1, . . . , λn−2).
Furthermore, for each n the locus contains at least three members uniformized by
a normal subgroup of a triangle group. These special curves form three polynomial
families of reflexive platonic maps Hum1(n), Hum2(n), and Hum3(n), that we term
Humbert maps. They are defined by their map automorphism groups as follows:

Aut+(Hum1(n)) =
〈
R,S

∣∣∣R4, Sn+1, (RS)2, (SjR)4 : 3 ≤ j ≤ 2n+2(n+ 1)
〉
,

Aut+(Hum2(n)) =
〈
R,S

∣∣∣Rk, S2n, (RS)2, (Sn+1R)2, (SjRj)2 : 1 ≤ j ≤ 2n(n+ 1)
〉
,

Aut+(Hum3(n))=
〈
R,S

∣∣∣R4, S2(n−1), (RS)2, (Sn−1R2)2, (SjR)4 : 3 ≤ j ≤ 2n+1(n− 1) + 1
〉
.

Reflexivity of the maps follows from the fact that for any relator of the form (SaRb)c

we have (S−aR−b)c = (Rb(SaRb)−1R−b)c = Rb(SaRb)−cR−b = 1, using the chirality
criterion. The isomorphism types of these map automorphism groups are:

Aut+(Hum1(n)) ∼= Zn2 o Dih2(n+1),

Aut+(Hum2(n)) ∼= Zn2 o Zn,
Aut+(Hum3(n)) ∼= Zn2 o Dih2(n−1).
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Every generalized Humbert curve Hum(λ1, . . . , λn−2) has an elegant model in Pn,
defined by the following ideal in C[x1, . . . , xn+1]:

I(λ1, . . . , λn−2) = 〈λix2
1 + x2

2 + x2
i+3 : 0 ≤ i ≤ n− 2, λ0 := 1〉.

5.7 The modular maps Mod(n)

Another intriguing family of reflexive platonic maps is the family Mod(n) of modular
maps. We will shortly see that the (reflexive) platonic surfaces of these maps are the
modular curves X(n). The modular map family has the property that

Aut+(Mod(n)) ∼= SL(2,Z/nZ)/〈−1〉 (n ≥ 1)

We refrain from calling this group PSL(2,Z/nZ), since we do not necessarily factor
out the whole center of SL(2,Z/nZ).

Proposition 5.7.1. Denote the equivalence class mod 〈−1〉 of a matrix in SL(2,Z/nZ)
by writing the matrix with square brackets. Let

R =

[
0 1
−1 1

]
S =

[
1 1
0 1

]
.

These two elements generate a map presentation of type (3, n) of SL(2,Z/nZ)/〈−1〉.

Proof. The computations proving that ord(R) = 3, ord(S) = n and ord(RS) = 2
are left to the reader. It is a well-known fact that the displayed matrices generate
SL(2,Z), and hence the quotient under discussion.

Knowing that this group with the given generators defines a platonic map of type
(3, n), we would like to see a map presentation. Presentations of special linear groups
are not trivial to come by (and prove correct). We will use the work of Mennicke. By
exploiting the Steinberg relations, he constructed presentations SL(2,Z/pnZ) (with
p prime) in [Men1967], building on work of Todd and Coxeter [CM1980]. In the
subsequent paper [BM1968] Mennicke together with Behr improved upon this work
and gave a short presentation for all odd n. The even case requires (at least for now) a
more complicated presentation, apparently stemming from the fact that (Z/2kZ)× =
〈−1, 5〉 is not cyclic for n ≥ 3. For odd n, the Mennicke presentation is

SL(2,Z/nZ)/〈−1〉 =
〈
R,S

∣∣∣R3, Sn, (RS)2, (S2RS
1
2 (n+3)RS)3

〉
.

For n = 2k we proceed as follows. For k = 1 we have −1 = 1 and find

SL(2,Z/2Z)/〈−1〉 = SL(2,Z/2Z) ∼= Sym3.

Its standard map presentation is of type (3, 2), so Mod(1) = Dih(3). For k = 2 we
get SL(2,Z/4Z)/〈−1〉 ∼= Sym4 with standard map presentation of type (3, 4), whence
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Mod(2) = Oct. Now suppose that k ≥ 3. Write E12 = S and E21 = R2S for the
two unit transvection matrices. We introduce the following element of order 2k−2

generating the diagonal subgroup:

T =

[
5 0
0 5−1

]
∈ SL(2,Z/nZ)/〈−1〉.

Direct computation shows that for any k ∈ (Z/nZ)×:[
k 0
0 n−1

]
= Ek

2−k
12 Ek

−1

21 E
−(k−1)
12 E−1

21 = Sk
2−k(R2S)k

−1

S−kR−2.

Specializing to the case k = 5, we find T = S20(R2S)5−1

S−5R−2. Using T as an
abbreviation, the Mennicke presentation for SL(2,Z/2kZ)/〈−1〉 is then given by

SL(2,Z/2kZ)/〈−1〉 =
〈
R,S

∣∣∣R3, S2k , (RS)2, (TRS)2, T−1R2ST (R2S)−25, (T (R2S)5RS)3
〉
.

The previous two presentations suffice to assemble one for n = 2km (k ≥ 1, m odd).
The Chinese Remainder Theorem transfers to the groups under consideration:

SL(2,Z/nZ)/〈−1〉 ∼= SL(2,Z/2kZ)/〈−1〉 × SL(2,Z/mZ)/〈−1〉.

To make this isomorphism concrete, define e1 ∈ Z/nZ by e1 ≡ 1 mod 2k, e1 ≡ 0 mod
m, and likewise e2 ∈ Z/nZ by e2 ≡ 1 mod m, e2 ≡ 0 mod 2k. Then the two pairs
(Ri, Si) := (SeiRSeiR−1, Sei), where i = 1, 2, generate the two direct factors. We use
these as abbreviations, as well as T = S20

1 (R2
1S1)−5−1

S−5
1 R−2

1 . The map presentation
that results is:

SL(2,Z/2kmZ) = 〈R,S |R3, Sn, (RS)2, S2
2R2S

1
2 (k+3)
2 R2S2,

(TR1S1)2, T−1R2
1S1T (R2

1S1)−25, (T (R2
1S1)5R1S1)3〉.

For computational purposes one might prefer a permutation representation. The
group order we find is

|Aut+(Mod(n))| = 1

2
|SL(2,Z/nZ)| = n3

2

∏
p|n

(1− p−2) (n ≥ 3),

and hence

g(Mod(n)) = 1 +
n4 − 6n3

24n

∏
p|n

(1− p−2) (n ≥ 3).

If n = p is a prime, this expression reduces to

g(Mod(p)) =
1

24
(p+ 2)(p− 3)(p− 5).

The platonic surface of the map Mod(n) is in fact the modular curve X(n). Re-
duction mod n induces a natural map πN : SL(2,Z)/〈−1〉 → SL(2,Z/nZ)/〈−1〉.
Define the congruence subgroup Γ(N) := kerπn. The natural action of Γ(1) =
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SL(2,Z)/〈−1〉 on the extended upper half-plane H2 ∪ {∞} by Möbius transforma-
tions has fundamental domain as illustrated in Figure 5.3. The quotient H2/Γ(1) is
isomorphic to P1. Interpreted as Möbius transformations, we find R : z 7→ (1− z)−1

to be a rotation around ζ6 over 2π/3, S : z 7→ z + 1 to be translation by 1, and
RS : z 7→ −z−1 to be a rotation around i over π. Thus, the transformations R and
RS exhibit the same local behaviour on H2/Γ(n) and its compactification X(n). The
transformation S becomes a rotation around [∞] of order n. The natural quotient
map H2/Γ(n) → H2/Γ(1) ∼= P1 has i, ζ6 and∞ as its only branch points. It is there-
fore a Belyı̆ function, and X(n) has a platonic map structure induced by (R,S) with
the given presentation. This knowledge also enables us to see that these maps are

i
ζ6

Figure 5.3: The (extended) upper half-plane with a fundamental domain of
SL(2,Z)/〈−1〉, (demarcated by a thicker line). The domain folds up into P1 covered
by one grey and one white triangle under the group action.

reflexive, a fact not so easy to glean from the Mennicke presentations. The antiholo-
morphic transformation of the upper half-plane c : z 7→ −z satisfies

c(R(z)) = −(1− z)−1 = (1− (−z + 2))−1 = R(S2(c(z)))

c(S(z)) = −z − 1 = S−1(c(z))

So c indeed induces an antiholomorphic automorphism on Y (n) = H2/〈R,S〉 (and
thus on X(n)) that functions precisely like the c from a standard reflexive map pre-
sentation. In general, we have no better description of Aut(Mod(n)) than as a semi-
direct product SL(2,Z/nZ) o Z2. When n = p is a prime, then SL(2, p)/〈−1〉 =
PSL(2, p), and because c ∈ SL−(2,Z) we find Aut(Mod(n)) ∼= PGL(2, p).

The modular maps Mod(n) with genus at most 101 are listed in Table 5.1.

Remark 5.7.2. When n is even, the subgroup 〈S2, R−1SR〉 < Aut(X(n)) seems to be
of index 3, so then Mod(n) would have a D2-map (see Chapter 3). But this remains
to be proven.
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n g(n) |Aut(Mod(n))| Reflexive platonic map in Conder’s list
2 0 12 Dih(3)
3 0 24 Tet
4 0 48 Oct
5 0 120 Ico
6 1 144 R1.1:2

7 3 336 R3.1 (Klein quartic)
8 5 384 R5.1 (Wiman-del Centina curve)
9 10 648 R10.1

10 13 720 R13.1

11 26 1320 R26.2 (Klein)
12 25 1152 R25.3

13 50 2184 R50.1

14 49 2016 R49.3

15 73 2880 R73.5

16 81 3072 R81.1

Table 5.1: Modular maps Mod(n) of genus at most 101.

Example 5.7.3. Historically, the modular maps were the first examples of platonic
maps. Indeed, by studying the congruence subgroups Γ(5), Γ(7), and Γ(11), Felix
Klein constructed first the algebraic curveX(7) in [Kle1878], now known as the Klein
quartic, and then X(11) in [Kle1879]. For completeness, we briefly discuss this latter
curve. It has automorphism group Aut(Mod(11)) = PGL(2, 11). Klein constructed
a beautiful non-singular model in P4. First consider the algebraic variety defined by
the polynomial

f = x2
1x2 + x2

2x3 + x2
3x4 + x2

4x5 + x2
5x1.

The polynomial has Hessian matrix

Hess(f) = 2


x2 x1 0 0 x5

x1 x3 x2 0 0
0 x2 x4 x3 0
0 0 x3 x5 x4

x5 0 0 x4 x1


The set of all (4×4)-minors of the Hessian defines the algebraic curve corresponding
to Mod(11):

X(11) ∼=
{

(x1 : x2 : x3 : x4 : x5) ∈ P4 | rank(Hess(f)) ≤ 3
}
.

The automorphism group Aut+(Mod(11)) is generated by the following three ele-
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gant transformations:

T1 = PerMat([2, 3, 4, 5, 1])

S = DiaMat([ζ11, ζ
9
11, ζ

4
11, ζ

3
11, ζ

5
11])

T2 =
1√
−11


ζ9
11 − ζ2

11 ζ5
11 − ζ6

11 ζ4
11 − ζ7

11 ζ11 − ζ10
11 ζ3

11 − ζ8
11

ζ5
11 − ζ6

11 ζ4
11 − ζ7

11 ζ11 − ζ10
11 ζ3

11 − ζ8
11 ζ9

11 − ζ2
11

ζ4
11 − ζ7

11 ζ11 − ζ10
11 ζ3

11 − ζ8
11 ζ9

11 − ζ2
11 ζ5

11 − ζ6
11

ζ11 − ζ10
11 ζ3

11 − ζ8
11 ζ9

11 − ζ2
11 ζ5

11 − ζ6
11 ζ4

11 − ζ7
11

ζ3
11 − ζ8

11 ζ9
11 − ζ2

11 ζ5
11 − ζ6

11 ζ4
11 − ζ7

11 ζ11 − ζ10
11


Though not immediately apparent, ord(T2) = 2.

Since the model is defined over Q, the curve has the standard complex conjugation
as antiholomorphic automorphism, completing the map automorphism group.
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6
From platonic maps to algebraic curves

THIS chapter traces the construction of algebraic models for all reflexive platonic
maps of genus at most 8 and some assorted platonic maps of genus between 9

and 15. Most of these models are canonical models, and otherwise they are planar
curves. This extends the realm of platonic surfaces with known algebraic descrip-
tions. Historically, this study started with Felix Klein’s 1878 momentous discovery
of the quartic x3y+y3z+z3x = 0, documented in [Kle1878]. Somewhat later Anders
Wiman constructed several other algebraic curves with many automorphisms, some
of which re-appear in this book. Robert Fricke [Fri1899] studied the map R7.1, but
this work was overlooked. In 1963, Alexander Murray Macbeath [Mac1965] brought
it back to attention with his construction of a canonical model for what is termed here
R7.1 or the Fricke-Macbeath curve. Since then, Riemann surfaces with non-trivial
automorphisms have never been out of fashion. From the late 1970s on, a ‘Japanese
school’ has constructed models for all Riemann surfaces with a non-trivial automor-
phism group of genus 2 and 3, and canonical representations for all group actions
up to genus 5. See [KK1977], [KK1978], [KK1987], [KK1990], [Kim1991], [Kim2003].

We start with an introduction of some notions from algebraic geometry that we need
in Section 6.1. Then we set down our strategy for construction of the models in
Section 6.2. After returning from the detour of dealing with hyperelliptic maps and
their models in Section 6.3, we deal with genus 0 and 1 in the last two sections of the
chapter. The discussion of all higher genus models, to which our strategies apply,
has been relegated to Appendix A. Among the new results are a model of R7.1 over
Q, models for X(9) and X(10), and models for the first Hurwitz triplet (R14.1, R14.2,
R14.3).

117
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6.1 Curves and canonical models

Algebraic geometry, the study of algebraic varieties, is a subtle subject, and we stick
to the basics. Let An be the complex affine space Cn, and Pn be the complex projec-
tive space of dimension n, i.e. (Cn+1 − {0})/C∗ where the action is by scalar multi-
plication. Let Sym(V ) denote the symmetric algebra of a vector space V . The sym-
metric algebra is naturally graded and we denote the degree d part by Symd(V ).
The space Sym((Cn)∨) is isomorphic as a graded C-algebra to the polynomial ring
C[x1, . . . , xn]. We also denote the degree d part of the latter by C[x1, . . . , xn]d.

Definition 6.1.1. An ideal I ⊂ C[x1, . . . , xn] is homogeneous if for any p ∈ I and
d ≥ 0, the homogeneous degree d part of p is also in I .

A homogeneous ideal is the direct sum of its degree d parts: I =
⊕

d≥0 Id, where
Id := I ∩ C[x1, . . . , xn]d. This also means a homogeneous ideal is generated as an
ideal by homogeneous polynomials.

Definition 6.1.2. A (complex) affine algebraic variety V ⊂ Cn is the zero set of an
ideal I(V ) ⊂ C[x1, . . . , xn]. A (complex) projective algebraic variety V ⊂ Pn is the
zero set of a homogeneous ideal I(V ) ⊂ C[x1, . . . , xn+1]. An affine or projective
variety V is irreducible if I(V ) is a prime ideal.

We want to restrict to irreducible varieties, that is, varieties that are not the union of
two closed proper subsets (in the Zariski topology). This property has an algebraic
formulation: a variety V is irreducible if and only if I(V ) is prime. A notion that
is intuitively clear but, as many notions in algebraic geometry, surprisingly hard to
define, is that of dimension. A possible rigorous definition is as the degree of the
Hilbert polynomial, described in Definition 6.1.16, but we leave out further details.
We call an irreducible complex projective algebraic variety a (complex projective al-
gebraic) curve if its dimension is 1, and a (complex projective algebraic) surface if its
dimension is 2.

A function φ : X → Y from one complex projective variety X ⊂ Pm to Y ⊂ Pn
defined on a Zariski open subset of X by polynomials that do not vanish simulta-
neously for any point of X are called regular mappings. For proper treatment of this
notion and the concomitant one of birational mapping, see e.g. [Har1992] or [Har1977].

Varieties important for our story

A few sets of varieties inevitably come into play in our story of algebraic models for
platonic maps. Our next examples are projective spaces that we embed into higher-
dimensional projective spaces.

Definition 6.1.3. A Veronese mapping is an embedding vn,d : Pn � PN with N =(
n+d
d

)
− 1 defined by

(x1 : · · · : xn+1) 7→ (· · · : xα : · · · )



6.1 – Curves and canonical models 119

with xα = xα1
1 · · ·xαnn ranging over the multi-indices α of degree d with n compo-

nents. Its image is the Veronese variety Vn,d. A Veronese variety with n = 1 is called
a rational normal curve.

Every component of the mapping is a monomial in the n + 1 variables x0, . . . , xn.
The Veronese embedding is obviously dependent on the ordering of the monomi-
als xα, but the images are all isomorphic by an isomorphism of PN permuting its
coordinates.

Example 6.1.4. The Veronese mapping v2,2 : P2 → P5 is given by

v2,2 : (x1 : x2 : x3) 7→ (x2
1 : x1x2 : x1x3 : x2

2 : x2x3 : x2
3).

Let us denote the standard homogeneous coordinates in P5 with (y1 : · · · : y6). The
image V2,2 of v2,2, called the Veronese surface, then turns out to be defined by the
following set of quadrics:

I(V2,2) = (y1y4 − y2
2 , y1y6 − y2

3 , y4y6 − y2
5 , y2y3 − y1y5, y2y5 − y3y4, y3y5 − y2y6).

The second set of varieties is built up by connecting up available ones, cf. [Har1992,
p. 92f.]. Given two algebraic varieties X,Y ⊂ Pn and a regular mapping φ : X → Y
such that ∀x ∈ X,φ(x) 6= x, one can create a new algebraic variety S(X,Y, φ) as the
union ∪x∈X line(x, φ(x)). We are especially interested in algebraic surfaces formed
in this way between two rational normal curves.

Definition 6.1.5. Let Λ1,Λ2 be linear subspaces of Pn of dimension k, l ≥ 0 that are
disjoint and of complementary dimension (k + l = n− 1). Suppose that X ⊂ Λ1 and
Y ⊂ Λ2 are rational normal curves, or a point if the linear space has dimension 0.
Assume that φ : X → Y is an isomorphism. A rational normal scroll is the variety
Sk,l := S(X,Y, φ).

The rational normal scroll Sk,l is uniquely defined up to projective isomorphism by
the pair (k, l): as a first step, the linear subspaces Λ1,Λ2 can be mapped to any other
pair Λ′1,Λ

′
2 of the same dimensions simultaneously with an automorphism of Pn.

As a second step, any two rational normal curves C,C ′ ⊂ Λi are also isomorphic
(i = 1, 2), and we can find an isomorphism of Pn accomplishing the transformation
on both subspaces. Rational normal scrolls are determinantal varieties. That is, there
is a matrix with homogeneous polynomials of the same degree such that the variety
is defined by the minors of a certain rank of this matrix.

Proposition 6.1.6. A rational normal scroll Sk,l ⊂ Pn can be described as the set

{x ∈ Pn : rank(M(x)) ≤ 1}, M(x) =

(
L11(x) · · · L1(n−1)(x)
L21(x) · · · L2(n−1)(x)

)
for appropriate linear forms Lij : Cn → C.

The third set we discuss is that of hyperelliptic curves. These are planar algebraic
curves. As affine curves, the appear as defined by a single equation y2 = h(x), where
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h is a polynomial with distinct roots. Their automorphism group always contains the
involution (x : y) 7→ (x : −y). Hyperelliptic curves have a special Riemann surface
structure, as made evident by the following theorem.

Theorem 6.1.7. Let X be a Riemann surface of genus g ≥ 2. The following are equiv-
alent:

1. There is a meromorphic function on X with precisely two poles;
2. X admits a degree 2 map to Ĉ. This map will necessarily branch at precisely

2g + 2 points;
3. There is an involution J : X → X with precisely 2g + 2 fixed points. This

involution is necessarily central in Aut(X);
4. X is isomorphic to an algebraic curve in P2 defined by an equation y2 = h(x),

where h is a polynomial of degree 2g + 1 or 2g + 2 with distinct roots.

If X satisfies (one of) these criteria, X is said to be hyperelliptic. The central involu-
tion is called the hyperelliptic involution of the curve.

Proof. See e.g. [FK1980] or [Mir1995].

The canonical model

Algebraic varieties can have points at which the tangent space behaves unexpectedly,
for example points of self-intersection. They deserve special attention, as witnessed
already e.g. for the models we gave of the Accola-Maclachlan maps in Section 5.3.

Definition 6.1.8. Let C ⊂ An be an affine algebraic curve defined by the ideal I(C) =
(f1, . . . , fm). A point x ∈ C is smooth if the rank of the m × n-matrix df(x) =
(∂fi/∂xj) is n− 1. A point that is not smooth is called singular. The curve is smooth
if each of its points is smooth.

For projective curves, one can check smoothness in every standard affine subset
{xi = 1}. Smoothness can be described more intrinsically, but we will not need this
abstraction. The smooth points of a complex algebraic curve form a Zariski-open set,
and hence are dense in the usual topology on Pn.

A fundamental result is that we can embed any compact Riemann surface into a
projective space as a smooth algebraic curve. This is a consequence of the GAGA
theorem [Ser1955]. The conditions for stating a precise result about a specific em-
bedding employ the concepts of a divisor and of holomorphic differentials. Divisors
are introduced in the next chapter. For the definitions of a linear system, a very ample
divisor, and holomorphic differentials, see [Mir1995].

Theorem 6.1.9. Let X be a compact Riemann surface. To each divisor D on X with
linear system |D| of dimension n that is base-point-free, one can associate a holomor-
phic mapping φD : X → Pn. If D is very ample, then φD is an embedding onto a
smooth complex projective algebraic curve.
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If deg(D) ≥ 2g + 1, then φD is very ample. Hence, we can always embed a Riemann
surface of genus g into P2g+1. But in fact, we can do better most of the time.

Theorem 6.1.10 (Canonical model). Let X be a compact Riemann surface and K a
canonical divisor. The associated map φK is called the canonical map. If X is not
hyperelliptic, then φK : X → P(Ω1(X)) ∼= Pg−1 is an embedding as a smooth projec-
tive algebraic curve into the projective space over the holomorphic differentials. The
name of this curve is the canonical model or canonical curve of X .

A basic fact is that the elements of Aut(X) induce a linear action on Ω1(X) and
hence on the canonical model (cf. [Bre2000]). This is of vital importance to our work
in Section 6.2. To deal with Aut∗(X), we need to extend this result by introducing
complex conjugations.

Complex conjugations and the canonical representation

Let V be a complex vector space. We can extend the notion of complex conjugation
from C to V .

Definition 6.1.11. An R-linear transformation T : V → V is called a complex conju-
gation if it is an involution (ord(T ) = 2) and it is antilinear: T (zv) = z T (v) for all
z ∈ C, v ∈ V .

Example 6.1.12. The map conn : Cn → Cn defined by (z1, . . . , zn) 7→ (z1, . . . , zn) is a
complex conjugation. We call it the standard complex conjugation on Cn. It leaves the
R-linear subspace Rn invariant. On the space Matn(C) of n × n complex matrices,
the conjugate transpose is a complex conjugation. The map of Cn → Cn defined by
(z1, . . . , zn) 7→ (z1, z2, . . . , zn) is not a complex conjugation for n > 1 since it is not
antilinear.

Because of antilinearity, a complex conjugation c : V → V also induces an involu-
tion P(V ) → P(V ), which we denote by the same symbol and also call a complex
conjugation. The image of a complex submanifold X of V or P(V ) under a com-
plex conjugation c is again a complex submanifold. This holds in particular for a
projective algebraic curve. The pullback c∗(f) of a holomorphic (respectively anti-
holomorphic) function f ∈ O∗(X) is antiholomorphic (respectively holomorphic) on
c(X). In the special case where c(X) = X , the mapping c∗ switches the holomorphic
and antiholomorphic functions on X . Important is that we can likewise pull back
holomorphic differentials along a complex reflection. Combining this fact with the
preceding remarks on the action of Aut(X) on Ω1(X), we get a representation of
Aut∗(X) acting on the canonical model. We first add one more remark for its proper
formulation.

The linear mapping on V defined by v 7→ iv induces a bijection between the R-
linear eigenspaces E(c, 1) and E(c,−1). Together these eigenspaces span V , since
v = 1

2 (v + c(v)) + 1
2 (v− c(v)) and the two terms lie in the respective aforementioned
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eigenspaces. We conclude thatE(c,±1) has real dimension 1
2 dim(V ) and that for any

two complex conjugations c1, c2 there is an A ∈ GL(n,C) such that c2 = A−1c1A.

Definition 6.1.13. The extended complex general linear group GL∗(n,C) and ex-
tended projective complex general linear group PGL∗(n,C) are defined as

GL∗(n,C) := GL(n,C) ∪ {g ◦ conn : g ∈ GL(n,C)},
PGL∗(n,C) := PGL(n,C) ∪ {g ◦ conn : g ∈ PGL(n,C)}.

Now we can state:

Theorem 6.1.14. Let X be a Riemann surface with canonical model C. The action of
Aut∗(X) on Ω1(X) induces an (anti)linear representation

ρ∗c : Aut∗(X)→ PGL∗(g − 1,C).

This representation leaves C invariant and restricts to a linear representation

ρc : Aut(X)→ PGL(g − 1,C).

We call either one the canonical representation. We name the character χc of ρc the
canonical character.

The canonical ideal

To our great fortune, there is a small and absolute bound on the degree(s) of polyno-
mials necessary to generate the radical ideal of a canonical model.

Theorem 6.1.15 (Canonical ideal generation). Let X be a non-hyperelliptic complex
algebraic curve of genus g ≥ 3 with canonical model C. If g = 3, then I(C) is
generated by one element in degree 4. If g ≥ 4, it is generated by I2, except in the
following two cases:

• g = 6 and X is birationally equivalent to a non-singular planar quintic;
• X is trigonal.

In both cases I(C) = (I2, I3). The ideal (I2) then defines a surface: the Veronese
surface V2,2 in the first case and a rational normal scroll Sk,l in the second.

This theorem arose from work of Dennis Babbage, Federigo Enriques, Max Noether,
and Karl Petri. Confer Bernard Saint-Donat [SD1973] for a proof that even holds over
any algebraically closed field of arbitrary characteristic.

The ideal of a canonical model of a non-hyperelliptic genus 4 curve is generated by
three quadrics and one cubic (see [Mir1995]). Thus, all curves of genus 4 are either
hyperelliptic or trigonal. It is no longer true for g ≥ 5 that the canonical curve can
be cut out from Pg−1 by g − 2 polynomials; they are not complete intersection curves.
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When we try to construct a canonical model it would be advantageous to know how
many polynomials we need. We can actually compute the dimensions of I2 and I3
as C-vector spaces in advance.

Definition 6.1.16. The Hilbert-Poincaré series HP(I, t) of a homogeneous ideal I ⊂
C[x1, . . . , xn+1] is defined as

HP(I, t) =
∑
k≥0

dim(C[x1, . . . , xn+1]k/Ik)tk.

In general, for small k the coefficients of the Hilbert-Poincaré series may behave
erratically, but for large enough k, their values coincide with those of a polynomial
function H(I, k). The polynomial is called the Hilbert polynomial of I . An important
fact is that dim(V (I)) = deg(H(I, k)). When speaking of a canonical curve, large
enough k are still pretty small.

Proposition 6.1.17. For a non-hyperelliptic canonical curve, the Hilbert-Poincaré se-
ries of its radical ideal I is

HP(I, t) = 1 + gt+
∑
k≥2

(g − 1)(2k − 1)tk.

This entails that

dim I2 =
1

2
g(g + 1)− 3(g − 1) =

1

2
(g − 2)(g − 3),

dim I3 =
1

6
(g − 1)g(g + 2)− 5(g − 1) =

1

6
(g − 1)(g2 + 2g − 30).

Also, for a canonical ideal H(I, k) = (g−1)(2k−1). We see that indeed deg(H(I, k)) =
1 as it should be, and also that we can read off the genus from the Hilbert polynomial.
In the next section we will lay out a strategy to construct for a non-hyperelliptic pla-
tonic map various possible ideals (I2). Such an ideal will be generated by the number
of independent quadrics the Hilbert-Poincaré series predicted, and will be our first
attempt at finding the canonical ideal. We then check whether deg(H((I2), k)) = 1,
and if so, whether the curve has the correct genus and (I2) is prime. If one of these
last two checks fail, we recognize (I2) as a blind alley.

In the exceptional cases of Theorem 6.1.15, (I2) will not define a curve but a surface,
and we will find deg(H((I2), k)) = 2. For curves equivalent to a planar quintic,
this surface will be the Veronese surface V2,2 ⊂ P5. The Hilbert polynomial for the
Veronese surface is H(I(V2,2), k) = 2k2 + 3k + 1, so its Hilbert-Poincaré series starts
as

HP(I(V2,2), t) =
∑
k≥0

(2k2 + 3k + 1)tk = 1 + 6t+ 15t2 + 28t3 + · · · .

Since in this case g = 6, the Hilbert-Poincaré series for the canonical curve is

HP(I, t) = 1 + 6t+ 15t2 + 25t3 + · · ·
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and one needs three extra polynomials of degree 3 to generate the canonical ideal.
For trigonal curves, (I2) will define a rational normal scroll Sk,l. The Hilbert-Poincaré
series for the rational normal scroll Sk,l is the convolution of those for its defining ra-
tional normal curves (or a curve and a point if k or l is zero), and we can compute
that

HP(Sk,l, t) = 1 + (k + l + 2)t+ (kl + 3k + 3l + 3)t2 + (4kl + 6k + 6l + 4)t3 + · · ·

One thus needs 4kl + 6k + 6l + 4 − 5(g − 1) extra polynomials of degree 3 for the
canonical ideal.

6.2 A construction strategy for a canonical model

Our strategy to compute a canonical model for a non-hyperelliptic platonic map M
consists of several parts.

1. Take a standard presentation of Aut(M) and apply the fixed point counting
lemma (Lemma 1.4.3) to compute the fixed points and rotation indices for a
representative of each conjugacy class.

2. Calculate the canonical character χc of M with the Eichler trace formula.
3. Construct a canonical linear representation ρc on V = Cg .
4. Calculate the linear representation (ρ∨c )2+, which acts on the space (V ∨)2+ ∼=

C[x1, . . . , xg]2.
5. Decompose (ρ∨c )2+ into its isotypic components with the Reynolds operator.
6. Apply various methods (e.g. truncated Gröbner bases, the centralizer trick,

radicals, the primary decomposition, fixed points as listed below) to determine
necessary and sufficient invariant pieces of (V ∨)2+ that generate I2(Ma).

7. If the ideal is not of dimension 2, then repeat steps 4–6 with (ρ∨c )3+ to compute
necessary and sufficient invariant pieces of (V ∨)3+ that generate I3(Ma).

We stress that steps 6 and 7 are not automatic and require creativity for each separate
case. They consist of excluding some isotypic pieces and determining invariant sub-
spaces of the rest that together define a prime ideal with the correct Hilbert-Poincaré
series. We doubt that the tricks below will always lead to a solution. For this reason
we refrain from calling the above an algorithm. Some remarks detailing the different
steps are in order.

The Eichler trace formula. Let X be a Riemann surface of genus g ≥ 2 and σ ∈
Aut(X) of order n > 1. The canonical character χc of the action of Aut(X) on H1(X)
satisfies

χ(σ) = 1 +
∑

p∈Fix(σ)

ζ
−rot(σ,p)
n

1− ζ−rot(σ,p)
n

= 1 +
∑

1≤m<n
gcd(m,n)=1

|Fix(σ,m)| ζ−mn
1− ζ−mn

.

where Fix(σ,m) = {x ∈ Fix(σ) | rot(σ, x) = m} is the set of fixed points of σ with
rotation index m. See [Bre2000, Theorem 12.1 and Lemma 11.5].
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The Construction of ρc. Once the canonical character χc has been computed, we can
construct a canonical representation ρc by hook or crook. The representations we
used were obtained in the following ways:

1. From the articles of the Japanese school for genus 3, 4, 5;
2. From the ATLAS of finite group representations [W+1996];
3. With the help of the GAP package REPSN by John D. Dixon and Vahid Dab-

baghian;
4. By hand, for example with induction from a subgroup or by a lucky guess.

The Reynolds operator. Let G be a finite group, ρ : G → V any finite-dimensional
representation and χ and irreducible character. The generalized Reynolds operator
Rey = Rey(ρ, χ) is defined as

Rey(ρ, χ) =
dim(χ)

|G|
∑
g∈G

χ(g−1)ρ(g).

This operator is an element of End(V ) that satisfies Rey2 = Rey and g ◦ Rey =
Rey ◦ g for all g ∈ G. In other words, it is a G-invariant projection. Its image is the
G-invariant subspace called the isotypic χ-component Vχ of V , which is the unique
maximal subspace of V with character kχ (k ∈ Z). Of course dimVχ = 〈ρ, χ〉, where
〈·, ·〉 is the standard inner product on the character ring.

Because it is a projection, we can use Rey on (ρ∨c )2+ : Aut+(M) → GL(
(
g+1

2

)
,C) to

compute the isotypic components for all irreducible representations χ. Either we ap-
ply it to a basis of V to get a spanning subset of Vχ or, because that is time consuming,
we apply it to a small number of vectors and spin those with Aut+(M) afterwards.
The same applies to (ρ∨c )3+.

Truncated Gröbner bases. It can be hard to decide whether a whole isotypic com-
ponent of the decomposition (V ∨)2+ should be used or not. To prove that we cannot
use the whole component it suffices to exhibit a polynomial in it that factors linearly
over C, since in the final prime ideal no linear factors will be present. To find such
a certificate polynomial quickly, we can compute truncated Gröbner bases, succes-
sively increasing the degree if necessary. Since our ideal is homogeneous, any trun-
cated Gröbner basis will be the truncation of the actual Gröbner basis so a product
of d linear polynomials will show up in the d-truncated basis.

The centralizer trick. The centralizer CGL(g,C)(Aut+(M)) is of use if the repre-
sentation ρc is reducible. Note that an element of CGL(g,C)(Aut+(M)) induces an
Aut+(M)-invariant automorphism on each of the subrepresentations of ρc, so by
Schur’s lemma it is scalar on each of them. An element of the centralizer maps a
G-invariant curve to another one by a projectivity. The dimension of this group of
projectivities is # components of ρc − 1. With help of the centralizer we can make
extra assumptions about the ideal we are searching for. Specifically, given that we
have to pick the subspace mχ < Vχ we can (partially) normalize it.
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Example 6.2.1. For R5.11 the space (V ∨)2+ has a 1-parameter family of invariant
subspaces 22(t) = 〈x1x2 + tx3x5, x1x3− tζ3x2x4〉. We have to choose one, a hard task
since there is an infinite number of options. The centralizer CGL(5,C)(Aut+(R5.11))
rescues us. The space V = C5 decomposes into invariant subspaces 〈e1〉, 〈e2, e3〉
and 〈e4, e5〉. This means we can perform normalization by any transformation of the
form DiaMat(λ1, λ2, λ2, λ3, λ3). So we may set λ1 = t or λ3 = t.

Radicals and the primary decomposition trick. Suppose that we already have a
subspace J ⊂ I2(Ma) of positive dimension. Certainly the radical Rad(J) ⊆ I(Ma).
So we may try to compute it to enlarge the subspace we know. We have a bigger
chance if we succeed in decomposing J into primary ideals. An ideal Q of a ring R
is a primary ideal when xy ∈ Q =⇒ x ∈ Q ∨ ∃n ∈ N, yn ∈ Q. The following theorem
stresses the importance of primary ideals.

Theorem 6.2.2 (Lasker-Noether (Emmy)). Let J ⊆ R be an ideal of a noetherian ring
R. Then there is a finite set of primary ideals Q1, . . . , Qn such that J = ∩nk=1Qk. The
set is unique up to ordering, if we take the decomposition to be irredundant.

Irredundancy means that Q1 ∩ · · · ∩ Q̂k ∩ · · · ∩Qn 6⊆ Qk (for k = 1, . . . , n). A further
theorem says that if J ⊆ I and I is prime and minimal with this property, then I is
contained in the set {Rad(Qk) : k = 1, . . . , n}, all of which are prime, and called the
associated primes of J .

So if we can compute the associated primes of J , we know that at least one of them
will be contained in I(Ma). This gives us a finite number of cases to investigate
further.

Using fixed points. As described in the corollary to the fixed point counting lemma,
we know that conjugates of powers of R, S and RS (and only those) have fixed
points on Ma, and we know how many. Since Aut+(Ma) acts linearly on the canoni-
cal model for Ma, we can search for a set of vectors of the right size in the eigenspaces
E(R, ζkp ) of R, and similarly for S and RS. Typically, we apply this strategy in tan-
dem with the other strategies: a non-empty subset J ⊆ I2(Ma) will give constraints
on the possible fixed points. We might also use the centralizer to pick a vector we
want. As soon as we have obtained a vector we know has to lie on the projective
curve, we spin it with Aut+(Ma). This then yields a set of points that have to lie on
Ma, giving constraints on the pieces present in I2(Ma). The use of fixed points is
also described in [FGT2012].

Remark 6.2.3. In addition to showing that a group acts on the canonical model, to get
a standard map presentation we need to know which automorphisms are primitive
rotations and then choose a standard generator pair from those. For example, con-
sider the canonical model of R14.1. If one chooses a standard generator pair (R,S)
suitable for R14.2 or R14.3, then on the model for R14.1 S is not a primitive rotation.
A pair that satisfies all relations of the standard map presentation of R14.1 must be
a standard generator pair, though. For some maps even this is false. The group
Aut(R7.1) has outer automorphism group of order three. For a standard generator
pair (R,S), e.g. the pair (R,S[R,S]2) also satisfies all group relations, but is not a



6.2 – A construction strategy for a canonical model 127

standard generator pair on the same canonical model, but on an algebraic conjugate.

The field of definition

Belyı̆’s theorem [Bel1979] ensures us that for a platonic map M there exists an alge-
braic model Ma defined over a number field K ⊂ Q. But what will K be? To answer
this question, let V be a projective algebraic variety defined over Q and consider

Σ(V ) = {σ ∈ Gal(Q/Q) | V σ ∼= V }.

The action of σ is on the coefficients of the polynomials in the ideal I(V ). If V is
defined over K, then certainly all σ ∈ Gal(Q/K) ⊆ Gal(Q/Q) are elements of Σ(V ).
This suggests the following definition.

Definition 6.2.4. The field

MQ(V ) := {α ∈ Q | ∀σ ∈ Σ(V ), σ(α) = α}

of all algebraic numbers fixed by Σ(V ) is called the field of moduli of V .

The field of moduli is contained in all possible fields of definition. Equality need not
always hold, but in a special case that applies for platonic surfaces, it does. Confer
[CH1985] and [DE1999].

Theorem 6.2.5 (Coombes and Harbater). Let K be a number field. A Galois cover
β : X → P1 overK withK-base P1 is defined over its field of moduliMQ(X) relative
to the extension K < Q.

The field of moduli of a variety V defined over K < Q is computable if one can
establish for all elements σ ∈ Gal(K/Q) whether V σ ∼= V . For our platonic surfaces,
we have knowledge helping us to answer that question of isomorphy. If we know
that a platonic surface has no siblings (cf. Section 1.4), then all conjugates Cσ of an
algebraic model C must be isomorphic to C. There are platonic surface with siblings
that occur as algebraic conjugates. Examples of this are the first tuplet (R8.1 and
R8.2) and the first Hurwitz triplet (see Chapter 7). Still, the field of moduli is always
the unique minimal field of definition.

The minimal field of definition of a canonical curve is determined by the isotypic
components of (ρ∨)2+ and (ρ∨)3+ that contain polynomials of the canonical ideal.
Each such component has a corresponding field, namely that over which its irre-
ducible representation is defined. This field must be a subfield of the minimal field
of definition, since the canonical ideal is invariant under the group action. When
applying the fixed point strategy to construct a canonical ideal, we may introduce
superfluous field extensions necessary to write down the fixed points, but not for the
definition of the curve. If the constructed canonical ideal is invariant under conjuga-
tion of these extraneous algebraic numbers, then we can average all ideal generators
with the appropriate algebraic conjugates to get polynomials over a smaller field.
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But if the ideal is not invariant under these conjugations yet the resulting curves
are all isomorphic, how can we transform the curve to be definable over the field
of moduli? A procedure accomplishing this is Galois descent, which we now outline.
We re-use the concepts from group cohomology introduced in Section 2.1. For our
purpose, we must alter them to accomodate a non-abelian target group for cochains.

Definition 6.2.6. Let N and G be groups, with a right action N × G → N . We write
the image of (n, g) as ng . A mapping c : G → N is called a 1-cochain. The set
Z1(G,N) of 1-cocycles consists of the 1-cochains c that satisfy c(g1g2) = c(g2)g1c(g1)
for all g1, g2 ∈ G. Two 1-cocycles c1, c2 are said to be equivalent if c1(g) = n−1c2(g)ng

for all g ∈ G. The set of equivalence classes is the called the first cohomology group
H1(G,N). The set B1(G,N) of 1-coboundaries consists of the equivalence class of
the trivial 1-cocycle defined by c(g) = 1 for all g ∈ G.

Now letK ⊂ L be a field extension that is Galois, with Galois groupG := Gal(L/K).
Suppose that the curve CL ⊂ Pn is defined over L and that there is a curve CK ⊂ Pn
defined overK that is isomorphic toCL by the projective isomorphism f : CK → CL.
Then f can be conjugated to yield

fσ := σ ◦ f ◦ σ−1 : CK → CσL

for any σ ∈ G. Concretely, if f is given by the matrix (fij), then fσ is defined by the
matrix (σ(fij)). We find the following commutative diagram:

C
c(σ) // Cσ

CK

f

``

fσ

==

where c(σ) := fσ ◦ f−1. It follows that c : G → GL(n,L) is an element of the 1-
coboundary set B1(G,GL(n,L)). We now utilize the fact that H1(G,GL(n,L)) = 0,
see [Ser1997, Lemma III.1.1]. It implies that every 1-cocycle c ∈ Z1(G,GL(n,L)) is
a 1-coboundary. So given isomorphic algebraic varieties CσL for all σ ∈ G, we are in
search of a mapping c : G → GL(n,L) satisfying the 1-cocycle condition, for which
each c(σ) permutes the set {Cτ : τ ∈ G}. We have no general recipe for how to find
such a 1-cocycle, but have managed this in various cases with an outer automor-
phism of Aut+(R). Compare e.g. the model constructions of R7.1 in Appendix A
and the first Hurwitz triplet in Section 7.2. If we manage to find such a 1-cocycle, we
need to split it, i.e. write it as a 1-coboundary, to find a projective isomorphism f to a
model overK. One approach to splitting is to look at the equation c(σ) = fσ◦f−1 for
one value of σ. WriteL = K(α) and substitute f =

∑d
k=1 fkα

k in the equation, where
d = [L : K] and each fk is defined over K. Considering the different αk-components
yields a system of linear equations over K, which can readily be solved. A small
difficulty resides in finding an invertible solution, but a solution will generically have
full rank.

Question 6.2.7. A problem related to Question 1.4 arises from the above. Non-
isomorphic platonic curves resulting from different embeddings K � C of a field of
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definition for a canonical ideal give rise to a tuplet. What about the other direction?
Assuming that all members of a tuplet have the same canonical character, is there
necessarily one canonical ideal defined over an algebraic number field K, such that
the different embeddings K � C yield all tuplet members?

Simplification of coefficients

Mathematicians being the hairsplitters they are, they do not content themselves with
just any algebraic model, even if it is over the field of moduli. Preferably, the coeffi-
cients are small too. It is intuitively clear what is meant by this, we need not bother
about a rigorous definition. The strategy sketched at the beginning of the section
often results in models that are suboptimal with respect to coefficient size. We have
no proven method of amelioration. If the model is over an algebraic number field
Q(α), the coefficients depend on the extension element α. We know of no algorithm
to choose an α yielding small Q-coefficients, itself having a minimal polynomial over
Q with small coefficients. In practice though, we often found that we could improve
the size of the rational numbers appearing in a set of polynomial generators, until
they were to our satisfaction.

Suppose that you have a homogeneous ideal I ⊂ Q(α)[x1, . . . , xn], with [Q(α) : Q] =
k. Let (α1, . . . , αk) be a Q-basis of Q(α), for example the power basis (1, α, α2, . . . ,
αk−1). Treat each homogeneous piece Id of degree d separately. In our cases this
would be I2 or I3. Write out a Q(α)-spanning set of Id as N -dimensional Q-vectors,
where N = k dim(C[x1, . . . , xn]d). Add copies of the spanning set so that you get
a Q-spanning multiples. In the case of a power basis, this can be done by multi-
plying with powers of α. Then multiply to get rid of denominators. The result is a
k dim(Id)-dimensional lattice Λ ⊂ ZN . The goal is now to find a short basis for Λ.
One iteratively applies two operations to Λ:

1. compute a short Z-basis using the LLL-algorithm;
2. compute the kernel of the reduction of Λ modulo p for a prime p. If this kernel

is non-empty, say v1, . . . , vt, then construct the set of vectors { 1
pv1, . . . ,

1
pvt}.

If desired, expand it by re-interpreting the set as polynomials, multiplying by
a set of elements of Q(α), and convert back to Z-vectors. Add the resulting
vectors to Λ.

The second step is warranted because polynomials may be scaled. It helps because
it introduces Z-vectors outside of Λ, which shrinks its covolume. Primes p for which
the kernel is non-trivial are factors of the lattice determinant det(Λ). This leads to
the problem of factoring this determinant, a hard nut to crack. Also, not every prime
gives a non-trivial kernel.

A priori, we saw no reason to expect good results from the method, since there seems
to be no guarantee, even if Λ has a Q-basis with small coefficients, that it would have
a small Z-basis: take 〈 12x1 + 1

3x2 + 1
5x3 + · · · + 1

pn
xn〉 with the first n primes in
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the denominators as an example. To our surprise, although the LLL-algorithm did
not accomplish improvement on its own, supplemented by the second technique it
became very effective. Suffice it to say that for the first Hurwitz triplet, the reduction
was from 30-digits numbers to 2-digit numbers.

6.3 Hyperelliptic platonic maps

Hyperelliptic curves were explicitly excluded from Theorem 6.1.15. A hyperelliptic
curve has no canonical model. Natural questions are, for which platonic surfaces
this situation arises and what to do if it does.

How to detect a hyperelliptic map. From Theorem 6.1.7 we learned that a curve
is hyperelliptic if and only if it has a conformal automorphism with 2g + 2 fixed
points, the hyperelliptic involution. Also, we have seen in Theorem 3.4.1 that the group
Aut(Ma) will be realized by a platonic map M′ on Ma, which is either M itself or
such that M = D(M′). We can therefore compute Aut(M′) explicitly. Then we can
use the fixed point counting lemma (Lemma 1.4.3) to determine whether M′ has
a hyperelliptic involution. The detection problem can thus be solved in a case-by-
case fashion. But in fact, we can determine all hyperelliptic platonic maps explicitly,
and will do so below. Let us assume that our platonic map contains all conformal
automorphisms of the platonic surface: Aut(Ma) = Aut+(M).

First, we remark that even though hyperelliptic platonic maps have no canonical
model, the canonical map is still useful. Let us see what actually happens.

Theorem 6.3.1 (Miranda, Theorem VII.2.2). For a hyperelliptic curve X of genus g,
given as a planar curve by the equation y2 = p(x) with p(x) of degree 2g+1 or 2g+2
with distinct roots, the canonical map φK is the composition of the double covering
map (x, y) 7→ x and a Veronese map. In particular, the image is a rational normal
curve Y of degree g − 1 in Pg−1 and the map φK : X → Y has degree 2.

We compute the canonical representation ρc of a hyperelliptic map all the same. The
hyperelliptic involution h is a central element that is the identity on φK(Ma), and
ρc will exhibit this fact by ρc(h) = −I . One way forward is to find an invariant
P1 ⊂ Pg−1 with the fixed points of ρc(h) on it. The ramification points of the natural
projection π : Ma →Ma/〈h〉 ∼= P1 are precisely these 2g+2 fixed points of h. But for
a projectivized planar model y2zd−2 = p(x, z), where p is homogeneous of degree
d ∈ {2g + 1, 2g + 2}, this natural projection is the map (x : y : z) 7→ (x : z), and
its branch points are the zeroes of p. Therefore, the branch data we get from the
fixed points of h on P1 allows us to write down p. We carried out this procedure for
various hyperelliptic platonic maps such as R3.4, R5.2, and R6.8. It is still described
for the first of these three in Appendix A. However, there is no need to go through
this trouble, which will become clear after making an inventory of all hyperelliptic
maps.
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Determination of all hyperelliptic platonic maps

Theorem 6.3.2. The hyperelliptic platonic maps are precisely the following polyno-
mial families and exceptional maps (or their duals):

1. the family AM(n) : platonic 2-covers of Dih(n) branched over faces;
2. the family D(AM(n)) (self-dual);
3. the family Wi2(n) : platonic 2-covers of Dih(2n) branched over vertices and

faces;
4. the family D(Wi2(n)) (self-dual);
5. the family Wi1(n);
6. R2.1 : a platonic 2-cover of Oct branched over vertices;
7. R3.4 : a platonic 2-cover of Cub branched over vertices;
8. R3.8 : a platonic 2-cover of Tet branched over vertices and faces;
9. R5.2 : a platonic 2-cover of Ico branched over vertices;

10. R6.8 : a platonic 2-cover of Oct branched over vertices and faces;
11. R9.15 : a platonic 2-cover of Dod branched over vertices;
12. R15.9 : a platonic 2-cover of Ico branched over vertices and faces.

Proof. We may assume that Aut(Ma) = Aut+(M), diagonal maps can be included
afterwards. The fixed points of the hyperelliptic involution h must be cell centers of
Ma, as we discussed above. Take y to be such a fixed point. Because h is central in the
map automorphism group, for any g ∈ Aut+(M) we find h(g(y)) = g(h(y)) = g(y),
in other words g(y) is again a fixed point of h. If follows that the ramification locus
Fix(h) of the natural projection M → M/〈h〉 is a union of all the cell centers for
a certain combination of cell types. The problem at hand splits naturally into five
cases, according to whether Fix(h) is cells0, cells1, cells0 ∪ cells1, cells0 ∪ cells2, or
cells0∪cells1∪cells2. One can eliminate the cases cells2 and cells1∪cells2 by dualizing
the map. We will treat each case separately, starting from the equation

|Fix(h)| = 2g + 2 = 4− χ(M) = 4− v + e− f.

For the different fixed point loci, the left hand side is equal to v, e, v + e, v + f , and
v + e+ f respectively.

Fix(h) = cells0 We have v = 2g + 2 and or f − e = 4 − 2v = −4g. Since p = 2e/f =
2e/(e− 4g) must be an integer, and p ≤ 2 can be excluded since it would imply
g = 0, we have e− 4g ≤ 2

3e, or e ≤ 12g. On the other hand, e = 1
2qv = q(g + 1),

so q ∈ {3, . . . , 11} and

p = 2e/f = 2q(g + 1)/(q(g + 1)− 4g).

All integer values of the right hand side can be determined with a reasonable
calculation effort, for all the available values of q. The only solutions (g, p, q)
with q ≥ 5 (and g ≥ 2) are (3, 5, 5), (5, 6, 5), (15, 8, 5), (35, 9, 5), (3, 4, 6), (9, 5, 6),
(7, 4, 7), (2, 3, 8), (3, 3, 9), (5, 3, 10), and (11, 3, 11). Not all of these types are
realized by platonic maps, only R3.4 (type (4, 6)), R9.15 (type (5, 6)), R2.1 (type
(3, 8)), and R5.2 (type (3, 10)). These four maps are all hyperelliptic. The value
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q = 3 is clearly impossible because p > 0, and for q = 4 we get p = 2g + 2. The
duals of such maps were classified in Section 4.5; they are the families AM(n)∨

and Kul(n)∨. Only the first one consists of hyperelliptic maps. We conclude
that the only hyperelliptic maps for the case q = 4 are those of AM(n).

Fix(h) = cells1 We have e = 2g + 2 and v + f = 4. Hence (v, f) ∈ {(1, 3), (2, 2)}
by using duality. The first option yields q = 2e/v = 4g + 4 > 4g + 2, which is
impossible by the well-known bound 4g+2 on the order of an automorphism of
a Riemann surface. The second option implies that the map belongs to either
D(AM(n)) or D(Kul(n)), as derived in Section 4.2. Only the former family
consists of hyperelliptic maps.

Fix(h) = cells0 ∪ cells1 We have v+e = 2g+2 and deduce 2v+f = 4. It follows that
v = 1 and f = 2, so we must be dealing with maps of Wi1(n) (consult Section
4.1). These maps are indeed hyperelliptic.

Fix(h) = cells0 ∪ cells2 We have v + f = 2g + 2 and deduce 2v − e + 2f = 4. This
implies 4 + e = 2(v + f) = 4 + 4g, so e = 4g. Now we see that p = 8g/f and
q = 8g/v, so that

1

p
+

1

q
=
v + f

8g
=

2g + 2

8g
=

1

4
+

2

8g
>

1

4
.

Assuming p ≤ q, this means that p ∈ {3, . . . , 7}. The case p = 3 violates v > 0
for g > 1 so is ruled out. The case p = 4 gives (p, q) = (4, 4g). The members of
Wi2(n) were determined in Section 4.2 to be the only such maps, and they are
indeed hyperelliptic. The other cases each yield a linear fractional expression
for q(g) of which the integral solutions can quickly be enumerated: (g, p, q)
must be one of (5, 5, 10), (15, 5, 15), (20, 5, 16), (45, 5, 18), (95, 5, 19), (3, 6, 6),
(6, 6, 8), (9, 6, 9), (15, 6, 10), (33, 6, 11), (7, 7, 7), (14, 7, 8), (63, 7, 9), (2, 8, 4), (6, 8,
6), or (14, 8, 7). The only triples occurring for actual platonic maps are (3, 6, 6),
(6, 6, 8), (7, 7, 7), (15, 6, 10) and (63, 7, 9). By looking at Conder’s list, we find
that the only corresponding hyperelliptic maps are R3.8, R6.8, and R15.9.

Fix(h) = cells0 ∪ cells1 ∪ cells2 We have v + e+ f = 2g + 2 and deduce 2v + 2f = 4.
It follows that v = f = 1 and that we are dealing with a map of D(Wi2(n)), all
of which are hyperelliptic.

Not all of our solutions turn out to satisfy Aut(Ma) = Aut+(M), but that is not im-
portant. The diagonal maps of the maps in our solution set have also arisen already.
This finishes the classification.

Remark 6.3.3. As expected, we get all platonic maps of genus 2, since any algebraic
curve of genus 2 is hyperelliptic. We also note that all solutions are reflexive.

To find an algebraic model is not too hard for any of the hyperelliptic maps. The
exceptional maps are platonic covers of the platonic solid maps Tet, Cub, Oct, Ico,
and Dod. In Section 6.4 we will compute the configuration that the vertices and face
centers of these genus 0 maps form in P1, after which we can use that as branch data
to write down planar models for the exceptional hyperelliptic platonic surfaces. In
the rest of this section we consider the hyperelliptic polynomial families.
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Models for the hyperelliptic polynomial families

We now construct planar algebraic models for the hyperelliptic polynomial fami-
lies appearing in Theorem 6.3.2. These are the families Wi1(n) (and their duals),
Wi2(n) (and their duals and diagonal maps), and AM(n) (and their duals and di-
agonal maps). These algebraic models are of course already known, and we treated
them extensively in Sections 5.1–5.3. The constructions presented below furnish a
complement to that treatment, pointing out an alternative road to their discovery if
one did not already know these models.

To express the values of the canonical character in a way that tells us what the canon-
ical representation is, we will avail to a small lemma on cyclotomic fields.

Lemma 6.3.4. 1

1− ζn
=

1

n
·
n−1∑
k=1

kζn−1−k
n .

Proof. (1− ζn) ·
n−1∑
k=1

kζn−1−k
n =

n−1∑
k=1

kζn−1−k
n −

n−1∑
k=1

kζn−kn

= (n− 1) +

n−2∑
k=1

kζn−1−k
n − ζn−1

n −
n−2∑
k=1

(k + 1)ζn−1−k
n

= (n− 1)−
n−1∑
k=1

ζkn = n.

Now we are ready to proceed.

Proposition 6.3.5 (Model construction for the Wiman type I maps). A member of the
polynomial family Wi1(n) has planar algebraic model

y2 = x2n+1 − 1.

Proof. Let us assume that we have the map Wi1(n) with n ≥ 2; the case n = 0
is trivial and n = 1 is dealt with in Section 6.5. We remember that Wi1(n) has
standard map presentation

〈
R,S

∣∣R2n+1, S4n+1, (RS)2, RS−2n
〉

(cf. Section 2.2) and
that hence Aut+(Wi1(n)) = 〈S〉withR = S2n. Obviously all automorphisms fix the
one vertex of the map, and only the elements of 〈S2〉 fix the two faces. By using the
fixed point counting lemma (Lemma 1.4.3), we see that Si fixes 〈RS〉h = 〈S2n+1〉h
(with h ∈ {Sk : k ∈ {0, . . . , 2n}}) precisely if i ∈ {0, 2n+ 1}. Since the element S2n+1

fixes all edges and the vertex, it has 2n + 2 = 2g + 2 fixed points, which confirms
again that the map is hyperelliptic. By using the lemma with a little more care, we
can compute the rotation indices and canonical character value for the non-trivial
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elements:

χc(S
k) =


1 + (2n+ 2) · ζ

−(2n+1)
4n+2

1−ζ−(2n+1)
4n+2

= −n k = 2n+ 1

1 + 1 · ζ−k4n+2

1−ζ−k4n+2

= 1
ζk4n+2−1

k 6= 2n+ 1 odd

1 + 3 · ζ−k4n+2

1−ζ−k4n+2

k even

By Lemma 6.3.4 this is equal to
∑2n−1
i=1 ζik4n+2 in all cases. A canonical linear repre-

sentation ρc afforded by χc is defined by extending the assignment

S 7→ DiaMat(ζ2n−1
4n+2 , ζ

2n−3
4n+2 , . . . , ζ4n+2),

which implies RS = S2n+1 = −I and

R 7→ DiaMat
(
− ζ−(2n−1)

4n+2 ,−ζ−(2n−3)
4n+2 , . . . ,−ζ−1

4n+2

)
.

To define a planar model, we restrict the action to the rational normal curve defined
by 〈e1, e2〉 ⊂ Pg−1. Identify it with Ĉ by z = (z : 1) and∞ = (1 : 0). The branch data
for the hyperelliptic involution is given by the fixed points of conjugates of S and
RS. The unique fixed point of type S on the rational normal curve can be chosen to
be either e1 or e2; we choose e1 = (1 : 0) = ∞. The fixed points of RS = −I are
undetermined, we may choose any Aut+(Wi1(n))-orbit of the correct size. Picking

(1 : 1)Aut+(Wi1(n)) = {(ζk4n+2 : ζ3k4n+2) : k ∈ {0, . . . , 2n}} = {(ζk2n+1 : 1) : k ∈ {0, . . . , 2n}}

we find the planar model

y2 =

2n∏
k=0

(x− ζk2n+1) = x2n+1 − 1.

Proposition 6.3.6 (Model construction for the Wiman type II maps). A member of
the polynomial family Wi2(n) has planar algebraic model

y2 = x(x2n − 1).

Proof. Remember that Wi2(n) has standard map presentation〈
R,S

∣∣∣R4, S4n, (RS)2, R−1SRS−(2n−1)
〉
.

We find that R2 = S2n. Since v = 2, any power of S fixes both vertices. By the fixed
point counting lemma (Lemma 1.4.3), the only non-trivial power that fixes other cells
is S2n: it fixes all 2n faces. More computation shows that R±1 fixes two faces. The
element R2 = S2n therefore has 2n+ 2 = 2g + 2 fixed points; this re-affirms that the
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map is hyperelliptic. The edge rotation RS fixes only edges. To count how many, we
note that any element of Aut+(Wi2(n)) can be written either as Si or RSi, and solve

SiRSS−i = RS ⇐⇒ S(2n−1)i−i = R−1SiRS−i = 1

⇐⇒ (n− 1)i ≡ 0 mod 2n,

RSjRS(RSj)−1 = RS ⇐⇒ S(2n−2)(1−j) = R−1S1−jRSj−1 = 1

⇐⇒ (n− 1)(1− j) ≡ 0 mod 2n.

There are always the solutions i = 0, 2n and j = 1, 2n + 1, but if n is odd also
four additional ones, the given ones multiplied by 1

2 (n − 1). This shows that RS
fixes 2 edges if n is odd, 4 when n is even. Extracting the rotation indices from
the computations, we find the values of the canonical character χc on powers of
rotations:

χc(R
±1) =

{
∓i if n ≡ 1 mod 2
0 if n ≡ 0 mod 2

, χc(S
k) = 1 + 1 · ζ−k4n

1− ζ−k4n

+ 1 · ζ
−(2n−1)k
4n

1− ζ−(2n−1)k
4n

,

χc(RS) =

{
−1 if n ≡ 1 mod 2
0 if n ≡ 0 mod 2

, χc(R
2) = χc(S

2n) = −n.

By using Lemma 6.3.4 we find that χc(Sk) = −
∑n
i=1 ζ

(2i−1)k
4n for all k. An easy

canonical representation ρc that this character affords the representation generated
by

R 7→


−ζ4n

−ζ3
4n

. .
.

−ζ2n−1
4n

 , S 7→


−ζ4n

−ζ3
4n

. . .

−ζ2n−1
4n

 ,

within which an invariant rational normal curve is defined by the subspace 〈e1, en〉.
We identify it with Ĉ in the usual way, using ∞ = (1 : 0). The branch data for the
hyperelliptic involution S2n is given by the vertices and face centers on this rational
normal curve, i.e. the fixed points of conjugates of S and R. Eigenspace computa-
tions tell us that the two vertices are (1 : 0) and (0 : 1), and the face centers form the
Aut+(Wi2(n))-orbit of (±ζn−1

4n : 1), which consists of all points (±ζ(n−1)(1−2i)
4n : 1),

where i = 0, . . . , 2n− 1. Thus, the map has a planar model

y2 = x

n−1∏
i=0

(
x− ζ(n−1)(1−2i)

4n

)(
x+ ζ

(n−1)(1−2i)
4n

)
= x

n−1∏
i=0

(
x2 + ζ2i−1

2n

)
.

The right hand side is equal to x(x2n − 1) if n is odd and x(x2n + 1) when n is even,
and scaling x by ζ4n in the latter case, the claim is proved.
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Proposition 6.3.7 (Model construction for the Accola-Maclachlan maps). A member
of the polynomial family AM(n) has planar algebraic model

y2 = x2n+2 − 1.

Proof. We make it easy for ourselves and work with the family D(AM(n)). It has
standard map presentation〈

R,S
∣∣R2n+2, S2n+2, (RS)2, [R,S]

〉
and satisfies R2 = S−2, v = f = 2, and e = 2n + 2. With the fixed point counting
lemma (Lemma 1.4.3) we quickly find that R2k+1 fixes the two faces and no other
cells, S2k+1 the two vertices and no other cells, R2k = S2k the vertices and faces,
but no edges, and RS all the edges and nothing else. This confirms that the map is
hyperelliptic, with RS the hyperelliptic involution. Computing the rotation indices,
we find that the canonical character is defined by

χc(R
2k+1) = χc(S

2k+1) = 1 + 2 ·
ζ
−(2k+1)
2n+2

1− ζ−(2k+1)
2n+2

,
Lemma 6.3.4

=

n∑
i=1

ζ
−i(2k+1)
2n+2 ,

χc(R
2k) = 1 + 4 ·

ζ−2k
2n+2

1− ζ−2k
2n+2

,

χc(RS) = 1 + (2n+ 2) ·
ζ
−(n+1)
2n+2

1− ζ−(n+1)
2n+2

= −n,

χc(R
2k+1S) = 1 (k ∈ {0, . . . , n}).

A linear representation ρc afforded by χc can be generated by

R 7→ DiaMat(ζ−1
2n+2, ζ

−2
2n+2, . . . , ζ

−n
2n+2),

S 7→ DiaMat(−ζ2n+2,−ζ3
2n+2, . . . ,−ζn2n+2).

To define the hyperelliptic curve, restrict to the rational normal curve defined by the
subspace 〈e1, e2〉, and identify it with Ĉ in the usual way. The branch data for the
covering of P1 consists of the edge centers that lie in this space. But since RS fixes
all points, we can freely choose any orbit of the right size, so we pick

(1 : 1)Aut+(D(AM(n))) = {(ζk2n+2 : 1) : k ∈ {0, . . . , 2n+ 1}}.

This gives us a planar model

y2 =

2n+1∏
k=0

(x− ζk2n+2) = x2n+2 − 1.

6.4 Genus 0

The platonic maps of genus zero have algebraic realizations as the only algebraic
curve of genus zero, the projective line P1. As a Riemann surface, P1 ∼= Ĉ, the Rie-
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mann sphere. Remember that Ĉ = C ∪ {∞}. We identify z ∈ C with (z : 1) ∈ P1 and
∞ with (1 : 0) ∈ P1. The Riemann sphere has the chordal metric ρ as natural metric,
under which it has diameter 2. The Möbius transformations, which constitute the
automorphism group Aut(P1) ∼= PGL(2,C), are isometries with respect to ρ. Using
this information, we can compute the cell structure of the algebraic model for the
spherical platonic map R without herculean effort, as well as a concrete representa-
tion Aut(R) � PGL(2,C). We start with the object in a polyhedral shape in R3 so
that the vertices lie on the unit sphere S2. We then transfer the vertices, edge centers
and face centers to Ĉ by stereographic projection st from the point (0, 0, 1):

st : S2 −→ Ĉ

(x, y, z) 7→ 1

1− z
(x, y)

All this material is standard. The only small innovation we might claim is the pre-
sentation of cell data with a polynomial. In this form, the information can be used to
construct planar models for other platonic maps. See Appendix A.

Hos(n) type (2, n) #cells (2, n, n) map group size 4n
SMP Aut+(R) =

〈
R,S

∣∣R2, Sn, (RS)2
〉

For the algebraic hosohedron Hos(n) we choose v0 = 0, v1 =∞ and edges

ek = R · ζ2k+1
2n = {z ∈ Ĉ : Arg(z) = (2k + 1)π/2n}, (k ∈ {0, . . . , n− 1}),

each with edge center ζ2k+1
2n . The face centers are then ζkn. The map Hos(6) is illus-

trated in Figure 6.1. A standard map presentation of Aut+(Hos(n)) acting on this

0
1

Figure 6.1: The hosohedron Hos(6) and its dual dihedron (dashed) realized on Ĉ.

model can be realized by using the following Möbius transformations:

R : z 7→ ζn/z, S : z 7→ ζnz.

For the dihedron Dih(n), vertices and face centers swap places. The edge centers
stay the same, but the edges are then the circle segments

{z ∈ Ĉ : |z| = 1 ∧ kπ/n < Arg(z) < (k + 1)π/n}, (k ∈ {0, . . . , n− 1}).
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All information about the vertex sets of a hosohedron and its dual dihedron is sum-
marized by the polynomials ∏

c∈cells0(Hos(n))

(c2x− c1z) = −xz,

∏
c∈cells0(Dih(n))

(c2x− c1z) = xn − zn.

Tet type (3, 3) #cells (4, 6, 4) map group size 24
SMP Aut+(R) =

〈
R,S

∣∣R3, S3, (RS)2
〉

The vertices of the tetrahedron can be taken to be vk =
√

2ζk3 for k = 0, 1, 2 and
v3 = 0. The edge length of this tetrahedron with respect to the chordal metric ρ
is 2

3

√
6. Label the faces with the same number as the opposite vertex. Then these

are c(f3) = ∞ and c(fk) = − 1
2

√
2ζk3 for k = 0, 1, 2. They form the vertices of a

dual tetrahedron, having the same edge length. The map is illustrated in Figure 6.2.
The automorphism group Aut+(Tet) can be realized by using the following Möbius

√
2

− 1
2

√
2

0

Figure 6.2: The platonic map Tet and its dual tetrahedron (dashed) realized on Ĉ.

transformations for a standard map presentation:

R0 : z 7→ −ζ3z +
√

2√
2z + ζ2

3

, S3 : z 7→ ζ3z.

All information about the vertex sets of the tetrahedron and its dual tetrahedron is
summarized by the polynomials∏

c∈cells0(Tet)

(c2x− c1z) = x(x3 − 2
√

2z3),

∏
c∈cells0(Tet∨)

(c2x− c1z) = −z(x3 +
1

4

√
2z3).
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Remark 6.4.1. A peculiar detail of Figure 6.2 is that each face center lies on a eu-
clidean straight line between two vertices.

Oct type (3, 4) #cells (6, 12, 8) map group size 48
SMP Aut+(R) =

〈
R,S

∣∣R3, S4, (RS)2
〉

We can take the vertices to be vk = ik (with k = 1, 2, 3, 4) plus v0 = 0 and v5 = ∞.
The edges are the line segments from v0 and v5 to each of v1, v2, v3, v4, and the four
circle segments of S1 = {z ∈ C : |z| = 1} that connect v1, v2, v3, v4. In the chordal
metric, the edge length is

√
2. The face centers of the octahedron can be computed

by considering the octahedron realized on the unit sphere S2 ⊂ R3 with vertices±ek
(k = 1, 2, 3). In R3 the face centers must then obviously be 1

3

√
3(±1,±1,±1). Using

stereographic projection, we obtain the complex numbers(
s1

1

2
+

1

2

√
3

)
(s2 + s3i), s1, s2, s3 ∈ {±1}.

We number the faces according to the triple (s1, s2, s3) defining their center. The
face centers form the vertices of a dual cube with edge length 2

3

√
3. The map is

illustrated in Figure 6.3. The automorphism group Aut+(Oct) can be realized by

10

i

Figure 6.3: The platonic maps Oct and Cub (dashed) realized on Ĉ.

using the following Möbius transformations for a standard map presentation:

R(−1,1,1) : z 7→ iz + 1

−iz + 1
, S0 : z 7→ iz.

All information about the vertex sets of the octahedron and its dual cube is summa-
rized by the polynomials ∏

c∈cells0(Oct)

(c2x− c1z) = −xz(x4 − z4),

∏
c∈cells0(Cub)

(c2x− c1z) = x8 + 14x4z4 + z8.
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Remark 6.4.2. A peculiar detail of the figure is that the euclidean circle center of each
big circular arc representing an edge of the cube is a vertex of the octahedron, the one
closest to the edge center. And the euclidean circle center of each small circular arc
is also a vertex of the octahedron, the one on the unit circle farthest away from the
edge center.

Ico type (3, 5) #cells (12, 30, 20) map group size 120
SMP Aut+(R) =

〈
R,S

∣∣R3, S5, (RS)2
〉

To find algebraic expressions for the vertices is harder for the icosahedron and dual
dodecahedron than it was for the previous maps. Two antipodal vertices of the icosa-
hedron can be chosen as v0 = 0, v12 =∞. The other vertices then lie in two concentric
circles around 0. The radius of the inner circle can be calculated by solving

ρ(0, v1) = ρ(v1, ζ5v1)

By rotation, we may choose one vertex on this inner circle to be in R>0. This results
in the inner and outer circle(

−11

2
+

5

2

√
5

)
ζk5 and

(
−11

2
− 5

2

√
5

)
ζk5 respectively (0 ≤ k ≤ 4)

For the vertices of the dual dodecahedron, start with the well-known polyhedral
realization in R3 that has vertices

(±1,±1,±1), (±1/φ,±φ, 0), (0,±1/φ,±φ), (±φ, 0,±1/φ),

where φ = 1
2 + 1

2

√
5 is the golden ratio (cf. Heath’s comment in [Εὐκ300BCE]). To

get the correct dual after stereographic projection, we first rotate this dodecahedron
around the y-axis over arctan(1/φ). This is the linear transformation

v 7→ v


φ√

1+φ2
0 1√

1+φ2

0 1 0
−1√
1+φ2

0 φ√
1+φ2


The top and bottom face are now horizontal and the dodecahedron is aligned cor-
rectly for our purpose. Stereographic projection results in four sets of five points in
Ĉ, each set on a circle with center 0. We list them in order of increasing circle radius,
using ψ =

√
3
√

1 + φ2 for brevity:

1

2
(1 + φ− ψ) ζk5 ,

1

2
(2− φ+ (1− φ)ψ) ζk5 ,

1

2
(2− φ− (1− φ)ψ) ζk5 ,

1

2
(1 + φ+ ψ) ζk5

These points form the face centers of our icosahedron; see Figure 6.4. The automor-
phism group Aut+(Ico) can be realized by using the following Möbius transforma-
tions for a standard map presentation:

R : z 7→ −z + ζ5(5φ− 8)

(2φ+ 1)z + ζ5
, S : z 7→ ζ5z.
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Figure 6.4: The platonic maps Ico and Dod (dashed) realized on Ĉ. The picture was
distorted so as to fit the page.

All information about the vertex sets of the icosahedron and its dual dodecahedron
is summarized by the polynomials∏

c∈cells0(Ico)

(c2x− c1z) = −xz(x10 + 11x5z5 − z10),

∏
c∈cells0(Dod)

(c2x− c1z) = x20 − 228x15z5 + 494x10z10 + 228x5z15 + z20.

6.5 Genus 1

A Riemann surface of genus 1 is a complex torus C/Λ, where Λ ⊂ C is a lattice. A
torus with lattice 〈z1, z2〉 is isomorphic to the torus with lattice 〈1, z2/z1〉: the isomor-
phism is induced by the entire holomorphic function z 7→ z/z1. We can choose the
basis 〈z1, z2〉 so that Arg(z2 − z1) < π and thereby ensure that we have a standard
basis Λ = 〈1, τ〉 with τ in the upper-halfplane {z ∈ C | Im(z) > 0}. The number τ
is called the modulus of the torus. It is well known that two complex tori are isomor-
phic if and only if τ2 = T (τ1) with T ∈ SL(2,R). The moduli spaceM1 parametrizing
complex tori is thus

M1 = {z ∈ C : Im(z) > 0} / SL(2,Z).

An algebraic curve that serves as a model for a complex torus is an elliptic curve.
Historically, this name derives from the study of integrals relevant to ellipses. An
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elliptic curve can be brought into several standard forms, one of which is the planar
model called the Weierstraß normal form:

y2 = x3 + ax+ b (a, b ∈ C).

Given a complex torus with lattice Λ, the modular invariants a = a(Λ) and b = b(Λ)
can be computed from the lattice as follows:

a(Λ) = −240
∑

w∈Λ−{0}

w−4, b(Λ) = −2240
∑

w∈Λ−{0}

w−6.

Platonic maps make use of only two lattices, as witnessed in Section 1.7. Interpreted
as complex lattices, these are the lattice 〈1, ζ6〉 (the Eisenstein integers) for maps of
type (3, 6) and their duals, and the lattice 〈1, i〉 (the Gaussian integers) for maps of type
(4, 4). Computing the above sums is difficult in general, but for these two lattices it is
still tractable. We find that all platonic maps of type (3, 6) or (6, 3) have the algebraic
model

y2 = x3 + 1

whereas all platonic maps of type (4, 4) have the model

y2 = x3 + 3 · 1727x+ 2 · 17272.

One can check these calculations afterwards by making use of the j-function

j(a, b) = 1728
4a3

4a3 + 27b2
.

It can be proved that the j-invariant is in fact a holomorphic function j(τ) on the
upper-halfplane that depends only on the isomorphism class of the torus with lattice
〈1, τ〉. The j-invariant maps the moduli spaceM1 biholomorphically onto C, so its
value uniquely determines the torus. The relevant values are j(ζ6) = 0 and j(i) = 1,
and these are indeed what the elliptic curves above yield.
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Weierstraß points &The first Hurwitz triplet

HAVING a canonical model for a platonic map enables one to solve new problems
concerning it. In this chapter, we take up the study of Weierstraß points on

Riemann surfaces. Section 7.1 presents an introduction to the subject. In the rest
of the chapter we document our study of the first Hurwitz triplet. In Section 7.2 we
detail the construction of a nice canonical model for it, which was particularly hard.
Then the extra problem arose, as we shall see, of distinguishing between the triplet
members. The topic is treated in Section 7.3. We finish with an investigation of the
Weierstraß points on the triplet in Section 7.4.

7.1 Weierstraß points

A Riemann surface X of genus g ≥ 2 has certain special points, called Weierstraß
points. They are key to the understanding of the function field M(X) of mero-
morphic functions on X . To explain the relevant concepts, we take a short detour
through this whole field of study. For all the details, cf. [FK1980] or [Mir1995].

Definition 7.1.1. A divisor is a formal sum D =
∑
p∈X np · p of points on X , where

np ∈ Z is non-zero for only a finite number of p. The degree of a divisor is deg(D) =∑
p∈X np.

A function f ∈M(X) defines a divisor div(f) :=
∑
p∈X ordp(f), where ordp(f) is the

usual order of a function at a point p and we set ordp(0) =∞. For any non-constant
f , we have deg(div(f)) = 0. A divisor coming from a meromorphic function in this
way is called a principal divisor. We take a look at the relationship on all divisors
induced by the notion of principal divisor.

143
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Definition 7.1.2. Two divisors are defined to be linearly equivalent if their difference
is a principal divisor.

This is indeed an equivalence relation. Linearly equivalent divisors have the same
degree, but the converse is false. A special equivalence class of divisors, all linearly
equivalent, is that of canonical divisors. A canonical divisor is one that comes from
a meromorphic differential form ω ∈ Ω1(X) in a way analogous to a principal divi-
sor: use a local expression ω = f(z)dz on a chart and count zero and pole orders.
One has to check that this is well-defined and that all canonical divisors are linearly
equivalent. A canonical divisor K has degree deg(K) = 2g − 2.

We will interpret divisors as restrictions on sets of meromorphic functions. This is
their raison d’être. First, a partial order on divisors is obtained by setting D1 ≥ D2 if
this holds pointwise.

Definition 7.1.3. LetD be a divisor onX . We setL(D) := {f ∈M(X) | div(f) ≥ −D}.

The spaces L(D) are complex vector spaces. They always contain the zero function.
But what about more interesting functions onX with the prescribed order behavior?
We want to know the dimensions of these spaces. The theorem that governs them is
the famed Riemann-Roch theorem.

Theorem 7.1.4 (Riemann-Roch). Let X be a Riemann surface of genus g, D a divisor
and K a canonical divisor. Then

dimL(D)− dimL(K −D) = deg(D)− (g − 1).

IfE is a divisor and deg(E) < 0, then f ∈ L(E) must satisfy deg(div(f)) ≥ deg(−E) >
0, but if f is non-constant its degree is zero. Hence, L(E) = {0}. As a corollary, when-
ever D is a divisor of degree deg(D) ≥ 2g − 1, we know deg(K − D) < 0, whence
dimL(K −D) = 0 and dimL(D) = deg(D)− (g − 1). A particular instance of this is
when D = nP for a point P ∈ X . The space L(np) (with n ∈ Z≥0) is that of mero-
morphic functions f holomorphic on X −{p} and with ordp(f) ≥ −n. We will focus
on such divisors. The dimensions dn = dimL(np) apparently form a sequence

1 = d0, d1, d2, . . . , d2g−2, d2g−1 = g, g + 1, g + 2, . . .

So the only information missing is what d2, . . . , d2g−2 are. A Laurent expansion
around p shows that di+1 ≤ di+ 1, so that di+1 ∈ {di, di+ 1}. If follows that there are
exactly g integers m1, . . . ,mg ∈ {1, . . . , 2g− 1} for which dmi = dmi−1. These are the
gap numbers at p, forming the gap sequence. If m is a gap number, there is no function
holomorphic outside of p and of pole order exactlym at p. For almost all points ofX ,
the gap sequence is 1, 2, . . . , g: there are usually no functions with small pole order
at p and no other poles. This motivates the following definitions.

Definition 7.1.5. Let X be a Riemann surface. The Weierstraß weight of a point
p ∈ X is wt(p) :=

∑2g−1
i=1 (mi − i). The point is a Weierstraß point if it has non-

zero Weierstraß weight, i.e. if the gap sequence (m1, . . . ,mg) at p is not equal to
(1, 2, . . . , g).
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Theorem 7.1.6. Let X be a Riemann surface. Its total Weierstraß weight is∑
p∈X

wt(p) = g(g − 1)(g + 1).

Our goal is to find (all) Weierstraß points of a Riemann surface Mr and compute
their weights. We need a more algebraic handle on things to compute them. Let
F = (f1, . . . , fs) be a sequence of meromorphic functions fi(z) defined on an open
set U ⊂ C, and let m = (m1, . . . ,ms) be an increasing sequence of non-negative
integers. The generalized Wronskian determinant of the two sequences is defined to be

W (F,m) = det



dm1f1

dzm1
· · · dm1fs

dzm1

dm2f1

dzm2
· · · dm2fs

dzm2

...
...

dmsf1

dzms
· · · dmsfs

dzms


.

The generalized Wronskian for the sequencem0 = (0, 1, . . . , s−1) is the determinant
classically known as the Wronskian. The classical Wronskian exhibits a particular
form of behavior.

Definition 7.1.7. Let X be a Riemann surface. Suppose we have a set of expressions
fi(z)(dzi)

n, where i = 1, . . . , s, given on the domains Vi ⊂ C of charts zi : Ui → Vi
covering X . If f(z) = f̃(T (z))(dT/dz)n holds for every transition map T = z̃ ◦ z−1,
then we call the set an n-fold differential on X .

The classical WronskianW (F,m0) defined on a chart z ofX turns out to extend to an
s(s− 1)/2-fold differential on X ([Mir1995, Lemma VII.4.9]). This implies that it has
a well-defined zero locus. More generally one can speak of the order of vanishing
of the classical Wronskian differential. The Wronskian determinant is relevant to us
because of the following classical theorem.

Theorem 7.1.8 (Hurwitz). Let X be a Riemann surface of genus g, p ∈ X with a
neighborhood U and chart z : U → C. Choose a sequence of meromorphic functions
F = (f1, . . . , fg) on z(U) such that fidz defines a meromorphic 1-form on X for
i = 1, . . . , g, and such that (fidz)

g
i=1 is a basis of Ω1(X). Then the Weierstraß weight

wt(p) is equal to the vanishing order of the Wronskian W (F,m0) in p.

An extra tool for computation is provided by Christopher Towse in [Tow2000]. We
define the weight of the sequence m just like the Weierstraß weight; as wt(m) :=∑s
i=1(mi − i).

Theorem 7.1.9 (Towse). Let F be as in the previous theorem. The vanishing order of
the classical Wronskian W (F,m0) in a point z is equal to the minimal number in Z≥0

for which there is a sequence m of that weight such that the generalized Wronskian
W (F,m)(z) is non-zero.
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As a corollary, a point on X is Weierstraß precisely when the generalized Wronskian
determinant with respect to the sequence m = (0, . . . , g − 1) is zero.

The easiest candidates for Weierstraß points on a platonic surface Mr are algebraic
points on the curve that we can compute, such as fixed points of automorphisms.
Following Singerman and Watson [SW1997], we define:

Definition 7.1.10 (Singerman, Watson). A Weierstraß point of the Riemann surface
X is geometric if it is fixed by an automorphism of X .

That these are in fact viable candidates is made believable by the following theorem,
originally proved in [Sch1951] and [Lew1963]. Read [FK1980, Theorem V.I.7].

Theorem 7.1.11 (Lewittes, Schoeneberg). LetX be a Riemann surface. If an automor-
phism fixes more than 4 points, then all of its fixed points are Weierstraß. �

So we can even read off from the combinatorics of the map, using the Fixed Point
Counting Lemma 1.4.3, that certain cell centers are Weierstraß.

Example 7.1.12. A theorem of Hasse [Has1950] says that all vertices of the map
Fer(n) (all points on the curve xn + yn + zn = 0 with xyz = 0) have Weierstraß
weight

1

24
(n− 1)(n− 2)(n− 3)(n+ 4).

Towse [Tow2000] also computes lower bounds for the Weierstraß weight of the edge
centers of Fer(n).

For a hyperelliptic map (see Section 6.3), the Weierstraß weights are known in ad-
vance.

Fact 7.1.13 ([FK1980, III.7]). Let X be a hyperelliptic Riemann surface. Its Weierstraß
points are the 2g + 2 fixed points of the hyperelliptic involution, each of Weierstraß
weight 1

2g(g − 1).

The weight 1
2g(g − 1) is the maximal possible weight of a point.

Example 7.1.14. The Weierstraß points of the hyperelliptic platonic map families (see
Sections 6.3 and 5.1–5.3) are the centers of cells with the following dimensions:

F (2n+1,4n+2)
n F (4,4n)

n F (4n,4n)
n F (4,2n+2)

n F (2n+2,2n+2)
n

0,1 0,2 0,1,2 2 1

We calculated the Weierstraß weights of cell centers for all reflexive platonic maps of
genus at most 8, listed in Appendix B. In general, one cannot expect all Weierstraß
points to be geometric. The reflexive platonic surfaces with non-geometric Weier-
straß points of genus g ≤ 8 are those of the maps R5.11, R6.2, R6.3, R6.7, R6.10,
R7.3, R7.6, R7.8, R8.1, R8.2, R8.5, R8.6, R8.7, and R8.8. Calculation of non-geometric
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Weierstraß points is a major challenge. We take it up for the first Hurwitz triplet in
Section 7.4.

7.2 A canonical model for the first Hurwitz triplet

The first Hurwitz triplet is the triple of reflexive platonic maps R14.1, R14.2 and R14.3.
Why do they bear this name? They are maps of type (3, 7), and hence give rise to
Hurwitz surfaces, introduced in Section 1.4. We let R stand for a yet undetermined
triplet member. The group Aut+(R) is isomorphic to PSL(2, 13). The triplet is the
first occurrence of an infinite collection of Hurwitz surfaces.

Theorem 7.2.1 (Macbeath). The group PSL(2, q) is a Hurwitz group precisely when
one of the following holds:

• q = 7;
• q ≡ ±1 mod 7 and q is prime;
• q = p3, p ∈ {±2,±3} mod 7 and p is prime.

In the first and third case, there is a unique normal torsion free subgroup ΓC∆(3, 7, 2)
with quotient ∆(3, 7, 2)/Γ ∼= PSL(2, q). In the second case, there are exactly three
such subgroups.

We know that the case q = 7 yields the Klein quartic R3.1. The Fricke-Macbeath
curve R7.1 is the first example of the third case, with p = 2. The next in line is the
prime q = 13, which belongs to the second case. That is why the first Hurwitz triplet
deserves its name. The connection between the algebraic curves of each Hurwitz
triplet is one of algebraic conjugacy. We shall see this exemplified below. For more
details, see [Mac1969], [Str2000], and [Dža2007].

Applying the construction strategy from Section 6.2 to the first Hurwitz triplet is
quite a challenge. We describe the quest for a clean and simple model in more detail.
The canonical character χc for all three triplet members R14.1, R14.2, R14.3 is the
irreducible character of PSL(2, 13) defined by:

Element order 1 2 3 6 7 13
χc 14 −2 −1 1 0 1

The group PSL(2, 13) has three different standard map presentations for a genus 14
map, distinguishable by ord([R,S]). Geometrically, this order equals half the Petrie
length (cf. Section 1.4). It is 6 for R14.1, 13 for R14.2, and 7 for R14.3. Several canonical
representations are promising candidates to work with. The canonical character is
in fact monomial, induced from a 1-dimensional character of a Borel subgroup of
PSL(2, 13). This leads to the following canonical representation ρc:

R 7→ MonMat([1,ζ6,−1,−ζ6,ζ26 ,−ζ
2
6 ,1,1,1,−ζ

2
6 ,ζ

2
6 ,−ζ6,−1,ζ6],[7,5,2,4,3,14,8,1,6,13,11,10,12,9])

S 7→ MonMat([ζ6,−1,1,ζ6,−ζ26 ,ζ6,1,−1,−ζ26 ,−ζ6,ζ
2
6 ,ζ

2
6 ,−ζ6,−ζ

2
6 ],[4,14,6,8,1,13,2,7,3,11,12,9,10,5])
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Its virtue is of course its sparsity, but a field extension is used. The canonical repre-
sentation is in fact rational, and another canonical representation ρc, which we owe
to Stephen Glasby [private communication], sends the generator pair (R,S) to:

0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1

−1 0 −1 0 0 0 0 0 1 0 0 −1 0 −1

−1 1 0 0 1 1 0 0 0 0 −1 1 1 0

0 −1 1 0 0 0 1 −1 0 0 0 0 0 0

0 1 −1 1 1 −1 0 1 −1 1 −1 0 0 0

1 −1 0 0 −1 −1 0 0 0 0 0 −1 0 0

0 −1 0 −1 −1 0 0 0 1 −1 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 1 1 0 −1 0 −1 1 0 0 −1 −1

0 1 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 −1 0 0 −1 0 0 0 0 0 −1 0 0

0 0 1 0 0 1 0 −1 0 0 1 0 −1 0

0 0 0 0 1 0 1 0 0 0 −1 0 0 0

0 0 0 1 0 −1 0 0 0 0 0 0 0 0





0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 −1 0 0 −1 −1 0 0 0 0 −1 0 −1

0 0 1 0 0 1 0 −1 0 −1 1 0 −1 0

−1 0 0 0 0 0 1 0 1 0 0 0 1 0

0 0 1 −1 0 1 0 0 0 −1 0 1 0 1

0 0 1 0 0 0 1 0 0 0 0 1 1 1

1 −1 0 0 0 −1 0 0 0 0 0 0 0 0

0 −1 2 0 0 1 1 −1 0 −1 1 1 0 1

0 0 0 0 −1 0 −1 0 0 0 1 −1 −1 −1

1 0 0 0 −1 0 −1 0 0 0 1 −1 −1 0

0 −1 0 −1 −1 0 0 0 1 −1 0 0 1 1

0 0 −2 0 −1 −1 −1 1 0 1 0 −1 0 −1

−1 0 1 −1 0 1 1 −1 1 −1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 −1 0 0


The matrix pairs displayed both form standard generator pairs for R14.1, but that is
irrelevant for the representation as a whole. Continuing with this rational represen-
tation, we compute that (ρ∨c )2+ decomposes into isotypic components as

1⊕ 121 ⊕ 122 ⊕ 123 ⊕ 2× 13⊕ 3× 142.

Here 142 is the irreducible degree 14 representation with χ142
(RS) = 2. With the

Hilbert-Poincaré series known (see Section 6.1) we see that I2(R) is a 66-dimensional
subspace of C[x1, . . . , x14]2. There are three possible shapes that I2(R) can take:

• 1 + 12x + 12y + 13 + 2× 142

• 12x + 12y + 3× 142

• 12x + 2× 13 + 2× 142

In each case, we certainly have some isotypic piece 12x < I2(R). The three rep-
resentations 121, 122, 123 are algebraically conjugate, all defined over Q(α) with
α = ζ7 + ζ−1

7 . They correspond to the three different embeddings of this field into
C, namely α = 2 cos(2π/7), α = 2 cos(4π/7), and α = 2 cos(6π/7). Could it be that
the choice between these components determines the three members of the triplet?
This is indeed the case, as we will make explicit. In any case, let us without loss of
generality choose 121. We now use our fixed point method. The Fixed Point Count-
ing Lemma 1.4.3 shows that S fixes two vertices on a triplet member. The condition
121 ⊂ I2(R) puts constraints on these fixed points by intersecting their zero sets with
the eigenspaces of S. The eigenspacesE(S, ζk7 ) are all of dimension 2, for k = 0, . . . , 6.
This gives a quadratic equation in one variable for each of them. Precisely two of
those equations have a solution, and they have a unique one. The corresponding
eigenvalues are each other’s inverses. So we can write down the fixed points of S,
but it requires a quadratic field extension Q(α) < Q(α, β) with β2 = −3α − 2. Spin-
ning with Aut+(R) creates a set V of 156 points that have to form the vertex set of
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the canonical model. We now compute a basis of the linear subspace

{f ∈ C[x1, . . . , x14]2 | ∀p ∈ V, f(p) = 0}

of C[x1, . . . , x14]2, merely a matter of linear algebra. The subspace has dimension 66,
and so we have found I2(R). A further check assures us that (I2(R)) is a prime ideal
with the correct Hilbert polynomial H(I(R), k) = 13(2k − 1). The ideal is in fact of
the form 1 + 12x + 12y + 13 + 2× 142. One interesting detail that follows is that the
curve is contained in a unique Aut(R)-invariant quadric, which we will show later
on.

Several things are still wrong with the model: the field of definition contains an
unwanted β, and we cannot display any of the defining polynomials we computed
due to size limitations. These two issues must and will be addressed.

Galois descent. First we try to apply Galois descent, discussed in Section 6.2, to get
rid of β. This solves two problems at once, because the suspicious reader will have
noticed that [Q(α, β) : Q] = 6. The embeddings into C give rise to more curves than
we bargained for. The solution lies therein, that the field automorphism defined by
σ : (α, β) 7→ (α,−β) can be realized by a projectivity [A] ∈ PGL(14,C) carrying
each curve C of our set of six into its algebraic conjugate Cσ . We can in fact choose
A ∈ GL(14,Q):

A =



0 0 3 1 2 2 2 −2 0 0 0 1 −1 1

0 1 2 −1 0 2 0 −1 −1 0 1 2 0 1

−1 0 0 −1 −2 1 0 0 1 0 0 0 2 0

1 0 1 1 1 0 −1 0 −1 0 1 −1 −2 −1

1 −1 −1 1 −1 −1 0 0 0 0 0 −1 −1 0

1 0 1 2 2 −1 0 0 −1 0 −1 0 −1 0

0 −1 4 −1 1 2 2 −2 0 −2 1 3 0 2

−1 −1 1 0 −1 0 0 −1 0 −1 0 0 1 0

0 0 −2 0 −1 −1 −1 0 0 2 0 −2 0 −2

0 0 −2 −1 −2 −1 −1 0 2 0 0 −2 1 −1

1 −1 1 1 −1 −1 0 −1 0 −1 2 −1 −2 0

−1 1 −1 0 1 0 0 0 0 1 0 −1 −1 −2

1 −1 3 1 0 1 1 −1 0 −1 1 0 −2 1

1 0 −3 −1 −2 −2 −2 1 0 0 0 −2 1 0


We haveA/

√
3 ∈ SL(14,C). For the projectivity, the scalar is of course irrelevant. But

we want to use [A] for Galois descent. Remark that Gal(Q(α, β)/Q(α)) = 〈σ〉 ∼= Z2,
and the homomorphism σ 7→ [A] induces a 1-cocycle c ∈ Z1(〈σ〉,PGL(14,Q)). In
order to lift this to a 1-cocycle c̃ ∈ Z1(〈σ〉,GL(14,Q)), we need a scalar λ ∈ Q(α, β)
for which c̃(σ) = λA satisfies

I = c̃(σ2) = c̃(σ)σ c̃(σ) = 3λλσAσA = 3λλσI,

so we need to solve λλσ = 1/3. Write λ = λ0 +λ1β with λ0, λ1 ∈ Q(α). The equation
transforms to

λ2
0 + (3α+ 2)λ2

1 =
1

3
.
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This is the equation for a conic. Because we don’t want to introduce new algebraic
(or transcendental) numbers into the model, our solution better be a Q(α)-rational
point on this conic. Deciding whether a conic contains such a point and finding one
are possible, and in this case a solution is (λ0, λ1) = (1

6 (α− 3), 1
6α), giving rise to the

scalar λ = 1
6 (α− 3 + αβ).

After we have lifted our 1-cocycle, we now want to split it. Splitting must be possible
because H1(〈σ〉,GL(14,Q)) = 0. Writing c̃ as coboundary is equivalent to solving

λA = B−1Bσ.

This problem can be reduced to a linear system of equations over Q(α) by writing
B = B0 +βB1, whereB0, B1 ∈ GL(14,Q(α)). The solution space is 196-dimensional,
and a new concern arises: to find a solution with small coefficients for B−1, in order
to keep coefficients small when substituting in the ideal generators. The best solution
we found is

B−1 = (3− α+ αβ)βI + 2βA.

Transforming the curve by the transformation B results in a new curve that is σ-
invariant. We construct a spanning set over Q(α) for the new ideal (I2(R)) by av-
eraging polynomials with σ. The three embeddings of Q(α) � C must define non-
isomorphic curves, since we know that there have to be at least three. So the three
choices yield the three triplet members. In Section 7.3 we find out which one is
which . . .

New canonical representation. There is also a trade-off to the Galois descent. The
transformation is over Q(α, β), and the canonical representation for the new model
is not defined over Q anymore. It is generated by B−1RB and B−1SB, matrices best
left to the computer.

Coefficient size reduction. The coefficients of the model over Q(α) that we obtained
after Galois descent were rather large, some 30 digits. So we applied the coeffi-
cient reduction strategy described in Section 6.2. To this end, we wrote each poly-
nomial

∑
1≤i≤j≤14 cijxixj as a Q(α)-vector by choosing a basis (monomial ordering)

of S2+(C14[x1, . . . , x14]). Then we added the multiples αv and α2v for each vector v
of the set and expanded all Q(α)-coefficients cij = cij2α

2 + cij1α + cij0 in terms of
the power basis (1, α, α2) for Q(α). As a last step, get rid of denominators. The end
result was a basis for a 3 · 66-dimensional integral lattice Λ ⊂ Z3·105.

The lattice determinant det(Λ) had an order of magnitude 10300. Computing some
small prime factors p of det(Λ) (up to 108) resulted in multiple non-trivial kernels
modulo (pZ)3·105. This led to a reduction that gave the polynomial listed in Ap-
pendix A. Although it seemed obvious that we could not do much better, since its
Z-coefficients have at most two digits, in order to ensure an optimal set of generators
we wanted to know all the prime factors of det(Λ). The new (finer) integral lattice
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after the reductions had determinant

66014093792305449137881097038229389621321901635095626168227125556549937388

20317888795691173507208715716887486334360865558311084480773934794085801787

779514661898452759681411490212052794446221110725141170375668291638101.

Factoring numbers is a specialist’s job. We had the good fortune that our colleague
Dan Bernstein wanted to help us out. He computed that the above number is prime.
Using it for reduction modp yielded a trivial kernel.

The resulting presentation. A generic polynomial from I(R)2 to generate the canon-
ical model of a Hurwitz triplet member is listed in Appendix A; we will not repeat it
here. Instead, we document the unique invariant quadric containing all three triplet
members.
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2
8 + (−6α

2 − 6)x2x9+

(4α
2 − 3α + 2)x3x9 + (−6α

2 − 6)x4x9 + (−8α
2

+ 6α − 4)x6x9 + (−8α
2

+ 6α − 4)x7x9 + (−6α
2 − 6)x8x9+

(12α
2 − 9α + 6)x

2
9 + (−2α

2
+ 6α + 2)x1x10 + (−2α

2
+ 6α + 2)x2x10 + (8α

2 − 6α + 4)x3x10+

(−12α
2

+ 9α − 6)x4x10 + (−2α
2 − 3α − 4)x5x10 + (−10α

2
+ 3α − 8)x6x10 + (−8α

2
+ 6α − 4)x7x10+

(−6α
2 − 6)x8x10 + (20α

2 − 6α + 16)x9x10 + (12α
2 − 9α + 6)x

2
10 + (6α

2
+ 6)x2x11 + (−14α

2
+ 6α − 10)x3x11+

(6α
2

+ 6)x4x11 + (6α
2 − 9α)x5x11 + (−6α

2 − 6)x6x11 + (10α
2 − 3α + 8)x7x11 + (−6α

2 − 6)x8x11+

(−4α
2

+ 3α − 2)x9x11 + (−6α
2 − 6)x10x11 + (15α

2 − 9α + 9)x
2
11 + (−6α

2 − 6)x1x12 + (−8α
2

+ 6α − 4)x3x12+

(−8α
2 − 3α − 10)x4x12 + (−2α

2
+ 6α + 2)x5x12 + (−14α

2
+ 6α − 10)x6x12 + (6α

2
+ 6)x7x12+

(−8α
2

+ 6α − 4)x8x12 + (12α
2 − 9α + 6)x9x12 + (6α

2
+ 6)x10x12 + (6α

2
+ 6)x11x12 + (12α

2 − 9α + 6)x
2
12+

(12α
2 − 9α + 6)x1x13 + (6α

2
+ 6)x3x13 + (14α

2 − 6α + 10)x4x13 + (2α
2 − 6α − 2)x5x13+

(14α
2 − 6α + 10)x6x13 + (6α

2
+ 6)x8x13 + (−8α

2
+ 6α − 4)x9x13 + (−8α

2
+ 6α − 4)x10x13+

(2α
2 − 6α − 2)x11x13 + (−14α

2
+ 6α − 10)x12x13 + (9α

2 − 9α + 3)x
2
13 + (−2α

2
+ 6α + 2)x1x14+

(6α
2

+ 6)x2x14 + (−6α
2 − 6)x3x14 + (−4α

2
+ 3α − 2)x4x14 + (4α

2 − 3α + 2)x5x14 + (−8α
2

+ 6α − 4)x7x14+

(−6α
2 − 6)x8x14 + (−6α

2 − 6)x9x14 + (2α
2 − 6α − 2)x10x14 + (−14α

2
+ 6α − 10)x12x14+

(−2α
2

+ 6α + 2)x13x14 + (15α
2 − 9α + 9)x

2
14.

Vertices, edges and face centers. Let us construct a vertex, edge center and face
center of each of the triplet members. A fixed point of an automorphism corresponds
to a 1-dimensional eigenspace of the action of this automorphism on the canonical
model. We intersect the eigenspaces of the respective automorphisms S, RS and R
with the curve model C over Q(α), where we choose the isotypic components 121

and 122 for the model, and define ζ7 by

fmin;Q(α)(ζ7)(X) = X2 − αX + 1.

The eigenspaces of S, RS and R that result in points on the curve are E(S, ζ±1
7 ) of

dimension 2, E(RS,−1) of dimension 8, and E(R, ζ±1
3 ) of dimension 5. The fixed
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points on the curve of each of these automorphisms can now be found, but they
require field extensions. The diagram below gives an overview of them.

Q(α, β, γf )

2

4

Q(α, β, γe, δe)

2

6

Q(α, γf )

4

Q(α, β, ζ7)

22

Q(α, γe, δe)

6

Q(α, ζ7)

2

Q(α, β)

2

Q(α)

3

Q

We add β and ζ7 to define a vertex v, γe and δe to define an edge center and γf to
define a face center. The reason for choosing two extending elements instead of one
to define an edge center e ∈ E(RS,−1) ∩ C is succinctness of the descriptions we
could find.

Remark 7.2.2. The degree of the extension over the field of definition of the curve
necessary to define a fixed point of an automorphism is the number of fixed points
of that automorphism on the curve. Indeed, R fixes 4 points on the triplet members,
RS fixes 6, and S fixes 2.

To find simple forms of the points we obtained on the curve, we first sought field
elements with reasonable minimal polynomials by brute force, trying to factor poly-
nomials over the field. Having chosen a suitable extension element, we simplified
coefficients with the same lattice reduction technique we applied to the ideal gener-
ators. As a final result, we can define a map vertex v by:

((α2 − 2α+ 2)β + (−3α2 + 9α+ 20))ζ7 + (9α2 − 5α− 15)β +−12α2 − 3α+ 4
((2α2 + 4α)β + (−2α− 8))ζ7 + (−α2 − α+ 1)β + 2α2 + 11α+ 4

((−6α2 + 3α)β + (14α2 − α− 3))ζ7 + (−12α2 + 5α+ 10)β + 22α2 − 19α− 23
((−11α2 + 10α+ 7)β + (12α2 − 6α− 11))ζ7 + (−11α2 + 8α+ 8)β + 9α2 − 9α

((−7α2 + 12α+ 6)β + (11α2 − 9α− 18))ζ7 + (−12α2 + 6α+ 9)β + 19α2 + 5α− 5
((11α2 − α− 10)β + (−13α2 − 1))ζ7 + (−α2 − 2α+ 5)β + 10α2 + 18α− 7

((−4α2 + 3α− 1)β + (5α2 − 2α− 12))ζ7 + (−9α2 + 5α+ 11)β + 10α2 − 3α− 6
((4α2 + 4α+ 2)β + (−8α2 − 4α+ 4))ζ7 + (11α2 − 4α− 14)β +−9α2 + 23α+ 16
((6α2 − 13α− 7)β + (−11α2 + 22α+ 6))ζ7 + (5α2 − 7α+ 2)β +−19α2 − 2α− 1
((−5α2 + 12α+ 4)β + (7α2 − 17α− 12))ζ7 + (−5α2 + 7α+ 1)β + 10α2 + 7α+ 6

((5α2 − 6α− 6)β + (−5α2 + 7α+ 12))ζ7 + (4α2 − 2α− 4)β +−2α2 − 6α− 8
((α2 + 12α+ 6)β + (3α2 − 21α− 10))ζ7 + (−3α2 + α− 1)β + 28α2 + 19α

(4β + (4α2 − 6α− 12))ζ7 + (α2 − 2α+ 1)β + 2α2 + 6α+ 7
6α2 − 4
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To define the edge center e, we need an extension of degree 6 over Q(α) obtained by
adding a square root and a root of a polynomial of degree 3. The simplest description
we found is:

fmin;Q(α)(γe)(X) := X2 − (3α+ 2)

fmin;Q(α)(δe)(X) = X3 + (1 + 3α− α2)X + (−2− 2α2)

So in fact γe = −iβ. We can write down an edge center e as:

((−2α2+α+2)γe+(α+1))δ2e+((8α2+α−15)γe−7α2−9α+9)δe+(7α2−5α−4)γe+7α2+10α−6

((α2−α−1)γe−α2−α)δ2e+((−2α+1)γe+(5α2−α−7))δe+(−α2+3α+2)γe+2α2−7α+3

((−α2+2α+3)γe+(6α2+3α−6))δ2e+((−4α2+α+3)γe−9α2+5α+15)δe+(−α2−2)γe−12α2+13α−5

((2α2−α+1)γe+(3α−6))δ2e+((−2α2+α+4)γe+(3α2−5α−4))δe+(−8α2+6α+2)γe+11α2−3α

((2α2−α)γe+(2α2+2α−6))δ2e+((−2α2−α+4)γe−2α−2)δe+(−6α2+7α+4)γe+α
2+α+2

((2α−3)γe+(2α2−α+2))δ2e+((−2α2−2α+2)γe−5α2+9α+6)δe+(2α2−3α+6)γe−16α2+2α−2

((2α2−α−2)γe+(2α2+3α−3))δ2e+((−4α2+α+9)γe−α2+α−3)δe+(−7α2+3α+4)γe−3α2+2α+4

((α2−3)γe−4α2+3)δ2e+((8α2−α−12)γe−10α−4)δe+(2α2−2α+6)γe+14α2−4α−3

((−α2−α+1)γe−α2−2α+3)δ2e+((−4α2+2α+8)γe+(4α2+6α−4))δe+(−α−6)γe−4α2−2α+5

((3α2−α−5)γe−2α2+3α)δ2e+((4α2−3)γe−α2−9α−7)δe+(−5α2+α+10)γe+11α2−2α+1

((−2α2+2α+2)γe−2α+2)δ2e+((2α2+2α−6)γe−4α2+8)δe+(4α2−6α−4)γe−2α2+6α−4

((3α2+2α−6)γe+(5α2+4α−4))δ2e+((−2α2−3α+3)γe−10α2+4α+7)δe+(−5α2+α+16)γe−15α2+6α−3

((3α2−α−7)γe−α2+2α+3)δ2e+((−6α2−2α+14)γe+(6α2+8α−12))δe+(−6α2+α+10)γe−6α2−14α+5

((α2+α−3)γe+(4α2+5α−2))δ2e+((−2α2−2α+3)γe−5α2+3α+5)δe+(−α2−α+6)γe−9α2+2α−3


The extension element γf is defined by

fmin;Q(α)(γf )(X) = X4+(−2α2+6)X3+(−α2+4α+4)X2+(9α2+7α−15)X+946α2+518α−2116.

Then a face center f is given by:

−γ3
f + (2α2 − α− 6)γ2

f + (71α2 + 33α− 167)γf + 198α2 + 110α− 457
71α2 + 41α− 153

(−9α2 − 8α+ 18)γ2
f + (−26α2 − 17α+ 53)γf − 456α2 − 256α+ 1015

−γ3
f + (4α2 + 3α− 7)γ2

f + (5α2 − 2α− 19)γf + 465α2 + 259α− 1045
(−3α2 − 3α+ 7)γ2

f + (−10α2 − 6α+ 21)γf + 63α2 + 41α− 139
γ3
f + (−11α2 − 7α+ 24)γ2

f + (−26α2 − 9α+ 67)γf − 460α2 − 254α+ 1043
(−a2 + α+ 6)γ2

f + (−5α2 + 16)γf + 65α2 + 37α− 145
(a2 + 2α)γ3

f + (6α2 + 7α− 7)γ2
f + (109α2 + 66α− 232)γf + 472α2 + 268α− 1051

(−3α2 − 2α+ 4)γ2
f + (−6α2 − 5α+ 11)γf − 541α2 − 308α+ 1211

(5α2 + 6α− 5)γ2
f + (11α2 + 11α− 16)γf + 737α2 + 416α− 1646

(−6α2 − 5α+ 11)γ2
f + (−16α2 − 11α+ 32)γf − 325α2 − 185α+ 725

(a2 + 2α+ 1)γ3
f + (5α2 + 6α− 4)γ2

f + (110α2 + 73α− 224)γf + 201α2 + 123α− 441
γ3
f + (11α2 + 10α− 22)γ2

f + (37α2 + 30α− 66)γf + 122α2 + 70α− 266
(71α2 + 41α− 153)γf



7.3 Distinguishing the triplet members

Our current predicament is this: we have constructed the first Hurwitz triplet (R14.1,
R14.2, R14.3) as a set of three algebraic curves, but we do not know which embedding
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of Q(α) into C, where α = ζ7 + ζ−1
7 , corresponds to which curve. Let Ck be the curve

resulting from the embedding

α 7→ αk := 2 cos(2kπ/7).

We have k ∈ {1, 2, 3}. Important about the numbers αk is that −3αk − 2 is negative
for k = 1, 2 and positive for k = 3.

The extended automorphism group. One curve is easiest to distinguish, and that is
R14.2. The reason is that although Aut+(R) ∼= PSL(2, 13) for all three maps, we have

Aut(R14.1) ∼= Aut(R14.3) ∼= PGL(2, 13),

Aut(R14.2) ∼= PSL(2, 13)× Z2.

In particular, Aut−(R14.2) contains a central involution. This element is not a re-
flection, as we can deduce directly from its centrality, or by applying Theorem 1.4.3.
Both show us that it fixes no cells at all, and hence no points on the algebraic curve
it belongs to.

We can exploit this. Since our algebraic curves are defined over Q(α) < R, standard
complex conjugation con = con14 leaves them all invariant. Remembering Theorem
6.1.14, we see this map is an antiholomorphism of each curve. It acts as an outer
automorphism on Aut(C) = Aut+(R) = 〈R,S〉 for each triplet member. The new
canonical representation for our models over Q(α) is defined over Q(α, β), where
β =

√
−3α− 2. For k ∈ {1, 2}, this is a purely imaginary number, for k = 3 it

is real. Hence, we know that α = α in any case, but β = β for k = 3 and β = −β
otherwise. With this knowledge we can compute gcon for all g ∈ Aut(C), so we know
the structure of Aut(Rk) = Aut∗(Ck). Inevitably, we find Aut∗(C1) ∼= Aut∗(C2) ∼=
PGL(2, 13) and Aut∗(C3) ∼= PSL(2, 13)× Z2. We conclude that C3 = (R14.2)a.

Remark 7.3.1. The central involution behaves like the classical antipodal mapping
of the sphere. We say that the map R14.2 is antipodal: every point has a unique point
associated to it by the antipodal mapping, its antipode. Expressed in a standard map
presentation extended to Aut−(R14.2) (cf. Section 1.1), our specific central element is
con = S(R−1S2)6a ∈ Aut−(R14.2). We also see that our curve C3 has no real points.
It twists around the subspace P13(R) ⊂ P13(C) without intersecting it.

Petrie paths. To distinguish R14.1 and R14.3 from each other, we must resort to other
means. Our approach is to explicity compute (enough of) the cell structure on each
curve C1 and C2 to determine the Petrie path length of each curve, as introduced in
Section 1.4. As mentioned before, this length is 12 for R14.1 and 14 for R14.3.

What we need are three involutions a, b, c in Aut∗(Ck) of which we know they are
reflections in the three sides of some fundamental triangle. To this end, we want to
be able to decide adjacency for vertices of the barycentric graph. One way to do this
is to plot geodesic walls. For our two remaining curves, we can consider the real
wall. As alluded to in Section 6.1, the invariant set of con14 is P13(R) ⊂ P13(C). This
subspace is well-defined as the set of points x with ratios xi/xj ∈ R whenever they
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are defined. More generally, the invariant set V σ of a complex conjugation σ : V → V
on a complex vector (projective) space V is a real n-dimensional vector (projective)
subspace. Intersecting this R-linear subspace with the curve gives the real wall. To
algebraicize matters, let us say that our original equations were over C[z1, . . . , z14].
We are now led to converting them to a real form by substituting zk = xk + yki
and splitting each equation into its real and imaginary part. We can then express
con (or any other complex conjugation on P13(C)) as an R-linear transformation in
(x1, y1, . . . , x14, y14). Adding invariance under this transformation to the ideal yields
a real algebraic description of the real wall.

The next step is to compute which barycentric vertices lie on the real wall. For this,
the embedding Q(α)� C needs to be extended to the field Q(α, γ) over which such
a point is defined, and complex conjugation has to be defined on this field. If we
enlarge the field so that it is invariant under complex conjugation, the possibilities for
complex conjugation are field involutions that send γ to another root of fmin;Q(α)(γ).
There may be several choices, in effect differing by a permutation of the vertex set.
But the end result is the same.

Incidentally, using the formula from Section 1.4 we can compute in advance that the
number of geodesic walls on both R14.1 and R14.3 is 78. Each wall has the repeating
barycentric vertex pattern “vevfef” and contains 14 vertices of each type. This con-
trasts with R14.2, which has 91 geodesic walls, and only has 12 vertices of each type
on a wall. Thus, computing the vertices on a geodesic wall also singles out R14.2.
Also, on the two remaining curves a reflection fixes precisely one wall, as can be
computed following the method outlined in Section 1.4. Projections of the real walls
of these two curves and their barycentric vertices are plotted in Figures 7.2 and 7.4
in the next section. This enables one to solve the problem of finding two adjacent
barycentric vertices visually.

One strategy to compute a fundamental triangle is now to pick an edge center and
plot the unique other geodesic wall going through it, and the barycentric vertices on
that. One can then choose a neighboring barycentric vertex on each wall to define a
fundamental triangle and compute the Petrie path length.

We also document a different strategy. We applied this before having succeeded in
plotting the geodesic walls. There is always a unique (primitive) rotation around
an edge center. We are in the lucky situation that the faces of the platonic maps
are triangles (p = 3), so there are only two non-trivial rotations fixing a face center
and they are also both primitive rotations. Therefore, suppose you know one edge
center e and one face center f that are adjacent. Then the rotation Re, any of the two
possible rotations Rf and the reflection a in the geodesic wall common to e and f
determine a fundamental triangle with reflections b := aRf and c := aRe. We can
now compute the Petrie path length as

2ord(abc) = 2ord(a(aRf )(aRe)) = 2ord(RfaRe).

To compute an adjacent edge and face center, restrict to an affine chart and pick
an edge center e. Compute the euclidean distances of each face center to e. It is



156 7 – Weierstraß points and the first Hurwitz triplet

then tempting to assume that the closest such point will be adjacent to e. This need
not be the case, as illustrated in Figure 7.1. But the figure also shows the way to
a topological proof if it holds. Compute a small sphere intersecting the geodesic
wall in only two points, containing in the ball bounded by it exactly one edge center
and one face center. These two then have to be neighbors. To execute this proof
computationally, one adds a real equation for the sphere to the ideal for the geodesic
wall. The result is that C1 = (R14.1)a and C2 = (R14.3)a.

e

f?

f
f

e

f

Figure 7.1: Two vertices on a geodesic wall that are close need not be adjacent (left),
but they are if one can find a ball containing the two vertices whose boundary sphere
intersects the wall only twice (right).

7.4 Weierstraß points on the first Hurwitz triplet

One of our primary reasons to construct canonical models for the first Hurwitz triplet
is a problem by Kay Magaard and Helmut Völklein that was still open. The question
is whether the automorphism group of a Hurwitz surface acts transitively on its
set of Weierstraß points. This is indeed the case for the Klein quartic R3.1 and the
Macbeath curve R7.1. In almost all other cases it proved to be false, see [MV2006]
and [LS2012].

Theorem 7.4.1 (Magaard, Völklein). LetX be a Hurwitz surface of genus g > 14. The
group Aut(X) does not act transitively on the set of Weierstraß points of X .

The only omission from the theorem are the members of the first Hurwitz triplet.
So far, group theoretic attempts to settle the question for the triplet (e.g. [LS2012])
have not reached a conclusion. With a canonical model in hand, a different attack
becomes possible. Using the Fixed Point Counting Lemma 1.4.3 and applying the
Lewittes-Schoeneberg theorem 7.1.11, we know in advance that the edge centers of
each of the triplet members are Weierstraß points. We computed these edge centers
explicitly back in Section 7.2. Thus by Theorem 7.1.9 a computation of Wronskians
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(MAGMA code available from the author) tells us what the Weierstraß weight of an
edge center is.

Proposition 7.4.2. The Weierstraß weight of each edge center of one of the platonic
maps R14.1, R14.2 and R14.3 is 1. �

As a corollary, we can extend the Magaard-Völklein theorem.

Theorem 7.4.3. The X be a Hurwitz surface. The group Aut(X) does not act transi-
tively on the set of Weierstraß points of X , except if X is R3.1 or R7.1. �

Non-geometric Weierstraß points

Although the ideal for the canonical model together with the action of its automor-
phism group and explicit expressions of the edge centers present a computable cer-
tificate for the claim we just staked, the evidence leaves something to be desired.
It would be preferable if we could actually point to another orbit (or all orbits) of
Weierstraß points on the triplet members. Repeating the computation of Wronskians
for the vertices and face centers shows that they are not Weierstraß points. So we
will have to search for non-geometric Weierstraß points, but how and where?

Let us first note that the total Weierstraß weight on each curve is 14 · (142−1) = 2730
by Theorem 7.1.6. Since the Weierstraß weight of the edge centers turns out to be
1, we are left with a contribution of 2184 = |Aut(R)| by unknown points, for any
triplet member R. There are three possible weight distributions:

• two Aut(R)-orbits of 1092 points on geodesic walls, each point of weight 1;
• one Aut(R)-orbit of 1092 points on geodesic walls, each point of weight 2;
• one Aut(R)-orbit of 2184 points not on geodesic walls, each point of weight 1.

One possible attempt at computing the non-geometric Weierstraß points is to com-
pute the abstract Wronskian and try to find all its solutions. However, even explicitly
writing down the Wronskian turned out to be too taxing for our computer resources.
We then took up the following approach.

Approximating Weierstraß points on a geodesic wall. Let us search for Weierstraß
points on a geodesic wall. This makes the problem more tractable, since a geodesic
wall is real 1-dimensional. As the type of the triplet members is (3, 7), there is only
one type of geodesic wall. Moreover, the maps R14.1 and R14.3 have a real wall,
and the field Q(α) is totally real. So the Wronskian is a continuous real-valued func-
tion on the real walls for these two siblings. By computing enough if its values, we
can find sign changes and ascertain the existence of a zero. If this indeed occurs,
it proves the existence of non-geometric Weierstraß points on the geodesic walls.
With the most basic root approximation algorithm possible (bisection) we can even
approximate the real Weierstraß points.

There is a snag that we already encountered when trying to distinguish the triplet
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members, which is that one has to be able to decide betweenness on the real wall.
This means completely understanding its topology as a space curve, which is quite
hard in P13. To make it easier, we look at a projection to P2, by computing an elimina-
tion ideal 〈P (xi, xj , xk)〉 for a suitable choice of (i, j, k). Then we consider an affine
part of this planar curve.

Remark 7.4.4. This is computationally non-trivial, the computation only ending
within reasonable time for certain choices of variables. In point of fact we computed
I(R) ∩ Q(α)[x1, x13, x14] and took the affine part {x14 = 1}. We will not display
the resulting planar model of the curve, since its defining polynomial P of degree
2g − 2 = 26 had very large coefficients that we were unable to simplify enough.

Now consider the real wall of the planar model. It forms the real solution set of
P (x1, x13, x14) = 0. From the previous section, we know that we have the embed-
ding α 7→ 2 cos(2π/7) of Q(α) into C for R14.1 and α 7→ 2 cos(4π/7) for R14.3. This
allows one to actually graph (an affine part of) the real wall. The result can be seen
in Figures 7.2 and 7.4. The next step is to compute all 42 vertices, edge centers and

Figure 7.2: The affine part of the real wall on the curve with α = 2 cos(2π/7), pro-
jected to (x1, x13). Shown are the vertices (v) and edge centers (e). In between one can
see the two orbits of non-geometric Weierstrass points (grey points). The segment of
the wall with (x1, x13) ∈ [−1, 1]× [0, 2.9] is easy to distinguish computationally.

face centers that lie on the real wall of R14.1 and R14.3. To maximize efficacy, we
choose a small segment that satisfies two conditions. First, it has to contain an edge
and a triangle altitude of the platonic map, so that we cannot miss any Weierstraß
points on the wall. Second, we must be able to distinguish (preferably automati-
cally using a simple criterion) points lying on the segment from points on nearby
branches. In Figure 7.2, such a segment is defined by points on the real wall with
(x1, x13) ∈ [−1, 1] × [0, 29/10]. After selecting a suitable segment, one can start to
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compute Wronskian values. The graph of the Wronskian for R14.1 is shown in Figure
7.3. Apart from the zeroes at the edge centers (visible in the graph at x13 ≈ 1.2) the

Figure 7.3: The Wronskian determinant W (x13) on the real wall segment of R14.1

with (x1, x13) ∈ [−1, 1] × [0, 29/10]. As the Wronskian varies so wildly, the function
x 7→ sign(x)|x|1/30 was applied to its values to get a clear picture.

graph proves a sign change on the wall between a vertex and a face center (x13 ≈ 0.89
and x13 ≈ 1.53, related by the rotation around the real edge they lie on), and also one
between a vertex and an edge center (x13 ≈ 0.009). This forces the first option above:
we have two non-geometric Aut(R14.1)-orbits of Weierstraß points, each point of
weight 1. Because the Weierstraß points are defined algebraically by equations over
Q(α), their weight is independent of the embedding Q(α) � C. The computation
for R14.1 therefore entails a conclusion for all three triplet members that is more far-
reaching than Proposition 7.4.2.

Theorem 7.4.5. The Weierstraß points of each member R of the first Hurwitz triplet
lie in three Aut+(R)-orbits, two of size 1092 and of size 546. All Weierstraß points
have weight 1. �

This re-establishes the non-transitivity of Aut(R) on the Weierstraß points with greater
vigor and rigor. What we have not established is that the non-geometric Weierstraß
points lie on geodesic walls for all triplet members. This is equivalent to these points
being invariant under a complex conjugation in Aut∗(Ck). For example, since C3

has no real points, their field of definition cannot be totally real. It is therefore no
certainty that the real wall of C2 contains non-geometric Weierstraß points. But let
us record the specific result just obtained.

Proposition 7.4.6. On the platonic map R14.1, there are two Aut(R14.1)-orbits of non-
geometric Weierstraß points, both lying on the geodesic walls of (R14.1)a. �

After getting a rough idea of the position of the zeroes on the real wall of R14.1, we
use bisection to compute accurate approximations of the non-geometric Weierstraß
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points on the segment under consideration. We record the number up to 30-digit
precision:

x13 = 0.891162135033780174753084747614 . . . on a barycentric “vf” segment
x13 = 0.009206167466405642102383818784 . . . on a barycentric “ve” segment

These values yield the following respective Weierstraß points pvf and pve on our orig-
inal canonical model for R14.1:

pvf =



−0.110498918008641056910528586910500847759977975956603336
−0.628778052752740137663775191353613981012077484710756425
0.993813745433539958705693642249538854601432192395889419
−1.73968071591864699547491020463330155520325643640945311
−1.13242432659261208413658179857973739494118863808340694
1.32721321395601114344624693471785705706307299999476001
−0.0789080312355865593311440135003177136453716764864000380
−0.00163518559117868721313100962966189161951139953262698595

1.23144687301408430913345802062032034070993703869122180
−1.03246449786569184360562647840081003665484433890946437
1.11275516067102767280661163820688132027568252534818508
1.09497329678986737113747163418546497945763868191637598
0.891162135033780174753084747614890896426221694318547271

1



pve =



0.373819682424353593275641296829713052968329955
−0.406506596046647128369352813696360444949207807

1.22633261394792887775664726904185714837693413
−1.76566476396619073444152698957471650728473636
−1.68332104198185752010858632463262343011193496
1.66608369221324917789378928301295202799384608
−0.453486633086269285935192939070656083827189149

−3.10150250610849330068895321089615831533110673 · 10−6

1.15129158143996154545464093945383004446869824
−0.911907180963972701472255498968424201127448053

1.55662736089161108300440246901357650810215496
0.959514553604818239746933865683497387812538720

0.00920616746640564210238381878484341737554291570
1



The platonic map R14.3, corresponding to the choice α = 2 cos(4π/7), gives a dif-
ferent result. In Figure 7.4 the (affine part {x14 = 1} of) its real wall is drawn.
In Figure 7.5 the graph of the Wronskian is drawn for a segment of the wall ly-
ing in [0, 2] × [−7/2,−1/4]. The segment contains two vertices (x13 ≈ −3.48 and
x13 ≈ −0.28) and an edge center (x13 ≈ −1.28) in between. The figure has only
one discernable zero, namely at the edge center. Heuristically, this implies that the
non-geometric Weierstraß points do not lie on geodesic walls for R14.3. It is no proof
however, especially considering the wild behavior of the Wronskian.

The algebraic model for R14.2, corresponding to the choice α = 2 cos(6π/7), has no
real points. We have not plotted a geodesic wall on it.

The non-geometric Weierstraß points over Q. The best result we could hope for
is to find the non-geometric Weierstraß points exactly, as algebraic numbers. One
method would be to guess a minimal polynomial for the given approximation of a
coordinate. There is a method for this, which, given a degree n, creates a best fit for
a minimal polynomial over Q with a zero that lies close to a rational number one
feeds it. The algorithm uses lattice base reduction. It is implemented in PARI/GP,
for example. But although we used an approximation of x13 on R14.1 accurate to
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Figure 7.4: The affine part of the real wall on the curve with α = 2 cos(4π/7), pro-
jected to (x1, x13). Shown are the vertices (v) and edge centers (e) on it. The segment
of the wall with x13 ∈ [−3.4,−0.25] and the largest possible x1 ∈ [0, 2] is easy to
distinguish computationally.

Figure 7.5: The Wronskian determinant W (x13) on the real wall segment of R14.3

with (x1, x13) ∈ [0, 2] × [−3.4,−0.25] with maximal x1. As the Wronskian varies so
wildly, the function x 7→ sign(x)|x|1/30 was applied to its values to get a clear picture.

54 digits, the best fit minimal polynomials of degree at most 70 sadly did not yield
algebraic Weierstraß points. On a more positive note, this is good material for further
research.
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A
Algebraic models for 2 ≤ g ≤ 15

THIS appendix contains descriptions and construction details of algebraic models
for reflexive platonic maps of low genus. All reflexive platonic surfaces of genus

at most 8 are present, and in addition selected examples of genera up to and includ-
ing 15. Most of the models are canonical models, constructed using the strategy
described in Section 6.2. For some maps we also describe a planar model; for hyper-
elliptic maps this is the only model we present. We list some data for each map, for
example a standard map representation under the heading “SMP”. Throughout, a
monomial matrix will be denoted as MonMat([λ1, . . . , λn], [c1, . . . , cn]), meaning that
in row i, the only non-zero entry is λi in column ci. Similarly, a diagonal matrix will
be denoted DiaMat(λ1, . . . , λn) with the obvious interpretation. The coordinates of
P2 will be written as x, y, z to avoid clutter, but as x1, . . . , xn+1 for Pn with n ≥ 3.
The canonical ideal will be denoted by I in each case, without further mention.

A.2 Genus 2

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that all curves of
genus 2 are hyperelliptic. The canonical representation is an action on P1 and obvi-
ously P1 does not contain an embedded model of the algebraic curve of a genus 2
platonic map. But as described in Section 6.3 we can still use the canonical represen-
tation to determine branch data for a planar model. For genus 2 such a model will
be of the form y2 = h(x) with deg(h) ∈ {5, 6}. All these hyperelliptic curves have a
polynomial h with distinct zeroes, and therefore each has the unique singular point
(0 : 1 : 0). To create a suitable set of branch points in C, we identify the complex

163
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numbers with the chart U := {(x : 1) | x ∈ C} = P1 − {(1 : 0)}.

R2.1 type (3, 8) #cells (6, 24, 16) map group size 96 Bolza’s map
SMP Aut+(R) =

〈
R,S

∣∣R3, S8, (RS)2, (RS−3)2
〉

The canonical representation ρc can be generated by

R 7→ 1

1 + i

(
i −i
1 1

)
S 7→

(
−ζ8 0

0 ζ−1
8

)
.

The only Aut+(R)-orbit of size at most 6 is that of vertices of the map, so these have
to be the fixed points of the hyperelliptic involution, and therefore yield the branch
data of the mapping R2.1 → P1. Computing the eigenvectors of S and spinning
by Aut+(R), we see that this orbit consists of (1 : 0), (0 : 1) and (ik : 1), where
k ∈ {0, . . . , 3}. We multiply to find the algebraic curve

y2z4 = xz ·
∏

k∈{0,...,3}

(x− ikz).

This is not quite right, since it is reducible, containing the extra component z = 0.
We cut that out to arrive at the planar model

y2z3 = x ·
∏

k∈{0,...,3}

(x− ikz) = x5 − xz4.

This is the well-known Bolza curve, and so we give R2.1 the name Bolza’s map.
Note that it is the same curve as that of the Wiman type II map Wi2(2), stemming
from the fact that Wi2(2) = D2(R2.1). Also, comparing with the polynomial data
from Section 6.4 confirms that this is a platonic 2-cover of Oct. The projectivities of
the canonical representation translate into the following automorphisms generating
Aut(Ra) = Aut+(R):

R : (x : y : z) 7→ (x− iz : yz2 : x+ iz),

S : (x : y : z) 7→ (ix : ζ−3
8 y : z).

Complex conjugation induces a reflection.

R2.2 type (4, 6) #cells (4, 12, 6) map group size 48 AM(2)
SMP Aut+(R) =

〈
R,S

∣∣R4, S6, (RS)2, (RS−1)2
〉

Our efforts in Chapters 2, 5, and 6 already establish this is the Accola-Maclachlan
map AM(2). To repeat the work from Chapter 6: the canonical representation ρc can
be generated by

R 7→
(

0 i
i 0

)
, S 7→

(
−ζ6 0

0 ζ−1
6

)
.

The only Aut+(R)-orbit of size 5 or 6 is that of cell centers of the map, so these have
to be the fixed points of the hyperelliptic involution, and therefore yield the branch
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data of the mapping R2.2 → P1. Computing the eigenvectors of R and spinning by
Aut+(R), we see that this orbit consists of (ζk6 : 1), where k ∈ {0, . . . , 5}. We multiply
to find the planar model

y2z4 =
∏

k∈{0,...,5}

(x− ζk6 z) = x6 − z6.

R2.3 type (4, 8) #cells (2, 8, 4) map group size 32 D(Bolza’s map) / Wi2(2)
SMP Aut+(R) =

〈
R,S

∣∣R4, S8, (RS)2, R−1SRS−3
〉

This map is D2(R2.1) = D2(Bolza’s map) and therefore has the same planar model
y2z3 = x5 − xz4, the Bolza curve. At the same time, it is the Wiman type II map
Wi2(2). For more information, see Section 5.2.

R2.4 type (5, 10) #cells (1, 5, 2) map group size 20 Wi1(2)
SMP Aut+(R) =

〈
R,S

∣∣R5, S10, (RS)2, RS−4
〉

This map is the Wiman type I map Wi1(2) with planar model y2z3 = x5 − z5. For
more information, see Section 5.1.

R2.5 type (6, 6) #cells (2, 6, 2) map group size 24 D1(AM(2))
SMP Aut+(R) =

〈
R,S

∣∣R6, S6, (RS)2, [R,S]
〉

This map is D1(R2.2) = D1(AM(2)) and therefore also has planar model y2z4 =
x6 − z6. For more information, see Section 5.3.

R2.6 type (8, 8) #cells (1, 4, 1) map group size 16 D1(Wi2(2))
SMP Aut+(R) =

〈
R,S

∣∣R8, S8, (RS)2, RS−3
〉

This map is D1(R2.3) = D1(Wi2(2)) = D1(D2(Bolza’s map)) and therefore also has
planar model y2z3 = x5 − xz4. This is again the Bolza curve, since R2.3 is itself
D2(R2.1) = D2(Bolza’s map). For more information, see Section 5.2.
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A.3 Genus 3

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that the canonical
model of a non-hyperelliptic platonic map of genus 3 is defined by a single quartic.

R3.1 type (3, 7) #cells (24, 84, 56) map group size 336 Klein quartic / Mod(7)
SMP Aut+(R) =

〈
R,S

∣∣R3, S7, (RS)2, (RS−2)4
〉

The canonical model of this map is the well-known Klein quartic

x3y + y3z + z3x = 0.

The canonical representation acting as automorphism group Aut+(R) on this curve
is determined by

R 7→ MonMat([1, 1, 1], [2, 3, 1]),

S 7→ 1

7

 −2ζ57 − 2ζ47 − 3ζ27 − 4ζ7 − 3 −2ζ57 − ζ
3
7 + 2ζ27 + 2ζ7 − 1 −2ζ57 − 3ζ47 − 3ζ37 − 2ζ27 − 4

−ζ57 + 2ζ47 + 2ζ37 − ζ
2
7 − 2 2ζ57 − 2ζ47 + 2ζ37 − ζ7 − 1 ζ57 + 4ζ47 + 2ζ37 + 2ζ27 + 4ζ7 + 1

ζ57 + 3ζ47 − ζ
3
7 + 3ζ27 + ζ7 3ζ57 + ζ47 + ζ37 + 3ζ27 − 1 −3ζ47 − 2ζ37 − 4ζ27 − 2ζ7 − 3

 .

Standard complex conjugation defines a reflection. For more information, see the
entire book [Lev2001] that has been written about this curve.

R3.2 type (3, 8) #cells (12, 48, 32) map group size 192 Dyck’s map / Fer(4)
SMP Aut+(R) =

〈
R,S

∣∣R3, S8, (RS)2, (S2R−1)3
〉

This is the Fermat map Fer(4), introduced in Chapter 2. We treated the Fermat maps
extensively in Section 5.5. We can also (re)derive the planar model by computing
that the canonical representation ρc can be generated by

R 7→

0 1 0
0 0 1
i 0 0

 , S 7→

0 −i 0
1 0 0
0 0 1

 .

The representation (ρ∨c )4+ has exactly one invariant 1-dimensional subspace, namely
〈x4 + y4 + z4〉.

R3.3 type (3, 12) #cells (4, 24, 16) map group size 96
SMP Aut+(R) =

〈
R,S

∣∣R3, S12, (RS)2, [R,S3]
〉

From [KK1990] we obtain a canonical representation ρc generated by

R 7→ 1

2

 i− 1 −i+ 1 0
−i− 1 −i− 1 0

0 0 2ζ3

 , S 7→ 1

2

 i+ 1 i− 1 0
−i− 1 i− 1 0

0 0 2(ζ3 + 1)

 .
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The representation (ρ∨c )4+ has two isotypic components for 1-dimensional irreducible
representations of Aut+(R3.3) in its decomposition. One is 〈x4 + (4ζ6− 2)x2y2 + y4〉,
but that consists of reducible polynomials. The other is

〈x4 − (4ζ6 − 2)x2y2 + y4, z4〉.

All subspaces of the latter are Aut+(R)-invariant. The two basis vectors presented
yield reducible curves, so we must use a non-degenerate linear combination. By
exploiting the centralizer CGL(3,C)(Aut+(R)) we may choose

x4 − (4ζ6 − 2)x2y2 + y4 + z4,

which is irreducible and gives the canonical model we sought.

Remark A.3.1. Another planar model for R3.3 is y3 = x4 − 1, already computed in
[KK1978] but without recognition of its platonicity. An obvious advantage is that
the field of definition is Q. This model also exhibits the curve explicitly as a trigonal
curve. However, it is not a canonical model: Aut+(R) does not act linearly on it. It
admits the standard map presentation

R : (x : y : z) 7→ ((−ζ6 + 2)xz(y − ζ6z)(y − ζ−1
6 z) : x4 − 3y2z2 + 3yz3 − 3z4 : ζ6x

4),

S : (x : y : z) 7→ (−ix : −ζ6y : z).

Yet another way to obtain an algebraic model is to look back at Section 6.4 and con-
sider the polynomial data for the tetrahedron. The map R3.3 is a platonic 4-cover
of Tet, leading to the model y4 = x(x3 − 2

√
2z3), which in turn is isomorphic to

y4 = x(x3 − z3).

R3.4 type (4, 6) #cells (8, 24, 12) map group size 96
SMP Aut+(R) =

〈
R,S

∣∣R4, S6, (RS)2, (RS−2)2
〉

This map is hyperelliptic, as revealed by Theorem 6.3.2 or the table in Appendix C.
The canonical representation ρc is generated by

R 7→

 0 1 0
−1 0 0
0 0 −1

 , S 7→

0 1 0
0 0 −1
1 0 0

 .

Hyperellipticity is confirmed by the fact that S3 = −I . The branch points are there-
fore the vertices of the map. We now search for an Aut+(R)-invariant P1. Since the
representation is irreducible, we try quadrics. Either by computing (ρ∨c )2+ or looking
at the above matrices, one finds the easy invariant quadric

Q : x2 + y2 + z2 = 0.

The eigenspaces of S are 〈(1,−1,−1)〉, 〈(1, ζ6, ζ−1
6 )〉, and 〈(1, ζ−1

6 , ζ6)〉. We need 2g +
2 = 8 branch points and the Aut+(R)-orbit of the first is too small. The other two lie
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in one orbit, which is thus the set of branch points. The parametrization of this conic
by

φ, P1 −→ Q

(s : t) 7→ (s2 − t2 : 2st : i(s2 + t2))

allows us to pull back these points to P1 with its inverse (x : y : z) 7→ (x − iz : y).
The resulting set of complex numbers brings us to the canonical model

y2z6 = (x− (±ζ5
12 ± ζ4

12)z)(x− (±ζ2
12 ± ζ12)z) = x8 + 14x4z4 + z8.

You may recognize the right hand side as the polynomial data for cells0(Cub) from
Section 6.4, and indeed we saw in Theorem 6.3.2 that R3.4 is a platonic 2-cover of
Cub branched over its vertices.

R3.5 type (4, 8) #cells (4, 16, 8) map group size 64 Kul(1) / D2(Fer(4))
SMP Aut+(R) =

〈
R,S

∣∣R4, S8, R−1S2RS−2
〉

This map is D2(R3.2) = D2(Fer(4)) and therefore also has the planar model x4 +
y4 + z4 = 0. For more information, see Section 5.5.

R3.6 type (4, 8) #cells (4, 16, 8) map group size 64 AM(3)
SMP Aut+(R) =

〈
R,S

∣∣R4, S8, (RS)2, (RS−1)2
〉

This is the Accola-Maclachlan map AM(3) with planar model y2z6 = x8 − z8. For
more information, see Section 5.3.

R3.7 type (4, 12) #cells (2, 12, 6) map group size 48 Wi2(3)
SMP Aut+(R) =

〈
R,S

∣∣R4, S12, (RS)2, R−1SRS−5
〉

This is the Wiman type II map Wi2(3) with planar model y2z5 = x(x6 − z6). For
more information, see Section 5.2.

R3.8 type (6, 6) #cells (4, 12, 4) map group size 48
SMP Aut+(R) =

〈
R,S

∣∣R6, S6, (RS)2, R3S3
〉

This map is D1(R3.4) and therefore also has planar model y2z6 = x8 + 14x4z4 + z8.
As a member of F (3n,3n)

3n−3 discussed in Chapter 2, it is a platonic 2-cover of Tet.

R3.9 type (7, 14) #cells (1, 7, 2) map group size 28 Wi1(3)
SMP Aut+(R) =

〈
R,S

∣∣R7, S14, RS−6
〉

This is the Wiman type I map Wi1(3) with planar model y2z5 = x7 − z7. For more
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information, see Section 5.1.

R3.10 type (8, 8) #cells (2, 8, 2) map group size 32 D(Kul(1)) / D1(D2(Fer(4)))
SMP Aut+(R) =

〈
R,S

∣∣R8, S8, (RS)2, R−1SRS−5
〉

This map is D1(R3.5) = D1(D2(R3.2)) = D1(D2(Fer(4))). It therefore also has pla-
nar model x4 + y4 + z4 = 0. For more information, see Section 5.5.

R3.11 type (8, 8) #cells (2, 8, 2) map group size 32 D(AM(3))
SMP Aut+(R) =

〈
R,S

∣∣R8, S8, (RS)2, [R,S]
〉

This map is D1(R3.6) = D1(AM(3)) and therefore also has planar model y2z6 =
x8 − z8. For more information, see Section 5.3.

R3.12 type (12, 12) #cells (1, 6, 1) map group size 24 D(Wi2(3))
SMP Aut+(R) =

〈
R,S

∣∣R12, S12, (RS)2, RS−5
〉

This map is D1(R3.7) = D1(Wi2(3)) and therefore also has planar model y2z5 =
x(x6 − z6). For more information, see Section 5.2.
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A.4 Genus 4

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that the canonical
model of a non-hyperelliptic platonic map of genus 4 is defined by one quadric and
one cubic. These maps are therefore all trigonal.

R4.1 type (3, 12) #cells (6, 36, 24) map group size 144
SMP Aut+(R) =

〈
R,S

∣∣R3, S12, (RS)2, (S2R−1)3, [R,S4]
〉

The canonical representation ρc can be generated by

R 7→


0 0 ζ3 + 1 0

ζ3 + 1 0 0 0
0 ζ2

3 0 0
0 0 0 ζ3

 , S 7→


0 ζ3 0 0
−ζ3 0 0 0

0 0 ζ3 0
0 0 0 ζ3 + 1

 .

Computing the actions (ρ∨c )2+ and (ρ∨c )3+, we find that the first has only x2
1 + x2

2 +
x2

3 and x2
4 as 1-dimensional invariant subspaces. Since the latter polynomial is re-

ducible, we have no choice but to use

I2 = 〈 x2
1 + x2

2 + x2
3 〉.

The representation (ρ∨c )3+ has two isotypic components of 1-dimensional irreducible
components:

〈 x4(x2
1 + x2

2 + x2
3) 〉 and 〈 x1x2x3, x

3
4 〉.

Because the first space visibly contains a reducible polynomial, we must use the
second. For the same reason, the linear combination we pick inside that space has to
be non-degenerate. Exploiting the centralizer CGL(4,C)(Aut+(R)), we may without
loss of generality pick x1x2x3 + x3

4, and so we find

I = 〈x2
1 + x2

2 + x2
3, x1x2x3 + x3

4〉.

as the solution. This ideal defines the non-singular irreducible curve that is our pla-
tonic surface.

Remark A.4.1. Another take on this map is to note that R4.1 is a platonic 3-cover of
Oct branched over cells0. Referring back to Section 6.4, we take y2z3 = −xz(x4− z4)
and remove the component z = 0 to arrive at the planar model

y3z2 = −x(x4 − z4).

A standard map presentation is generated by

R : (x : y : z) 7→ (ix2 − iz2 : 2(ζ12 − i)yz : x2 + 2xz + z2),

S : (x : y : z) 7→ (ix : ζ12y : z).
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Standard complex conjugation is a reflection on the map.

R4.2 type (4, 5) #cells (24, 60, 30) map group size 240 Bring’s map
SMP Aut+(R) =

〈
R,S

∣∣R4, S5, (RS)2, (RS−1RS−2)2
〉

The canonical representation ρc (taken from [KK1990]) can be generated by

R 7→ 1

5


2ζ35 + 3ζ25 + 3ζ5 + 2 2ζ25 + ζ5 + 2 ζ35 + 2ζ5 + 2 −ζ35 − ζ

2
5 − 3

2ζ25 + ζ5 + 2 −3ζ35 − ζ5 − 1 ζ35 + ζ25 − 2 −2ζ35 − ζ
2
5 − 2ζ5

ζ35 + 2ζ5 + 2 ζ35 + ζ25 − 2 ζ35 − 2ζ25 + ζ5 ζ35 − ζ
2
5 − ζ5 + 1

−ζ35 − ζ
2
5 − 3 −2ζ35 − ζ

2
5 − 2ζ5 ζ35 − ζ

2
5 − ζ5 + 1 −ζ25 − 3ζ5 − 1

 ,

S 7→ DiaMat(ζ5, ζ
2
5 , ζ

3
5 , ζ

4
5 ).

Computing the actions (ρ∨c )2+ and (ρ∨c )3+, we find that each has a unique invariant
1-dimensional subspace. This results in the ideal

I = 〈x1x4 + x2x3, x
2
1x3 − x1x

2
2 + x2x

2
4 − x2

3x4〉,

which indeed defines a non-singular irreducible curve, giving us the platonic surface
we sought.

Figure A.1: The dodecadodecahedron is an embedding into R3 of R∨4.2 (left) and the
small stellated dodecahedron is one of R∨4.6 = D1(R4.2)∨ (right).

Remark A.4.2. This platonic surface is known as Bring’s curve, and we therefore
baptize it Bring’s map. Bring’s curve appears naturally in the solution of the reduced
quintic equation x5 + ax+ b = 0. The roots x1, . . . , x5 of this equation satisfy

5∑
i=1

xi = 0,

5∑
i=1

x2
i = 0,

5∑
i=1

x3
i = 0,

and these three equations define a non-singular genus 4 curve B in P4. The natural
permutation action of Sym5 on P4 acts on B. Because 120 > 72 = 24(g − 1), the
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relevant remark in Section 1.4 already shows B is a platonic surface. Explicitly, the
Belyı̆ function

β : (x1 : x2 : x3 : x4 : x5) 7→ (x5
1 + x5

2 + x5
3 + x5

4 + x5
5 : x1x2x3x4x5)

is well-defined, Sym5-invariant and of degree 120, since almost all points on B have
five different coordinates. Because of its Sym5-invariance, it follows that the ramifi-
cation points of β are precisely those points of B that are invariant under an element
of this group. A long winded case elimination reveal that only these Sym5-orbits of
points on B are invariant under an element of Sym5:

(1 : ζ5 : ζ2
5 : ζ3

5 : ζ4
5 ), which is invariant under (12345);

(1 : 1 : α1 : α2 : α3), which is invariant under (12);

(1 : i : −1 : −i : 0), which is invariant under (1234).

Here α1, α2, α3 are the three complex roots of the polynomial X3 + 2X2 + 3X + 4.
The ramification orders of the points in these three orbits are 5, 2, 4 and they map
to (5 : 1), (−11 : 2), and (5 : 1), respectively. This shows we have an Aut+(R)-
invariant Belyı̆ function and hence a platonic surface, notwithstanding β having only
two branch points: pull back the extended real line of Ĉ to get the barycentric graph
of R4.2 on B. The curve B contains no real points (consider its second defining
equality) and hence standard complex reflection – which leaves B invariant – is not
a reflection, but the unique antipodal mapping of R4.2.

A beautiful surprise is that the dual of Bring’s map admits a topological immer-
sion into R3 as the dodecadodecahedron. The diagonal map D1(R4.2)∨ can be im-
mersed in R3 as the small stellated dodecahedron, one of the Kepler-Poinsot poly-
hedra. They are shown in Figure A.1. More details on this curve and its Riemann
surface properties can be found in the lovely [Web2005] by Matthias Weber, giving
further references to the history of Bring’s curve. Weber also gives an elegant planar
model:

y5 = (x+ 1)x2(x− 1)−1.

R4.3 type (4, 6) #cells (12, 36, 18) map group size 144 F (4,2n)
(n−1)2(2)

SMP Aut+(R) =
〈
R,S

∣∣R4, S6, (RS)2, [RS, SR]
〉

The canonical representation ρc can be generated by

R 7→


0 0 0 ζ2

3

0 0 ζ3 0
1 0 0 0
0 1 0 0

 , S 7→


0 0 0 −ζ3
0 0 −ζ2

3 0
0 −ζ2

3 0 0
−ζ3 0 0 0

 .

Computing the actions (ρ∨c )2+ and (ρ∨c )3+, we find that the first contains only 〈x1x2+
x3x4〉 and 〈x1x2 − x3x4〉 as 1-dimensional invariant subspaces, the second only x3

1 +
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x3
2 +x3

3 +x3
4 and x3

1 +x3
2−x3

3−x3
4. Of the four possible combinations, the ones using

〈x1x2 − x3x4〉 are not prime. Furthermore, the projectivity

(x1 : x2 : x3 : x4) 7→ (x1 : x2 : −x3 : −x4)

stabilizes the invariant subspaces of C[x1, . . . , x4]2 but interchanges the two sub-
spaces of C[x1, . . . , x4]3, so up to isomorphism we have one remaining candidate:

I = 〈x1x2 + x3x4, x
3
1 + x3

2 + x3
3 + x3

4〉.

This does indeed define the platonic surface (R4.3)a.

R4.4 type (4, 10) #cells (4, 20, 10) map group size 80 AM(4)
SMP Aut+(R) =

〈
R,S

∣∣R4, S10, (RS)2, (RS−1)2
〉

This is the Accola-Maclachlan map AM(4) with planar model y2z8 = x10 − z10. For
more information, see Section 5.3.

R4.5 type (4, 16) #cells (2, 16, 8) map group size 64 Wi2(4)
SMP Aut+(R) =

〈
R,S

∣∣R4, S16, (RS)2, R−1SRS−7
〉

This is the Wiman type II map Wi2(4) with planar model y2z7 = x(x8 − z8). For
more information, see Section 5.2.

R4.6 type (5, 5) #cells (12, 30, 12) map group size 120 D(Bring’s map)
SMP Aut+(R) =

〈
R,S

∣∣R5, S5, (RS)2, (RS−1)3
〉

This map is D1(R4.2). It therefore has the same canonical model as Bring’s map, and
can also be realized on Bring’s curve.

R4.7 type (6, 6) #cells (6, 18, 6) map group size 72
SMP Aut+(R) =

〈
R,S

∣∣R6, S6, (RS)2, (RS−1)2
〉

This map is D1(R4.3) and therefore has the same canonical model as R4.3.

R4.8 type (6, 6) #cells (6, 18, 6) map group size 72
SMP Aut+(R) =

〈
R,S

∣∣R6, S6, (RS)2, [R2, S], (RS−2)2
〉

The canonical representation ρc (obtained from [KK1990]) can be generated by

R 7→


0 0 0 −1
0 ζ6 − 1 0 0
0 0 ζ6 0

−ζ6 + 1 0 0 0

 , S 7→


ζ6 0 0 0
0 ζ6 0 0
0 0 ζ6 − 1 0
0 0 0 −1

 .
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This has invariant subspaces 〈e1, e4〉, 〈e2〉 and 〈e3〉. We compute the actions (ρ∨c )2+

and (ρ∨c )3+. The only invariant 1-dimensional subspaces of the first are 〈x2x3〉, 〈x2
2〉

and the 1-dimensional subspaces of 〈x1x4, x
2
3〉. Primality of the canonical ideal forces

us to choose a non-degenerate linear combination in the third space. Using the cen-
tralizer CGL(4,C)(Aut+(R)) to scale the x2

3-component, we may pick

I2 = 〈x1x4 + x2
3〉.

The representation (ρ∨c )3+ leaves 〈x3
1 + x3

4〉, 〈x2
2x3〉 and the 1-dimensional subspaces

of 〈x3
1−x3

4, x
3
2〉, 〈x1x3x4, x

3
3〉, 〈x1x2x4 +x2x

2
3〉 invariant. Only the third space contains

polynomials irreducible over C, and again we exploit CGL(4,C)(Aut+(R)), this time
scaling the x3

2-component. Up to isomorphism, we thus find the unique candidate

I = 〈x1x4 + x2
3, x

3
1 + x3

2 − x3
4〉.

This indeed yields the non-singular irreducible curve of genus 4 we sought.

R4.9 type (6, 12) #cells (2, 12, 4) map group size 48
SMP Aut+(R) =

〈
R,S

∣∣R6, S12, (RS)2, R−1SRS−7
〉

This map is D2(R4.1) and therefore has the same canonical model as R4.1.

R4.10 type (9, 18) #cells (1, 9, 2) map group size 36 Wi1(4)
SMP Aut+(R) =

〈
R,S

∣∣R9, S18, (RS)2, RS−8
〉

This is the Wiman type I map Wi1(4) with planar model y2z7 = x9 − z9. For more
information, see Section 5.1.

R4.11 type (10, 10) #cells (2, 10, 2) map group size 40 D(AM(4))
SMP Aut+(R) =

〈
R,S

∣∣R10, S10, (RS)2, [R,S]
〉

This map is D1(R4.4) = D1(AM(4)) and therefore also has planar model y2z8 =
x10 − z10. For more information, see Section 5.3.

R4.12 type (16, 16) #cells (1, 8, 1) map group size 32 D(Wi2(4))
SMP Aut+(R) =

〈
R,S

∣∣R16, S16, (RS)2, RS−7
〉

This map is D1(R4.5) = D1(Wi2(4)) and therefore also has planar model y2z7 =
x(x8 − z8). For more information, see Section 5.2.
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A.5 Genus 5

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that the canonical
model of a non-hyperelliptic, non-trigonal platonic map of genus 5 is a complete
intersection curve, defined by three quadrics. If it is trigonal, some additional cubics
will be needed.

R5.1 type (3, 8) #cells (24, 96, 64) map group size 384 Mod(8)
SMP Aut+(R) =

〈
R,S

∣∣R3, S8, (RS)2, (RS3R−1S−2)2
〉

We can generate the canonical representation ρc by

R 7→ 1

2

(
−1− i −1 + i
1 + i −1 + i

)
⊕

0 0 1
1 0 0
0 1 0

 , S 7→ ζ8
2

(
−1− i −1 + i
−1 + i −1− i

)
⊕

−i 0 0
0 0 −1
0 i 0

 .

The representation (ρ∨c )2+ decomposes into irreducibles as

2× 31 ⊕ 36 ⊕ higher-dimensional subspaces.

The second isotypic component contains reducibles and therefore cannot be included
in the ideal as a whole. Hence, we must use an appropriate subspace of 2 × 31. Its
3-dimensional invariant subspaces are of the form

〈x2
1 + λ(x2

3 − ix2
4), x1x2 + λx2

5, x
2
2 − λ(x2

3 + ix2
4)〉.

The centralizer CGL(5,C)(Aut(R5.1)+) enables us to choose λ = 1 without loss of
generality. Up to isomorphism, therefore, we can generate I2 by

〈x2
1 + x2

3 − ix2
4, x1x2 + x2

5, x
2
2 − x2

3 − ix2
4〉.

This ideal indeed defines the platonic surface for R5.1.

Remark A.5.1. This curve has been studied
by Wiman and Del Centina (see [Wim1895],
[KM2010]), and has been referred to by some
as Wiman’s curve. The number of curves
Wiman studied being rather large, this might
not be a fortunate denomination. Another can-
didate name seems more suitable to us: R5.1 is
the modular map Mod(8). For more informa-
tion, see Section 5.7.

Remark A.5.2. The map R∨5.1 has a beautiful
topological realization in R3 with all faces iso-
metric to each other. This was discovered by
Jarke van Wijk [Wij2009] and is shown in Fig-
ure A.2.
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Figure A.2: The map R∨5.1 embed-
ded in R3 with isometric faces.
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Remark A.5.3. The group Aut(R5.1) contains an orientation preserving antipodal map
σ. This is a central element of Aut(R5.1) and the quotient mapping is an unbranched
platonic 2-cover R5.1 → R5.1/〈σ〉 = R3.2 of the map R3.2 = Fer(4).

R5.2 type (3, 10) #cells (12, 60, 40) map group size 240
SMP Aut+(R) =

〈
R,S

∣∣R3, S10, (RS)2, (RS−4)2
〉

Some consideration of Aut(R5.1) leads us to the discovery that there is a platonic
2-cover π : R5.1 → R5.1/〈S5〉 = Ico, branched over cells0. The map is therefore
hyperelliptic, and indeed we saw it in Theorem 6.3.2. Referring back to Section 6.4,
we construct the planar curve y2z10 = −xz(x10 + 11x5z5 − z10). It is reducible, but
dividing out the component z = 0 and transforming by y 7→ iy, we find the planar
model

y2z9 = x11 + 11x6z5 − xz10.

This model has the standard map presentation

R : (x : y : z) 7→
(
−ζ5(ζ25+ζ5+1)(x− (ζ5+1)z)5(x+ (ζ35+ζ5+1)z) : 5(4ζ35+4ζ25−3)yz5 : (x− (ζ5+1)z)6

)
,

S : (x : y : z) 7→ (ζ5x : −ζ35y : z).

Standard complex conjugation con5 is a reflection of the map.

R5.3 type (4, 5) #cells (32, 80, 40) map group size 320 Hum1(4)
SMP Aut+(R) =

〈
R,S

∣∣R4, S5, (RS)2, (RS−1)4
〉

The canonical representation ρc can be generated by

R 7→ MonMat([1,−1,−1, 1,−1], [2, 1, 4, 3, 5]),

S 7→ MonMat([1, 1, 1, 1, 1], [2, 4, 1, 5, 3]).

The representation (ρ∨c )2+ decomposes as 11⊕21⊕22⊕other subspaces, so we need

11 = 〈x2
1 + x2

2 + x2
3 + x2

4 + x2
5〉

and one of the 2-dimensional isotypic components. The latter are

21 = 〈x2
1 + (ζ35+ζ25 )x2

3 − x2
4 − (ζ35+ζ25 )x2

5, x
2
2 − x2

3 + (ζ35+ζ25 )x2
4 − (ζ35+ζ25 )x2

5〉,
22 = 〈x2

1 − (ζ35+ζ25+1)x2
3 − x2

4 + (ζ35+ζ25+1)x2
5, x

2
2 − x2

3 − (ζ35+ζ25+1)x2
4 + (ζ35+ζ25+1)x2

5〉.

They are both defined over Q(ζ5 + ζ−1
5 ), and are related by the Galois automorphism

of this field that sends ζ5 + ζ−1
5 to ζ2

5 + ζ−2
5 . Both choices of component yield a viable

candidate for the platonic surface (R5.3)a, and standard complex conjugation is a
reflection of the map on either curve.

The presence of two solutions is explained by investigating the outer automorphism
group Out(Aut(R5.3)) ∼= Sym3. The action of an outer element on Aut+(R5.3) allows
us to set up linear equations to construct a projectivity accomplishing the same on
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ρc(Aut+(R5.3)). It turns out we cannot extend ρc projectively to represent the order
three outer elements, but we can represent an outer involution by

MonMat([1, 1, 1, 1, 1], [5, 1, 2, 4, 3]).

This projectivity swaps the two curves, so the conclusion is that up to isomorphism,
our platonic surface is defined by 11 ⊕ 21 as defined above.

Remark A.5.4. This map is the Humbert map Hum1(4), and as such we can also use
the algebraic model in P4 described in Section 5.6.

R5.4 type (4, 6) #cells (16, 48, 24) map group size 192 Hum3(4)
SMP Aut+(R) =

〈
R,S

∣∣R4, S6, (RS)2, (R2S3)2
〉

The canonical representation ρc can be generated by

R 7→ MonMat([−1, 1,−1,−1, 1], [2, 1, 5, 4, 3]),

S 7→ MonMat([−ζ3, ζ2
3 ,−1, 1, 1], [1, 2, 4, 5, 3]).

It has invariant subspaces 〈e1, e2〉 and 〈e3, e4, e5〉. The representation (ρ∨c )2+ decom-
poses as 11 ⊕ 14 ⊕ 2 × 21 ⊕ 32 ⊕ 61. The isotypic components 14 = 〈x1x2〉 and
32 = 〈x3x4, x4x5, x5x3〉 both contain a multiple of a linear form and hence are ex-
cluded. We must therefore use

11 = 〈x2
3 + x2

4 + x2
5〉

and an invariant 2-dimensional subspace of 2 × 21. All these subspaces are of the
form

〈x2
1 + λ(ζ3x

2
3 + x2

4 + ζ2
3x

2
5), x2

2 + λ(ζ2
3x

2
3 + x2

4 + ζ3x
2
5)〉.

Exploiting the centralizer CGL(5,C)(Aut+(R5.4)) we may set λ = 1. By subtracting
the above generator of 11 we arrive at the unique candidate ideal

I = 〈x2
3 + x2

4 + x2
5, x

2
1 + (ζ3 − 1)x2

3 + (ζ2
3 − 1)x2

5, x
2
2 + (ζ2

3 − 1)x2
3 + (ζ3 − 1)x2

5〉.

This ideal does define the correct platonic surface.

Remark A.5.5. This map is the Humbert map Hum3(4), and as such we can also use
the algebraic model in P4. For more information, see Section 5.6.

R5.5 type (4, 8) #cells (8, 32, 16) map group size 128 Hum2(4)
SMP Aut+(R) =

〈
R,S

∣∣R4, S8, (RS)2, [RS, SR], (RS−3)2
〉

The canonical representation ρc can be generated by

R 7→ MonMat([−i, 1, 1, 1, 1], [1, 5, 4, 2, 3]),

S 7→ MonMat([−i,−1,−1,−1, 1], [1, 4, 5, 3, 2]).
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We note that ρc has invariant subspaces 〈e1〉 and 〈e2, e3, e4, e5〉. The representation
(ρ∨c )2+ decomposes into irreducibles as

11 ⊕ 2× 12 ⊕ 15 ⊕ 16 ⊕ 21 ⊕ 42 ⊕ 43.

The 4-dimensional components are too big, and 21 = 〈x2x3, x4x5〉 contains a multiple
of a linear form, so we must use three 1-dimensional pieces. Also, the pieces

15 = 〈x2
2 − x2

3 − ix2
4 + ix2

5〉,
16 = 〈x2

2 − x2
3 + ix2

4 − ix2
5〉

cannot be combined, since (x4 − x5)(x4 + x5) ∈ 15 ⊕ 16. Furthermore,

2× 12 = 〈x2
1, x

2
2 + x2

3 − x2
4 − x2

5〉,

so we must use 11 = 〈x2
2 + x2

3 + x2
4 + x2

5〉, an invariant subspace 12 < 2 × 12, and
either 15 or 16. The subspace 〈x2

1〉 < 2×12 is obviously incorrect, as is 〈x2
2 +x2

3−x2
4−

x2
5〉, which results in (x4 − x5)(x4 + x5) ∈ 11 ⊕ 12. With the help of the centralizer
CGL(5,C)(Aut+(R5.5)) we may normalize any non-degenerate linear combination in
2× 12 to

12 = 〈x2
1 + x2

2 + x2
3 − x2

4 − x2
5〉.

The only choice left is now between 15 and 16. Like for R5.3, both solutions define
valid curves to serve as our canonical model. The components 15 and 16 are related
by the field automorphism of Q(i) induced by i 7→ −i. This field automorphism can
be effected by standard complex conjugation con4 on P4, switching the two curves.
But they are also clearly switched by the projectivity

T : (x1 : x2 : x3 : x4 : x5) 7→ (x1 : x2 : x3 : x5 : x4).

This not only shows us that up to isomorphism the canonical model is defined by
11⊕ 12⊕ 15. It also means that T ◦ con4 is an antiholomorphism of the model. In fact
this mapping defines a reflection of the platonic map R5.5.

Remark A.5.6. This map is the Humbert map Hum2(4), and as such we can also use
the algebraic model in P4. For more information, see Section 5.6.

R5.6 type (4, 8) #cells (8, 32, 16) map group size 128 D(Mod(8))
SMP Aut+(R) =

〈
R,S

∣∣R4, S8, (RS)2, [R2, S2]
〉

This map isD2(R5.1) = D2(Mod(8)) and thus has the same canonical model as R5.1.

R5.7 type (4, 12) #cells (4, 24, 12) map group size 96 AM(5)
SMP Aut+(R) =

〈
R,S

∣∣R4, S12, (RS)2, (RS−1)2
〉

This is the Accola-Maclachlan map AM(5) with planar model y2z10 = x12− z12. For



A.5 – Genus 5 179

more information, see Section 5.3.

R5.8 type (4, 20) #cells (2, 20, 10) map group size 80 Wi2(5)
SMP Aut+(R) =

〈
R,S

∣∣R4, S20, (RS)2, R−1SRS−9
〉

This map is the Wiman type II map Wi2(5) with planar model y2z9 = x(x10 − z10).
For more information, see Section 5.2.

R5.9 type (5, 5) #cells (16, 40, 16) map group size 160 D(Hum1(4))
SMP Aut+(R) =

〈
R,S

∣∣R5, S5, (RS)2, [RS, SR]
〉

This map isD(R5.3) = D(Hum1(4)) and thus has the same canonical model as R5.3.

R5.10 type (6, 6) #cells (8, 24, 8) map group size 96 D(Hum3(4))
SMP Aut+(R) =

〈
R,S

∣∣R6, S6, (RS)2, (RS−2)2, (R2S−1)2
〉

This map isD(R5.4) = D(Hum3(4)) and thus has the same canonical model as R5.4.

R5.11 type (6, 15) #cells (2, 15, 5) map group size 60
SMP Aut+(R) =

〈
R,S

∣∣R6, S15, (RS)2, R−1SRS−4
〉

The canonical linear representation ρc can be generated by

R 7→ MonMat([−ζ3, 1, ζ3, 1, ζ2
3 ], [1, 3, 2, 5, 4]),

S 7→ MonMat([ζ10
15 , ζ

11
15 , ζ

14
15 , ζ

13
15 , ζ

7
15], [1, 2, 3, 4, 5]).

It has invariant subspaces 〈e1〉, 〈e2, e3〉, and 〈e4, e5〉. The representation (ρ∨c )2+ de-
composes as

15 ⊕ 2× 16 ⊕ 21 ⊕ 2× 22 ⊕ 23 ⊕ 24 ⊕ 26.

All these pieces contain irreducibles, leaving us to select invariant subspaces 16 <
2× 16 and 22 < 2× 22. These invariant subspaces all have the following shape:

16 = 〈x2
1 + λ1x4x5〉,

22 = 〈x1x2 + λ2x3x5, x1x3 − λ2ζ3x2x4〉.

The centralizer CGL(5,C)(Aut+(R5.11)) allows us to scale the coordinates of either
subspace 〈e1〉 or 〈e4, e5〉. Scaling within 〈e2, e3〉 however does not change the invari-
ant subspaces. We may therefore set λ2 = 1, but the centralizer is as yet of no further
avail. We are left with the task of finding a suitable 16-subspace. After pondering
this for a while, we compute that

(λ1 − ζ3)x2
2x4x5 = x2

2(x2
1 + λ1x4x5)− x1x2(x1x2 + x3x5) + x2x5(x1x3 − ζ3x2x4) ∈ I,

so that if λ1 6= ζ3, we have a multiple of a linear form in the ideal. The only option is
thus λ1 = ζ3 and we conclude that

I2 = 〈x2
1 + ζ3x4x5, x1x2 + x3x5, x1x3 − ζ3x2x4〉.
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The plot thickens, because I2 defines a surface, not a curve. This must be a rational
normal scroll and the map R5.11 must be trigonal, as described in Section 6.1.

Remark A.5.7. This can be confirmed group theoretically, since the map admits the
branched 3-cover

π : R5.11 −→ R5.11/〈R3, S3〉 ∼= P1.

The cover π is not platonic, according to our definition in Section 1.6, since the sub-
group contains RS, but that is of little import.

The way forward is to search in (ρ∨c )3+ for the additional ideal generators. Com-
paring the Hilbert Poincaré series of the ideal (I2) to the one for our canonical ideal
I reveals that I3 is still missing a 2-dimensional subspace of irreducible degree 3
polynomials. The representation (ρ∨c )3+ decomposes as

2× 12 ⊕ 13 ⊕ 2× 14 ⊕ 15 ⊕ 16 ⊕ 3× 21 ⊕ 3× 22 ⊕ 23 ⊕ 2× 24 ⊕ 3× 25 ⊕ 2× 26.

All isotypic components contain reducibles, so we cannot use any of them com-
pletely. Computing the intersection of each component with (I2) ∩ C[x1, . . . , x5]3,
only the possibilities 13, 15 and subspaces of 21 or 22 remain. The first two are ruled
out by application of the radical decomposition trick. All invariant subspaces of the
latter two have the form

21 = 〈x2
1x4 + λ1x

3
2 + λ2ζ3x

2
4x5, x

2
1x5 + λ1ζ

2
3x

3
3 + λ2ζ3x4x

2
5〉,

22 = 〈x1x
2
4 + λ1x

2
2x3 + λ2x

3
5, x1x

2
5 − λ1x2x

2
3 − λ2ζ3x

3
4〉.

Now we can use the remaining freedom of the centralizer CGL(5,C)(Aut+(R5.11)),
which does not affect I2, to set λ2 = 1. This leads to the elimination of the first
option, since choosing it would force

λ1x
3
2 = x2

1x4 + λ1x
3
2 + ζ3x

2
4x5 − x4(x2

1 + ζ3x4x5) ∈ I.

So we must use a 22 subspace and we have the parameter λ1 left. It is time to apply
the fixed point strategy. We compute the eigenspaces of R, which are 〈e2 + ζ3e3〉,
〈e2 − ζ3e3〉, 〈e4 − ζ6e5〉, and 〈e1, e4 + ζ6e5〉. None of the 1-dimensional eigenspaces
lies on the zero set of any choice of 22, unless λ1 = 0. But that choice of parameter
results in a non-prime ideal again. Hence, the fixed point pR of R must correspond
to an eigenvector e1 + µ(e4 + ζ6e5). Substituting this point into x2

1 + ζ3x4x5 ∈ I2, we
find that µ = ±1. This enables us to calculate λ1 and check the resulting ideal. We
find the unique solution pR = e1 + e4 + ζ6e5 and the homogeneous ideal part

I3 = 〈x1x
2
4 + x2

2x3 + x3
5, x1x

2
5 − x2x

2
3 − ζ3x3

4〉.

The ideal (I2, I3) indeed defines a non-singular, irreducible curve of genus 5 that is
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our platonic surface.

R5.12 type (8, 8) #cells (4, 16, 4) map group size 64 D(Hum2(4))
SMP Aut+(R) =

〈
R,S

∣∣R8, S8, (RS)2, (RS−1)2, RS3R−3S−1
〉

This map isD(R5.5) = D(Hum2(4)) and thus has the same canonical model as R5.5.

R5.13 type (8, 8) #cells (4, 16, 4) map group size 64 D1(D2(Mod(8)))
SMP Aut+(R) =

〈
R,S

∣∣R8, S8, (RS)2, [R2, S], [R,S2], R4S−4
〉

This map is D1(R5.6) = D1(D2(R5.1)) and therefore has the same canonical model
as R5.1, which is also Mod(8).

R5.14 type (11, 22) #cells (1, 11, 2) map group size 44 Wi1(5)
SMP Aut+(R) =

〈
R,S

∣∣R11, S22, (RS)2, RS−10
〉

This map is the Wiman type I map Wi1(5) with planar model y2z9 = x11 − z11. For
more information, see Section 5.1.

R5.15 type (12, 12) #cells (2, 12, 2) map group size 48 D(AM(5))
SMP Aut+(R) =

〈
R,S

∣∣R12, S12, (RS)2, [R,S]
〉

This map is D(R5.7) = D(AM(5)) and therefore also has planar model y2z10 =
x12 − z12. For more information, see Section 5.3.

R5.16 type (20, 20) #cells (1, 10, 1) map group size 40 D(Wi2(5))
SMP Aut+(R) =

〈
R,S

∣∣R20, S20, (RS)2, RS−9
〉

This map is D(R5.8) = D(Wi2(5)) and therefore also has planar model y2z9 =
x(x10 − z10). For more information, see Section 5.2.
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A.6 Genus 6

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that the canonical
model of a non-hyperelliptic platonic map of genus 6 satisfies dim(I2) = 6. If the
map is trigonal, some additional cubics will be needed to define the model. Also,
as we noted in Section 6.1, for g = 6 we have another possible exceptional situation
besides the occurrence of trigonal curves: algebraic curves birationally equivalent to
a non-singular planar quintic. That this does indeed occur is exemplified by Fer(5).
For other platonic maps we encounter, we distinguish between these two cases by
exhibiting explicitly either a 3-cover of P1 or a birational mapping to a non-singular
planar quintic.

R6.1 type (3, 10) #cells (15, 75, 50) map group size 300 Fer(5)
SMP Aut+(R) =

〈
R,S

∣∣R3, S10, (RS)2, (S2R−1)3
〉

From the standard map presentation we see this is the platonic map Fer(5), intro-
duced in Section 2.9. As we elaborated in Section 5.5, the corresponding platonic
surface is defined by the Fermat curve x5 + y5 + z5 = 0. Still, for the record and
to demonstrate our construction strategy once more, we proceed to discover a (rela-
tively nice) canonical model for it.

The canonical representation ρc can be generated by

R 7→ MonMat([1, 1, 1, 1, 1, 1], [2, 3, 1, 5, 6, 4]),

S 7→ MonMat([−ζ4
5 ,−1,−ζ5,−ζ2

5 ,−ζ3
5 ,−1], [2, 1, 3, 4, 6, 5]).

and has invariant subspaces 〈e1, e2, e3〉 and 〈e4, e5, e6〉. The representation (ρ∨c )2+

decomposes as
2× 31 ⊕ 32 ⊕ 2× 35 ⊕ 61.

All isotypic pieces contain reducibles, so we must use an invariant 31 < 2 × 31 and
an invariant 35 < 2× 35. The two isotypic components are

2× 31 = 〈x1x5, x2x6, x3x4, x4x5, x4x6, x5x6〉,
2× 35 = 〈x1x2, x1x3, x2x3, x

2
4, x

2
5, x

2
6〉.

All their 1-dimensional invariant subspaces are of the form

31 = 〈x1x5 + λ1x4x6, x2x6 + λ1x4x5, x3x4 + λ1x5x6〉,
35 = 〈x1x2 + λ2x

2
4, x1x3 + λ2x

2
6, x2x3 + λ2x

2
5〉.

With the centralizer trick we set λ1 = −1. Now we compute the eigenspaces of R to
apply the fixed point strategy:

E(R, ζ3) = 〈e1 − ζ6e2 + ζ2
6e3, e4 − ζ6e5 + ζ2

6e6〉,
E(R, ζ2

3 ) = 〈e1 + ζ2
6e2 − ζ6e3, e4 + ζ2

6e5 − ζ6e6〉,
E(R, 1) = 〈e1 + e2 + e3, e4 + e5 + e6〉.
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Any point in the third space yields an orbit size smaller than 50, so we must use one
of the other two. These two are each others complex conjugates. The constraints that
our choice of 31 lays on them leaves one suitable eigenvector in each of them: −ζ6b1+
b2 and−ζ2

6b1− b2 in terms of their respective basis vectors. The two vectors generate
the same Aut+(R6.1)-orbit, which has to be the set of cell centers of the canonical
model, 50 in total. These points also force λ2 = −1, so that we have determined I2.
As expected, this does not define a curve, but the Veronese surface V2,2.

The Hilbert-Poincaré series of (I2) tells us we need three more irreducible polynomi-
als to generate I3. The representation (ρ∨c )3+ decomposes as

3× 12 ⊕ 21 ⊕ 31 ⊕ 2× 34 ⊕ 2× 36 ⊕ 2× 37.

All the isotypic components contain reducibles, and (I2) already contains invariant
subspaces 2 × 12, 21, 34, and 36. The only remaining option is to add a 37 < 2 × 37.
The cell centers yield enough constraints on the component to single out an invariant
37, and we find

I = 〈 x1x5 − x4x6, x2x6 − x4x5, x3x4 − x5x6, x1x2 − x2
4, x1x3 − x2

6, x2x3 − x2
5,

x3
1 + x2

2x4 + x2
3x6, x

2
1x4 + x3

2 + x2
3x5, x

2
1x6 + x2

2x5 + x3
3 〉.

The elimination ideal to the variables (x1, x4, x6) gives us back the standard planar
curve in the shape of x5

1 + x5
4 + x5

6 = 0.

R6.2 type (4, 6) #cells (20, 60, 30) map group size 240 Wiman’s 1st sextic map
SMP Aut+(R) =

〈
R,S

∣∣R4, S6, (RS)2, (RS−1)3
〉

The canonical presentation ρc can be induced from an index 6 subgroup and gener-
ated by

R 7→ MonMat([i, 1,−i, 1, i,−i], [1, 3, 5, 2, 4, 6]),

S 7→ MonMat([−i,−1, 1, i, 1,−1], [2, 4, 1, 5, 6, 3]).

It is the unique irreducible 6-dimensional representation of Aut+(R6.2). The repre-
sentation (ρ∨c )2+ decomposes as

11 ⊕ 12 ⊕ 41 ⊕ 2× 51 ⊕ 52.

We must have either I2 = 11 ⊕ 12 ⊕ 41 or I2 = 1k ⊕ 5l. The first possibility does not
generate a prime ideal, and neither do the two ideals involving 52. The conclusion is
that we need to find a suitable invariant subspace 51 < 2× 51 and add 11 or 12 to it.

We now apply the fixed point strategy. The automorphism S has six 1-dimensional
eigenspaces. The ones at ±1 yield an orbit that is smaller than 20 and therefore
unsuitable. There are two other Aut+(R6.2)-orbits: an orbit containing one point
each from E(S, ζ±1

6 ) and an orbit with one point each from E(S, ζ±2
6 ). To be explicit:

E(S, ζ6) = 〈(1,−ζ12, ζ
2
12, ζ

−1
12 , 1, ζ

−2
12 )〉,

E(S, ζ2
6 ) = 〈(1, ζ5

12, ζ
4
12,−ζ12,−1, ζ2

12)〉
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Either one of the two orbits yields enough conditions to determine a correct 51 <
2 × 51. And in each case, only 11 ⊕ 51 gives a prime ideal. Those two prime ideals
indeed define irreducible, non-singular curves of genus 6 modelling our platonic
surface. The two solutions are isomorphic (as they should be), being interchanged
by the transformation DiaMat(−1,−1, 1, 1, 1,−1)◦con6. Picking the first one, we can
write down the canonical ideal as

I = 〈 x1x2 − ix1x3 + ix1x4 − ix1x5 + x1x6 − ix2x3 − ix2x4 + ix2x5 + x2x6 + x3x4 + x3x5+

ix3x6 + x4x5 − ix4x6 − ix5x6, 25x21 − 5x22 − (6i+ 12)x2x3 + (6i+ 12)x2x4+

(−6i− 12)x2x5 + (−12i+ 6)x2x6 + 5x23 − (12i− 6)x3x4 + (12i− 6)x3x5−

(6i+ 12)x3x6 + 5x24 − (12i− 6)x4x5 + (6i+ 12)x4x6 + 5x25 + (−6i− 12)x5x6 − 5x26,

5x1x2 − 5x1x6 − (2i+ 1)x22 + 3ix2x3 + 3ix2x4 + ix2x5 − (4i+ 2)x23 + 4x3x4 − ix3x6−

4x4x5 − 3ix4x6 + (4i+ 2)x25 − 3ix5x6 + (2i+ 1)x26, 5x1x3 − 5ix1x6 − 3x2x3 − 4x2x4

− 4x2x5 + 3ix2x6 − (i− 2)x23 + ix3x4 − 3ix3x5 − (2i− 4)x24 + 3x4x6 + (2i− 4)x25−

x5x6 − (i− 2)x26, 5x1x4 + 5ix1x6 + (2i− 4)x22 + 3x2x4 + 4x2x5 + ix2x6 + (2i− 4)x23

− ix3x4 + 4ix3x5 + 3x3x6 + (i− 2)x24 + 3ix4x5 − 3x5x6 + (i− 2)x26,

5x1x5 − 5ix1x6 − (2i− 4)x22 − 4x2x3 − x2x5 + 3ix2x6 + 4ix3x4 − 3ix3x5 − 3x3x6−

(2i− 4)x24 − 3ix4x5 − x4x6 + (i− 2)x25 + (i− 2)x26 〉.

By Galois descent it should be possible to define the canonical model over Q, but
that is a story yet to unfold.

Remark A.6.1. We call R6.2 Wiman’s first sextic map, because its platonic surface has
got a rather famous planar model, discovered by Anders Wiman ([Wim1897]):

x6 + y6 + z6 + (x2 + y2 + z2)(x4 + y4 + z4)− 12x2y2z2 = 0.

The adjective ‘first’ is used to avoid confusion with R10.6. The planar model above
is singular, with four nodes (±1 : ±1 : 1). A natural road to its construction, starting
from the permutation action of Sym5 on P4 is presented in [IK2005]. This sextic curve
is sure to be a platonic surface, since its automorphism group has size greater than
24(g − 1) (see Section 1.4). It has the following standard map presentation:

R : (x : y : z) 7→

(x2− xy − y2 − xz + yz + z2 : x2− xy + y2− xz + yz − z2 : x2 + xy − y2+ xz − yz − z2)

S : (x : y : z) 7→

(−x2+ xy − y2+ xz − yz +z2 : −x2− xy + y2− xz + yz +z2 : x2− xy − y2− xz + yz +z2)

This group contains the transformations permuting the variables and diagonal trans-
formations DiaMat(±1±1,±1). Since the curve is defined over Q, standard complex
conjugation con2 on P2 is an antiholomorphic automorphism. The curve has no real
wall, but it does have four real points: its four nodes. As points they are fixed by
con2, but locally the two branches meeting at a node get switched; con2 is in fact the
antipodal mapping R−1c[R,S]2 ∈ Aut−(R6.2), generating the center of Aut(R6.2).
A reflection is defined by any composition of con2 with a non-trivial element of
Aut+(R6.2). Computation of Weierstraß weights (cf. Section 7.1) proves that there
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lie non-geometric Weierstraß points on the geodesic walls, but they have yet to be
constructed.

R6.3 type (4, 9) #cells (8, 36, 18) map group size 144
SMP Aut+(R) =

〈
R,S

∣∣R4, S9, (RS)2, (RS−2)2
〉

The canonical representation ρc can be generated by:

R 7→ MonMat([1, 1, 1,−1,−1, 1], [4, 5, 6, 1, 2, 3]),

S 7→ MonMat([1, ζ2
3 , 1, 1,−1,−ζ3], [2, 3, 1, 6, 4, 5]).

This is an irreducible 61. The representation (ρ∨c )2+ decomposes as

11 ⊕ 21 ⊕ 22 ⊕ 23 ⊕ 24 ⊕ 2× 31 ⊕ 61.

Since both 61 and 2 × 31 contain reducibles, I2 is either some 2x ⊕ 2y ⊕ 2z or some
11⊕2x⊕31 for a suitable invariant 31 < 2×31. The first of these two options results in
four possible ideals, which all yield ideals with multiples of linear forms. The second
option must hold true. We apply the fixed point strategy to find the cell centers of
R6.3, and compute the eigenspaces of R:

E(R, i) = 〈e1 − ie4, e2 − ie5〉, E(R,−1) = 〈e3 − e6〉,
E(R,−i) = 〈e1 + ie4, e2 + ie5〉, E(R, 1) = 〈e3 + e6〉.

The 11 isotypic component gives no constraints on these fixed points. But the com-
ponent 21 = 〈x1x5 + ζ3x3x6, x2x4 − ζ3x3x6〉 does. It forces us to choose one of the
two basis vectors of E(R,±i). Those generate two different Aut+(R6.3)-orbits, but
both yield constraints on 2 × 31 that result in a 31-piece containing reducibles. The
upshot is that we cannot use 21.

The three representations 22, 23, and 24 are algebraically conjugated, and hence the
isotypic components we found are as well. Since we know that there is only one type
(4, 9) platonic map of genus 6, we know in advance that the three options will lead
to isomorphic curves. Let us choose the first,

22 = 〈x2
1 + ζ9x

2
2 + ζ−1

9 x2
3, x

2
4 + ζ9x

2
5 + ζ−1

9 x2
6〉.

Now the only possible cell centers are the orbits of ±ζ11
36b1 + b2 in terms of the basis

of E(R, i). This in turn yields constraints on 2 × 31, and we find 31. The ideal (I2)
defines a surface instead of a curve, and dim((I2) ∩ C[x1, . . . , x6]3) = 28 tells us that
we need 3 extra irreducible polynomials of degree 3 to define our canonical curve.
The representation (ρ∨c )3+ decomposes as

21 ⊕ 22 ⊕ 23 ⊕ 24 ⊕ 3× 31 ⊕ 3× 32 ⊕ 5× 61,

so we need either an invariant 31 < 3× 31 or a 31 < 3× 31. We apply the fixed point
strategy once more, this time computing the map vertices. The automorphism S
has six 1-dimensional eigenspaces. Any one gives enough constraints to determine a
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unique Aut+(R6.3)-invariant 31 and 32. Only for the eigenvalues ζ±1
9 does this result

in a prime ideal, and the choice between 31 and 32 gives two curves easily seen to be
isomorphic. If we choose 31, we can write down the following canonical ideal:

I = 〈 x1x5 − x2x4 + ζ−1
6 x3x6, x

2
1 + ζ9x

2
2 + ζ−1

9 x2
3, x

2
4 + ζ9x

2
5 + ζ−1

9 x2
6, x1x4 + ζ9x2x5,

x1x6 + ζ5
9x3x5, x2x6 − ζ4

9x3x4, x3
1 − ζ2

9x1x
2
3 − ζ2

9x
2
4x5 + x3

5,

x2
1x2 − ζ−2

9 x3
2 + ζ−2

9 x3
4 − x4x

2
6, x2

2x3 − ζ4
9x

3
3 − x2

5x6 + ζ4
9x

3
6 〉.

Is the curve trigonal, or the canonical model of a non-singular planar quintic? The
MAGMA system computed a parametrization of the scroll S defined by (I2) for us.
There is a birational transformation φ : P2 → S defined by

φ :(x : y : z) 7→

(2ζ3136x
2y : x3 + ζ436xy

2 : ζ3136x
3 + ζ1736xy

2 : x2z + ζ436y
2z : 2ζ936xyz : ζ1136x

2z + ζ3336y
2z),

with inverse φ−1 : (x1 : x2 : x3 : x4 : x5 : x6) 7→ (x2 + ζ5
36x3 : ζ5

36x1 : x4 − ζ7
36x6). If

one pulls back the ideal generators along φ this results in the following planar curve:

x7 + 2(ζ10
36 + ζ16

36 )x5y2 + ζ8
36x

3y4 − ζ6
36x

4z3 − 2(ζ10
36 + ζ16

36 )x2y2z3 + ζ32
36y

4z3 = 0.

This curve has the obvious degree 3 mapping (x : y : z) 7→ (x : y) to P1. Thus the
map R6.3 is trigonal, and we have found a rational mapping, defined on a Zariski
open set of the curve by

(x1 : x2 : x3 : x4 : x5 : x6) 7→ (x2 + ζ5
36x3 : ζ5

36x1)

certifying trigonality.

R6.4 type (4, 14) #cells (4, 28, 14) map group size 112 AM(6)
SMP Aut+(R) =

〈
R,S

∣∣R4, S14, (RS)2, (RS−1)2
〉

This is the Accola-Maclachlan map AM(6) with planar model y2z12 = x14− z14. For
more information, see Section 5.3.

R6.5 type (4, 24) #cells () map group size 96 Wi2(6)
SMP Aut+(R) =

〈
R,S

∣∣R4, S24, (RS)2, R−1SRS−11
〉

This is the Wiman type II map Wi2(6) with planar model y2z11 = x(x12 − z12). For
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more information, see Section 5.2.

R6.6 type (5, 10) #cells (5, 25, 10) map group size 100 D(Fer(5))
SMP Aut+(R) =

〈
R,S

∣∣R5, S10, (RS)2, [R,S2]
〉

This map is D(R6.1) = D(Fer(5)) and thus has the same algebraic models as Fer(5).

R6.7 type (6, 8) #cells (6, 24, 8) map group size 96
SMP Aut+(R) =

〈
R,S

∣∣R1, S1, (RS)2, (RS−1)2
〉

The canonical representation ρc can be generated by:

R 7→ MonMat([−ζ2
12 + 1,−ζ2

12, 1, ζ
2
12 − 1,−ζ3

12 + ζ12,−ζ3
12], [1, 2, 4, 3, 6, 5]),

S 7→ MonMat([−1, 1, 1, 1, ζ3
12,−ζ3

12], [2, 1, 5, 6, 3, 4]).

It has invariant subspaces 〈e1, e2〉 and 〈e3, e4, e5, e6〉. The representation (ρ∨c )2+ de-
composes as

11 ⊕ 2× 14 ⊕ 2× 21 ⊕ 23 ⊕ 24 ⊕ 25 ⊕ 26 ⊕ 27 ⊕ 41.

The pieces 2 × 14, 2 × 21, 23, 24, 25 and 41 contain multiples of linear forms, as does
the space 26 ⊕ 27. We deduce that I2 is of the form

11 ⊕ 14 ⊕ 21 ⊕ 26 where k ∈ {6, 7}.

The spaces 26 and 27 are

26 = 〈x1x3 + (ζ5
24 − ζ24)x2x5, x1x4 − ζ3

24x2x6〉,
27 = 〈x1x3 − (ζ5

24 − ζ24)x2x5, x1x4 + ζ3
24x2x6〉,

and are related by the projectivity mapping x2 7→ −x2 and fixing the other coordi-
nates. This projectivity leaves 11, 2 × 14 and 2 × 21 invariant, so we may choose 26

up to an isomorphism of our final curve. To proceed we need to determine suitable
invariant spaces 14 < 2× 14 and 21 < 2× 21. We have

11 = 〈x3x6 + ix4x5〉,
2× 14 = 〈x1x2, x3x6 − ix4x5〉,
2× 21 = 〈x2

1, x
2
2, x3x4, x5x6〉,

and with the centralizer CGL(6,C)(Aut+(R6.7)) we can choose 14 = 〈x1x2 + x3x6 −
ix4x5〉. Now we compute the primary decomposition of the ideal (11 ⊕ 14 ⊕ 26),
which leaves one possibility for our 21 subspace. However, the resulting prime ideal
defines a surface, and again we are either in the trigonal or non-singular planar quin-
tic case. The Hilbert series tells us we need three extra irreducible polynomials in
degree 3 to generate the canonical ideal. The representation (ρ∨c )3+ decomposes as

11 ⊕ 12 ⊕ 13 ⊕ 14 ⊕ 2× 21 ⊕ 2× 22 ⊕ 2× 23 ⊕ 3× 24 ⊕ 25 ⊕ 3× 26 ⊕ 3× 27 ⊕ 5× 41.
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Considering dim((I2) ∩ C[x1, . . . , x6]3) and considering multiples of linear forms in
the isotypic pieces, we come to the conclusion that we can only use 1k, 26 and 27, so
we certainly need a 1-dimensional piece. The four possibilities are

±ζ6x1x
2
5 + x1x

2
6 ± ζ6x2x

2
3 + x2x

2
4

All four choices of 1k yield a canonical model of R6.7 when computing the radical of
(I2 ⊕ 1k). Choosing 11 we can write down this model as

I = 〈 x2
1 − ζ8x5x6, x

2
2 − ζ8x3x4, x1x2 − x4x5, −ζ2

8x3x6 + x4x5, ζ
5
8x1x3 + x2x5,

ζ−1
8 x1x4 − x2x6,−ζ4

24x1x
2
5 + x1x

2
6 − ζ4

24x2x
2
3 + x2x

2
4,

− ζ3
24x

3
3 + ζ−1

24 x3x
2
4 − x3

5 + ζ−4
24 x5x

2
6,−ζ3

24x
2
3x4 + ζ−1

24 x
3
4 − ζ6

24x
2
5x6 + ζ2

24x
3
6 〉.

Is the curve trigonal, or the canonical model of a non-singular planar quintic? The
MAGMA system computed a parametrization of the scroll S defined by (I2) for us.
There is a birational transformation φ : P2 → S defined by

(x : y : z) 7→ (4x(x2− y2) : 4z(x2− y2) : 8iz(x+ y)2 : ζ38z(x− y)2 : 8ζ38x(x+ y)2 : ix(x− y)2)

with inverse (x1 : x2 : x3 : x4 : x5 : x6) 7→ (4x1 − ζ8x5 − 8ix6 : −ζ8x5 + 8ix6 : 4x2 −
ix3−8ζ8x4). If one pulls back the ideal generators along φ this results in the following
planar curve, where α = 4/16773121(−128ζ3

12 + 8192ζ2
12 − 524160ζ12 + 16773119):

x7 +αx6y+6x5y2 +αx4y3 +x3y4− 1

4
iαx4z3−4ix3yz3− 3

2
iαx2y2z3−4ixy3z3− 1

4
iαy4z3 = 0.

This curve has the obvious degree 3 mapping (x : y : z) 7→ (x : y) to P1. Thus, the
map R6.7 is trigonal, and we have found a rational mapping, defined on a Zariski
open set of the curve by

(x1 : x2 : x3 : x4 : x5 : x6) 7→ (4x1 − ζ8x5 − 8ix6 : −ζ8x5 + 8ix6)

certifying trigonality.

R6.8 type (6, 8) #cells (6, 24, 8) map group size 96
SMP Aut+(R) =

〈
R,S

∣∣R6, S8, (RS)2, (R2S−1)2, R3S4
〉

Consideration of the structure of Aut+(R6.8) leads us to the conclusion that there is
a platonic 2-cover π : R6.8 → R6.8/〈R3, S4〉 = Oct, branched over cells0 ∪ cells2. The
map is therefore hyperelliptic, and indeed we saw it in Theorem 6.3.2. Referring back
to Section 6.4, we construct a planar curve by multiplying the polynomial (branch)
data for the vertices of Oct and its dual Cub to arrive at y2z12 = −xz(x12−13x8z4 +
13x4z8+z12). It is reducible, but dividing out the component z = 0 and transforming
by y 7→ iy, we find the planar model

y2z11 = x13 + 13x9z4 − 13x5z8 − xz12.

This model has the standard map presentation

R : (x : y : z) 7→ (−i(x− z)6(x+ z) : 8(i− 1)yz6 : (x− z)7),

S : (x : y : z) 7→ (ix : ζ8y : z).
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Standard complex conjugation con6 is a reflection on the curve.

R6.9 type (9, 9) #cells (4, 18, 4) map group size 72
SMP Aut+(R) =

〈
R,S

∣∣R9, S9, (RS)2, R3S3
〉

This map is D(R6.3) and therefore has the same canonical model as R6.3.

R6.10 type (10, 15) #cells (2, 15, 3) map group size 60
SMP Aut+(R) =

〈
R,S

∣∣R10, S15, (RS)2, R−1SRS−11
〉

The canonical representation ρc can be generated by

R 7→ MonMat([−ζ3
15,−ζ6

15, 1, ζ
9
15, 1, ζ

12
15 ], [1, 2, 4, 3, 6, 5]),

S 7→ MonMat([ζ12
15 , ζ

9
15, ζ

8
15, ζ

13
15 , ζ

14
15 , ζ

4
15], [1, 2, 3, 4, 5, 6]).

It has invariant subspaces 〈e1〉, 〈e2〉, 〈e3, e4〉, and 〈e5, e6〉. The representation (ρ∨c )2+

decomposes as

15 ⊕ 2× 16 ⊕ 2× 17 ⊕ 19 ⊕ 110 ⊕ 2× 23 ⊕ 2× 24 ⊕ 2× 25.

All pieces but 19 and 110 contain multiples of linear forms, restricting our options.
We have

2× 16 = 〈x2
2, x5x6〉, 19 = 〈x3x6 − ζ2

5x4x5〉,
2× 17 = 〈x1x2, x3x4〉, 110 = 〈x3x6 + ζ2

5x4x5〉,

and the invariant subspaces of the 2k are all of the form

23 = 〈x1x5 + λ1x
2
4, x1x6 − λ1x

2
3〉,

24 = 〈x2x5 + λ2ζ5x
2
6, x2x6 − λ2x

2
5〉,

25 = 〈x2x3 + λ3x4x6, x2x4 − λ3x3x5〉.

Since x3x6 ∈ 19⊕110 we cannot choose both these pieces, and the shape of I2 is either
1·⊕1·⊕2·⊕2· or 2·⊕2·⊕2·. Assuming the first shape, we need at least one of 17, 19, or
110. Suppose we choose 17 and 24. They can be normalized simultaneously (with the
centralizer trick), so we can assume λ2 = 1 and 17 = 〈x1x2 + x3x4〉. Computing its
primary decomposition gives associated primes with too many quadrics. The same
is true when adding 19 or 110 to 24. Therefore we cannot use 24 if we choose the
first shape, and apparently must use 23 ⊕ 25. These two components also appear for
the second ideal shape, so we are obliged to utilize them, and may normalize them
simultaneously. We choose λ1 = λ3 = 1 and compute the primary decomposition of
23 ⊕ 25, which yields

I2 = 〈x2
2 + x5x6, x1x2 + x3x4, x1x5 + x2

4, x1x6 − x2
3, x2x3 + x4x6, x2x4 − x3x5〉,

or in other words I2 = 16⊕17⊕23⊕25, and we incorporate the sum of the two basis
vectors shown for both 16 and 17. The ideal (I2) defines a surface, however, and
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we find ourselves again in either the trigonal or non-singular planar quintic case.
The Hilbert series tells us we need three extra irreducible polynomials in degree 3
to generate the canonical ideal. The representation (ρ∨c )3+ decomposes into a great
number isotypic components. A number of them are excluded because extending
(I2) ∩C[x1, . . . , x6]3 already forces us to use the whole component and that contains
a multiple of a linear form. Also, all irreducible representations of Aut+(R6.10) are 1-
or 2-dimensional, so we will certainly use a 1-dimensional piece. The 1-dimensional
subspaces we may select are

13 < 3× 13 = 〈x3
1, x2x3x6 + ζ2

5x2x4x5, x3x
2
5 + ζ10x4x

2
6〉,

19 < 3× 19 = 〈x3
2, x2x5x6, x

3
5 − ζ5x3

6〉,
110 = 〈x3

5 + ζ5x
3
6〉.

The associated primes resulting from adding 110 all contain linear forms. We now ap-
ply the fixed point strategy. The polynomials of I2 give constraints on the eigenspaces
of R, S and RS. In fact, they yield immediately that the vertices are {e5, e6} and the
face centers form the Aut+(R6.10)-orbit of ζ−1

5 e2 + e5 + ζ10e6. These points in turn
give constraints on the polynomials in I3, and leave only one polynomial in 3 × 19

available, which is already in (I2). Therefore, we are searching for a 13 < 3 × 13.
Next, we try to find the 15 edge centers of the map. The eigenspaces of RS are
E(RS,−1) = 〈e1, e2, e3 + ζ11

30e4, e5 + ζ−7
30 e6〉 and E(RS, 1) = 〈e3 − ζ11

30e4, e5 − ζ−7
30 e6〉.

The ideal (I2) allows us to eliminate E(RS, 1) at once. Within E(RS,−1), the con-
straints say a vector λ1e1 + λ2e2 + λ3(e3 + ζ11

30e4) + λ4(e5 + ζ−7
30 e6) must satisfy

λ2
2 = ζ8

30λ
2
4. If λ2 = ζ4

30λ4, then λ3 = 0 and λ1λ4 = 0. Each of these two avenues
leads to an orbit size that is too small. We conclude that λ2 = −ζ2

30λ4 and may set
λ4 = 1 by scaling. Any fixed point of RS can thus be written in the form

λ2ζ7
30e1 − ζ4

30e2 + λ(e3 + ζ11
30e4) + e5 + ζ−7

30 e6.

There are going to be five solutions, for RS fixes five points on the curve, as one can
compute with the fixed point counting lemma. For any λ we get an Aut+(R6.10)-
orbit, and the points give constraints on 3 × 13, resulting in an additional invariant
subspace

13 = 〈x3
1 + λ5

2 (ζ5x3x
2
5 − ζ−1

5 x4x
2
6)〉.

We now use the remaining freedom from the centralizer CGL(6,C)(Aut+(R6.10)) and
consider the effect of the transformation DiaMat(λ−2, 1, λ−1, λ−1, 1, 1) on P5. It leaves
I2 invariant and normalizes the above component to that for which λ5 = 1. So with-
out loss of generality we assume this. It means that indeed there are five solutions
λ ∈ {1, ζ5, . . . , ζ4

5} that give fixed points of RS on the curve. The primary decompo-
sition of the new ideal (I2 ∪ 13) contains a unique ideal defining our curve, with

I3 =
〈
x31 + 1

2
(ζ5x3x

2
5 − ζ−1

5 x4x
2
6), x21x3+ 1

2
ζ−1
5 x2x

2
6+ 1

2
ζ5x

2
5x6, x

2
1x4− 1

2
ζ5x2x

2
5+ 1

2
ζ−1
5 x5x

2
6

〉
.

Is this curve trigonal, or birationally isomorphic to a non-singular plane quintic? The
answer becomes clear by computing an elimination ideal to the variables (x2, x4, x5),
which tells us that x4

2x5 − ζ2
5x2x

4
5 + 2ζ5x

5
4 ∈ I . The mapping

(x1 : x2 : x3 : x4 : x5 : x6) 7→ (ζ150x2 :
5
√

2ζ25x4 : ζ−4
150x5)
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is a birational isomorphism onto the non-singular planar quintic x4z + xz4 + y5 = 0.
A standard map presentation for this planar model is readily found to be

R : (x : y : z) 7→ (ζ2
3z : ζ−1

15 y : z),

S : (x : y : z) 7→ (ζ3x : ζ15y : z).

Standard complex conjugation con6 is a reflection of it.

R6.11 type (13, 26) #cells (1, 13, 2) map group size 52 Wi1(6)
SMP Aut+(R) =

〈
R,S

∣∣R13, S26, (RS)2, RS−12
〉

This map is the Wiman type I curve Wi1(6), with planar model y2z11 = x13 − z13.
For more information, see Section 5.1.

R6.12 type (14, 14) #cells (2, 14, 2) map group size 56 D(AM(6))
SMP Aut+(R) =

〈
R,S

∣∣R14, S14, (RS)2, [R,S]
〉

This map is D(R6.4) = D(AM(6)) and therefore also has planar model y2z12 =
x14 − z14. For more information, see Section 5.3.

R6.13 type (24, 24) #cells (1, 12, 1) map group size 48 D(Wi2(6))
SMP Aut+(R) =

〈
R,S

∣∣R24, S24, (RS)2, RS−11
〉

This map is D(R6.5) = D(Wi2(6)) and therefore also has planar model y2z11 =
x(x12 − z12). For more information, see Section 5.2.
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A.7 Genus 7

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that the canonical
model of a non-hyperelliptic platonic map of genus 7 satisfies dim(I2) = 10. If the
map is trigonal, some additional cubics will be needed to define the model. In any
case dim(I3) = 26.

R7.1 type (3, 7) #cells (72, 252, 168) map group size 1008 Fricke-Macbeath map
SMP Aut+(R) =

〈
R,S

∣∣R3, S7, (RS)2, ((S−3R)2S−1R)2
〉

In [Mac1965], Alexander Murray Macbeath constructed a canonical model of R7.1

with the following polynomials in C[x0, x1, . . . , x6] generating its canonical ideal:
6∑
i=0

x2
i ,

6∑
i=0

ζi7x
2
i ,

6∑
i=0

ζ−i7 x2
i ,

(ζ7 − ζ−1
7 )xkxk+2 + (ζ2

7 − ζ−2
7 )xk+1xk+5 − (ζ3

7 − ζ−3
7 )xk+3xk+4, for k = 0, . . . , 6.

The indices of the variables are taken mod 7, which is why numbering them from
zero to six is practical. The canonical representation that belongs to this model is
generated by

R 7→ 1

2



0 0 1−1 1 0 1
0−1−1−1 0−1 0
−1 1−1 0 1 0 0

1 1 0−1 0 0−1
1 0−1 0 0 1 1
0 1 0 0−1−1 1
1 0 0 1 1−1 0


, S 7→ 1

2



0 0 0 0 0 0 −1
−1 0 0 0 0 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0


.

Standard complex conjugation leaves the curve invariant and is a reflection. It seems
it was unknown to Macbeath that this platonic surface had also been studied by
Robert Fricke in [Fri1899], and henceforth the platonic surface has been dubbed the
Fricke-Macbeath curve. Staying close to this nomenclature, we call R7.1 the Fricke-
Macbeath map.

Because the map has no siblings (cf. Section 1.4), we remind the reader of Section 6.2,
which states the result that there must be a canonical model over the field of moduli
of the curve, Q. We attempt Galois descent from the Macbeath model to find such
a rational model. This was also attempted in [Hid2012]. The result obtained here is
somewhat more concise.

To apply Galois descent, we first remark the curve as presented above seems de-
fined over Q(ζ7), but is in fact invariant under the Galois automorphism ζ7 7→ ζ−1

7 .
We could therefore also write down a set of generators over Q(ζ7+ζ−1

7 ), even though
we let this be. Our goal is to find and then split a 1-cocycle in Z1(Gal(Q(ζ7 +
ζ−1
7 )/Q),GL(7,C)). Let us first remark that

Gal(Q(ζ7 + ζ−1
7 )/Q) = 〈σ〉 ∼= Z3, where σ : ζ7 + ζ−1

7 7→ ζ2
7 + ζ−2

7 .
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Calling the original curve C, we thus have three Galois conjugates: C, Cσ , and Cσ
2

.

Next, we note that the group Aut+(R7.1) ∼= PSL(2, 8) has outer automorphisms of
order 3. It has 168 of them, to be precise. We can write down the action for such an
outer automorphism on a standard generator pair (R,S). This can for example be
done by writing down PSL(2, 8) in its original form, as matrices over F8. An outer
automorphism of order 3 is then the Frobenius x 7→ x2 applied to the matrix entries,
and we can explicitly compute what it does to a standard generator pair. We picked
an automorphism, let us call it t, with action

R 7→ S−1(RS−2)2RS2,

S 7→ S−1[R−1, S−2]RS−1.

We can set up a linear system of equations to solve

{
T−1ρc(R)T = ρc(S

−1(RS−2)2RS2)
T−1ρc(S)T = ρc([R

−1, S−2]RS−1)
.

The unique solution with determinant 1 is

T = MonMat([1, 1, 1, 1, 1, 1, 1], [3, 7, 4, 1, 5, 2, 6]).

The elements R, S and t generate Aut(Aut(R7.1)) ∼= PΓL(2, 8) and we can extend
the representation ρc to ρc : Aut(Aut(R7.1)) → GL(7,Q) by setting ρc(t) = T . The
projectivity T permutes the three conjugates of C cyclically in the same way that σ
does. Therefore, the homomorphism c : 〈σ〉 → GL(7,Q) defined by σ 7→ T can
be construed as a 1-cocycle. This cocycle can be split by solving the equation U =
T−1Tσ . We want an invertible solution for which U−1 has small coefficients, to get
that same property for the transformed ideal generators. The best we came up with
is

U =



0 ζ7 + ζ−1
7 0 0 0 ζ2

7 + ζ−2
7 ζ3

7 + ζ−3
7

ζ3
7 + ζ−3

7 0 ζ2
7 + ζ−2

7 ζ7 + ζ−1
7 0 0 0

0 ζ3
7 + ζ−3

7 0 0 0 ζ7 + ζ−1
7 ζ2

7 + ζ−2
7

0 0 0 0 −1 0 0
ζ7 + ζ−1

7 0 ζ3
7 + ζ−3

7 ζ2
7 + ζ−2

7 0 0 0
0 2 0 0 0 2 2

ζ2
7 + ζ−2

7 0 ζ7 + ζ−1
7 ζ3

7 + ζ−3
7 0 0 0


.

The transformed curve U(C) is indeed definable over Q. Applying the coefficient
reduction strategy from Section 6.2, we arrive at an alternative canonical model for
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R7.1:

I = 〈 − x1x2 + x1x7 + x2x6 + x3x4 − x3x5 − x3x7 − x4x6 − x5x6,

x1x3 + x1x6 − x22 + 2x2x5 + x2x7 − x23 + x4x5 − x4x7 − x25,

x21 − x1x3 + x22 − x2x4 − x2x5 − x2x7 − x23 + x3x6 + 2x5x7 − x27,
x1x4 − 2x1x5 + 2x1x7 − x2x6 − x3x4 − x3x5 + x5x6 + x6x7,

x21 − 2x1x3 − x22 − x2x4 − x2x5 + 2x2x7 + x23 + x3x6 + x4x5 + x25 − x5x7 − x26,
x1x2 − x1x5 − 2x1x7 + 2x2x3 − x3x7 − x5x6 + 2x6x7

− 2x1x2 − x1x4 − x1x5 + 2x1x7 + 2x2x3 − 2x3x7 + 2x5x6 − x6x7,

2x21 + x1x3 − x1x6 + 3x2x7 + x4x5 − x4x7 − x25 + x26 − x27,

2x21 − x1x3 + x1x6 + x22 + x2x7 + x23 − 2x3x6 + x4x5 − x4x7 + x25 − 2x5x7 + x26 + x27,

x21 + x1x3 − x1x6 + 2x2x5 − 3x2x7 + 2x3x6 + x24 + x4x5 − x4x7 + x26 + 3x27 〉.

There is an obvious trade-off to this model as compared to Macbeath’s: the standard
map presentation of the new model is not over Q anymore, but over Q(ζ7 + ζ−1

7 ).
One can easily compute it as (URU−1, USU−1). The involution URSU−1 is even
defined over Q.

Remark A.7.1. The map R7.1 is antipodal, with the orientation reversing antipodal
mapping defined by (abc)9 in terms of a standard generator triple (a, b, c).

R7.2 type (3, 12) #cells (12, 72, 48) map group size 288
SMP Aut+(R) =

〈
R,S

∣∣R3, S12, (RS)2, RS−2RS2R−1S2R−1S−2
〉

The canonical representation ρc can be generated by

R 7→
(
ζ2
3

)
⊕ 1

2

(
−1 + i −1− i
1− i −1− i

)
⊕ 1

2


−ζ4

12 + ζ7
12 ζ4

12 − ζ7
12 0 0

−ζ4
12 − ζ7

12 −ζ4
12 − ζ7

12 0 0
0 0 −1 + i −1 + i
0 0 1 + i −1− i

 ,

S 7→
(
−ζ3

)
⊕ 1

2

(
−1− i 1 + i
1− i 1− i

)
⊕


0 0 1 0
0 0 0 1

1
2ζ

8
12 + 1

2ζ
11
12

1
2ζ

8
12 + 1

2ζ
11
12 0 0

− 1
2ζ

8
12 + 1

2ζ
11
12

1
2ζ

8
12 − 1

2ζ
11
12 0 0

 .

The representation (ρ∨c )2+ decomposes as

2× 13 ⊕ 23 ⊕ 29 ⊕ 2× 32 ⊕ 42 ⊕ 2× 61.

All pieces except 23 contain reducibles, so we cannot use 29 or 42. The space I2 must
therefore be of the form 13 ⊕ 32 ⊕ 61. All invariant 61 < 2 × 61 subspaces are of the
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form

16 = 〈 λx2x4 − ζ212x26 + 2x6x7 − ζ212x27,

λx2x5 + ζ312x3x4 + 2ζ12x
2
6 − 2ζ12x

2
7,

λx2x6 − x3x7 + (ζ312 + 1)x24 + (−2ζ212 − 2ζ12 + 2)x4x5 + (ζ312 + 1)x25,

λx2x7 + x3x7 + (−ζ312 − ζ212 + ζ12)x24 + (2ζ212 + 2ζ12 − 2)x4x5 + (ζ312 + ζ212 − ζ12)x25,

λx3x5 + (−ζ312 + ζ12)x26 − 2ζ312x6x7 + (−ζ312 + ζ12)x27,

λx3x6 − x3x7 + (2ζ312 + ζ212 − ζ12 + 1)x24 + (−ζ212 + ζ12 + 1)x25 〉,

and with the centralizer CGL(7,C)(Aut+(R7.2)) we can set λ = 1. These polynomials
then constrain the possibilities for the vertices and face centers enough to determine
them. We compute the eigenspaces of R and S, intersect with the zero locus of the
61 component and find that the vertices must form the Aut+(R7.2)-orbit of

(0 : −2(ζ3
12 − ζ2

12 − ζ12 + 2) : 2(ζ3
12 − ζ2

12 − ζ12) : 1 : −ζ2
12 + ζ12 : ζ12 : −ζ3

12 + ζ2
12)

and the face centers that of

(1 : −2(2ζ312−2ζ212 +1)α2 : 2(ζ312−ζ212−ζ12 +1)α2 : α : (ζ312−ζ212−ζ12 +1)α : 1 : −ζ212−ζ12),

where α3 = 3ζ3
12 − 6ζ12 − 5 = −3

√
3− 5. In advance one can compute that R should

fix 6 face centers on the curve, and this is now confirmed to be true on the model.
The choice inherent in α is thus no cause for worries. These orbits of points in turn
constrain the possible 13 < 2× 13 and 32 < 2× 32 pieces, and we find:

13 = 〈 2(10ζ312 + 9ζ212 − 5ζ12 − 9)x21 + ζ312α
2x4x6 − ζ312α2x4x7 + α2x5x6 + α2x5x7 〉

32 = 〈 (−ζ212 − ζ12 + 1)x22 + 4x4x6 + 4x4x7 + 4(ζ312 − 2ζ12)x5x6 − 4(ζ312 − 2ζ12)x5x7,

(−ζ212 − ζ12 + 1)x2x3 + 4x4x6 − 4x4x7 + 4ζ312x5x6 + 4ζ312x5x7,

(−ζ212 − ζ12 + 1)x23 + 4(2ζ212 − 1)x4x6 + 4(2ζ212 − 1)x4x7 + 4ζ312x5x6 − 4ζ312x5x7 〉.

Together, the three indicated pieces define a canonical model for R7.2.

R7.3 type (4, 16) #cells (4, 31, 16) map group size 128 Kul(2)
SMP Aut+(R) =

〈
R,S

∣∣R4, S16, (RS)2, R−1S2RS−6
〉

This map is Kul(2), as we deduced in Chapter 2. A planar model for it is discussed
in Section 5.4. We still applied our construction strategy to find a nice canonical
model, possibly offering an alternative to study the curve further. The canonical
representation ρc is generated by

R 7→ MonMat([−i, 1,−1, 1, 1, ζ3
8 , ζ8], [1, 3, 2, 5, 4, 7, 6]),

S 7→ MonMat([−i,−ζ8,−ζ3
8 ,−ζ8,−ζ3

8 , 1, 1], [1, 2, 3, 6, 7, 4, 5]),

which has invariant subspaces 〈e1〉, 〈e2, e3〉 and 〈e4, e5, e6, e7〉. The representation
(ρ∨c )2+ decomposes as

2× 13 ⊕ 16 ⊕ 18 ⊕ 2× 21 ⊕ 24 ⊕ 25 ⊕ 2× 26 ⊕ 2× 41 ⊕ 42.
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All isotypic pieces except 16 and 18 contain multiples of linear forms. Also, since

16 = 〈x4x7 − ζ8x5x6〉,
18 = 〈x4x7 + ζ8x5x6〉,

we find that x4x7 ∈ 16 ⊕ 18, so we cannot use both pieces. These restrictions dictate
that the shape of I2 must be 13 ⊕ 1k ⊕ 21 ⊕ 26 ⊕ 41, where the 1k is either 16 or 18.
We now use the centralizer CGL(7,C)(Aut+(R7.3)) to normalize the last two of these
invariant subspaces, which are of the form

26 = 〈λ1x1x2 + x2
5 − ζ8x2

7, x1x3 − ix2
4 + ζ8x

2
6〉,

41 = 〈λ2x1x4 + x2x5, x1x5 − ix3x4, x1x6 − ζ3
8x2x7, x1x7 − ζ3

8x3x6〉,

by setting λ1 = λ2 = 1. The primary decomposition of the ideal (26 ⊕ 41) contains a
unique prime ideal defining our canonical model. The remaining isotypic pieces of
I2 are:

13 = 〈x2
1 + ζ2

8x2x3〉,
16 = 〈x4x7 − ζ8x5x6〉,
21 = 〈x2

2 − x4x5 + ζ2
8x6x7, x

2
3 − x4x5 − ζ2

8x6x7〉.

R7.4 type (4, 16) #cells (4, 32, 16) map group size 128 AM(7)
SMP Aut+(R) =

〈
R,S

∣∣R4, S16, (RS)2, (RS−1)2
〉

This is the Accola-Maclachlan map AM(7) with planar model y2z14 = x16− z16. For
more information, see Section 5.3.

R7.5 type (4, 28) #cells (2, 28, 14) map group size 112 Wi2(7)
SMP Aut+(R) =

〈
R,S

∣∣R4, S28, (RS)2, R−1SRS−13
〉

This is the Wiman type II map Wi2(7) with planar model y2z13 = x(x14 − z14). For
more information, see Section 5.2.

R7.6 type (6, 9) #cells (6, 27, 9) map group size 108
SMP Aut+(R) =

〈
R,S

∣∣R6, S9, (RS)2, [R2, S], (RS−2)2
〉

The canonical representation ρc can be generated by

R 7→ MonMat([−ζ3, 1, ζ2
3 , 1, ζ

2
3 , 1, ζ3], [1, 3, 2, 5, 4, 7, 6]),

S 7→ MonMat([ζ6
9 , ζ

5
9 , ζ

7
9 , ζ

4
9 , ζ

8
9 , ζ

8
9 , ζ

7
9 ], [1, 2, 3, 4, 5, 6, 7]),

with invariant subspaces 〈e1〉, 〈e2, e3〉, 〈e4, e5〉, and 〈e6, e7〉. The representation (ρ∨c )2+

decomposes as

13 ⊕ 3× 16 ⊕ 2× 21 ⊕ 23 ⊕ 24 ⊕ 2× 26 ⊕ 2× 27 ⊕ 29 ⊕ 2× 210 ⊕ 212.
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All isotypic components contain multiples of linear forms, which forces I2 to take on
the shape

2× 16 ⊕ 21 ⊕ 26 ⊕ 27 ⊕ 210.

The general form of these invariant subspaces is

2× 16 = 〈λ1x
2
1 + ζ−1

9 x2x3, λ2x2x3 − ζ5
18x4x5〉,

21 = 〈λ3x2x7 + ζ−1
36 x4x6, λ3x3x6 + ζ11

36x5x7〉,
26 = 〈λ4x1x6 − ζ5

36x3x7, λ4x1x7 + ζ17
36x2x6〉,

27 = 〈λ5x1x2 + ζ9x3x4, λ5x1x3 + ζ5
18x2x5〉,

210 = 〈λ6x1x4 + x2
2, λ6x1x5 − ζ3x2

3〉.

The centralizer trick allows us to normalize (only) two of these. We choose to set λ5 =
λ6 = 1. The primary decomposition of (27 ⊕ 210) contains only one primary ideal
without non-trivial linear forms, and we find that we are obliged to use λ1 = λ2 = 1.
Now we apply the fixed point strategy and compute the 27 edge centers of the curve
by studying the eigenspaces of RS. The constraints imposed by 2 × 16 ⊕ 27 ⊕ 210

force a fixed point of RS on the curve to lie in E(RS,−1) and be of the form

ζ−1
9 e1 ± ζ7

36(e2 + ζ5
18e3) + e4 + ζ7

18e5 + µ(e6 + ζ5
18e7).

Again we can utilize CGL(7,C)(Aut+(R7.6)), since we still have the freedom to scale
〈e6, e7〉. If µ = 0, then the orbit size is smaller than 27. Thus, we set µ = 1. For either
choice of sign in the expression above, we find a suitable orbit of edge centers. Let
us pick a + sign. Then the points determine that we must use λ3 = λ4 = 1.

In this way we have completed the construction of I2, but the ideal (I2) defines a
surface, not a curve. Hence, R7.6 is trigonal. The Hilbert-Poincaré series of (I2) tells
us we need four more irreducible polynomials of degree 3 to define the canonical
ideal.

The representation (ρ∨c )3+ decomposes into a lot of isotypic components of high
multiplicity. All irreducible representations of Aut+(R7.6) are 1- or 2-dimensional.
The codimension of (I2) ∩ C[x1, . . . , x7]3 in any of the multiples of 1-dimensional
components is at most 1, and the option of adding any full isotypic piece can be
discarded by computing the primary decompositions: all arising ideals contain too
many quadrics. Similarly, the codimension of (I2) ∩ C[x1, . . . , x7]3 in most of the
multiples of 2-dimensional invariant subspaces is 2 and the same technique excludes
those pieces as well. We are left with isotypic components 5 × 21 and 4 × 26. The
constraints imposed by the edge centers brings each of the two dimensions down by
two, resulting in:

4× 21 = 〈x1x2x4 + ζ1536x
3
5, x1x3x5 + ζ936x

3
4, x

3
2 − ζ1536x35, x2x25 + ζ1736x

3
4, x

3
3 − ζ1536x34,

x3x
2
4 − ζ1136x35, x36, x37〉,

3× 26 = 〈x1x24 + ζ536x3x
2
5, x1x

2
5 − ζ1236x23x5, x22x4 − ζ536x3x25, x2x24 + ζ1336x

2
3x5, x

2
6x7, x6x

2
7〉.

Since (I2) already contains a 2 × 21 < 4 × 21 and a 26 < 3 × 26, we must choose an
extra 2-dimensional subspace in each of these components. To progress, we compute
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the eigenspaces of R, which are

E(R, ζ6) = 〈e6 + ζ−1
6 e7〉, E(R, ζ2

6 ) = 〈e2 − ζ6e3, e4 − ζ6e5〉,
E(R, ζ−2

6 ) = 〈e6 − ζ−1
6 e7〉, E(R, ζ−1

6 ) = 〈e1, e2 + ζ6e3, e4 + ζ6e5〉.

Again I2 restricts the options, ruling out E(R, ζ2
6 ) and leaving only the two vectors

−ζ10
36e1 ± ζ5

36(e2 + ζ6e3) + e4 + ζ6e5 within E(R, ζ−1
6 ). We try the now finite number

of possible ideals. It turns out we only get an irreducible curve of genus 7 if we use
a fixed point from E(R, ζ−1

6 ) and choose the same sign chosen for the edge center, so
a + for us. All in all we must add the following Aut+(R7.6)-invariant pieces to I2:

21 = 〈x3
2 + ζ5

12x
3
5 + 2ζ12x

3
6, x

3
3 + ζ5

12x
3
4 + 2ζ12x

3
7〉,

26 = 〈x1x
2
4 − ζ5

36x3x
2
5 + 2ζ4

36x
2
6x7, x

2
2x4 + ζ5

36x3x
2
5 − 2ζ4

36x
2
6x7〉.

We have now constructed the the canonical ideal I . Let us certify trigonality of the
map. Computation of various elimination ideals quickly reveals that x9

1 + ζ9
36x

9
2 +

2ζ3x
6
2x

3
6 ∈ I . One can check that the map (x1 : · · · : x7) 7→ (x1 : x2 : x6) is a

birational isomorphism onto the planar curve defined by this polynomial. A degree
3 map from the canonical curve to P1 is therefore defined by (x1 : · · · : x7) 7→ (x1 :
x2). Furthermore, scaling x2 and x6, we see that our curve is in fact birationally
equivalent to the planar curve

x9 + y9 + x6z3 = 0.

A standard map presentation of this planar curve is generated by

R : (x : y : z) 7→ (ζ−1
9 x2z : ζ−3

9 yz2 : x3),

S : (x : y : z) 7→ (ζ9x : ζ3y : z),

and standard complex conjugation is a reflection of the map R7.6 on it.

R7.7 type (6, 12) #cells (4, 24, 8) map group size 96
SMP Aut+(R) =

〈
R,S

∣∣R6, S12, (RS)2, (R2S−1)2, S−2RS−2R−2
〉

This map is D(R7.2) and therefore has the same canonical model as R7.2.

R7.8 type (6, 21) #cells (2, 21, 7) map group size 84
SMP Aut+(R) =

〈
R,S

∣∣R6, S21, (RS)2, R−1SRS−13
〉

The canonical representation ρc can be generated by

R 7→ MonMat([−ζ3, 1, ζ3, 1, ζ2
3 , 1, ζ

2
3 ], [1, 3, 2, 5, 4, 7, 6]),

S 7→ MonMat([ζ14
21 , ζ

16
21 , ζ

19
21 , ζ

17
21 , ζ

11
21 , ζ

20
21 , ζ

8
21], [1, 2, 3, 4, 5, 6, 7]),

with invariant subspaces 〈e1〉, 〈e2, e3〉, 〈e4, e5〉, and 〈e6, e7〉 respectively. The repre-
sentation (ρ∨c )2+ decomposes as

13 ⊕ 3× 16 ⊕ 2× 21 ⊕ 2× 22 ⊕ 2× 23 ⊕ 2× 24 ⊕ 2× 25 ⊕ 26 ⊕ 27.
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All contain reducibles, so we cannot use 13, 26 or 27, and must pick at least four 2-
dimensional irreducibles. Hence, we can leave out at most one of the five present.
The invariant 2-dimensional irreducible subspaces are of the form

21 = 〈λ1x1x2 + x3x5, λ1x1x3 + ζ−1
6 x2x4〉,

22 = 〈λ2x1x4 + ζ6x5x6, λ2x1x5 + ζ2
6x4x7〉,

23 = 〈λ3x1x6 − ζ6x2
4, λ3x1x7 − x2

5〉,
24 = 〈λ4x2x5 + x3x7, λ4x2x6 + ζ2

6x3x4〉,
25 = 〈λ5x4x6 + x2

7, λ5x5x7 − ζ6x2
6〉.

The centralizer trick allows us to normalize (only) two of these, since none varies
along with the coordinates of 〈e2, e3〉. Our first attempt is to use 25 ⊕ 24, so we set
λ4 = λ5 = 1. But computation of the primary decomposition of (24 ⊕ 25) yields only
associated primes containing linear forms. The same holds if we try 25 ⊕ 23. The
conclusion that 25 must be excluded is inevitable. Therefore, I2 is of the form

2× 16 ⊕ 21 ⊕ 22 ⊕ 23 ⊕ 24.

We set λ1 = λ4 = 1. The ideal (21 ⊕ 24) has exactly one associated prime with
the correct number of quadrics. That ideal satisfies λ2 = λ3 = 1. Furthermore, I2
contains the subspace

2× 16 = 〈x2
1 + x6x7, x4x5 + ζ6x6x7〉.

As we have seen happen before, (I2) defines a surface, not a curve. We conclude
that R7.8 is trigonal. The Hilbert-Poincaré series implies that we need four extra
generators in degree 3 for the canonical ideal. The representation (ρ∨c )3+ decomposes
into several large isotypic components. All irreducible representations of Aut+(R7.8)
are 1- or 2-dimensional. The isotypic components for 1-dimensional irreducibles are
excluded from participation because (I2) ∩C[x1, . . . , x7]3 has codimension at most 1
in each, and all yield only associated primes containing linear forms when added to
I2.

Similar reasoning applies to some isotypic components of 2-dimensional irreducibles,
and we are left with 5× 21, 6× 22, 6× 23 and 5× 27, of which (I2) already contains
subspaces of dimension 6, 6, 6, and 4 respectively. We compute the 21 edge centers
of the map to progress. The polynomials in I2 impose constraints on the eigenspaces
of RS. There is only one orbit of points on (I2) with Aut+(R7.8)-orbit size 21, and
this is the orbit of

(ζ29
42 : 1 : ζ17

42 : ζ32
42 : ζ33

42 : 1 : ζ37
42 ).

The edge centers shave two off the dimension of each of the four available isotypic
components. Either of the two spaces

4× 21 = 〈 x2
1x4 + x3

7, x
2
1x5 − ζ6x3

6, x1x4x7 + ζ−1
6 x3

6, x1x5x6 + ζ2
6x

3
7, x

2
4x5 + ζ6x

3
7,

x4x
2
5 + ζ−1

6 x3
6, x4x6x7 − x3

7, x5x6x7 + ζ6x
3
6 〉,

4× 27 = 〈 x1x2x7 − ζ6x3x
2
6, x1x3x6 − ζ6x3x

2
4, x2x4x6 + ζ2

6x3x
2
4, x2x

2
5 − ζ6x3x

2
6,

x2x
2
7 + ζ2

6x3x
2
4, x3x5x7 + ζ6x3x

2
6 〉,



200 A – Algebraic models for 2 ≤ g ≤ 15

is therefore excluded or included whole. Computation of the Hilbert-Poincaré series
of (I2 + 4 × 21) and (I2 + 4 × 27) precludes these options, however. Similarly, the
remaining 5 × 22 and 5 × 23 cannot be used completely, so the canonical ideal must
be generated by I2 + 4 × 22 + 4 × 23. We now compute the possible face centers of
the map by considering the eigenspaces

E(R, ζ7) = 〈e2 + ζ−1
6 e3〉, E(R, ζ2

7 ) = 〈e4 − ζ6e5, e6 − ζ6e7〉
E(R, ζ4

7 ) = 〈e2 − ζ−1
6 e3〉, E(R, ζ5

7 ) = 〈e1, e4 + ζ6e5, e6 + ζ6e7〉.

The polynomials of I2 again impose constraints, leaving only four possible orbits,
namely those of:

e2 + ζ−1
6 e3, ζ−1

6 e1 − ζ−1
6 e4 − e5 + e6 + ζ6e7,

e2 − ζ−1
6 e3, ζ−1

6 e1 + ζ−1
6 e4 + e5 + e6 + ζ6e7.

Any of these orbits determines a unique Aut+(R7.8)-invariant 4×22, and for all four
we compute the associated primes. It turns out we only get an irreducible curve of
genus 7 if we pick the orbit of ζ−1

6 e1 + ζ−1
6 e4 + e5 + e6 + ζ6e7. The polynomials we

must add to I2 to generate the canonical ideal are:

22 = 〈 x2
2x3 − 1

2ζ
−2
42 x

2
5x7 + 1

2ζ
5
42x5x

2
6, x2x

2
3 + 1

2ζ
−9
42 x

2
4x6 + 1

2ζ
−2
42 x

3
5 〉,

23 = 〈 x3
2 + 1

2ζ
−2
42 x5x

2
7 − 1

2ζ
5
42x

2
6x7, x

3
3 + 1

2ζ
−2
42 x4x

2
6 + 1

2ζ
−2
42 x6x

2
7 〉.

We have now constructed the the canonical ideal I . Let us certify trigonality of the
map. Computation of various elimination ideals quickly reveals that x3

3x
5
6− 1

2ζ
5
42x

8
4 +

1
2ζ
−2
42 x4x

7
6 ∈ I . One can check that the map (x1 : · · · : x7) 7→ (x3 : x4 : x6) is a

birational isomorphism onto the planar curve defined by this polynomial. A degree
3 map from the canonical curve to P1 is therefore defined by (x1 : · · · : x7) 7→ (x4 :
x6). Furthermore, scaling x4 and x6, we see that our curve is in fact birationally
equivalent to the planar curve

y3z5 + x8 + xz7 = 0.

A standard map presentation of this planar curve is generated by

R : (x : y : z) 7→ (ζ−3
21 x

2z : ζ−1
21 yz

2 : x3),

S : (x : y : z) 7→ (ζ3
21x : ζ21y : z),

and standard complex conjugation is a reflection of the map R7.8 on it.

R7.9 type (15, 30) #cells (1, 15, 2) map group size 60 Wi1(7)
SMP Aut+(R) =

〈
R,S

∣∣R15, S30, (RS)2, RS−14
〉

This is the Wiman type I map Wi1(7) with planar model y2z13 = x15−z15. For more
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information, see Section 5.1.

R7.10 type (16, 16) #cells (2, 16, 2) map group size 64 D(AM(7))
SMP Aut+(R) =

〈
R,S

∣∣R16, S16, (RS)2, [R,S]
〉

This map is D(R7.4) = D(AM(7)) and therefore also has planar model y2z14 =
x16 − z16. For more information, see Section 5.3.

R7.11 type (16, 16) #cells (2, 16, 2) map group size 64 D(Kul(2))
SMP Aut+(R) =

〈
R,S

∣∣R16, S16, (RS)2, R−1SRS−9
〉

This map D(R7.3) = D(Kul(2)). It therefore has the same canonical and planar
models. For more information on the planar model, see Section 5.4.

R7.12 type (28, 28) #cells (1, 14, 1) map group size 56 D(Wi2(7))
SMP Aut+(R) =

〈
R,S

∣∣R28, S28, (RS)2, RS−13
〉

This map is D(R7.5) = D(Wi2(7)) and therefore also has planar model y2z13 =
x(x14 − z14). For more information, see Section 5.2.
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A.8 Genus 8

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that the canonical
model of a non-hyperelliptic platonic map of genus 8 satisfies dim(I2) = 15. If the
map is trigonal, some additional cubics will be needed to define the model. In any
case dim(I3) = 85.

R8.1 and R8.2 type (3, 8) #cells (42, 168, 112) map group size 672 First tuplet
SMP R8.1: Aut+(R) =

〈
R,S

∣∣R3, S8, (RS)2, (RS−2)4
〉

SMP R8.2: Aut+(R) =
〈
R,S

∣∣R3, S8, (RS)2, [RS, S3RS−2]
〉

The canonical characters of R8.1 and R8.2 turn out to be identical. This is the first
occurrence of a tuplet, a phenomenon we described in Section 1.4. We therefore
baptize these two maps the first tuplet, and denote an as yet undetermined member
by R. The group Aut+(R) is isomorphic to PGL(2, 7), and Aut(R) to PGL(2, 7)×Z2;
both maps are antipodal. The canonical representation ρc is irreducible, and can be
found by induction from a 1-dimensional representation over Q(ζ3) of an index 8
subgroup. It can be generated by

R 7→ MonMat([−ζ3, 1, ζ3,−ζ2
3 ,−ζ3, ζ2

3 ,−ζ3, ζ3], [2, 4, 3, 1, 8, 6, 5, 7]),

S 7→ MonMat([ζ2
3 , ζ

2
3 , ζ3, ζ3, ζ

2
3 ,−ζ3,−ζ2

3 , ζ3], [5, 1, 2, 3, 7, 8, 6, 4]).

The representation (ρ∨c )2+ decomposes as

11 ⊕ 62 ⊕ 63 ⊕ 72 ⊕ 2× 81.

This implies that I2 is generated by either 72⊕81 or 11⊕6k⊕81, where k ∈ {2, 3}. We
apply the fixed point strategy and compute the vertices of the map. The eigenspaces
of S are all 1-dimensional, so there are at most 8 possible Aut+(R)-orbits. The orbits
for E(S, ζk8 ) and E(S, ζ−k8 ) are identical, and the orbits for the eigenvalues ±1 are
smaller than 42, whence they can be excluded. The variety defined by the isotypic
component 72 however, contains only those two small orbits. We conclude that I2 =
11 ⊕ 6k ⊕ 81. The two components 62 and 63 each contain precisely one possible
Aut+(R)-orbit of vertices, namely

(1,−ζ−1
24 , ζ

6
24, ζ24,−ζ24, ζ

3
24, ζ

2
24, ζ

−4
24 ) ∈ E(S, ζ8) and

(1, ζ17
24 , ζ

18
24 , ζ

19
24 , ζ

7
24, ζ

9
24, ζ

14
24 , ζ

20
24 ) ∈ E(S, ζ3

8 )

respectively. In both cases, the resulting 42 points yield enough conditions to single
out a unique 81 < 2× 81, and we can check that we have found a canonical ideal for
one of our two tuplet members.

11 = 〈x1x2 − ζ2
3x1x3 + x1x4 + ζ2

3x1x5 − ζ2
3x1x6 − ζ3x1x7 − ζ2

3x1x8 + x2x3−
ζ2
3x2x4 − ζ2

3x2x5 + ζ2
3x2x6 + x2x7 + x2x8 + ζ2

3x3x4 + x3x5 − ζ2
3x3x6−

ζ2
3x3x7 − ζ3x3x8 − ζ2

3x4x5 + x4x6 + ζ2
3x4x7 + ζ3x4x8 + x5x6 + ζ3x5x7+

ζ2
3x5x8 − x6x7 − x6x8 − x7x8〉
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The invariant 62 and 63 are obtained by applying Aut+(R) to spin one of the follow-
ing two polynomials (with the +-sign and −-sign in the middle, respectively):(

7x1x2 − 7ζ6x1x8 − x2x3 − ζ6x2x4 + ζ6x2x5 + 3ζ6x2x6 − 3x2x7 − 2ζ6x3x4 − 2ζ6x3x6+

2ζ6x3x7 + ζ3x3x8 − 2ζ6x4x5 + 4x4x6 + 4ζ6x4x7 + ζ3x4x8 − 2x5x6 + 2ζ3x5x7 − ζ6x5x8−

3x6x8 − 3x7x8
)
±
(
2(−ζ524+ζ

3
24+ζ24)x2x3 + 2(ζ724+ζ24)x2x4 − 2(ζ724+ζ24)x2x5 + (ζ724+ζ24)x2x6+

(ζ524−ζ
3
24−ζ24)x2x7 − 3(ζ724+ζ24)x3x4 − 3(ζ724+ζ24)x3x6 − 4(ζ724+ζ24)x3x7 − 2(ζ724+ζ

5
24−ζ

3
24)x3x8−

3(ζ724+ζ24)x4x5 + (ζ524−ζ
3
24−ζ24)x4x6 + (−ζ724−ζ24)x4x7 − 2(ζ724+ζ

5
24−ζ

3
24)x4x8 − 4(ζ524−ζ

3
24−ζ24)x5x6

+ 3(ζ724+ζ
5
24−ζ

3
24)x5x7 + 2(ζ724+ζ24)x5x8 + (ζ524−ζ

3
24−ζ24)x6x8 + (ζ524−ζ

3
24−ζ24)x7x8

)
.

The invariant 81 is obtained by spinning the following polynomial with Aut+(R):

49x21 + (−5ζ724−4ζ524−ζ
4
24+4ζ324−ζ24−9)x2x3 + (5ζ724+4ζ524+ζ

4
24−4ζ324+ζ24+9)x2x4+

(−4ζ724+ζ
5
24+9ζ424−ζ

3
24−5ζ24−10)x2x5 + (4ζ724−ζ

5
24−9ζ424+ζ

3
24+5ζ24+10)x2x6+

(4ζ724−ζ
5
24−9ζ424+ζ

3
24+5ζ24+10)x2x7 + (−5ζ724−4ζ524−ζ

4
24+4ζ324−ζ24−9)x2x8+

(4ζ724−ζ
5
24−9ζ424+ζ

3
24+5ζ24+10)x3x4 + (4ζ724−ζ

5
24−9ζ424+ζ

3
24+5ζ24+10)x3x5+

(−ζ724−5ζ524−10ζ424+5ζ324+4ζ24+1)x3x6 + (5ζ724+4ζ524+ζ
4
24−4ζ324+ζ24+9)x3x7+

(5ζ724+4ζ524+ζ
4
24−4ζ324+ζ24+9)x3x8 + (−4ζ724+ζ

5
24+9ζ424−ζ

3
24−5ζ24−10)x4x5+

(−5ζ724−4ζ524−ζ
4
24+4ζ324−ζ24−9)x4x6 + (ζ724+5ζ524+10ζ424−5ζ324−4ζ24−1)x4x7+

(ζ724+5ζ524+10ζ424−5ζ324−4ζ24−1)x4x8 + (4ζ724−ζ
5
24−9ζ424+ζ

3
24+5ζ24+10)x5x6+

(4ζ724−ζ
5
24−9ζ424+ζ

3
24+5ζ24+10)x5x7 + (ζ724+5ζ524+10ζ424−5ζ324−4ζ24−1)x5x8+

(−ζ724−5ζ524−10ζ424+5ζ324+4ζ24+1)x6x7 + (−4ζ724+ζ
5
24+9ζ424−ζ

3
24−5ζ24−10)x6x8+

(−ζ724−5ζ524−10ζ424+5ζ324+4ζ24+1)x7x8.

Remark A.8.1. The two canonical curves are related by the Galois automorphism
ζ24 7→ −ζ24 of Gal(Q(ζ24)/Q(ζ3)), which switches the 62 and 63 parts. Which of
the choices defines (R8.1)a and which (R8.2)a is still an open problem. To identify
which is which one could compute the length of a Petrie path, i.e. two times the
order of [R,S], which is 4 for R8.1 and 7 for R8.2. This entails picking a generator
pair (R,S) of Aut+(R) that provably acts on one of the two algebraic curves under
consideration as a pair of rotations around a vertex and the center of an adjacent face.
One should therefore compute a fundamental triangle on one of the two curves.

R8.3 type (4, 18) #cells (4, 36, 18) map group size 144 AM(8)
SMP Aut+(R) =

〈
R,S

∣∣R4, S18, (RS)2, (RS−1)2
〉

This is the Accola-Maclachlan map AM(8) with planar model y2z16 = x18− z18. For
more information, see Section 5.3.

R8.4 type (4, 32) #cells (2, 32, 16) map group size 128 Wi2(8)
SMP Aut+(R) =

〈
R,S

∣∣R4, S32, (RS)2, R−1SRS−15
〉

This is the Wiman type II map Wi2(8) with planar model y2z15 = x(x16 − z16). For
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more information, see Section 5.2.

R8.5 type (6, 10) #cells (6, 30, 10) map group size 120
SMP Aut+(R) =

〈
R,S

∣∣R6, S10, (RS)2, (RS−1)2
〉

The canonical representation ρc can be generated by

R 7→ MonMat([1, ζ10
15 , ζ

14
15 , ζ

6
15, 1, ζ

10
15 , ζ

2
15, ζ

3
15], [2, 1, 4, 3, 6, 5, 8, 7]),

S 7→ MonMat([1, 1, ζ3
5 , ζ

2
5 , 1, 1, ζ

4
5 , ζ5], [3, 4, 1, 2, 7, 8, 5, 6]),

with invariant subspaces 〈e1, e2, e3, e4〉, 〈e5, e6, e7, e8〉. The representation (ρ∨c )2+ de-
composes as

2× 11 ⊕ 2× 12 ⊕ 2× 22 ⊕ 23 ⊕ 24 ⊕ 2× 25 ⊕ 2× 26 ⊕ 2× 41 ⊕ 2× 42.

All isotypic components that are not irreducible representations contain multiples
of linear forms, and as a consequence we must use some 4-dimensional irreducible
isotypic components. The invariant subspaces of these components all have the form

41 = 〈λ1x1x5 + x2
6, λ1x2x6 − ζ6x2

5, λ1x3x7 + x2
8, λ1x4x8 − ζ6x2

7〉,
42 = 〈λ2x

2
1 + x2x5, λ2x1x6 − ζ6x2

2, λ2x
2
3 + x4x7, λ2x3x8 − ζ6x2

4〉.

Each eigenspace of S is one-dimensional and yields a unique orbit as candidate ver-
tex set. Every orbit puts constraints on 2× 41 and 2× 42, and for any orbit one of the
two is excluded. Hence, we must choose exactly one of these components. Using the
centralizer CGL(8,C)(Aut+(R8.5)), we may make this choice under the assumption
λ1 = λ2 = 1. Next, calculation of the primary decomposition of (23 ⊕ 24 ⊕ 4k) yields
exactly one ideal with dim(I2) = 15 for either choice. And in both these prime ideals
2 × 12 is present. This implies that we cannot include invariant subspaces 2k for all
k ∈ {2, 3, 4, 5, 6}, since that would imply dim(I2) > 15. As a consequence, at least
one of

2× 11 = 〈x1x4 − ζ10x2x3, x5x8 − ζ3
10x6x7〉,

2× 12 = 〈x1x4 + ζ10x2x3, x5x8 + ζ3
10x6x7〉

must be included. Each of the four ideals (2× 1i⊕ 4j) has a unique associated prime
I(i, j) that satisfies dim I(i, j)2 = 15, and the four primes each omit a different 2×2k.
For example, I(1, 1) contains the additional pieces

22 = 〈x1x2 + ζ−1
6 x5x6, x3x4 + ζ−1

6 x7x8〉,
23 = 〈x1x7 + ζ−1

10 x3x5, x2x8 + ζ10x4x6〉,
24 = 〈x1x8 − ζ5x3x6, x2x7 + ζ3

10x4x5〉.

All four ideals I(i, j) define a corresponding surface S(i, j). We conclude that our
platonic surface must be trigonal, and that we need five more irreducible degree 3 ir-
reducible polynomials to define it. The transformation DiaMat(1, 1,−1, 1, 1, 1,−1, 1)
swaps S(1, 1) and S(2, 1), and similarly DiaMat(1,−1, 1, 1,−1, 1, 1, 1) swaps S(1, 2)
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and S(2, 2). We must admit we have not found a projectivity relating S(1, 1) to
S(1, 2), but it must exist, since all four choices lead to the unique surface (R8.5)a.
Let us take I = I(1, 1) to continue the search.

We still need five irreducible polynomials of degree 3 to define the canonical curve.
The representation (ρ∨c )3+ splits into many isotypic components. We compute the
edge centers of the canonical model by imposing the constraints of I2 on E(RS,±1).
There are only two viable Aut+(R8.5)-orbits, namely those of:

(ζ31
60 : ζ8

60 : ζ18
60 : ζ60 : ζ−1

60 : 1 : ζ10
60 : −ζ−1

60 ) ∈ E(RS,−1),

(ζ31
60 : ζ8

60 : −ζ18
60 : −ζ60 : ζ−1

60 : 1 : −ζ10
60 : ζ−1

60 ) ∈ E(RS, 1).

These orbits are interchanged by the projectivity DiaMat(−1,−1, 1, 1,−1,−1, 1, 1),
which leaves the surface S(1, 1) invariant. Thus we choose the first without loss of
generality. This point set puts enough restrictions on all isotypic components to yield
a finite number of choices. All these choices yield a unique solution. This multitude
of options seems to plague this specific map at every step, for some reason. One way
to supplement I2 with degree 3 polynomials to generate the canonical ideal is to add:

11 = 〈x1x
2
6 − ζ6x2x

2
5 + x3x

2
8 − ζ6x4x

2
7〉,

23 = 〈x2
1x6 − ζ5x2

3x8 + ζ2
6x

3
5 + ζ30x

3
7, x

2
2x5 + ζ3

10x
2
4x7 + x3

6 + ζ3
10x

3
8〉,

25 = 〈x3
1 + ζ2

5x
3
3 + ζ−1

6 x2
5x6 + ζ7

30x
2
7x8, x

3
2 − ζ10x

3
4 + ζ6x5x

2
6 + ζ−7

30 x7x
2
8〉.

R8.6 type (6, 24) #cells (2, 24, 8) map group size 96
SMP Aut+(R) =

〈
R,S

∣∣R6, S24, (RS)2, R−1SRS−7
〉

The canonical representation ρc can be generated by

R 7→ MonMat([ζ4
6 , ζ
−1
6 , ζ−1

6 , ζ2
6 , 1, ζ

2
6 , 1, ζ

4
6 ], [1, 2, 3, 4, 6, 5, 8, 7]),

S 7→ MonMat([ζ−1
6 , ζ4

6 , ζ
−1
6 , 1, ζ3

24ζ
−1
6 ,−ζ5

24,−ζ7
24,−ζ24], [1, 2, 4, 3, 5, 6, 7, 8]),

with invariant subspaces 〈e1〉, 〈e2〉, 〈e3, e4〉, 〈e5, e6〉, 〈e7, e8〉. The representation (ρ∨c )2+

decomposes as

2× 13⊕ 14⊕ 18⊕ 3× 19⊕ 2× 110⊕ 111⊕ 2× 21⊕ 22⊕ 2× 23⊕ 3× 24⊕ 25⊕ 2× 26⊕ 27⊕ 29.

The isotypic components of all 2-dimensional irreducible representations and 2×13,
3×19, 2×110, 111 contain multiples of linear forms. Hence, I2 must certainly contain
21 ⊕ 23 ⊕ 26. The general form of these invariant subspaces is

21 = 〈λ1x1x3 + (i+ 1)x5x7 − (i+ 1)x6x8, λ1x1x4 + (ζ6 + ζ−1
12 )x5x7 + (ζ6 + ζ−1

12 )x6x8〉,

23 = 〈λ2x2x3 + (i+ 1)x27 + (−ζ6 + ζ−1
12 )x28, λ2x2x4 + (ζ6 + ζ−1

12 )x27 + (ζ3 + ζ12)x28〉,

26 = 〈λ3x2x7 − ζ524x3x8 − ζ724x4x8, λ3x2x8 + ζ24x3x7 − ζ324x4x7〉.

Using the centralizer trick in a somewhat precarious balancing act of scaling coef-
ficients, we first normalize 23 by scaling 〈e7, e8〉. Second, we can normalize 26 by
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varying the scaling 〈e2〉 and 〈e3, e4〉 inversely. This will not affect 23. Third, we nor-
malize 21 by scaling 〈e1〉. The final outcome is that we may set λ1 = λ2 = λ3 = 1.
The primary decomposition of (21 ⊕ 23 ⊕ 26) contains a unique prime ideal I that
satisfies dim(I2) = 15. Its additional pieces are

13 = 〈x1x2 + (ζ7
24 + ζ5

24 − ζ3
24)x5x8 + (ζ7

24 + ζ24)x6x7〉,
14 = 〈x5x8 + ζ3x6x7〉,

2× 19 = 〈x2
2 + 2(ζ7

24 + ζ5
24 − ζ3

24)x7x8, x
2
3 − ζ4

24x
2
4 + 2(ζ7

24 − ζ5
24 − ζ3

24)x7x8〉,
110 = 〈x2

1 + 2(ζ7
24 + ζ24)x5x6〉,

2× 24 = 〈x1x7 − ζ24x3x6 − ζ3
24x4x6, x1x8 + ζ24x3x5 − ζ3

24x4x5,

x2x5 − ζ24x3x6 − ζ3
24x4x6, x2x6 + ζ5

24x3x5 − ζ7
24x4x5〉.

This ideal defines a surface, however, so the platonic surface is trigonal. The Hilbert-
Poincaré series of I tells us we still need five extra irreducible polynomials of degree
3 to define the canonical ideal. We compute the decomposition of (ρ∨c )3+, which
has a lot of big isotypic pieces. We supplement I2 with each isotypic component in
turn and consider the resulting ideals. Most of them only have associated primes
with too many quadrics or cubics. The representation only has 1- and 2-dimensional
irreducible representations, and the only remaining possibility for an additional 1-
dimensional piece is restricted to one from

4× 14 = 〈x3
1, x1x5x6, x2x3x4, x3x

2
7 + ζ6x3x

2
8 + ζ12x4x

2
7 − ix4x

2
8〉.

Parity forces the use of some 3 × 14 < 4 × 14. To discover it, we compute the face
centers and edge centers of the map, using the constraints imposed by I2. The edge
centers must lie inE(RS,−1), which is spanned by e1, e2, e3+ζ6e4, e5+ζ5

24e6, and e7+
ζ24e8. With the last remaining freedom from the centralizer CGL(8,C)(Aut+(R8.6)),
we may scale its 〈e5, e6〉 component. The constraints of I2 now leave only a finite
number of possible Aut+(R8.6)-orbits, and the only one with proper size is

((i− 1)
4
√

2ζ16 : (i− 1)
4
√

2ζ16 :
4
√

2ζ16 : ζ6
4
√

2ζ16 : 1 : ζ5
24 : 1 : ζ24).

Similarly, the orbit of face centers must be that of α(ζ3
8e2 +e3)+e7 +ζ6e8 ∈ E(R, ζ−1

6 ),
where α2 = 2(ζ5

24 + ζ3
24 − ζ24). These orbits of points give us enough constraints to

determine 3× 14. The ideal (I2 + 3× 14) has a unique associated prime that defines
the canonical ideal. Polynomials of degree 3 we can add are:

14 = 〈2x1x5x6 + ζ−1
24 x3x

2
7 + ζ3

24x3x
2
8 + ζ24x4x

2
7 − ζ5

24x4x
2
8〉,

21 = 〈2x1x
2
5 + (ζ10

24 − ζ4
24)x3x

2
4 − (ζ6

24 + 1)x3
4 − 4ζ24x4x7x8,

2x1x
2
6 + (ζ20

24 − ζ2
24)x3x

2
4 + (ζ10

24 + ζ4
24)x3

4 + 4ζ5
24x4x7x8〉,

24 = 〈x3x4x7 + (ζ11
24 − ζ5

24)x2
5x6, x3x4x8 + (ζ7

24 − ζ24)x5x
2
6〉.

We arrive at a planar model for R8.6 by computing a suitable elimination ideal of
the canonical ideal, for example to (x1, x2, x5). This yields a birational mapping
(x1 : · · · : x8) 7→ (x1 : x2 : x5). The image, when renaming the variables, is the
planar model

y3(x8 − 64z8) = −16ix7z4.
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R8.7 type (8, 12) #cells (4, 24, 6) map group size 96
SMP Aut+(R) =

〈
R,S

∣∣R8, S12, (RS)2, (RS−1)2, RS5R−3S−1
〉

The canonical representation ρc can be generated by

R 7→ MonMat([−1, 1, ζ−1
8 ,−ζ8, 1,−i, ζ12, ζ6], [2, 1, 3, 4, 6, 5, 8, 7]),

S 7→ MonMat([ζ−1
6 ,−ζ6,−1, 1, 1, 1, ζ−1

6 , ζ6], [1, 2, 4, 3, 7, 8, 5, 6]).

It has invariant subspaces 〈e1, e2〉, 〈e3, e4〉, and 〈e5, e6, e7, e8〉. The representation
(ρ∨c )2+ decomposes as

11 ⊕ 3× 13 ⊕ 2× 21 ⊕ · · · ⊕ 2× 25 ⊕ 26 ⊕ 27 ⊕ 2× 41.

All isotypic pieces that are not irreducible representations contain multiples of linear
forms. Moreover, of the three pieces

11 = 〈x5x8 + ζ−1
6 x6x7〉,

26 = 〈x1x5 − ζ8x2x6, x1x7 − ζ7
24x2x8〉,

27 = 〈x1x5 + ζ8x2x6, x1x7 + ζ7
24x2x8〉,

we can use only one, because any two yield no viable associated primes. Since
dim I2 = 15 for the canonical ideal, an invariant 41 < 2 × 41 is necessary in the
assembly of I2. Any such subspace has the form

41 = 〈x1x3 + λx2x5, x1x4 − λζ6x2x7, λx1x6 − ζ8x2x3, λx1x8 + ζ7
24x2x4〉.

We employ the centralizer CGL(8,C)(Aut+(R8.7)) to set λ = 1. The ideal (41) has
one associated prime without linear forms, and this prime ideal J contains 11 and
invariant subspaces 13, 21, and 22. Hence, 26, 27 6⊆ I2, and I2 must be of the form

11 ⊕ 2× 13 ⊕ 21 ⊕ 22 ⊕ 2k ⊕ 2l ⊕ 41,

where k, l ∈ {3, 4, 5}. To progress, we compute the vertices and face centers of the
map. The only orbits generated by an eigenvector of R that satisfies the constraints
imposed by J and of the right orbit size are those of e1 + ie2, e1 − ie2 and ζ10

24e4 +
e7 + ζ11

24e8. But the first two impose constraints on

3× 13 = 〈x1x2, x3x4, x5x8 + ζ3x6x7〉

that only lead to prime ideals with linear forms. There are two possible vertex orbits,
that of e6 + ζ−1

12 e8 and that of e5 − ζ12e7. Each turns out a posteriori to be a correct
path. We choose the first. This choice of vertices and face centers rules out a 25 and
forces

24 = 〈x3x5 + ζ6x4x7 − x2
6 + ζ6x

2
8, x3x6 + ζ3x4x8 + ζ−1

8 x2
5 − ζ5

24x
2
7〉.

Now we look at the general form of an invariant 23 < 2× 23, which is

23 = 〈µx2
1 + x3x7 + ζ3x4x5, µx

2
2 + ζ24x3x8 − ζ5

24x4x6〉.
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The centralizer trick can be used again to scale the 〈e1, e2〉 subspace. Miraculously,
this does not affect the ideal part we already have: look back at 11 ⊕ 41. Therefore,
we can set µ = 1. The ideal (11 ⊕ 23 ⊕ 24 ⊕ 41) has one associated prime, and this
defines the canonical model. Its additional invariant subspaces are

2× 13 = 〈x1x2 − ζ24x5x8 + ζ−1
8 x6x7, 2x3x4 + ζ5

24x5x8 − ζ24x6x7〉,
21 = 〈x3x7 − ζ3x4x5, x3x8 + ζ6x4x6〉,
22 = 〈x2

3 + ζ−1
8 x5x6, x

2
4 + ζ−1

8 x7x8〉.

R8.8 type (10, 20) #cells (2, 20, 4) map group size 80
SMP Aut+(R) =

〈
R,S

∣∣R10, S20, (RS)2, R−1SRS−11
〉

The canonical representation ρc can be generated by

R 7→ MonMat(8, 8, [ζ3
5 , ζ

4
5 ,−ζ5,−ζ2

5 ,−ζ4
5 , ζ

4
5 ,−ζ2

5 , ζ
2
5 ], [1, 2, 3, 4, 5, 6, 7, 8]),

S 7→ MonMat(8, 8, [−ζ2
5 ,−ζ5, ζ4

5 , ζ
3
5 , 1,−ζ2

5 , 1,−ζ5], [1, 2, 3, 4, 6, 5, 8, 7]).

It has invariant subspaces 〈e1〉, 〈e2〉, 〈e3〉, 〈e4〉, 〈e5, e6〉, and 〈e7, e8〉. The represen-
tation (ρ∨c )2+ decomposes into a great number of isotypic components. We note
that Aut+(R8.8) has twenty 1-dimensional irreducible representations and five 2-
dimensional; no others. All isotypic components of (ρ∨c )2+ that are not irreducible
contain multiples of linear forms. The same holds for a few irreducible isotypic com-
ponents, so those can be discarded immediately. The only irreducible isotypics left
to us are

18 = 〈x5x8 + ζ10x6x7〉 and 116 = 〈x5x7 + ζ3
10x6x8〉.

All associated primes of (18⊕116) contain linear forms, so we cannot use both 18 and
116. This already forces us to use a maximal invariant proper subspace of all other
available isotypic components, and I2 must have the shape

14 ⊕ 15 ⊕ 16 ⊕ 17 ⊕ 19 ⊕ 1i ⊕ 117 ⊕ 2× 118 ⊕ 21 ⊕ 22 ⊕ 23,

where i ∈ {8, 16}. The relevant 2k-pieces each come from an isotypic component
2× 2k, and the invariant 2k subspaces are of the respective forms

21 = 〈λ1x1x7 + ζ5x3x6, λ1x1x8 + ζ2
5x3x5〉,

22 = 〈λ2x2x5 − ζ10x3x8, λ2x2x6 − ζ3
10x3x7〉,

23 = 〈λ3x2x7 + ζ5x4x6, λ3x2x8 + ζ2
5x4x5〉.

We now employ the centralizer CGL(8,C)(Aut+(R8.8)) to scale 〈e1〉, 〈e3〉, and 〈e4〉
respectively, to set λ1 = λ2 = λ3 = 1. The ideal (21 ⊕ 22 ⊕ 23) has one associated
prime without linear forms in it. This prime ideal tells us we need to use

14 = 〈x1x4−x2x3〉, 16 = 〈x1x2−x2
3〉, 116 = 〈x5x7 +ζ3

10x6x8〉, 118 = 〈x2
2−x3x4〉.

Hence, 18 is out of the picture. Mind that we have only found a 1×118 instead of the
necessary 2×118. To continue, we compute the vertices of the model. The polynomi-
als we have so far, along with orbit size computation, leave only the orbit consisting
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of e5 ± ζ20e6. Next, we notice that the prime ideal we computed is invariant under
the transformation DiaMat(1, 1, 1, 1, λ, λ, λ, λ). This allows us to scale the invariant
17 < 2× 17 = 〈x2

4, x
2
7 + ζ5x

2
8〉 to be

17 = 〈x2
4 − x2

7 − ζ5x2
8〉.

The ideal generated by all pieces determined so far has exactly one associated prime,
giving us another two subspaces,

117 = 〈x2x4 + ζ3
5x5x8 + ζ5x6x7〉 and 2× 118 = 〈x2

2 − x3x4, x3x4 − x2
5 − ζ2

5x
2
6〉.

All the polynomial data amassed now force the edge centers to be the orbit of a point
of the form

−µ3
√

2e1 − µ
√

2e2 + µ2
√

2e3 +
√

2e4 + µ(e5 + ζ−1
5 e6) + e7 + ζ2

5e8.

Amazingly, the transformation DiaMat(t3, t, t2, 1, t, t, 1, 1) leaves the ideal that we
computed invariant, so everything works out; we may set µ = 1 in the formula
above. The resulting orbit imposes constraints that uniquely define the canonical
ideal, generated by I2. The invariant subspaces that must be added to the ones al-
ready listed are:

15 = 〈x1x3 + 2ζ3
5x7x8〉 and 19 = 〈x2

1 − x5x7 − ζ−1
5 x6x8〉.

As an aside, the face centers form the orbit e4 + e7.

R8.9 type (17, 34) #cells (1, 17, 2) map group size 68 Wi1(8)
SMP Aut+(R) =

〈
R,S

∣∣R17, S34, (RS)2, RS−16
〉

This is the Wiman type I map Wi1(8) with planar model y2z15 = x17−z17. For more
information, see Section 5.1.

R8.10 type (18, 18) #cells (2, 18, 2) map group size 72 D(AM(8))
SMP Aut+(R) =

〈
R,S

∣∣R18, S18, (RS)2, [R,S]
〉

This map is D(R8.3) = D(AM(8)) and thefore also has planar model y2z16 = x18 −
z18. For more information, see Section 5.3.

R8.11 type (32, 32) #cells (1, 16, 1) map group size 64 D(Wi2(8))
SMP Aut+(R) =

〈
R,S

∣∣R32, S32, (RS)2, RS−15
〉

This map is D(R8.4) = D(Wi2(8)) and thefore also has planar model y2z15 =
x(x16 − z16). For more information, see Section 5.2.
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A.9 Genus 9 (examples)

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that the canonical
model of a non-hyperelliptic platonic map of genus 9 satisfies dim(I2) = 21. If the
map is trigonal, some additional cubics will be needed to define the model. In any
case dim(I3) = 125.

R9.9 type (4, 12) #cells (8, 48, 24) map group size 192
SMP Aut+(R) =

〈
R,S

∣∣R4, S12, (RS)2, [R,S3], (RS−1)4
〉

Some consideration of Aut(R9.9) leads us to the discovery that there is a platonic
4-cover π : R9.9 → R9.9/〈S3〉 = Cub, branched over cells0. Referring back to the
vertex data of Cub in Section 6.4, we write down the planar model

y4z4 = x8 + 14x4z4 + z8.

It has standard map presentation

R : (x : y : z) 7→ (−ix : y : z),

S : (x : y : z) 7→ ((x+ z)2 : 2yz : (x+ iz)2).

Standard complex conjugation con9 is a reflection of the map on this curve.

Remark A.9.1. In fact, R9.11 is a platonic 4-cover π : R9.11 → R9.11/〈S3〉 = Cub
of the cube as well. This demonstrates the point that a cover, even a platonic one, is
not globally determined by its local behaviour. Computation of the automorphism
group of the above planar model revealed a posteriori that that curve supports the
standard map presentation of R9.9, not of R9.11. A model for the latter remains to be
constructed, and this case deserves attention.

R9.15 type (5, 6) #cells (20, 60, 24) map group size 240
SMP Aut+(R) =

〈
R,S

∣∣R5, S6, (RS)2, (RS−2)2
〉

Some consideration of Aut(R9.15) leads us to the discovery that there is a platonic
2-cover π : R9.15 → R9.15/〈S3〉 = Dod, branched over cells0. Referring back to the
vertex data of Dod in Section 6.4, we write down the planar model

y2z18 = x20 − 228x15z5 + 494x10z10 + 228x5z15 + z20.

We have not computed a standard map presentation for, though.

R9.26 type (12, 12) #cells (4, 24, 4) map group size 96
SMP R9.26: Aut+(R) =

〈
R,S

∣∣R12, S12, (RS)2, R3S−3, (RS−1)3
〉

This map is D1(R9.9) and therefore has the same planar model. Also, there is a pla-
tonic 4-cover π : R9.26 → R9.26/〈R3, S3〉 = Tet. We have the following commutative
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diagram relating the four map automorphism groups:

Aut(R9.9) // Aut(Cub)

Aut(R9.26) //
OO

OO

Aut(Tet)

OO

OO

Remark A.9.2. Parallel to the above, R9.27 = D1(R9.11), and there is a platonic 4-
cover π : R9.27 → R9.27/〈R3, S3〉 = Tet. In fact, Aut(R9.26) ∼= Aut(R9.27), both are
isomorphic to a semi-direct product (Z4 × Z2

2) o Sym3. The group Aut+(R9.26) has
two Aut(R9.26)-orbits of standard generator pairs, resulting in the existence of these
two platonic maps.
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A.10 Genus 10 (examples)

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that the canonical
model of a non-hyperelliptic platonic map of genus 10 satisfies dim(I2) = 28. If the
map is trigonal, some additional cubics will be needed to define the model. In any
case dim(I3) = 175.

R10.1 type (3, 9) #cells (32, 162, 108) map group size 648 Mod(9)
SMP Aut+(R) =

〈
R,S

∣∣R3, S9, (RS)2, [RS−2R,S3]
〉

This is the modular map Mod(9). More information on the modular map family can
be found in Section 5.7. The canonical representation ρc can be generated by

R 7→ MonMat([1, 1, 1, ζ2
3 , 1, 1, 1, 1, 1, 1], [2, 3, 1, 4, 7, 8, 9, 10, 5, 6]),

S 7→ MonMat([1, ζ2
3 , ζ3, ζ3,−1,−1, 1, 1, ζ6, ζ

−1
6 ], [4, 2, 1, 3, 9, 10, 6, 5, 8, 7]).

It has invariant subspaces 〈e1, . . . , e4〉 and 〈e5, . . . , e10〉. The representation (ρ∨c )2+

decomposes as

11 ⊕ 12 ⊕ 13 ⊕ 41 ⊕ 2× 44 ⊕ 46 ⊕ 2× 61 ⊕ 2× 121.

Here,

2× 44 = 〈x2
1, x

2
2, x

2
3, x

2
4, x1x5 + ζ3x2x7 + ζ2

3x3x9, x1x8 − x2x6 + ζ3x4x9,

x1x10 − x3x6 − x4x7, x2x10 − x3x8 + ζ2
3x4x5〉,

2× 61 = 〈x1x2, x1x3, x1x4, x2x3, x2x4, x3x4, x
2
5, x

2
6, x

2
7, x

2
8, x

2
9, x

2
10〉,

2× 121 = 〈x1x6, x1x7, x1x9, x2x5, x2x8, x2x9, x3x5, x3x7, x3x10, x4x6, x4x8,

x4x10, x5x7, x5x8, x5x9, x5x10, x6x7, x6x8, x6x9, x6x10, x7x9, x7x10,

x8x9, x8x10〉.

Because each of these three contains multiples of linear forms, the shape of I2 is
forced to be 121 ⊕ 61 ⊕ 4i ⊕ 4j ⊕ 1k ⊕ 1l. Furthermore,

41 = 〈x1x5 + x2x7 + x3x9, x1x8 − ζ3x2x6 + x4x9, x1x10 − ζ2
3x3x6 − ζ3x4x7,

x2x10 − ζ3x3x8 + ζ3x4x5〉,
46 = 〈x1x5 + ζ2

3x2x7 + ζ3x3x9, x1x8 − ζ2
3x2x6 + ζ2

3x4x9, x1x10 − ζ3x3x6 − ζ2
3x4x7,

x2x10 − ζ2
3x3x8 + x4x5〉,

and x3x9x10 ∈ (41 ⊕ 46), so that we may assume 4i = 44 < 2 × 44. All invariant
spaces 121 < 2× 121 are of the form

〈λx1x6 − ζ3x8x10, λx1x7 − x5x10, λx1x9 − ζ2
3x5x8, λx2x5 − ζ2

3x7x10,

λx2x8 − ζ3x6x10, λx2x9 − x6x7, λx3x5 − x8x9, λx3x7 − ζ2
3x6x9,

λx3x10 − ζ3x6x8, λx4x6 − ζ2
3x7x9, λx4x8 − ζ3x5x9, λx4x10 − x5x7〉
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for some λ ∈ C. We now use the centralizer CGL(10,C)(Aut+(R10.1)) and set λ = 1.
To this we add either 41 or 46 and compute the primary decomposition. Both choices
yield exactly one ideal that defines a prime ideal with the correct Hilbert-Poincaré
series. In each case, the invariant pieces

11 = 〈x5x6 + x7x8x9x10〉,
13 = 〈x5x6 + ζ2

3x7x8 + ζ3x9x10〉,
16 = 〈x1x2 − ζ2

3x
2
10, x1x3 − ζ2

3x
2
8, x1x4 − x2

5,

x2x3 − ζ2
3x

2
6, x2x4 − ζ2

3x
2
7, x3x4 − ζ3x2

9〉

are the other polynomials sufficient to generate the canonical ideal. The choice be-
tween 41 and 46 does not matter: both yield a correct canonical model. We know
they must be isomorphic, because the platonic surface is unique. However, we have
not constructed a projectivity to transform one to the other, making this explicit.

R10.2 type (3, 12) #cells (18, 108, 72) map group size 432 Fer(6)
SMP Aut+(R) =

〈
R,S

∣∣R3, S12, (RS)2, (R2S2)3
〉

This is the Fermat map Fer(6) with planar model x6 + y6 + z6 = 0. For more infor-
mation, see Section 5.5.

R10.3 type (3, 15) #cells (12, 90, 60) map group size 360
SMP Aut+(R) =

〈
R,S

∣∣R3, S15, (RS)2, [R,S5], (RS−3)3
〉

Some consideration of Aut(R10.3) leads us to the discovery that there is a platonic
3-cover π : R10.3 → R10.3/〈S5〉 = Ico, branched over cells0. Referring back to the
vertex data of Ico in Section 6.4, we write down the planar curve y3z9 = −xz(x10 +
11x5z5−z10). It is reducible, but dividing out the component z = 0 and transforming
by y 7→ iy, we find the planar model

y3z8 = x11 + 11x6z5 − xz10.

It has standard map presentation

R : (x : y : z) 7→

(−(ζ25+ζ5+1)(x− (ζ5+ζ
3
5)z)(x− (1+ζ45)z)

3 : 5(ζ815−ζ
−1
15 −ζ

2
15)yz

3 : (x− (1+ζ45)z)
4),

S : (x : y : z) 7→ (ζ5x : ζ15y : z).

Standard complex conjugation con10 is a reflection of the map on this curve.

R10.5 type (3, 24) #cells (6, 72, 48) map group size 288
SMP Aut+(R) =

〈
R,S

∣∣R3, S24, (RS)2,
〉

This map is a platonic 6-cover of Oct branched over cells0. It therefore has the non-
singular planar model

y6 = x(x± 1)(x± i) = x5z − xz5
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This model has standard map presentation

R : (x : y : z) 7→ ((i− 1)(x+ z) : 2ζ12y : (i+ 1)(z − x)),

S : (x : y : z) 7→ (ζ5
24x : y : ζ−1

24 z).

Standard complex conjugation is a reflection of the map on this model.

R10.6 type (4, 5) #cells (72, 180, 90) map group size 720 Wiman’s 2nd sextic map
SMP Aut+(R) =

〈
R,S

∣∣R4, S5, (RS)2, (RS−1)5
〉

The group Aut+(R10.6) is isomorphic to Alt6 (or equivalently, PSL(2, 9)), and its
canonical character is the unique 10-dimensional irreducible. The canonical repre-
sentation ρc can be generated by sending a standard generator pair (R,S) to



0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 1 −1 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 1 0 0 −1 0 0 0 1 −1

1 0 −1 1 0 0 0 0 1 0

0 0 0 0 0 −1 0 0 0 0

0 0 −1 0 1 −1 0 1 0 0



,



0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 −1 0 0 0 0 0

0 1 0 0 −1 0 0 0 1 −1

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 1 0 0 1 −1 0 1

0 0 1 0 −1 1 0 −1 0 0

0 −1 0 0 0 0 0 0 0 0

1 −1 0 0 0 1 −1 0 0 0



.

Although it is not monomial, this representation (taken from [W+1996]) does contain
a monomial Alt5 subgroup. The representation (ρ∨c )2+ decomposes as

11 ⊕ 2× 51 ⊕ 2× 52 ⊕ 81 ⊕ 82 ⊕ 2× 91.

The pieces 81 and 82 are defined over Q(α), where α = ζ5 + ζ−1
5 , and generated by

spinning the following polynomials (using the +-sign and −-sign respectively) with
Aut+(R10.6):(

6x2x4 − 6x2x7 − x2x8 − 3x2x10 − 6x3x4 + 6x3x7 + 3x3x8 + x3x10 − 2x4x5 + 6x4x6+

3x4x8 − 6x4x9 + 3x4x10 − 2x5x7 + 6x5x8 − 6x5x10 − 6x6x7 + 3x6x8 + x6x10 + 3x7x8+

6x7x9 + 3x7x10 − x8x9 − 3x9x10
)
± (2α2 − 3)

(
− 2x2x5 + 4x2x6 + 2x2x7 + 3x2x8+

x2x10 + 2x3x4 + 2x3x5 − x3x8 − 4x3x9 − 3x3x10 − x4x8 − 2x4x9 + x4x10 − 2x5x6+

2x5x9 − 2x6x7 + x6x8 + 3x6x10 + x7x8 − x7x10 − 3x8x9 − x9x10
)
.

The ideal (81 ⊕ 82) is computed to have only associated primes with linear forms
in them, so either 81 or 82 has to be excluded. The other isotypic components are
defined over Q. We will not display them, but one can compute

x3
5 ∈ (2× 51 ⊕ 2× 52)
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and
(x9 ± x10)(x9 + 3x10)(x9 ± ix10)(x8 + 1

3x10) ∈ (2× 91).

This forces I2 = 11 ⊕ 51 ⊕ 52 ⊕ 8k ⊕ 91, with k ∈ {1, 2}. The field automorphism
α 7→ α2−2 (which extends to ζ5 7→ ζ2

5 of Q(ζ5)) interchanges the two pieces 81 and 82,
so we can choose either one for the canonical ideal. The choices might result in two
non-isomorphic curves, but we know a priori that R10.6 is not a member of a tuplet
(cf. Section 1.4), so that will not happen. We choose 81 to form our canonical ideal
and continue by using the fixed point strategy. The polynomials of 11 ⊕ 81 impose
restrictions on the vertices on the canonical model. In fact, a single Aut+(R10.6)-orbit
remains, defined over Q(ζ5,

√
−3), namely that of

(
3ζ

4
5

√
−3 + ζ

4
5 − 2ζ

2
5 − 2ζ5 : −3ζ

2
5

√
−3− 2ζ

3
5 − 3ζ

2
5 − 2ζ5 : 8ζ

3
5 + 10ζ

2
5 + 10ζ5 + 8 :

3(ζ
4
5 + 1)

√
−3− 3ζ

3
5 − 5ζ

2
5 − 3ζ5 : (3

√
−3− 7)(ζ

2
5 + ζ5 + 1) : (−3

√
−3 + 7)(ζ5 + 1) :

3(ζ5 + 1)
√
−3− 2ζ

3
5 + 3ζ5 + 3 : 2ζ

3
5 + 2ζ

2
5 − 8 : −3(ζ

2
5 + ζ5 + 1)

√
−3− 3ζ

2
5 − 5ζ5 − 3 :

3
√
−3− 2ζ

3
5 − 2ζ

2
5 + 1

)
.

The 72 points of this set yield enough constraints to determine a unique 51 < 2× 51,
52 < 2 × 52, and 91 < 2 × 91. Because of the approach using fixed points, the
resulting canonical model is not defined over Q(α), but over Q(α,

√
−3). The unique

Aut+(R10.6)-invariant quadric 11 is given by:

2x21 + x1x2 + x1x3 − x1x4 − x1x6 + x1x7 − x1x9 + 2x22 + x2x5 + x2x6 − x2x7 − x2x9+

x2x10 + 2x23 + x3x4 + x3x5 − x3x6 + x3x8 + x3x9 + 2x24 − x4x7 + x4x8 − x4x9 − x4x10+

2x25 + x5x6 − x5x8 + x5x9 − x5x10 + 2x26 + x6x7 + x6x8 + 2x27 + x7x8 − x7x10 + 2x28+

x8x10 + 2x29 + x9x10 + 2x210.

One gets the correct invariant 51, 52 and 91 by spinning the following polynomials
with Aut+(R10.6), respectively:

12x2
2 + 8x2x5 + 8x2x6 − 8x2x7 + 8x2x10 − 12x2

3 − 8x3x4 − 8x3x5 − 8x3x8 − 8x3x9−
12x2

4 − 8x4x8 + 8x4x9 + 8x4x10 + 8x5x6 − 8x5x9 + 12x2
6 + 8x6x7 + 8x6x8 + 12x2

7+

8x7x8 − 8x7x10 − 12x2
9 − 8x9x10 + (3

√
−3− α2 + 3)

(
x2x8 − x3x10 − x4x5 − x5x7−

x6x10 + x8x9

)
,

4x1x3 − 4x1x6 − 4x3x5 − 4x3x6 − 4x3x9 − 4x5x8 − 4x5x9 − 4x5x10 − 4x6x7−
4x6x8 − 4x7x8 + 4x8x10 + (3

√
−3− 2α2 + 3)

(
− x1x5 + x1x8 + 2x1x10 + x3x7+

x3x10 + x5x7 + x6x9 − x6x10 + 2x7x9 + x8x9

)
,

2x2x4 − 2x2x8 + 2x3x7 + 2x3x10 − 4x4x5 + 2x4x6 − 4x5x7 − 8x5x8 + 8x5x10+

2x6x10 + 2x7x9 − 2x8x9 + (3(α2 − 3)
√
−3− 7)

(
x2x7 + x3x4 + x4x9 + x6x7

)
+

(3(α2 − 3)
√
−3 + 1)

(
− x2x10 + x3x8 + x4x8 + x4x10 + x6x8 + x7x8 + x7x10−

x9x10

)
+ (3(α2 − 3)

√
−3 + 5)

(
x2

8 − x2
10

)
.

It should be possible to obtain a canonical model over Q(α) or even Q by applying
Galois descent, but we leave this for future research.
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Remark A.10.1. We designate this map as Wiman’s second sextic map. The reason
is that planar models of the corresponding platonic surface were studied first in
[Wim1896]. The adjective ‘second’ distinguishes it from Wiman’s first sextic map,
R6.2. A planar model for Wiman’s second sextic map is

x6+ y6+ z6− 3
4
(5 + i

√
15)(x2y4 +x4y2 + y2z4 + y4z2 + z2x4 + z4x2) + 3(5− i

√
15)x2y2z2 = 0,

with standard map presentation

R 7→

1 0 0
0 0 1
0 −1 0

 , S 7→

 −ζ3 ζ715 − ζ
3
15 + ζ215 − 2 −ζ415 − ζ15

ζ715 − ζ
3
15 + ζ215 − 1 ζ3 + 1 ζ

−1
15 + ζ

−4
15 − ζ15

5

ζ515 + ζ415 + ζ15 + 1 ζ515 − ζ
3
15 + ζ215 − ζ

−2
15 1

 .

We note that this standard map presentation only defines a 3-dimensional projective
representation of Aut+(R10.6) ∼= Alt(6), but does not lift to a linear representation
of Alt(6). It does lift to a linear representation of a central extension 3 ·Aut+(R10.6),
which is traditionally called the ‘Valentiner group’. In the same paper mentioned
above, Wiman computes two more planar models for R10.6, so the reader can choose
their own favorite:

z6 + 30z4xy − 150x2y2z2 + 100x3y3 + 15
√

15(z2 + 2xy)(x4 − y4) = 0,

27z6 − 135z4xy − 45x2y2z2 + 9z(x5 + y5) + 10x3y3 = 0.

R10.9 type (4, 7) #cells (24, 84, 42) map group size 336
SMP Aut+(R) =

〈
R,S

∣∣R4, S7, (RS)2, (RS−1)3
〉

The canonical representation ρc is generated by

R 7→

1 −1 1
2 (
√
−7 + 1)

0 −1 1
2 (
√
−7− 1)

0 1
2 (
√
−7 + 1) 1

⊕


−1 1 0 0 −1 1 1

−1 0 0 1 0 1 0

−1 2 1 1 −1 2 1

−1 1 1 0 −1 1 0

0 0 0 0 0 1 0

1 −1 −1 −1 0 −1 0

0 1 0 0 0 0 0



S 7→

 0 − 1
2 (
√
−7 + 1) −1

1
2 (
√
−7 + 1) 1

2 (−
√
−7− 3) 1

2 (
√
−7− 1)

1 1
2 (
√
−7− 1) 1

⊕


0 0 0 0 0 0 1

−1 0 1 0 0 1 0

1 0 0 0 0 0 0

1 0 0 0 1 −1 0

−2 2 1 1 −1 3 1

−1 1 0 0 −1 1 1

0 0 0 1 0 0 0


It has invariant subspaces 〈e1, e2, e3〉 and 〈e4, . . . , e10〉. The representation (ρ∨c )2+

decomposes as 11 ⊕ 4 × 61 ⊕ 2 × 71 ⊕ 2 × 81. Except for the first, all these isotypic
components contain reducibles: x2

1 ∈ (4 × 61), x3x10(x8 + x10)(x7 + x8) ∈ (2 × 71),
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and x3x
3
7 ∈ (2× 81). Since the canonical ideal I satisfies dim I2 = 28, I2 must assume

the shape
11 ⊕ 2× 61 ⊕ 71 ⊕ 81.

The invariant quadric (unique up to a scalar) is determined by:

11 = 〈3x24 − 2x4x5 + 2x4x6 + 2x4x7 − 2x4x8 + 2x4x9 + 2x4x10 + 3x25 − 2x5x6 − 2x5x7+

2x5x8 − 2x5x9 − 2x5x10 + 3x26 + 2x6x7 − 2x6x8 − 2x6x9 + 2x6x10 + 3x27 − 2x7x8−

2x7x9 + 2x7x10 + 3x28 + 2x8x9 − 2x8x10 + 3x29 − 2x9x10 + 3x210〉.

All invariant subspaces 71 are generated by a set of vectors that one gets by spinning a linear
combination of the two polynomials

2x1x4 − 1
2
(
√
−7− 1)x2x5 − 1

2
(
√
−7 + 7)x2x6 + 1

2
(3
√
−7 + 1)x2x7 + 1

2
(
√
−7− 1)x2x8−

1
2
(
√
−7− 1)x2x9 + (

√
−7 + 1)x2x10 − 2x3x5 + 1

2
(
√
−7− 1)x3x6 + 4x3x7+

1
2
(
√
−7− 1)x3x8 − 2x3x9 − (

√
−7− 3)x3x10, and

−(
√
−7− 5)x24 + 8x4x6 + (2

√
−7 + 6)x4x7 − 8x4x8 − (2

√
−7 + 6)x4x9+

(
√
−7 + 11)x4x10 + (

√
−7− 5)x25 − (2

√
−7− 2)x5x6 + (2

√
−7− 2)x5x8−

(
√
−7− 5)x5x10 + (

√
−7 + 3)x26 + 8x6x7 − (2

√
−7 + 6)x6x8 − 8x6x9−

(
√
−7− 13)x6x10 − (

√
−7− 5)x27 − 8x7x8 + (2

√
−7− 10)x7x9 + (

√
−7 + 11)x7x10+

(
√
−7 + 3)x28 + 8x8x9 − (

√
−7 + 3)x8x10 − (

√
−7− 5)x29 + (

√
−7− 5)x9x10

with Aut+(R10.9). Neither one of them alone yields a suitable prime ideal. We there-
fore apply the centralizer trick to scale the linear combination to be their sum, with-
out loss of generality. Next, we turn to the fixed point strategy. We compute the
eigenspaces of R and find that the polynomials of 11 ⊕ 71 yield enough constraints
to determine a finite number of possible Aut+(R10.9)-orbits of face centers. The only
possible orbit in E(R, 1) has an orbit that is too small. Each of E(R,±i) contains
three possible orbits. Trying each of these in turn, we compute what constraints they
give on 4× 61 and 2× 81. Only the orbit of

(0 : −4(2ζ
11
28 − 2ζ

9
28 + ζ

7
28 − 2ζ28 + 1) : 4(ζ

8
28 − 2ζ

7
28 + ζ

4
28 − ζ

2
28 + 2) : −ζ1128 + ζ

9
28 + ζ

8
28 − ζ

7
28 + ζ

4
28 − ζ

2
28 + ζ28 − 3 :

6 : 2(ζ
11
28 − ζ

9
28 + 2ζ

7
28 − ζ28 + 2) : ζ

11
28 − ζ

9
28 − ζ

8
28 + ζ

7
28 − ζ

4
28 + ζ

2
28 − ζ28 + 3 : −2(ζ

8
28 − 2ζ

7
28 + ζ

4
28 − ζ

2
28 + 2) :

3(ζ
11
28 − ζ

9
28 − ζ28) + ζ

8
28 + ζ

7
28 + ζ

4
28 − ζ

2
28 + 11 : −ζ1128 + ζ

9
28 + ζ

8
28 − ζ

7
28 + ζ

4
28 − ζ

2
28 + ζ28 + 3)

is contained in the variety defined by 2 × 81, and it yields unique Aut+(R10.9)-
invariant subspaces 2 × 61 and 81. The first is spanned by spinning the following
polynomials with Aut+(R10.9):

14x21 + 14x2x4 + 1
2
(7
√
−7 + 21)x2x6 − 7x2x8 + 1

2
(7
√
−7 + 7)x2x10 − 7

√
−7x3x4−

(7
√
−7− 7)x3x6 + 1

2
(7
√
−7 + 7)x3x8 + 7x3x10 − (3

√
−7− 51)x24−

(8
√
−7 + 24)x4x5 + (8

√
−7 + 24)x4x6 − (24

√
−7 + 8)x4x7 + (4

√
−7 + 4)x4x8+

(24
√
−7 + 72)x4x9 − (6

√
−7− 38)x4x10 + (14

√
−7− 46)x25 − (16

√
−7− 32)x5x6+

(12
√
−7 + 148)x5x7 − 80x5x8 − (20

√
−7 + 108)x5x9 + (−8

√
−7 + 120)x5x10+

(7
√
−7 + 5)x26 − 80x6x7 + (14

√
−7 + 170)x6x8 + (16

√
−7 + 128)x6x9 − 80x6x10−

(2
√
−7 + 62)x27 + 80x7x8 − (20

√
−7− 52)x7x9 + (8

√
−7− 120)x7x10 − (5

√
−7 + 23)x28−

80x8x9 − (16
√
−7− 32)x8x10 + (18

√
−7− 2)x29 + 80x9x10 − (9

√
−7 + 67)x210.
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For the second, one has to spin

− 1
2
(7
√
−7 + 7)x2x4 − 1

2
(5
√
−7− 7)x2x6 + 1

2
(
√
−7 + 21)x2x8 − 1

2
(5
√
−7− 7)x2x10+

1
2
(3
√
−7− 21)x3x4 − 1

2
(3
√
−7 + 7)x3x6 − 1

2
(5
√
−7− 7)x3x8 − 1

2
(
√
−7 + 21)x3x10+

4x24 + 4x4x6 − 4x4x8 + 4x4x10 + 8x25 − 8x5x6 + 8x5x8 − 8x5x10 − 8x6x7 + 8x6x9+

8x6x10 − 8x27 + 8x7x8 + 16x7x9 − 8x7x10 − 8x8x9 − 8x29 + 8x9x10.

The constructed invariant subspaces indeed define the algebraic model (R10.9)a.

Remark A.10.2. The group Aut(R10.9) is isomorphic to PGL(2, 7), and Aut+(R10.9)
therefore to its unique index 2 subgroup PSL(2, 7).

R10.16 type (6, 12) #cells (6, 36, 12) map group size 144 D2(Fer(6))
SMP Aut+(R) =

〈
R,S

∣∣R6, S12, (RS)2, [R,S2]
〉

This map is D1(R10.2) = D(Fer(6)) and thus has the same algebraic models as Fer(6).
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A.11 Genus 11 (examples)

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that the canonical
model of a non-hyperelliptic platonic map of genus 11 satisfies dim(I2) = 36. If the
map is trigonal, some additional cubics will be needed to define the model. In any
case dim(I3) = 236.

R11.1 type (4, 6) #cells (40, 120, 60) map group size 480
SMP Aut+(R) =

〈
R,S

∣∣R4, S6, (RS)2, (R−1S)3(SR−1)3
〉

The canonical representation ρc is generated by

R 7→


0 0 −1 0 0
1 0 0 0 0
1 1 −1 0 0
0 0 0 0 1
1 0 −1 1 0

⊕


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0

−α− 2 −1 −α− 2 0 0 0
1 0 0 0 0 0



S 7→


0 0 0 0 −1
1 1 −1 0 0
0 1 0 −1 −1
0 0 0 −1 0
1 1 0 0 −1

⊕


0 0 0 0 1 0
0 0 0 α+ 2 α+ 1 2α+ 2
0 0 0 −1 −α− 1 −α− 1

2α+ 2 α+ 1 α+ 2 0 0 0
−α− 1 −α− 1 −1 0 0 0
−α− 2 −1 −α− 2 0 0 0


where α = ζ5 + ζ−1

5 . The representation ρ2+
c decomposes as

2× 11 ⊕ 12 ⊕ 2× 42 ⊕ 43 ⊕ 44 ⊕ 3× 51 ⊕ 52 ⊕ 2× 53 ⊕ 54 ⊕ 2× 61.

Doing several truncated Gröbner basis computations, we find that x5
11 ∈ (3 × 51),

x2x3x5 ∈ (2× 53), x4x5x6(x4 − x5) ∈ (2× 61), x2
5x7x8x9x11 ∈ (2× 11, 12, 43, 44),

(x4 − ζ6x5)(x4 + (ζ6 − 1)x5)(x3 + x5)(x3 + x4 − x5) ∈ (2× 42),

x5x6x7x10 + (−α− 2)x5x
2
7x10 + x5x7x8x10 ∈ (52, 54),

x3
4x5x10 − 3x4x

3
5x10 − 2x4

5x10 ∈ (43, 44, 52), and

x3
4x5x10 − 3x4x

3
5x10 − 2x4

5x10 ∈ (43, 44, 54).

This means we cannot use the full isotypic components 2×42, 3×51, 2×53 or 2×61.
We may use at most one of {52, 54}, and if we do, then at most one of {43, 44}. But
if we leave out both 52 and 54, then we are obliged to utilize 2 × 11 ⊕ 12 ⊕ 43 ⊕ 44,
which is not an option. So we are forced to leave out one of the two, and the same
for the set {43, 44}. We are thus certain that 53 < I2.

We normalize this subspace using the centralizer CGL(11,C)(Aut+(R11.1)). This re-
duces the number of possible invariant 53 subspaces to three. We combine each
possibility with the four combinations choosing one each from {43, 44} and {52, 54}.
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For each case, we compute the possible vertices of the map. Only for one of the three
invariant 53 subspaces do we get a suitable candidate, and then only when includ-
ing 43 (depending on the numbering of the representations). The vertices are defined
over Q(ζ30), and form the orbit of

(15 : 15ζ6 : −15 : −5ζ6 + 10 : 0 : 6ζ730 − 12ζ630 − 7ζ530 − ζ430 + 4ζ330 + 8ζ230 + 13ζ30 + 1 :

ζ730 − 4ζ630 − ζ530 − 3ζ430 + 3ζ330 + ζ230 − ζ30 − 1 : 9ζ730 + 12ζ630 + 2ζ530 − 4ζ430 + ζ330−

13ζ230 − 8ζ30 + 4 : −3ζ730 − 6ζ630 − 3ζ530 − 9ζ430 − 3ζ330 + 9ζ230 − 3ζ30 : 3ζ730 − 6ζ630−

6ζ530 − 3ζ430 − 3ζ330 + 9ζ230 + 9ζ30 + 3 : 16ζ730 + 8ζ630 − 7ζ530 − 6ζ430 − 6ζ330 − 2ζ230 + 8ζ30 + 11).

We still have the choice of an invariant subspace from {52, 54}, and either one yields
a canonical model. We choose the first one. The vertices yield enough points to
determine I2. It turns out to have the shape

2× 11 ⊕ 42 ⊕ 43 ⊕ 2× 51 ⊕ 52 ⊕ 53 ⊕ 61.

The field of definition of the canonical ideal is still Q(α), in spite of the use of Q(ζ30).
We find the following two polynomials spanning the 2× 11:

3x21 − 2x1x2 + 2x1x3 − 2x1x4 + 2x1x5 + 3x22 + 2x2x3 + 2x2x4 + 2x2x5 + 3x23 + 2x3x4+

2x3x5 + 3x24 − 2x4x5 + 3x25, and

3x26 − 2x6x7 + (−4α− 2)x6x8 + 3x27 − 2x7x8 + 3x28 + 3x29 − 2x9x10 + (−4α− 2)x9x11+

3x210 − 2x10x11 + 3x211

A complementary 34-dimensional subspace of I2 can be obtained by spinning the
following polynomial with Aut+(R):

13x21 + 2x1x2 + 2x1x5 + 30x1x6 − 5αx1x8 + (20α+ 10)x1x9 + (−50α− 60)x1x10+

(25α+ 15)x1x11 − 20x22 + 9x2x3 − 6x2x4 − 14x2x5 + (7α+ 16)x2x7 + (−21α− 23)x2x8+

(18α+ 29)x2x9 + (−34α− 42)x2x10 + (8α+ 9)x2x11 + 12x23 + 7x3x5 + (−4α+ 13)x3x6+

(25α+ 65)x3x7 + (−20α− 40)x3x8 + (30α+ 55)x3x9 + (−55α− 80)x3x10+

(−11α− 3)x3x11 + 11x24 − 18x4x5 + (14α− 3)x4x6 + (−11α+ 37)x4x7+

(−4α− 42)x4x8 + (16α+ 38)x4x9 + (−6α− 8)x4x10 + (−41α− 23)x4x11 − 12x25+

(11α+ 43)x5x6 + (9α− 3)x5x7 + (−29α− 27)x5x8 + (31α+ 13)x5x9 + (−36α− 28)x5x10+

(22α+ 1)x5x11 + (−2α− 1)x26 + (−4α− 6)x6x7 + (6α+ 10)x6x8 + (α+ 2)x6x9+

(2α+ 3)x6x10 + (−16α− 49)x6x11 + (118α+ 271)x27 + (−296α− 578)x7x8+

(−124α− 184)x7x9 + (−334α− 409)x7x10 + (336α+ 559)x7x11 + (158α+ 223)x28+

(94α+ 101)x8x9 + (96α+ 141)x8x10 + (−110α− 223)x8x11 + (106α+ 253)x29+

(96α+ 86)x9x10 + (−404α− 510)x9x11 + (162α+ 229)x210 + (−330α− 474)x10x11+

(250α+ 443)x211.

Remark A.11.1. One wonders whether there is a natural Sym5-action from which
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this algebraic curve can be defined, like in the case of Wiman’s first sextic map R6.2.

R11.5 type (6, 6) #cells (20, 60, 20) map group size 240
SMP Aut+(R) =

〈
R,S

∣∣R6, S6, (RS)2, RS3RS−1R−3S−1
〉

This map is D1(R11.1) and therefore has the same canonical model as R11.1.
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A.12 Genus 13 (examples)

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that the canonical
model of a non-hyperelliptic platonic map of genus 13 satisfies dim(I2) = 55. If the
map is trigonal, some additional cubics will be needed to define the model. In any
case dim(I3) = 395.

R13.1 type (3, 10) #cells (36, 180, 120) map group size 720 Mod(10)
SMP Aut+(R) =

〈
R,S

∣∣R3, S10, (RS)2, (RS−2RS−3)2
〉

This is the modular map Mod(10). More information on the modular map family
can be found in Section 5.7. The canonical representation ρc can be generated by

R 7→


0 0 0 −1 0
0 0 −1 0 0
0 0 0 0 1
1 1 −1 −1 −1
0 −1 0 0 0

⊕



ζ2
3 0 0 0 0 0 0 0
−ζ2

3 −ζ2
3 −ζ3 −ζ3 0 0 0 0

0 1 0 0 0 0 0 0
0 0 0 ζ2

3 0 0 0 0
0 0 0 0 −ζ3 −ζ3 −1 −1
0 0 0 0 0 ζ3 0 0
0 0 0 0 0 0 ζ3 0
0 0 0 0 ζ2

3 0 0 0



S 7→


1 1 −1 −1 −1
−1 0 0 0 0
0 0 −1 0 0
0 0 0 0 −1
0 1 0 0 0

⊕



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 ζ2

3 0 0 0 0
0 0 ζ2

3 0 0 0 0 0
−ζ3 −ζ3 −1 −1 0 0 0 0

0 ζ3 0 0 0 0 0 0


The representation (ρ∨c )2+ decomposes as

2× 11 ⊕ 21 ⊕ 31 ⊕ 32 ⊕ 2× 41 ⊕ 3× 51 ⊕ 61 ⊕ 62 ⊕ 2× 81 ⊕ 3× 101.

The certificates x2x
3
9 ∈ (2× 81), x3

4 ∈ (3× 51), x8(x6 + ζ−1
6 x9) ∈ (3× 101),

x5(x2x3 + x2x4 − x2x5 + x2
3 − x3x5 + x2

4) ∈ (2× 41), and

x2
4(x7x12 − x7x13 + ζ3x9x13) ∈ (61 ⊕ 62)

show that I2 must, for some i, j ∈ {1, 2}, have either one of the shapes

11 ⊕ 31 ⊕ 32 ⊕ 41 ⊕ 2× 51 ⊕ 6j ⊕ 81 ⊕ 2× 101, or
21 ⊕ 3i ⊕ 41 ⊕ 2× 51 ⊕ 6j ⊕ 81 ⊕ 2× 101.

Since an invariant 81 < 2 × 81 must certainly be contained in the ideal, we com-
pute the general form of such a space. It can be obtained by spinning the following
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polynomial with Aut+(R13.1):

λ1

(
5x1x13 − 4ζ6x2x10 + 4ζ6x2x11 + 3x2x13 + 2ζ6x3x10 + 6x3x12 − x3x13−

2ζ6x4x11 − 6x4x12 + 3x4x13 − 4ζ6x5x10 + 2ζ6x5x11 + 2x5x12 + x5x13

)
+

λ2

(
− 6ζ6x

2
6 + 6ζ6x6x7 − 4x6x9 − 3ζ6x

2
7 + 2x7x8 − 2x7x9 + 6ζ−1

6 x2
8 + 4ζ2

6x8x9

)
.

We use the centralizer CGL(13,C)(Aut+(R13.1)) to set either λ1 = 0, λ2 = 0. or λ1 = λ2

without loss of generality. Next, we apply the fixed point strategy and compute the
vertices of the map. The polynomials of 81 impose constraints, leaving only two
possible orbits of points. These orbits then impose enough constraints on 2 × 41,
3× 51 and 3× 101 to determine these pieces uniquely. For one orbit, one can obtain
them by spinning the following respective polynomials:

2x1x5 + 2x2x3 − 2x2x4 + 2x3x5 + ζ−1
6 x6x13 + x7x10 + x7x11 + ζ26x7x12 + ζ6x8x13 + ζ6x9x13,

8x23 − 16x3x4 + 8x24 − 8x25 + (−6ζ730+6ζ330+6ζ230−3)x6x10+(−4ζ530−3ζ430+3ζ30+4)x6x13+

(3ζ730−3ζ330−3ζ230−1)x7x10 + (3ζ730−3ζ330−3ζ230 + 4)x7x11 + (3ζ530 + 6ζ430−6ζ30−3)x7x13+

(3ζ530 + 6ζ430 − 6ζ30 − 3)x8x11 + (−3ζ730 − ζ530 + 3ζ430 + 3ζ330 + 3ζ230 − 3ζ30 − 3)x8x13,

x3x11 + 2ζ−1
6 x3x12 + x4x10 + 2ζ−1

6 x4x12 + ζ26x4x13 − x5x11 + 2ζ26x5x12 + ζ−1
6 x5x13+

1
4
(−6ζ730+6ζ330+6ζ230−3)x6x7+ 1

4
(−ζ530+3ζ430−3ζ30+1)x6x8+ 1

4
(−2ζ530−9ζ430+9ζ30+2)x7x8.

Now we compute that (31 ⊕ 32 ⊕ 41 ⊕ 2 × 51 ⊕ 81 ⊕ 2 × 101) is constant, forcing
us to use 2 × 11 and 21, i.e. the ideal is of the second shape displayed above. These
components are given by:

2× 11 = 〈5x2
1 − 2x1x2 + 2x1x3 + 2x1x4 + 2x1x5 + 5x2

2 + 2x2x3 + 2x2x4 + 2x2x5+

5x2
3 − 2x3x4 − 2x3x5 + 5x2

4 − 2x4x5 + 5x2
5,

x6x10 − 4x6x11 + ζ2
6x6x12 + ζ2

6x6x13 + x7x10 + x7x11 + ζ2
6x7x12+

ζ2
6x7x13 + 4ζ−1

6 x8x10 + ζ2
6x8x11 − ζ6x8x12 − ζ6x8x13 + ζ2

6x9x10+

ζ2
6x9x11 + 4ζ6x9x12 − ζ6x9x13〉

21 = 〈2x2
6 − x6x7 + ζ−1

6 x6x8 + ζ−1
6 x6x9 + 2x2

7 + ζ−1
6 x7x8 + ζ−1

6 x7x9 − 2ζ6x
2
8+

ζ6x8x9 − 2ζ6x
2
9,

2x2
10 − x10x11 + ζ−1

6 x10x12 + ζ−1
6 x10x13 + 2x2

11 + ζ−1
6 x11x12 + ζ−1

6 x11x13−
2ζ6x

2
12 + ζ6x12x13 − 2ζ6x

2
13〉.

Depending on the fixed point orbit, there is now one suitable ideal choice. We used
31 and 62, which are spanned by the polynomials gotten when spinning the follow-
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ing two respective ones with Aut+(R13.1):

2x6x10 − x7x10 + 2x7x11 + (ζ430 − ζ30)x7x12 + (−ζ530 − ζ430 + ζ30 + 1)x7x13 + 2ζ−1
6 x8x11+

(ζ730 − ζ530 − ζ430 − ζ330 − ζ230 + ζ30 + 1)x8x12 + (−ζ730 + ζ430 + ζ330 + ζ230 − ζ30 − 1)x8x13+

(−ζ530 − ζ430 + ζ30 + 1)x9x10 + (2ζ730 − ζ530 − 2ζ430 − 2ζ330 − 2ζ230 + 2ζ30 + 2)x9x13,

x2x10 − x2x11 + (−ζ530 − ζ430 + ζ30 + 1)x2x13 + (ζ730 − ζ330 − ζ230)x3x10 + ζ−1
6 x3x12+

ζ26x3x13 + (−ζ730 + ζ330 + ζ230)x4x11 + ζ26x4x12 + (−ζ530 − ζ430 + ζ30 + 1)x4x13 + x5x10+

(ζ730 − ζ330 − ζ230)x5x11 + (ζ530 + ζ430 − ζ30 − 1)x5x12 + ζ−1
6 x5x13.

This finishes the construction of the canonical ideal. The choice between isotypic
components 3i and 6j is explained by the fact that the two pieces of the same dimen-
sion are related by the field automorphism ζ5 7→ ζ2

5 of Q(ζ5). We know therefore,
that they must both yield solutions, since ρc is defined over Q(ζ3).
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A.13 Genus 14 (examples)

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that the canonical
model of a non-hyperelliptic platonic map of genus 14 satisfies dim(I2) = 66. If the
map is trigonal, some additional cubics will be needed to define the model. In any
case dim(I3) = 495.

R14.1, R14.2, R14.3 type (3, 7) #cells (156, 546, 364) map group size 2184 First Hurwitz
SMP R14.1: Aut+(R) =

〈
R,S

∣∣R3, S7, (RS)2, [R,S]6
〉

triplet
SMP R14.2: Aut+(R) =

〈
R,S

∣∣R3, S7, (RS)2, [R,S]13, (S3R−1S2R−1)3
〉

SMP R14.3: Aut+(R) =
〈
R,S

∣∣R3, S7, (RS)2, [R,S]7
〉

The first Hurwitz triplet is discussed at length in Chapter 7. For ease of reference
we repeat the following. All three groups have Aut+(R) ∼= PSL(2, 13). The full
map automorphism groups are PGL(2, 13) for R14.1 and R14.3, but PSL(2, 13) × Z2

for R14.2. The canonical character is the same irreducible one for all three triplet
members. Hence, the canonical representations for all three members can be chosen
to have the same matrix group as the image, though the representations will differ in
the assignment (R,S) 7→ (ρc(R), ρc(S)). A canonical representation ρc for R6.1 can
be generated by sending the pair (R,S) to:



0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1

−1 0 −1 0 0 0 0 0 1 0 0 −1 0 −1

−1 1 0 0 1 1 0 0 0 0 −1 1 1 0

0 −1 1 0 0 0 1 −1 0 0 0 0 0 0

0 1 −1 1 1 −1 0 1 −1 1 −1 0 0 0

1 −1 0 0 −1 −1 0 0 0 0 0 −1 0 0

0 −1 0 −1 −1 0 0 0 1 −1 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 1 1 0 −1 0 −1 1 0 0 −1 −1

0 1 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 −1 0 0 −1 0 0 0 0 0 −1 0 0

0 0 1 0 0 1 0 −1 0 0 1 0 −1 0

0 0 0 0 1 0 1 0 0 0 −1 0 0 0

0 0 0 1 0 −1 0 0 0 0 0 0 0 0





0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 −1 0 0 −1 −1 0 0 0 0 −1 0 −1

0 0 1 0 0 1 0 −1 0 −1 1 0 −1 0

−1 0 0 0 0 0 1 0 1 0 0 0 1 0

0 0 1 −1 0 1 0 0 0 −1 0 1 0 1

0 0 1 0 0 0 1 0 0 0 0 1 1 1

1 −1 0 0 0 −1 0 0 0 0 0 0 0 0

0 −1 2 0 0 1 1 −1 0 −1 1 1 0 1

0 0 0 0 −1 0 −1 0 0 0 1 −1 −1 −1

1 0 0 0 −1 0 −1 0 0 0 1 −1 −1 0

0 −1 0 −1 −1 0 0 0 1 −1 0 0 1 1

0 0 −2 0 −1 −1 −1 1 0 1 0 −1 0 −1

−1 0 1 −1 0 1 1 −1 1 −1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 −1 0 0



After applying our construction strategy, Galois descent and coefficient simplifica-
tion as described in the aforementioned chapter, we find that a generating set for the
canonical ideal of any triplet member is produced by spinning the following poly-
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nomial with the matrix group 〈ρc(R), ρc(S)〉:

(−3α − 3)x
2
1 + (−6α

2 − 5α + 5)x1x2 + (−2α
2

+ 4α − 1)x
2
2 + (3α

2
+ 9α − 11)x1x3 + (7α

2 − α − 10)x2x3+

(−2α + 1)x
2
3 + (5α

2 − 2)x1x4 + (5α
2 − 3α − 10)x2x4 + (−2α

2 − 2α + 1)x3x4 + (3α + 3)x
2
4 + (α

2 − 2)x1x5+

(−α2
+ α + 1)x2x5 + (−2α

2
+ 3α + 5)x3x5 + (−α2

+ α + 3)x4x5 + (−α − 2)x
2
5 + (4α

2 − α − 2)x1x6+

(α
2 − 9α − 1)x2x6 + (−5α

2 − 3α)x3x6 + (2α
2 − 1)x4x6 + (2α

2
+ 4α − 1)x5x6 + (α

2
+ α − 3)x

2
6+

(−8α
2 − 15α + 12)x1x7 + (−8α

2 − 6α + 11)x2x7 + (α
2

+ 11α + 2)x3x7 + (5α
2 − 2α − 3)x4x7 + (−2α

2 − α)x5x7+

(−3α + 8)x6x7 + (−5α
2 − 7α + 4)x

2
7 + (−α2

+ α + 5)x1x8 + (10α
2 − 5α − 15)x2x8 + (−5α

2 − 3α + 7)x3x8+

(−6α
2

+ 2α + 9)x4x8 + (−4α
2

+ α + 9)x5x8 + (−10α
2 − 4α + 12)x6x8 + (4α

2
+ 9α − 3)x7x8 + (−5α

2
+ 6)x

2
8+

(8α
2

+ 10α − 23)x1x9 + (4α
2 − 2α − 1)x2x9 + (4α

2
+ 4α − 9)x3x9 + (α

2
+ 5α − 3)x4x9 + (α

2 − α − 4)x5x9+

(4α
2

+ 4α − 7)x6x9 + (2α
2

+ 2α − 3)x7x9 + (2α
2

+ 5α − 1)x8x9 + (α
2

+ 3α − 7)x
2
9 + (7α

2
+ 7α − 20)x1x10+

(−α2 − 2α + 5)x2x10 + (5α
2

+ 3α − 8)x3x10 + (2α
2 − 7α − 4)x4x10 + (2α

2 − 5)x5x10 + (4α
2

+ 3α − 9)x6x10+

(−α2
+ 2α + 10)x7x10 + (3α

2
+ α − 1)x8x10 + (5α

2
+ 3α − 21)x9x10 + (3α

2
+ 7α − 11)x

2
10 + (α

2 − 10α)x1x11+

(3α
2

+ 6α − 12)x2x11 + (−α2
+ 7α + 4)x3x11 + (−α2 − 9α − 1)x4x11 + (−2α

2 − 6α + 3)x5x11+

(2α
2 − 9α + 1)x6x11 + (−2α

2 − 7α + 2)x7x11 + (−α2
+ 4α)x8x11 + (2α

2
+ 2α − 6)x9x11 + (−α2

+ 2α + 11)x10x11+

(−3α
2 − 5α + 5)x

2
11 + (−6α

2
+ 3α + 11)x1x12 + (−4α

2
+ 2α + 12)x2x12 + (−3α

2 − α + 5)x3x12 + (3α − 6)x4x12+

(α
2

+ 2α − 4)x5x12 + (2α
2

+ 3α)x6x12 + (−2α
2 − 2α + 5)x7x12 + (5α

2
+ 3α − 11)x8x12 + (−6α

2 − 4α + 8)x9x12+

(−2α
2 − 8α + 7)x10x12 + (6α

2
+ 2α − 12)x11x12 + (2α

2 − 2α − 3)x
2
12 + (3α

2
+ α − 9)x1x13 + (5α

2
+ 2α − 13)x2x13+

(α
2 − 3)x3x13 + (α

2
+ 2)x4x13 + (−2α

2
+ 6)x5x13 + (−2α

2 − 3α)x6x13 + (−α2
+ 3α + 3)x7x13+

(−7α
2 − 3α + 12)x8x13 + (8α

2
+ 5α − 15)x9x13 + (6α

2
+ α − 8)x10x13 + (−2α

2 − 2α + 9)x11x13+

(−α2
+ 2α)x12x13 + (−α2 − 7α + 2)x1x14 + (2α

2
+ 10α − 13)x2x14 + (3α

2
+ 3α − 3)x3x14+

(−6α
2 − 8α + 15)x4x14 + (2α

2 − 8α − 1)x5x14 + (−6α
2 − 8α + 11)x6x14 + (−2α − 2)x7x14 + (−6α + 7)x8x14+

(5α
2

+ α − 6)x9x14 + (11α − 14)x10x14 + (−6α
2 − 2α + 3)x11x14 + (α

2 − 4)x12x14 + (−6α
2 − 6α + 12)x13x14+

(5α
2

+ 10α − 10)x
2
14.

Here α is a root of the polynomialX3 +X2−2X−1. That the one set of polynomials
can define all three members stems from the fact that there are three choices for α ∈
C, namely ζ7 +ζ−1

7 = 2 cos(2π/7), ζ2
7 +ζ−2

7 = 2 cos(4π/7), and ζ3
7 +ζ−3

7 = 2 cos(6π/7).
Each results in a complex projective algebraic curve that is the platonic surface of one
of the three triplet members. As elaborated on in Chapter 7, this correspondence is
as follows:

Choice for α ζ7 + ζ−1
7 ζ2

7 + ζ−2
7 ζ3

7 + ζ−3
7

Platonic map R14.1 R14.3 R14.2
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A.14 Genus 15 (examples)

Prior remarks. The Hilbert-Poincaré series predicts (cf. Section 6.1) that the canonical
model of a non-hyperelliptic platonic map of genus 15 satisfies dim(I2) = 78. If the
map is trigonal, some additional cubics will be needed to define the model. In any
case dim(I3) = 610.

R15.2 type (3, 14) #cells (21, 147, 98) map group size 588 Fer(7)
SMP Aut+(R) =

〈
R,S

∣∣R3, S14, (RS)2, (R2S2)3
〉

This is the map Fer(7) with planar model x7 + y7 + z7 = 0. For more information,
see Section 5.5.

R15.3 type (3, 20) #cells (12, 120, 80) map group size 480
SMP Aut+(R) =

〈
R,S

∣∣R3, S20, (RS)2, [R,S5], (RS−2RS−3)2
〉

This is a platonic 4-cover of Ico branched over cells0. We suspect it has the planar
model

y4z7 = x(x10 + 11x5 − 1).

However, we have not yet succeeded in writing down a standard map presentation
for it.

R15.9 type (6, 10) #cells (12, 60, 20) map group size 240
SMP Aut+(R) =

〈
R,S

∣∣R6, S10, (RS)2, (R2S−1)2, R2S4R−1S−1
〉

This map occurred in Section 6.3, being one of the exceptional hyperelliptic platonic
maps. To be specific, the map has a platonic 2-cover π : R15.9 → R15.9/〈R3, S5〉 ∼=
Ico branched over cells0 ∪ cells2. Referring back to Section 6.4, we write down the
planar model:

y2z29 = x31 − 217x26z5 − 2015x21z10 + 5890x16z15 + 2015x11z20 − 217x6z25 − xz30.

However, we have not yet succeeded in writing down a standard map presentation.

R15.10 type (7, 14) #cells (7, 49, 14) map group size 196 D2(Fer(7))
SMP Aut+(R) =

〈
R,S

∣∣R7, S14, (RS)2, [R,S2]
〉

This map is D1(R15.2) = D(Fer(7)) and thus has the same algebraic models as Fer(7).
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B
Reflexive platonic maps of genus

g ≤ 15

LEGEND. Basic information for each reflexive platonic map of genus g ≤ 15. Duals
are not listed separately, but if the map is self-dual we note this with a super-

script ‘SD’. In the first column we also indicate, by ↓ followed by a map number, that
the map has the indicated map as diagonal map (cf. Chapter 3). Similarly, ↑ signifies
that the map is the diagonal map of the indicated map. The triple (v, e, f) indicating
the number of vertices, edges and faces of the map is easily computed from |Aut(R)|
and (p, q), but listed here for ease of reference.

If the platonic surface of a map has an existing name known to the author, or be-
longs to a polynomial family, this is listed in the ‘name or family’ column. The fam-
ily F (p(n),q(n))

g(n) is abbreviated in general as g(n).(p(n), q(n)), with an extra index in
parentheses if we have defined multiple families of the same type. The exceptions
are the families Hos(n) and those of genus 1.

In the last column, the relators Rp, Sq and (RS)2 of the standard map presentation
are not listed, only the extra relators. The map numbering is according to the list
compiled by Conder & Dobscányi in [CD2001], but the extra relators are not per se
the same as those listed there. The introduction of polynomial families (see Chapter
2) has led to many simplifications of the presentations, and some additional effort
was made in the other instances to find as short a presentation as possible.

Map Type (v, e, f) |Aut(R)| Name or family Extra relators
Hos(n)/Dih(n) (2,n) (2,n,n) 4n Hosohedron(n)/Dihedron(n)

TetSD (3,3) (4,6,4) 24 Tetrahedron

Oct (3,4) (6,12,8) 48 Octahedron/Cube

continued on next page. . .
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Map Type (v, e, f) |Aut(R)| Name or family Extra relators
Ico (3,5) (12,30,20) 120 Icosahedron/Dodecahedron

1.1:n (3,6) (3n2,9n2,6n2) 36n2 [R,S2]n

1.2:n (3,6) (n2,3n2,2n2) 12n2 [R,S]n

1.3:nSD (4,4) (n2,2n2,n2) 8n2 (RS−1)n

1.4:nSD (4,4) (2n2,4n2,2n2) 16n2 [R,S]n

2.1↓2.3 (3,8) (6,24,16) 96 Bolza’s map (RS−3)2

2.2↓2.5 (4,6) (4,12,6) 48 AM(2) (RS−1)2

2.3↑2.1,↓2.6 (4,8) (2,8,4) 32 Wi2(2), n.(n+2,2n+4) R−1SRS−3

2.4 (5,10) (1,5,2) 20 Wi1(2) RS−4

2.5SD↑2.2 (6,6) (2,6,2) 24 D1(AM(2)) [R,S]

2.6SD↑2.3 (8,8) (1,4,1) 16 D1(Wi2(2)) RS−3

3.1 (3,7) (24,84,56) 336 Mod(7), Klein quartic (RS−2)4

3.2↓3.5 (3,8) (12,48,32) 192 Fer(4), Dyck’s map (S2R−1)3

3.3 (3,12) (4,24,16) 96 4-cover of Tet [R,S3]

3.4↓3.8 (4,6) (8,24,12) 96 3n.(4, 3n+ 3) (RS−2)2

3.5↑3.2,↓3.10 (4,8) (4,16,8) 64 Kul(1), D2(Fer(4)) R−1S2RS−2

3.6↓3.11 (4,8) (4,16,8) 64 AM(3) (RS−1)2

3.7↓3.12 (4,12) (2,12,6) 48 Wi2(3) R−1SRS−5

3.8SD↑3.4 (6,6) (4,12,4) 48 3n.(3n+ 3, 3n+ 3) R3S3

3.9 (7,14) (1,7,2) 28 Wi1(3) RS−6

3.10SD↑3.5 (8,8) (2,8,2) 32 D1(Kul(1)) R−1SRS−5

3.11SD↑3.6 (8,8) (2,8,2) 32 D1(AM(3)) [R,S]

3.12SD↑3.7 (12,12) (1,6,1) 24 D1(Wi2(3)) RS−5

4.1↓4.9 (3,12) (6,36,24) 144 (S2R−1)3, [R,S4]

4.2↓4.6 (4,5) (24,60,30) 240 Bring’s map (RS−1RS−2)2

4.3↓4.7 (4,6) (12,36,18) 144 (n− 1)2.(4, 2n) [RS, SR]

4.4↓4.11 (4,10) (4,20,10) 80 AM(4) (RS−1)2

4.5↓4.12 (4,16) (2,16,8) 64 Wi2(4) R−1SRS−7

4.6SD↑4.2 (5,5) (12,30,12) 120 D1(Bring’s map) (RS−1)3

4.7SD↑4.3 (6,6) (6,18,6) 72 2n.(6,2n+2),(n−1)2.(2n,2n) (RS−1)2

4.8 (6,6) (6,18,6) 72 3n+ 1.(6, 3n+ 3) [R2, S], (RS−2)2

4.9↑4.1 (6,12) (2,12,4) 48 3n+1.(6,9n+3),4n.(4n+2,8n+4)R−1SRS−7

4.10 (9,18) (1,9,2) 36 Wi1(4) RS−8

4.11SD↑4.4 (10,10) (2,10,2) 40 D1(AM(4)) [R,S]

4.12SD↑4.5 (16,16) (1,8,1) 32 D1(Wi2(4)) RS−7

5.1↓5.6 (3,8) (24,96,64) 384 Mod(8) (RS3R−1S−2)2

5.2 (3,10) (12,60,40) 240 2-cover of Ico (RS−4)2

5.3↓5.9 (4,5) (32,80,40) 320 Hum1(4) (RS−1)4

5.4↓5.10 (4,6) (16,48,24) 192 Hum3(4), 12n−7.(4,6n) (R2S3)2

5.5↓5.12 (4,8) (8,32,16) 128 Hum2(4) [RS, SR], (RS−3)2

5.6↑5.1,↓5.13 (4,8) (8,32,16) 128 D2(Mod(8)), 4n− 3.(4, 4n) [R2, S2]

5.7↓5.15 (4,12) (4,24,12) 96 AM(5) (RS−1)2

5.8↓5.16 (4,20) (2,20,10) 80 Wi2(5) R−1SRS−9

5.9SD↑5.3 (5,5) (16,40,16) 160 D1(Hum1(4)) [RS, SR]

5.10SD↑5.4 (6,6) (8,24,8) 96 D1(Hum3(4)) (RS−2)2, (R2S−1)2

5.11 (6,15) (2,15,5) 60 3n+ 2.(6, 9n+ 6) R−1SRS−4

5.12SD↑5.5 (8,8) (4,16,4) 64 D1(Hum2(4)) (RS−1)2, RS3R−3S−1

5.13SD↑5.6 (8,8) (4,16,4) 64 4n− 3.(4n, 4n) [R2, S], [R,S2], R4S−4
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Map Type (v, e, f) |Aut(R)| Name or family Extra relators
5.14 (11,22) (1,11,2) 44 Wi1(5) RS−10

5.15SD↑5.7 (12,12) (2,12,2) 48 D1(AM(5)) [R,S]

5.16SD↑5.8 (20,20) (1,10,1) 40 D1(Wi2(5)) RS−9

6.1↓6.6 (3,10) (15,75,50) 300 Fer(5) (S2R−1)3

6.2 (4,6) (20,60,30) 240 Wiman’s 1st sextic map (RS−1)3

6.3↓6.9 (4,9) (8,36,18) 144 3n.(4, 3n+ 3) (RS−2)2

6.4↓6.12 (4,14) (4,28,14) 112 AM(6) (RS−1)2

6.5↓6.13 (4,24) (2,24,12) 96 Wi2(6) R−1SRS−11

6.6↑6.1 (5,10) (5,25,10) 100 D2(Fer(5)) [R,S2]
6.7 (6,8) (6,24,8) 96 2n.(6, 2n+ 2) (RS−1)2

6.8 (6,8) (6,24,8) 96 2-cover of Oct (R2S−1)2, R3S4

6.9SD↑6.3 (9,9) (4,18,4) 72 3n.(3n+ 3, 3n+ 3) R3S3

6.10 (10,15) (2,15,3) 60 9n+6.(12n+10,18n+15) R−1SRS−11

6.11 (13,26) (1,13,2) 52 Wi1(6) RS−12

6.12SD↑6.4 (14,14) (2,14,2) 56 D1(AM(6)) [R,S]

6.13SD↑6.5 (24,24) (1,12,1) 48 D1(Wi2(6)) RS−11

7.1 (3,7) (72,252,168) 1008 Fricke-Macbeath (R2S4RS4R2S)2

7.2↓7.7 (3,12) (12,72,48) 288 RS−2RS2R−1S2R−1S−2

7.3↓7.11 (4,16) (4,32,16) 128 Kul(2) R−1S2RS−6

7.4↓7.10 (4,16) (4,32,16) 128 AM(7) (RS−1)2

7.5↓7.12 (4,28) (2,28,14) 112 Wi2(7) R−1SRS−13

7.6 (6,9) (6,27,9) 108 3n+ 1.(6, 3n+ 3) [R2, S], (RS−2)2

7.7↑7.2 (6,12) (4,24,8) 96 (R2S−1)2, S−2RS−2R−2

7.8 (6,21) (2,21,7) 84 3n+ 1.(6, 9n+ 3) R−1SRS−13

7.9 (15,30) (1,15,2) 60 Wi1(7) RS−14

7.10SD↑7.4 (16,16) (2,16,2) 64 D1(AM(7)) [R,S]

7.11SD↑7.3 (16,16) (2,16,2) 64 D1(Kul(2)) R−1SRS−9

7.12SD↑7.5 (28,28) (1,14,1) 56 D1(Wi2(7)) RS−13

8.1 (3,8) (42,168,112) 672 First tuplet (RS−2)4

8.2 (3,8) (42,168,112) 672 First tuplet [RS, S3RS−2]

8.3↓8.10 (4,18) (4,36,18) 144 AM(8) (RS−1)2

8.4↓8.11 (4,32) (2,32,16) 128 Wi2(8) R−1SRS−15

8.5 (6,10) (6,30,10) 120 2n.(6, 2n+ 2) (RS−1)2

8.6 (6,24) (2,24,8) 96 3n+2.(6,9n+6) R−1SRS−7

8.7 (8,12) (4,24,6) 96 (RS−1)2, RS5R−3S−1

8.8 (10,20) (2,20,4) 80 4n.(4n+ 2, 8n+ 4) R−1SRS−11

8.9 (17,34) (1,17,2) 68 Wi1(8) RS−16

8.10SD↑8.3 (18,18) (2,18,2) 72 D1(AM(8)) [R,S]

8.11SD↑8.4 (32,32) (1,16,1) 64 D1(Wi2(8)) RS−15

9.1 (3,12) (16,96,64) 384 (RS−5)2, (RS−2)4

9.2↓9.14 (4,5) (64,160,80) 640 R−2S2R−1S2R2S−2RS−2

9.3↓9.17 (4,6) (32,96,48) 384 (RS−2)2(R−1S2)2

9.4↓9.18 (4,6) (32,96,48) 384 (RS−1)4, [RS, SR2S2]

9.5↓9.21 (4,8) (16,64,32) 256 [RS−3, SR]

9.6↓9.19 (4,8) (16,64,32) 256 (n−1)2.(4,2n) (R2S2)2

9.7↓9.22 (4,8) (16,64,32) 256 8n− 7.(4, 4n) (RS−1)4, (RS−3)2

9.8↓9.23 (4,8) (16,64,32) 256 16n− 7.(4, 8n) (RS−3)2, (RS−1)4S4

9.9↓9.26 (4,12) (8,48,24) 192 4-cover of Oct [R,S3], (RS−1)4
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Map Type (v, e, f) |Aut(R)| Name or family Extra relators
9.10↓9.28 (4,12) (8,48,24) 192 4n− 3.(4, 4n) [R2, S2]

9.11↓9.27 (4,12) (8,48,24) 192 3n.(4,3n+3) (RS−2)2

9.12↓9.31 (4,20) (4,40,20) 160 AM(9) (RS−1)2

9.13↓9.32 (4,36) (2,36,18) 144 Wi2(9) R−1SRS−17

9.14SD↑9.2 (5,5) (32,80,32) 320 S−1R2S2R−1S2R2

9.15 (5,6) (20,60,24) 240 2-cover of Ico (RS−2)2

9.16 (5,6) (20,60,24) 240 [RS, SR]

9.17SD↑9.3 (6,6) (16,48,16) 192 [R2, S3], [R3, S2]

9.18SD↑9.4 (6,6) (16,48,16) 192 (RS−1)3, [RS, SR]

9.19SD↑9.6 (8,8) (8,32,8) 128 (n−1)2.(2n,2n) (RS−1)2

9.20 (8,8) (8,32,8) 128 [R2, S], (RS−3)2

9.21SD↑9.5 (8,8) (8,32,8) 128 32n+9.(16n+8,16n+8)(1) RS3R−3S−1

9.22SD↑9.7 (8,8) (8,32,8) 128 8n− 7.(4n, 4n) [RS, SR], R4S4

9.23SD↑9.8 (8,8) (8,32,8) 128 16n− 7.(8n, 8n) (R2S2)2, R4S4

9.24 (8,24) (2,24,6) 96 R−1SRS−5

9.25 (8,24) (2,24,6) 96 9n.(6n+ 2, 18n+ 6) R−1SRS−17

9.26SD↑9.9 (12,12) (4,24,4) 96 4-cover of Tet R3S−3, (RS−1)3

9.27SD↑9.11 (12,12) (4,24,4) 96 3n.(3n+3,3n+3) R3S3

9.28SD↑9.10 (12,12) (4,24,4) 96 4n− 3.(4n, 4n) [R2, S], [R,S2], R4S4

9.29 (14,21) (2,21,3) 84 9n.(12n+ 2, 18n+ 3) R−1SRS−8

9.30 (19,38) (1,19,2) 76 Wi1(9) RS−18

9.31SD↑9.12 (20,20) (2,20,2) 80 D1(AM(9)) [R,S]

9.32SD↑9.13 (36,36) (1,18,1) 72 D1(Wi2(9)) RS−17

10.1 (3,9) (36,162,108) 648 Mod(9) [RS−2R,S3]

10.2↓10.16 (3,12) (18,108,72) 432 Fer(6) (R2S2)3

10.3 (3,15) (12,90,60) 360 3-cover of Ico [R,S5], (RS−3)3

10.4↓10.20 (3,18) (9,81,54) 324 (S2R−1)3, [R,S6]

10.5↓10.21 (3,24) (6,72,48) 288 6-cover of Oct [R,S4]
10.6 (4,5) (72,180,90) 720 Wiman’s 2nd sextic map (RS−1)5

10.7↓10.14 (4,6) (36,108,54) 432 (RS−1RS−2)2

10.8↓10.13 (4,6) (36,108,54) 432 [RS−1R,S2]
10.9 (4,7) (24,84,42) 336 (RS−1)3

10.10 (4,12) (9,54,27) 216 (RS−1)3, [R,S4]

10.11↓10.23 (4,22) (4,44,22) 176 AM(10) (RS−1)2

10.12↓10.24 (4,40) (2,40,20) 160 Wi2(10) R−1SRS−19

10.13SD↑10.8 (6,6) (18,54,18) 216 [RS−1R,S]

10.14SD↑10.7 (6,6) (18,54,18) 216 RS−1R2S−1RS−2

10.15 (6,6) (18,54,18) 216 (RS−2)2, [R,S3], (R2S2)3

10.16↑10.2 (6,12) (6,36,12) 144 D2(Fer(6)) [R,S2]
10.17 (6,12) (6,36,12) 144 2n.(6, 2n+ 2) (RS−1)2

10.18 (6,12) (6,36,12) 144 3n+ 1.(6, 3n+ 3) [R2, S], (RS−2)2

10.19 (6,30) (2,30,10) 120 3n+ 1.(6, 9n+ 3) R−1SRS−19

10.20↑10.4 (9,18) (3,27,6) 108 9n+1.(6n+3,12n+6) [R,S2], R3S−6

10.21↑10.5 (12,24) (2,24,4) 96 16n+10.(16n+12,32n+24) R−1SRS−19

10.22 (21,42) (1,21,2) 84 Wi1(10) RS−20

10.23SD↑10.11 (22,22) (2,22,2) 88 D1(AM(10)) [R,S]

10.24SD↑10.12 (40,40) (1,20,1) 80 D1(Wi2(10)) RS−19

11.1↓11.5 (4,6) (40,120,60) 480 (R−1S)3(SR−1)3
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Map Type (v, e, f) |Aut(R)| Name or family Extra relators
11.2↓11.13 (4,24) (4,48,24) 192 Kul(3) R−1S2RS−10

11.3↓11.12 (4,24) (4,48,24) 192 AM(11) (RS−1)2

11.4↓11.14 (4,44) (2,44,22) 176 Wi2(11) R−1SRS−21

11.5SD↑11.1 (6,6) (20,60,20) 240 RS3RS−1R−3S−1

11.6 (6,8) (12,48,16) 192 (R2S−1)2, (RS−3)2

11.7 (6,8) (12,48,16) 192 R2S−1R2S3

11.8 (6,33) (2,33,11) 132 3n+ 2.(6, 9n+ 6) R−1SRS−10

11.9 (8,16) (4,32,8) 128 (RS−1)2, RS7R−3S−1

11.10 (8,16) (4,32,8) 128 R3SR−1S,RS6R−1S−2

11.11 (23,46) (1,23,2) 92 Wi1(11) RS−22

11.12SD↑11.3 (24,24) (2,24,2) 96 D1(AM(11)) [R,S]

11.13SD↑11.2 (24,24) (2,24,2) 96 D1(Kul(3)) R−1SRS−13

11.14SD↑11.4 (44,44) (1,22,1) 88 D1(Wi2(11)) RS−21

12.1↓12.8 (4,15) (8,60,30) 240 3n.(4, 3n+ 3) (RS−2)2

12.2↓12.10 (4,26) (4,52,26) 208 AM(12) (RS−1)2

12.3↓12.11 (4,48) (2,48,24) 192 Wi2(12) R−1SRS−23

12.4 (6,14) (6,42,14) 168 2n.(6, 2n+ 2) (RS−1)2

12.5 (8,10) (8,40,10) 160 4n.(10, 2n+ 2)∨ (RS−1)2

12.6 (10,30) (2,30,6) 120 9n+3.(6n+4,18n+12) R−1SRS−11

12.7 (14,28) (2,28,4) 112 4n.(4n+ 2, 8n+ 4) R−1SRS−15

12.8SD↑12.1 (15,15) (4,30,4) 120 3n.(3n+ 3, 3n+ 3) R3S3

12.9 (25,50) (1,25,2) 100 Wi1(12) RS−24

12.10SD↑12.2 (26,26) (2,26,2) 104 D1(AM(12)) [R,S]

12.11SD↑12.3 (48,48) (1,24,1) 96 D1(Wi2(12)) RS−23

13.1↓13.8 (3,10) (36,180,120) 720 Mod(10) (RS−2RS−3)2

13.2↓13.10 (3,12) (24,144,96) 576 [R,S2]2, (RS2)3

13.3↓13.15 (4,12) (12,72,36) 288 [RS, SR], (RS−5)2

13.4↓13.19 (4,16) (8,64,32) 256 4n− 3.(4, 4n) [R2, S2]

13.5↓13.18 (4,16) (8,64,32) 256 S6R2S2R2

13.6↓13.21 (4,28) (4,56,28) 224 AM(13) (RS−1)2

13.7↓13.22 (4,52) (2,52,26) 208 Wi2(13) R−1SRS−25

13.8↑13.1 (5,10) (12,60,24) 240 D2(Mod(10)) (R2S−2)2

13.9 (6,6) (24,72,24) 288 (RS−2)2, [R2SR−1, SR]

13.10↑13.2 (6,12) (8,48,16) 192 (RS−2)2, [RS, SR]
13.11 (6,12) (8,48,16) 192 (R2S−1)2, [R,S3]
13.12 (6,15) (6,45,15) 180 3n+ 1.(6, 3n+ 3) [R2, S], (RS−2)2

13.13 (6,39) (2,39,13) 156 3n+ 1.(6, 9n+ 3) R−1SRS−25

13.14 (9,18) (4,36,8) 144 R3S−6, [RS, SR]

13.15SD↑13.3 (12,12) (6,36,6) 144 (RS−1)2, RS5R−5S−1

13.16 (12,12) (6,36,6) 144 [R2, S], [R,S3], R6S−6

13.17 (16,16) (4,32,4) 128 [R2, S], R4S−4

13.18SD↑13.5 (16,16) (4,32,4) 128 R5S−1RS−1, RS−1RS−5

13.19SD↑13.4 (16,16) (4,32,4) 128 4n− 3.(4n, 4n) [R2, S], [R,S2], R4S4

13.20 (27,54) (1,27,2) 108 Wi1(13) RS−26

13.21SD↑13.6 (28,28) (2,28,2) 112 D1(AM(13)) [R,S]

13.22SD↑13.7 (52,52) (1,26,1) 104 D1(Wi2(13)) RS−25

14.1 (3,7) (156,546,364) 2184 First Hurwitz triplet [R,S]6

14.2 (3,7) (156,546,364) 2184 First Hurwitz triplet [R,S]13, (S3R−1S2R−1)3

continued on next page. . .
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Map Type (v, e, f) |Aut(R)| Name or family Extra relators
14.3 (3,7) (156,546,364) 2184 First Hurwitz triplet [R,S]7

14.4↓13.11 (4,30) (4,60,30) 240 AM(14) (RS−1)2

14.5↓13.12 (4,56) (2,56,28) 224 Wi2(14) R−1SRS−27

14.6 (6,16) (6,48,16) 192 2n.(6, 2n+ 2) (RS−1)2

14.7 (6,42) (2,42,14) 168 3n+ 2.(6, 9n+ 6) R−1SRS−13

14.8 (8,20) (4,40,10) 160 (RS−1)2, RS9R−3S−1

14.9 (10,35) (2,35,7) 140 10n+ 4.(10, 25n+ 10) R−1SRS−6

14.10 (29,58) (1,29,2) 116 Wi1(14) RS−28

14.11SD↑14.4 (30,30) (2,30,2) 120 D1(AM(14)) [R,S]

14.12SD↑14.5 (56,56) (1,28,1) 112 D1(Wi2(14)) RS−27

15.1 (3,9) (56,252,168) 1008 (RS−2RS−4)2

15.2↓15.10 (3,14) (21,147,98) 588 Fer(7) (R2S2)3

15.3 (3,20) (12,120,80) 480 4-cover of Ico [R,S5], (RS−2RS−3)2

15.4 (4,6) (56,168,84) 672 (S2R−1)3

15.5↓15.18 (4,18) (8,72,36) 288 3n.(4, 3n+ 3) (RS−2)2

15.6↓15.22 (4,32) (4,64,32) 256 Kul(4) R−1S2RS−14

15.7↓15.21 (4,32) (4,64,32) 256 AM(15) (RS−1)2

15.8↓15.23 (4,60) (2,60,30) 240 Wi2(15) R−1SRS−29

15.9 (6,10) (12,60,20) 240 2-cover of Ico (R2S−1)2, R2S4R−1S−1

15.10↑15.2 (7,14) (7,49,14) 196 D2(Fer(7)) [R,S2]
15.11 (8,12) (8,48,12) 192 [R,S3], R3S2R−1S2

15.12 (8,12) (8,48,12) 192 (RS−2)2, (R2S3)2

15.13 (8,12) (8,48,12) 192 (RS−1)2

15.14 (8,12) (8,48,12) 192 [R2, S], (RS−3)2

15.15 (8,40) (2,40,10) 160 R−1SRS−29

15.16 (8,40) (2,40,10) 160 R−1SRS−9

15.17 (14,35) (2,35,5) 140 25n+15.(20n+14,50n+35) R−1SRS−29

15.18SD↑15.5 (18,18) (4,36,4) 144 3n.(3n+ 3, 3n+ 3) R3S3

15.19 (22,33) (2,33,3) 132 9n+6.(12n+10,18n+15) R−1SRS−23

15.20 (31,62) (1,31,2) 124 Wi1(15) RS−30

15.21SD↑15.7 (32,32) (2,32,2) 128 D1(AM(15)) [R,S]

15.22SD↑15.6 (32,32) (2,32,2) 128 D1(Kul(4)) R−1SRS−17

15.23SD↑15.8 (60,60) (1,30,1) 120 D1(Wi2(15)) RS−29



C
Gonality bounds

LEGEND. Gonality bounds (cf. Section 1.6) of all reflexive platonic maps of genus
2 ≤ g ≤ 8. If the gonality is known, we list only one number.

M gon M gon M gon M gon M gon M gon M gon M gon
2.1 2 5.1 4 7.2 4 9.9 3-4 10.7 3-6 11.13 3-4 13.18 3-8 15.14 3-4
2.2 2 5.2 2 7.3 4 9.10 3-4 10.8 3-6 11.14 2 13.19 3-4 15.15 3-4
2.3 2 5.3 4 7.4 2 9.11 3-4 10.9 4-6 12.1 3-4 13.20 2 15.16 3-4
2.4 2 5.4 4 7.5 2 9.12 2 10.10 3-6 12.2 2 13.21 2 15.17 3-7
2.5 2 5.5 4 7.6 3 9.13 2 10.11 2 12.3 2 13.22 2 15.18 3-4
2.6 2 5.6 4 7.7 4 9.14 3-6 10.12 2 12.4 3 14.1 4-8 15.19 3-9
3.1 3 5.7 2 7.8 3 9.15 2 10.13 3-6 12.5 3-4 14.2 4-8 15.20 2
3.2 3 5.8 2 7.9 2 9.16 4-6 10.14 3-6 12.6 3-5 14.3 4-8 15.21 2
3.3 3 5.9 4 7.10 2 9.17 3-6 10.15 3-6 12.7 3-7 14.4 2 15.22 3-4
3.4 2 5.10 4 7.11 4 9.18 3-6 10.16 3-6 12.8 3-4 14.5 2 15.23 2
3.5 3 5.11 3 7.12 2 9.19 3-4 10.17 3 12.9 2 14.6 3
3.6 2 5.12 4 8.1 4-5 9.20 3-4 10.18 3 12.10 2 14.7 3
3.7 2 5.13 4 8.2 4-5 9.21 3-6 10.19 3 12.11 2 14.8 3-4
3.8 2 5.14 2 8.3 2 9.22 3-6 10.20 3-6 13.1 4-6 14.9 3-5
3.9 2 5.15 2 8.4 2 9.23 3-6 10.21 3-6 13.2 3-8 14.10 2
3.10 3 5.16 2 8.5 3 9.24 3-4 10.22 2 13.3 3-6 14.11 2
3.11 2 6.1 4 8.6 3 9.25 3-4 10.23 2 13.4 3-4 14.12 2
3.12 2 6.2 4 8.7 4 9.26 3-4 10.24 2 13.5 3-8 15.1 3-9
4.1 3 6.3 3 8.8 4-5 9.27 3-4 11.1 4-7 13.6 2 15.2 3-7
4.2 3 6.4 2 8.9 2 9.28 3-4 11.2 3-4 13.7 2 15.3 3-4
4.3 3 6.5 2 8.10 2 9.29 3-6 11.3 2 13.8 3-6 15.4 3-9
4.4 2 6.6 4 8.11 2 9.30 2 11.4 2 13.9 3-8 15.5 3-4
4.5 2 6.7 3 9.1 3-6 9.31 2 11.5 4-7 13.10 3-8 15.6 3-4
4.6 3 6.8 2 9.2 3-6 9.32 2 11.6 3-4 13.11 3-8 15.7 2
4.7 3 6.9 3 9.3 3-6 10.1 4-6 11.7 3-4 13.12 3 15.8 2
4.8 3 6.10 4 9.4 3-6 10.2 3-6 11.8 3 13.13 3 15.9 2
4.9 3 6.11 2 9.5 3-6 10.3 3 11.9 3-4 13.14 3-6 15.10 3-7
4.10 2 6.12 2 9.6 3-4 10.4 3-6 11.10 3-4 13.15 3-6 15.11 3-4
4.11 2 6.13 2 9.7 3-6 10.5 3-6 11.11 2 13.16 3-6 15.12 3-4
4.12 2 7.1 4-5 9.8 3-6 10.6 4-6 11.12 2 13.17 3-8 15.13 3-4
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D
Geometric Weierstraß weights

LEGEND. Weierstraß weights wi of the vertices (w0), edge centers (w1) and face
centers (w2) of the reflexive platonic maps of genus 2 ≤ g ≤ 8. For convenience,

we repeat some combinatorial data from Appendix B. A star indicates there are ad-
ditional Weierstraß points. After a star we note the total Weierstraß weight that is
still unaccounted for. If the map is a diagonal map (cf. Chapter 3) this weight might
lie hidden in cell centers of the map with larger automorphism group. But if it is not
a diagonal map, the star implies the existence of non-geometric Weierstraß points.

Map Type (v, e, f) (w0, w1, w2)

2.1↓2.3 (3,8) (6,24,16) (1,0,0)
2.2↓2.5 (4,6) (4,12,6) (0,0,1)
2.3↑2.1,↓2.6 (4,8) (2,8,4) (1,0,1)
2.4 (5,10) (1,5,2) (1,1,0)
2.5SD↑2.2 (6,6) (2,6,2) (0,1,0)
2.6SD↑2.3 (8,8) (1,4,1) (1,1,1)
3.1 (3,7) (24,84,56) (1,0,0)
3.2↓3.5 (3,8) (12,48,32) (2,0,0)
3.3 (3,12) (4,24,16) (2,0,1)
3.4↓3.8 (4,6) (8,24,12) (3,0,0)
3.5↑3.2,↓3.10 (4,8) (4,16,8) (2,0,2)
3.6↓3.11 (4,8) (4,16,8) (0,0,3)
3.7↓3.12 (4,12) (2,12,6) (3,0,3)
3.8SD↑3.4 (6,6) (4,12,4) (3,0,3)
3.9 (7,14) (1,7,2) (3,3,0)
3.10SD↑3.5 (8,8) (2,8,2) (2,2,2)
3.11SD↑3.6 (8,8) (2,8,2) (0,3,0)
3.12SD↑3.7 (12,12) (1,6,1) (3,3,3)

Map Type (v, e, f) (w0, w1, w2)

4.1↓4.9 (3,12) (6,36,24) (4,1,0)
4.2↓4.6 (4,5) (24,60,30) (0,1,0)
4.3↓4.7 (4,6) (12,36,18) (2,1,0)
4.4↓4.11 (4,10) (4,20,10) (0,0,6)
4.5↓4.12 (4,16) (2,16,8) (6,0,6)
4.6SD↑4.2 (5,5) (12,30,12) (0,0,0)*60
4.7SD↑4.3 (6,6) (6,18,6) (2,0,2)*36
4.8 (6,6) (6,18,6) (3,1,4)
4.9↑4.1 (6,12) (2,12,4) (4,1,4)*24
4.10 (9,18) (1,9,2) (6,6,0)
4.11SD↑4.4 (10,10) (2,10,2) (0,6,0)
4.12SD↑4.5 (16,16) (1,8,1) (6,6,6)
5.1↓5.6 (3,8) (24,96,64) (5,0,0)
5.2 (3,10) (12,60,40) (10,0,0)
5.3↓5.9 (4,5) (32,80,40) (0,0,3)
5.4↓5.10 (4,6) (16,48,24) (3,0,3)
5.5↓5.12 (4,8) (8,32,16) (3,3,0)
5.6↑5.1,↓5.13 (4,8) (8,32,16) (5,0,5)
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Map Type (v, e, f) (w0, w1, w2)

5.7↓5.15 (4,12) (4,24,12) (0,0,10)
5.8↓5.16 (4,20) (2,20,10) (10,0,10)
5.9SD↑5.3 (5,5) (16,40,16) (0,3,0)
5.10SD↑5.4 (6,6) (8,24,8) (3,3,3)
5.11 (6,15) (2,15,5) (5,0,4)*90
5.12SD↑5.5 (8,8) (4,16,4) (3,0,3)*96
5.13SD↑5.6 (8,8) (4,16,4) (5,5,5)
5.14 (11,22) (1,11,2) (10,10,0)
5.15SD↑5.7 (12,12) (2,12,2) (0,10,0)
5.16SD↑5.8 (20,20) (1,10,1) (10,10,10)
6.1↓6.6 (3,10) (15,75,50) (9,1,0)
6.2 (4,6) (20,60,30) (0,1,1)*120
6.3↓6.9 (4,9) (8,36,18) (6,0,1)*144
6.4↓6.12 (4,14) (4,28,14) (0,0,15)
6.5↓6.13 (4,24) (2,24,12) (15,0,15)
6.6↑6.1 (5,10) (5,25,10) (9,1,9)*50
6.7 (6,8) (6,24,8) (3,0,6)*144
6.8 (6,8) (6,24,8) (15,0,15)
6.9SD↑6.3 (9,9) (4,18,4) (6,1,6)*144
6.10 (10,15) (2,15,3) (9,1,9)*150
6.11 (13,26) (1,13,2) (15,15,0)
6.12SD↑6.4 (14,14) (2,14,2) (0,15,0)
6.13SD↑6.5 (24,24) (1,12,1) (15,15,15)

Map Type (v, e, f) (w0, w1, w2)

7.1 (3,7) (72,252,168) (0,0,2)
7.2↓7.7 (3,12) (12,72,48) (12,0,4)
7.3↓7.11 (4,16) (4,32,16) (8,0,3)*256
7.4↓7.10 (4,16) (4,32,16) (0,0,21)
7.5↓7.12 (4,28) (2,28,14) (21,0,21)
7.6 (6,9) (6,27,9) (8,0,14)*162
7.7↑7.2 (6,12) (4,24,8) (12,0,12)*192
7.8 (6,21) (2,21,7) (14,0,14)*210
7.9 (15,30) (1,15,2) (21,21,0)
7.10SD↑7.4 (16,16) (2,16,2) (0,21,0)
7.11SD↑7.3 (16,16) (2,16,2) (8,3,8)*256
7.12SD↑7.5 (28,28) (1,14,1) (21,21,21)
8.1 (3,8) (42,168,112) (0,1,0)*336
8.2 (3,8) (42,168,112) (0,1,0)*336
8.3↓8.10 (4,18) (4,36,18) (0,0,28)
8.4↓8.11 (4,32) (2,32,16) (28,0,28)
8.5 (6,10) (6,30,10) (4,0,12)*360
8.6 (6,24) (2,24,8) (16,1,14)*336
8.7 (8,12) (4,24,6) (6,0,8)*432
8.8 (10,20) (2,20,4) (12,6,10)*320
8.9 (17,34) (1,17,2) (28,28,0)
8.10SD↑8.3 (18,18) (2,18,2) (0,28,0)
8.11SD↑8.4 (32,32) (1,16,1) (28,28,28)



E
Irreducible reflexive platonic maps

LEGEND. All irreducible reflexive platonic maps (cf. Section 1.6) of genus 2 ≤ g ≤
101. The standard map presentation of a map (or presentations of tuplet mem-

bers) can be computed from the knowledge of the isomorphism type of Aut+(R).

Remark. The group Alt6 has outer automorphism group Z2
2, generated by the ac-

tion of an element from Sym6 and an exceptional outer automorphism. For R91.39,
R100.26, and R100.27 the group Aut+(R) ∼= Alt6 o Z2 is the subgroup of Aut(Alt6)
obtained by adjoining to Alt6 an exceptional outer automorphism. For R46.4, R46.5,
R91.36, R91.37, and R91.38 the group Aut+(R) ∼= Alt6oZ2 is the subgroup of Aut(Alt6)
obtained by adjoining to Alt6 the product of an outer automorphism in Sym6 and an
exceptional outer automorphism.

Map Type (v, e, f) Isotype Aut+(R) Isotype Aut(R)
R3.1 ( 3,7 ) ( 24,84,56 ) PSL(2, 7) PGL(2, 7)
R4.6 ( 5,5 ) ( 12,30,12 ) Alt5 Alt5 × Z2

R5.9 ( 5,5 ) ( 16,40,16 ) Z4
2 o Z5 (Z4

2 o Z5) o Z2

R6.2 ( 4,6 ) ( 20,60,30 ) Sym5 Sym5 × Z2

R7.1 ( 3,7 ) ( 72,252,168 ) PSL(2, 8) PSL(2, 8)× Z2

R10.6 ( 4,5 ) ( 72,180,90 ) PSL(2, 9) PGL(2, 9)
R10.9 ( 4,7 ) ( 24,84,42 ) PSL(2, 7) PGL(2, 7)
R11.5 ( 6,6 ) ( 20,60,20 ) Sym5 Sym5 × Z2

R14.1 ( 3,7 ) ( 156,546,364 ) PSL(2, 13) PGL(2, 13)
R14.2 ( 3,7 ) ( 156,546,364 ) PSL(2, 13) PSL(2, 13)× Z2

R14.3 ( 3,7 ) ( 156,546,364 ) PSL(2, 13) PGL(2, 13)
R15.1 ( 3,9 ) ( 56,252,168 ) PSL(2, 8) PSL(2, 8)× Z2

R19.13 ( 5,5 ) ( 72,180,72 ) PSL(2, 9) PGL(2, 9)
R19.23 ( 7,7 ) ( 24,84,24 ) PSL(2, 7) PGL(2, 7)
R26.2 ( 3,11 ) ( 60,330,220 ) PSL(2, 11) PGL(2, 11)
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R29.9 ( 6,6 ) ( 56,168,56 ) PGL(2, 7) PGL(2, 7)× Z2

R34.6 ( 5,5 ) ( 132,330,132 ) PSL(2, 11) PGL(2, 11)
R34.7 ( 5,5 ) ( 132,330,132 ) PSL(2, 11) PSL(2, 11)× Z2

R36.9 ( 6,8 ) ( 42,168,56 ) PGL(2, 7) PGL(2, 7)× Z2

R36.10 ( 6,8 ) ( 42,168,56 ) PGL(2, 7) PGL(2, 7)× Z2

R43.14 ( 8,8 ) ( 42,168,42 ) PGL(2, 7) PGL(2, 7)× Z2

R43.15 ( 8,8 ) ( 42,168,42 ) PGL(2, 7) PGL(2, 7)× Z2

R45.12 ( 5,6 ) ( 110,330,132 ) PSL(2, 11) PGL(2, 11)
R45.13 ( 5,6 ) ( 110,330,132 ) PSL(2, 11) PSL(2, 11)× Z2

R46.4 ( 4,8 ) ( 90,360,180 ) Alt6 o Z2 Aut(Alt6)
R46.5 ( 4,8 ) ( 90,360,180 ) Alt6 o Z2 Aut(Alt6)
R49.57 ( 7,7 ) ( 64,224,64 ) Z6

2 o Z7 (Z6
2 o Z7) o Z2

R50.1 ( 3,13 ) ( 84,546,364 ) PSL(2, 13) PSL(2, 13)× Z2

R52.1 ( 3,8 ) ( 306,1224,816 ) PSL(2, 17) PGL(2, 17)
R52.2 ( 3,8 ) ( 306,1224,816 ) PSL(2, 17) PGL(2, 17)
R55.32 ( 7,7 ) ( 72,252,72 ) PSL(2, 8) PSL(2, 8)× Z2

R56.6 ( 6,6 ) ( 110,330,110 ) PSL(2, 11) PSL(2, 11)× Z2

R61.14 ( 6,6 ) ( 120,360,120 ) Sym6 Sym6 × Z2

R63.5 ( 7,9 ) ( 56,252,72 ) PSL(2, 8) PSL(2, 8)× Z2

R63.6 ( 7,9 ) ( 56,252,72 ) PSL(2, 8) PSL(2, 8)× Z2

R63.7 ( 7,9 ) ( 56,252,72 ) PSL(2, 8) PSL(2, 8)× Z2

R69.1 ( 3,9 ) ( 272,1224,816 ) PSL(2, 17) PGL(2, 17)
R69.2 ( 3,9 ) ( 272,1224,816 ) PSL(2, 17) PGL(2, 17)
R69.3 ( 3,9 ) ( 272,1224,816 ) PSL(2, 17) PSL(2, 17)× Z2

R70.3 ( 5,11 ) ( 60,330,132 ) PSL(2, 11) PGL(2, 11)
R70.4 ( 5,11 ) ( 60,330,132 ) PSL(2, 11) PGL(2, 11)
R71.15 ( 9,9 ) ( 56,252,56 ) PSL(2, 8) PSL(2, 8)× Z2

R81.62 ( 6,11 ) ( 60,330,110 ) PSL(2, 11) PGL(2, 11)
R81.125 ( 9,9 ) ( 64,288,64 ) Z6

2 o Z9 (Z6
2 o Z9) o Z2

R91.36 ( 8,8 ) ( 90,360,90 ) Alt6 o Z2 Aut(Alt6)
R91.37 ( 8,8 ) ( 90,360,90 ) Alt6 o Z2 Aut(Alt6)
R91.38 ( 8,8 ) ( 90,360,90 ) Alt6 o Z2 Aut(Alt6)
R91.39 ( 8,8 ) ( 90,360,90 ) Alt6 o Z2 Alt6 o Z2 × Z2

R92.6 ( 6,6 ) ( 182,546,182 ) PSL(2, 13) PGL(2, 13)
R96.1 ( 3,9 ) ( 380,1710,1140 ) PSL(2, 19) PGL(2, 19)
R96.2 ( 3,9 ) ( 380,1710,1140 ) PSL(2, 19) PSL(2, 19)× Z2

R96.3 ( 3,9 ) ( 380,1710,1140 ) PSL(2, 19) PSL(2, 19)× Z2

R100.2 ( 4,10 ) ( 132,660,330 ) PGL(2, 11) PGL(2, 11)× Z2

R100.3 ( 4,10 ) ( 132,660,330 ) PGL(2, 11) PGL(2, 11)× Z2

R100.26 ( 8,10 ) ( 72,360,90 ) Alt6 o Z2 (Alt6 o Z2)× Z2

R100.27 ( 8,10 ) ( 72,360,90 ) Alt6 o Z2 (Alt6 o Z2)× Z2
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Mathematics. Dedicated to Jarik Nešetřil on the Occasion of his 60th Birthday
(Martin Klazar, ed.), Algorithms and combinatorics, vol. 26, Springer, Berlin,
2006, DOI:10.1007/3-540-33700-8 29, pp. 591–609.

[W+1996] Robert A. Wilson et al., ATLAS of finite group representations, version 3,
http://brauer.maths.qmul.ac.uk/Atlas/v3/, 1996.

[Web2005] Matthias Weber, Kepler’s small stellated dodecahedron as a Riemann surface, Pa-
cific Journal of Mathematics 220 (2005), no. 1, pp. 167–182,
DOI:10.2140/pjm.2005.220.167.

[Wij2009] Jarke J. van Wijk, Symmetric tiling of closed surfaces: visualization of regular maps,
ACM Transactions on Graphics 28 (2009), DOI:10.1145/1531326.1531355.
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Platonic maps of low genus
Summary

In what ways can one tile a surface such that the tiling has a large measure of symmetry?
This question lies at the basis of the research area with which this dissertation is concerned.
To make the question more exact, we suppose we have a closed orientable surface with a
connected finite graph with non-empty vertex set and non-empty edge set embedded into it,
such that the complement of the graph consists of a union of two-dimensional disks. This
puts a cell structure on the surface, with graph vertices, graph edges and disks being cells of
dimension 0, 1, and 2, respectively. We can identify a disk together with its boundary as a
polygon, where the edges on the disk boundary become sides of the polygon, and vertices on
the boundary vertices of the polygon. A surface together with a cell division is called a map.

A homeomorphism of the surface is called cellular with respect to a map if it sends cells to
cells. The symmetry we demand of a map in this thesis is the existence of a group of cellular
homeomorphisms that acts transitively on the set of oriented (0, 1)-flags of the graph, that is,
on pairs of a vertex and an incident directed edge. This property entails that all disks have the
same number of sides, when viewed as polygons, and all vertices of the graph have the same
number of incident edges, but is in general stronger than these two conditions. We call a map
on a surface satisfying our condition a platonic map. If there is also a cellular homeomorphism
that preserves an oriented (0, 1)-flag but is not the identity, then we say the platonic map is
reflexive, and call such a homeomorphism a reflection. Classical examples of reflexive platonic
maps are the platonic solids (the tetrahedron, cube, octahedron, dodecahedron and icosahe-
dron), whence their name. The platonic solids and their symmetry groups have long been of
interest to mathematicians.

The group of cellular homeomorphisms of a map M induces a subgroup of the mapping
class group of the surface, which is the group formed by the equivalence classes of home-
omorphisms with respect to isotopy. This subgroup is called the automorphism group of the
map, Aut(M). One can in fact realize Aut(M) as an actual group of homeomorphisms of
the surface. If the map is platonic, the subgroup Aut+(M) of orientation preserving map au-
tomorphisms can be generated by two elements R and S, which are primitive counterclock-
wise rotations around a polygon (disk) and an incident vertex, respectively. A presentation of
Aut+(M) in R and S is called a standard map presentation of M. A standard map presentation
already contains all the information of a platonic map.

A fascinating fact is that on each surface of genus g ≥ 2 there are only a finite number of
platonic maps. With the aid of group theory one can enumerate all possibile standard map
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250 Summary

presentations for a given genus, and this has indeed been done in [CD2001] up to genus 15.
This list has been the starting point of the investigation into platonic maps described in this
thesis.

We develop two fundamental tools to categorize and order platonic maps, namely polynomial
families and diagonal maps. A polynomial family is a parametrized group-theoretic recipe for
constructing an infinite series of platonic maps in a controlled way. Diagonal maps are the
result of a standard construction applied, under certain conditions, to a map to yield a new
map of the same genus. These tools, along with covering theory of platonic maps, are used
throughout the thesis. We determine those reflexive platonic maps whose number of vertices
is an odd prime. Also, we classify all reflexive platonic maps whose density is higher than 1

2
,

with the stellar roles played by the tetrahedron and the Fermat maps.

A remarkable property of a platonic map, a hidden gem lying dormant, is that it uniquely
determines a compact Riemann surface on which the map can be realized by a graph with
geodesic edges, and such that Aut(M) acts by isometries. Furthermore, there is a correspon-
dence between compact Riemann surfaces and smooth complex algebraic curves. Both types
of objects and the correspondence are of major importance in mathematics, and have guided
a great deal of research, starting with Klein’s quartic curve. In general, this correspondence
is not effective. For platonic maps, it is! We undertake the task to find algebraic curves for as
many platonic maps as possible, so that other researchers may utilize them and study their
properties further. We have succeeded for all platonic maps of genus at most 8, and for var-
ious other ones of higher genus, among which the members of the first Hurwitz triplet. In
a separate chapter, we study the properties of this triplet and try to compute its Weierstraß
points, answering a question by Kay Magaard and Helmut Völklein.
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