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Chapter 1 

 

1 Introduction 
New product development (NPD) is particularly challenging in the high-technology sector that is 

increasingly characterized by shortening product lifecycles, rising market demands and rapid 

technological changes (Bowersox et al. 1999, Mallick and Schroeder 2005, Wildemann 2007). As a 

result, the market window for selling high-technology products is shrinking continuously. In the case 

of consumer electronics products like cell-phones the profitable market window has in some cases 

shrunk to less than a year. This situation does not only force companies to shorten their development 

times (time-to-market) but also the time until they reach full production volume (time-to-volume) in 

order to meet the financial goals for the product (Terwiesch and Bohn 1998). In addition, rapid time-

to-market due to steep ramp-up curves allows firms to recoup development investments quickly 

(Pisano and Wheelwright 1995), profit from early market opportunities, set technology standards and 

to accumulate experience with volume production. Also, scarce product development and 

manufacturing engineering resources can be released and hence support subsequent product 

development projects instead of solving ongoing production problems. 

The period between the end of product development and full scale or unconstrained production is 

known as production ramp-up (Terwiesch and Bohn 1998, Berg 2007). However, other changes in the 

production sequence like the introduction of a new process technology or the start-up of a new plant 

also require ramp-up management efforts. In many ways, these ramp-ups are similar to the ramp-up of 

new products although additional and to some extent different variables are involved. For reasons of 

clarity and in order to provide a precise terminology for our subsequent considerations we define 

product ramp-up according to Wheelwright and Clark (1992, p. 8) as: “In ramp-up the firm starts 

commercial production at a relatively low level of volume; as the organization develops confidence in 

its (and its suppliers’) abilities to execute production consistently and marketing’s abilities to sell the 

product, the volume increases. At the conclusion of the ramp-up phase, the production system has 

achieved its target levels of volume, cost and quality.” 
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Ramp-ups are typically characterized by two conflicting factors: low output and high demand. There 

is high demand because new products offer new and maybe superior functionalities that in turn attract 

consumers and motivate them to pay premium prices. On the other hand, the output is still low as a 

result of low production rates, high failure rates and constrained material supply. This aspect has 

already been presented in various studies covering different industries. Schuh et al. (2005) for 

example show that 47% of new product ramp-ups in the automotive sector were neither technically 

nor economically successful. Kuhn et al. (2002) indicate that not a single company in their study 

claimed to have full control over the production ramp-up. Thus, the ramp-up phase remains a major 

challenge but it also provides an opportunity to gain a significant competitive advantage. 

In this dissertation, we focus on the operational aspects in the domain of operations management. We 

do not consider the marketing domain that addresses decisions regarding product positionings during 

the ramp-up phase of new products. Our research aims to understand and explain the phenomena and 

influential factors with reference to new product ramp-ups and to analyze their implications on 

performance using qualitative and quantitative information. 

1.1 Motivation and Objective 

We place our research in the context of consumer electronics, or more precisely, in the context of the 

cell phone industry. This business sector offers considerable growth rates and profit opportunities. As 

outlined in Figure 1, the projected growth rates for cell phones – separated into mobile phones and 

smartphones – are considerable. Compared to mobile phones, smartphones are typically based on a 

mobile computing platform that offers an advanced computing ability (compared to proprietary 

firmware commonly found in mobile phones), high-resolution touch-screens, web browsers, advanced 

connectivity options and sophisticated interfaces that allow for better integration of third-party 

applications. 

In this business landscape, the common strategy to stay competitive and to leverage market 

opportunities is to develop and introduce top-quality products in relatively rapid succession and on a 

regular basis. Although the sales volumes outlook for mobile phones is potentially larger than the 

sales volumes outlook for smartphones their profit margins are considerably smaller as they are 

primarily sold in developing markets such as China, India, Indonesia, Russia and Brazil. As a result, 

the ramp-up of mobile phones has to be extremely efficient so as not to jeopardize the tiny profit 

margins. This requires detailed understanding of the determinants of ramp-up performance. 
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Figure 1. Projected worldwide product shipments (Llamas and Stofega 2012a and 2012b) 

 

Although the literature discusses various influential factors and their qualitative effects on ramp-up 

performance (Kuhn et al. 2002, van der Merwe 2004, Schuh 2005, Wildemann 2005, Berg 2007) we 

still know very little about the quantitative and causal relationships between these factors and ramp-up 

performance. As we show in Table 1, the existing studies on ramp-up management focus on the 

description of influential factors and on the question how they can be managed. However, existing 

studies hardly evaluate the implications of product design decisions on ramp-up performance 

(Krishnan and Ulrich 2001) and the complex relationships between these aspects. In addition, the 

majority of studies have been carried out in the automotive industry, thus neglecting the specific 

characteristics and challenges that prevail in the consumer electronics industry. We believe that the 

examination of ramp-up performance in the consumer electronics industry is particularly interesting 

because frequent product introductions are very common (i.e., many opportunities for data collection 

and for empirical analyses). In addition, and compared to other industries, it is an ideal environment to 

gain insights into the role and behavior of modern software functionalities in new product 

development. The influence and importance of software content in cell phones, hi-fi systems, game 

consoles, cameras, MP3 players, flat screens and computer tablets has increased substantially in the 

past years. This makes it important for product development managers to understand the central role 

of software in the development of these products and the general effect of software on development 

lead times and ramp-up performance. In addition, advances in the information and communication 

technologies will presumably lead to further growth in software content across a wide range of 

products from other industries as well, hence making it reasonable for development teams in other 

industries to be aware of the developments in the consumer electronics business. 
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Most of the existing studies agree on a similar set of influential factors that determine ramp-up 

performance. In essence, these are: 

 physical product characteristics (e.g., product complexity and newness) 

 production process and environmental variables (e.g., manufacturing capability, complexity 

of the production system, level of automation, operation pattern) 

 product development characteristics (e.g., formalization, structure and priority, time pressure, 

priority of manufacturability) 

 characteristics of the logistics system (e.g., supply networks and capability, supplier 

collaboration, material quality) 

 organizational characteristics (e.g., cross functionality, roles and responsibilities, work force 

policy, compensation) 

 external factors (e.g., demand fluctuation) 

It is important to note that these factors are not isolated but partly interdependent. For example, it is 

likely to find a bidirectional dependency between product characteristics and production process 

characteristics as a result of the prevailing in-house manufacturing capabilities and the application of 

design for manufacturing (DfM) methods during product development. DfM methods may affect the 

product design in order to increase compliance with the existing manufacturing capabilities. On the 

other hand, new product designs and innovations are the driving force behind the implementation of 

potentially new and product specific manufacturing line configurations (although they are often 

constraint to the prevailing and standardized manufacturing configuration) that largely influence the 

production process characteristics. A similar dependency can be found between product 

characteristics and the logistics system. Since suppliers are part of the logistics system, supply 

networks are dependent on the product concept that largely defines the vertical range of manufacture, 

the required manufacturing capabilities, the required supply responsiveness and hence, the supplier 

location for variable parts to enable customization. Conversely, if suppliers are selected from a pool of 

pre-qualified and approved suppliers the choice may force design engineers to comply with the given 

technology restrictions and capabilities.  

These examples show that there is a variety of influential characteristics with complex 

interrelationships. However, existing studies have not yet been able to fully integrate them into a 

comprehensive model. It is our objective to contribute to this limitation in the existing literature with 

three studies that we have conducted within the cell-phone industry. In our studies we selected, 

quantified and analyzed a set of characteristics (product, product development process and supply 

chain structure) that influence the ramp-up process. We also analyzed the interrelationships between 

these characteristics and their impact on ramp-up performance. Our research is motivated by practical 

and theoretical considerations. We provide insights and guidelines that offer significant practical 
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value for mangers who are involved in product development and ramp-up management – a topic that 

is highly relevant in the consumer electronics industry due to the rapid increase in new product ramp-

ups. Our contributions should help managers to understand the effects and behaviors of these 

characteristics on ramp-up performance and hence enable them to cope with the resulting problems in 

a more efficient way and to find appropriate mitigation strategies for increasingly complex ramp-up 

problems. Another motivation for this study was to extend the existing body of knowledge regarding 

new product ramp-ups, because to date a comprehensive theoretical model in this research domain is 

still missing. 

1.2 Research Context 

Although the specific problems addressed in this dissertation are of importance for the entire 

consumer electronics industry they are of particular importance for the cell phone industry. Hence, the 

problems and challenges related to ramp-up procedures are a key topic for the cell phone business of 

Nokia Corporation. Nokia is a Finnish public limited liability IT Company headquartered in Espoo, 

Finland and listed on the stock exchanges in Helsinki, Frankfurt, and New York. In 2012, Nokia 

employed approximately 122,000 employees across 120 countries and Nokia products were sold in 

more than 150 countries, creating annual revenues of around €38 billion (Nokia Corporation 2012). 

Nokia offers mobile communication products, services and software related to mobile devices as well 

as navigation services through its subsidiary Navteq. In addition, Nokia offers online services and 

software including applications, games, music, maps, media and messaging services that are 

distributed through the company’s own Ovi platform. In a joint venture with Siemens, Nokia also 

provides telecommunications network equipment and services under the name of Nokia Siemens 

Networks. 

Nokia used to be the largest global vendor of cell phones from 1998 to 2012 but over the past years it 

has suffered declining market shares as a result of the growing use of smartphones and its 

uncompetitive product portfolio in this segment. In response to this changing market situation, Nokia 

has entered into a strategic partnership with Microsoft. As a result of this partnership all new Nokia 

smartphones incorporate Microsoft's operating system Windows Phone while Nokia’s mobile phones 

continue to use a proprietary operating system called Series 40. 

At Nokia, the development of a new product always follows a similar sequence of actions. First, the 

company chooses an R&D center based on criteria like the best fit between center-specific 

competences and the product mission, estimated sales volume and customer base. In a second step, a 

cross functional project management team is allocated that consists of project managers from R&D, 

marketing, sourcing, production, customer service and product validation. All subsequent 

development activities follow a highly structured milestone controlled development process. The 
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process starts with a detailed planning and conception phase in which technology developments, 

market objectives and several different concepts are evaluated. In the following, the most appropriate 

concept for further development is selected and the actual design phase begins. During this phase, the 

complete product specification is created and all product specific and common components are 

identified based on make-or-buy analyses. 

In contrast to common components that are ready-made and purchased from suppliers, product 

specific components typically require additional tooling equipment and in-house development work. 

The manufacturing process map that specifies how the product is manufactured, assembled and tested 

is also established at this point of the development process. At the same time multiple prototypes of 

the product are manufactured and tested. Consumer electronics products are often developed 

according to a spiral product development process. Since the building and testing of prototypes has 

become a rapid process the design-build-test cycle can be repeated many times (Ulrich and Eppinger 

2008). Prototypes are created on dedicated pre-production lines and manufactured using processes 

that are very similar to mass-production. The purpose of prototyping is to determine whether the 

product works as planned in terms of performance and reliability and whether the manufacturing 

process is robust enough and capable to deliver the planned quantities during the mass production 

phase. In parallel to these activities, a concomitant software development process delivers new 

software packages for each new prototype cycle. Software management, development and 

stabilization (software error detection, correction and verification) have become major activities in 

new cell phone projects as more and more features are implemented via software. After a clearly 

defined set of deliverables regarding the new product has been achieved and approved by the steering 

group and after key customers have approved the software configuration the “start of production and 

sales” project milestone can be granted. Now, the lead factory ramp-up phase begins which is defined 

as the time between the project milestone “start of production and sales” and the moment when 

production output switches from a predefined push plan that is based on sales estimates – as exact 

customer orders are not yet known – to a pull plan that is consumer demand driven. During that phase, 

the output is successively increased until it reaches a stable level. This gradual increase serves as an 

opportunity to train the workforce, eliminate remaining problems in material supply, material quality, 

product design and in the production process. Depending on the total sales volume level, additional 

factories and supply networks may be introduced at a later stage when most of the initial problems are 

under control. In contrast to many other companies, Nokia applies a shutdown approach concerning 

the operational pattern. In other words, existing products are always ramped-down before new 

products are ramped-up on the same but converted manufacturing lines. A simplified representation of 

such a manufacturing line is shown in Figure 2. This line configuration is applied across most of 

Nokia’s production plants and even copied to contract manufacturing plants that are part of the 

manufacturing network. As a result the in-house manufacturing depth is homogeneous throughout this 
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study. The production process starts with the assembly of the logic board called SMT (surface mount 

technology). During this phase all electrical components of the logic board are assembled and 

soldered in an automated process. The assembly of the logic board is followed by a first test phase 

that adds test software to the board in order to perform basic functional tests and to align the radio 

frequency module. This procedure is necessary as hardware components have a rather wide tolerance 

range while the radio frequency parameters have to meet relatively tight legal requirements. Before 

the assembly work begins the auxiliary-flaps on the logic boards – that have been necessary for the 

handling in the previous process steps – have to be removed by means of a milling process. During 

the final assembly step the logic board and other electromechanical parts are assembled into the 

mechanical covers. Depending on plant location and automation strategy the assembly is either 

conducted in a manual, semi-automated or fully automated process. Finally, the assembly is followed 

by an additional functional test phase to control the production process and to avoid the shipment of 

non-conforming units. A packing process prepares the semi-finished units for shipping to the 

customization centers in which the customer specific configurations take place. 

 

Figure 2. A simplified representation of a manufacturing line configuration for cell phones 

 

1.2.1 Data Collection 

Our research uses the individual cell-phone developed by Nokia as the unit of analysis for which we 

gathered detailed qualitative and quantitative data. In comparison to a theoretical or biased sampling 

approach – common in case study research (Barratt et al. 2011) – we drew random samples from the 

population. We selected every fifth product in the sequence from a product list that contains all 

products in an approximate temporal order. This approach reduced the risk of sample 

Soldering Component placement Paste printing (Start)

Programming Milling-machine Final assembly               Final testing    Packing
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interdependencies while ensuring for sample diversity. Our database contains data on 46 products 

which represent around 20% of the population from four development sites during the sampling 

interval (2005 - 2008). We only excluded projects that did not follow a complete development cycle 

such as product life cycle extensions via color, component or software updates and three products that 

only provided incomplete datasets. As the author is employed as a ramp-up manager at Nokia we had 

access to various databases, project documentation files, management information system reports, 

data archives and even confidential information such as material costs, product profits and sales 

figures. The only limitation to our data collection method was the inability to include characteristics 

that are not listed in existing reporting systems such as soft factors like motivation, experience, 

workload, cultural factors or characteristics that are either extremely difficult to quantify and 

multidimensional in nature (e.g., strategic choices). Please refer to Appendix-D1 for a detailed 

overview of the variables that were used in this research project and their respective sources. We 

additionally developed a written questionnaire to capture qualitative ramp-up management 

information for the respective product ramp-ups in order to provide substantiated explanations in 

connection with our formal analysis. For this purpose, we contacted the respective ramp-up managers 

and explained the purpose of the provided questionnaire. As part of the product development 

management team, ramp-up managers are key information sources as they possess comprehensive 

knowledge about the various issues that happen during product development and production ramp-up. 

After a period of one week we contacted the respondents again to collect the information. During the 

scheduled discussion, we reviewed the provided information and added potential supplementary 

information. As a result of this structured process, we achieved a return rate of 100%. Detailed 

information on the questions of the questionnaire is provided in Appendix-D2. We were also able to 

collect longitudinal project data and triangulated all data with mandatory milestone review 

documents. Such an empirical scope (i.e., single firm context) offers particular advantages as it allows 

us to control for various environmental specific effects. Thus, we only needed to control for variables 

that show measurable variance within our context. Given the relatively small sample size of our study, 

we performed a power analysis with G*Power 3 (Faul et al. 2007) to evaluate whether our statistical 

tests (given a population effect size, sample size and alpha level) can detect any significant effect 

when one truly exists. In other words, we wanted to identify the error probability β associated with a 

false decision in favor of the H0 (Faul et al. 2007). We summarized the power of our statistical tests as 

a function of the number of predictors and different effect size specifications for the underlying 

population in Table 2. Statistical power levelsTable 2. According to the results from G*Power 3 (Test 

family = F test; Statistical test = Linear multiple regression: Fixed model, R
2
 deviation from zero), the 

statistical power of our models, - given a specified medium population effect size - ranges from 0.35 

(most complex model) up to 0.67 (least complex model). As we point out in our chapter specific 

methodology sections in more detail we typically started our modeling process with a small number of 
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predictors in different combinations and subsequently increased the complexity of our model in order 

to maximize the statistical power. 

Table 2. Statistical power levels 

 

 

With this context in mind, we now present the main research questions and the contributions of this 

dissertation in the next section. 

1.3 Research Questions and Methodologies 

This dissertation aims at quantifying product, product development process and supply chain structure 

characteristics that influence the ramp-up phase and at analyzing their influence on different metrics 

of ramp-up performance. In addition, we strive to find an explanation for the mechanisms behind 

these effects with the help of our comprehensive database. This should provide us with a substantially 

enhanced and more detailed understanding of the entire ramp-up process. In order to achieve this 

objective we raise a number of research questions that will address these items in the upcoming 

chapters. Our research design was primarily driven by our objective to produce reliable in-depth 

analyses of characteristics determining ramp-up performance, to provide predictive capabilities for 

real world product ramp-up situations and by our unique access to operational data and supplementary 

qualitative information. Based on this highly reliable quantitative and qualitative data we decided to 

use ordinary least squares (OLS) multiple regression analysis and partial least squares (PLS) path 

modeling as the dominant statistical methodologies. Both methods provide slightly different but 

complementary information for the identification of those characteristics that are important predictors 

of ramp-up performance. In addition, PLS allows for the estimation of a sequence of separate multiple 

regression equations successively in order to analyze structural and mediator effects. Next, we will 

discuss the individual research questions in more detail and outline their respective rationale. 

Number 

of predictors

0.02

(small)

0.15

(medium)

0.35

(large)

3 0.18 0.67 0.95

5 0.16 0.57 0.91

6 0.15 0.54 0.89

7 0.15 0.50 0.86

8 0.14 0.47 0.83

11 0.13 0.40 0.76

14 0.13 0.35 0.69

Population effect size



Introduction 

13 

1.3.1 The Impact of Product Complexity on Ramp-up 

Performance 

First, we identified and selected the key determinants of ramp-up performance based on our literature 

review in order to achieve our goal of an enhanced understanding of the factors that influence this 

process. We also needed to find out how they can be operationalized in a rigor way that allows the use 

of statistical techniques. As there is consensus in the literature (Table 1) that product characteristics in 

terms of product complexity are one of the major determinants of ramp-up performance we started our 

research work with the inclusion of this dimension. In most cases, product complexity is considered in 

physical terms and as a property of a product (Rodriguez-Toro et al. 2004). However, the increasingly 

dominant role of software in modern consumer electronics products and the impact of software on 

complexity and development schedules make it necessary to include software as an additional key 

distinctive factor in the definition and quantification of product complexity. Therefore, the 

identification of relevant product characteristics (hardware and software aspects) and their 

quantitative definition is the first step in our research leading us to our first research question: 

 

I. How can product complexity characteristics of consumer electronics devices, and specifically 

of cell phones, be modeled in quantitative terms? 

 

To address this question in chapter 2 we develop measures for hardware and software complexity 

based on an extensive literature review. We identified the work of Novak and Eppinger (2001) to be 

the most applicable source for our study. In simple terms, they measure hardware complexity as the 

number of components, the level of interactions between these components and the degree of novelty. 

In order to provide a definition for our software complexity measures we follow the structure of our 

hardware complexity definition and proposals from the software engineering literature. Hence, we 

consider the number of lines of code (counterpart of component count), their newness (counterpart of 

novelty) and the occurring errors as appropriate measures for software complexity. We apply error 

count as a proxy for software coupling since we encountered limitations in our data collection process 

regarding software coupling measures and error count strongly correlates with existing software 

coupling measures (Henry and Kafura 1981, Troy and Zweben 1981). Also, error count has a strong 

managerial relevance as early and continuous estimations of error count allow for risk assessments 

and predictions (i.e., the remaining development effort) – a prime focus of our study. In a next step we 

collected data for these characteristics and started to perform multiple regression modeling in order to 

find a model that provides a fit between the conceptual/theoretical domain and the statistical 
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significance. Finally, we discuss the direction and strength of the interactions between these 

characteristics. 

Following this, we analyze how these product characteristics affect ramp-up performance, specifically 

manufacturing and total product ramp-up performance. At first, we identified as set of measuring 

units for manufacturing ramp-up performance since we hypothesize that customer shipments cannot 

start until the manufacturing system is ready and capable to supply products. In line with existing 

studies on ramp-up management we apply a combination of final yield and utilization to analyze the 

effect of product complexity on manufacturing ramp-up performance. Total product ramp-up 

performance on the other hand is operationalized based on the idea of value creation. In other words, 

we consider the dependable delivery of products – provided they fulfill the set quality criteria – as a 

significant driver of customer value and ultimately total product ramp-up performance. Altogether, 

this set of manufacturing and total product ramp-up performance variables along with the complexity 

characteristics provides the basis for our second research question: 

 

II. How do product complexity characteristics interact with each other and subsequently 

influence manufacturing and total product ramp-up performance? 

 

We address this question in chapter 2 and in parts also in chapter 3. In chapter 2 we analyze the effect 

of every individual complexity variable on the performance variables. Using a set of ordinary least 

squares (OLS) regression models we gain insights into the coupling between the hardware and 

software variables and regarding the individual effects of these variables on manufacturing and total 

product ramp-up performance. In chapter 3 we examine the interaction between hardware and 

software characteristics and their impact on manufacturing ramp-up performance again but now with 

the help of a partial least squares (PLS) path modeling approach that can be considered as a 

multivariate extension of OLS. In fact, the iterative algorithm in PLS generally consists of a series of 

ordinary least squares analyses (Chin 1998). The application of this method provides us with 

additional insights on top of the previously performed regression models as PLS regresses constructs 

(an unobservable concept that cannot be measured directly but is represented by a set of weighted 

variables (Hair et al. 2006)) on constructs to estimate the path weights while OLS regresses variables 

on variables. In addition, PLS estimates all parameters at once and the presence of other parameters is 

taken into account by the algorithm. Therefore, this non-fragmented approach allows us to 

additionally explore the mechanism via which complexity harms manufacturing ramp-up performance 

(mediator effects). 
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1.3.2 How does Development Lead Time affect Performance over 

the Ramp-up Lifecycle? 

As already mentioned, pure ramp-up performance is not the only crucial consideration for high 

technology firms. It is equally important to implement efficient processes for the development of new 

products in order to reach the ramp-up phase as quickly as possible. However, most of the studies in 

this field have examined product development process characteristics such as development lead time 

(time-to-market) and ramp-up performance (time-to-volume) separately, while their significant 

interrelationship has received only little attention (Terwiesch et al. 1999, Gerwin and Barrowman 

2002). In addition to the product characteristic variables (product complexity), we hence include 

product development process characteristic variables (i.e., development lead time) in our framework 

to assess the interactions between these variables and their simultaneous impact on manufacturing 

ramp-up performance. In addition, we are interested in how the behavior of this model changes during 

the ramp-up lifecycle. The ramp-up lifecycle marks the various phases from the initial start, 

characterized by a chaotic and dynamic environment up to the transition into mass-production that is 

characterized by diminishing ramp-up specific difficulties and an increasing influence of factors that 

are related to mass volume production. We believe this information is crucial for managers to 

anticipate the consequences of product design decisions on development lead time, to predict 

development schedules and in order to make informed decisions about ramp-up volume commitments 

during the various ramp-up lifecycle phases. 

 

III. What are the interrelationships between product characteristics (product complexity), 

product development process characteristics (development lead time) and manufacturing 

ramp-up performance over the course of the ramp-up lifecycle? 

 

Chapter 3 is devoted to the detailed analysis of this research question. As already mentioned above, 

we use a variance based structural equation modeling approach known as PLS path modeling in order 

to analyze the interdependencies between the selected variable blocks and manufacturing ramp-up 

performance. Compared to covariance based structural equation modeling approaches (e.g., LISREL), 

PLS is particularly well suited for our study since we use operational data and our primary research 

objective is the maximization of explained variance in manufacturing ramp-up performance (i.e., 

prediction) instead of achieving model “fit” as in theory testing. Our data partly violates the 

requirement of multivariate normality and our sample size is limited to the available amount of real 

life cases. PLS, however, does not make any assumptions of the underlying distribution and provides 
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stable estimates even if the ratio of observations to parameters is small (Wold 1982, Fornell and 

Bookstein 1982, Chin 1998, Hair et al. 2011). As we are also interested in the behavior of our PLS 

model over the ramp-up lifecycle, we have collected performance data for five different time horizons 

(4, 8, 12, 16, 20 weeks). In a next step we analyze the different results and sort them in a time 

dependent way. This allows us to provide plausible explanations for the time-dependent influence of 

the different complexity variables and development lead time variables and the resulting 

consequences for manufacturing ramp-up performance. 

1.3.3 Uncovering Plant Specific Differences during New Product 

Ramp-ups 

With our last research question we want to complement our insights into the ramp-up process by 

investigating the effect of supply chain structure specific characteristics. This area has been 

mentioned as highly influential on ramp-up performance in the literature (Langowitz 1987, Clark and 

Fujimoto 1991, Terwiesch et al. 1999, Almgren 2000, Kuhn et al. 2002, Wildemann 2005, Berg 2007) 

but detailed quantitative empirical studies are sparse. In addition, considerable work packages have to 

be handled during new product ramp-ups within the factories and at key suppliers. It is thus a logical 

consequence to include these characteristics in our existing ramp-up framework. We want to relate 

quantitative supply chain structure characteristics to manufacturing ramp-up performance in order to 

fill the gap that exists in the literature and to support product development and operations managers in 

their decision making. In addition, we expect these characteristics to uncover plant specific effects 

like performance differences or issues regarding the fit between product characteristics and 

plant/supply networks. Accordingly, we state our last research question which is analyzed in chapter 

4: 

 

IV. What supply-chain structure characteristics uncover plant specific effects in the context of 

manufacturing ramp-up performance? 

 

In a first step, we reviewed the literature in order to identify the most applicable supply chain 

structure characteristics that are prevalent within our context. Then we operationalized the selected 

characteristics and subsequently collected the relevant data. Using OLS regression we analyzed the 

impact of the selected variables while controlling for the effect of product complexity and 

development lead time. The question which supply chain structure characteristics have the most 

crucial impact during new product ramp-ups was of particular interest because this information is 

strongly required for various managerial decisions like e.g. the selection of the most appropriate lead 
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factory. It is important for managers to know whether they can profit most from supply proximity (via 

short feedback loops), proximity of supplier engineering capabilities or factory capabilities. 

1.4 Outline of the Dissertation 

We summarized the different research questions and how they are addressed in the dissertation in 

Table 3. Each chapter is self-contained and can be read independently. The content presented in 

chapter 2 also appeared in Pufall et al. (2012a) and the analyses described in chapter 3 appeared in 

Pufall et al. (2012b). 

Table 3. Dissertation outline 

Chapter Overall focus Main factors assessed 
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Chapter 2 

 

2 The Impact of Product Complexity 

on Ramp-up Performance1 
 

Abstract: This chapter identifies the key product characteristics that affect ramp-up performance 

using operational data from the cell phone industry. We investigate three research questions: (1) How 

to measure software and hardware complexity characteristics of consumer electronics products – and 

specifically cell phones? (2) To what extent drive product complexity characteristics manufacturing 

ramp-up performance? and (3), in turn, to what extent drive manufacturing ramp-up performance and 

complexity characteristics total product ramp-up performance? The findings contribute to operations 

management literature in three ways: First, our model reflects the growing importance of software 

characteristics in driving hardware complexity, an aspect that prior empirical ramp-up studies have 

not yet addressed. Second, specific hardware characteristics (i.e., product specific component count 

and parts coupling) primarily drive the performance of the manufacturing system in terms of final 

yield and effective utilization. And finally, effective utilization together with the novelty aspects of 

both software and hardware complexity (i.e., SW novelty and product novelty) are the key 

determinants of total product ramp-up performance. 

 

  

                                                      
1
 The results in this chapter have also been presented in Pufall et al. (2012a). 
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2.1 Introduction 

New product development (NPD) is particularly challenging in the high-technology sector, 

increasingly characterized by shortening product lifecycles, rising market fragmentation, and rapid 

technological changes (Bowersox et al. 1999, Mallick and Schroeder 2005, Wildemann 2007). If 

firms want to succeed in this environment, they must be effective and efficient in their introduction of 

new products or product updates. According to Bowersox et al. (1999), new product introductions 

involve two major activities: product development (conceptualization, design, promotion, and pricing) 

and product launch (physical positioning in the market). Traditionally, the marketing literature has 

addressed positioning decisions (Cooper and Kleinschmidt 1995, Bowersox et al. 1999, Benedetto 

1999) whereas the operations management literature has considered supply chain decisions (Clark and 

Fujimoto 1991, Tatikonda and Montoya-Weiss 2001). 

In this study, we adopt an operations management perspective and focus on the final phase of the 

NPD process, namely, the ramp-up phase. This phase links product development to mass production, 

or as Wheelwright and Clark (1992, p. 8) detail: “In ramp-up the firm starts commercial production at 

a relatively low level of volume; as the organization develops confidence in its (and its suppliers’) 

abilities to execute production consistently and marketing’s abilities to sell the product, the volume 

increases. At the conclusion of the ramp-up phase, the production system has achieved its target levels 

of volume, cost and quality.” Yet many companies fail to meet their targets regarding product volume, 

cost, and quality. Schuh et al. (2005) show that 47% of automotive new product ramp-ups were 

neither technically nor economically successful. Kuhn et al. (2002) indicate that not a single company 

in their study claimed its production ramp-up was under control. Thus, the ramp-up phase remains a 

major challenge, even as it provides a significant opportunity for competitive advantages. In addition, 

the complex relationships that constitute the ramp-up phase have been investigated only partially and 

insufficiently developed (Kuhn et al. 2002). Therefore, there is strong motivation to gain a more 

thorough understanding of the influential factors that affect the ramp-up phase and how they relate to 

success or failure. Previous studies have identified several factors that affect ramp-up performance 

(Table 1). Clark and Fujimoto’s (1991) global field study in the automotive industry reveals that the 

transition management between new and existing products (ramp-up scenario), the rate of production 

in terms of line speed, the number of products in the line and the operation time per day (operational 

pattern) as well as the manufacturing capabilities relate closely to superior product development and 

ramp-up performance. In addition, Pisano and Wheelwright (1995) reinforce the link between 

manufacturing process innovation, productive product launches and enhanced product functionalities. 

In their large German case study, Kuhn et al. (2002) confirm the importance of manufacturing and 

logistics capabilities and further identify the product, organization, cooperation and the tools used as 

crucial factors for ramp-up success. To analyze the types and sources of disturbances that affect 
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manufacturing start-up phases, Almgren (2000) categorizes the different sources into four groups: 

product architecture, material flow, production technology, and work organization. A longitudinal 

study in the data storage industry also reveals organizational patterns and suggests that previous ramp-

up experience, such as through product platforms, influences the ramp-up of new products (Terwiesch 

et al. 1999). Langowitz (1987) observes that the success of ramp-ups depends on the management of 

the development process and how well the requirements of the new product and factory capabilities fit 

together. Finally, van der Merwe (2004) proposes a conceptual model that supports the association 

between different types of novelty (product, personnel, supplier, and process) and learning types that 

drive ramp-up performance. 

Despite these multiple studies that have identified a vast number of influential factors, we know very 

little about the quantitative and causal relationships between these factors and ramp-up performance. 

Krishnan and Ulrich (2001) argue that essentially no work has investigated the relationship between 

product design decisions and the rate of production ramp-up. In response, we use operational data (for 

the research setting refer to section 1.2) to develop new quantitative measures for these factors and 

extend the current understanding of product attributes by including software-related elements to 

investigate three general research questions: (1) How to measure software and hardware complexity 

characteristics of consumer electronics products – and specifically cell phones? (2) To what extent 

drive product complexity characteristics manufacturing ramp-up performance? and (3), in turn, to 

what extent drive manufacturing ramp-up performance and complexity characteristics total product 

ramp-up performance?  

The remainder of this chapter is organized as follows: in the next section, we present our conceptual 

model. After the formal presentation of our Hypotheses in section 2.3 and the illustration of our data 

and methodology in section 2.4, we present our results. In section 2.6, we discuss our results and 

provide managerial insights and conclude with some limitations of this particular part of the study and 

implications for further research in section 2.7. 

2.2 Conceptual Model 

Our conceptual model as shown in Figure 3 suggests that manufacturing and total product ramp-up 

performance depend on the level of product complexity, which we define in terms of software and 

hardware complexity. While our conceptualization of complexity is consistent with existing literature, 

it represents a refinement because it reflects the growing importance of software in a product 

development and ramp-up context, a topic that was generally ignored in prior empirical ramp-up 

studies (e.g., Langowitz 1987, Almgren 2000, van der Merwe 2004).  
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Figure 3. Conceptual model 

 

Before we state our Hypotheses we first introduce the variables that constitute our conceptual model. 

2.2.1 Software Complexity Variables 

With the term “software”, we refer to the operating software and any application software under the 

direct control of the firm, which gets programmed into the logic board of the product during the 

production process and is entirely necessary for a successful launch. We do not include software 

modules or subroutines that are an inseparable part of any advanced component or application 

software from third-party suppliers. For example games, special ring tones, or other third-party 

applications can be introduced in subsequent software releases if they are not on a sufficiently mature 

level at ramp-up start. In contrast, in-house developed core-software elements must be available and 

error free for product launch, such as operating software functions (e.g., protocol stack routines). 

Errors in such functions may prevent regulatory approvals and potentially delay the ramp-up phase. 

Generally, software complexity refers to the characteristics of the data structures and procedures 

within the software that make it difficult to understand and change (Curtis et al. 1979, Zuse 1991). 

Many software engineering studies rely on code and structure metrics as quantitative measures of 

software complexity. The former entail the individual system components (procedures and modules) 

and require detailed knowledge of their internal mechanisms, whereas the latter consider the product 

as a component of a larger system and focus on the interconnections of the system components 

(Kafura and Reddy 1987, Banker et al. 1998). However, previous research into multiple proposed 

software complexity metrics indicates high correlations among the various metrics (Banker et al. 

1993, Munson and Koshgoftaar 1991). Our analysis has revealed three major groups that vary in 
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different orthogonal dimensions and thus overcome this limitation: SW novelty, SW code size, and 

SW error count. Due to the fact that software development is standardized within Nokia, it allows for 

the collection of reliable data regarding these software characteristics. 

First, SW novelty represents the number of new requirements/features in the software specification for 

each product and is derived from the requirements management database. Understanding and 

managing new functions, for which the behavior and interactions with other elements is not known in 

advance, adds uncertainty, risk, and effort to the team’s responsibilities, which could provoke 

difficulties before and during the ramp-up phase. Krishnan and Zhu (2006) claim that adding more 

features usually increases complexity and reduces the software’s ease of use. On the other hand, 

existing software code that gets used and tested across many products, all else being equal, should 

have greater design integrity and quality than new software code developed for a single, particular 

product. Therefore, we posit that the greater use of new software elements influences the integrity of 

the existing software structure and increases risks related to on-time readiness. In our study, SW 

novelty therefore refers to the number of new software features/requirements for the product that are 

not used by any other product. In other words, it is the number of new features in a cell phone that 

have not been included in previous products or the existing software baseline.  

Our second software complexity variable measures the source SW code size in terms of executable 

lines of code as provided by the compiler log files. Source code size metrics, though common ways to 

describe software complexity, are particularly important in embedded systems that suffer from 

memory restrictions. Although software engineering literature often uses a lines of code measure, its 

problems are well known (Krishnan et al. 2000), especially related to the inaccurate and inconsistent 

definition of “a line of code” in various programming languages and the tools used to count the 

number of source lines. To ensure the consistency and accuracy of this measurement across products, 

we used a common analysis tool that measures the number of lines of executable code. According to 

Krishnan et al. (2000), counting executable statements offers a more accurate measure than counting 

the number of physical lines. Because the products in our sample share the same programming 

languages (i.e., a proprietary language for lower-level signaling functions and C/C++ for higher-level 

code) and are based on the same programming tools, our measure of SW code size is not biased by the 

programming language or environment. 

Finally, and because SW novelty and SW code size do not sufficiently account for coupling effects, 

we include SW error count as a proxy for coupling effects to our software complexity framework. 

Even a small share of SW novelty and small SW code size can lead to a disproportionate amount of 

development effort if the respective configuration results in a large number of errors due to 

interactions and side effects. SW error count strongly correlates with existing software coupling 

measures (Henry and Kafura 1981, Troy and Zweben 1981) and accounts for differences in the 
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individual product configuration, as both SW novelty and SW code size assume that software 

components have built-in complexities that are static and independent of their context. In addition, 

and unlike other metrics (e.g., McCabe’s (1976) cyclomatic complexity, Wood’s (1986) 

component/coordination/dynamic dimensions, Halstead’s (1977) effort metric), SW error count has a 

strong managerial relevance since it can be estimated a priori during the later development phases to 

assess the prevailing development risk and to predict the remaining development effort. It is also used 

by management as a means to monitor product maturity. Consumer electronics products must 

typically pass a series of standardized software acceptance tests hence SW error count can reveal the 

actual progress in the software development process and the readiness for product launch. We 

measure it as the number of reported errors during the software acceptance/verification phase. 

2.2.2 Hardware Complexity Variables 

To quantify hardware complexity we consider products in physical terms and hence assume 

complexity to be a property of the product (Rodriguez-Toro et al. 2004). According to Novak and 

Eppinger (2001), it can be measured as (1) the number of product components to specify and produce, 

(2) the extent of interactions to manage between these components (parts coupling), and (3) the 

degree of product novelty. Please note that we consider hardware complexity at the macro level, that 

is, the first layer of abstraction, which is under managerial control and technically observable. We do 

not consider the internal structures of the lower levels (e.g., subsystems, advanced components) such 

as cameras, displays, or speakers. 

Our first hardware complexity variables – common component count and product specific component 

count - cover the total number of components in a cell phone as reported in the product data 

management system (see Table 4). The division of component count into two parts allows for the 

identification of the relevant components in the context of ramp-up performance. Common component 

count comprises all components from the product’s bill of material list like resistors, capacitors, 

transistors, connectors, shields and integrated circuits which are assembled onto the printed wiring 

board. These components are freely available on the market and hence also used in other products 

from the case company or competitors. Product specific component count refers to components in the 

bill of materials list that are specifically developed for the use in a dedicated product. Hence, the 

options to use these components in other products or industries are very limited. Examples are plastic 

covers, antenna elements, stickers, foams, gaskets, displays and cables. Please note that this definition 

does not include components that are inseparably embedded in advanced components, such as the 

single glass layers of display modules or the individual lens elements in camera components. The 

increasing variety in component count results from the growing diversity in the cell phone customer 

base which forces companies to offer tailored models with various functionality levels for different 

target groups. However, these different functionalities cannot be integrated into the same basic 
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product architecture without altering the number of necessary components (whether common or 

product specific). A product that offers dual display functionality, hands-free stereo audio, global 

positioning services (GPS) and sophisticated connectivity options must integrate more physical 

components into its architecture than a featureless counterpart. Adding more components to a product 

raises product complexity in terms of a more difficult manufacturing process (Boothroyd et al. 1987, 

Coughlan 1992), more complex supply logistics (Fisher et al. 1999) and greater verification effort 

(Novak and Eppinger 2001). 

For our parts coupling variable, we note that modern cell phones exhibit diverse interdependencies 

among the embedded components. As Novak and Eppinger (2001) state, the more interconnected the 

parts in a system are, the more difficult it is to coordinate their development. To quantify the level of 

parts coupling, we use the report functionality of a circuit board design tool and count the number of 

signal networks across all electrical and electromechanical components in a product, (i.e., components 

that carry any electrical functionality like resistors, capacitors, integrated circuits, antennas, audio 

components). This group of components accounts for more than 70% of the total components in a 

product. Our rationale for this definition of parts coupling stems from discussions with R&D experts, 

who confirmed that the effective integration of components does not only require knowledge about 

the components but also about their simultaneous interactions. Many components are delivered fully 

functional and pretested, hence the key challenge of development lies in the mastering of coupling 

effects. Measuring the number of networks is a more reasonable approach to account for the 

difficulties that developers encounter than measuring the number of pairs (i.e., direct connections 

between electrical and electromechanical components). Development engineers must consider the 

electrical structure of the various subsystems as an arrangement of interlinked connections rather than 

a collection of individual point-to-point connections. The number of networks also is unbiased with 

regard to those aspects that increase pair count (e.g., test points) without adding interaction 

complexity.  

Finally, the existing literature has conceptualized product novelty in several ways. Coughlan (1992) 

defines newness as the degree of similarity of a product to other members of its family, or the degree 

to which preexisting product parts get altered. Swink (1999) refers to newness as the percentage of 

new designs in the product. We build on these definitions though we use a richer operationalization: 

we define product novelty as the percentage material value of physical components in a cell phone 

that is new to the responsible development center, compared with previous products that have already 

been developed at this development center. Our observations have led us to conclude that this 

percentage material value offers a better operationalization than the percentage number of new parts – 

especially considering our macro perspective that considers certain advanced components (e.g., 

cameras, displays, speakers) as single components. Thus, definitions of product novelty that are based 

on the percentage of new parts regard each component’s contribution to novelty as equal, even though 
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new displays, cameras, or processors require considerably more effort during integration and testing 

phases and entail more supply risk during the ramp-up phase than simple parts like new screws, 

foams, or stickers. This variance in complexity within single components supports our use of their 

monetary value as a measure of product novelty. Based on the officially filed product development 

documentation and specification we were able to identify all lead components for each product. 

Together with the sourcing parts list we were consequently able to calculate the product novelty 

measure. 

2.2.3 Manufacturing Ramp-up Performance Variables 

Despite the many proposals on how to quantify manufacturing performance (Neely et al. 1995, White 

1996, Slack et al. 2001, de Toni and Tonchia 2001), most of the ramp-up specific studies use capacity 

and/or final yield measures (Matsuo et al. 1997, Terwiesch et al. 1999, Hatch and Mowery 1998, 

Almgren 2000). We follow this approach and use effective utilization together with final yield as 

variables to measure manufacturing ramp-up performance. This combination acknowledges that the 

actual output of any manufacturing system is only a fraction of the planned allocated capacity (see 

Figure 4) and the particular type of lost capacity may be of importance (e.g., yield losses may be 

different from other losses as they can be reworked and fed back into production). 

 

Figure 4. Determinants of manufacturing ramp-up and total product ramp-up performance 

 

Final yield. In consumer electronics, manufacturing usually takes place on multistage production lines 
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installed on the circuit board (i.e., commonly known as the logic board). The series of electronic tests 

at this point ensure that the circuit board is functional, that all parts are operational, and that all parts 

are correctly installed. Yield losses at this stage relate to soldering defects, material deficiencies and 

test system failures. After this stage, the assembly work begins and electromechanical parts are added 

to the circuit board before it is mounted between structural frames and undergoes a detailed functional 

test. Yield losses at both test phases identify product and process instabilities, which is why final yield 

frequently appears in manufacturing literature (Hatch and Mowery 1998, Terwiesch and Bohn 1998, 

Terwiesch et al. 1999, van der Merwe 2004, Keil et al. 2007).  

Effective utilization is quantified as 1 minus the ratio of lost capacity to its planned allocated capacity. 

Although capacity measures are subject to criticism for its negative long-term implications (Slack et 

al. 2001, Goldratt and Cox 2004), effective utilization is sensitive to ramp-up specific disturbance 

factors that may result in various capacity losses, such as product and equipment readiness issues, 

product manufacturability concerns, material availability/quality problems, unscheduled engineering 

trials, or neglected operator training. Ultimately, these disturbance factors have a negative influence 

on effective utilization because they impede that the entire allocated capacity can be used to 

manufacture end products. Effective utilization and final yield are both based on data from a 

production database system and their calculations are summarized in Table 4. 

2.2.4 Total Product Ramp-up Performance 

According to Mallick and Schroeder (2005), high-tech firms use their technology to create value for 

their customers and to capture value for their shareholders. Thus, any metric used to measure total 

product ramp-up performance in high-tech manufacturing should reflect the objective of value 

creation. In line with existing studies that focus on time, cost and quality (Kuhn et al. 2002, Schuh et 

al. 2005, Wildemann 2007); quantity, cost and quality (Almgren 2000); or missed targets for output, 

quality and delivery (Langowitz 1987), we posit that all activities surrounding the dependable 

delivery of products – provided they fulfill the set quality criteria – are significant drivers of customer 

value and hence total product ramp-up performance for high-tech products. Dependable sales volume 

deliveries are particular crucial before seasonal peaks (e.g., Christmas or the Chinese New Year) 

when strong consumer demand must be satisfied in a very short period of time (possibly at the 

expense of higher unit costs, compromises on inventory levels, or manufacturing effort) as lost sales 

and customer loyalty cannot be recaptured at a later phase. Hence, we measure total product ramp-up 

performance as the actual invoiced quantity during the ramp-up execution phase divided by the 

confirmed volume plan quantity for the same period. In other words, we measure sales volume 

fulfillment rather than absolute ramp-up speed. According to Voigt and Thiell (2005) the focus on 

pure ramp-up speed is economically inefficient, because quality and other cost drivers may 

accumulate and ultimately affect overall company competitiveness. Ramp-ups with expansion rates 
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greater than planned may reveal strong output performance but do not necessarily contribute to 

profitability or increased value creation if they only fill outbound buffers. For the ramp-up execution 

phase (TRU_EXE) we chose a time horizon of 12 weeks since it reflects the (product-independent) short-

term planning cycle that prevails at Nokia. During this time frame, capacity and most resource 

availability is considered fixed, because of equipment and material procurement lead time limitations. 

We detail this period in Figure 5. 

 

Figure 5. Ramp-up phase time parameters 

 

2.2.5 Control Variables 

First, we include a control variable that captures linear time effects. Consistent with learning curve 
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Plant age measures the time a plant has been in operation prior to the ramp-up start of each product. 

This measure serves as a proxy for the accumulated experience level of any given plant. Plant 

ownership is a dummy variable, for which 1 indicates in-house facilities and 0 means contracted 

facilities. In our sample, three of the nine facilities were owned by contract manufacturers, which 

were responsible for manufacturing up to a generic product level, before the units were shipped to in-

house facilities for the final configuration and distribution. This variable might explain differences in 

the internal learning curve, problem-solving capability and supply logistics. Plant location captures 

differences in work force cultures and supply network structures. The measure is another dummy 

variable, divided into facilities located in Asia (China and Korea = 1) and facilities located in Europe 

(Germany, Hungary, Finland = 0). 

The relationship between the complexity variables and manufacturing/total product ramp-up 

performance might also be influenced by the extent to which management adjusts sales plans and 

sales forecasts during the ramp-up preparation phase. In order to control for these effects, we 

introduce sales forecast change and excess capacity. The former is the ratio between the sales forecast 

quantity at the start of the ramp-up period and the sales forecast quantity 12 weeks before the start of 

this period. The latter is similar to the construct from organizational theory (Nohria and Gulati 1996): 

the capacity and availability of materials in excess of the necessary minimum to produce a needed 

level of output. Thus, we calculate excess capacity as 1 minus the ratio between the confirmed volume 

plan and the planned allocated capacity – both captured at the start of the ramp-up period and 

calculated for the entire ramp-up execution period. 
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Table 4. Summary of variables and definitions 

Hardware complexity variables 

 common component count = all components in the product’s bill of material list that are 

assembled onto the printed wiring board 

 product specific component count = total component count in the product as on a bill of materials 

parts list – common component count 

 parts coupling = number of signal networks across all electrical and electromechanical 

components in the product 

  

 

Software complexity variables 

 SW novelty = number of features in the product that have not yet been included in previous 

products or the existing software baseline 

 SW code size = source code size in terms of executable lines of code 

 SW error count = number of reported errors during the software acceptance/verification phase  

 

Manufacturing and total product ramp-up performance variables 
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Control variables 

 linear trend = number of days between ramp-up start of each product versus ramp-up start of the 

first product in the study 

 plant age = number of years a manufacturing plant was in operation until the ramp-up start of 

each product 

 
1 if in-house facility

0 otherwise              
plant ownership


 
  

 

1 in case of Asian plants (China, Korea)                                           

0 in case of European plants (Germany, Hungary, Finland)              
plant location


 


 

 

 

RU_START RU_EXE

PREP_START RU_EXE

at  over period 

at  over period 

  = 
t T

t T

sales forecast quantity
sales forecast change

sales forecast quantity
 

 

RU_START RU_EXE

RU_START RU_EXE

at  over period 

at  over period 

  = 1-
t T

t T

confirmed volume plan
excess capacity

planned allocated capacity
 

 

2.3 Hypotheses 

In the previous discussion (see also Figure 3), we note that the co-design of software and hardware is 

a central system characteristic of cell phones or embedded systems in general (Wolf 1994). For 

example, the integration of personal navigation in cell phones requires not only the development of a 

large share of dedicated software code but also the inclusion of additional components into the 

product (e.g., GPS receiver with discrete circuitry and antenna). However, there is a shift towards 

software-based implementations as most of the new innovations in cell phones are software-related 

(e.g., augmented reality, games, video processing, social networking clients), since hardware release 

cycles are more expensive and time consuming. Thus, hardware modifications and extensions often 

emerge as a side effect when new software features – for example a social networking client – 

demand more processor power, memory size, or connectivity speed. Consequently, higher levels of 

software complexity are counterproductive for preserving hardware integrity as they may increase 

hardware complexity in terms of component count, parts coupling, or product novelty. We 

accordingly state our first Hypothesis: 
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HYPOTHESIS 1. Software complexity positively affects hardware complexity. 

 

As outlined above, embedded software represents a core integration activity for cell phone projects 

and most observers acknowledge the difficulty of ensuring the completion of software-intensive 

projects in budget and on time (Austin 2001, Lindstrom and Jeffries 2004). For example, 

manufacturing cannot be executed as planned if the required software or customer specific 

configuration files are missing, for instance due to delayed regulatory or customer approvals (e.g., 

from large operators). In addition, cell phone production entails complex automatic test systems to 

calibrate wireless protocols, power management, or to control the manufacturing process. New or 

complex software features or interfaces can cause these tests to fail, resulting in reduced 

manufacturing output. Hence, we formally state: 

 

HYPOTHESIS 2. Software complexity negatively affects manufacturing ramp-up performance. 

 

Decisions about the number of components to be incorporated into a design and decisions about how 

much novelty to impose on a new product also relate closely to several important issues for 

operations. Ambitious products provide a fundamental source of difficulty for manufacturing 

(Langowitz 1987, Kuhn et al. 2002, van der Merwe 2004, Keil et al. 2007). Since complex product 

designs make specific demands on factories and since factories have unique sets of skills that they can 

use to meet those demands, initial manufacturing ramp-up performance is a matter of accurate 

product–factory fit (Langowitz 1987). Typically, more complex products require more process steps 

and thus create more opportunities for process failure (Swink 1999). In addition, complex product 

design specifications frequently require more engineering change orders which may also affect 

performance in a negative way. Likewise, upstream supply operations face similar difficulties and 

affect manufacturing ramp-up performance via material supply shortages and mismatches (Almgren 

2000) leading to our third Hypothesis. 

 

HYPOTHESIS 3. Hardware complexity negatively affects manufacturing ramp-up performance. 

 

Several studies have identified a relationship between product characteristics and total product ramp-

up performance (Langowitz 1987, Almgren 2000, Kuhn et al. 2002, van der Merwe 2004, Schuh et al. 
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2005). Complex products – whether they involve hardware or software complexity – are less likely to 

accomplish customer acceptance because the lack of experience in the use of a new, complex product 

reduces the user’s ability to describe its needs (Thomke and Bell 2001). This complicates project 

management as customers revise their requirements more often, request new customization options, or 

even find new errors after pretesting the new product. In addition, there is consensus that material 

problems (e.g., dimensional variations or delayed deliveries) and quality issues (visual defects or 

software variant difficulties) are more likely to occur in complex designs (Clark and Fujimoto 1991, 

Almgren 2000, Kuhn 2002). As a result, delivery commitments have to be lowered or shipments will 

lag behind planned schedules. Hence, we state: 

 

HYPOTHESIS 4. Software complexity negatively affects total product ramp-up performance. 

HYPOTHESIS 5. Hardware complexity negatively affects total product ramp-up performance. 

 

Cell phones are manufactured with delayed customization (i.e., postponement), thus the final 

customization does not take place until real customer orders are known. As a result, manufacturing 

ramp-up performance represents how well the generic part of a cell phone is manufactured and how 

well aggregate production plans are met. Total product ramp-up performance instead measures how 

well the generic products can be converted into customer-specific cell phones that are subsequently 

distributed and invoiced. While these items are distinct in nature, previous research states a 

relationship between superior manufacturing performance and successful ramp-ups (Clark and 

Fujimoto 1991, Wildemann 2007). In other words, product availability is a pre-condition for product 

sales which leads us to our last Hypothesis. 

 

HYPOTHESIS 6. Manufacturing ramp-up performance positively affects total product ramp-up 

performance. 

 

2.4 Data and Methodology 

The data for our study pertain to 46 products that were developed at R&D centers in four countries 

between 2005 and 2008 as already outlined in section 1.2.1. Our method of data collection was guided 

primarily by our conceptual model and employed multiple data sources, including project 

documentation systems, production databases, management information system reports, data archives 
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and company reports. All operational definitions of the variables were additionally validated on the 

basis of interviews with several project managers and senior managers, as well as with a written 

questionnaire targeted toward the product ramp-up managers (refer to Appendix-D2). These data 

provided additional insights into the many qualitative disturbance issues during the ramp-up phase. In 

addition, we collected longitudinal data over the course of four projects, through the efforts of the 

author who is employed as a ramp-up manager by Nokia. Our unique database thus features highly 

reliable quantitative and qualitative information about the characteristics of each product; its 

development, production, and logistics process and the results of interviews and observations with key 

informants. Whenever possible, we triangulated the qualitative data with mandatory milestone review 

documents and expert opinions to confirm their accuracy and consistency. Table A-1 in the Appendix 

presents descriptive statistics and correlations for our variables. Correlations are generally as expected 

and moderate in magnitude. For confidentiality, we normalized the SW error count variable to have a 

mean equal to 1,000. 

We use multiple linear regression models to test our Hypotheses. To enable comparison of effect 

sizes, we standardized all variables (mean = 0, variance = 1) before running the regression 

calculations. This is useful as our data is a mixture of different scales (e.g., component count uses 

pieces, linear trend uses days). Unstandardized results are provided in Appendix-A2-4. The 

assumptions of our multiple regression models were tested by several statistical methods. First, all 

data panels were screened for abnormal observations to avoid bias in the regression calculations. 

Next, predicted values were plotted against standardized residuals to show a random scattered pattern, 

supporting the assumption of linearity and homoscedasticity. For each regression, we calculated 

variance inflation factors to rule out multicollinearity problems. Resulting variance inflation factors 

(≤ 7) indicated no significant multicollinearity effects for any of the models (Hair et al. 2006). Also, 

normality of the error term is supported by the appropriate histograms and normal probability plots. 

2.5 Results 

The analysis was divided into three stages. First, we used multiple regression models to test the 

effects of software complexity variables (i.e., SW novelty, SW code size and SW error count) on each 

of the three variables of hardware complexity separately (Table 5). In the second stage of the analysis, 

we used multiple regression to test for Hypotheses 2 and 3 – the effect of complexity variables on the 

manufacturing ramp-up performance variables (i.e., final yield and effective utilization). In the final 

stage, we employed multiple regression (Table 7) to test the combined effect of the complexity and 

manufacturing ramp-up performance variables on total product ramp-up performance (Hypotheses 4-

6). For brevity we only discuss the full models (including controls). 
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Table 5. Regression results (H1) 

 

Notes: N = 46, values in parentheses are standard errors, *** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed 

tests. 

 

The results of Table 5 largely support Hypothesis 1. Six out of twelve possible relationships show 

strong and significant positive effects of software complexity variables on hardware complexity 

variables. Each software complexity variable significantly relates to at least one hardware complexity 

variable. We also observe the strongest relationship between SW novelty and product novelty (β = 

0.734). In general, increasing levels of software complexity are associated with higher levels of 

hardware complexity. 

The results of Table 6 provide partial support for Hypotheses 2 and 3 in which we respectively state 

that increased software and hardware complexity are negatively associated with final yield and 

effective utilization. The results also suggest that hardware complexity acts as a mediator for the 

software complexity variables. In the case of final yield and effective utilization, the effect of nearly 

all software complexity variables is weakened by the presence of hardware complexity variables. In 

other words, hardware complexity – in particular product specific component count and parts 

coupling – is the mechanism by which software complexity affects final yield and effective 

utilization. We provide a more thorough discussion of this effect in the next chapter. Final yield and 

effective utilization are strongly dependent on product specific component count and parts coupling 

which are in turn determined by software complexity as a result of the prevailing embedded systems 

approach that we have discussed earlier. 

The most comprehensive models (all variables included) demonstrate that product specific component 

count provides the strongest effect on final yield (β = -0.521) of all variables and a strong effect on 

effective utilization (β = -0.375). We also find a significantly negative effect of linear trend on final 

yield (β = 0.416), indicating that final yield of cell phone manufacturing seems to be a function of the 
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number of product specific components and cumulated learning. This finding is plausible as product 

specific components increase the failure opportunities in production. For effective utilization, we 

observe parts coupling (β = -0.480) in addition to product specific component count (β = -0.375) to 

exert a strong and significant influence, revealing that manufacturing ramp-up performance in the 

form of good output increases while product specific component count and parts coupling are 

decreasing. Except for plant location (β = 0.332) that we discuss thoroughly in chapter 4, none of the 

other variables show a significant effect on final yield or effective utilization at the 0.10 level. Finally, 

the effects regarding product specific component count and parts coupling remain stable in all models. 

This supports the robustness of our results. The explained variance in both models is substantial (R
2
 = 

53% for final yield, R
2
 = 54.4% for effective utilization) despite the reasonable number of significant 

variables. 

Table 6. Regression results (H2 and H3) 

 

Notes: N = 46, values in parentheses are standard errors, *** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed 

tests. 

 

Table 7 contains the results for total product ramp-up performance representing the findings for 

Hypotheses 4–6. In the first column, we regress only the complexity variables on total product ramp-
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(0.194)
-0.114

(0.192)

-0.319
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up performance in order to test whether final yield or effective utilization – that we add in a next step 

– act as mediators. Our results do not indicate any mediation as most of the complexity variable 

effects become actually stronger in the presence of final yield and effective utilization as we show in 

column 2. The non-significant effects of the complexity variables in column 1 suggest that the 

manufacturing ramp-up performance variables – effective utilization in particular – blur the effect of 

the complexity variables on total product ramp-up performance. Regressing effective utilization on 

total product ramp-up performance already accounts for 31.7% of the variance in total product ramp-

up performance. In addition, SW novelty and product novelty affect total product ramp-up 

performance in a different way compared to effective utilization as we will describe more thoroughly 

in the next chapter. Hence, the effect of the complexity variables can only be detected if we 

simultaneously control for the impact of effective utilization in our models.  

Contrary to our expectation, SW novelty appears to have a positive effect on ramp-up performance. In 

the absence of the control variables, the effect is strong but not yet significant (β = 0.373). However, it 

becomes strong and significant (β = 0.742) in the full model. Hence, we do not find support for 

Hypothesis 4. One possible explanation is the unpredictable nature of the implementation and testing 

effort of novel software features that frequently results in late project schedule slips. Factories appear 

to benefit from the extra waiting time for the approved software release, as this enables them to build 

up semi-finished product buffers and, consequently, achieve higher performance levels during the 

subsequent ramp-up phase.  

In addition, product novelty has a negative effect on total product ramp-up performance (β = -0.498) 

providing support for Hypothesis 5. New physical elements are more likely to cause material supply 

problems and product quality issues, which both result in total product ramp-up performance drops 

compared to proven ones. While the effect of final yield on total product ramp-up performance is not 

significant (β = -0.149), the results show a strong and significant positive effect of effective utilization 

on total product ramp-up performance (β = 0.789). Again, these mixed results provide partial support 

for Hypothesis 6 and yield some interesting insights. Advances in capacity management are rather 

likely to pay off during the ramp-up phase than investments in yield improvement activities. 

Of the control variables, only sales forecast change (β = 0.235) and excess capacity (β = 0.429) have a 

significant positive relationship with ramp-up performance.  

The effect of sales forecast change suggests that when the demand for a product increases – compared 

to the fixed production plan at tRU_START – management will do anything in their span of control to 

boost output up to material or capacity limitations, which will in turn lead to higher performance 

levels. On the other hand, management will respond with a decrease in output if demand weakens (to 

avoid excess inventories) with the consequence that ramp-up performance will drop. 
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The effect of excess capacity suggests that higher levels of planned allocated capacity (compared to 

the confirmed volume plan) dampens the negative impact of ramp-up disturbances (e.g., equipment 

breakdowns, material quality problems, customer rejections) but with the downside of creating idle 

capacity under steady or weak demand. 

Table 7. Regression results (H4-H6) 

 

Notes: N = 46, values in parentheses are standard errors, *** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed 

tests. 
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**

SW code size
0.171

(0.243)

0.140

(0.193)

0.004

(0.185)

SW error count
0.186

(0.208)

0.202

(0.171)

0.044

(0.156)

common component count
-0.054

(0.216)

0.202

(0.180)

0.266

(0.171)

product specific component count
-0.047

(0.227)

0.119

(0.194)

-0.106

(0.200)

parts coupling
-0.338

(0.271)

-0.053

(0.223)

-0.317

(0.217)

product novelty
-0.243

(0.321)

-0.531

(0.262)

** -0.498

(0.253)

*

final yield
-0.084

(0.182)

-0.149

(0.181)

effective utilization
0.899

(0.182)

*** 0.789

(0.178)

***

Control variables

linear trend
0.317

(0.262)

plant age
-0.033

(0.192)

plant location
0.203

(0.216)

plant owenership
-0.217

(0.153)

sales forecast change
0.235

(0.136)

*

excess capacity
0.429

(0.153)

***

R-Sq(adj) 0.0% 33.5% 52.3%

total product ramp-up performance
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2.6 Discussion 

The key objective of this chapter has been to investigate the effect of product complexity 

characteristics on manufacturing and total product ramp-up performance using operational data from 

the cell phone industry. 

To begin with, the significant and directional coupling between software and hardware characteristics 

supports our view that most of the new innovations in cell phones are primarily enabled by software 

and by the way in which software and hardware designs are integrated throughout Nokia’s product 

development process. As already pointed out in section 1.2, Nokia’s product development approach is 

based on the premise that design activities are best divided into a number of sequential project stages 

separated by milestones reviews. After a requirements analysis, functionality is split into features that 

are implemented in software, in hardware or in a combination of both. In an iterative process, based 

on the fabrication of a series of prototypes, software/hardware integration is synchronized and 

feedback on whether the design meets customer requirements is gathered. As a new project proceeds 

through these successive prototype rounds, the design evolves in increasing levels of maturity, from 

early engineering samples to salable products that contain the final hardware. Finally, extensive 

testing and fine tuning activities take place in the course of which software releases are introduced in 

frequent intervals and tested on the final hardware. During that phase, product development managers 

focus mainly on software stability as most of the remaining errors arise from the realized software 

features or hardware problems that are corrected in software to save time and money (software release 

cycles are shorter and more flexible than hardware release cycles). This uniqueness of embedded 

systems and traditional cell phones stands in contrast to other products groups (e.g., personal 

computers, high-end smartphones), that may show decoupled architectures and platform structures in 

the software and hardware development.  

A second important finding is that the novelty variables of both software and hardware complexity are 

the most influential drivers of total product ramp-up performance. Interestingly, software novelty 

appears to be positively associated with total product ramp-up performance. Our explanation for this 

finding is in line with studies that found a positive relationship between increased software newness 

and the determinants of software development time (Callahan and Moretton 2001, Griffin 1997). The 

ongoing growth in software content, it’s coding and testing effort as well as the flexibility of software 

to quick-fix detected hardware errors make software schedules increasingly unpredictable and 

vulnerable to late schedule slips. Hence, several studies acknowledge the difficulties of ensuring 

software-intensive projects to be completed within budget and on time (Austin 2001, Lindstrom and 

Jeffries 2004). Rather than suffering from delayed software readiness (as a result of higher SW 

novelty), firms may profit from it by starting the production gradually – despite rising inventory levels 

of semi-finished products – until the approved software release can be used for the re-programming of 
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these product buffers and starting the regular ramp-up. Since the re-programming step is 

straightforward, quick and does not occupy any regular ramp-up production resources, it allows for 

higher output levels during the initial ramp-up phase. The practical significance of this result is that 

firms need to make a trade-off between the gains in total product ramp-up performance that are 

enabled through gradual production ahead of the delayed ramp-up start and the negative consequences 

of missed schedule adherence and hence delayed deliveries. 

In contrast, we find that greater product novelty has a negative effect on total product ramp-up 

performance. Apparently, novel product designs increase the number of uncertain issues that 

development teams, suppliers and even customers must cope with. Hence, they require more 

training/learning effort by production engineers and operators (in-house and at suppliers) as well as by 

customers to achieve total product ramp-up performance levels similar to those of less novel designs. 

In other words, the more novel the product, the more learning effort is needed and the slower is the 

increase in manufacturing performance during ramp-up (van der Merwe 2004). Furthermore, we find 

that ramp-ups with large levels of product novelty are particularly slow at the beginning, forcing the 

ramp-up steepness to rise disproportionately towards the end of the ramp-up execution period in order 

to achieve the planned output levels. Thus, effective utilization may still reach planned levels but final 

configuration and distribution activities suffer due to the timely shifted and compressed availability of 

products for the final configuration and distribution stage. 

Another important finding of our results shows that manufacturing ramp-up performance has a strong 

impact on total product ramp-up performance. However, this effect is due to effective utilization and 

not due to final yield. The absence of a significant effect of final yield suggests that yield losses are 

compensated through repair activities and therefore have a negligible effect on the output. This is in 

line with our observations that repair resources are allocated to production lines on a need basis and 

most of these failures are easy to fix.  

On the other hand the effect of effective utilization suggests that capacity losses apart from yield 

losses like unscheduled downtime, scheduled maintenance, setup changes and reduced speed are more 

disruptive in ramp-up environments. Since these losses cannot be absorbed by repair activities, 

subsequent final configuration and distribution activities may not proceed as planned, customer 

shipments are delayed and finally total product ramp-up performance decreases. More specifically, 

unscheduled downtime as the key contributor of effective utilization is the result of external (e.g., 

missing components or material) and internal (e.g., equipment downtime) factors. 

For example, most of the external disturbances are related to the inability of suppliers to deliver the 

right material on time and in the required quantity. This frequently leads to line stops as buffer stocks 

are not available during the early ramp-up phase. Various reasons are described in the literature (e.g., 

Langowitz 1987, Terwiesch et al. 1999, Almgren 2000, Pfohl and Gareis 2000) but our results suggest 
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that the key contributors to material issues are related to the number of components and their 

interactions (parts coupling). This is because material management is a complex process and the 

number of unique parts thereby drives complexity which in turn negatively affects performance 

(Fisher et al. 1999). It requires considerable resources to forecast and coordinate the timely arrival of 

the many parts that go into a cell phone product in the required quantity. This process remains error-

prone and is likely to be exposed to more engineering changes the more components are involved.  

With regard to capacity losses due to internal factors, our observations and survey results indicate that 

test system downtime is the most frequent source of disturbance during ramp-ups. That is because 

these systems are among the most complex appliances in the factory and require the highest level of 

product specific adaptation and maintenance to run smoothly. Products with many single components 

and complex interactions typically require a more complex test hardware because the increased 

number of couplings results in more test points on the printed circuit board which in turn have to be 

accessed by the test system. In most cases, precision mechanical needle adapters are used to connect 

these test points with the test system measurement devices. Unfortunately, these needle adapters are 

very prone to damage during the early production ramp-up phase and damaged test equipment does 

not just result in decreased yield levels. More seriously, damaged or serviced test equipment has a 

direct effect on effective utilization since the equipment is not available during the repair or 

maintenance activity. The practical significance of this result is that the careful management of 

product design, with an in-depth understanding of the effect that product specific component count 

and parts coupling have on test system robustness (i.e., effective utilization) instead of final yield, is 

highly relevant for ramp-up success.  

Finally, the effect of our last control variable, excess capacity holds an important managerial 

implication. Recall that excess capacity represents the percentage difference between the planned 

allocated capacity and the confirmed volume plan. The former represents all of the materials and 

capacity that is reserved for the production of a particular product. Ramp-up teams use the input from 

sales teams that intend to sell the product to define this quantity. The latter represents the volume plan 

used by sales teams to confirm customer orders. Hence, the confirmed volume plan is a balance 

between material supply risks, production capacity risks, schedule risks and anticipated sales 

projections steered by management. Decisions, such as allowing for higher levels of excess capacity – 

given a certain level of planned allocated capacity – and being more restrictive with initial sales 

volumes, are therefore likely to improve total product ramp-up performance but at the expense of total 

output, cost, and thus profit. Finding the optimal level of excess capacity is linked to the managerial 

actions regarding incentives and rewards to product development teams. If management demands high 

levels of profits, it needs to design incentive systems that reward product development teams for 

achieved total product ramp-up performance but in relation to the chosen level of excess capacity. 
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This relationship is complex and deserves further research attention with particular focus on the 

strategic priority of the firm with regard to output dependability against overall profit. 

2.7 Conclusions 

We have developed a set of regression models that relate quantitative product complexity 

characteristics – represented by software and hardware complexity variables – and manufacturing 

ramp-up performance variables to total product ramp-up performance. With operational data from the 

cell phone industry, our models explain most of the variation in total product ramp-up performance. 

Beyond the growing importance of software characteristics in driving hardware complexity, we find 

that certain hardware characteristics (i.e., product specific component count and parts coupling) 

impact the performance of the manufacturing system in terms of final yield and effective utilization. 

Finally, we find that effective utilization together with the novelty aspects of both software and 

hardware complexity (i.e., SW novelty and product novelty) are the key determinants of total product 

ramp-up performance.  

This chapter also highlights the importance of a novelty versus total product ramp-up performance 

trade-off and the relevance to distinguish between software and hardware novelty in order to properly 

deal with this trade-off. Because it is the main objective of the high-tech industry to achieve full-scale 

production and thereby time-to-volume targets, our study underscores the importance of the trade-off 

between implementing more product novelty (that may create surplus consumer attraction) and 

achieving ramp-up performance targets. Furthermore, advances in information and communication 

technologies will presumably lead to further growth in software novelty across products. Hence, 

effective software engineering with the focus on schedule adherence is becoming a central capability 

for launching new products quickly onto the market.  

We contribute to the field of operations management by demonstrating the relevant product and 

manufacturing characteristics associated with ramp-up performance by offering a substantially 

enhanced and more detailed understanding of the ramp-up process and by validating the results of 

previous exploratory and qualitative studies. For managers, our findings underscore the importance of 

managing effective utilization instead of final yield and highlight the potential for firms to influence 

total product ramp-up performance through deliberate product design decisions. Another contribution 

is our application specific and quantitative definition of product complexity in the domain of cell 

phones. We are confident that our definition – which combines hardware and software characteristics 

– can be extended to other areas and industries. For example, products such as hi-fi systems, game 

consoles, cameras and flat screens share similar product characteristics with cell phones and even 

modern automobiles have some comparable properties.  
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Although we have attempted to build a comprehensive model with precise observations and 

argumentation based on existing literature, we also note some limitations. First, the relationships 

derived from the variables studied here capture only half of the overall variability in total product 

ramp-up performance. Additional factors may explain and contribute to total product ramp-up 

performance, such as product development lead times and late project schedule slips. Further research 

should identify and specify these factors in detail, particularly with regard to schedule performance. 

Also, the relationships obtained may not reflect the magnitude of their effects at certain firms. In 

particular, the magnitude of the effects of product complexity on total product ramp-up performance 

would be expected to be larger at firms that launch a smaller number of products per year but with 

progressive complexity upgrades. 

Second, we identified excess capacity as a managerial decision variable that strongly relates to total 

product ramp-up performance. This raises the possibility to use this variable as managerial instrument 

to gauge performance against profit. Ideally, a newsvendor type model would guide management 

action to set the optimal level of excess capacity according to the strategic priority of the firm. 

Finally, our conclusions are based on an analysis carried out within a single company; a wider 

analysis with different firms from within the consumer electronics industry would enhance our 

capability to generalize. Nevertheless, we believe our results are generalizable to the consumer 

electronics industry because our data (1) came from different geographical development centers with 

different cultural and managerial properties; (2) included a variety of customer groups, ranging from 

direct shipments to operator-exclusive agreements; and also (3) confirm existing models from other 

areas, such as the car industry.  
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Chapter 3 

 

3 How does Development Lead Time 

affect Performance over the Ramp-

up Lifecycle2 
 

Abstract: In the fast-paced world of consumer electronics, short development lead times and efficient 

product ramp-ups are invaluable. The sooner and faster a firm can ramp-up production of a new 

product, the faster it can start to earn revenues, profit from early market opportunities, establish 

technology standards and release scarce development resources to support new product development 

projects. Yet, many companies fail to meet their time-to-market and time-to-volume targets and the 

complex interrelationships between product characteristics, development lead time and ramp-up 

performance are partly unexplored. In response to these limitations, this chapter focuses on three 

research questions: (1) To what extent is manufacturing ramp-up performance determined by product 

development process (i.e., development lead time) and product characteristics (i.e., product 

complexity)? (2) How do these relationships change in the course of the ramp-up lifecycle? and (3) 

How can the results be explained? Our results contribute to the field of operations management in 

three ways. First, we offer a more comprehensive and enriched analysis of the drivers for 

development lead time and manufacturing ramp-up performance in the cell phone industry. Second, 

we demonstrate that late schedule slips – although disastrous for customer relations in which due 

dates are crucial – provide the opportunity to build up (semi-finished) product buffers which in turn 

increase the initial manufacturing ramp-up performance. Third, we show that it is important to take 

these effects into account in a jointly and lifecycle-dependent manner. 

  

                                                      
2
 The results in this chapter have also been presented in Pufall et al. (2012b). 
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3.1 Introduction 

The speed and efficiency with which new products are developed and introduced into large-volume 

production has an important influence on competitiveness in manufacturing (Hatch and Mowery 

1998). Particularly in the field of consumer electronics where product lifecycles shrink, technology 

advances and competition intensifies, short development lead times and efficient ramp-ups are 

invaluable for several reasons. First, the faster a company can ramp-up production of a new product, 

the more quickly it can begin to earn significant revenues from the new product and recoup its 

development investments (Pisano and Wheelwright 1995). Secondly, fast ramp-ups enable firms to 

profit from early market opportunities, set technology standards and accumulate experience with 

volume production. Finally, scarce product development and manufacturing engineering resources 

can be released to support subsequent product development projects instead of solving production 

problems.  

Prior research has identified time related variables and other factors as determinants of ramp-up 

performance as we show in Table 1. However, most of these studies have examined development lead 

time (time-to-market) or ramp-up performance (time-to-volume) separately, while their 

interrelationship has received only little attention (Terwiesch et al. 1999, Gerwin and Barrowman 

2002). 

In this chapter we enhance our initial model (Figure 3) that considers ramp-up performance as being 

dependent on product complexity with the inclusion of development lead time in order to address 

three research questions: (1) To what extent is manufacturing ramp-up performance determined by 

product development process (i.e., development lead time) and product characteristics (i.e., product 

complexity)? (2) How do these relationships change in the course of the ramp-up lifecycle? and (3) 

How can the results be explained? We take a confirmatory and exploratory approach in order to 

answer these research questions. First, we operationalize development lead time, product complexity 

and manufacturing ramp-up performance based on our enhanced conceptual framework (Figure 6), 

then we integrate them into a partial least squares (PLS) path model. Before we explore how these 

relationships change over time by modifying the time horizon of our dependent variables we are 

testing our fundamental Hypotheses. Finally, we contextualize both findings in order to provide 

holistic and quantitative insights into the combined and time dependent relationships. 
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Figure 6. Conceptual framework 

 

3.2 Measurement Model Operationalization 

Although most of the variables that make up the measurement models in this section have already 

been introduced in chapter 2, we provide an additional short description for the sake of completeness 

and clarity. We begin with the operationalization of development lead time, an endogenous construct 

predicted by the product complexity framework that also acts as a predictor for manufacturing ramp-

up performance. The logic derives from prior research that regards development lead time as a 

resource (Mallick and Schroeder 2005) and hence as a critical predictor for manufacturing ramp-up 

performance and also as a factor that is dependent on product complexity (Griffin 1993, Murmann 

1994, Griffin 1997, Swink 2003). 

3.2.1 Development Lead Time (DevLT) 

Framed broadly, product development in the case firm involves five distinct activities: concept 

development; product planning; several cycles of design, build, integrate and test activities; product 

acceptance and production ramp-up. Due to general uncertainties at the start of the concept 

development for a particular product and due to the inherent dynamics in this phase (i.e., 

cancellations, redefinitions) our development lead time construct represents what Myers and Marquis 

(1969) call the problem-solving stage of development. This stage is separated into three key 

development phases. Each phase is framed by milestone reviews that denote business decision points 

in order to determine whether the previous development phase is completed against a set of clearly 

defined deliverables. Figure 7 outlines the different development phases with their respective 

milestones and outputs. 
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Figure 7. Definitions of major product development phases 

 

M0toM1. This variable represents the elapsed time – measured in days – between the M0 milestone 

(i.e., the end of the concept development stage) and the start of the product integration and 

verification phase. It characterizes the efficiency of the product planning phase. 

M1toM2. The product integration stage measured as the elapsed time in days between the M1 and M2 

milestone involves several cycles of design, build, integrate and test activities. This is also known as a 

spiral product development process because the building and testing of prototype models has become 

such a rapid process that the design-build-test cycle can be repeated many times (Ulrich and Eppinger 

2008). 

M2toM3. During the product acceptance phase, engineering prototypes are assembled using the final 

assembly line and testing processes in the target factory in order to verify the performance of the 

production system (including supplier operations). These prototypes are also used to verify product 

reliability and to obtain all necessary regulatory and customer approvals. We measure this variable as 

the elapsed time in days between the M2 and M3 milestone. 

With the approval of the M3 milestone, the production ramp-up finally starts. During this phase, the 

production output is determined by a push plan since detailed knowledge about sales demand does not 

exist at this stage. As soon as there is enough confidence to execute production according to sales 

M4

A
cc

u
m

u
la

te
d

 o
u

tp
u

t

Time 

Product acceptance and

delivery capability verification

(M2toM3)

Production ramp-up

(TRU_EXE)

M1

Product planning outputs:

- Profitability and risk 

analysis

- Detailed product 

specification and 

approved development 

schedule

- Supply chain 

configuration (suppliers, 

lead factory)

- Nominated program team

Product integration 

and verification

(M1toM2)

Product planning

(M0toM1)

M0

Concepting outputs:

- Approved program 

proposal

- Draft project schedule

- Nominated core team

M2

Product integration outputs:

- Product verification 

results based on 

engineering prototypes

- Procurement plan for 

long lead time 

components

M3

Product acceptance outputs:

- Approved product 

configuration

- Delivery capability 

verified

- Approved ramp-up 

volume plan

- Customer and regulatory 

approvals

Planned qty

Produced qty



How does Development Lead Time affect Performance over the Ramp-up Lifecycle 

49 

forecasts, the ramp-up execution concludes. As the transition between ramp-up and mass-production 

is fluent, we consider different time horizons in our analysis as presented in section 3.5.4. 

3.2.2 Hardware Complexity (HWC) 

In compliance with our arguments from chapter 2, we consider hardware complexity in structural 

terms and hence as a property of the product (Rodriguez-Toro et al. 2004). Accordingly we apply 

Novak and Eppingers’ (2001) definition that consists of three elements which serve as the indicators 

for our hardware complexity construct: (1) the number of product components to specify and produce, 

(2) the extent of interactions to manage between these components (parts coupling), and (3) the 

degree of product novelty. 

Increased product functionality requires a larger number of components to be integrated into the 

architecture. Features like global positioning services (GPS), dual display functionality or hands-free 

stereo audio – to name just a few – cannot be implemented by means of software alone. However, the 

addition of extra components rises product complexity as a result of the more complex manufacturing 

process (Boothroyd et al. 1987), supply logistics (Fisher et al. 1999) or verification efforts (Novak and 

Eppinger 2001). While the definition of Ulrich (1995) states that a component can be any distinct 

region of the product, we divide our first indicator – the number of product components – into two 

parts to identify the relevant components in the context of manufacturing ramp-up performance: 

common component count and product specific component count.  

Common component count comprises all components from the product’s bill of material list like 

resistors, capacitors, transistors, connectors, shields and integrated circuits, which are assembled onto 

the printed wiring board. These components are freely available on the market and hence also used in 

other products from the case company or competitors. Product specific component count refers to 

components in the bill of materials list that are specifically developed for the use in a dedicated 

product. Hence, the options to use these components in other products or industries are very limited. 

Examples are plastic covers, antenna elements, stickers, foams, gaskets, displays and cables.  

Please note that our definition does not include any sub-components that are inseparably embedded in 

advanced components (i.e., optical lenses in camera modules or glass layers in display units) as these 

components are not under managerial control or technically observable. 

The second indicator of our hardware complexity construct is parts coupling. According to Novak and 

Eppinger (2001), parts coupling increases complexity because an increased number of interconnected 

parts within a system results in additional development risks, verification efforts and side effects. In 

other words: the more complex the interdependencies are, the greater is the added complexity 

(Williams 1999). In our operationalization of parts coupling, we measure the number of signal 



How does Development Lead Time affect Performance over the Ramp-up Lifecycle 

50 

networks across all electrical and electromechanical components (i.e., components that carry any 

electrical functionality and account for around 70% of all components) within a product. R&D teams 

have confirmed that the reliable integration of components does not only require expert knowledge 

regarding the components themselves but also firm understanding of their simultaneous interactions. 

This definition acknowledges the fact that development teams must understand and integrate 

arrangements of interlinked signal networks – a task that is much more challenging than the simple 

understanding of component pairs (i.e., individual point-to-point connections). 

The third indicator of our hardware complexity construct, product novelty describes how much of the 

product must be redesigned compared to previous products. It can either be conceptualized as the 

percentage of new designs comprised in the product (Swink 1999) or as the degree of similarity 

between a certain product and other members of its product family (Coughlan 1992). Our 

operationalization enriches these existing concepts by measuring the percentage material value within 

a product that is new to the responsible development center. Products may exhibit unique 

characteristics depending on whether we observe them at the overall final assembly level or as 

individual parts and subassemblies (Ulrich 1995). Since most of the components in our study are only 

observable on the first layer of abstraction (e.g., cameras, displays, processors, etc.) we consider them 

on a macro level. In this case, any definition based on the simple percentage of new parts would 

regard the contribution of each component to novelty as equal. However, the integration and testing 

effort as well as the supply risk during ramp-up for complex cameras, displays or processors is not 

comparable with the risks and efforts related to simple screws, foams or stickers. 

3.2.3 Software Complexity (SWC) 

The increasingly dominant role of software in modern consumer electronics products and its impact 

on product complexity, development schedules and budgets (Rauscher and Smith 1995, Blackburn et 

al. 1996) underlines the necessity to treat software complexity as a separate construct within our 

product complexity framework. Because software complexity is multidimensional in nature (Banker 

et al. 1998, Zuse 1991), several complexity measures have been proposed. Examples are McCabe’s 

(1976) cyclomatic complexity, Wood’s (1986) component/coordination/dynamic dimensions and 

Halstead’s (1977) effort metric. Previous research, however, has found that these measures only vary 

on a small number of orthogonal dimensions (Banker et al. 1993, Munson and Koshgoftaar 1991) and 

that they incorporate common properties (Weyuker 1988). We apply a combination of indirect 

measures – calculated from the design specifications – and direct measures – calculated from the 

program code (Sunohara et al. 1981). Consistent with our approach to describe hardware complexity, 

we define software complexity as (1) the number of executable lines of code = SW code size, (2) the 

degree of software newness = SW newness, and (2) the number of software errors = SW error count. 

These measures refer only to the operating and application software modules that are under direct 
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control of the firm (i.e., in-house developments). We exclude any software modules that are 

embedded in advanced components like displays or cameras (e.g., embedded driver software) and 

optional third-party applications that are not mandatory for the product launch. Thus we focus on the 

core elements of product software that the company has to provide timely, error free and in 

compliance with regulatory requirements. 

SW code size. According to Huang (1998) the size of a program is one of many factors affecting its 

complexity. Lines of code measures have been widely discussed in the literature on embedded 

systems (Broy et al. 2007, Lee 2000) due to the importance of SW code size on system performance 

and costly memory size decisions. Within this study we measure SW code size as the number of 

executable lines of code. All products in our sample are based on identical engineering tools and 

programming languages (i.e., a proprietary language for lower-level signaling functions and C/C++ 

for higher-level code). Thus, the number of executable lines of code can be counted in a consistent 

manner and is hence unbiased within the sample (Krishnan et al. 2000). 

SW novelty. The software engineering literature argues that adding more features or increasing the 

newness of a software product usually increases its complexity (Zuse 1991, Krishnan and Zhu 2006, 

Laird and Brennan 2006). This is plausible as new software features may have lower design integrity 

and quality – all else being equal – than existing software code that has already been tested and 

debugged across existing products. Hence, we operationalize SW novelty as the number of new 

software features in a product that have not been included in previous products or in the existing 

software baseline. A new feature is characterized by the necessity to either develop/implement new 

software components or to modify existing components instead of reusing existing software 

components. 

SW error count. Both, SW newness and SW code size do not sufficiently account for differences in 

the individual product configuration as these measures regard software components as having in-built 

complexities that are static and independent of their context. For example, products that contain a 

decent amount of SW newness and consist of a trivial code size may still require a disproportionate 

amount of development effort since interactions and side effects in a particular product configuration 

may result in a large number of errors. Because errors are strongly related to complex programs 

(Basili and Perricone 1984) and defects are strongly associated with software complexity (Harter and 

Slaughter 2003, Kafura and Reddy 1987), we include a measure of SW error count (identified during 

the product integration and acceptance phase while the product passes through a series of standardized 

acceptance tests) as our third indicator of software complexity. 
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3.2.4 Manufacturing Ramp-up Performance (RP) 

Based on the existing ramp-up literature there seems to be a broad consensus to measure ramp-up 

performance in terms of output against time or plan (Langowitz 1988, Clark and Fujimoto 1991, 

Terwiesch 1999, Almgren 2000, Kuhn et al. 2002, Merwe 2004, Schuh 2005). For other measures like 

quality, time, yield or cost there seems to be little – if any – common norm. This is partly due to the 

fact that each study measured ramp-up performance according to its own specific situation, 

characterized by different competitive priorities. For example, unit cost might be a negligible 

performance measure in cell phone projects as the profits gained due to successful early sales (enabled 

by reliable output against plan) – customers are most willing to pay premium prices during the early 

product lifecycle – typically outweigh all other cost related drivers. Also, it is economically unwise to 

focus on absolute ramp-up speed or time because quality and other cost drivers can accumulate to 

levels that sustainably affect the overall company competitiveness (Voigt and Thiell 2005). Hence, 

our second endogenous construct represents output against plan, frequently cited as effective 

utilization (Konopka 1995, Matsuo et al. 1997, Terwiesch et al. 1999). We measure it as the ratio 

between produced quantity during the ramp-up period and planned quantity at the beginning of the 

ramp-up period. 

3.2.5 Control Variables 

We control for several other variables to strengthen non-spuriousness between the complexity 

constructs, development lead time and manufacturing ramp-up performance. Note that we do not 

control for in-house manufacturing depth since our sample does not show any substantial variance 

regarding this aspect. 

First, we control for learning effects with the supposition that a firm gains development experience 

and hence the performance regarding development lead time and ramp-up will increase over time. We 

label this variable linear trend and measure it as the number of days elapsed between the ramp-up 

start of each new product versus the ramp-up start of the first product in the study.  

Second, we control for differences in the planning approach and the number of design-build-test 

cycles, which may dictate development lead time to a certain extent. We label this variable planned 

development lead time. It represents the number of workdays from concept approval to ramp-up start, 

estimated at the time of concept approval.  

Third, we control for whether the project experienced any delay during the product acceptance phase. 

We measure slip as the number of workdays between the estimated (provided at the M2 milestone) 

and the actual ramp-up start. Compared to projects that are able to ramp-up on time, delayed projects 

are more likely to face problems during the ramp-up phase that are related to the cause of the original 
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delay. However, project delays can also allow program teams and suppliers to utilize the gained time 

productively and hence to be more successful regarding manufacturing ramp-up performance.  

Forth, we include a sequence of seven dummy variables that are tested one after the other in order to 

control for plant specific effects. Although the plants in our study represent a standardized and 

homogeneous capacity pool, empirical studies have reported that factory characteristics may influence 

production performance (Hayes and Clark 1986, Langowitz 1987, Clark and Fujimoto 1991, Kuhn et 

al. 2002). Each of these variables is coded as one for the focus factory, zero otherwise and labeled as 

factory ID1…7.  

Fifth, we control for two additional plant specific effects. In order to measure the level of experience 

in any given plant we include a variable labeled plant age. This variable represents how long a plant 

has been in operation prior to the ramp-up start of each product.  

Furthermore, we capture differences in work force culture and supply network structure that originate 

from differences in the physical location of each factory with regard to their main supply base that is 

located in China. The dummy variable plant location is coded as one if the plant in question is located 

in Asia (China and Korea) and zero if it is located in Europe (Germany, Hungary, Finland).  

Sixth, we add a measure for sales forecast change in order to control for changes in the sales volume 

forecast during the ramp-up execution phase. We use the relative change in the sales forecast between 

the beginning and end of the ramp-up execution period to remove the effects of sales fluctuation on 

production execution. For example, there might be low demand for a product compared to the original 

production plans created at the start of ramp-up. The factories will thus respond with reductions in 

output, which will in turn lead to low effective utilization levels although production performance 

itself is good.  

Finally, we control for production technology novelty, a dummy variable that is coded as one if 

considerable resource investments (e.g., equipment, engineering labor) are needed and no contingency 

plans exist, zero otherwise. We believe that the combination of resource investments and the absence 

of a back-up plan are of particular interest. We expect that production technology novelty has a 

negative impact on effective utilization as new technologies entail significant fine-tuning and testing 

and may – relative to “proven” technologies – expose a firm to risks of failure in terms of durability 

and reliability (Clark and Fujimoto 1991). Examples that belong to this group are decoration 

technologies (e.g., high-gloss paint effects), manufacturing process technologies (e.g., RoHS 

implementation) or production testing technologies (e.g., WCDMA testing). These technologies 

require considerable resource investments while prevailing technologies cannot be used as backup 

solutions. Table 8 summarizes the various indicators of the constructs described in this section, as 

well as their definitions and formulas.  
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Table 8. Summary of constructs, indicators, and definitions 

Development lead time (DevLT) 

M0toM1 = elapsed time in days between the M0 and M1 milestone (i.e., the product planning phase) 

M1toM2 = elapsed time in days between the M1 and M2 milestone (i.e., the product integration and 

verification phase) 

M2toM3 = elapsed time in days between the M2 and M3 milestone (i.e., the product acceptance and 

delivery capability verification phase) 

 

Hardware complexity (HWC) 

common component count = all components in the product’s bill of material list that are assembled 

onto the printed wiring board 

product specific component count = total component count – common component count 

parts coupling = number of signal networks across all electrical and electromechanical components in 

the product 

RU_EXE

RU_EXE

average over period 

average over period 

material value of new physical components in the product

total material value of the product

T

T

product novelty 

 

 

Software complexity (SWC) 

SW code size = source code size in terms of executable lines of code 

SW novelty = number of features in the product that have not yet been included in previous products 

or in the existing software baseline 

SW error count = number of reported errors during the product integration/acceptance phase 

 

Manufacturing ramp-up performance (RP) 

RU_EXE

RU_EXE

over period 

at M3over period 

 = 
T

T

actual productionoutput
effective utilization

planned productionoutput
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Control variables 

linear trend = time in days between the ramp-up start of each new product versus the ramp-up start of 

the first product in the study 

planned development lead time = time in days between concept approval and ramp-up start, estimated 

at concept approval 

slip = elapsed time in days between the estimated (provided at the M2 milestone) and the actual ramp-

up start. Please note that this indicator becomes positive if the actual ramp-up start is ahead of the 

planned date. 

factory ID1…7 = {
1 for the respective factory

0 otherwise                         
 

plant age = indicating how many years a plant was in operation before the ramp-up start of each 

product 

plant location = {
1 in case of Asian factories (China, Korea)                              

0 in case of European factories ( ermany, Hungary, Finland)
 

RU_EXE

RU_EXE

at M3 over period 

12 weeks before M3 over period 

   = 
T

T

sales forecast quantity
sales forecast change

sales forecast quantity
 

1 considerable resource investments needed and no contingency plans exist

0 otherwise                                                                                        

productiontechnology novelty
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3.3 Structural Model and Hypotheses 

Figure 8 illustrates our PLS path model including the previously operationalized constructs and the 

hypothesized structural relationships between the constructs. 

 

Figure 8. The PLS path model 

 

All embedded systems and cell phones in particular are unique because they demonstrate a hardware-

software co-design problem – hardware and software have to be designed together in order to make 

sure that the implementation does not only function properly but also meets all goals regarding 

performance, cost, and reliability (Wolf 1994). A new design is typically started with the creation of a 

requirements specification that includes all functional requirements – in other words the specific 

behavior of the system and nonfunctional requirements, including operability, certification, and cost. 

In a next step, an initial architecture is proposed including functions that are either assigned to be 

directly implemented into the hardware or into the software running on the hardware. Traditionally, 

hardware development dominated system development because of longer lead times and logistical 

dependencies on external suppliers. Consequently, software development started when hardware 

development was already at a stage where changes would be extensive (Graaf et al. 2003). However, 

hardware release cycles are expensive and inflexible, so software based implementations have become 

a more common approach (Lee 2000, Graaf 2003, Sangiovanni-Vincentelli and Martin 2001). 

Additionally, most of the new innovations in cell phone products originate from software features like 

social networking clients, augmented reality, picture processing or games. Hence, the hardware 

configuration (e.g., processor speed, memory size, interfaces, camera pixel size) is determined by a 

rising amount of functional requirements that are implemented into the software. We therefore 

hypothesize the following: 

Development

lead time (DevLT)

Manufacturing ramp-up

performance (RP)

Software

complexity (SWC)

common component count

parts coupling

product novelty

SW code size

SW novelty

SW error count

M0toM1

M1toM2

M2toM3

effective utilizationproduct specific component count

Control variables Control variables

Hardware

complexity (HWC)
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HYPOTHESIS 1. Software complexity (SWC) positively affects hardware complexity (HWC). 

 

Several studies in the literature on operations management, product development and software 

engineering have found a positive association between product complexity and development lead time 

(Clark and Fujimoto 1989, Griffin 1993, Callahan and Moretton 2001, Swink 2003). According to 

Swink (2003) this is likely to be a result of the growing size and uncertainty of the design task if 

increasing numbers of interacting components are involved. Completing such a design task requires 

several design-build-test iterations or problem solving cycles until the requirements are met, 

regardless whether they are related to software or hardware. As a result, lead time in a program will 

be affected by the length of each problem solving cycle, the number of iterations and patterns of 

informational linkage among the cycles (Clark and Fujimoto 1989). Although these arguments are 

valid for both complexity dimensions, hardware complexity may dominate as a result of the longer 

development lead times for components. On the other hand, software can also play a dominate role, 

due to the steady shift of functionality from hardware to software (Lee 2000, Graaf et al. 2003, 

Sangiovanni-Vincentelli and Martin 2001) and due to the tendency to fix hardware errors via software 

solutions (Rauscher and Smith 1995, Graaf et al. 2003). These arguments lead to the following two 

Hypotheses: 

 

HYPOTHESIS 2. Software complexity (SWC) positively affects development lead times (DevLT). 

HYPOTHESIS 3. Hardware complexity (HWC) positively affects development lead times (DevLT). 

 

Because the replication process of software in embedded systems is simple (i.e., it typically consists 

of a simple programming step during production) we could conclude that manufacturing ramp-up 

performance can no longer be adversely affected by the level of software complexity after the 

software has been released for production. However, the manufacturing environment for cell phones 

is characterized by complex multistage assembly lines and includes several test phases. Potential 

drivers for manufacturing ramp-up performance include the tight interdependence between these 

automatic test systems and the product software as well as the on-time availability of approved 

software variants. Addressing these issues one at a time, we note that complex product software 

necessarily increases the test software algorithms (Schaub and Kelly 2004). Firstly, due to the 

increased number of test steps in order to calibrate wireless protocols or other components and 

secondly, due to the interactions between the product software and the test system that also have to be 

managed. Both conditions may lead to decreased yield and hence to decreased production output. In 
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addition, production output is dependent on the scheduled readiness of customer specific software 

variants. Complex software, however, makes it more likely that customers revise requirements 

(Thomke and Bell 2001), find new errors after pretesting or request changes in the customization 

options. Manufacturers are often forced to adapt or lower production plans due to these 

circumstances. Therefore we state the following: 

 

HYPOTHESIS 4. Software complexity (SWC) negatively affects manufacturing ramp-up performance 

(RP). 

 

A rich stream of studies has demonstrated that product complexity in terms of physical product 

characteristics is negatively associated with manufacturing ramp-up performance (Langowitz 1987, 

Swink 1999, Terwiesch et al. 1999, Vandevelde and Van Dierdonck 2003, Keil et al. 2007). Higher 

levels of complexity and uncertainty regarding product and technology will cause more difficulties in 

the attempt to realize a smooth production start-up (Vandevelde and van Dierdonck 2003). Complex 

products may push the limits of manufacturing process capabilities and require more process steps, 

thus opening up more opportunities for process failure (Swink 1999). At the same time extra learning 

efforts regarding manufacturing engineering and improved operator training are required to achieve 

the desired performance level. Engineering changes may appear more frequently and cause the most 

disruptive effects at the very beginning of the manufacturing start (Coughlan 1992). Similar 

challenges are also likely to occur at upstream partners (i.e., suppliers), thereby disturbing 

manufacturing ramp-up performance due to problems with material supply and quality (Almgren 

2000). For these reasons we state the following Hypothesis: 

 

HYPOTHESIS 5. Hardware complexity (HWC) negatively affects manufacturing ramp-up performance 

(RP). 

 

Cell phone projects involve different organizational functions that are concurrently conducting 

development tasks in order to minimize development lead time. However, prior research has been 

inconclusive regarding the actual effectiveness of process concurrency or its accelerating effect on 

operational outcomes (Tatikonda and Montoya-Weiss 2001). For example, Wheelwright and Clark 

(1992) found that concurrency is beneficial to operational outcomes other than lead time because 

more information can be shared between organizational functions. Improved understanding of 
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requirements and limitations enables cooperative problem solving activities as well as earlier 

anticipation of project challenges. On the contrary, concurrency may lead to increased risk if the 

downstream function is forced to make decisions (such as orders of product specific manufacturing 

equipment) before final fixed data is available from the upstream function. This can delay production 

line approvals and cause rework — ultimately leading to missed output targets. Furthermore, the 

longer the time available to study user needs and develop and test alternative concepts for technical 

feasibility, the greater is the likelihood that a better solution will be found (Mallick and Schroeder 

2005). Also, extended development lead times may be the result of additional problem solving cycles 

or pilot production rounds that improve product and production process maturity levels and hence 

facilitate a smooth production ramp-up. We posit the latter effect and conjecture our last Hypothesis: 

 

HYPOTHESIS 6. Development lead time (DevLT) positively affects manufacturing ramp-up 

performance (RP). 

 

Please note that we explore the effects that are described in hypotheses 4, 5 and 6 under different time 

horizons of the ramp-up execution period in the results section. For brevity we do not discuss the 

related Hypotheses. 

3.4 Methodology 

In order to test our Hypotheses, we employ a variance based structural equation modeling approach 

known as PLS path modeling. Compared to covariance based structural equation modeling 

approaches (e.g., LISREL), PLS is particularly well suited for studies using operational data and if the 

primary research objective is the maximization of explained variance in the endogenous constructs 

(i.e., prediction) instead of achieving model “fit”. Operational data frequently violates the requirement 

of multivariate normality and sample sizes are limited by the number of real life cases. PLS, however, 

does not make any assumptions of the underlying distribution and provides stable estimates even if 

the ratio of observations to parameters is small (Wold 1982, Fornell and Bookstein 1982, Chin 1998, 

Hair et al. 2011). In addition, PLS allows for the simple configuration of formative measurement 

models. In accordance with the decision rules by Jarvis et al. (2003) and Petter et al. (2006) our 

indicator operationalization advocates a formative coding scheme as we point out in Table 9.  
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Table 9. Measurement model specification criteria 

Decision rules according to Jarvis et al. (2003) Comments 

1. Direction of causality from construct to 

measure implied by the conceptual 

definition 

 

 Are the indicators (items) (a) defining 

characteristics or (b) manifestations of the 

construct? 

 Would changes in the indicators/items 

cause changes in the construct or not? 

 Would changes in the construct cause 

changes in the indicators? 

Our indicators are defining characteristics of the 

constructs. Increasing the value of any indicator 

will directly translate into a higher or lower score 

for the overall construct scale, regardless of the 

value of other indicators and thus supporting a 

formative coding scheme. 

 

2. Interchangeability of the indicators/items 

 

 Should the indicators have the same or 

similar content? Do the indicators share a 

common theme? 

 Would dropping one of the indicators alter 

the conceptual domain of the construct? 

 

In line with the formative decision rules (Jarvis et 

al. 2003) our indicators are not interchangeable 

(e.g., each indicator in the hardware complexity 

construct captures a specific aspect of hardware 

complexity). Hence, dropping one of the 

indicators would seriously alter the conceptual 

domain of the construct. 

3. Covariation among the indicators 

 

 Should a change in one of the indicators 

be associated with changes in the other 

indicators? 

These criteria are not necessary for formative 

indicators (Jarvis et al. 2003). 

4. Nomological net of the construct indicators 

 

 Are the indicators/items expected to have 

the same antecedents and consequences? 

Formative indicators are not expected to have the 

same antecedents and consequences and the 

nomological net may differ (Jarvis et al. 2003). 

 

The application of a formative measurement model has methodological implications. The concepts of 

internal consistency, reliability and convergent validity are not meaningful if formative indicators are 
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involved (Hair et al. 2011). Hence, we base our formative indicators on theoretical rationale as 

outlined in section 3.2 and focus on the pure operational aspects of product complexity, development 

lead time and manufacturing ramp-up performance. This allows for conceptually rigorous and 

complete definitions supported by statistical criteria. Before we applied the algorithm we standardized 

our data (mean = 0, variance = 1) in order to support the interpretation of the path coefficients. 

Although not a precondition in PLS, data standardization is recommended if the variables are 

measured with different scales as in our case.  

During the modeling process we were primarily guided by our conceptual framework and by our 

research objective to make predictions for real life cases (i.e., the maximization of explained variance 

in the endogenous constructs). Hence, we started with a model that was based on our conceptual 

framework which consists of four key constructs (SWC, HWC, DevLT, RP). In a next step, we 

subsequently added one control variable at a time (except for the factory ID variables) in different 

combinations. We only included variables in our model that demonstrated a significant effect (i.e., we 

dropped control variables that were non-significant or did not substantially alter the effects of the 

conceptually relevant variables). Afterwards, we successively included the individual factory ID 

variables in order to assess potential factory specific effects. In response to the results of this analysis, 

we decided to include plant location as an additional control variable. This configuration – that we 

refer to as M10 – turned out to be the most conclusive model according to our conceptual reasoning 

and offered the highest R
2
 value regarding development lead time and manufacturing ramp-up 

performance. In a final step, we used the M10 model to assess the effects of different time horizons in 

manufacturing ramp-up performance and to estimate interaction effects between software and 

hardware complexity constructs. 

3.4.2 Data Collection 

Since most of the variables have already been introduced and operationalized in chapter 2, we only 

provide a short description at this point for the sake of completeness and with a focus on the new data 

sources. 

The data for calculating the product development lead time indicators are taken from a project 

management reporting tool that records all planned and actual milestone dates throughout the project 

lifetime. Programs can only move to the next development phase and update the milestone dates if 

certain, well defined criteria are met and the respective milestone review is approved by the steering 

group. This property allows us to precisely calculate the duration of different development phases and 

other timing related variables (linear trend, planned development lead time, slip). 

The data for our hardware complexity indicators – specifically common component count and product 

specific component count – were taken from the product data management system that is used for 
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managing the bill of materials list. Our product novelty indicator was calculated with the help of the 

product specification documentation and the sourcing parts lists. The first tool provides an overview 

of the novelty/re-use status of each component while the second provides the material prices. The 

parts coupling indicator originates from the electronic design automation (EDA) tool.  

The software related indicators were extracted from the compiler log files (SW code size), the 

requirements management system (SW novelty) and the error management databases (SW error 

count). Nokia products generally follow a highly disciplined and standardized software development 

and verification process that creates reliable and consistent data regarding the aforementioned 

software characteristics. 

The variables regarding effective utilization and sales forecast change were calculated using data from 

a management information system report that contains sales forecasts, production plans and actuals on 

a monthly time scale. As a response to the short-term planning cycle of Nokia that spans a timeframe 

of 12 weeks we decided to peg our ramp-up execution period TRU_EXE to this time horizon in the initial 

model which we relax in section 3.5.4. During this period most resources are considered to be fixed 

due to equipment and material procurement lead time limitations. 

Finally, we enhanced our data with interviews, a written questionnaire that was completed by each 

ramp-up manager and milestone review documentation (refer to section 1.2.1). Using these sources 

we were able to gain additional insights into the qualitative issues that appear during each ramp-up 

and to gather data in order to operationalize our production technology novelty indicator. Descriptive 

statistics for our data and their correlations are presented in the Appendix-B1. All variables were 

screened for abnormal observations to avoid outlier bias in the PLS calculations. Due to 

confidentiality reasons the variable SW error count is normalized to have a mean equal to 1000. 

3.5 Results 

Following the structural equation modeling logic, the assessment of a PLS model follows a two-step 

approach that involves separate assessments of the measurement model and the structural model (Hair 

et al. 2006, Hair et al. 2011). All parameters within the model were estimated using smartPLS (Ringle 

et al. 2005) and XLSTAT version 2011.2.01. Additional statistics were calculated with Minitab 

version 16.1.1. 

3.5.1 Validation of the Measurement Models 

Formative measurement models are examined based on their indicator weights, their significance, 

their loadings and the degree of multicollinearity (Chin 1998, Tenenhaus et al. 2005, Hair et al. 2011). 

Significance levels were estimated by means of a t-statistic that is generated by a bootstrapping 

technique (based on 500 resamples). Additionally, we evaluated significance levels by reviewing bias 
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and percentile ranges of the bootstrap output. We also used the conservative “construct level sign 

change” option (initial weight setting = 1.0, abort criterion = 1.0E-5) after checking the individual 

bootstrap results and applied two tail tests although the direction of our Hypotheses would allow for 

single tail tests. We calculated the variance inflation factor (VIF) for the assessment of 

multicollinearity. As the highest VIF in our measurement model turned out to be around two, 

multicollinearity is not likely to distort the estimates as a result of excess redundancy. In the context 

of PLS, the critical cut-off value for VIF is 5 (Hair et al. 2011). 

Table 10 presents the results of our most conclusive measurement model (M10). Other measurement 

models that are part of the structural model variants that will be discussed in the next section are only 

provided in the Appendix-B2 since their difference is negligible. All formative indicators have strong 

and significant weights – with the exception of common component count – and there is no co-

occurrence of negative and positive indicator weights in the same construct. Note that single-indicator 

constructs always appear significant (as used for the control variables and manufacturing ramp-up 

performance). This suggests that common component count does not provide additional explanatory 

power beyond the other indicators within the hardware complexity construct although it still 

represents an important aspect (the loading or bivariate correlation is substantial and significant). In 

other words, common component count is absolutely important but not relatively (Cenfetelli and 

Bassellier 2009). Its theoretical relevance, however, is justified as there are only few overlaps with the 

other indicators leading us to keep the indicator in the model. The novelty indicators in particular 

(product novelty and SW novelty) deserve closer attention. Their relative contribution to the 

complexity constructs is disproportionally high, emphasizing the importance of novelty as a key 

characteristic of complexity that can be used to predict development lead time and manufacturing 

ramp-up performance. In summary, our measurement model is characterized by robust and significant 

indicators that capture the domain of our constructs. This provides a strong foundation for construct 

validity. 
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Table 10. Measurement model results 

 

Notes: N = 46, *** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed tests based on 500 bootstrap resamples. 

 

3.5.2 Validation of the Structural Models 

The primary evaluation criteria for the structural model are the R
2
 measures (=predictiveness) and the 

level and significance of the path coefficients (Chin 1998, Tenenhaus et al. 2005, Hair et al. 2011). 

Goodness of fit (GoF) indices or blindfolding procedures (Q
2
) are only applied in the presence of 

reflective measurement models as they are based on the portion of explained variance in the indicators 

(see Stone 1974, Geisser 1977, Tenenhaus et al. 2005, Hair et al. 2011). All structural model 

parameters are estimated with the path-weighting scheme (for a discussion of weighting schemes, see 

Chin 1998, Tenenhaus et al. 2005). Despite the slightly increased VIF value of SWC  RP we 

discovered no inconsistency in the results during our multicollinearity assessment. With this 

assessment we tested additional models by removing one complexity construct at a time. Table 11 

reports the results of our Hypothesis tests with regard to our most conclusive model (M10).  

  

t -value Loading VIF

Development lead time (DevLT )

M0toM1 0.62 *** 5.73 0.76 1.05

M1toM2 0.75 *** 3.60 0.59 1.42

M2toM3 0.53 *** 2.79 0.16 1.37

Hardware complexity (HWC )

common component count 0.07 0.56 0.45 1.65

product specific component count 0.28 ** 2.18 0.63 1.53

parts coupling 0.38 ** 2.29 0.68 2.14

product novelty 0.71 *** 4.76 0.84 1.09

Software complexity (SWC )

SW novelty 0.54 *** 3.85 0.77 1.16

SW code size 0.40 *** 3.22 0.52 1.02

SW error count 0.51 *** 5.18 0.74 1.15

Ramp-up performance (RP )

effective utilization 1.00 -- 1.00 1.00

Path weight

M10 (final model)
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Table 11. Structural model results 

 

Notes: N = 46, *** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed tests based on 500 bootstrap resamples. 

 

Further results related to the models M1 through to M11 are provided in the Appendix-B2. In model 

M1 we summarize the effects of non-significant control variables (sales forecast change, plant age, 

production technology novelty and linear trend – which is initially significant but disappears in the 

presence of planned development lead time). In M2 we control for planned development lead time 

and slip. Both variables turned out to be strong and significant. M3 through M9 each include one 

factory ID variable to strengthen our claim of non-spuriousness and to justify the inclusion of our last 

control variable — plant location. In the models M10a through to M10d we tested alternative forms of 

M10. In contrast to the M10 model, we considered time horizons of 4, 8, 16 and 20 weeks for the 

calculation of effective utilization in M10a, M10b, M10d and M10e. In model M11, we applied the 

procedure proposed by Chin et al. (2003) in order to test for an interaction effect between software 

and hardware complexity constructs on development lead time. However, this interaction effect did 

not appear to be significant. 

t -value Loading VIF

Structural model (path coefficients)

Direct effects

SWC --> HWC 0.89 *** 30.11 1.00

HWC --> DevLT -0.05 0.36 5.08

SWC --> DevLT 0.36 * 1.93 5.91

HWC --> RP -0.39 * 1.69 5.40

SWC --> RP -0.44 1.47 7.87

DevLT --> RP 0.36 * 1.90 2.02

Control variables

planned development lead time --> DevLT 0.74 *** 7.59 1.40

slip --> RP 0.27 ** 2.30 1.24

plant location --> RP 0.22 ** 2.53 1.20

Total effects

HWC --> RP -0.41 * 1.74 --

SWC --> DevLT 0.31 *** 2.86 --

SWC --> RP -0.68 *** 5.06 --

Coefficient of determination (R
2
)

HWC

DevLT

RP

RP  (R
2 

adj)

M10 (final model)

Path weight

0.79

0.87

0.48

0.41
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3.5.3 Key Findings 

There is support for our Hypothesis that hardware complexity is dependent on the level of software 

complexity (H1). This result corroborates the view that feature implementations are gradually shifting 

towards software implementations that can run on more generic hardware. Development still follows 

a hardware-software co-design approach but most of the new innovations in cell-phones originate 

from new software features and hence determine the hardware requirements.  

We observe a negative and significant relationship between software complexity and development 

lead time (H2) while controlling for planned development lead time. This is an interesting observation 

and it suggests that software characteristics determine the time expenditures to develop a cell phone. 

These two findings (H1 and H2) are important since they demonstrate the important role of software 

in the product development process of new cell phones.  

By contrast, the effect of hardware complexity on development lead time is not statistically different 

from zero (H3). One possible explanation is that software complexity is the main and dominant 

predictor of development lead time. Hence, hardware complexity is downgraded to a mere enabler 

without additional explanatory power beyond the software complexity influence.  

Furthermore, our results indicate, on average, a negative effect of software complexity on 

manufacturing ramp-up performance (H4) although the software replication process was initially 

considered to be negligible. While the direct effect is non-significant there is a significant and 

negative total effect suggesting that any effect of software complexity on ramp-up performance is 

mediated by hardware complexity. In Table 12 we provide the results of a bootstrap procedure 

(Shrout and Bolger 2002, Preacher and Hayes 2008) that provides a nonparametric approximation for 

the sampling distribution of the different indirect effects. Instead of the product-of-coefficients 

approach that requires multivariate normality (Preacher and Hayes 2008) we prefer the bootstrapping 

approach since this method is more consistent with the nonparametric world of PLS. In a first step, we 

collected the bootstrap output (500 resamples) for the direct and total effects of our model M10. In a 

second step, we calculated the indirect effects of interest for each bootstrap output (i.e., the product of 

the paths linking SWC to RP for the three different mediator paths). Finally, we used these values to 

calculate the percentile bootstrap confidence intervals (Shrout and Bolger 2002, Preacher and Hayes 

2008) and the bias corrected confidence intervals (Efron and Tibshirani 1994, Henseler et al. 2008) as 

shown in Table 12. 
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Table 12. Results of the mediator analysis 

 

Note: * p ≤ .10, results are based on 500 bootstrap resamples. 

 

As a result, manufacturing ramp-up performance is dependent on software complexity — e.g. by 

manufacturing test system yield or software variant readiness — but the effect is mediated through 

hardware complexity. This is supported by our finding that hardware complexity has a significant 

direct effect on manufacturing ramp-up performance (H5). We will discuss this effect in more detail 

in the next section. In any case, our results indicate that the physical characteristics of a cell phone 

have a negative impact on performance levels in the form of material supply/quality problems or more 

sophisticated and hence error prone manufacturing set-ups.  

Likewise, there is empirical support for Hypothesis 6, stating that manufacturing ramp-up 

performance decreases as development lead time increases. This finding is in line with our argument 

that extended development lead times may allow for additional problem solving or pilot production 

cycles that in turn correspond with improved product and production process maturity levels and 

ultimately result in improved manufacturing ramp-up performance. 

Of the significant control variables, planned development lead time has a positive significant 

relationship with development lead time. Because software complexity is still significant while 

controlling for planned development lead time, this suggests that early plans can only provide an 

imperfect prediction of the actual development lead time. Our results also indicate that products 

experience a higher manufacturing ramp-up performance on average if they are exposed to late 

schedule slips. This is likely due to the instance that this sudden and precious gain of time is used for 

improvements in the material and production status. The results from the factory ID analyses suggest 

the absence of spurious effects related to plant specific effects that may explain the presented results. 

All path coefficients remain stable under the individual insertion of each factory ID variable although 

we see a pattern in the relative influence of factory ID on manufacturing ramp-up performance 

dependent on the location of the respective factory. On average, Asian facilities tend to perform better 

Mediator
Percentile 

lower

Percentile

upper

Bias corrected 

lower

Bias corrected 

upper

HWC -0.35 * -0.71 -0.06 -0.65 -0.02

DevLT 0.13 0.00 0.35 -0.06 0.30

HWC & DevLT -0.02 -0.12 0.07 -0.11 0.07

Point estimate 

(indirect effect)

Bootstrapping results (90% CI)
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than their European counterparts – a finding which is supported by the significant effect of plant 

location on manufacturing ramp-up performance. 

3.5.4 Lifecycle Analysis 

Due to the dynamic nature of the ramp-up phase an exploration of the lifecycle behavior is justified. 

We tested several variants of the above model (M10) for which we used different time horizons in 

order to calculate the manufacturing ramp-up performance indicator. The various model parameters 

are recorded in Figure 9.  

Starting with the model parameters that are calculated over a ramp-up execution period of 4 weeks 

(TRU_EXE = 4 weeks) we find non-significant path coefficients and only a marginal R
2
 value. In other 

words, our model fails to predict the very early ramp-up phase. This is most likely the result of the 

chaotic and dynamic environment at this stage that is only partially ascertainable by formal models.  

Next, we analyze the parameters over an 8-week period and hence achieve two additional insights. 

First, the increased R
2
 indicates predictive relevance and second, slip becomes strong and significant. 

Yet, the positive effect of slip on manufacturing ramp-up performance fades out in subsequent 

models. We will outline the potential mechanism of this effect in the next section but this suggests 

that factories build up product buffer while they are waiting for the final sales start which in turn helps 

them to fulfill higher performance levels during subsequent ramp-up stages.  

Moving further to the right on the figure (TRU_EXE = 12 weeks) we find the model parameters 

illustrated that were already discussed previously. Additionally, this model displays the highest R
2
 

value.  

In order to explain the results beyond the 12 weeks’ time horizon we experimented with additional 

variables and discovered that longer time horizons require additional and slightly different predictors. 

As an example, production plan adaptations and hence production output changes are more likely to 

occur over longer time horizons in comparison to short term plans in which most resource 

availabilities are rather fixed. As one would expect, ramp-up specific difficulties diminish and the 

focus shifts to factors that are related to mass volume planning. 
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Figure 9. Lifecycle analysis of different model parameters (total effects) 

 

Note: Bold symbols indicate significance, numerical details are provided in the Appendix-B2. 

 

3.6 Discussion and Managerial Insights 

Although extant operations management and product development literature implies that ramp-up 

performance plays a role in the overall performance of a company (Clark and Fujimoto 1991, Pisano 

and Wheelwright 1995, Hatch and Mowery 1998, Kuhn et al. 2002) we have little systematic and 

quantitative understanding of the factors that are affecting ramp-up performance. Our findings 

contribute to this relatively understudied research area in analyzing the combined and lifecycle 

dependent quantitative relationships between product development process characteristics (i.e., 

development lead time), product characteristics (i.e., product complexity), slip and manufacturing 

ramp-up performance. 

First, our findings suggest that the mechanisms by which product complexity characteristics affect 

manufacturing ramp-up performance differ significantly. Hardware complexity seems to be a 

continuous and steady source of difficulty for manufacturing during the whole ramp-up phase as 

identified in our lifecycle analysis. This suggests that problem solving cycles related to physical 

product characteristics (e.g., design faults that create assembly failures or low yield levels at supplier 

operations) are slow and cumbersome. While the root causes might be identified quickly; the actual 

engineering change is mostly tardy as solutions often require new or improved materials but long lead 

times or excessive pipeline inventory slows down the implementation process. Based on our 
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experience this may take up to several weeks or even months during which production teams have to 

cope with the current situation and hence often fail to deliver output on plan. Software complexity on 

the other hand demonstrates a completely different lifecycle pattern. After the production release of 

the initial software and the start of the replication process we do not experience any negative effect of 

software complexity on manufacturing ramp-up performance. However, as soon as the initial phase is 

over — a phase in which only a limited amount of customers have been served — we find a 

considerable negative influence on manufacturing ramp-up performance. At least two assumptions are 

consistent with this result. New and complex cell phone software must be compatible with other 

products in the network (Chiesa et al. 2002) and frequently requires changes on the network side. 

Often, these modifications are not simultaneously available in all networks and hence pose a potential 

delay for second wave approvals. Also, the creation and verification of customer specific variants is a 

more complicated process in the presence of high software complexity. More options are available 

and side effects are more likely to occur thus leading to delays in production execution and to 

decreased manufacturing ramp-up performance. However, the overall problem solving cycles 

regarding software issues are shorter than those caused by hardware problems since the negative 

effect of software complexity on manufacturing ramp-up performance fades out rather quickly. This is 

consistent with the software variant creation release cycle in Nokia that may take several days or 

weeks at the most. 

Second, we shed light on the relationship between product complexity and development lead time in 

the cell phone industry (in consideration of the fact that our sample provides a very homogeneous in-

house manufacturing depth). The context of our study is representative for the consumer electronics 

industry in which the influence and importance of software has increased substantially in the past 

decade and time to market is a factor of critical importance. As already lined out in the introduction of 

this chapter, the majority of new features are developed in software and hence determine the 

development schedules to a large extent. Examples are browsers, mobile TV, gaming, augmented 

reality or dual SIM functionality as well as the option to provide and access local relevant content 

(e.g., social networks). Hardware on the other hand becomes a commodity available from various 

sources and in different configurations. This circumstance requires the involvement of purchasing 

managers in the product development process. However, since purchasing managers have a strong 

focus on material cost, their involvement can sometimes correlate negatively with the adherence to 

development schedules. For example, the implementation of second source components or the 

adjustments of existing code to cost efficient but slow processors require considerable time and effort 

for coding, testing and the implementation. Another reason for the strong effect of software 

complexity on development lead time – while controlling for planned development lead time – might 

be related to the presence of planning fallacy. Software teams seem to make decisions based on 

delusional optimism rather than on a rational weighting of gains, losses, and probabilities (Lovallo 
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and Kahnemann 2003). This often results in planned development lead times that accentuate positive 

assumptions as they were created in an intuitive and unobjectionable process and are therefore often 

unlikely to hold. 

Third, the results highlight that development lead time – considered as a resource and hence as a 

predictor – in combination with given levels of product complexity has a significant positive effect on 

manufacturing ramp-up performance. Thus, shorter development lead times imply that project 

activities have to be executed faster than normal and project managers are less able to predict activity 

outcomes. Hence, it is generally more difficult to achieve on-time performance (Swink 2003). As 

already mentioned above, development lead times are driven by software complexity. In consequence, 

this shifts hardware development activities away from the critical path enabling projects to fine-tune 

hardware activities while waiting for the software release. We also experimented with different model 

variants and observed that development lead time has a positive effect on manufacturing ramp-up 

performance, but solely in the presence of software complexity (i.e., the presence of a direct path 

between software complexity and manufacturing ramp-up performance in our model). In other words, 

our model suggests that the exclusion of hardware complexity from the critical path during new 

product development has a positive impact on product maturity and hence on manufacturing ramp-up 

performance. For example, suppliers that are responsible for physical parts (e.g., plastic covers) can 

run multiple test-batches until they are sure that the process works faultlessly and that they can match 

the desired quality levels. This is in contrast to projects with highly compressed schedules in which 

fine-tuning activities often continue during the ramp-up phase, hence leading to discontinuous output 

and quality instabilities. Also, we believe that more design-build-test cycles or additional time for 

evaluation activities between the cycles (e.g., for second source materials) may lead to higher product 

maturity levels and ultimately to stronger and more sustainable manufacturing ramp-up performance 

as indicated by the lifecycle effect of development lead time on manufacturing ramp-up performance 

in Figure 9. According to Wheelwright and Clark (1992) prototyping and its role in design-build-test 

cycles is a core element of development and an area that offers major opportunities for management 

to improve the effectiveness and efficiency of their development process. 

Finally, we observe a positive relationship between slip and manufacturing ramp-up performance 

which supports our argumentation that late schedule slips are advantageous for manufacturing ramp-

up performance. There are several possible theories for why this relationship exists. Most late 

schedule slips are the result of delayed software approvals or material deficiencies (Almgren 2000, 

Kuhn 2002). For example, the flexibility of software makes it vulnerable to late additions or changes 

in order to correct for hardware problems (Rauscher and Smith 1995) or in order to quick-fix errors 

that are detected during the product acceptance phase. Material deficiencies are more likely to occur 

just before the ramp-up start because suppliers switch from pre-production tools to mass-production 

tools for which only limited experience exists. In any case, these issues occur late, often unexpectedly 
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and may lead to ramp-up delays. On the other hand, there is a strong managerial tendency, motivated 

by higher gross-margins of new products, to start production gradually. Despite lost capacity for 

existing products and rising inventory levels for semi-finished products the potential gains in 

production experience, material quality and new product availability (semi-finished product buffers 

can be converted into final products via simple assembly and “re-programming” steps as soon as the 

necessary approvals are in place) compensate for negative aspects. According to Terwiesch and Bohn 

(1998), running engineering trials and efforts regarding the improvement of yield and production 

speed at the beginning of the ramp-up phase might limit the uptime in the short run, but will often 

lead to an increased performance during the rest of the ramp-up period. In other words, late schedule 

slips do not only enable factories to ramp-up faster after the actual ramp-up start but it also enables 

them to boost their throughput as demonstrated by the strong impact of slack at the beginning of the 

ramp-up period. However, as soon as experience levels saturate and buffers are used up as shown in 

the lifecycle analysis this positive effect on manufacturing ramp-up performance fades out. 

While the primary focus of this research is to predict ramp-up performance levels and to explain the 

phenomena around this subject, several managerial issues and practical implications arise from the 

work. Our findings highlight the drivers of development lead time in cell phone projects. While 

planning accuracy is potentially affected by the presence of planning fallacy in the software domain 

and while it is best tackled by taking an outside view (Lovallo and Kahnemann 2003), actual 

development lead time is determined by software complexity. Thus, the managerial implication of this 

finding is that shorter development lead times are more likely to be achieved if firms focus on 

strategies to either cope with software complexity or to decrease it instead of decreasing hardware 

complexity by using fewer and less novel components. A common approach in time-paced markets 

where new products or upgrades are released on a regular basis is to slip everything that cannot be 

completed in time to the next product in the sequence (Eisenhardt and Brown 1998). Yet we do not 

argument that all sources of software complexity are counterproductive and must therefore be 

eliminated or reduced to lower levels. We rather claim that firms – especially if operating in highly 

competitive and dynamic markets – need to understand the potential impact of their choices and use 

available best practices (e.g., Swink 1998) in order to accommodate to the higher levels of complexity 

that the market imperatives entail. In this sense, software postponement may be a successful approach, 

although it received only little attention. In other words, manufacturing and production testing 

activities should be independent of the product software. They should rather use a basic core software 

for manufacturing before the final customer specific software package is programmed into the phone 

at the last possible step in production. This allows firms to ramp-up production of semi-finished 

products as soon as the product hardware is ready even if the final software is not yet released for 

production. This process continues until a maximum buffer level is reached or until the final software 

package is released for production. In a next step the semi-finished products are quickly converted 
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into end products via simple re-programming steps just before packing. While this approach does not 

necessarily decrease development lead time it increases early product availability and hence ramp-up 

performance. This is partly due to the potential consumption of product buffers but also due to 

advances in pre-ramp-up learning. However, this effect is dynamic and diminishes quickly. 

Also, our conclusions underscore the importance of the right product-factory fit and the relevance of 

software variant management. We feel that the division of complexity into hardware and software 

elements provides a suitable approach to guide management decisions in order to apply the most 

efficient strategy for any particular product. For example, products with high hardware complexity 

may gain considerably from DFM activities, early manufacturing involvement and a careful selection 

of the lead factory with particular focus on the right product-factory fit — the fit between the demands 

a product is likely to make upon a factory and the existing competence of the factory to which it is to 

be introduced (Langowitz 1988). Such an approach, however, is unlikely to be successful in coping 

with software complexity as this would rather require efficient and proactive software variant 

management activities. 

Finally, our findings underscore the importance of development lead time management with regard to 

manufacturing ramp-up performance. Managers in the consumer electronics industry are tempted to 

accelerate product development in order to launch products just before special events such as industry 

trade shows or high peak sales periods (e.g., Christmas). While the timing of revenues critically 

depends on development lead time (time-to-market) firms must be careful not to over-accelerate 

product development. Over-acceleration can have a significant negative impact on customer relations 

and competitor market share if firms fail to achieve required manufacturing ramp-up performance 

levels (time-to-volume). Although it is known that the fast introduction of high-tech products to the 

market helps to achieve overall commercial success (Mallick and Schroeder 2005), creating too much 

overlap between phases makes it difficult for teams to anticipate changes possibly resulting in 

products that are not optimized for volume manufacturing by the time of their launch (Krishnan et al. 

1997). For example, products that are targeted for Christmas sales (i.e., ramp-up start in September) 

may not gain much from overly compressed schedules and an earlier product launch in August when 

the demand is still only moderate. In such a case, firms may gain more if they allow their teams to 

execute as planned and to focus on manufacturing ramp-up performance since the volumes that are 

missed during the Christmas period are ultimately lost. However, the relationship between gains in 

manufacturing ramp-up performance and speed of product development is complex and deserves 

further research attention in order to weigh up launch timing against development completeness 

(Kalish and Lilien 1986). 
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3.7 Conclusions 

This chapter examines the quantitative interrelationships between product development process 

characteristics (i.e., development lead time), product characteristics (i.e., product complexity), slip 

and manufacturing ramp-up performance over different time horizons. We complement previous 

studies regarding ramp-up performance in three ways. First, we demonstrate that software complexity 

is the dominant driver for development lead time in cell phone projects. Second, we identify 

development lead time as an important predictor for manufacturing ramp-up performance. While 

longer development lead times facilitate higher product maturity and thus sustained manufacturing 

ramp-up performance, later market introductions of new products imply a negative impact on revenue 

inflows. Third, our model also suggests that late schedule slips, although disastrous for customer 

relations in which due dates are crucial, provide the opportunity to build up (semi-finished) product 

buffers which in turn increase the initial ramp-up performance. In conclusion, we contribute to the 

field of operations management by offering a more comprehensive and enriched understanding of the 

drivers for development lead time and manufacturing ramp-up performance in the cell phone industry. 

We also contribute to the existing research by providing an alternative view into the specific and 

lifecycle dependent effects of development lead time, product complexity and slip on manufacturing 

ramp-up performance. Thus, our insights support management efforts to anticipate the consequences 

of product design decisions, to predict development schedule risk levels and to make informed 

decisions about production volume commitments. 

Although our findings are firm specific we believe that our results can also be generalized to fit the 

wider consumer electronics industry because: (1) modern consumer electronics products like hi-fi 

systems, game consoles, cameras and flat screens share similar product and development 

characteristics with cell phones, (2) our operational data were taken from different geographical 

development centers with different cultural and managerial properties and (3) our results extend 

existing empirical work from other industries. 

While this study makes a significant contribution to the academic literature and provides guidance for 

managerial practice, there are also limitations that provide opportunities for further research. First, our 

conclusions are based on a limited number of real life cases that were carried out in a single firm. A 

wider analysis including different firms from the consumer electronics industry utilizing a larger 

sample size might reveal additional effects and thus potentially enhance the capability to make 

generalizations that exceed the scope of the consumer electronics industry. Second, with respect to the 

predictors that are involved in our study we believe that there are further factors such as 

organizational forces or supply chain elements (as outlined in Table 1) that may contribute to 

development lead time or ramp-up performance. A fruitful extension could identify and specify these 

factors and assess their impact on the given model parameters to advance our theoretical 
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understanding of the contingent relationships. Third, as we mentioned earlier, firms need to make a 

conscious choice between project acceleration and ramp-up performance. This circumstance prompts 

for formal models to find the optimal level of project acceleration that maximizes the total revenue 

inflow for given levels of product complexity. Finally, future research should revisit the effectiveness 

of knowledge transfer across projects although we did not find an impact of linear trend on 

manufacturing ramp-up performance in our study. We might expect to find a weak integration of 

knowledge from past related projects, since products develop through a sequence of changes that tend 

to build on past experience (Clark 1985). Therefore, the operational and strategic importance of 

knowledge management (Sherman et al. 2005) deserves special attention, most notably with respect to 

knowledge transfer across projects and across sites. 
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Chapter 4 

 

4 Uncovering Plant Specific 

Differences during New Product 

Ramp-ups 
 

Abstract: We present a framework for the exploration of selected supply-chain structure 

characteristics and their impact on manufacturing ramp-up performance. Our findings indicate that 

the internal configuration and organization of key suppliers (i.e., proximity of tool shops and their 

engineering capabilities to the part manufacturing location), the level of automation within a plant 

and the time period in which a new product is ramped-up are important drivers of manufacturing 

ramp-up performance. Furthermore, the comprehensive analysis of these combined effects provides 

an explanation for the on average lower performance of European manufacturing plants in 

comparison to their Asian counterparts. Since it is the main objective of the high-tech industry to 

achieve full-scale production and thereby time-to-volume targets as quickly as possible, our results 

suggest that the selection of the ramp-up factory is a crucial decision within the product development 

process for new products. 
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4.1 Introduction 

New product development is the life-blood of high-tech manufacturing (Mallick and Schroeder 2005). 

In an environment of growing global competition, shrinking product life cycles, fragmented markets, 

rising cost pressure and frequent technological changes the successful development and introduction 

of new products that meet consumer needs are key capabilities for success. In spite of significant 

progress in product development, operations management and supply chain management the 

transition from development to mass-production – the ramp-up - remains a major challenge but also 

an opportunity to gain a competitive advantage.  

As we show in chapter 1, ramp-up management in general has already been described and analyzed in 

the literature (Clawson 1985, Langowitz 1987, Clark and Fujimoto 1991, Pisano 1995, Terwiesch et 

al. 1998, Almgren 2000, Kuhn et al. 2002, van der Merwe 2004, Schuh et al. 2005) and there are also 

contributions that examine the specific interrelationships between certain supply chain characteristics, 

operations characteristics and ramp-up performance. For example, Clark and Fujimoto (1991) 

performed a global field study to understand and analyze new product development in the automobile 

industry. Although they focused on the effects of strategy, organization and management on product 

development their findings also revealed manufacturing-specific factors that influence ramp-up 

performance. In their view, excellence in manufacturing capability (the ability to make things rapidly 

and efficiently) results in rapid prototype cycles, fast tool development and ultimately in effective 

ramp-up and full-volume production. In addition, Clark and Fujimoto (1991) found indications that 

outstanding manufacturing capabilities result in faster time to market, fewer engineering hours and 

higher quality. Manufacturing capability in terms of physical resource capabilities and organizational 

capabilities was also highlighted as an influential factor on the outcome of the initial production of 

new products by Langowitz (1988). Another large study by Kuhn et al. (2002) identified, among other 

factors, the robustness of the production process as a critical determinant of ramp-up performance and 

an arena for further research. Comparable findings were documented by Schuh et al. (2005) with the 

ambition to identify successful approaches and concepts in ramp-up management. The studies of 

Hayes et al. (2009) and Hayes and Clark (1986) are more specific and also supported by empirical 

data. They explored the sources of differences in productivity at factory level with focus on structural 

factors (factory age, size, location, unionization) and managerial factors (equipment policies, quality 

policies, inventory policies, workforce policies, confusion). In essence, their results reveal that the 

amount of work-in-process and the extent of confusion engendering activities are significant sources 

of variation in total factory productivity. In another study by Pesch et al. (1996) similar operations 

characteristics (plant size, number of product lines, plant age, number of processes, type of processes) 

were investigated with the focus on the compromising effect of these environmental variables on 

manufacturing performance. Their empirical results provide evidence of a relationship between the 
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number of product lines, the number and type of manufacturing processes and plant focus. A broader 

assessment of supply chain factors that drive plant level performance was drawn up by Bozarth et al. 

(2009). They specifically find that upstream complexity, internal manufacturing complexity and 

downstream complexity all have a negative impact on the performance of the manufacturing plant. 

These findings reveal various supply chain characteristics that affect performance on plant level and 

hence support our study that intends to filter out the key characteristics in the specific context of 

manufacturing ramp-up performance. In addition, we expect to uncover plant specific effects with a 

combined assessment of the identified key characteristics. 

The remainder of this chapter is organized as follows. First, we present our conceptual model and 

state our formal Hypotheses. Next, we outline our research setting and explain how our variables are 

measured before we start to present our results. We end the chapter with a discussion of our findings, 

investigate the implications for managers, point out limitations and provide directions for further 

research. 

4.2 Conceptual Model and Hypotheses 

Figure 10 depicts the supply chain structure characteristics examined in this study. While these 

characteristics can be examined at different levels, we decided to examine them empirically at the 

individual product level. In other words, the unit of analysis is the individual cell phone that is 

developed, manufactured and sold by our case firm. At this level of analysis, we focus on the 

identification of differences in manufacturing ramp-up performance that emerge from within the plant 

(operations characteristics), or from the connection of a plant with its key suppliers (supply 

characteristics). 

 

Figure 10. Conceptual Model 
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4.2.1 Operations Characteristics 

The majority of operations characteristics that according to our Hypothesis influence manufacturing 

ramp-up performance (Figure 10) are selected based on the focused factory concept introduced by 

Skinner (1974). He argues that a focused factory has a limited set of demands that are placed on it by 

different products, processes, customers and manufacturing requirements and hence maintains a 

distinctive competence and establishes a competitive advantage. Environmental variables that are 

commonly thought to be related to manufacturing plant focus and ultimately manufacturing ramp-up 

performance are plant age, plant size and the type and number of manufacturing processes in the plant 

(Pesch and Schroeder 1996). In addition, we consider the ownership of the plant and timing aspects 

regarding new product ramp-ups in our model. 

Plant age. Skinner (1974) and Pesch and Schroeder (1996) discuss how factories often lose plant 

focus over time. They argue that a factory typically starts out with a fairly well-defined purpose but 

plant focus weakens in the course of time as managers attempt to fulfil various and often conflicting 

demands from different functions. The controlling function may for example push a plant manager to 

reduce cost by limiting new investments and standardize the manufacturing line layout in order to 

achieve high production volumes and hence economies of scale. On the other hand, product 

development teams may press the plant manager to install special-purpose equipment (e.g., 

customized production test systems) and setup product specific line concepts (e.g., with advanced 

order penetration points) to introduce new product designs and technologies. Over time, this dilutes 

the originally well-defined priorities and initial focus of the plant. On the other hand, plant age might 

correlate with accumulated learning / experience and hence may improve the ability of a plant to 

ramp-up new products successfully. Hence we state: 

 

HYPOTHESIS 1. Plant age is associated with manufacturing ramp-up performance. 

 

Plant size. The literature suggests that small plants are generally more focused than larger plants 

because larger plants tend to produce more product types, have more customers, and technologies 

(Pesch and Schroeder 1996). Another reason was proposed by Schmenner (1983) who notes that some 

plants become large over time due to on-site expansions in order to cope with increased capacity 

needs. In response, multiple product requirements and inefficient plant layouts are some of the factors 

associated with plant size that detract from plant focus and hence performance. For example, any 

compromise between the vast variety of product requirements (e.g., incoming material package type, 

number of assembly and screwing places, size requirements of the assembly places, number and type 
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of production test phases, etc.) and the requirements of a standardized manufacturing line 

configuration throughout the entire plant may lead to inefficiencies and disturbances in the ramp-up of 

new products. However, plants that are capable to produce multiple products with various different 

requirements may have a broader skill / resource capacity and are hence more proficient in coping 

with new product ramp-up challenges. In addition, larger plants are more likely to be able to allocate 

and mobilize additional resources in the short term to support critical ramp-up activities. Hence we 

hypothesize the following: 

 

HYPOTHESIS 2. Plant size is associated with manufacturing ramp-up performance. 

 

Automation. The automation of manufacturing systems can be defined as a substitution of manual 

labour with automatic facilities and equipment so that the system can operate with fewer labor hours 

per produced unit (Vonderembse et al. 1997). In cell phone manufacturing, this usually involves the 

adoption and implementation of various advanced manufacturing technologies, such as special 

purpose machinery, robotics or automatic assembly cells. However, there are controversial opinions 

regarding the impact of manufacturing system automation on performance. On one hand, automated 

manufacturing systems are often regarded as highly efficient, potentially improving the 

competitiveness of manufacturing companies (Säfsten et al. 2007) and offering some localized 

benefits in terms of quality, cost and productivity (Liao and Tu 2008). On the other hand, empirical 

analyses indicate that manufacturing system complexity may affect performance in a negative way 

(Guimaraes et al. 1999), especially within an increasingly turbulent competitive environment. 

According to Guimaraes et al. (1999), even moderately complex manufacturing systems will show 

frequent stops and poor availability unless they are operated by the very same experts who designed 

the system. Apart from equipment availability, automated manufacturing systems are also very 

sensitive to variations in the quality of the parts – something that happens frequently in early ramp-up 

situations. For example, slight variations regarding the position or adhesion force of protective tapes, 

dimensional/color variations of cover parts or deviations in the delivery conditions of suppliers will 

typically not have any effect on the work of a human operator. In the case of automated systems such 

as robots, however, these variations can result in enormous difficulties during the early ramp-up phase 

and the lack of flexibility can cause unstable assembly operations. As manufacturing ramp-up 

performance will depend on the productivity of the assembly process, we state the following 

Hypothesis: 
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HYPOTHESIS 3. Manufacturing system automation negatively affects manufacturing ramp-up 

performance. 

 

Plant ownership. The existing literature reveals that an appropriate degree of outsourcing is an 

important economic and strategic decision, affecting the manufacturing efficiency and 

competitiveness of a firm (Leachman et al. 2005). In our consideration, the degree of outsourcing 

involves the manufacturing of semi-finished products at contract manufacturers along with the 

associated component procurement process. Such an enhancement of manufacturing capacity provides 

the capability to adjust the scale and scope of the manufacturing network and avoids the necessity of 

large investments in durable assets under volatile market conditions. However, outsourcing also has 

several pitfalls and according to Leachman et al. (2005), high levels of outsourcing lead to 

disproportionally lower levels of manufacturing performance in a firm. For example, poor vendor 

management skills may lead to a loss of management control, resulting in higher costs, loss of 

institutional knowledge and the risk of becoming too dependent on vendors to perform operational 

routine tasks (Bardhan et al. 2007). Other risks can include the challenging knowledge transfer and 

information management process across inter- and intra-organizational boundaries (Bardhan et al. 

2007). Moreover, the required capabilities for ramp-up support and improvement rely on detailed 

firm-specific knowledge or on specific knowledge about the technical characteristics of a given cell 

phone that contract manufacturers may not have as a result of their pooling strategy. Therefore, we 

hypothesize that in-house production provides better communication, coordination and knowledge 

transfer within an organization which in turn results in better product-factory fit, problem solving 

ability and ultimately in a better manufacturing ramp-up performance. Hence, we formally state the 

following:  

 

HYPOTHESIS 4. Plant ownership positively affects manufacturing ramp-up performance. 

 

Ramp-up timing. As cell phone manufacturing is exposed to large seasonal volume fluctuations, 

manufacturing operations experience substantially higher production rates during the months of 

September, October and November in order to fulfill the global Christmas demand. This circumstance 

can affect new product ramp-ups due to tight supply with raw materials and components, because 

production engineering resources are fully loaded with the prevailing production or because priorities 

are allocated based on general strategic considerations (i.e., not based on new product ramp-ups). In 

contrast, ramp-ups during low volume seasons can benefit from adequate managerial support and 
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resources and hence reduce manufacturing failures and WIP while continuous improvement projects 

can be started at the same time. This leads to our fifth Hypothesis: 

 

HYPOTHESIS 5. Ramp-up timing (product ramp-ups outside the peak season of the year) positively 

affects manufacturing ramp-up performance. 

 

4.2.2 Supply Characteristics 

Our Hypotheses are based on previous research that points to the importance of supply configurations 

and in particular to the number of key suppliers, their location, their capabilities and their dynamic 

behavior in the context of manufacturing ramp-up performance (Clark and Fujimoto 1991, Swink 

1999, Kuhn 2002, Hayes and Clark 1985, Bozarth et al. 2009). As the supply characteristics for 

product specific components are most relevant in the context of ramp-up performance (Pufall et al. 

2012b), our further discussions refer to key suppliers who play a particular role in the development 

and supply of product specific components that are explicitly developed for the use in specific 

products (e.g., plastic covers, metal parts, antenna elements). Common components that are available 

in the market from multiple sources and that are developed independently of a target product are out 

of the scope for the subsequent discussion. 

Number of key suppliers. According to Bozarth et al. (2009), adding suppliers increases the number of 

information flows, physical flows and relationships that must be managed. In addition, multiple 

suppliers for product specific parts expose sparse development resources to a wide range of 

potentially aggravating factors such as additional verification and approval cycles. However, in order 

to sustain bargaining power and to mitigate supply risks, purchasing managers often request second 

sources for critical parts. The availability of critical parts from different sources decreases the risk of 

supply shortages during ramp-up situations and also helps to stimulate competition between suppliers. 

Delivery inabilities or issues regarding material quality on the part of one supplier provide an 

opportunity for other suppliers to excel on these dimensions in order to gain volume share and hence 

additional profit. Thus, we believe that the negative effects of increased development and order 

management efforts are clearly compensated by the benefits of improved supply availability/quality in 

the framework of a multiple source configuration (i.e., more than one key supplier for product specific 

parts). We formally state this in our sixth Hypothesis: 

 

HYPOTHESIS 6. The number of key suppliers positively affects manufacturing ramp-up performance. 
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Supplier co-location. Co-location aims at integrating the forward physical flow between suppliers and 

customers (Cagliano et al. 2004) and requires a close coupling of the production systems between 

both parties. While this concept has been discussed for mass-production conditions, manufacturing 

ramp-up performance can also benefit from logistical proximity in several ways. First, safety stocks 

and hence the delay between fabrication and use is positively affected since safety stocks need to 

protect against shorter lead times. The decreased delay between fabrication and use also results in 

fewer opportunities for deterioration and in less information loss regarding quality. As stated in the 

just-in-time philosophy (Schonberger 1982), material quality problems are for example less likely to 

cause utilization losses in the target manufacturing plant if suppliers and customer operations are co-

located. In that case, supplier teams can visit the customer operation in little time, gather all relevant 

data, implement improvements in their own component manufacturing line and deliver new or 

modified parts to the customer operation within hours. In contrast, long supplier lead times due to 

remote supplier locations are found to have a significant negative impact across various performance 

measures (Bozarth et al. 2009). This leads to the following Hypothesis: 

 

HYPOTHESIS 7. Supplier co-location positively affects manufacturing ramp-up performance. 

 

Supplier configuration. In typical cell phones, most of the product specific parts (i.e., all structural 

frames, connectors and most of the outer covers) are manufactured by plastic injection molding. This 

manufacturing process uses thermoplastic resin which is fed into a heated chamber where it is melted. 

In the next step, a plunger forces the melted plastic into a cooled mold cavity where it solidifies. A 

painting process in which the parts get their final surface finish follows before the parts move through 

an assembly line in which additional components are assembled (e.g., foams, stickers, gaskets and 

even electromechanical parts such as connectors and speakers). Finally, the parts are packed for 

shipment to the customer manufacturing plant. Molds and selected assembly tools are made out of 

specialized materials which require precision machining in dedicated departments - often called tool 

shops. Since the mold has a large influence on the dimensional accuracy and surface finish of the 

parts, the design and manufacturing of molds is a crucial activity that requires sophisticated CNC 

machinery as well as dedicated engineering teams. Before and even during the ramp-up phase these 

specialized teams are responsible for the fine tuning cycles concerning the mold and for the support of 

mass-production personnel in order to achieve the desired quality levels. As most molds require 

several polishing and dimensional fine-tuning cycles in the tool shop, the physical proximity between 

both departments becomes an important factor. As Pisano and Shih (2009) note, product and process 

innovations are intertwined and process engineering expertise depends on daily interactions with 

manufacturing. Hence, we hypothesize that the essential factor in a ramp-up context is not just the 
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physical distance between a supplier and its customers operation (co-location) but also the internal 

configuration of the supplier (i.e., the way how tool shops and their engineering capabilities are 

integrated into the part manufacturing network). Supplier configurations in which tool shops reside 

next to the parts manufacturing location may provide shorter feedback loops, problem solving cycles 

and reduced machine/assembly line stoppages compared to scattered setups. Therefore we state the 

following: 

 

HYPOTHESIS 8. Supplier configuration resource proximity positively affects manufacturing ramp-up 

performance. 

 

Sales forecast changes are a significant source of dynamic complexity in the supply chain and were 

found in terms of plan instabilities to be relevant to plant-level performance (Bozarth et al. 2009). 

This is because rising levels of volume forecasts increase the size and scope of a plant’s demand 

management and order management activities to establish elevations in production schedules. Apart 

from the influence of rising forecast changes on production schedules there may also be an effect on 

production execution. For example, factories will respond to decreasing demand forecasts with 

reductions in output (to avoid finished goods inventories) and material orders compared to the original 

plans. This may cause disillusion on supplier side (i.e., suppliers rank down the product in priority as 

a result of diminishing revenues) and distort ramp-up performance although the overall supplier and 

manufacturing ramp-up performance might be fine. Accordingly we state: 

 

HYPOTHESIS 9. Sales forecast changes positively affect manufacturing ramp-up performance. 

 

4.3 Measures 

Manufacturing ramp-up performance (dependent variable). Following the existent ramp-up literature 

(Langowitz 1988, Clark and Fujimoto 1991, Terwiesch 1999, Almgren 2000, Kuhn et al. 2002, 

Merwe 2004, Schuh 2005), we measure manufacturing ramp-up performance in terms of output 

against plan. More precisely, we calculate it as the ratio between the produced quantity during the 

ramp-up period and the planned quantity at the beginning of the ramp-up period. Both variables are 

taken from a production database that contains highly reliable data concerning both planned and 

actual numbers. 
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4.3.1.1 Operations Characteristics Measures 

Plant age is measured as the time in years a plant has been in operation prior to the ramp-up start of 

each product. Plant size represents the total area allotted in square meters to the manufacturing and to 

the storage of manufacturing-related materials. The variable automation is coded as a dummy variable 

with 1 indicating that a substantial share of the manufacturing process is automated versus fully 

manual assembly lines. Plant ownership is a dummy variable with 1 indicating in-house facilities (i.e., 

Nokia owned) and 0 indicating contracted facilities. In our sample, three of the nine facilities were 

owned by contract manufacturers which were responsible for the manufacturing process up to a 

generic product level. Afterwards, the units were shipped to in-house facilities for the final 

configuration and distribution. Ramp-up timing is another dummy variable with 1 indicating all 

months of the year except for September, October or November. 

4.3.1.2 Supply Characteristics Measures 

To establish our variable number of key suppliers, we counted the number of product specific part 

suppliers that are qualified and ready to supply product specific parts to the ramp-up factory at the 

start of the ramp-up phase. This information is derived from the sourcing parts list and project 

documentation that also provides the data for two other variables: supplier co-location and supplier 

configuration. Supplier co-location is measured as the transportation lead time in days between the 

respective supplier and the ramp-up factory, whereas supplier configuration is coded as a dummy 

variable with 1 indicating that tool shop and part manufacturing are closely connected within a 

supplier and 0 otherwise. Finally, sales forecast change is defined as the ratio between the forecasted 

demand over the ramp-up execution period and the forecasted demand over the same period but 

collected 12 weeks before ramp-up start. 

4.3.1.3 Control Variable 

Since we intend to identify plant level supply chain structure characteristics that affect manufacturing 

ramp-up performance and that can be generalized across product categories, we need to control for 

aspects of product complexity and development lead time. Product complexity reflects the technical 

complexity of a product and is represented by the first component of a principal component analysis 

with seven input variables: (1) the number of product specific components, (2) the number of 

common components, (3) the extent of parts coupling between all electrical components, (4) the 

degree of product novelty, (5) the size of the SW code, (6) the degree of SW novelty and, (7) the 

number of SW errors. This approach retains the nature of the original variables but reduces their 

number in order to enhance robustness of the subsequent multiple regression analysis concerning 

statistical power and multicollinearity. Development lead time refers to the elapsed time in days 

between the M0 milestone (end of concept development) and the M3 milestone (start of production 

ramp-up) as described in section 3.2.1. Further details about the variables in general are provided in 
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section 2.2.2. Please note that we do not control for in-house manufacturing depth as this aspect is 

homogeneous throughout our sample. 

4.4 Results 

To enable a comparison of effect sizes, we standardized all variables (mean = 0, variance = 1) before 

running the regression calculations. This is useful as our data is recorded in different scales (e.g., 

component count uses pieces, plant age uses years). Unstandardized results, descriptive statistics and 

pairwise correlations are provided in Appendix-C1. In general, correlations are as expected and 

moderate in magnitude. The multivariate regression results are presented in Table 13. The 

assumptions of our multiple regression models were tested with several statistical methods. First, all 

data panels were screened for abnormal observations to avoid bias in the regression calculations. 

Next, the predicted values were plotted against standardized residuals to show a random scattered 

pattern, supporting the assumption of linearity and homoscedasticity. For each regression, we 

calculated variance inflation factors to rule out multicollinearity problems. The resulting variance 

inflation factors (< 5.1) indicated no significant multicollinearity effects for any of the models (Hair et 

al. 2006). In addition, the normality of the error term is supported by the appropriate histograms and 

normal probability plots. 

In column 1 (R1), we present the base result, based on the inclusion of our control variables. Product 

complexity has a significant negative influence on manufacturing ramp-up performance in all the 

regression models which is in line with our reasoning that more complex products are harder to ramp-

up (refer to chapter 2) and previous studies (Pufall et al. 2012a, Pufall et al. 2012b). Likewise, 

development lead time has a significantly positive effect on manufacturing ramp-up performance as 

already shown in chapter 3. While this effect always remains strong, its significance starts to weaken 

in the subsequent models (R2 and R3). 

In column 2 (R2), we include the measures of our operations characteristics. Neither do plant age, 

plant size or plant ownership add to model fit nor do they generate statistically significant results. This 

reflects the inconclusiveness of the theory that provides arguments for and against an effect of plant 

age, plant size and plant ownership on manufacturing ramp-up performance in this case. In addition, 

the management in our sample plants has possibly made efforts to focus the older or larger plants that 

are included in this study by renewing equipment, by aligning them with other plants and by 

providing them with a clear direction. 

However, we find automation and ramp-up timing to be significantly different from zero in our 

statistical analysis. This supports Hypothesis 3 and Hypothesis 5. 
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In column 3 (R3), we additionally include the measures of our supply characteristics. The results 

suggest that the number of key suppliers and their location are statistically insignificant and hence not 

relevant to explain differences in manufacturing ramp-up performance between plants. By contrast, 

supplier configuration has a very strong, positive and significant effect on manufacturing ramp-up 

performance. Hypothesis 8 is supported by this result. The effect of sales forecast change is 

directionally correct and statistically significant which supports Hypothesis 9. The explained variance 

sums up to 47%. 
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Table 13. Regression results for manufacturing ramp-up performance 

 

Notes: N = 46, values in parentheses are standard errors, *** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed 

tests. All VIF values < 5.1. 

  

Control variable

Product complexity -0.703

(0.142)

***
-0.654

(0.186)

***
-0.495

(0.188)

**

Development lead time 0.277

(0.142)

*
0.233

(0.147)

0.167

(0.150)

Operations characteristics

Plant age (H1) 0.079

(0.199)

-0.043

(0.205)

Plant size (H2) 0.219

(0.233)

0.127

(0.239)

Automation (H3) -0.343

(0.154)

**
-0.292

(0.168)

*

Plant ownership (H4) -0.061

(0.213)

0.056

(0.215)

Ramp-up timing (H5) 0.211

(0.130)

0.262

(0.131)

*

Supply characteristics

Number of key suppliers (H6) -0.052

(0.132)

Supplier co-location (H7) -0.038

(0.225)

Supplier configuration (H8) 0.382

(0.198)

*

Sales forecast change (H9) 0.210

(0.118)

*

R
2
(adj)

R1 R2 R3

33.90% 40.10% 47.00%
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4.5 Discussion and Managerial Insights 

The key objective of this study has been to investigate the effect of supply chain structure 

characteristics on manufacturing ramp-up performance using operational data from the cell phone 

industry. We now evaluate the significant characteristics as shown in Table 13 from top to bottom in 

more detail. 

The strong negative effect of automation level on manufacturing ramp-up performance suggests that it 

is easier for manual lines to absorb the various ramp-up difficulties in cell phone manufacturing. In 

other words, positive effects of automation can only be expected under appropriate levels of 

automation (Säfsten et al. 2007). While automated systems are often regarded as highly efficient for 

high volume manufacturing, their inflexibility seems to limit the number of demands that a line can 

accept during highly dynamic periods. For example, small variations in the quality of parts (e.g., 

dimensional or color variations) are a common issue during new product ramp-ups. Such deviations 

from the norm may interrupt the production flow as automated grippers, fixtures, assembly robots or 

transportation systems cannot be configured and trained prior to the ramp-up start with material that 

represents the full range of variations commonly found in mass-production material. This results in 

laborious modification and fine-tuning activities, dispute over particularly skilled but sparse 

engineering personnel and longer downtimes because backup systems are less likely to be available in 

automated environments than in manual systems. We also observed that product development teams 

tend to use manual assembly solutions during the prototyping phase due to their advantages regarding 

cost, flexibility and manufacturing lead-time. However, this has a negative effect on the verification 

process in manufacturing as industrial engineering teams lack the necessary time for development and 

fine-tuning. Altogether, our findings and own observations suggest that manual systems in cell phone 

manufacturing are more adaptable in a ramp-up context. They require less fine-tuning and engineering 

support and it is a lot easier to install or duplicate them in order to accommodate for the transition to 

mass-volume production.  

Also, our results suggest that manufacturing ramp-up performance is lower during the peak season 

from September to November. Since the time period of September to November is characterized by 

higher production volumes (to serve the Christmas demand), plants generally experience 

shortcomings in engineering support and material availability. The available engineering resources in-

house and at the suppliers will have to manage a larger number of jobs and activities during such time 

periods, leaving less time to support new product ramp-ups. At the same time – and particularly 

regarding common components – there will be tight material supply because suppliers experience 

similar demand peaks from other customers. Also, there are cases in which both product development 

activities and ramp-up volume plans are aggressively pushed forward in order to capture the 

Christmas demand. While this behavior may show a positive effect on product availability (time-to-
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market) it may reduce the level of product maturity since final verification and fine-tuning activities 

are shortened or reduced. For example, a high number of immature production test cases (in terms of 

execution and tolerance limits) may cause more work in process and throughput losses compared with 

a fully verified and fine-tuned test setup. Since this may negatively affect the manufacturing ramp-up 

performance of the new product, a common managerial consequence is to find a trade-off - given 

strong demand for all products - between the limited availability of a new product versus the 

disturbance that is created in the factory. This trade-off also confronts the shift of many engineering 

resources to stabilize the new product ramp-up with the output loss of existing products that would 

use the same production line as the ramp-up product. 

The combination of findings regarding supplier configuration and co-location (we found a strong 

relationship between supplier configuration and manufacturing ramp-up performance but no 

relationship between supplier co-location and manufacturing ramp-up performance) is intriguing. This 

finding suggests that the internal configuration of a supplier – the way how tool shops and their 

engineering capabilities are positioned within the manufacturing network of a supplier – is a more 

critical determinant for manufacturing ramp-up performance than co-location alone. In other words, 

product specific component supply in proximity to the tool shop and its engineering capability is more 

important than general supply proximity because “when it comes to knowledge, distance does matter” 

(Pisano and Shih 2009, p. 4). One explanation of this effect is based on the planning principle that 

prevails in Nokia during the ramp-up phase. During ramp-ups, factories execute a push plan based on 

sales forecasts as exact customer orders are not yet known. To avoid inefficiencies and reduce 

planning complexity, the push plans generally restrict the number of product variants (e.g., color, 

artwork). Consequently, the unsteady delivery of materials as a result of internal manufacturing 

difficulties at a supplier (e.g., molding equipment downtime due to assembly problems or quality 

issues on customer side that require tool modifications) has a more disruptive effect on manufacturing 

ramp-up performance than reduced responsiveness in terms of extended transportation lead times. 

While responsiveness and hence short lead times are critical under mass-production conditions (i.e., 

whenever the full variety of product variants can be ordered by customers), their effect is only of 

secondary importance during the ramp-up phase because the production program is still restricted to a 

decent amount of variants and already known in advance. As a result, this advocates a shift in the 

perspective of managers and researchers in the field of manufacturing strategy regarding the 

importance of co-location. If the positive impact of co-located suppliers on manufacturing ramp-up 

performance is in fact driven by the internal configuration of the suppliers and if the proximity 

between the tool shop capability and the associated part manufacturing location can minimize a 

performance penalty, the selection of lead suppliers should be based on their level of integration 

within the relevant capabilities – particularly in case of incomplete tool approvals and unstable part 

manufacturing conditions that prevail during the ramp-up phase.  
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Also, this study sheds light on the influence of sales forecast instabilities on manufacturing ramp-up 

performance. As consumer electronics products like all high-tech products experience fast-changing 

market conditions, it is imperative in this industry to respond quickly to these changes as our findings 

indicate that sales forecast instabilities have an significant effect on manufacturing ramp-up 

performance. As already pointed out in our Hypothesis, falling demand in particular is very likely to 

cause confusion on supplier side and to create a bullwhip effect in the supply chain. As a result, 

substantial fluctuations in the manufacturing and supply plans may occur even if the sales forecast 

varies only slightly over time. As Bozarth et al. (2009, p.81) note, “unstable production schedules will 

force manufacturers to either put in place planning and control systems that are capable of dealing 

with the complex interactions required to link production plans and execution activities, or experience 

unpredictable, non-linear impacts on lower-level production and material plans”. This calls for 

awareness in management and sales teams in order to understand the effect of plan changes on overall 

manufacturing ramp-up performance and hence on product availability. 

Finally, the joint consideration of supplier configuration and automation provides a plausible 

explanation for the finding that European plants show a lower average performance than their Asian 

counterparts – a finding that was already highlighted in chapter 3. The level of automation is strongly 

influenced by labor costs and since labor costs are generally lower in China and Korea than in Europe, 

it is more likely to find manual production lines in Asian plants. This argumentation is in line with our 

sample in which all Asian plants are equipped with manual lines. As a result, the European plants are 

much more exposed to the ramp-up challenges that are connected with higher levels of automation. 

Another explanation for the differences in performance related to plant location is based on the supply 

structure that prevails in Nokia. Compared to the situation in Europe, the percentage of supplier 

configurations in which tool shops and engineering capabilities are close by is higher in Asia since the 

majority of product specific part suppliers have their home base and engineering competence in 

China. European plants may also have co-located suppliers but these suppliers are connected with 

dedicated tool shops in China. This situation may cause a lasting damage on the European plants if 

sophisticated engineering and manufacturing capabilities that underpin innovation in products are 

geographically separated (Pisano and Shih 2009). Although these variables are structural in nature – 

i.e. not under direct control of the development team or factory management – there is still potential 

for managerial influence. Our results indicate that new product ramp-ups may benefit from lead plants 

that are not necessarily based in Asia but still operate in a highly manual and hence flexible manner 

and within supply networks that offer tightly interlinked engineering and manufacturing capabilities. 

4.6 Conclusions 

This chapter provides an empirical examination of the supply chain structure characteristics that are 

commonly thought to be related to manufacturing ramp-up performance. Our results highlight the fact 



Uncovering Plant Specific Differences during New Product Ramp-ups 

93 

that the internal organization of suppliers, the level of automation within a plant, the overall sales 

forecast stability and the time period in which a new product is ramped-up are important drivers of 

manufacturing ramp-up performance. Particularly the strong relationship between supplier 

configuration and manufacturing ramp-up performance enhances the exiting research by the 

introduction of a concept that is specific to a ramp-up context. Product specific component supply in 

proximity to the tool shop and its engineering capability is more important than supplier co-location. 

In addition, we argue that the differences in manufacturing ramp-up performance between European 

and Asian plants are primarily driven by the differences in automation (higher automation levels are 

more common in Europe as a result of labor cost pressures) and supply structure (the percentage of 

advantageous supplier configurations in which tool shops and engineering capabilities are close by is 

higher in Asia). 

Because it is the main objective of the high-tech industry to achieve full-scale production and thereby 

time-to-volume targets as quickly as possible, our results suggest that managerial decisions regarding 

the selection of the lead factory are crucial for ramp-up success.  

These findings trigger the need for future research to address potential weaknesses of the study and to 

explore further effects. First, there might be additional factors around the introduced supply-chain 

structure characteristics such as the organizational context and culture that may contribute to ramp-up 

performance. Further research could identify these factors and test their impact on manufacturing 

ramp-up performance within this framework. Also, a broader analysis including additional firms from 

the consumer electronics industry and the utilisation of a larger sample might reveal additional effects 

and enhance the generalizability of our findings specifically with regard to the effects of automation. 

While this study points out to the detrimental effects of automation, other studies highlight its 

benefits. Future research should explore the most effective and appropriate level of automation for 

both the ramp-up period and also the later phase of mass-production in different industry contexts. 
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Chapter 5 

 

5 Conclusions 
In this dissertation, we examined the ramp-up process of consumer electronics products – cell phones 

in particular – and we focused on the analysis of quantitative relationships between several influential 

characteristics, development lead time and ramp-up performance. We also investigated how these 

relationships change in the course of the ramp-up lifecycle and suggested potential explanations based 

on our knowledge and deep insights into the entire ramp-up process. In the following section we will 

summarize the results, insights and conclusions of our research studies more thoroughly. Additionally, 

we will provide detailed answers to the research questions that were posed in the introductory section 

of our study and demonstrate implications for the industrial practice – which is one of the main 

intentions of our research. Finally, we will discuss some ideas for future research. 

5.1 The Impact of Product Complexity on Ramp-up 

Performance 

In the introductory section we raised a number of research questions that are related to the 

determinants of product ramp-up performance. Our first question was stated as follows:  

 

I. How can product complexity characteristics of consumer electronics devices, and specifically 

of cell phones, be modeled in quantitative terms? 

 

The main objective of this question was to identify a set of complexity characteristics that we 

anticipated to be strong predictors of total product ramp-up performance. We were looking for 

characteristics that are already well described in the literature, theoretically rigorous and available for 

our data collection. Based on our literature review we find that across a wide range of disciplines – 
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including the physical sciences, engineering, and management – there are two basic approaches to 

define product complexity. The first one considers a product in functional terms and usually describes 

what the product is supposed to do rather than how it is designed and implemented. An example for 

this approach is the work of Griffin (1997). She operationalizes product complexity as the number of 

functions designed into a product. This applies across various industries and products but also has its 

limitations as a product function can be implemented into the physical structure of a product in 

various ways. For example, two cell phones might offer very similar functionalities but still vary 

considerably in their internal complexity. Consequently, we follow the second approach and consider 

products in physical terms and product complexity as a property of the product (Rodríguez-Toro et al. 

2004). Due to our unique access to operational data we are able to measure the physical complexity – 

or as we call it hardware complexity – on the basis of Novak and Eppingers (2001) definition as (1) 

the total number of components = component count, (2) the number of signal networks across all 

electrical and electromechanical components = parts coupling, and (3) the percentage material value 

of new physical components in a complete cell phone = product novelty.  

While this definition is consistent with the existing literature it ignores the growing importance of 

software which is often neglected in the available empirical studies (e.g., Clawson 1985, Langowitz 

1987, Almgren 2000, Vandevelde and Van Dierdonck 2003, van der Merwe 2004, Berg 2007). 

However, in the case of consumer electronics products such as cell phones, functionality is steadily 

shifting from hardware to software. Hence, software increasingly affects the product development 

process. Just a few years ago, the cell phone market was dominated by single- and dual-band, single-

mode cell phones that supported only few cellular bands and shared the same modulation schemes and 

protocols. In contrast, modern cell phone designs are much more complex, providing multiband, 

multimode cellular support, along with Bluetooth personal area networking, GPS-based positioning 

technology, WLAN for high-speed local-area data access, mobile digital TV for real-time viewing 

functionalities and user applications such as games, social networking clients and augmented reality. 

Also, software-based implementations have become more common as hardware release cycles are 

more expensive and inflexible (e.g., due to dependencies on external chip set suppliers and their 

schedules). 

Previous research acknowledged that software complexity is multidimensional in nature (Banker et al. 

1998, Zuse 1991) and proposed a variety of complexity measures. However, these measures vary on a 

small number of orthogonal dimensions (Banker et al. 1993, Munson and Koshgoftaar 1991) and 

incorporate common properties (Weyuker 1988). Hence, we calculate software complexity using a 

combination of indirect measures from the design specification and direct measures from the software 

code. In an approach that is similar to the definition of hardware complexity, we define software 

complexity as (1) the number of executable lines of code = SW code size, (2) the degree of software 

newness = SW novelty, and (3) the number of software errors = SW error count. SW error count plays 
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a particular role in our definition of software complexity. First, early error assessment allows the 

development teams to predict the remaining development effort for the subsequent stages until ramp-

up. Second, SW newness and SW code size do not sufficiently account for differences in the 

individual product configuration. Even a little amount of SW newness and small code size can for 

example lead to a disproportionate amount of development effort if the particular configuration results 

in a large number of errors due to interaction and side effects. 

As we will show in the following sections this set of exactly quantifiable complexity characteristics 

contributes significantly to the explanation of manufacturing and total product ramp-up performance 

levels. At the same it time sheds light on different individual effects that help to enhance our 

understanding of the entire ramp-up process. This is the topic of our second research question: 

 

II. How do product complexity characteristics interact with each other and subsequently 

influence manufacturing and total product ramp-up performance? 

 

Our empirical analysis suggests a strong coupling between hardware and software characteristics 

which is consistent with the prevailing view that embedded systems like cell phones follow a 

hardware-software co-design approach. In addition, and based on our argumentation that most of the 

new innovations in cell-phones originate from new software features, we find a directional coupling 

from software to hardware complexity. In other words, functionality is more and more split into 

features that can be implemented via software as hardware release cycles are slower and inflexible. 

Thus, software is actually determining the hardware characteristics. This is a unique feature of cell 

phones and stands in contrast to other electronic products that differ from this co-design approach, 

hence they may either not show this coupling (e.g., desktop PCs) or even show a reversed coupling 

from hardware to software (e.g., ultra-low cost devices such as toys in which the hardware 

configuration determines the costs and thus also the feasible software functionalities). 

In a next step, we analyzed the individual contributions of these complexity characteristics on 

manufacturing ramp-up performance which we defined as a combination of final yield and effective 

utilization. While we find that final yield is dependent on product specific component count (i.e., a 

complexity characteristic that is likely to increase opportunities for failure during production) we find 

effective utilization to be dependent on product specific component count and parts coupling. 

Interestingly, the strong impact of manufacturing ramp-up performance on total product ramp-up 

performance is due to effective utilization and not due to final yield. In their pursuit to improve total 

product ramp-up performance, managers should therefore focus on effective utilization instead of 
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final yield. This suggests that yield losses can be compensated during the ramp-up phase (i.e., on 

behalf of sufficient repair capacity) while drops in effective utilization due to unscheduled downtime, 

setup changes or reduced speed – which depends on product specific component count and parts 

couplings as we mentioned above - cannot be absorbed by any repair activity and hence has a direct 

and immediate impact on manufacturing ramp-up performance. As an example, the inability of 

sourcing teams to provide the right material on time and in the required quantity is a common 

disturbance factor for effective utilization. That is because material management is a very complex 

process and the related factors like forecasting, supplier coordination and engineering change 

handling increase with the number of components that have to be managed. Another commonly found 

obstacle for effective utilization is related to the applied production test systems. These systems are 

among the most complex within the manufacturing line and their stability and robustness depends on 

the required level of product specific adaptation and on the specified test plan complexity which is a 

function of product specific component count and their couplings. For this reason, products with 

numerous components and complex parts couplings are more likely to cause disturbances regarding 

effective utilization which results in difficulties for the manufacturing ramp-up performance and 

ultimately in a lower total product ramp-up performance since the generic part of a cell phone – 

produced by the manufacturing system – is a precondition for the subsequent final configuration 

activity as mentioned in section 1.2. Cell phones are manufactured with delayed customization (i.e., 

postponement), thus the final customization does not take place until real customer orders are known. 

As a result, manufacturing ramp-up performance represents how well the generic parts of a cell phone 

is manufactured or aggregate production plans are met. Poor manufacturing ramp-up performance will 

thus result in significant downstream problems since final configuration activities cannot take place as 

planned, customer shipments are delayed and ultimately total product ramp-up performance will 

suffer. 

While manufacturing ramp-up performance – with effective utilization as a key characteristic – turns 

out to be the strongest predictor of total product ramp-up performance, we find that the novelty 

aspects of both software and hardware are also significant drivers of total product ramp-up 

performance. As expected, product novelty has a negative effect on total product ramp-up 

performance since novel designs increase the number of uncertainties and issues that development 

teams, manufacturing teams, suppliers and even customers have to cope with. In response, the 

achievement of planned performance levels requires more learning. Another observation is the fact 

that products with a large share of product novelty are particularly slow at the beginning of the ramp-

up period which forces the ramp-up teams to achieve a disproportionately high increase in output 

towards the end of the ramp-up period. While cumulative levels of manufacturing output may be on 

track at the end of the ramp-up period, final configuration activities are often behind schedule due to 

the delayed arrival of products at the customization and distribution stage. 
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Surprisingly, software novelty has a positive effect on total product ramp-up performance. As we 

pointed out earlier, software schedules become increasingly unpredictable and late schedule slips are 

increasingly likely due to the ongoing growth with reference to software content and complexity. 

Firms may respond to potential ramp-up delays due to a lack of software readiness with a gradual start 

of production since in most cases the hardware components are already available and prepared for 

production in such cases. Despite the rising inventory levels for semi-finished products, such an 

approach can be helpful to prepare production and material supply for the rescheduled ramp-up. As 

soon as the software release is ready and approved for production only a simple re-programming step 

is required and the product buffers are immediately available. This allows for higher output levels 

during the initial ramp-up phase. 

5.2 How does Development Lead Time affect 

Performance over the Ramp-up Lifecycle 

After having described the relevant product complexity and manufacturing characteristics associated 

with ramp-up performance and after offering an enhanced understanding of their effects we can now 

turn to the next question and analyze how these relationships change over the ramp-up lifecycle. In 

addition, we extend our consideration by including development lead time as a new variable in order 

to study not only time-to-volume but also time-to-market determinants. This leads us to our third 

research question: 

 

III. What are the interrelationships between product characteristics (product complexity), 

product development process characteristics (development lead time) and manufacturing 

ramp-up performance over the course of the ramp-up lifecycle? 

 

We addressed this question in chapter 3 by aggregating the previously specified characteristics into 

formative constructs in order to use PLS path modeling. This means we integrated component count 

(separated into product specific component count and common component count), parts coupling and 

product novelty into a hardware complexity construct and arranged the software related characteristics 

(SW code size, SW novelty, SW error count) within a software complexity construct. In addition, we 

included product development lead time as an additional construct that is made up by the different 

product development phase durations and linked all constructs to the manufacturing ramp-up 

performance construct represented by effective utilization. The key findings from this advanced 

approach confirm our earlier results that were based on a series of OLS models but in addition, they 

also provide insights into the determinants of product development lead time.  
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Most noticeable, our PLS results suggest software complexity to be the dominant driver for 

development lead time in cell phone projects. This result is in line with our Hypothesis that 

functionality steadily shifts from hardware to software and hence increases the scale and level of 

uncertainty in the software design task as well as the tendency to fix hardware errors via software 

solutions. In addition, we observe a trend that hardware becomes a commodity that is available from 

different sources. This, in turn, calls for the involvement of purchasing managers with a focus on 

material cost. As a result, there are examples in which development teams were forced to adapt the 

software code to second source components and slower but more cost efficient processors – activities 

that typically tend to have a negative correlation with schedule performance. The managerial 

implication of this finding is that time-to-market improvements are more likely if product 

development managers focus on diminishing the complexity of the software design tasks instead of 

decreasing hardware complexity by using fewer and less novel components. In highly competitive 

markets where the market imperatives entail the implementation of higher levels of software 

complexity, managers need to understand the potential impact of their product design decisions and 

the potential of software engineering practices (e.g. software postponement) to accommodate to such 

risks. 

Having identified software complexity as the main determinant of development lead time, we 

subsequently find a detrimental effect of compressed development lead times on manufacturing ramp-

up performance. Shorter development lead times mean that the various project activities have to be 

executed faster than normal, which makes it harder for project managers to predict activity outcomes 

and thus more difficult to achieve on-time performance (Swink 2003). In projects with highly 

compressed schedules we additionally experienced fewer design-build-test cycles and less time for 

evaluation activities between these cycles. These circumstances often cumulated in late fine-tuning 

activities and hence in discontinuous output during the ramp-up phase. Also, product development 

managers are tempted to shorten the development lead time in order to profit from special events (e.g., 

trade shows) or high peak sales periods (e.g., Christmas). While the inflow of revenues depends on 

time-to-market performance, firms must be careful not to over-accelerate the development lead time 

because customer relations can be negatively affected if the required ramp-up performance levels (i.e., 

output levels according to plan) cannot be accomplished. Managers need to be aware of the tradeoff 

between speed of development and sustained ramp-up performance as suggested by our results in 

order to assign the most suitable launch timing strategy. 

In addition to the already mentioned insights we also find slip – defined as the time delay between the 

planned and actual ramp-up start – to have a positive effect on manufacturing ramp-up performance. 

This stunning effect suggests that schedule slips – frequently caused by errors that are detected in the 

final acceptance phase but fixed in software due to the short release cycles – allow for the gradual 

start of production and the buildup of semi-finished product buffers ahead of the rescheduled ramp-



Conclusions 

101 

up. This allows for the execution of additional engineering trials to fine-tune the manufacturing 

process, review the supplied material quality and the consumption of created product buffers at the 

start of the full scale ramp-up phase. However, the practical constraint of this approach is the fact that 

only early product availability is improved while development lead time on the other hand is not 

affected.  

Finally, we explored the behavior of these relationships over the entire ramp-up lifecycle in order to 

illustrate the dynamic nature of the ramp-up process. In a first step, we applied our model to a 

relatively short ramp-up period of four weeks (i.e., manufacturing ramp-up performance is calculated 

over the first four weeks of the ramp-up execution phase) and hence were able to observe that the very 

dynamic and chaotic ramp-up start can only be partially captured by our model. However, this 

situation changes if we increase the examined time period to eight weeks. Predictive relevance clearly 

increases and slip turns out to be a significant positive predictor of manufacturing ramp-up 

performance – for which we have provided an explanation above. However, this positive effect of slip 

fades out rather quickly if the considered time horizon is further increased. In other words, the effect 

of slip quickly diminishes after the product buffers created during the initial delay are used up. Over a 

period of 12 weeks we gained the same results that have already been illustrated. If we increase the 

examined ramp-up period beyond the 12 week horizon we find that ramp-up specific difficulties 

diminish while factors related to mass volume production start to appear.  

If we consider the complexity characteristics and their impact on manufacturing ramp-up performance 

only, we find a distinctly different pattern between them. Hardware characteristics seem to be a 

permanent source of difficulty over the entire life cycle which suggests that the problem solving 

cycles related to hardware components are slow and cumbersome (i.e., there is typically substantial 

pipeline inventory that needs to be used up before component changes or updates can be introduced). 

Software complexity on the other hand shows a more volatile pattern. This may be the result of rather 

quick software and variant creation release cycles that allow for rather quick reactions to new 

problems and occurring errors. 

5.3 Uncovering Plant Specific Differences during 

New Product Ramp-ups 

We finally turn to our last research question in which we analyze additional characteristics that are 

supposed to affect manufacturing ramp-up performance in order to gain additional insights into the 

entire ramp-up process: 
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IV. What supply-chain structure characteristics uncover plant specific effects in the context of 

manufacturing ramp-up performance 

 

In summary, the empirical results in chapter 4 suggest that the level of automation within a plant and 

the internal organization of key suppliers (i.e., suppliers that are responsible for product specific parts) 

– as well as the ramp-up timing and overall sales forecast stability – are significant drivers of 

manufacturing ramp-up performance. 

Although automated systems are often considered to be highly effective and efficient in high volume 

production, our results suggest that the benefits of automation are rather limited in a ramp-up context 

due to the intrinsic inflexibility of most automated systems. We observed that even small variations in 

the quality (e.g., dimensional variations) or packaging of parts may interrupt the production flow of 

automated systems (i.e., grippers, fixtures, assembly systems, robots, transportation systems) and 

hence result in line stops or reduced output. For example, human operators can easily deal with slight 

variations in part dimensions by adapting the assembly procedure, the usage of auxiliary tools or by 

adapting the assembly force. Automated grippers or assembly robots on the other hand require re-

adjustments, gripper modifications or program changes that result in extended down time. The fact 

that the configuration and installation process of most automated systems is performed with pre-ramp-

up material that does not represent the full range of variation commonly found in mass-production is a 

possible explanation for this effect. The results are laborious fine-tuning activities – mainly during the 

ramp-up phase – that have a direct effect on downtime and hence on manufacturing ramp-up 

performance. Manual systems (i.e., assembly jigs and fixtures) on the other hand are simple to install 

and easy to adapt. In case of damage it is also easier to repair or duplicate them. In addition, manual 

systems are already available during the prototyping phase (as a result of their simplicity compared to 

complex automated solutions that require longer development and production lead times), therefore 

they can benefit from several improvement rounds during the development phase. 

Most noticeable is our finding regarding the significance of supplier configuration compared to 

supplier co-location. In a ramp-up context, the way how tool shops and their engineering capabilities 

are positioned within the manufacturing network of a supplier seem to be a more critical determinant 

of manufacturing ramp-up performance than supply proximity. This effect suggests that the unsteady 

delivery of product specific material (i.e., as a result of internal manufacturing difficulties of key 

suppliers) has a more disruptive effect on manufacturing ramp-up performance than reduced 

responsiveness caused by longer transportation lead times. Internal manufacturing difficulties (e.g. 

molding equipment downtime that allows for part quality improvements) may benefit from co-located 

engineering teams in terms of shorter feedback loops and problem solving cycles. Additionally, the 

planning principle that prevails in Nokia during the ramp-up phase is based on a pre-determined push 
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plan in which product variants are restricted and production volumes are known in advance. Hence, 

responsiveness and short supply loops may be more critical after the ramp-up phase is over (i.e., mass 

production conditions) and customers are actually able to order the full product spectrum. Managers 

should thus consider the performance penalty differences that may occur under unstable part 

manufacturing conditions as they are in fact driven by the internal configuration of the involved 

suppliers. 

Considering the effects of automation and supplier configuration together provides a plausible 

explanation for differences in manufacturing ramp-up performance between European and Asian 

plants – an observation which we already made in our earlier models. As automation is less common 

in our Asian plants due to the lower average labor cost, we expect European plants to be more 

exposed to the challenges described above. In addition, and since the majority of Nokia’s key 

suppliers have their home base in China, the percentage of key suppliers that have their engineering 

teams, tool shops and manufacturing lines in close proximity is far higher in Asia. While the 

European manufacturing plants in our sample have co-located suppliers as well, we observe that most 

of their tool shops are primarily located in China. These factors are structural in nature – i.e. not under 

direct control of product development managers – but still provide guidance in terms of the lead 

factory selection. Manufacturing ramp-up performance may benefit from highly manual and hence 

flexible manufacturing plants that are embedded in a supply network in which suppliers have tightly 

interlinked engineering and manufacturing capabilities in order to respond quickly to unsteady part 

delivery conditions. 
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5.4 Implications 

Now that we have listed the key conclusions from our study, we want to complete this discussion with 

a look at some of the implications around software complexity, ramp-up performance and 

development lead time. 

We believe that the separation of complexity into hardware and software characteristics provides a 

highly effective approach to guide management decisions during the phase of new product 

development. Products that are expected to imply a high degree of hardware complexity may for 

example significantly gain from early manufacturing involvement (Swink 1999), from DfM activities 

(Susman and Dean 1992) that focus on lowering product novelty and product specific component 

count and from a careful selection of the lead factory with regard to the best possible product-factory 

fit (Langowitz 1988). Our findings from Chapter 4 that emphasize the structure of the supply chain 

along with additional factors such as automation and supplier configuration are closely related to the 

topic of product-factory fit. Concerning automation, we believe that the common principle that 

governs success with reference to ramp-up performance is related to the appropriate levels of 

automation (Säfsten et al. 2007) and to the application of successful strategies for automation system 

integration (Liao and Tu 2008). Our observations indicate that profound automation system 

integration and the utilization of robust automation systems (Kuhn et al. 2002) that tolerate minor part 

variations are required to achieve a positive effect from manufacturing system automation on 

manufacturing ramp-up performance. The same applies for the concept of supplier configurations that 

enable close interactions between process engineering and manufacturing in order to achieve superior 

ramp-up performance. We consider this factor not as a unique characteristic of the consumer 

electronics industry but as a subset of cross-functional integration strategies (Wheelwright and Clark 

1992).  

On the other hand, the above-mentioned approaches will most likely be rather inefficient in products 

with a high degree of software complexity where other approaches such as proactive variant 

management and software postponement may prove useful. Particularly in consumer electronics 

where the influence and importance of software content has increased substantially in the past years, 

product development managers need to appreciate the central importance of software for these 

products and its effect on the hardware configuration, development lead time and late schedule slips. 

While schedule slips that result from software delays or development lead time extensions (e.g., 

needed to accommodate for software feature implementations) may be used productively within the 

manufacturing system (e.g., to fine tune the manufacturing system or to create semi-finished product 

buffers) and at suppliers, their overall effect on time-to-market performance and ultimately on profits 

is considerably negative. The same implications likely apply for many other products or product 

categories, including hi-fi systems, cameras, flat screens and tablet computers. Hence, effective 
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software engineering with a strong focus on schedule adherence became a crucial capability for the 

successful and timely market launch of new consumer electronics products.  

In response to the challenges observed in the development of embedded systems there seems to be a 

trend among the manufacturers of modern cell phones and smartphones to abandon the embedded 

systems approach with its tight coupling between hardware and software elements and to switch to a 

software platform strategy. Today, products tend to be designed and delivered based on an in-house 

developed hardware platform and on an independent software platform that is provided by a third 

party supplier. In consequence, this disconnection of hardware and software development reduces the 

amount of product specific software development efforts and offers greater flexibility for updates at 

later stages of the product lifecycle. We are confident that this trend will spread into other industries 

as well, particularly into industries that also combine innovation speed and cost driven mass-market 

characteristics with high demands on usability and quality. Various consumer electronics products 

share similar product characteristics and even the automobile industry starts to show increasingly 

comparable properties as a result of the user benefits that can be provided with electronic 

enhancements (e.g., parking and driver assistant systems or multimedia systems). Compared to the 

traditional embedded systems approach (that leads to a fixed hardware-software architecture), a shift 

towards the integration of third party software platforms may have significant consequences for future 

business models, for own innovative contributions and for the required software engineering 

competences. For example, the scattering of functionalities into apps (i.e., user downloadable software 

applications) forces companies to redeploy their development resources. Software resources could be 

drawn away from the development of operating systems and concentrated in the development of 

innovative applications. A positive side effect of this shift is related to the increased planning 

flexibility of project managers as the start of production can be planned and organized virtually 

independent of the app development. 

Another managerial implication arises from our approach to consider ramp-up performance in terms 

of manufacturing ramp-up performance and total product ramp-up performance. This dual concept is 

justified by the fact that cell phones – like several other consumer electronics products – are 

manufactured with delayed customization (i.e., postponement). Thus, the final customization does not 

take place until real customer orders are known. As a result, manufacturing ramp-up performance 

represents how well the generic parts of a cell phone are manufactured according to a predefined 

ramp-up plan. Total product ramp-up performance instead measures how well these generic parts are 

converted into customer specific products, then distributed and invoiced. Based on our findings, these 

performance measures do not only highlight different aspects of the ramp-up process but also support 

managerial actions at different areas. Since manufacturing ramp-up performance was identified to be 

the strongest predictor of total product ramp-up performance, ramp-up managers in the factories 

should focus primarily on product availability (i.e., effective utilization) and secondarily mitigate all 
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issues that arise from product novelty characteristics (refer to chapter 2). In consequence, stabilizing 

product availability requires managerial support by the program management team regarding those 

influential characteristics that we identified in chapters 3 and 4. 

Finally, and based on our results and observations, we propose some recommendations in order to 

strengthen ramp-up performance, although they are partly beyond the scope of our formal empirical 

analysis. First and foremost, managers need to accept and deal with the tradeoff between product 

maturity (that may arise from an increased amount of design-build-test cycles as pointed out in 

chapter 3) and manufacturing ramp-up performance. Early product availability can be improved in the 

short term if management squeezes product development lead time (e.g., via reducing design-build-

test cycles or via shortening the time between cycles). In the mid-term, however, we have experienced 

considerable drops in delivery performance as a result of the many engineering changes that need to 

be introduced in the product, the manufacturing system and at suppliers in order to enable reliable 

high volume production. Additionally, and particularly in connection with low product maturity 

levels, gradual production ahead of the actual ramp-up start enables ramp-up teams and suppliers to 

gain experience in production execution and to fine tune part quality levels that both foster throughput 

and ultimately ramp-up performance. We believe that these findings are neither unique to the cell 

phone industry, nor to the wider consumer electronics industry. 

Second, the results of our study suggest that it may be recommendable to allocate excess 

manufacturing capacity for selected key products. A finding that is in contrast to the still prevailing 

paradigm to focus on high capacity utilization levels. Allocating excess capacity was found to reduce 

delivery risks which we believe to be more critical in a ramp-up context (as delivery inabilities 

directly affect customers) than internal manufacturing costs. This strategy has to be an integral part of 

the business case calculation and the incentive plan for product development teams in order to identify 

the most appropriate level of excess capacity.  

Third, the incentive schemes for product development teams in the last development phase should not 

solely be based on development lead time criteria but on a reasonable combination of development 

lead time and ramp-up performance. In response, ramp-up teams will still focus on early product 

availability (time-to-market) – which is crucial to fetch premium prices and achieve profits – but also 

on delivery performance – which is a crucial factor for customer relations and potential long term 

agreements with customers. 
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5.5 Future Research Directions 

In this section, we discuss some ideas for future research by going through the different chapters of 

this dissertation. 

Although we have attempted to build a comprehensive model that captures the key determinants of 

manufacturing and total product ramp-up performance in chapter 2, we also note that further research 

could still address some limitations of our model. First, our model explains only around half of the 

variance in manufacturing and total product ramp-up performance but there are additional factors that 

may be relevant and contribute to ramp-up performance. As summarized in Table 1, there are various 

factors that are proposed by the existing literature, ranging from cultural factors to organizational 

aspects. Future research could attempt to select the most promising factors in order to quantify them 

in detail and to analyze their contribution in the model provided within this thesis. Consumer 

electronics products are manufactured on a global scale. The insights regarding differences in ramp-

up performance that are caused by cultural factors such as the ones proposed by Hofstede (2001) 

might be particularly relevant in the context of lead factory selection and plant location. 

Next, and as mentioned in chapter 2 and 3, our conclusions are based on a limited number of real life 

cases that were carried out in a single firm. A wider analysis including different firms from the 

consumer electronics industry or the automotive industry – from which most of the existing ramp-up 

literature stems from – and the application of a larger sample size might reveal additional effects and 

enhance the generizability of our results. The automotive industry in particular might benefit from our 

models as modern automobiles start to share various characteristics with consumer electronics 

products especially with regard to the application of embedded systems technology. Such an 

extension might also reveal how the existing model parameters change under different product 

development cycles. We would expect to find a stronger relationship between product complexity and 

manufacturing ramp-up performance in industries that introduce few but progressive product updates 

and a weaker relationship in industries that introduce rather small but frequent updates. 

Also, and as addressed in chapter 4, there seems to be a detrimental effect of automation on 

manufacturing ramp-up performance although there are a number of studies that highlight the 

advantages of automation. Further studies should explore this relationship in more detail by taking 

different industry contexts into account and a broader view on production technology in general. 

Hence, future studies may be able to define the most effective and appropriate level of production 

technology complexity for the ramp-up phase that is also appropriate to support later mass-production 

conditions. 

Finally, different methodologies with a focus on analytical modeling may enhance our results and 

increase the scope of their applicability. For example, we have identified a relation between schedule 
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performance and manufacturing ramp-up performance that could be assessed in more detail with 

formal models. The results of such an approach may be helpful to guide managerial action but also 

lead to new ways of project and ramp-up planning. Also, our results suggest that being more 

restrictive with initial sales volume plans increases total product ramp-up performance but at the 

expense of total output, cost and thus profit. Analytical models could be used to find the optimal 

balance between the amount of reserved material and capacity for a new product and the volume plan 

that should be confirmed to customers based on the complexity of the new product. The insights 

gained from such models could serve as an important source of input for risk assessments and 

incentive schemes. 
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7 Summary 
New product development (NPD) is particularly challenging in the high-technology sector, 

increasingly characterized by shortening product lifecycles, rising market fragmentation, and rapid 

technological changes (Bowersox et al. 1999, Mallick and Schroeder 2005, Wildemann 2007). If 

firms want to succeed in this environment, short development lead times and efficient ramp-ups are 

invaluable for several reasons. First, the faster a company can ramp-up production of a new product, 

the more quickly it can begin to earn significant revenues from the new product and recoup its 

development investments (Pisano and Wheelwright 1995). Secondly, fast ramp-ups enable firms to 

profit from early market opportunities, set technology standards and accumulate experience with 

volume production. Finally, scarce product development and manufacturing engineering resources 

can be released to support subsequent product development projects instead of solving production 

problems. 

Yet many companies fail to meet their new product introduction targets regarding time-to-market and 

time-to-volume. Schuh et al. (2005) show that 47% of automotive new product ramp-ups were neither 

technically nor economically successful. Kuhn et al. (2002) indicate that not a single company in their 

study claimed its production ramp-up was under control. Thus, the ramp-up phase remains a major 

challenge, even as it provides a significant opportunity for competitive advantages. Despite multiple 

studies that have identified a vast number of influential factors, we know very little about the 

quantitative and causal relationships between these factors and ramp-up performance. Krishnan and 

Ulrich (2001) argue that essentially no work has investigated the relationship between the rate of 

production ramp-up and product design decisions.  

This research project addresses the above mentioned limitation with a set of three research studies that 

are based on operational data from Nokia, a mobile device and service company headquartered in 

Espoo, Finland. Based on the individual cell phone designed and manufactured by Nokia as the unit 

of analysis, we investigate four research questions: (1) How can product characteristics (i.e., product 

complexity) of consumer electronics devices, and specifically of cell phones, be modeled in 

quantitative terms? (2) How do product complexity characteristics interact with each other and 

subsequently influence manufacturing and total product ramp-up performance? (3) What are the 

interrelationships between product complexity characteristics, product development process 

characteristics (i.e., development lead time) and manufacturing ramp-up performance over the course 

of the ramp-up lifecycle and (4) What supply-chain structure characteristics uncover plant specific 

effects in the context of manufacturing ramp-up performance? In order to address these questions, we 

introduce a conceptual framework in an introductory paper (Pufall et al. 2007) that is based on an 
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extensive literature review. This framework summarizes the key factors that influence ramp-up 

performance and serves as our guiding principle for the subsequent empirical studies.  

Based on this framework, our first study uses a set of multiple linear regression (MLR) models that 

relate quantitative product complexity characteristics – represented by software and hardware 

complexity variables – and manufacturing ramp-up performance variables to total product ramp-up 

performance. We demonstrate that new cell phone features are gradually shifting towards software 

based implementations that can be implemented on generic hardware. Beyond the fact that software 

characteristics are gaining importance in driving hardware complexity, we also find that certain 

hardware characteristics (i.e., product specific component count and parts coupling) have a significant 

impact on the performance of the manufacturing system in terms of final yield and effective 

utilization. We also find that effective utilization together with the novelty aspects of software and 

hardware complexity (i.e., SW novelty and product novelty) are the key determinants of total product 

ramp-up performance.  

Our second study uses a partial least squares (PLS) path modeling approach to examine the impact of 

additional variables and different time horizons on manufacturing ramp-up performance. Compared to 

MLR and covariance based structural equation modeling approaches (e.g., LISREL), PLS is 

particularly well suited for studies using operational data and if the primary research objective is the 

simultaneous maximization of explained variance in all endogenous constructs (i.e., prediction) 

instead of achieving model “fit”. An additional result of this study is the finding that development 

lead time is an important predictor for manufacturing ramp-up performance. While longer 

development lead times facilitate higher product maturity and thus sustained manufacturing ramp-up 

performance, later market introductions of new products imply a negative impact on revenue inflows. 

Additionally, our results suggest that late schedule slips, although disastrous for customer relations in 

which due dates are crucial, provide the opportunity to build up (semi-finished) product buffers which 

in turn increase the initial manufacturing ramp-up performance.  

Finally, our third study highlights that the internal organization of suppliers, the level of automation 

within a plant and the time period in which a new product is ramped-up are also important drivers of 

manufacturing ramp-up performance. Because it is the main objective of the high-tech industry to 

achieve full-scale production and thereby time-to-volume targets as quickly as possible, our results 

suggest that the selection of the ramp-up factory is a crucial factor for ramp-up success.  

In summary, our study contributes to the field of operations management by demonstrating the 

relevant characteristics of product complexity, development lead time and manufacturing that are 

associated with manufacturing and total product ramp-up performance and by offering a substantially 

enhanced and more detailed understanding of the entire ramp-up process.  
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Appendix-A2. Unstandardized regression results of the findings presented in Table 5. 

 

Notes: N = 46, values in parentheses are standard errors, values in brackets are p-values, *** p ≤ .01, 

** p ≤ .05, * p ≤ .10, two-tailed tests. 

 

Appendix-A3. Unstandardized regression results of the findings presented in Table 6. 

 

Notes: N = 46, values in parentheses are standard errors, values in brackets are p-values, *** p ≤ .01, 

** p ≤ .05, * p ≤ .10, two-tailed tests.  

Predictor variables

Constant
313.72

(16.91)

74.32

(13.42)

386.31

(30.65)

-0.007

(0.029)

SW novelty
0.194

(0.143)

0.119

(0.114)

0.044

(0.259)
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(0.00025)

***

SW code size
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0.000009

(0.0000016)

*** 0.000019

(0.0000037)

*** -0.000

(0.000)

SW error count
0.0068

(0.004)

* 0.00517

(0.0032)

0.022

(0.0073)

*** 0.000024

(0.000007)

***

Full model (F-  and p- statistics) 2.94 [0.044] 14.08 [0.000] 13.48 [0.000] 44.47 [0.000]

R-Sq(adj) 11.50% 46.60% 45.40% 74.30%

common 

component count

product specific 

component count
parts coupling product novelty

Dependent variables

Predictor variables

Constant
0.962

(0.009)

*** 1.008

(0.025)

*** 0.990

(0.036)

*** 1.227

(0.113)

2.358

(0.281)

*** 2.079

(0.400)

***

SW novelty
-0.00021

(0.00007)

** -0.00016

(0.00012)
0.00015

(0.00016)

-0.0014

(0.001)

-0.0023

(0.0014)
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(0.0018)

SW code size
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** 0.000
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-0.000
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** 0.000
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0.000
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SW error count
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(0.0000024)
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common component count
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**
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product novelty
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(0.044)
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Control variables

linear trend
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(0.000027)

* 0.00038
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plant age
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plant location
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*

plant ownership
0.004

(0.016)

-0.184

(0.174)

sales forecast change
0.015

(0.011)
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(0.117)

Full model (F-  and p- statistics) 11.18 [0.000] 6.49 [0.000] 5.24 [0.000] 4.33 [0.000] 6.56 [0.000] 5.48 [0.000]

R-Sq(adj) 40.4% 46.1% 53.0% 18.2% 46.4% 54.4%

effective utilizationfinal yield

Dependent variables
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Appendix-A4. Unstandardized regression results of the findings presented in Table 7. 

 

Notes: N = 46, values in parentheses are standard errors, values in brackets are p-values, *** p ≤ .01, 

** p ≤ .05, * p ≤ .10, two-tailed tests.  

Dependent variable

Predictor variables

Constant
1.276

(0.272)

*** 0.473

(1.429)

0.976

(1.448)

SW novelty
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(0.0014)
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(0.001)
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0.000

(0.000)
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(0.00002)
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(0.00093)

parts coupling
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(0.00056)
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(0.00046)
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(0.00045)

product novelty
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(0.387)

** -0.736
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*

final yield
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effective utilization
0.620

(0.126)

*** 0.544

(0.123)

***

Control variables

linear trend
0.0003

(0.00025)

plant age
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(0.017)

plant location
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(0.132)

plant owenership
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(0.125)

sales forecast change
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(0.088)

*

excess capacity
0.555

(0.198)

***

Full model (F-  and p- statistics) 0.66 [0.706] 3.52 [0.003] 4.29 [0.000]

R-Sq(adj) 0.0% 33.5% 52.3%

total product ramp-up performance
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Appendix-C2. Unstandardized regression results of the findings presented in Table 13. 

 

Notes: N = 46, values in parentheses are standard errors, values in brackets are p-values, *** p ≤ .01, 

** p ≤ .05, * p ≤ .10, two-tailed tests. All VIF values < 5.1  

Constant 0.606

(0.085)

***
0.496

(0.106)

***
0.378

(0.129)

***

Control variable

Product complexity -0.142

(0.029)

***
-0.132

(0.038)

***
-0.100

(0.038)

**

Development lead time 0.00066

(0.00034)

*
0.00055

(0.00035)

0.0004

(0.0004)

Operations characteristics

Plant age (H1) 0.005

(0.013)

-0.003

(0.013)

Plant size (H2) 0.000005

(0.000005)

0.000003

(0.000005)

Automation (H3) -0.191

(0.086)

**
-0.162

(0.094)

*

Plant ownership (H4) -0.036

(0.126)

0.033

(0.127)

Ramp-up timing (H5) 0.088

(0.054)

0.109

(0.054)

*

Supply characteristics

Number of key suppliers (H6) -0.023

(0.057)

Supplier co-location (H7) -0.010

(0.059)

Supplier configuration (H8) 0.158

(0.082)

*

Sales forecast change (H9) 0.115

(0.065)

*

Full model (F - and p -statistics)

R
2
(adj)

R1 R2 R3

33.90% 40.10% 47.00%

12.56 [0.000] 5.31 [0.000] 4.62 [0.000]
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Appendix-D 

 

Appendix-D1. Data sources in alphabetical order. 

 
Variable / Indicator Primary data sources 

Secondary data sources 

(for enhancement) 

1 Automation Plant specific manufacturing 

configuration documentation 

 

2 Common component 

count 

Production data management 

system 

  

3 Effective utilization Management information system 

report 

Official milestone review 

minutes 

4 Excess capacity Management information system 

report 

  

5 Final yield Production data reporting system Official milestone review 

minutes 

6 Linear trend Project management reporting 

database 

  

7 M0toM1 Project management reporting 

database 

  

8 M1toM2 Project management reporting 

database 

  

9 M2toM3 Project management reporting 

database 

  

10 Number of key suppliers Sourcing parts list   

11 Parts coupling Circuit board design tool   

12 Planned development 

lead time 

Project management reporting 

database 

Official milestone review 

minutes 

13 Plant age Plant specific intranet page   

14 Plant location Coded by the author   

15 Plant ownership Coded by the author   

16 Plant size Plant specific intranet page   

17 Product novelty Sourcing parts list & product 

specification 

Product fishbone diagrams 
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18 Product specific 

component count 

Production data management 

system 

 

19 Production technology 

novelty 

Manufacturing flow charts 

(from internal & external 

operations) 

Manufacturing and line 

configuration files 

20 Ramp-up timing Project management reporting 

database 

  

21 Sales forecast change Management information system 

report 

  

22 Slip Project management reporting 

database 

Official milestone review 

minutes 

23 Supplier co-location Sourcing parts list  

(contains supplier IDs and 

supplier locations) 

Official sourcing milestone 

review minutes 

24 Supplier configuration Sourcing parts list  

(contains supplier IDs and 

supplier locations) 

Official sourcing milestone 

review minutes 

(contains tool shop locations) 

25 SW code size Compiler log files   

26 SW error count Error management database   

27 SW novelty Requirements management 

database 

  

28 Total product ramp-up 

performance 

Management information system 

report 

Official milestone review 

minutes 
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Appendix-D2. Questionnaire template. 

 

Please fill in the green fields

         --> try to be as specific as possible!

Your Name:

Your PCC site:

Your Program:

Yes - please list the engine name 

Was the program an "engine lead" program?

No - please list from where the engine was copied

Please list all functional modules for this program that were new to your PCC site:

Please list all new technologies for this program that were new to your PCC site

What was the pre-production site?

During which week was the B3 build (just state the week and the year e.g. 12-07)

What was the lead factory?

Which factories (ENO and SOP) have been ramped-up at a later stage?

Please list all new manufacturing processes that had to be implemented in the lead factory

What kind of product specific production hardware did you reuse from previous programs (mark with an "x") PF adapters

Flali adapters

Finui adapters

Label adapters

FA1 PSPHW

FA2 PSPHW

Others (specify)

Was the product ATO compatible and how many BTR variants did you have at ramp-up?

How many variable parts did the product have?

How many mechanics suppliers have been verified and available for the lead factory ramp-up?

Please mark all team members that had prior program experience in Nokia programs with an "x" PPM

OLPM

Materials Project Manager

Test Manager

Product Manager

R&D Manager

In how many programs was the project team team involved simultaneously?

Was the market demand for the product at the ramp-up as expected, higher or lower?

What were the biggest obstacles during the ramp-up phase that affected the MFR?

What were the biggest obstacles during the ramp-up phase that affected the volume output?

Please mark all development workpackages that have been outsourced to an JRD company (e.g. FIH, Jabil etc.) with"x" Mechanics design

Electronics design

Product testing

Operations work (DFM, test development etc.)

Sourcing tasks

Program was done in full JRD mode

                          End of the questionaire ---------------------------------------------------- thank you very much for your help!

               Author: Andreas Pufall

               Phone: +49 173 2640107

               E-mail: andreas.pufall@nokia.com

Did you verify the E2.5 parts during an NPI build before ramp-up?

(if not please list the approximate % of parts you verified in the E2.5)

Did you have an E2.5 mass production simulation BEFORE the official E3/PD3 for all parts?

(if not for all parts then please list the approximate % of parts for which you did an E2.5)
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