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S~RY 

This thesis deals with the problem of detecting synchronous data 

sequences, which are transmitted over multiple channel systems and 

disturbed by noise, intersymbol and interchannel interference, 

Chapter 1 starts with definitions of intersymbol and interchannel 

interference. Multidimensional interference is the term used to 

describe the combined effect of these two disturbances. The multiple 

channel communication model, to be considered in this thesis, is 

described after a short historical introduction. 

Chapter 2 is devoted entirely to linear receivers. First of all 

the structure of the optimal linear receiving filter is derived. 

This filter consists of two parts, called the multiple matched filter 

and the multiple tapped delay line. It is found that this structure, 

which is valid for the criterion of minimum symbol error probability 

and the criterion of minimum symbol error probability under the 

zero-forcing constraint, is the equivalent of the structure found by 

Kaye and George applying the mean square error criterion. Furthermore, 

the multidimensional Nyquist criterion is defined, which fits 

Shnidman's generalized Nyquist criterion. A simple expression is 

derived for the error probability of systems satisfying this multi

dimensional Nyquist criterion. Then optimum realizable (i.e. finite 

length) multiple tapped delay lines are considered and algorithms are 

given to calculate the tap coefficients in several practical situations. 

At the end of the chapter, two experiments are described, to which the 

theory developed for linear receivers is applied. These examples 

concern the transmission of four binary data sequences over a cable, 



consisting of four identical wires, which are symmetrically situated 

inside a cylindrical, conducting shield. The experiments were con

ducted at both 5 Mbit/s per channel and 50 Mbit/s per channel. 

In Chapter 3 maximum likelihood receivers are investigated. To 

apply the concepts of maximum likelihood sequence estimation, the 

statistical sufficiency of the multiple matched filter output samples 

is proved first of all. Then two maximum likelihood sequence estimation 

algorithms are generalized for maximum likelihood vector sequence 

estimation. To apply the vector Viterbi algorithm a multiple whitened 

matched filter is defined. The vector Ungerboeck algorithm uses the 

sampled output of the multiple matched filter directly. The latter 

algorithm avoids the multiple tapped delay line and is essentially no 

more complicated than the first one. An analysis of the error perform

ance of this kind of receivers shows that, under a certain constraint, 

for moderate and large signal-to-noise ratios the symbol error 

probability is as good as if multidimensional interference were absent. 

Finally, some attention is paid to maximum a posteriori receivers. 

The main conclusion of these investigations is that multidimensional 

interference is a generalization of intersymbol interference. Several 

important concepts from the intersymbol interference literature can be 

generalized for multidimensional interference, 
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ABBREVIATIONS 

AGN 

CCGN 

ICI 

ISI 

MAP 

MDI 

ML 

MMF 

MTDL 

MWMF 

SNR 

WUGN 

additive Gaussian noise 

colored, correlated, Gaussian noise 

interchannel interference 

intersymbol interference 

maximum a posteriori 

multidimensional interference 

maximum likelihood 

multiple matched filter 

multiple tapped delay line 

multiple whitening matched filter 

signal-to-noise ratio 

white, uncorrelated, Gaussian noise 
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A 

A* 

A(t) 

B( t) 

* 

C(D) 

d 
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input symbol at input j at instant lT 

.th 
J = element of 
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N 

l:' II E II + II z II 
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time functions 

max 
~~Q 
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composite matrix consisting of the 
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F 

G 
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rn 
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the set of all possible error events 

expectation of the stochastic variable between the 
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small deviation of the matrix Ck* 

impulse response from input j to output n of the system 

consisting of the cascade connection of the multiple 

channel, (the MMF) and the MTDL 

quantity to be used for the up-dating of a metric 

the matrix of impulse responses of the multiple channel 

in cascade with (the MMF) and the MTDL, evaluated at 

instant lT 
N 
l: C .*Vk-. 

j=-N J J 
matrix D-transform of the Fz matrix sequences 

[<RT(t), R(t)>]-l 

impulse response from input i to output n of the linear 

receiving filter 

H the length of an error event is H+N 

H(D) £l(D-1JN0 spectral factorization of i!J(D) 

i integer index 

I MxM identity matrix 

I 0 worst case MDI 
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<A(t),B(t)>; inner product of A(t) and B(t) 

integer index 

number of elements of the input alphabet 
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number of inputs/outputs 
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integer index 

T <R (t),~(t)>; sampled noise signal at the output of 

the MMF 

sample values at instant ZT of the noise at the outputs 

of the MMF 

vector noise at the output of the multiple channel 

system 

additive noise waveform at output i of the multiple 

channel system 
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!]_(D) 

:!'(D) 

N 

"' "o 

0 

p(.) 

p 

P(s) 

Pr(s} 

Q(x) 

Q(-s) 

R(t) 

8 

vector D-tranform of noise samples at the output of 

the multiple channel system 

vector D-tranform of the noise samples at the output 

of the MMF 

for linear correction the length of the MTDL is 2N; 

at the Viterbi algorithm this length is N 

double-sided density of the noise spectrum of (tj 

double-sided density of the noise spectra if WUGN 

disturbance of the channel output is assumed 

MxM all zero matrix 

probability density function of the stochastic variable 

in the parenthesis 

matrix of transition probabilities 

auxiliary matrix 

symbol error probability 

probability of the event 

da 

spectral factorization of 

impulse respcnse from input j to output i of the 

multiple channel system 

compcsite matrix of the matrices 

composite matrix of the T matrices 

the matrix of impulse responses of the multiple channel 

system, evaluated at instant lT 

matrix of impulse respcnses of the multiple channel 

system 



R(D) 

R(D, t) 

s. (t) 
1-

t 

T 

u 

?:f;(t) 

v 

matrix D-transform of the Rl matrix sequence 

matrix consisting of the chip D-transforms of the 

elements of R(t) 

bilateral Laplace variable 

'I' 
<R (t), fi(t)>; sampled output of the MMF if the 

multiple channel system is excited by a single input 

vector and if noise is absent 
/ 

state of a finite state machine at instant lT 

vector signal at the output of the multiple channel 

system, if this system is excited by a single input 

vector and in the absence of noise 

signal at output i of the multiple cnannel system, if 

this system is excited by a single input vector and in 

the absence of noise 

response at output n of the receiving filter if the 

channel is excited by the single input vector ~O 
k 

time 

sampling instant 

time between successive transmissions 

composite matrix consisting of the I and 0 matrices 

received vector signal at transmission of the vector 

sequence ~(D) 

element of 

equivalent received signal vector 

sampled output of the !IJMF at instant ZT 

equivalent received vector signal 

vector D-transform of the sequence 
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V(D) 

II 

ii(D, t) 

X 

;E(D) 

@_(D) 

y 8 

y(D) 

10 

impulse response from input ,j to output m of the 

cascade connection of the multiple channel system 

and the MMF 

composite matrix of the Vz matrices 

the matrix of impulse responses of the multiple channel 

system in cascade with the MMF, evaluated at t=lT 

D-transform of the 

max {J.:!v. ·zl} 
i j 1-J 

matrix sequence 

impulse response from input n to output m of the 

multiple whitened matched filter 

matrix consisting of the chip D-transforms of the 

arbitrary vector 

input vector that is transmitted at instant lT 

one of the possible input vectors at t=D 

D-transform of the input vector sequence ~l 

estimate of :£(D) 

element of 

sampled output of the multiple whitening filter 

output vector associated with the transition from state 

D-transform of the sampled output of the multiple 

whitened matched filter in the absence of noise 

sampled output of the multiple whitened matched filter 

at instant lT 

component of 

D-transform of the ~l sequence 

auxiliary matrix with diagonal elements equal to zero 



Z* 

ankj 

om> 

0 . m&n 

0( t-lT) 

£ 

-I + C .*V . 
j=-N J -J 

auxiliary vector 

component of a 

auxiliary vector 

component of 8 

auxiliary variable 

minimum non-zero value of the Euclidian norm of the 

error vector 

{ 
10' ~ mm:oo: Kronecker delta: om , r , llnj 

n=j 

n;t;j 
minimum value out of the set 8 

magnitude of the error event E 

unit impulse at instant ZT 

the set of all possible values of 6 (E) 

error event 

sub-event 

sub-event 

sub-event 

1 .th 
K, &== element of the matrix V l-,i 

auxiliary variable 

Lagrange multiplier 

contribution of a certain transition in the trellis to 

the probability of a certain path 

smallest eigenvalue of v
0 

possible value of 
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i=O 

~ (D) nm 

<P (s) nn 

<II (s) 
yy 

<II(D) 

<Pww(DJ 

12 

possible transmitted vector sequence 

repeated multiplication over the index starting with 

i=O and up to and including i=H 

n, element of the matrix R~ . 
"-J 

noise variance at output n of the linear receiving filter 

summation over l excluding the term with l=O 

D-transform of the sequence ~nm(lT) 

cross-correlation of the noise waveforms at the MMF 

outputs n and m 

Laplace transform of the correlation matrix of the noise 

processes n. ( t) 
1-

Laplace transform of the correlation matrix of the noise 

processes at the outputs of the multiple filter Q-1 (s) 

spectral matrix of the output noise 



CHAPTER 1 

INTRODUCTION 

In this thesis we shall investigate the transmission of digital 

signals over multiple channel systems, where each channel is used to 

transmit a data sequence. 

Apart from intersymbol interference (ISI), interchannel interference 

(ICI) can be one of the major problems in such a multiple channel 

digital transmission system. ISI is a disturbance of an output signal 

by symbols that originate from the corresponding input but that are 

shifted in time with respect to the symbol under consideration. ICI is 

a disturbance of an output signal by symbols that do not originate from 

the corresponding input but from input symbols that belong to neigh

bouring channels. Because the equalization of the ISI also changes 

the ICI at the output and the other way round, only a simultaneous 

treatment of these two phenomena can be succesful in combating the 

overall degradation. 

It was first pointed out by Shnidman [1] that ISI and crosstalk 

between multiplexed signals are essentially identical phenomena. 

Kaye and George worked out this idea by investigating the transmission 

of multiplexed signals over multiple channel and diversity systems [2] . 

The author of this thesis has given a unified theory for treating ISI 

and ICI as one type of disturbance [3, 4]. He introduced the name 

multidimensional interference (MDI) for the combined effect of ISI and 

ICI. 

In this thesis a number of techniques known from the ISI literature 

are generalized to MDI. Examples of systems to which these methods can 

13 



be applied, are multiwire cables and multichannel radio systems that 

make use of perpendicular polarized waves in a common frequency band. 

The transmission systems to be considered in this thesis have M inputs 

and M outputs. To each input j a data sequence Ll ajlo(t-lT) 

with l = ... ,-1,0,1, ... is applied, which it is desired to detect 

at the receiving end of the communication system. The symbols ajl 

elements of the alphabet {0,1, ••. ,L-1}. Except in those sections 

are 

where it is otherwise stated, these symbols are chosen equiprobable and 

independent of each other. 

In the present investigations a linear, dispersive and time invariant 

multiple channel model is assumed (Fig. 1.1). This means that there is 

Fig. 1.1 Multiple channel communication model. 

a linear relation between each input and each output signal and that 

the output signal due to the excitation of more than one input is the 

sum of the individual responses to the inputs in question. The relation 

between input j and output i is denoted by the impulse response r . . (t). 
1-J 

All these responses are assumed to be square-integrable and of finite 

duration. Furthermore we assume that the output signals are disturbed 

14 



by MDI and additive, zero-mean, Gaussian noise (AGN). Each output i 

is corrupted by a different noise waveform ni(t). 

15 
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CHAPTER 2 

OPTIMUM LINEAR RECEIVERS 

By means of an optimum linear receiver and symbol-by-symbol detection on 

each channel output an estimate is made of the several input sequences, 

The receiving filter is assumed to be linear in the sense described in 

Chapter 1. This configuration is included in the more general structure 

considered by Kaye and George [1]. In this thesis a technique is used 

that leads to an optimum structure for both the zero-forcing and minimum 

error probability criterion, instead of the minimum mean square error 

criterion used by Kaye and George. The linear relation between input i 

and output n of the receiving filter is characterized by the impulse 

response hni(t)(see Fig, 2,1). 

1 
I I 1 
I I 

I I 
I I 
I I 
I hni(t) I 

I t 
I 
I I 

n 
I I 

I I 

I I 

l I 
t 

M M 

Fig, 2.1 Multiple linear receiving filter. 

In this chapter we develop optimum solutions for the linear multiple 

channel receiving filter in several more or less theoretical and prac-

tical conditions. 
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2.1 The structure of the optimum linear receiving filter 

Assuming that the noise processes ni(t) are white and uncorrelated, 

the noise variance at output n of the causal receiving filter can be 

written as 

cr 
n 

2 
M 

= z 
i=l 

f (2.1) 

where Ni is the double-sided density of the noise spectrum of ni(t). 

Investigating the optimum structure of the linear receiving filter a 

technique presented in [2] and [3] is used, This implies that all signal 

values contributing to the possible sample values of the signal at 

2 
output n are fixed. Then the noise variance crn is minimized, subject 

to these constraints. Defining the input vector 

8 
= (2.2) 

the constraints are found by considering the sample values of the signals 

at output n due to the LM possible input vectors ~l· The latter sample 

values are found in the following way. Assume that at time t=O the single 

vector ~O , being one of the C~ possible input vectors, is applied to the 
k 

input of the channel. Then the response at output n of the receiving 

filter evaluated at the instant t
8
+lT, is given by 

18 



M 
= l: 

j=l 

M 
z I h . 

i=l 0 n1-

In the minimization process these values for all 

de (2.3) 

and l must be kept 

constant, therefore we have to minimize the functional 

J 
n 

where 

M 
l: N. I 

i=l & 0 

- 2 I 
k=1 

2: 
l 

+ 

M M 
I z I 

j=l i=l 0 

are Lagrange multipliers. 

h . 
rn 

de 

l = ... ,-1,0,1, ... (2.4) 

Applying the calculus of variations to (2. 4) yields 

1 
l-1 M 

N. l: l: l: 
1- k=l l j=l 

For the sake of simplicity we take 

8 N 
0 i 

(2. 5) 

(2. 6) 

This assumption and the assumptions that the noise processes are 

white and uncorrelated are not a restriction of the generality, as is 

shown in Appendix 2.6.1. with 

a 
njl 

1 l: 

No k=l 
(2.7) 
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Equation (2.5) reduces to 

h .(t) = n-z-

M 
l: 

j=l 
l: 
l 

a '":r> • • {t +lT-t). 
n;}v '1-J 8 

(2,8) 

The structure of the receiving filter follows from this equation. Each 

component hni(t) consists of a bank of matched filters, the outputs of 

which are added together. The output signals of the components hni(t) 

with i = l, ••• ,M are added, such forming then~ output of the 

receiving filter. Assuming that t
8 

is greater than the longest duration 

of all snk(t), then a simplification of the receiving filter is possible. 

Fig. 2.2 depicts the result for M=3. For ease of notation the time axis 

is shifted such that t
8
=0. At each filter input i we see an array of 

filters matched to the particular responses at channel output i due to 

the individual excitation of the several channel inputs. Then all the 

outputs of the filters matched to the responses due to the same channel 

input are added to form the primed outputs 1 1-2 1-3 1 • This part of the 

filter we call the multiple matched filter (MMF) (inputs 1-2-3 and 

outputs 1'-2'-3 1
). Each primed output is followed by a delay line with 

elements D giving a delay T. Each element of these delay lines is, with 

a weighting coefficient anjl' connected with each of the M output 

adding circuits. This part of the filter we call the multiple tapped 

delay line (MTDL) (inputs 1 1-2 1-3 1 and outputs 1 11-2 11-3 11
). The weighting 

coefficients anjl have to be chosen so as to satisfy the optimization 

criterion. In the case of the minimum symbol error probability 

criterion it is impossible to find an analytical solution for the set 

{anjl}. By means of a numerical optimization method an approximation 

can be found. A system satisfying the zero MDI criterion offers two 

20 



2 

3 1-

~-

3-

Fig. 2.2 Structure of the multiple linear receiving filter. 



advantages, Firstly, the tap coefficients can be calculated rather 

easily, as will be shown in Section 2,4. Secondly, the practical 

realization is easily checked by means of the eye pattern. 

2.2 The multidimensional Nyquist criterion 

Denote the impulse responses of the cascade connection of the 

channel, the MMF and the MTOL, evaluated at the discrete instants lT 

by 

! 11 tlT) 

f21 (lT) 

flM(l.T) 

f 2tv/LT) 

(2.9) 

with f .(t) the response at output n of this system as the result of a 
nJ 

delta excitation at t=O at input j, 

Further we define the D-transform 

F(D) b. l: 
z 

where D is the delay operator. 

A measure for MDI is now defined as 

M 
l: l: f .(ZT) 

nJ 
- 1 t raJ nn A [ '=1 

= 

22 

(2,10) 

(2 .11) 



which is called the worst-case distortion at output n due to MDI. 

The overall worst-case MDI distortion is given by 

(2.12) 

The terms "zero MDI" and "zero-forcing" are used here if I 0 = 0, By 

means of (2.10) we formulate a multidimensional Nyquist criterion. This 

criterion turns out to be similar to Shnidman's generalized Nyquist 

criterion [4]. 

THEOREM 2.1 

The multiple channel transmission system described by (2.10) 

satisfies the multidimensional Nyquist criterion if 

F(D) =I (2.13) 

where I is the MxM identity matrix. 

It will be clear from the foregoing that for a system satisfying the 

multidimensional Nyquist criterion the MDI will be zero. 

Now let us consider the channel in cascade with the ~4F as a 

multiple channel system with M inputs and M outputs. The impulse 

response from input j to output m of this system is called V .(t) and 
mJ 

can be written as 

v .(t) 
mJ 

(2 .14) 
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where * means convolution. Define 

and 

v11 (ZTJ v12 (ZT) 

v21 (tT) v22 rtTJ 

(2.15) 

(2 .16) 

The MTDL is also a multiple linear filter. For this system we define 

c2Mt 

b. 
= (2.17) 

and 

C(D) ~ (2.18) 

With (2.8), (2.10), (2.16) and (2.18) it follows that 

F(D) C(D) V(D). (2 .19) 

24 



In Section 2.4 we shall give a procedure to calculate the tap 

coefficients described by C(D). 

2.3 The error probability of systems satisfying the multidimensional 

Nyquist criterion 

If in a multiple channel transmission system it is possible to 

satisfy the multidimensional Nyquist criterion and the system has an 

optimum constraint receiver as described in the foregoing, the mean 

symbol error probability of channel n of such a system is denoted by 

Pr(e ) = 2 n 
(2.20) 

where the Q{.)-function as defined in (5, p. 82] is given by 

Q{x) ~ - 1
- f 

(2'; X 
(2.21) 

and d is the smallest difference between two output levels. As the 

smallest difference between two elements of the input alphabet is 

taken unity and because of (2.13), d equals one. The noise variance at 

output n is calculated from (2.1), (2.6) and (2.8) and by dropping 

the causality 

M M M 
c 

2 = E E E E E 
n m Z i=l j=l k=l 

f r .k(lT-t)r . .(mT-r) dt. (2.22) 
1.- 1.-J 

The impulse response from input j to output n, evaluated at the instant 

mT, can be written as 

25 



f .(mT) 
n;} 

(2.23) 

From (2.13) and [4] it follows that for systems satisfying the multi-

dimensional Nyquist criterion 

f .(mT) 
n;) 

where 

0 • ~ { 0 
nJ 1 

6 0 . 
m n;) 

m:/0 

m=O 

n;tj 

n=j. 

(2.24) 

(2.25) 

Substituting (2.23), (2.24) and (2.25) reduces Equation (2.22) to the 

simple form 

2 
= NOenno (2. 26) 

which, if substituted in (2.20) gives for the symbol error probability 

of channel n 

26 

P!>(e ) 
n 

2 (2.27) 



2.4 The optimum finite length multiple tapped delay line 

The index l of the C(D) sequence runs from minus infinity to plus 

infinity and in consequence the MTDL becomes infinitely long. In 

practice it has to be of finite length and in this case (2.13) cannot 

be satisfied exactly. If the MTDL is of length 2N+1 the question arises 

how the tap settings, given by the matrices C_N, ••• ,CN have to be 

chosen to minimize the worst-case MDI distortion as given in (2.11). 

The following method is closely related to that in [6, Section 6.1.1]. 

From (2.19) it follows that 

N 
= ~ 

j=-N 
c .v~ .. 
J ~--J 

It is assumed that 

and 

(0) = 1 n=l,.,, ,M. 

(2.28) 

(2.29) 

(2.30) 

If v
0
;fi it can be made equal to the identity matrix by follmqing the 

-1 
MMF by a multiple channel system with transfer v

0 
• This presupposes 

-1 
the existence of v

0 
• However, for most practical systems the matrix 

-1 v
0 

exists or can be made to exist. From (2.28) it follows that 

N 
r 

k=l 
(2.31) 
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k .th 
where ek. ·z is the ,~:: component of V1 •• The assumptions (2.29) and 

~J &-J 

(2.30) lead to 

N M 
1 - l: l: 

j=-N k=l 
(1-8. 

J 
0 knjO 

By means of this Equation (2.31) is re~1ritten as 

i' .(lT) 
"111-

N M 
l: l: 

j=-N k=l 

(2.32) 

(2.33) 

According to (2.11) and (2.33) the worst-case MDI distortion at output 

n becomes 

where 

sgn 

28 

M 
E E (1-oz f 7 (l.T) I= 

i=l nK 

M N M 
l: l: 0 . } l: 
•1 i=1 n~ j=-N k=l & 

+ -

N M M 
l: 2: (1-6 [l: l: 

j=-N l i=l 

M 
. .sgn { fni(lT)}] + [Z l: 

l i=l 

(lT)} !J I +1 

l-1 f . (lT} < 0 
·n7.-

l 
/. 

sgn (1-T) }] (2.34) 

(2.35) 



The function given by ( 2. 34) is well defined, because r .. ( t) is square 
'&J 

integrable and of finite duration. Observe from (2.34) that is a 

continuous, piecewise-linear function of the tap settings {cnkj}' 

In this equation the coefficients of the are constant over certain 

regions of the {(2N+l)l~l}-dimensional space of definition for {cnkj}' 

At the breakpoints the coefficients get new values because at least one 

of the output sample values (lT) changes its sign. In cannot achieve 

its minimum between breakpoints where the function is linear; thus at 

least one value fni(lT) must be zero at the minimum. This requirement 

can be used to eliminate one of the variables The reduced equation 

is of the same piecewise-linear form, requiring at least one more output 

sample value fni (t'J.') 0, Continuing this line of reasoning we arrive at 

the conclusion that at least (2N+l)M-1 output samples fni(tT) must be 

zero at the minimum. Those (2N+l)M-1 equations together with (2.32) are 

sufficient to determine the tap settings {cnkj}' The question remains 

which set of (2N+1N~l output samples has to be taken to achieve minimum 

worst-case MDI distortion at output n. Linear programming techniques can 

be used for solving this problem. Discussion of these techniques is 

outside the scope of this thesis. 

In situations where all Vl are circulant matrices [7], all worst-case 

MDI distortions at the outputs of the MMF will be equal to each other. 

From symmetry considerations it follows that the Cl and thus all Vl 

matrices must also be circulant matrices in those cases. Thus all 

worst-case MDI distortions at the outputs of the receiving filter have 

the same value. Now the worst-case !mi distortion at the outputs of the 

MMF is represented by ~il lVzl 1
00

, where (see [8, Chapter 1]) 
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II b, 
=max I} (2 .36) 

i 

. .th 
and vijl is the ~.J== component of The worst-case MDI distortion 

at the outputs of the receiving filter is represented by 

n = 1, ... ,M. (2.37) 

In the situations described above linear programming can often be 

avoided, thanks to the following theorem. 

THEOREM 2. 2 

Assume that: 

1/ v
0 

I 

2/ E z 1 II V z II"' represents the \verst-case MDI distortion at the 

output of the MMF 

3/l:z'llvzll""<l 
4/ 'II II""+ II F 0- I II"' represents the worst-case MDI distortion 

at the output of the receiving filter. 

Then the worst-case MDI distortion at the output of the receiving 

filter is minimal for those tap settings which cause and 

This theorem, the proof of which is given in Appendix 2.6.2, is a 

generalization of a theorem derived by Lucky for ISI [6, p.138J, 

The condition Ez'l IVzl 1""<1 means that in the binary case (ajZE{O,l}) 

the eye at the MMF outputs is not closed. 
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The tap settings as follow from Theorem 2.2 are calculated in the 

following manner. Define the composite matrices 

c fj (2.38) 

C T 
-N 

c-N+l 
T 

fj 
(2.39) 

'T' c ~ 

N 

vo vl v2N 

v_l vo v2N-I 

v_2 v_l vo v2N-2 

v~ 
(2.40) 

and 
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u "' 

0 

0 

I 

0 

0 

(2.41) 

where 0 is the MxM all-zero matrix. To satisfy Theorem 2.2 we have the 

equation 

c 
T = (2.42) 

This equation is further simplified by means of (2.14), (2.15) and 

(2.40); it is obvious that 

= v (2.43) 

so that 

u. (2.44) 

An important property of the worst-case MDI at output n as a function 

of the tap settings {onkj}' is given by 
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THEOREM 2.3 

The worst-case MDI distortion given by Equation (2.34), is a 

convex function of the (2N+l)M-1 variables enk;j' ••• .,!{, 

lii,;N, kfnA;j=O. 

For the proof of this theorem two arbitrary tap settings of the MTDL 

are denoted by the { ( 2N+ 1) M-1} component vectors ::! and §. The convexity 

of In is proved if for any two settings ~ and 8 and for all allowable \ 

From (2.34) it follows 

M N M 
= E r; (1-010ni) I E r {1--6 .8 ., )).a k;j • 

l i=l " j=-N k=l J nK n 

M 
= I: l: 

l i=l 

N M 
+ (1-\) { I: E 

j=-N k=l 
(1-8 .8 ) 

J nk 

M N M 

M 
I: (1-6 .6 k) (1-"A) 

k=l J n 

= 

+ 

(2.45) 

\ r r (1-ozo .JI r r (1-o.o ,)~ k.rek .. "-ek .0e ·o"J + e ·a" I+ 
l i=l n-z. j=-N k=l J nK. n J '1-Jt-- nJ n-z. "' n'l- " 
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(2.46) 

and 

(2.47) 

The most important property of convex functions is in our case the fact 

that they pcssess no local minima other than their absolute minimum. 

Thus any minimum of found by whatsoever method must be the absolute 

minimum of the worst-case MDI distortion at output n. 

In systems where the noise does not play an important role the MMF 

can be omitted and the correction of the MDI distortion can be applied 

directly to the channel response. For this situation we define 

r 11 (ZT) r12aTJ 

(lT) (lT) 

Rz /::, 
(2.48) 

r>MlaTJ ruilT J 

and 
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(2.49) 

The overall transmission is then given by 

F(D) C(D) R(D) . (2. 50) 

It is obvious that Theorem 2.2 is also valid with Vl replaced by Rz. 

And with 

(2.51) 

the correction in accordance to Theorem 2.2 can be calculated from 

the equation 

(2. 52) 

or equivalent 

= u. (2 .53) 

Sometimes it is possible to choose the sampling instant such that 

for l<O. The matrix sequence C(D) starts now with l=O too, giving 
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a simplification of the algorithm for calculating the Cl matrices. 

Applying Theorem 2.2 the tap coefficients are determined by the 

recurrence relation 

L-1 
l: 

i=O 
R~ .C. 

&-1- 1-
Z>:l. (2.54) 

If the noise is negligible and the MI1F is omitted, the MDI correction 

circuit can also be inserted at the transmitting end, allowing a 

realization of the MTDL in the form of !1 shift registers with resistors. 

As a result the overall transmission now becomes 

F(D) = R(D)C(D). (2. 55) 

consider again a finite length MTDL with C-N'' .. ,CN. Then 

N 
I: (2.56) 

J=-N 

From this equation it follows that 

N M 
E (2.57) 

j=-N 

with the n,k~ component of RZ-j' At the minimization of one of the 

I of (2.34) only (2N+l)M-1 of the weighting coefficients were n 

determined. Minimizing (2.11) by substituting (2.57), however, determines 

elements of the set {onkj}• 
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For this reason (2.30) is not valid now. There is only one degree of 

freedom and we take 

f
11

(0) = 1. (2.58) 

Assumption (2.29) is still valid, so that 

N M 
1 E r (2.59) 

j=-N k=l 

Substituting (2.57) and (2.59) in (2.11) yields 

1 M N M 
In = [ I: l: I l: l: (1-okl 0j)akijpnkj~+c110pn10ZIJ-l= If roJ I l i=l j=-N k-1 -" · nn 

1 M N M 
= [ l: l: I 2: l: (1-okl 0j)akijpnkj~+pn10~+ It raJ I ~ i=l j=-N k=l nn 

N M 

- Pn10l E I: (l-&k/'j)p lkjOaklj I ]-l. (2.60) 
j=-N k=l 

If the In of (2.60) is minimized for one value of n all cnkj are 

determined, thus leaving no control over the remaining In. It makes 

sense in this situation to minimize I
0 

(see (2.12)). However, this 

minimization problem cannot easily be solved by means of a linear 

programming technique. Other computer minimization methods must be 

looked for. It is easy to show that Theorem 2.2 is now also valid with 

vl replaced by and Fl given by (2.56). 
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With 

RT 
0 

R T 
-1 

RT 
1 

R T 
0 

the solution for C(D) is given by 

= u. 

RT 
0 

(2. 61) 

(2.62) 

If it is possible to choose the sampling instant such that Rz=O for l<O, 

the solution for C(D) is as given in (2.54). 
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2.5 Examples 

~~~E!~-~~~~~ 

As a first example we implemented the transmission of binary 

data over a multiwire cable, consisting of four identical wires which 

are symmetrically situated inside a cylindrical shield (see Fig. 2.3). 

Each wire was used as a transmission channel with the cylindrical shield 

Fig. 2.3 Cross section of the 4-wire cable 

as common return. The cable has a length of 1 km and the bit rate is 

taken 5 Mbit/s for each channel. In this example the length of the cable, 

the bit rate and the transmitted signals are such that the noise can be 

neglected. We have measured the following matrices 

= 

1 

0.24 

0.13 

0.24 

0,24 

1 

0.24 

0.13 

0.13 

0.24 

1 

0.24 

0.24 

0,13 

0.24 
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R1 = 0.26 I 

R2 0.11 I 

R5 = 0.07 I 

R4 = 0.04 I. (2.63) 

matrices, Theorem 2.2 can be applied. The calculated matrices 

according to (2.54) are 

-0.21 -0.03 -0.21 

-o. 21 -0.21 -0.03 
CD = 

-D.05 -0.21 -0.21 

-0.21 -0,03 -0.21 1 

-0.31 0.12 -0.01 0.12 

0.12 -D. 31 0.12 -0.01 
cl = 

-0.01 0.12 -0.31 D.12 

D.12 -D.Ol 0.12 -0.31 (2.64) 

Because all are circulant matrices, ~z'l IRzR
0

- 1
1 I represents 

the worst-case MDI at the channel output. Moreover, the filter output 

and 

matrices are also circulant matrices [7] and thus E-'1 IF-I I 
" I.-

represents the worst-case MDI at the filter output, which shows that 

the use of Theorem 2.2 was justified. In the realization of the MTDL 

tap coefficients equal to or smaller than 0.03 are omitted because these 

values do not give a substantial improvement of the eye opening. All 
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elements of c2 , c3 , etc. are smaller than 0.03, hence, they are not 

given in (2.64).The MTDL is implemented with four shift registers at the 

transmitting end which are connected to the cable by means of resistors. 

Fig. 2.4 shows the eye pattern at the receiving end when all wires are 

excited. The fact that this eye is closed can be verified from (2.63). 

-1 
Fig. 2.5 shows the eye pattern of the system characterized by R(DJR0 

which means that a multiple channel system with transfer R0-l is placed 

between the transmitter and the transmissing end of the cable. The eye 

pattern of this system is not closed, hence, 6['1 IRzR
0

-
1

1 1<1, which is 

also verified from (2.63) and (2.64). Finally, Fig. 2.6 shows the eye 

pattern of the equalized system that is quite satisfactory. 

In this example the cable of the previous example is excited in its 

modes [9] at a bit rate of 50 l4bit/s for each mode. Owing to 

imperfections in the structure of the cable, the ICI is rather severe 

at the given bit rate. So MDI correction will be necessary. For the 

several modes the ratios of the wire voltages are as given in Table 2.1. 

mode nr. 

1 2 3 4 

wire nr. 

1 1 1 0 

2 1 0 1 -1 

3 1 -1 0 1 

4 1 0 -1 -1 

Table 2.1 
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Fig. 2.4 The eye pattern of the unequalized system of Example 2.5. 1. 

Fig. 2.5 
- 1 

The eye pa ttern of the system R (D) ROof Example 2.5.1·. 

F i g. 2 .6 The eye pattern of the equalized system of Example 2.5. 1 . 
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At an appropriate value of the sampling instant the following matrices 

were measured: 

0.000 0.000 0.000 0.000 

?.000 0.500 -0.150 0.400 
R_1 = 

0.500 -0.350 0.400 -0.650 

0.000 0.450 -0.250 0.550 

29.125 1.550 -0.100 1.800 

-5.625 15.250 -0.200 1. 250 
Ro = 

-5.000 0.200 16.000 1.300 

-2.000 0.200 0.350 ?.400 

?.8?5 -1.500 -0.?00 -1.?50 

-3.000 6.850 0.250 -1.200 
R1 = 

-1.8?5 0.200 6.000 2.150 

-0.?50 -0.550 0.950 4.050 

-5.8?5 -0.800 -1.000 -1.100 

-0.3?5 -0.900 o.ooo -0.350 
R2 = 

0.3?5 0.050 -1.000 0.200 

0.000 -0.150 0.150 0.500 

-4.?50 0.100 0.000 -0.100 

0.000 -1.450 0.000 -0.050 

R3 = 
0.500 o.ooo -1.500 -0.150 

0.000 -0.050 0.000 -0.200 
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-2.?50 0.100 0.100 0.050 

o.ooo -1.150 0.000 0.000 
R4 ::; 

0.250 o.ooo -1.100 -0.150 

0.000 o.ooo 0.000 -0.300 

-1.625 o.ooo 0.100 0.000 

o.ooo -0.800 o.ooo o.ooo 
R5 ::: 

o.ooo o.ooo -0.?50 -0.100 

0.000 0.000 o.ooo -0.200 

-0.8?5 0.000 o.ooo 0.000 

o.ooo -0.450 0.000 o.ooo 
R6 ;;; 

o.ooo o.ooo -0.350 o.ooo 

0.000 o.ooo 0.000 -0,100 (2.65) 

Because these matrices do not satisfy the constraints of Theorem 2.2, 

the latter cannot be applied to achieve an optimum MTDL. For correction 

at the receiving end a linear programming procedure was used to 

calculate the optimum tap settings. The result is 

0.00092 0.00027 -0.00018 0.00062 

-0. 014?9 0.00009 0.00009 0.0018? 
c_l :;; 

0.00007 0.00200 -0.00202 0.0070? 

-0. 0011? -0.00411 0.00252 -0.01051 
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0.03167 -0.00362 0.00060 -0.00829 

o. 02117 0.06215 0,00087 -0.02141 
co 

0.00943 -0.00268 0,06378 -0,01?92 

0.00?65 0.00069 -0.00441 0.14299 

-0.00635 0.00519 0.00139 0,01231 

-0.00989 -o. 02664 -0.00134 o. 03219 
cl = 

-0.00282 0.00162 -0.022?8 -0.00206 

-0.002?2 0,00579 -0.00420 -0.07633 

0.00832 -0,00203 0.00063 -o. OM?o 

0.00597 0,01625 0.00104 -0.02166 ,.. = "2 
0.00276 -0,00104 0.01290 0,00575 

0.00197 -0.00463 0.00410 0.03472 

0.00181 0.00089 0.00000 0.00214 

-a. 00174 -0.00341 -0.00030 0,01235 
c3 

0.00006 0.00065 -0.00073 -0.00465 

0.00051 0.00307 -0.00297 -0.01245 

0.00325 -0,00012 0,00053 -0.00030 

0.00183 0. 00483 0.00017 -0.00655 
= 

o. 00110 -0.00046 0.00346 0.00203 

0.00050 -0,00162 0.00102 0.00924 
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0.00212 0.00029 0.0000? 0.000?0 

0. 00015 o. 00028 -0.00003 0.00390 
c5 

0.00082 0.00025 0.00119 -0.00152 

0.00055 0.00116 -0.00089 -0.00316 

0.00189 0.00009 0.0003? 0.00017 

0.00108 0.00160 0.00005 -0.001?0 
c~ = 

0 0.00047 -0.0001? 0,00108 0.00008 

0.00038 -0.00041 0.00019 0.00252 (2.66) 

giving rise to the following values of the worst-case MDI distortions 

I" = 0.130?2 
" 

o. 0?953 

0.08422 

I
4 

= 0.10051. (2.67) 

The linear programming procedure is rather complicated as compared to 

the calculation of the tap coefficients that yield =I and 

Fz = 0, Z -1,1, ••• ,6. This latter method gives the following tap 

settings 

0.00092 0.0002? -0.00018 0.00062 

-0.014?9 0. 00009 0.00009 0.0018? 
c_1 = 

0.0000? 0.00200 -0.00202 0.00707 

-0.0011? -0.00411 0.00252 -o. o1o51 
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0.0316? -0.00362 0.00060 -0.00829 

0. 0211'1 0.06215 0.00086 -0.02140 
co = 

0.00943 -0.00268 0.063?8 -0.01792 

0.00765 0.00069 -0.00441 0.14299 

-0.00635 o. 00519 0,00139 0.01231 

-0.00989 -0.02664 -0.00134 0.03219 

cl = 
-0.00282 0.00162 -0.02278 -0.00206 

-0.00272 0.005?9 -0.00420 -0.07633 

0.00832 -0.00203 0.00063 -0.004?0 

o. 00597 0.01625 0.00104 -0.02166 

0.00276 ·-0, 00104 0.01290 0.00575 

0.00197 -0.00463 0.00410 0.034?2 

o. 00181 0.00089 0.00000 0.00214 

-0. 001 ?4 -0.00341 -0.00030 0.01235 

0.00006 0.00065 -0.000?3 -0.00465 

o. 00051 0.0030? -0.0029? -0.01245 

0.00325 -0.00012 0.00053 -o.ooozo 

0.00183 0. 00483 0.00017 -0.00655 
,-. = v4 

0.00110 -0.00046 0.00346 0.00203 

0.00050 -0. 00162 0.00102 0.00924 

47 



0.00212 0.00029 0.00007 0.00070 

0.00015 0.00028 -0.00003 0.00390 

0.00082 0.00025 o. 00119 -0.00152 

0.00055 0.00116 -0.00089 -0,00316 

o. 00189 0.00009 0.00037 0.00017 

0.00108 o. 00160 0.00005 -0.001?0 
c6 = 

0.0004? -0.0001? 0.00108 0.00008 

o. 00038 -0.00041 0.00019 0.00252 (2.68) 

and MDI distortions 

Il 0.13072 

T = 0.08008 ~2 

0.08422 

= 0.10051. {2.69) 

Note that only I
2 

differs from that of (2.67). In correspondence with 

this fact only the second row of the Cz matrices differs at a few places 

with that of (2.66). The conditions of Theorem 2.2 are sufficient but not 

necessary. In many practical cases where these conditions are not satis-

fied, the tap settings that yield I and Fl = O, Z = -N, ... ,-l,l, ... ,N 

will nevertheless give an optimum or satisfactoring solution, as is 

demonstrated in this example. 

For correction at the transmitting end a procedure was used to minimize 

(see 2.12). The results are 
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0.00085 0,00024 -0.00016 0.00056 

-0.01496 0.00001 0,00014 0.00169 
c_1 = 

0,00008 0,00196 -0.00202 0.00?01 

-0.00092 -0,00394 0.0024? -0.01014 

0.031?0 -0.00361 0,00059 -0.00826 

0.02129 0.06220 0.00082 -0.0212? 

co = 
0.00933 -0.00268 0.063?5 -0.01?86 

0,00??2 0.00064 -0.00434 0.14280 

-0.0063? 0.00518 0.00140 0.01230 

-0.0099? -0.0266? -0.00132 0.03210 

c1 = 
-0.00281 0.00162 -0,022?? -0.00206 

-0,00261 0.00584 -0.00424 -0.0?621 

0.00832 -0.00203 0.00063 -0.00469 

0.00601 0,01626 0,00103 -0.02162 

c2 = 
0.002?2 -0.00105 0.01289 0.005?6 

0.00202 -0.00463 0.00412 0,03469 

0.00180 0.00088 0.00000 0.00214 

-0,001?? -0.00342 -0.00029 0.01232 

c3 = 
0.00005 0.00065 -0.000?3 -0.00465 

0.00059 0.00309 -0.00298 -0.01241 
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0.00325 -0.00012 0.00053 -0.00030 

0.00184 0.00483 0.00017 -0.00654 
= 

0.0010? -0.00046 0.00346 0,00203 

0.00055 -0.00162 0.00104 0.00924 

0.00212 0.00029 0.0000? 0.00066 

0.00015 0.00028 -0.00003 0.00390 

0.00061 0.00020 0.00119 -0.00174 

0.00055 0.00116 -0.00088 -0.00288 

0.00201 0.00016 0.00042 0.00038 

o.ooooo 0.0011? 0.00095 -0.00152 

-0.00007 -0.00026 -0.00057 0.00014 

-0.00203 -o. 00181 -0.00126 -o. ooi33 (2.70) 

and 

T = 0.1317? ~1 

T 0.13177 -2 

I3 = 0.1.317? 

= 0.131?7 (2. 71) 

As a starting point for the above procedure we used the solution found 

by taking FO I and Fz = O, Z -1,1, ... ,6 
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0.00085 0.00024 -0.00016 0.00056 

-0.01496 o. 00001 0.00014 0.00169 
c = -1 

0.00008 0.00196 -0.00202 0.00701 

-0.00092 -0.00394 0.00247 -0.01015 

o. 03170 -o. 00361 0.00059 -0.00826 

0.02129 0.06220 0.00082 -0.02127 
co = 

0.00933 -0.00268 0.063?5 -0.01?86 

0.00??2 o. 00064 -0.00434 0.14280 

-0.00637 0. 00518 0. 00140 0.01230 

-0.0099? -0.0266? -0.00132 0.03210 
cl 

-0.00281 0.00162 -0.022?? -0.00206 

-0.00261 o. 00584 -0.00424 -0.0?621 

0.00832 -0.00203 0.00063 -0.00469 

0.00601 0. 01626 0.00103 -0.02162 
= 

0.00272 -0.00105 0.01289 o. 00576 

0.00202 -0.00463 0.00412 0.03469 

0.00180 0.00088 0.00000 0.00214 

-o. oozn -0.00342 -0.00029 0.01232 

c3 
0.00005 0.00065 -0.000?3 -0.00465 

0.00059 0.00309 -0.00298 -0.01241 
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0.00325 -0.00012 0.00053 -0.00030 

0.00184 0.00483 0.00017 -0.00654 
;::; 

0.00107 -0.00046 0.00346 0.00203 

0.00055 -0.00162 0.00104 0.00924 

0.00212 0.00029 0.00007 0.000?0 

0.00015 0.00028 -0.00003 0.00390 

0.00082 0.00025 0.00119 -0.00152 

0.00055 0.00116 -0.00089 -0.00316 

0.00180 0.00008 0.00038 0.00014 

0.00161 0.00166 0.00012 -0.00161 

0.00044 -0.0001? 0. 00.709 0.00013 

o. 000;33 -0.00037 0.00016 0,00259 (2.72) 

with 

0,15809 

0.07889 

0.05600 

0.04133 (2.73) 

This last named solution was implemented using four shift registers 

with resistor matrices. The eye patterns at the outputs of this 

ilnplementation are given in Figs, 2.7, 2,8, 2.9 and 2.10. Althouth these 

eye patterns are not as good as those of Example 2.5,1 Fig. 2.6, they 

were found to be good enough for perfect reconstruction of the four 
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Fig. 2.7 Eye pattern of the equalized 

mode 1 of Example 2. 5 . 2 

F ig. 2.8 Eye pa t tern of the equa 1 ized 

mode 2 of Example 2.5.2. 

Fig.2.9 Eyepatternoftheequalized Fig. 2.10 Eyepatternoftheequalized 

mode 3 of Example 2.5. 2 . mode 4 of Example 2. 5 . 2 • 
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input sequences. 

2.6. Appendices 

In this appendix we show that the assumptions that the noise processes 

n.(t) are white and uncorrelated do not constitute a restriction of the 
'~-

generality, i.e. a system not satisfying these assumptions can be 

transformed into a system that does meet the requirements. The proof 

starts with the remark that the spectral matrix (which is the Laplace 

transform of the correlation matrix) o£ the input noise can be factored, 

according to [10], as 

<P (a) 
nn 

(2. 74) 

where 8 is the bilateral Laplace variable. Assuming that we have a system 

with transfer matrix P(s)such that the spectral matrix o£ the output 

noise is the identity matrix if the input spectral matrix is given by 

CCGN 

n o-o __,1 
WUGN 

p (s) 

4>oa(s) = Q (-s) Q r (s) 4>yy(S)= I 

Fig. 2.11 Multiple noise whitening filter 

(2.74) 1 then the spectral matrix of the output y of P(s) is written 
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as follows [ 10] 

(2. 75) 

(see Fig. 2.11). From this it follows that 

P(s) = Q-1(s) (2. 76) 

satisfies the requirement of white, uncorrelated output noise. A 

procedure for finding a Q(s} such that both Q(s) and Q-1 (s} are stable 

is also given in [10]. Now we shall further investigate the multiple 

matched filter (MMF) for colored, correlated Gaussian noise (CCGN) . The 

several impulse responses r . . (t) of the multiple channel system are 
1-J 

written in a matrix R(t) as given below 

R{t) ~ (2. 77) 

From (2.76) it follows that the multiple channel transmission system 

with transfer matrix R(s} disturbed by colored, correlated Gaussian 

noise with spectral matrix ~nn(s) can be replaced by a multiple channel 

transmission system with transfer matrix Q-l(s} R(s) disturbed by white, 
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uncorrelated, Gaussian noise (WUGN) (see Fig. 2.12). As the inverse of 

Q-1
(s) exists it follows from the theorem of reversibility [5, p. 222] 

that the insertion if this filter does not affect the optimality of the 

receiver to be found for the given channel. The MMF for the system 

depicted in Fig. 2.12 is given by 

(2. 78) 

Note that the MMF for the system with impulse response matrix R(t) 

disturbed by WUGN is given by n1(-t). So the !4MF for the original 

system can be written as 

(2. 79) 

(see Fig. 2.13). This MMF we call multiple whitening matched filter 

(MWMF). 

Appendix 2.6.2 --------------
Proof of Theorem 2.2. 

The proof of this theorem consists of two parts. First of all we 

prove that F0 = I and then this result is used to show that Fz = 0, 

Z = -N, ... ,-1,1, ... ,N. Let {Vz} oo be given with v
0 

=I and let 
Z=-oo 

<1 . (2.80) 
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CCGN WUGN 

R(s) R(s) 

-1 
Fig. 2.12 The systemR(s) disturbedbyCCGN is replaced by the system Q (s) R(s) disturbed by WUGN. 

CCGN 

R(s) a·'(s) [o-'(-s)] r Rr(-s) 

::; Fig. 2.13 The multiple channel system disturbed by CCGN in cascade with the multiple whitening matched filter. 



Let 

l = .. • ,-1,0,1, ... 

Assume that the diagonal elements of are all unity, so that 

N 
=I+ Z = E C.V . 

j=-N J -J 

(2 .81) 

(2.82) 

where Z is a matrix with diagonal elements equal to zero. From this 

equation it follows that 

z 

Let 

A 

N 
-I + E 

j=-N 
c.v .. 
J -J 

I'll I 1+1 IZII z 
N 

E'IIE c/z-)1+11-I+ 1: 
Z j=-N j=-N 

c.v -II· J -J 

(2.83) 

(2.84) 

Let A be minimal at (C_;, ••• , and let its value there be A*. Consider 

A at (c_;, ... ,c0+E0, ••. ,CN) and let its value there be A. Now we must 

have 

A* :!i A. (2. 85) 

From (2.84) it follows 
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N 
A = E 'II l: c .*V . + 

t j=-N J l-J 

N 
11+11-I+ 2: 

j=-N 

N 
~ l: 1 II E 

l j=-N 

N 
II+ r'IIE0 II.IIvzii+II-I+ r 

l j::::-N 

::::A*- llz*ll +liE llr'll II+IIZ* + II 
0 z. 

where 

!!. N 
Z* =-I + l: C .*V •• 

j=-N J -J 

Choose 

By means of (2.88) 1 Equation (2.86) becomes 

From (2.89) it follows that 

II Z* II = 0 

because otherwise there is a contradiction with (2.85). Now Let 

(2 .86) 

(2 .87) 

(2.88) 

(2.89) 

(2. 90) 

(2. 91) 
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under the constraint 

N 
l: C.V . =I. 

j=-N J -J 

The matrix c
0 

will be used to satisfy this constraint 

N 
c = I - l: I c .v .. 

0 • N J -J J=-

We shall show that a minimum for A occurs if 

N 
l: c.vl_.=o 

j=-N J J 
l = -N • ••• • -1,1, ••• • N. 

Proof: 

By means of (2.93) Equation (2.91) can be written as 

(2.92) 

(2. 93) 

(2.94) 

(2.95) 

Let A be minimal at (C_N>''''CN) and let its value there be A*. Consider 

A at (C_N>'''•Ck+Ek''''>CN) and let its value there be A. Now we must 

have again k# 

A* ~A. (2.96) 

From (2.95) it follows that 

N 
ii = l~~"'ll j~~N c/vl-j - v_j vlJ + vl + Ek(Vl-k- v_k vlJ II 
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where 

Choose 

A* - II Ek II + E I II v l-k II· II 
l=-oo 

n N 
= r c~vk .. 

j=-N J -J 

Z:/k 

o</3"'1 

II + E I I I v lJ I· II Ek II· II v -k II + 
l=-«> 
l:fk 

(2.97) 

(2.98) 

(2.99) 

which is possible if the inverse of {I - exists. Since M
0

<1 we 

can say that II Vk II <1 and II V_k I I <1 for k;iO, so that 

(2.100) 

In general a matrix (I- B) is regular if I IBI 1<1, as will be shown 

below. Suppose (I- B) to be singular, then there must be a vector 

:: ;t! Q such that 

{I - B):: = Q J 

so that x = Bx and 

(2. 101) 

(2.102) 
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This latter inequality implies a contradiction. Thus (I - B) must be 

regular. Hence, the inverse of (I - exists. Moreover, we have 

(2.103) 

By means of (2.99) and (2.103) equation (2.97) becomes 

II II }+1-<IJ 

II· II II l 

(2.104) 

From (2.104) it follows that 

(2.105) 

because otherwise there is a contradiction with (2.96). 
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CHAPTER 3 

MAXIMUM LIKELIHOOD AND MAXIMUM A POSTERIORI RECEIVERS 

In Chapter 2 it was found that several concepts known from the ISI 

literature can be generalized to MDI. Recently,maximum likelihood 

sequence estimation of data disturbed by noise and lSI received 

considerable attention [1], (2] and [3]. Now the question arises as 

to whether these concepts can also be generalized to sequences 

transmitted over multiple channel systems where the output data are 

disturbed by noise and MDI. In this chapter this question is answered 

to the affirmative. 

3.1 The statistical sufficiency of the multiple matched filter output 

With the input vector sequence we associate the vector D-transform 

f!!.{D) f:i l: 
z 

••. ,-1,0,1, • •• (3 .1) 

where D is the delay operator. 

In this section we shall show that if the multiple matched filter 

(l-:!MF), as defined in Chapter 2 and [4], is used as multiple linear 

receiving filter, then the sampled outputs of this MMF form a set of 

sufficient statistics for estimating the vector input sequence f!!.(D). 

The impulse responses r .. (t) are considered as elements of a matrix 
1.-J 

as in Chapter 2 

65 



r
11

(t) r'12(t) r lM(t) 

r'21(t) r22(t) r'2it) 

R(t) 
/:, 

(3. 2) 

( t) r}JM(t) 

which defines the behaviour of the multiple channel system. If the 

MMF is described analogously it will be clear that its response is 

denoted by n7r-tJ. Assume that the multiple channel system is excited 

by a single input vector ~· Denoting the signal at output i of the 

multiple channel system by si(t), we can write the total system output 

as a vector 

~(t) ~ (3.3) 

called the vector output signal. The noise is also given as a vector 

/:, 
IJ:( t) 

called the vector noise. 

(3.4) 

In the following we shall several times use the inner-product of 

matrices, the elements of which consist of time functions. 
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Such a product is denoted as 

K = <A(t),B(t)> (3. 5) 

and defined by 

k ~ ,, 
ij ~ f (3 .6) 

n 

The sampled output of the MMF, in the absence of noise, is given by 

the signal vector 

T <R (t),§.(t)>. (3.7) 

The inverse transformation from signal vector to output vector signal 

is 

§.(t) R(t)GI2, (3. 8) 

where G is a matrix to be determined. Substituting (3.8) in (3.7) 

gives 

G (3. 9) 

This matrix equals the inverse of the sampled transfer of the multiple 

T channel system R(t) in cascade with the MMF given by R (-t). This 

latter transfer was called v0 in Chapter 2 and we have seen there that 

we must require our systems to satisfy the existence of the matrix G 

according to (3.9). 

In absence of the signal the sampled output, due to noise only, can 

be written as 

(3. 10) 
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According to (3.10) the relevant vector noise [5, Chapter 4], being 

that part of the input vector noise represented by the projection of 

~(t) onto the signal space, is denoted by 

(3.11) 

By means of the definition 

(3. 12) 

the equivalent received vector signal is written as 

J!(t) = R(t)G)!. (3. 13) 

which means that for the sampled output it makes no difference 

whether the true received vector signal ~(t) + ~{t) or the vector 

signal J!(t) is presented to the input of the MMF. Writing out 

(3.13) yields 

)!.(t) = R(t)Gg R(t)Gfl.. + R(t)G?J: (3.14) 

Thus R(t) is a basis for the signal space spanned by both fJ..{t) and 

Uv(t) (5, Chapter 4], which proves that the sampled MMF output is a 

sufficient statistic for estimating a single input vector ~· This 

sufficiency for single input vectors ffi is also valid for sequences 

of input vectors with finite support (see [1] and [5]). Hence, we 

have the following 

THEOREM 3.1 

II 
If a vector 

output sequence 

is transmitted at each instant lT, then the vector 

68 



l = .. . ,-1,0,1, ••• (3.15) 

forms a set of sufficient statistics for estimating the vector input 

sequence if!.(D). 

3.2 The multiple whitened matched filter 

Now consider the system consisting of the channel in cascade with 

the MMF as a multiple channel system with M inputs and M outputs. As 

in Chapter 2 the impulse response from input j to output n of this 

system is called Vnj(t) and can be written as 

v .(t) = 
nJ 

M 
l: 

i=1 
r. (-t) *r .. (t)= 

1-n 1-J 

M 
l: 

i=1 

where * means convolution. Again define 

v
11 

(Z-T) V1il-T) 

v21 (Z-T) v22(Z.TJ 

Vz_ ~ 

VM1 (l-T) vM2 (lT) 

and 

l = .. . ,-1,0,1, ••• 

From (3.16) it is evident that (3.18) is equivalent to 

V(D) = < ~(D-1,tJ,R(D,t) > 

where R(D,t) is a matrix with elements consisting of the chip 

D-transforms [1] of the elements of R(t). 

(3.16) 

(3 .17) 

(3.18) 

(3 .19) 
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As the matrix of impulse responses of the MMF is er(-t) the 

cross-correlation of the output noise signals at outputs n and m is 

given by 

M 
E N0 I rin(-t)rim(-t-p)dt 

i=l 

M 
);; 1'10 r r. (t)r. (t-p)dt 

i=l -~ ~n ~m 

Sampling this function, we define its D-transform as 

t = •.. ,-1,0,1, ..• 

(3.20) 

(3. 21) 

If all ~nm(D) are collected in a matrix we obtain the spectral matrix 

iP(D) (3.22) 

Relation (3.22) can readily be verified by means of (3.20). In [6] and 

-1 
(7] it is shown that a matrix H(D ) can be found such that 

l!i/(D) (3.23) 

with both 
-1 -1 

and H (D ) stable and nonanticipatory. Comparing 

(3.19), (3.22) and (3.23) it is obvious that 

V(D) H(D-l )ll (D). (3.24) 

Now we conclude that the sampled output of the MMF can be written as 

y_(D) (3. 25) 

where ~(D) is the sampled input noise vector sequence. 
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The output noise 

~I (D) (3. 26) 

is colored Gaussian with spectral matrix ~(D). This follows from 

) . (3. 27) 

From (3.25) it is seen that the output noise is whitened by the operation 

/:; 
!:_(D) (D}~(D) + ~(D) = U(D) + ~(D) (3.28) 

which means physically that the MMF is followed by a multiple tapped 

-1 
delay line (MTDL) (see Chapter 2 and [4]) with transfer H ) 

I • 

It has been mentioned in the foregoing that (D-1) is stable and 

nonanticipatory and thus realizable. The HMF followed by the MTDL is 

called multiple whitened matched filter and is characterized by its 

chip D-transform 

't). (3. 29) 

If the impulse response from input n to output m is denoted by wmn(t), 

the set of functions 

as is seen from 

~ (D) ww 

is orthonormal in beth time and space 

t)> = 

= (D, t) ,R(D-1, t) 

(D)'!(D-l) 

I. (3 .30) 
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In this previous section we concluded that v(D) forms a set of sufficient 

statistics for estimating ~(D), but ~(D) is found by the reversible linear 

-1 - 1 
transformation H (D ) on ~(D). Thus ~(D) also forms a set of sufficient 

statistics for estimating ~(D). These results are summarized in the 

following 

THEOREM 3. 2 

Let R(t) be the matrix of impulse respo nses of the multiple channel 

-1 '[' 
transmiss ion s ystem and H(D )nr(D) a factorization of 

V(D) T - 1 = <R (D ,t),R(D,t)> (3. 31) 

such that both H(D- 1 ) and H- 1 ( D- 1J are stable and nonanticipatory . 

Tne n the multiple filter whose c hip D-transform is 

W(D, t) (3. 32) 

is realizable and is called a multiple whitened matched filter. Its 

sampled outputs give a vector sequence 

z(D) = fl (D)x(D) +~(D) (3. 33) 

which is a sufficient statistic for ·estimating the vector input 

sequence ~(D) . Tne noise vector sequence is white in both time a nd 

spac e . 

The multiple whitened matched filter found in thi s section is a 

generalized version of the whitened matc hed filter derived in [1]. 
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3.3 The vector Viterbi algorithm 

In the preceding sections we have derived a structure giving a set 

of sufficient statistics for estimating the input vector sequence of a 

multiple channel transmission system from the observations of the o utput. 

This output is disturbed by !1DI and noise. As the noisy parts of the 

multiple whitene d matched filter output samples are Gaussian and un-

correlated, hence, independent the Viterbi algorithm can be used to 

perform ML estimation of the vector input sequence ~(D). The vector 

Vit erbi algorithm is a vector version of the algoritrun u sed to make 

ML estimations on digital sequences and which is extensively described 

in (1] and [2]. The vector sequence y ( D) may be considered to be 

generated by a multiple finite state machine, driven by an input vector 

sequence ~(D) (see Fig. 3.1.). We define the state sl at time lT of this 

finite state machine by 

... ., -1., 0, 1, ... (3. 34) 

where N is the degree of the matrix polynomial Fl(D) (see (3.28)). There 

are Li'IM distinct states. We can depict the s u ccessive states of the 

multiple finite state machine, together with all allowable transitions, 

in a trellis diagram [1], [B] and [9]. Given the observations 'l.z• the 

log likelihood of a transition is given by 

'1 
ln(v'2rrN0 J' + 

,·4 

- 2N0 i~l {zil- yi(8 l' 8 l+lJ) 2 (3. 35) 
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~(D) 

y (D) 

Fig. 3.1 Model of a multiple finite state machine 



where zil and are the i~ elements of respectively and 

y sl+l) . In ML sequence estimation the first term of the right-

hand member of (3.35), being independent of l, can be omitted and the 

1 
same applies to the factor ~ in the second term. Given the received 

·'a 
sequence y(D) one can associate a distance with each allowable state 

transition 

M 
E 

i:::::l 
(3.36) 

The Viterbi algorithm now recursively finds that state sequence for 

which the metric 

J g ); 
z 

(3.37) 

is minimal, i.e. the maximum likelihood estimation of the state {input) 

sequence [1, 2, 8 and 9]. At this point the vector Viterbi algorithm is 

in fact reduced to the scalar version and we refer to [1), [2], [8) and 

[9] for further details. In its implementation the Viterbi algorithm 

requires one metric and one path register for each state. Hence, the 

complexity of implementation grows exponentially not only with the 

channel memory N but also with the number of channels M. This fact 

severely limits the practical applicability of the Viterbi algorithm 

for MDI correction. 

3.4 The vector Ungerboeck algorithm 

Ungerboeck describes an alternative algorithm for making ML sequence 

estimations on data disturbed by ISI and white Gaussian noise [3]. 
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Using the algorithm, the tapped delay line is omitted and the sampled 

output of the matched filter is used directly as input for the algorithm. 

We shall generali~e below the Ungerboeck algorithm for ML vector sequence 

estimation of data that are disturbed by MDI and white Gaussian noise. 

If a vector sequence ~(D) is transmitted, the corresponding received 

vector signal is defined as 

b l: R(t-7-T) 
l 

+ ~(t} l"' ... ,-1,0,+1, ... (3.38) 

Among all possible input sequences f,(D) we choose as the estimate :!!.(D) 

for that vector sequence which maximizes ln p[~(t)I~(D)], which is 

equivalent to minimizing 

J II II/ 

z; R( t-kT}~k] > 
k 

over all allowable f(D). Rewriting (3.39) we obtain 

J < 

+ < r 
l 

Define 

> - < E R(t-kT)~k> - < E ~ 
k . l l 

>. 

> l = ... ,-1,0,1, ... 

(3.39) 

> + 

(3 .40) 

(3.41) 

This vector is interpreted as the sampled output of the MMF. By means of 

definition (3.41) J is written as 
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J + r, l: 
l k 

(3 .42) 

The first term of (3.42) is independent of and thus may be ignored in 

recursive manner 

( 11 
I ~ • o -' 

= 

where 

... ., 

"[ 
T 

z 'l 
-2 l: fn + l: l: 

n=-ro n=-oo k=-ro 

JZ-1( .. ·"~l-1) + F(!l_z; ... _, 

T 
N 

+ 2 r vk ~'l-k -2 
k=l 

~k 

(3.43) 

(3 .44) 

and N is the degree of the matrix polynomial H(D) (see (3.23) and (3.24)). 

We define the survivor metric as follows 

The sequence ( . .• , , which results in a minimum of (3.45) is called 

the path history of the state 

(3 .46) 

NM 
It is easy to see that there are again L different states. One can 

imagine that these states correspond to the states of a finite state 
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machine. Like in the Viterbi algorithm one now uses dynamic programming 

to find recursively the ML state sequence [3]. Although at first glance 

the metric calculation of the Ungerboeck algorithm seems more complicated 

than that of the Viterbi algorithm, a closer inspection of (3.44) shows 

that the metric up-dating is a rather simple operation from a programming 
N 

point of view. Namely, the quantity ~zT[V0 ~t + 2 E Vk ~z-k] depends 
k:=l 

only on the channel response, assumed to be fixed, and on the particular 

transition. Hence, this value can be stored in a memory and need not be 

calculated in real time. 

3.5 The error performance of the ML receiver 

The analysis in this section closely resembles that given in [1] and 

(3]. Assume, without loss of generality, that the error event e, 

associated with the vector error sequence 

~(D) fi ~(D) -~(D) (3.47) 

starts at t=O, i.e. ~(D) can be represented by 

§_(D) (3 .48) 

where o
0 

denotes the minimum nonzero value of the Euclidean norm of the 

error vector §.i (i=l, ••• ,B) and the length of the error event£ is H+N. 

The value of a
0 

equals 

(3.49) 
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which equals unity in our case. From [3] we know that the probability 

of an error event s can be written as 

(3.50) 

where the sub-events s
1

,s
2 

and s
2

' are defined as follows: 

s
1 

:~(D) is such that ~(D)+~(D) is an allowable data vector sequence, 

c2 :the noise vector sequence is such that x(D)+e(D) is ML (within 

the observation interval), 

e
2

':the noise vector sequence is such that ~(D)+~(D) has greater 

likelihood than ~(D), but not necessarily ML. 

From the preceding section it is concluded that Pr(c 2 'ic
1

J is the proba

bility that 

J{~(D)} > J{~(D) +~(D)}. (3.51) 

It can be shown that inequality (3.51) is identical to 

(3. 52) 

where ~l' are the sample values of the noise at the output of the MMF. 

The quantity o(s) is called the magnitude of the error event s. Consider 

the random variable a given by the right-hand member of (3.52) 

(3. 53) 
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This random variable is Gaussian distributed with zero-mean and variance 

(3.54) 

From this it follows that 

(3. 55) 

where the Q(,)-function is defined in [5] and (2.21). Let E be the set 

of all possible error events s. Then the probability that any error event 

occurs becomes 

FV(E) = Z Pr(s). (3. 56) 
E<E 

Let & be the set of all possible 8(s) and the subset of error events 

for which o(E) = 8. Then from (3.50) the event error probability is 

bounded by 

(3. 57) 

Because of the exponential behavior of the Q(,)-function for large values 

of the argument, this expression will at moderate SNR values already be 

dominated by the term involving the minimum value omin out of the set &. 

At moderate and large signal-to-noise ratios s 2
1 implies E2 with a pro

bability almost equal to one. For these SNR values FV(E) is approximated 

by 
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(3. 58) 

Assuming the input symbols to be independent and equiprobable, the pro-

bability of €
1 

can be written as 

(3. 59) 

with the component of ~z· In the Appendix (Section 3.8) it is 

shown that under the constraint 

(3 .60) 

no error event whatever has a smaller magnitude than the single error 

events with magnitude o
0

• By a single error event we mean an error event 

with an error sequence that consists of one error vector {~(D)=~0 } and 

of this vector only one component differs from zero. In this situation 

the single error events with magnitude o
0 

dominate the expression for 

the event error probability and moreover, the event error probability 

approximates the symbol error probability, i.e. 

(3 .61) 

II 
is the total amount of energy that is measured at the Since 

receiving end on transmission of a single symbol out of the set E0 , 
0 
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the symbol error probability is not increased by MDI. 

3.6 Maximum a posteriori receivers 

In this section we shall extend the algorithms of Sections 3.3 and 

3.4 to provide maximum a posteriori (MAP) detection of signals disturbed 

by noise and MDI. We can start with the finite state machine models 

developed in those sections. As is shown in [9] the contribution of a 

certain transition in the trellis to the probability of a certain path 

is 

(3.62) 

As far as the Viterbi algorithm is concerned, this results in a change 

of the distance in the following way, 

(3.63) 

In the case of the Ungerboeck algorithm we obtain as a modified 

metric contribution 

N 

····£zl ~ ~zT [vo £z + 2k~l vk ~z-k- 2 ~z] + 

(3.64) 

From (3.63) it follows that for large SNR values the MAP algorithm will 
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give the same performance as the ML algorithm, Only for small SNRs can 

the MAP rule offer significant improvement, depending on the several 

transition probabilities. This will be demonstrated in the next section. 

3. 7 Examples 

As a first example we take a multiple channel with M=2. The elements 

of the transmission matrix R(t) are given in Fig. 3.2. We take T=l and 

for this system the V(D) matrix polynomial is as follows: 

V(D) 
[ 

3? 
12] (..J:_ D-1 5 1 D) 

?2 + 144 + 72 . (3.65) 
12 37 

One can easily verify that this V(D) satisfies condition (3.60). 

Decomposition of V(D) according to (3.24) yields 

Il (D) _.:... (2+D) • 7 [6 1] 
12 1 6 

(3.66) 

The trellis diagram for this system is depicted in Fig. 3.3, whereas 

the values of Jf.(Sl,sl+l) are given in Table 3.1. The systam described 

by (3.65) together with a ML receiver designed for this system is 

simulated on a minicomputer. In Fig. 3.4 the bit error probability for 

a.binary alphabet {+1,-1} and independent, equiprobable input symbols is 

plotted as a function of the SNR, together with the Pr(e) for isolateu 

pulses. The two curves merge at a Pr(e) of about 10-
4

• Thus for bit error 

-4 
probabilities smaller than 10 the performance of the ML receiver on 

signals disturbed by MDI is as good as the performance of a ML receiver 

designed for signals without MDI. In the case of larger bit error 

probabilities the difference between the two curves is maximal by 1.2 dB. 
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Fig. 3.2 Received signal set for the Examples 3.7.1 and 3.7.2 
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Fig. 3.3 The trellis diagram of the Examples 3.7.1 and 3.7.2 
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Table 3.1 

old state new state output 

sl 8 l+l Jf. ( 8 l' 8 Z+l) 

1 c21) 1 1 IT -21 

2 1 1 c1;) T2 

1 1 c1;) 12 

4 1 1 c :) T2 

1 2 1 cl:) T2 

2 2 1 c:;) T2 

3 2 1 c ;) T2 

4 2 1 cl:) 12 

86 



Table 3.1 (continued) 

old state new state output 

sl J!.J8 l'8 l+l) 

1 3 
1 cl:) T2 

2 1 (_ ;) 12 

3 (_~;) 
4 cl:) 
1 4 ( :) 
2 4 C:) 

4 c:) 
4 4 c;) 
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20 

Fig. 3.4 Symbol error probability versus signal-to-noise ratio 

curve A single pulse 

Curve B monochannel with linear correction and bit-by-bit detection 

Curve C multiple channel with M 

detection 

2, linear correction and bit-by-bit 

Curve D monochannel with ML sequence estimation 

Curve E multiple channel with M = 2 and ML vector sequence estimation 

curve F monochannel and multiple channel with M = 2; 

correlated sources and MAP vector sequence estimation 
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These results are compared with those of an optimum constrained linear 

receiver (see Chapter 2 and [4]). The difference between the linear 

receiver and the single-pulse performance is 2.7 dB, showing the 

superiority of the vector ML receiver. We also simulated a ML receiver 

for a monochannel with impulse response r 11 (t). Now the maximum 

difference from the single-pulse performance is found to be 1 dB, but 

these two curves also merge at a Pr(e) value of abOut 10-4. Linear 

correction with bit-by-bit detection gives an increase of 2.2 dB in 

this case. 

~~~g!~-~~z~~ 

As a second example we consider the channel of Example 3.7.1, with 

the same parameters, but correlated input symbols. It is assumed that 

the two symbol sources are independent, but that each source is first

order Markoff with transient probabilities as given in Fig. 3.5. 

~lg. 3.5 The transient probabilities of the sources in Example 3.7.2 
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By means of this it is easy to see that the transient probabilities in 

the trellis diagram (see Fig. 3.3) are 

0.0009 0.0291 0,0291 0.9409 

0.0291 0.0009 0,9409 0,0291 
P= (3.67) 

0.0291 0.9409 0.0009 0.0291 

0.9409 0.0291 0.0291 0,0009 

The symbol error probability as a function of SNR for this system is also 

given in Fig. 3.4 (curve F). The error curve for the monochannel case 

with transient probabilities according to Fig, 3.5 coincides practically 

with this curve. As can be seen, the error performance at low SNR values 

is substantially better than that of the single-pulse response. If the 

probabilities in Fig. 3.5 are changed to 0.05 and 0,95 the error curve 

coincides practically with the single-pulse curve. Probabilities of 0,1 

and 0,9 show no difference from the uncorrelated case. From this it 

follows that MAP estimation only makes sense where there are considerable 

differences between the probabilities of the transitions in the trellis 

and the SNR is low. 

N.B. - In the simulations the path-register length was 16 bits in all 

cases. 

- The number of transmissions was chosen such that the 90% 

confidence interval extends from 0,95 Pr(e) to 1.05 Pr(e). 

3.8 Appendix 

Let 

where o
0 

is the minimum nonzero value of the Euclidean norm of 

!£i (i=l,, .• ,H). 

90 

(3.68) 



Let {Vl}~-oo be given and assume 

llv0-
1

11 2 ; 1 \\Vz_\1 2 ~ 1. 
7..=-oo 

(3.69) 

The matrix v
0 

equals< ~(t),R(t) >and it is easy to show that this 

matrix is positive definite, under the condition derived in Section 3.1. 

Consider the first term of (3.70). Because v0 is positive definite we 

have the inequality 

T T 
vo ~k ~ Amin(Vo) ~k ~k 

where Amin (V
0
J is the smallest eigenvalue of v

0
• 11oreover, 

1 

it follows that 

H 
~ E 

k=O 

T 
H 

= E II 
k=O 

(3.71) 

(3. 72) 

(3.73) 

Now consider the second term of (3.70). Due to the Schwarz inequality 

and from (3.68) and (3.69) we have 

:;; llv0- 1 11 2 
H ll 

~~~l+kTII2 ~~~kll2 E 1 I vzll2 E 
k=O 

:;; {1\vo-1112 
H H 2 2 
E 1 \IV;;II 2H E II 112-r,O}. 

l=-H k=O 
(3.74) 
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From (3.70), (3.73) and (3.74) it follows that 

This last inequality holds good if (3.69) is satisfied. 
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CHAPTER 4 

CONCLUSIONS AND FINAL REMARKS 

In this thesis it is shown that for a multiple channel transmission 

system both the optimum linear receiver (minimum symbol error probabi

lity) and the optimum linear constraint receiver (minimum symbol error 

probability under the zero-forcing condition) have the same structure 

as the optimum linear receiver found by Kaye and George who used the 

minimum mean square error criterion. Moreover, it is found that by means 

of the multidimensional Nyquist criterion and the generalization to MDI 

of a theorem by Lucky for ISI, it is fairly easy in systems for which 

this latter theorem is valid, to find the optimum tap settings for a 

finite-length MTDL. The algorithm to calculate the tap settings is further 

simplified in cases where the noise in unimportant and the sampling 

instant is smaller than the bit time. If the system to be considered 

does not satisfy the requirements of the generalization of Lucky's 

theorem, the calculation of the optimum tap settings requires more 

complicated optimization methods, such as linear programming or computer 

search. 

Furthermore, it is shown that the outputs of the multiple matched 

filter as defined in the Section 2.1 on the structure of the optimum 

linear receiver, form a set of sufficient statistics for estimating the 

transmitted vector sequence. A multiple whitened matched filter is derived, 

the output of which is used for ML vector sequence estimation by means 

of a vector version of the Viterbi algorithm. A modified algorithm, 
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derived by Ungerboeck, is also generalized to combat noise and MDI. If 

this algorithm is used, the MTDL is omitted and the algorithm is 

applied directly to the sampled output of the MMF. From analysis of the 

error performance of the ML receiver it follows that, under a certain 

constraint, for moderate and large SNRs, the symbol error probability 

is not substantially affected by 11DI, i.e. the symbol error probability 

is approximated by the error probability for a single pulse. The example 

of the MAP receiver shows that this kind of receiver only makes sense 

where there are considerable differences between the a priori probabi

lities of the transitions in the trellis and the SNR is low. 

From a practical point of view the linear receiver is easier to 

implement than the ML receiver. The latter will require equipment, which 

is nearly as complicated as a micro-computer. Moreover, the operations 

with this equipment will be very time-consuming, Hence, the linear 

receiver is eminently suited for incorporation in sysuems where a high 

bit rate at a prescribed low symbol error probability and low equipment 

costs are first requirements, as is the case in digital cable networks. 

The application of ML receivers will lie in the field of high quality 

systems, which operate at a relative low speed, such as communication 

systems for space vehicles. In cases where the MTDL is unstable or the 

overall worst-case MDI at the receiver output is greater than unity, the 

linear receiver is of no use. In those cases the ML receiver can offer 

a way out. 

Comparing the results of this thesis with the theory on monochannel 

systems it is concluded that ICI plays the same role as ISI. If these 

two disturbances are considered simultaneously, then MDI can be treated 
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as a generalization of ISI. However, in applying the concepts developed 

in this thesis, it should be ensured that the conditions of the relevant 

theorems are satisfied. 
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Dit proefschrift behandelt de detektie van synchrone datasignalen, 

die verzonden zijn over meervoudige kanalen en gestoord worden door 

ruis, intersymbool- en interkanaalinterferentie. 

In hoofdstuk 1 geven we definities van de begrippen intersymbool-

en interkanaalinterferentie, Om het gezamenlijk effekt van deze twee 

storingen aan te geven voeren we de term meerdimensionale interferentie 

in. Na een korte historische inleiding wordt vervolgens het model van 

het meervoudige kanaal beschreven, zoals dat in dit proefschrift wordt 

gehanteerd. 

Hoofdstuk 2 is geheel gewijd aan lineaire ontvangers. Eerst leiden 

we de struktuur van het optimale, lineaire ontvangfilter af, Dit filter 

bestaat uit twee delen, resp. het meervoudig "matched" filter en de 

meervoudige, afgetakte vertragingslijn genoemd. Bij de afleiding han

teren we als kriteria minimale symboolfoutenkans of minimale symbool

foutenkans onder de bijvoorwaarde dat de meerdimensionale interferentie 

nul is. De gevonden struktuur blijkt dan dezelfde te zijn, als de 

struktuur die gevonden wordt, indien men het kleinste-kwadraten-krite

rium gebruikt, zeals Kaye en George hebben gedaan. Verder formuleren 

we het meerdimensionale Nyquist kriterium, dat overeenkomt met het ge

generaliseerde Nyquist kriterium, zoals Shnidman dat definieert. Er 

blijkt een eenvoudige uitdrukking te bestaan veer de symboolfoutenkans 

van systemen die aan dit meerdimensionale Nyquist kriterium voldoen. 

Daarna worden optimale, realiseerbare, afgetakte vertragingslijnen 

(d.w.z. afgetakte vertragingslijnen met eindige lengte) beschouwd en 

algorithmen worden gegeven om de weegfaktoren in verschillende prakti

sche situaties te berekenen. Aan het eind van dit hoofdstuk beschrijven 
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we twee experimenten, waarop de theorie wordt toegepast, die in dit 

hoofdstuk is ontwikkeld. Deze voorbeelden hebben betrekking op de 

transmissie van vier binaire datastromen over een vieraderige kabel. De 

experimenten zijn uitgevoerd met resp. 5 Mb/s per kanaal en 50 Mb/s per 

kanaal. 

In hoofdstuk 3 onderzoeken we "maximum likelihood"-ontvangers. Ten

einde "maximum likelihood sequence estimation" toe te kunnen passen op 

de ontvangen signalen, tonen we eerst aan, dat de verzameling sample

waarden van de meervoudig "matched" filter uitgangen een "sufficient 

statistic" vormen voor de gezonden datareeks. Vervolgens worden twee al

gorithmen voor "maximum likelihood sequence estimation" veralgemeend 

voor "maximum likelihood vector sequence estimation". Voor het vektor

Viterbi-algorithme definieren we een "whitened matched" filter. Het 

vektor-Ungerboeck-algorithme maakt rechtstreeks gebruik van de sample

waarden van de meervoudig "matched" filter uitgangen. Bij gebruik van 

dit algorithme kan de meervoudige, afgetakte vertragingslijn achterwege 

blijven, terwijl dit algorithme in feite niet ingewikkelder is dan het 

Viterbi-algorithme. Uit een onderzoek naar de kwaliteit van dit soort 

ontvangers volgt, dat, onder een bepaalde voorwaarde, voor gemiddelde 

en grote signaal-ruisverhoudingen de meerdimensionale interferentie de 

symboolfoutenkans niet noemenswaardig beinvloedt, Tenslotte wordt nog 

enige aandacht besteed aan "maximum a posteriori"-ontvangers. 

De belangrijkste conclusie van dit onderzoek is, dat meerdimensio

nale interferentie opgevat kan worden als een veralgemening van intersym

boolinterferentie. Diverse belangrijke resultaten uit de theorie omtrent 

intersymboolinterferentie lenen zich voor generalisatie voor meerdimen

sionale interferentie. 

102 



CURRICULUM VITAE 

De auteur werd geboren op 1 maart 1942 te Zevenbergen, waar hij het 

LO en ULO doorliep. In 1957 behaalde hij het MULO-A-diploma en in 1958 

het MULO-B-diploma. 

Van 1958 tot 1962 studeerde hij aan de Hogere Technische School "Sint 

Virgilius" te Breda en legde met goed gevolg het eindexamen af in de 

afdeling der Elektrotechniek. 

Gedurende zijn militaire diensttijd van 1962 tot 1964 verzorgde hij 

technische dokumentatie voor verbindingsapparatuur. 

In 1964 liet hij zich inschrijven in de afdeling Elektrotechniek van de 

Technische Hogeschool Eindhoven. 

Van 1966 tot 1969 was hij als technisch ambtenaar verbonden aan deze 

Technische Hogeschool en was belast met het ontwerpen van nauwkeurige 

gelijkspannings- en verschilversterkers. 

Het ingenieursdiploma werd behaald in 1969. 

Van 1969 tot 1970 was hij werkzaam bij NV Philips' Gloeilampenfabrieken 

in een ontwerpgroep oscilloscopen. 

Sinds 1970 is hij als wetenschappelijk medewerker verbonden aan de 

Technische Hogeschool Eindhoven en als zodanig werkzaam in de vakgroep 

Telekommunikatie op het gebied van de digitale lijntransmissie. 

103 



STELLINGEN 

Bij korte meeraderige kabels, bestaande uit evenwijdige geleiders, kan 

overspraak voor sprongvormige signalen worden vermeden door een geschikt 

gekozen afsluitnetwerk. 

W.van Etten~ 

"CrosstaZkless termination of muttiwire aables", 

Eleatronias Letters, 16th Oatober 1975, Vol.11.No.21, pp.505-506. 

2 

In een meeraderige verbinding voor digitale transmissie kan bestrijding 

van intersymbool- en interkanaalinterferentie zowel in de eindappara

tuur als door de kabelkonstruktie geschieden. Bij de realisering van 

zo'n verbinding is het daarom aan te bevelen, dat kabel en eindappara

tuur door een instantie worden ontworpen, opdat ekonomisch een optima

le oplossing gevonden wordt. 

w.van Etten and J.van der Plaats, 

"Alternatives in multiwire aables for digital transmission", 

Eteatronias Letters, 14th November 1974, Vol.10.No.23, pp.477-478. 

3 

Bet lijkt de moeite waard een onderzoek in te stellen naar de ekonomi

sche en technische aspekten van een meeraderige striplijnkabel voor 

digitale transmissie. 

W.van Etten and J.van der Plaats, 

"Alternatives in multiwire aables for digital transmission", 

Eleatronias Letters, 14th November 1974, Vot.10.No.23, pp.477-4?8. 



4 

Door korrektiemethoden voor meerdimensionale interferentie toe te pas

sen, zoals in dit proefschrift is beschreven, kan de transmissiekapaci

teit van meeraderige kabels beter benut worden dan nu het geval is. 

CCITT Joint working party CNC , GM/CNC- No. 34-E. 

5 

In de toekomst kunnen charge-coupled-devices een belangrijke rol gaan 

spelen bij de realisering van afgetakte vertragingslijnen en matched 

filters in de ontvangers van digitale transmissiesystemen. 

6 

Indien men besluit matched filters te gebruiken in een digitaal lijn

transmissiesysteem, bestaande uit een aantal identieke repeatersekties, 

kan bij de realisering van zo'n filter met vrucht gebruik worden gemaakt 

van de kabel van de volgende sektie. Hierdoor kan het aantal repeaters 

in een verbinding gehalveerd worden, wat behalve een besparing van elek

tronika ook een reduktie van de cumulatieve jitter tot gevolg heeft. 

7 

Bij de schatting van de foutenkans van een "maximum likelihood"-ontvan

ger gaat Forney er van uit, dat bij een "error event" het gekozen pad 

een grotere waarschijnlijkheid heeft dan het gezonden pad. Hij ziet 

echter over het hoofd, dat het gekozen pad ook een grotere waarschijn

lijkheid moet hebben dan alle andere mogelijke paden. 

G.D.Forney, Jr., 

"Maximum likelihood eequenae estimation of digital sequenaes in the 

presenae of intersymbol interfe:r>enae", 

IEEE T:r>ans. on Inf. Th., VoZ.IT-18, May 19?2, pp.363-3?8. 



8 

Gezien de grate overeenkomst tussen "maximum likelihood" detektiealgo

rithmen en dekodeeralgorithmen voor konvolutiekodes, lijkt het zinvol 

een onderzoek in te stellen naar de vraag of deze algorithmen met voor

deel geintegreerd kunnen worden. 

9 

Wat betreft meeraderige kabels voor digitale transmissie zijn er binnen 

de CCITT tendensen om aanbevelingen te doen met betrekking tot interka

naalinterferentie. Deze tendensen worden echter niet bespeurd met be

trekking tot intersymboolinterferentie. Gezien in het licht van de ar

tikelen van Shnidman, Kaye en George en dit proefschrift, komt dat enigs

zins vreemd voor. Uit deze studies blijkt namelijk, dat intersymbool-

en interkanaalinterferentie gelijksoortige verschijnselen zijn. 

1) CCITT Joint working party CNC ~ GM/CNC 

GM/CNC 

GM/CNC 

2) D.A.Shnidman, 

No.29-E > 

No.34-E, 

No. 58-E. 

'~ generalized Nyquist ariterion and optimum linear reaeiver 

for> a pulse modulation system", 

Belt System Teahniaat Jou:r>naZ, November> 1967, pp.2163-217?. 

3) A.R.Kaye and D.A.Geo:r>ge~ 

"Transmission of mul.tiple;ced PAM signals over> multiple ahannel 

and dive:r>sity systems", 

IEEE T:r>ans. on Comm. Teah., Vol.COM-18, Oatobe:r> 19?0, pp.520-525. 



10 

Het nut van stellingen bij een proefschrift wordt steeds meer in twij

fel getrokken. Zij zijn dan ook vaak meer een afspiegeling van de 

spitsvondigheid van de promovendus dan van diens algemeen wetenschappe

lijk inzicht. Het zou daarom beter zijn dit algemeen wetenschappelijk 

inzicht te toetsen door middel van een examen. 

W.van Etten, Eindhoven, 18 mei 1976. 


