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Abstract

A real-time component may be developed under the assumption that it has the entire platform at its disposal.
Composing a real-time system from independently developed components may require resource sharing between
components. We propose opaque analysis methods to integrate resource-sharing components into hierarchically
scheduled systems. Resource sharing imposes blocking times within an individual component and between components.
An opaque local analysis ignores global blocking between components and allows to analyse an individual component
while assuming that shared resources are exclusively available for a component.

To arbitrate mutually exclusive resource access between components, we consider four existing protocols: SIRAP,
BROE and HSRP - comprising overrun with payback (OWP) and overrun without payback (ONP). We classify local
analyses for each synchronization protocol based on the notion of opacity and we develop new analysis for those
protocols that are non-opaque.

Finally, we compare SIRAP, ONP, OWP and BROE by means of an extensive simulation study. From the results,
we derive guidelines for selecting a global synchronization protocol1.

I. INTRODUCTION

The increasing complexity of real-time systems demands a decoupling of (i) development and analysis of
individual components and (ii) integration of components on a shared platform, including analysis at the system
level. Hierarchical scheduling frameworks (HSFs) have been extensively investigated as a paradigm for facilitating
this decoupling [1]. A component that is validated to meet its timing constraints when executed in isolation will
continue meeting its timing constraints after integration (or admission) on a shared uni-processor platform. The HSF
is therefore a promising solution for industrial standards which more often specify that an underlying operating
system should prevent timing faults in any component to propagate to other components on the same processor.

An HSF provides temporal isolation between components by allocating a processor budget to each component. To
analyse a component’s budget requirement independently of other components, compositional real-time scheduling
frameworks have been developed. Their main goal [1] is establishing global (system level) timing properties by
composing independently specified and analyzed local (component level) timing properties. Local timing properties
are analyzed by assuming a worst-case supply of processor resources to a component. The way of modeling the
processor supply is defined by a resource model, e.g., the periodic resource model [1] or the bounded-delay model [2].
These models make it possible to combine and abstract deadline constraints of all tasks within a component as
a single real-time constraint, called a real-time interface. Components can be composed by combining a set of
real-time interfaces, which will treat each component as a single task by itself.

An HSF without further resource sharing is unrealistic, since components may, for example, use operating system
services, memory mapped devices and shared communication devices requiring mutually exclusive access. An HSF
with support for resource sharing makes it possible to share serially accessible resources (from now on referred to
as resources) between arbitrary tasks, which are located in arbitrary components, in a mutually exclusive manner. A
resource that is only shared by tasks within a single component is a local shared resource. A resource that is used
in more than one component is a global shared resource. Any access to a resource is assumed to be arbitrated by a
synchronization protocol.

If a task that accesses a global shared resource is suspended during its execution due to the exhaustion of its
budget, excessive blocking periods can occur which may hamper the correct timeliness of other components [3]. To
prevent such budget depletion during global resource access (see Figure 1), four synchronization protocols [4], [5],
[6] have been proposed based on the Stack Resource Policy (SRP) [7]. These are based on two general mechanisms:

1Part of this work has been presented in the CRTS 2011 workshop (co-located with the RTSS) and is unofficially available as a technical
report from the University of York (YCS-2011-469).
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(i) self-blocking when the remaining budget is insufficient to complete a global access - having two flavors called
SIRAP [5] and BROE [6] or (ii) overrun the budget until the resource is released - called HSRP [4]. HSRP has two
flavors: overrun with payback (OWP) and overrun without payback (ONP). The term without payback means that
the additional amount of budget consumed during an overrun does not have to be returned in the next budget period.

Ps Ps

Qs Qs
Bs

Ps

Qs

Figure 1. When the budget Qs of a task depletes while a task executes on a global resource, tasks in other components may experience
excessive blocking durations, Bs.

A. Towards opaque component development

In practical situations, a component developer is typically unconcerned about the sharing scope of resources.
A component may access resources for which just local usage or (shared) global usage is determined only upon
integration. During component development unified primitives may be desirable to access all resources. The actual
binding of function calls to scope-dependent synchronization primitives, that arbitrate either global or local resource
access, can be done at compile time or when the component is loaded. Dynamic binding of primitives makes it
possible to decouple the specification of global resources from their use in the implementation. This decoupling is
called opacity [8] and it abstracts whether the resource is global in the system.

B. Opaque local analysis

After developing a component and before publishing it to a framework integrator, a component is packaged as a
re-usable entity. This includes deriving a timing interface to abstract from internal deadline constraints of tasks.
Such an abstraction requires an explicit choice for a resource model, capturing the virtual processor supply to a
component. Moreover, those resources that may be globally shared are exposed in the component’s interface, i.e, a
component specifies what it needs in terms of resources. Whether or not a global resource is actually used by other
components is unknown within the context of a component.

If, and only if, a global resource is actually shared between components, it must be arbitrated by a global
synchronization protocol. To prevent budget depletion during resource access, processor resources may need to be
delivered differently. This, on its turn, may add constraints to the supply of processor resources in order to preserve
local deadline constraints. Opacity requires that the implementation of a component does not use any assumptions
about these constraints and modifications.

There are several ways to account for local scheduling penalties due to global resource sharing. One might assume
that each resource is global and, subsequently, account for the worst-case overhead inside the local analysis (e.g.,
SIRAP [5], [9] and OWP [4], [10]). Alternatively, one may assume that all resources are local during the local
analysis and compensate for sharing between components at integration time (e.g., ONP [10]).

The latter alternative presents the same view as during component development, i.e., a component has the entire
platform at its disposal and all resources. Whenever a synchronization protocol for global resources is used that is
compliant with a synchronization protocol for local resources, the local analysis of a component can be based on
local properties only. We call such a local analysis opaque, because it separates local and global resource arbitration.

Definition 1: An opaque analysis provides a sufficient local schedulability condition for an individual component.
It considers all resources as exclusively local and, even under global sharing, it excludes global timing information
of global resources.

Table I gives an overview of local analyses by indicating their opacity. The local analysis of ONP in [10] satisfies
the notion of opacity, because it uses a simple overrun upon integration and nothing else locally. Surprisingly
and contrary to ONP, the current local OWP analysis is non-opaque, because it needs to know which resource
are globally shared. For the same reason SIRAP has no opaque local analysis. Contrary to the other protocols,
BROE only applies to global EDF of components and explicitly assumes the bounded-delay resource model [2].
Since BROE’s underlying resource model captures the processor supply to a component sufficiently pessimistic, all
resources can be treated as local in the local analysis, i.e., BROE’s local analysis is opaque.
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Contributions: The main contribution of this paper is leveraging the concept of an opaque analysis to a
methodology for deriving and composing resource-efficient component interfaces, e.g., independent of a chosen
resource model. Moreover, an opaque analysis makes it possible to defer the choice for a global synchronization
protocol until component integration.

First, we reduce the pessimism of OWP. Our new OWP analysis is opaque and, in most cases, it is better than
ONP. Secondly, we show that ONP can be used as an upper bound for SIRAP. This means that an opaque analysis
for ONP provides also an opaque analysis technique for resources arbitrated by an implementation of SIRAP. Thirdly,
we are the first to present an extensive experimental comparison of the different analysis techniques for BROE,
SIRAP, OWP and ONP. Global resource sharing eventually causes global scheduling costs. We therefore do not
only evaluate the individual protocols, but we also evaluate the effect of using an opaque analysis for them. Finally,
we derive new guidelines for selecting a synchronization protocol.

Organization: The remainder of this paper is organized as follows. Section II presents related work. Section III
describes our system model. Section IV recapitulates the mechanisms for global sharing of the synchronization
protocols considered in this paper (i.e., HSRP, SIRAP and BROE). Section V recapitulates the existing compositional
analysis for HSFs in the presence of shared resources. Section VI presents an improved, simplified and opaque
analysis for overrun with payback (OWP). Section VII presents a methodology which shows how an opaque
analysis allows for an efficient design-space exploration of resource-sharing components. We subsequently show
how our methodology applies to SIRAP. Section VIII evaluates the different analyses and the different protocols for
global resource sharing by means of a simulation study. We investigate how global resource sharing impacts the
schedulability of an individual component and, subsequently, how it impacts the schedulability of an entire system.
Finally, Section IX concludes this paper with guidelines for selecting a global synchronization protocol.

II. RELATED WORK

Deng and Liu [12] proposed a two-level HSF for open systems, where components may be independently
developed and validated. The corresponding schedulability analysis have been presented in [13] for fixed-priority
preemptive scheduling (FPPS) and in [14] for earliest-deadline-first (EDF) global schedulers. For global resource
sharing in HSFs, three protocols have recently been presented to prevent budget depletion during resource access,
i.e. HSRP [4], SIRAP [5] and BROE [6]. Unlike HSRP and SIRAP’s analysis, however, the global schedulability
analysis of BROE is limited to EDF and cannot be generalized to include other scheduling policies.

The overrun mechanism (with payback) was first introduced in the context of aperiodic servers in [3]. This
mechanism was later re-used in HSRP in the context of two-level HSFs by Davis and Burns [4] and complemented
with a variant without payback. Although the analysis presented in [4] does not integrate in HSFs due to the lacking
support for independent analysis of components, this limitation is lifted in [10].

The idea of self-blocking has also been considered in different contexts, e.g. for supporting soft real-time tasks [15]
and for a zone-based protocol in a pfair-scheduling environment [16]. SIRAP [5] uses self-blocking for hard real-time
tasks in HSFs on a single processor and its associated analysis supports composability. In [9] the original SIRAP
analysis [5] has been significantly improved when arbitrating multiple shared resources. We will show that the
strength of SIRAP’s analysis comes from its detailed system model, making it difficult to analyze components
opaquely with little timing characteristics.

The original SIRAP [5] and HSRP [10] analyses have been analytically compared with respect to their impact
on the system load for various component parameters [17]. The performance of each protocol heavily depends

Table I
OVERVIEW OF THE SYNCHRONIZATION PROTOCOL’S SUPPORT FOR INTEGRATING COMPONENTS INTO THE HSF WITH OPAQUE ANALYSIS.

Analysis of global resource-sharing strategies Opacity
BROE [6] yes
HSRP - overrun without payback (ONP) [4] no
HSRP - overrun without payback (ONP) [10] yes
Enhanced overrun [10] no
Improved overrun without payback (IONP) [11] no
HSRP - overrun with payback (OWP) [4], [10] no
SIRAP [5], [9] no
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on the chosen system parameters. Moreover, these results suggest that HSRP’s overrun mechanism with payback
(OWP) is hardly beneficial compared to overrun without payback (ONP). This observation is contradictory with the
recommendations of Davis and Burns [4]. Our new analysis methods make the results in [17] obsolete and we will
provide new guidelines, including BROE, to select a synchronization protocol in two-level HSFs.

III. REAL-TIME SCHEDULING MODEL

A. Component and task model

A system contains a single processor, a set C of N components C1, . . ., CN and a set R of M serially accessible
global resources R1, . . ., RM . Each component Cs has a dedicated budget which specifies its periodically guaranteed
fraction of the processor. The timing interface of a component Cs is specified by means of a triple Γs = (Ps, Qs,Xs),
where Ps ∈ R+ denotes its period, Qs ∈ R+ denotes its budget, and Xs denotes the set of maximum access times
to global resources. The maximum value in Xs is denoted by Xs, where 0 < Xs ≤ Ps. The set Rs denotes the
subset of global resources accessed by component Cs. The maximum time that a component Cs executes while
accessing resource Rl ∈ Rs is denoted by Xsl, where Xsl ∈ R+ ∪ {0} and Xsl > 0⇔ Rl ∈ Rs.

Each component Cs contains a set Ts of ns sporadic tasks τs1, . . ., τsns
. The timing characteristics of a task

τsi ∈ Ts are specified by means of a triple (Tsi, Csi, Dsi), where Tsi ∈ R+ denotes its minimum inter-arrival time,
Csi ∈ R+ its worst-case computation time, Dsi ∈ R+ its (relative) deadline, where 0 < Csi ≤ Dsi ≤ Tsi. We
assume that period Ps of component Cs is selected such that 2Ps ≤ Tsi(∀τsi ∈ Ts), because this efficiently assigns
a budget to component Cs [1]. For notational convenience, tasks (and components) are given in deadline-monotonic
order, i.e. τs1 has the smallest deadline and τsns

has the largest deadline.
The worst-case computation time of task τsi within a critical section accessing global resource Rl is denoted hsil,

where hsil ∈ R+ ∪ {0}, Csi ≥ hsil and hsil > 0⇔ Rl ∈ Rs.

B. Resource models for a virtual processor

The processor supply refers to the amount of processor resources that a component Cs can provide to its workload.
The supply bound function sbfΓs

(t) of the periodic resource model Γs = (Ps, Qs,Xs), that computes the minimum
supply for any interval of length t, is given by [1]:

sbfΓs
(t) = max


0,
t− (k(t) + 1)(Ps −Qs),
(k(t)− 1)Qs

 , (1)

where k(t) =
⌈ t−(Ps−Qs)

Ps

⌉
. The longest interval a component may receive no processor supply is named the blackout

duration, i.e. BDs = 2(Ps−Qs). The linear lower bound of the periodic resource with parameters Γs = (Ps, Qs,Xs)
is given by [1]:

lsbfΓs
(t) =

Qs
Ps

(t− 2 (Ps −Qs)) , (2)

modeling a bounded-delay resource [2] with a virtual processor speed of Qs

Ps
and a longest initial service delay

BDs [18].

C. Synchronization protocol

This paper focuses on arbitrating global shared resources using SRP. To be able to use SRP for synchronizing
global resources, its associated ceiling terms need to be extended.

1) Preemption levels: Each task τsi has a static preemption level equal to πsi = 1/Dsi. Similarly, a component
has a preemption level equal to Πs = 1/Ps, where period Ps serves as a relative deadline. If components (or tasks)
have the same calculated preemption level, then the smallest index determines the highest preemption level.
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2) Resource ceilings: With every global resource Rl two types of resource ceilings are associated; a global
resource ceiling RC l for global scheduling and a local resource ceiling rcsl for local scheduling. These ceilings are
statically calculated values, which are defined as the highest preemption level of any component or task that shares
the resource. According to SRP, these ceilings are defined as:

RC l = max(ΠN ,max{Πs | Rl ∈ Rs}), (3)

rcsl = max(πsns
,max{πsi | hsil > 0}). (4)

We use the outermost max in (3) and (4) to define RC l and rcsl in those situations where no component or task
uses Rl.

The local resource ceiling rcsl influences the resource holding times [19], i.e. Xsil of a task τsi to a resource Rl.
The resource holding time includes the cumulative processor requests of tasks within the same component Cs that
can preempt τi while it is holding resource Rl. The way of computing resource holding times under a particular
global synchronization protocol may deviate from [19], e.g., see [5], [6] and [10]. However, it can be simplified by
assuming that the component’s period is smaller than the tasks’ periods. The next lemma generalizes [17], [10] for
global SRP:

Lemma 1: Given Ps < T min
s and T min

s = min {Tsi|1 ≤ i ≤ ns}, all tasks τsj that are allowed to preempt a critical
section accessing a global shared resource Rl, i.e. πsj > rcsl, can preempt at most once during an access to resource
Rl when using any global SRP-compliant protocol and independent if the local scheduler is EDF or FPPS.

Proof: If a task, having a period of at least T min
s , executes two or more times inside a critical section of resource

Rl, then the resource is also locked during this period, i.e., Xsil > T min
s . Since Ps < T min

s , this would mean that
Xsil > Ps. According to SRP [7], a global resource should be accessed and released by the same instance of a
component, i.e., within period Ps. However, Xsil > Ps yields a contradiction by requiring a component utilization
of Us ≥ Xsil

Ps
> 1, making the component infeasible.

Lemma 1 makes it possible to compute the resource holding time, Xsil of task τsi to resource Rl as follows:

Xsil = hsil +
∑

πsj>rcsl

Csj , (5)

and the maximum resource holding time within a component Cs is computed as Xsl = max{Xsil | 1 ≤ i ≤ ns}.
3) System and component ceilings: These ceilings are dynamic parameters that change during execution. The

system ceiling is equal to the highest global resource ceiling of a currently locked resource in the system. Similarly,
the component ceiling is equal to the highest local resource ceiling of a currently locked resource within a component.
Under SRP a task can only preempt the currently executing task if its preemption level is higher than its component
ceiling. A similar condition for preemption holds for components.

IV. GLOBAL SYNCHRONIZATION: PREVENT EXCESSIVE BLOCKING

In this section, we give a brief overview of the run-time mechanisms employed by the synchronization protocols
considered in this paper. Each of the protocols applies straightforward resource arbitration by SRP at the local level,
for both local and global resources. This means that when a task has started its execution and tries to access a
resource, irrespective of any other protocol specific actions for global synchronization, the local component ceiling
is updated as if resource access is granted.

To prevent budget depletion while a task executes on a shared resource, HSRP [4] allows to overrun the budget
until the task releases the resource. Alternatively, SIRAP [5] and BROE [6] each employ a self-blocking mechanism
to prevent budget overruns by only granting resource access when there is sufficient budget to complete the resource
access.

A. HSRP: Budget overruns

HSRP [4] uses an overrun mechanism [10] when a budget depletes during a critical section. If a task τsi ∈ Ts has
locked a global resource when its component’s budget Qs depletes, then component Cs can continue its execution
until task τsi releases the resource.

To distinguish this additional amount of required budget from the normal budget Qs, we refer to Xs as an overrun
budget. HSRP has two flavors: overrun with payback (OWP) and overrun without payback (ONP). The term without
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payback means that the additional amount of budget consumed2 during an overrun does not have to be returned in
the next budget period.

Budget overruns cannot take place across replenishment boundaries, i.e. for each component Cs the analysis
guarantees Qs +Xs processor time before its relative deadline Ps [4], [10].

B. SIRAP: task-level self-blocking

With SIRAP [5], [9] a task is only allowed to access a global resource when it has sufficient budget to complete
the entire critical section. If a resource attempts to access a resource and the remaining budget is insufficient, then
the task blocks itself until the budget is replenished. SIRAP guarantees access to a global resource in the replenished
budget subsequent to self-blocking. Essentially, a self-blocked task τsi consumes at most Xsil amount of idle time
from the component’s budget while the task is waiting for its budget to replenish.

After self-blocking has caused budget-depletion, tasks with an higher priority than the local resource ceiling
(πsj > rcsl) may arrive. Those jobs will be pushed through to the next budget period, but those are not accounted
for in the resource holding time. To avoid the additional complexity of analysing this extra budget requirement and
to avoid tasks from executing twice within one budget Qs, similarly to [5], [17], [9] we assume3 2Ps ≤ T min

s .
Example 1: Consider a component C2 with a local fixed-priority scheduler and with two tasks τ21 and τ22. Task

τ22 accesses a global shared resource Rl and τ21 is independent, so that the local resource ceiling rcsl = π22. Now
the following scenario can happen:

1) task τ22 starts its execution and upon its attempt to access resource Rl, it encounters insufficient remaining
budget to fit a processor request of X22l time units. Task τ22 therefore initiates self-blocking.

2) a high priority task τ21 arrives just after budget depletion; Hence, it starts executing as soon as the component’s
budget is replenished and becomes available.

3) After τ21 has finished its execution, the remaining budget is again insufficient to fit X22l time units.
The scenario is illustrated in Figure 2 and the condition 2Ps ≤ T min

s prevents this scenario.

Ps Ps

Qs

Ps

Qs Qs

self-blocking

tsb te

self-blocking

τ1

τ2 Xs2l Xs2l

Xs2l

tl

cs2l

Figure 2. SIRAP disallows that task τ2 self-blocks two times to prevent budget overruns before access to resource Rl is granted.

Alternatively to constraining the budget period Ps, additional budget could be allocated to service these pushed-
through jobs together with the jobs accounted for in the resource holding time [20]. In [20], it has been shown
that one can trade-off the amount of compensating budget versus the amount of worst-case local self-blocking by
refining SIRAP with an additional local resource ceiling to regulate preemptions during self-blocking.

Note that it is analytically unattractive for SIRAP to lift the requirement of executing a critical section upon
replenishment immediately after self-blocking. In that case, we would potentially have to account for multiple
subsequent self-blocking occurrences for a single resource access. Contrary to SIRAP, BROE - which also uses
a self-blocking mechanism - does not require resource access in the next budget replenishment after the first
self-blocking occurrence.

C. BROE: component-level self-blocking

Bertogna et al. [6] have proposed an alternative method of self-blocking compared to SIRAP - called BROE -
which uses EDF scheduling of tasks and components. An analysis for BROE under task-level FPPS is presented

2The actually consumed amount of processor time is per definition smaller than or equal to the worst-case resource holding time Xsil.
3It has been shown in [1] that this assumption allocates an efficient budget for a periodic resource model. Moreover, for relatively small

budget periods compared to task periods, the bounded-delay approximation of the periodic resource model is tighter [18].
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in [21]. Although the given analyses are opaque, BROE is restricted to global EDF scheduling of components and
the bounded-delay model [2].

Contrary to the other protocols, BROE’s resource-sharing overhead is left implicit in its local analysis, because the
bounded-delay resource model models the processor supply to a component sufficiently pessimistic. It is therefore
unnecessary to account for the largest overrun of each task, as with HSRP, and BROE refrains from idling the
processor to prevent budget overruns, as with SIRAP. A comparison of different synchronization protocols is
therefore biased by the underlying resource model.

BROE uses a hard constant bandwidth server (H-CBS) [22] to provide its allocated processor bandwidth to a
component Cs. Apart from period Ps and maximum budget Qs, defining its utilization Us = Qs

Ps
, at each time t

a H-CBS is characterized by an absolute server deadline ds(t) and a remaining budget Qrem
s (t). Like with other

servers, all pending jobs are contending for processor resources at the server’s deadline ds(t) and whenever a job
executes, the budget Qrem

s (t) is decreased by the received execution time of that job. The rules (1-5) of a BROE
server, with respect to the current time t, are as follows [6]:

1) Initially, Qrem
s (0) = 0 and ds(0) = 0.

2) When a new job of a task τi arrives at time t, if the server is idle and if Qrem
s (t) ≥ (ds(t)− t)Us, then the

server budget is replenished to the maximum value Qs and the server deadline is set to ds(t)← t+ Ps.
3) Let tr = ds(t)− 1

Us
Qrem
s (t). When a new job of a task τi arrives at time t, if the server is idle and if t < tr,

then the server budget is suspended until time tr. At time tr the server budget is replenished to the maximum value
Qs and the server deadline is set to ds(t)← tr + Ps.

4) When Qrem
s (t) = 0, the server is suspended until time ds(t), so that pending jobs cannot contend for processor

resources during time interval [t, ds(t)]. At time ds(t), the server budget is replenished to the maximum value Qs
and the server deadline is set to ds(ds(t))← ds(t) + Ps.

5) Whenever a pending task wishes to access a global resource Rl at a time t, it must perform a budget check.
I.e., if the remaining budget Qrem

s (t) ≥ Xsl, then there is enough budget to complete the resource access prior to
server deadline ds(t). Then, the task is granted access to resource Rl. Otherwise, the server will replenish its budget
no later than time tr ← ds(t)− 1

Us
Qrem
s (t). If tr ≤ t, this results in an immediate replenishment of the server budget

to the maximum value Qs and the server deadline is set to ds(t)← t+ Ps. If tr > t, the server is suspended until
time tr. Next, at time tr the server budget is replenished to the maximum value Qs and the server deadline is set to
ds(t)← tr + Ps.

Rule 1, 2 and 4 describe a H-CBS, see [22] and [23]. BROE adds Rule 3 to the H-CBS to guarantee a fully
replenished budget when the server continues after a duration of idle time. Rule 2 and Rule 3 are mutually exclusive.
Rule 2 applies when the amount of remaining budget Qrem

s (t) until the current deadline ds(t) would require to
supply more processor resources in the interval until deadline ds(t) than the the server utilization Us. Otherwise,
Rule 3 applies, i.e., the supply by the server is still running ahead with respect to its guaranteed processor utilization.
Rule 5 adds resource arbitration to the modified H-CBS. For any continuously backlogged interval of length t, i.e.,
the BROE server has pending jobs, BROE behaves as a conventional H-CBS extended with resource arbitration
(Rule 5). A request to access a global shared resource only causes a server self-suspension if there is insufficient
budget to complete the critical section and if - similar to Rule 3 - the supplied budget by the server is running
ahead with respect to its guaranteed processor utilization.

Although it has been shown by Kumar et al. [23] that a conventional H-CBS complies to the periodic resource
model, Example 2 shows BROE’s pessimism compared to a conventional H-CBS at both the local and global
scheduling level. Firstly, BROE cannot guarantee at least sbfΓs

(t) processor resources to its task set in any interval
of length t within a backlogged period. Secondly, there are many possible server deadlines. An important difference
of BROE compared to other protocols is that the worst-case processor supply to a component changes dependent
on both (i) the size of the statically computed resource holding times Xsl and (ii) the actual time at which a task
attempts to access resource Rl. With the other protocols the processor supply merely changes dependent on the size
of the statically computed Xsl values. The latter indicates an infinite amount of possibilities for absolute deadlines
within a backlogged server period. The lack of a finite set of server deadlines complicates an integration of BROE
servers into the HSF by using Baruah’s [24] enhanced demand-bound test for EDF. Bertogna et al. [6] have therefore
proven a sufficient utilization-based integration test.

We conclude that a BROE server is non-compliant with the periodic resource supplies of Shin and Lee [1]
and Kumar et al [23]. Inherent to the rules of BROE [6], however, the server has a period Ps. Given a period



8

constraint Ps, BROE’s bounded-delay resource model always gives a linear lower bound lsbfΓs
(t) of the actually

supplied resources sbfΓs
(t) by a periodic resource Γs with the same period and budget parameters [18]. BROE’s

pessimism, inherited from the resource model, heavily depends on the timing characteristics of tasks and the interface
parameters of the comprising component.

V. COMPOSITIONAL 2-LEVEL ANALYSIS

This section recapitulates the existing compositional analysis for BROE, ONP, OWP, and SIRAP. As scheduling
algorithms we consider EDF, an optimal dynamic scheduling algorithm, and the deadline-monotonic (DM) algorithm,
an optimal FPPS algorithm.

A. Global schedulability analysis

To integrate a set of components on a shared processor, we must characterize the worst-case processor requests
by each component. This depends on the chosen global synchronization protocol. We therefore assume that during
component-integration time the synchronization protocol is known.

The following sufficient schedulability condition holds for global EDF-scheduled systems [24]:

∀t > 0 : B(t) + DBF(t) ≤ t. (6)

The blocking term, B(t), is defined as [24]:

B(t) = max{Xul | ∃s : Rl ∈ Ru ∩Rs ∧ Ps ≤ t ∧ Pu > t}. (7)

The demand bound function DBF(t) computes the total processor demand of all components in the system for every
time interval of length t, i.e.,

DBF(t) =
∑
Cs∈C

⌊
t

Ps

⌋
(Qs +Os). (8)

A component Cs, using ONP for global resource sharing, demands Os = Xs more resources in its worst-case
scenario [10]; for SIRAP Os = 0. For OWP, the DBF(t) is slightly modified:

DBF(t) =
∑
Cs∈C

(
Os(t) +

⌊
t

Ps

⌋
Qs

)
, (9)

where the extra demand of Os(t) is [10]:

Os(t) =

{
Xs if t ≥ Ps
0 otherwise.

(10)

A global admission of EDF-scheduled components with the analysis in [24] is inapplicable to BROE. Consequently,
BROE has modified [24] and applies a sufficient utilization-based test [6].

For global FPPS of components - by definition disallowing BROE - the following sufficient schedulability
condition holds:

∀1 ≤ s ≤ N : ∃t ∈ (0, Ps] : RBF(t, s) ≤ t, (11)

where RBF(t, s) denotes the worst-case cumulative processor request of Cs and all higher priority components for a
time interval of length t. For SIRAP and ONP, the RBF(t, s) is defined as follows:

RBF(t, s) = Bs +
∑

1≤r≤s

⌈
t
Pr

⌉
(Qr +Or). (12)

For OWP, the RBF(t, s) is slightly modified:

RBF(t, s) = Bs +
∑

1≤r≤s

(
Or +

⌈
t
Pr

⌉
Qr

)
. (13)

In (12) and (13), again Or = Xr for ONP and OWP and Or = 0 for SIRAP. The blocking term, Bs, is defined
according to [7]:

Bs = max{Xul | Πu < Πs ≤ RC l}. (14)



9

B. Local schedulability analysis

This section distinguishes opaque and non-opaque local schedulability analyses under various global synchronization
protocols.

1) Opaque local analysis: Traditional protocols such as PCP [25] and SRP [7] can be used for local resource
sharing in HSFs [26]. With an opaque local analysis, we can re-use the same local analysis in the presence of
global shared resources. By filling in task characteristics in the demand bound DBF of (6) or the request bound RBF

of (11) and replacing their right-hand sides by (1), i.e. replace t by sbfΓs
(t), the same schedulability analysis holds

for tasks executing within a component as for components at the global level. Due to space constraints, we focus on
local FPPS of tasks for which the following sufficient schedulability condition holds:

∀1 ≤ i ≤ ns : ∃t ∈ (0, Dsi] : rbfs(t, i) ≤ sbfΓs
(t), (15)

where rbfs(t, i) denotes the worst-case cumulative processor request of τsi for a time interval of length t. In
Section VII we shall show that BROE’s analysis requires to replace the sbfΓs

(t) with lsbfΓs
(t). For BROE, ONP

and our new OWP analysis, the rbfs(t, i) is fully compliant to the schedulability analysis for task sets on a dedicated
unit-speed processor, i.e.,

rbfs(t, i) = bsi +
∑

1≤j≤i

⌈
t

Tsj

⌉
Csj . (16)

The blocking term, bsi, is defined according to [7]:

bsi = max{hsjl | πsj < πsi ≤ rcsl}. (17)

2) Non-opaque local analysis: The local analysis of a component under resource arbitration by OWP or SIRAP
does not regard global resources as local.

A component using SIRAP demands more resources in its worst-case scenario [9]. We therefore need to add a
term, Isi(t), to account for self-blocking to the rbfs(t, i). The self-blocking term Isi of a task τsi is defined in terms
of z(t) =

⌈
t
Ps

⌉
, representing an upper bound to the number of self-blocking occurrences within a time interval of

length t, and a multi-set Gsort
si (t) which comprises all self-blocking lengths Xsil that a task τsi may experience

by itself and other tasks τsj in the same component in a non-decreasing order. We recall that Gsort
si (t) stores all

values Xsil in a non-decreasing order and includes a value for each individual resource access by a job of task τsi
to resource Rl. Supplemental to our evaluation and proofs, the Appendix shows how to construct such a multi-set.

According to [17] and [10], OWP has additional pessimism at the local scheduling level compared to overrun
without payback (ONP). They have therefore modified the sbf(t) compared to the definition given in (1), see [10].
Firstly, due to payback a component may supply less resource within a component period. Secondly, the payback
increases the blackout duration of a component. Should overrun with payback therefore be considered obsolete
based on these observations, or not?

VI. SRP WITH BUDGET OVERRUNS: TO PAYBACK OR NOT TO PAYBACK?

We reconsider the problem of resource sharing across budgets. Ghazalie and Baker [3] recognized that when
tasks access resources across their budget with the SRP, their budget may deplete during resource access so that
other components may experience an excessive blocking duration. As a solution, they proposed to overrun the
budget Qs until the critical section completes and they subsequently deduct the amount of overrun from the next
budget replenishment of the corresponding component. Their (global) analysis corresponds to the analysis in [4],
[10] in the sense that we need to account for additional interference to all other components due to an worst-case
over-provisioning of Xs budget which facilitates the overrun. This results in the sufficient schedulability condition
under global EDF and FPPS of components as defined in (6) and (11).

We now need to characterize the worst-case resource supply to the tasks serviced by component Cs. Behnam et
al. [10] distinguish two cases to represent the worst-case processor supply, see Figure 3. The worst-case scenario
happens after the first budget supply of Qs has overrun with an amount of Xs. This leads to a payback in one of the
subsequent component periods. A payback in the second period, as shown in Figure 3(a), means that (i) the amount
of overrun Xs is deducted from the next replenishment of Qs; and (ii) the next replenishment of Qs is serviced as
late as possible before the deadline Ps. The longest blackout of the processor supply is BDs = 2(Ps −Qs) +Xs.
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Qs Xs

(a)

Qs −Xs
BDs = 2(Ps −Qs) +Xs Qs

Qs Xs

(b)

BDs = 2(Ps −Qs)
Qs Qs −Xs

Qs

Ps Ps Ps

Figure 3. Worst-case characterization of the periodic processor supply for SRP with mechanisms for overrun and payback, as presented
in [10].

Alternatively, the component may overrun its budget again in the second period, see Figure 3(b), so that a payback
happens in the third period. The budget in the third period is again supplied as late as possible, taking into account
that there must be enough time until the deadline to accommodate for another overrun. This scenario has a smaller
worst-case processor blackout of BDs = 2(Ps −Qs).

Since component deadlines are assumed to be equal to their period Ps, it is sufficient to consider the response
time of the first activation of each component, see (13). Furthermore, the schedulability test in (11) guarantees that
an amount of Qs +Xs budget can be provisioned within a period Ps. As a consequence, the latest start time of that
budget provisioning is Ps − (Qs +Xs). This is independent of whether or not an overrun has taken place, as shown
in Figure 4.

Xs

(c)

Qs −Xs

Xs

(b)

Qs −Xs Qs

XsQs −Xs

BDs = 2(Ps −Qs)

BDs = 2(Ps −Qs)

Qs Xs

Qs Xs

(a)

Qs −Xs Qs

Ps Ps

BDs = 2(Ps −Qs)Qs Xs

Ps

Figure 4. The latest starting time of the processor supply in each period is independent of whether or not an overrun takes place in that
period.

We can now derive the following lemma:
Lemma 2: A component Cs following the periodic resource model Γs = (Ps, Qs,Xs), arbitrating global shared

resource using the OWP mechanism, cannot experience more than the regular blackout duration of BDs = 2(Ps−Qs).
Proof: Following the periodic resource model [1], shown in Figure 4, the latest time that a budget of at least

Qs−Xs will be provisioned is at time Ps− (Qs +Xs), because there must be sufficient time between the finishing
time of the normal budget Qs and the period boundary Ps to accommodate for an overrun situation. Hence, the
Ps −Xs is an implicit deadline for the normal budget Qs, so that the blackout for two consecutive budget supplies
is at most BDs = 2(Ps −Qs).

Contrary to ONP, we cannot make the implicit deadline Ps −Xs of budget Qs explicit for OWP by applying the
EDP model [27], because this would further reduce the blackout duration to BDs = 2(Ps−Qs)−Xs, see Figure 5.
Although this is obviously optimistic for OWP, this explicit deadline improves the local analysis of ONP [11]. This
improved ONP (IONP) analysis is non-opaque, because it uses resource holding times to tighten the local analysis.

The result of Lemma 2 is the same as the analysis derived by Davis and Burns [4], although they do not support
a compositional analysis. Behnam et al. [10] came up with an improved OWP method - called enhanced overrun -
to improve the blackout duration assumed by their initial OWP analysis, see Figure 6. They improve their analysis
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BDs = 2(Ps −Qs)−Xs

Qs Xs Qs Xs

Ps Ps Ps

Qs Xs

Ds

Figure 5. Since budget Qs must be provisioned prior to deadline Ps −Xs, the EDP resource model [27] enables a tighter, non-opaque
ONP analysis.

by postponing the next replenishment of a component, i.e. contrary to Lemma 2 they postpone the start time of
the budget provisioning. However, their alternative (i) requires modifications in the implementation of the overrun
mechanism, since it alters the periodicity of budget releases and (ii) still assumes a pessimistic budget supply of at
most Qs −Xs in an interval of length 2Ps.

Ps Ps

BDs = 2(Ps −Qs)

Ps

QsQs −Xs Qs

Xs

Figure 6. In [10] the extra blackout due to payback is reduced by introducing a flexible release off set for budget Qs −Xs, i.e. the initial
delay of Xs.

The latter source of pessimism is inherited from the analysis by Davis and Burns [4], which considers the effect
of push-through blocking due to an overrun with payback. This effect is shown in Figure 4(c), where a task arrives
just after depletion of budget Qs − Xs. Although the task is pushed through to the next budget replenishment,
the blackout duration of the processor supply remains BD = 2(Ps −Qs). Using the periodic resource model [1],
however, we already assume an initial delay of BDs followed by a periodic supply of a budget of size Qs.

We also recall that the overrun budget Xs is merely for global reasons, because the task set does not need an
extra budget of Xs, i.e. it is already feasible with a budget of Qs every period Ps. The remaining question is: given
that a fixed-priority-scheduled task set using a plain SRP-based resource arbitration is schedulable on a periodic
resource Γs = (Ps, Qs,Xs), is there any task that may experience insufficient budget after a payback of at most Xs

budget?
The analysis by Behnam et al. [10] is based on the point of view that the minimum resource supply in an interval

of length Ps must be assumed to be equal to Qs −Xs, as suggested by Figure 3. We will show that the model
in [10] is indeed overly complex and pessimistic. The main reasoning behind this claim is that the task set as a
whole actually receives Qs budget in an interval of length Ps, but the individual resource supply to a task activation
has changed. An overrun advances exactly the amount of budget of at most Xs to complete the critical section. The
task activations that have consumed this overrun cannot claim again processor time in the next budget supply, so
that a potential subsequent overrun cannot be caused by them. The overrun budget in Figure 4 is grid-marked to
indicate its partial availability.

Lemma 3: Given that a fixed-priority-scheduled task set Ts under SRP-based resource arbitration is schedulable
on a periodic resource Γs = (Ps, Qs,Xs), a task τsi ∈ Ts cannot miss its deadline when adding an overrun with
payback mechanism.

Proof: We only need to consider the case where an overrun situation has taken place subsequently causing a
payback at the next budget replenishment. Otherwise, the resource supply is unchanged compared to the sbfΓs

for
independent components, see (1).

We observe that an overrun situation can only be caused by a resource lock by any of the tasks τsi ∈ Ts.
Assume that task τsi locks resource Rl, so that the component ceiling is at least equal to the resource ceiling rcsl.
Furthermore, budget Qs depletes during resource access. This means that component Cs may overrun its normal
budget Qs for at most an amount of Xsl processor time, which allows to complete the critical section initiated by
task τsi.

We proof by contradiction that no task τsj ∈ Ts will miss a deadline due to the payback of Xsl budget at the
next replenishment of the normal budget Qs, i.e. assume that there exists a task τsj ∈ Ts that will miss a deadline
after an overrun.
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We tackle this proof obligation by distinguishing four cases: tasks that may preempt the critical section (πsj > rcsl),
tasks that are blocked during the critical section (rcsl ≥ πsj > πsi), the resource-locking task τsi itself (πsi = πsj)
and tasks that have a lower priority than the resource-locking task (πsi > πsj).

1) πsj > rcsl: these tasks may preempt the critical section. Moreover, these tasks contribute to the length of Xsl

for at most a single preemption (Lemma 1). This means that if the task arrives after depletion of Qs and an overrun
takes place, then it will execute in the overrun budget. Contrary to the assumptions in [10], these task will actually
consume the overrun budget when it is available. An activation of task τsj which consumes Csj of overrun budget
cannot request the same amount of budget in the next budget period Ps, because it has already finished its execution
during the overrun. And vice versa: if an activation of task τsj requests for Csj of normal budget, then it did not
execute during a possible overrun in the previous budget period. An overrun in the previous period could therefore
have at most a length of Xsl − Csj . If Csj of the overrun has not been consumed, then the next budget supply will
also not be reduced with this amount of payback. Thus, the resources requested by the current activation of task τsj ,
i.e. Csj , will be available before task τsj will miss a deadline. Hence, no higher priority task τsj where πsj > rcsl
will miss a deadline due to a payback.

2) rcsl ≥ πsj > πsi: these tasks are blocked during the critical section by the resource ceiling. When we do not
advance the overrun budget Xsl compared to plain SRP-based resource arbitration, these tasks are schedulable.
The reason is that the blocking duration of at most Xsl is already accounted in the rbfs(t, j) of task τsj . A new
periodic supply cannot start with local blocking, because blocking should already start in the previous provisioning
and use the overrun (if needed). Hence, OWP does not cause a deadline miss for any of the tasks τsj that are
blocked by the resource-accessing task τsi.

3) πsi = πsj : for the resource locking task τsi itself the same reasoning holds as for the first case: it either
consumes an amount of hsil of the overrun budget in the previous budget period or it consumes hsil from the
normal budget Qs in the current budget period. Both cases are mutually exclusive and cannot cause a deadline miss.

4) πsi > πsj : these tasks have a lower priority than the resource-locking task and have already accounted Xsl

as interference in their rbfs(t, j). Hence, similarly to case 3, these tasks cannot assume that any budget would
be immediately available after replenishment of Qs in case of plain SRP-arbitration. The OWP mechanism does
therefore not cause a deadline miss to any task τsj where πsi > πsj .

By contradiction we have proven that advancing the resource supply of Xs due to overrun with payback does not
hamper the schedulability of task set Ts compared to plain SRP-based resource arbitration.

From both Lemma 2 and Lemma 3 we directly obtain the following result:
Theorem 1: The local schedulability analysis in (15) for a task-set Ts on an SRP+fixed-priority-scheduled

periodic resource Γs = (Ps, Qs,Xs) can be applied when arbitrating global shared resources using overrun with
payback (OWP).

We believe this theorem yields an interesting result, because it shows that the local schedulablity analysis of
overrun with and without payback are exactly the same. In particular, we can reuse the sufficient schedulability
condition for ONP as presented in (15).

Finally, we answer the main question of this section: to payback or not to payback? The global schedulability
analysis for components arbitrated by overrun with payback is unchanged and was already considerably better than
the global analysis of overrun without payback. In addition, we have improved the local schedulability analysis,
such that there is no difference between ONP and OWP. Hence, there is no reason to deploy overrun without a
payback mechanism from an opacity perspective.

VII. A DESIGN METHODOLOGY

In this section, we propose a two-step approach for constructing component interfaces using opaque local analysis.
Firstly, one must select a resource model, which may significantly impact the allocated budget to a component
- even if a component shares no global resources. In the presence of global shared resources, a synchronization
protocol may limit the choice of a resource model.

Secondly, a local resource ceiling must be selected for each shared resource. Contrary to local shared resources,
for global resources an artificial increase of the local resource ceiling compared to (4) may improve schedulability.
For example, Davis and Burns [4] disable all local preemptions during global resource access. On the one hand,
an explicit assumption on local resource ceilings affects the local analysis non-opaquely, because a component
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gives up its local view on resource sharing. On the other hand, since opacity allows to defer the choice of a global
synchronization protocol until system integration, binding of synchronization primitives may come with globally
selected local ceilings.

A. Choosing a resource model

Each of the global synchronization protocols considered in this paper has a period constraint Ps. For SRP with
an overrun mechanism, the period Ps serves as a relative deadline for completion of a resource access. For SIRAP
and BROE, the period Ps also bounds the waiting time of a task that wishes to access a global resource.

Given a period constraint Ps, the bounded-delay resource model gives a linear lower bound lsbfΓs
(t) of the

actually supplied resources by a periodic resource sbfΓs
(t) with the same period parameter [18]. For this reason,

the schedulability analysis for OWP, ONP and SIRAP using the bounded-delay model is sufficient but pessimistic.
BROE is non-compliant with the periodic resource model [1], which is its weakness compared to the other protocols.

Example 2: Consider component C1 with a period Ps = 10 and two tasks: τ11 = (1000, 2, 29) and τ12 =
(1000, 1, 1000). Task τ11 accesses a global resource R1 for a duration of h111 = X11 = 0.5 time units; task τ12 is
independent. The smallest budget satisfying the local schedulability condition in (15) is Qs = 1, yielding an interface
Γ

(PRM)
1 = (10, 1, {0.5}). Without any global resource sharing, the required processor bandwidth of component C1 is

therefore 0.1, see Figure 7(a). When arbitrating resource R1 with BROE, however, a budget of Q1 = 1 is insufficient,
see Figure 7(b). According to BROE’s bounded-delay criteria, i.e., using (2), component C1 requires a budget of
Qs = 1.63. The corresponding bounded-delay interface Γ

(BDM)
1 = (10, 1.63, {0.5}) yields a bandwidth of 0.163.

To compare: arbitrating resource Rl with ONP or OWP would allocate an overrun budget of 0.5 time units,
so that the allocated processor bandwidth for C1 becomes 0.15. In this example, BROE requires more processor
bandwidth than ONP, OWP or - by virtue of Theorem 2 - SIRAP.

Qs

Ps Ps Ps

ds,k−1 = 9 ds,k = 19

τ1

τ2
BDs = 2(Ps −Qs) Qs

0 ds,k+1 = 29

Qs

Qs

ds,k−1 = 9 ds,k = 19

τ1

τ2
BDs = 2(Ps −Qs)

0 d′s,k = 24

self-blocking

tr = 14

Qs

ds,k+1 = 34

Qs

(a)

(b)

Ps Ps Ps

Ps

Figure 7. The periodic resource model is inapplicable to BROE.

One could construct an interface for a component using the periodic resource model and convert it to a bounded-
delay interface when BROE is elected for global resource arbitration. An interface Γs = (Ps, Qs,Xs), computed
according to (15), represents a virtual task τ ′ = (Ps, Qs, Ps). By applying the bounded-delay abstraction using the
lsbfΓ′

s
(t) on the virtual task τ ′, one can derive a conservative budget Q′s which ∀t ≥ 0 upper bounds the periodic

supply sbfΓs
(t). According to the method in [18], Q′s is found by:

Q′s =
−(Y − 2Ps) +

√
(Y − 2Ps)2 + 8PsQs
4

, (18)

where Y = 2Ps −Qs.
Reconsidering Example 2: applying the bounded-delay criteria on the periodic resource Γ

(PRM)
1 = (10, 1, {0.5})

gives a conservative budget of Q′s = 2.5 time units. Although this method of converting interfaces allows a
component to be be analysed with an arbitrary resource model, the derived interface suffers abstraction overheads
of two resource models. It is therefore unattractive to convert a resource model at the interface level.

A more processor-efficient solution is to delay the choice of a resource model by deriving two interfaces for
each component, Γ

(PRM)
s and Γ

(BDM)
s , i.e., one interface for each resource model. Upon component integration, we

select an interface based on the global synchronization protocol. With both solutions, the notion of an opaque local
analysis for a component is independent of a resource model. In this paper we implicitly apply the latter approach.
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B. Choosing local resource ceilings

Global resource ceilings are optimally configured according to SRP, see (3). This is irrespective of whether the
global scheduling policy is FPPS or EDF, because higher resource ceilings incur more blocking and lower resource
ceilings violate mutual exclusive access to a shared resource. Within the hierarchy of an HSF, however, the local
resource ceilings in (4) require the smallest budget, but may introduce large resource holding times Xsl and, hence,
large blocking terms for other components in the system.

Each component exposes the maximum resource holding times, Xsl ∈ Xs, of an unspecified access to resource
Rl in its interface specification. The local resource ceiling rcsl of resource Rl can have at most ns possible values,
leading to different values for resource holding time Xsil and its derivative Xsl. In general, each of the mns

combinations yields a possible interface (Ps, Qs,Xs) - called an interface candidate. It is therefore unattractive to
explore every combination of interface candidates of composed components.

Only during integration time, however, one can actually compute the global blocking. For example, if resource
Rl is not shared by any other component, then resource Rl is a local shared resource. Selecting an optimal interface
for a component, i.e., leading to the least amount of required processor resources by the entire system, therefore
also depends on the interfaces of other components.

A nice property of opacity is that it enables to compute a set of interface candidates which lead to a polynomial
procedure for Pareto-optimal interface selection [28]. On the one hand, the lowest local resource ceiling rcsl imposes
the least local blocking bsi and therefore minimizes the required budget of a component. On the other hand, a
higher local resource ceiling rcsl decreases the resource holding time, see (5), and therefore imposes less global
blocking Bs to other components.

Using this Pareto trade-off between the values of the local resource ceilings and the resource holding times, Shin
et al. [28] have shown that with ONP there are only ns non-redundant interfaces per component which can be
generated in O(ns) iterations. At integration time, Shin et al. [28] trade the global blocking for more budget for
the component that induces most blocking. Under global EDF, a similar selection method has been presented for
BROE [21]. The interface selection procedures take O(N × nmaxs ) steps, where nmaxs = max{ns | 1 ≤ s ≤ N}.

With a non-opaque analysis, the methods in [28] and [21] may be unable to optimally synthesize a system with
respect to required processor resources. SIRAP’s analysis, for example, may allocate a smaller budget when resource
ceilings are higher, so that the resource holding times are smaller. This exponentially increases the search space for
optimal interfaces.

Using an opaque analysis, one may efficiently select an interface that minimizes the processor requirements of a
system. Although the selected interface may be non-optimal beyond the scope of the applied analysis method, one
may further tighten the system’s analysis by applying non-opaque local analysis onto the selected local configuration.
We recognized that the methods in [28] and [21] for selecting optimal interface candidates can be applied to any
opaque local analysis, independent of a global synchronization protocol.

C. Applying opaque local analysis to SIRAP

SIRAP periodically bounds the wasted processor resources due to global resource sharing. Its analysis benefits
therefore more from the periodic resource model than from the bounded-delay model. But, we still face the problem
of selecting local resource ceilings.

With SIRAP’s analysis [9] one must know the amount of accesses to any global resource by each individual
job. Although this is unnecessary for HSRP and BROE, it makes SIRAP superior to ONP in case each of those
resources are actually shared with at least one other component.

HSRP accounts for a worst-case overrun in each component period, while an actual overrun does not necessarily
happen each period. However, exposing a multi-set of resource-holding times to the global schedulability test
(similar to SIRAP) is impossible for HSRP, because this breaks the independent analysis of components due to the
dependency of Gsort

si (t) on the time values t in the testing set of the tasks in Ts.
Since each element in the set Gsort

si (t) is at most of length Xs, ONP only performs equally well when a
self-blocking of approximately Xs is deducted in each component period. SIRAP is therefore always superior to
ONP, so that the ONP analysis can be safely used to implement a SIRAP system.

Theorem 2: If a task set Ts is deemed schedulable on a periodic resource Γs = (Ps, Qs,Xs) using the ONP
analysis, then it is also feasible on a periodic resource Γ′s = (Ps, Qs +Xs,Xs) using a SIRAP implementation.
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Proof: The sufficient schedulability condition for a task set Ts on a periodic resource Γs = (Ps, Qs,Xs) is
given by [9]:

∀τi ∈ Ts : ∃t ∈ (0, Dsi] : rbfs(t, i) + Isi(t) ≤ sbfΓs
(t), (19)

where rbfs(t, i) is defined in (16), sbfΓs
(t) is defined in (1) and the exact construction of Isi(t) is given in the

Appendix. By definition it holds that ∀e ∈ Gsort
si (t) : e ≤ Xs. Hence, the schedulability condition in (19) is implied

by:

∀τi ∈ Ts : ∃t : rbfs(t, i) +
⌈
t
Ps

⌉
Xs ≤ sbfΓs

(t). (20)

Since within one budget period a self-blocking occurrence can only happen at the end of a supply due to insufficient
budget to complete a critical section, we can remove the dependency on t provided that we add Xs extra budget in
each component period. In other words, a conservative budget Q′ is:

Xs + (minQs : (∀τi ∈ Ts : ∃t : rbfs(t, i) ≤ sbfΓs
(t))) . (21)

The right-hand term of (21) is the same as schedulability condition for ONP, see (15), which concludes our proof.
Given Theorem 2, we make it possible to integrate a component validated by an opaque analysis for SRP+FPPS

into the HSF, while using SIRAP for global resource arbitration. This allows to re-use the methods in [28] and
[21] to select local resource ceilings efficiently. When only a subset of the resources in the component’s interface
are identified as globally shared, one may recompute the value of Xs and re-allocate a potentially tighter budget
Qs +X ′s without re-analysing the component; one would have to re-do a non-opaque local analysis.

VIII. EVALUATION

This section evaluates analysis methods for global resource sharing. From the results, we derive which method
matches the best with given system characteristics.

In our experiments, we choose a system utilization U and we generate individual component utilizations U(T )
using UUnifast [29]. The period of a component is uniformly drawn from the interval [40, 70]. We assume global
EDF scheduling of components and a single non-preemptively shared global resource by all components.

Given a cumulative component utilization U(T ), we generate ns = 8 tasks for each component. The task periods
Tsi are uniformly drawn from the interval [140, 1000]. We initially assume deadlines equal to periods, i.e. Tsi = Dsi

and we assign deadline monotonic priorities to tasks. The individual task utilizations usi are generated using the
UUnifast algorithm [29]. Using the task’s utilization usi and the randomly generated period Tsi, we can derive the
worst-case execution time Csi of a task τsi, i.e. Csi = usi × Tsi. All tasks access a single global resource for a
random duration between 0.1× Csi and 0.25× Csi. In each experimental setting a new set of 10,000 systems is
generated.

A. Feasibility of task sets in the presence of global resources

We first investigate for which task-characteristics a particular analysis method is better, i.e. at the component
level. We look at the percentage of schedulable task sets, generated according to the description in Section VIII.

In each simulation study a new set of 10,000 systems is generated and the following settings are changed:
1) Component utilization: The utilization of a component U(T ) is varied within a range of [0.05, 1.0] using

incremental steps of 0.05, see Figure 8.
2) Component periods: The period of the periodic resource Ps is varied within a range of [5, 70] with incremental

steps of 5, see Figure 9.
For comparison purposes we included the results for the improved local analysis of ONP [11], i.e. IONP. Both

experiments show that the different overrun methods have little impact on the local schedulability of a task set on a
periodic resource. The main reason for this is the constraint that the calculated budget Qs and the overrun budget
Xs have to fit within period Ps, i.e. we applied the constraint Qs +Xs ≤ Ps. For SIRAP and BROE, we require
that Xs ≤ Qs. Due to this constraint, both SIRAP’s and BROE’s performance are suppressed for small resource
periods. BROE may require a larger budget for a component, because it must use the bounded-delay model. In terms
of the schedulability ratio, however, BROE clearly outperforms the other protocols (see Figure 8). In addition, both
figures show the cost of an opaque analysis in the context of two-level FPPS-based HSFs, which excludes BROE.
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Figure 8. Ratio of schedulable task sets versus the utilization, where the component period is Ps = 40 and the number of tasks is ns = 8.
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Figure 9. Ratio of feasible task sets as a function of the component period, where the number of tasks is ns = 8 and the utilization
U(T ) = 0.4.

The constraint, Qs+Xs ≤ Ps, is the main weakness for all overrun variants, determined by the ratio Xs

Ps
. This ratio

can be increased by increasing the utilization (Figure 8), choosing smaller resource periods (Figure 9), decreasing
the number of tasks (ns) or by increasing the range of the task periods. When keeping the utilization U(T ) constant,
the last two alternatives result in larger computation times and resource access times. Since Xs is computed from a
fixed fraction of the tasks’ computation times, this increases the Xs

Ps
ratio. We leave the remaining experimental

results out of this paper due to space constraints. Since OWP performs equally well as ONP at the local level, and
the global schedulability is superior for OWP compared to ONP, OWP is prefered above ONP.

Note that the non-opaque IONP analysis in [11] may slightly improve on IOWP and ONP. However, the global
analysis for OWP is always better than or equal to the global analysis of ONP. This gives an advantage to ONP
when both integration tests in (12) and (13) yield the same result, i.e. when all component periods are chosen
approximately the same, so that also OWP accounts for an overrun in each component period.

B. Global scheduling penalties for global synchronization

In this section, we compare the analyses at the compositional level, because at the local level - especially with
opaque analysis - the resource model may hide scheduling penalties.

We observed that BROE is superior in terms of the number of task sets that can be accommodated, because
BROE does not need additional overrun budget and it does not insert idle time. However, these results ignore the
required processor bandwidth by a single component. The bounded-delay model, exclusively applied to BROE,
performs relatively bad compared to the periodic resource model when the utilization of a component U(T ) is
small. A solution would be to reduce the period Ps of a component. However, the period size cannot be decreased
arbitrarily, because an entire critical section must fit within one period.
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Figure 10. Ratio of schedulable systems versus the system utilization, where the number of components is N = 2 and all tasks have
Dsi = Tsi.
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Figure 11. Ratio of schedulable systems versus the system utilization, where the number of components is N = 5 and all tasks have
Dsi = Tsi.

In the first experiment, we investigate how composing multiple resource-sharing components affects the number
of schedulable systems. Figure 10 shows the results for N = 2 components and Figure 11 for N = 5 components.
When the utilization of a single component is relatively large, i.e., U(T ) & 0.1, BROE clearly outperforms all other
protocols. For smaller utilizations, SIRAP becomes advantageous. The different overrun methods have little impact
on the local schedulability of a task set on a periodic resource. The main reason for this is the constraint that the
calculated budget Qs and the overrun budget Xs have to fit within period Ps4.

In the second experiment, we repeated the same experiment for N = 5 components and we randomly generated
tasks with deadlines Dsi ≤ Tsi, uniformly drawn from the range [Csi + 0.5(Tsi − Csi); Tsi]. Figure 12 reports
the results. Compared to the first experiment, the bounded-delay model further reduces the performance of BROE.
Intuitively, postponing budget supply to a task set, being subject to tight deadline constraints, deflates BROE’s
performance compared to the non-opaque analysis of SIRAP. However, BROE’s performance is considerably better
than any overrun variant.

In the third experiment, the system utilization U = 0.5 and the range of task deadlines Dsi ≤ Tsi are fixed. The
number of components, N , is varied within a range of [1, 14], see Figure 13. Composing a system of many resource-
sharing components, e.g., the operating system itself can be a single point of synchronization, may significantly
decrease the number of schedulable systems. It is interesting to see that BROE covers the entire performance
spectrum compared SIRAP, ONP and OWP: from a superior performance for components with large individual
utilizations, to an inferior performance for small component utilizations.

4Moreover, the shorter the component period is, the higher context switching overhead will be. The implementation overhead of the
synchronization protocols is not considered in this evaluation, however, and it is different for each protocol.
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Figure 12. Ratio of schedulable systems versus the system utilization, where the number of components is N = 5 and tasks may have
Dsi ≤ Tsi.
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In the fourth experiment, we keep a system utilization of U = 0.5 for N = 5 components. We vary the range of the
task deadlines using parameter δ. We generated task deadlines uniformly drawn from the range [Ci+ δ(Ti−Ci); Ti].
A low value of δ allows tasks to have short deadlines relative to their computation time and δ = 1 means that
deadlines are equal to periods. Figure 14 shows the results. This experiment confirms the previous experiments:
SIRAP’s non-opaque analysis is beneficial for deadline-constrained tasks, while HSRP’s overrun and BROE perform
equally worse under tight deadline constraints.

Finally, both SIRAP and BROE have shown to be more resilient than HSRP’s overrun variants for relatively large
critical section lengths compared to a component’s budget. For SIRAP, the analysis for a single shared resource
by each task performs relatively bad, because the more individual resource accesses are considered, the better its
analysis. BROE and overrun have opaque analysis, i.e., only based on local SRP. Sharing more global resources
would therefore not affect much the performance of opaque analysis, but it might further improve the benefits of
non-opaque analysis.

IX. RECOMMENDATIONS AND REMARKS

This paper introduced the notion of opaque analysis for resource-sharing components that need to be integrated
on a uni-processor platform. An opaque analysis makes it possible to abstract from global resource sharing until
component integration and it enables an efficient exploration of a system’s design space. Although SIRAP’s original
analysis is non-opaque, we can use the analysis of overrun without payback (ONP) as a conservative and opaque
alternative. We can obtain a tighter schedulability analysis with SIRAP’s analysis, if we are provided a task-set’s
global resource-sharing information. We also presented an opaque analysis for overrun with payback (OWP), which
dominates the opaque ONP. Only when all component periods are almost the same, a non-opaque ONP may take
advantage over OWP. Finally, we showed that BROE’s analysis is opaque and, in many situations, is competitive
with SIRAP’s non-opaque analysis. If a system is composed of components with tight deadlines or if it is composed
of many components having small utilizations, a non-opaque analysis may significantly improve schedulability.
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APPENDIX

Constructing self-blocking sets

The SIRAP analysis [9] constructs a multi-set Gsort
si (t) of self-blocking durations that a task τsi may experience

in a time interval of length t. The self-blocking term Isi(t) of a task τsi is defined as:

Isi(t) =
∑

1≤l≤z(t)
Gsort
si (t)[l], (22)

where z(t) =
⌈
t
Ps

⌉
defines an upper bound to the number of self-blocking occurrences within a time interval of

length t and Gsort
si (t) defines an multi-set (i.e. a set including duplicates of values Xsil) of self-blocking lengths

that a task τsi may experience by itself and other tasks τsj in the same component.
This multi-set contains the extra blocking that a task may suffer due to self-blocking by lower priority tasks:

I lowsi = max{Xsjl | πsi > πsj ∧ rcsl ≥ πsi}. (23)

In addition, the multi-set contains the self-blocking durations of task τsi itself and the interference caused by
self-blocking of higher priority tasks, so that we can define the multi-set Gsi(t) as follows [9]: Gsi(t) = {I lowsi }∪ ⋃

(1≤j≤i)

⋃
(

1≤k≤
⌈

t

Tsj

⌉)
⋃

(Rl∈Rs)

⋃
(1≤a≤msjl)

{Xsjl}

 . (24)

The term
⋃

(j≤i) iterates over all tasks τsj with an higher priority than task τsi and includes the self-blocking by
task τsi itself when i = j; the term

⋃(
1≤k≤

⌈
t

Tsj

⌉) considers all activations of task τsj in an interval of length t; the

term
⋃

(Rl∈Rs) considers all resources Rl accessed by task τsj and, finally, the term
⋃

(1≤a≤msjl)
iterates over the

number of resource accesses to resource Rl by task τsj . In other words: during each job-activation a task τsj may
accesses a shared resource Rl for msjl times and it can self-block at any of these attempts. Finally, we sort the
values in the multi-set Gsi(t) in non-increasing order, resulting in the multi-set Gsort

si (t). Equation (22) contributes
a number of z(t) largest self-blocking occurrences that a task τsi may experience in an interval of length t, i.e., the
first z(t) elements of Gsort

si (t).


