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I. INTRODUCTION AND DESCRIPTION OF THE PROBLEM INVESTIGATED
A. Introduction

Since the introduction of the hot-wire anemometer as a tool for mea-
suring mean and fluctuating velocities a vast number of experiments have  been
carried out to determine the characteristics of turbulent boundary layers under
all kinds of conditions. These investigations have greatly increased our knowledge
of the nature of turbulent flow and have led to generally accepted laws, describing
the distribution of important quantities of a turbulent boundary layer, such as veloc-
ity, shear stress and skin friction.

However, since the general turbulence problem is still unsolved, all
these laws have a more or less empirical character and much work, both theo-
retical and experimental, remains to be done to obtain a detailed understanding
of the physical mechanism involved.

The above argument holds even more forcibly for other turbulent trans-
port processes, such as turbulent heat transfer, since no theoretical predictions
of these processes can be made without a basic knowledge of the turbulent flow
situation. Apart from the many determinations of heat transfer coefficients under
varying conditions, the number of measurements of mean temperature profiles is
restricted and measurements of temperature fluctuations are even scarce.

More recent theories of turbulent heat transfer [1-10] try to give exact
solutions of the energy equation, assuming a known velocity distribution. However,
the energy equation can only be solved if one makes an assumption concerning the
unknown turbulent heat transfer it contains. Since the study of fluid flow was ante~
cedent to that of heat iransfer, it is a logical sequence of events that such an
assumption is mostly based on some kind of analogy between heat and momentum
transfer.

Describing the transport of heat and momentum by means of eddy dif-
fusivities, we can introduce a turbulent Prandtl number, Pri, equal to the ratio
of the eddy diffusivities of momentum and heat. At a known velocity distribution
the eddy diffusivity of momentum is a known quantity, so that an assumption about
Pr; is equivalent to one about the turbulent heat transfer term.

Up to now the energy equation has been. solved only by making ad hoc
assumptions as to the value of Pr,. Usually it is assumed that Pry = 1 (Reynolds’
analogy) or Pr; is a constant (about 0.8). Since the nature of the turbulent trans~
port is not sufficiently understood to permit a theoretical evaluation of Pry, rele-
vant information can only be obtained from direct measurements of quantities such
as the eddy diffusivities,

In Figure 1.1 we have presented a survey of the experimental values
of Pr, in boundary layers, derived from the data published by various authors
(11- 23} A more detailed discussion of this figure will be found in Chapter III.
Here we only call attention to the fact that this figure gives a clear demonstra-
tion+ of the wide scatter in the experimental results of Pr; even for the same
value of Pr, which leaves the general behaviour of Pr; an unsolved problem.
The obvious need for more accurate determinations of Pry has led to the investi-
gations reported here.

it must be noted that the above-mentioned remarks concerning turbu-
lent heat transfer also apply for turbulent mass transfer, if one introduces the
eddy diffusivity of mass and the turbulent Schmidt number.
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B. Problem Investigated

For the experimental study of heat transfer in a turbulent boundary
layer we have chosen the fundamental problem of the heat transfer from a flat
plate with a stepwise discontinuity in wall temperature. This problem is a funda~-
mental one because its solution - the energy equation with constant fluid para~
meters being linear in the temperature - can be used for the computation of
the heat transfer from a flat plate with an arbitrary wall temperature distribu-

tion by means of well-known superposition techniques.

AMBIENT TEMPERATURE To
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FIGURE 1.2 SKETCH OF PROBLEM NVESTIGATED

A sketch of the velocity and temperature fields of the problem investi-
gated is presented in Figure 1.2. At x 2 L the wall temperature is equal to
Ty > 7T, and there is a growth of a temperature houndary layer in an already
fu‘ﬁy developed velocity boundary layer. The mean velocity and temperature

fields are described by the following equations:

momentum equation:

Ua_l:_I+ V.a_g.= -léﬂ +lﬁ;
90X ay pdx p oy
continuity equation:
ég. +g‘_f =0:
X ay

energy equation:

vdT +v3T . 1 23q,
3x ay pCy, oy

These equations are subject to the boundary conditions:
y=0:U=V=20
y =0, x2L:T=T1T,
¥y>0, x=L:T=T

y=@:U=Uy T=T,

a.1)

(1.2)

1.3)

1.4)
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In deriving the above-mentioned equations we wuse the customary
boundary layer approximations. These equations are valid for a stationary, two-
dimensional, incompressible flow with negligible viscous dissipation. In addition,
we assume T,~T, to be so small that the fluid parameters may be taken as
constants and gﬁoyancy forces are negligible. A rough approximation of the buoy-
ancy effects can be made by applying the analysis of Sparroy and Minkowycz [21],
who showed the buoyancy effects to depend on Gr,.Re,~%/2, In our experiments
the maximum value of this parameter was about ’i.s ¥0“‘5, hence small enough
to justify the neglect of the buoyancy forces.

The equations given above differ in form from the corresponding ones
for the laminar boundary layer by the fact that both the shear stress'and the heat
flux density contain an additional term involving the turbulent transport of momen-
tum and heat, respectively. This is expressed by the equations

T+ = T]ig— p‘lT{?- (1'5)
3y :
and
q-_--)xaT/ay+pcp'V7§. ; 1.6)

Introducing the concept of eddy diffusivities, we may write for the turbu~
lent contributions of the momentum and heat transfer: :

- UV = v, 3U/dy : ' t€n
and

-v&

]

a, 3T/3y . ~ (1.8)

By analogy  with the molecular Prandil number a turbulent Prandtl
number can now be defined:

Prt = "t/at . (;. 9)
With the help of Eqgs. (1.5) ~ (1.9) the energy equation can be written as

vV,
v 4y o3 |fy + L\IT| (1.10)
3% 3y dy Pr, Joy
Equation (1.10) clearly demonstrates that for a given velocity diétribution the
energy equation can only be solved if Pr, is known. ‘

From the equations given above it can be deduced that there are two
possibilities of determining v, and ay:

(a) Directly from the measured values of uv, v9, U(y) and T(v), applying
Eqs. (1.7) and (1.8). As far as we know, Johnson [ 17] has been the only one
to carry out direct measurements of 35' in wind-tunnel experiments, which
illustrates the difficulty of this kind of measurement.

(b) From the measured values of gy, Ty V) and T(y) at different stations
along the plate. From these measurements the distributions of T(y) and q(y)
can be calculated by integration of Egs. (1.1) and (1.3), respectively, after
which v and a; can be determined from Egs. (1.5) and (1.6). Except for the
values of Johnson [17], all other values of Pr; presented in Fig. 1.1 have been
obtained in this way. :
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The present investigation is the first in which both methods are used in
order to gain an impression of the accuracy and reproducibility of our measured
Pr; values.

To be able to compare our measuring results with existing theorles of
turbulent heat transfer, we shall first go further into the features of these theories,
Since the turbulent heat transfer problem can only be solved with a knowledge of
the velocity field, we will start with a discussion of turbulent boundary layer
theories.

The separate discussion of the turbulent boundary layer is justified in
our case, because the constancy of the fluld parameters and the absence of buoy-
ancy forces give rise to a velocity field that is independent of the temperature
field. .
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II. THE TURBULENT BOUNDARY LAYER

We shall mainly discuss those features of the turbulent boundary layer
which are of direct importance for the calculation of turbulent heat transfer.
This means that we shall concentrate on the distributions of mean veloeity, shear
stress and skin friction, from which we can calculate the distribution of the eddy
diffusivity of momentum within the boundary layer.

For more detailed information about other aspects of turbulent flow, the’
reader 1s referred to the texthooks of Hinze [ 22], Townsend [ 23], Batchelor [24},
Schlichting [ 257, Lumley and Panofsky [26] and Rotta [27). These textbooks,
however, do not deal with the large number of methods for the calculation of
developing turbulent boundary layers, which have appeared in the literature during
the last decade. We must, of course, bear in mind that most of these methods
became possible only as a result of the fast development and application of high~
speed computers. A critical review of the methods is presented below.

A. Review of Recent Calculation Methods

Our review will be confined to the case of a stationary, incompres-
sible, two-dimensional boundary layer, developing along a smooth, solid wall
under the influence of a given, arbitrary pressure gradient. With the usual
boundary layer approximations, the distribution of the mean quantities of such a
boundary layer is described by the momentum equation

aU 83U 1dp 3 U 9 _— ;
UEXE 4 y& = x + vE&E ¢ (- uy), 2.1
v 3 v ( ) (2.1)

and the continuity equation,

oy , 8V
i) =0, 2.2
Ix ay ‘ 2.2)

together with appropriate boundary conditions. Equations (2.1) and (2. 2) imme~
diately demonstrate the fundamental problem of turbulent boundary layer theories:
the appearance of the kinematic Reynolds shear stress, - uv, results in an
indeterminate system of equations, the number of equations being one less than
the number of unknown quantities.

In order to make the system of equations determinate, one has to find
an expression for - Uv in terms of the other mean quantities or deduce further
relations between the unknown quantities. The solution of this problem has been
the main aim of all turbulent boundary layer theories and the resulting calcula-
tion methods differ only in the means by which these further relations ~ usually
called the auxiliary equations - are deduced.

Up to now the mechanism of turbulence has not been completely under~
stood, which means that a generally valid relation between the shear siress and
the velocity profile is still missing. Therefore all calculation methods must
inevitably rely on empiricism and in every method the postulated auxiliary equa-
tions are based partly or wholly on experimental observations. Among these
observations certain basic types of boundary layer development can be distin-
guished, namely, boundary layers developing under zero, positive or negative
pressure gradients, equilibrium, non-equilibrium and reattaching boundary layers.
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If a calculation method pretends to be of universal validity, it must be
able to give a good prediction of all types of boundary layer development. Every
proposed calculation method should therefore be tested against as many experi-
mental boundary layers as possible and should be discarded if it only predicts a
restricted number of boundary layer developments.

Obviously, great interest attaches to accurate measurements of turbu~
lent boundary layers, developing under all types of pressure conditions. These
experiments not only provide test cases for the existing calculation methods, but
may also be used to improve the empirical part of the auxiliary equations belonging
to those methods.

If we compare the predictions of the many different existing methods
with modern empirical data of boundary layers developing under severe pressure
gradients, it becomes clear that there are only a few recent ones which meet the
requirement of universal validity. It is these methods which will be treated in
more detail.

We distinguish between two main classes, namely the integral and the
differential methods.

All integral methods make use of the von Kirmfin momentum~integral
equation, which can be obtained by integration of Eq. (2.1) across the boundary
layer. I expresses the rate of change of momentum defect in terms of the pres-
sure gradient and the wall shear stress:

d oy 2o
L0085 R @.3)

Equation (2.3) contains three unknown quantities, the momentum thickness &,, the
displacement thickness 81, and the local wall shear stress Ty,. In order to solve
Eq. {2. 3) two further equations involving these quantities are required. This
usually leads fto a system of coupled ordinary differential equations, together
with some algebraic equations. These algebraic relations arise, for example,
from the auxiliary equations or from assumptions concerning the mean velocity
profile.

The differential methods start from Eqgs. (2.1) and (2.2) and lead, via
assumptions by which =¥ is expressed in terms of the mean velocity field or in
other quantities of the turbulent boundary layer, to a system of coupled partial
differential equations together with some algebraic equations.

In the following we will discuss the two classes of methods separately.

1. Differential Methods

The oldest assumptions concerning the behaviour of —uv are the mixing-
length or eddy-viscosity hypotheses, originated by Prandtl [ 28], Taylor [ 28] and
von Kirmén Ey 30]. In these hypotheses the Reynolds stress is related to the local
gradient of the mean velocity, which for the mixing-length concept can be expressed
in the form:

oy = 422U |3U 2.4
3y dy

and for the eddy-viscosity concept by

UV = Y =, 2.5
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both concepts being connected by the relation

v = 42 {%J.l ) (2. 6)

In order to obiain velocity profiles an assumption is required concerning the
dependence of £ or v on the position in the boundary layer and on the flow
conditions.

In most discussions the turbulent boundary layer is divided into an
inner and an outer region, each having its own characteristics. The inner region
may be regarded as the region where the turbulent motion is greatly affected by
the presence of the wall, whereas in the outer region the flow pattern closely
resembles that of a wake. Analytically both regions are usually treated sepa~
rately, and an overlap or intermediate region is introduced in which the solu-
tions of both regions are simultaneously valid. In this way one can obtain
continuous functions for the entire velocity and shear-stress profiles. Ilustrative
examples of this procedure are given by Mellor [31] and Stevenson [32].

Originally it was assumed that, with increasing distance from the wall,
the inner region (thickness about 0.15 &) could be divided into three main parts:

{a) A very thin layer, adjacent to the wall, which is fully laminar; hence within
this layer v, = £ = 0, resulting into ut = y*.

{b) A transition region, in which the total shear stress is composed of both turbu-
lent and laminar contributions.

(¢) A fully turbulent part, where the turbulent shear stress predominates over
the viscous shear siress, so that v = - puiv. It was assumed that in this
region £ = ky, in which k is the universal von Kfrmfn constant, k = 0.4,

Together with the assumption of a constant shear stress, v = 1, this leads
to the well-known logarithmic velocity distribution:
w=klny +B. ‘ 2.7

In the outer part of the boundary layer, the velocity profiles can be
correlated reasonably well by the assumption of a constant eddy viscosity. For
instance, Clauser [33] hag shown that the formula

v = 0.018 Ugs, (2.8)

gives a good representation for equilibrium layers in zero and variable pressure
gradients. In fact, this assumption of a constant value of v is not more than a
rough approximation for boundary layers in arbitrary pressure gradients, as has
been pointed out by Rotta [ 27] and Bradshaw [35].

Extensive hot-wire measurements of Klebanoff [ 36] and Laufer [37]
showed that turbulent velocity fluctuations are present up to the wall, thereby
disproving the concept of a purely laminar layer adjacent to the wall. Accordingly,
this layer is now called the viscous sublayer, in which v is assumed to be dif-
ferent from zero. The same conclusion was reached by Reichardt [38] and
Deissler [39] who discovered that the assumption of v, = 0 in the viscous sub-
layer was contradictory to experimental data on heat %ransfer at large Prandtl
numbers.
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The introduction of the viscous sublayer has led fo a large number of
modifications of the mixing-length theory in which distributions of v; for the
entire houndary layer have been proposed. These modifications are reviewed in
detail by Rotta [ 27], Hinze [ 22] and Townsend [ 23] . Some recent modifications,
dealing in particular with boundary layers under variable pressure gradients, are
given by Townsend [40,41], Mellor and Gibson [42], Mellor [31], Perry, Bell
and Joubert [43], Perry [44] and McDonald [45]. They all meet the require-
ment that the proposed distribution of v, must result in a velocity profile which
agrees with the experimentally verified Yaw of the wall, stating that u* is a uni~
versal function of y*.

Brand and Persen [46] followed the reverse order of solution and
started with the law of the wall in a form proposed by Spalding [ 47], considering
it as an experimentally established stress~strain rate relation, valid for turbu~
lent motions. By substituting the law of the wall into Egs. (2.1) and (2. 2) they
arrived at a differential equation for u, which was solved numerically. Of course,
this kind of reasoning can only have approximate validity, since the law of the
wall does not correctly represent the existing velocity profile in the outer parts
of the boundary layer.

Much has been written about the defects of the mixing-length hypo-
thesis, particularly concerning the crudity of the assumed mixing process
(Hinze [ 22], Rotta [27]). A more fundamental objection to the use of mixing-
length formulas for boundary layers in arbifrary pressure gradients is the fact
that -GV is only related to local mean quantities, the effect of the past history
of the boundary layer being ignored.

This fundamental objection has induced Bradshaw, Ferriss and Atwell
[48] to introduce an entirely new thesis. In their theory -U¥v is closely related
to the turbulent kinetic energy, 2pqZ, which quantity, being governed by the turbu-
lent kinetic energy equation, is certainly not determined uniquely by the local
mean flow conditions. In this way the turbulent quantity -iV is related to other
turbulent properties, which obviously seems to be a better hypothesis than
relating a turbulent property to the properties of the mean velocity field. Since
their predictions of boundary layer development compare favourably with the
results of most other methods, the method of Bradshaw et al. [48] will be
treated in more detail here.

Their work was, in fact, initiated by Townsend [ 40,49]. Also starting
from the turbulent kinetic energy equations, he showed that the mixing-length
hypothesis is valid in the inner, fully turbulent part of the boundary layer, where
to a good approximation the production and dissipation of turbulent kinetic energy
are in equilibrium, so that the balance of turbulent kinetic energy is unaffected
by the nature of the flow in adjacent regions.

With the usual boundary layer approximations for stationary fiow, the
turbulent kinetic energy equation can be written as (Townsend [ 23])

2. ) —_ -
v e + v3ea?) - - puv 8U - 3, (%pqzv + piv) - ep . 2.9)
3x dy 3y 2y
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In this equation the terms on the left represent the rate of change of turbulent
kinetic energy along a streamline of the mean flow, sometimes called the advec~
tion of turbulent kinetic energy by the mean flow. The first term on the right
stands for the production of turbulent kinetic energy from the mean flow, the
second term for the diffusion of it in the y-direction, and the last term for its
dissipation inio heat by viscous forces. The experiments of Klebanoff 507 and
Laufer [37] have shown that except near the outer edge of the boundary layer,
say y/6> 0.7, and very close to the wall the production and the dissipation term
are the largest terms in Eq. (2. 9); the advection and diffusion are usually smaller
though not negligible.

By introducing the quantities

8, = —”’_; , (2.10%)
pg 3
2
- dn/p)® b
L - 2.10%
. e 192
and G = P/ * 3% , | (2.10%

"max\? 1

p Y
Bradshaw et al. converted Eq. (2.9) into an equation for the rate of change of +
along a mean streamline, which has the form:

1 3
z =

vl T\ vl T\ I§H+(f.@_a.§)i(a 1)+ 1/0)2 _ (2.11)

3x\2ayp dy\2a;p p 3y p dy\1 P L

In view of their assumption that - puv = v, this equation is only valid outside the
viscous sublayer and the transition layer, say for y* > 30.

If adequate assumptions can be made for expressing a3, L and Gy in
the independent variables, then Eq. (2.11) together with the Eqgs. (2.1) and (2. 2)
form a set of three in the three unknowns U, V and r and can be solved
numerically. Bradshaw et al. have used the experimental results of Klebanoff [ 50]
in a zero~pressure~gradient boundary layer to find the best choices for a;, L
and Gi. I turns out that with the extremely simple assumptions

i

2
a, = 0.15, %z £, (-6?), G, = (T;na") ), 2.12)

2
o

where f,(y/8) and £5(y/8) are numerically specified, the calculations accurately
predict %urbulent boundary layer developments in all kinds of pressure gradients.
Fig. 2.1 shows the functions used.

Bradshaw et al. have extensively discussed the implications of the
Egs. (2.10%) ~ (2.10%). In a subsequent article Bradshaw [51] has published
a number of experimental results regarding the distributions of a;, L and Gr1
in boundary layers with non~zero pressure gradients. These last results indi=
cate that the assumptions of Eq. (2.12) are quite universally valid.
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FiG. 2.1 THE EMPIRICAL FUNCTIONS L AND Gy USED IN
THE CALCULATION METHOD OF BRADSHAW ET AL. [48]

It can easily be proved that the calculation method of Bradshaw et al.
reduces to the mixing~-length theory in those regions of the turbulent boundary
layer in which that theory might be expected to be valid. Within the fully turbu-
lent part of the boundary layer the advection and diffusion of turbulent kinetic
energy msay be neglected, so that one finds from Eq. (2.11)

3 B
T . (/)2 o 3. ﬂl."e)... (2.13)
p 3y L ay

Hence, under these circumstances the dissipation length parameter L is identical
with the mixing length £.

The above derivation was given by Townsend [40] to justify the use of
the mixing-length hypothesis. Bradshaw et al. have availed themselves of the
- mixing-length hypothesis to derive the boundary conditions at y* = 30 for their
numerical solution. Making some additional assumptions, Bradshaw [52] has indi-
cated how this calculation method can easily be extended to include cases of com~
pressible boundary layers, heat transfer and transpired boundary layers. Quite
recently Nash 53] has extended Bradshaw's method to the calculation of three-
dimensional boundary layers.
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Since Bradshaw's method is capable of incorporating the behaviour of
various turbulent parameters, it may be refined in the future if more knowledge
about this behaviour becomes available, for instance from experimental data on
pressure fluctuations within the turbulent boundary layers. '

o o e o o e o0 G Bt

The integral methods try to find a solution of the von Kirmin momentum
integral equation, usually expressed in the form: :

dx Uo dx 2

2,27 T _o_. 1 ' (2.14
Being an ordinary differential equation, it represents the simplest mathematical
description of the turbulent boundary layer. The momentum thickness 89, the
displacement thickness &, the shape parameter H and the local skin friction
coefficient ¢ in this equation are defined by the following relations:

@xO
-1 ‘
8, = U, of(Uo-U)dy, | 2.15)
[¢9]
b, = Uo'sz(Uo - U)dy , | (2.16)
L] )
H=6/5,, @.17)
op = 21 /pU % . ‘ 2.18)

As in the momentum equation (2.1), we have neglected in Eq. (2.14)
the term due to the normal Reynolds stresses, Uo"z @2 - v%) dy. This seems

o v
to be justified on the basis of the experiments of Newman [ 54]. Sandborn and
Slogar [55] and Schubauer and Klebanoff [ 56], provided the boundary layer is
not too close to separation (see also Ross [57] and Rotta [ 27].).

If Uy(x) is given, Eg. (2.14) still contains three unknowns &5, H and
¢g; thus a solution of Eq. (2.14) is only possible if two further equations in-
volving these quantities are deduced. Using the conventional nomenclature, these
equations are referred to as the '"skin friction equation” and 'the auxiliary
equation” or "shape parameter equation'.

The skin friction equation usually relates the local skin friction coeffi-
cient to a Reynolds number, based on some length scale of the boundary layer,
and to a shape parameter of the velocity profile, such as H. An example of such
a skin friction eqguation is the empirical relation of Ludwieg and Tillmann [58]:

-0, H -0,
op = 0.246 1070678 H y 5_sy=0-268 | | (2.19)

which is frequenily used in integral methods.
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The auxiliary equation essentially describes the effect of pressure
gradients on the shape of the mean velocity profile. Because of our incomplete
knowledge of the turbulent flow mechanism, the auxiliary equations are basically
correlations of experimental data, no matter whether or not some physical con~
cept has been suggested as the basis of the correlation. Consequently much
depends on the range of types of boundary layer development which has been
examined in obtaining the correlation.

In the past various attempts have been made to derive a satisfactory
form of the auxi equation. A detailed discussion has been given by Rotta [27]
and Thompson [59]). Rotfa [ 27] has reviewed known shape parameter equations,
all rearranged to fit an equation of the form:

' ' 8, dU V
Lazéﬂs_ -2_90+N, (2. 20)
dx U, dx

in which L has the value 1 or 0. The symbols M and N denote functions of H
and Rey (= 8,U,/v). I L = 0, any historical effect on the development of the
profile “shape”is neglected, which is very unrealistic (see Nash [60]). The other
methods, with I, = 1, are based on the idea that a sudden change in dUofdx will

produce a change in dH/dx rather than in H itself.

Rotta presented the resulting functions M and N for 14 methods, ranging
in chronological order from Buri [ 617 to Spence [62]. The diversity of the pro-
posed M and N functions was confusing, and a comparison of Clauser's f63]
measurements with the shape parameter predictions of the various methods showed
that agreement was poor, not only between theory and experiment, but also between
the various methods mutually. This finding was substantiated by the review of
Thompson [ 597 in which a selection of the better-known auxiliary equations was
used to predict H and &, for 11 experiments on boundary layers. With the excep-
tion of the method of Head [ 647, which was not included in Rotta's review, agree-
ment between measurements and calculations was poor.

The reasons for the inadequacy of the older methods are not difficult to
detect. Most auxiliary equations had been deduced from a limited number and range
of experiments on boundary layers and were consequently of restricted wvalidity.
Thompson [597 observed that some calculation methods, such as those of Spence
[62] and Maskell [ 657, have passed into textbooks, for example that of Duncan,
Thom and Young [ 667, on the basis of very few comparisons with experiments and
even fewer comparisons with observed boundary layers other than those used in the
derivation of the particular auxiliary equation. In addition, Thompson has shown
that there are three~dimensional effects present in most of the measured boundary
layers, which influence the auxiliary equations [67,68].

The method of Head [64] is usually called the entrainment method,
because his calculation procedure is based on a universal relation he has postu-
lated for the entrainment velocity. By entrainment we denote the process by which
at the outer edge of the boundary layer the turbulence spreads with distance due
to the turbulent mixing. The original enirainment equation was derived by making
the assumption that the entrainment veloeity, Vo, was a universal function of the
velocity defect in the outer layer. The latter quantity could be specified by a shape
parameter, such as H, and the free siream velocity, U,.

"The quantity of flow in the boundary layer, Q, can be expressed as

3 & 3
Q- fvay = [u- fua-Fy=ve-cp, (2..21)
0 ¢ o 0
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_dg_d ‘
Vv, = -&‘3 =% [u 6 - s,)1. (2.29)

From the above assumption it then follows that

‘V .
L=1 87y (s~8)]=1(H. 2.28
o 5 &L Ul® - el = 1) (2.23)

Instead of the usual shape parameter H, Head considered it rather more
convenient to use the alternative form parameter
§ -8

1
H =
6_51 6

2

which can be simply related to H, assuming a one-parameter family of velocity
profiles. Hence the auxiliary equations of Head take the form:

-%0- £ 10,68 - 8] = P )

and . (2.24)

Hyg, = Gy(H) .

The functions F and G2 were found by analysing the boun layer developments
measured by Newmarn [54] and Schubauer and Klebanoff [ 56]. They are presented
in Fig. 2.2. These curves can be approximated very satisfactorily by the expres-
sions: :

F = 0.0306 (H, , - 3. )"0+ 653
1

and (2.26)

-2.71
G, = 1.535 (H = 0.7) 2.7115 , 3 3
F G2
007 10~
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it ~=Fe000(1-Us ) y
[ole’ ] 8 i (+] -E-o,g al-
005 1~ 8-
aoal- 7|
003+ -3 o
0oz}~ sk
Q01 - a4
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FIG 22 THE FUNCTIONS F AND G OF HEAD'S ENTRAINMENT APPROACH
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When the method was first proposed reasonably exiensive comparisons
with experiment were made, which showed a very fair agreement between pre-
dicted and measured H developments. At that stage, however, it was not
recognized that Head's method had a much wider applicability than the existing
ones. This aspect has been clearly brought out by Thompson [ 59] in making his
extensive comparisons between the different methods for awider range of measured
developments.

Thompson [ 59] also showed that the agreement of Head's theory with
experiments was still unsatisfactory in some cases, especially for equilibriwm
boundary layers. He therefore revised the whole basis of the entrainment equa~-
tion and introduced an additional term which represented the rate of change of
the form parvameter (see also Head [ 69]).

Yoy
Uo Uy
£0 |

MEAN u
VELOCITY \U, )

™~
N INTERMITTENCY FACTOR (y

AN
N\
N\

TIME MEAN VELOCITY OF \|

Ut \
TURBULENT FLUID Y —
(5N

o | j
0 05 10 12

y/8

FIG. 2. 3 EXPLANATION OF TERMS USED IN THOMPSON'S
ENTRAINMENT APPROACH

For the mean velocity U in the boundary layer Thompson [ 687 wrote
(see Fig, 2.3)

U=yU, + @ -y, (2. 26)

in which U, is the average velocity of the turbulent flow, taken over "time turbu-
lent", U, 1s the average velocity of the irrotational flow over "time potential and v
is the fraction of the time during which the flow is turbulent at a particular posi-
tion, also called the intermittency factor. Assuming the mean flux of turbulent
fluid, Q;, to be a better-defined physical quantity than the total quantity of flow
in the boundary layer (Head's Q), Thompson introduced an entrainment velocity
Ve, p» equal to the rate of change of @, hence with



- 15 =

w0
= fyo,ar =, 7 @20
0

=4 =4 .
Ve,t dx (Qt) dx (UoLt) ? . (2. 28)

where I, is a so~called turbulent flux thickness. The remaining problem is to
make a plausible hypothesis for the entrainment velocity Ve,t'

On physical grounds it was inferred that a proper velocity scale for

s the velocity defect in the intermittency region, which can be expressed

by’tfme defect in turbulent flux profile (see Fig 2.3.). Thompson used a velocity
scale AU, defined as

=18

U
=1 - [y .ﬁ—] . : (2.29)
%lmax

[+

To start with, by assuming an overall similarity of the flow as in equilibrium
layers, he took Ve, t to be proportional to AU. In consequence, the entrainment
equation became

V .
L14dyg]=-2t-q 40, | (2.30)
U, dx U, °T, «

in which the entrainment coefficient ¥y was assumed to be a universal constant.

In the absence of more detailed measurements it was further assumed
that (8) Uy = Ug and (b) v is a universal function of y/5 given by the measure-
ments of Klebanoff [50] Rewriting Eqgs. (2.14) and (2.30), ope obtains the
following equations to be solved:

dR ce U, R, dU
21 0o —2_9 ;
&® zv ®TAF x (2.14%
and
d[R,.L./5
2L 33.—.«_29..2‘2. ) ' (2.30%
dx er v

Using a new two-parameter velocity profile family (see the next
section), Thompson constructed three charts, giving L./8,, AU/UO and
functions of H and R,. With the aid of these charts the Egs. 2. 142) and (2.3 a)
were solved simultaneously by a stepwise procedure.

Now Thompson found that with a value of &, = 0.09, Eq. (2. 3037 pro-
duced results that agreed closely with the equiljbrfum layers measured by
Clauser and the flat plate boundary layer, but which showed poor agreement with
layers that were proceeding more or less rapidly towards separation. He there-
fore introduced a dependency upon the rate of change of the form parameter,

Lt/Bz, by assuming

a, = o+ 8b —-(-L%Ts%l ) 5 (2.31)
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(For equilibrium boundary layers d/dx[Ly/8,] = 0.) The entrainment equation
(2.30% could then be written as follows:

o Jolu Ly By
d(1./8 v U 8y dx
(H;g)ﬁ ° 2 (2.32)
Ry(l - 821,
UO

With @ = 0.09 and B = 1,0 thig equation was found to provide data agreeing
satisfactorily with boundary layers measured on flat surfaces, even better agree-
ment being obtained if B was increased to 2.0 for &,d(Ly/55)/dx > 0.003..

Thompson has further given corrections of Eq. (2.32) for the effects
of surface curvature and has extended the entrainment method to cases of three-
dimensional boundary layers and boundary layers with suction or injection. These
cases and the extensions of the entrainment method to compressible boundary
layers with heat transfer are treated in detail in a later review by Head [69].
Escudier and Nicoll {70] have also given recommendations for entrainment func-
tions for both boundary layers and wall jets.

Nash [ 60] has reviewed the principle governing the various general
types of auxiliary equation, such as Eq. (2.20). Being a differential equation
of the first order in H, it requires the specification of an initial value of H.
In this way the upstream history of the boundary layer is faken into account,
in so far as it affects the velocity profile. However, no provision is made for
the possible effects of the initial shear stress distribution, which is related
through the equation of motion to the derivatives of the velocities in the
x~direction and may be characterized by the specification of an initial value of
dH/dx. In general, therefore, the shape parameter equation must be a second-
order differential equation in H.

In the derivation of his shape parameter equation, Nash considered
the equilibrium boundary layer to be the basic form of boundary layer develop-
ment. Such a layer is characterized by a streamwise pressure distribution for
which

8
P =L = constant . (2.33)
Tw
® can then be shown that, to a good approximation (cf. Clauser [33]), the
velocity-defect profiles in that layer are similar, i.e. the velocity-defect profile
has a given shape irrespective of the streamwise position: :

U,-U_
—— =t(f) . (2.34)

T

As 2 convenient shape factor for this velocity~defect profile Nash used the para-
meter G, related to H by

0.5

G=(F) a-E. (2.35)
Thus for equilibrium boundary layers G is a unique function of P. The functions
G(P) as indicated by the theories of Townsend [ 40, 71] and Mellor and Gibson [42]
together with some relevant experimental data [ 33,35, 58,72, 73] are presented
in Fig. 2.4. For the purpose of his calculation method, Nash has drawn a curve,
shown in Fig. 2.4, representing a synthesis of experiment and theory and given
by the relation:

G=6.1®+1.8)%% 1.7 | (2.36)
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FI6. 2.4 THE FUNCTION G {P) FOR EQUILIBRIUM BOUNDARY LAYERS

For a boundary layer with an arbitrary pressure distribution, the
parameters P and G will in general be functions of x. Now Nash has postulated
that every developing boundary layer has a tendency to reach a"local equilibrium®
state, which means that the function G(x) bhas the tendency to approach the local
equilibrium distribution, Gg(x), which is obtained by substitution of the given
P(x) into Eq. (2.36). Following this hypothesis, Nash derived the following shape
parameter equation:

@6 _ A4 G- o)} G- a)P |
= {d;{_ @ Ge)} @-ay®, (2.37)

in which X is a non~dimensional distance parameter, given by
X

%= f 51‘1 dx | (2.38)

*o

and x, is an initial posifion in the boundary layer, forming the starting point
from which the development is calculated.

A comparison with experiments showed that in general two possibilities
must be distinguished, according to whether dP/dx > 0 or dP/dx < 0. For the
former case G(x) proved to remain close to Gg(x), while for the latter case

G(x) departed markedly from G, (%).
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By trial and error the values of the parameters A, o and B in Eq. (2.37)
have been assessed to give satisfactory agreement with two or more sets of
boundary layer data for both dP/dx > 0 and dP/dx < 0. In this way Nash ob~
tained the following provisional values:

4 G-G)>0:A=-0.25, =3, B=-2

& &

g (2.89)
EX..-.(G—Ge)<0:A=5, =2 B=-2

Nash compared the results of his calculation method with a number of
experimental boundary layer data, which showed a very satisfactory agreement.
However, further experimental evidence is needed to ascertain the general
applicability. of his method, which will probably require some adjustment of the
constants in the auxiliary equation to maintain the best overall agreement.

The shape parameter equations of the integral methods discussed above
are all based on some physical concept concerning the behaviour of the turbulent
boundary layer. Another large class of integral methods can be distinguished for
which the shape parameter equation is derived from integral forms of the equa-
tions of motion other than the integral momentum equation. These integral forms
can be derived in a e general manner by multiplying each term of the equa~
tion of motion by U™y* and then integrating over y. The integral equations which
have found application in existing calculation methods are:

the integral kinetic emergy equation (m =1, £ = Q):

0
4 58y o 1( 23U .
IRy s =T T W . (2.40)
6 ; :
in which the kinetic energy thickness, 85, is given by
@®
1 2
by =2 o2 - vha, x (2.41)
00
and the integra] momeni-of-momentum eguation (m = 0, £ = 1):
@ ©
3 2 _ 3 (23U _s2. 40, 4 ,
Jg)l:yax(U) yay(Ufax dyl):ldy—-z—ﬁo—&- ;f'rdy : (2.42)

In both equations (2.40) and (2.42) the contribution of the normal Reynolds
stresses has been neglected.

To transform Eqgs. (2.40) and (2.42) into shape parameter equations
we need, besides the usual assumptions about the shape of the velocity profile,
additional relations concerning the shear-stress distribution. The shape of the
velocity profile presents little difficulty in practice, because the velocity profiles
can be satisfactorily regarded as belonging to a single~ or two-parameter family
(see next section). However, a central problem for the application of Eq. (2.40)
is an assumption concerning the shear-stress integral:
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w

‘f‘réy-dy, (2.43)
] ay

usually called the dissipation integral. It can be expressed with the aid of a non-
dimensional dissipation coefficient, cp, by
w 3
cn.plU
U . D" "o
T 3y dy = mr——

In the early 1950s several authors such as Rotta [74], Truckenbrodt [757,
Tetervin and Lin [76] and Rubert and Persh [77] proposed calculation methods
based on a relation for cp. Through Schlichting's textbook [ 25], Truckenbrodt's
method has become widely known. In it cp is given by

~1/6
¢p = 0.0112 Rey / . : (2.45)

Spalding [ 78], reviewing the existing theoretical and experimental in-
formation concerning cp, has shown that the shortcomings of the calculation
methods mentioned above, which have been clearly indicated in Thompson's
review [59], are due to the inadequacies of the cp-relations used. By com-
bining Eq. (2.14), (2.22) and (2,40) together with the assumption.that the quan-
tities ep, Vo and e; depend only on the velocity profile and R, Spalding derived
the following relation between cp and V:

H+1_H-1Ye_

c ce =0, (2.46)
f
Hy  Hes Do :
In it Hy is defined by
Hy = 63/62 . (2.47)

Equation (2.46) permits the dissipation coefficient to be calculated if the velocity-
profile family and the entrainment velocity are known. ‘

Agsuming a velocity-profile family with two parameters z, and £' [ 79]
{see next section):

U _ £n(y/6)
-I-I: = ze{l + = } + 41 - z,) (1 - cos TT%) (2. 48)

and V expressed by

Zg < 1: Ver = 0.06 - 0.05 Z,

} {2.49)
z,21 :VerO—0.03 z, ~ 0.02 -

Spalding arrived at an improved expression for cp (z_, £'), to be recommended
for boundary layer calculations, presented in Figure 2. g Although this expression
agrees more closely with experimental data than previous ones, further research
will be needed to verify and improve the recommendation for cp. Spalding has
already given some suggestions for extension of his ep relations to cases of
greater complexity.
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FIG. 2. 5 THE cp (Z,, 1') FUNCTION DEDUCED FROM EQ. (246)
AND THE ENTRAINMENT LAW OF EQ. (249)

The calculation method of McDonald and Stoddart [80] is the only one
= to the author's knowledge - which uses the integral moment-of-momentum equa~

tion (2.42) in arriving at a shape parameter equation. The central problem in
this method is the evaluation of the integral of the shear siress across the
boundary layer, non-dimensionally expressed by

27 .
1-_~fU2d(§.). (2.50)

PY%
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MeDonald and Stoddart started their evaluation of I with considerations concerning
a representative shear-siress distribution for a boundary layer developing in an
adverse pressure gradient; see Fig. 2.6.

W
1
v/‘a

0 8 0.5

FIG. 2. 6 REPRESENTATIVE SHEAR STRESS DISTRIBUTION
FOR A BOUNDARY LAYER IN AN ADVERSE PRESSURE GRADIENT

The part BCD was considered similar to the shear~stress distribution
at constant pressure with an apparent wall shear stress T, .. and boundary layer
thickness (1 - ¢;,,.)8, where T, is the maximum shear stress ai a dimension-
less distance 9yax = Ymax/ Fom the wall. Since for a developing flow at con-
stant pressure :

I=0.58 c o (2.51)

is a good approximation of the experimental results, we may write

I

27
- max _
Bep = 958 g = Pnay) -

pU,
By similar arguments for AED:
_0.58 . 2

Trgp = 9 "max = "wPmax °

P

which finally results in

) . ‘ (2.52)

_ 2
1= (0.58 7 +0.42p

2
pU,

m a.XTW
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Equation (2.52) was considered to be a crude representation and was
compared with hot-wire anemometer measurements of shear-stress distributions
conducted by Schubauer and Klebanoff [56], Newman [54], Klebanoff [50],
Mueller and Robertson [ 81] and Liebmann and Laufer [ 82]. These experiments
showed that, despite the considerable experime?tal scatter at high values of
) , a simple correlation exists between - T, and ¢ , which suggests
tﬂ%pproﬁmately max’w max

I=c f(cpmax) . (2.58)

Hence o may be regarded as a shape parameter for the shear-stress profile,
and a faxﬁ'a}fit to most of the data is provided by

I=cfl.75 - 5o, ~ 3.44cpfnax)“1

(2.54)
In this way the problem of calculating I has been reduced to the calculation of
Pmax-

From comparisons with experiments McDonald and Stoddart proposed
the following simple relations:

U

d _YVmax
> 0.075 : —— =0 {2.55
Pmax 5% Uy (2.55)

and
Ymax 2/3

: 8X _ P

Pmax < 0,075 : e {(2.586)

dx 107

They used Coles' universal velocity profile through which by means of Eqs. (2.55)
and (2,56) 9yax can be expressed in the shape parameters of the veloeity profile.
The shear stress integral term which appears in Eq. (2.42) may then be evalua-
ted in terms of the shape parameters via Eq. (2.54).

The above-mentioned hypotheses ave certainly of a tentative nature
and can only be refined if further shear-siress measurements become available,
MecDonald and Stoddart have compared more than two dozen measured boundary
layers, developing under various conditions, with the predictions of their method.
The close agreement between predictions and measurements clearly shows that
their integral method is admirably suitable for the calculation of the incompres-
sible two-dimensional turbulent boundary layer.

As we concluded our survey of calculation methods, we came across
a paper by Kline, Moffatt and Morkovin [ 83], reporting on the AFOSR~IFP-Stanford
conference on the computation of turbulent houndary layers. This conference had
a8 its prime objective a comparison of the many existing calculation methods,
particularly in terms of their accuracy, computational speed and adaptability to
widely varying conditions. To this end, tabulated data defining 33 standard flows
of various types were sent to various authors, who were invited to predict the
development of Ry, H and c; for the flows, each according to his own method.
Twenty-one integral methods and nine differential methods were employed. The
predicted results were replotted in a manner that facilitated comparison and
studied by a special evaluation committee, leading to the indication of the best
dozen of these methods.
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B. ‘The Distribution of Mean Quantities in a Turbulent Boundary Layer

In this section we shall concentrate on those quantities of the turbu-
lent boundary layer which are of direct importance for the calculation of turbu-
lent heat transfer. Particular attention will be paid to the distributions of mean
- velocity and eddy viscosity.

1. The Mean Velocity Profile

As mentioned in Section A,1, the turbulent boundary layer is often
divided into an inner and an outer layer, each having its own characteristics.
This division has led to a number of proposed velocity profiles which are only
valid in either the inner or the outer region. Very few formulae can be found
in the literature which give an acceptable description of the entire velocity
profile,

In the following we shall only discuss the main characteristics of the
mean velocity profile with special reference to the formulae proposed in receni
years, For a more comprehensive review of this subject the xreader may be
referred to the textbooks of Hinze [ 22] and Rotta [ 27].

As mentioned in Section A.1, the inner layer may, mth increasing
.distance from the wall, be divided into a viscous sublayer, a {ransition region
and a fully turbulent region. The first of these is a very thin layer adjacent to
the wall in which the Reynolds shear stress can be neglected in comparison with
the viscous contribution to the shear stress, so that

3U
3y

For a boundary layer with zero pressure gradient and for sufficien’cly small
values of y, the shear stress 7 is independent of y and

T=1 (2.57)

T : (2.58)
Equation (2.58) can easily be derived from an integration of the equation of motion
(2.1) in which for small values of y the acceleration term U dU/ex + V 3U/dy
is neglected.

From Eqgs. (2.57) and (2. 58) the velocity distribution within the viscous
sublayer can be expressed as

.
v="¥y (2.58)
L
or
W=yt j (2.59)

For y*¥ <5 Eq. (2.58) has been experimentally verified by Deissler [84], Laufer
[37] and Klebauoff [36] and more recently, with the application of new measuring
techniques, by Popovich and Hummel [85], Kline et al. [86], Sherwood et al,
[87], Lindgren and Chao [88] and by Clark [89].

In the past it was generally accepted that the viscous sublayer was
fully laminar, which implied v, = £ = 0. The experiments of Klebanoff [ 36] and
Laufer [37], however, clearly showed that this assumption was incorrect, because
they observed turbulent velocity fluctuations up to the wall. In addition, they found
that very close to the wall (at y* about 11.5) the production and dissipation of
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turbulent kinetic energy show a maximum, while both guantities decrease rapidly
with increasing y*. Evidently, about half of the turbulent kinetic energy is pro-
duced within the wall region, i.e. the region 0 = y* < 30 which must be interw
preted as a combination of the viscous sublayer and the transition region, whereas
the outer region of the boundary layer (thickness ~ 0.8 &) contributes only about
20% of the energy produced.

Since then it was generally recognized that a more complete under~
standing of the flow characteristics of the wall region is of special importance
for a closer insight into the mechanism of a turbulent shear flow. This has led
to a number of experimental investigations of the flow behaviour in the wall region,
of which we only mention the more recent ones by Nedderman [ 90], Reiss and
Hanratty [ 911, Mitchell and Hanratty [92], Rundstadler et al. [ 93], Kline et al.
[86], Armistead and Keyes [94] and Corino and Brodkey [ 95]. According to their
experiments the observed flow phenomena change in character with distance from
the wall, Within the viscous sublayer, y* = 5, the flow is not laminar but con-
tinuously disturbed by small-scale velocity fluctuations and frequently disturbed
by fluid elements which penetrate into this layer from positions further removed
from the wall. A thin region, 5 < y* < 15, adjacent to the sublayer forms the
origin of fluid elements which are periodically ejected. In the region 7 <y* <30
the ejected elements interact with the main flow, thereby creating intense, chaotic
velocity fluctuations.

The ejections and the resuiting velocity fluctuations are the most impor~
tant features of the wall region. They are three-dimensional disturbances which
occur locally and randomly with respect to time and streamwise position and have
a well-defined character which is independent of the mean flow parameters.
However, their intensity and frequency of occurrence are a measurable function
of these parameters. If is believed that the action of these ejected elements
creates turbulence,

In the region beyond y* > 30 the intensity of the velocity fluctuations
gradually decreases and the scale of turbulence gradually increases.

Further details of the flow phenomena close to the wall can be found
in the really magnificent flow visualization studies of Kline et al. [ 86] and of
Corino and Brodkey [ 95]. The observed phenomena have led Danckwerts [ 96],
Einstein and Li [97], Hanratty [ 98] and Black [ 99] to the introduction of a flow
model for the viscous sublayer, featuring a periodical growth and disintegration
of a viscous boundary layer close to the wall, The disintegration was assumed to
be caused by the hydrodynamic instability of the growing viscous layer once it
had reached a certain critical thickness. Obviously, in view of the observed com-
plex nature of the flow phenomena, such a model cannot be but a simplification
of the real flow pattern. However, the resulting velocity profile (Hanratty [ 987):

1 "
' = 13,5ferf u) dr (2.60)
o 4

shows a reasonable agreement with the measured velocity profiles within the wall
region. In Eqg. (2.60) 7 is the fraction of time in which the viscous layer is
growing.

Sternberg [100, 101] has suggested a linearized model of the viscous
sublayer where the flow fluctuations are controlled by pressure fluctuations im-
posed from outside. The predictions of his theory seem to be incorrect, since
they are at variance with the measurements of Mitchell and Havratty [92].
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From the considerations given above it is obvious that v; = 0 is only
correct for y = 0 and Eq. (2.59) is only valid if vy << v. Hence, instead of
Eq. (2.57) we have in the wall region

T _ 3u
.p. = (Vv + vt).a_y. (2.61)

v +
1= (1 +_E)§_‘;: . {2.62)

For the variation of v, within the wall region a number of formulae have been
proposed, which can all be written in the form:

v
—j- =g(yh) . « (2.63)

I the function g(y") is known, the velocity profile can be obtained by integration
of {2.62), which results in ’

y* |
?
u+ =y+-j..§£&.)._ dy' . (2.64)
§ 1+ e |
All proposed distributions of v, are subject to the requirement that the

resulting velocity profile must agree with u*t = y* for y* approaching zero and

with the logarithmic velocity distribution (see further on) for y* values within
the fully turbuleni region. In addition, the resuliing velocity profile has to fit
the available experimental data at intermediate y* values. ’

Most of the distributions of v proposed earlier are reviewed in detail
by Hinze [22], Rotta [27] and Townsend [ 23]; they will be treated in a sub-
sequent section. Some of the resulting velocity distributions are:

Von Kfrmfn [102]:

osyt<s ;ut =yt
5<yt<30:0 =5y -3.05 (2.65)
y = 30 cu =254yt +5.5

Reichardt [103]:

y‘+2‘): .
+
ﬂ60.33y |

+
ut = 2.5 In(l+0.4y" + 7.8{1- &Y /11 _ L

(2.66)
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Deissler [ 39]:

Dy <26 :
4.
-
ut =Jy dy % withn = 0.124 (2.67)
g 1 +n2ufyta - ™Y

y 22 :u" =278 my"+ 3.8
van Driest [104]:

y+
2 +
= 4 (2.68)

¢ 1 +;1 + 0.64(Y+)2[1 e (_}3%)]2%%

and
Rannie [105]:
0<y'<27.5: u'=14.53 tanh (0.0688 y*
. N s (2.69)
y = 27.5 H u =2,54ny +5.5

They are presented in Fig. 2.7 together with some proposed more recently,
which were not included in the reviews of Hinze, Rotta and Townsend, viz.:

Spalding [47]:
y+ 20

+ 2 3
gt = u* + 0.1108 390'4“ -1-(0.4u - %‘ﬂ_ - Sﬁ';“?,'ﬂf.)_s (2.70)

Burton [ 106]: 7
o+
y* <100 : y = ot +(8“?4) 2.71)

and
Sherwood et al. [87]:
vtz 0:y =ut+532-102whH? - 7.68 - 103 wH® + 2,19+ 107%wh? +
+1.64- 1004 @h® - 2,16 - 105@wh® + 9,12+ 107 @HY’ . (2.72)

Also included in Fig, 2.7 are the experimental data from references 36, 37 and
84 - 89.
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The discrepancies between the various proposed velocity distributions
prove to be even smaller than the scatter in the experimental data, which means
that all the formulae afford a good representation of the velocity profile in the
wall region. However, by studying the behaviour of the velocity fluctuations in
the immediate vicinity of the wall, Townsend [ 23], Elrod [107] and Rotta [27]
have shown that the variation of v¢ with y*, when y* approaches zero, must be
at least cubic. For the velocity profiles this implies

yt—>0 wt—yt kl(y")4 + ..., (2.78)

a condition which is only fulfilled by the formulae of Spalding [47] and Burton
[106]. Spalding's formulation is undoubtedly to be preferred, also because it
presents a single analytically smooth expression for the whole inner region,
including the fully turbulent part.

In the fully turbulent region (say, for y* = 80) the laminar contribu-
tion to the shear stress may be neglected. Equation {2.61) then reduces fo

T -13]
1,8 2.74
> t 3y { )

or in dimensionless form, again with the assumption 7 = T_ ,
V¢ gt

1=t (2.75)
A ay

It is now well established that in the turbulent region the eddy viscosity can be
represented by

+
R - (2.76)
v ay"'

which can be derived either from the mixing-length hypothesis 4 = ky or from
dimensional arguments, Substitution of Eg. (2.76) into Eq. (2.75) gives upon
integration

v =klmyt+ B, (2.77)

in which B is a constant of integration. Equation (2.77) is the well-known
logarithmic velocity distribution, which has been verified by a large number of
experiments. These experiments have yielded different values for the empirical
coefficients k and B, ranging between 0.35 and 0.44 and between 3.8 and 8.0,
respectively [ 83, 87, 47, 56, 62, 84, 88, 102-104, 108-110]. However, k = 0.40
and B = 5.5 seem to be the most representative wvalues, which have also been
found in the present investigation.

In the above analysis we have assumed T = Ty, which is only approxi-
mately valid in the inner region of a boundary layer at zero pressure gradient.
Within the outer region of such a boundary layer the condition ¢ = 7, is no longer
fulfilled, since r has to approach zero towards the outer edge of the boundary
layer. The velocity distribution in the outer region will be treated in the next
section. Here we only remark that in many cases the logarithmic velocity distri-
bution gives a reasonably good approximation of the velocity profileé in quite a
large part of the outer region as well,
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The condition T = Ty is not fulfilled either in the inmer region of a
boundary layer with a non-zero pressure gradient in the direction of flow. I
we assume the acceleration term in the equation of motion to be negligible
within the inner region, we find for this case by integration of Eq. (2.1):

r=T1, + Ry, 2.78
w dxy { }
or in dimensionless form:
i S=1+ Pyt (2.79)
pu
-
with
=39 1
Py = > ax b § (2.80)

-
which is often used as a pressure gradient parameter.

Experiments did show that the neglect of the acceleration term is
only justified in the wall region (y* < 30), On the basis of Schubauer and
Klebanoff's [ 56] experiments, however, Townsend [40,41] has suggested that
in the fully turbulent part of the boundary layer the shear stress gradient is
indeed constant, but not equal to the streamwise pressure adient. This
suggestion has been supported by the experiments of Newman [ 54], Sandborn
and Slogar [55], Bradshaw [51] and Spangenberg et al. [111]. Hence, for the
fully turbulent part of the boundary layer we can write

T +ay (2.81)
or '
=1 Myt (2.82)

In all papers dealing with the influence of a pressure gradient on the
law of the wall, ut = f(y"), it is assumed that the distribution of the eddy
viscosity, expressed as a function of a similarity coordinate normal to the wall
(for instance y¥) is unaffected by the presence of a pressure gradient. Within
the fully turbulent part therefore the relation (2.76) remains valid. Combina-
tion of (2.82) with (2.74) and (2.76) yields

2
-+
1+2zy = kz(y*)z(%) , . (2.83)
dy
with v
z =% (2.84)
pu .

T
Infegration of Eq. (2.83) leads to

+
wt = Hen| EEEL = L) oVt |+ B, (2.85)

Viszyt + 1

in which the constant of integration B, depends upon conditions in the wall region,
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Townsend [ 40] has determined B; by assuming the velocity profile in the wall
region, yt < 30, to be independent of the pressure gradient. This assumption
is only valid when the fractional change of the shear stress across the wall
region is small, which is expressed by the condition Z << 1/30. In that case
the velocity distribution given by Eq. (2.85) has to be identical with the loga-
rithmic veloeity profile, Eq. (2.77), for small values of Zy*. For these values
of Zy* Eq. (2.85) may be written as

+
welunlZ|+2 48 , (2.86)
k 4
which must be identical with
ut = i- tnyt+B. 2.77)

This yields for By:

-n .1 Z
B =B-1 (zn|4| +2) . (2.87)

Substitution of Eq. (2.87) into Eq. (2.85) results in
4 Vi+zy* - 1

+ 1
u = E[ﬁn Z
Viszyt + 1
For boundary layers in very strong adverse pressure gradients Zy't is much
larger than 1 and Eq. (2.88) can be approximated by

+ 2V1+Zyt - 2] +B. (2.88)

i
=20y L% nd L
U k(p) +k(‘mz 2 + BK) . (2.89)

This relation between the velocity and the square root of the distance normal to
the wall g;he so~called half-power law) has been verified experimentally by
Stratford [112] and Perry et al. [44].

Mellor [113] has improved the analysis of Townsend [40]by estimating
the effect of a pressure gradient on the velocity distribution within the wall
region. nstead of y* he suggested using a new similarity coordinate
¢ = v-1g2y2[3U/3y|. The eddy viscosity distribution across the wall region was
subsequently derived from velocity profile measurements in a constant-pressure
boundary layer and expressed as a function of {. The resulting distribution of
eddy viscosity was further assumed to be universally valid. With the help of
Eq. (2.79) the velocity distribution within the wall region could then be derived.
For the velocity profile within the fully turbulent part, Mellor [113] also arrived
at Eq. (2.88), with a constant B that proved to be a function of Z. Unfortunately,
Mellor has equated Z to Py throughout the entire inner region. Because this is not
in general valid within the fully turbulent part, some doubt must be felt about
using Mellor's B(Z).

Quite recently, an improved treatment has been applied by McDonald
[45] in his detailed analysis of the effect of a pressure gradient on the law of
the wall,
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The velocity distribution in the outer region has not received so much
attention as that in the inner region and no equally appropriate theories have been
developed. This is in part due to the fact that for the description of the transfer
of momentum, heat or mass from the wall to the fluid medium the flow phenome-
na in the inner region play a dominant role. Besides, the inner region is nearly
always in some state of equilibrium (see Section A.1), whereas the outer region
is greatly influenced by upsiream flow conditions. This means that in the outer
region velocity profiles of ahmost arbitrary shape can be obiained by a proper
sequential application of positive and negative pressure gradienis.

There is, however, experimental evidence that if the boundary layer
is not subject to pressure gradients changing rapidly in the direction of flow,
the velocity distribution in the outer region also shows some similarity if proper
velocity and length scales are chosen. In the following we shall mainly restrict
ourselves to boundary layers with zero or moderately small pressure gradients,
for which the inner-region velocity profiles can be well represented by the uni-
versal law of the wall, u* = f{y"), for instance Eg. (2.70).

The oldest and simplest representation of the velocity profile makes
use of the power law:

n
SLURRRY ) A NS 0<y<sp. (2.90)
U, \8

The essential defect of this law is its poor agreement with the actual velocity
distribution close to the wall. It was originally assumed that n was a universal
constant, being equal to 1/7, but later experiments indicated that n must be
regarded as a parameter with values between 1/10 and 1/3, dependent on Re
(Clauser [ 33]). Neglecting the departure of Eq. (2.90) from the velocity distri-
bution close to the wall, we can derive from Eq. (2.90) and the definitions of
61, 52 and H:

%.n _Ha
8 n+. +1
ba

- n__ _ H-l
T @+) @od) @A) (2.91)

H = 2n+1 .

Introducing H as a shape parameter instead of n and the length scale 8, instead
of the ill-defined quantity §, we can derive from Eqs. (2.90} and (2.9%):

(H~1)/2
. [(_,Y_)__EI:L . (2.92)
U, 8 o/ H(H+1)

Equation (2, 92) is in close agreement with a large number of experimental data
(see Clauser [ 33], von Doenhoff and Tetervin [114], Spence [62] and Rotta [ 27]).

Nowadays the velocity profile in the outer region is usually expressed
in terms of the velocity defect Uy~U. From a dimensional analysis Rotta [o7]
derived that the velocity in the outer region can be written without loss of

generality as
u.-~U u,
:; - F(‘%, T;L) B (2.93)
T

[+]




- 31 -

Within the fully turbulent region the velocity distribution of Eq. (2. 93) must obey
Eq. (2.76), so that upon integration we obtain for y = 0.1586:

Up-U

Ur

where K is a constant of integration, depending on u /UO. The fully turbulent
region may thus be regarded as the overlap region of The velocity profiles of the
inner and the outer region. Within the fully turbulent region one has

=-%zn§%K, (2.94)

_‘ls%mf“_‘fus. (2.77)
u,r ¥

Elimination of U/u,r from Egs. (2.94) and (2.77) yields a skin friction law which
in fact interconnects the parameters of both regions:

‘}A_z. o
: —kzn(Re6@+B+K . ’ (2. 95)

f

Hama [115] has proposed the following empirical formula for the
velocity distribution in the region y = 0.15 6

U -U
-2 =961 -«.‘C)z . (2.96)
U, 8
which agrees satisfactorily with the experimental data collected by Clauser [33].
These data also indicated that the dependence of K on u./U, is only 2 weak one.
Hinze even proposed a constant value, viz, K = 2.5,

Since § is an ill-défined quantity, Rotta [ 27] introduced the dimension-
less wall distance y u,/81U, instead of y/8. From the definition of 6; one finds

w
U-U fyu
0 Ty _
d =1. 2.90
J Y (6100)
Equation (2.94) may now be wriften as
U,~U u
o - lzn(y__.l) + K, (2.94%)
T k 61Uo

while for the skin friction factor the following relation is obtained:
U,b
‘/_?_=lgn_°_l+B+K‘. (2.98)
cf k v
Here K' is another integration constant depending on u./U,.

From comparisons with experiments, Rotta [27] also found that K* is
nrearly constant, which leads to

U U5
‘}_2_5__2=5,75 9L 37 . (2.99)
u v
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Thig relation agrees within a few percent with the available experimental data.

Quite another approach of the velocity distribution in the ocuter region
was presented by Clauser %33]. He showed that the velocity defect profile can be
derived from the equation of motion, Eq. (2.1), with dp/dx = 0, if v has a
constant value, given by

v = 0.018 Ugpy - (2.100)

He also found, assuming v = ¢ Uy8y, that for an equilibrium boundary layer,
characterized by P = constant, the velocity distribution in the outer region can
be represented by a universal velocity defect profile, its shape being determined
by the pressure gradient parameter P (see also Section A.2.}. Comparison with
experiments revealed that Eq. (2.100) remains valid for an equilibrium boundary
layer, i.e. ¢ = 0.018. Recently, this work has been extended by Mellor and
Gibson [42,113], who calculated a continuous and analytically precise family of
defect profiles for the entire range - 0.5 < P < c0.

We conclude this discussion of the velocity distribution in a turbulent
boundary layer with a presentation of a few proposed formulae which describe
the entire velocity profile, i.e, for 0 =y = 8§, After an extensive review of
boundary layer data Coles tllG] put forward the following velocity profile:

= % oyt + B+ g w(y/s) , (2.101)

in which be assumed w(y/8) to be a universal function for all two-dimensional
turbulent boundary layers and Il is a profile parameter. The quantities k and B
may be regarded as universal constants. The function w(y/8) described the
departure of the velocity profile from the universal law of the wall and was
called the "law of the wake'. The wake function is subject to the following
normalizing and boundary conditions:

1

J' way/s) =1,  w(0) =0,  wl)=2. | (2.102)
(o]

Coles expressed his recommendation for w{y/8) in tabular form. Hinze [ 22]
showed that the wake function is nearly identical with ,

w(y/8) = 1 - cos(my/8) . (2.103)

Except for the very thin wall region, Eq. (2.101) gives a representa-
tion of the velocity profile for the entire boundary layer. For the zero-pressure-
gradient boundary layer, Coles proposed the value I1 = 0.55.

Equation (2.101) may be regarded as a two~parameter velocity profile
with parameters 2 and II. This is clearly demonstrated if we write Eq. (2.101)
together with Eq. %2.103) in the form:

U ¢ °t I
o -\Ckizn(%ma\g)+B+E[1-coser§)]i, (3.194)

which indeed contzins only two parameters «fcf72 and II, since the quantity Reg
can be expressed in terms of these parameiers by means of the skin friction
relation:
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2 _1 J.‘iﬁ 21
\[c_;“km(ms 2) + B+ ol (2.105)

by substitution of the boundary condition U = U, for y = §. With the use of
Eq. (2.104) the quantities 81/8, 6,/ and H can Be expressed in terms of the
velocity profile parameters /€§72 and II. These expressions together with
Eq. (2.105) result in a skin friction relation of the form cf = cg(Reg, H). The
skin friction relations, which are implied by the existence of a two-parameter
velocity profile, may be used instead of Eq. (2. 19% in the application of an
integral method (see also McDonald and Stoddard [ 801, Thompson [59] and

Spalding [78]).

Spalding [78] also proposed a profile holding for 0 <y < §, resembling
Eq. (2.101). Istead of IT Spalding introduced a parameter z, given by

U
21 -z =20 (2.1086)
u. k
while he expressed the law of the wall in the form:
%zny'*'-bB =.]}(.zn Eyt, (2.107)

E = 9,02 corresponding with B = 5.5, Substitution of Egs. (2.106) and (2.107)
into Eq. (2.101) yields:

1-z U
+ 1 [} y o
= = 4n(Evt 4.__1..003(..).— . .1
u ” n(Ey™) 2 [ 1'r6 T, (2.108)

The parameter Zg can be interpreted physically as the ratio of the law-of-the-
wall velocity at ¥ = § to the main stream velocity. For normal boundary layers
0 < zy < 1, while wall-jet velocity profiles can be described by zg < 0. The
skin friction law resulting from Eq. (2.108) is:

c c
= yL1 \/ f
Ze = 2k ﬁn(E 335 -é-) « (2.109)
By introduction of a parameter £', defined by

£ = 4n (E RBG@) s (2.110)

Eqg. (2.109) can be written as

2
cf k Ze
-2 - (2.111)

c
Enminaﬁnggfrom Eq. (2.108) by means of Eq. (2.111) finally results in
Spalding's profile:

L ingy/8)] , U2 [, y
Uo zezl+ o $+ > 1 cos'n.g . {2.48)
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Escudier and Nicoll [70] found Eq. (2.48) to be in good agreement with a large
number of measured velocity profiles of boundary layers with positive and nega-
tive pressure gradients. The skin friction law, Eq. (2.11), likewise proved to
be in close agreement with experimental data. ‘

The velocity profiles of Coles and Spalding have the disadvantage that,
at the edge of the boundary layer, y = §, the velocity profiles have a finite slope
which is equal to thai obtained when the law of the wall is extended to y = 5.
This difficulty is aveided in the velocity profile proposed by Sarnecki [117] and
desecribed in detail by Thompson [59] and Head [69]. Instead of a wake function
a weighting function vg is introduced, given by

- 1 +
U = ysu,r(Efrny + B) + (1 -vg)U, . ‘ (2.112)

In fact, vg determines to what extent the actual velocity at a given point depends
upon that given by the law of the wall and upon the free stream velocity. From
the analysis of a large number of velocity profiles Sarnecki found that v4 is a
universal function of y/§, for which he gave an experimental curve. We nofe that
his experimental curve can be very well approximated by the expression

v, - 5[1 s cose %)] (2.119)

From Eq. (2.112), following the same procedure as used for the velocity profiles
of Coles and Spalding, one can also derive a skin friction relation. Thompson
[59] compared Eq. (2.112) with a large number of measured velocity profiles.
He found that the agreement was almost universally satisfactory even for profiles
very close to separation. He also constructed three charts giving y/8,5, U/U,
and ¢¢ as functions of H and Rey. Using these charts a velocity profile for given
values of Re, and H can be constructed very rapidly. This is very convenient
if one wants 2£o apply integral methods. ‘ ‘

2. The Distribution of the Eddy Viscosity

We have seen that a solution of the equation of motion of a turbulent
boundary layer is possible only when the distribution of -Gv is known. Usually
this quantity is expressed in terms of the local mean velocity gradient by the
introduction of an eddy viscosity, v, or a mixing length £:

— _  ay
v =y, &Y 2.5}
t 5y (

or
v = 423U |3U |
dy 3y

However, as can easily be seen from Eqgs. (2.1) and (2.11), the turbulent shear
stress is not only determined by local flow conditions but depends also on the
past history of the boundary layer (represented by the appearance of sireamwise
gradients in these equations). This means that an eddy viscosity or mixing length
concept is physically significant only in those regions of the boundary layer where
the influence of the upstream flow conditions is negligible. In general this is
only the case in the imner region of the turbulent boundary layer: In the wall
region because the inertia terms in the equation of motion can be neglected, and
in the fully turbulent part because of the local equilibrium of the turbulent
kinetic energy (see Townsend [40] and Eq. (2.13)).

1
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In the outer region of the turbulent boundary layer the flow field, and
hence v, is greatly influenced by upsiream flow conditions. This implies that
no universal distribution of v; can be expected. In this region the eddy viscosity
must simply be regarded as a parameter relating the gradient of the mean veloc-
ity to the turbulent shear siress. When the mean velocity distribution U(x,y) is
known, the shear stress T(X,y) can be obtained by integration of Eq. (2.1). The
eddy viscosity can then be calculated by means of Eq. (2.61).

Some authors, for instance Clauser [33] and Mellor and Gibson [42],
have introduced the concept of a constant value of the eddy viscosity in the outer
region, given by

v, = 0.018 U3, . (2.8)
This relation, however, must be regarded as a rough approximation for equi-
librium and zero-pressure-gradient boundary layers. We will in the following
concentrate on the distribution of the eddy viscosity within the inner region of
the turbulent boundary layer.

It is now generally accepted that in the fully turbulent region the
mixing length relation

4 =ky ' (2.114)

is universally valid, irrespective of the value of the pressure gradient. This
implies that the eddy viscosity is given by

- 219U
vy = K%y I---~~ay | (2.115)
or, in dimensionless form,
v, +
t 2 2 du
— k . 2‘ 7‘6
" o™h ‘d—y'; ( )

Substitution of Eq. (2.76) into

I- =19)
5= v (2.81)
leads to
2 gt dut
(1 + ko %)% =L, (2.116)
w

from which du*/dy* can be obtained if v/r,, is a known quantity.

For a zero-pressure-gradient boundary layer t =~ T, resulting in

-2 -2
= Gy WL+ ekyh) - -@%— (2.117)
i\f. = ky* \fl + @2kyh % - &, (2.118)

and
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Usually it is assumed that within the fully turbulent region V¢ >> v, in which
case Eq. (2.116) simplifies to

A2
(ky“‘ E) =L . (2.119)
dy* Tw
Instead of Egs. (2.117) and (2.118) we then obtain
+
d_u; =1 (2.120)
+
dy  ky
and
Y,
L=yt (2.121)
hY] .

The results of Eqs, (2.118) and (2.121) agree within one percent for ky* > 50
or y* > 125. I the boundary layer is subject to a pressure gradient, we have

Lo=1+ Zyt, (2.82)
Tw
which, substituted into Eq. (2.116), results in
1
+ - -2z -2
9—‘1; = a1+ @yt 4 ekyh -Gy (2.122)
dy 2 ‘
and
v ol% ‘
-;,E = ky+[1 + (Zyt + 1) (2kyhH 2] - 3. (2.123)
Again, on the assumption that v >> v the above equations become
+ \/ +
@I = i%x_ (2.124)
dy ky

and
v
- ytViezy ™ . (2.125)

It should be borne in mind that the velocity profiles given in the preceding
section, Egs. (2.77) and (2.85), are derived from Eqs. (2.120) and (2,124),
respectively, and therefore are valid only when the condition vy > v s ful-
filled.

For the wall region (y* < 30) no universal relation like Eq. (2,76) can
be given and various distributions of u.(y*)/v have been proposed. Detafled
reviews of these proposals are given byvi{inze [ 22], Rotta [ 27) and Jayatilleke
[118]. For a zero-pressure-grddient boundary layer vi(y*)/v can be calculated
from Eq. (2.62): :

-1
Mo (ﬁ‘%) 1 (2.62)
\Y dy .
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is du*/dy* is known. The gradient du*/dy* can be obtained either by differenti-
ation of a measured velocity distribution or by employing one of the ut(y*) rela~
tions given by Eqs. (2.65) to (2.72). For instance, using Spalding's velocity
profile, Eq. (2.70), we arrive at ’

v + 2

= = 0.04482 4™ L 1. 0gut - 0*42“ (2.126)
or for yt— 0

v 3 ,

= 0.04432 - 19%}1“3_ = 4.74 - 1074gH° . (2.127)

v S

For boundary layers with an arbitrary pressure gradient the eddy vis-
cosity distribution in the wall region can be calculated from the analyses of
Mellor [113] and McDonald [45]. Both authors, with the help of dimensional
arguments, introduced a new similarity coordinate normal to the wall, The eddy
viscosity distribution across the wall region was subsequently derived from veloc-
ity profile measurements in a constant pressure flow and expressed as a function
of the new similarity coordinate only. In this way Mellor arrived at

t-90, (2.128)
while MeDonald gave

%o 5(vy, (2.129)
with ’ .

¢ = KPyh /eyt (2.130)
and

Y = yraut/aghy? (2.131)

The functions ¢(0) and #(Y) were presenied in graphical form and supposed to be
independent of pressure gradients. In this context we remark that the functions
@(L) or ¥(Y) can also be derived from Eqs. (2.70) and (2.126).

When the distribution of the shear stress in the wall region is known
- often given to a good approximation by Eq. (2.78) - the functions ¢ and  can
be used to calculate the velocity profile in the wall region of a boundary layer
with an arbitrary pressure gradient.

The distribution of w/v in the viscous sublayer can also be determined
from turbulent heat and mass transfer measurements at very high Prandfl and
Schmidt numbers, respectively. For very high Prandtl and Schmidt numbers the
temperature and concentration boundary layers lie fully within the viscous sub-
layer. Assuming

_\’2 - b(y"')n (2.132)
v

one can then derive (see [119]) that for fully developed heat transfer

‘ C
Pr>> 1 : Nu = Bpl/B (sin %)ReJ-éf- . pri/® (2.133)
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and for fully developed mass transfer
5 ;
Sc>>1:6h= Ebl/“(sinn)ne\};. st/ : (2.134)
- n

‘From Eq, (2.134) and on the basis of mass transfer data obtained by various
investigators with Schmidt numbers ranging from 400 to 2400, Son and Hanratty
119] arrived at

W,
.\.f. = 0.00032(yH)* . , (2.135)

However, recent mass fransfer data at much larger values of Sc indicate that
the exponent n in (2.132) has the value 3, in accordance with Eq. (2.127). The
data of Hamilton and Hamott [ 120] concerning turbulent mass transfer at Schmidt
numbers of 430 to 10° correlate with an average deviation of 5.4 percent with

0,913 ,0.346

Sh = 0.0096 Re Se (2.136)
‘From these data for Sc > 5000 Hughmark [121] derived

N :

-+ = 0.00096 (v . (2.137)

Very recently Gukhman and Kader [ 122] have presented turbulent mass transfer

data for Schmidt numbers up to 108. They actually found Sh {f’__f. and gave as
a final result 2

0.845 Sc0.341 .

Sh = 0,0188 Re (2.137)
From the data of Dukhman and Kader we derived, using Eq. (2.134),

W,

2t = 0.00131 (v4)2 . - (2.138)

v

In this connexion it should be emphasized that owing to the normally oli%rved
wide scatter of experimental data, it is difficult to distinguish between Sc and
Scl/4 and hence between n = 3 and n = 4. Besides, Eqs. (2.133) and (2.134)
have been derived on the assumption that Pry = 1 and Sy = 1. If we assume
Pr, and to be functions of y* and of Pr and Sc, respectively, which seems
to ﬁ)e justitied by experiments (see Fig. 1.1), different values of n are obtained
from the heat and mass transfer data at high Pr and Sc numbers. ‘
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I, TURBULENT HEAT TRANSFER

If we wish to calculate the heat transfer from a flat plate on which a
stationary, incompressible, two-dimensional turbulent boundary layer has formed,
we must find a solution of the energy equation:

Y AT _ 3 Mt\aT ~

Usx "V ay[(a + pr')%:l (1.10)
together with appropriate boundary conditions. The distributions of U, V and Vi
can be obtained by the application of one of the methods presented in Chapter II,
This means that Eq. (1.10) can be solved if we make assumptions concerning the

digtribution of Pry, which in fact forms one of the basic problems of turbulent
heat transfer.

However, up to now, the nature of the turbulent transport is not suffi-
ciently understood to permit a theoretical evaluation of Pry, Hence, further in-
formation on this gquantity can only be obtained from direct or indirect measure-
ments of the eddy diffusivities for momentum and heat, Therefore, we shall
present a review of the published experimental data of Pry. This review will be
preceded by a discussion on the calculation of turbulent heat transfer and a
presentation of calculated and measured mean temperature profiles within the
turbulent temperature boundary layer. ‘

A. The Calculation of Turbulent Heat Transfer

The earliest theories concern the heat transfer from a flat plate of
uniform surface temperature. They do not give a solution of Eq. (1.10), but
calculate the turbulent heat transfer on the basis of some assumed analogy
between heat and momentum transfer, the local heat transfer coefficient being
related to the local skin friction coefficient. They start from the definitions of

3y . 3u

T o ou . ot

5-(v+vt) 3y = Vedy. .1
and

- - aT _, 3

pep (a+at)ay B3y ! 3.2)

in which ve and ag are the effective viscosity and the effective conductivity,
respectively. With the introduction of the friction velocity u, and the friction
temperature T, given by

uo=NT/e  To=q./Gcpu) @.3)
Eqgs. (3.1) and (3.2) can be wriiten in dimensionless form:
v +
B S -} é.u_+ 3.4
w Voay
and
a _Zear” _Ye 1 ar’ 3.5)
9%, v By+ v Pre ay"'
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in which T+ = (Ty, - T)/T,, Ty is the temperature at the wall and Pry = vg/ag
is the effective Prandtl number. The quantity ve/v can be eliminated from Fas.
{3.4) and (3.5) to give a relation between T+ and u™

—aT+ = _g.. :E Pr -é—g‘:
ay+ Uy T € ay+

Assuming that there will be a universal relationship between u* and y* and that
a/qy = /1y, = 1, we find from Eq. (3.6)
o+

(3.6)

u
T =fPre awt . 6.7
o]

For Pro we can write
1+ (v/v)
Pr = — 3/1 3.9
Pr " + Pr, (vt/v)

or, assuming t= Tw and u+ = u+(y+),
- dy ™ /du”
Pro =" -1+, +
Pr~ +Pr, [@dy /du’) - 1]

. @.9)

Hence, in general, Pr, is a function of Pr, Pr; and u* (or y*) and for the cal-
culation of TH(y*, Pr, %rt) assumptions must be made concerning ut(y*) and Pry.

From the definitions of the Stanton number and ¢; we derive from
Eq. (3.3)

‘,c 2 .
8t = f/ . (3.10)

T+
[¢]

Hence, to obtain a relation between the local Stanton number and the local skin
friction coefficien{, we only need to express To+ in terms of ¢¢, This can be
done by integration of Eq. (3.7) across the whole velocity boundary layer:

4

u

o

+ +
To = fPre du . (3.11)
o

As Pry = Pry (u+, Pr, Pry) the quantity TC,+ will be a function of uo+, Pr and
Pry, or, since “o+ = y/2/cs, we have To+ = ToﬂJg;—' Pr, Pry). This means that
in general St will be a function of V%, Pr and Pry. In fact, Eq. (3.11) is only

correct, if &1 = §, but it also offers a good approximation for the case where
the Prandtl number is not much less than unity.
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Equation (3.11) may be rewritten as
+ +
Y Yo
+ + +
T, -fPrtdu +f(Pre - Prydu ,
o o

or, assuming a constant Pr

t’
+ +
T, =Pr (u, + P) (3.12)
in which
u
[
+
P, = f [(Pre - Prt/Prt]du . (3.13)
o
From Egs. (3.10) and (3.12) we now obiain
°t
st = 2 : 3.14)

2 .
Prthf-b Prt Ps

As in the fully turbulent part of the boundary layer v >»> v and a; >> a,
which is equivalent to Prg = Pri, the only contribution %o Pg comes from the
wall region (say y* < 30). Therefore, considering Eq. (3.14), the term Pry-Pg
represents the exira resistance fo heat transfer offered by the wall region on
account of the effective Prandil number in it being different from that in the
fully turbulent region. A further consequence of this fact is that the upper limit
of the integral in Eq. (8.13) can be extended to infinity without the value of the
integral being affected. By means of Eq. (3.8) we transform Eq. (3.13) into

(1] v -1
_(pr _ pr %t +
Fs _(Prt )f (1 " Pr \’) w ©.19
[+]

which is a convenient expression for the calculation of Py (Pr, Pry, because
vy/v can be found as a function of u™ when the velocity profile u*(y™) is given.
Reynolds [123] assumed Prg = Pry = 1 throughout the boundary layer, From
Eqg. (3.13) this results in Pg = 0. Then it follows from Egs. (3.12) and (3.10)
that

st =} c; . (3.16)
This relation is known as the Reynolds analogy. Prandtl [124] and Tayior [125]
have improved the Reynolds analogy by the introduction of a laminar viscous sub~
layer adjacent to the wall, In this sublayer, y* < 11, it was assumed that
v¢ = 0, which, again with the assumption Pry = 1, yields for Pg:

Ps =11 {Pr - 1) 3.17)
or, substifuted into Eq. (3.14)

f/z . (3.18)

c
t =
s
1+ 11J~;— ®r - 1)

8



- 42 -

Experimental evidence did show that Eq. (3.18) holds for relatively
small values of Pr only, perhaps up to Pr = 2, while for larger values of Pr
there is a discrepancy between Eq. (3.18) and the experimental results,
increasing with increasing Pr. It is evident that this is caused by the unrealistic
sharp boundary between a turbulent reglon and a laminar region at y* = 11,
Therefore, Von Kdrmidn [102] improved Eq. (3.18) by introducing a transition
region between the viscous sublayer and the fully turbulent region. For y* < 5
the layer was assumed to be fully laminar, while for 5 < y* < 30 both v, and
v were taken into account. For y+ 2 30 the boundary layer was assumed to be
fully turbulent, hence Pry = Pre. For 5 < y* < 30 the velocity profile u* =
5 ¢n y* - 3.05 was proposed. This, together with the additional assumption of
Pry = 1, gives for Pg:

- 5 1
PS =5Fr - 1) + Jcn(6 Pr + 6) 3.19)
or from Eq. {3.14)
c/2
st = f/ . (3.20)

‘{"f 5 1
1+5§[Pr-1+£n(§Pr +'é')]

It is noted that both Eq. (3.18) and (3.20) become identical with (3.16) for
Pr = 1, because for Pr, = Pr = 1 also Prg = 1 throughout the boundary layer,
hence Pg =0. As pointeé out by Von Kdrmdn the accordance between Eq. (3.20)
and the experimental results is very satisfactory for Pr up to 20,

As we know from modern turbulent boundary layer theories, a funda-
mental objection can be raised against Von Kdrmdn's assumption that v is zero
in the viscous sublayer. At high Pr numbers, for which the thermal boundary
layer les fully within the viscous sublayer, it leads to a Nu number independent
of Pr (for Pry = 1 and Pr— 0, To*‘——Pr hence Nu—»% ¢g.Re), which iscontra-
dictory to the experimental evidence. Therefore Reichardt [38], Deisaler [39]
and Rannie [105] assumed a non-zero value of v¢ within the sublayer, for which
relations of /v as a function of y* were presented. These relations led to the
improved velocity profiles u*ly?), given by Egs. (2.66), (2.67) and (2.69) and,
substituted into Eq. (3.15) with the additional assumption of Pri = 1, to improved
expressions for Pg(Pr). The resulting heat transfer relations, unlike Eq. (3.20),
are in good agreement with the experimental results for much higher values of
Pr than 20,

Since then many authors, for instance Kutateladze [126], Wasan and
Wilke [127] and Kropholler and Carr [128], have presented improvementis of the
Von Kérmdn analysis by assuming a particular distribution of wy&")/v in the
wall region, In fact any of the ecquations (2.66) to (2.72) can be used for this
purpose.

‘Very recently Jayatilleke [118] has given an exiensive review of the
various proposed distributions of vt{yf');'v and the corresponding expressions for
Pg. On the basis of a large number of published heat {ransfer measurements
with Prandtl numbers between 0.6 and 3,000, he recommended

A 3/4
=L Pr - - Pr
P, = Prt[(Prt) 1] [1 + 0,28 exp( 0,007 Prt)] (3.21)

= 0,9 and A1 = 9,00 for Pr, = 1.

with Al = 8,32 for Pr s

t
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The second factor in square brackets on the right-hand side of
Eq. (3.21) is a correction factor introduced io obtain a better fit at moderate
Pr than can be obtained with the simpler form :

A 3/4
1
o))

which gives a good fit at high Pr numbers.

For large values of Pr the asymptotic expression for Py can easily be
derived. In this case the eddy viscosity distribution within the thermal boundary
layer is given by

n n
vy =bE = ba) @2.132)
which, substituted into Eq. (8.15), leads to
* -1
~( 2L o Pr 0 +
Ps (Prt )/Il +Prtb(u} ] du 3.23)
[+
Pr
For Pr. @ this leads to
Ty
n-1 p
Prin na-1/n
Ps‘_(]?rt) < ) sinér/n) . (3.24)

On substitution of Eq. (3.24) into Eq. (3.14) and taking Pry = 1, Eq, (2.133)
is obtained. It should be noted that the form recommended by Jayatilleke,
Eq. (3.22), implies n = 4, which does not agree with mass transfer measure-
ments at high Sc numbers, Egs. (2.136} and (2.137), which imply n =3,

The formulae given above were derived for the heat transfer from
flat plate with a uniform temperature Ty. Various approximate solutions have
been given for the problem of heat transfer from a flat plate with a stepwise
discontinuity in wall temperature (unheated starfing length L). Reynolds et al.
[129] reviewed some of these analyses, in particular those of Rubesin [130],
Scesa [131] and Klein and Tribus [132], and found that the resulis can in
general be represented by an equation of the form

St AJdN
& 1T

where Str is the local Stanton number for the case of a flat plate at uniform
temperature and a and b are constants. Assuming velocity and femperature
profiles according to power laws with exponent 1/m, they derived from the
energy integral equation for the exponents a and b in Eq. (3.25):

- 4(m+2 _ 1
a—g((i;ﬁ%, b=-—Ls. (3.26)

Taking m = 7, Eqgs. (3.25) and (3.26) result in

RO T o



- 44 -

which was in excellent agreement with their own measurements and was
recommended as the best approximate formula. Equation {3.27) is in fair agree-
ment with the empirical relations of Klein and Tribus [1327:

-0.11
0,877
St _ L
.. -[ —(x) ] (3.28)

and of Jacob and Dow [1337:

2,75 3.75
= 0.8 + 0.2 (3‘-) - 0.78 (é) +1,18 (é) . 3.29)
X X X

St
Sty
More fundamental and preferable to any of the analyses mentioned
previously are the methods involving the use of Eq. (1.10) for the solution of
turbulent heat transfer, It has the advantage that no assumption concerning the
variation of q(y) needs to be made and it permits the solution of transfer
problems for various boundary conditions. However, it should be kept in mind
that Eq. (1.10) can .only be solved by making an assumption concerning the
distribution of Pry. Up fo now solutions of Eq. (1.10) have only been given by
making ad hoc assumptions as to the value of Pri. Usually it is assumed that
Pry =1 or Pri is a constant {@bout 0.8). As a consequence, a solution of
Eq. (1.10) can only be exact in a mathematical sense, also because assumptions
concerning the turbulent boundary layer must be incorporated, which, from a
physical point of view, usually bave a restricted validity. Mathematically exact
solution methods have been initiated by the work of Spalding [1], discussed in
detail by Kestin and Richardson [1347. Assuming a universal relationship between
u* and y* and introducing the independent variables ut and x*, with

X

x = _[ @ /dx ‘ (3.30)
; .

he transformed Eq. (1.10) into a parabolic differential equation:
%0 _ 1 du 3 {1 _r 30 5.81)
axt ot gyt out (PTe Ty aut

Helae ‘@ is defined as
8= (T-TH/NT, -T,) . (3.32)

For the case of a stepwise discontinuity in wall temperature atx = L, Eq. (3.31)
is subject to the boundary conditions:

+ +
Xx =0, u 290
+  +
allx, u - @

x+>0, u+=0 : 8

fl
o

.31%

i
=t
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Spaldi_lpg further assumed T = Ty, hence Eq. (3.9) can be used to ex-
press Prg in u™, Pr and Pry, wriling foxj} short:

f(u+} = u+(dy+fdu+) and Pr;1 acp{\z+, Pr, Pr) . (3.33)
Equation (3.31) takes the form:

e .1 [cp(u Pr, Pry) i@,;] . (3.34)

3x.  f’) du du

In this equation the functions f(u™) and @™, Pr, Pry can be calculated from a
given law of the wall, u*¢™, which, for practlcaf reasons, was inverted by
Spalding [47] inio

2 3 4
+ + + +
y+ = u+ + A;eku -1~ ku+ - (ku') - ﬂ{u') - (ku') % » (3;35)
21 3t T4
so that
\)"‘Vt ku+ > +2 +3
v =1+kA§e -1_ku.._(‘£%l,_%')._2 . (3.36)
and
ata, -1 -1, § ka* + +2 +3
—t=prt v pr kA%e - 1-ku -ik-‘;—'l—~§%l~ ) (3.37)

In these equations k = 0,4 and A is a constant with a proposed value of 00,1108,

Equation (3.34) forms the basis of many heat transfer analyses and iis
solution can in general be expressed as a function @(x%, u*, Pr, Pry). For the
calculation of the heat transfer coefficient we only need to obtam the so-called
Spalding function:

sp&x’, Pr, Pry = -(2% . (3.38)
d Jut=o

The Spalding function contains Pr and Pri as parameters and is easﬂy shown to
be related to the local Stanton number by the equation

T

f

St=Sp—i3—‘:"— . . @.39)

Comparing this relation with Eq. (3.10), we see that the quantity Pr Sp~! can
be interpreted as a resistance to heat transfer. As can be inferred from
Chapter II, Spalding's assumptions concerning the velocity boundary layer are
only valid for the inner region of a boundary layer with zero or moderately
small pressure gradients, Hence the heat transfer analysis, treated above,
will only give correct results if the thermal boundary layer is appreciably
thinner than the velocity boundary layer. This condition can be expressed as
[135]

5t Pr >> cf/2 . (3.40)
This holds, for example, when the position on the wall from which the thermal

boundary layer originates is located far downstream of the point of origin of
the velocity boundary layer and for cases of not too small Pr numbers.
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and with the additional assumption Pry = 1,

For the case of Pr = 1
= 1, and in this particular case Eq. (3.34) sim-

we have from Eq. (3.9) Prg

plifies to
20 . - L e 5. (3.41)
ox @ ) au

Spalding [17] has given an approximate solution for Sp(x 1,1) by the ﬁse of the
energy integral equation, while Murali Dharan [136] obtained Sp(x*,1,1) by
means of an analog computer. Kestin and Persen [137] presented a numerically
exact solution for Sp(x*,1,1), solving Eq. (3.41) by means of a digital computer,
To start their calculaﬁon from the singular point at x* = 0, they used an ana~
iytical solution for @ @*,x" valid for x*—0:

¥(1/3,1))

suhxy =1 -

, 7 : (8.42)

where v(1/3,7;) is the incomplete gamma function of order 1/3 and of the
similarity parameter:

1, = 6 et (3.43)

in which y* can be expressed in terms of u* by the use of Eq. (3.35). Equa-
tion (3 42) also imples that for very small values of x* the Spalding function

Sp(x*,Pr,1) is given by

31/3 " "‘1,-{3 + -1[3
t-.—. + 3 2;-... = L .
x——=0 8px ,Pr,1) (Pr) 0.53835(Pr) . (3.44)

r@/s)

A detailed derivation of Eq. (3.42) can be found in reference [138]
(see also Baker [6]).

Gardner and Kestin [139] extended the calculations of Kestin and
Persen [137] to Prandtl numbers different from unity, again with the assump-
tion Pry = 1, To obtain an equation similar to Eq. (3.41) they introduced the
new independent variable

u+

g =/Predu+ , (3.45)

o

which in the case of a uniform femperature of the flat plate is equivalent to T+
{see Eq. 3.7). With Eq. (3.9) and the assumpﬁon Pr¢ = 1, Eq. (3.34) now trans-
forms into ’

2
T s (3.46)
axt  u'Prl -1 +dy'/au’) agz

with

.
du . (.47

@t aherl-n +a
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Equation (3.46) was solved for Pr =0.71, 1, 7, 30, 100 and 1000 and the corre-
sponding Spalding functions were tabulated. The results are presented in Fig. 3.1.

Smith and Shah [2, 140] obtained digital-computer solutions of Eq. (3.34)
for another fundamental heat transfer problem, namely for the situation in which
9w = O upstream of the plane x¥ = 0 but has a uniform value downstream of this
plane. For this case the corresponding boundary conditions, instead of (3.318),
are
x =0, ut=0
allx"‘,u"“—»m }:@"0

3,342
x>0, ut=0 : (aﬁ) = gonstant ( )
dut/ ut=0

Solution of this problem yields 8(x*, y") and therefore the wall temperature T,
as a function of x*, Smith and Shah also assumed Pry =1 and gave solutions for
Pr = 0.7, 1 and 10,

In a later publication Spalding [3] showed that certain regularities
exist in the solutions published by Gardner and Kestin [139] and Smith and Shah
[2], from which he developed some explicit approximate formulae for Sp(x?, Pr,1).
At low values of x*, the Spalding function has the asymptotic form [137

Sp(x*, Pr,1) — 0.53835 /P Y3 for x* o0 . (3.44)

Obviously for large values of x* the solution to the problem with a stepwise
change of wall temperature will approach that for the case of a uniform surface
temperature. Hence for large values of x* and Pr we have

5/4 ,1/4
+ T ogn (MY KA 1/4
Sp(x", Pr,1) — 4Sin(z} (4'}1/4 Pr .

This relation can easily be derived from the Eqgs. (3.14), (3.24) and (3.38) by
taking Pr; = 1 and keeping in mind that for Spalding's velocity profile we have
according to Eq. (3.36)

(3.48)

v, 5
ut— 0t EPA Gt (3.49)
v 4!

With A = 0.1108 and k = 0.4, Eq. (3.48) becomes
Spx*, Pr, 1) — 0. 0746 Pri/4 | (3.48%)
4 .
These asymptotic values of &)(X+, Pr,1) are presented in Fig. 3 1 as broken
lines.

Spalding also calculated the quantity P,:

Pr 1 '
P, = - , {3.50)
2 g, Pr,1)  sxh1,1)
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FIGURE 3.1 VALUES OF Sp (x*,Pr,1) CALCULATED BY GARDNER AND KESTIN [139]
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which for x* = 10% proved to be a function of Pr only, for which he recommended
-1s.a@rt oy . (3.51)

This result, however, is not very surprising, because for these large values
of x* the solution of the uniform temperature case must be approached and with
Eqgs. (3.14) and (3,38) it is a simple matter to derive that Py = P(Pr, Pry).
This also means that with the use of Eq. (3.21) we can give an improved expres—
sion for Py for the case Pry =

P, =9 [Pr3/ 4. 1] [1 + 0.28 exp(-0.007 Pr)] . (3.512)

With the help of the function P, and Eq. (3.50) it is now possible to present an
approximate explicit formula for the calculation of Sp(x*, Pr, 1), if such a formula
is given for Sp(x*;1,1). Spalding has given an analyticgl solutmn of Eq. (3.34)
with the assumption of power law velocity profile, au™)® = y*, which results in

[a bf(z.;b)zjl/ (b+2) ( ) 1/(2+b)
rl(b+3)/(b+2)] o

Suitable values are: a = 2,412, 1077, b = 7 @* = 8.8 ¢H'/7). sertion into
Eq. (3,52) yields

Sp(x Pr,1) =

(3.52)

So(x*, 1,1) = 0.1479(x /9 | (3.53)

Combining Egs. (3.53) and (3.50) we now find
‘ -1
x* = 104 s, pr,1) = Pr[e.'fs(x")l/ 94 Pz] ) (3.54)

For the whole range of x* values Spalding proposed a combination of
Egs. (3.54) and (3.44) of the form:
1;*‘4

: 4 -1/8
Sp(x*, Pr,1) = [ Pr 0. 53835( ) ] } . (3.55)
l6.76(x11/9 + P Pr

With Py inserted from Eq. (3.51) this gave a good agreement with the calcula~
tions of Gardner and Kestin, Finally, Spalding has generalized the solutions so
as to hold for cases in which Pri is a constant differing from unity. Using
Eq. (3.9) we can write for Eq. (3.34):

an - 1 _é_ Pl‘"l + PI‘t-.l (dy+/ du* - 1} _a_@_ ] @ 348.)
3%F  f(uh) sut dy*/dut aut )
With Pr, = constant this equation can be rearvanged as follows:
@ . _1 (Pr/Pryt + (@y*/du’ - 1) 59 3.34P)
dx+/Pry)  fuh au dy*/dut £
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Now, Gardner and Kestin [139] solved Eq. (3.34%) with Pry = 1:

20 . _1 _a_[Pr“l + (@y*/aut - 1) .a_®_.] . 3.3
axT  fwh 't dy*/dut du’

From Eqs. (3.34P) and (3.34%) it follows that the solutions of Gardner
and Kestin are still valid when Pry is a constant differing from unity, provided
that x* is replaced by x*/Pr; and Pr by Pr/Pr,. Hence

o+
(=, 22, Prt) = Sp(x*, Pr,1) . © (8.58)
\Pry  Pry ‘

Because in the literature we could not find any comparison between
experiments and the heat transfer analyses given above, which we will call the
Spalding Method, we have presented such a comparison in Fig, 3.2. The experi-
mental data of Reynolds et al. [129] were used for this purpose, These investi-
gators measured the heat iransfer from a flat plate with a zero pressure gradient
and a stepwise discontinuity of the surface temperature, the position of the latter
being varied. For this comparison we have tfaken Pry = 1 and as can be seen
from Fig. 3.2, the agreement between theory and experiment is very satisfactory.

We have already mentioned that the Spalding Method will only give
correct heat transfer predictions if the thermal boundary layer lies fully within
the region in which the assumptions concerning the velocity field, i.e. T = T
and ut = u*(y"), are valid. This implies, for instance, that the Spalding Metho‘&
is in general not applicable when considerable pressure gradients are present,
as demonstrated by Back and Seban [5]. However, this defect can be removed
by solving Eq. (1.10) with the use of more generally valid velocity and shear
stress distributions, which can be obtained by the application of one of the more
recent turbulent boundary layer theories, presented in Chapter II.

A first improvement has been made by Hatton [4], who extended the
Spalding Method to cases where Pr is much smaller than imity. ‘'With a boundary
layer analysis similar to that given by Brand and Persen [ 46. (see also Chapter TI),
he calculated the distribution 'r(y“*)/"rw and the corresponding vy(y')/v profiles.
. These results were substituted into Eq. (3.31) which was solved numerically for
the boundary conditions given by Eq. (3.3123) for Prandtl numbers of 0.01, 0.1,
0.7, 1.0 and 10, with the additional assumption that Pr¢ = 1. For Prandtl numbers
larger than 0.7 his results were in close agreement with those of Gardner and
Kestin [139]. . Slightly different curves were obtained, particularly at the lower
Prandt]l numbers, for different unheated starting lengths, due to the fact that the
distributions of T(y") and v(y" at the origin of the thermal boundary layer are
different for different unheated starting lengths. Similar analyses, based on the
assumption of other velocity profiles than ut(y"), are given by Strunk and Tao
[141] and Haberstroh and Baldwin [10], again for Pry = 1. '

Dvorak and Head [ 9] have presented a heat transfer analysis based on
an integral method for the calculation of the turbulent boundary layer. They used
the following procedure: the development of the turbulent boundary layer was cal~
culated by means of the entrainment method[69] (see Chapter II), resulting
in known distributions of §5(x} and H{x), from which the velocity profiles U(x,y)
were computed by the use of Thompson's two-parameter family (Eq. (2.112)).
With the velocity distribution in the boundary layer completely determined, they
obtained shear stress profiles by applying the equation of motion, and from the
profiles of shear stress and mean velocity calculated corresponding profiles of
eddy viscosity. In this way, together with an assumption for Pr;, Eq. (1.10) was
solved directly by a digital computer. Solutions were presented for the case with
a step in the wall temperature, for boundary layers in zero and adverse pressure
gradients. At a zero pressure gradient the calculated heat transfer for Pr, = 1
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FIGURE 3.2 COMPARISON OF THE SPALDING METHOD WITH EXPERIMENTS OF REYNOLDS ET AL . [129]
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and Pr = 0.7 was in good agreement with the results of Hatton [4]. They were
in disagreement for the case of an adverse pressure gradient, However, Hatton's
results are almost certainly in error, since his assumption of a universal velocity
profile uH(y™) but poorly represenis the velocity profiles encountered in adverse~
pressure~gradient boundary layers (see also Chapter II). Following the same
procedure as applied by Dvorak and Head any of the integral methods presented
in Chapter II can be used as a basis for a heat transfer analysis.

Essentially different from the heat transfer analysis treated above are
those of Persen [142] and Bradshaw [52). These authors also try to solve the
energy equation, Eq. (1.10), but instead of making an assumption concerning the
value of Pry, they postulate some independent hypothesis for the characteristics
of the thermal boundary layer, Persen [ 143] has solved the energy equation by
assuming not only a universal velocity profile u*(y?), but also a universal tempe~
rature profile, He assumed that the non-dimensional temperature © was a
universal function of the non-dimensional distance to the wall

e —W__y

R{T 0)

The function &MY was chosen so as to make the development of the thermal
boundary layer at its origin conform with the solution

_Y@/3,mp)

® = 6(ny) =1 (8.42)
T'(1/3)
which is known to be valid for x* approaching zero. Equation (3.42) gives
g% ur ATy - TyPr/? |
Qy = o ‘ (3.57)
I‘(1/3) v 1/3 '
€y
and this reveals that 1; may be expressed as '
n = Era/s)] ah’. (3.58)
This led Persen to postulate the following universal temperature profile:
1
vk, 2 101
et =1-_3 . ‘ ‘ (3.59)

r1/s)

Using the velocity profile ®(1*) Persen numerically solved the 'energy equation
by means of a digital computer. He has calculated the local Stanton number as
a function of the local Reynolds number for different positions of the discontinuity
in wall temperature and for Prandtl numbers of 0.1, 0.5, 1, 2 and 10, To his
knowledge there were no experimental results avallable wh.lch allowed a direct
comparison with the results of his theory.

Bradshaw [ 52] has proposed a heat transfer theory analogous to his
turbulent boundary layer theory, treated in Chapter II. He started from the
following equation, which is similar to the turbulent kinetic energy equation:

2. 2 — 2,1 420 2
vdE e, y338Y) - gL . 2 (4 oFy - o 28T )‘('6‘9‘) i ie")
9% ay dy 3y ayz Ax 3y

(3.60)
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In this equation the terms on the left represent the rate of change of 02 along
a streamline of the mean flow. On the right, the first term represents the pro-
duction of turbulent thermal energy from the mean temperature field; the second
term represents the diffusion of turbulent energy and the last term represents
the effects of molecular transport, analogous to the dissipation term in Eq. (2.9).
Therefore this last term is sometimes called the thermal dissipation and dencted
by gy BY introducing, in the same way as in Eq. (2.10), the quantities

L, = ie_"lg (3.61%)
En T
8
g
8 ‘
G, ¢ = 2 (8.619)
3 ‘9-21‘%
max
and
___8v c
8,0 7 = 3 (3.61%
@ 7

Bradshaw converted Eq. (3.60) into an equation for the rate of change of &v
along a mean streamline, which for the calculation of heat transfer must be
solved together with the boundary layer equations, Eqgs. (2.11), (2.1) and (2. 2).
However, Bradshaw did not present any heat tiransfer calculations since
there are, up to now, no experimental data available which allow the determina~
tion of the functions Lg, Gy g and ay g. This would be an interesting object for
future experimental reeearéﬁ. !

In concluding this discussion on heat transfer theories we wish to
mention the calculation methods proposed quite recently by Patankar [8] and
Patankar and Spalding [7]. Both methods use two integral forms of the energy
equation, which can be obtained by integration of Eq. (1.10) across the thermal
boundary layer, after multiplication by unity and T, respectively, as weighting
functions. With the assumption of a two-parameter temperature profile, these
integral equations can be transformed into two ordinary differential equations for
the two temperature profile parameters, If the velocity distribution is known and
an assumption is made conce Pr,, these ordinary differential equations can
be solved numerically. Patankar [ 8] used the Spalding velocity profile, Eq. (3.35),
and thus calculated the Spalding functions Sp(x', Pr,1) for Pr numbers of 0.71,
1.0, 7, 30, 100 and 1000. His calculations are in good agreement (within 2 per
cent) with those of Gardner and Kestin [ 140]. Patankar and Spalding [7] used an
integral method to calculate the velocity distribution prior to the solution of the
two integral enmergy equations (see also reference [78]). Comparison of their
calculations with measurements of heat transfer through turbulent boundary layers
in positive and negative pressure gradients [ 5,143,144, 145,146, 147] showed a
reasonable agreement,
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B. The Mean Temperature Profile

In the discussion of mean temperature profiles we must distinguish
between the profiles in a fully developed thermal boundary layer and those in a
thermal entrance region. For the former we may, following Reichardt [38] and
Deissler [39], assume that to a good approximation (qTy)/q,T) equals unity, so
we have from section A:

+

u

T = fpre at 3.7
0
with

- i+ (vt/\))
pr-l 4 Prt‘l(vtf'v)

Pr

e (3.8)

For a boundary layer at a zero or moderately small pressure gradient within
the inner region v =~ T, and ut = uwhyh, which results in .

+
Pr, = dy”/du . 3.9)
Prl + Pryl(dy™/du® - 1)

Hence, with any of the u*(y*) relations given in Chapter II, the function
Pre(Pr, Pry,u') can be calculated, which, substituted into Eq. (3.7), results in
a temperature profile T* = T*(y*, Pr, Pry). For the calculation of the tempera-
ture profile in the wall region (y* = 30) one of the Egs. (2.65) to (2.72) can be
used. With the simplest possible assumption, viz. that of a constant turbulent
Prandtl number, the temperature profile in the wall region corresponding with
the von Kirmfn velocity profile, Eq., (2.65), becomes

osytss . TV=pryt

+
5syt <30 T+=5Prt£n[1 +.§1.’33.(%-1):| + 5Pr . (3.62)
T,
t

For the temperature profiles corresponding with the velocity profiles of Egs. (2.66)
to (2.72) no analytical expressions can be given, since for these velocity profiles
Eq. (3.7) can only be solved numerically.

In the fully turbulent region (y* > 30) the molecular contributions to
the heat and momentum transport may be neglected in comparison with the turbu~
lent ones; hence Pr, = Pry and assuming a constant turbulent Prandfl number
we can derive from Egs. (8.7) and (3.12):

TV = Pryu’ + P, (3.63)

in which Ps is defined by Eq. (3.13) or (3.15). As in the fully turbulent region
the logarithmic law of the wall holds:

wi=25my" +5.5, 2.77

the temperature distribution can be expressed as

+

T = Pry(2.54n yr+55+ Py, (3.64)
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It must be emphasized that the logarithmic temperature distribution of Eq. (3.64)
does not hold for either very small or very large Prandtl numbers. This is
caused by the fact that for very large Pr the thermal boundary layer lies fully
within the wall region, while for very small Pr the condition a; >> a is not
fulfilled,

The characteristics of the function Pg(Pr,Pry) have already been
discussed in Section A, in which we recommended the Pg function, Eq. (3.21),
very recently put forward by Jayatilleke [118]. For the velocity profile given
by von Kfirm#n, Eq. (2.65), we find from Eq. (3.15)

P =54nf1t+5F2L) +5EC - 2.54n30- 5.5, (3.65)
8 Pr, Pr;
while Spalding's velocity profile, Eq. (2,70), yields
3/4
Pg = 13.4 (&) -1 . (3.66)
Pry

For air (Pr = 0.71) and assumiug Pr; = 1, these various proposed P, functions
lead to nearly the same results: Eq. (3,65): Pg= -2.89; Eq. (3,66): Pg= -3,01
and Eq. (3.21): Pg = -2.61, However, irrespective of the precise value of Pg,
Eq. (3.64) yields a simple way by which Pr; within the fully turbulent region
can be measured, viz. by the determination of the slope of the curve obtained
by plotting T versus fny™,

In the outer region of the thermal boundary layer the assumption
g = is no longer correct and usually a temperature defect law similar to
the velocity defect law is proposed:

T~T
T, - T = L FT(L) . (3.67)
8
T T
T
Equation (3.64) implies that in the overlap region of Egs. (3.67) and (3.64) the
temperature defect law must approach to

T-T
2 =-2.5Pr 4n L + Cp (3.68)

T, 8ep

in which Cg takes account of the difference between the actual value of T,/Ty
and the value according to Eq. (3.64), In general Cr will be a function of Pr
and Pry, For a detailed discussion of the temperature defect profile the reader
should refer to a publication by Rotta [148], who has also calculated the influ-
ence of various distributions of Pr; on the temperature profile in the outer region
of the thermal boundary layer.

If one wants to make a comparison between the formulae given above
and measured temperature profiles, one must bear in mind that only a very
Hmited number of experiments have been published in the literature., Most of
these bave been carried out on the fully developed temperature profile in a pipe
or a square duct with air as the flowing medium, while only a few have been
performed for the turbulent heat transfer from a flat plate at uniform temperature.
We have collected a number of measured temperature profiles in the fully turbu-
lent region, recently published by Reynolds et al. [129], Jobnk and Hanratty [18],
Kokorev and Ryaposov [ 149], Beckwith and Fahien [150], Gowen and Smith [151],
Taccoen [152]}:}1 Brundrett [153] and Che Pen Chen [154]. We have represented
all these profiles by an equation of the form:
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T+=ATzny++BT .

With the help of Eq. (3.64) we have calculated the values of Pry corresponding
to the measured values of Ap. With these Pry~values and the known values of
Pr we have also determined the values of By given by Egs. (3.64) and {(3.65),
(3.66) and (3.21), respectively. The results are presented in Table 3.1 together
with some formulae which represent the measured temperature profiles in the
outer region of the thermal boundary layer.

Table 3.1,

Experimental values of AT and the corresponding Pre-values;
measured and predicted values of By

Reference  Situation Measured Calculated Temperature profile in
studi outer region
Ne. ed B AL B, Py Br By Br s
(3.64) (3.85) (3.66) (3.21)
| 1/5.6

129 flat plate 0,71 2.07 3.85 0,83 3.3 3,6 3.7 1-8 = (y/6.)

+  F 2

18 pipe 0,705 2.2 3.8 0.88 3.3 3.0 32 T -T =-7.2 [{6T-y)f(3,r]

149 pipe 0.026 2,04 ~-7.25 0.8 ~-6,3 =57 =45 ; -

+ _+
150 pipe 6.0 2.55 28,0 1,02 38,4 42,7 38,7 T°+-T = -2 sszn(y/{a,r) - 0,4
151 pipe 0.7 218 3.0 0.8 3,1 3.0 3.3 T°+-TJ‘( = -2,18 ﬁ«n(y/(),r) - 0,4
151 pipe 5,7 2.58 345 1,03 37.0  41.5 36,9 To =T = -2, sszn(yléT) -0,4

+  +
151 pipe 143 2,52 76.3 101 847 9.5 79.8 T -T =-2 524n(y/8) - 0.7
152 pipe 0,005 2.46 -13.6 0.98 -82 ~7.,5 -6.0 -

153 square duct 0,71 1,96 3.8 0.78 3.6 3.6 3.7 -
154 pipe 7.5 211 47 0.8 46,3 5L5 455 -

In considering the results of Table 3.1, one must bear in mind that
experimental uncertainties as high as 10 per cent in the measured values of A
and By are quite normal. From this table we see that for air (Pr = 0.7) the
turbulent Prandtl number has a mean value of about (.85, while the higher Pr
values lead to 2 mean Pry of about 0.97. The calculated values of -Pry and By
for the cases where Pr is much smaller than unity must be regarded as rough
approximations, because for these cases Eq. (3.64) is, strictly speaking, no
longer valid. A comparison between the measured and calculated By values
shows that the agreement is quite satisfactory, the best agreement being obtained
with the use of Jayatilleke's expression for Pg.

For the temperature profiles close o the origin of a thermal boundary
developing in an existent and fully developed velocity boundary layer, Eq. (3.7)
is no longer wvalid, because neither is (gTy)/(awt) equal to unity nor can the
terms on the left-hand side of the energy equation (1.3) be neglected. In general
no explicit formulae can be given for these temperature profiles. They can be
calculated by solving Eq. (3.31) with either Eq. (3.313) or Eq. (3.343) as
boundary conditions. Such solutions have already been dealt with in Section A,
and temperature profiles calculated in this way have been published by Gardner
and Kestin [139]. An analytical solution of Eq. (3.31) has heen published only
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for very small x* values, for which the thermal boundary layer lies fully within
the viscous sublayer, viz. [138]

_ vi1/3,m)

su”, =1
(W', <) T(1/3)

3.42)

In the literature we have found only three studies where temperature
profiles were measured in a developing thermal boundary layer. Johnk and
Hanratty [18] have done so for turbulent flow of air in a pipe downstream of
the position at which a constant heat flux at the wall was applied. They measured
two sets of temperature profiles at Reynolds numbers, Up,D/v, of 24,900 and
35,000 (Uy, = average velocity over pipe cross-section, D = diameter of the
pipe). The profiles were determined at 15 distances from the origin of the
thermal boundary layer, ranging from 7.5 to 300 cm. Close to the wall there
was a region in which the temperature profile coincides with the fully developed
one, while the thickness of this region increases with increasing distance down-
stream of the origin of the thermal boundary layer. At a distance of about
20 D =~ 150 cm, the temperature profile was fully developed. The resulting
distributions of Pry will be discussed in Section C.

Reynolds et al. [129] have determined some temperature profiles
for the case of the turbulent heat transfer from a flat plate with a stepwise dis~
continuity in wall temperature at x = L. At U, = 12.3 m/s and 27.8 m/s they
measured two sets of profiles at three different distances from the discontinuity
in wall temperature, x/L = 1.20, 1.60 and 1.94, respectively. The temperature
difference Ty~T, was about 14 OC. By plotiing their temperature profiles as T+
versus 4n yt, we found that there was a close agreement with the fully developed
temperature profile given by Eq. (3.64) even for the lowest value of x. However,
in interpreting these results one must bear in mind that there is a large dis-
crepancy between their measured q,, value and the one which can be determined
from the slope of the temperature profile at the wall.

Johnson [155] has also determined a number of temperature profiles
for an experimental situation similar to that studied by Reynolds et al. [129].
At U, = 7.5 m/s he measured nine temperature profiles at distances ranging
from 1.3 to 150 cm from the origin of the thermal boundary layer. As these
distances increased the profiles showed a gradual adaptation to the fully deve-
loped profile, which was completed at a distance of about 50 cm. However, the
fully developed temperature and velocity profiles at a distance of 100 cm behind
the origin deviate widely from those generally accepted. Johnson found

U" =1.98 4nyt + 7.62

L

and

i

Tt = 1.49 Zny* + 4,96 .

In view of the very few experimental data available we have also
measured a number of temperature profiles for a developing thermal boundary
layer, using an experimental situation similar to those of Reynolds et al. and
Johnson. Our experimental results are presented in Chapter V.
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C, The Distribution of the Turbulent Prandtl Number

In the preceding sections we have seen that the furbulent Prandtl
number is an important parameter for the calculation of turbulent heat transfer
and for the prediction of temperature profiles in a thermal boundary layer,
Most of the theories presented assume either Pr¢ equal to unity or another
constant value, However, from the considerations in section A we must expect
that in gemeral Pri will be a function of y* and the molecular Prandtl number,
As the turbulent transfer mechanism is still incompletely understood no generally
valid theories concerning the distribution of the turbulent Prandtl number exist.
Reliable information regarding Pr¢ can therefore only be obtained from experi-
ments, We have made a compilation of the Pr¢ values published. In addition, we
deduced Pri values from a number of suitable investigations, Figure 1.1 shows
these Pry values plotted against the dimensionless coordinate y*, Most of them
were already presented in a paper by the author and de Vries [156], but Fig. 1.1
{ncorporates some additional results published recently. In the fo owlng we shall
give a short description of the way in which the data of Fig. 1.1 have been ob-

1, Isakoff and Drew [14]

These investigators measured the temperature and %alocity profiles
in a vertical cylindrical pipe (D = 38 mm) with merc as the fluid gPr = 0.024).
The Reynolds number (Up,D/v) varied from 3.7 . 104 to 3.7 - 109,

The heat flux at the wall, g, and the skin friction, ry, were
deduced from the velocity and temperature profiles close to the waH The distri-
butions of r{y) and qfy) were calculated from

-r(y)/"r =r/R

and

/g, = 2"”“ fUrdr

Here R is the radius cf the pipe, r the radial distance to its centre r = 1-y,
and @ the fluid mass flowing through the pipe per unit time, | Then ay and v
can be calculated with the aid of method (a) described in Chapter I, Section B.

2. Corcoran, Page, Schlinger and Sage [11]

These investigators measured temperature and velocity profiles ina
duct with a rectangular crogs-section (305 x 175 mm) at an average velocily
ranging from 4.5 to 27 m/s. The medium was alr. The distribution of +(y) was
derived from the measured pressure drop, while q{y) was measured at the wall
and assumed to be independent of y.

I.udwieg carried out measurements of zir flow in a cyllndrical pipe
@ = 30 mm) with heat-insnlam walls at Mac % numbers varying from 0,63 to
0.87 and Re between 3.23 » 10° and 3.74 » 10°. He showed that Pry could be
calculated from the distribution of the total tamperamre. For his calculations
of Pry Ludwieg used the results of Laufer [37] for the distribution of vge.

4. Brown, Amstead and Short [15]

The flow of mercury in a cylindrlcal pipe (D = 41 mm) was studied
at Reynolds values between 2.5 - 105 and 8 - 105, The velocity and temperature
profiles were measured, together with the pressure gradient in the direction of
flow. From these‘results we have calculated the distribution of Pri by means of
method (b) mentioned in Chapter 1, Section B.
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5. Sleicher [12]

Sleicher studied air flow in a cylindrical pipe D = 37.5 mm) witha
uniform wall temperature at Re values between 1.1 - 104 and 5. 104, The flow
velocity and temperature profiles were measured, together with gy.

6. Johnson [17,155]

Johnson studied the flow of air along a horizontal flat plate. This
plate had a stepwise discontinuity of surface temperature and measurements were
made at a distance of 118 cm from the discontinuity. At this distance the Reynolds
number (Upx/v) was 3.7+ 106, He measured not only T(y) and U(y) but also
ev and uv. Now agand vg can be found using method (a) of Chapter I, Section B.

Johnson observed intermittency in the turbulent temperature fluctua~
tions in a part of the boundary layer where the velocity is still fully turbulent,
This is an indication that the turbulent velocity and temperature fields need not
be similar, an assumption which is usually introduced to support the postulate
Pry = 1. .

7. Venezian and Sage {131

These authors applied a correction to the results of Corcoran et al,
[11] by taking the viscous energy dissipation into account., This implies that q{y)
cannot be considered constant in the y-direction.

8. Johnk and Hanratty {18] .

These investigators carried out measurements for fully developed
turbulent flow of air in a pipe (D = 7.7 cm) using small wall-heat fluxes.
Measurements were presented of fully developed temperature and velocity profiles
at Reynolds numbers between 18,000 and 71,000, The quantities qy and vy were
determined from the electrical heat input and from the measured pressure drop,
regpectively,

We have calculated Pry in a way similar to the procedure followed
for the measurements of Brown et al {15]. Eddy diffusivities of heat were also
presented for developing temperature profiles, described in Section B. At the
lower y* values the Pri values for fully developed and developing temperature
profiles agree reasonably well. For increasing y* values, however, those of the
developing profiles increase, whereas those of the develovped profiles decrease.
This is represented by the two separating bands in Fig. 1.1.

9, Besonski, Schroek and Buyco [19]

Meagurements of fully developed temperature profiles were made at
Reynolds numbers between 54,000 and 96,000 for mercury flowing in a pipe.
Von Kdrmidn's velocity profile, Eq. (2.65), was used to evaluate the velocity
distribution, while qy and 7, were measured direcily.

10. Gowen and Smith [20]

These investigators measured temperature profiles and heat transfer
coefficients for the turbulent flow of air and aqueous ethylene glycol (Pr = 14.3)
in a smooth tube D = 5.15 cm) at Reynolds numbers ranging from 10,000 to
50,000. They also carried out measurements of the velocity profile and 7ty.
Of the two curves shown in Fig. 1.1 the upper one is for Pr = 5,7 and 14.3,
while the lower one holds for Pr = 0.7,

Measurements of the turbulent Prandtl number for lquid metals have
also been conducted by Subbottin et al, [157] and Bubr et al. [158], Their results
show distributions of Pry similar to those presented in Fig. 1.1 for liquid metals,
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In the lower layers of the atmosphere various investigators have
measured Pry under different stability conditions. These values showed a clear
dependence on the Richardson number (see Priestly [159]). They ranged from
0.25 under highly unstable conditions to 1.9 for stable air layers. Near neutrality
the average value was about 1.3. The results of a wind-tunnel test simulating a
stratified shear flow have recently been presented by Chuang and Renda [160].
They found Pr¢ values between 0.7 and 2.7 for thermally stable flows and Pry
values between 0.2 and 1,2 for thermally unstable flows.

Quarmby and Amand [161,162] and Goldman and Marchello [163]
have recently published some experimental results for the turbulent Schmidt
number,

Theoretically some attempts have been made to modif,y the Reynolds
analogy to include the influence of the physical properties of the fluid. dJenkins
[164] and Azer and Chao [165] have used a modification of Prandtl's mixing
length to relate Pri to the molecular Prandil number and the eddy viscosity.
Recently, Tyldesley and Silver [166,167] have calculated the distribution of Prg
on the basis of a new model for turbulent flow. However, the numerical predictions
of the various flow models differ greatly and objections can be raised against
all of them, It is obvious that a generally valid theory for turbulent transport
phenomena is still lacking.

In interpreting the experimental data in Fig. 1.1 one must bear in
mind that

{a) it is very difficult to perform measurements of this kind accurately. Experi-
mental uncertainties in the quantities measured directly as high as 10-20 per
cent are quite normal;

(b) in most cases experimental curves had to be differentiated to arrive at vi and
at, leading to much greater relative errors in these quantities;

(c) in all investigations mentioned, except those of Johmson [155], no direct
determinations of 6v and uv were made.

From Fig. 1.1 it is clear that there is a need for 'more accurate
determinations of Pr{, which has been the main aim of the present investigation,
Our experimental values of Pry are presented in Chapter V.
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IV. EXPERIMENTAL EQUIPMENT AND MEASURING TECHNIQUES
A.  Experimental Equipment

The experiments were carried out in a "low-turbulence" closed-circuit
wind tunnel specially constructed for the present investigafions. A photograph is
shown in Fig. 4.1, while a sketch of the design is given in Fig. 4.2.

The wind tunnel was built up mainly from sheets of plywood, attached
to a framework of steel and wooden beams resting on the floor. The section which
accommodated the ventilators was made of steel The rectangular test section had
a length of 2.5 m and a constant cross-sectional area of 0.4 x 0.5 m2, causing a
small negative pressure gradient. The lower side of this test section was made of
plywood; the upper side consisted of a number of boards with & width of 5 cm,
joined together with a "tooth~groove" connection. By replacing one of these boards
by a narrower one (width 4 cm), we obtained a slot right across the test section
through which a probe holder could be inserted (see Fig. 4.3.). The back of the
test section was formed by an aluminium plate, through which all comections to
the heated plate and the static pressure taps were led. The front consisted of a
lucite plate mounted on a carriage, which could be removed, allowing an easy
access to the test section. This fransparent plate permitted observation of the
probes during the measurements.

Two rows of corner blades could be cooled by passing water through
them. This made it possible to keep the temperature of the air in the wind tunnel
constant within 0.2 °C during the test runs. In the test section a main stream
velocity between 0.5 and 16 m/s could be established with a turbulence level in
the order of 0.02 percent. This low turbulence level was achieved by a combina~
tion of four fine screens in the setting chamber and a contraction of suitable
design.

2. Traversing Mechanism

The traversing mechanism used to insert the measuring probes into
the turbulent boundary layer of the test plate is shown in Fig. 4.3. Its design
made it possible to traverse the probes in an accurate way in the y-direction at
every desired place. It consisted essentially of two carriages and a support to
which the probe holder was attached. The larger carriage, spanning the whole
width of the test section, could move on a pair of rails mounted on the top of the
U-sghaped supporting beams at the upper side of the test section. This made a
displacement in the x-direction possible. On this carriage another pair of rails was
mounted on which a smaller carriage could move in the z-direction. The smaller
carriage was provided with a tolerance-free support to which the probe holder was
attached. The carriage wheels were fitted with ball bearings and could be blocked
by a kind of brake.

The support could be moved in the y~direction by means of a micro~
meter device having a total range of movement of 5 em with a positioning accuracy
. of 0.002 mm, The support was kept pressed against the micrometer shaft by a
counterweight, movable on a pulley. The probe holder consisted of an invar tube,
locked in a brass bush which could be rotated about its own axis by means of axial
ball bearings. The lower end of the invar tube was provided with a brass bush in
which the probes could be fixed, the leads of the probes being passed through the
tube. Ivar was used to minimize the thermal dilatation of the tube, when placed
into the thermal boundary layer.

To permit rotation of the probes in the x-y plane, which was necessary
to calibrate the hot wires for the velocity fluctnations in the y-direction, small
plates of known thickness were placed under the wheels at one side of the larger
carriage.
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. The zero reading of any traverse, being the position of the u@er side
of the test plate, was obtained in either of the following ways:

(a) By measuring the electrical resistance between probe and flat plate. In tests
where the heated part of the plate consisted of aluminium a small stainless-
steel block with an accurately known thickness was placed between probe and
plate.

(b) By watching the distance between the probe and its reflection in the plate
through a telescope and traversing until both images fouched each other. The
estimated accuracy of this zero reading was 0.002 mm. Zero settings were
generally made with the tunnel in operation.

3. Test Plate

s 1 o e o

(a) Construction

The test plate used was a hydrodynamically smooth, flat plate con-
gisting of three parts: an unheated part with a length of 1 m, a part which could
be heated with a length of nearly 80 cm and another umheated part which was
50 cm long. The front end of the plate was an elliptical nose with a length of
5 cm, after which a '"trip-cylinder' with a diameter of 3 mm was mounted in
order to promote and localize the fransition from a laminar boundary layer into
a turbulent one. A detailed description of this transition promotion is given by
Preston [1681].

The width of the plate was 40 cm, hence equal fo the width of the
test section.- The plate was placed parallel fo the upper side of the test section
with its nose nearly 20 em away from the entrance. Ii rested on a number of
supporting rods, fitted to the boftom of the test section, by means of which the
height could be adjusted. A diagrammatic view is presented in Fig. 4.4.

The unheated parts were made of aluminium with a thickness of 1 cm,
with a thin brass covering to allow zero reading of the probes by means of the
resistance method. To measure the pressure gradient along the plate, the un~
heated parts were provided with a number of static pressure holes at several
stations along the plate, as indicated in Fig. 4.4. At each station there were
two static holes, 5 cm on either side of the centre line of the plate. These holes
were made in a set of brass plugs which were mounted flush with the upper sur-
face of the plate. The diameter of the holes was 0.5 mm and they were con-
structed on similar lines to those used by Ascough [169], who carried out measure~
ments on static pressure corrections due fo hole size. In our case these correc-
tions were negligible (at most about 0.01 N/m2).

The static pressures were measured with a Betz micromanometer,
manufactured by van Essen N.V., the Netherlands. The accuracy of this micro-
manometer was about 0.2 N/m2,

The heated part of the plate was designed in such a way that it was
possible to adjust a uniform temperature at its surface. Because the heat trans-
fer coefficient changes with distance along the plate, the heat supplied must also
change with distance to satisfy this demand. Accordingly, the heated plate con~
sisted of 15 individually heated units with a width of 5 cm, which were thermally
ingulated from each other. Each unit was composed of three, also individually
heated elements: a main element, 30 cm long, with on either side a smaller ele-
ment, 5 cm long, to compensate for the heat loss of the main element to the
sides. All elements were made of aluminium, which has the highest thermal
conductivity.
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Figure 4.1 Photograph of wind tunnel used Figure 4.3 The traversing mechanism
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Essentially, each element consisted of a rectangular, flat box in which
.a heating coil was placed between two sheets of asbestos. The heating coil was
made by winding nickel-chromium resistance wire on a mica sheet with grooves
at the sides. The box could be closed by screwing a cover against its bottom,
giving the element a total thickness of 1.4 ¢cm. The various parts of a heating unit
are clearly shown in Fig. 4.5.

Grooves were milled in all inner sides of the elements, in which
thermocouples were mounted, while the leads of the heating coils were also passed
through them. A number of thermocouples were placed in small holes, drilled
into these grooves, to measure the temperature at the inner sides of the elements.
Other thermocouples were placed in much deeper holes, situated 0.5 mm under
the element surface and extending to the centre line of the main element. These
thermocouples were used to measure the surface temperature of the main elements.

To ensure electrical insulation between thermocouples and elements,
all elements were anodized before the thermocouples and heating coils were
mounted. This {reatment provided a strong, thin layer of insulating alumina.
The thermocouples were stuck to their places with an Araldite epoxy resin
(supplied by Ciba, Basel, Switzerland). The same resin was used to stick the
small elements to the main element. The resin layer between the elements was
about 2 mm thick. Figure 4.6 gives a photograph of a heating unit before and
after assembly.

All thermocouples were made of commercially available insulated
copper and constantan wires with a diameter of 0.2 mm. The junctions were
formed by melting bare ends together in a hot argon jet. To be sure that the
thermocouples had the same sensitivity, they were all made from the same coil
of thermocouple wire. To check their sensitivity, five thermocouples with a length
of 10 m were made and calibrated in an accurately controlled thermostat. After
calibration, one of the long thermocouples was divided into 20 shorter ones which
were also calibrated. All calibrations gave the same results within the measuring
accuracy, which is sufficient evidence for assuming equal sensitivities for all
thermocouples. The sensitivity was found to be 43.1 (% 0.4) uV/°C.

All heating units were stuck together on a l-cm-thickSindanyo plate
acting as thermal insulation of the lower side of the heated plate. Again there
was a resin layer about 2 mm thick between each two units. To measure the
thermal leakage through the lower side, thermocouples were placed in grooves
on either side of the Sindanyo plate right below the centre of each heating unmit.
During the first measurements with the heated plate, it was noticed that this
thermal insulation of the lower side was insufficient. B was greatly improved by
placing another plate of insulating material under the Sindanyo plate, leaving a
4-mm-thick air gap between both plates.

Figure 4.7 shows the position of all thermocouples in the heated
plate. This configuration of thermocouples was chosen after some preliminary
tests with a heated plate consisting of three heating units of the construction
described above, but each containing a much larger number of thermocouples.

Each heating umit had 12 thermocouples except the two bordering on
the unheated parts of the test plate. These two umits had 21 thermocouples each,
to permit a calculation of the heat loss to the unheated parts. Together with the
30 thermocouples of the Sindanyo plate and the leads of the heating coils, this
gave 546 leads leaving the lower side of the heated plate.
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For convenient handling of this large number of leads, they were all
connected to a connector, 90 cm long and 5 cm wide, fastened to the back of the
heated plate. This connector was made of insulating material provided with
550 holes with alternately copper and constantan pins pressed into them. The pins
extended from both sides of the insulating material. All leads from the heated
plate were soft-soldered to the lower ends of these pins. The connector stuck out
of the test section through a slot milled into the back.

Every main element of a heating unit also had a static pressure hole
with the same dimensions as described earlier. The commecting tubes of these
static holes, clearly visible in Fig. 4.6, passed through the connector.

The heated plate was designed to attain temperatures of about 150 °C
above gas temperatures. In this investigation only pure forced convection was
studied and a temperature .difference of about 10 9C adopted. Figure 4.8 shows
the heated plate placed into the test section.

(b) Power Supply

The D.C. power input of the heated plate was delivered by seven
carefully stabilized Delta power supplies (50 V - 10 A). A diagram of the elec~
trical circuit for the power supply of the main elements 1, 2 and 3 is shown in
Fig. 4.9. The power supply to the other main elements followed the same pattern
except that these elements were placed parallel to the power supplies in groups
of four.

R T /Pe] | PRz _|
1R | /P | PRy |
POWER SUPPLY

FIG. 4.9 POWER SUPPLY OF THE MAIN ELEMENTS

Ry, Rg and Rg are the resistances of the heating coils of the main elements 1, 2
and 3, respectively. P;, P, and P; are potentiometers controlling the power
input of the elements belonging to them. PR;, PRy and PRg are precision
resistors.

The power input to each main element was obtained from measurements
of the voltage drop across the heating coil and the precision resistor placed in
series with it. The voltages were measured with a John Fluke D.C. voltmeter,
giving an accuracy of the measured power inputs of 0.1 percent.

An outline of the electrical circuit for the power supply of the smaller
elements is given in Fig. 4.10. Ryg and Rgj are the resistances of the heating
coils of the small elements 16 and 31, respectively. These two small elements
belong to the same main element. The position of the potentiometer P; now
determines in which proportion the power input, adjusted by the potentiometer P,,
is divided over Rjg and Rg;.



Figure 4.8 Heated plate, placed into test section

Figure 4.12 Back of test section, showing connecting leads to heated plate
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FIG. 410 POWER SUPPLY OF THE SMALL ELEMENTS

The remaining small elements are heated in the same manner as
explained above.

The whole power supply control system was built into a separate
chassis with the 45 controlling potentiometers conveniently grouped on the front
panel.

(c) Temperature Measurement

The method designed for measuring differences between thermocouples
is schematically shown in Fig. 4.11. All thermocouples leaving the heated plate
were lengthened by soldering copper and constantan wires to the upper ends of
the copper and constantan pins of the conmector. The 228 constantan wires were
wrapped round the pins of two multiple .connectors with 140 and 100 connections,
respectively. The copper block and the comnectors were installed into the same
cabinet, fastened to the test section wall. The same was done with the con-
stantan and copper wires of a reference thermocouple placed in the entrance
of the test section, indicating the temperature of the undisturbed flow.
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With the help of two cables with 140 and 100 normal copper wires these connec-
tors were linked with similar connectors on a "programming module',

The programming module had a large number of sockets on the front
panel, divided into two groups. Those of the first group were connected with the
contact points of the two connectors; in fact, therefore, these sockets corre-
sponded with the copper wires of the thermocouples. Those of the second group
were connected with the 2 x 102 contacts of a double-deck multiple switch with
102 positions, which could be rotated with a motor. By connecting the sockets of
both groups by means of short cables, any special thermocouple measuring
programme could be put on the multiple switch. The latter was connected to a
Philips millivolt recorder of which the ~0.5 mV to +0.5 mV range was used.

A microswitch was mounted on the multiple switch; when the latter
went from one position to the following this microswitch was closed for a short
time. It operated the pen-lifting mechanism of the recorder so that when it was
closed, the pen was lifted from the paper. In this way a successive row of short
lines was recorded, each line corresponding to one position of the switch.

An impression of the multitude of connecting leads of the heated plate
can be gained from Fig. 4.12. The cables leaving the lower side of the cabinet
built round the connector of the heated plate are those running to the power supply
cabinet. The large number of smaller cables at the upper side are the thermo-
couple wires leading to the multiple connectors and the copper block, installed in
the metal cabinet visible on the right-hand side of the photograph.

The procedure for setting a uniform surface temperature of the heated
plate is given in Appendix I.
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B. Measuring Techniques

Much attention was given to the accurate determination of the mean and
fluctuating quantities of the turbulent velocity and temperature boundary layer,
necessary for the calculation of the turbulent Prandtl number, The reliability and
acceuracy of the measuring results were checked by determining some of these
quantities in two or more independent ways. Below we shall give a review of the
most important measuring techniques used.

1. Measurement of the Skin Friction
The local turbulent skin friction was determined in two ways.

{a) Application of Preston Tubes

A simple method of determining turbulent skin friction on a smooth
surface, which utilizes a round pitot tube resting on the surface, was developed by
Preston [170] . The method depends upon the assumption of a universal law of the
wall for the velocity distribution in turbulent boundary layers. This leads to a
non-dimensional relation for the difference between the total pressure recorded by
the tube and the static pressure atthe wall, App, and the skin friction. The rela-
tion can be presented in the form:

v d ap d?
Wz = F(~—p—2—) . 4.1)
4ov 4ov

in which d is the outside diameter of the Preston tube. The function F has heen
determined by a number of investigators, using Preston tubes of different diameter
in various turbulent flows. A review of these measurements is given by Patel[171],
who also calibrated Preston tubes in turbulent pipe flow and indicated the limita-
tions of their use in boundary layers with a streamwise pressure gradient,

We have used Patel's calibration curve which for 1.5 < y* < 3.51s
represented by the empirical relation:

y* = 0.8287 - 0.1381 x* + 0,1437 x*> - 0,0060 =3 4.2)
In this relation
2 2
T d i Ap, d
x* = 1010,;( w 2) and y* = 1olog(—-92—). 4.3)
4pv 4pv

Equation (4.2) is accurate to within 1.5 percent of Tt

Figure 4.13 gives a photograph of the Preston tubes used. They had
outside diameters of 0.504, 1,019 and 2,005 mm and were constructed from
stainless~steel capillary tubing. By means of the traversing mechanism the tubes
were placed into the boundary layer at the centre line of the flat plate at the same
x-position as a static pressure hole, As the angle between the stem and the for-
ward facing part of the tube was slightly larger than 90°, the forward part could
be accurately placed parallel to the wall by gently pushing it against the flat plate,
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The Ty~values, calculated from preliminary measurements with tubes
of different diameter, agreed within the experimental accuracy, providing a check
for the validity of the calibration curve. As the Preston tube with the diameter of
2,005 mm gives the highest ~value at the same Ty~value, most of the measure-
ments were carried out with this Preston tube. ‘

The pressure difference was measured with a Betz micromanometer,

(b) Application of the von Kdrmdn Momentum Integral Equation

The momentum integral equation of von Kdrmdn can be written in the
form:
s T 5, + 6. ) | 4.4
w- U G t@% G - @.4)
By measuring the pressure gradient and the mean velocity profiles at different
values of x, which lead to known functions §1(x) and 65(x), the value of Ty(x) can
be calculated from Eqg. (4.4). Since we have to differentiate measured quantities
to calculate Ty, this method is not a very accurate one. However, the resulis
can be used as a check on the data obtained with the Preston tubes and on the
two~dimensionality of the boundary layer,

2. Measurement of the Mean Velocily and the Longitudinal Veloeity Fluctuations

Mean and fluctuating velocities were determined with a hot-wire anemo-
meter, which is today the most widely used instrument for local measurements
of flow parameters in turbulent flow. Essentially, it consists of a very thin,
electrically heated, metal wire, suspended in the flow and connected to an elec~
tronic device measuring the electrical input of the wire, which is a measure of
the heat transfer from the wire. The local flow velocity can be determined if the
relation between it and the heat transfer is known. ;

Since a sufficiently fine wire has a very small heat capacity, it will
also be able to respond to velocity fluctuations, so that is it suited for turbulence
measurements, The response is limited by the thermal inertia ofthe wire. However,
this inertia can be compensated for by electronical means, With modern advances
in electronic circuitry the hot~wire anemometer can even measure velocity fluctua~
tions with frequencies as high as 400 kHz. i

In the following we shall only consider those features of hot-wire
anemometry which are of direct importance for our measuremenis. A detailed
description of all problems and corrections in hot-wire anemometry can be found
in references [ 22, 172-182]. }

Our turbulence measurements were carried out with Disa 55D00 uni-
versal anemometers, using 55A06 correlators to measure root-mean-square values
of velocity fluctuations and correlations between them. The Dijsa anemometer
is based on the constant-temperature method. Its principle of operation is shown
in Fig. 4.14. The hot wire forms one arm of a Wheatstone bridge which is in
exact balance at a certain bridge voltage applied by the servo amplifier. A slight
change of probe resistance, e.g. due to a change in local velocity, will produce
a small unbalance which, after considerable amplification, is used to adjust the
bridge voltage in such a way that the bridge will be kept close to balance. The
bridge voltage is now a measure of the velocity. In this way the temperature varia-
tions of the hot wire are reduced to a minimum and in consequence the frequency
response of the system is greatly improved in comparison with the constant-
current method. For our measurements the time constant as determined with a
square~wave test of 10 kHz was about 2 us, hence sufficiently small for us to
neglect the inertia of the measuring system towards velocity fluctuations with a
frequency less than, say, 10,000 Hz,




Figure 4.13 Preston tubes used

Figure 4.17 Hot-wire probe configurations
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SERVO
AMPLIFIER

FIG 4.14 PRINCIPLE OF OPERATION OF CONSTANT-TEMPERATURE METHOD

For subsonic flow, without free convection effects, the heat transfer of
an infinitely long wire with air as flowing medium can be represented by

Nuy = f(Rey, T, /T,), | 4.5)

with T, = Ty + Ty). Much work has been done to ascertain the form of this
relation, An offen-used relation 1s King's law

0. |
Nuy = A’ + B' Rey 5 (4.6)

in which A' depends on (T, ~ T,) and B' can be taken as constant. A more accurate
relation is given by Collis and Williams [183], which for Reg < 44 (the range of
interest for most hot~wire applications) can be written as

T -0.17 :
(..E) Nug = C + D Re, ) *% ' @.7)
T

o
with € and D being constants.

However, the heat transfer of the rather short wires (length about
1 mm) used for velocity measurements is greatly affected by the beat loss towards
its ends, the interference of the prongs of the probe with the flow round the wire
and the collection of dirt on the wire. Besides, the relation between bridge voliage
and velocity can only be calculated with an accurate knowledge of the characteristics
of the wire material, such as resistivity and temperature coefficient of resistance,
For these reasons the wire sensitivity in volts per unit change of velocity can only
be determined accurately by frequent calibration, making the use of accurate rela-
tions for the heat transfer like Eq. (4.7) unnecessary. In fact these heat-transfer
formulae must only be regarded as a basis for the calibrations of individual probes.
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Within the velocity range of interest the calibration curves of our probes with the
wire normal to the flow all conformed to the relation:

Ry
FooE T AL V(T T ]+ BV (4.8)

in which Ay and are constants, From measurements with wires of diameters
between 3.0 and ﬁ 7 pm and temperature differences Ty~T, between 40 and
240 °C, we have found for v the value

v =1.7 X 0.1.10"3 °¢-1 |

which 18 in good agreement with the values of 1.64 and 1,68.107° °C"1, obtained
by Collis [184] and Davies [185].

The wires were normally operated with T,-T, about 200 OC. During
the measurements of velocity profiles T, was kept constant within 0.5 °C and for
the measurements in the temperature boundary layer the change of T, was maxi~
mally about 10 °C, so that the term Ag[1 + y(Ty~T,)] could be treated as a
constant, denoted by Agl.

Equation (4,8) gives for the relation between bridge voltage and velocity
(see also Fig, 4.14):

(B, +R)2 (R -R )
2 =1%(r,+R))” = T . Ay + ByVU) “.9)
B‘w
which for the constant-temperature operation reduces to
2=A+B\h_l‘. (4, 10)
The constants A and B must be determined by calibration of the wire.
Differentiation of Eq. (4.10) gives
2gdE - _B_ (4.11)

du 2%

which, when for u << U only the linear terms of the fluctuations are retained,
results in

e=8u, 4.12)

= 2=, (4.13)
aEVU
giving the relation between velocity and voltage fluctuations.

In practice the root-mean-square values are taken as a measure of the
magnitude of the velocity fluctuations. For the longitudinal turbulent intensity, u’,
this means:

=8u. 4¢.149)
(The prime ' denotes a rooi-mean-square value, so u' = V J)
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can be calculated from the calibration curve of the wire and the value of E, which
was measured by means of a John Fluke D.C. voltmeter (accuracy 0.02 percent).

Calibration consisted in placing the wire normal to the flow in the free
stream of the test section and measuring the bridge voltage E at different values
of the free stream velocity. These values were obtained by means of a pitot-static
tube mounted close by the hot wire. By plotting E2 against ,/U a straight line was
fitted to the measuring points, from which A and B could be determined. I turned

out that at velocities below 2 m/s frea-convegtmn effects were present,” causing
deviations from the linear relation between E% and ,/U. At these: low velocities
an accurate calibration was attained byusing an anemometer developed by TNO [186]
(velocity range 0.5 - 200 cm/s) as a standard. In this velocity range the sensitivity
8, was determined by drawing tangents to the calibration curve.

HOT~ WIRES

STEEL f

SEWING NEEDLES

CERAMIC
PROBE BOOY

..
{c) STRAIGHT PRONGS (b} L~ SHAPED PRONGS

FIGURE 4.15 HOT-WIRE PROBES

Two designs of single-wire probes are illustrated in Fig. 4.15. The
prongs of the probe consisted of steel sewing needles, which were fixed with
Araldite resin into a ceramic probe body. The wire was spot-welded between the
needle points, using a Disa 55A11 micromanipulator. Lengths of copper wire were
soldered to the eye ends for comnection of the probe to the Wheatstone bridge.
After preliminary measurements with platinum and pure tungsten wires we used
platinum~plated tungsten wires, available from Disa, with a diameter of about
5um and a resistance of about 30 per mm. The measured temperature coefficient
of resistance at 20 °C was 3.98 * 0.04-10~3 oc-1,

For the boundary-layer measurements we initially used probes with
straight prongs, depicted in Fig. 4.152. However, the mean velocity profiles
measured with these probes showed a considerable deviation from the law of the
wall, This was caused by the fact that the wire was in the same cross~section of
the test section as the probe body and the probe holder of the:traversing mecha-
nism, which produced a blockage effect on the boundary layer in this cross-section.
No such blockage effects were observed when we used the probes with L~-shaped
prongs shown in Fig. 4.15P, They were positioned in the boundary layer with the
prongs facing upstream, so that the wire was not in the same cross-section as
the probe body and the probe holder. The necessary corrections of the hot-wire
results will be discussed in the next chapter together with the measuring results,
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3. Measurement of Transverse Velocity Fluctuations and Reynolds Shear Stresses

Fluctustions in transverse velocity can be measured by making use of
the dependence of the heat transfer on the angle between the wire and the velocity
vector. Assume that the wire is placed in the x~y plane, making an angle ¢ with
the mean veloeity in the x~direction (see Fig. 4.16).

WIRE Y

P4dop
dp ¢ u

FIG 416 POSITION OF THE WIRE IN THE X-0-Y PLANE

For an infinitely long wire the heat transfer is only determined by the velocity
component perpendicular to the wire, which for constant-temperature operation
leads to

E2=A+BYUsing . (4.15)

Equation (4.15) is often used to calculate the sensitivity of a hot wire to trans-
verse velocity fluctuations. However, for the short wires used in hot-wire anemo-
metry there are deviations from Eq. (4.15) due to the tangential velocity com-
ponent, causing an increase in the heat transfer of the wire. This may be
expressed as

2

1

EZ = A+ B\/U (sinZp + k2cos?p? . (4.16)

The behaviour of k is still imperfectly understood. Hinze [ 22] reports
that k increases with decreasing velocity and ranges from 0.1 to 0.3. Webster
found k to be 0.20 X 0.01 with no systematic dependence of k on the length-to-
diameter ratio, 1/d, or the velocity. More recently, Champagne et al. {187 ] found
that k depends primarily on 1/d, k being approximately 0.20 for 1/d = 200 and
decreasing with increasing 1/4 till at 1/d = 600 k becomes effectively zero. However,
for hot-wire anemometry the factor (sinZy + kZcos?p) can always be determined by
calibration of the wire making angles of ¢ and 909, respectively, with the flow
direction, With a given ¢ value, this leads to a known k-value for the wire used.

In determining the sensitivity of the inclines wire to the velocity fluc-
tuation v, we take it that v causes a change dg in the angle between U and the
wire (see Fig. 4.16). Assuming that the velocity fluctuations are small compared
with U and neglecting the inertia of the anemometer, we may write:
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v=Udp 4.17)
and
ecp = Su, {Pu + Sv, cpv s (4.18)
with
= .__BZ‘L. . (4.19)
4EVU
g =_Po___(idPsimP (4. 20)
V.9 2
4E U‘2(sin2q;s +k cosztp)
and

1
B, = Bsin% + kZcos%p)? . ‘ @. 21)
With a given ¢ value the sensitivities S, o, and Sy ¢ can be established from cali-
brations described above. ’ ’

Since the voltage fluctuation depends on both u and v, it is impos~
sible to measure v with one inclined wn% The simplest way to do this, is to use
an X-probe with two identical wires, making angles of ¢ and P, respectively,
with the x-direction, This results in

angle 4 : e‘p = Su’q)u + sv’(Pv , i {4.22)
angle ~@ : "‘P= a, ¢ —Sv'q) (4.28)

which implies that the turbulent intensities u' and v* can be determined by measur-
ing the sum and the difference of the voltage fluctuations:

(e‘P + e_{P)' = 2 Su,cpw . (4. 24)

- ! = t
(eCP e ._cp) 2 Sv’ cpv

In this way the Reynolds shear stress can be measured by formmg the product of
the voltage fluctuations:

(4. 25)

=48 S u¥. (4.26)

(e, + eyl 0,9 v,

S
In practice, however, the measurements are not so simple as stated
above. The chances of exactly matching the two wires of an X-probe in the required
manner are very small, because it iz hardly possible to place two identical wires
at angles of ¢ and respectively, with the mean velocity, In this context it
should be noted that-geviations in wire angle of only 3° correspond to a change of
nearly 10% in the v' values calculated by means of Eq. (4.23). In fact, it would
be extremely difficult to attain a better accuracy than 39 in setting the angle.
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These uncertainiies imply that we must calibrate the wires individually
in their measuring position for their sensitivities to the u and v fluctuations. We
calibrated each wire placed at an angle ¢ as follows: first we measured the cali-
bration curve E(U), giving a linear relation between E2 and ./U, from which B‘g
could be deduced. 8, was then calculated by means of Eq. (4.19), For a wire a
a fixed angle ¢ and assuming k to be independent of U, which is verified by our
own measurements and those of Webster (188 ] and Champagne et al., the ratio
¢ = sv,cp/su,cp proved constant, irrespective of wire operating conditions, as can
be seen from Egs. (4.19) and (4.20). By rotating the wire in the x-y plane we
measured E(p) at five constant values of U, calculating Sv,q, according to

4.27)
" v U

In this way values of ¢ could be determined, which indeed resulted in a constant
value with deviations of about 5 percent from the average value.

The voltage fluctuations of the wires can now be written as

wire 1 : e = Su, % (u + clv) (4. 28)

wire 2 : e, = Su,cpz u + czv) (4. 29)
+ = o+ + + .

e +e, (Su,q,1 Su,cpz)u (cls 9, °2Su,:p2)v (4.30)

e -e,= (Su’(pl - S“:‘Pg)u + (°Isu,cpl - czsu’tpz)v . (4.31)

Measuring the root-mean~square values of the above voltage fluctuations, we get
four equations with three unknown quantities (u')z, {(v')* and uv¥. These equations
were solved with the aid of a computer program which determined the values of
u', v! and UV giving the best fit to the four equations.

At first we used X-probes shown in Fig. 4,172, Four L-shaped sewing
needles were stuck with Araldite epoxy resin into a ceramic probe body with an
outside diameter of 5 mm in such a way that the needle pointg formed the angular
points of a square with sides of 1 mm in a plane parallel with the probe axis.
Two wires were spot-welded diagonally between the needle points making angles
of abowt 45° and -450, respectively, with the probe axis.,

Just as with the single-wire probe with straight prongs, however, the
measuring point of the X-probe was in the same cross-section as the probe holder
and erroneous measurements had fo be expected. For this reason we designed
another X-probe, consisting of two separate single-wire probes, whose wires made
angles of about +45° and -45°, respectively, with the probe axis. Photographs of
these separate probes are presented in Fig, 4.17% d, The two probes were mounted
into a special device which allowed the wires to be positioned very close to each
other with the needle points facing upstream, The mounting device could be fixed
into the probe holder of the traversing mechanism.

Each wire of the X-probe was connected to a Disa 55D00 universal
apemometer. The voltage fluctuations e; and e, were transferred to the two input
channels of the Disa 55A06 correlator, with wﬁch e1', eg', (ej+ey) and (eq~ey)
could be measured.
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4. Measurement of the Heat Flux Density at the Wall
The local heat flux density at the wall was measured in three ways:

The heat flux density at the surface of a main element, qy, can be
obtained by dividing its electrical power input by the area of its surface. As we
want to determine the value of the convective heat transfer, the power input must
be corrected for the radiation heat transfer and the heat losses due to conduction
to the surrounding elements and in the downward direction, Taking ¢ = 0,1 for
the emissivity of the aluminium surface and Ty-T, = 10 0C, we calculated the
radiation heat loss to be about 0.1 W per main element, which was about two
percent of the power input. ;

The heat loss in the downward direction was evaluated from the
measured temperature differences across the Sindanyo flate, assuming a one-
dimensional heat flow through it. With \g = 0.66 W m~1 °C~1, 4 value given by
the supplier, this heat loss was about 20 percent of the power input. Assuming
an uncertainty of 10% in g, this heat loss gives rise to an inaccuracy of about
2 percent in gy. |

The maximum deviations in Ty were about 0.2 °C. With )y =
0.23 W m~1 9C~1 the maximum heat loss to the sides was about 0.1 W per main
element, leading to an uncertainty in gq, of about 2 percent. !

Thus the heat flux density at the wall could be determined with an
accuracy of about 4 percent, «

The above considerations are not valid for the two main elements
adjoining the unheated parts of the plate, where much larger conduction heat
losses took place. These losses could be calculated from the measured tempe-
rature distribution within the elements. However, since they amounted to nearly
half the power input, the calculated gy values for the two elements concerned
are less accurate.
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From measurements of the mean temperature profile in the viscous
sublayer (y* < 5), which is a linear function of y (see Eq. (3.62)), the value of
dT/dy at y = 0 can be determined. With this result g, was calculated, using
qw = -MdT/dy)y=0. The accuracy of this gy value is about the same as that
determined by method (a).

- e em wm

Integration of the energy equation between y = 0 and y = §p yields

& ;
pe b fU(T—TO)dy = guix) . (4.32)
o ,
Introduction of the convection thickness, aT*, defined as
bp
b = [ ver-Toay , | (4.33)
(]

leads to

*
d&T

a4, (% =-p(13—p = - (4.34)
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By measuring the mean temperature and velocity profiles for various values of x
along the heated plate, the function §p"(x) can be evaluated, after which qy(x) can
be calculated from Eq. (4.34) « .

Since an experimentally determined & (x)~curve has to be differentiated, this
method does not give as accurate results as procedures (a) and (b). However,
the data so obtained may serve as an independent check on the results of both
other methods,

5. Measurement of Mean Temperature and Temperature Fluctuations

For the temperature measurements a new kind of temperature-sensing
element was developed at the Heat-Transfer Laboratory of the Physics Department
of the Eindhoven Universily of Technology. K consists of a quartz wire, diameter
about 5 um, covered with a thin layer of platinum (thickness about 0.1 wm), The
very thin quartz wires were fabricated by a drawing technique, while the thin
layers were applied by sputtering in an argon gas discharge tube, giving a strong
adhesion between the platinum and the quartz wire. Generally wires with a length
of 1 mm were used, having a resistance of about 5000, For each wire the tempe-
rature coefficient of resistance was measured in an accurately controlled thermo-
stat. Values of about 2-10~3 0C~1 were found (accuracy 2%), i.e. nearly half the
value of bulk platinum.

The temperature~semsing elemenis were employed as resistance thermo-
meters. Applying a measuring current ‘of 0.4 mA, which was kept constant within
0.05%, we found the temperature sensitivity of the wire to be about 400 wV/°C,
i.e. about 10 times as high as that of conventional thermocouples. The elements
had a response time of less than 1 ms, which makes them very suifable for
measuring temperature fluctuations,
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FIG 4.18 ELECTRICAL CIRCUITRY FOR TEMPERATURE MEASUREMENTS

A sketeh of the electrical circuitry is shown in Fig. 4.18. The D.C.
output voliage of the Philbrick Model SP 656 high-gain, chopper-stabilized opera-
tional amplifier is given by

By---Lg

. 4,35
T = i (4. 35)
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The infut voltage delivered by a highly stabilized voliage source was set at
200.0 Z 0.1 mV with Ry = 5000. The ouiput voltage was measured with an accu~
racy of 6 wV by means of a John Fluke Model 885A D.C. differential voltmeter,
from which T-T, could be calculated within 0.03 °C according to

T-T, = (E~E_)/(Eo8,) - (4.36)

Temperature fluctuations cause resistance fluctuations whick result in
fluctuations ep of the output voltage. These voltage fluctuations were amplified by
a factor of 103 with a P.A.R. Model CR~4 low-noise, high~gain amplifier with
differential input, while the root-mean-square value was measured by means of
a Disa correlator, accuracy 2%. The intensity of the temperature fluctuations can
then be calculated from

e.i, = B,E 8" 4.37)

with an accuracy of about 2%,

The measurements of the mean temperature profiles and the tempe~
rature fluctuations were carried out with the same type of probe as the velocity
measurements (see Fig. 4. 15b). In this case the temperature-sensing elements
were fixed between the prongs with the aid of silver paint,

6. The Measurement of V6

The quantity V8, which is of great importance for the description of
turbulent heat transfer, is rather difficult to measure. Up to now ~ {o the author's
knowledge - Johnson [17] has been the only one to do so.

We adopted the following procedure: placing an X-probe and a tempe-~
rature~-sensing probe very close to each other (the separate wires being at distances
of about 0.3 mm from each other) at the same location in the temperature boundary
layer, we could measure the fluctuations v and 9 simultanecusly. The quantity V&
was then determined electronically, with the help of two Disa correlators, according
to a special measuring procedure, The X-probe was the one that consisted of two
separate single-wire probes described above; the construction of the temperature
probe is shown in Fig. 4,15b, Fig. 4.19 illustrates the configuration of the wires
in the boundary layer, viewed perpendicular to the x-y plane.

y

- lmm ?
HOT-WIRE 2

U ¢,
- X
$2
E
E HOT-WIRE 1
SPUTTERED WIRE

FIG 4.19 CONFIGURATION OF THE WIRES FOR THE MEASUREMENTS OF v @
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For the voliage fluctuations across the hot wires 1 and 2 we may write in a non-
isothermal turbulent flow:

wire 1 : e = S‘MPI v + clv) + srla , {4.38)

wire 2 ey = Su,cpz (u + czv) + SI.ZG , (4. 39)
and for that across the sputtered wire:

op = BoEg8 (4.40)

where, according to Eq. (4.8),

8p = - ERpby (4.41)
2(Ry~R)

We used the following measuring procedure: First we carefully calibrated the hot
wires in an ambient temperature T, outside the boundary layer. The temperature
difference between each wire and its surroundings was set at 250 °C (Ry/R,~2).
At this large value the contribution of the temperature fluctuations fo the fluctu-
ating voltage across the wire was small in comparison with the contributions of
the velocity fluctuations. Besides, the correction of By,0 for changes in the ambient
temperature of the wire, being at most 10 °C when traversing the temperature
boundary layer, can easily be calculated. In fact, since these temperature changes
are small compared with 250 °C, we may take E2 to be proportional to Rw“'RT

Next we calculated from the calibration curves the ratio §, q:,1/ Sq, 9o =

It turned out that k can be taken as a constant for the velocity range used. Hence,
from Egs. (4.38) and (4.39) we have

ey - key = (0y8, o - ke,8 )v+(8r sT)a : (4.42)

Observe that c < 0 because g, >90°, Since Sp<< Su'l and the wires were nearly
identical, so that SI‘ SI‘ ana k e~ 1, the la %the above equation may be

neglected, For these reasons the voltage combination e)~ke, is directly proportional
to the velocity fluctuation v:

e - ke = {¢,8 - ke, 8 v . (4.43)

1 w9 2 u»‘?g
The quantity v can now be determined by measuring

), - Eegey = BoEq(08, % - ke, u’cpz)ﬁ . (4.44)

A block diagram of the electrical set-up is presented in Fig. 4.20.
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FIG. 4. 20 BLOCK DIAGRAM OF THE SETUP FOR MEASURING v&

The voltage fluctuations ey and e, were connected to the two input
channels of a Disa correlator. This device makes it possible to measure the
values A!, B', (A+B)', (A-B)', (A/B)' and Rop from two input signals A and B,
while four output sockets give the amplified quantifies pA, ¢B, pA+gB and pA-gB,
with amplification factors p and g that are adjustable. With this correlator we
formed the voliage combination ej-key, which was fed together with the voliage
fluctuation e into a second Disa correlator. With the latter we measured the
quantities (ej~keg)!, ep' and Rg 1-key, e from which (ej-key).er could be caleu~
lated.

The John Fluke D,C. voltmeter was used to measure the D,C. voltages E;, Eg
and E1. The sensitivities in the measured point could then be calculated from the
calibration curves of the wires.

Measurements conducted in an isothermal turbulent boundary layer with the probe
configuration used did not give any voltage fluctuation across the sputtered wire.
These experiments clearly demonstrated that the measurement of the temperature
fluctuations was not affected by the presence of the hot wires.
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V. EXPERIMENTAL RESULTS. COMPARISON WITH THEORY

QOur experiments were mainly aimed at determining the distribution
of the turbulent Prandtl number within a developing thermal boundary layer. In
Chapter I, Section B, we have already mentioned that Pry can be determined in
two ways, viz. either from the mean quantities, method (b), or from direct
measurements of uv and V8, method {(a). We shall successively present our
measurements of the mean and fluctuating quantities of the velocity and tempe-~
rature field, followed by the distributions of Pry calculated according to both
methods.

Measurements were conducted at eight stations along the flat plate,
five of which were situated along the heated part. The stations were located at
distances of 68.9, 88.9, 108.9, 118.9, 128.9, 148.9, 173.9 and 209.8 cm from
the leading edge of the plate. They will be indicated as measuring stations 1-8,
respectively (see Fig. 4.4). The leading edge of the heated part was located at
a distance of 105. 56 cm downstream of the leading edge of the plate.

The measurements of the flow field were carried out with two constant
values of the free stream velocity at the entrance of the test section, viz, 6.13
and 10,10 m/s. Those of the temperature field were made under the same flow
conditions with.a constant value of Ty-T, being equal to 11.80 °C for the
lower and 10.80 ©C for the higher velocity.

A. The Mean Velocity Field
1. The Pressure Gradient

The measurements of the static pressure distribution along the flat
plate obtained by means of the static pressure holes and those derived from the
measurements of Uy(x) by means of a pitot~static tube outside the boundary layer
agreed very well. For x > 30 cm the pressure gradlent was constant, giving
dp/dx 4.10N/m3 for the lower and dp/dx = -11.9 N/m? for the higher velocity.

2. The Skin Friction

The skin friction was measured at the stations 1-3 and 5-8* by means
of Preston tubes as a function of the free stream velocity at the enirance of the
test section, Uy ¢ (measured by means of a pitot~static tube). The values of Ty
obtained with the various Preston tubes agreed within 3 percent. The e:qaeri-
mental data for Ty(x) at Up e = 6.13 and 10.10 m/s, respectively, are presented
in Fig, 5.1, which also shows the results obtained with the aid of the von Karman
momentum integral equation, Eg. (2.15), and the values calculated from the
Ludwieg and Tillmann relation, Eq. (2.19). The distributions of 83(x) and §(x),
necessary for obtaining Ty (x) from Egs. (2.14) and 2.19), were determined2
integration of the measured mean velocity profiles using Egs. (2.15) and (2. 16)
{see also the next section). For the calculation of d§ 2fdx a smooth curve was
drawn through the experimental values of §3 at the various measuring stations.
The experimental and calculated 1, values are given in Table 5.1, together with
the ry, values calculated from Eq. (2.99).

e o e

* Station 4 was introduced after the measwements of the flow field had been concluded, in order toobtain
an additional measwring station close downstream of x = L in the thermal boundary layer.
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Table 5.1,

Swrvey of Tw values (N/mz) at the various measuring stations

Station u = 6,13 m/s u = 10,10 m/s
- o,e oy e
No.
Preston  Eq, Egq, Eq. Preston  Eq, Eq. Eq.
Ctube  (2.14) (2.19) (2.99) tube (2.14) (2.19) (2.99)

T T T T T T
w w w w w w

1 0,126 0.123 0.127 0,124 0,311 0,297 0,306 0.298
6,123 0,118 0.124 0,118 0,302 0,290 0,301 0,29
0,117 0,118 0.121 0115 0,295 0,286 0,299 0,286
0.118 0.115 0,122 0,115 0,295 0.288 0.303 0,288
0,118 0115 0,128 0116 0.295 0,289 0,308 0,289
0,119 0,117 0.123 0,117 0,297 0,298 0.309 0,298
0,124 0,120 0,125 0,120 0,300 0,312 0,310 0,312

B N O W N

From this table and Fig. 5.1 we see that the deviations of the various
7y Values from a mean value are less than 3 per cent, a very satisfactory resuit
for measurements of this kind. Although the application of Eq. (2.14) is less
accurate owing to the differentiation of a measured distribution of 8,5(x), the
agreement with the other results is very close. This can be interpreted as an.
experimental verification of the two-dimensional character of our developing
turbulent boundary layer. Figure 5.1 also demonstrates that for both values of
Uo, e Twi(x) is nearly constant along the heated part of the flat plate.

3. The Mean Velocity Profile

The mean velocity profiles U(y) were measured by means of a hot-
wire anemometer at stations' 1-3 and 5-8 for the two different values of Ug, &
which were kept constant within one percent. The experimental values of u™(y™)
at the stations 5, 6 and 7, which may be regarded as representative of all
other stations, are presenied in Fig. 5.2. For the calculation of ut(y") from
the measured distribution U(y) the friction velocity u,. was determined from the
Ty values obtained by means of the Preston tubes. In the case of very low
values of y* the hot-wire readings were corrected for the effect of the proximity
of the wall, using a correction method given by Wills [1897. These corrections
are negligibly small for y* > 10,

Together with some additional information a complete survey of the
measured distributions of ut(y") is presented in Table 1 of Appendix 11 along
with the calculated values of 610 85 and u_.

In Fig. 5.2 the experimental results are checked against some
frequently used formulae for the law of the wall, We see that for 25<y* < 300
the results agree very closely with the logarithmic law of the wall, u* =
= 2,54n y* + 5.5. In the viscous sublayer, y* < 5, the measured profiles
agree very well with the linear velocity distribution, u® = y*. In the transition
region, 5 < y* < 25, there is a marked difference between our results and the
u? values obtained from the velocity profile given by Spalding, Eq. (3.35).
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" But if we introduce an additional term‘ ~(0.4 u+)5/5’.‘ into the form between
brackets of Eq. (3.35), excellent agreement between this formula and the experi-
mental data is obtained. Hence, for 0 < y* < 25 we find

+ 2 +3 +4 + 'c";l
y+ =yt +0.1108 6(0'4 u’) 1-(0.4uh) - (0‘12‘,-1+) - (0;"%3? | . (oo‘ilvl - (O-i‘: )

(6.1)

A good agreement is also obtained if, in analogy with the formulae given by
von Karmén (Eq. (2.65)), we take for the velocity profile:

0<y' <5 u=y" (5.2%
5<yt <2 :u =5.782ny"t - 4.3 5. 2%
20 <y =300 :u" =254y + 55 . (5.2%

Comparison of Figs. 5.2 and 2.7 shows that our velocity profiles lie fully
within the region of experimental results published by other investigators.

In order to compare our measured velocity profiles in the outer
region with the formulae given in Chapter II, Section B, we must determine the
value of the boundary layer thickness, §. This is a rather nebulous guantity,
since in principle the boundary layer velocity attains the free stream velocity
at an infinite distance from the flat plate. Often the distance at which the
velocity is 99 per cent of U, is taken as the boundary layer thickness. This
definition has no physical meaning, however. Moreover, owing to the small
values of 3U/ay in the outer region of the boundary layer, the distance in
question is difficult to determine accurately from the experimental data,

To arrive at a more meaningful boundary layer thickness, we have
made use of the fact that the velocity profiles can, to a good approximation,
be represented by a power-law velocity profile, Eq. (2.90). For this velocity
profile the boundary layer thickness § is related to the displacement thickness,
8y which has real physical meaning, by

§=(1 + 1/n)8, . (2.91)

This displacement thickness 83 can be determined quite accurately by integra-
tion of the velocity profile, while n can be determined by plotting log (U/UO)
‘versus log y. Then, 8§ may be calculated from Eq. (2.91).

Our experiments yielded a value of n = 1/6.75, which implies
§ = 7.75 81 and a power-law velocity profile of the form:

1/6.75 \
U - (X) i (5.3)
U, \6

o
Figure 5.3 affords a comparison between Eg. (5.3) and the measured velocity
profiles. We see that there is a close agreement for 0.05 < y/8 < 1. Tt turned
out that the values of § calculated by means of Eq. (2.91) are quite close to
those of the "99-per cent" boundary layer thickness.

In Fig., 5.4 we have represented the measured velocity profiles at
the stations 5, 6 and 7 as velocity defect profiles by plotting (Uy-U)/u, versus
y/5. We see that for y/s > 0,03 a universal profile of this kind is obtained.
In Chapter II, Section B we have mentioned that in the fully turbulent part of |
the boundary layer the law of the wall and the velocity defect profile must over-
lap, resulting in
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U -U
°u = -2.54n(y/8) + K . L (2.94)
.

Combination of Eq. (2. 94) with the logarithmic law of the wall, u* = 2,5 gn y* + 5.5,
results in a skin friction law:

Uy/ur = 2.5 4n(su,/v) + 5.5 + K . (5.4)
Making use of § = 7.75 §; and Eq. (2.99), we find for K :
K

il

-2.54n(u,/Ug) - 2.54n7.75 + 3.7 - 5.5 =
-2, 52!1(11 /Uo) - 6.9 . ’ (5. b)

fl

Substitution of the values of u / U , obtained from the Preston tube measurements,
into Eq. (3.5) yields K = 00 (* 0.03) for the higher value of Uy o and
K = 0.90 ¢& 0.03) for the lower value of Ug, o- Hence, taking for K a mean
value of 0.95, we find

YU _ 5 5um(Y)+0.95, ! (5. 6)
u, B .

which, as can be seen from Fig. 5.4, is in close agreement with the measured
velocity profiles. Figure 5.4 also 111ustrates that the values of (Uy-U)/u, are
indeed slightly smaller at the lower than at the higher value of Uy ¢. The Close
agreement between Eq. (5.6) and our experimental data proves thai: the lafter
are consistent with theory.

Finally we have compared our measured velocity profiles with some
of the two-parameter velocity profiles presented in Chapter II, Section B. From
the measured velocity profiles at the stations 6 and 7 we calculated the values
of AUK/(2uID) as a function of y/§ for both values of Uy . Here AU is the dif-
ference between the measured velocity Uy, and the velocity Uyagll calculated from
the law of the wall, Eq. (5.2C), implying k = 0.4, II is Cole & profile parameter,
defined in Eq. (2.101), which is equal to 0.2 (Uj, Urw,m)y,s In Fig. 5.5 the

results are compared with Cole's law of the wake, w(y/8), for which we have
taken the expression given by Hinze [ 22], Eq. (2.103), and also with the calcu~
lated values of AUK/(2u.Il) from the velocity profile proposed by Sarnecki[117],

given by Egs. (2.112) and {(2.1138). The wide band round w(y/8) represents the
uncertainty in the value of AUk/2u.Il calculated from Cole's law of the wake,
assuming an experimental uncertainty of one per cent in the measured velocities.
From Fig. 5.5 we see that our experimental resulis agree with Cole's law of-
the wake within the experimental uncertainty and deviate widely from the profile
proposed by Sarnecki. Hence, when applying a two-parameter velocity profile
we recommend the use of the velocity profiles given by Egs. (2. 101), (2.103)
and Eq. {2.108).
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B, The Mean Temperature Field
1. The Heat Flux Density at the Wall

The experimental values of qy(x) for both values of Up, e are presented
in Fig. 5.6. They were obtained both from the electrical power supply to the
main elements (method (a)) and from the measured mean temperature gradients
in the viscous sublayer at the stations 3 to 7 (method (b)) (see Chapter IV,
Section B.4.). The former q, values were considered representative of the qy
value at the centre of a main element; those for the main elements 1 and 15
(see Fig. 4.7) have been disregarded because of the large heat losses to the
unheated parts.

As the results of both methods showed a very satisfactory agreement,
the less accurate method (c) described in Chapter IV, Section B.4. has not been
applied.

For comparison, Fig, 5.6 also shows the values of q(x) calculated
by means of the Spalding method, assuming Pry = 1, and of Eq. (v§ 27), adopting
for St the formula recommended by Reynolds ot al, [120]:

st Pl 4L (ry, + T/ (1o + T = 0.0206 RS2, (5.7)

where Ty = 273.15 K is the Kelvin temperature of freezing water.

For the application of the Spalding method, the quantity x™ was calculated from
Eq. (3. 30} by assuming u, fo be constant along the heated plate for both values
of Uy This assuroption is justified by our measurements of Ty {x) (see Fig, 5.1
and Table 5.1). We have used u; = 0.314 m/s for U, o,e = 6. 13 m/s and up = 0,492 m/s
for Ug e = 10.10 m/s. The corresponding values of Sp(x*, 0.71,1) were calculated
from the tables given by Gardner and Kestin [139] or for small xt values from
Eq. (8.44), whereupon 4y, was obtained by means of Eqs. (3.38) and (3.32).

The experimental and calculated values of gy, at the stations 3 to 7
are given in Table 5.2 together with the values of T,, calculated from the gy
values obtained from the measurements of the mean temperature in the viscous
sublayer.

Table 5,2, °

Swrvey of the values of g {W/m2) and T, {°C)
at the stations 3 to 7

Uo = 6.13 m/fs, Ty-Ty = 11.80 oC

Station <t From elecirical From measwed Egs. (3.27) Spalding T,
No. heat supply (3T/3y) =0 and (5.7) method
Y % W Y

3 698 - 449 370 436  1.180
4 2,79« 103 330 343 317 343 . 0,981
5 4,87+ 10° 309 317 296 317 © 0,830
6 9,05+ 103 288 293 277 203 0,765
7 1.43- 10% 273 275 264 280  0.726

Uy, e = 10.10 m/s, Ty-To = 10,80 °C

3 1,102+ 103 - 575 501 575 0. 955
4 4,40+ 103 433 460 430 465 0,761
5 7.70 - 103 417 412 404 430 0,681
6 1.43 - 103 383 380 375 401 0,627
7 2.25» 104 362 354 357 375 0,388



Qy (W/m?) 0 FROM ELECTRICAL HEAT SUPPLY
8 FROM MEASURED (3T/2y }y.0

600 - -~~-SPALDING METHOD
A ——FQS. (3.27)AND(5.7)
\
500 [
Uo’e«"io.io m/s

400 F
300 |

2

0 | | | | ! | | |

0 0 20 30 40 50 60 70 30

x- L {cm)

FIGURE 5.6 EXPERIMENTAL AND CALCULATED RESULTS FOR q,,(x)



- 83 =

From this table and Fig. 5.6 we see that at the stations 4 to 7 the
experimental results of both methods agree within 3 per cent of the mean value,
which is a very satisfactory result. For decreasing values of x-L they show an
increasing disagreement. We assume that in this region the values obtained
from the measurements of (9T/dy),—q are the correct ones. %ﬁis assumption is
justified by the fact that the correbponding T, values also give rise to a correct
behaviour of the measured Tty dastmbumons at station 3 (see also the next
section), The smaller qy values obtained from the measured elecirical power
supply probably result from the heat loss to the unheated part of the plate at
x < L, for which no correction has been applied.

We further see that the Spalding method gives a very satisfactory
prediction of q,,(x), particularly for the smaller values of x~L, for which the
assumptions un‘gerlymg the method are best fulfilled. The formula of Reynolds
et al. leads to too low values of gy for small values of x-L.

2, The Mean Temperature Profile

Mean temperature profiles T(y) were measured with a temperature-
sensing element*(see Chapter IV, Section B.5.) at the stations 3 to 7 for the
two different values of Uy e. The experimental results for T*{y*) at Ug e =

= 6.13 m/s are presented in Fig. 5.7 and those obtained at Up,e = 10.10 'm/s
in Fig. 5.8. For the calculation of T*(y*) from the measured proﬁle T(y), we
have used the T, values given in Table 5. 2. A complete survey of the measured
distributions of T%(y*) can be found in Table 2 of Appendix II.

The temperature profiles in Figs. 5.7 and 5.8 clearly show a
developing character. For small values of y* all profiles are identical, but with
increasing y* the mutual differences increase. At higher values of x-L the
profiles become identical for a wider range of y* values. The maximum value of
T*, which is equal to (Ty~Tg) /T, becomes higher with increasing x-L, since
T, decreases with x~L (see Table 5.2). As the thickness of the thermal boundary
1ayer increases with x~L, the maximum value of T is reached for a lower value
of y* at a smaller x~L value. Moreover, the temperature profiles at the stations
4 to 7 show a linear relation between Tt and Zn y* for a range of y' values
within the fully turbulent part of the boundary layer.

In Fig. 5.7 we have compared the experimental results with some
temperature profiles calculated from our measured velocity profile, Eq. (5.2},
for Pry values of 1.0, 0.8 and 0.6, respectively. Assuming Pry to be constant,
substitution of Eq. (5 2) into Eq. (3.9) vyields upon mtegration of Eq. (3.7):

0syts5:T = pry* : (5.8%
5 < y+ < 20 :
+ 578 pr) + pryly* - 5.78)
T =5‘78£n[‘ t : ] + 5 Pr : (5.89)
5.78 Pr™1 - 0.78 Pry7!
20 <y < 300 :
T" = 2.5 Pry 4n(y"/20) + (T)gsgg - (5.8%

The last equation was derived with the assumption v >> v and g >> a. For the
various values of Pr; Eq. (5.8°) reduces to

i e s S S0 e e e

* These elements were developed by Nieuwvelt aud coworkers [190].
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2.5 4ny" +2.46 .
2.0 fn y' + 3.52 (5.9)
.50y +4.41 .

pr,=1 : T
t +
Prt=0.8:T

Pr, = 0.6 : *

]

From Fig. 5.7 it appears that Eq. (5.8%) affords correct results for
all profiles, For y* > 5 the assumption of Pry = 1 certainly does not lead to
correct results. For the profiles at the stations 4 to 7 good agreement is ob-
tained with Eq. (5.8b) if we take Pry = about 0.7. At these stations and for
y* > 30 the measured profiles given in Figs. 5.7 and 5.8 were approximated by
straight lines, yielding relations of the form

+ +
T  =Apfny +Bp . (3.69)

From the resulting Ar values Pry was determined with the aid of Eq. (5.8C).
The data obtained are presented in Table 5.3 for both values of Uy e.

Table 5.3,

Values of Pr, from Egs, {3.69) and (5.8°)

Station U =6.13m/s U = 10.10 m/s
0,e o,e
No.

T T t T T t

1,72 4.45 0,69 1,91 3,90 0.76
1,91 3,90 0,76 2.17 3.20 0.87
2.07 3.45 0,83 2,28 2.9 0,91
2.15 3,15 0,8 2.39 2.60 0.9

N o o oa

In Fig. 5.8 our experimental results are compared with the predic-
tions of the Spalding method, which are based on the results published by Gardner
and Kestin [139]. For y* < 20 the agreement between the calculated fully
developed temperature profile and the measured ones is almost perfect. The
fully developed temperature profile was determined from Egs, (3.7), (3.8) and
(3.35), assuming Pri = 1, which implies

a + +2 +3
%:Miek“ _1_ku+_il_<u?)___(l%L( , (5.10)

withk = 0.4and A = 0.1108. From our measured velocity profiles we can derive,
using Eq. (5.1),

) + +2 +3 +4
vt=kA;eku gt S ) _(ku)§ ,

2! 3! 4! 6.11)
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From Egs. (5.10) and (5.11) we find for Pr;

= eku+,.1 - ku+ - (ku+)2/2! - (ku+)3/3‘- - (ku+}4!4" . (5'12)
ekt L1 -kt - g2t - g/

Prt

For ¥ (or u*) — 0 this implies

Pr, -.lsiu‘*“ = 0.08 y* yt< 3, : (5.13)

while for large values of y* we have Pry = 1. The implications of Eq. (5.12)
will be discussed in more detail in Section D.

Figure 5.8 also depicts some calculated temperature profiles for
xt = 102, 103, 10% and 10%. It is seen that experimental and calculated profiles
show similar distributions. - ‘

For a description of the temperature profiles in the outer region of
the thermal boundary layer we have, in analogy with the velocity distribution,
tried to find a power-law representation:

1-8=(y/sp)" . - 3 (5.14)

For the determination of 87 we initially followed a procedure similar
to that adopted to obtain 8 (see Section A.3.). Accordingly, we introduced a
"thermal displacement" thickness :

o]

bp,1 = J@ dy , : (5.15)

which can easily be determined by integration of the measured temperature profile.
From (5.14) and (5.15) it follows that

GT = {1 +‘1/n)6T’1 s ) (5.16}

whence & can be calculated from a known value of n. The temperature profiles
at the different stations proved to give different values of n, for which to a good
approximation g mean value of n = 1/12 could be taken. This value of n, however,
led to values of & far beyond the region where temperature fluctuations were
observed. Therefore we have determined & by plotting straight lines through the
curves of §' versus £n y+ in the outer region of the thermal boundary layer (see
Fig. 5.12). The point of intersection of this line with the £n y* axis was taken
equal to ﬁn{éTu.,./v). The results for Uy, o = 10.10 m/s are presented in Fig. 5.9,
from which we see that Eq. (5.14) with'n = 1/12 gives a good épproximation of
the measured temperature profiles for y/s > 0.3. The same result was obtained
for the temperature profiles at Up ¢ = 6.13 m/s. The values obtained for ép 1
and 6 are recorded in Table 2 of Appendix II. ; ’

. We have finally compared our measured temperature profiles with the
universal temperature distribution proposed by Persen [143], Eq. (3.59). This
comparison is represented in graph form in Fig. 5.10, which clearly shows that
Persen's assumption is not correct.
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C. The Turbulent Quantities
1. The Longitudinal Turbulent Intensity

In addition to the measurements of U(y) we have also determined the
distributions of u'(y). Figure 5.11 represents the distributions of u'(y*)/u; at the
measuring stations 5, 6 and 7 for both values of Ug ¢. Those at the other stations
were of a similar pattern. As can be seen from Fig. 5.11, our experimental
results give a universal distribution of u'(y')/u, for y* < 100. This was to be
expected since in the wall region, as pointed out by Townsend [40,49], the
turbulent boundary layer has a universal siructure, also resuliing in a universal
relation u*(y"). A further point is that u'(y') reaches a maximum in the region
10 < y*< 20, which happens to be the region where the production of the turbu-
lent kinetic energy reaches a maximum, in conformity with the flow structure
emerging from the flow visualization studies by Kline et al. [86] and Corino and
Brodkey [ 95] (see also Chapter II, Section B.1,1.). For larger values of y* dif-
ferent distributions of u'(y*)/u, were found, due to the differences in boundary
layer thickness at the various measuring stations.

2. The Intensity of the Turbulent Temperature Fluctuations

In addition to the distributions of T*(y*) we have also measured the
distributions of 9'(y") at the same places in the thermal boundary layer, using the
same temperature-sensing elements. Figure 5.12 represents the experimental
values of 8'(y*) for all measuring stations along the heated plate at U, e =
= 10.10 m/s. Those obtained at U, o = 6.13 m/s showed a similar distribution.
From Fig. 5.12 we see that the distribution of 8'(y*) is amalogous to that of
u'(y"), giving a universal relation for small values of y*. This is not surprising,
since the temperature fluctuations owe their existence entirely to velocity fluctua-
tions, which also showed a universal distribution for small values of y* (see
Fig. 5.11). The distributions of 6'(y") pass through a maximum in the region
10 < y* < 20, which is also in accordance with the behaviour of u'(y*). Owing
to the differences in §p at the various stations different distributions of 6'(y™)
are obtained in the outer region of the thermal boundary layer. it can be seen
from Fig. 5.12 that in this region the 9'(y") distributions can be approximated
reasonably well by straight lines, a feature which was used for the determination
of 87 (see Section B.2.).

In conclusion we remark that, in analogy with the experimental results
of Johnson [155], we also observed intermittency of the temperature fluctuations
in the outer region of the thermal boundary layer. This means that there is a
sharp line of demarcation between heated and unheated parcels of air. However,
at these places the velocity field was still fully turbulent, which can be inter-
preted as an experimental proof that in the outer region of a developing thermal
boundary layer the distributions of uv and v6 differ.

3. The Spectra of Temperature and Velocity Fluctuations

In Fig. 5.13 we present some spectra of the velocily and temperature
fluctuations, measured at station 7 for U, o = 6.13 m/s and at different values
of y*. These spectra merely serve as a further illustration of the characteristics
of the fluctuating quantities. They were obtained by means of a frequency analyser
(Briiel and Kjaer, Type 2107) together with a band-pass filter set (Briiel and Kjaer,
Type 1612), equipped with 33 filters ranging from 25 to 40,000 Hz with a band
width of 1/3 octave. From our measurements we have calculated the distribution
functions Ey(n) and Ee(n% defined 2by the conditions that El%(n)dn and Eg(n)dn are
the contributions to ()% and (6')%, respectively, of the frequencies between n
and dn.
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It appears that the distributions of E () and Eg(n) are very similar.
The greater deviations between them at higher l%requencies are caused by the
larger time constant of the temperature measuring system (about 1 ms as com~
pared with about 2 ps for the hot-wire anemometer)., As the spectra were only
recorded to provide additional information concerning the fluctuating quantities,
no correction has been applied for the inertia of the measuring systems.

4. The Quantities 7% and 78

The distributions of the quantities uv and V8 have been measured at
stations 6 and 7 for both values of Ug e. A detailed description of the measuring .
techniques employed can be found in Chapter 1V, Sections B, 3. and B.6. However,
as the wires are in a plane perpendicular to the flat plate, owing to the X-probe
configuration, the velocity distribution along the wire is no longer uniform and
corrections must be applied for the effect of the wire length. Moreover the wires
do not measure the turbulent fluctuations at the same poini, since they are at a
certain distance (about 0.3 mm) from one another. Because of these two effects,
values of uv and v6 deduced from the measured voltage fluctuations by means of
the equations given in Chapter IV are too low, In general, the magnitude of the
effects is determined by the auto- and intercorrelation functions that hold for the
fluctuating quantities involved (see also Hinze [ 22]).

In order to get an impression of the behaviour of the correction
functions needed, we have also measured the distributions of u' and 8' at stations
6 and 7 with single-wire probes, having their axis in the y~direction. Comparison
of the results with those presented in Sections C.1, and C.2, showed that in
this way smaller values of u' and 6' were indeed obtained, However, we also
observed that a constant correction factor could be applied to match the results
of both methods: the experimental results for u' and 8' had to be multiplied by
1.121 0,02 to obtain agreement with those presented in Sections C.1, and C.2.

We have interpreted this result as a justification for applying a con-
stant correction factor to the experimental results of uv and v6. For the quantity
uv the correction factor was determined by matching the maximum value of -uv,
obtained experimentally, with the one calculated from the measured mean velocity
distributions. An analogous procedure was used to find the correction factor for v,

The correction factors for -uv and V@ were only determined at one
measuring station at the higher value of Uy ¢, and were taken as constants for
the particular probe configuration, in accordance with the results mentioned above
for the measurements of u' and ¢' with different wire orientations. After correc-
tion with these factors, in our case 1.41 and 1.54 respectively, the values of
-uv and v6 at measuring stations other than the one at which the correction
factors were determined, also fitted in with the distributions calculated from the
measured mean quantities.

The corrected experimental results of -~puv and pc, v6 at station 7
for both values of U, ¢ are presented in Fig. 5.14. Those obtdined at station 6
showed a similar distribution. The measured distributions of v' had the same
characteristics as those reported by other investigators, for instance those of
Klebanoff [36] and Lauferefsﬂ. We also remark that the distributions of u’, v'
and uv were measured both with the heated plate at a temperature T, and at a
temperature Ty,. Within the experimental accuracy, the measured distributions
of u', v' and UV turned out to be identical under both conditions. This can be
interpreted as an experimental proof that the temperature difference T, -T,
applied was small enough to have a velocity field unaffected by the presence of
the temperature field.
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D, The Distribution of Pry

From the experimental results given above we have calculated the
distributions of Pry, applying both methods mentioned in Chapter I, Section B.
To this end we caleulated the distributions of du?/dy* from the experimentally
verified Eq, (2.101). For the inner region of the thermal boundary layer the
distributions of 3T"/3y* were obtained from the analytical approximations of
T*+(y") presented in Section B, while for larger y* values they were determined
graphically. For the application of method (b) the distributions of r(y) and q(¥}
were computed by integration of Egs. (1.1) and (1.3), respectively, with sub-
sti}trtion of the experimentally determined distributions for U(x,y), T(x,y) and
dp/dx.

For the inner regions of the velocity and temperature boundary layers
T(g) and q(y} were determined from the universal distributions u™ = f(y¥) and
T+ = g(y*). With the application of the boundary conditions T = Ty, for y* = 0
and q = qy for y* = 0, respectively, we obtain

+
du
= T 12 gyt
T-TW+Y%+“¢2 dxj[f(y )14 ay (5.17)
and y+
d(gy/uy)
q=ay +v—g— f fewNdy” . (5.18)
o

For the outer regions of both layers the power-law representations of T(y) and
U(y} were used, cf. Egs. (5.3) and (5,14) respectively. Upon integration of
Egs. (1.1) and (1, 3), with the boundary conditions 7 = 0 for y = § and q = 0 for
y= 6111, we find

2
U m% A 2/m
0 1 y dp
T m AL (m+ 2 [y(g) - 5] * dx(y- . (4. 19)

with m = 6.756 and

du U
and .
pc, Snm /g \1/11 140 lem™t
q=—2F L 1- {3 . (5.20)
n+m \§/ by
with n =12 and
Uo dST n
S = e e+ AL e, . 202
bp ax 1T+l (5.20%)

In these equations the quantities Ay and 8 were determined from the measured
distributions of 8(x) and S(x).

Figure 5.15 gives the results of method (b) for U, o = 10,10 m/s.
We have only represented the Pry values for those y values for {v%ich the uncer-
tainty of Pry is less than 10 per cent, Consequently, Pry values for y/&T >
about 0.7 are not represented, since for these larger distances from the wall
the calculated values of 3T*/dy* are too inaccurate, Besides, for the calculation
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of heat transfer the distribution of Pri in the outer region of the thermal boundary
layer is of secondary importance, because the largest resistance to heat transfer
is concentrated in the inner region (except for very small values of Pr). From
Fig. 5.15 we see that the distributions of Pri, like those of TTF™h), are of a
developing character. For small values of y* there is a close agreement between
the Prg values at the various measuring staitions. In general, Pry increases with
inereasing y* for small y* values, is nearly constant for a certain range of inter-
mediate y*values, and decreases again in the outer region of the thermal boundary
layer. The ahove-mentioned constant values of Pri are in close agreement with
those of Pry presented in Table 5.3. The distributions of Pr¢ for Uy ¢ = 6.13m/s
showed the same characteristics.

Figure 5.16, finally, depicts the distributions of Pri caleulated from
the experimental results of GV and V@ at station 7 for both values of Uy o. In
order to get an impression of the reliability and accuracy of the results, we have
included the values of Prg, calculated by means of method (b). Considering that
the uncertainty in the determined Pr¢ values is about 10 per cent, the agreement
between the results of the two methods is satisfactory.

In Fig. 5.16 we have also represented the distribution of Pry according
to Eq. (5.12). For increasing values of y* this relation shows a good link with
the other Pri values given, One must bear in mind that Eq. (5.12) only presents
an experimental relation between the measured mean velocity and temperature
profiles which holds in particular for the interval 5 < y* < 20, For larger yt
values, it may be assumed to hold only when the temperature field is fully
developed, a sifuation which was not attained in the present investigation.

E. Concluding Remarks and Suggestions for Future Research

The experimental results presented above have clearly shown that Pry
is not a constant across the thermal boundary layer but a function of the distance
from the wall, For a developing thermal boundary layer it is also a function of
the distance from the origin of the thermal boundary layer. However, in the
developing thermal boundary layer we can distinguish a region adjacent to the
wall where the mean temperature profile is identical with that of the fully developed
thermal boundary layer (see Figs. 5.7 and 5.8). In this region the temperature
field can be considered to be fully adapted to the local heat transfer situation,
while outside this region - let us call it the adapted region - the thermal boundary
layer is greatly influenced by upstream heat transfer conditions, .

As in the inner region of the velocity boundary layer the turbulent
flow field has a universal structure (see, for instance, the distributions of u'@y™h
given in Fig. 5.11), and since the temperature fluciuations owe their existence
to the presence of the turbulent flow field, we must expect that in the adapted
region of the thermal boundary layer the turbulent temperature field also has a
universal structure, This is indeed confirmed by our measurements of the turbu-
lent temperature fluctuations (gsee Fig. 5.12). In consequence, a universal distri-
bution of at and hence of Pry can exist only in the adapted layer, which is again
confirmed by our experimental values of Pri (see Fig, 5.15), ;

Recapitulating, the turbulent Prandtl number can only be expected to
have a universal distribution in the inner region of a fully developed thermal
boundary layer and for a developing thermal boundary layer only.in those parts
of the inner region which are already fully adapted to the local heat transfer
situation. For the calculation of heat transfer the distribution of Pry in the inner
region is also of primary importance, since this region is the seat of the main
resistance for heat transfer (provided that Pr is not much smaller than unity).
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No universal distribution of at can be expected in the outer region of
the thermal boundary layer, where the temperature field is greatly dependent on
upstream heat transfer conditions. In this region, therefore, Prt¢ is not a
physically meaningful quantity and the experimental values represent only an
experimental relation between the heat and momentum tfransfer.

With regard to the universal Pri distribution in the inner region of
the thermal boundary layer, for which Eq. (5.12) can be taken as a first approxi-
mation, it can be explained why in general Pr{ < 1. If we take a closer look at
the equations describing the distributions of the turbulent quantities of the velocity
and temperature fields, Eqs. (2.9) and (3.60), we disfinguish a mechanism for
turbulent momentum transfer, which is lacking for turbulent heat transfer, namely
the action of pressure fluctuations, represented by the term p'v. By the action of
pressure fluctuations in a furbulent flow field, turbulent kinetic energy is trans-
ferred from the larger velocity fluctuation components to the smaller ones, thus
giving the flow a tendency to isotropy (see also Rotta [27]). Since in a turbulent
boundary layer u'is larger than the other fluctuating velocity components v' and
w', it follows that there is a loss of the x-component of momentum due to the
influence of the pressure fluctuations, Consequently, thinking in terms of mixing
lengths, we might expect the mixing length for heat transfer to be larger than that
for momentum transfer, which leads to Pry < 1. In this way the variation of Pry
across the boundary layer can be explained by a variation of the action of the
pressure fluctuations across the boundary layer. Future research on the distribu-
tion of the pressure fluctuations and their correlation with velocity fluctuations
will thus be very valuable for a better insight into the mechanism of momentum
transfer,

To verify the hypothesis of a universal distribution of Pr; in the inner
region of a thermal boundary layer, further research is needed with regard to the
turbulent structure of the thermal boundary layer under various flow conditions. In
this connexion measurements of Pri for the thermal boundary layer, both fully
developed and developing, in severely accelerating and decelerating velocity
boundary layers are of great value.

Finally, instead of introducing a turbulent conductivity relating a mean
quantity to a turbulent one (Eq. (1.8)), we might expect fo obtain more universally
valid relations by connecting a turbulent quantity to another turbulent one. This
has been proposed by Bradshaw [52] (see Egs. (3.612,b,¢)), From considerations
of this kind it follows that further experiments concerning correlation between
turbulent velocity and temperature fluctuations are needed, for instance the

determination of o2v,



SUMMARY AND CONCLUSIONS

The present thesis deals with the heat transfer in a turbulent boundary
layer. Experiments have been carried out in a wind tunnel with air flowing over
a partially heated, aerodynamically smooth, flat plate.

As convective heat transfer can only be described if the velocity field
is known, we have given in Chapter II a survey of the existing theories concerning
the velocity field together with the momentum transfer implied. Special aftention
is given {o new developments which have become possible by the application of
large computers for solving the equations of motion, Among the solution methods
discussed the so-called differential methods are to be preferred, in particular
that given by Bradshaw, which starts from a universal relation between the tur-
bulent momentum transfer and the other turbulent quantities.

Chapter III deals with the existing theories concerning the temperature
field and the heat transfer implied. Essentially, these theories are based on a
known solution of the velocity field, and the energy equation can be solved via
the introduction of an assumption concerning the value of Pry. Usually one assumes
Pri = 1 or Pry = constant. A review of published experimental values of Pr,
however, demonstrates that these assumptions for Pr; are incorrect. The various
experimental results, besides being few in number, show a large scatter. Hence,
there is a distinet need for an accurate determination of the distribution of Pry
within a thermal boundary layer. This has led to our experimental investigation,
in which we have tried to determine the distribution of Pry as accurately as
possible, We have made extensive measurements of all quantities that are neces-
sary for a full description of the velocity and the temperature field, In this way
it is possible to determine the distribution of Pr; from the experimental results
by means of two independent methods.

The experimental set-up and the measuring techniques are described
in Chapter IV, In order to get an impression of the reliability and accuracy of
the measurements, various quantities have been determined with different, mutually
independent methods. For the measurements of the flow field we employed the
well-known hot-wire techniques, paying special attention to the accurate determina~
tion of the various turbulent quantities. Mean and fluctuating temperatures were
measured with the aid of new temperature-sensing elements, developed in the
laboratory where the present investigation was performed. In our experiments the
applicability of these elements was investigated.

In a wind tunnel measurements were carried out on the velocity and
the temperature field for the flow of air along a flat plate, part of which was
heated to a uniform temperature, Ty, being higher than that of the free stream,
Tqo. The free stream velocity at the entrance of the test section was maintained
at constant values of 6.13 m/s and 10,10 m/s, respectively, with corresponding
temperature differences, Ty~T,, of 11.80 OC and 10.80 °C. In Appendix T and
Chapter V the experimental resulis are presented in tables and in graphical form,
and compared with existing theories.

The experimental values for the distribution of the skin friction agree
within three per cent for the different methods applied. The mean velocity profiles
of the velocity field are in good agreement with the existing theories, while the
distribution of the turbulent velocity fluctuations confirms the existence of a uni-
versal structure of the turbulent flow field for the inner region of the boundary
layer.

In the outer region of the velocity boundary layer, the experimental
results show a close agreement with the velocity profile put forward by Coles,
while large discrepancies occur with the two-parameter velocity profile given by
Sarnecki, Within the transition region, 5 < y* < 25, the measured velocity profiles
are excellently described by Spalding's velocity profile, provided a small correc~
tion is applied, as indicated in Eq. {5.1).
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Except for the measuring station close behind the origin of the thermal
boundary layer, the measured distributions of the heat flux at the wall, obtained
by means of different measuring technigues, agree mutually within three per cent.
The measured heat flux proves to accord well with Spalding's theory, in parti-
cular close behind the step-wise discontinuity in wall temperature,

The new temperature-sensing elements bave given a very satisfactory
performance and the measured differences between the mean temperatures, T-T,,
are accurate within 0,03 9C, Because of the very small dimensions of the ele~
ments it was also possible to carry out accurate measurements within the viscous
sublayer, without any corrections for the effects of conduction or radiation being
necessary,

The measured mean temperature profiles clearly show the development
of the thermal boundary layer with increasing distance from its origin, Adjacent to
the wall a so~called adapted layer can be distinguished, in which the distributions
of TH(y") and 8'(y") have a universal character. The temperature profile of this
adapted layer isin excellent agreement with the fully developed temperature profile
of Spalding with the assumption Pry = 1. From this distribution of the mean tempe-
rature profile and the corrected veloeity profile mentioned above, we have derived
the following approximate expression for the distribution of Pry in the transition
region:

&ut |1t - gahP/er - gt3/s - gta

Pr, =
t KU _ 1 - kut - kuhZ/2 - (kuhP/s!

(5.12)

I we assume this equation also to be valid within the viscous sublayer, we find
for y* < 4: Pry = 0.08 y*, Substitution of this relation into the heat transfer
theories of Spalding and Jayatilleke, instead of the assumption Pry = 1 used by
them, results for large values of Pr in the relation Nu @ Prl/3 instead of
Nu o Prl/4, which accords better with the experimental heat and mass transfer
results,

The distributions of Prg in the thermal boundary layer were determined
both from the measurements of the mean quantities and from those of uv and ¥0,
The results of both methods agree well within the experimental uncertainty (10%).
The experimental values of Pri clearly show that Pry is not a constant, but a
function of the distance from the wall. Also, for the developing thermal boundary
layer the distribution of Pry shows a developing character,

The implications of these results are extensively discussed in Chapter
V, Section E, Recapitulating, we can state that the distribution of Pry can only
be universal for the inner region of a fully developed thermal boundary layer, in
which region the turbulent flow field also has a universal structure. For a
developing thermal boundary layer, this is only the case in that part of the inner
region of the thermal boundary layer where the turbulent temperature field is fully
adapted to the local heat transfer situation. For this universal distribution one
can take, as a first approximation, the experimentally determined distribution or
the one given by Eq. (5.12). The fact that in general Pr; will be smaller than
unity can be ascribed to the transfer of momentum due to the turbulent pressure
fluctuations; a corresponding mechanism for the case of heat transfer is lacking,

From a physical point of view, Pr, is hardly a meaningful quantity in
the outer region of the thermal boundary layer, where the local heat and momentum
transfer are greatly influenced by upstream conditions. In this case Pry must only
be interpreted as an expression for the empirical relation between momentum and
heat transfer, However, for the calculation of heat transfer, the distribution of
Pry in the outer region is of minor importance, since the largest resistance for
the heat transfer is localized in the inner region {(provided Pr is not much smaller
than unity), ‘
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Finally, we must expect that the heat transfer theory of Spalding,
which has up to now presented the best approximation of reality, can be improved
if the distribution of Pri(y*") resulting from our measurements, is' incorporated
in the existing computer program. Moreover, the experimental results for the
flow and temperature field, which form a consistent whole, might be used as a
test case for future, new heat transfer theories.



SAMENVATTING EN CONCLUSIES

Dit proefschrift houdt zich bezig met het warmtetransport in een
turbulente grenslaag. In een windtunnel zijn metingen verricht bij stroming van
lucht over een gedeeltelijk verwarmde, aerodynamisch gladde, vlakke plaat.

Aangezien convectief warmtetransport alleen te beschrijven is, indien
men het stromingsveld kent, hebben we in Hoofdstuk I een overzicht gegeven van
de bestaande theorieén betreffende het stromingsveld en het daarmee samen-
hangende impulstransport. Hierbij is speciale aandacht geschonken aan nieuwe ont~
wikkelingen, welke mogelijk Ajn geworden door het toepasgsen van grote computers
voor het oplossen van de bewegingsvergelijkingen. Van de behandelde oplossings-
methoden verdienen de zogenaamde differentiéle methoden de voorkeur, in het
bijzonder die van Bradshaw, welke uitgaat van een universele relatie tussen het
turbulente impulstransport en de overige turbulente grootheden.

Hoofdstuk III behandelt de bestaande theorieén betreffende het tempe-
ratuurveld en het daarmee samenhangende warmietransport, In essentie berusten
deze theoriedn op een bekende oplossing voor het stromingsveld en kan men de
energievergelijking oplossen via de invoering van een veronderstelling betreffende
de waarde van Pri{. Meestal gaat men uit van Pr¢ = 1 of van Pry = konstant. Een
overzicht van de gepubliceerde experimentele waarden van Pry toont echter duide-
lijk dat deze veronderstellingen voor Pry niet juist zijn. De verschillende experi-
mentele resultaten zijn gering in aantal en vertonen bovendien een zeer grote
spreiding. Hieruit blijkt duidelijk hoezeer er behoefte besiaat aan een nauwkeuriger
meting van het verloop van Pryin een thermische grenslaag. Dit heeft geleid tot
ons experimenteel onderzoek, waarbij wij hebben getracht de verdeling van Pry
zo nauwkeurig mogelijk te bepalen. Hiertoe zijn uitgebreide metingen verricht van
alle grootheden die nodig ziju voor een volledige beschrijving van het stromings~
en temperatuurveld, Het is dan mogelijk de verdeling van Pri door middel van
twee verschillende methoden ult de experimentele gegevens te bepalen,

De proefopstelling en de experimentele methoden zijn beschreven in
Hoofdstuk IV. Teneinde een indruk te krijgen van de betrouwbaarheid en nauw-
keurigheid van de metingen, zijn diverse grootheden op verschillende, onderling
onafhankelijke manieren bepaald, Voor de meting van het snelheidsveld werd ge-
bruik gemaakt van de bekende hetedraad-techniek, waarbij speciale aandacht werd
geschonken aan een nauwkeurige bepaling van de verschillende turbulente groot-
heden. Voor het meten van gemiddelde temperaturen en temperatuurfluctuaties is
gebruik gemaakt van nieuwe meetelementen, die ontwikkeld zijn op het laborato-
rium waar dit onderzoek werd verricht. In onze experimenten is de toepashaar-
heid hiervan onderzocht.

In een windtunnel werden metingen verricht aan het stromings- en
temperatuurveld bij stroming van lucht over een vlakke plaat, waarvan een gedeelte
werd verhit op een uniforme temperatmr T die boven de omgevingstemperatuur
Ty lag. De metingen vonden plaats bij twee constante waarden van de hoofdstroom-—
snelheid aan de wvoorkant van de vlakke plaat, respectievelifk 6,13 m/s en
10,10 m/s, waarvoor de bijbehorende temperatuurverschillen Ty~To gelijk waren
aan 11,80 °C en 10,80 °C. In Appendix TI en Hoofdstuk V zijn de meetresultaten
in tabelvorm en grafisch weergegeven en met bestaande theorie®n vergeleken,

De meetresultaten voor het verloop van de schuifspanning aan de wand
stemmen voor de verschillende methoden binnen drie procent met elkaar overeen,
Voor het snelheidsveld zijn de gemiddelde snelheidsprofielen in goede overeen-
stemming met de bestaande theorieén, terwijl het verloop van de turbulente snel-
heidsfluctuaties het bestaan van een universele structuur van het turbulente snel-
heidsveld in het binnenste deel van de grenslaag bevestigt.

In het buitenstie deel van de sftromingsgrenslaag stemmen de metingen
zeer goed overeen met het door Coles voorgestelde snelheideprofiel, terwijl grote
verschillen optreden met het door Sarnecki gegeven twee-parameter-snelheids-
profiel. In het overgangsgebied, 5 < y+ < 25, laten de gemeten snelheidsverde-
lingen zich uitstekend met het snelheidsprofiel van Spalding beschrijven, mits we
een kleine correctieterm aanbrengen, zoals is aangegeven in vergelijking (5.1).
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Behalve voor de meetiplaais onmiddelli}k na de oorsprong van de
thermische grenslaag, stemmen de verdelingen van de warmtestroomdichtheid,
gemeten volgens de verschillende meetmethoden, binnen drie procent met elkaar
overeen. De gemeten warmteoverdrachi blijkt in goede overeenstemming te zijn
met de theorie van Spalding, in het bijzonder vlak na de sprong in oppervlakie-
temperatuur van de plaat,

De nieuwe temperatuurmeetelementen blijken zeer goed te voldoen en
de gemeten verschillen in de gemiddelde temperaturen, T-T,, zijn tot op 0,03 ©C
nauwkeurig, Door de geringe afmetingen van de elementen was het ook mogelijk
nauwkeurige metingen binnen de viskeuze sublaag te verrichten, zonder dat er
correcties voor geleidings- of stralingseffecten behoefden te worden aangebracht,

De gemeten gemiddelde temperatuurprofielen vertonen duidelijk de ont-
wikkeling van de temperatuurgrenslaag met foenemende afstand tot de plaats van
de temperatuursprong., Aansluitend aan de wand kan men echter een zogenaamde
aangepaste laag onderscheiden, waarin de verdelingen van T*@" en 8'(y") een
universeel verloop hebhen, Het temperatuurprofiel van deze aangepaste laag komt
uitgtekend overeen met het volledig ontwikkelde temperatuurprofiel berekend uit
het ongecorrigeerde snelheidsprofiel volgens Spalding als men aanneemt dat Pry = 1.
Uit dit verloop van het gemiddelde temperatuurprofiel en het bovengenoemde
gecorrigeerde snelheidsprofiel is de volgende benaderende uitdrukking voor het
verloop van Prg in de overgangslaag afgeleid:

+
S LS S o/ R I
+ 2
Ut ) /e - s

(5.12)

Veronderstellen we dat deze vergelijking ook in de viskeuze sublaag geldig is,
dan vinden we voor y* < 4: Pr¢ = 0.08 y*. Substitutie van deze relatie in de
warmteoverdrachtstheorieén van Spalding en Jayatilleke, in plaats van de door
hen gebruikte veronderstelling Pri = 1, lejdt voor grote waarden van Pr fot de
relatie Nu co Pr1/3 in plaats van Nu co Pr1/4, hetgeen beter met de experimentele
warmte- en materieoverdrachtsmetingen overeenstemt. :

—  __ Zowel uit de metingen van de gemiddelde grootheden als uit die van
uv en vO zijn de verdelingen van Pry in de thermische grenslaag bepaald. De
resultaten van beide methoden stemmen binnen de meetnauwkeurigheid (10%) goed
met elkaar overeen., Uit de experimentele waarden van Pri blijkt duidelijk dat
Pry niet een constante is, doch een functie van de afstand tot de wand, Voor het
zich ontwikkelende temperatuurveld vertoont het verloop van Pr¢ bovendien een ont~
wikkelend karakter,

De gevolgtrekkingen uit deze resultaten zijn uitvoerig besproken in
Hoofdstuk V, Sectie E, Resumerend kunnen we stellen dat het verloop van Pry
alleen universeel kan zijn voor het binnenste deel van een volledig ontwikkelde
thermische grenslaag, waar ook het turbulente snelheidsveld een universele
structuur heeft, Voor een zich ontwikkelende thermische grenslaag is dit alleen
het geval in dat deel nabij de wand van de thermische grenslaag waar het turbu-
lente temperatuurveld zich volledig heeft aangepast aan de plaatselijke warmte-
overdrachissituatie. Voor deze universele verdeling kan men in eerste benadering
de hier experimentieel gevonden verdeling asnnemen of die volgens vergelijking
{5.12), Het feit dat in het algemeen Pry kleiner iz dan 1 kan worden toegeschre-
ven aan de impulsoverdracht tengevolge van de turbulente drukfluctuaties, waar-
voor in het geval van warmieoverdracht geen overeenkomstig transportmechanisme
bestaat,

In het buitenste deel van de thermische grenslaag is Pry een fysisch
weinig zinvolle grootheid, daar hier de lokale warmte~ en impulsoverdracht niet
alleen door de plaatselifke maar ook door de stroomopwaartse situaties wordt
bepaald. In dit geval moet men Pry alleen opvatten als een uitdrukking van de
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empirische relatie tussen impuls~- en warmteoverdracht. Voor de berekening van
de warmteoverdracht is de verdeling van Pry in het buitenste deel van onder-
geschikte betekenis, daar de grootste weerstand voor de warmieoverdracht in
het binnenste deel is gelokaliseerd (mits Pr niet veel kleiner is dan één),

Tenslotte moeten we verwachten dat de warmteoverdrachistheorie van
Spalding, welke tot nu toe de beste benadering van de werkelijkheid geeft, wordt
verbeterd indien de door ons gevonden verdelingen van Pri(y') in het bestaande
computerprogramma worden opgenomen. Het hier gepresenteerde consistente
geheel van metingen aan het stromings- en temperatuurveld kan bovendien worden
gebruikt als een toets voor de geldigheid van toekomstige, nieuwe warmteover-
drachtstheorietn
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Procedure for Setting a Uniform Surface Temperature of the Heated Plate

The adjustment procedure required the following programme. on the
multiple switch:

positions 1-15 :temperature differences between a surface thermocouple of
the main elements and the reference thermocouple,
positions 16,17, 18 : short-circuited, to indicate the zero deflection of the recorder,

positions 19-48 :temperature differences between the fifteen main elements and
: the associated small elements,

positions 49-62 :temperature differences between the main elements, ’
positions 63, 64 :temperature differences in x-direction over the first element,

positions 65, 66 :temperature differences in x-direction over the fifteenth ele-
ment,

positions 67-81 :temperature differences over the Sindanyo plate to ealculate
the heat losses of the main elementis to the lower side,

positions 82-96  :temperature differences between the other surface thermo-
couples of the main elements and the reference thermocouple,

positions 97-101 :temperature differences between some thermobouples at the
inner side of the Sindanyo plate and the reference thermo-
couple,

position 102 : short-circuited.

: In fact, only the positions 1-48 were used for the adjustment of a uni-
form surface temperature. The other positions mainly served for the calculation
of corrections to the heat transfer and as an extra check on the adjustment.

First of all, the desired velocity was established in the test section and
the cooling of the corner blades was switched on. When all the potentiometers on
the front panel of the power supply cabinet had been placed in a midway position,
the Delta power supplies were switched on. With the help of the controlling
potentiometers the surface temperatures of the main elements belonging to the
same power supply were made equal, after which all surface temperatures were
equalized by regulating the output of the power supplies. The positions 1-15 now
gave an identical deflection on the recorder.

Finally the power supply of the small elements was adjustedtﬂl all the
positions 19-48 gave a zero deflection on the recorder. With this procedure it
proved possible to set a uniform surface temperature with deviations less than
0.2 OC within one hour.

To calculate the heat transfer of the main elements 2-15, only the heat
loss to the lower sides, determinable from the positions 67-81, must be subtracted
from the power input of the main elements. For the main elements 1 and 15 the
heat loss to the unheated parts of the plate must also be accounted for.
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of measured distributions of u+(y+)‘ and T"’{y"'}

Table 1
Distributions of u*(y"):

Station 1 Station 2
Up,e = 6:10 m/s | Up g =10.10 m/s || U ¢ = 6.13 m/s | Uy o = 10,10 m/s
U, =6.69m/s | U, =11.00m/s| U, =6.95m/s |U, =11.23m/s
8 =297 mm {8& = 2.63mm 5y =3.39 mm 6 = 8,00 mm
6 = 2,18 mm g = 1.89 mm by = 2.49 mm 8 =218 mm
u =323 cm/s u. =508 em/s U, =320 cm/s u. = 50.0 cem/s
y* ut y* at yt ot y* ut
597 20,7 938 21.65 || 876 21.7 1090 22.5
489 20.55 | 769 21.6 663 21.65 923 22,42
424 20.35 | 599 21.1 556 21.6 756 22.22
359 19.9 531 20.8 450 21.2 590 21.17
316 19.6 463 20,45 || 387 20.7 490 21.1
273 19,15 | 395 19,9 344 20,3 424 20.6
230 18.6 327 19,2 301 19.9 358 20,0
187 18.1 259 18.75 || 259 19.4 201 19.3
144 17.4 225 18.45 || 216 18.8 224 18.65
122 16.9 191 18.15 || 174 18.3 158 17.75
101 16.4 157 17.8 153 18.0 124 17.3
74.0 15.85 | 124 17.4 132 17.6 9.0 16.75]-
57, 15,15 89.9 16.7 110 17.2 74.3 16.2
46.6 14,7 72.8 16.3 89.0 16.8 57.6 15.5
35.8 14,1 55.7 15.6 67.8 16.2 41.0 14.8
25.0 13,1 38.8 14,7 46.5 | 15.356 31.0 14.4
18.86 12,05 | 28.6 13.9 35.8 14.75 24.3 13.2
14,2 10,7 21.8 12.9 25.2 13.8 21,0 12,8
i2.1 10.1 18,5 12,2 18.8 12.7 17.7 12,0
9.93 8.87 15.1 11.2 16.7 12.25 14.3 11.1
- 8.85 8.07 13.4 10,56 14.8 11,65 11,0 9.42
7.76 7.23 11.7 9.77 12.4 10.8 9.32 8,23
6.67 6.40 10.0 8.82 41 10,3 8,70 7.65 6,98
5.61 5.40 8.30 7.64 9.26 8.91 6.56 6.12
4.47 4,58 6.61 6.15 - 8.19 - 8.10 5.66 5.29
3.82 3.66 5.60 5.21 7.12 7.03 4.99 4.72
3.39 3,30 ] 4.91 4.68 6.06 5.94 4.33 4,09
2.96 2.84 4,23 4.12 5.42 5.29 3.66 3.52
2.52 2.54 3.90 3.81 5.00 4,77 3.00 2.94
2.09 2,22 3.56 3.43 4.57 4.47 2.66 2.66
: 3.22 .21 4.15 4.03
2.88 2.89 3.72 3.74
2.54 2.72 3.51 3.51
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Table 1 (continued)

Station 3 ‘ . Station 5 .
Uy, e = 6.08 m/s Up,e = 10,11 m/s Uo,e = 6,12 m/s Up, e = 10.08 m/s
U, =6.84m/s U, =11.40m/s || U, =7.02m/s U, =1L.55 m/s
6y = 3.78 mm 8; =3.32mm 63 =414 mm 84 = 3,62 mm
85 = 2.77 mm by = 2,42 mm 69 = 3,056 mm g = 2.64 mm
v, =31.2cm/s |u =49.6cm/s |u =3l.2em/s |u, =49.4 cm/s
y+ o y+ . -~ y+ u+ Y+ ot
968 21.9 1205 23.0 972 22.48 | 1544 23,37
760 21.88 | 1041 22.95 || 764 22,45 | 1205 23,33
657 21.85 877 22,9 659 22.4 | 1041 23.3
554 21.7 713 22,75 || 555 22,1 | 876 23,15
440 21.1 625 22.3 451 21.7 712 22.8
388 20.6 549 22,15 || 389 .2 613 22,3
346 20,2 483 21.45 || 347 20,9 547 21.8
305 19.9 418 21.0 305 20,5 482 21.4
264 19.4 352 20.5 264 20,0 416 20,8
222 18.8 286 19.48 || 222 19.3 350 20,2
181 18.3 221 18.9 180 18.8 284 19,58
139 17.7 188 18.5 139 18,0 218 18.8
119 17.25 155 17.9 118 17.5 184 18.3
91.1 16.75 123 17.35 97.1 17,0 152 17.8
7.0 16.25 89.9 16.6 76,2 16.4 119 17.15
56.2 15.6 57.1 15.6 55,4 15,8 86.0 16.4 |
35.5 14.6 50.5 15,85 34.6 14.8 53,2 15,35
31.4 14.2 43.9 15.0 24,2 13.8 36,8 14,6
27.2 13.8 37.4 14.6 20,2 13.1 30,2 14,05
23.1 13.4 30.8 14,2 15.8 12.3 23.6 13.3
18,95 12,7 24.3 13.5 13,7 11,5 20,3 12,7
14.8 11,85 21,0 12,9 1.7 10,65 17.1 12,0
12,7 10.75 19.3 12,65 10.6 9.90 15.4 11,45
11.7 10.2 17.7 12,3 9,58 9.21 13.8 10,85
10,7 9.80 16.1 11.65 8.54 8.29 12,1 10,14
9.62 8.85 14.4 11.33 7.50 7.65 10.5 9.25
8.60 8.02 12.8 10.75 6.46 6.60 8,88 8.16
7.55 7.21 i1.1 9,98 5.42 5.4 7.23 6.90
6.52 6.35 9.51 9.08 4,79 4,76 6.25 5,971
5.49 5,66 8.53 8.38 4.17 4.18 5.26 5,02
4.86 4.69 7.54 7.52 3.54. 3.54 4. 28 4,25
4,25 4,03 6.56 6.53 3.12 3.12 8.62 3.78
3.62 3.40 5.57 5,56 2,71 2.70 '
3.00 2.86 4,92 4.88 2.29 2.35 i
2.59 2.50 4.26 4.30 2.08 2.22 ,
2.18 2.31 3.61 3.54
e 2.20 3.28 3.28
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Table 1 {(continued)

Station 6 Station 7
Ug,e = 6.12m/s | Uy ¢ =10.10 m/s || Uy o = 6.16 m/s | Uy o = 10.15 m/s
U, =17.10m/s U, =11.70 m/s U, =17.19 m/s U, =12.00 m/s
6 =448mm |6 =391mm [o =48mm |8 =4.24mm
69 = 3,30 mm g = 2.85 mm 6 = 3.59 mm g =3.11 mm
u, =3L.4 em/s v, =49.5 cm/s8 u, =315 em/s u, = 49.7 cm/8
yt ut yt ut v ut vy ut
965 22.6 1525 23.82 || 1050 22.8 1670 24.15
755 22.85 1195 23.81 840 22.75 | 1340 24.1
651 22.3 1030 23.79 736 22.7 1173 24,05
548 21.95 965 23.13 633 22.3 1008 23.95
444 21,2 700 22.7 529 21.8 843 23.6
380 20,65 602 22,3 466 21,35 745 23.1
339 20.2 536 21.7 425 21,0 679 22,85
297 19.65 470 21.2 3844 20,75 613 22,6
256 19,1 404 20,6 343 20.3 547 22,0
214 18.55 338 20.1 302 19.9 481 - 21.5
173 17.9 278 19.3 260 19.4 415 21.0
131 17.2 207 18.5 218 18.9 349 20.4
110 16,85 174 18.0 177 18.4 283 19,7
89.2 16,3 141 17.5 135 17.6 217 19.1
68.3 15.7 108 16.9 94.0 16.7 151 18,05
47.5 14.85 75.4 16,2 73.1 16.15 118 17.4
37.1 14,25 59.0 15.6 52.5 15.4 84.9 16.65
28.7 13.63 42.5 14.8 42,1 14.8 68.4 16.25
20.4 12.5 32.6 14,2 31.7 14.3 51.8 15.56
16.25 11.7 28.0 13.55 25.5 13.8 41.9 15.1
14.15 10.9 22.7 13.1 21.3 13.3 35.3 14.7
12.1 10.1 1.4 12.37 17.2 12.4 28.7 14,25
10.0 9,01 16.1 11.865 15.1 11.9 25.4 13.8
8.96 8.31 14.5 11.0 13.1 11.2 22,1 13.35
7.91 7.61 12.8 10.45 12.0 10.4 20.5 13.1
6.87 6,81 11.2 9,54 10.95 9.83 18.8 12.78
5.83 5,82 9.55 8,59 9.95 8.95 17.15 12.35
4,79 4,75 7.90 7.31 8.90 8.41 15.5 11.8
4,17 4,10 6.91 6.43 7.88 7.73 13.85 11.25
3.75 3.71 6.25 5.88 6.95 6.80 12.2 10.5
3.33 3.30 5.59 5.35 5,80 5,84 10.55 9.53
2,92 2.92 4,93 4,70 4.76 4.82 8.90 8.50
2.7 2.76 4,61 4,42 3.73 3.711 7.92 7.58
2,50 2.62 4,28 4,23 3.11 3.16 7.25 7.14
3.95 3.98 2.69 2.77 6.27 6.15
2.28 2,23 5.61 5.58
2,07 2.17 4.95 4.90
4.29 4.28
* 3.96 3.99
3.67 3.67




Table 1 (continued)

Station 8
Up,e = 6.20 m/s | Uy o = 10.10 m/s
U, =17.35 m/s U, =12.05 m/s
81 = 5.37T mm 87 =4.71 mm
62 = 3,95 mm 5q = 3.44 mm
u. = 32.4 cm/s u, = 50.0 em/s
y+ o y+ ot
880 22.45 | 1361 24.10
778 22.25 ] 1195 24.05
666 22.0 1029 23.85
5569 21.8 863 23.8
451 20,6 679 22,5
387 20,0 596 21.8
344 19,6 530 21.4
301 19.3 463 20.9
258 18.95 397 20. 25
215 18.6 331 19.7
172 17.85 264 18.9
150 17.5 231 18.45
128 17.1 198 18.05
115 18.7 165 17.6
85.5 16,35 132 17.0
63.9 15.65 98.2 16.3
42.4 14.8 65.0 15.45
31.6 14.05 48.3 14.85
25.2 13.4 38.4 14.35
20.9 12,75 31.8 13.8
18.7 12.15 28,5 13.5
16.6 11.6 25,2 13.2
14.4 11.0 21.8 12.6
12,3 10,5 18.5 12.05
10.1 9,27 15.2 11.15
9.03 8.52 13.5 10.5
7.95 7.50 11.85 9.74
6.89 6.79 10.2 8.98
5.81 5.82 8.54 8.06
4,73 4.71 6.87 6.68
3.66 3.64 5,91 5,90
3.01 3.10 5,21 5.34
2.58 2.75 4,55 4.33
2.37 2.42 3.88 3.88
2.15 2.87 3.22 3.44
2.89 3.08
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Table 2

Distribution of T (). Lower velocity, U, o = 6.13 m/s

Station 3 Station 4 Station 5 Station 6 Station 7
&T,1=0.642mm 8T,1= 1.249mm 5’1‘,1: 1,691 mm 5'1‘,1: 2,286 mm 6T,1= 3,166 mm
5T =4,8 mm 5T =11.6 mm GT =16,9 mm S =26.0 mm 6T =35.4 mm

y+ + y+ ot y+ T+ y+ o y+ t
248 10,00 | 377 13.08 | 477 14.18 | B75 15.40 | 683 16.19
208 9.96 | 314 13,07 | 372 14.14 | 471 15,35 | 578 16,11
164 8,91 | 252 13,01 | 310 14,08 | 366 15,18 | 447 16.03
123 9.87 {210 12,95 | 268 13.93 | 324 15.09 | 370 15.75

81,8 9,78 | 168 12.82 | 226 13.78 | 282 14,95 | 328 15,59
60,9 9.62 | 126 12,56 | 184 13.61 | 240 14,70 | 286 15,23
40,1 9.30 | 108 12,33 | 143 13.37 | 199 14.27 | 244 14.96
33.9 9.12 | 84.4 12,01 | 101 12.81 | 157 13.86 | 203 14,52
29,7 ‘8,93 63,5 11,63 79.9 12,49 | 115 13.33 | 181 14.09
25. 1] 8,72 53.1 11.29 59,0 11,92 93.8 12,81 | 119 13.41
21.4 8.37 46,8 11.04 48,5 11.43 72,9 12,24 77.5 12,58

17.3 7.95 40.6 10,75 38,1 10,93 51.9 11.70 58.6 11.83

15.2 7.53 34,3 10.4 31.8 10,57 41.5 11,19 46.1 11.386

13.1 7.60 | 28.0 92,92 25.6 9.96 31.0 10.51 35.7 10. 86

12.0 6,20 23.9 9,47 19.3 9,11 24,7 9,81 29.4 10,24

11,0 6.37 | 19.7 8.94 15.1 8,09 20,5 9.30 23.2 9.51

9,94 6.00 17.6 8,56 13.1 7.46 16.3 8.47 18.9 8.39

8.90 5,53 | 15.5 8,11 11,0 6.49 12.2 7.17 12,7 7.43

7.86 5.00 | 13.4 7.51 9.92 6.16 10.1 6.39 10.7 6.60

6,82 4.56 11.7 6.78 8. 87 5,59 9.00 5.85 9,61 6.18

5,78 3.88 10,38 6.31 7.83 5.05 7.96 5.42 8.56 5,72

4.74 | 3.22 9,26 5,85 6,79 4.47 6,91 4.78 7.52 5.20

3.60 2.43 8.22 5,34 5,74 3.94 5.86 4,07 6,47 4,50

3.08 2,03 7.18 4. 87 4,70 3.26 4.82 3.36 5,85 4.21

2,48 1.68 6.11 4,22 4,28 2.80 4,40 3.13 5.22 3.70

2.00 1.35 5,10 3.49 3.86 2.56 3.98 2.73 4. 80 3.35

4,47 3.04 3.65 2,39 3.56 2,45 4.39 2.96
4.18 2,89
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Table 2

Distribution of T' ¢y"). Higher velocity, U, , = 10.10 m/s
k4

Station 7

Station 3 Station 4 Station 5 Station 6
bp,1=0-462mm |6y )= 1.05mm |87 ;= 1.467mm |6y ;= 2.22mm|6p 1= 2.99mm
6p =3.71 mm s =10.3 mm[s; =152 mm|6; =28.7 mm|6y =31.4 mm.
y-i- Tt y+ o y* o+ y-z— o+ ‘y-:- ot
256 11.29 | 432 14.17 | 520 15.81 | 774 16.80 | 940 18.33
223 11.29 | 333 14.09 | 454 15.76 | 609 16.66 | 776 18.22
190 11.30 | 267 13.99 | 388 15.65 | 510 16.53 | 611 17.89
157 11.28 | 234 13.87 | 322 15.52 | 443 16.34 | 513 17.60
124 11.23 | 201 13.73 | 289 15.39 |a77 16.06 | 447 17.34
90.7 | 11.12 | 168 13.56 | 255 15.24 |311 15.67 | 381 16.96
74.2 | 10.98 | 135 13.26 | 222 15.03 |245 15.11 | 315 16.42
57.7 | 10.74 | 102 12.87 | 189 14.77 |178 14,66 | 250 15.72
47.8 | 10.56 | 85.3 | 12.57 | 156 14.44 |145 14.24 | 184 14.95
37.9 | 10.27| 68.8 | 12.20 |123 18.95 |112 13.48 | 118 13.89
28,0 | 9.74| 58.8 | 11.83| 89.8 [13.17 | 7e.1 | 12.70| s5.2 |13.15
24,7 | 9.50| 48.9 | 11.47| 73.2 |12.73 | e2.6 | 12.22| 68.7 |12.66
21,4 | 9.10| 39.0 | 11.01| 56.7 |12.17 | 46.6 | 11.63| 52.3 [12.08
18.1 | 8.60| 32,4 | 10.55| 46.7 |11.76 | 36.1 | 10.83| 42.4 |11.52
14.9 | 7.88| 25.8 | 9.87| 36.8 |11.17 | 26.2 | 9.89| 32.6 |10.76
13.2 | 7.43] 19.2 | 8.97| 30.1 [10.63 | 19.5 | 8.90| 26.0 |10.12
11.5 | 6.83] 156.9 | 8.18| 23.5 | 9.98 | 16.2 | s.27| 22.7 | 9.72
9.80 | 6.22| 14.2 | 7.81| 20,2 | 9.38 | 14.6 | 7.84| 19.4 | 9.22
8.90| s5.81| 12,6 | 7.36| 16.9 | s.67 | 12.9 | 7.31| 16.1 | s.49
7.91| 5.3¢| 1009 | 6.72| 13.5 | 7.82 | 11.3 | e.67| 12.8 | 7.48
6.92 | 4.94| 9.26| 6.05| 10.3 | 6.59 | 9.60 | 6.00 | 11.2 | 6.89
5.93 | 4.15| 7.60| 5.23| 8.61 | 5.8 | 7.95 | 5.20| 9.5¢4 | 6.19
4,95 3.48 6.61 4,56 6.98 4,87 8.29 4,33 7.89 5.35
420 | 2.96| 5.62| 3.8 | 596 | 4.25 | 5.30 | 3.71 | 6.25 | 4.34
3.96 | 2.77| 4.63| 3s.22| 4.97 | 3.49 | 430 | 3.07| 5.26 | s.84
3.63 2,59 3,97 2.74 4,31 3.02 3.64 2.44 4,28 2.98
3.31 | 2.26| 3.64 | 2.57 | 3.31 | 2.20 | s.62 | 2.41
2.98 | 2.04| 3.81 | 2.16 | 2.98 | 2,04 | 3.20 | 2.17
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LIST OF SYMBOLS

= R/(pcp), thermal diffusivity
concentration of mass

dissipation coefficient, Eq. (2.44)
friction coefficient, Eq. (2,18)

specific heat at constant pressure
diameter of hot~wire

molecular diffusivity for mass transfer
anemometer D,C, voltage

anemometer A,.C. voltage

= 51/ 8, form parameter of mean velocity profile
electrical current through hot-wire
x~coordinate of discontinuity in surface temperature
mixing length

= qwxf (T,-T )\, Nusselt number

= qwd;’('l‘w-To)X, Nusselt number

static pressure

fluctuating static pressure

heat transfer resistance, Eq.' (3.13)

= y/a, Prandtl number

heat flux

mass flux

turbulent kinetic energy per volume
resistance of hot-wire at temperature To
resistance of temperature-senging ¢lement

- resistance of hot-wire at temperature Tw

on;’v, Reynolds number

U, 62/\), Reynolds number

Uoé/v, Reynolds number

Uodfv, Reynolds number

= v/D, Schmidt number

= quf{cw-co) D, Sherwood number
Spalding function, Eq. (3.38)

= Nu/(RePr), Stanton number
mean temperature

qw/ (pcpu‘r), friction temperature

it

i

(TW—T};’TT. dimensionless temperature difference
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mean velocity components in x-, y- and z-directions
free siream velocity at entrance of test section
fluctuating velocity components in x-, y~ and z-directions

= \]'r w/ , friction velocity

= U/u,r, dimensionless velocity
coordinate in direction of main siream
coordinate perpendicular to wall
coordinate along wall, perpendicular to x
dimensionless x~coordinate, Eq. (3.30)
= yu,/v, dimensionless y-coordinate
temperature coefficient of resistance
boundary layer thickness

displacement thickness, Eq. (2.15)
momentum thickness, Eq. (2.16)

kinetic energy thickness, Eq. (2.41)
thickness of thermal boundary layer
convection thickness, Eq. (4.33)
thermal “displacement thickness", Eq. (5.15)
dynamic viscosity

(T-T_)/(T_-T ), dimensionless temperature difference
fluctuating temperature

thermal conductivity

kinematic viscosity

density

shear stress

free stream value
value at the wall
effective value
turbulent value

\}( 32, root-mean-square value
time average value



ERRATA
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Eq. 2.31) : 62 instgad of 8
Eq. 2.49) : Vero instead of Veﬂo

p. 21, 4th line below Fig. 2.6: Gppy = Ymax/®

Yo

Eq. §.13) : P = f [(Pre—Prt)/Prt] dau?

(o]

pp. 15 and 16
p. 37, first word
Eq. (2.126)

Egs. (3.2) and {3.3)
p. 66, fowth line

p. 78, A.1, f{ifth line
Fig, 5.4

Fig. 5.13
Fig. 5.14

Eq. (5. 17), last term
Eq. (5.20)

Eq. (5.20%)

Rez instead of ’Rg
if instead of is

A square bracket between 0,04432 and exp(0.4 u') and
one at the end of the formula

: Cp instead of cp

.
:

-

App instead of Pp
dp/dx = -4.10 N/m3

For the stations 6 and 7 the figures 10 and 102 on the
y/d -axis must both be replaced by 1 :

: Unit belonging to the vertical axis is s

o

The lmear scale for o VO is missing. The value of
0.1 N/m on the -pu\r-axls corresponds with 100 W}m
for the pcpvl-axis

v/u,.r2 must be replaced by 7

The correct coefficient for the time between square
brackets ist '

pe Sm  fdr 1/m
m + n+ mn .3 6T(TW-T°)

n must be replaced by m
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STELLINGEN

1. Zolang verschillende meetmethoden voor het bepalen van de dikte van

de microlaag onder een groeiende dampbel in kernkoken zeer uifeenlopende resul-
taten geven, kan niet worden vastgesteld welk model het groeimechanisme correct
beschrijft,

HH, Jawurek, Int. J. Heat Mass Transfer, 12, 843 - 848 (1969),
M.G, Cooper en A.LP. Lioyd, Int. J. Heat Mass Transfer, 12, 895 - 913 (1969),

2. Het begrip "self-preserving flow" kan in het nederlands het best worden
vertaald met conformistische stroming.

A,A, Townsend, The Structure of Twbulent Shear Flow, Cambridge University Press,
New York (1956).

3. Bij turbulente stroming over een oppervlak waarvan de ruwheid abrupt
verandert, zal stroomafwaarts van deze ruwheidsverandering het snelheidsprofiel
van de turbulente grenslaag geleidelijk moefen veranderen in een aan de nieuwe
ruwheid aangepast profiel. De door Townsend voor het snelheidsprofiel afgeleide
formules voldoen niet aan de aan het oppervlak geldende randvoorwaarde. Hieraan
kan wel worden voldaan indien een gemodificeerde snelheidsschaal wordt ingevoerd,

A, A, Tovwmsend, J. Fluid Mech, 22, 773 ~ 797 en 799 - 822 (1965).
J. Blom en L, Wartena, J. of the Atmospheric Sciences, 26, 255 - 265 (1969).

4, Bij de bepaling van de ruwheldshoogte van een oppervlak uit het gemeten
sanelheidsprofiel wordt vaak onvoldoende rekening gehouden met stroomopwaarise
veranderingen in deze ruwheidshoogte, Als vuistregel kan men stellen dat de snel~
heidsverdeling voor een hoogte kleiner dan 0,1 L gelijk is aan het aan de lokale
ruwheid aangepaste snelheidsprofiel., Hierbij is L de afstand van de meetplaats
tot de dichtsibijzijnde stroomopwaartse verandering in ruwheid.

J. Blom en L, Wartena, J, of the Atmospheric Sciences, 26, 255 - 265 (1969),

5, De berekeningen van Joseph en Tao van de weerstand van een poreuse
bol die langzaam door een incompressibel fluidum beweegt, gaan uit van een in-
correcte bewegingsvergelijking voor de stroming in een poreus medium. Hun op-
lossing is bovendien in sirijd met de wet van behoud van impuls,

D.D. Joseph en L.N. Tao, Z. angew. Math. uwnd Mech., 44, 361 - 364 (1964).

8, In het algemeen kan men stellen dat het aanleggen van groenzbnes
slechts een zeer lokale invlioed heeft op de concentratie van de in de lucht aan~
wezige stoffen,

7. Het verdient aanbeveling dat men, voorafgaande aan de realisatie van
njeuwe woonwijken, een deskundig milieufysisch, bijvoorbeeld een hydrologisch
en aerodynamisch, onderzoek laat verrichten,

8. De verdeling van de turbulente viscositeit in een grenslaag dicht bij
de wand kan alleen uit de warmie- of stofoverdrachtsmetingen voor hoge waarden
van Pr of Sc worden afgeleid, indien men een veronderstelling invoert betreffende
het turbulente getal van Prandil. De tot nu toe gepubliceerde resultaten gzijn alle
afgeleid met de veronderstelling Pry = 1, hetgeen in het algemeen incorrecte
resultaten o, .evert,

Dit proefschrift,



9. Er bestaat geen universeel temperatuurprofiel zoals door Persen is
‘aangegeven, Dit wordt door de in dit proefschrift gegeven meetresultaten duide-
lijk aangetoond.

Dit proefschrift,

10, Het gebruik van een turbulent getal van Prandtl is fysisch gezien alleen
zinvol voor die gebieden, waarin het turbulente temperatuurveld een universeel
karakter heeft, Dit betekent ook dat in het bultenste deel van de thermische grens-
laag het turbulente getal van Prandtl niet meer is dan een empirische relatie
tussen het impuls- en warmteiransport en een waarde aanneemf die geheel afthangt
van de situatie stroomopwaarts.

Dit proefschrift,

1i. Evenals de sociale voorzieningen dat zijn, is de gezondheidszorg een
nationale zaak. Het invoeren van een nationale gezondheidsdienst zou iedereen
kunnen verzekeren van een volledige en zo goed mogelijke medische behandeling,
terwijl (];)ovendien vele misstanden in de medische wereld uit de weg zouden worden
geruimd,

12. Het uitzenden van interviews met vooraanstaande politici na afloop van
een verkiezing kan als nieuwsgaring volkomen achterwege blijven. Deze inter-
views kunnen hoogstens als onderdeel van een amusementsprogramma worden
gebruikt,

13. Het protocol van een promotie aan deze Technische Hogeschool schrijft
aan een vrouwelijke promovendus of paranimf 6f het dragen van een rok met wit
vest en witte das voor 6f schenkt in het geheel geen aandacht aan het bestaan van
vrouwelijke promovendi of paranimfen, Belde mogelijkheden vormen een bevestiging
van het bestaansrecht van de actie '"Dolle Mina",

Eindhoven, 12 mei 1970 ) J. Blom



