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CHAPTER1

Introduction

Computer systems are constantly handling sensitive infoomaAs most of such sys-
tems are networked and often connected to the Internetitiserdata is also regularly
transmitted between different devices. Smartphones aidtteomputers carry private
data of users in the form of contact lists, photos, messagg®thers. Social network
websites not only store such information, but also reguldte has access to it. Banking
systems are responsible for securing and regulating atcessy sensitive financial in-
formation of their customers. Wrong handling of sensitiieimation can cause it to be
disclosed to unauthorized parties, corrupted or lost. Thiscause major loss for both
companies and individuals.

The field ofcomputer securitgan be divided into 3 main aspectsainfidentiality in-
tegrity andavailability. Confidentiality is related to ensuring that data is only asit#e
by entities authorized to do so. Integrity is about preventhat data gets corrupted or
modified in unauthorized ways. Finally, availability is atbguaranteeing that computer
systems and services are available at all times. This thesshtes the first aspect, confi-
dentiality of sensitive data. Here, we aim at the problemnsiuging that programs do not
leak sensitive information to unauthorized entities.

Software is the fundamental decision-making componentadmaputer system. Ev-
ery action done in data, including modification, copy, deleand transmission is done
by programs. Thus, in order to regulate actions over datneeds to regulate how com-
puter software operates over such data. To make mattersqoonglicated, it is common
for a computer system to have a multitude of different prograwhich are in turn also
regularly updated. Thus, in order to enforce how sensitiwermation is handled by a
computer system, one needs to regulate what programs daehigtimformation.

Information can have different degrees of confidentialitya company, some infor-
mation might be of public domain, e.g. the company’s line mfducts and services, its
address, some general numbers about profits. However, doyaaghould not be able to
access another employee’s salary information, while a gemshould be able to access
this information related to all his/her subordinates. Samf@mation might be even more
sensitive: details of unannounced research projects atdahmany’s financial situation
should be accessible only by some key personnel. With thesetis a need for computer
systems to regulate “who” (i.e. programs working on behéligers) can access which
kind of information.

Current computer systems have mechanisms that regulaté vdsources a program
is allowed to access. For instance, a program may have almcassumber of files, but
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not to those under they st emfolder. In a typical multi-user system, a program running
on behalf of user Alice may not be allowed to access files ovinyaaser Bob. In mobile
devices such as smartphones each program is typically g@oted by a manifest of all
resources it can potentially access, such as the phonesraami-fi, text messages, etc.
The user can then deny a program’s installation if he/she dotagree with that manifest.
These mechanisms that regulate the resources programsaesms are collectively known
asaccess contromechanisms. In our company example an access control msghan
would, e.g. not allow a program executed by Alice to accede afned by Bob, unless
Bob marked that file as open for public access.

Access control is however not sufficient to guarantee thatmmation is not leaked
by a program: once access to a resource is granted, a prograniocanything with it.
For instance, consider a company policy in which accesslamysamformation of an em-
ployee is only granted to the employee him/herself and éistanager. Now, consider a
program running on behalf of one of the managers of a compasyer access control
rules, this program has access to the salary informatiohaifrhanager’s subordinates,
and also to open network connections, as the program alsssesinformation from the
Internet. In this case, the program can e.g., read the salfimmynation of some employ-
ees and transmit it, via the network connection, to a conmpuuiéside of the company.
This computer can then belong to entities which should n@tuikorize to access salary
information. Thus, although this program satisfies the rairgs of access control, it can
potentially disclose the salary information to unknowndamsafe) entities. Here, we
want to control not only which resources a program can actessvhat it does with it.
Thus, a more elaborate mechanism is necessary.

There are different ways for a program to leak sensitivermédion. The aforemen-
tioned example is of an explicit flow of information: the siine data (salary informa-
tion) is transmitted to a potentially unsafe entity (overaabitrary network connection).
Leaking data derived from sensitive data should also bedadoiit is still unsafe to dis-
close, e.g. the difference between the salaries of AliceBuolal as some knowledge of
both salaries can be inferred by this information. Findhgre are also implicit ways of
disclosing information. Consider a program that writes salai@ to a file, and that this
data is completely unrelated to any employee’s salary médion. However, this pro-
gram follows some logic in which it only needs to write to tHe ff Bob’s salary is above
a certain threshold. Even though this program does notttlireak Bob’s salary, it does
it implicitly. By observing whether the program wrote to thke for not, one can infer if
Bob’s salary is above the threshold. If the file is accessiblentities that should not be
able to access Bob’s salary, then we have a potential lealneitse information.

Guaranteeing that programs do not leak sensitive infoonasi a highly desired goal,
but restricting the disclosure of all derived data is oftearty strict. Real programs often
need to leak information on purpose, under controlled onstances. Let us go back
one last time to the company example: a company policy magriaée that individual
salaries are to be kept secret, but the average salary asmeany (or a given department)
is allowed to be publicly disclosed. A program that makeshscalculation would be
leaking sensitive information, as the average salary isravat®n of such secret data,
which is then disclosed to public channels. Such exceptoasery common, and most
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computer systems need some type of it. Thus, in order for famem to be deployed on
real-world systems, one also needs a way to specify andategerceptions to information
confidentiality.

This thesis treats the problem of ensuring that programsagtee information con-
fidentiality, with support to well-defined and controlledceptions, in order to make the
mechanism applicable to real-world programs. We also aisphittions which can be
potentially applied tany computer program, not only those designed specifically to be
safe. In the next section we name and define technically theegis discussed here. In
the following sections we detail the research problem &tkly this thesis, as well as our
contributions to solve it.

1.1 Information Flow and Declassification Analysis

The problem we have seen in the previous section can be fiaedah terms ofinfor-
mation flow and declassification analysis this section we technically define and detall
such concepts.

Programs dealing with sensitive data must prevent confelentormation from flow-
ing to unauthorized entitiesSM034. In order to enforce how programs use data, in-
formation flow control has became increasingly popular witlne scientific commu-
nity. Information flow control revolves around a classicatsrity property callechon-
interferencg GM82], which states that the publicly observable behaviour afogpam is
entirely independent of any secret input values it has vedei Several techniques have
been proposed to check whether programs satisfy this ggopethin both static analysis
and runtime enforcement.

We illustrate the property of non-interference with an egan Consider a program
with 2 inputs: one which is publicly observable, labeled, and therefore not confiden-
tial, and another which is secret, label@gh, and whose contents should be disclosed to
unauthorized entities. This program has one public outpbgledow. It could also have
secret figh) outputs, but these are unnecessary for the sake of thisp@ar@onsider
that P(l, h) returns the program'’s public output for when it is executéth ¥he input val-
ues! andh, for thelow andhigh inputs, respectively. We say that this program satisfies
non-interference if, for any two executions differing omtythe value of the high input,
the value of the low output does not change. In other wordsarig/, » and?’, we have
that P(I,h) = P(l,}). In this case, we say that the secret input does not intevfithe
the value of the public output, and thus this program doegadbrm any unauthorized
information flow. If the secret input is e.g., a personal echtist, and the public output
a network connection, we could state that this program doeslisclose data from the
former via the latter.

In general, non-interference is excessively restrictimany programs that meet their
security objectives fail to satisfy it. The problem is thedkprograms often need to, under
specific circumstances, support exceptions to standawchivaition flow control, allowing
secret data to flow to public outputs. Consider the followirgreples:

1. In a system where a given block of data is considered seraasmitting this data
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over a network connection might violate non-interferendewever, if a program
encrypts the data using an algorithm known to be safe, it tligldesired to allow
the network transmission to happen. Here, the secret blbdkta should acquire
a lower security level upon being subject to a specific dataaimn — in this case,
the encryption algorithm. Information flow control wouldpwever, consider the
encrypted block of data to be a variant of the original blcahg thus also being
labeled as secret.

2. Consider a password checking mechanism. In a typicalrrdton flow scenario
the password provided by the user should be labeled senceha allowed to flow
into insecure outputs. The monitor screen which the uses tasaterface with the
system is one of such insecure outputs — we do not want thevpe$so be shown
there. However, should the password verification fail, teerunust be informed
about it, via an error message. But this error message wil lbaldisplayed when
a function on the password (e.gerify(passwd)) returns a failure result. With
this, the showing of the error message reveals some infaman the password
(i.e. it is not the correct one). We call this anplicit information flow since the
error message does not actually reveal the password. Thassmkeat this program
does not satisfy non-interference. Note that the exceptimon-interference is not
only desired, buhecessaryin order for this program to work properly while still
being secure from the information flow point of view. The negéxception would
specify that, for a secrefusswd, the boolean value returned hyrify(passwd)
can be disclosed to a lower security level.

3. A more elaborate example is the one discussed in the piegiEction: a company
policy that requires individual employee salaries be keptet, but allows the av-
erage salary to be disclosed. Since non-interferencelgtslainy direct or indirect
flow of secret information to a public output channahy program that publishes
the average salary violates it. This example shows not drdyneed for such ex-
ceptions, but also for a way to specify them in detail.

Here we can see examples where there is a need to releasbatadepends on se-
cret information but that: does not actually reveal anygh(h), not anything important
(2), or only information that was specifically intended tork&eased (3). An exception
to non-interference that allows secret data to be releasadoublic channel is called a
declassification To be able to make the distinction between intended releadeunin-
tended leakage of secret information we need a specificatialtiowed exceptions — such
specifications are callegdeclassification policiegsee e.g., $S03).

1.2 Current Approaches

Most of the approaches to guarantee information flow can\adedti into two main cat-
egories: static analysis and runtime enforcement. Statityais consists of analyzing
the program’s code in order to predict its behaviour, whiletime enforcement revolves
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around checking, during runtime, every instruction exeduty the program, and taking
action should an unauthorized action takes place. Thesappmaches are complemen-
tary: some aspects of information flow can only be tackledtaicsanalysis (e.g. implicit
flows) while others only by runtime enforcement (e.g. reseswith labels only known
at runtime). These techniques also have their own limiagtand shortcomings, though.
We now explain them in more detail.

Static Analysis. There are some existing static analysis approaches tlkde the prob-
lem of information flow and declassification analysis. Tygased Mye99 PS03 VIS96]
and dataflow-basedAB04, ABB06, BBM94, Den7q approaches have been proposed
to statically analyze whether a given program enforces interference. In both ap-
proaches, each program variabldabeledwith a security level (e.ghigh for secret or
low for public, though any lattice of labels can be supported}ype-based approaches, a
special programming language is used to annotate progreabies with security types.
Typing rules are defined such that if the program type-choks all assignments be-
tween variables satisfy the security types), then it is mw@erent. In dataflow-based
approaches, an analysis calculates dependence relagisittween program variables;
non-interference is ensured if low variables are indepetiilem high variables.

In type-based approaches exceptions to the standard flomsaedly associated with
specific points in the code. The programmer can specify tiotagsification policy by
using a speciatleclassifycommand, which releases the information conditionally, de
pending on the value of a given expression over program blasa If at run-time this
conditional expression is true, declassification is alldwén frameworks of this kind,
declassification policies are specified in a manner thattisvately tied to the program
itself.

Figure 1.1 shows an example of a type-based program using declassificathis
example program calculates the average value of severaidgcall labeled secret, and
then sends it to some public output. Note that in type-bappdoaches each variable has
both a data type (ht ) and a security labebecr et andpubl i ¢). Here,numRecords()
returns the (public) number of records in the storage, wgelRecord(iyeturns the secret
record on the-th position. For the expressiotum/i to be assigned to thpubl i ¢
labeled variableivg, a declassification must be made. This is done bydibaassify
command, which takes an expression and downgrades it to aemwity label.

A drawback of this approach is that only someone with a deelerstanding of the
program can reliably write declassification policies folEveryone else is forced to trust
blindly that the policies meet the required security oby@s. When code is written by
trusted programmers, this assumption may be acceptableglheven then it would be
preferable to separate concerns and make the specificatainienance, and review of
declassification policies independent from the progranthéncase of untrusted code, or
code without security annotations, relying on the programto identify declassification
points is clearly unacceptable. Operators of systems éhaton such a program obtain
little assurance that the declassification policies definetlare appropriate. As pointed
out by Zdancewic4da04, one of the reasons why language-based techniques have not
yet been widely adopted is that the enforcement approa&uwgsre the programmer to
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int{secret} sum := 0;
int{public} i :=0;
int{public} avg = 0;

whi | e (i < numRecords()) do

sum = sum + getRecord(i);
=14+ 1;

avg := declassify(sum/i, secret to public);
doQutput(avg);

Figure 1.1: Type-based approach for declassification

worry not only about the correctness of the program logitatso about how to annotate
the program so that it can be deemed secure.

This makes analysis dégacy and untrustegrograms impossible, and thus it is not
very practical. In this context, legacy and untrusted parowg are those which satisfy two
points. First, they were developed before (or unaware eff¢kchnology used to analyze
them. This way, these programs were not developed usingeufie security-oriented
technology in order to make their analysis any easier. Sk@uoquired from an unknown
or untrusted source, so that there are no guarantees if tigegon actually does exactly
what is stated in its specification, and nothing else (or ér¢his any specification at
all). Note that many programs downloaded from the Internetodten both legacy and
untrusted, and that the aforementioned limitation of maagicsanalyzers would make
analysis of such programs impossible.

To stress this point further, work from Hicks et 8HKMHO0G6] conclude that although
Jif [CMVZ06] is the most advanced security typed programming languaigajot ready
for mainstream use because it requires considerably mogrgnming effort to write a
working program than in a conventional language. In lighthid observation, we believe
there is need for an information flow analysis framework th@g¢s not require program-
ming annotations and which considers programs and poksi@sdependent entities. This
would result in greatly reducing the effort required to piaog an application, decoupling
the program from the policy, and avoiding the need to trusiciide itself.

Dataflow approaches, on the other hand, calculate depeedenetween different
structures of a program, thus being able to analyze codeoutitbecurity annotations.
However, since they do not differentiate between the difiepperations applied to data,
they do not manage to handle declassification in an automvatic

This state of affairs implies that declassification pokooannot readily be applied to
legacy code. Unless the legacy program satisfies stricimtenference (which is uncom-
mon) the only way to determine whether such programs satiffymation-flow objec-
tives is through the laborious process of understandingribigram well enough to design
a program-specific declassification policy.
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Runtime Enforcement. In the classical definition of runtime enforceme8th0Q, an
enforcer must trackll program instructions in order to detect security violasio@ther
techniques (e.g. edit automateB\WO05]) revolve around re-writing program instructions
on the presence of violations. Dataflow-based approacheslsa be implemented as
runtime enforcers, and one such example is taint analik®d, TPF09], which keeps
track of program modules/structures which are dependefiteof‘tainted by”) sensitive
information.

Runtime enforcers, however, often cause a non-negligidegssing overhead on
the monitored programs, since the enforcer itself needsggging cycles and memory.
Usually, the more policies the enforcer can support, theeroverhead it causes: program
re-writing, for instance, causes the enforcer to potdgtaild more instructions to the
running program. Performing declassification in runtiméiew possible, can be even
more computationally demanding: in order to check if pelicare satisfied, the enforced
needs not only to track theurrentexecuting instruction, but also to keep track of previous
operations done over data by the program. This is neededbgsapns may use several
instructions in order to calculate a derivation allowed lmealassification policy (e.g. an
arithmetic average).

Some approaches have been recently proposed to combiceasti/sis and runtime
enforcement, thus reducing runtime overhead. These, reywaly much on the expres-
sive power of the static analyzer in order to make the runtwa@ponent lightweight.
In current approaches, either (1) the static analyzer is-bgsed, thus reducing runtime
overhead at the cost of introducing a security-annotateguage, or (2) the system does
not support declassification policies, as these need edtfveotations or cause a heavy
runtime overhead.

Thus, runtime enforcers have a limited domain of targetesystprograms they can
be executed on. For instancemmbile program is executed on mobile devices, such as
smartphones and tablets, and usually aims to keep a low xecqverhead (process-
ing, memory and battery). Here, the processing overheasedaly runtime enforcers
is highly undesirable. And yet, supporting this kind of pr@ms is very important, as
mobile devices are increasingly present.

In conclusion, declassification mechanisms in state-efatt information flow ap-
proaches are not sufficient to meet the needs of practiciysaasaf real programs (i.e.
to be able to analyze legacy, untrusted and mobile code). d€bkassification mecha-
nism needed to deal with practical exceptions to non-iaterfce is not available in an
appropriate way for most use cases.

1.3 Research Question

The research question to be answered by this thesis ar@m®stlfre limitations of cur-
rent information flow and declassification mechanisms, chatethe previous section.
Our main goal is to make information flow analysis possible-eai-world applications,
and this includes untrusted and legacy programs, posstalguted on mobile devices.
Achieving this goal will take not only a large step to bringstkind of analysis to real and
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deployed systems, but as well to fill the gap left by curreseagch in the field.
Thus, in order to accomplish this, we formulate the resequdstion as follows:

How to check information flow on legacy, untrusted and mobdde:].

In order to answer this question, we need an information floalyesis mechanism
which satisfies the following objectives:

1. Analyzes unannotated code, i.e. code written by a pgssiirusted, unknown
programmer.

2. Supports declassification, as real applications oftexl te declassify information.

3. Allowed declassifications should be specified by dediaasion policies which are
independent from the code, i.e. code and policy are writiesdparated entities,
independently.

4. Can be implemented with decidable algorithms.

5. Must be adaptable in order to work in multiple systemshwittle to no runtime
overhead.

The mechanism we aim at must be able to decouple declagsificatalysis from the
source code, thus being able to analyze untrusted and lpgagsams. Also, low runtime
overhead is necessary in order to allow the mechanism to arorkobile devices.

1.4 Contributions

In this thesis we answer the research question by introdueiset of mechanisms, from
theory to practice, that allow the specification, verifioatand enforcement of declassifi-
cation policies that are independent from the code to wiek are applied. We introduce
a novel approach for information flow and declassificatioalysis, laying the ground-
work for bringing this kind of analysis to deployed systemé#& present our approach as
3 mechanisms, each building upon its predecessor, frommythe@ractice:

1. A theoreticalframeworkthat defines a policy model and the notion of program
validity with respect to a policy.

2. A high levelimplementatiorthat defines a concrete policy language and a tractable
validation procedure for checking program validity agaswh policies.

3. A practicalextensiorof the implementation, that defines a framework which com-
bines the previous mechanism with a runtime component im@hted on a estab-
lished technology, supporting more expressive policiessscmultiple systems, but
keeping runtime overhead very low.
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All of the mechanisms presented on this thesis are novelfeyind the combination
of the following features: (a) support to user-defined desifecation policies, (b) code
and policy being separated and independent from each @thamnalysis and application
of declassification policies to unannotated and untrustelé cRecalling the points from
the previous section, our theoretical framework tacklestpdl (analyzes unannotated
code), 2 (supports declassification) and 3 (independenasiafication policies). The
high level implementation adds point 4 (implemented by d&ie algorithms), at the cost
of slightly reducing the precision of the analysis. The ficat extension then enhances
the expressiveness of policies (3) and brings the appraatiobile systems, with little to
no runtime overhead, tackling point 5. With this, we end vaithractical mechanism that
satisfies all points of the previous section. Below we treahed these mechanisms and
their benefits over existing approaches in more detail. \Wa firovide an overview of
related work in Sectiod.5before outlining the thesis plan in Sectibi®, which describes
how we organize our contributions.

The theoreticaframeworkdefines program validity in terms of the expressions on in-
puts that the program calculates. A program is deemed sefeding to how expressions
it calculates are checked against a given set of expressibith are allowed to be re-
leased, i.e. a set aleclassifiable expression®ur approach to program analysis deems a
program to be safe if it is able to determine that public ouyalues depend on secret in-
puts only via such expressions. Programs can be writterouiittwareness of the formal
declassification policies or of how the analyzer works, aspecial command is used to
specify declassification or security labels. Technicalftindamental contribution of the
theoretical framework is the introduction of a propertylealPolicy Controlled Release
(PCR) — a more flexible security property that replaces noerietence — and a result
that shows this property is satisfied by programs deemed bglour analysis.

The second mechanism, the high levaplementatiorof the framework, consists of
a tractable analysis for determining whether a specific lt@zased form of a declassi-
fication policy is enforced by the input program. It représesne possible way of im-
plementing the framework in a tractable way, providing asés further work on even
more expressive representations.

On our implementation, declassification policies gsaphsto represent sets of ex-
pressions over values obtained from input channels. Tlig/alus to express and to deal
efficiently with declassification policies that refer tordative constructs such as loops (as
in the example in which the average salary may be disclosddrenindividual wages
must remain secret). The policies represent values thgieamitted to be made public.
Expressions that may be computed by the program under @alesalso represented
by a form of an expression graph that incorporates reprasens of variables and 1/0
channels, and captures the dependencies of output expressi values obtained from
input channels. We augment the power of our expression graypddlow them to express
the (non-regular) property that values obtained from igiannels are given by distinct
read operations, thus enabling our policies to requireinfstance, that an expression rep-
resenting the average of input values must refer to multdenct values read from the
input channel, and not multiple references to the valuemetliby a single read operation.
A graph matching mechanism is used to ensure that the ekpnesse declassifiable per
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the policy! This notion ofpolicy simulationis reminiscent of the standard concept of
bisimulation in automata\il89].

In present approaches, to declassify the result of a loopiogram using standard
flow-based techniques, one is required to manually intredirmplifications, which often
consist of determining the fix-points of loops. On the othandh type-based techniques
usually rely on the programmer to identify in the code iteeatleclassification expres-
sions.

Finally, the third mechanism, a practi@dtensiorof the graph-based approach, achie-
ves the goal of being suitable for working on currently dgpbmobile technologies, also
adding a runtime component that enhances the expresssvehpslicies while incurring
little to no runtime overhead. It does so by extending th@lglaased approach and com-
bining it with other components. Although a purely staticcmanism is a highly desirable
research goal, there are certain aspects of software @allggh require runtime infor-
mation to be enforced. This is why we extend our static smtuéind combine it with a
runtime enforcer. We show how this hybrid solution be deptbpn real systems, and
also make explicit which kinds of policy aspects can be ex@diby each approach (static
and runtime).

The presented hybrid static-runtime enforcement apprbasi3 stages: (1) our slightly
modified static analyzer that takes a program source andd detlassification policies
and detects all flows of information between input and oughatnnels in the program,
as well as detecting points where declassification can mafg@nerating constraints that
have to be checked at runtime); (2) a pre-load checker whefore loading the program
for execution, checks the security labels of 1/0 operatigpecific to the target system
against the information obtained in the previous step; @)da(runtime enforcer that
checks labels which are only known at runtime, as well asimentonstraints for the
declassification policies. Calls to the enforcer are ingatethe application’s code, prior
to its execution, on the specific points where checks areatkelus further reducing the
overhead of the enforcer. We present three motivating ebesnall within the context of
a mobile device, and show that our hybrid static-runtimeerg@ment allows to:

e support more realistic policies than present approachegpel&cies may need both
static (implicit flows, declassification) and runtime (dyma labels, execution con-
straints) knowledge;

e achieve an often negligible runtime overhead—as most chladysis computation
is done statically, and the static analyzer is system inuoidxpa.

The presentation of the hybrid enforcer is guided by theetleamples and the ap-
proach is presented in an implementation-oriented fashibat is, we do not present an
in-depth formalization of the domain of problems solvab}etmt mechanism. However,
we define it in such a way that a full implementation is stréfgtward, and demonstrate

While PCR is termination-sensitive, our analysis and th@oaee termination-insensitive in the sense
that our analysis may deem valid a program that leaks sed@niation by failing to terminate during a
while loop that is controlled by a nondeclassifiable expoess
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its applicability directly over the examples, which comns$ real-world scenarios, not
treated by existing practical approaches.

We implement our final step, the runtime enforcer, and rugatirest benchmark pro-
grams on an Android device, in order to determine its oveth&#e show that for most
practical scenarios, the overhead is almost impercepi®le pre-load checker is simple
and straightforward to implement directly from its defiaitj as so it is the injection of the
runtime enforcer checks in the application’s code. Finaillg do not provide a full im-
plementation of the static analyzer, but present defirstmmhow to extend PCR analysis
so that it can be integrated with the other steps of our agproa

For an overview of how the major contributions of this themis organized, refer to
Tablel.10n Sectioril.6.

1.5 Related Work

Many of the initial papers on language based secu8tM(3 enforced the non-inter-
ference propertyGM82] statically using type-basedP503 VIS96, BNOZ] or dataflow-
analysis basedAB04, ABB06, BBM94, Den7q approaches. Banatre, et aBEM94]
were the first to propose usiagcessibility graph$o specify data and control flow depen-
dencies between different variables in the program an@byeutomatically inferring the
security properties of the program. Bergeretti, etBC85 represent information flows as
relations between different variables in the program andkCkt al. [CHHOZ represent
flows as relations between the variables and the control ftontprepresented by the pro-
gram counter. Although the above approaches require depepdalculation similar to
our expression graphs, we can additionally represent sfitzation policies, while they
can only check for pure non-interference. More recentlynieer, et al. HKS06 HS09
propose an information flow control algorithm for Java. Tlaeiable dependencies are
specified in the form of dependency graphs. The declassificablicies are specified
using path conditions, which are a conjunction of all thedibonal expressions that are
encountered before reaching the output program point.odtth the path conditions are
certainly useful to specify some kind of declassificatiotigees, they do not compute
what expressions are being declassified. Here, we attengapiure this information
using our expression graphs. Swamy, et 8HQ§ propose a formal language, AIR
(Automata for Information Release), for describing stdtefformation release policies
separately from the program that is to be secured. Althobghpblicies are specified
in the form of an automaton separate from the program, theoapp requires that the
programs be written inAIR, a core formalism for a functional programming language,
so that the AIR policies can be provably enforced.

Non-interference was found to be too restrictive to spec#stain security properties
and the use of declassification policies was proposed. Onleedfirst papers to spec-
ify declassification policies was the paper by My&gg99, where the declassification
is based on principal authorization which falls under #i® dimension. Several new
declassification policies were proposed as discussed bsifSkh et al. S09, each of
which differed either in the type of declassification pagibeing handled, how the de-
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classification policies are specified or by the enforcemestthanism.

In type-based approaches the declassification condititagged to the security lat-
tice [LZ05, CM04, TZ05, CMO08§] or to an expression inside the prograBM034. Since
declassification typically involves downgrading the sé@guevel from high to low, this
is the right place to specify the policies. To specify whiahigy to use at the declassi-
fication points, new syntactic constructs are introducea ihe programming language,
making the policy and the program to be inter-dependent oh ether. In most cases, a
new declasscommand is introduced into the program. The enforcemerguslly a hy-
brid of static analysis and dynamic execution. In some aggres §HTZ06 BWWO0§],

a particular section of code is encapsulated in a conditistedement. The condition
specifies the declassification policy. This section of cadexecuted only if the condition
is true, thereby dynamically enforcing declassificatioror#recently, some approaches
advocate specifying a special security APFIKMHO06, SHO8 HKMO5]. If the program
is written using this API, declassification policies can bevably enforced. In$PB09
authors present a-calculus based language for dynamic information flow tiragkthat
accepts more programs than type-based systems, at thefgystater overhead. Their
approach tracks information flow in multiple dimensiong.(iit reasons over, e.g. the
confidentiality of an integrity label), a goal out of the seapf this thesis. Even though
variables have no static security labels, declassificasiatone explicitly in the code, by
the programmer.

Li and Zdancewic ILZ05] use declassification policies that take the form of lambda
terms over inputs, akin to our approach. Expressing theigslin lambda calculus gives
them the flexibility to compare different policy terms foruaeplence. This is a strength
of the prior work in relation to our own. The main strength afr evork in relation to
theirs lies in our enforcement mechanism. For this, theyaupgpe system that labels
each variable in the program with a security policy. The séciattice is given over the
lambda terms in the policy. As they also point out, their ecdéonent mechanism cannot
handle policies such akr : int.\p : int.(z + p) * p. On the other hand, our work
handles this kind of situation, since our program expresgraphs implicitly keep track
of all the expressions that can flow to an output channel,lergpbur approach to analyze
expressions resulting from global computations. Thusyguprogram graphs allows us
to enforce more expressive policies. The paper also hiatsliat their approach can be
applied to untrusted code if enforced differently, but doesexplain how to do so.

The type-based enforcement mechanism of delimited re[&034 and localized
delimited releaseAS074 policies keep track of the variables involved the in theldec
sified expressions and ensure that they are not updatedebddotassification. This is
required to prevent laundering of information. Our flow ltheaforcement automatically
keeps track of the changes in the variables, thereby pregtlde need to have an explicit
declassification construct in the program.

Jif [CMVZ06] is one of the most advanced programming languages destoreat
force fine-grained declassification policies in the progrélowever, if the programs and
policy are not carefully designed, as statediiKMHOG6], there is a risk of burying the
policy deep inside the code and therefore requiring a changee program with every
change in the policy. In light of this observation, seveesdaarchers studied how large
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programs can be written in a security typed language so ket behaviour is prov-
ably secure. Askarov, et alAB09 show how security typed languages can be used to
implement cryptographic protocols and propose severagdgmtterns to help the pro-
grammers to write their applications in Jif. They progranadé poker application to
demonstrate their approach. Hicks, et 8KMHO0G6] propose FJifP, which includes all
the security features of Jif and also an option to use cemeaitmods as declassifiers. They
also highlight the need for effective programming tools imaet to write Jif programs.

Askarov, et al. AS074 provided the foundation for CGR with their definition of the
Gradual Release (GR) property. Their paper quantifies the legig® obtained by the ob-
server as the set of possible secret inputs that could beajededyy observing the public
outputs, i.e., the notion abserved knowledg& he GR property states that the observer’s
knowledge increases only at declassification points. Qurdadisupporting policies that
are as program-independent as possible prevents our eongidttacker models that in-
volve program variables other than output channels. Theisttiserved knowledge in our
framework is the knowledge obtained from the outputs and do¢ depend on any other
program events. The CGR property &R0§ requires the GR property. Additionally,
it requires that the low-security observer of program berarg able to detect no dif-
ference between runs that are generated from initial stagé¢yield the same values for
expressions identified in the declassification policiesr foumulations of revealed and
observed knowledge follow a similar approach.

Banerjee, et al. BNRO§ achieve separation of code and declassification policies.
However, their approach does not achieve a complete separdtheir declassification
policies, namedlowspecsare a combination of a formula over program variable} (
special predicates called the agreement predicatesever the program variables and a
modifiable variable£) whose type is being changed. The flowspecs are quite exgress
and can be used to specify policiesvihen whereandwhat dimensions. However the
technique only works for trusted code, which is written adawg to the policy specifi-
cation. In their paper, if? andy only have global variables, then they say thatan
be a schematic variable instantiated with different lo@aiables. Although this allows
them to have more flexibility in terms of applying the same@poto different parts of a
large code base, it does not allow them to use the policiesrfrely different programs.
The policies cannot be reused for any other code in which &te structures and global
variable names differ. Our policy specifications are moneegal and can be applied to
multiple, unrelated programs. Since their analysis usedlthv-insensitive, type-based
approach, they require that programs disallow assigninguaéues to high variables prior
to their use in expressions to be declassified. This meanhpribgrams need to be written
in a policy-specific manner for them to be deemed valid, wisdt odds with the appli-
cation of their approach to legacy code. Our Policy ContdoRelease (PCR) property is
a variant of their Conditioned Gradual Release (CGR). Comparé#utetprior definition
of CGR, ours is much simpler and more intuitive because it caexipeessed purely on
the observable behaviour of programs rather than neediag/sien program executions.

The notion of indistinguishability used IB09 is closely related to ouP-equiva-
lence relation (SectioB.4), as it is based on the attackers’ knowledge of the initiles
of high variables in their escape hatches, which resemleleldclassifiable expressions
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identified by policy in our framework. However, their expsems are identified individ-
ually, which prevents them declassifying expressions dfoumded size, such as result
from iterative computations. They also do not share ourative of completely sepa-
rating policy from program. This enables them to consideemstdeclassification occurs
within the program, and to handle attacker models in whiaglhrootput events are observ-
able, which we inherently cannot do.

Giambiagi and DamGD04] provide a framework for analyzing a security protocol’s
implementation against its specification. A dependencgifipation defines an informa-
tion flow property by characterizing the direct flow along d@hpa the form of allowed
sequence of API and primitive function calls. However, as dlathors mention in the
paper, dependency specifications are very low-level ohj@dtich can be used as inter-
mediate representations of flow requirements. In genérail, lependency specifications
should accurately capture the exact number of times a meshcalled during a partic-
ular flow and it can only characterize a single flow. By confrast expression graph
representation can represent several flow patterns, imgjudops. Also, as stated by the
authors, their verification techniques are not yet fullyomgited, as opposed to ours.

Taint analysis ILL05, TPFF09] considers direct data flows, but, unlike information
flow analysis, ignores control flows. In this sense, it is mieasls demanding than declas-
sification policy enforcement. The input/output channedslabeled with a security level,
such as tainted and un-tainted. A separate code analystsamiem is required to check
whether the sanitization routines (cf. declassificatiolicpes in our context) are present
in the code. We, on the other hand, are associating the dd@hte expression with in-
put and output channels, without considering how a progsawritten. This is certainly
more expressive than a simple label. Also, a taint propagatirough the program can
be easily inferred by static analysis of code. Checking wdrettie sanitization routine is
present in the code is a much more complex issue. In our waegkawtomatically infer
whether a particular declassification policy can be appbeall possible program expres-
sions that can be output by the program. This would corresporhecking whether all
possible sanitization routines applied to inputs make tsepsure enough to be output.
Therefore, our approach is much stronger than simple lalgedif inputs and outputs in
taint analysis.

Giacobazzi and MastroernsMO04] provide a powerful framework in which to specify
the weakened variant of non-interference that is enforeettua declassification policy.
We think its likely that our Policy Controlled Release progeauld be precisely stated in
their framework, modulo the fact that our approach is comication channel-oriented,
while theirs focuses on state transformation. We view ountrdoution as bringing the
field closer to being able to implement a large class of pratéinalyses that can be spec-
ified in their framework. This prior work is highly abstraeind provides little guidance
with respect to the construction of usable analysis tootsadhieve in their framework
what our graph-based analysis achieves would requireidg\asrepresentation of an ab-
stract domain for each declassification policy. Each eld¢mfthis domain would denote
a set of valuations for high-security variables such thatkclassifiable expressions each
yield the same value, but the valuations are otherwise wstined. In other words, ab-
stract domain elements differ only with respect to the valagsumed by declassifiable
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expressions. While it might be practical to represent thetelsy using (infinite sets of)
constraints, it is not at all clear how, for prograih one would compute the best correct
approximation of|C'] over them, as required by their approach.

Runtime enforcement mechanisni88W09a CNC1Q KKL *01] monitor accesses a
program does during execution, enforcing access conttai@®. However, limited vis-
ibility of the program’s code, coupled with a necessity tounlow overhead limit the
types of policy that can be enforced. These mechanisms e weful for enforcing ac-
cess control, but not information flow, since the latter iszggpiknowledge of non-executed
code, in order to detect implicit flows. 1IhR10] authors propose a theory for runtime en-
forcement, modelling runtime mechanisms that can transfesults, and also an analysis
of the policies that such model can enforce. Their abstractetis simple and expressive,
and our runtime enforcement step can be fit in the model iregg$tiforward manner. The
model, however, makes explicit one of the limitations oftine enforcement: as it only
considers actions performed by the application at runtime unaware of implicit flows
of information caused by actions that weret performed. Authors also do not study in
detail the overhead caused by the monitor, since that vlotesach implementation of
their model, but point that this overhead may not be nedkgiBinally, their model also
supports result-sanitization policies (e.g. mask sedestfiiom a directory listing), which
are out of the scope of our approach. A recent study on pslengorceable by runtime
monitoring is presented i.BWO09b] and the same authors present a framework for com-
posing expressive runtime policies iIBUWO09], but again policies are based on specific
security-sensitive actions performed by the program. AR(9] the authors propose a
purely dynamic information flow analysis approach that hesidanplicit flows. However,
this is achieved by disallowing, on the language semardigzamic label updates within
high conditionals, an unnecessary limitation in our apphoa

A hybrid approach had been proposed 8MHO01], although authors proposed the
combination of inline reference monitors with static typestems. Our approach pre-
cludes the need of a type system. Concrete proposals of hyl@athanisms are scarce,
although have become increasingly populag7, LGBJS07 SST07 NJK*07]. The au-
thors of [YZLL11] integrate static analysis and runtime tracking to essaldin approach
to generate a sensitive data propagation graph aimed atimgminimum time overhead
on systems. All the cited approaches, however, do not supether runtime security
labels nor declassification policies. IQDXWO04] the authors use static analysis to detect
which parts of the program satisfy the policy, and use a mmtenforcer to guarantee
that unsafe parts are not executed. Thus, they do not enfotaees that need runtime
information: the runtime enforcer serves only to selectghds of the code that may be
executed.

In [SR1Q the authors show that, by blocking execution of unsaferurcsions, a dy-
namic monitor can guarantee termination-insensitive menierence, for a flow-insensi-
tive analysis. Then, inRS1Q, the same authors prove impossibility of a sound purely
dynamic information-flow monitor that accepts programdifted by a classical flow-
sensitive static analysis. The authors demonstrate the foeenybrid mechanisms in
flow-sensitive analysis, and present a general framewarkudoh mechanisms. In both
papers, however, authors do not consider neither dectadsis nor dynamic labels.
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Hybrid mechanisms that support declassification have begyoped in AS09 CMO0g],
however these approaches do not share the expressiverigSRanalysis, being unable
to declassify expressions of unbounded size (such as thagevsalary), do not share our
goal of separating policy from program, and work on secuyiped languages, requiring
the programmer to identify points where declassificatiocuoc

A recent implementation-oriented approach is Re¥MWEKO09], a language runtime
that implements data-flow assertions. It is a fully runtinppr@ach, incurring a non-
negligible overhead (33% CPU overhead for their measurelicagipn). Besides, it does
not share a number of our goals: it allows the programmer ¢gi§papplication-level
data flow assertions, as opposed to our goal of analyzingstett programs, and it does
not aim for information flow control neither declassificatipolicies.

1.6 Plan of the Thesis

In the next chapters we answer the research question byrgbor proposed static anal-
ysis mechanism. [iChapter 2 we define our expression-matching framework, which
deems programs safe according to a set of declassifiablesstpns. This framework
is of theoretical nature, with many non-computable detingi We first present some
motivating examples in Sectidhl Then, we define our programming language in Sec-
tion 2.2 The core definitions of the framework are the ones that defiogram validity,
presented in Sectio”R.3. We proceed to define our security property, called Policy-Con
trolled Release, in Sectich4. Finally, we demonstrate the soundness of the framework
in Section2.5.

In Chapter 3 we define our graph-based implementation of the framewoaks im-
plementation is a tractable, safe approximation of the esgion-matching framework.
We start by revisiting the motivating examples in Sect®h showing how the imple-
mentation treats them. Then, we introduce our form of graplbsh for representing
programs and policies, in Secti@®2 The core mechanism of the implementation is the
matching between program and policy graphs, presenteddtioB8e3.3. Then, in Sec-
tion 3.4 we show the soundness of the implementation, demonstritatgt implies the
program validity of the framework. In Secti@5we present and analyze algorithms for
the implementation, in order to show its tractability. Hipain Section3.6 we extend
both the language and the graphs in order to support useredefiunctions, and show
how both the framework and implementation can handle tharoyder to demonstrate
the suitability of our mechanism to more elaborate programgnfanguage constructs.
Figurel.2below shows a roadmap of the core sections of chagtansl3, presenting the
elements of our mechanism and how they interact.

Our extension of the graph-based approach, a practicaichstattic-runtime enforcer,
is presented iChapter 4. We present three motivating examples in Secdidnall based
on real mobile applications, and then outline the approa@eictiord.2, including some
assumptions about the target execution system. Then wesdiscsmall modification on
our graph-based PCR analysis in SecdoB and proceed to define the next steps of the
hybrid enforcer: Sectiod.4 presents the pre-load checker, and Sedfidgthe runtime
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Figure 1.2: Roadmap of the core sections of cha@ensd3

enforcer, including an analysis on the overhead it causdiseotarget system.

Chapter2, 3 and4 form the core technical contributions of this thesis. Ountde
butions are both theoretical (i.e. definitions of prograniiy according to information
flow and declassification policies and theorems deeming sedinitions correct) and
practical (i.e. implementable definitions of the enforcatmaechanisms, algorithms and
experimental results). Tablel presents how the main contributions of this thesis are
organized through these 3 chapters. Contents of chaptansl 3 are presented in pa-
pers RBdH"10, RBdH"11], while contents of chaptef are presented irRCEC11.

Contribution Theoretical Practical

Chapter 2 (Framework)

Section2.3 (Program Validity) | Definition2.9

Section2.4(PCR) Definition2.14

Section2.5(Soundness) Theorenm2.15

Chapter 3 (Implementation)

Section3.2 (Expression Graphs)) Theorem3.6 Definition 3.1

Section3.3(Graph Matching) | Theorems3.13and3.15 | Definitions3.9and3.12

Section3.4 (Soundness) Definitions3.16and3.17,

Theorem3.21

Section3.5 (Algorithms) Algorithms 3.1, 3.2
and3.3

Chapter 4 (Extension)

Section4.3 (Static Analyzer) Definition4.1

Section4.4 (Pre-load Checker) Definition 4.2 and Algo-
rithm 4.4

Section4.5 (Runtime Enforcer) Figure4.4and Table4.8

Table 1.1: Main theoretical and practical contributionshis thesis

Since in this thesis we present a new approach for informdtaw and declassifi-
cation analysis, a number of new research directions alis€hapter 5 we present a
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number of open problems. Sectibril discusses how precisely the graph-based imple-
mentation approximates the expression-matching framewanrd how it can be made
more precise. Two open problems on the implementation @ pnesented: the loop-
counting problem is presented in Sect®12 and the algebraic equivalence one in Sec-
tion 5.3 These two problems are presented along with a discussipogsible research
paths to solve them. We then discuss how to achieve an implatnen of graph-based
PCR on a real programming language (e.g. Java, C++) in Segdofinally, we discuss
in Section5.5 what we consider to be the greatest long-term open problérbyehis
research field, and possibly a new research question shit nswered: can this kind of
analysis be done in compiled code, such as assembly-leglef’co

We present some concluding remarksdhapter 6. Finally, we present proofs for
theorems and lemmas Appendix A.



CHAPTER 2

Expression-Matching Framework

In this chapter we formalize the notion of a program satigfya declassification policy.
For this, we introduce our expression-matching framewuaithich defines program va-
lidity according to a set of “declassifiable expressionslenients of such set represent
expressions on secret input channels which are allowed teblassified. For instance,
values from an input channel might be considered to be secret, unless they satisfy the
declassifiable expressianmod 2, meaning that the parity of these values can be declas-
sified, i.e. assume a lower security level.

The theoretical framework defines a mechanism to deternviesy ¢possible expres-
sion on inputs that a program can possibly reveal. Also,esgons which are described
by a declassification policy are recognized and identifiegkid®les that hold only such
expressions are then marked as “safe” variables. To siyriplé discussion, we consider
that every input channel in the program has a high secungl (ee., is a private channel),
whereas every output channel has a low one (i.e., is a pudiorel). Thus, all flows of
information must be authorized by a declassification policy

In the following sections we first present some motivatingraples for the framework
(2.1, then we introduce the considered language syntax andrngesén Section2.2
After that, in Sectior2.3we present the core definitions of the framework, statingznm
validity according to a policy. We then proceed to introdtieesecurity property we wish
to enforce, called Policy Controlled Release (PCR), in Se@idnFinally, in Sectior2.5,
we demonstrate the soundness of the framework, i.e. thaigrgm deemed secure by it
satisfies PCR.

The contents of this chapter are presented in paBslifHt10, RBdH"11].

2.1 Motivating Examples

In this section we illustrate by means of three examples teehanism of our frame-
work. The first example refers to one of the classical situstrequiring declassification:
authentication and password matching. The basic secwtfyirement is that user in-
formation should not flow to the output channel, with one @tiom (captured by the
declassification policy): boolean queries on the user'snemay be declassified. Now,
in order to authenticate the user, 3 methods are possilitee ifser’s record is “complete”
and the user has a given credential, a function navadidate can check this credential.
This is the preferred method for authentication. If, howgetlee user does not have the
required credential, but his record is complete, then timeesalidate function can be

19



20 2.1. Motivating Examples

applied over the user’s last name, validating the user'senagainst a list. Finally, if the
user’s record is not complete, then the system prompts fasavpord, from another input
channel, and uses the functigarify to check it along with the user login name. In the
end, the result of the authentication is sent to the outpabcl. We use this elaborate
mechanism to outline different flows of execution that a paog can take. The exam-
ple program is given below. The language it uses is a standge@rative programming
language, with no special security constructs, which wellused throughout this thesis.
The inputs and outputs to the program are specified using arpioutput channels and
represented with Greek letters, as further explained ini@e2.2 Channek returns the
record with the user information, chanrteis used to retrieve a password from the user, if
necessary, and channgeis the output channel to where authorization informatioseist.

Example 2.1. Authentication program:

struct x := «;
string f;
bool v;

i f iscomplete(x)t hen
i f hascred(x)t hen
f := credential(x);
el se
[ := lastname(z);

v := validate(f);

el se
f = login(z);
string y := f3;
v 1= verify(f,y);
V=

Pre-processing and conversion to S®AIr analysis works on code that has already
been pre-processed in the following way: (1) operatorsrarestated into functions (e.qg.,
a + b becomesidd(a, b)), (2) only one function is allowed per assignment, i.e.jgss
ments of complex expressions are broken into several assigis, (3) conditions on
control-flow commands f andwhi | e) refer to a single boolean variable.

We also convert a program into the Static Single Assignnfe8#) format using stan-
dard methods@FR"91]. SSA is a known intermediate representation form for paogg,
in which every variable is assigned exactly once. Variableisg assigned more than
once are renamed (with a different name for each assignrygitally the original name
with a subscript). For variables that are modified in the bofipranching statements
(e.g. conditionals and loops), the translation algorittenayates a new variable name at
the join points(at the end of the conditional or the loop). Moreover, a neacfion ¢
is introduced, which takes as input the variable values fatirthe branches, and outputs
the value from the branch that was taken. During the transiatve additionally anno-
tate thep function with the conditional variable of the branch to whibe ¢ function is
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associated. The technique for computing SSA form of a pragras been proved to be
tractable. For more information on it refer t6ffR*91, BP0J.

Example 2.2. Authentication program in SSA format:

struct z; 1= q;

bool ¢y := iscomplete(xy);
string fo;

bool vy;

depends(f3, c1);
i f ¢qthen
o 1= hascred(z1);
i f cythen
f1 = credential(z1);
el se
fo := lastname(x);
f3 = ¢02<f1>f2);
vy = validate(f3);

el se
fa = login(zy);
string y; == f;

vy = verify(fa, y1);
V3 1= ¢Cl (Uh 02)5
f5 = ¢C1(f37 f4>;

Y = Us;s

Note that the conditions are syntactically associated thghy-functions. Also, the
depends command is generated during the pre-processing and séevpsitpose of mak-
ing the control dependence between charthahd variablec; explicit, since the input
occurs inside the conditional. This will be further expkinn the next section.

As mentioned, the declassification policy allows the redeaisboolean queries over
the user’s records. This policy is represented by a/self declassifiable expressions
containing expressions on inputs that are allowed to be palléc. For this example, we
haveD = {hascred(«), iscomplete(a), validate( credential (o)), validate(lastname(a)),
verify(login(a), B)}. All the notation used in the example will be made preciserlah
this chapter.

Policy Matching.Now that we have both the program and the policy, we can check i
the program isafe In our program the (low) output is assigned the value of variable
v3, SO what we now have to check is whether every expressionighpseeld by v; is
public, i.e. itis either in seD or a function over one or more expressiongirfnote that
we don’t consider a declassifiable expression to be indertibhis is discussed further
ahead). This analysis needs to consider both data and tdapendencies of variables.
Note thatv; can assume either the valueqf or v,. In turn, v, holds the expression
verify(login(a), B) andv; holdswvalidate( f3), where f3 can hold eitheeredential(c) or



22 2.1. Motivating Examples

lastname (). Thus, the union of all these expressions form the seatd dependencies
of variablevs. In other words, it is the set of every possible expressiahvariablev; can
hold. Also, the choice of which of these expressions will &y v; depends on the
branches taken by boihf commands, which in turn depend on the values of variables
¢; andey. Thus, the expressions possibly held by these variablesn(plete(«) and
hascred(«), respectively) form the set aontrol dependenciesf v3. That is, these are
expressions whose values might be revealed by observingathe ofv;. Forv; to be
marked assafe all expressions within both its data and control depeni@ésnmust be
public. However, it is clear that each of the aforementioeggressions is in fact an
element ofD. Thus, we say that variablg is safe, and its value can be output to channel
~. Since this is the only output operation in the code, the aogs deemed valid.

Statistic CalculationWe now provide a second example, that involves a policy which
allows the declassification of expressions in a given regeigattern, represented in the
code by a looping structure. This example is inspired by larotlassical need for de-
classification: statistical calculations on secure dataef@ high data should not be re-
leased but statistics on it may be declassified). The proggaren below (already pre-
processed), calculates the average of the entries in a datnstructure. Channel
returns the next element of a sequence of salaries of anireg@m. The code below
fetches all the salaries from the structure, calculates #werage, and then sends the
result to output channel.

Example 2.3. Average calculation program in SSA format:

int a; := 0;

int 7; ;= 0;

int [y := length(«);
bool ¢; := leq(iy, lh);

Whi | e (3 := ¢e,y(c1, 2);

ag 1= ¢ey(ay, as);
i3 1= ey (i1, 12);
Cg) do

int ¢ (= g

as := add(as, t);

ig = (de(ls, 1),

¢y := leq(ia, [1);

ay := div(ag, ly);
Y= Ay,

Note that thep-functions are placed along with the loop condition and tregmm
semantics would require that tileassignment be executed even if the loop is not taken,
but also once after each iteratiddN194]. With this, the¢ functions in theahi | e header
work as the following: in the first iteration variable is assigned the value of, since
at this pointi, has not yet been defined. On subsequent iteratipissthen assigned the
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value ofiy, which is then the most recently defined of the argumentsebtfunction.
The same reasoning applies to variakiesdc.

We first have to determine every expression on inputs thabeawutput by this pro-
gram. Since variable, is the one sent to output, it is the one that needs to be checked
Here, we useF/(a,) to denote every possible expression held by variahlein ev-
ery possible execution of this program. By observing the mnogcode, we have that
E(ay) = {0, 0, 0502 auteatas 1 whereo; represents the value obtained from the
i-th access on input channel Also, we know thati, has a control dependency with the
loop conditional. Being”C'(a4) the set of expressions which variallehas control de-
pendencies with, in every possible execution, we have frentbde thaPC'(ay) = {0 <
length(a), 1 < length(«),...}. Note that these are all the boolean expressions that might
be checked on the loop conditional. With this, the framewdekms the program secure
if all of these expressions are authorized by a declassditgiolicy. Here, the set of
declassifiable expressions is definedas= {length(a), ay, a; + ag, o + as +as, . . . }.
Thus, this policy allows the declassificationlefigth(«) plus any sum of distinct values
from o (note that there are no bounds for the minimum number of galuéhe sum, this
is discussed further in the rest of this thesis). Now, forgregram to be validated, every
member of both¥(a,) and PC(a4) must be a public expression. We can see that every
member ofE(a4) (€.9.,4522) is a fraction of two public expressions: an elementof
(o1 + ap) and a constant value (2). Conversely, every membét©fa,) is a comparison
between a numerical constant aladgth(«), which is in D. Thus, the framework deems
the program secure.

Encryption.We now present another example, showing the use of a poktyatlows
release of an expression owamy input channel. It is another of the classical examples
of declassification, this time in presence of encryption: hage data that is sensitive if
unencrypted, but its encrypted version can be declassifiée code below is already
pre-processed: the input channrelprovides a sensitive plain text filg, represents a
cryptographic key. Output channerepresents a low output.

Example 2.4. Encryption program:

text x1 1= o

int k= [;
x9 1= enc(xy, ky);
V= T

The unique aspect of this example is that here we want a piblatyallows the encryp-
tion of any input value to be declassifiable. Thus we havefhat {enc(i,3) | i € In},
whereln is the domain of all input channels. Thus, expression(«, 5) held by vari-
ablex, is public, and can be declassified. Note that this classimpiaof the need for
declassification is handled trivially by our theoreticarfrework.

As mentioned in our first example, we don’t consider a detflaaton to be invert-
ible. For this example, one may think that, aftgrhas been marked as safe, a decryption
function could be used to retrieve the origimaValue and assign it to a new variable.
However, since the decryption function would need the d&ay key, the inheritance
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from x5 would not be sufficient for:; to be marked as safe. A dependence from input
to the decryption function would also need to be validated thrs validation would not
happen, as there is no policy that allows it, therefore n@kjninsecure.

2.2 Language: Syntax and Semantics

In this section we introduce the syntax and semantics of anguage.Var is a set of
variablest, v, z, a, b, ¢, range oveNar and may have subscriptsjs usually a boolean
variable. AdditionalO variables [O = In U Out) represent input/output channels. Note
thatVar andlO are disjoint sets. We use, § to denote input channels, ¢ to denote
output channels, anfé to range over all ofO. We additionally usep to range over
Var U 10. Input channels are regarded as streams of values and aseethtb indicate
specific input values; e.qg,, denotes thex-th input value of input channel.

Functions are defined the usual way. Constants are functioausty 0, and we use
N to denote them. Expressions are obtained by combiningitursstvariables (alstD)
and constants in the usual way.

We use a simple imperative language with assignment, dondls and loops, al-
ready translated to SSA form. To simplify the presentatw@assume that all operators
are applied using prefix notation (e.g., writindd(a, b) instead ofa + b), with at most
one function per assignment (no nesting); also, expressinrconditionals refer to a sin-
gle boolean variable. Any program can be translated to triméat in a straightforward
manner. Regarding the SSA translatigrfunctions always have the form:= ¢.(a, b),
wherec is the conditional variable that generated thdtinction. Inwhi | e expressions,
C represents the-functions added by the SSA translation, which are evathatee if
the loop is not taken, and at every iteration otherwise.

Definition 2.1 (Program) A programC' € Prog is defined by the following syntax:

Cromskip | oima | vma | 2= fym) | 2= dlab) | Cr; G
| depends(8,c) | if cthenCielseCy, | while(C; cdoC

The commandiepends(0, ¢) is a special command that helps our non-standard se-
mantics keep track of control dependence on I/O channels dtided to the program
during pre-processinglepends(0, c) is inserted every time an input or output operation
occurs inside a conditional, and relates the channel wehctinditional under which it
occurs. The command is added just before the conditionakblowhich the operation
takes place.

We say that is acompositional statemeift C' is of the formC'; C5, otherwiseC' is
non-compositionalNote that any program can be written in the fatiny ... ; C,, (n > 1)
with C; non-compositional statements. Here we call the first nanpmsitional statement
C the active command af', denotechead(C').

Next, we define the program semantics, starting from thenatf state. Note that we
present an instrumented semantics, in the sense that ta@bthe process keeps track of
certain information useful for proving the compliance of galidation mechanism.



2. Expression-Matching Framework 25

Definition 2.2 (State) A states € Y is a 4-tuple(F, I, O, PC'), where:

E ¢ & = Var — Exp(ln xN)

I ¢ 7T = In—=N

O € O = Out— p(Exp(ln x N))

PC € PC = (VarulO) — p(Exp(In x N))

FE is a mapping from variables to expressions on indexed inpahels, keeping
track of the expression over the input that a variable holdss a mapping from input
channels to numeric indexes, keeping track of the index®htxt value to be read (so
I(«) denotes index of the next value to be read from chanfginitially, /(«) = 1
for every input channelk. O maps each output channel to the set of expressions (on
indexed inputs) that could be sent over that channel. Bin&C maps variables and
channels (both input and output) to sets of expressionsaegxed inputs, which record
the implicit information flows, i.e. the expressions on whtbe variables and channels
are conditionally dependent. Given a stafave write E, to indicate its first component,

I, for the second, etc. We omitif it is clear from the context, thus e.@.(z) denotes the
expression held by in the “current” state.

Next, we defineenvironmentavhich provide the input to the program through the
channels. We have a straightforward channel model wherehthienels are independent
of each other. In Chaptes we discuss how to extend this to more elaborate channel
models.

Definition 2.3 (Environment) An environment € 11 is a mappingn x N — Val from
input channels and indexes to values. Vatie, ;) represents the value returned from the
i-th access on input channel

Finally, we define a configuration over which the semantiesdafined.

Definition 2.4 (Configuration) A configurationuv € Q is a triple (C, o, 7), whereC'is a
program,o a state andr an environment.

Note that the environment determines the inputs that haee bewill be provided to
the program and (due to our channel model) does not changegdbe execution of the
program. The operational semantics is presented in F@ureThe transitions between
configurations have a labet (Obs) representing what can be observed externally when
that transition occurs; a label represents a non-observable transition. In our ¢hee,
only observable action is the output, showing the channelthe value being sent over
the channel. l.en € Obsis 7 or out(~, v) for some output channeland valuev.

We write f[z <~ n] for a variant off where the value assignedids f(z) © n. Here
® can be any operator of the right type. For instance, consifienctionf and a variable
z such thatf(z) = 1. If f/ = flz <= 2], then we have thaf’(z) = f(z) + 2 = 3,
and f'(y) = f(y) for everyy # x. We omit the operator if it is projection on the
second argument, i.€[z < n|(x) = n. For changes in the state, we only indicate the
components for whicla’ differs fromo. Our semantics treats-functions in a special
way. Unlike the standard functions;functions are evaluated as soon as they appear.
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(x:=a,0,m) T (skip,o’,7) (Input)
where E, = Eslr < aj (o]
Iy = Lla+1]
PC, = PC,lx+ PCy(a)]
(y:=z,0,m) > (skip,o’,) (Output)
where o = out(y,V(Es(x), 7))
Oy = O,y Ey(2)]
PC, = PC,ly< PCy(x)]
<‘T = f(yla R yk)a g, 7T> ; <Skip’ J,’ 7T> (ASSZgn)
where Ey = E,[v+ f(E;(y1),..., Es(yr))]
PCy = PC,lw 4 PCo(y1)U...UPCy(ys)]
(x:= ¢cla,b),o,m) > (skip,o’,7) (Phi)
where E, = E,[z++ EV(¢.(a,b),0)]
PC, = PC,[x+ E,(c)UPC,(c)UPCy(a)U PC,(b)
(depends(0,c),o,m) =+ (skip,o’,7) (Depends)
where PC, = PC,[0<2 E,(c)UPCy(c)]
(if c then C) else Cy,0,7) — (Cy,0,7) if V(E(c),n) = true (If 1)
L (Cq,0,m) if V(E(c),7) = false (If 2)
(whileC'; cdo C,o,7) = (C,o,7) if V(E(c),n)=false (While 1)
L (C; C; while C'; cdo C,0,m)
it V(E(c),m) = true (While 2)
(skip; C,o,m) = (C,o,7) (Skip)
o [
<Cla0aﬂ-> j(c}ﬂjvﬂ-) - (Seq)
(Cy; Cayo,m) = (C1; Cay0’,m)

EV . Exp<Var> x ¥ — Exp<In x N>

_ E(a) if a has been most recently defined;
EV(¢e(a,b),0) = { E(b) if b has been most recently defined.
V : Exp<In x N> x IT — Val
B m(a,n) if e = ay;
Vie,r) = { f(V(ier,n),...,V(en,m)) ife=f(er,...,en).

Figure 2.1: Program semantics

FunctionE'V makes this evaluation. According to standard definitiorhefi#-functions
in SSA form, the function returns the variable that has besfimed most recently based
on the branch taken. Whil¢ is a syntactic object, the boldfadeused in functionl’
indicates the semantic function that is actually evalutdeaivalue.

The semantics are standard small-step semantics, insttacho work with the ex-
pression tracking components of the program state. This veaiables hold expressions
on inputs rather than values, and these expressions angag@lto their actual values
only when needed. This is done by functibn which uses the environment to evaluate
inputs to their values.

e Rulelnput updates the expression held by a variablg.e. F(z)) to «;, a being
the accessed input channel aniis current access sequence number (1.&v)).
Thus, «; represents thé-th value froma. The current sequence number for the
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input channel is also incremented anéhherits the set of conditional expressions
related ton (i.e. PC(«) is assigned taPC'(x)).

e RuleOutputis the only that produces an observable transitiori(~y, V ( E,(x), 7))
represents an observable output to channalith the value evaluated from the
expression currently held by variable This expression is also added to the set
of expressions output by channel(i.e. O(~)). Finally, the set of conditional
expressions on is included on the set of conditional expressionsyorthe set
PC(x)isincluded inPC(v).

¢ Rule Assignupdates the expression held byo the expression on the right-hand
side of the assignment, translating any variablg$ (o the corresponding expres-
sions held by themH(y;)). Additionally, the set of conditional expressions:ois
updated with the union of such sets relative to all varialii¢be right-hand side.

¢ RulePhihandles assignments wighfunctions. The expression held bys updated
with the expression held by eitheror b, depending on which of them has been
most recently defined. This logic is defined by functiél. The set of conditional
expressions on is updated with the union of the expression held:land the sets
of conditional expressions of all variables on the rightithaide:c, a andb. E(c) is
added becausses the conditional variable of thef orwhi | e command related to
the current) assignment. Also, botRC'(a) and PC(b) are included since in loops
botha andb are eventually assigned 1o In non executed loops amd commands
only one ofa or b is assigned ta, but the other is never defined, soR§’' is empty
anyway.

¢ Rule Dependsandles the specialpends command. As the purpose of the com-
mand is to state the dependency of an 1/0O channel to a conditi@riable, both
the expression held byand its related set of conditional expressions are included
in the set of conditional expressions of 1/0 chanhel

e Ruleslf andWhile handle their homonymous commands in a standard way: eval-
uating the boolean expression on the conditional variatdieexecuting the branch
corresponding to its value. These rules don’t need to deal dépendencies cre-
ated by the f andwhi | e structures, since this is done by theand depends
commands related to them.

e Finally, rulesSkipandSeqtrivially handle theski p command and a sequence of
commands, respectively.

Theinitial stateo,,;, is the state in which no channels have been readiyet) (= 1),

all variables are undefined”(xz) =L1) and no output has been written to any channel
(O(y) = 0). A run of programC in environmentr is a sequence of configurations,
starting from the initial configuration and linked by tratims, i.e.,t € (Obs x Q) in
which fort = (og,wp).(01,w1) ... {(0n,wn), 00 = 7, wo = (C,0,,,,T), and for each,

such that) < i < n, w; — w;+1 IS @ transition given by the semantics (Figx4).
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We say the run is &ll run if no steps are possible from end state otherwise the run
is called aprerun We writeo(t) for the sequence of (visible) output actianso; .o, . . .
taken int andt =q t' if o(t) = o(t'). Similarly, we writew(t) for the sequence of
configurationsuy.w;.ws . . . taken int. Fori € N, ¢; = (0;,w;), o(t;) = o;, andw(t;) = w;.
For sets of trace®, 7" we writeT =q« 1" if Vt € T : 3t' € T" : t =o¢ t’ and vice versa.
Finally, we also writeRun(C, ) for all the runs ofC' in environmentr (note that for each
prerun int there is exactly one rufl which extends with one step).

2.3 Program Validity

In this section we define program validity with regards to taaaleclassifiable expres-
sions. The definitions presented here form fsameworkfor analysis of programs by
matching the possible expressions held by variables wiginessions allowed to be de-
classified. Note that these definitions include intractablaputations. In the next chapter
we present our specifimplementatiorof the framework, which safely approximates it,
providing a tractable analysis mechanism.

First, we assume that we are given a set of expressions thadeatassifiable. These
are expressions over indexed inputs which are allowed teblassified.

Definition 2.5 (Declassifiable ExpressiondDeclassifiable expressions are the set of ex-
pressionsD C Exp(In x N), that are specified or defined to be declassifiable. These are
expressions on the indexed input channels and constants.

In the rest of this thesis we refer to the fixed yet unspecifietdo$ declassifiable
expressiond). Given these expressions, we would like to inductively detime set of
public expressions, i.e., expressions whose values agdsat output.

Definition 2.6 (Public Expressions)Let D be a set of declassifiable expressions, we say
that the expressioais public according taD if the following relation holds:
public(e, D) = (e € D)V (e = f(ex,...,en) A public(er, D) A ... A public(e,, D))

With the format of the declassifiable expressions definednowe need definitions
regarding program validity. First, we define every poss#bége a programy’ can reach:
states(C) = {o | (C",0,7") € w(t),t € Run(C,w),r € II}. In other wordsstates(C')
represents every state tl@@gcan achieve for every possible execution of it in every possi
ble environment.

We are now going to define “safety” of variables and I/O chésao&a given program
(', according to a set of declassifiable expressions

Definition 2.7 (Variable Validity) Let C' be a program, be a variable or I1/O channel
used inC' and D be a set of declassifiable expressions. Abpuie say that:

1. p is data dependency safe (DDS) if every expression possétdyly it is public
(declassifiable).
public(E,(p), D) if p € Var

dds(p,C, D) = Vo € states(C) : Ve € Oy(p) : public(e, D) if p € Out
public(p, D) if pein
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2. pis control dependency safe (CDS) if every expression thaaltse might depend
on is allowed to be declassified.

cds(p,C,D) = Vo € states(C),e € PC,(p) : public(e, D)

3. pis a safe variable (or I/0 channel) if it is both DDS and CDS.
safe(p,C, D) = dds(p,C,D) A cds(p,C, D)

Note thatdds returns false for every which is an input channel, unless there is a declas-
sifiable expression that states that the whole channel carade public.

Proposition 2.8. Letx be a variable in progran®’ and part of an assignment of the form
x := e, with e of the forma, f(y1,...,yx) Or ¢.(a,b), and D be a set of declassifiable
expressions. We have thatifs(z, C, D) thenVp € e : cds(p, C, D). In other words, if

is CDS with respect t®, then every variable or I/O channel inis also CDS.

Finally, we can define program validity with respect to a Setexlassifiable expres-
sions.

Definition 2.9 (Program Validity) We say that a terminating progradi is valid with
respect to a set of declassifiable expressibrievery output channel accessed it is
safe. That is:

valid(C, D) = ¥ € Out: safe(y,C, D)

We illustrate the concepts presented here by referring toripke2.3. From the ex-
ample, we recall thab = {length(«a), a1, a; + as, a1 + as + as, ... }. Also, for every
possible state that the program can reach, the expressiorn$,ifry) can be any from the
set{0, oy, Gz autaeras 1 With this, by Definitions2.6and2.7 and by the content
of D we can see thatublic(e, D) holds for every € O, (+) and for every the program
can reach, and thugis(vy, C, D) holds. Also, we know thaf’C, () can contain the ex-
pressions{0 < length(a),1 < length(c),...}. Thus, from the same definitions ariul
we have thapublic(e, D) holds also for every € PC, () and thus:ds(~, C, D) holds.
Consequentlysafe(y, C, D) holds, and since is the only output channel in the example,
we also haveialid(C, D).

With Definition 2.9 we conclude the presentation of our expression-matchamgér
work. Further in this thesis we demonstrate that the frannkewaplies the property called
Policy Controlled Release. The property is presented in thewmg section 2.4) and
we show that the framework implies it in Secti@rb. In Chapter3 we present a com-
putable implementation of the framework presented so &alized through the use of
graphs. Refer to Figurg.2for a roadmap of the structure of the thesis.
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2.4 Policy Controlled Release

In this section we define our reference security propertgd#&olicy Controlled Release
It is an “end-to-end” property in the sense that it boundskim@wvledge that an attacker
can gain by observing information released on output cHartheing any collection of
runs. Our property closely follows the Conditional Gradualedse (CGR) given by
Banerjee et al.BNRO§, though our variant differs from the original definitions$everal
important respects, being simpler and independent of cterstics of the program’s ex-
ecution. CGR itself is a variant of the Gradual Releas®(74 property. To simplify the
discussion, we assume that information obtained from aliriput channels is confiden-
tial and can be modified only by the target machine (on whietptlogram runs). Reading
from an input channel is not visible to an outsider. On thesptiand, any information
placed on the output channels is regarded as public. Reteia$anmation from the secret
input channels to the public output channels is permittdg aocording to declassifica-
tion policies. Recall that we have also assumed that the oipuinels are non-interactive
in the sense that reading data from one input channel, hataub @n the values obtained
from other input channels. We discuss the relaxation ofetlassumptions in Chaptér
The security property is defined in terms of the program only.

Two environments are said to de-Equivalent if the values of the declassifiable ex-
pressions are the same in both the environments. Evalusigngxpressions in thB set
(seeV in Section2.2, Figure2.1) gives the actual values that can be declassified.

Definition 2.10 (D-Equivalent Environments{)). Given a set of declassifiable ex-
pressionsD, two environments; and 7, are said to beD-equivalent m; ~p o, if
Vee D :V(e,m) = V(e m).

Note that the fact that the expressions have the same vadtesandt necessarily mean
that the input values are the same in both environments. »ampgle, the boolean ex-
pressiony; > 0 will have the same value for all the environments in whichftist value
obtained from channel is larger than zero.

Lemma 2.11.Let D be a set of declassifiable expressionsandm, be two environments
such thatm, ~p m, ande be an expression iExp(In x N). If public(e, D), then
V(e,m) = V(€,7T2).

By observing the value of declassifiable expressions, ondegain something about
the actual environment. In particular one learns that ittnbedong to a given class of
D-equivalent environments. The expressiongirare correctly enforced if no further
information can be learned.

Definition 2.12 (Revealed KnowledgeR)). Given a set of declassifiable expressidns
and an environment we define the knowledge ofrevealed byD as:

R(m,D) ={x" | 7 ~p 7'}
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Note that the smaller the s&(, D) is, the more information about is revealed.
The revealed knowledge represents a bound on the amounfoofigtion that may be
revealed by a program that complies with setThe next step is to define the amount of
information a program reveals.

The behaviour of a program that an observer can see is thesegwf outputs it
generates. Thus an observer cannot distinguish two emaeats if their runs produce
the same sequence of visible output actions.

Definition 2.13 (Observed Knowledgek()). Given a progranm’’ and an environment,
we define the knowledge ofthat can be observed ifi as:

K(m,C) ={x"| Run(C,m) =out Run(C,7")}

Our security property, Policy Controlled Release (PCR), stitasthe knowledge
obtained from observing the program is bounded by the inddion released by the de-
classification policies.

Definition 2.14 (Policy Controlled Release (PCR))Ve say that a program’ satisfies
policy controlled release for the set of declassifiable egpiongD if for all environments
m:K(r,C) D R(m, D).

To illustrate the concept with an example, consider a/se&tith only the previously
mentioned boolean expression, i.= {«; > 0}. Also, consider environmentsand
7', in which7(a,1) = 1 andn’(a, 1) = 5. Thus,n’ € R(w, D) and vice-versa, since in
both environments the expressionfinhas the same value. Now consider a progam
to be executed in both andn’. ForC' to satisfy the PCR property, it has to produce the
same outputs for the both environments. This means thag Walue of the declassifiable
expression does not change, no new information is revegiéd blowever, if the output
sequence changes framto 7/, that means that' is revealing somethinmorethan what
is specified byD.

2.5 Soundness of the Framework

Let us anticipate the result we aim at, which states that oggam is secure according
to our analysis, then the program satisfies the PCR propehiy.pfoof of this Theorem
is given at the end of this section.

Theorem 2.15. For any terminating progrant’ and a set of declassifiable expressions
D, if valid(C, D) then the progrant’ satisfies PCR with respect 10.

The proof of the Theorem relies on determining a linking kegwcorrespondent runs
of a same program, the existence of which is stated by Leéhith First we need to de-
fine the properties of this linking and the intuition behirmhhthe linking works and why
it must exist. The linking is inspired by the proof of soungsi@a Banerjee et alBNROS|.
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However, our proof is simpler because we do not need to censii® exact path taken
by the program to reach a particular state — buequivalence property together with our
flow-sensitive approach to check validity ensures thatedsreading to the same output
actions take the same branches. Additionally, the proansination-insensitive. This
means that for the proofs to go through, we assume that tips |aowhich the conditional
expression is non-declassifiable, terminate.

The core idea behind the linking is that a program can be inajngvo distinct
confidentiality levels: a level (low, public) in which it may output data or a levél
(high, secret) where it may behave differently dependinghon-declassifiable infor-
mation. For ease of notation we assume, without loss of espeness, that in a pro-
gram any statement other thaki p can only occur once. This allows us to assign a
unique type, denoteld(C"), to each statement’ of programC’, so we have a mapping:
['.(-) : Prog x Prog — {H,L}. When the program is clear from the context we omit
it and simply talk about the typE(C") of statementC’. Given a set of declassifiable
expressiond), a programC' in the formC = C; ; s, we type all non-compositional
statementg"” contained inC' as follows:

/ _ FC1 (Cl) if ¢" € Cl
Loy 0,(C7) = { L, (C) if C" e Cy

And then, for a non-compositionél;, we definel’,(C") as:

C; (o condition Le, (C)

i f cthenC, el se any  —safe(e,C, D) H
if cthenC)el seC, = safe(c, C, D) L

if cthenC,el seC, =+ C; safe(c,C,D) | T'ey ., (CY)
while C; cdo C, any —safe(c, C, D) H
while C; cdo C, =C; safe(c,C, D) L

while C; cdo C, + C; safe(c,C, D) | I'z. ¢, (C')
otherwise skip - H
otherwise # ski p - L

In the table above, the rightmost column represents theevald'c, (C’) when all
the conditions on the columns to its left are met. For exantpke first row of the table
reads: wherC; = if ¢ then C; el se (C,, (' is any statement and the condition
—safe(c,C, D) holds, ther'¢, (C") = H. The intuition behind the typing is as follows:

1. Everyski p command is typed/. *
2. If C" is a conditional statemenit{ orwhi | e) whose condition: is not marked as

declassifiable, i.exsafe(c, C, D) thenT'(C’) = H and also all statements nested
insideC"’, directly or indirectly, are typed/.

1Although it is intuitive to typeski p as L, we type it H for convenience, as doing so helps us to
simplify the notion oflow continuation explained further ahead.
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3. If C" is a conditional statement whose condition is declassédiahenl’(C’) = L
(unless nested within a statement of the previous case) andpeat the procedure
for the statement(s) in the body in the same way.

4. Each non-compositional statement not tygédaccording to the above rules is
typedL.

The type of a compositional statemétitis the type of its active commarictad(C").
In the L level the program will behave ‘the same’ in two-equivalent environments.
The next definitions capture this notion of ‘the same’. We fiansider the states that a
program could reach.

Definition 2.16 (Compatible States<)). LetC be a program and) be a set of declassi-
fiable expressions. We say that two stateando, are compatible fol” and D, denoted
01 =(c,p) 02, if the following conditions hold:

1. Vaeln :if cds(a, C, D) then(1,, (o) = I, () and PC,, (o) = PC,(v)).
2. Vx € Var : if cds(z,C, D) then(E,, (z) = E,,(z) and PC,, (z) = PC,,(x)).

Intuitively, this definition reflects the fact that if the dool dependencies of a variable
or channel are declassifiable then they cannot be alteeetifrem by the program in a
H level and asL behaviour has to be the same, they cannot distinguish betives
D-equivalent environments.

Lemma 2.17. The relation= ¢ p) is transitive.

We define thdow continuation ofC' = C;. . .; C,, denoted.-con{C') as the state-
mentC;; ... ; C, wherei is the first index for whichC; is not typed high. Notice that if
I'(Cy) = L, thenL-contC') = C. Now we define a correspondence relation over two
runs of a program.

Definition 2.18(Correspondence between two rugg). LetC be a programs andn’ be
environments, and) be a set of declassifiable expressions.tltet a prerun ofRun(C, )
andt’ be a prerun ofRun(C, 7') with ||¢|| = n and||t’|| = m. A correspondence between
andt’isarelation@ C {0,1,...,n} x{0,1,...,m} satisfying the following conditions:

1. (zero-element) @ 0
2. (completeness)i € {1,...,n}:3j € {1l,...,m} i@ j and vice versa

3. (trace-equivalence) For all j, witht; = (o;, (C;, 0, 7)) andt’; = (o}, (C7, 0%, 7)),
such that @ j, the following conditions hold:
(@) (output-equivalence)(t,)...o(t;) = o(t})...o(t})
(b) (state-compatibilityy; = ¢, p) o;
(c) (level-agreement)(C;) = I'(C?)
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(d) (code-agreement) L-cqdt;) = L-cont(C?)
We say two runs correspond if there exists a correspondethetgore between them.

From the requirement ‘output-equivalence’, it is cleartttveo corresponding runs
produce the same output. The other requirements allow usltectively build the corre-
spondence relatio between runs of a program in-equivalent environments. We can
now state the key Lemma in proving Theor@m5

Lemma 2.19.LetC be a program and be a set of declassifiable expressions, satisfying
valid(C, D). Letw andr’ be two environments satisfying=, 7', such that’ terminates
under bothr and«’. Letw, = (C,0,,,;, ) andw; = (C,0,,.,, 7). For each prerunS

starting fromw, there exists a prerul’ starting fromwy, such thatS corresponds t&’.

Proof of the Lemma can be found in the Appendix and with thiswyae prove Theo-
rem2.15

Proof of Theoren2.15 Lemma2.19implies that the executions of/a-valid program in
two D-equivalent environments can be linked in a way that guaemthey will result
in the same runs. This implies that for all environments’ if 7’ € R(w, D) then also
e K(m, C). O



CHAPTER 3

Graph-Based Implementation

In this chapter we present our graph-based implementafidimeoexpression-matching
framework, which we refer to agraph-based PCRThe implementation uses a form of
graphs to represent expressions that can be held by variablee graphs work as fi-
nite structures able to represent possibly infinite setxpfessions. This graph-based
approach presents a computable mechanism to validate eapr@gcording to the PCR
property. The implementation is, howeversafe approximatiorf the framework: if a
program is deemed safe by the implementation, it is guaedrtie be safe by the frame-
work as well, but the opposite is not true. In other words,dreph-based approach is
guaranteed to never validate an unsafe program, but it gaderisome circumstances,
reject a safe program. The precision of the approximatiahssussed in more detail in
Chapters and®6.

In the following section3d.1) we revisit the examples of Secti@nil, showing how the
graph-based PCR handles them. Then we introducexqaression graphis Section3.2,
both for the program and policy, and in Secti®3 we proceed to define how the policy
graph is matched against the program graph. The soundngssiofplementation is then
shown in SectiorB.4, where we show that a program deemed safe by the graph-based
PCR is also safe according to the expression-matching framkewln Section3.5 we
present and analyze algorithms for this approach, in omldemonstrate its tractability.
Finally, in Section3.6 we extend both our toy language and the expression graphs in
order to support user-defined functions, showing that tipecgeh is suitable for modular
programs, and thus paving the way for supporting extensool as object-orientation.

The contents of this chapter are presented in paRBsiH™10, RBdH"11].

3.1 Reuvisiting the Examples

In this section we revisit the examples of Secti@, and show how graph-based PCR
handles them. First, let us recall the authentication @nogexample, already pre-processed:

Example 3.1. Authentication program in SSA format:
struct r; := o
bool ¢; := iscomplete(x);

string fo;
bool vy;

35



36 3.1. Revisiting the Examples

depends(f3, c1);
if ¢gthen
o 1= hascred(x4);
i f cythen
f1:= credential(xy);
el se
fo := lastname(x);

fs = e, (f1, f2);
vy = validate(f3);

el se
fa = login(zy);
string y; == f;

vy := verify(f1,y1);
V3 ‘= ¢01 (Uh UQ)?
f5 = be, (f3, fa);

Y= U3

Expression GraphAn expression graph is an abstraction for representingehefs
expressions that may be assigned to one or more variabkésg tato consideration the
input channels and the constants a program refers to. In@e®sion graph nodes repre-
sent variables, constants and 1/0O channels, whereasetiredgges represent assignments.
The labels on the edges denote the functions used in thenassings, while the subscripts
indicate the indices of the arguments from the parent no@eges ofp-functions are
dashes as they are used to represent distinct paths thahatfon can follow during an
execution, each path separately representing a set ofsstpns. Thecont r ol edge
illustrates that there is a control dependency between wdes the parent being the
variable representing the control expression. Fiddifeshows the expression gragh
associated with the variablg of our program. For clarity, a control edge betwegn
andg is omitted, since:; also causes a control dependencyjnand it will be analyzed

anyway.

| control

control\ b |

e validate ° Y @

Figure 3.1: Expression graph for variabigof authentication program
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Policy Graph. Declassification policies are also represented using grajphfact, a
policy graph is similar to the expression graphs associatttprogram variables, except
for some key differences, including: (1) nodes can be labeli¢h “wildcards”, i.e., la-
bels in the formx, (2) certain nodes in the policy are marked as “final nodesgir@sented
by the double lined circle), representing expressionsahatbe declassified. A declas-
sification policy consists of a graph which might containesaV disjoint components (to
allow multiple expressions to be released). The policy lgrap for our authentication
program in Example.1is given in Figure3.2 We know that information from either
channelsy and g cannot directly flow to the channel the policy of Figure3.2 allows
such a flow under a few additional conditions. The followig@tions are allowed: two
boolean checks on the user’s recardif it has a credential and if is a complete record),
two validation operations over user’s information (vatida through the credential or the
last name), and a verification of the user login against alsgpassword from channel
B. The final nodes, *3, x3, *; andx; represent the expressions that can be declassified.
Note how this policy graph corresponds to the Betliscussed in Exampl&2

° hascred
° iscomplete

()
@ credential w validate @

verify,

{0
e @ lastname wvalidate @

Figure 3.2: Policy graph for example of authentication paog

Policy Matching. Now that we have both the program and the policy graph, we can
check if the program isafe In our program the (low) output is assigned the value of
variablevs, so what we now have to check is that the paths in the prographgndicating
the flow of information from a high input to; are safe, i.e., that they match at least one
component of the declassification policy. This analysisisalin two stages: first all data
dependencies of a node are checked, later in the secondistagmtrol dependencies are
checked. The node representingn the graph has Biformation pathgdefined precisely
in the next sections, not the standard concept of a path iaghgreaching it: (a) one that
comes from channel passing through nodes, fi, f3 andv,, (b) another also coming
from «, but passing througli, instead off;, and the final one (c) coming from both
and g, converging on node,. These paths represent the three possible outcomes of the
nested f commands.

To determine that the nodeg is safe we will first analyse its parents. First, node
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vy, has only information path (c) reaching it. This path masctiee leftmost component
of our declassification policy in Figur&.2, and we say that node simulatesnodex,
meaning that all expressions possibly held/byre recognized by,. Or, in other words,
vy ~g.q4 *7. Because of this, this path i@ is marked aslata dependency safend so is
the node, since this is the only path reaching it (note thatgtiaphs are not exactly the
same, our definition of policy simulation handles this pmbge Sincewv, has no additional
control dependencies (the dependency wjtls processed in the analysis@f), we now
know it is asafenode.

With (node)v, being safe, we now analyse. This node has two information paths
(a) and (b) reaching it. We can see that, for each patBjmulates a final node of each
of the 3-node components of the policy; @ndx5), on the bottom of Figur8.2 Thus,
both paths are data dependency safe, and so is the nodeTtselé is however a control
dependency that we have to consider, witlthat reaches;. But here node, simulates
the final node of the topmost policy componeat)( thus making it safe (it has no control
dependencies or other paths) and thus makjngpntrol dependency saf@herefore, we
now know thaty, is a safe node.

We can now go back tos. Since its two parent nodes are safe, we know thas
a data dependency safe node, since all the paths were covaredder to demonstrate
it is also control dependency safe, we need to show that noesafe, this is done by
showing that the node simulates a final node of a policy graph (Thus,vs is a safe
variable and the program’s expression graph is deemed valid

Statistic CalculationWe now recall the second example, about the statisticalilzalc
tion over data. Recall the average calculation program:

Example 3.2. Average calculation program in SSA format:

int a; := 0;

int iy ;= 0;

int [y := length(«);
bool ¢ = leq(iy, l1);

Whi | e (3 := ¢ (c1, 2);

az := ¢ey(ar, az);
i3 == ey (11, 02);
63) do

int &) == q;

as = add(az, ty);

i := add(is, 1);

¢y := leq(ia, [1);

ay = div(ag, ly);
V= Ay

Let us see how our graph-based implementation deems tlgsgonosecure, in a com-
putable way. To do so, it produces the expression graph iassddo variable:, (Fig-
ure3.3). For the sake of clarity, Figurg.3 only includes data-dependenciesagf Since
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we also have to consider the control dependencies, and eamtrol dependency af,
goes througl;, we represent the graph associated with ngdgeparately in Figur8.4.
The numeric annotations on the edges indicate looping ktitewhich assignments are
performed. The assignments that happen within the loop haw®rresponding edges
marked with 1. The other edges are part of context O (not wighioop), and their an-
notations are omitted. These are needed for checking @orelzdlled input uniqueness,
discussed further ahead.

Figure 3.4: Expression graph for varialle

The policy graph for the average example is given in FidiBe This policy allows
for the release of a sequence of additions over entries frputiv. The final nodex;
represents the sum expression.

The policy contains an additional constraint that states tio individuala-values
should reachs; more than once (every accessatanust be unique). Assuming thétis
the policy graph, we say that, x3) € uni(d). Thisis called amnput uniqueness relatign
we discuss how to express this in Sect®a

We also assume that there is an omitted component of theyppiph that specifies
that the expressiofength(«) can be declassified.

This example program is deemed valid by the policy. Nageimulates node:;
on the policy and the--uniqueness constraint is satisfied through the use of tharig
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Figure 3.5: Declassification policy graph for average examp

context annotations. Variable holdslength(«), which is also authorized as previously
mentioned. This allows us to mark as safe, which in turn makes control dependency
safe. Thereforey, is marked as safe. The mechanisms used in this process aredlet
in the next sections.

It is important to note that, since our approach works asta&cstaalyzer, it is beyond
the focus of our representation mechanism (i.e. graphsggecesent the run-time be-
haviour of the program, including the number of times a gil@p runs. This problem,
however, can be treated by a combination of static analyslsantime enforcement, as
it is done in Chapted. Also, a discussion on how to tackle the problem only stéyica
can be found in Chapté&;, Sections.2

Encryption. Finally, we show how the graph-based implementation tackie en-
cryption example:

Example 3.3. Encryption program:

text v (= o

int k= [;
x9 1= enc(xy, ky);
Y= Lo

Here, we have a policy that allows the disclosur@ayinput channel, as long as it is
encrypted with a specific key, using a specific encryptiorctiom. For this, we need to
use the wildcards in the policy. FiguB6 shows the graphs for both the policy and the
program. In this case, nodg" in the policy is a wildcard that matches any input node,
and thus it matches nodein the graph, making it clear that the content of variable
can be made public, matching the final nede

3.2 Expression Graphs

In this section we formalize the notion of expression grajuth for the program and
the policy. Note that program graphs are automaticallywtated based on the program’s
source, whereas the policy graph is supplied by the polictewr
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Program:

Figure 3.6: Encryption program and its matching policy

3.2.1 Program Graphs

First we define how a program expression graph (program gfapihort) is built from
the program. We consider directed graphs, given by(V, E) € GinwhichV C Vertex
and £ C Edgeare the sets of vertices and edges, respectively. Vertng®dges are
structured objects that contain labeling information. fieeertex has the form = (1, ),
where! is the label andt is the type, which is one ofar, i n, out, andconst,
corresponding to variables, 1/0 channels and constarsigeotively, and which we denote
by type(l). We use the convention of denoting the vertex with ldtsin;, and we assume
that the type or possible types of the node is clear from thellaFor instancey,., n.,
ny, n, andny are nodes of typesgar , i n, out, any andconst, respectively. Each
edge has the form = (n,n’,¢,u), in which: n andr»’ are the origin and destination
vertices, respectively; is the edge type, which can Ip¢ ai n (for assignments with no
function application)cont r ol (for control dependencies between boolean variables in
conditionals and variables assigned inside the conditlinak), or f;, a function name¢
subscripted with an indexo the function, for edges that represent function appboat;

u € Nis an index that represents the looping context in which ssggament represented
by the edge takes place, i.e. it is different than zero if #®gnment takes place within a
loop, and different loops are marked with distinct indexX#®. use metavariablesandv

to denote looping context indices. We writels n’ as a constructor that returns an edge
(n,n',t,u). '

We lift set union () to graphs in the standard waly;, E,)U(Va, Ey) = (V1UV;, E4U
Es).® We define the following pre-order ai. Forg, = (Vi, E1), g» = (Va, Es) € G,
we write g = ¢o if Vi C V, and there exists an injectios : N ! N such that
{(n1,n}, t,w(ur)) | (ny,ny,t,w) € By} C Ey. Wheng, 3 g, andg, 3 g1, we say
that the two graphs are equivalent denoted,as: g,. Finally, the operatox is defined

IHere, the termabel used for nodes and edges denotesame(or id) of that node/edge. Not to be
confused with the notion afecurity label often used in computer security literature.

2For unary function names we elide the argument index.

3Note that if/; NV, = (), then the union will consist of two disjoint graphs.
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the obvious way (using instead ofC).

To build the graph we use the functigf defined in Figure3.7, which takes a com-
mandC' and a looping context indexas arguments and returns the corresponding graph.
We write G(C') as a short td7,(C'). The ¢-functions generated by the SSA translation
are used to handle control flow dependencies. Note that #remnultiple definitions for
assignments, according to the format of the RHS operaton, Ads the looping context
index, theg-functions of the loops receive a special treatment. Indleases, the func-
tion is called and returns the first argument €dge) always once, regardless if the loop
runs or not, whereas it is called and returns the second aguih, edge) as many times
as the loop runs. Thus, thg edge is labeled with the looping context index of before
entering the loop, and, is labeled with the one of the loop body. This is specified by
function ®. Also, we usefresh() to return a “fresh” integer value, i.e. a previously un-
used value, used for looping context identifiers. We ais@ denote the control context
index on thecont r ol edges. The value afis unspecified, as it is irrelevant to our other
constructions.

G : ProgxN— G
®: Progx NxN— G
G, (skip
Gu(cl 5 02
Gy(if ¢ then Cp else Cy
G.(while C'; cdo C

0

Gu(C1) UGL(Cy)
Gu(C1) UGL(Cy)
P,.,(C) UG,(C)
where v = fresh()

plain

~—_ — — —

Gulz:=a) = ng Ny
u
plain

Guly:=2) = ny —>u Ty
plain

Cule=y) = n, P20,
u

_ _ f1 T
Gu(x *f(yla y Yk = Ny ?nw-'-anyk “ N

1 2 control
= MNgq > Mgy Np > Ny Ne > Ny,
u u €
control
c

== (I)u,v(cl) U (I)u,v (02)
control

[o31 b2
= MNg an,nb _>nx7nc — Ny
u v €

Figure 3.7: Graph building function. Note thétsh() returns a previously unused value
and that is used to denote an unspecified index.

Definition 3.1 (Expression Graph)The expression graph € G of a programC' is given
by G(C) = Gy(C). Go(C) is constructed in Figur&.7.

We usenodes(g) and edges(g) to denote the sets of vertices and edgeg,ofe-
spectively. We use the 5-ary predicate written-- ¢n which is defined to hold if
(n,n',t,u) € edges(g). Wheng is implicit in the gontext where the predicate is used,
we write simplyn L n/. Note that this notation overloads the notation for the edge
constructor. Wheth%—:-r we use this notation to denote the aret or the predicate will
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be clear from the context, throughout this thesis. When tlhaevaf « is irrelevant, we
write n — n’ which is equivalent talu : n LN ¢n'. And whent = pl ai n, we write

pl ain ’

n — n' which is equivalent tadu : n —— ,n/. We also writet; whent is a data
u

dependency type, i.¢.=~ cont r ol . In a similar fashionp “" n’ denotes that there is

a path (excludingont r ol edges) between nodesandnr’, with w being the sequence

of labels on this path. In other words,denotes the sequence of labels of edges used to
reachn’, starting fromn, and excludingont r ol edges. Additionallyy %* n' denotes

that the whole patlv has the same contextand we use: —* n’ when bothw andu are

irrelevant. We also us&: to denote eithefs or 2. Using a notation analogous to that
of bisimulation Mil89], we call an edge a-edge if its type is eithgpl ai n or ¢. Finally,
we write 4 n to denote that the indegree ofis zero, and functiorype(n) returns the
type of a noden.

Before presenting a first theorem, we first present the defindf input-uniqueness.

Definition 3.2 (Input Uniqueness on Expressiong)h expressior : Exp(In x N) is said
to bea-unique if every occurrence afrepresents a distinct access on that input channel,
i.e. everyw; occurring ine has a distinct index.

We now define a notion af-uniqueness for graph nodeghat will be used below to
express the requirement that expressions recognizedd@n-unique. Given a graph,
this notion is represented by a set of pairg(g) C In x Vertex and(«,n) € uni(g)
indicates that: is intended to represent ondy-unique expressions. In policy graphs (see
Definition3.7below), this set is given explicitly. For program graphs,deeive it accord-
ing to the following definition. (We believe that this definit is somewhat conservative
in the sense that it may not extract aluniqueness pairs that could be derived in some
cases, but it serves us well, is simple, and admits efficiemputation.)

Definition 3.3 (Input Uniqueness on Noded)etn be a node in the program expression
graphg, a be an input channel and,, be the graph node that represenits We say that
n is a-unique and write(a, n) € uni(g) if none of the following relations hold:

1. If n, reaches some node, which in turn reaches via two distinct paths. That is:
In’ € nodes(g), w,wy, we, f :

*
w * o wify
Ng — n' —= n,
w o , waf; "

Ng — n' —= n,

f 7£ ¢7Z 7éj>w1 Nwy = @,n/ 7& Na
2. If nis reached by, and also part of a cycle, but the looping contexts of the cycle
and the path differ at some point. That is:
x td * * tii *
Ju,v:n, > FS—="n "S> nuF v
3. If a parent node of. is nota-unique. That is:
In' € nodes(g) : n' N (o, n') & uni(g)



44 3.2. Expression Graphs

The definition specifies the cases in which a node holds aression that combines
more than one occurrence of a same input value. The firsioelstiates the case in which
a same expression on the input channel converge on a sindgevieotwo different paths,
through some functiorf. The second relation is about a node inside a loop, holding
an expression on the input that grows iteratively with thepl@xecution. If the input
access is inside the same loop of the cycle in the graph, theim ieeration will grow
the expression with a “fresh” value from the input. Otheryithis freshness cannot be
guaranteed, and neither input uniqueness. Finally, thid tkiation states that, once a
node is marked as natunique, then so are its children. The correctness of theitefi
is implied by TheorenB.6, presented further in this Section. However, we also ptasen
as the Corollary below, for clarity.

Corollary 3.4. LetCy, be a program;r, be an environment, be a run in Run(Cy, mp),
andg = G(Cy). For any configurationC, o, 7) € t, o satisfies the following:

Vo € Var,a € In,n, € nodes(g) : if (a, n,) € uni(g) then E,(x) is a-unique.

We now define a functioazp : G x Vertex — o(Exp(In x N)) which makes precise
the set of expressions represented by each graph node. Wéeewj(n) to denote the
set of expressions represented by nade graphg, and we omity when it is clear from
context.

expg(ny) = {N}
expy(ng) = {a;|ieN}
expg(ny) = U expy(n)
n’'—n.
expy(ny) U, (Exp)
in which
Exp= {f(e',....eF)|Vnl, ... ,n¥:ni N ng A e € expy(n')}
U U expy(n’)
n’%nm
and

U, (Exp) = {e € Exp | Ya € In :if (a,n) € uni(g) thene is a-unique

whereV,, is a filter used to deal with input uniqueness, removing esgioas which don't
satisfy a-uniqueness if the node holds that property. Note that in the above definition
exactly one of the subsets @fp(n,) will be non-empty as each node is reached by either
a single plain edge, two edges ot function edges.

We also define the functiorezp : G x Vertex — p(Exp(In x N)) that computes all
conditional expressions the value held by a node can depgaod u

cexpy(n) = U cexpy(n') U U expg(n’)

n/LN’L n control n
We can finally state our first result, which is about the soasdrof the graph trans-
lation. First we define correspondence between the graph amdyjle program state, and
then proceed to the theorem that relates the graph with agrog
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Definition 3.5 (Correspondence Between State and Grapé)o be a program state and
g be a program expression graph. We say thand g correspond to each other if they
satisfyP(o, g), defined as the conjunction of the following properties:

Pg(o,g9) = Vx € Var :if E(z) is defined then
(x,var) € nodes(g) N\ E(x) € exp(n,)

Pi(o,9) = Yaeln :if I(a) > 0then
(i N) € nodes(g)
Po(o,9) = ¥y eOut:if O(y) is defined then

(v,0ut ) € nodes(g) A O(v) C exp(n.)
Ppc(o,9) = VpeVarulO :ifPC(p) is defined then

(. type(p)) € nodes(g) A PC(p) C cexp(n,)

Theorem 3.6(Soundness of the Graph Translatiobgt Cy be a programsry be an envi-
ronmentt be a run inRun(Cy, mp), andg = G(Cy). For any configurationC, o, ) € t,
o satisfiesP (o, g).

Pg states that each variable has a corresponding node, anthéhaexpression of the
variable is contained in the set of possible expressions nelthat node;P; states that
for each input channel accessed in the process there exgstsesponding node in the
graph; Py states that for each output channel there exists a corrdsmgpnode, and that
the set of expressions sent to that output in the processubsesof the set of possible
expressions held by that node; finallj;¢ states that for each variable (and 1/0O channel),
the set of conditional expressions that the variable depends a subset or equal to that
set for the corresponding node.

3.2.2 Policy Graphs

Policy graphs work in the same way as program graphs, withvékéy differences: (1)
one or more nodes are marked as “final nodes”; (2) nodes can“héldcards” as label,
in the form ofx;, meaning that they can match any other node, regardless tdhkl; (3)
edges don’t have control context labels; and (4) input uengss relations are provided
with the policy, working as constraints over the recognieepressions. These differences
are justified by the fact that the program graph is calculai@erder to represent all
possible expressions that can be held by variables in thgrgomg whereas policy graphs
are supplied, recognizing the set of expressions that catetlassified. For clarity, we
write «’ to denote the wildcard on a node of typeand justx whent = var. The
matching process between the policy and program graph isedkiin Sectior8.3.

Definition 3.7 (Declassification Policy)A declassification policy is a graphe D, with
possibly disjoint components, in the forim= (V, £, V;, U), whereV C Vertex is a set
of vertices,2 C Edgeis a set of edged;; C V is a set of final verticesand C In x V'
is a set of input uniqueness relations.
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The final vertices hold the expressions allowed to be defiledsWe writefnodes(d)
to denote the sét; of final vertices on policy graph. Thus, the set of expressions al-
lowed by a policy graph is determined by ) expi(ny). Also, we useuni(d) to return

nreV,

the set of input uniqueness relations fré)mfa policy Thus, for our working example
of the average salary, we have that the policy of FigBurecognizes the set of ex-
pressiong0, add(0, o;), add(add(0, o), c;), . . .}, with all indices o being distinct, as
(cr, x3) € uni(d). Itis important to point that this work addresses the pnobdé enforcing
declassification policies, rather than specifying themweleer, it is fairly straightforward
to derive a rule that translates the policy graph to/fromedonm of regular expressions
(e.g. regular tree expressiorGHG"07)).

With this, we can extend the definition efp to define the expressions held by
nodes in the policy graphs:

expa(x°°™') = Const
expg(*' ") = In x N

where Const denotes the set of (syntactical) constants. Nd#lehold the same expres-
sions asvar nodes on the program graph, thus definedeby,(n.). A node of type
const with a wildcardx label holds any constant as its expression and a node of type
with wildcard label matches any indexed inpuyt

3.3 Graph Matching

Having defined the expression graphs of program and politigdrprevious section we
now introduce the mechanism that matches them. This wathalis to define which nodes
are safe according to the policy. If all output nodes are, shé the program represented
by the graph is safe too. Note that multiple disjoint compugsef a declassification graph
may be needed to show the safety of a program. To simplify guelnmg process we first
extract the sub-graphs from the program’s expression giegifcould be validated sepa-
rately (callednformation pathy Next we carry out the matching between an information
path and a (single) component on a policy graph. The matehexhanism is defined via

a number of predicates that serve as computable implenmrgaif the program validity
predicates presented in Sect®i3. Thus, predicates in this section are named after their
counterparts of Sectio.3, like the following: dds is the graph-based implementation of
dds defined for program validity. Sectid®5 presents and discusses the algorithms for
the mechanism introduced here.

An information path captures one way in which expressions ftav into a node
starting from input channels and constants. Multiple fiomwcedges to the same node
represent that such node holds an expression equal to theatijogm of that function with
its parents as arguments, thus all edges need to be incladibe ipath. On the other
hand, ¢p-edges represent points where control flow may branch, asftbre eachy-
edge represents a distinct information path. Note that famrmation path may still have
multiple incomingr-edges because loops may cause the program flow to reacmtlee sa
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node multiple times. We represent an information patly the set of edges it contains
(the set of vertices for the path can be obtained by collgdtie source or destination
of the edges). A set of information paths is thus a set of setigés. To streamline the
notation, we define the following operators for sets of infation pathsS and S’, and
single elements (i.e., edges):

See = {gU{e}|gesS}
S®S = {gug|ge S geS}

We then define functioip to collect all the information paths that reach a nade a
graphg, which is a set of sub-graphs gf Recall from the graph construction rules that
every node is either reached by a number @dgesor a number off; edges in which
function f is the same and indexs distinct in all edges.

Definition 3.8 (Information Path) Let g be a program expression graph ande a node
in this graph. We say thatis an information path for. (in g) if p € ip,(n), defined as:

({0} if A n
U ipy(n') & (n',n,7,u) if nis reached by one or moreedges
ipg(n) = wmn
QR ip,(n') & (n',n, fi,u) if nisreached by one or morg edges
n’f—i>n
\ u

We say that an information path feris maximalif it is not a subset of some other
information path. The sehip,(n) contains all maximal information paths for

mipy(n) = {p|p € ipy(n),Vp' €ipy(n) :p Ap'}

Again, we omit subscripg when it is clear from context.

If one information path is a sub-graph of another one, théidating the larger graph
also validates the smaller so we only need to consider thénmadinformation paths.

Figure3.8 presents examples of information paths. The first graph dstretes how
¢-edges create distinct information paths, as opposed nalatd (function) edges. The
second graph shows how the calculation of maximal inforomapiaths handles cycles:
in their presence the whole structure is included, as oné@friformation paths is a
sub-graph of the other.

The next step is to relate the set of maximal information p&thithe policies. This is
done by the notion gbolicy simulationwhich is a “bundled” version of weak simulation
in state transition systemmM|l89]. First, we need some supporting notation. We call two
nodessimilar n ~ n’ if they have the same type and either the labels are the saoresor
of them is a wildcard.
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Figure 3.8: Example of information path calculation
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Definition 3.9 (Policy Simulation) Let C' be a program,g = G(C) be its expression
graph,p be an information path for some node@éndd be a policy graph. A relation
R C nodes(p) x nodes(d) is called a policy simulation if, for eactn,ny) € R, the
following holds:

1. Nodes: andn, are similar, i.e.n ~ ng.
2. Noden weakly simulates node,. That is, the following holds:

e If In' € nodes(p) : n’ = nthen
In!, € nodes(d) : n!, (=)* ng and(n',n))) € R.

o If 3f,3n'...n* € nodes(p) : ni L n then

Ink .. .nk nl € nodes(d) : ni ()" N nly(—)* ngand(n’,n}) € R.

3. Noden satisfies, iny, the input uniqueness restrictions specifiedrfgiin d, i.e.
for everya € In, if (a, ng) € uni(d) then(o, n) € uni(g).

We usev, 4 to denote the largest policy simulation (i.e. the union ébathem) between
information pathp and policy graph.

Next, we present the definitions for validating a progranxgression graph, imple-
menting those of program validity. First we define node vgljch concept analogous to
that of variable validity in Definitior2.7.

Definition 3.10 (Node Validity). Letg be a program expression graph,be a node iry,
p be an information path fon andd be a policy graph. About node we say that:

1. n is data dependency safe anf it matches some final node of the declassification
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policy d or if all its parents inp are already data dependency safe.
dds,(n,d) = (3Ins € fnodes(d) : n ~pqny) OF

(Vne € nodes(p),w : if ng " n then

In’ € nodes(p), w',w" : ng = 2 A
w=w"-w"Adds,(n',d))

2. n is data dependency safe (DDS) if all the maximal informagiaths that reach it
are data dependency safe.

dds(n,g,d) = Vp € mip(n,g): dds,(n,d)

3. nis control dependency safe (CDS) if all nodes that reach it pgita starting with
acont rol edge are DDS.

ds(n.g.d) = Vn',n" € nodes(g) : if ' % 0" B thendds(n', g, d)

4. nis a safe node if it is both DDS and CDS.

safe(n,g,d) = dds(n,g,d) A cds(n, g, d)

The following proposition on the CDS relation shows that a @S node makes
all its descendants also non CDS. This will be needed fomstdtie soundness of the
analysis mechanism.

Proposition 3.11.Letn be a node in graplp andd be a policy graph. I, is not CDS with
respect tad, then every node’ reached byn is also not CDS, i.eVn,n’ € nodes(g) :
if n %" n’ and —cds(n, g, d) then—cds(n’, g, d).

Finally, we can present the definition of a valid graph, whicids for a graph if all
its outputs are safe.

Definition 3.12 (Graph Validity) We say that the expression grapis valid with respect
to a policyd if every node representing an output channel is a safe nolal&t i$:

valid(g,d) = Vn, € nodes(g) : safe(n., g, d)
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i

(a) Invalid as IP froms is in- (b) Invalid due to control de-
valid pendency with3
o Te
0
PO e
N 7 f
(c) Invalid as IP fromd and (d) Policy graph
control dependency withs used in (a), (b) and
are invalid (c)

D eae . x

n~pans dds, dds cds t=¢ t=control invalid output
Figure 3.9: Examples of graph matching

We sayy is d-valid if valid(g, d).

Figure3.9presents examples of the graph matching process. Here;essay labels
are not shown, for simplicity. Double-lined nodes match edimal node of a policy, for
some of its information paths. Note that for an output to delyall its information paths
must be data dependency safe, as well as the output node tvel ctependency safe.
Figure3.9cshows how a node can simulate a policy final node, and yet nchiogletely
safe. In this case, simulation only validates one of the tviormation paths of the node,
and there is also an unresolved control dependency.

With the matching mechanism defined, we can present the sesadheorem. It
states that if a node in the graph simulates a nodg in the policy graph, then the set of
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expressions possibly held byis a subset of the set held hy; in the policy. The proof
can be found in the Appendix.

Theorem 3.13(Soundness of the matching mechanisif)r a program’s expression
graphg and a policyd, the following relation holds:

Vn € nodes(g),nqg € nodes(d) : if n ~, 4 ng thenexp,(n) C expya(nqg)

For the next theorem, we need to define the notion of a pubpcession, in terms of
a declassification policy. The relation, analogous to Dedini2.6, is defined below.

Definition 3.14 (Public Expressions)Let d be a declassification policy graph, we say
that the expressioais public according taf if the following relation holds:

public(e,d) = (3Iny € fnodes(d) : e € expya(ny)) Or
(e = f(e1,...,en) A public(er,d) A ... A public(ep,d))

With this, we can present the theorem of safety between psoged policy, demon-
strating that if the corresponding graph of a program satisi policy, then the expres-
sions on the process will also satisfy it. This theorem is@sequence of Theoren3sb
and3.13and it is important for making precise the link between ttarfework and the
graph-based implementation.

Theorem 3.15(Safety between process and policiet Cy be a programg = G(C)),
7o be an environment; be a run in Run(Cy, m) and d be a policy graph. For any
configuration(C, o, 7) € t, the following relations hold:

(i) Vax € Var :if E,(z) is defined andlds(n., g, d) thenpublic(E,(z), d)
(i) Vv e out:if O,(y) is defined andlds(n., g, d) thenVe € O, () : public(e, d)
(iii) Vp € Var UlO :if PC,(p) is defined andds(n,, g, d)

thenVe € PC,(p) : public(e, d)

(1) states that if a variable in the program has its correspgndode in the graph
(which is guaranteed to exist by Theoré) being data dependency safe, then the ex-
pression held by that variable in the process is public @éwed by the policy);(ii)
states that if an output channel in the program has its quoreing node in the graph be-
ing data dependency safe, then all expressions sent tohieiprocess are public; finally,
(1i1) states that if a variable or 1/0O channel has a corresponddg in the graph being
control dependency safe, then all conditional expressibiise variable (or /0O channel)
in the process are public.

With this, we conclude the presentation of our graph-basguementation of the
framework. In the next Section we prove that the validity gbragram graph in the
implementation implies the validity of the correspondinggram, in the framework.
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3.4 Soundness of the Implementation

General SettingOn Sectior2.5we have established the soundness of our framework. It
consists of three fundamental elements: the prograrthe set of declassifiable expres-
sionsD and the predicatealid(C, D), and relates them to the PCR property, presented
in Definition2.14 Theoren®.15demonstrates that, ifulid(C, D) holds, therC' satisfies

the PCR property for the set of expressidnsWe now demonstrate that the implementa-
tion presented in Sectioi®s2and3.3is actually sound, that is, the validation of a program
graph implies the validation of the program used to creategtiaph. To do so we first
need to give a formal definition of the framework itself.

Definition 3.16 (PCR Framework) A PCR frameworks a triple (Pol, Prog, valid), in
which:

1. Pol C Exp(In x N) is a set of declassifiable expressions.

2. Prog is the domain of programs.

3. walid : Prog x Pol — Bool is a predicate that satisfies the following:
valid(C, D) = C satisfies the PCR property with respect/?o

In other words, it relates the previous two elements with the P@Repty (Defini-
tion 2.14), as stated by Theoreth15

Our next step is to relate our graph-based implementatitimetexpression-matching
framework. For that, we first define what is an implementatérthe framework, in
general terms. An implementation needs to have computaiplegimations of the non-
computable elements of the PCR framework: th&d predicate and the set of declassi-
fiable expression®. Besides that, an implementation might also include an attsbn
of the progranC'. This notion is defined below.

Definition 3.17 (Implementation of a PCR Framework)e say that( Pol, P), (Prog, C),
V) is an implementation ofPol, Prog, valid) provided that:

1. Pol is a domain of declassification policies affds a policy interpretation func-
tion P : Pol — Pol, which takes a declassification policy and returns the set of
declassifiable expressions represented by it.

2. Prog is a domain of abstractions of programs afidis a functionProg — Prog
that takes a program and returns a corresponding abstractiGor C € Prog
and states(C(C)) being the set of possible program states that the abstracim
represent, we have thatates(C(C)) D states(C').

3. V: Prog x Pol — Bool is a validation function which takes a program abstraction
in Prog and a policy inPol and returns a boolean. Fof' € Prog andd € Pol,
the functionV satisfies the following:

V(C(C), d) = valid(C,P(d))
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Note that for an implementation to be tractable, then athelets on the left-hand side
of the above formula should also be (i.€,,C andd).

Application of the General SettingNow we proceed to present each of the elements
of our specific graph-based implementation, and then tcepteébe Theorem that shows
that the graph-based analysis implements the PCR framewdk start by the policy
interpretation function.

Definition 3.18 (Interpretation of Policy Expression Graphsetd = (V, E,V;,U) be
a declassification policy, according to Definiti@i7. The policy interpretation function
int : D — p(Exp(ln x N)) is:

int(d) = U expa(ny)

npeVy

The interpretation function respects the notion of pubkipression, as shown by the
following Lemma.

Lemma 3.19. Let e be an expression, andlbe a declassification policy. We have that:
public(e,d) = public(e,int(d)). In other words, ife is public according tal, then it is
also public according to the set of declassifiable expressiepresented hy.

Proof. The proof is trivial, obtained by expanding Definiticd$and3.14and combining
them with Definition3.18 ]

Now we proceed to show that the program expression grapips@yeam abstractions.

Lemma 3.20(Expression Graph as a Program Abstractidtgt C' be a program. The
program expression grapfi(C') is a program abstraction of’ which represents the fol-
lowing program states:

states(G(C)) ={o | P(o,G(C))}
whereP (o, G(C)) is the one defined in Definitidh5.

Proof. Proof is achieved by combining the program semantics wetdgfinition ofG to
demonstrate that if € states(C') thenP(o, G(C')) holds. O

Finally, we state the Theorem that links the implementatiothe framework:

Theorem 3.21.The graph-based analysis defined B, int), (G, G), valid) implements
the PCR frameworkPol, Prog, valid).

The proof, which can be found in the Appendix, is achieved{paeding the elements
of the equatiorvalid(G(C'),d) = wvalid(C,int(d)). On the next section we proceed to
show that this implementation is tractable.
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3.5 Algorithms and Tractability

In this section we show the tractability of the graph-basegdlementation of the PCR
framework. For this, we present simple algorithms for thepyr matching mechanism
and demonstrate that they have polynomial complexity. Tgerdhms presented here
are not meant to be optimal in any sense, but rather a prodieotractability of the
analysis.

First, let us define our input size We wish to have a that relates to the program’s
size. Thus, the natural approach is to considexrs the number of lines in the source
code, which is equivalent to the number of non-compositistetements of a program
C. Fori f -t hen- el se andwhi | e commands, we naturally also count all the nested
commands. For the analysis that follows it is also importaietermine how the number
of edges in the program’s graph relatesitdNVe know that f andwhi | e commands do
not generate edges, I/O operations and simple assignmemésage each a single edge,
and function assignments generate as many edges as fuagjioments. Thus, it is safe
to define the number of edges as a factor of the numladiines of code. We denote this
factorc, and state that a program has edges. We can formally determine the value of
c. by the following:

|Cunite| + |Cit| + | Cskipl N Z args(Cy) — 1

n n
Cy€Chunc

Ce =1—

where|Cunie|, |Cit| and|Csip| are the number ofhi | e, i f andski p commands irC,
respectivelyCnc iS the set of function assignment command€’iandargs(C/) returns
the number of arguments in the function on the RHS of assighownmand’.

Before discussing the matching mechanism, it is importapbtot the complexity of
the graph-building process. From Figu84 it is clear that functionG has a complexity
of O(n) for both space and time, as for every command’inG generates a constant
number of elements in the graph. We also consider that anmeegsing is done in the
graph: nodes are previously checked for being inside ofesyitl the graph, setting the
incycle(n) predicate for each node The algorithm for this pre-processing is omitted.

Now we proceed to build the algorithms. For simplicity, wétdhe analysis into 2 al-
gorithms: one for calculating input uniqueness relatiord@her for validating the graph,
which is also further divided into parts. It is clear thattbaigorithms can be merged,
but the separated analysis is more clear. First, we prekerdlgjorithm for calculating
input unigueness relations. Algorith&l accepts a graph as input and calculates, for
every inputa, the a-uniqueness relation on every node Recalling Definition3.3 we
know that, for the input uniqueness calculation, the gragies that directly leave input
channel nodes (e.@., — n) have a special meaning: they represent the distinct aesess
on that input channel. With that, each such edge represeditsiact input command
on the progranC'. Thus, here we refer to these edgesmnmit edges Also, since some
algorithms don’t walk throughkont r ol edges, we writén, n’, t,, u) for an edge whose
typet, is any butcont r ol .

The algorithm has a simple approach: it initially considivat every node is a-
unique, for every input channel Then, it walks through the graph, starting on the input
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Algorithm 3.1: Input uniqueness calculation
function: MAI N (g)
init :Vn € nodes(g), e, € € edges(g),a € 1In: (a,n) €
uni(g),pat h(n,e) = 0,vi si ted(e,e) = visi tedn(e,a) =f al se
1 foreach (a,i n) € nodes(g) do
2 | foreach (n,,n,tqs,u) € edges(g) do
3 L L UNIl ((ng,n,tq,u),n, g, u, g);

function: UNI (e = (nq,n, tq,u),n’,ny, v, g)

4 pat h(n,e) := pat h(n,, e) Un,;

s if I(nt,n', fi, '), (n®, 0/, f;,u) € edges(g) : pat h(n{t2} e) £ 0,0 ¢
pat h(n{h2 ¢) then

6 L NOTUNI (o, 7/, g);

else ifincycle(n’) A’ # wthen NOTUNI (a, 7/, g);
else
foreach (n',n",t/,,u") € edges(g) : —vi si ted((n’,n",t,,u"),e) do
10 vi sited((n/,n", t,,u"),e) =true,;
11 L UNI (e,n”,n',u", g);

© 0 N

function: NOTUNI («, n, g)
12 uni(g) == uni(g) \ (a,n);
13 foreach (n,n/,tq, u) € edges(g) : =vi si tedn((n,n’,t4,u),«) do
14 | visitedn((n,n' ts,u),a) =true;
15 NOTUNI (o, 7/, g);
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channel nodes, verifying if any node does not satisiyniqueness for the input channel
from which the current walk began. FunctidAl Ninitializes the structures and launches
each of the walks, starting on each input edge. Each walkrisnpeed by the recursive
functionUNI . This function has 5 arguments: the input edge (n., n, ty, u) for which
input uniqueness will be checked, the current nodeeing checked, both the parent node
n, and the control context’ from whichn»' was reached and the graphUpon entering,
the function first checks if the current node does not satigiyt uniqueness for the input
edge being analyzed. The two first conditions of Definit®8 are checked. The first
condition is checked through the use of structpseh(n’, e), which records, for every
input edge, the path of nodes used to reach nddé&hus, the first f command checks
if the current node has two different parent nodes that réabhough a function () and
both are also reached by the input edgeThis, along withn' not being on the path of
any of the parents imply that condition 1 of the Definitionlveé found on the node that
performs the join of two expressions on the same input. Therskcondition is checked
in the following: if the current node’ is in a cycle, condition 2 is satisfied if the looping
contexts of the cycle and the input edge differ. If any of éheenditions is met, then
node is notv-unique and functio™NOTUNI is called. That function marks an argument
noden as not input unique for the argument input channel and alse go recursively for
every node reached by, thus satisfying condition 3 of the definition. If the conalits
are not met, node’ is still a-unique. Thus, the analysis proceeds to the child nodes of
n'. Here, the structuresisited andvisitedn are used to keep track of which graph
edges have already been visited for that input edge anaysidor the propagation of
non--uniqueness, respectively. This is necessary to avoidi@fomputation due to the
presence of cycles in the graph.

Now we proceed to analyze the complexity of this algorithne W8eC(-) to express
the worst-case time complexity of computatigrwhich can be a function or operator.
First, we know that functiodAl N makes a number of comparisons equal to the number
of input edges in the graph. This number is the same as the emohlinput commands
in the code. Since this is a fraction of we denote it;n. Thus, we have that(MAIN) =
¢;n - C(UNI). If we make the worst-case assumption that every node i©iegldoy every
input channel, we can analyze the algorithm to conclude tbaeach edge in the graph,
there will be a call to eithetUNI or NOTUNI , for each input edge walk. To be more
precise, for a fraction of the edges gnUNI will make a comparison on all the parent
nodes of the current node and cBIDTUNI . For another fraction, it will also make the
comparison on the parent nodes, then the constant time cmopaf theel se i f, and
then callNOTUNI . For a third fraction, the algorithm makes the parent nodesparison,
then the constant one, and finally executesaghse branch. The remaining fraction are
the edges reachable by the ones that triggeretN@i@NI call: these perform only the
computation oNOTUNI . Here, we calt;,, the average indegree of nodes in the graph. So,
if we name these fractions, c,, c3 andc,, we have that the cost of the whole computation
for each input edge is, on average:

c1cen - (¢ + C(NOTUNI)) + cocen - (¢in + 1 + C(NOTUNI))+
czcen - (¢ + 1+ C(UNI.else)) + cycen - C(NOTUNI)
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However, it is quite clear that(UNI.else) = C(NOTUNI), since the loops are essen-
tially the same. With this, we have:

C(UNI) = e¢en- (c1¢m + 1C(UNI.else) + cociy + Co + coC(UNI.else)
+c3¢in + ¢3 + c3C(UNI.else) + ¢,C(UNI.else))
= cen-((c1+ca+c3+cy) C(UNILelse) + (c1 + o+ ¢3) - Cin + 2+ ¢3)

But we know that; + ¢; + ¢3 + ¢4 = 1 and we can also round its partial sums up to 1, to
achieve:

C(UNI) = ¢en-(C(UNI.else)+ ¢ + 1)

Now, theel se branch ofUNI (and also the main body ™MOTUNI ) makes a num-
ber of comparisons equal to the outdegree of the node beiagzad, and for each of
these it makes an assignment and a recursive call. Thus, sayéehatc,,; is the aver-
age outdegree of nodes in the graph, we can say that, on thegavef all executions,
C(UNI.else) = C(NOTUNI) = c,,. Thus, we have that:

C(UNI) = cen - (Cout + Cin + 1)
C(MAIN) = c¢in- (cen - (Cour + Cin + 1))
= n%¢ice + (Cout + Cin + 1)

We know that, by definitiong; is a fraction that ranges from 0 to 1. Althoughcan
be potentially infinite (as there are no bounds for the nunabearguments a function
takes), for it to have a value of orderthe program would need to have, on average,
each line of code with a function assignment in which the fiamctakesn arguments.
Since this is quite unrealistic, we can safely assupm® be of an order smaller than
As for ¢;,, the same reasoning applies, as the average indegree «f motihee graph is
tightly related to the number of arguments functions takaally, a similar reasoning
also applies for,,,: for it to have a value of orden, each variable on the program
needs to be on the RHS of an assignment, on averates (notice that this condition
happens together with the aforementioned conditiorr fprSince this is also unrealistic,
we also assume,,; to be of an order below. Thus, we have that our input uniqueness
calculation algorithm has worst-case time complexitygf,?). As for space complexity,
one can easily see thpat h can take(n - ¢;n) - n of space yi si t ed takesc.n - ¢;n
of spaceyi si t edn also takes up to.n - ¢;n (each channel accessed only once, having
¢;n channels), andni(g) can take up ta - ¢;n, thus giving the final space complexity of
n3c; + ncec; + nPcoc; + nte; = nde; + n?(2c.c; + ¢;), which isO(n?).

We now proceed to the main graph validation algorithm. Altipon 3.2 presents the
mechanism. The main analysis loop is located within linésaf theMAI N function. For
each output node in the graph, all the information paths filtmhnode are calculated and
the node is checked to be data dependency safe for each $achation path. Finally,
the node is checked to be control dependency safe. Shouldfdahgse checks falil, the
function returnd al se. Here, we writeM P for a function call, andri p for a global
data structure. Notice that the body of functighP is presented and discussed further
ahead.
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Algorithm 3.2: Program expression graph validation

function: MAI N (g, d)
init : Ve € edges(g),n € nodes(g),p € G,y € Out : vi si tdds(e,p) =
visitcds(e,v) =fal se,col or (n) =white,cycl e(n) =fal se
1 foreach (v, out ) € nodes(g) do
2 M P(n,, g);
3 foreachp € m p(n,) do
4 | if =DDS(n,,p,d) then return f al se;

5 if -CDS(n.,, g, d) then return f al se;
6 return tr ue;

function: DDS (n, p, d)
7 /* dds(n,p,d) is set with return value of this call
g foreachn; € fnodes(d) do
o | if SI Mn,p,ng,d)then retumn true;

10 if type(n) =i nthen return f al se;

11 foreach (n/,n,t,u) € edges(p) : —vi si tdds((n/,n,t,u),p) do
12 vi si tdds((n/,n,t,u),p) =true;

13 L if =DDS(n’, p, d) then return f al se;

14 return true;

function: CDS (n, g, d)
15 foreach (n',n,t,u) € edges(g) : —vi si t cds((n',n,t,u),v) do
16 | visitcds((n/,n,t,u),y) =true;
17 if ~CDS(n’, g, d) then return f al se;
18 if ¢ =control then
19 foreachp € m p(n’) do
20 L | if ~dds(n/,p,d) then return f al se;

21 return true;
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We will first analyse function®DS andCDS. Both functions walk through the graph
backwards, checking fafds andcds. In the case oDDS, a walk is made for each in-
formation pathp. The first thing it does is to check if the current nodsimulates any
final node of the policyl, returningt r ue if successful. For this it uses ti& Mfunction,
which is left unspecified. Recalling our definition of simuat, it has 3 clauses: the first
consists of a simple node similarity check (check of typeklabels), the third is a check
for input uniqueness, which uses the information pre-cdexgbly the previous algo-
rithm, and finally the second clause consists of a slightti@mn of the classical definition
of weak simulation in automata. Ours is sufficiently similarthe classical definition
such that algorithms for the latter can be used in the formiéus, from Li09, AlIO8]
we know that such algorithm exists and is P-complete. If nodi®es not simulate any
policy final node, then the check continues by analysingatempts. If» is an input node,
that means the current walk in the graph went from output patirvithout any match
happening. That means the node isabt andf al se is returned. Otherwise, the parent
nodes are analysed recursively, and noaell be deemedids if all its parents aréds as
well. Structurevi si t dds is used to keep track of visited edges, due to the cycles on the
graph. Functior€DS works in a very similar way, except that it works on the graghlf,
and not on information paths. It walks the graph backwar@smilleg a nodeds if all its
parent nodes are alsds and additionally if itscont r ol edge parents are alglds for
all their information paths. Note that it uses the buffedel$ structure computed during
the calls toDDS and that nodes with no parents are always

The complexity of the main function involves three paratieecks. In order to de-
termine it, we first define the number of output nodes in th@ly@@sc,n (with ¢, being
analogous t@; in the previous analysis). Also, we need to define the numbiefarma-
tion paths a node can have. We know that a node has a numbéomhation paths equal
to one plus the number @f edges that can reach it throughout the graph. Considering
a worst-case scenario in which a node is reached by every otite in the graph, this
number becomes the number@assignments in the program, which we denote as
Thus, we have the complexity of the main function as:

C(MAIN) = ¢,n - (C(MIP) + c4n - C(DDS) + C(CDS))

Now, let us check the complexities BDS and CDS. If we make the worst-case as-
sumption that every output node is reached by every othee,nod can conclude that
each of these functions will be recursively called for eadbeein the graph (thug,.n
times). InDDS, we know thatSI Mis called a number of times equals to the number of
final nodes in the policy. Here, we need to determine the dideeopolicy. Since this is
quite arbitrary (a big system can have a whole library ofge$) we will consider it to be
another input size. Thus, we callthe number of nodes in the poliay,m the number of
edges on it, and;m the number of final nodes. Frorip9, Al08] we can safely assume
the upper bound of (SIM) to be O(T - S), whereT is the number of transitions arftl
the number of states of the system. For this, our system stsradi both the program and
policy graphs. Thus, we considé(SIM) = O((c.n + com) - (n +m)) = O(n* + m?)
(recalling the discussion about the ordercgfwhich is also applied here fat.). After
that, DDS makes a single comparison and then a number of comparisardésen the
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number of parent nodes of Using a similar reasoning f&DS, we know that each call
to it visits ¢;,, edges, on average, and for each makes a single comparistreghs to
the recursive call) and another comparison that, if truedgs true in worst-case), causes
it to loop for each information path of the parent node in ¢joes(c,n, worst-case), also
making a single comparison. Thus, we have:

C(DDS) = cen-(cpm-On? +m?) + 1+ cip)
C(CDS) = cen - (Cin - (14 cpn))

Now we proceed to the information path calculation functimpresented in Algo-
rithm 3.3 Here, the treatment of cycles in the graph is a bit more cwafgld. We use
structurecolor(n) as follows: it returnsahi t e if node n has not yet been visited by
M P, it returnsbl ack if n has already been visited and its information paths are all
known, and finally it returngr ay if n is currently being visited, i.e. the function call has
been made but not yet returned.

Upon entering the functionsolor(n) is set togr ay, indicating thatn is currently
being analyzed. The function then performs a backwards walthe graph. For each
parent node of: it checks the color of that node. If it is white, then the restue call is
made. If it is black then the buffen p is used, in order to avoid redundancy. Otherwise,
the parent node is still being analyzed and this means a tgdgqust been completed.
In that case, the specific parent node on which the cycle waslfes marked as eycle
root, via the structureycl e. Then no recursive call is made, to avoid a “livelock” from
happening. After this, lines 7 and 8 basically add the pagdge and the parent node’s
information paths (except when a cycle was completed) tatheent set, according to
Definition 3.8 of functionip on SectiorB.3.

After the first loop is done, current nodewill have its information paths calculation
done, unless it is inside a cycle. In that caseyill have all its information path com-
ponents, with the exception of tma p of the cycle root node. Also, functiohO N is
used to ensure the definition nfaximalinformation paths: if a node is in a cycle, then
all p-edges that reach it within the control context of that cygtleuld be part of a same
information path, ensuring that no information path is agsaph of some other. The
function is called for every, # 0 that reaches. Then, ifn is a cycle root, this means it
has already accumulated all the cycle edges (of the cycl@ichat is the root) in it p,
and all of its parents which are still marked as white can newdvisited:n is marked as
black, and with this the cycle nodes will be able to adg(n) to their collections. Then,
the code from line 13 verifies # itself will need to be revisited: this is true if any of its
parentsn’ is not visited (i.e., is not colored black). If this is the egsvhich only hap-
pens for nodes which are within a cycle)js marked back as being white, and function
MAKE VI TE is called, which recursively turns white every descendamt which was
previously marked black. THRAKE WHI TE function is required due to the presence of
nested cycles: a node can be the cycle root of the inner dyatgust a “regular” node
of the outer cycle. In this case, the calculation of the imryale nodesm ps will only
be complete after the outer cycle has been treated. Notentlla¢ presence of nested
cycles one of the roots is treated first, and all the nodesmiitie other cycle return from
their analysis being marked for revisit (white). Then, afiee of the roots is marked as
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Algorithm 3.3: Calculation of information paths

1
2

0 N o o b~ W

©

10
11
12

13
14
15
16

17
18

19

20 foreach (n,n’,ty,u) € edges(g) : col or (n') = bl ack do MAKE_WHI TE(n');

21
22
23
24

function: M P (n, g)
col or (n) := gray;
foreach (n/,n,t,,u) € edges(g) do
add = ;
if col or (n') = whi t e then add := M P(n/, g);
elseifcol or (n') = bl ack then add := m p(n');
elseifcol or (n') = gray then cycl e(n’) :=true;
if ty = fithen m p(n) :=m p(n) ® (add & (n',n,tq,u));
else ift; = 7 then m p(n) :=m p(n) U (add ® (0, n,ty,u));

if incycle(n) then foreach(n',n,t;,u # 0) € edges(g) do JO N(mi p(n),u);
if cycl e(n) then

col or (n) := bl ack;

foreach (n',n,t4,u) € edges(g) : col or (n') =whi tedo M P(n/, g);

if 3(n',n,tq,u) € edges(g) : col or (n') # bl ack then
col or (n) :=whi te;
foreach (n,n”,t;,u) € edges(g) : col or (n”) = bl ack do
| MAKE_VHI TE(n");

else col or (n) := bl ack;
return m p(n);

function: MAKE_VWHI TE (n)
col or (n) =whi te;

function: JO N (mip, u)

foreachp, p’ € mip do
p=pU {(na nlvtd7u) ‘ (nvn/7 ta, u) €y \p)};
pr=pu {(nvnlatdvu) ‘ <n7 ', ta, u) € p\p/)};
if p=p'then mip .= mip\ p/;
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visited, all nodes are revisited and the process is repéatdige other cycle nodes. There
is clearly room for improvement on the efficiency of this aigam, but this would result
in making it more complex, which is not the aim here.

Figure3.10below shows in detail the node colouring steps of éh&® function for a

graph with a simple cycle. Here, unnecessary labels argemnilashed lines represent
¢-edges, and the small letterin the center of a node represents that the node is a cycle
root (i.,ecycl e ist r ue for that node).

[EEY
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2 4
O __ O v O-. v

5 6 7 8
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9 10 11 12

'Y , o ,
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Figure 3.10: AlgorithnB.3 executing on a simple graph with a cycle

Figure3.11shows the node colouring steps for a more complex graph twimested

cycles. For clarity, not all steps are shown. Note M&WE WHI TE is called after step
17, making the two nodes in the nested loop white. This nacgssnce them ps of
these nodes still do not include the completep of the outermost cycle root — this is
only possible after step 21.

For the complexity oM P we first have to determine how many times the function

will be recursively called. Assuming the worst-case scenar which every output is
reached by every other node in the graph we know thd@ reaches every node in the
graph. However, some nodes are visited more than once: eahis visited once plus
one more time for each distinct cycle it belongs to. Howedeg to the graph building
rules plus the fact that the code is in SSA format, we knowtti@humber of distinct cy-
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1-4 5-6 7-9 10-11

O A N C A N © S N © S
12-14 15 16 17
O~ O 7~ O 7 O 2
18-19 20 21 22-24
..~ @&_ -~ @&_ -~ @&_
25-27 28 29-31 32

e. -~ & N &_ N @&_

Figure 3.11: AlgorithnB.3 executing on a graph with nested cycles

cles a node can belong to is determined by the number of nektdde commands within
which the variable that represents the node is assigneeiodtie. Thus, simplifying for
the worst-case scenario, this is proportional to the nurobahi | e commands in the
program. Considering that every variable is assigned wahithe loops in the code, we
have that, in the worst-case scenal P visits each node in the graphn times, with
c,, being the ratio ofvhi | e commands im. Thus, the function is called,n? times.

Now we analyze the body of functidv P. We first have a loop that runs fey, times
and within which two comparisons are made. After the secongparison, a set operation
is made with the information paths. Recalling that the maximumber of information
paths a node can havedg: and the definitions of the operatarsand®, we can simplify
this operation to a worst-case complexityc@’h?, which happens when the firshen
branch (line 7) is taken. Then, assuming a worst-case intwdlici f commands are
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taken, we have a loop running, times and callinglO N, then the comparison of line
10, resulting in a new loop running, times, then the comparison of line 13 which also
runsc;, times, and cause a loop that rung; times, each of which making a call for
MAKE W TE. Thus, we have:

C(MIP) = c,n” - (cip - (1 + c$n2) + ¢in - C(JOIN) + ¢ipy + Cin + Cour - C(MAKE_WHITE))

Now, we check functiod O N. It takes every pair of information paths in argument
mip and adds to each of them every edge with looping context équabument: that
is present in one but not the other. Finally, if after this rapien they are left identical,
one of them is removed from the set. The loop analyzes a seteof 3:, on average, and

takes every distinct pair of it. Thus, it runs f&@ times. The set operations then
need to inspect every element of each information path tceb®pned. In a worst-case
scenario, information-paths are of size closeitorhus, we consider each set operation
with complexity 2n. Finally, with the same assumptions, the last comparisois at
complexityn and results in another set operation of constant complekitgn, we have:

cin2 —Cpn

-(2n+2n+n)
5cin%—50¢n2
2
Now, we calculate the average complexity of a call to funcdKE_WHI TE. The

function has a constant complexity, but it recursively subtack nodes into white ones.
The worst case happens in a program where all commands drmgvd same nested
loop. In this case, each call idAKE_V\HI TE will visit a number of nodes on the order
of n. Then, we have thaf(MAKE_WHITE) = n. And thus, making the substitutions for

C(JOIN) andC(MAKE_WHITE), we have:

C(JOIN) =

5c3)n375c¢n2

CMIP) = cyn®- (cin- (14 c5n?) + cin - 5 + 2Cin + Coutn)

In order to reach the final complexity of the matching mectiamiwe first discuss
about the constants,,, c¢; andcy, like ¢, andc;, are ratios from 0 to 1. Also, faf;,,, cou:
andc, the reasoning to consider them of an order lower thapplies. Thus, we have:

C(DDS) = cen-(cpm-OMn? +m?) + 1+ cip)
O(n*m + nm?)

C(CDS) = cen - (Cin - (1 +cyn))
= 0O(n?
2 2 9 5¢2 n375c¢n2
CMIP) = cyn® - (Cin- (L+cin®) + Cin + ——5—— + 2Cin + Coutn)
= O’

C(MAIN) = c¢,n - (C(MIP) + cyn - C(DDS) + C(CDS))
con - O(n°) + c,eon? - O(n*m + nm?) + c,n - O(n?)
= O(n®%) + O(n’m + n*m?) + O(n?)
Onb ifn>m
= On®) ifnaxm
Om?) ifn<m
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As for the space complexity, we know that: si t dds takes up ta.n - c,n of space,
vi si t cds takesc.n - ¢,n, col or andcycl e both taken andm p takesn - cyn. Thus
we have the final space complexity@fsn* + c.c,n® + 2n + cyn? = O(n?).

3.6 User-Defined Functions

In this section we present an extension to our toy langualying user-defined functions.
This extension is presented with updated versions of soffinatitens of chapter and3,
but we omit changes in the theorems and proofs, since thestraightforward.

First, let us define how functions appear on programs. Wetegta language syntax
to:

Cu=skip |[z:=a|y=a|z:=[f(y,....u) | ©:=0c(a,b) | C1; Cs
| depends(,c) | if cthenCielseCy, | while(C; cdoC
| def F(of',...,0f)C | returnr | x:=F(yy,...,y)

We use a capitaF' to distinguish user-defined functions from system funi¢f).
Also, we usebody(F') to return the command’ which is the body of functior¥’ and,
converselyfunc(C) returns the name of the function in whichis located in the code.
In order to make definitions simpler, we also consider théovahg: (1) user-defined
functions have unique names (no overloading); (2) inpapiaioperations are not allowed
inside a function; (3) functions only have access to vaegleclared within their bodies,
plus the arguments (i.e. no global variables); and (4) fohdéanctionF’ there is a number
of variables with fixed names, defined as follows: represents thé-th argument of
function F” andr’ represents its return value. These variables are defingmhdunction
calls and returns, respectively. Note that (2) and (3) intht user-defined functions
have no side effects.

Now, we present additional semantics rules to treat usemetefunctions. First, we
add a new componettt € S = Prog* to the program state, which represents the call
stack. Operationgush(C, S) and pop(S) return a new stack resulted from pushing a
command”' and popping the top element, respectively. OperatigiiS) returns the top
element ofS, but without removing it.

(def F(uf,... oI C,o,7) = (skip,o,n) (Def.)
<.Z’ = F(yh B 7yk) ) Cn707 7T> l> <C, ) CF7OJ77T> (Ca")
where C' = of =y ; ... ; vf ==y

CF = body(F)
S, = push(z :=r"; C,,S,)

(returnr.on) = (rf:=r; top(S,),o’, =) (Return)
where S,, = pop(S,)
F = func(returnr)
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Now we proceed to define how the program expression grapHdstie user-defined
functions. First, there are two new types of edggsandR,, which represent function
call and return, respectively. Thesubscript is a unique identifier, in order to represent
distinct calls of a same function. As for the looping contxbotations, commands within
a function but not inside any looping block will be executedhe looping context of the
calling command. Thus, the edges associated to these casraam annotated with the
function name, which serves to represent the situationdastribed. Note that, with
this, the domain of looping context annotations is extertdéd U Func, whereFunc is
the domain of user-defined function names. The additionakrior theG function are
presented below.

G.(def F(uF,... vF)C) = Gp(C)

Cyx Cx Ry
Gulx:=F(y1,...,yx)) = Ny, TP s Ty T Ty Ty
wherex = fresh()
L
Gureturny) = n, 225 r
u

With this, an adjustment on the graph notation must be madb,the definition of
valid paths.

Definition 3.22 (Path validity) A pathw on an expression graph is said to be valid ac-
cording to the following grammar:

w o n=ws | we | w,

t u=plain| ¢ [ f;

ws n=tws | CawsRews | €

we == Cow, | wsw, | €

wy m=Raw, | wsw, | €
In other words, the notatioﬁ:—>*, 2" and —* only holds for paths defined by this gram-
mar.

In the above definitionw, represents paths which start and end outside of functions,
with call edges being eventually followed by their corrasgiag return edges. Paths
are the ones that start outside and end inside a functione whiare the opposite case,
of paths that start inside and end outside of function cdiste that ifw. andw, were
combined in a same path, this would result in, e.g. a pathtékas edg€, and therR,,
which not valid.

Now the input uniqueness definition must account for edglesléa with function
names as control context. This can be accomplished by & slitphstment on the second

item of Definition 3.3, changed to, SO NI NI n,u # v,v € N. Here,

v € N means that is not a function narﬁé?. With thig, user-defined functions called
within loops do not harm input uniqueness calculation.

Next step is updating the definition afp. The function needs to keep track of which
function call was last made (thesubscript). For this, we change it tap;, wherex
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represents this property, and is omitted when it is undeffnedunction call was made).
Thus, all current equations within the definitionafp are adjusted so that theis also
passed to recursive calls to it. The formulafgr however, is extended:

expy(ng) = W, (Exp)

in which
Exp= {f(e',....e") |vn' ... ,nF:n Ly np et € expy(n')}
U U expy(n')
n' Sy,
U exp;/ (n') (if By Ng)
Uexpj(n') (if n' e ng)
Notice that two new clauses are added: one for functionmstand other for calls. Func-
tion return edges are always taken, updating-theCall edges are only taken if they
represent the same return edge previously taken (as thb gramversed “backwards”,

by following this definition return edges are taken beforéedges).
In a similar fashiongezp is also updated:

cexpy(n) = Ltj cexpy(n’) U con expy(n’)
n'—rn n’
U cexp;/(n') (if n/ N Ng)
U cexpj(n') (if n' N
wheret # {C,R}

n

Finally, we can update the matching mechanism. Fortunatatly the x notation we
can make the main change in the calculation of the informateths, leaving the rest of
the matching process unmodified. The change is equivalehetones irexp andcexp:

({0} if 4 n
U ipi(n') @ (n,n,7,u) if nisreached by one or moreedges
n’%n
- ® ipi(n') & (', n, f;,u) if nisreached by one or morg edges
ng(n) - n’ﬁhz
ips (n') ® (n',n, 7,u) if n is reached by, ~ n, for any’
| vy () © (', n,7,u) if n is reached by’ < n

With this, the definition for the matching remains unchangesithe calculation of
information paths already handlésandR edges, turning them into edges. It is also
straightforward how to change the algorithms of the lastisedo support the user-
defined functions. Finally, since they are treated bothersémantics and on the graphs in
a similar fashion to function inlining, including the fummbs on the theorems and proofs
throughout this thesis is trivial. Notice that the defimisofor both program and graph
validity remain unchanged.



68

3.6. User-Defined Functions




CHAPTER4

Hybrid Static-Runtime Enforcer

In this chapter we extend our graph-based PCR approach im mrad®@mbine it with a
runtime enforcement mechanism. With this, we present aipeddiybrid static-runtime
enforcer that is able to support policies that need bothcssaid runtime information.
We modify the static analyzer so that it generates a kind pbdnteafter the code analy-
sis, in such a way that analysis is system independent. Weedafi intermediate step,
between static analysis and runtime enforcement, namebtbadecheck, that translates
the report from the previous step into the specific secuabgels of the target system,
and then generates a checklist of conditions that needmantiformation to be satis-
fied. Finally, we define a lightweight runtime enforcer whiérforms the checks only
in the program points where they are necessary. Calls to tioecen are injected in the
application’s code, prior to its execution, on the specibts where checks are needed,
thus further reducing the overhead of the enforcer. Sinisenttechanism is presented
in an implementation-oriented fashion, in this chapter we the Java programming lan-
guage and the Android mobile platform as the target teclgiesofor demonstrating the
approach.

In the next sections we present the hybrid enforcer, firsrbggnting some motivating
examples, all based on real mobile applications, in Sedtibthen giving an overview of
itin Section4.2 We then present the modification on graph-based PCR in $ec8ode-
fine the pre-load checker in Sectidr, and finally define the runtime enforcer, including
its code injection and experiments to measure its overhe&ectiord.5.

The contents of this chapter are presented in the p&@E{C11.

4.1 Motivating Examples

In this section we present three running examples that willded throughout this chapter.
The examples are all within the context of mobile devicesl aresent problems which

current popular mobile platforms (e.g. Android, Apple i@&hnot handle; indeed, these
problems cannot be handled by neither static nor runtimereafment approaches, em-
phasizing the necessity for a combined approach. Sincelfigter is implementation-

oriented and is no longer necessary to discuss the detajlaph-based PCR, the code of
the examples is presented as standard Java-like algoritlemsiot pre-processed nor in
SSA format.

69
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Example 4.1(Classification) Consider a policy that allows applications to read the con-
tents of the phone’s contact list, but not send it to low |lehannels (e.g., an arbitrary
Internet connection). However, assume the user is allowedatl as “trusted” certain
output locations, such as a network connection, an SMS or ail @ehdress. Thus, in-
formation derived from the contact list can only be sent tsted output channels. In
this scenario, the static analyzer is needed to detect thesflof information within a
program, while the runtime enforcer is needed to check thamynsecurity label of the
output channel. Algorithm.1presents an example. In the following example algorithms
we use underlined text to indicate input and output operation

Algorithm 4.1: Classification application

clist :== getContact List();
counter = 0;
while hasNext(clist) do
contact := nex{clist);
age := get Age(contact);
if age > 45 then counter := counter + 1,
text := "1 have ” + counter + “ contacts over 45.7;
8 addr = readFromInput);
sendSM&Guddr, text);

o O B~ W N P

~

©

Example 4.2(Declassification) Consider a policy for location-based services. The pol-
icy states that a user’s location is private in general andmat be output. However, there
are two allowed declassifications: (1) the timezone of a laratand (2) the result of a
function that compares whether two locations are near to edlelroln this scenario, an
application can transmit its location to a different devigging a secure connection. In
particular, the application transmits data along with itsreesponding security label to
the other device (assuming that the underlying systemagptatsupports this). Here, the
static analyzer not only detects flows of information, bub gdeints of the program that
match the expressions allowed by the declassification pdkggin, the runtime enforcer
checks for dynamic labels. See Algoritdn2 where isNear only works with arguments
from a location input (such as a GPS).

Example 4.3(lterative declassification)Now, consider a corporate application (Algo-
rithm 4.3) in which a device accesses the records of several produetkitautputs the
average of some property of the products (e.g. price, notrd facts, cost, etc.). Accord-
ing to a declassification policy, the program can only outiet average of a property for
a given number of products (and not their single values). Sth8c analyzer detects that
the program conforms with the declassification policy, bet¢bndition of the minimum
amount of values the average has to contain is only checkedgdwntime.
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Algorithm 4.2: Declassification application

secureConn := secConnect(*otherhost.somewhere.com”
my Loc := getLocation);
myT'z := timezone(myLoc);
otherTz := recM(secureConn);
if myTz = otherTz then
send“ACK” | secureConn);
other Loc := rec\ secureConn);
near := isNear(myLoc, other Loc);
if near then print(*Host is nearby');

© 00 N O 0o b~ W N B

Algorithm 4.3: Iterative declassification application

sum := 0;
num = 0;
db := openD BConnection();
while lexitSignal do
rec := fetch(db);
prop := get Property(rec);
sum = sum -+ prop;
num = num + 1;

0 N O 0o b~ W N P

©

avg = sSum — num,
10 outpufavg);
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4.2 Approach

Our approach consists of a hybrid static-runtime mechamsganized in three steps:
static program analyzer, pre-load checker, and runtimereef. In practice, the first two
steps perform most of the analysis, leaving the runtimereafao perform a few very
precise (and thus efficient) checks. Figdrd& shows how the three steps interact with
each other, while in the following we give an overview of thraile.

1. Static Analysis 2. Pre-load Check 3. Runtime Enforcement
(Section 4.3) (Section 4.4) (Section 4.5)

_____ = —— e
I

|
—* Flow I— _l —* Runtime
L
o
|
1

Declassification
Policy

report checklist

System security labels
(Section 4.1.1)

I

I

| Executable
! code

I

|

Figure 4.1: Overview of the 3-step enforcement

1/0 Channels

Program
source

1. Static analyzer: it takes aprogramand identifies all its information flows, i.e. for
each output operation, it identifies which input operatibtasalue can potentially
depend on (including implicit flows). Additionally, it takex set ofleclassification
policiesand identifies which variables of the program hold expressmn inputs
allowed by the policies. Thus, it downgrades the securitgllef those variables
and of the corresponding flows of information. The inforroatflows, combined
with the matched declassifications, are includedfilow reportof the program.

2. Pre-load checker:before the program is run, the checker takes the flow repart fr
the previous step and checks geeurity labelof the system in which the program
is about to run. The information flows with static labels drert validated at this
step (i.e.hi gh cannot flow td ow). Flows containing 1/0 channels with dynamic
security labels can only be checked at runtime, and thus arked for checking
in aruntime checklist Also, declassifications from the previous step might have
constraints associated with them, some of which may onlyheeled at runtime.

3. Runtime enforcer: the lightweight enforcer verifies that the conditions of the-
time checklist are satisfied at certain points of execufidre conditions may con-
sist of checks of security labels of channels as they aresaedeand also of count-
ing the number of times some loops in the program run. In daezduce runtime
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overhead, the calls to the enforcer are injected in the egupdin bytecode, prior to
the program’s execution, on the specific program pointsrthatl checking.

4.2.1 Preliminary assumptions

Here we describe the assumptions made on the underlyingnsysthich is part of the
Trusted Computing BaseThe considered programming language is assumed to have a
well-defined set of I/O statements, which can be identifiedhieystatic analyzer. These
I/O statements are “safe”, in the sense that their behavsoalways the expected one.
Also, functions referred by declassification policies (sastimezone, in Example4.2)
are also safe, meaning that they can not be abused or invertedler to obtain the
original value of its arguments. Policies using unsafe fioms are considered malformed
policies, and measuring the safety of a declassificatioityp@ out of the scope of this
thesis. We do not present user-defined functions in the ebesnopthis chapter, but these
can also be treated with the extension presented in Sekifon

The underlying system includes a security labeling systand provides an API
for handling the labels. We present the API, but leave itslemgntation unspecified,
since this thesis focuses on the enforcement of policiesrbgrams, rather than on
the specification of a labeling system, a field with an alreaxignsive published liter-
ature Mye99 BWWO08, SCH0§. Thus, the APl is composed of:

e getChannel Label gets an 1/O command and returns the security label of the asso
ciated channel. If values need to be known at runtime, whiRitis called before
program’s execution, the returned labet isnt i ne.

e A special security labetlat a is used to denote channels with a dynamic label,
where each packet of data has a security label attached Eoitthese kinds of
channels:

— getDataLabel returns the label of a packet received from an input command.
— setDataLabel sets the label of a packet to be sent by an output command.

e compareChannel takes two I/O commands and verifies if they access the same

I/O channel of the system. It returd@ andNOin affirmative and negative cases,

respectively, andRT (for runtime) in the case that the arguments’ values need to be
known at runtime, in order to perform the comparison.

e maxLabel takes two labels and returns the most strict of them. If threyirecom-
parable (at an equal level on the security lattice), retarjosn of both.

e [, L, Jandd are the comparison operators for labels.

4.3 Static Analyzer

The static analyzer is an adaptation of the graph-based P&lRsanthat we introduced
in the previous chapter. The modifications are motivatechbyfaollowing:
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e The static analyzer should now generate a report of all tieerimation flows and de-
classification matchings within the program, rather thazidieg by itself whether
the program is safe or not.

e The analyzer should now be system independent with regatte security labels,
ie.

— Analysis should be purely symbolic, i.e. information flowsladeclassifica-
tion matching should be identified regardless of specifizsgclabels, as
these might differ depending on the system where the progviinbe exe-
cuted. The interpretation of specific security labels it fief the other steps
of the hybrid enforcement.

— The matching between input nodes in program and policy shalab be sym-
bolic, in the sense that every input node in the former matawery input
node in the latter. Again, the matching of input nodes isftafthe other steps
of the enforcement.

In this section, we first introduce some concepts and preékemutput of the static
analyzer through the examples. Then, we proceed to definewewodify the PCR
analysis to produce such an output.

Program point. A program pointis used to identify an input (or output) operation
in the program, and may be referenced by both the source ancbthpiled code. For
each I/O operation detected by the static analyzer, a wrappgenerated around that
operation, ensuring that the same program point used inotlmes will be recognized in
the compiled code. We writ# to denote thé/O operationon channeb at program point
1. Note that this is different from the notation for sequdrdizcesses on the channel, used
in the previous chapters. While denotes the-th access on channé] 6° denotes the
program statement at program point

Flow report. The static analyzer generates an output cdlled report It contains
all flows of information in the program, one for each outpuegtion in the program
code, including declassification matchings. A flow is bdsica relation between an
output operation and a set of input operations whose valaesrdluence it. While a
formal definition of the flow report will be given at the end big section, we first give
an intuition of it via our examples.

Consider again the program of Examgld (Classification): Tabl&.lapresents the
mappings of I/0O statements to symbols (i.e. the Greek Bttdhe program points of the
operations are also identified: here we use simply the limeb@r where the statement
takes place in the code. Talflelbpresents the flow report. In particular, we have a single
flow that states that output operatioh (i.e., an output to channel that is made by the
statement on program point 9) potentially reveals infofomaabout input operations*
and 8.

To illustrate how the flow report can contain information abthe declassification
matchings detected on the code, let us consider again tigegonoof Exampled.2 (De-
classification), in which declassification policies aredusdable4.2asummarizes the
policy used, describing which expressions may be decledsifihe top part of the table
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Statement I/O symbol | Type | Program point
next(clist) a Input 4
readF'romInput() g Input 8
sendSM S (addr, text) 0l Output 9
(a) Mappings of I/0 channels to symbols
Flow report
{o, 5%} ~ +°

(b) Flow report

Table 4.1: Static analyzer output for Exampgléd

identifies the expressions that can be declassifigde¢one(. . .), isNear(...)), their fi-

nal nodes £;,%,) and the new label to be applieddw) to the variables that hold these
expressions. The input nodes,( ' ") match specific input channels, identified in the
bottom part of the table, wheeny stands for any input channel. The mapping between
inputs and symbols works in the same way as in the previoungea Notice that, in
this case (Tabld.2b), the same input channglis accessed at two different points of the
program (i.e. 4 and 7). The flow report (Taldl2¢ includes the declassifications detected
by the static analyzer. For instande,®} —*' 1ow represents the case of variablgT 'z,

set on line 3. This variable has a dependency with ingutbut its content is matched
by the declassification policy. Thus, its dependency withis changed to a dependency
with the label of policy node; (i.e.| ow). Finally, X; represents the set of constraints on
the declassification policy that need to be checked in onleeofiéxt two phases (either at
pre-load or at runtime). In other words, the expresdiaf} —~' 1ow will eventually be
translated td owif every constraint inX; is satisfied, and ta? otherwise.

Each element of a constraint s€tis a pair with either one of two formats: (1) a pair
(a',ng), where the first element is an input operation in the code,thadsecond one
is an input node in the policy, representing the constréiatd’ andn, must represent
the same input channel; or (2) a péirexp), in whichi is a program point andzp is
an expression which represents a constraint on how many fomegram point has to
iterate on the running program.

Finally, we show the static analyzer output for Examfl&(Iterative declassification),
showing the use of a loop counting declassification congtrdihis policy is illustrated
in Table4.3a Notice that the policy also enforces input uniquenesseidbping value,
i.e. (a, x1) € uni(d). Since input uniqueness is entirely treated by the graged®CR
static analyzer, we do not detail it here. The predidate(x, ), related to the looping
constraint, is discussed further ahead. The static anmalymeks like in the previous
examples (mappings in Tabfle3band flow report in Tabld.39.

Modifications on graph-based PCRere, we modify graph-based PCR to work to-
gether with the other two steps of our mechanism. As statatidrbeginning of this
section, the modifications are required since the analysis must be system indepen-
dent (i.e. labels for a same input can vary in different sysjeand some security labels
might be dynamic (i.e. their values being known only at nonaf). Additionally, matching
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Expression | Final node| Label
timezone(n,,) *1 | ow
isNear(ng, * ") s | ow
Input node Input channel
Ne getLocation()
' N any

(a) Declassification policy

Statement I/0 symbol| Type | Program point
getLocation o Input 2
recv(secureConn) B Input 4
send(“ACK” , secureConn) J Output 6
recv(secureConn) B Input 7
print(*Host is nearby!) 0l Output 9

(b) Mappings of I/0 channels to symbols

Flow report
{{a?} —21 1ow, B4} ~ 0°
{{a?} =X 1ow, B4, {a?, 87} =2 low} ~ ~°
X1 ={(a*,n4)}
Xo = {(a®,n4), (B7, %' ")}

(c) Flow report

Table 4.2: Static analyzer output for Exampgl@

of declassification policies might include constraintd ttean only be checked at runtime.
Thus, the analyzer no longer deems a program secure or noather generates an output
that will be used by the two subsequent steps.

We extend the policy graphs to accommodate the new contstra®ecall from Sec-
tion 3.2 that the declassification policy graph has the fatra- (V, E, V;, U), whereV
and E are the vertices (nodes) and edges, respectiVely, V is the set of final nodes
(also denoted bynodes(d)), andU is the set of input uniqueness constraints. We make
two modifications:

1. every input nodey, in the policy that matches an input nodg in the program
graph generates, upon matching, a constréintn,) for that policy matching,
wherei is the program point of the specific input operation that wascimed, as the
matching of the input channel will be made in one of the twossgjnent enforce-
ment steps;

2. we add another componeriter, which is a mapping from the policy nodes to
expressions. Wheiter(n,) is defined, it returns a constraint on how many times
the assignment of the variable that matches nod@ust iterate. The expression in
iter(nq) has one free variable, namé&dwhich represents the number of iterations.
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Expression Final node Label
(add(get Property(ng)))* *1 | ow
Input node Input channel
Na fetch(openDBConnection())

| iter(xy) =it > 25 |

(a) Declassification policy

Statement | I/O symbol| Type | Program point
fetch(db) « Input 5
output(avg) ~y Output 10

(b) Mappings of I/0 channels to symbols

Flow report
{{a’} =1 1ow} ~» 410
X1 ={(a’,ny), (4,1t > 25)}
(c) Flow report

Table 4.3: Static analyzer output for Exampgl&

Predicate-onstr in Definition 4.1 defines how the constraints are generated.

With the notation defined, the flow report is generated frommglogram graph, via
the process defined below. Here we u¢@”’) to denote the program point of program
statement”” andlabel(ny) to denote the security label of a policy final node(i.e. the
label to which a variable that matches that policy will be dgwaded to).

Definition 4.1 (Flow report) LetC' be a programg = G(C') the corresponding program
graph andd a declassification policy graph. We have that:

e For a variable noden, in g, the set of input operations and declassifications that
potentially flow ton,. is defined as:

flowyq(n,) = U  flowya(nyg)
pEMip(na)
where:
flowyq(n,) =
{aid(ac::oz)} if Ng — Ny
{ U flow,aln,) —> label(ny)} if Iny € frnodes(d) : ny ~pany
Ny—Ng
whereX = constr(n, ~,qny)
U flowpa(ny) otherwise
Ny—Ng

e For a simulation relationR between a node ip and a final node ini, the set of



78 4 .4. Pre-load Checker

constraints for the matched declassification is defined as:

constr(R) =
{(ai,ng) | (na,ng) € R, Ing, nly: ng — nyg, (ng,n) € R,yi=id(x :=a)} U
(N,

{(i, exp) |

. trol
ng) € R, iter(ng) = exp, Ing : ne ——= ny,

i = id(while c do)}

¢ Finally, the flow report of progrand’ is defined as:

fra(C) = U frga(ny)

nEnodes(g)
whereg = G(C) and:
froa(n,) =
{flowy 4(ny) U U flowg a(ne) ~ Yiayi=a) | e € g : Ny — Ny}

control
Ne Ty

Note that predicateflow is a simple walk in the graph, whose implementation is
straightforward. Algorithms from SectioB.5 can be extended to implement the flow
report generation.

4.4 Pre-load Checker

The pre-load checker is the step responsible for matchiageport generated by the
static analyzer with the security labels of the specificeysbf execution. Each infor-
mation flow from the flow report is checked by verifying theétdof the corresponding
I/O channels. This is done by using the system labeling ARIw§ containing only
I/O channels with static labels are validated at this stadele flows with dynamic la-
beled channels generate checks to be performed by the rietiforcer. Also, the static
analyzer’s flow report may identify declassification mangys which contain additional
constraints to be checked. The pre-load checker also \&esfime of these constraints,
and the ones that need runtime information are includedemuhtime checklist.

In order to simplify definitions, two assumptions were matdeur mechanism. First,
we consider that every declassification that needs to bekebdeduring runtime isiec-
essary That is, if the declassification constraints are not satiséit runtime, then the
program is marked as unsafe without further analysis. Tisis means that nested de-
classifications do not need to be checked, as the failureeaiukermost one will result in
stopping the execution. This assumption can be relaxed tayndxg our mechanism so
that the runtime checklist contains information of whattoxhen a declassification fails:
stop the program, still allow it or perform further checkspdnding on the labels. In fa-
vor of clarity, we leave such extension for future work. Set,ahe flow report contains
all inputs that an output cgossiblydepend on. In other words, our runtime enforcement
IS not permissive to the point of accepting safe executidpstentially unsafe programs.
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Again, the mechanism can be extended so that runtime checifg ¥ unsafe branches
are taken or not, but we leave this as future work.

The pre-load checker first translates the elements of the riépart to their corre-
sponding labels in the target system. Each element in themarchecklist has the format
(1, check), wherei is a program point ancheck a directive for a specific check to be per-
formed. The possible directives are detailed in Talde The pre-load checker is defined
at the end of this section (Definitigh2), while we first give an intuition of its behaviour
via our examples.

Name Directive

count _iter Count number of iterations of current com-
mand.

eval (exp) Verify validity of expressiorexp.

conpar e_ch(cnd) Checks whether the channel accessed by|the

current input command is the same as the chan-
nel relative tocnd.

store_dat a_| abel Store data label of current input operation.

store_ch_|I abel Store the label of the input channel accessed by
current input operation.

check_i nput (pp) Check if label relative to input operation at prp-

gram pointpp is smaller or equal than that of
the current output operation.
set _data_Il abel (1 abel ) | Setthe data label of the current output operation
asl abel .
check_out put (| abel) Check if channel label of current output com-
mand is larger or equal thdrabel .

Table 4.4: Runtime enforcer directives

In Example4.1 (Classification), after the static analyzer does its job,pitugram is
then compiled and the analyzer output is used by the pre-dbadker just before the
program is executed. The pre-loader translates each |/@atpe to its corresponding
label, as shown in Tablé.5a However, notice that® translates ta unt i me, which
means that its label can only be checked at runtime (as itdkspen the value of variable
addr). Based on this table, a checklist for the runtime enforcalss generated, as shown
in Table4.5h In this example, the checklist basically states that thellaf the output
statement of program point 9 needs to be checked and sdisfyonstraint of being at
leasthi .

In Example4.2 (Declassification), the pre-load checker must also cheekptilicy
constraints, which are all mappings between input oparatan the code and the ones
specified by the policy. These mapping can be checked gnétehis step, as shown in
Table4.6a Table4.6bshows the translation of the flows to labels. Notice thahaalgh
Definition 4.2 states that declassifications are translated to just theydabel when the
check of the constraints does not fail, here we always shbwhallabels involved in
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Flow Labels
{a*, 8%} ~» 49 | {hi,low} ~» runtime
(a) Label translations

Program poinf  Statement Check condition
9 sendSMS(...) | check_out put (hi)
(b) Runtime checkilist

Table 4.5: Pre-load checker output for Examylé

the declassification, for clarity. Recall thaat a stands for a label that is set for each
transmission, as opposedrtant i me (used in the previous example) which means that
the whole channel has a single security label, which is knomy at runtime. Finally, the
runtime checklist is presented in Taldéc with 3 items. The first tells the enforcer that
the data label of input operation at program point 4 need®tstdred for further usage.
Then, the second check treats the first flow: the output chavittreautomatic label must
be labeled according to the inputs it depends on. Thus, taekcis for the enforcer to
assign a label to the data sent by that output operation,easiéiximum label of all the
inputs it can leak information on, i.e. the maximum betwéenv and the data label of
input at program point 4. Finally, the third check deals with second flow: for output
operation of program 9 to be safe, the label relative to irgp@ration at program point

4, stored earlier, must be at most as strict as the label afutgit command of program
point 9 (which isl ow).

Constraint| Status
)2;:2 ) | OK Flow labels
< - {{high} —% low,data} ~~ data
(22 ) K {{high} —% low,data, {high,data} —% low} ~~> low
(57 ’*ioﬁ) oK (b) Label translations
(a) Declassification con-
straints
Program point| Statement Check condition
4 recv(...) st ore_dat a_| abel
6 send(...) | set _data_l abel (max(in_| abel (4),10w))
9 print(...) check_i nput (4)

(c) Runtime checklist

Table 4.6: Pre-load checker output for Examypl2

Finally, in Exampled.3 (Iterative declassification) notice that the static anatygen-
erates an iteration counting constraint for the declassiin matching (Tabld.79. The
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second constraint denotes that the statement at prograrhpaiust iterate at least 25
times. Also, notice that this constraint cannot be verifiggra-load time, so the checker
marks this afkT, meaning it needs to be checked at runtime. As for the crstdklibe
passed to the runtime enforcer, for the only flow to be saéed#tlassification constraints
must be all satisfied. Based on that, the checklist for themenénforcer has two items
(Table4.79: a request for counting the number of times a loop will rumgj éhen using
that number to validate the output operation.

Constraint ;) | Status
(a® ny) K
(4,it > 25) RT

(a) Declassification constraints

Flow labels
{{high} —*" low} ~~ high
(b) Label translations

Program point  Statement Check condition
4 while ... do count iter
10 output(...) | eval (iter_count(4) > 25)

(c) Runtime checklist

Table 4.7: Pre-load checker output for Examyl@

In the definition below, we usg to denote a flow (from the flow reportj¢ to denote
a declassification within a flow, for a label andpf for a “partial flow”: i.e. the left-
hand side of a flow, consisting of a set of input statementsdmutbssifications. We
usecmd(ngy) to return the command relative to policy nodg (obtained from a simple
lookup on the declassification policy mapping table). Foowff, from(f) andto(f)
return the left-hand side (set of inputs and declassifingjiand right-hand side (output),
respectively. The same applies for a declassificafigrwith alsoconstr(dc) denoting
its constraint set. Additionallylabel(a?) returns the label of an I/O operation, using
the system labeling API (translating to the corresponding I/O command). Consider
that, when an input statemeat of a flow f is translated to a labél predicateid(l)
is set with the program pointof the input statement. Finally, in the definition of the
checklist,t ypewr i t er font denotes enforcer directives (and thus treated as aainst
symbols), while standard mathematical notation denotpsessions which are actually
evaluated. Functiomax is used over labels in the following way. If the set of input
labels only contain static labels (e.g.ow, hi gh), it evaluates to the most strict label
(hi gh). However, if the set includes a dynamic labeg&{ a orr unt i ne), it evaluates
to max (i n_| abel (n), m, to be evaluated by the runtime enforcer, where the
program point of the dynamic label antthe max of the static labels.

Definition 4.2 (Pre-load checker)Let C' be a program/ a declassification policy and
frq(C) be the flow report for progran’ using policyd. The pre-load checker is defined
by the following steps:
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1. For each flowf € frq(C), the translation off to security labels is defined as:

WI(f) = Ibl(from(f)) ~ label(to(f))

l(pf) = Lejflabel(ai) UdLEJflbl(dc)
Z Ibl(from(dc)) if check(constr(dc)) = NO
lbi(de) = { to(dc) if check(constr(dc)) € {OK,RT}
check(X) = max(|J check(x))

rzeX
wheremax orders values asi0 > RT > 0K

compareChannel(c;, emd(ng)) if x = (ay, ng)

check(z) = { RT if x = (i, exp)
wherecompareChannel is the function from the system labeling API.
2. The static validation of program’ with policyd is defined as:

validate(C, d)
validate(f)

Ve frq(C) :validate(f)
VI € lbl(from(f)),l ¢ {runtime,data} : [ C label(to(f))

3. For the non-statically verifiable labels and constraifsC' and d, the runtime
checklist is defined as:

checklist(C,d) = {checklist(f)| f € fra(C)}
checklist(f) =
{(4d(l), store_dat a_| abel ) ,(id(cmd(to(f))), check_i nput (id(l)))
| L€ lbl(from(f)): 1= data}
U {(id(l), store_ch_I abel ) ,(id(cmd(to(f))), check_i nput (id(l)))
| L€ lbl(from(f)): ] =runtime}
U {(id(emd(to(f))), set_data_l abel (max(lbl(from(f)))))
| label(to(f)) = data}
U {(id(emd(to(f))), check_out put (max(lbl(from(f)))))
| label(to(f)) = runtime}
U {(¢, count _iter),(id(emd(to(f))), eval (expliter_count (i) /it]))
| (i, exp) € constr(dc),dc € from(f)}
U {(4, conpar e_ch( cmd(ng)))
| (i, ng) € constr(de),dc € from(f),check((ci,ng)) = RT}

Aboutdat a input channels inside loopsSince our enforcement is not permissive
(i.e. does not accept safe executions of possible unsafggms), storing labels afat a
input channels inside loops can cause problems, as thedaloéd be overwritten at every
iteration of the loop. To solve this problem without permissess, our approach, when
trying to store a pre-existingat a label, replaces the stored one with a “most strict join”
of both. This can lead to imprecise analysis (i.e. over it only in some rare cases:
when adat a input channel is read within a loop, with only some of its \es\fthe lower
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labeled) being aggregated together (higher labeled onieg descarded), and then sent
to an output. However, as previously explained, our apgrazmn be extended to be
permissive, ruling out this imprecision.

Algorithm. Algorithm 4.4is a straightforward implementation of the pre-load checke
Here, consider thatr(C') is the flow report for prograni’. Also, when a label is ob-
tained fromgetChannel Label(cmd), an entry is made ofl(!) representing the original
program point that generated the label. For the entrieseofuhtime checklistdpklst),
textint ypewr i t er font represents the runtime enforcer directives, heréddeas con-
stant strings, whereas text in standatdt/ notation represents statements that are ac-
tually evaluated by the pre-loader algorithm. Functioaz appears with two different
uses: on lines 13 and 18 it is used to calculate a maximumteswdonstraint checking,
using the orderindNO > RT > OK; on lines 31 and 33 it is used over labels by the
following: if the set of input labels only contain static &b (e.g.l ow, hi gh), it evalu-
ates to the most strict labéhi( gh); if, however, the set includes a dynamic labdh{ a
orrunti nme), it evaluates tavax(i n_| abel (n), m, wheren is the program point
of the dynamic label anchthe max of the static labels. In the latter casax will be
evaluated at runtime.

4.5 Runtime Enforcer

The runtime enforcer has a very simple behaviour. As therprogs executed, each
check on the checklist is performed as its correspondingrar point is achieved. The
runtime enforcer itself is a simple program, containinded#nt functions for each type
of check, and its own state-tracking variables. In thisisacive consider a Java-based
runtime environment. Thus, our enforcer is a Java class @it static methods and
parameters. Consequently, only a single instance of theraarfis instantiated for a
monitored program. Calls to the enforcer class are injectetthe target application’s
bytecode, after the pre-load check, just before execuli@ne we treat this code injection
as a preliminary step to the runtime enforcement, althoucgmi also be considered a final
stage of the pre-load checker.

Code injection.The approach of injecting calls to the runtime enforcer i appli-
cation bytecode, just before execution, brings advantbyyes/o reasons. First, it keeps
the runtime enforcement stage with minimal overhead, asgnjleeted code is a simple
method call containing all information needed for that é¢hélthis precludes the need for
the enforcer to monitor every single instruction, and teaite over the different types of
check. Second, it connects the program points calculatedebgtatic analyzer (over the
source code) with the information available to the runtim®ecer (which works on the
bytecode).

The injection is simple: for each check at the runtime chetké call for the en-
forcer to perform such a check is added just before the qmoreing program point. We
demonstrate the process via an example: consider a Javenmaptation of Examplé.1,
in Figure4.2 Figure4.3shows a snippet of the correspondingex bytecode, compiled
for Android’s Dalvik virtual machine, already with the igeed code, identified by the
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Algorithm 4.4: Pre-load checker
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chklst == 0;

foreach f € fr(C') do

fromLbl := (;

toLbl := getChannel Label (cmd(to(f)));

foreache € from(f) do

if e € (In x N) then fromLbl U= getChannel Label(cmd(e));
else ife € Declass then

cmax =0,

foreachz € constr(e) do

if x = (i, exp) then

chklst U= (i, count _iter);

chklst U=

(id(to(f)), eval (replace(exp,it,i ter _count (7))));
cmax := max(cmazx,RT);

else ifz = («a;, ng) then
¢ := compareChannel(cmd(a;), emd(ng));
if ¢ =RT then
| chklst U= (i, conpar e_ch(cmd(ng))) ;

| cmax = maz(cmax, c);

if cmax € {0K,RT} then fromLbl U= to(e);
else foreachn; € from(e) do
L fromLbl U= getChannel Label(cmd(«;));

—h

oreachl € fromLbl do
if | = datathen
chklst U= (id(l), store_dat a_| abel ) ;
chklst U= (id(to(f)), check_i nput (id(l))) ;
else ifl = runtime then
chklst U= (id(l), store_ch_I abel );
chklst U= (id(to(f)), check_i nput (d(l)));

| else ifl 7 toLbl then return false;

if toLLbl = data then
L chklst U= (id(to(f)), set _dat a_l abel (maz(fromLbl))) ;

else iftoLbl = runtime then
L chklst U= (id(to(f)), check_out put ( maz(fromLbl))) ;
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comment lines. Bold font is used to point the output instarctior which the check is
needed. Note that in the “debug info” of the bytecode, it carséen that bytecode ad-
dress 0049 (recalculated from its original value, afterdbée injection) corresponds to
program point 29, the program point where the output happetige Java source code.
Here, the checkheck _out put of the enforcer is injected right before the output com-
mand. Since the code injection is a simple (and technologgmigent) process, we omit
a detailed specification of it.

15: static void processContactList() {

16: String [] clist;

17: String contact, text, addr;

18: int counter, age;

19: clist = getContactlList();

20: counter = 0;

21: whi | e(hasNext (clist)) {

22: contact = getContact(clist);
23: age = get Age(contact);

24 i f(age > 45)

25: counter = counter + 1;
26: }

27: t ext "I have " + counter + " contacts over age 45";

28: addr readFr om nput () ;
29: sendSMsS(addr, text);

30: System out. println(text);
31: }

Figure 4.2: A Java implementation for Examgld

The enforcer programrhe enforcer provides a method for each check type. For each
case, a statement is executed and its result validatede Htttement is not satisfied (i.e.
expression does not hold, or command cannot be executed}tibeenforcer halts the
calling thread, and reports the violation. For the congdelava enforcer, each check is
implemented by a method, e.gheck_out put (I abel ) is implemented by method
Enforcer.checkOutput(i, ¢, label), wherei andc are arguments representing the current
program point and command, respectively. For simplicity,amit a detailed implemen-
tation of the enforcer, but the behaviour of each check issdgsttforward implementation
of Table4.4, in the previous section.

45.1 Overhead

We have implemented our runtime enforcer in Java, and meddwwth its processing
and memory overhead, running with applications on an Antdevice. First, we discuss
the theoretical limits for this overhead, and then we prddeeshow our experimental re-
sults. For the memory overhead, the enforcer keeps tworsyfter _count andin_label,
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| [36c] Exanpl el. processContactList:()V

0003e4: 7100 0900 0000| 0034: invoke-static {}, Exanplel.readFrom nput:()Ljava
| /lang/ String; // method@009

0003ea: 0c01 | 0037: nove-result-object vl
\\ Begin injected code
0003ec: 1302 1500 | 0038: const/16 v2, #int 21 // #0015

000408: 7140 0100 3254| 0046: invoke-static {v2, v3, v4, v5}, Enforcer.checkCQu
| tput: (ILjava/lang/ String;[Ljaval/lang/ Qoject; Ljav
| a/lang/ String;)V // nmethod@001

\\ End injected code

00040e: 7120 0a00 0100| 0049 invoke-static {vl, v0}, Exanplel.sendSMs: (Ljava/

| lang/ String;Ljaval/lang/ String;)V // nethod@00a
000414: 6201 0000 | 004c: sget-object vl, java.lang.Systemout:Ljaval/iolPr
| intStream // fiel d@000
000418: 6e20 0b0OO 0100 004e: invoke-virtual {vl1l, vO0}, java.io.PrintStreampri
ntln:(Ljava/lang/ String;)V // method@O00b
0051: return-void
debug info

I
00041e: 0e00 |
I
| line_start: 14
I
I

paraneters_size: 0000
0000: prol ogue end

| 0049: advance pc
| 0049: line 29

Figure 4.3: Dalvik bytecode snippet for code of Figdr2

which map a program point to an integer and a label, respgtilhese buffers can be
implemented either with standard arrays or hash tablese thait entries on each of the
two buffers point to different types of commands: entriestim_count point to looping
and entries inn_[label to input commands. So, a worst-case scenario happens oR a pro
gram made entirely by loops and inputs, all loops being egfeed by policies, all inputs
being dynamic, and a single output in the end, with all inflatsing to it. In this case,
for a program withn commands, exacet — 1 entries are made on the buffers, each using
one memory word (32 or 64-bit). Note that, in practice: (19 Hverage case tends to
use considerable less memory, e.g. in our 3 examples, ibe cdt(humber entries/num-
ber commands) were 0/9, 1/9 and 1/10, respectively; andr@@rams tend to use much
more memory for their data than for their code, meaning tiabound of: entries in the
buffers is usually low.

As for the processing overhead, note that each injected pmae is a simple call
to one of the enforcer’s methods. These methods, in turnpgkemented with the ex-
ecution and verification of a simple statement, with no loopBus, it is clear that the
enforcer methods have, by themselves, constant complexitythat the enforcer does
not change the complexity of the monitored program. Oncéatgae number of checks
added to the program is bounded by the numbef commands. But most practical cases
do not reach the bound since only operations on dynamic I/O channels and defilzessi
tion constraints generate checks. In our 3 examples, thues @it (number checks/number
commands) were 1/9, 3/9 and 2/10, respectively. It shoulddbed that, in the classical
definition of a runtime execution monito6¢h0Q, the runtime enforcer monitorsvery
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command of the program. Our enforcer, though, does not sadsneed to monitor
every instruction, since the task of identifying instrocis that need monitoring is per-
formed by the previous stages of our hybrid approach.

We have implemented Android versions of the three examléisi® chapter, plus
a number of benchmarking programs meant to stress the reiinforcer performance.
Unfortunately, there are only a few proposals for hybridrapphes in literature, and they
all differ not only in how they are measured, but also on tepgcific goals. Thus, there
is not yet a “standard benchmark” for hybrid static-runtim@rmation flow and declas-
sification analysis, making a direct comparison of perfaragawith other approaches not
possible at this moment. Our experiments have the purposiecsfing that the overhead
of our runtime component is negligible for most practicarsarios.

Each benchmark has a different “profile” for accessing FieCopyperforms a copy
between files, reading blocks of 1KB at a time. However, edotikkhas alat a security
label. Thus, the runtime enforcer has to set the label of eatk with the label from
the previous read. This is an example of a program with exdri#@ access, all of which
checked by the runtime enforcéfileEncryptis the same as the previous, but each block
is encrypted before being written. With this, the progranuiis a considerable processing
time between I/O accessemfGatherand Statisticsare similar programs, which access
inputs from 10 different sources, and then perform a singtput, whose value depends
on all previous inputs. In the former, all input channelsénaunt i me security labels,
which have to be checked during access, and then comparkd tutput label. In the
latter, labels are static, but violate non-interferencewklver, some statistical calculation
is done over the data, and a declassification policy allows somputation. Thus, the
runtime enforcer is left to check if the input channels aseddy the program match the
ones described by the policy, and also count the number ot iagcesses made by the
main loop. FinallyLoopsis a program made by several loops, all of which are small in
size and have their number of iterations counted by the eefppresenting an extreme
example of almost every instruction being checked. Javecearode for these examples,
as well as for the runtime enforcer implementation can bedan AppendixB.

Each program was executed 50 times with and without the tmallke runtime en-
forcer, and their processing times and memory usage waswaloseFigured.4 presents
the processing times of the programs. Error bars are forademée intervals of 95%.

Note that only the “extreme” examples incurred a large pgsitey overhead. IRile-
Copy, there is almost no processing between I/O accesses. Thecenfjets the data
label from each input read, and applies it to each outpuewiihus, the enforcer nearly
does the same amount of computing as the original prograati.itdotice how the en-
forcer overhead becomes minimal when processing is addeeée the 1/0 accesses, in
FileEncrypt A similar thing happens ihoops where the program is made entirely by
loops, and the enforcer counts number of iterations on @hei. This way, the amount
of injected code is large. In all other cases, overhead wassdlimperceptible.

Table4.8 presents the results for memory usagocCountandAllocSizerepresent
number of memory allocations and used memory size, respgctEach cell represents
the ratio between the value for running that program with aittout the enforcer. As
expected, the overhead on used memory is minimal, being stt 1xi8%, for the=ileCopy
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Figure 4.4: Processing times of experiments

program, in which labels are stored in every I/O access. Fograms in which loop
counting is done, the number of memory allocations can aszenoticeably with the
enforcer, as seen fatatisticsandLoops However, since for each loop only an integer is
used to count, the overhead on used memory size is still mlnim
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Program AllocCount | AllocSize
Examplel 1.012 1.003
Example2 1.019 1.002
Example3 1.000 1.000
FileCopy 1.022 1.013
FileEncrypt 1.000 1.000
InformationGather  1.084 1.000
Statistics 1.253 1.001
Loops 3.413 1.001

Table 4.8: Memory usage ratio of experiments
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CHAPTERS

Open Problems

In this chapter we discuss some of the open problems leftibytiasis. We first discuss
how precise the graph-based PCR implements the expressitaivimy framework, in
Section5.1 Then we discuss two open problems that arise from PCR asalys loop
counting problem in SectioB.2 and the algebraic equivalence problem in Secbdh
In Section5.4 we discuss the implementation of graph-based PCR on a regigme
ming language, such as Java or C++. Finally, in Sed@i&we present a future research
guestion, on how to perform PCR analysis on compiled codé, as@ssembly language.

Along with the open problems, we also present research measw to pursue their
solution. These ideas are however insights, which need farbeer investigated. Thus,
we present them in a discursive manner, without a completedization to validate
them, laying the foundation for future work in the field.

This thesis focus on the enforcement of declassificatiorcigs| rather than their
specification. Thus, we do not include here open problenage@lto enhancing the rep-
resentation format of the policies, as we consider this arsgéed domain of problems.

5.1 Information Path Filtering

As stated before, graph-based PCR safely approximates pnession-matching frame-
work. In other words, if the framework rejects a programntke does the implementa-
tion. However, the opposite is not true: a program deemesllsathe framework might
be rejected by the implementation. One of the main reasanifohappens due to the
way information paths are calculated: some of them are lygtmapossible to happen
during execution, and might represent insecure flows ofrmétion. In this section we
detail this problem, which we cathformation path filtering

Consider Exampl&.1 below, with its corresponding program graph in Figbré
Here, from the code we can easily conclude that the poss#blees sent to output are
f(a, B) andf (3, «). However, by analyzing the program graph, and recallingrmétion
path calculation from DefinitioB.8, we can see that the graph-based implementation con-
siders 4 different information paths reaching the nodelébe: the paths that generate
valuesf(a, ) and f (3, ) are also considered. This is a clear example of the impreci-
sion of the graph-based implementationaltind 3 are both secret input channels, and
a declassification policy only allows the release of expoessf («, 5) and f(3, ), then
the implementation rejects this program, as it assumegttbamsafe expressiorfi$co, o)
andf(5, 8) might eventually be output, which is not true.

91
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Example 5.1. Imprecision of the implementation:

bool ¢; := someCondition();

int xo, Yo, T'o;

i f ¢ then
T = Q]
Y1 = f;
el se
Ty =3
Y2 = Qg

T3 = ¢c1($1,96’2)3
Y3 = be, (Y1, 2);
ry = f(x3,y3);
V=T

Figure 5.1: Program expression graph for Exantple

A straightforward approach for this problem would be, asrthme implies, filtering
the set of information paths prior to analysis, excludingstih which are unreachable.
The problem then lies in determining whether or not an infaion path is reachable.
For the example above, this might look simple, as both naalesiédz; andy; have an

incomingcont r ol edge from node;. The unreachable information paths are those in

which two nodes receivingont r ol edges from a same third node recejvedges with

different indexes, i.e. ong, and the othep,. However, some cases might not be so easily
detectable, as we can see in Exanfp® Here, the program graph is mostly the same as

the previous example, with the exception that there are maacbnditional variables:;
andc,. Figure5.2 shows the partial program graph relative to these two veasab



5. Open Problems 93

Example 5.2. Non-trivial example of imprecision:

int o, Yo, 7o;

double a; := 0;

ag = add(al, 5),

as = div(ag, 10);
bool ¢; := geq(as, 15);

if ¢gthen
T = Q;
el se
Ty = f3;

73 = @, (T1, 72);
ay = div(ag, 10);
¢z 1= geq(aq, 15);

i f cythen
Y= B3
el se
Y2 1= Qg
Yz = Gy (Y1, Y2);
T = f<x37y3);
V=T

Figure 5.2: Program expression graph for variablesndc,, in Example5.2

Note that the problem is essentially the same. However, sechandant programming
makes it harder to detect the unreachable information gaghdy inspecting the graph
structure. The key to the problem lies in determining thatesdabeled; andc, hold the
same values, for each information path they are both preseortunately, our graph
matching mechanism is centered exactly around the notiaet@rmining if two nodes
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hold the same expressions: this is our policy simulatioefinition 3.9. Thus, we can
use policy simulation to determine whether two boolean sdu#d the same expression
in a given information path, and from there determine if thi@imation path takes two
different ¢-edges that consider that same boolean expression to berbetand false,
respectively. These information paths would then be taggednreachable. A tentative
definition of an unreachable information path is:

— ! / .
unreachable(p) = 3ng, My, Net, Nz, Ny, My, € n0des(D) Mgt ~pp Ne2y Mz ~p.p Net

control control ;b , i . .
ncl _— na7n02 _— nb,na — ncwnb — anZ ?é ]

With nodes(p) returning the set of nodes connected to the information patiNote that
since our policy simulation is unidirectional, we need teckfor bothn., ~,, n. and
nea ~pp Ne1- 1he formal validation of such filter is left here as an opevpem.

Here we have dealt withf statements, which are one of two statement types in our
language that generateedges in the graph. The otheris ihi@ | e statement. This kind
of statement can also cause imprecision in the implementabut this kind of impreci-
sion is related to the policy representation format. Thiduse to the fact that the graph
generates only a single maximal information path faha | e command, and this infor-
mation path captures all possible outcomes of the looprfpébeing run, and being run
an arbitrary number of times). Thus, the problem we justudised for the f statement
do not happen here. What can happen however, is that the frarkewight specify a set
of declassifiable expressions which only occur when a gigep funs for specific num-
ber of iterations. In the graph-based implementation, blo¢hpolicy expression graph
and the matching mechanism are not expressive enough tdehidmedcounting of loop
iterations. This problem, which affects the precision @& tmplementation, is treated
here as a separated problem, which we nameaiye countingproblem, and discuss in
Section5.2

Example5.2 can be made more difficult to analyse if we change how the sdiedl
by variables:; andc, are constructed. For instance, in the example both vasddalkel the
value®£2 > 15. We could, however, make variabighold the value-($£2 < 15). Note
that the values are still equivalent, but just syntactycdlfferent. With this, the nodes
labeledc; andc; would no longer simulate each other, and the solution we queg
above would not work. This, however, is an instance of a lapgeblem, named the
algebraic equivalencproblem, which also affects the whole graph matching pscasd
is discussed in Sectidn3. We consider that a solution for this problem would be ineldid
in our definition of policy simulation, thus also treatingsea that affect information path
filtering, such as the aforementioned.

Using compiler optimization Another field of research that can be of great help to
further enhance PCR analysis as a whole is compiler optiraizatin fact, the SSA
form that we use to pre-process programs is used as an irdet@eepresentation stage
by many modern compilers. Compiler optimization is able &niify redundancies and
unreachable parts of a code, and this information can bedig@ty graph construction in

1Recall here that an information path is a set of edges
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order to avoid representing expressions which are neveuled¢d, thus making it more
precise with respect to the framework. In particular, it betp in the following:

e Detecting conditionals which are always true or false. Whik, graph construction
can skip entire unreachable sub-graphs (when conditi@alalways false), and
turn ¢-edges int@l ai n edges (when conditionals are always true).

e Detecting conditionals which are bound to each other. Aéaolvariable’s value
might be bound to another, e.gz; = —¢;. Modern compilers often detect and
optimize such situations. In the program graph contexs, Would simplify e.g.,

i f commands nested insiedi | e loops, in which both conditionals are bound to
each other.

e Detecting identical assignments done in both branchesarne £onditional block.
In our approach, a situation like this would create a cordependency between
the condition and the assigned variable. However, as thigrasent is the same
in both branches, no information from the condition can Herned by observing
the value of the assigned variable, thus making the conapéddency imprecise.
Compiler optimization usually treats this scenario by mgvine assignment out-
side of (before) the conditional block, solving the impsian.

Since this thesis is situated within the field of languagsebasecurity, we leave in-
tegration with compiler optimization as future work. Howemthis integration might be
somewhat simple, as compiler optimization can be perforbedédre graph construction.
With this, the graph construction rules might remain uncgfeah) and the pre-optimization
would serve to ensure that the program does not containmsttactures that cause im-
precision, such as the ones cited above.

Using the hybrid enforceilhe information path filtering problem can also be handled
by a runtime enforcer, such as the one we propose in our hegifiorcer. For this, we
could add some extra information in the flow report, keepragk of which values con-
ditionals must satisfy, for each flow to actually happen, toeth have the enforcer keep
track of these conditionals. For example, consider the flow:

{o, 7} ~ A
We can then have this flow be extended with the following infation:
Flow | Conditionals

al ~~F | ¢ = true, c, = false
BI ~s % | ¢ = true, c5 = true

The runtime enforcer would then have to keep track of comaidtisc;, c; andcs. Note
that this extension would come at the cost of an increase@ovbrhead caused by the
enforcer. Also note that the extension goes in the sametaineaf making the enforcer
permissive, in the sense of being able to safely executenpally unsafe programs. We
do not define our enforcer to be permissive for the sake of Igityp as we discuss in
Sectiord.4.
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5.2 Loop Iteration Counting

Theloop countingporoblem is a consequence of the inability of both the polegresenta-
tion format and the matching mechanism to keep track of homytienes a loop iterates.
The problem occurs when it is desired to have a declassditalicy that describes an
iterative expression, but somehow limits the number oétiens for the expression to be
declassifiable. Consider again ExamBlg on page38. Here, if the program calculates
the average of a single input value, the mechanism will daém it safe, as it complies
with the declassification policy. Thus, it is desirable tednan additional constraint that,
e.g. states that the policy is only applicable if the matghdaop iterates a minimum num-
ber of times. This, along with the input-uniqueness rettm; would ensure a proper
disclosure of the average.

This problem only occurs in the implementation, as in thenavork the set of de-
classifiable expressions can contain only expressionsgtaccepted number of iterated
elements. Thus, a different approach for implementing apression-matching frame-
work might altogether avoid it. As stated in the previoudisec this problem adds to the
imprecision of the implementation.

Graph analysis.One approach is to analyze the node that holds the loop comalit
and try to determine all of its possible values. ConsiderraBaample3.2 here, one can
easily see that the loop iteratesgth(«) times. An automated mechanism should inspect
possible values of variablg. One of these can bg = leq(i1, (1) = leq(0, length(c)).
The other is the value of iterative varialble= leq(is, length()), with i also being iter-
ative. The key to the solution is automatically determirtimati, begins as 1 and is added
1 at each iteration. Thus, the mechanism could concludethiealoop runsiength (o)
times, with a similar constraint being applied to the palioye possible research path to
achieve this is by designing a walk on the graph that builise&ch node, eegular tree
expressiofCDG'07] that describes the iterative expressions held by that nédein,
we leave further investigation of this issue as an open prabl

Using compiler optimizationAgain, a possible path for this problem lies in compiler
optimization. Here, the solution would lie in using opti@imon techniques to find, for
each looping construct, a “loop invariant”, i.e. a set of idsi for the number of times
the loop runs. These bounds would then be included in theranogyraph, and used
during the matching process. Finding loop invariants isyéwer, a problem known to be
difficult [SSMO04.

Using the hybrid enforceihe use of a runtime enforcer, such as in our hybrid mech-
anism, renders the problem trivial. As demonstrated in Giraptour runtime enforcer
uses runtime constraints in order to enforce loop iteratmmting. These are specified
along with the declassification policy, and the runtime erdo counts the number of iter-
ations of the specific loops which are relevant for the matghihe incurred overhead, in
most practical cases, is very small, as demonstrated imo8et6.1 This shows that, for
an environment in which using a hybrid system is possibl&y lmounting is not a difficult
problem.
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5.3 Algebraic Equivalence of Expressions

Thealgebraic equivalencproblem is related to the fact that expressions might beasynt
tically different, but semantically equaio0§. For instance, the expressien= a(b+-c)

is the same as, = ab + ac. Our current matching mechanism does not account for this
problem. In other words, if a policy allows for the declassifion of expression; and a
program calculates,, the program will not match the policy.

Since the framework is theoretical, one can state that tbbl@m does not happen
on it, but rather only in the implementation. However, sittice framework is based
on expression-matching, we believe that the problem widleain most (if not any) im-
plementation of it. Different approaches for the implenagioh might impact on the
complexity of its solution, however.

Term Rewriting System®ne possible research path for this problem is to design a
term rewriting system (TRSKBVO01] in order to convert both program and policy graphs
to acanonical form We believe that such a solution would need the followingste be
achieved:

1. Design a TRS for the standard logic-arithmetic operatafrs programming lan-
guage. This TRS should beemjuational based’ RS in which normal forms are
sums of products of powers, e@3? + a’y™ + §2*+5-5) As the TRS is built upon
an equational specification (ES), then, for every rule initR&, there is an expres-
sion in the forme; = e,. We know that using an algorithm such as Knuth-Bendix
we can transform an equational specification into a TRS. Her the equational
specification must have an ordering over terms defined, wtachbe the lexico-
graphic ordering over variable names and function symHdois.known that such
algorithms for building a TRS over an ES build@ampletelTRS, that is, a TRS with
both termination and confluence properties. The confluenmeepty also implies
the unique normal form property. These properties are fonegdial for the system
to be tractable and applicable.

2. Convert the TRS to amformation path rewriting systeifPRS). Thus, the system
would make the same modifications of the TRS directly on therinition paths.
Note that this step is not trivial, and that some work is neagsto keep the TRS’s
termination and non-ambiguity (confluence) propertiestally:

e Since nodes can have an outdegree larger than one, they temmare than
one rule, creating ambiguity. A pre-processing on the mftion path is
necessary, in which each node is “split” into a number of soegual to its
outdegree, each generated node with one outgoing edgeh@sdre incom-
ing edges of its progenitor. The process should be done ino#dim-up”
fashion, from outputs to inputs, until it reaches the dirgwtdren of input
nodes. These, which represent distinct input accessds)avimatch the rule

2If a policy hasg-edges outside of cycles, then consider that the policysis latoken into information
paths.
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(as their parents are noar nodes), and will be the only ones having multiple
outgoing edges.

e Rewriting rules that identify multiple occurrences of a sangpait can only be
applied if the structures on the graph represent the verg saput operation,
but not when they represent different accesses on a sameath@hat is, two
occurrences ofr; represent a same ground term (ikg.+ a7 = 2a4), while
as has to be treated as a different ground term. Thus, sinceisankdiate
child of an input node represent a distinct input operatiorthee graph, the
ground terms of the IPRS are the sets of two nodes and an edge farin
Ng — N.

e Cycles need a special treatment. The straightforward solstiould be treat-
ing thecycle roots(i.e. the nodes that receive the tweedges) as “unmatch-
able”. The practical consequence of this is that rules wbel@ble to match
patterns both outside and inside a cycle, but not a pattatrsgans both areas.

3. Finally, define how to add new operations to the IPRS, suatithetains its fun-
damental properties (termination and confluence). This mguires some work,
as standard TRS research does not tackle the problem of exgesnd RS, whilst
retaining its properties. However, it is important to ndtattmore complex pro-
gramming operations (such asc, or the authentication ones from Exam@d)
tend to be simpler to be added to the IPRS, as they tend to hayéeve (or none
at all) equivalence rules.

With this, the IPRS would be used to convert both program artypgraphs to
canonical forms, prior to the matching. Since the solutiamuld work at the matching
process, it would also be applicable for the algebraic edence aspect of the information
path filtering. Again, we leave a formalization of this apgeb as an open problem.

We believe that the solutions for the three aforementiompeth@roblems (information
path filtering, loop counting and algebraic equivalencelionake the implementation
highly precise, with the only “rejected safe programs” lgeuery specific examples of
unreachable code. And even those might be treated by a piratpgtion of the code.

5.4 Graph-Based PCR on a Real Programming Language

A crucial step for the adoption of PCR analysis in industrypplging it to a real pro-
gramming language, such as Java and C++. In this thesis weadbe&mmechanism over
a simple toy language for the sake of simplicity of the definis. Our toy language is
trivially shown to be Turing complete, and so programs impated in other languages
can be converted to it. In this section we discuss how candiiinguage be extended to
include constructs of modern programming languages. isworthy that most of these
extensions presemingineering rather tharresearchproblems, another reason for being
left out of this thesis.

Control-flow constructsThese include statements suclsas t ch- case, r epeat,
do-whi | e, br eak, conti nue, got o (to static program labels) and others. Most of
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these statements can be easily supported by our mecharssthera are known SSA
translation rules that handle these statements, ysingctions on control-flow branches,
in similar ways as to howf andwhi | e statements are treated.

Modularization. These include structures such as procedures, functionslgadt-
orientation. We discuss in Sectid@6 how to extend our mechanism to support user-
defined functions. That same approach, of generating a agh@f the function, and
then using edges for call and return can be applied for mosuch casesqHS93. In
object-oriented programming, the update of instance kbagawill result ing-functions
being used every time such a variable is returned by a metfibeé. same applies for
static and global variables. Again, interprocedural SS#gtation rules already ex-
ist [LDB 99, SVKWO07] and might be adapted to our framework.

Pointers and arrays. Extensions of SSA to handle arrays and pointers are well-
known [CCL*96, KS98 FKSO0(Q, and could be used to support these structures. The
main goal lies in determining how these structures affezpitecision of the graph-based
implementation, and how to adjust it in order to to keep icme. The main concern lies
in arrays with different positions holding values of diffet security levels. The inclusion
of such structures might incur in the need to extend the jpragexpression graphs.

Unpredictable jumpsException control and computgmbt o statements (i.e. jump to
arbitrary points of the code) pose bigger challenges. Thesetures potentially create
implicit flows with larger portions of the code. For instanasing Java and C++ syntax
for exception handling, the code insidecat ch block receives an implicit flow of in-
formation from every variable that is read/written withhetcorresponderitr y block.
Extensions of SSA to handle exceptions do exist tho@RH09, but the effect of such
extensions on the precision of our implementation has yeeétmvestigated.

Concurrency.Most static analysis techniques have difficulties in suppgrconcur-
rency. Even though deep characterization and formalizadfathis aspect is out of the
scope of this thesis, we do know thafunctions can be used to join versions of a vari-
able that can be assigned by different threads. With thatamekeep the soundness of
our graph representation (i.e. each node representingotihesponding variable’s pos-
sible expressions), and analysis can still be adapted tk praperly. As with the other
constructs, there are extensions on SSA meant to deal wittucent programs in more
precise ways$GW94 LPM99]. Also noteworthy is that concurrency can be treated by
the hybrid enforcer, by having variables which are sharedden threads be modeled as
I/O channels of thelat a type.

Extensions to standard SSA are known to be more expresdivallamw to track more
information about a program. For instance, weak dynamglsiassignment forrQKO03]
aims to further help the analysis of loop and array basedscfudeparallel targets. Also,
static single information form (SSIAha99 extends SSA to achieve symmetry for both
forward and reverse dataflow. Since SSA and its extensi@aiared mostly for compiler
construction and code optimization, the applicability o€ls extensions on information
flow analysis must be further investigated, for each casaraégy.
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5.5 Policy Controlled Release on Assembly Code

We conclude this chapter with the discussion of a long-tepengoroblem not only for
PCR analysis, but for information flow and declassificatioalgsis as a whole. This
problem, as the section name implies, is the one of perf@r@R analysis on low-
level code, such as assembly code. The greatest benefit lofassiclution would be a
practical merge of the access control and malware detefiélois. A mechanism that is
able to detect flows of information performed by compiledrusited programs, supporting
declassification policies, will essentially render obsolihe two aforementioned fields
used by industry today.

Here, a program graph of the assembly code can be built, wethaony addresses be-
ing treated like program variables. In fact, there is alseaech for making SSA form on
assembly codd G99]. However, the use of assembly code raises some new chafieng

The first problem of such analysis is identifying implicitils. Since assembly code
lacks the “block structure” of high level programming laages, regions of the code that
depend with a conditional must be found and identified, poanalysis. As a simple
example, consider both pieces of code in Fighi@ In this simple example it is clear
to see how compilation to assembly code implies in the logseabriginal structure that
was present in the high-level code.

if zthen L1 : bnz r1, L2 %if x+0goto L2
y =1 mve r2 <- 1  %y:=1
el se jmp L3
Y =2 L2 : nove r2 <- 2 %y:=2
2 :=3; L3 : nove r3 < 3 %z:=3
(a) High-level program (b) Assembly program

Figure 5.3: Example of source to assembly compilation

A great challenge for such kind of analysis is handling aanumps to statically
unpredictable points of the code. For instance, considgoteo (or j unp) command
that takes a memory reference as an argument. If the destiratthe jump cannot be
calculated at static time (i.e. it depends on an input conttpahen the whole code is a
possible target for the jump, thus whichever control depeoaks exist with the jJumping
instruction will be extended to th@holecode. This is clearly too strict and some form of
new analysis will be needed to tackle this problem.

Some research in bringing information flow control to lowdkcode already exists,
although still far from reaching the expressive level thaRPachieves with source code.
Some approaches rely on using specially typed assemblydaeg BRO5, YI06] to guar-
antee non-interference, but this violates our principleegarating the analysis from the
code. Also with the aim of simplifying this kind of analysigva bytecode has become a
target for information flow analysi€S09, as it is slightly simpler to analyze than native
machine code. Declassification policies are however nasyeported, and consequently
neither is the full separation from program and policy thataim.
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Thus, we believe that the question to be answered with regaré?CR analysis in
assembly code is not (yetowto do it, but ratheif it can be done. We conclude this
chapter with a new research question, to be answered byeftggearch:

Can the PCR framework be implemented for analysis of assemuz].
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CHAPTERG

Concluding Remarks

In this thesis we have addressed the problem of informatmm #nd declassification
analysis on legacy and untrusted programs. We recall tlearels question proposed in
Sectionl.3

How to check information flow on legacy, untrusted and mobﬂde;].

We have answered this question by decoupling declassification analysis from pro-
grams, {i) designing decidable algorithms for checking declasgiboaand (:7) adapting
these mechanisms to work in multiple systems and with lkittleo runtime overhead.

6.1 Contributions

We have proposed 3 related mechanisms for information flavdaelassification anal-
ysis, starting with a more theoretical one and ending withoaenpractical system, each
building upon its predecessor. We start with a purely thizakframework, then move
to a computable implementation of the framework, and ent aiit extension of the im-
plementation which works with existing technologies. Atbposed mechanisms work on
unannotated code, with declassification policies indepenfiom it, thus satisfying the
necessary conditions to answer the research question.

We have introduced an expression-matcHmagneworkthat defines validity of a pro-
gram with respect to the expressions calculated by it. Tamémwork checks all the
expressions a given program can possibly output and cheeks against a set of ex-
pressions which are allowed to be declassified (the se@¢cdfssifiable expressiondVe
formalized a property that states that the program doesewetit any more information
than that specified by such declassifiable expressions. Wiedahis property Policy
Controlled Release (PCR).

We have also developed a high lewelplementatiorof the framework, which uses
a form of graphs to calculate whether a program satisfies PQ#torWhile the PCR
property that the framework refers to is undecidable, tlyprithms we introduce for
implementing it are recursive, with polynomial complexitindeed, we show that our
implementation is a&afe approximatiorof the framework, in the sense that some valid
programs can be rejected, but not the opposite. We presemtradf graphs to repre-
sent expressions calculated by a program, along with a mngtchechanism based on
automata simulation, as well as polynomial algorithms lfi@rwhole mechanism.

103
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Finally, we present aaxtensiorof the implementation, in which we combine it with
runtime components to achieve an enforcement mechanigroahdoe applied to current
technologies and application examples. In order to tackieesaspects of information
flow enforcement that static analysis does not cover, we amnbur implementation
with runtime enforcement techniques. We then show thatyisid solution is not only
able to handle problems that current solutions are incapafbbut also with a negligible
runtime overhead for most cases. We use a mobile platforndr@ad) as the setting for
our examples. In particular, the hybrid approach achieviesvaaccomplishments that
current techniques do not: (1) it performs a system indepeinstatic analysis, due to
the presence of system-specific labeling system that isugded from program and pol-
icy, (2) supports dynamic (runtime) security labels, (3hdilas runtime declassification
constraints, and (4) its runtime component is lightweigiaweggh to be implemented on
mobile devices.

Our work takes a first step in a new direction in the informadilow field. We believe
the analysis of legacy and untrusted programs, along witbgram-independent, policy-
based declassification mechanism will represent an impiostap towards bridging the
gap between academic research in the field and its widespdegadion in industry. In the
rest of this chapter we present limitations of our work, epth discussion of some of the
concepts presented in this thesis, and then future work.

6.2 Limitations

We built our mechanism over some simple assumptions: we gsefe imperative toy

language; we define simple algorithms, with the purpose ofatestrating the tractability

of the implementation, but leaving more optimized alganhout of the scope; and we
leave some operational issues untreated (but discussewWeudr, we pave the way for
these assumptions to be relaxed, towards a mechanism thbhéwble to analyze legacy
systems using newly created declassification policies.

Also, as previously mentioned, our graph-based implentientz&s a safe approxima-
tion of the framework. We discuss in Chaptera few cases in which our analysis can
deem a safe program unsafe. However, we do not know how mahpnegrams would
be affected by such imprecision. Also, we do not know if therelimit (and what would
that limit be) to the precision that any tractable implenaéinh of the PCR framework
can achieve. In other words: whether or not is it possibleawehan implementation of
PCR which is 100% precise.

The concept of declassification requires policies not torvertible. That is, if a
declassification policy allowg(«) to be disclosed, in a scenario where fart function
exists, then the policy is actually allowingto be disclosed. Even if there is some mech-
anism to check if a given function has not been inverted tinout the code, nothing
would prevent the inverse function from being applied @esof the program. This is
a natural requirement for declassification, and we theeefar assume that well-formed
policies do not allow invertible expressions to be decfassi
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6.3 Discussion

Our flow-analysis is termination-insensitiv@HISS0§, in the sense that it does not tackle
information flows caused by observing the termination bahavof the program. An
example is a program which either executes a time consunpagaton or quickly ter-
minates, depending on the value of a secret input. By obsgwiren the program ter-
minates one can infer some information about the secret.iv@ge can make the analysis
termination-sensitive either by disallowing while loopsder high conditionals or intro-
ducing a flow between the conditional in which the loop is desdl to all the output
channels in the program. However, we believe that both tappeoaches are too restric-
tive, resulting in the rejection of many safe programs. Dogang the while loops under
high conditionals would also make the program dependerti®palicy, which is exactly
what we want to avoid. We consider termination and timingncleds to be easier to treat
outside of the scope of program analysis, i.e. in the levéhefoperating system, which
can impose limitations on the visibility of execution timedatermination of processes.
Thus, we do not deal with termination and timing channels.

Sabelfeld and Sands have defined fdumensions of declassificatig®S03: what
can be declassified, i.e. which functignallows o/ = f(«) to be releasedywherein
the program can declassification happehp can perform it; andvhen in terms of pre-
conditions, can it happen (e.g. data can only be declassifeedertain database has at
leastn entries). The policies used by our framework specify the@sgions over inputs
that can be declassified, so they addressathat dimension of declassification. This is
done by automatically detecting which operations are appbiver secret data, and de-
termining whether or not the derived data is allowed to beldged. Also, our analysis
precludes the need for tiegheredimension, since our enforcement matches a policy with
any part of the program that satisfies it. In the case of legadg, the programs are typi-
cally written without information-flow policies explicitldefined. For untrusted code, we
have sought an approach that provides assurance withautirggto trust the program-
mer. Nevertheless, for cases in which thleeredimension is required, it is straightfor-
ward to specify program points at which a particular policgynibe applied by associat-
ing this condition with the policy itself; no code-annotais are required. On the other
hand, utilizing thevheredimension extensively (i.e. determining which parts ofd¢bde
are allowed to declassify) would be contrary to our goal okimg the policy program-
independent. It is straightforward to extend our analysiaddress the/ho dimension
as well, as the system operator can control which policylgawe used in analyzing the
program based owhowrote the program and the policies, antiois going to observe
the outputs from the output channels. TWkendimension can be easily specified by a
series of pre-conditions to be checked. In our hybrid emfigrihese conditions can also
be checked at runtime, along with the pre-existing runtiimec&s. It is of note, however,
that this dimension is usually program and/or system degands pre-conditions are
associated with specific states of the program and/or system
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6.4 Future Work

Our work raises a number of new problems and future work. Inp@ré we present and
discuss a number of open problems. Graph-based PCR can beapgldmble to most
real scenarios by becoming more precise through a refineafdtg information path
calculation mechanism (Sectiéiil) and being able to match policies and program points
that calculate expressions which are syntactically difielbut semantically equivalent,
such aso + o and 2« (Section5.3). Also, it could greatly benefit from a solution to
the loop counting problem (Sectidn?) that works entirely on the static analyzer level,
which would also further reduce runtime overhead in the iaybnforcer. Extending our
mechanism to work with a real programming language suchwasaraC++ would allow
this kind of analysis to be used in industry (Secto4).

We believe that open problems are divided into the follow8ngain paths for future
work in the field:

e Quantify how precise graph-based PCR implements the expresgtching frame-
work, in order to determine how many safe programs could leengel unsafe. If
this number is not negligible, then either improve the @iec of our implemen-
tation or present another, more precise one. In other wartsyer the question:
How precisely can the PCR expression-matching framework pkemented, in a
computable fashion?

e Extend both framework and implementation to work on a cotepéxisting pro-
gramming language, such as Java or C++. From that, studyrthedge-dependency
of the approach and answer the questi@an PCR analysis be defined in a language-
independent way?

e Bring the concepts of PCR analysis to a lower level programneimgronment,
such as bytecode or assembly code. With this, informatiam dllealysis would be
possible to be done in compiled programs, without the needhi® correspond-
ing source code. This would greatly enhance the applitploifithe analysis, since
many programs are provided only in their compiled form, egply the ones down-
loaded from the Internet from untrusted sources. This walllalv, for instance,
using information flow to detect malware (viruses, worms,)ein a much more
efficient manner than that of current anti-virus technadgsgithat rely on libraries
of knownmalware. For this, a number of research challenges mustckieth so
that the following question might be answeré&thn the PCR framework be imple-
mented for analysis of assembly code?
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APPENDIXA

Proofs

A.1 Proof of Lemma?2.19

Proof. The proof is by construction. We inductively construct atiein () between the
two traces such that it is a correspondence. In the baseitdsbas zero steps then we
are done by relatingr, wy) and (7, w(,). This is true because there are no variables and
ouputs defined yet and the safe inputs correspond gimeg «’. In the induction step, a
correspondence relatiap between partial ruy’ of lengthn and partial runS’” of length
m can be extended to the partial rino,, 1, (Cp11, 0ny1, 7)) Of lengthn 4 1 (if it exists)
and an extension of ruff’ by zero or more steps. When the active commands of both
the runs match, i.ehead(C,,) = head(C!,), the relationQ is extended to include the
pair (n + 1, m + 1). We prove that)’ = Q U {(n + 1, m + 1)} is still a correspondence
by a straightforward case analysis of the type of the actbrarnand. When the active
commands in both the runs do not match, then the commanddéwaldi, and the two
runs are extended until they both reach commands with |eveExtending the corre-
spondence is straightforward in these high regions beddeseondeclassifiable nature
of the control context makes output impossible and maime@ef state compatibility
hold trivially. The complete proof is as follows:

Case 1l:head(C,) = head(C!,). Since our program semantics given in Fig@reare
deterministic, both runs take a single execution step griodis,, .1 = (0n+1, (Crt1, Ontt,
7)) ands; ., = (o), 1. (Cr, .1,00,.1,7)). Given(n,m) € Q, we extend the relatio@
with (n 4+ 1,m + 1) obtaining@’. We have to prove that this extension preserves the
correspondence property. We prove the following casesdas the structure of the
commandiead(C,,):

e Case (Skip):C,, = C!, = ski p;C andhead(C,,) = ski p. From the semantics
we haveS, ., = (7,(C,0,,m)) and s, ., = (1,(C,0,,,7')). Since there are no
output actions and the states do not change, it is easilyjkeldebat the induction
obligation—€)’ = Q U {(n + 1,m + 1)} is also a correspondence—follows from

the induction hypothesis.

e Case (Input): C,, = C! = z := «;C andhead(C,) = x := «. From the seman-
tics we haves,, 1 = (7, (ski p; C, 0,41, m)) ands, ., = (1, (ski p; C, 0,1, 7)).

1. Sinceo,1 = 0o),,, = 7, the outputs generated by the two traces do not
change; therefore,(Sy) ... 0(S,41) = 0o(S)) ... 0(S),11)-
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A.1. Proof of Lemma&.19

e Case (Output): C, = C!, =
the semantics we hav@,Hr = ( ( V(E,,(z),m)), (ski p;C, 0,41, 7)) and
Sp1 = {out (7, V(Eq, (x),7)), (ski p; C, 07,11, 7)).

2. If cds(z, C, D), then from Propositior2.8 we have thatds(a, C, D) holds.

Consequently, from the induction hypothesis we know thato) = I, (o)
and thereforelgm( a) = L,(a) +1 = Iy (o) +1 = I (a). ThePC
of a remains the same in all the four states. From the inductipotinesis,
we know thatPC,, (o) = PC, (a), and from this the semantics gives us
PCUnH(ZL‘) = POU% 1( ) Also Egm_l( ) = Qr, (a) = O./[G;n(a) El 1(x)

Thereforep,, 1 <X(c,p) opys-

3. ThelL-contstatements also do not change.

Therefore)’ is a correspondence relation.

z;C and head(C,) = v = x. From

1. Since outputs happen only under declassifiable condispthis case can only

occur whensafe(y, C, D) andsafe(x, C, D), which means thatds(x,C, D)
anddds(xz, C, D). From the induction hypothesis,, =< p o,,. This com-
bines withcds(z, C, D) to give usk, (z) = E, (). It now follows from
dds(xz,C, D) that public(E,, (x), D). It then follows fromnr ~p, =’ and
Lemma2.11thatV(E,, (), 7) = V(E, (x),7'). Therefore the outputs in
both the transitions are the same.

. Since none of the inputs or variables changed, the reigans of o,

ando,,,, remain the same. Only th® and PC of the outputy change.
Oy (7) = Op,,(MUV (B, (), m) @andOpr  (v) = Ogy, (V)UV (Eyy, (2), 7).
PCy,,,(v) = PCo,(v)U PCy,(x) andPCyr  (v) = PCyy (v)U PCo (2).
From the observations in the first item, we havg, , ( ) = O, (v) and
PC,, . (v) = PC, . (7). Consequently,,.1 <(c,p) 07,4 1-

3. TheL-contcommands remain the same.

Therefore)’ = Q U {(n + 1,m + 1)} is a correspondence relation.

e Case (Assign) C,, = C/, = = = f(y1,...,yx);C and head(C,,) = x =

1. Sinceo,1 = o,,,, = 7 and from induction hypothesis(S) ... o(S,)

2. If cds(z, C, D), then from PropositioR.8it follows thatcds(y,, C, D) A

..,Yk). From the semantics we hag ., = (7, (ski p;C, 0,41, 7)) and

Shoe1 = (7, (ski p; C, O-7I'n-|—1’7T/>>'

o(S)) ... 0(S.), we haven(Sy) ... o(Sus1) = o(Sh) . .. o(S!, ).

> >

cds(yr, C, D). From the induction hypothesis§f,, (y1) = Ly (y1))A ...
(Es, (yr) = Esr (yi)) and thereforels,  (z) = f(Es, (1), .-, Eo, (Ur))

f(E0§n<y1)7"'7EU ( )) Ein_,_l(x)
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e Case (Phi):C,, = C!, =z := ¢.(a,b); C andhead(C,,) = ¢.(a,b). From the se-
mantics we have,, ., = (7, (ski p;C, 0,41, 7)) ands, ., = (7, (ski p; C, 0,4,

7).

1. The first part of the proof of this case is similar to partdfldhe proof ofCase
(Input).

2. If cds(z,C, D), then from Propositior2.8 we also know thatds(c, C, D),
cds(a,C, D) andcds(b, C, D). From the induction hypothesis we know that
E,,(c) = E, (c) and therefore the same expression is assigneditidooth
cases. Also from the induction hypothedis, (a) = E,, (a) and E,, (b) =
E,; (b); consequentlys,, ., (z) = E,,  (z). Similarly, we have”C,,, ., (z) =

PC, . (2).

e Case (Depends)C, = C! = depends(,c); C andhead(C,,) = depends(0,c).
From the semantics we have th&t,, = (7, (ski p;C, 0,41, 7)) ands,, ., =
(1,(skip;C,o,,.1, 7). If cds(0,C, D), then from Propositio2.8 we know that
cds(c,C, D). Thus from the induction hypothesis we hak€’, (c) = PC, (c
andPC,, (0) = PC,, () and consequently’C,, ., (0) = PC,r  (0).

e Case (If): ¢, = C/, = if ¢ then Ciye, el se Cus;C and head(C,,) =
i f cthen Cie, €l se Cgs.. From the semantics we have titgt , = (7, (C)41,
o, m)) andSy, = (7, (Crp1, 00, 7).

1. Wheneds(c, C, D) holds, from our induction hypothesis we hakg, (¢) =
E, (c) and consequently/ (E;, (c), 7) = V(E, (c),n’). Therefore, in this
case both the traces take the same branctCand = C7,_ ;.

2. Whencds(c, C, D) does not hold(,; may not be equal t¢”, ,,. However,
by definition of I' in this case, we have-cont(C,, ;) = L-cont(C; ) =
L-cont(C).

Since, additionally, the state, the environment, and thpuwiudo not change, we
have the fact thal)’ = Q U {(n + 1,m + 1)} is a correspondence.

e Case (While): C, = C! = while C ; ¢ do Cupie; C and head(C,) =
while C ; ¢ do Cyupie. The proof for thewhi | e case is similar to that of the
i f, except that whenrds(c,C, D) does not hold|l-cont{C,,.;) = L-cont{C,,) =
L-cont(C;,) = L-cont(C}, ).

Case 2:head(C,,) # head(C],). Notice that we enter this case only aftease (If)
or Case (While)s encountered in Case 1 and the variable representing thbtiooral
expressiore is not in cds. Since our program is safe, the output statements cannot oc-
cur inside a conditional expression that is notcifs. Therefore, neithehead(C,,) nor
head(C!,) is an output statement. Therefore, we can also notesthat o/, = 7. Sim-
ilarly, any variables and inputs that are modified by thesaroands are not irds. In
particular, this means that we ha\@,, o,,, 7) = (Cpy1, 00,1, 7) @and(C" o' =) 5
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(C)i1, 00,41, T). There are now two subcases, depending on whétflerad(C,,,1)) is
HorlL.

1. Whenl'(head(C,,+1)) = H, weletQ)’ = QU{(n+1,m)} and show thaf)’ is a cor-
respondence. For this, we observe that sigécea correspondencs, =<c.py 0p+1-
This follows from the above discussion that none of the medifiariables or in-
puts inside a command that is typ&dare cds. From induction hypothesis we have
o, X(c,p) 0,,- Therefore, by Lemma.17we haveo,, =< p o,,. Since from
the induction hypothesis(Sy) . ..o(S,) = o(S})...o(S;,) and sinceo,,,; = T,
0(S0) ... 0(Spt1) = o(S})...o(S.,). T'(head(Cpy1)) = T'(head(Cl)) = H.
L-contC,, 1) = L-contC,,) and therefore from the induction hypothesis and tran-
sitivity we havelL-contC,,,,1) = L-cont{C! ). Therefore the new relatio@’ is a
correspondence.

2. Whenl'(head(C,11)) = LyweletQ = QU {(n,m+1),...,(n,m+14)} U{(n+
1,m + i+ 1)} such that for eachh € {m + 1,...,m + i}, I'(head(C;)) = H
andI'(head(Ciy+i+1)) = L. Consequently, we have; = 7 for j € {m +
1,...m + i+ 1} and therefore each ef(Sy) ... o(S}) = o(Sp)...o(S;,). From
induction hypothesi®(Sy) . ..o(S,) = o(Sp) ...o(S),). Therefore, we have that
0(So) ... 0(S,) = o(Sh)...0(5) for eachj € {m +1,...,m + i+ 1}. The
(output-equivalence) is preserved@. Similar to the first case, none of the modi-
fied variables or inputs in the partial rus§, ... S, ..., or S, S, arecds. There-

fore 0, <(c,p) ons1 @Ndo), <o) 03 foreachj € {m+1,...,m +i+ 1}.
From induction hypothesis we havg = p) o0,,. Therefore, by Lemma.17we
haveo, =<cp) ojforj € {m+1,....,m+ i} ando,;1 =<cp) 0, From

the induction hypothesis we know that, m) € @ and( is a correspondence re-
lation. Therefore.-cont(C,,) = L-con{C’ ) = C,,1, Since from our assumption
we know thathead(C,,+1) is the first command typed. We also have the fact that
I'(head(Cy)) = I'(head(C}, 1)) = ... = I'(head(C},,;)) = H, but theL-contof

each of these configurations remains constantL-8ont(C,,) = L-cont(C;,.,) =
... = L-cont{(C},,;,) = C,11. Taking all these facts into consideratiap; is a

correspondence.

]

A.2 Proof of Theorem3.6

To prove this theorem we use the following lemmas and noatatie writeC < C’ if C

is a subterm of”” or if C'is ski p. In this context we usé€' = (' to denote synctatic
identity. Since the theorem is not affected by control cehémnotations on the graph,
we omit theu index when we refer to thé' function.

Lemma A.1. If (Cy, 00, m) —* (C1;Cs; ...; Cp, 0, ) With C; non-compositional, then
C; < Cy(fori=1,...,n).
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Proof. By inspecting the semantics one sees that any transi@ion, 7) = (C’, o', ')
replaces the componehtad(C') by ski p (rules (Input), (Output), (Assign), (Phi), (De-
pends)) or a subterm of the head (rules (If), (While), (Skip})e remaining components
remain unchanged (rule (Seq)). The lemma follows directly. n

LemmaA.2. If C = C'thenG(C) 3 G(C").

Proof. We show monotonicity of7 by a straightforward induction on the structure of the
programC”.

Case 1:If C"isskiporz := aorvy :=xorx :=yorx = f(y,...,ye) OF
x = ¢.(a,b) or depends(0, c) thenC = ski p or C = C'. Thus, from the definition of
G, itis clear that eithe6(C') ~ 0 or G(C) ~ G(C").

Case 2:f C"isC; ; Oy, if cthen C; el se Cyorwhile C; ; ¢do C,then
C=C,CsCiorC £ Gy If C = ' then [def. G] G(C) ~ G(C"). If C = C;,
for i = {1, 2}, then by the induction hypothesis we have that') = G(C;). But by the
definition of G we know that7(C;) = G(C"). Thus,G(C) 2 G(C"). N

Lemma A.3. For a starting programCy such that(Cy, oo, 7o) —* (C, 0, 7) and any
transition (C, o, 7) — (C’,¢’,7’) with head(C) < Cy and P(o, G(Cy)) we have that
P(d',G(Cy)) holds.

Proof. We use induction on the derivation of the transition. (Ndi&t only (Seq) repre-
sents a step, all other cases are base cases.)

Case (Seq)ThenC = Cy; C, for someCy, Cs, and (O, 0,71) = (Cf, 0, 7). As
head(Cy) = head(C) < Cy andP(a, G(Cy)), we apply the induction hypothesis for this
transition, to give us’(¢’, G(Cy)).

Cases (Skip),(While),(If)Thenc’ = o so P(o’, G(Cy)).

Case (Depends)fhenC' = depends(0, c) for somef), c ando’ = o except for compo-
nentPC oné. Thus we need to show (fdfpc (o', G(Cy))) that (6, type(0)) is in G(Cy)
andPC,.(0) C cexp(ng).

e Note thatdepends(0,c) = head(C) = Cy thusng,n. € [def. G] G(C) and
G(C) 3 [lemmaA.2] G(Cp).

o PC,(0) C [hyp. Ppc(o, G(Cy))] cexp(ng).

e Note that(n.,ng,t) € G(depends(6,c)) 2 G(Cy) (hamely witht = contr ol )
thus PC,(c) C [hyp. Ppc(o, G(Ch))] cexp(n.) C [def. cexp] cexp(ng).

e Note that(n., ng,cont rol ) € G(Cy) therefore{ E,(c)} C [hyp. Pr(c, G(Cy))]
exp(n.) C [def. cexp] cexp(ng).

Case (Phi):ThenC = z := ¢.(a,b) for somez, c,a,b ando’ = o except for com-
ponentsPC' and E on z. The reasoning foPp- given the change t&C' is as for case
(Depends) above. FadPg(o’,G(Cy)) we need to show thate,var ) is in G(C,) and
Ey(z) € exp(ny).
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e Note that(z := ¢.(a,b)) = head(C) = Cy thus(z,var) € [def. G] G(C) =
[lemmaA.2] G(Cy).

e Note thatF, (x) = EV (¢.(a,b), o) is eitherE,(a) or E,(b). As there exists, and
us such that(n,, n,, 1, u;) and(ny, n., ¢, uz) (definition of G, LemmaA.2) are
in G(Cy) we have{E,(a), E,(b)} C exp(n,) from the assumptio®z (o, G(Cp)).

Case (Assign)ThenC = z := f(y1,...,y) for somez, f,y,...,y, ando = o’
except for component& and PC on x. The reasoning foPp¢- given the change t&C
is similar to (but slightly simpler than, as there is no cdiadi) that for case (Depends).
For Pr we need to show thadt:, var ) is in G(Cy) and £,/ (z) C exp(n,).

e Notethat(z := f(y1,...,yr)) = head(C) = Cythus(z,var ) € [def. G] G(C) 2
[lemmaA.2] G(Cy).

e Note thatt, (v;) C exp(n,,) and(y;, z, fi,u) € edges(G(Cp)) (fori =1...,kand
someu) thus{ f(E, (1), .-, Ex(ya))} C [def. exp] exp(n,).

Case (Output):ThenC' = ~ := z for somevy, z ando = ¢’ except for components
O and PC on~. The reasoning foPp¢ is again the same. Fdi, we need to show that
(y,out ) € G(Cp) and O, (y) U{E,(z)} C exp(n.,).

e Notethat(y := x) = head(C) < C thus we have thaty, out ) € [def. G] G(C) 3
[lemmaA.2] G(Cy).

e The assumptio®, (o, G(Cy)) already gives), () C exp(n,) while Py (o, G(Cy))

gives{E,(z)} C exp(n,) C [ (ng, n,,t) € G(Cy), def.exp] exp(n.,).

Case (Input):ThenC = x := « for somez, « ando = ¢’ except for components
andPC onz and/ on«. The reasoning foPpc and P is as before. FoP;(¢’, G(C)))
we need to show thdty,i n) € G(Cy). As (z := a) = head(C) < Cy and(a,in) €
G(C) this is direct from Lemma\.2. O

We can now give the proof of the theorem:
Proof. By induction on the length of the (sub)trace we show that if:
<007 00, 7T0> —* <Ca g, 7T>

in which —* represents zero or more steps taken in the operational sesjatnen
P(o,G(Cy)).

Base For the case of zero steps taken from the initial configanais trivial as no
variable is yet defined i/, O and PC, and/(«) = 1 for all input channelsy thus
P(O‘Q, G(C()))

Step For the step, consider any (sub) trace

<C(]a 09, 7T0> _>* <Cn—17 On—1, 7Tn—1> — <On7 On, 7Tn>

with P(o,,_1, G(Cy)). Then, by Lemma\.1 we have thatead(C,,_1) < Cy. Thus, using
LemmaA.3 we getP(o,, G(Cy)). N



A. Proofs 123

A.3 Proof of Theorem3.13

For this theorem, we first present a supporting definitiontarmdsupporting lemmas.
Definition A.4 (Well-formed graph) An expression graph is said to be well-formed if:
1. Eachvar node has its set of incoming edges composed of either:

(a) Exactly onepl ai n edge.
(b) k edges labeled;,: = 1..k, for function f with £ arguments.
(c) Exactly 2¢ edges ¢, and¢,) and onecont r ol edge.

2. Eachout node has its set of incoming edges composed of O or plaaé n edges
and, if a non-zero number of these exist, additionally O orexx@nt r ol edges.

3. Eachi n node has its set of incoming edges composed of O or o r ol
edges.

4. Eachconst node has indegree equals to zero.

5. Nodes of typegar andconst have their set of outgoing edges composed of 0 or
more edges, of any type.

6. Eachi n node has its set of outgoing edges composed of O or piaé n edges.

7. Eachout node has outdegree equal to zero.

Lemma A.5. For a well-formed graph, ift’ (=)* n thenexzp(n’) C exp(n).

Proof. Definition of well formed graph guarantees that a node witlinaomingr edge
is either an output or a variable node. The definitiore.op then directly gives that if
n' = nthenexp(n') C exp(n). Simple induction on length of the sequencerdfteps
gives the result. n
Lemma A.6. For a well-formed graph we have that(if?);_;_.(5)* 25 n/(Z)*n and
el € exp(n?) thenf (e, ... ek) € exp(n).

Proof. By LemmaA.5 it is sufficient to show that if for some immediate predecessd

n,n''(i = 1..k), we have(n),—i Ly andel € exp(n?) thenf(el, ... e*) € exp(n).
As n must be avar node (DefinitionA.4) this is directly clear from the definition of
exp. O

Now we can present the proof of the Theorem:
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Proof. Note that we can construetrp as the uniorezp(n) = |J,,cyexp™(n) with
exp™(n) the monotonically growing sequence given by (only possiloiées on the pro-
gram graph shown):

exp’ = 0
mH( v) = {N}
ap™H(na) = {ai|i€eN}
i) = U e (o)
m—i—l( ) —

U exp™(n)

\I]nm n’%nw
U {fleh, .. ef) | vnt, o nf et Ly np Nel e expy(n')}

Because any element efp(n) is introduced toezp™(n) at some finite stager, it is
sufficient to show that for al» we have:

Vn,n': (n,n") € R = exp™(n) C exp(n’) (A1)

which is done by induction om. Form = 0 there is nothing to prove. Assume for-
mulaA.1 holds for somen € N. We now show this property also holds fer+ 1 by
treating the four possible types of node

ny Assume(ny,n’) € R thenny ~ n'. Thusn’ is a constant node with labal or x.
This givesN € exp(n'). But then:

exp™ ! (ny) = {N} C exp(n)

n, The same as the previous case.

n, Assume(n,,n’) € Randn',..., n"* are the nodes that can reach(i.e.,n’ — nv)
thenn., ~ »n’ (and thus the type of’ is alsoout ) and there exist nodeté1 n'*
such thatn’, n'") € R (i = 1..k) andn”* (=)* n’. But then:

(defexp) U,_; » expm(ni)
(ind.-hyp.) U, . exp(n”)
(lemmaA.5) exp(n’)

m+1(

exp™ ' (n,)

(NI

n, Assume(n,,n’) € R. First, we need to show that for sets of expressi®rsdS’,
we have that C ' = ¥, (S) C U, (5"). ButsinceV is a filter, its monotonicity
is trivial, i.e. ¥,,(S) C ¥, (5"), for somen. With that, we only have to show that
U,.(S) C ¥, (S). We have that, ~,, n/, thus from Definitions3.9and3.3we
conclude thata : (a,n') € uni(d) = (a,n,) € uni(g). It follows from (def¥)
that¥,, (S) C ¥,/ (S). Now we proceed to show thatp™(n,) C exp(n'). The
case wherey = n is the same as the previous case. Assue..,n"* are the
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nodes that can reach, by an f step @' EIN n,), thenn’ is also of typevar and
there exist node&', n"") € R and(n’);=1 L n'. But then:

exp™l(n,) = (defexp) {f(e!,...,e") | e € exp™(nt) (fori=1..k)}
C (ind.hyp.){f(el,...,e*) | e € exp(n”) (fori = 1.k)}
C (lemmaA.6) exp(n’)

A.4 Proof of Theorem3.15

Proof. For all 3 cases, we do the following: we apply Theor&®on the first component

of the LHS; use definitions afds and cds to unfold the second component of the LHS;
and unfold definition opublic on the RHS. The resulting equation, on all cases, will be a
variation of Theoren3.13 and thus proved the same way. O

A.5 Proof of Theorem3.21

Proof. Items 1 and 2 of Definitio.17are achieved by DefinitioB.18and LemmeB.20,

respectively. For item 3, we basically have to show thatstone progrant’ and policy
d:

valid(G(C'),d) = valid(C,int(d))
Unfolding the definitions obalid, safe, valid andsafe, we have:

Vn, € nodes(G(C)) : dds(n.,, G(C),d) A cds(n,, G(C),d) =
Yy € Out : dds(v, C,int(d)) A cds(vy, C,int(d))

However, by the definition ofy and Theoren8.6, we know that every node., <

nodes(G(C)) represents an output channeE Out. Thus, we can remove the quantifiers
on both sides of the equation:

dds(n., G(C),d) A cds(n.,, G(C),d) = dds(v, C,int(d)) A cds(vy, C,int(d))
Now, we use TheorerB.150n the left side of the equation:

Vo € states(C),e € Oy(7),e € PC,(v) : public(e,d) N public(e’,d) =
dds(v,C,int(d)) A cds(vy, C,int(d))

Unfolding the remaining definitions @lds andcds on the program we have:

Vo € states(C),e € O,(7), e € PC,(7) : public(e,d) N public(e',d) =
Vo € states(C),e € O,(7),e € PC,(7) : public(e,int(d)) A public(e,int(d))

Finally, we remove the quantifiers common to both sides taiabt
public(e,d) N public(€',d) = public(e,int(d)) A public(e',int(d))
which is Lemma3.19 [
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APPENDIXB

Source Code

In this Appendix we include the source code of experiment®pmed in Sectiord.5.1
Note that source code is sanitized for readability. Fominsg, preamble of files, contain-
ing lists ofi nport directives are omitted. We present the source code of alifbaark
examples used, as well as the simple runtime enforcer imgaléation. On the bench-
mark examples, code comments identify lines that were deduduring code injection.
Enforced and non-enforced versions of the benchmarksr aifiey by those lines. Fi-
nally, note that the implementation of the runtime enforaens for simplicity, and its
performance can be improved in a number of ways.

Example 1

public class Examplel {

void processContactList()throws Exception {
String[] clist;
String contact, text, addr;
int counter, age;

clist = getContactList();
counter = 0;

for (int i=0; i<clist.length; i++) {
contact = clist[i];
age = getAge(contact);

if (age > 45) counter++;

}
text = "I have " + counter + " contacts over age 45.";

addr = readFromlnput();

I/l Code injection: following 1 line has been injected

RuntimeEnforcer.checkOutput(21, ExamplelEnforcetlass.getMethod ("
sendSMS", Stringclass, String.class), new Object[]{addr, text},
new Label("hi", 10));

sendSMS (addr , text);

127
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26 String[] getContactList ()throws Exception {

27 ArraylList<String> contacts =mew ArraylList<String >();

28 Scanner s =new Scannerfew File (Constants.FILE_PATH + "contacts.
ex1"));

29

30 while (s.hasNext()) contacts.add(s.nextLine());

31

32 s.close();

33

34 String [] contArray =new String[contacts.size()];

35 contArray = contacts.toArray(contArray);

36 return contArray;

37 }

38

39 int getAge(String contact) {

40 return Integer.parselnt(contact.substring(contact.lastir@é&(’ ')
+1));

41 }

42

43 String readFromlinput ()throws Exception {

44 Scanner s =new Scannerfiew File(Constants.FILE_PATH + "address.ex1
"))

45 String address = s.nextLine ();

46 s.close ();

47

48 return address;

49 }

50

51 public void sendSMS(String addr, String textdhrows Exception {

52 BufferedWriter out =new BufferedWriter (hew FileWriter (new File (
Constants .FILE_PATH + "output.ex1")));

53 out.write ("SMS sent\n");

54 out.write("To: " + addr + "\n");

55 out.write("Content: " + text + "\n");

56 out.close();

57 }

58

59 public static void main(String[] args)throws Exception {

60 new Examplel ().processContactList();

61 }

62 }

Example 2

1 public class Example2 {

2

3 public void run () throws Exception {

4 String secureConn, myLoc, myTz, otherTz;

5

6 secureConn = secConnect("otherhost.somewhere.com");

7 myLoc = getLocation () ;

8 myTz = timezone (myLoc);
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}

otherTz = recv(secureConn);
I/l Code injection: following 1 line has been injected
RuntimeEnforcer.storeDatalLabel (14, otherTz);

if (myTz.equals(otherTz)) {
String packet = "ACK";
/I Code injection: following 1 line has been injected
RuntimeEnforcer.setDatalLabel (20, packehew Label("low", 1));
send (packet,secureConn);
String otherLoc = recv(secureConn);
boolean near = isNear(myLoc, otherLoc);
if (near) {
/l Code injection: following 1 line has been injected
RuntimeEnforcer.checklnput(25this.getClass () .getMethod ("print
", String.class), new Object[]{"Host is nearby!"}, 14);
print("Host is nearby!");
}
}

public String secConnect(String addrj)hrows Exception {

}

BufferedWriter out =new BufferedWriter hew FileWriter (new File (
Constants .FILE_PATH + "connection.ex2")));
out.write ("Secure connect with host: " + addr + "\n");

Scanner s =new Scannerfiew File (Constants.FILE_PATH + "key.ex2"));
String key = s.nextLine();

s.close ();
out.write ("Key: "
out.close();

+ key + "\n");

return Constants.FILE PATH + "connection.ex2";

public String getLocation () throws Exception {

}

Scanner s =new Scannerfew File(Constants.FILE_PATH + "location.

ex2"));
String loc = s.nextLine();
s.close();

return loc;

/1l simulating the kind of computation performed by this tymd

function

public String timezone (String loc) {

double lon = Double.parseDouble(loc.substring(loc.lastindeXO ")

+1));
lon += 180;
int i = (int)(lon / 30);
String str = "undef";

switch (i) {



57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108

130

}

case O:

str = "A"; break;
case 1:

str = "B"; break;
case 2:

str = "C"; break;
case 3:

str = "D"; break;
case 4:

str = "E"; break;
case 5:

str = "F"; break;
case 6:

str = "G"; break;
case 7:

str = "H"; break;
case 8:

str = "I"; break;
case 9:

str = "J"; break;
case 10:

str = "K"; break;
case 11:

str = "L"; break;

}

return str;

public String recv(String conn)throws Exception {

}

String str =null;

Scanner s =new Scannerfew File (conn));
s.nextLine () ;

s.nextLine () ;

if (s.hasNextLine()) str = "56.5376547~47.1392201";
else str = "E";

s.close ();
return str;

public void send(String text, String conn}Yhrows Exception {

}

BufferedWriter out =new BufferedWriter hew FileWriter (new File (
conn), true));

out.write("Sent: " + text + "\n");
out.close();

public void print(String text) {

}

System . out. println (text);
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109 public boolean isNear(String locl, String loc2) {
110 double x1,yl,x2,y2;

111 x1 = Double.parseDouble(locl.substring (0, locl.ir@&(’,’)));
112 yl = Double.parseDouble(locl.substring(locl.lagtéxOf (' ")+1));
113 x2 = Double.parseDouble(loc2.substring (0, loc2.iR@&(',’)));
114 y2 = Double.parseDouble(loc2.substring (loc2.lagtéxOf (" ")+1));
115
116 return (Math.abs(xtx2) <= 1) & (Math.abs(yty2) <= 1);
117 }
118
119 public static void main(String[] args)throws Exception {
120 new Example2 () .run();
121 }
122 }
Example 3
1 public class Example3 {
2
3 public void run () throws Exception {
4 int sum, num;
5 double avg;
6 Scanner db;
7
8 sum = num = O;
9 db = openDBConnection () ;
10
11 while (db.hasNextLine ()) {
12 /I Code injection: following 1 line has been injected
13 RuntimeEnforcer. countlter (15);
14 String rec = fetch(db);
15 int prop = getProperty(rec);
16 sum += prop;
17 num++;
18 }
19
20 avg = (double)sum / (double)num;
21 /!l Code injection: following 1 line has been injected
22 RuntimeEnforcer.eval (25, RuntimeEnforcer.iterCofih%] >= 25);
23 output("" + avg);
24 db.close ();
25 }
26
27 public Scanner openDBConnection ()hrows Exception {
28 Scanner s =new Scannerfew File (Constants.FILE_PATH + "connection.
ex3"));
29 String status = s.nextLine();
30 if (!Istatus.equals("Connection OK")}hrow new Exception ("Wrong
status!");
31
32 return s;

33}
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34
35 public String fetch(Scanner db) {
36 return db.nextLine ();
37 }
38
39 public void output(String data)throws Exception {
40 BufferedWriter out =new BufferedWriter (hew FileWriter (new File (
Constants .FILE_PATH + "output.ex3")));
41
42 out.write ("Average: " + data + "\n");
43 out.close();
44 }
45
46 public int getProperty (String rec) {
47 return Integer.parselnt(rec.substring(rec.lastindexOf(’ 1) ;
48 }
49
50 public static void main(String[] args)throws Exception {
51 /!l Code injection: following 1 line has been injected
52 RuntimeEnforcer.initCounter (60);
53 new Example3().run();
54 }
55 1}
FileCopy

public class FileCopy {

1

2

3 public void run () throws Exception {

4 FilelnputStream in =new FilelnputStreamfew File (Constants.
FILE_ PATH + "input.fc"));

5 FileOutputStream out =new FileOutputStreamrew File (Constants.
FILE_PATH + "output.fc"));

6

7 int i;

8 byte[] b = new byte[1024];

9

10 while ((i = in.read(b)) != -1) {

11 /I Code injection: following 2 lines have been injected

12 RuntimeEnforcer.storeDataLabel (19, b);

13 RuntimeEnforcer.setDatalLabel (22, b, RuntimeEnforcierLabel.get
(19));

14 out.write(b, 0, i);

15 }

16

17 in.close();

18 out.close();

19 }

20

21 public static void main(String[] args)throws Exception {

22 new FileCopy () .run();

23}
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}
FileEncrypt
public class FileEncrypt {
Cipher cipher;
SecretKeySpec aesKeySpec;
public void run () throws Exception {
cipher = Cipher.getlinstance ("AES");
KeyGenerator kgen = KeyGenerator.getlnstance ("AES");
kgen.init(128);
SecretKey key = kgen.generateKey () ;

}

byte[] aesKey = key.getEncoded();
aesKeySpec =mew SecretKeySpec(aesKey, "AES");

File input =new File(Constants.FILE_PATH + "input.fc");
File enc =new File(Constants.FILE_PATH + "enc.fc");
File dec =new File (Constants.FILE_PATH + "dec.fc");

encrypt(input, enc);
decrypt(enc, dec);

private void encrypt(File in, File out)throws Exception {

}

cipher.init(Cipher .ENCRYPT MODE, aesKeySpec);

FilelnputStream is =new FilelnputStream(in);

CipherOQOutputStream os new CipherOutputStreamnew FileOutputStream
(out), cipher);

copy(is, 0s);

is.close();
os.close ();

private void decrypt(File in, File out)throws Exception {

}

cipher.init(Cipher .DECRYPT_MODE, aesKeySpec);

CipherlnputStream is =mew CipherlnputStreamriew FilelnputStream (in
), cipher);

FileOutputStream os =ew FileOutputStream (out);

copy(is, 0s);

is.close();
os.close ();

private void copy(lnputStream in, OutputStream outthrows Exception

{
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46 int i;

47 byte[] b = new byte[1024];

48

49 while ((i = in.read(b)) !'= -1) {

50 /I Code injection: following 2 lines have been injected

51 RuntimeEnforcer.storeDataLabel (67, b);

52 RuntimeEnforcer.setDataLabel (70, b, RuntimeEnforcienabel.get
(19));

53 out.write(b, 0, i);

54 }

55 }

56

57 public static void main(String[] args)throws Exception {

58 new FileEncrypt().run();

59 }

60 }

InformationGather

1 public class InformationGather {

2

3 public void run() throws Exception {

4

5 byte[] data = null;

6

7 for (int num=0; num <= 9; num++) {

8 String filename = "input." + num;

9 FilelnputStream in =new FilelnputStreamifew File (Constants.
FILE_PATH + filename));

10 ByteArrayOutputStream out smew ByteArrayOutputStream () ;

11

12 int i;

13 byte[] b = new byte[1024];

14

15 while ((i = in.read (b)) '= —-1) out.write(b, 0, i);

16 /Il Code injection: following 1 line has been injected

17 RuntimeEnforcer.storeChLabel (25, in.getClass () Method ("read",
byte[]. class), new Object[]{in,b});

18

19 byte[] file = out.toByteArray();

20

21 in.close ();

22 out.close();

23

24 if (data == null) data = file;

25 else for (int j=0; j<file.length; j++) data[j] += file[j];

26 }

27

28 FileOutputStream os =ew FileOutputStreamriew File (Constants.

FILE_PATH + "output.ig"));
29 I/l Code injection: following 1 line has been injected
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30 RuntimeEnforcer.checkOutput (39, os.getClass (). getihd ("write",
byte[]. class), new Object[]{data}, RuntimeEnforcer.inLabel.get
(25));

31 os.write (data);

32 os.close ();

33 }

34

35 public static void main(String[] args)throws Exception {

36 new InformationGather ().run();

37 }

38 }

Loops

public class Loops {

1

2

3 public void run() throws Exception {

4 FilelnputStream in =new FilelnputStreamfew File (Constants.
FILE_PATH + "input.fc"));

5 ByteArrayOutputStream out =mew ByteArrayOutputStream () ;

6

7 int i;

8 byte[] b = new byte[1024];

9

10 while ((i = in.read (b)) !'= —-1) out.write(b, 0, i);

11 /!l Code injection: following 1 line has been injected

12 RuntimeEnforcer.compareCh (20, in.getClass () .getat("read", byte
[1. class), new Object[]{in,b}, FilelnputStream class.getMethod (
"read", byte[]. class), null);

13

14 byte[] data = out.toByteArray();

15

16 in.close ();

17 out.close();

18

19 int buffer = 0;

20

21 for (int j=0; j<data.length; j++) {

22 /I Code injection: following 1 line has been injected

23 RuntimeEnforcer.countlter (30);

24 buffer ~= datal[j];

25 }

26

27 for (int j=0; j<data.length/2; j++) {

28 /I Code injection: following 1 line has been injected

29 RuntimeEnforcer.countlter (35);

30 int x = data[j] % 14;

31 int y = data[j] >> 2;

32 buffer &= (x " vy);

33 }

34

35 for (int j=data.length/2; j<data.length; j++) {
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/Il Code injection: following 1 line has been injected
RuntimeEnforcer.countlter (42);
data[j] <<= 2;
}
for (int j=0; j<data.length; j += 2) {
/I Code injection: following 1 line has been injected
RuntimeEnforcer. countlter (47);
data[j] "= OxAA;
}
for (int j=0; j<data.length; j += 10) {
/l Code injection: following 1 line has been injected
RuntimeEnforcer.countlter (52);
data[j] "= buffer;
}
FileOutputStream os =ew FileOutputStreamiew File (Constants.
FILE_PATH + "output.loops"));
I/l Code injection: following 6 lines have been injected
boolean eval = RuntimeEnforcer.iterCount[30] >= (data.lengtl);
eval = eval & RuntimeEnforcer.iterCount[35] < data. lgth;
eval = eval & RuntimeEnforcer.iterCount[42] < data. lgth;
eval = eval & RuntimeEnforcer.iterCount[47] < Runtimatorcer.
iterCount[30];
eval = eval & RuntimeEnforcer.iterCount[52] < Runtimaforcer.
iterCount[47];
RuntimeEnforcer.eval (64, eval);
os.write(data);
os.close ();
}
public static void main(String[] args)throws Exception ({
/!l Code injection: following 1 line has been injected
RuntimeEnforcer.initCounter (70);
new Loops().run();
}
}
Statistics
public class Statistics {
public void run () throws Exception {
byte[] data = null;
for (int num=0; num <= 9; num++) {
/I Code injection: following 1 line has been injected
RuntimeEnforcer.countlter (17);
String filename = "input." + num;
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}

FilelInputStream in =new FilelnputStreamfew File (Constants.
FILE_PATH + filename));
ByteArrayOutputStream out smew ByteArrayOutputStream () ;

int i;
byte[] b = new byte[1024];

while ((i = in.read (b)) !'= —-1) out.write(b, 0, i);

/l/ Code injection: following 1 line has been injected
RuntimeEnforcer.compareCh (26, in.getClass () .gethat("read",
byte[]. class), new Object[]{in,b}, FilelnputStream class.
getMethod ("read" ,byte[]. class), new Object[]{Constants.

FILE_PATH + filename});

byte[] file = out.toByteArray();

in.close ();
out.close ();

if (data ==null) data = file;
else for (int j=0; j<file.length; j++) data[j] += file[]];
}

for (int j=0; j<data.length; j++) data[j] /= 10;

FileOutputStream os =ew FileOutputStreamrew File (Constants.
FILE_PATH + "output.s"));

/!l Code injection: following 1 line has been injected

RuntimeEnforcer.eval (42, RuntimeEnforcer.iterCo(ih1] >= 5);

os.write (data);

os.close ();

public static void main(String[] args)throws Exception {

}
}

I/l Code injection: following 1 line has been injected
RuntimeEnforcer.initCounter (50);
new Statistics ().run();

Runtime Enforcer

public class RuntimeEnforcer {

public static int[] iterCount;
public static HashMap<Iinteger , Label> inLabel;
private static LabelingSystem labelingSystem;

static {

}

inLabel = new HashMap<Integer , Label>();
labelingSystem =new MockLabelingSystem () ;
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public static void initCounter(int progSize) {
iterCount =new int[progSize];
}

public static void countlter(int progPoint) {
iterCount[progPoint]++;

}

public static void eval(int progPoint, boolean expr) {
if (lexpr) abort("Expression on iteration count not satisflie",
progPoint);
}

public static void compareCh{nt progPoint, Method cmd, Object[] args
, Method otherCmd, Object[] otherArgs) {
if (labelingSystem.compareChannel(cmd, args, otherCmdheoArgs)
I= ChannelSimilarity .OK) abort("Input channels not thensa.",
progPoint);
}

public static void storeDatalLabeli(nt progPoint, Object data) {
inLabel.put(progPoint, labelingSystem .getDatalLape&4ta));

}
public static void storeChLabel{nt progPoint, Method cmd, Object][]
args) {
Label | = labelingSystem.getChannelLabel(cmd, args);
if (inLabel.containsKey(progPoint)) | = maréw Label[]{l,inLabel.

get(progPoint)});
inLabel.put(progPoint, 1);

}

public static void checklnput(nt progPoint, Method cmd, Object][]
args, int pp) {
if (inLabel.get(pp).getValue() > labelingSystem.getChahmabel (cmd
, args).getValue()) abort("Input label higher than outplabel

", progPoint);
}
public static void setDatalLabel{nt progPoint, Object data, Label
label) {
if (!labelingSystem .setDatalLabel(datalabel)) abort("Data label
could not be set.", progPoint);
}

public static void checkOutputf{nt progPoint, Method cmd, Object]]
args, Labellabel) {
if (labelingSystem.getChannelLabel(cmd, args).getValue( label.
getValue ()) abort("Output label lower than input label.",
progPoint);



B. Source Code 139

50 private static void abort(String str,int pp) {

51 System. err.println ("Runtime enforcer violation: " + rojt;
52 System. err. println ("Program point of the check: " + pp);
53 System. err.println ("Aborting!");

54 System. exit (1) ;

55 }

56

57 public static Label max(Label[] labels) {

58 Label max = labels[0];

59 for (int i=1; i<labels.length; i++) {

60 if (labels[i].getValue() > max.getValue()) max = labels[i];
61 }

62 return max;

63 }

64 )
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List of Symbols

Expression-Matching Framework

10 Domain of input/output channelk) = In U Out (page24).
Var Domain of program variables (pag4).

Prog Domain of programs (pag2d).

) Domain of program states (pag®).

IT Domain of execution environments (paz.

Q Domain of configurations (padtb).

Obs Domain of configuration transition labels (pa2®.

T, Y, Z,a,b Program variables, members\#r (page24).

c Boolean program variable, used in conditionals (p24e
N Constant value (pag24).

f Function, represented as a syntactic object (j2&ye

—h

Semantic evaluation of functiofito a value (pag26).

«, Input channels, members bf (page24).

¥, 0 Output channels, members ©fit (page24).

0 Input or output channel, member & (page24).

P Input/output channel, or program variable, membevarf U 10
(page24).

0, n-th value read from/written to channe(page24).

Program, member aProg (page24).

C Sub-program ot (page24).

141
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head(C) First non-compositional statement 6f, a.k.a. the active com-
mand ofC' (page24).

o Program states € ¥ = (E, I, O, PC) (page25).

E, Mapping from variables to expressions on indexed input ohkn
(page25).

I, Mapping from input channels to numeric index of next value to

be read (pag25).

O, Mapping from output channels to sets of expressions on gaiex
inputs that could be sent over that output (page

PC, Mapping from variables and channels (input/output) to stéx-
pressions on indexed inputs which are conditionally depetith
the mapped variable/channel (p&fs.

T Execution environment; € II = In x N — Val (page25).

w Configurationw € Q = (C, o, m) (page25).

T Non-observable transition, € Obs (page25).

0 Configuration transition labed, € Obsis eitherr or out(~, v) for
some output channeland valuev (page25).

flz & n) A variant of f where the value assigned ids f(z) ® n, where
© is any operator of the right type. Alsd|[z < n|(x) = n
(page2s).

T it Initial state (pag7).

t,t Runs of a progran®’ in an environment (page27).

o(t) The sequence of (visible) output actiong ifpage28).

t =outt’ Holds if o(t) = o(t’) (page28).

w(t) The sequence of configurationstipage28).

T,T Sets of runs (pag2s).

T =T’ HoldsifVi € T : 3t' € T' : t =ou t' (page28).

Run(C, ) All the runs of progranC' in environmentr (page28).

D Set of declassifiable expressios,C Exp(Iln x N) (page28).

public(e, D) Expressiore is public according td (page28).
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states(C') Every possible state prografican achieve (pages).

dds(p,C, D) p is data dependency safe in every state achieved ,byith re-
spect toD (page29).

cds(p,C, D) p is control dependency safe in every state achieved' bwith
respect taD (page29).

safe(p, C, D) p is safe in every state achieved ©ywith respect td (page29).

valid(C, D) C'is valid with respect td (page29).

T Rp Ty Environmentsr; andr, are D-equivalent (pag&0).

R(m, D) The knowledge ofr revealed byD (page30).

K(m,C) The knowledge ofr that can observed i@ (page31).

PCR The Policy Controlled Release property (page

Lo (C) The type of statemeidt’ of programC', I'c(C") € {H, L} (page32).

01 X(c,D) 02

L-cont(C)

Q

Statesr; ando, are compatible fo€' and D (page33).

The low continuation of’, i.e. its first sub-statement which is not
typed high (pag8&3J).

A correspondence relation between two ruasidt’ (page34).

Graph-Based Implementation

g

Vertex
Edge
D

m < =

n=(lt)

e=(n,n t, u)

Domain of program expression graphs (pddge
Domain of graph vertices (nodes) (pagfb.

Domain of graph edges (pag4).

Domain of policy expression graphs (patfs).
Program expression graphe G = (V, E) (page4l).
Set of vertices) C Vertex (page4l).

Set of edgesk C Edge(page4l).

A graph vertex (node); € Vertex, wherel is a label (name) and
tisatypei € {var, in, out, const} (page4l).

A graph edge¢ € Edge wheren andn’ are the origin and desti-
nation vertices, respectivelyis atypet € {plain, control, ¢;, f;},
where f is any function name ande N andu € N is a looping
context (pagél).
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d Policy expression grapld,c D = (V, £, V;, U) (page4b).

Vi Set of final vertices of a policy/; C V/, for somel” (page45).

U Set of input uniqueness restrictions of a policyC In x V, for
someV (page4b).

n - A constructor that returns an edge »’, ¢, u) (page4l).

=, < Operators for graph subsets (pat®.

G(C) Function that builds the graph of prograrh(page42).

edges(g) The set of edges of graph(page4?2).

nodes(g) The set of nodes of graph(page4?2).

nS,n Predicate that holds ifn, ', ¢, u) € edges(g) (page42).

n % n' Same as above, but wheris implicit in the context. This over-
loads notation for edge constructor. Usage of each is alolags
from the context (pag4?2).

n - Same as above, withirrelevant (page3).

n—n' Same as above, with= pl ai n (page43).

tq An edge type that is different fromont r ol (page43).

Y There exists a path (excludimgnt r ol edges) between nodes
andn’, with w being the sequence of labels on this path (ptg)e

n —*n' Same as above, with irrelevant (pag€3).

n % Same asi % 7/, with the whole path in the same looping con-
textu (page4d).

EA Either 2% or %% (pagedd).

5 An edge whose type is eithpt ai n or ¢ (page43).

An Indegree ofu is zero (page3).

type(n) Type of noden (page43).

uni(g) Set of all pairs of input uniqueness relations in grgphni(g) C

expy(n)

In x Vertex (page43).
All possible expressions held by noden graphg (page44).
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cexpy(n)

P(o,9)

dds,(n,d)
dds(n, g,d)
cds(n, g,d)

safe(n, g,d)
valid(g, d)
public(e,d)

Pol

(Pol, Prog, valid)

Pol
P

Prog

All conditional expressions the held by nodein graphg can
depend upon (pag#d).

Stateo and graphy correspond to each other (pagf®.

A wildcard label for a policy node, whetes the matching type,
omitted when equals toar (page4b).

Set of final vertices (nodes) of policy gragl{page46).
Set of input uniqueness restrictions of policy graptpage46).

Denotes an information path of some graph;s ¢, for some
g € G (page47).

The set of information paths that reach nade graphg (page4?).

The set of maximal information paths that reach nade graph
g (page4?).

Nodesn andn’ are similar, i.e. they have the same type and either

the labels are the same or one of them is a wildeajubge47).

Noden, in the information pathy, simulates node’, in the pol-
icy graphd. ~, . denotes the largest policy simulation relation
betweerp andd (page48).

Noden is data dependency safe in information pathwith re-
spect to policyl (page49).

Noden is data dependency safe in graptwith respect to policy
d (page49).

Noden is control dependency safe in graphwith respect to
policy d (page49).

Noden is safe in graply, with respect to policyl (page49).
Graphyg is valid with respect to policy (page49).

Expressiore is public according to policy (page51).

A set of declassifiable expressioi® C Exp(In xN) (page52).
PCR framework (pagg2).

A domain for declassification policies (pag8).

A policy interpretation functiof® : Pol — Pol (page53).

A domain for abstractions of programs (pagf.
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A program abstraction functioi : Prog — Prog (page53).

A validation functionV : Prog x Pol — Bool, which, for a
programC' and a policyd, satisfiesV(C(C), d) = valid(C,P(d))
(pageb3).

((Pol,P), (Prog,C),V) An implementation of the PCR framewo(®ol, Prog, valid)

int(d)

stales(G(C)
e

(pageb3).

The policy interpretation function for policy expressioraghs,
int : D — p(Exp(ln x N)) (page53).

The set of all program statesdinthatG(C') can represent (pads).

The worst-case time complexity of computatiomhich can be a
function or operator (pageb).

Hybrid Static-Runtime Enforcer

91‘

I —X1

label(ny)
id(C')

flow, 4(ny)

constr(R)

fra(C)

frga(ny)

The 1/0 operation on channél performed at program point
(page74).

A flow that denotes that each element in the set of input ojoarsat
and declassification matchingsiipotentially flows to output op-
erationy’ (page74).

The representation of a declassification matching, degdhat
the input operations in sdt flow to a variable which matches
a declassification policy, changing its labelito X represents
the set of constraints associated with the matched defotadsin

(page7s).
Security label associated to final policy nade(page77).
The program point of stateme6t(page77).

The set of input operations and declassifications (accgrthn
policy d) that potentially flow to variable node, € nodes(g)

(page7?).

The set of constraints associated to the declassificatiaching
that corresponds to the node simulation relafiofpage78).

The flow report of progrand’, according to policyl (page78).

The flow report relative to output node, € g, according to pol-
icy d (page79).

A flow (page81l).
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de
l

pf
from(f)

to(f)

constr(dc)
label ()
id(l)

Ibl(f)

check(X)

validate(C, d)
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Summary

Information Flow and Declassification Analysis for
Legacy and Untrusted Programs

Standard access control mechanisms are often insuffi@esiforce compliance of
programs with security policies. For this reason, infoioraflow analysis has become a
topic of increasing interest. In such type of analysis, tlamproperty to be checked is
called non-interference, which basically states that th#iply observable behaviour of a
program is entirely independent of its secret, secure inplues.

However, simple non-interference is too restrictive foe@fying and enforcing in-
formation flow policies in most programs. Exceptions to muterference are provided
using declassification policies. Several approaches ftoreing declassification have
been proposed in the literature. In most of these approatiiedeclassification policies
are embedded in the program itself or heavily tied to thealdeis in the program be-
ing analyzed, thereby providing at best little separatietwieen the code and the policy.
Consequently, the previous approaches essentially retipaitéhe code be trusted, since
to trust that the correct policy is being enforced, we neddust the source code.

In this thesis, we propose a novel framework for informafiow analysis, with sup-
port to declassification policies, related to the sourceecbeing analyzed via its 1/0
channels. The framework supports many of the of declassdicaolicies identified in
the literature. Based on flow-based static analysis, it s&pris a first step towards a new
approach that can be applied to untrusted and legacy soadseto automatically ver-
ify that the analyzed program complies with the specifiedassification policies. We
present a framework in which expressions over input chavalaks that could be output
by the program are compared to a set of declassificationnegents. We build an imple-
mentation of such framework, which works by constructingaservative approximation
of the such expressions, and by determining whether allevhthatisfy the declassifica-
tion requirements stated in the policy. We introduce a regam&ation of such expressions
that resembles tree automata. We prove that if a programnisidered safe according
to our analysis then it satisfies a property we call Policy @iletd Release, which for-
malizes information-flow correctness according to ourambf declassification policy.
We demonstrate, through examples, that our approach workseferal interesting and
useful declassification policies, including one involvidgclassification of the average
of several confidential values. Finally, we extend the statialyzer to build a practical



hybrid static-runtime enforcement mechanism, consistirg steps: static analysis, pre-
load checking, and runtime enforcement. We demonstratethewybrid mechanism is
able to enforce real-world policies which are unable to bated by standard approaches
from industry. Also, we show how this goal is achieved by kegphe static analysis step
system independent, and the runtime enforcement with naimmuntime overhead.
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