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CHAPTER 1

Introduction

Computer systems are constantly handling sensitive information. As most of such sys-
tems are networked and often connected to the Internet, sensitive data is also regularly
transmitted between different devices. Smartphones and tablet computers carry private
data of users in the form of contact lists, photos, messages and others. Social network
websites not only store such information, but also regulatewho has access to it. Banking
systems are responsible for securing and regulating accessto very sensitive financial in-
formation of their customers. Wrong handling of sensitive information can cause it to be
disclosed to unauthorized parties, corrupted or lost. Thiscan cause major loss for both
companies and individuals.

The field ofcomputer securitycan be divided into 3 main aspects:confidentiality, in-
tegrity andavailability. Confidentiality is related to ensuring that data is only accessible
by entities authorized to do so. Integrity is about preventing that data gets corrupted or
modified in unauthorized ways. Finally, availability is about guaranteeing that computer
systems and services are available at all times. This thesistackles the first aspect, confi-
dentiality of sensitive data. Here, we aim at the problem of ensuring that programs do not
leak sensitive information to unauthorized entities.

Software is the fundamental decision-making component of acomputer system. Ev-
ery action done in data, including modification, copy, deletion and transmission is done
by programs. Thus, in order to regulate actions over data, one needs to regulate how com-
puter software operates over such data. To make matters morecomplicated, it is common
for a computer system to have a multitude of different programs, which are in turn also
regularly updated. Thus, in order to enforce how sensitive information is handled by a
computer system, one needs to regulate what programs do withthis information.

Information can have different degrees of confidentiality.In a company, some infor-
mation might be of public domain, e.g. the company’s line of products and services, its
address, some general numbers about profits. However, an employee should not be able to
access another employee’s salary information, while a manager should be able to access
this information related to all his/her subordinates. Someinformation might be even more
sensitive: details of unannounced research projects or thecompany’s financial situation
should be accessible only by some key personnel. With this, there is a need for computer
systems to regulate “who” (i.e. programs working on behalf of users) can access which
kind of information.

Current computer systems have mechanisms that regulate which resources a program
is allowed to access. For instance, a program may have accessto a number of files, but
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not to those under thesystem folder. In a typical multi-user system, a program running
on behalf of user Alice may not be allowed to access files ownedby user Bob. In mobile
devices such as smartphones each program is typically accompanied by a manifest of all
resources it can potentially access, such as the phone’s camera, wi-fi, text messages, etc.
The user can then deny a program’s installation if he/she does not agree with that manifest.
These mechanisms that regulate the resources programs can access are collectively known
asaccess controlmechanisms. In our company example an access control mechanism
would, e.g. not allow a program executed by Alice to access a file owned by Bob, unless
Bob marked that file as open for public access.

Access control is however not sufficient to guarantee that information is not leaked
by a program: once access to a resource is granted, a program can do anything with it.
For instance, consider a company policy in which access to salary information of an em-
ployee is only granted to the employee him/herself and his/her manager. Now, consider a
program running on behalf of one of the managers of a company.As per access control
rules, this program has access to the salary information of that manager’s subordinates,
and also to open network connections, as the program also accesses information from the
Internet. In this case, the program can e.g., read the salaryinformation of some employ-
ees and transmit it, via the network connection, to a computer outside of the company.
This computer can then belong to entities which should not beauthorize to access salary
information. Thus, although this program satisfies the constraints of access control, it can
potentially disclose the salary information to unknown (and unsafe) entities. Here, we
want to control not only which resources a program can access, but what it does with it.
Thus, a more elaborate mechanism is necessary.

There are different ways for a program to leak sensitive information. The aforemen-
tioned example is of an explicit flow of information: the sensitive data (salary informa-
tion) is transmitted to a potentially unsafe entity (over anarbitrary network connection).
Leaking data derived from sensitive data should also be avoided: it is still unsafe to dis-
close, e.g. the difference between the salaries of Alice andBob, as some knowledge of
both salaries can be inferred by this information. Finally,there are also implicit ways of
disclosing information. Consider a program that writes somedata to a file, and that this
data is completely unrelated to any employee’s salary information. However, this pro-
gram follows some logic in which it only needs to write to the file if Bob’s salary is above
a certain threshold. Even though this program does not directly leak Bob’s salary, it does
it implicitly. By observing whether the program wrote to the file or not, one can infer if
Bob’s salary is above the threshold. If the file is accessible to entities that should not be
able to access Bob’s salary, then we have a potential leak of sensitive information.

Guaranteeing that programs do not leak sensitive information is a highly desired goal,
but restricting the disclosure of all derived data is often overly strict. Real programs often
need to leak information on purpose, under controlled circumstances. Let us go back
one last time to the company example: a company policy may determine that individual
salaries are to be kept secret, but the average salary of the company (or a given department)
is allowed to be publicly disclosed. A program that makes such calculation would be
leaking sensitive information, as the average salary is a derivation of such secret data,
which is then disclosed to public channels. Such exceptionsare very common, and most
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computer systems need some type of it. Thus, in order for a mechanism to be deployed on
real-world systems, one also needs a way to specify and regulate exceptions to information
confidentiality.

This thesis treats the problem of ensuring that programs guarantee information con-
fidentiality, with support to well-defined and controlled exceptions, in order to make the
mechanism applicable to real-world programs. We also aim atsolutions which can be
potentially applied toany computer program, not only those designed specifically to be
safe. In the next section we name and define technically the concepts discussed here. In
the following sections we detail the research problem tackled by this thesis, as well as our
contributions to solve it.

1.1 Information Flow and Declassification Analysis

The problem we have seen in the previous section can be formalized in terms ofinfor-
mation flow and declassification analysis. In this section we technically define and detail
such concepts.

Programs dealing with sensitive data must prevent confidential information from flow-
ing to unauthorized entities [SM03b]. In order to enforce how programs use data, in-
formation flow control has became increasingly popular within the scientific commu-
nity. Information flow control revolves around a classical security property callednon-
interference[GM82], which states that the publicly observable behaviour of a program is
entirely independent of any secret input values it has received. Several techniques have
been proposed to check whether programs satisfy this property, within both static analysis
and runtime enforcement.

We illustrate the property of non-interference with an example. Consider a program
with 2 inputs: one which is publicly observable, labeledlow, and therefore not confiden-
tial, and another which is secret, labeledhigh, and whose contents should be disclosed to
unauthorized entities. This program has one public output,labeledlow. It could also have
secret (high) outputs, but these are unnecessary for the sake of this example. Consider
thatP (l, h) returns the program’s public output for when it is executed with the input val-
uesl andh, for the low andhigh inputs, respectively. We say that this program satisfies
non-interference if, for any two executions differing onlyin the value of the high input,
the value of the low output does not change. In other words, for any l, h andh′, we have
thatP (l, h) = P (l, h′). In this case, we say that the secret input does not interferewith
the value of the public output, and thus this program does notperform any unauthorized
information flow. If the secret input is e.g., a personal contact list, and the public output
a network connection, we could state that this program does not disclose data from the
former via the latter.

In general, non-interference is excessively restrictive:many programs that meet their
security objectives fail to satisfy it. The problem is that real programs often need to, under
specific circumstances, support exceptions to standard information flow control, allowing
secret data to flow to public outputs. Consider the following examples:

1. In a system where a given block of data is considered secret, transmitting this data
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over a network connection might violate non-interference.However, if a program
encrypts the data using an algorithm known to be safe, it might be desired to allow
the network transmission to happen. Here, the secret block of data should acquire
a lower security level upon being subject to a specific data operation – in this case,
the encryption algorithm. Information flow control would, however, consider the
encrypted block of data to be a variant of the original block,and thus also being
labeled as secret.

2. Consider a password checking mechanism. In a typical information flow scenario
the password provided by the user should be labeled secret, and not allowed to flow
into insecure outputs. The monitor screen which the user uses to interface with the
system is one of such insecure outputs – we do not want the password to be shown
there. However, should the password verification fail, the user must be informed
about it, via an error message. But this error message will only be displayed when
a function on the password (e.g.verify(passwd)) returns a failure result. With
this, the showing of the error message reveals some information on the password
(i.e. it is not the correct one). We call this animplicit information flow, since the
error message does not actually reveal the password. This means that this program
does not satisfy non-interference. Note that the exceptionto non-interference is not
only desired, butnecessary, in order for this program to work properly while still
being secure from the information flow point of view. The needed exception would
specify that, for a secretpasswd, the boolean value returned byverify(passwd)
can be disclosed to a lower security level.

3. A more elaborate example is the one discussed in the previous section: a company
policy that requires individual employee salaries be kept secret, but allows the av-
erage salary to be disclosed. Since non-interference prohibits any direct or indirect
flow of secret information to a public output channel,any program that publishes
the average salary violates it. This example shows not only the need for such ex-
ceptions, but also for a way to specify them in detail.

Here we can see examples where there is a need to release data that depends on se-
cret information but that: does not actually reveal anything (1), not anything important
(2), or only information that was specifically intended to bereleased (3). An exception
to non-interference that allows secret data to be released to a public channel is called a
declassification. To be able to make the distinction between intended releaseand unin-
tended leakage of secret information we need a specificationof allowed exceptions – such
specifications are calleddeclassification policies(see e.g., [SS05]).

1.2 Current Approaches

Most of the approaches to guarantee information flow can be divided into two main cat-
egories: static analysis and runtime enforcement. Static analysis consists of analyzing
the program’s code in order to predict its behaviour, while runtime enforcement revolves
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around checking, during runtime, every instruction executed by the program, and taking
action should an unauthorized action takes place. These twoapproaches are complemen-
tary: some aspects of information flow can only be tackled by static analysis (e.g. implicit
flows) while others only by runtime enforcement (e.g. resources with labels only known
at runtime). These techniques also have their own limitations and shortcomings, though.
We now explain them in more detail.

Static Analysis. There are some existing static analysis approaches that tackle the prob-
lem of information flow and declassification analysis. Type-based [Mye99, PS03, VIS96]
and dataflow-based [AB04, ABB06, BBM94, Den76] approaches have been proposed
to statically analyze whether a given program enforces non-interference. In both ap-
proaches, each program variable islabeledwith a security level (e.g.,high for secret or
low for public, though any lattice of labels can be supported). In type-based approaches, a
special programming language is used to annotate program variables with security types.
Typing rules are defined such that if the program type-checks(i.e. all assignments be-
tween variables satisfy the security types), then it is non-interferent. In dataflow-based
approaches, an analysis calculates dependence relationships between program variables;
non-interference is ensured if low variables are independent from high variables.

In type-based approaches exceptions to the standard flow areusually associated with
specific points in the code. The programmer can specify the declassification policy by
using a specialdeclassifycommand, which releases the information conditionally, de-
pending on the value of a given expression over program variables. If at run-time this
conditional expression is true, declassification is allowed. In frameworks of this kind,
declassification policies are specified in a manner that is intimately tied to the program
itself.

Figure1.1 shows an example of a type-based program using declassification. This
example program calculates the average value of several records, all labeled secret, and
then sends it to some public output. Note that in type-based approaches each variable has
both a data type (int) and a security label (secret andpublic). Here,numRecords()
returns the (public) number of records in the storage, whilegetRecord(i)returns the secret
record on thei-th position. For the expressionsum/i to be assigned to thepublic
labeled variableavg, a declassification must be made. This is done by thedeclassify
command, which takes an expression and downgrades it to a newsecurity label.

A drawback of this approach is that only someone with a deep understanding of the
program can reliably write declassification policies for it. Everyone else is forced to trust
blindly that the policies meet the required security objectives. When code is written by
trusted programmers, this assumption may be acceptable, though even then it would be
preferable to separate concerns and make the specification,maintenance, and review of
declassification policies independent from the program. Inthe case of untrusted code, or
code without security annotations, relying on the programmer to identify declassification
points is clearly unacceptable. Operators of systems that rely on such a program obtain
little assurance that the declassification policies definedin it are appropriate. As pointed
out by Zdancewic [Zda04], one of the reasons why language-based techniques have not
yet been widely adopted is that the enforcement approaches require the programmer to
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int{secret} sum := 0;
int{public} i := 0;
int{public} avg := 0;

while (i < numRecords()) do

sum := sum+ getRecord(i);
i := i+ 1;

avg := declassify(sum/i, secret to public);
doOutput(avg);

Figure 1.1: Type-based approach for declassification

worry not only about the correctness of the program logic, but also about how to annotate
the program so that it can be deemed secure.

This makes analysis oflegacy and untrustedprograms impossible, and thus it is not
very practical. In this context, legacy and untrusted programs are those which satisfy two
points. First, they were developed before (or unaware of) the technology used to analyze
them. This way, these programs were not developed using any specific security-oriented
technology in order to make their analysis any easier. Second, acquired from an unknown
or untrusted source, so that there are no guarantees if the program actually does exactly
what is stated in its specification, and nothing else (or if there is any specification at
all). Note that many programs downloaded from the Internet are often both legacy and
untrusted, and that the aforementioned limitation of many static analyzers would make
analysis of such programs impossible.

To stress this point further, work from Hicks et al. [HKMH06] conclude that although
Jif [CMVZ06] is the most advanced security typed programming language,it is not ready
for mainstream use because it requires considerably more programming effort to write a
working program than in a conventional language. In light ofthis observation, we believe
there is need for an information flow analysis framework thatdoes not require program-
ming annotations and which considers programs and policiesas independent entities. This
would result in greatly reducing the effort required to program an application, decoupling
the program from the policy, and avoiding the need to trust the code itself.

Dataflow approaches, on the other hand, calculate dependencies between different
structures of a program, thus being able to analyze code without security annotations.
However, since they do not differentiate between the different operations applied to data,
they do not manage to handle declassification in an automaticway.

This state of affairs implies that declassification policies cannot readily be applied to
legacy code. Unless the legacy program satisfies strict non-interference (which is uncom-
mon) the only way to determine whether such programs satisfyinformation-flow objec-
tives is through the laborious process of understanding theprogram well enough to design
a program-specific declassification policy.



1. Introduction 7

Runtime Enforcement. In the classical definition of runtime enforcement [Sch00], an
enforcer must trackall program instructions in order to detect security violations. Other
techniques (e.g. edit automata [LBW05]) revolve around re-writing program instructions
on the presence of violations. Dataflow-based approaches can also be implemented as
runtime enforcers, and one such example is taint analysis [LL05, TPF+09], which keeps
track of program modules/structures which are dependent of(i.e. “tainted by”) sensitive
information.

Runtime enforcers, however, often cause a non-negligible processing overhead on
the monitored programs, since the enforcer itself needs processing cycles and memory.
Usually, the more policies the enforcer can support, the more overhead it causes: program
re-writing, for instance, causes the enforcer to potentially add more instructions to the
running program. Performing declassification in runtime, when possible, can be even
more computationally demanding: in order to check if policies are satisfied, the enforced
needs not only to track thecurrentexecuting instruction, but also to keep track of previous
operations done over data by the program. This is needed as programs may use several
instructions in order to calculate a derivation allowed by adeclassification policy (e.g. an
arithmetic average).

Some approaches have been recently proposed to combine static analysis and runtime
enforcement, thus reducing runtime overhead. These, however, rely much on the expres-
sive power of the static analyzer in order to make the runtimecomponent lightweight.
In current approaches, either (1) the static analyzer is type-based, thus reducing runtime
overhead at the cost of introducing a security-annotated language, or (2) the system does
not support declassification policies, as these need eitherannotations or cause a heavy
runtime overhead.

Thus, runtime enforcers have a limited domain of target systems/programs they can
be executed on. For instance, amobileprogram is executed on mobile devices, such as
smartphones and tablets, and usually aims to keep a low execution overhead (process-
ing, memory and battery). Here, the processing overhead caused by runtime enforcers
is highly undesirable. And yet, supporting this kind of programs is very important, as
mobile devices are increasingly present.

In conclusion, declassification mechanisms in state-of-the-art information flow ap-
proaches are not sufficient to meet the needs of practical analysis of real programs (i.e.
to be able to analyze legacy, untrusted and mobile code). Thedeclassification mecha-
nism needed to deal with practical exceptions to non-interference is not available in an
appropriate way for most use cases.

1.3 Research Question

The research question to be answered by this thesis arises from the limitations of cur-
rent information flow and declassification mechanisms, noted in the previous section.
Our main goal is to make information flow analysis possible onreal-world applications,
and this includes untrusted and legacy programs, possibly executed on mobile devices.
Achieving this goal will take not only a large step to bring this kind of analysis to real and
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deployed systems, but as well to fill the gap left by current research in the field.
Thus, in order to accomplish this, we formulate the researchquestion as follows:

How to check information flow on legacy, untrusted and mobilecode?

In order to answer this question, we need an information flow analysis mechanism
which satisfies the following objectives:

1. Analyzes unannotated code, i.e. code written by a possibly untrusted, unknown
programmer.

2. Supports declassification, as real applications often need to declassify information.

3. Allowed declassifications should be specified by declassification policies which are
independent from the code, i.e. code and policy are written by separated entities,
independently.

4. Can be implemented with decidable algorithms.

5. Must be adaptable in order to work in multiple systems, with little to no runtime
overhead.

The mechanism we aim at must be able to decouple declassification analysis from the
source code, thus being able to analyze untrusted and legacyprograms. Also, low runtime
overhead is necessary in order to allow the mechanism to workon mobile devices.

1.4 Contributions

In this thesis we answer the research question by introducing a set of mechanisms, from
theory to practice, that allow the specification, verification and enforcement of declassifi-
cation policies that are independent from the code to which they are applied. We introduce
a novel approach for information flow and declassification analysis, laying the ground-
work for bringing this kind of analysis to deployed systems.We present our approach as
3 mechanisms, each building upon its predecessor, from theory to practice:

1. A theoreticalframeworkthat defines a policy model and the notion of program
validity with respect to a policy.

2. A high levelimplementationthat defines a concrete policy language and a tractable
validation procedure for checking program validity against such policies.

3. A practicalextensionof the implementation, that defines a framework which com-
bines the previous mechanism with a runtime component implemented on a estab-
lished technology, supporting more expressive policies across multiple systems, but
keeping runtime overhead very low.
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All of the mechanisms presented on this thesis are novel by offering the combination
of the following features: (a) support to user-defined declassification policies, (b) code
and policy being separated and independent from each other,(c) analysis and application
of declassification policies to unannotated and untrusted code. Recalling the points from
the previous section, our theoretical framework tackles points 1 (analyzes unannotated
code), 2 (supports declassification) and 3 (independent declassification policies). The
high level implementation adds point 4 (implemented by decidable algorithms), at the cost
of slightly reducing the precision of the analysis. The practical extension then enhances
the expressiveness of policies (3) and brings the approach to mobile systems, with little to
no runtime overhead, tackling point 5. With this, we end witha practical mechanism that
satisfies all points of the previous section. Below we treat each of these mechanisms and
their benefits over existing approaches in more detail. We then provide an overview of
related work in Section1.5before outlining the thesis plan in Section1.6, which describes
how we organize our contributions.

The theoreticalframeworkdefines program validity in terms of the expressions on in-
puts that the program calculates. A program is deemed safe according to how expressions
it calculates are checked against a given set of expressionswhich are allowed to be re-
leased, i.e. a set ofdeclassifiable expressions. Our approach to program analysis deems a
program to be safe if it is able to determine that public output values depend on secret in-
puts only via such expressions. Programs can be written without awareness of the formal
declassification policies or of how the analyzer works, as nospecial command is used to
specify declassification or security labels. Technically,a fundamental contribution of the
theoretical framework is the introduction of a property called Policy Controlled Release
(PCR) — a more flexible security property that replaces non-interference — and a result
that shows this property is satisfied by programs deemed valid by our analysis.

The second mechanism, the high levelimplementationof the framework, consists of
a tractable analysis for determining whether a specific graph-based form of a declassi-
fication policy is enforced by the input program. It represents one possible way of im-
plementing the framework in a tractable way, providing a basis for further work on even
more expressive representations.

On our implementation, declassification policies usegraphsto represent sets of ex-
pressions over values obtained from input channels. This allows us to express and to deal
efficiently with declassification policies that refer to iterative constructs such as loops (as
in the example in which the average salary may be disclosed and the individual wages
must remain secret). The policies represent values that arepermitted to be made public.
Expressions that may be computed by the program under analysis are also represented
by a form of an expression graph that incorporates representations of variables and I/O
channels, and captures the dependencies of output expressions on values obtained from
input channels. We augment the power of our expression graphs to allow them to express
the (non-regular) property that values obtained from inputchannels are given by distinct
read operations, thus enabling our policies to require, forinstance, that an expression rep-
resenting the average of input values must refer to multipledistinct values read from the
input channel, and not multiple references to the value returned by a single read operation.
A graph matching mechanism is used to ensure that the expressions are declassifiable per
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the policy.1 This notion ofpolicy simulationis reminiscent of the standard concept of
bisimulation in automata [Mil89].

In present approaches, to declassify the result of a loopingprogram using standard
flow-based techniques, one is required to manually introduce simplifications, which often
consist of determining the fix-points of loops. On the other hand, type-based techniques
usually rely on the programmer to identify in the code iterative declassification expres-
sions.

Finally, the third mechanism, a practicalextensionof the graph-based approach, achie-
ves the goal of being suitable for working on currently deployed mobile technologies, also
adding a runtime component that enhances the expressiveness of policies while incurring
little to no runtime overhead. It does so by extending the graph-based approach and com-
bining it with other components. Although a purely static mechanism is a highly desirable
research goal, there are certain aspects of software analysis which require runtime infor-
mation to be enforced. This is why we extend our static solution and combine it with a
runtime enforcer. We show how this hybrid solution be deployed on real systems, and
also make explicit which kinds of policy aspects can be enforced by each approach (static
and runtime).

The presented hybrid static-runtime enforcement approachhas 3 stages: (1) our slightly
modified static analyzer that takes a program source and a setof declassification policies
and detects all flows of information between input and outputchannels in the program,
as well as detecting points where declassification can happen (generating constraints that
have to be checked at runtime); (2) a pre-load checker which,before loading the program
for execution, checks the security labels of I/O operationsspecific to the target system
against the information obtained in the previous step; and (3) a runtime enforcer that
checks labels which are only known at runtime, as well as runtime constraints for the
declassification policies. Calls to the enforcer are injected in the application’s code, prior
to its execution, on the specific points where checks are needed, thus further reducing the
overhead of the enforcer. We present three motivating examples, all within the context of
a mobile device, and show that our hybrid static-runtime enforcement allows to:

• support more realistic policies than present approaches—as policies may need both
static (implicit flows, declassification) and runtime (dynamic labels, execution con-
straints) knowledge;

• achieve an often negligible runtime overhead—as most of theanalysis computation
is done statically, and the static analyzer is system independent.

The presentation of the hybrid enforcer is guided by the three examples and the ap-
proach is presented in an implementation-oriented fashion. That is, we do not present an
in-depth formalization of the domain of problems solvable by that mechanism. However,
we define it in such a way that a full implementation is straightforward, and demonstrate

1While PCR is termination-sensitive, our analysis and theorem are termination-insensitive in the sense
that our analysis may deem valid a program that leaks secret information by failing to terminate during a
while loop that is controlled by a nondeclassifiable expression.
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its applicability directly over the examples, which consist of real-world scenarios, not
treated by existing practical approaches.

We implement our final step, the runtime enforcer, and run it against benchmark pro-
grams on an Android device, in order to determine its overhead. We show that for most
practical scenarios, the overhead is almost imperceptible. Our pre-load checker is simple
and straightforward to implement directly from its definition, as so it is the injection of the
runtime enforcer checks in the application’s code. Finally, we do not provide a full im-
plementation of the static analyzer, but present definitions on how to extend PCR analysis
so that it can be integrated with the other steps of our approach.

For an overview of how the major contributions of this thesisare organized, refer to
Table1.1on Section1.6.

1.5 Related Work

Many of the initial papers on language based security [SM03b] enforced the non-inter-
ference property [GM82] statically using type-based [PS03, VIS96, BN02] or dataflow-
analysis based [AB04, ABB06, BBM94, Den76] approaches. Banâtre, et al. [BBM94]
were the first to propose usingaccessibility graphsto specify data and control flow depen-
dencies between different variables in the program and thereby automatically inferring the
security properties of the program. Bergeretti, et al. [BC85] represent information flows as
relations between different variables in the program and Clark, et al. [CHH02] represent
flows as relations between the variables and the control flow points represented by the pro-
gram counter. Although the above approaches require dependency calculation similar to
our expression graphs, we can additionally represent declassification policies, while they
can only check for pure non-interference. More recently, Hammer, et al. [HKS06, HS09]
propose an information flow control algorithm for Java. The variable dependencies are
specified in the form of dependency graphs. The declassification policies are specified
using path conditions, which are a conjunction of all the conditional expressions that are
encountered before reaching the output program point. Although the path conditions are
certainly useful to specify some kind of declassification policies, they do not compute
what expressions are being declassified. Here, we attempt tocapture this information
using our expression graphs. Swamy, et al. [SH08] propose a formal language, AIR
(Automata for Information Release), for describing stateful information release policies
separately from the program that is to be secured. Although the policies are specified
in the form of an automaton separate from the program, the approach requires that the
programs be written inλAIR, a core formalism for a functional programming language,
so that the AIR policies can be provably enforced.

Non-interference was found to be too restrictive to specifycertain security properties
and the use of declassification policies was proposed. One ofthe first papers to spec-
ify declassification policies was the paper by Myers[Mye99], where the declassification
is based on principal authorization which falls under thewho dimension. Several new
declassification policies were proposed as discussed by Sabelfeld, et al. [SS05], each of
which differed either in the type of declassification policies being handled, how the de-
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classification policies are specified or by the enforcement mechanism.
In type-based approaches the declassification condition istagged to the security lat-

tice [LZ05, CM04, TZ05, CM08] or to an expression inside the program [SM03a]. Since
declassification typically involves downgrading the security level from high to low, this
is the right place to specify the policies. To specify which policy to use at the declassi-
fication points, new syntactic constructs are introduced into the programming language,
making the policy and the program to be inter-dependent on each other. In most cases, a
newdeclasscommand is introduced into the program. The enforcement is usually a hy-
brid of static analysis and dynamic execution. In some approaches [SHTZ06, BWW08],
a particular section of code is encapsulated in a conditional statement. The condition
specifies the declassification policy. This section of code is executed only if the condition
is true, thereby dynamically enforcing declassification. More recently, some approaches
advocate specifying a special security API [HKMH06, SH08, HKM05]. If the program
is written using this API, declassification policies can be provably enforced. In [SPB09]
authors present aλ-calculus based language for dynamic information flow tracking, that
accepts more programs than type-based systems, at the cost of greater overhead. Their
approach tracks information flow in multiple dimensions (i.e. it reasons over, e.g. the
confidentiality of an integrity label), a goal out of the scope of this thesis. Even though
variables have no static security labels, declassificationis done explicitly in the code, by
the programmer.

Li and Zdancewic [LZ05] use declassification policies that take the form of lambda
terms over inputs, akin to our approach. Expressing the policies in lambda calculus gives
them the flexibility to compare different policy terms for equivalence. This is a strength
of the prior work in relation to our own. The main strength of our work in relation to
theirs lies in our enforcement mechanism. For this, they usea type system that labels
each variable in the program with a security policy. The security lattice is given over the
lambda terms in the policy. As they also point out, their enforcement mechanism cannot
handle policies such asλx : int.λp : int.(x + p) ∗ p. On the other hand, our work
handles this kind of situation, since our program expression graphs implicitly keep track
of all the expressions that can flow to an output channel, enabling our approach to analyze
expressions resulting from global computations. Thus, using program graphs allows us
to enforce more expressive policies. The paper also hints that that their approach can be
applied to untrusted code if enforced differently, but doesnot explain how to do so.

The type-based enforcement mechanism of delimited release[SM03a] and localized
delimited release [AS07b] policies keep track of the variables involved the in the declas-
sified expressions and ensure that they are not updated before declassification. This is
required to prevent laundering of information. Our flow based enforcement automatically
keeps track of the changes in the variables, thereby precluding the need to have an explicit
declassification construct in the program.

Jif [CMVZ06] is one of the most advanced programming languages designedto en-
force fine-grained declassification policies in the program. However, if the programs and
policy are not carefully designed, as stated in [HKMH06], there is a risk of burying the
policy deep inside the code and therefore requiring a changein the program with every
change in the policy. In light of this observation, several researchers studied how large
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programs can be written in a security typed language so that their behaviour is prov-
ably secure. Askarov, et al. [AS05] show how security typed languages can be used to
implement cryptographic protocols and propose several design patterns to help the pro-
grammers to write their applications in Jif. They program a large poker application to
demonstrate their approach. Hicks, et al. [HKMH06] propose FJifP, which includes all
the security features of Jif and also an option to use certainmethods as declassifiers. They
also highlight the need for effective programming tools in which to write Jif programs.

Askarov, et al. [AS07a] provided the foundation for CGR with their definition of the
Gradual Release (GR) property. Their paper quantifies the knowledge obtained by the ob-
server as the set of possible secret inputs that could be generated by observing the public
outputs, i.e., the notion ofobserved knowledge. The GR property states that the observer’s
knowledge increases only at declassification points. Our aim of supporting policies that
are as program-independent as possible prevents our considering attacker models that in-
volve program variables other than output channels. Thus the observed knowledge in our
framework is the knowledge obtained from the outputs and does not depend on any other
program events. The CGR property of [BNR08] requires the GR property. Additionally,
it requires that the low-security observer of program behavior is able to detect no dif-
ference between runs that are generated from initial statesthat yield the same values for
expressions identified in the declassification policies. Our formulations of revealed and
observed knowledge follow a similar approach.

Banerjee, et al. [BNR08] achieve separation of code and declassification policies.
However, their approach does not achieve a complete separation. Their declassification
policies, namedflowspecs, are a combination of a formula over program variables (P ),
special predicates called the agreement predicates (ϕ) over the program variables and a
modifiable variable (x) whose type is being changed. The flowspecs are quite expressive
and can be used to specify policies inwhen, whereandwhat dimensions. However the
technique only works for trusted code, which is written according to the policy specifi-
cation. In their paper, ifP andϕ only have global variables, then they say thatx can
be a schematic variable instantiated with different local variables. Although this allows
them to have more flexibility in terms of applying the same policy to different parts of a
large code base, it does not allow them to use the policies forentirely different programs.
The policies cannot be reused for any other code in which the data structures and global
variable names differ. Our policy specifications are more general and can be applied to
multiple, unrelated programs. Since their analysis uses the flow-insensitive, type-based
approach, they require that programs disallow assigning new values to high variables prior
to their use in expressions to be declassified. This means that programs need to be written
in a policy-specific manner for them to be deemed valid, whichis at odds with the appli-
cation of their approach to legacy code. Our Policy Controlled Release (PCR) property is
a variant of their Conditioned Gradual Release (CGR). Compared tothe prior definition
of CGR, ours is much simpler and more intuitive because it can beexpressed purely on
the observable behaviour of programs rather than needing details on program executions.

The notion of indistinguishability used in [AS09] is closely related to ourD-equiva-
lence relation (Section2.4), as it is based on the attackers’ knowledge of the initial values
of high variables in their escape hatches, which resemble the declassifiable expressions
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identified by policy in our framework. However, their expressions are identified individ-
ually, which prevents them declassifying expressions of unbounded size, such as result
from iterative computations. They also do not share our objective of completely sepa-
rating policy from program. This enables them to consider where declassification occurs
within the program, and to handle attacker models in which non-output events are observ-
able, which we inherently cannot do.

Giambiagi and Dam [GD04] provide a framework for analyzing a security protocol’s
implementation against its specification. A dependency specification defines an informa-
tion flow property by characterizing the direct flow along a path in the form of allowed
sequence of API and primitive function calls. However, as the authors mention in the
paper, dependency specifications are very low-level objects, which can be used as inter-
mediate representations of flow requirements. In general, their dependency specifications
should accurately capture the exact number of times a methodis called during a partic-
ular flow and it can only characterize a single flow. By contrast, our expression graph
representation can represent several flow patterns, including loops. Also, as stated by the
authors, their verification techniques are not yet fully automated, as opposed to ours.

Taint analysis [LL05, TPF+09] considers direct data flows, but, unlike information
flow analysis, ignores control flows. In this sense, it is muchless demanding than declas-
sification policy enforcement. The input/output channels are labeled with a security level,
such as tainted and un-tainted. A separate code analysis mechanism is required to check
whether the sanitization routines (cf. declassification policies in our context) are present
in the code. We, on the other hand, are associating the declassifiable expression with in-
put and output channels, without considering how a program is written. This is certainly
more expressive than a simple label. Also, a taint propagation through the program can
be easily inferred by static analysis of code. Checking whether the sanitization routine is
present in the code is a much more complex issue. In our work, we automatically infer
whether a particular declassification policy can be appliedto all possible program expres-
sions that can be output by the program. This would correspond to checking whether all
possible sanitization routines applied to inputs make themsecure enough to be output.
Therefore, our approach is much stronger than simple labelling of inputs and outputs in
taint analysis.

Giacobazzi and Mastroeni [GM04] provide a powerful framework in which to specify
the weakened variant of non-interference that is enforced under a declassification policy.
We think its likely that our Policy Controlled Release property could be precisely stated in
their framework, modulo the fact that our approach is communication channel-oriented,
while theirs focuses on state transformation. We view our contribution as bringing the
field closer to being able to implement a large class of practical analyses that can be spec-
ified in their framework. This prior work is highly abstract,and provides little guidance
with respect to the construction of usable analysis tools. To achieve in their framework
what our graph-based analysis achieves would require devising a representation of an ab-
stract domain for each declassification policy. Each element of this domain would denote
a set of valuations for high-security variables such that the declassifiable expressions each
yield the same value, but the valuations are otherwise unconstrained. In other words, ab-
stract domain elements differ only with respect to the values assumed by declassifiable
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expressions. While it might be practical to represent these sets by using (infinite sets of)
constraints, it is not at all clear how, for programC, one would compute the best correct
approximation of[[C]] over them, as required by their approach.

Runtime enforcement mechanisms [LBW09a, CNC10, KKL +01] monitor accesses a
program does during execution, enforcing access control policies. However, limited vis-
ibility of the program’s code, coupled with a necessity to incur low overhead limit the
types of policy that can be enforced. These mechanisms are often useful for enforcing ac-
cess control, but not information flow, since the latter requires knowledge of non-executed
code, in order to detect implicit flows. In [LR10] authors propose a theory for runtime en-
forcement, modelling runtime mechanisms that can transform results, and also an analysis
of the policies that such model can enforce. Their abstract model is simple and expressive,
and our runtime enforcement step can be fit in the model in a straightforward manner. The
model, however, makes explicit one of the limitations of runtime enforcement: as it only
considers actions performed by the application at runtime,it is unaware of implicit flows
of information caused by actions that werenot performed. Authors also do not study in
detail the overhead caused by the monitor, since that variesfor each implementation of
their model, but point that this overhead may not be negligible. Finally, their model also
supports result-sanitization policies (e.g. mask secret files from a directory listing), which
are out of the scope of our approach. A recent study on policies enforceable by runtime
monitoring is presented in [LBW09b] and the same authors present a framework for com-
posing expressive runtime policies in [BLW09], but again policies are based on specific
security-sensitive actions performed by the program. In [AF09] the authors propose a
purely dynamic information flow analysis approach that handles implicit flows. However,
this is achieved by disallowing, on the language semantics,dynamic label updates within
high conditionals, an unnecessary limitation in our approach.

A hybrid approach had been proposed in [SMH01], although authors proposed the
combination of inline reference monitors with static type systems. Our approach pre-
cludes the need of a type system. Concrete proposals of hybridmechanisms are scarce,
although have become increasingly popular [LG07, LGBJS07, SST07, NJK+07]. The au-
thors of [YZLL11] integrate static analysis and runtime tracking to establish an approach
to generate a sensitive data propagation graph aimed at incurring minimum time overhead
on systems. All the cited approaches, however, do not support neither runtime security
labels nor declassification policies. In [QDXW04] the authors use static analysis to detect
which parts of the program satisfy the policy, and use a runtime enforcer to guarantee
that unsafe parts are not executed. Thus, they do not enforcepolicies that need runtime
information: the runtime enforcer serves only to select theparts of the code that may be
executed.

In [SR10] the authors show that, by blocking execution of unsafe instructions, a dy-
namic monitor can guarantee termination-insensitive noninterference, for a flow-insensi-
tive analysis. Then, in [RS10], the same authors prove impossibility of a sound purely
dynamic information-flow monitor that accepts programs certified by a classical flow-
sensitive static analysis. The authors demonstrate the need for hybrid mechanisms in
flow-sensitive analysis, and present a general framework for such mechanisms. In both
papers, however, authors do not consider neither declassifications nor dynamic labels.
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Hybrid mechanisms that support declassification have been proposed in [AS09, CM08],
however these approaches do not share the expressiveness ofPCR analysis, being unable
to declassify expressions of unbounded size (such as the average salary), do not share our
goal of separating policy from program, and work on securitytyped languages, requiring
the programmer to identify points where declassification occur.

A recent implementation-oriented approach is Resin [YWZK09], a language runtime
that implements data-flow assertions. It is a fully runtime approach, incurring a non-
negligible overhead (33% CPU overhead for their measured application). Besides, it does
not share a number of our goals: it allows the programmer to specify application-level
data flow assertions, as opposed to our goal of analyzing untrusted programs, and it does
not aim for information flow control neither declassification policies.

1.6 Plan of the Thesis

In the next chapters we answer the research question by defining our proposed static anal-
ysis mechanism. InChapter 2 we define our expression-matching framework, which
deems programs safe according to a set of declassifiable expressions. This framework
is of theoretical nature, with many non-computable definitions. We first present some
motivating examples in Section2.1. Then, we define our programming language in Sec-
tion 2.2. The core definitions of the framework are the ones that defineprogram validity,
presented in Section2.3. We proceed to define our security property, called Policy Con-
trolled Release, in Section2.4. Finally, we demonstrate the soundness of the framework
in Section2.5.

In Chapter 3 we define our graph-based implementation of the framework. This im-
plementation is a tractable, safe approximation of the expression-matching framework.
We start by revisiting the motivating examples in Section3.1, showing how the imple-
mentation treats them. Then, we introduce our form of graphs, both for representing
programs and policies, in Section3.2. The core mechanism of the implementation is the
matching between program and policy graphs, presented in Section 3.3. Then, in Sec-
tion 3.4 we show the soundness of the implementation, demonstratingthat it implies the
program validity of the framework. In Section3.5we present and analyze algorithms for
the implementation, in order to show its tractability. Finally, in Section3.6 we extend
both the language and the graphs in order to support user-defined functions, and show
how both the framework and implementation can handle them, in order to demonstrate
the suitability of our mechanism to more elaborate programming language constructs.
Figure1.2below shows a roadmap of the core sections of chapters2 and3, presenting the
elements of our mechanism and how they interact.

Our extension of the graph-based approach, a practical hybrid static-runtime enforcer,
is presented inChapter 4. We present three motivating examples in Section4.1, all based
on real mobile applications, and then outline the approach in Section4.2, including some
assumptions about the target execution system. Then we discuss a small modification on
our graph-based PCR analysis in Section4.3, and proceed to define the next steps of the
hybrid enforcer: Section4.4 presents the pre-load checker, and Section4.5 the runtime
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Figure 1.2: Roadmap of the core sections of chapters2 and3

enforcer, including an analysis on the overhead it causes onthe target system.
Chapters2, 3 and4 form the core technical contributions of this thesis. Our contri-

butions are both theoretical (i.e. definitions of program validity according to information
flow and declassification policies and theorems deeming suchdefinitions correct) and
practical (i.e. implementable definitions of the enforcement mechanisms, algorithms and
experimental results). Table1.1 presents how the main contributions of this thesis are
organized through these 3 chapters. Contents of chapters2 and3 are presented in pa-
pers [RBdH+10, RBdH+11], while contents of chapter4 are presented in [RCEC11].

Contribution Theoretical Practical
Chapter 2 (Framework)
Section2.3(Program Validity) Definition2.9
Section2.4(PCR) Definition2.14
Section2.5(Soundness) Theorem2.15
Chapter 3 (Implementation)
Section3.2(Expression Graphs) Theorem3.6 Definition3.1
Section3.3(Graph Matching) Theorems3.13and3.15 Definitions3.9and3.12
Section3.4(Soundness) Definitions3.16and3.17,

Theorem3.21
Section3.5(Algorithms) Algorithms 3.1, 3.2

and3.3
Chapter 4 (Extension)
Section4.3(Static Analyzer) Definition4.1
Section4.4(Pre-load Checker) Definition 4.2 and Algo-

rithm 4.4
Section4.5(Runtime Enforcer) Figure4.4and Table4.8

Table 1.1: Main theoretical and practical contributions ofthis thesis

Since in this thesis we present a new approach for information flow and declassifi-
cation analysis, a number of new research directions arise.In Chapter 5 we present a
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number of open problems. Section5.1 discusses how precisely the graph-based imple-
mentation approximates the expression-matching framework, and how it can be made
more precise. Two open problems on the implementation are then presented: the loop-
counting problem is presented in Section5.2 and the algebraic equivalence one in Sec-
tion 5.3. These two problems are presented along with a discussion onpossible research
paths to solve them. We then discuss how to achieve an implementation of graph-based
PCR on a real programming language (e.g. Java, C++) in Section5.4. Finally, we discuss
in Section5.5 what we consider to be the greatest long-term open problem left by this
research field, and possibly a new research question still tobe answered: can this kind of
analysis be done in compiled code, such as assembly-level code?

We present some concluding remarks inChapter 6. Finally, we present proofs for
theorems and lemmas inAppendix A.



CHAPTER 2

Expression-Matching Framework

In this chapter we formalize the notion of a program satisfying a declassification policy.
For this, we introduce our expression-matching framework,which defines program va-
lidity according to a set of “declassifiable expressions”. Elements of such set represent
expressions on secret input channels which are allowed to bedeclassified. For instance,
values from an input channelα might be considered to be secret, unless they satisfy the
declassifiable expressionα mod 2, meaning that the parity of these values can be declas-
sified, i.e. assume a lower security level.

The theoretical framework defines a mechanism to determine every possible expres-
sion on inputs that a program can possibly reveal. Also, expressions which are described
by a declassification policy are recognized and identified. Variables that hold only such
expressions are then marked as “safe” variables. To simplify the discussion, we consider
that every input channel in the program has a high security level (i.e., is a private channel),
whereas every output channel has a low one (i.e., is a public channel). Thus, all flows of
information must be authorized by a declassification policy.

In the following sections we first present some motivating examples for the framework
(2.1), then we introduce the considered language syntax and semantics in Section2.2.
After that, in Section2.3we present the core definitions of the framework, stating program
validity according to a policy. We then proceed to introducethe security property we wish
to enforce, called Policy Controlled Release (PCR), in Section2.4. Finally, in Section2.5,
we demonstrate the soundness of the framework, i.e. that a program deemed secure by it
satisfies PCR.

The contents of this chapter are presented in papers [RBdH+10, RBdH+11].

2.1 Motivating Examples

In this section we illustrate by means of three examples the mechanism of our frame-
work. The first example refers to one of the classical situations requiring declassification:
authentication and password matching. The basic security requirement is that user in-
formation should not flow to the output channel, with one exception (captured by the
declassification policy): boolean queries on the user’s record may be declassified. Now,
in order to authenticate the user, 3 methods are possible. Ifthe user’s record is “complete”
and the user has a given credential, a function namedvalidatecan check this credential.
This is the preferred method for authentication. If, however, the user does not have the
required credential, but his record is complete, then the same validate function can be
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applied over the user’s last name, validating the user’s name against a list. Finally, if the
user’s record is not complete, then the system prompts for a password, from another input
channel, and uses the functionverify to check it along with the user login name. In the
end, the result of the authentication is sent to the output channel. We use this elaborate
mechanism to outline different flows of execution that a program can take. The exam-
ple program is given below. The language it uses is a standardimperative programming
language, with no special security constructs, which will be used throughout this thesis.
The inputs and outputs to the program are specified using input and output channels and
represented with Greek letters, as further explained in Section 2.2. Channelα returns the
record with the user information, channelβ is used to retrieve a password from the user, if
necessary, and channelγ is the output channel to where authorization information issent.

Example 2.1.Authentication program:

struct x := α;
string f ;
bool v;

if iscomplete(x) then
if hascred(x) then

f := credential(x);
else

f := lastname(x);
v := validate(f);

else
f := login(x);
string y := β;
v := verify(f, y);

γ := v;

Pre-processing and conversion to SSA.Our analysis works on code that has already
been pre-processed in the following way: (1) operators are translated into functions (e.g.,
a + b becomesadd(a, b)), (2) only one function is allowed per assignment, i.e., assign-
ments of complex expressions are broken into several assignments, (3) conditions on
control-flow commands (if andwhile) refer to a single boolean variable.

We also convert a program into the Static Single Assignment (SSA) format using stan-
dard methods [CFR+91]. SSA is a known intermediate representation form for programs,
in which every variable is assigned exactly once. Variablesbeing assigned more than
once are renamed (with a different name for each assignment:typically the original name
with a subscript). For variables that are modified in the bodyof branching statements
(e.g. conditionals and loops), the translation algorithm generates a new variable name at
the join points (at the end of the conditional or the loop). Moreover, a new functionφ
is introduced, which takes as input the variable values fromall the branches, and outputs
the value from the branch that was taken. During the translation, we additionally anno-
tate theφ function with the conditional variable of the branch to which theφ function is
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associated. The technique for computing SSA form of a program has been proved to be
tractable. For more information on it refer to [CFR+91, BP03].

Example 2.2.Authentication program in SSA format:

struct x1 := α;
bool c1 := iscomplete(x1);
string f0;
bool v0;

depends(β, c1);
if c1 then

c2 := hascred(x1);
if c2 then

f1 := credential(x1);
else

f2 := lastname(x1);
f3 := φc2(f1, f2);
v1 := validate(f3);

else
f4 := login(x1);
string y1 := β;
v2 := verify(f4, y1);

v3 := φc1(v1, v2);
f5 := φc1(f3, f4);
γ := v3;

Note that the conditions are syntactically associated withtheφ-functions. Also, the
depends command is generated during the pre-processing and serves the purpose of mak-
ing the control dependence between channelβ and variablec1 explicit, since the input
occurs inside the conditional. This will be further explained in the next section.

As mentioned, the declassification policy allows the release of boolean queries over
the user’s records. This policy is represented by a setD of declassifiable expressions,
containing expressions on inputs that are allowed to be madepublic. For this example, we
haveD = {hascred(α), iscomplete(α), validate(credential(α)), validate(lastname(α)),
verify(login(α), β)}. All the notation used in the example will be made precise later on
this chapter.

Policy Matching.Now that we have both the program and the policy, we can check if
the program issafe. In our program the (low) outputγ is assigned the value of variable
v3, so what we now have to check is whether every expression possibly held by v3 is
public, i.e. it is either in setD or a function over one or more expressions inD (note that
we don’t consider a declassifiable expression to be invertible—this is discussed further
ahead). This analysis needs to consider both data and control dependencies of variables.
Note thatv3 can assume either the value ofv1 or v2. In turn, v2 holds the expression
verify(login(α), β) andv1 holdsvalidate(f3), wheref3 can hold eithercredential(α) or
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lastname(α). Thus, the union of all these expressions form the set ofdata dependencies
of variablev3. In other words, it is the set of every possible expression that variablev3 can
hold. Also, the choice of which of these expressions will be held by v3 depends on the
branches taken by bothif commands, which in turn depend on the values of variables
c1 and c2. Thus, the expressions possibly held by these variables (iscomplete(α) and
hascred(α), respectively) form the set ofcontrol dependenciesof v3. That is, these are
expressions whose values might be revealed by observing thevalue ofv3. For v3 to be
marked assafe, all expressions within both its data and control dependencies must be
public. However, it is clear that each of the aforementionedexpressions is in fact an
element ofD. Thus, we say that variablev3 is safe, and its value can be output to channel
γ. Since this is the only output operation in the code, the program is deemed valid.

Statistic Calculation.We now provide a second example, that involves a policy which
allows the declassification of expressions in a given recursive pattern, represented in the
code by a looping structure. This example is inspired by another classical need for de-
classification: statistical calculations on secure data (where high data should not be re-
leased but statistics on it may be declassified). The program, given below (already pre-
processed), calculates the average of the entries in a givendata structure. Channelα
returns the next element of a sequence of salaries of an organization. The code below
fetches all the salaries from the structure, calculates their average, and then sends the
result to output channelγ.

Example 2.3.Average calculation program in SSA format:

int a1 := 0;
int i1 := 0;
int l1 := length(α);
bool c1 := leq(i1, l1);

while (c3 := φc3(c1, c2);
a3 := φc3(a1, a2);
i3 := φc3(i1, i2);
c3) do

int t1 := α;
a2 := add(a3, t1);
i2 := add(i3, 1);
c2 := leq(i2, l1);

a4 := div(a3, l1);
γ := a4;

Note that theφ-functions are placed along with the loop condition and the program
semantics would require that theφ assignment be executed even if the loop is not taken,
but also once after each iteration [BM94]. With this, theφ functions in thewhile header
work as the following: in the first iteration variablei3 is assigned the value ofi1, since
at this pointi2 has not yet been defined. On subsequent iterationsi3 is then assigned the
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value ofi2, which is then the most recently defined of the arguments of the φ function.
The same reasoning applies to variablesa andc.

We first have to determine every expression on inputs that canbe output by this pro-
gram. Since variablea4 is the one sent to output, it is the one that needs to be checked.
Here, we useE(a4) to denote every possible expression held by variablea4, in ev-
ery possible execution of this program. By observing the program code, we have that
E(a4) = {0, α1,

α1+α2

2
, α1+α2+α3

3
, . . .}, whereαi represents the value obtained from the

i-th access on input channelα. Also, we know thata4 has a control dependency with the
loop conditional. BeingPC(a4) the set of expressions which variablea4 has control de-
pendencies with, in every possible execution, we have from the code thatPC(a4) = {0 ≤
length(α), 1 ≤ length(α), . . .}. Note that these are all the boolean expressions that might
be checked on the loop conditional. With this, the frameworkdeems the program secure
if all of these expressions are authorized by a declassification policy. Here, the set of
declassifiable expressions is defined as:D = {length(α), α1, α1+α2, α1+α2+α3, . . .}.
Thus, this policy allows the declassification oflength(α) plus any sum of distinct values
from α (note that there are no bounds for the minimum number of values in the sum, this
is discussed further in the rest of this thesis). Now, for theprogram to be validated, every
member of bothE(a4) andPC(a4) must be a public expression. We can see that every
member ofE(a4) (e.g., α1+α2

2
) is a fraction of two public expressions: an element ofD

(α1+α2) and a constant value (2). Conversely, every member ofPC(a4) is a comparison
between a numerical constant andlength(α), which is inD. Thus, the framework deems
the program secure.

Encryption.We now present another example, showing the use of a policy that allows
release of an expression overany input channel. It is another of the classical examples
of declassification, this time in presence of encryption: wehave data that is sensitive if
unencrypted, but its encrypted version can be declassified.The code below is already
pre-processed: the input channelα provides a sensitive plain text file,β represents a
cryptographic key. Output channelγ represents a low output.

Example 2.4.Encryption program:

text x1 := α;
int k1 := β;
x2 := enc(x1, k1);
γ := x2;

The unique aspect of this example is that here we want a policythat allows the encryp-
tion of any input value to be declassifiable. Thus we have thatD = {enc(i, β) | i ∈ In},
whereIn is the domain of all input channels. Thus, expressionenc(α, β) held by vari-
ablex2 is public, and can be declassified. Note that this classic example of the need for
declassification is handled trivially by our theoretical framework.

As mentioned in our first example, we don’t consider a declassification to be invert-
ible. For this example, one may think that, afterx2 has been marked as safe, a decryption
function could be used to retrieve the originalα value and assign it to a newx3 variable.
However, since the decryption function would need the decryption key, the inheritance
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from x2 would not be sufficient forx3 to be marked as safe. A dependence from inputβ
to the decryption function would also need to be validated and this validation would not
happen, as there is no policy that allows it, therefore making x3 insecure.

2.2 Language: Syntax and Semantics

In this section we introduce the syntax and semantics of our language.Var is a set of
variables,x, y, z, a, b, c, range overVar and may have subscripts;c is usually a boolean
variable. AdditionalIO variables (IO = In ∪Out) represent input/output channels. Note
that Var and IO are disjoint sets. We useα, β to denote input channels,γ, δ to denote
output channels, andθ to range over all ofIO . We additionally useρ to range over
Var ∪ IO . Input channels are regarded as streams of values and are indexed to indicate
specific input values; e.g.,αn denotes then-th input value of input channelα.

Functions are defined the usual way. Constants are functions of arity 0, and we use
N to denote them. Expressions are obtained by combining functions, variables (alsoIO )
and constants in the usual way.

We use a simple imperative language with assignment, conditionals and loops, al-
ready translated to SSA form. To simplify the presentation,we assume that all operators
are applied using prefix notation (e.g., writingadd(a, b) instead ofa + b), with at most
one function per assignment (no nesting); also, expressions on conditionals refer to a sin-
gle boolean variable. Any program can be translated to this format in a straightforward
manner. Regarding the SSA translation,φ-functions always have the formx := φc(a, b),
wherec is the conditional variable that generated thatφ-function. Inwhile expressions,
C represents theφ-functions added by the SSA translation, which are evaluated once if
the loop is not taken, and at every iteration otherwise.

Definition 2.1 (Program). A programC ∈ Prog is defined by the following syntax:

C ::= skip | x := α | γ := x | x := f(y1, . . . , yk) | x := φc(a, b) | C1 ; C2

| depends(θ, c) | if c then C1 else C2 | while C ; c do C

The commanddepends(θ, c) is a special command that helps our non-standard se-
mantics keep track of control dependence on I/O channels. Itis added to the program
during pre-processing:depends(θ, c) is inserted every time an input or output operation
occurs inside a conditional, and relates the channel with the conditional under which it
occurs. The command is added just before the conditional block in which the operation
takes place.

We say thatC is acompositional statementif C is of the formC1;C2, otherwiseC is
non-compositional. Note that any program can be written in the formC1; . . . ;Cn (n ≥ 1)
with Ci non-compositional statements. Here we call the first non-compositional statement
C1 the active command ofC, denotedhead(C).

Next, we define the program semantics, starting from the notion of state. Note that we
present an instrumented semantics, in the sense that the state of the process keeps track of
certain information useful for proving the compliance of our validation mechanism.
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Definition 2.2 (State). A stateσ ∈ Σ is a 4-tuple〈E , I ,O ,PC 〉, where:

E ∈ E = Var → Exp〈In × N〉
I ∈ I = In → N

O ∈ O = Out → ℘(Exp〈In × N〉)
PC ∈ PC = (Var ∪ IO)→ ℘(Exp〈In × N〉)

E is a mapping from variables to expressions on indexed input channels, keeping
track of the expression over the input that a variable holds.I is a mapping from input
channels to numeric indexes, keeping track of the index of the next value to be read (so
I (α) denotes index of the next value to be read from channelα); initially, I (α) = 1
for every input channelα. O maps each output channel to the set of expressions (on
indexed inputs) that could be sent over that channel. Finally, PC maps variables and
channels (both input and output) to sets of expressions on indexed inputs, which record
the implicit information flows, i.e. the expressions on which the variables and channels
are conditionally dependent. Given a stateσ, we writeEσ to indicate its first component,
Iσ for the second, etc. We omitσ if it is clear from the context, thus e.g.E (x) denotes the
expression held byx in the “current” state.

Next, we defineenvironmentswhich provide the input to the program through the
channels. We have a straightforward channel model where thechannels are independent
of each other. In Chapter6 we discuss how to extend this to more elaborate channel
models.

Definition 2.3 (Environment). An environmentπ ∈ Π is a mappingIn × N → Val from
input channels and indexes to values. Valueπ(α, i) represents the value returned from the
i-th access on input channelα.

Finally, we define a configuration over which the semantics are defined.

Definition 2.4 (Configuration). A configurationω ∈ Ω is a triple 〈C, σ, π〉, whereC is a
program,σ a state andπ an environment.

Note that the environment determines the inputs that have been or will be provided to
the program and (due to our channel model) does not change during the execution of the
program. The operational semantics is presented in Figure2.1. The transitions between
configurations have a label (∈ Obs) representing what can be observed externally when
that transition occurs; aτ label represents a non-observable transition. In our case,the
only observable action is the output, showing the channel and the value being sent over
the channel. I.e.o ∈ Obs is τ or out(γ, v) for some output channelγ and valuev.

We writef [x
⊙
←− n] for a variant off where the value assigned tox is f(x)⊙ n. Here

⊙ can be any operator of the right type. For instance, considera functionf and a variable
x such thatf(x) = 1. If f ′ = f [x

+
←− 2], then we have thatf ′(x) = f(x) + 2 = 3,

and f ′(y) = f(y) for every y 6= x. We omit the operator if it is projection on the
second argument, i.e.f [x ←− n](x) = n. For changes in the state, we only indicate the
components for whichσ′ differs from σ. Our semantics treatsφ-functions in a special
way. Unlike the standard functions,φ-functions are evaluated as soon as they appear.
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〈x := α, σ, π〉
τ
−→ 〈skip, σ′, π〉 (Input)

where Eσ′ = Eσ[x←− αIσ(α)]

Iσ′ = Iσ[α
+
←− 1]

PC σ′ = PC σ[x←− PC σ(α)]

〈γ := x, σ, π〉
o
−→ 〈skip, σ′, π〉 (Output)

where o = out(γ, V (Eσ(x), π))

Oσ′ = Oσ[γ
∪

←− Eσ(x)]

PC σ′ = PC σ[γ
∪

←− PC σ(x)]

〈x := f(y1, . . . , yk), σ, π〉
τ
−→ 〈skip, σ′, π〉 (Assign)

where Eσ′ = Eσ[x←− f(Eσ(y1), . . . ,Eσ(yk))]
PC σ′ = PC σ[x←− PC σ(y1) ∪ . . . ∪ PC σ(yk)]

〈x := φc(a, b), σ, π〉
τ
−→ 〈skip, σ′, π〉 (Phi)

where Eσ′ = Eσ[x←− EV (φc(a, b), σ)]
PC σ′ = PC σ[x←− Eσ(c) ∪ PC σ(c) ∪ PC σ(a) ∪ PC σ(b)]

〈depends(θ, c), σ, π〉
τ
−→ 〈skip, σ′, π〉 (Depends)

where PC σ′ = PC σ[θ
∪

←− Eσ(c) ∪ PC σ(c)]

〈if c then C1 else C2, σ, π〉
τ
−→ 〈C1, σ, π〉 if V (E (c), π) = true (If 1)
τ
−→ 〈C2, σ, π〉 if V (E (c), π) = false (If 2)

〈while C ; c do C, σ, π〉
τ
−→ 〈C, σ, π〉 if V (E (c), π) = false (While 1)
τ
−→ 〈C ; C ; while C ; c do C, σ, π〉

if V (E (c), π) = true (While 2)

〈skip ; C, σ, π〉
τ
−→ 〈C, σ, π〉 (Skip)

〈C1, σ, π〉
o
−→ 〈C′

1, σ
′, π〉

〈C1 ; C2, σ, π〉
o
−→ 〈C′

1 ; C2, σ
′, π〉

(Seq)

EV : Exp<Var> × Σ→ Exp<In× N>

EV (φc(a, b), σ) =

{

E (a) if a has been most recently defined;
E (b) if b has been most recently defined.

V : Exp<In× N> × Π→ Val

V (e, π) =

{

π(α, n) if e = αn;
f(V (e1, π), . . . , V (en, π)) if e = f(e1, . . . , en).

Figure 2.1: Program semantics

FunctionEV makes this evaluation. According to standard definition of theφ-functions
in SSA form, the function returns the variable that has been defined most recently based
on the branch taken. Whilef is a syntactic object, the boldfacef used in functionV
indicates the semantic function that is actually evaluatedto a value.

The semantics are standard small-step semantics, instrumented to work with the ex-
pression tracking components of the program state. This way, variables hold expressions
on inputs rather than values, and these expressions are evaluated to their actual values
only when needed. This is done by functionV , which uses the environment to evaluate
inputs to their values.

• Rule Input updates the expression held by a variablex (i.e. E (x)) to αi, α being
the accessed input channel andi its current access sequence number (i.e.I (α)).
Thus,αi represents thei-th value fromα. The current sequence number for the



2. Expression-Matching Framework 27

input channel is also incremented andx inherits the set of conditional expressions
related toα (i.e. PC (α) is assigned toPC (x)).

• RuleOutputis the only that produces an observable transition:out(γ, V (Eσ(x), π))
represents an observable output to channelγ with the value evaluated from the
expression currently held by variablex. This expression is also added to the set
of expressions output by channelγ (i.e. O(γ)). Finally, the set of conditional
expressions onx is included on the set of conditional expressions onγ: the set
PC (x) is included inPC (γ).

• Rule Assignupdates the expression held byx to the expression on the right-hand
side of the assignment, translating any variables (yk) to the corresponding expres-
sions held by them (E (yk)). Additionally, the set of conditional expressions onx is
updated with the union of such sets relative to all variablesin the right-hand side.

• RulePhi handles assignments withφ functions. The expression held byx is updated
with the expression held by eithera or b, depending on which of them has been
most recently defined. This logic is defined by functionEV . The set of conditional
expressions onx is updated with the union of the expression held byc and the sets
of conditional expressions of all variables on the right-hand side:c, a andb. E (c) is
added becausec is the conditional variable of theif orwhile command related to
the currentφ assignment. Also, bothPC (a) andPC (b) are included since in loops
botha andb are eventually assigned tox. In non executed loops andif commands
only one ofa or b is assigned tox, but the other is never defined, so itsPC is empty
anyway.

• RuleDependshandles the specialdepends command. As the purpose of the com-
mand is to state the dependency of an I/O channel to a conditional variable, both
the expression held byc and its related set of conditional expressions are included
in the set of conditional expressions of I/O channelθ.

• RulesIf andWhilehandle their homonymous commands in a standard way: eval-
uating the boolean expression on the conditional variable and executing the branch
corresponding to its value. These rules don’t need to deal with dependencies cre-
ated by theif andwhile structures, since this is done by theφ and depends

commands related to them.

• Finally, rulesSkipandSeqtrivially handle theskip command and a sequence of
commands, respectively.

The initial stateσinit is the state in which no channels have been read yet (I (α) = 1),
all variables are undefined (E (x) =⊥) and no output has been written to any channel
(O(γ) = ∅). A run of programC in environmentπ is a sequence of configurations,
starting from the initial configuration and linked by transitions, i.e.,t ∈ (Obs× Ω)∞ in
which for t = 〈o0, ω0〉.〈o1, ω1〉 . . . 〈on, ωn〉, o0 = τ , ω0 = 〈C, σinit , π〉, and for eachi,
such that0 ≤ i < n, ωi

oi+1

−−→ ωi+1 is a transition given by the semantics (Figure2.1).
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We say the run is afull run if no steps are possible from end stateωn otherwise the run
is called aprerun. We writeo(t) for the sequence of (visible) output actionso0.o1.o2 . . .
taken int and t ≡out t

′ if o(t) = o(t′). Similarly, we writeω(t) for the sequence of
configurationsω0.ω1.ω2 . . . taken int. Fori ∈ N, ti = 〈oi, ωi〉, o(ti) = oi, andω(ti) = ωi.
For sets of tracesT, T ′ we writeT ≡out T

′ if ∀t ∈ T : ∃t′ ∈ T ′ : t ≡out t
′ and vice versa.

Finally, we also writeRun(C, π) for all the runs ofC in environmentπ (note that for each
prerun int there is exactly one runt′ which extendst with one step).

2.3 Program Validity

In this section we define program validity with regards to a set of declassifiable expres-
sions. The definitions presented here form ourframeworkfor analysis of programs by
matching the possible expressions held by variables with expressions allowed to be de-
classified. Note that these definitions include intractablecomputations. In the next chapter
we present our specificimplementationof the framework, which safely approximates it,
providing a tractable analysis mechanism.

First, we assume that we are given a set of expressions that are declassifiable. These
are expressions over indexed inputs which are allowed to be declassified.

Definition 2.5 (Declassifiable Expressions). Declassifiable expressions are the set of ex-
pressions,D ⊆ Exp〈In ×N〉, that are specified or defined to be declassifiable. These are
expressions on the indexed input channels and constants.

In the rest of this thesis we refer to the fixed yet unspecified set of declassifiable
expressionsD. Given these expressions, we would like to inductively define the set of
public expressions, i.e., expressions whose values are safe to be output.

Definition 2.6 (Public Expressions). LetD be a set of declassifiable expressions, we say
that the expressione is public according toD if the following relation holds:
public(e,D) ≡ (e ∈ D) ∨ (e = f(e1, . . . , en) ∧ public(e1, D) ∧ . . . ∧ public(en, D))

With the format of the declassifiable expressions defined, wenow need definitions
regarding program validity. First, we define every possiblestate a programC can reach:
states(C) = {σ | 〈C ′, σ, π′〉 ∈ ω(t), t ∈ Run(C, π), π ∈ Π}. In other words,states(C)
represents every state thatC can achieve for every possible execution of it in every possi-
ble environment.

We are now going to define “safety” of variables and I/O channels of a given program
C, according to a set of declassifiable expressionsD.

Definition 2.7 (Variable Validity). Let C be a program,ρ be a variable or I/O channel
used inC andD be a set of declassifiable expressions. Aboutρ, we say that:

1. ρ is data dependency safe (DDS) if every expression possibly held by it is public
(declassifiable).

dds(ρ, C,D) ≡ ∀σ ∈ states(C) :







public(Eσ(ρ), D) if ρ ∈ Var
∀e ∈ Oσ(ρ) : public(e,D) if ρ ∈ Out
public(ρ,D) if ρ ∈ In
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2. ρ is control dependency safe (CDS) if every expression that itsvalue might depend
on is allowed to be declassified.

cds(ρ, C,D) ≡ ∀σ ∈ states(C), e ∈ PC σ(ρ) : public(e,D)

3. ρ is a safe variable (or I/O channel) if it is both DDS and CDS.

safe(ρ, C,D) ≡ dds(ρ, C,D) ∧ cds(ρ, C,D)

Note thatdds returns false for everyρ which is an input channel, unless there is a declas-
sifiable expression that states that the whole channel can bemade public.

Proposition 2.8. Letx be a variable in programC and part of an assignment of the form
x := e, with e of the formα, f(y1, . . . , yk) or φc(a, b), andD be a set of declassifiable
expressions. We have that ifcds(x, C,D) then∀ρ ∈ e : cds(ρ, C,D). In other words, ifx
is CDS with respect toD, then every variable or I/O channel ine is also CDS.

Finally, we can define program validity with respect to a set of declassifiable expres-
sions.

Definition 2.9 (Program Validity). We say that a terminating programC is valid with
respect to a set of declassifiable expressionsD if every output channelγ accessed inC is
safe. That is:

valid(C,D) ≡ ∀γ ∈ Out : safe(γ, C,D)

We illustrate the concepts presented here by referring to Example2.3. From the ex-
ample, we recall thatD = {length(α), α1, α1 + α2, α1 + α2 + α3, . . .}. Also, for every
possible stateσ that the program can reach, the expressions inOσ(γ) can be any from the
set{0, α1,

α1+α2

2
, α1+α2+α3

3
, . . .}. With this, by Definitions2.6and2.7and by the content

of D we can see thatpublic(e,D) holds for everye ∈ Oσ(γ) and for everyσ the program
can reach, and thusdds(γ, C,D) holds. Also, we know thatPCσ(γ) can contain the ex-
pressions{0 ≤ length(α), 1 ≤ length(α), . . .}. Thus, from the same definitions andD
we have thatpublic(e,D) holds also for everye ∈ PCσ(γ) and thuscds(γ, C,D) holds.
Consequently,safe(γ, C,D) holds, and sinceγ is the only output channel in the example,
we also havevalid(C,D).

With Definition 2.9 we conclude the presentation of our expression-matching frame-
work. Further in this thesis we demonstrate that the framework implies the property called
Policy Controlled Release. The property is presented in the following section (2.4) and
we show that the framework implies it in Section2.5. In Chapter3 we present a com-
putable implementation of the framework presented so far, realized through the use of
graphs. Refer to Figure1.2for a roadmap of the structure of the thesis.
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2.4 Policy Controlled Release

In this section we define our reference security property calledPolicy Controlled Release.
It is an “end-to-end” property in the sense that it bounds theknowledge that an attacker
can gain by observing information released on output channels during any collection of
runs. Our property closely follows the Conditional Gradual Release (CGR) given by
Banerjee et al. [BNR08], though our variant differs from the original definition inseveral
important respects, being simpler and independent of characteristics of the program’s ex-
ecution. CGR itself is a variant of the Gradual Release [AS07a] property. To simplify the
discussion, we assume that information obtained from all the input channels is confiden-
tial and can be modified only by the target machine (on which the program runs). Reading
from an input channel is not visible to an outsider. On the other hand, any information
placed on the output channels is regarded as public. Releasing information from the secret
input channels to the public output channels is permitted only according to declassifica-
tion policies. Recall that we have also assumed that the inputchannels are non-interactive
in the sense that reading data from one input channel, has no effect on the values obtained
from other input channels. We discuss the relaxation of these assumptions in Chapter6.
The security property is defined in terms of the program only.

Two environments are said to beD-Equivalent if the values of the declassifiable ex-
pressions are the same in both the environments. Evaluatingthe expressions in theD set
(seeV in Section2.2, Figure2.1) gives the actual values that can be declassified.

Definition 2.10 (D-Equivalent Environments (≈D)). Given a set of declassifiable ex-
pressionsD, two environmentsπ1 and π2 are said to beD-equivalent, π1 ≈D π2, if
∀e ∈ D : V (e, π1) = V (e, π2).

Note that the fact that the expressions have the same values does not necessarily mean
that the input values are the same in both environments. For example, the boolean ex-
pressionα1 > 0 will have the same value for all the environments in which thefirst value
obtained from channelα is larger than zero.

Lemma 2.11.LetD be a set of declassifiable expressions,π1 andπ2 be two environments
such thatπ1 ≈D π2, and e be an expression inExp〈In × N〉. If public(e,D), then
V (e, π1) = V (e, π2).

By observing the value of declassifiable expressions, one canlearn something about
the actual environment. In particular one learns that it must belong to a given class of
D-equivalent environments. The expressions inD are correctly enforced if no further
information can be learned.

Definition 2.12 (Revealed Knowledge (R)). Given a set of declassifiable expressionsD
and an environmentπ we define the knowledge ofπ revealed byD as:

R(π,D) = {π′ | π ≈D π′}
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Note that the smaller the setR(π,D) is, the more information aboutπ is revealed.
The revealed knowledge represents a bound on the amount of information that may be
revealed by a program that complies with setD. The next step is to define the amount of
information a program reveals.

The behaviour of a program that an observer can see is the sequence of outputs it
generates. Thus an observer cannot distinguish two environments if their runs produce
the same sequence of visible output actions.

Definition 2.13 (Observed Knowledge (K)). Given a programC and an environmentπ,
we define the knowledge ofπ that can be observed inC as:

K(π, C) = {π′ | Run(C, π) ≡out Run(C, π
′)}

Our security property, Policy Controlled Release (PCR), statesthat the knowledge
obtained from observing the program is bounded by the information released by the de-
classification policies.

Definition 2.14 (Policy Controlled Release (PCR)). We say that a programC satisfies
policy controlled release for the set of declassifiable expressionsD if for all environments
π : K(π, C) ⊇ R(π,D).

To illustrate the concept with an example, consider a setD with only the previously
mentioned boolean expression, i.e.D = {α1 > 0}. Also, consider environmentsπ and
π′, in whichπ(α, 1) = 1 andπ′(α, 1) = 5. Thus,π′ ∈ R(π,D) and vice-versa, since in
both environments the expression inD has the same value. Now consider a programC,
to be executed in bothπ andπ′. ForC to satisfy the PCR property, it has to produce the
same outputs for the both environments. This means that, if the value of the declassifiable
expression does not change, no new information is revealed by C. However, if the output
sequence changes fromπ to π′, that means thatC is revealing somethingmorethan what
is specified byD.

2.5 Soundness of the Framework

Let us anticipate the result we aim at, which states that if a program is secure according
to our analysis, then the program satisfies the PCR property. The proof of this Theorem
is given at the end of this section.

Theorem 2.15.For any terminating programC and a set of declassifiable expressions
D, if valid(C,D) then the programC satisfies PCR with respect toD.

The proof of the Theorem relies on determining a linking between correspondent runs
of a same program, the existence of which is stated by Lemma2.19. First we need to de-
fine the properties of this linking and the intuition behind how the linking works and why
it must exist. The linking is inspired by the proof of soundness in Banerjee et al. [BNR08].
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However, our proof is simpler because we do not need to consider the exact path taken
by the program to reach a particular state – ourD-equivalence property together with our
flow-sensitive approach to check validity ensures that all runs leading to the same output
actions take the same branches. Additionally, the proof is termination-insensitive. This
means that for the proofs to go through, we assume that the loops, in which the conditional
expression is non-declassifiable, terminate.

The core idea behind the linking is that a program can be in oneof two distinct
confidentiality levels: a levelL (low, public) in which it may output data or a levelH
(high, secret) where it may behave differently depending onnon-declassifiable infor-
mation. For ease of notation we assume, without loss of expressiveness, that in a pro-
gram any statement other thanskip can only occur once. This allows us to assign a
unique type, denotedΓC(C

′), to each statementC ′ of programC, so we have a mapping:
Γ·(·) : Prog × Prog → {H,L}. When the program is clear from the context we omit
it and simply talk about the typeΓ(C ′) of statementC ′. Given a set of declassifiable
expressionsD, a programC in the formC = C1 ; C2, we type all non-compositional
statementsC ′ contained inC as follows:

ΓC1 ; C2
(C ′) =

{

ΓC1
(C ′) if C ′ ∈ C1

ΓC2
(C ′) if C ′ ∈ C2

And then, for a non-compositionalCi, we defineΓCi
(C ′) as:

Ci C ′ condition ΓCi
(C ′)

if c then C1 else C2 any ¬safe(c, C,D) H
if c then C1 else C2 = Ci safe(c, C,D) L
if c then C1 else C2 6= Ci safe(c, C,D) ΓC1 ; C2

(C ′)
while C ; c do Cw any ¬safe(c, C,D) H
while C ; c do Cw = Ci safe(c, C,D) L
while C ; c do Cw 6= Ci safe(c, C,D) ΓC ; Cw

(C ′)
otherwise skip - H
otherwise 6= skip - L

In the table above, the rightmost column represents the value of ΓCi
(C ′) when all

the conditions on the columns to its left are met. For example, the first row of the table
reads: whenCi = if c then C1 else C2, C ′ is any statement and the condition
¬safe(c, C,D) holds, thenΓCi

(C ′) = H. The intuition behind the typing is as follows:

1. Everyskip command is typedH. 1

2. If C ′ is a conditional statement (if or while) whose conditionc is not marked as
declassifiable, i.e.¬safe(c, C,D) thenΓ(C ′) = H and also all statements nested
insideC ′, directly or indirectly, are typedH.

1Although it is intuitive to typeskip asL, we type itH for convenience, as doing so helps us to
simplify the notion oflow continuation, explained further ahead.
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3. If C ′ is a conditional statement whose condition is declassifiable, thenΓ(C ′) = L
(unless nested within a statement of the previous case) and we repeat the procedure
for the statement(s) in the body in the same way.

4. Each non-compositional statement not typedH according to the above rules is
typedL.

The type of a compositional statementC ′ is the type of its active commandhead(C ′).
In the L level the program will behave ‘the same’ in twoD-equivalent environments.
The next definitions capture this notion of ‘the same’. We first consider the states that a
program could reach.

Definition 2.16(Compatible States (≍)). LetC be a program andD be a set of declassi-
fiable expressions. We say that two statesσ1 andσ2 are compatible forC andD, denoted
σ1 ≍(C,D) σ2, if the following conditions hold:

1. ∀α ∈ In : if cds(α,C,D) then(Iσ1
(α) = Iσ2

(α) andPC σ1
(α) = PC σ2

(α)).

2. ∀x ∈ Var : if cds(x, C,D) then(Eσ1
(x) = Eσ2

(x) andPC σ1
(x) = PC σ2

(x)).

Intuitively, this definition reflects the fact that if the control dependencies of a variable
or channel are declassifiable then they cannot be altered/read from by the program in a
H level and asL behaviour has to be the same, they cannot distinguish between two
D-equivalent environments.

Lemma 2.17.The relation≍(C,D) is transitive.

We define thelow continuation ofC = C1; . . . ;Cn, denotedL-cont(C) as the state-
mentCi; . . . ;Cn wherei is the first index for whichCi is not typed high. Notice that if
Γ(C1) = L, thenL-cont(C) = C. Now we define a correspondence relation over two
runs of a program.

Definition 2.18(Correspondence between two runs (Q)). LetC be a program,π andπ′ be
environments, andD be a set of declassifiable expressions. Lett be a prerun ofRun(C, π)
andt′ be a prerun ofRun(C, π′) with‖t‖ = n and‖t′‖ = m. A correspondence betweent
andt′ is a relationQ ⊆ {0, 1, . . . , n}×{0, 1, . . . ,m} satisfying the following conditions:

1. (zero-element)0 Q 0

2. (completeness)∀i ∈ {1, . . . , n} : ∃j ∈ {1, . . . ,m} : i Q j and vice versa

3. (trace-equivalence) For alli, j, with ti = 〈oi, 〈Ci, σi, π〉〉 andt′j = 〈o
′
j, 〈C

′
j, σ

′
j , π

′〉〉,
such thati Q j, the following conditions hold:

(a) (output-equivalence)o(t1) . . . o(ti) = o(t′1) . . . o(t
′
j)

(b) (state-compatibility)σi ≍(C,D) σ
′
j

(c) (level-agreement)Γ(Ci) = Γ(C ′
j)
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(d) (code-agreement) L-cont(Ci) = L-cont(C ′
j)

We say two runs correspond if there exists a correspondence relation between them.

From the requirement ‘output-equivalence’, it is clear that two corresponding runs
produce the same output. The other requirements allow us to inductively build the corre-
spondence relationQ between runs of a program inD-equivalent environments. We can
now state the key Lemma in proving Theorem2.15.

Lemma 2.19.LetC be a program andD be a set of declassifiable expressions, satisfying
valid(C,D). Letπ andπ′ be two environments satisfyingπ ≈D π′, such thatC terminates
under bothπ andπ′. Letω0 = 〈C, σinit , π〉 andω′

0 = 〈C, σinit , π
′〉. For each prerunS

starting fromω0 there exists a prerunS ′ starting fromω′
0 such thatS corresponds toS ′.

Proof of the Lemma can be found in the Appendix and with this wenow prove Theo-
rem2.15.

Proof of Theorem2.15. Lemma2.19implies that the executions of aD-valid program in
two D-equivalent environments can be linked in a way that guarantees they will result
in the same runs. This implies that for all environmentsπ, π′ if π′ ∈ R(π,D) then also
π′ ∈ K(π, C).



CHAPTER 3

Graph-Based Implementation

In this chapter we present our graph-based implementation of the expression-matching
framework, which we refer to asgraph-based PCR. The implementation uses a form of
graphs to represent expressions that can be held by variables. The graphs work as fi-
nite structures able to represent possibly infinite sets of expressions. This graph-based
approach presents a computable mechanism to validate a program according to the PCR
property. The implementation is, however, asafe approximationof the framework: if a
program is deemed safe by the implementation, it is guaranteed to be safe by the frame-
work as well, but the opposite is not true. In other words, thegraph-based approach is
guaranteed to never validate an unsafe program, but it can, under some circumstances,
reject a safe program. The precision of the approximation isdiscussed in more detail in
Chapters5 and6.

In the following section (3.1) we revisit the examples of Section2.1, showing how the
graph-based PCR handles them. Then we introduce ourexpression graphsin Section3.2,
both for the program and policy, and in Section3.3 we proceed to define how the policy
graph is matched against the program graph. The soundness ofthe implementation is then
shown in Section3.4, where we show that a program deemed safe by the graph-based
PCR is also safe according to the expression-matching framework. In Section3.5 we
present and analyze algorithms for this approach, in order to demonstrate its tractability.
Finally, in Section3.6 we extend both our toy language and the expression graphs in
order to support user-defined functions, showing that the approach is suitable for modular
programs, and thus paving the way for supporting extensionssuch as object-orientation.

The contents of this chapter are presented in papers [RBdH+10, RBdH+11].

3.1 Revisiting the Examples

In this section we revisit the examples of Section2.1, and show how graph-based PCR
handles them. First, let us recall the authentication program example, already pre-processed:

Example 3.1.Authentication program in SSA format:

struct x1 := α;
bool c1 := iscomplete(x1);
string f0;
bool v0;

35



36 3.1. Revisiting the Examples

depends(β, c1);
if c1 then

c2 := hascred(x1);
if c2 then

f1 := credential(x1);
else

f2 := lastname(x1);
f3 := φc2(f1, f2);
v1 := validate(f3);

else
f4 := login(x1);
string y1 := β;
v2 := verify(f4, y1);

v3 := φc1(v1, v2);
f5 := φc1(f3, f4);
γ := v3;

Expression Graph.An expression graph is an abstraction for representing the set of
expressions that may be assigned to one or more variables, taking into consideration the
input channels and the constants a program refers to. In an expression graph nodes repre-
sent variables, constants and I/O channels, whereas directed edges represent assignments.
The labels on the edges denote the functions used in the assignments, while the subscripts
indicate the indices of the arguments from the parent nodes.Edges ofφ-functions are
dashes as they are used to represent distinct paths that information can follow during an
execution, each path separately representing a set of expressions. Thecontrol edge
illustrates that there is a control dependency between two nodes, the parent being the
variable representing the control expression. Figure3.1 shows the expression graphg
associated with the variablev3 of our program. For clarity, a control edge betweenc1
andβ is omitted, sincec1 also causes a control dependency inv3, and it will be analyzed
anyway.

Figure 3.1: Expression graph for variablev3 of authentication program
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Policy Graph. Declassification policies are also represented using graphs. In fact, a
policy graph is similar to the expression graphs associatedwith program variables, except
for some key differences, including: (1) nodes can be labeled with “wildcards”, i.e., la-
bels in the form∗, (2) certain nodes in the policy are marked as “final nodes” (represented
by the double lined circle), representing expressions thatcan be declassified. A declas-
sification policy consists of a graph which might contain several disjoint components (to
allow multiple expressions to be released). The policy graph, d, for our authentication
program in Example3.1 is given in Figure3.2. We know that information from either
channelsα andβ cannot directly flow to the channelγ, the policy of Figure3.2 allows
such a flow under a few additional conditions. The following operations are allowed: two
boolean checks on the user’s recordα (if it has a credential and if is a complete record),
two validation operations over user’s information (validation through the credential or the
last name), and a verification of the user login against a supplied password from channel
β. The final nodes∗1, ∗2, ∗3, ∗5 and∗7 represent the expressions that can be declassified.
Note how this policy graph corresponds to the setD, discussed in Example2.2.

Figure 3.2: Policy graph for example of authentication program

Policy Matching.Now that we have both the program and the policy graph, we can
check if the program issafe. In our program the (low) outputγ is assigned the value of
variablev3, so what we now have to check is that the paths in the program graph indicating
the flow of information from a high input tov3 are safe, i.e., that they match at least one
component of the declassification policy. This analysis is done in two stages: first all data
dependencies of a node are checked, later in the second stagethe control dependencies are
checked. The node representingv3 in the graph has 3information paths(defined precisely
in the next sections, not the standard concept of a path in a graph) reaching it: (a) one that
comes from channelα passing through nodesx1, f1, f3 andv1, (b) another also coming
from α, but passing throughf2 instead off1, and the final one (c) coming from bothα
andβ, converging on nodev2. These paths represent the three possible outcomes of the
nestedif commands.

To determine that the nodev3 is safe we will first analyse its parents. First, node
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v2, has only information path (c) reaching it. This path matches the leftmost component
of our declassification policy in Figure3.2, and we say that nodev2 simulatesnode∗7,
meaning that all expressions possibly held byv2 are recognized by∗7. Or, in other words,
v2 ∼g,d ∗7. Because of this, this path tov2 is marked asdata dependency safe, and so is
the node, since this is the only path reaching it (note that the graphs are not exactly the
same, our definition of policy simulation handles this properly). Sincev2 has no additional
control dependencies (the dependency withc1 is processed in the analysis ofv3), we now
know it is asafenode.

With (node)v2 being safe, we now analysev1. This node has two information paths
(a) and (b) reaching it. We can see that, for each path,v1 simulates a final node of each
of the 3-node components of the policy (∗3 and∗5), on the bottom of Figure3.2. Thus,
both paths are data dependency safe, and so is the node itself. There is however a control
dependency that we have to consider, withc2 that reachesv1. But here nodec2 simulates
the final node of the topmost policy component (∗1), thus making it safe (it has no control
dependencies or other paths) and thus makingv1 control dependency safe. Therefore, we
now know thatv1 is a safe node.

We can now go back tov3. Since its two parent nodes are safe, we know thatv3 is
a data dependency safe node, since all the paths were covered. In order to demonstrate
it is also control dependency safe, we need to show that nodec1 is safe, this is done by
showing that the node simulates a final node of a policy graph (∗2). Thus,v3 is a safe
variable and the program’s expression graph is deemed valid.

Statistic Calculation.We now recall the second example, about the statistical calcula-
tion over data. Recall the average calculation program:

Example 3.2.Average calculation program in SSA format:

int a1 := 0;
int i1 := 0;
int l1 := length(α);
bool c1 := leq(i1, l1);

while (c3 := φc3(c1, c2);
a3 := φc3(a1, a2);
i3 := φc3(i1, i2);
c3) do

int t1 := α;
a2 := add(a3, t1);
i2 := add(i3, 1);
c2 := leq(i2, l1);

a4 := div(a3, l1);
γ := a4;

Let us see how our graph-based implementation deems this program secure, in a com-
putable way. To do so, it produces the expression graph associated to variablea4 (Fig-
ure3.3). For the sake of clarity, Figure3.3only includes data-dependencies ofa4. Since
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we also have to consider the control dependencies, and the only control dependency ofa4
goes throughc3, we represent the graph associated with nodec3 separately in Figure3.4.
The numeric annotations on the edges indicate looping contexts in which assignments are
performed. The assignments that happen within the loop haveits corresponding edges
marked with 1. The other edges are part of context 0 (not within a loop), and their an-
notations are omitted. These are needed for checking a relation called input uniqueness,
discussed further ahead.

Figure 3.3: Expression graph for variablea4

Figure 3.4: Expression graph for variablec3

The policy graph for the average example is given in Figure3.5. This policy allows
for the release of a sequence of additions over entries from inputα. The final node∗3
represents the sum expression.

The policy contains an additional constraint that states that no individualα-values
should reach∗3 more than once (every access toα must be unique). Assuming thatd is
the policy graph, we say that(α, ∗3) ∈ uni(d). This is called aninput uniqueness relation,
we discuss how to express this in Section3.2.

We also assume that there is an omitted component of the policy graph that specifies
that the expressionlength(α) can be declassified.

This example program is deemed valid by the policy. Nodea3 simulates node∗3
on the policy and theα-uniqueness constraint is satisfied through the use of the looping
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Figure 3.5: Declassification policy graph for average example

context annotations. Variablel1 holdslength(α), which is also authorized as previously
mentioned. This allows us to markc3 as safe, which in turn makesa3 control dependency
safe. Therefore,a4 is marked as safe. The mechanisms used in this process are detailed
in the next sections.

It is important to note that, since our approach works as a static analyzer, it is beyond
the focus of our representation mechanism (i.e. graphs) to represent the run-time be-
haviour of the program, including the number of times a givenloop runs. This problem,
however, can be treated by a combination of static analysis and runtime enforcement, as
it is done in Chapter4. Also, a discussion on how to tackle the problem only statically
can be found in Chapter5, Section5.2.

Encryption. Finally, we show how the graph-based implementation tackles the en-
cryption example:

Example 3.3.Encryption program:

text x1 := α;
int k1 := β;
x2 := enc(x1, k1);
γ := x2;

Here, we have a policy that allows the disclosure ofany input channel, as long as it is
encrypted with a specific key, using a specific encryption function. For this, we need to
use the wildcards in the policy. Figure3.6 shows the graphs for both the policy and the
program. In this case, node∗in2 in the policy is a wildcard that matches any input node,
and thus it matches nodeα in the graph, making it clear that the content of variablex2

can be made public, matching the final node∗1.

3.2 Expression Graphs

In this section we formalize the notion of expression graphs, both for the program and
the policy. Note that program graphs are automatically calculated based on the program’s
source, whereas the policy graph is supplied by the policy writer.
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Figure 3.6: Encryption program and its matching policy

3.2.1 Program Graphs

First we define how a program expression graph (program graph, for short) is built from
the program. We consider directed graphs, given byg = (V,E) ∈ G in whichV ⊆ Vertex
andE ⊆ Edge are the sets of vertices and edges, respectively. Vertices and edges are
structured objects that contain labeling information. Each vertex has the formn = (l, t),
where l is the label1 and t is the type, which is one ofvar, in, out, andconst,
corresponding to variables, I/O channels and constants, respectively, and which we denote
by type(l). We use the convention of denoting the vertex with labell bynl, and we assume
that the type or possible types of the node is clear from the label. For instance,nx, nα,
nγ, nρ andnN are nodes of typesvar, in, out, any andconst, respectively. Each
edge has the forme = (n, n′, t, u), in which: n andn′ are the origin and destination
vertices, respectively;t is the edge type, which can beplain (for assignments with no
function application),control (for control dependencies between boolean variables in
conditionals and variables assigned inside the conditional block), orfi, a function namef
subscripted with an indexi to the function, for edges that represent function applications2;
u ∈ N is an index that represents the looping context in which the assignment represented
by the edge takes place, i.e. it is different than zero if the assignment takes place within a
loop, and different loops are marked with distinct indexes.We use metavariablesu andv
to denote looping context indices. We writen

t
−→
u

n′ as a constructor that returns an edge

(n, n′, t, u).
We lift set union (∪) to graphs in the standard way:(V1, E1)∪(V2, E2) = (V1∪V2, E1∪

E2). 3 We define the following pre-order onG. For g1 = (V1, E1), g2 = (V2, E2) ∈ G,

we write g1 - g2 if V1 ⊆ V2 and there exists an injection̟ : N
1−1
→ N such that

{(n1, n
′
1, t1, ̟(u1)) | (n1, n

′
1, t1, u1) ∈ E1} ⊆ E2. Wheng1 - g2 andg2 - g1, we say

that the two graphs are equivalent denoted asg1 ≃ g2. Finally, the operator≺ is defined

1Here, the termlabel used for nodes and edges denotes aname(or id) of that node/edge. Not to be
confused with the notion ofsecurity label, often used in computer security literature.

2For unary function names we elide the argument index.
3Note that ifV1 ∩ V2 = ∅, then the union will consist of two disjoint graphs.
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the obvious way (using⊂ instead of⊆).
To build the graph we use the functionG, defined in Figure3.7, which takes a com-

mandC and a looping context indexu as arguments and returns the corresponding graph.
We writeG(C) as a short toG0(C). Theφ-functions generated by the SSA translation
are used to handle control flow dependencies. Note that thereare multiple definitions for
assignments, according to the format of the RHS operator. Also, for the looping context
index, theφ-functions of the loops receive a special treatment. In these cases, the func-
tion is called and returns the first argument (φ1 edge) always once, regardless if the loop
runs or not, whereas it is called and returns the second argument (φ2 edge) as many times
as the loop runs. Thus, theφ1 edge is labeled with the looping context index of before
entering the loop, andφ2 is labeled with the one of the loop body. This is specified by
functionΦ. Also, we usefresh() to return a “fresh” integer value, i.e. a previously un-
used value, used for looping context identifiers. We useǫ to denote the control context
index on thecontrol edges. The value ofǫ is unspecified, as it is irrelevant to our other
constructions.

G : Prog × N→ G
Φ : Prog × N× N→ G

Gu(skip) = ∅
Gu(C1 ; C2) = Gu(C1) ∪Gu(C2)

Gu(if c then C1 else C2) = Gu(C1) ∪Gu(C2)
Gu(while C ; c do C) = Φu,v(C) ∪Gv(C)

where v = fresh()

Gu(x := α) = nα
plain
−−−→

u
nx

Gu(γ := x) = nx
plain
−−−→

u
nγ

Gu(x := y) = ny
plain
−−−→

u
nx

Gu(x := f(y1, . . . , yk)) = ny1

f1
−→
u

nx, . . . , nyk

fk−→
u

nx

Gu(x := φc(a, b)) = na
φ1

−→
u

nx, nb
φ2

−→
u

nx, nc
control
−−−−−→

ǫ
nx

Gu(depends(θ, c)) = nc
control
−−−−−→

ǫ
nθ

Φu,v(C1 ; C2) = Φu,v(C1) ∪ Φu,v(C2)

Φu,v(x := φc(a, b)) = na
φ1

−→
u

nx, nb
φ2

−→
v

nx, nc
control
−−−−−→

ǫ
nx

Figure 3.7: Graph building function. Note thatfresh() returns a previously unused value
and thatǫ is used to denote an unspecified index.

Definition 3.1 (Expression Graph). The expression graphg ∈ G of a programC is given
byG(C) = G0(C). G0(C) is constructed in Figure3.7.

We usenodes(g) and edges(g) to denote the sets of vertices and edges ofg, re-

spectively. We use the 5-ary predicate writtenn
t
−→
u

g n
′ which is defined to hold if

(n, n′, t, u) ∈ edges(g). Wheng is implicit in the context where the predicate is used,

we write simplyn
t
−→
u

n′. Note that this notation overloads the notation for the edge

constructor. Whether we use this notation to denote the constructor or the predicate will
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be clear from the context, throughout this thesis. When the value of u is irrelevant, we
write n

t
−→ n′ which is equivalent to∃u : n

t
−→
u

g n
′. And whent = plain, we write

n → n′ which is equivalent to∃u : n
plain
−−−→

u
g n

′. We also writetd when t is a data

dependency type, i.e.t 6= control. In a similar fashion,n
w
−→

∗
n′ denotes that there is

a path (excludingcontrol edges) between nodesn andn′, with w being the sequence
of labels on this path. In other words,w denotes the sequence of labels of edges used to
reachn′, starting fromn, and excludingcontrol edges. Additionally,n

w
−→
u

∗
n′ denotes

that the whole pathw has the same contextu and we usen→∗ n′ when bothw andu are

irrelevant. We also use
φ
−→ to denote either

φ1

−→ or
φ2

−→. Using a notation analogous to that
of bisimulation [Mil89], we call an edge aτ -edge if its type is eitherplain orφ. Finally,
we write 6→ n to denote that the indegree ofn is zero, and functiontype(n) returns the
type of a noden.

Before presenting a first theorem, we first present the definition of input-uniqueness.

Definition 3.2 (Input Uniqueness on Expressions). An expressione : Exp〈In ×N〉 is said
to beα-unique if every occurrence ofα represents a distinct access on that input channel,
i.e. everyαi occurring ine has a distinct indexi.

We now define a notion ofα-uniqueness for graph nodesn that will be used below to
express the requirement that expressions recognized byn beα-unique. Given a graphg,
this notion is represented by a set of pairsuni(g) ⊆ In × Vertex and(α, n) ∈ uni(g)
indicates thatn is intended to represent onlyα-unique expressions. In policy graphs (see
Definition3.7below), this set is given explicitly. For program graphs, wederive it accord-
ing to the following definition. (We believe that this definition is somewhat conservative
in the sense that it may not extract allα-uniqueness pairs that could be derived in some
cases, but it serves us well, is simple, and admits efficient computation.)

Definition 3.3 (Input Uniqueness on Nodes). Letn be a node in the program expression
graphg, α be an input channel andnα be the graph node that representsα. We say that
n is α-unique, and write(α, n) ∈ uni(g) if none of the following relations hold:

1. If nα reaches some noden′, which in turn reachesn via two distinct paths. That is:
∃n′ ∈ nodes(g), w, w1, w2, f :

nα
w
−→

∗
n′ w1·fi−−−→

∗

n,

nα
w
−→

∗
n′ w2·fj
−−−→

∗

n,
f 6= φ, i 6= j, w1 ∩ w2 = ∅, n

′ 6= nα

2. If n is reached bynα and also part of a cycle, but the looping contexts of the cycle
and the path differ at some point. That is:

∃u, v : nα →
∗ td−→

u
→∗ n→∗

t′
d−→
v
→∗ n, u 6= v

3. If a parent node ofn is notα-unique. That is:

∃n′ ∈ nodes(g) : n′ td−→ n, (α, n′) 6∈ uni(g)
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The definition specifies the cases in which a node holds an expression that combines
more than one occurrence of a same input value. The first relation states the case in which
a same expression on the input channel converge on a single node via two different paths,
through some functionf . The second relation is about a node inside a loop, holding
an expression on the input that grows iteratively with the loop execution. If the input
access is inside the same loop of the cycle in the graph, then each iteration will grow
the expression with a “fresh” value from the input. Otherwise, this freshness cannot be
guaranteed, and neither input uniqueness. Finally, the third relation states that, once a
node is marked as notα-unique, then so are its children. The correctness of the definition
is implied by Theorem3.6, presented further in this Section. However, we also present it
as the Corollary below, for clarity.

Corollary 3.4. LetC0 be a program,π0 be an environment,t be a run inRun(C0, π0),
andg = G(C0). For any configuration〈C, σ, π〉 ∈ t, σ satisfies the following:

∀x ∈ Var , α ∈ In , nx ∈ nodes(g) : if (α, nx) ∈ uni(g) thenEσ(x) is α-unique.

We now define a functionexp : G ×Vertex→ ℘(Exp〈In ×N〉) which makes precise
the set of expressions represented by each graph node. We write expg(n) to denote the
set of expressions represented by noden in graphg, and we omitg when it is clear from
context.

expg(nN) = {N}
expg(nα) = {αi | i ∈ N}
expg(nγ) =

⋃

n′→nγ

expg(n
′)

expg(nx) = Ψnx
(Exp)

in which

Exp = {f(e1, . . . , ek) | ∀n1, . . . , nk : ni fi−→ nx ∧ ei ∈ expg(n
i)}

∪
⋃

n′
τ−→nx

expg(n
′)

and
Ψn(Exp) = {e ∈ Exp | ∀α ∈ In : if (α, n) ∈ uni(g) thene is α-unique}

whereΨn is a filter used to deal with input uniqueness, removing expressions which don’t
satisfyα-uniqueness if the noden holds that property. Note that in the above definition
exactly one of the subsets ofexp(nx) will be non-empty as each node is reached by either
a single plain edge, twoφ edges ork function edges.

We also define the functioncexp : G × Vertex→ ℘(Exp〈In × N〉) that computes all
conditional expressions the value held by a node can depend upon.

cexpg(n) =
⋃

n′
t−→n

cexpg(n
′) ∪

⋃

n′
control−−−−−→n

expg(n
′)

We can finally state our first result, which is about the soundness of the graph trans-
lation. First we define correspondence between the graph anda single program state, and
then proceed to the theorem that relates the graph with a program.
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Definition 3.5 (Correspondence Between State and Graph). Letσ be a program state and
g be a program expression graph. We say thatσ andg correspond to each other if they
satisfyP (σ, g), defined as the conjunction of the following properties:

PE(σ, g) ≡ ∀x ∈ Var : if E (x) is defined then
(x,var) ∈ nodes(g) ∧ E (x) ∈ exp(nx)

PI(σ, g) ≡ ∀α ∈ In : if I (α) > 0 then
(α,in) ∈ nodes(g)

PO(σ, g) ≡ ∀γ ∈ Out : if O(γ) is defined then
(γ,out) ∈ nodes(g) ∧O(γ) ⊆ exp(nγ)

PPC(σ, g) ≡ ∀ρ ∈ Var ∪ IO : ifPC (ρ) is defined then
(ρ, type(ρ)) ∈ nodes(g) ∧ PC (ρ) ⊆ cexp(nρ)

Theorem 3.6(Soundness of the Graph Translation). LetC0 be a program,π0 be an envi-
ronment,t be a run inRun(C0, π0), andg = G(C0). For any configuration〈C, σ, π〉 ∈ t,
σ satisfiesP (σ, g).

PE states that each variable has a corresponding node, and thatthe expression of the
variable is contained in the set of possible expressions held by that node;PI states that
for each input channel accessed in the process there exists acorresponding node in the
graph;PO states that for each output channel there exists a corresponding node, and that
the set of expressions sent to that output in the process is a subset of the set of possible
expressions held by that node; finally,PPC states that for each variable (and I/O channel),
the set of conditional expressions that the variable depends on is a subset or equal to that
set for the corresponding node.

3.2.2 Policy Graphs

Policy graphs work in the same way as program graphs, with a few key differences: (1)
one or more nodes are marked as “final nodes”; (2) nodes can have “wildcards” as label,
in the form of∗i, meaning that they can match any other node, regardless of the label; (3)
edges don’t have control context labels; and (4) input uniqueness relations are provided
with the policy, working as constraints over the recognizedexpressions. These differences
are justified by the fact that the program graph is calculated, in order to represent all
possible expressions that can be held by variables in the program, whereas policy graphs
are supplied, recognizing the set of expressions that can bedeclassified. For clarity, we
write ∗t to denote the wildcard on a node of typet, and just∗ when t = var. The
matching process between the policy and program graph is defined in Section3.3.

Definition 3.7 (Declassification Policy). A declassification policy is a graphd ∈ D, with
possibly disjoint components, in the formd = (V,E, Vf , U), whereV ⊆ Vertex is a set
of vertices,E ⊆ Edge is a set of edges,Vf ⊆ V is a set of final vertices andU ⊆ In × V
is a set of input uniqueness relations.
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The final vertices hold the expressions allowed to be declassified. We writefnodes(d)
to denote the setVf of final vertices on policy graphd. Thus, the set of expressions al-
lowed by a policy graph is determined by

⋃

nf∈Vf

expd(nf ). Also, we useuni(d) to return

the set of input uniqueness relations from a policyd. Thus, for our working example
of the average salary, we have that the policy of Figure3.5 recognizes the set of ex-
pressions{0, add(0, αi), add(add(0, αi), αj), . . .}, with all indices onα being distinct, as
(α, ∗3) ∈ uni(d). It is important to point that this work addresses the problem of enforcing
declassification policies, rather than specifying them. However, it is fairly straightforward
to derive a rule that translates the policy graph to/from some form of regular expressions
(e.g. regular tree expressions [CDG+07]).

With this, we can extend the definition ofexp to define the expressions held by∗
nodes in the policy graphs:

expd(∗
const) = Const

expd(∗
in) = In × N

where Const denotes the set of (syntactical) constants. Nodes∗var hold the same expres-
sions asvar nodes on the program graph, thus defined byexpd(nx). A node of type
const with a wildcard∗ label holds any constant as its expression and a node of typein
with wildcard label matches any indexed inputαi.

3.3 Graph Matching

Having defined the expression graphs of program and policy inthe previous section we
now introduce the mechanism that matches them. This will allow us to define which nodes
are safe according to the policy. If all output nodes are safe, then the program represented
by the graph is safe too. Note that multiple disjoint components of a declassification graph
may be needed to show the safety of a program. To simplify the matching process we first
extract the sub-graphs from the program’s expression graphthat could be validated sepa-
rately (calledinformation paths). Next we carry out the matching between an information
path and a (single) component on a policy graph. The matchingmechanism is defined via
a number of predicates that serve as computable implementations of the program validity
predicates presented in Section2.3. Thus, predicates in this section are named after their
counterparts of Section2.3, like the following:dds is the graph-based implementation of
dds defined for program validity. Section3.5 presents and discusses the algorithms for
the mechanism introduced here.

An information path captures one way in which expressions can flow into a node
starting from input channels and constants. Multiple function edges to the same node
represent that such node holds an expression equal to the application of that function with
its parents as arguments, thus all edges need to be included in the path. On the other
hand,φ-edges represent points where control flow may branch, and therefore eachφ-
edge represents a distinct information path. Note that an information path may still have
multiple incomingτ -edges because loops may cause the program flow to reach the same
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node multiple times. We represent an information pathp by the set of edges it contains
(the set of vertices for the path can be obtained by collecting the source or destination
of the edges). A set of information paths is thus a set of set ofedges. To streamline the
notation, we define the following operators for sets of information pathsS andS ′, and
single elementse (i.e., edges):

S ⊕ e = {g ∪ {e} | g ∈ S}
S ⊗ S ′ = {g ∪ g′ | g ∈ S, g′ ∈ S ′}

We then define functionip to collect all the information paths that reach a noden in a
graphg, which is a set of sub-graphs ofg. Recall from the graph construction rules that
every node is either reached by a number ofτ edgesor a number offi edges in which
functionf is the same and indexi is distinct in all edges.

Definition 3.8 (Information Path). Letg be a program expression graph andn be a node
in this graph. We say thatp is an information path forn (in g) if p ∈ ipg(n), defined as:

ipg(n) =



























{∅} if 6→ n
⋃

n′
τ−→
u

n

ipg(n
′)⊕ (n′, n, τ, u) if n is reached by one or moreτ edges

⊗

n′

fi−→
u

n

ipg(n
′)⊕ (n′, n, fi, u) if n is reached by one or morefi edges

We say that an information path forn is maximal if it is not a subset of some other
information path. The setmipg(n) contains all maximal information paths forn.

mipg(n) = {p | p ∈ ipg(n), ∀p
′ ∈ ipg(n) : p 6≺ p′}

Again, we omit subscriptg when it is clear from context.
If one information path is a sub-graph of another one, then validating the larger graph

also validates the smaller so we only need to consider the maximal information paths.
Figure3.8presents examples of information paths. The first graph demonstrates how

φ-edges create distinct information paths, as opposed to standard (function) edges. The
second graph shows how the calculation of maximal information paths handles cycles:
in their presence the whole structure is included, as one of the information paths is a
sub-graph of the other.

The next step is to relate the set of maximal information paths to the policies. This is
done by the notion ofpolicy simulationwhich is a “bundled” version of weak simulation
in state transition systems [Mil89]. First, we need some supporting notation. We call two
nodessimilar n ≃ n′ if they have the same type and either the labels are the same orone
of them is a wildcard∗.
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g ip1 ip2 mip

{ip1, ip2}

{ip2}

t = φ t 6= φ

Figure 3.8: Example of information path calculation

Definition 3.9 (Policy Simulation). Let C be a program,g = G(C) be its expression
graph,p be an information path for some node ofg andd be a policy graph. A relation
R ⊆ nodes(p) × nodes(d) is called a policy simulation if, for each(n, nd) ∈ R, the
following holds:

1. Nodesn andnd are similar, i.e.n ≃ nd.

2. Noden weakly simulates nodend. That is, the following holds:

• If ∃n′ ∈ nodes(p) : n′ τ
−→ n then

∃n′
d ∈ nodes(d) : n′

d (
τ
−→)∗ nd and(n′, n′

d) ∈ R.

• If ∃f, ∃n1 . . . nk ∈ nodes(p) : ni fi−→ n then

∃n1
d . . . n

k
d, n

′
d ∈ nodes(d) : ni

d (
τ
−→)∗

fi−→ n′
d(

τ
−→)∗ nd and(ni, ni

d) ∈ R.

3. Noden satisfies, ing, the input uniqueness restrictions specified fornd in d, i.e.
for everyα ∈ In , if (α, nd) ∈ uni(d) then(α, n) ∈ uni(g).

We use∼p,d to denote the largest policy simulation (i.e. the union of all of them) between
information pathp and policy graphd.

Next, we present the definitions for validating a program’s expression graph, imple-
menting those of program validity. First we define node validity, a concept analogous to
that of variable validity in Definition2.7.

Definition 3.10 (Node Validity). Let g be a program expression graph,n be a node ing,
p be an information path forn andd be a policy graph. About noden, we say that:

1. n is data dependency safe inp if it matches some final node of the declassification
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policyd or if all its parents inp are already data dependency safe.

ddsp(n, d) ≡ (∃nf ∈ fnodes(d) : n ∼p,d nf ) or
(∀nα ∈ nodes(p), w : if nα

w
−→

∗
n then

∃n′ ∈ nodes(p), w′, w′′ : nα
w′

−→
∗

n′ w′′

−→
∗

n ∧
w = w′ · w′′ ∧ ddsp(n

′, d))

2. n is data dependency safe (DDS) if all the maximal informationpaths that reach it
are data dependency safe.

dds(n, g, d) ≡ ∀p ∈ mip(n, g) : ddsp(n, d)

3. n is control dependency safe (CDS) if all nodes that reach it by apath starting with
a control edge are DDS.

cds(n, g, d) ≡ ∀n′, n′′ ∈ nodes(g) : if n′ control
−−−−−→ n′′ w

−→
∗
n thendds(n′, g, d)

4. n is a safe node if it is both DDS and CDS.

safe(n, g, d) ≡ dds(n, g, d) ∧ cds(n, g, d)

The following proposition on the CDS relation shows that a nonCDS node makes
all its descendants also non CDS. This will be needed for stating the soundness of the
analysis mechanism.

Proposition 3.11.Letn be a node in graphg andd be a policy graph. Ifn is not CDS with
respect tod, then every noden′ reached byn is also not CDS, i.e.∀n, n′ ∈ nodes(g) :

if n
w
−→

∗
n′ and¬cds(n, g, d) then¬cds(n′, g, d).

Finally, we can present the definition of a valid graph, whichholds for a graph if all
its outputs are safe.

Definition 3.12(Graph Validity). We say that the expression graphg is valid with respect
to a policyd if every node representing an output channel is a safe node. That is:

valid(g, d) ≡ ∀nγ ∈ nodes(g) : safe(nγ, g, d)
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(a) Invalid as IP fromβ is in-
valid

(b) Invalid due to control de-
pendency withβ

(c) Invalid as IP fromθ and
control dependency withβ
are invalid

(d) Policy graph
used in (a), (b) and
(c)

Key:

n ∼p,d nf ddsp dds cds t = φ t = control invalid output

Figure 3.9: Examples of graph matching

We sayg is d-valid if valid(g, d).
Figure3.9presents examples of the graph matching process. Here, unnecessary labels

are not shown, for simplicity. Double-lined nodes match some final node of a policy, for
some of its information paths. Note that for an output to be valid, all its information paths
must be data dependency safe, as well as the output node be control dependency safe.
Figure3.9cshows how a node can simulate a policy final node, and yet not becompletely
safe. In this case, simulation only validates one of the two information paths of the node,
and there is also an unresolved control dependency.

With the matching mechanism defined, we can present the soundness theorem. It
states that if a noden in the graph simulates a nodend in the policy graph, then the set of
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expressions possibly held byn is a subset of the set held bynd in the policy. The proof
can be found in the Appendix.

Theorem 3.13 (Soundness of the matching mechanism). For a program’s expression
graphg and a policyd, the following relation holds:

∀n ∈ nodes(g), nd ∈ nodes(d) : if n ∼g,d nd thenexpg(n) ⊆ expd(nd)

For the next theorem, we need to define the notion of a public expression, in terms of
a declassification policy. The relation, analogous to Definition 2.6, is defined below.

Definition 3.14 (Public Expressions). Let d be a declassification policy graph, we say
that the expressione is public according tod if the following relation holds:

public(e, d) ≡ (∃nf ∈ fnodes(d) : e ∈ expd(nf )) or
(e = f(e1, . . . , en) ∧ public(e1, d) ∧ . . . ∧ public(en, d))

With this, we can present the theorem of safety between process and policy, demon-
strating that if the corresponding graph of a program satisfies a policy, then the expres-
sions on the process will also satisfy it. This theorem is a consequence of Theorems3.6
and3.13and it is important for making precise the link between the framework and the
graph-based implementation.

Theorem 3.15(Safety between process and policy). LetC0 be a program,g = G(C0),
π0 be an environment,t be a run inRun(C0, π0) and d be a policy graph. For any
configuration〈C, σ, π〉 ∈ t, the following relations hold:

(i) ∀x ∈ Var : if Eσ(x) is defined anddds(nx, g, d) thenpublic(Eσ(x), d)

(ii) ∀γ ∈ Out : if Oσ(γ) is defined anddds(nγ, g, d) then∀e ∈ Oσ(γ) : public(e, d)

(iii) ∀ρ ∈ Var ∪ IO : if PC σ(ρ) is defined andcds(nρ, g, d)

then∀e ∈ PC σ(ρ) : public(e, d)

(i) states that if a variable in the program has its corresponding node in the graph
(which is guaranteed to exist by Theorem3.6) being data dependency safe, then the ex-
pression held by that variable in the process is public (i.e.allowed by the policy);(ii)
states that if an output channel in the program has its corresponding node in the graph be-
ing data dependency safe, then all expressions sent to it in the process are public; finally,
(iii) states that if a variable or I/O channel has a corresponding node in the graph being
control dependency safe, then all conditional expressionsof the variable (or I/O channel)
in the process are public.

With this, we conclude the presentation of our graph-based implementation of the
framework. In the next Section we prove that the validity of aprogram graph in the
implementation implies the validity of the corresponding program, in the framework.
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3.4 Soundness of the Implementation

General Setting.On Section2.5we have established the soundness of our framework. It
consists of three fundamental elements: the programC, the set of declassifiable expres-
sionsD and the predicatevalid(C,D), and relates them to the PCR property, presented
in Definition2.14. Theorem2.15demonstrates that, ifvalid(C,D) holds, thenC satisfies
the PCR property for the set of expressionsD. We now demonstrate that the implementa-
tion presented in Sections3.2and3.3is actually sound, that is, the validation of a program
graph implies the validation of the program used to create the graph. To do so we first
need to give a formal definition of the framework itself.

Definition 3.16 (PCR Framework). A PCR frameworkis a triple 〈Pol, Prog, valid〉, in
which:

1. Pol ⊆ Exp〈In × N〉 is a set of declassifiable expressions.

2. Prog is the domain of programs.

3. valid : Prog × Pol → Bool is a predicate that satisfies the following:

valid(C,D)⇒ C satisfies the PCR property with respect toD

In other words, it relates the previous two elements with the PCR property (Defini-
tion 2.14), as stated by Theorem2.15.

Our next step is to relate our graph-based implementation tothe expression-matching
framework. For that, we first define what is an implementationof the framework, in
general terms. An implementation needs to have computable approximations of the non-
computable elements of the PCR framework: thevalid predicate and the set of declassi-
fiable expressionsD. Besides that, an implementation might also include an abstraction
of the programC. This notion is defined below.

Definition 3.17(Implementation of a PCR Framework). We say that〈(Pol ,P), (Prog ,C),
V〉 is an implementation of〈Pol, Prog, valid〉 provided that:

1. Pol is a domain of declassification policies andP is a policy interpretation func-
tion P : Pol → Pol, which takes a declassification policy and returns the set of
declassifiable expressions represented by it.

2. Prog is a domain of abstractions of programs andC is a functionProg → Prog

that takes a program and returns a corresponding abstraction. For C ∈ Prog
andstates(C(C)) being the set of possible program states that the abstraction can
represent, we have thatstates(C(C)) ⊇ states(C).

3. V : Prog×Pol → Bool is a validation function which takes a program abstraction
in Prog and a policy inPol and returns a boolean. ForC ∈ Prog andd ∈ Pol ,
the functionV satisfies the following:

V(C(C), d)⇒ valid(C,P(d))
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Note that for an implementation to be tractable, then all elements on the left-hand side
of the above formula should also be (i.e.,V, C andd).

Application of the General Setting.Now we proceed to present each of the elements
of our specific graph-based implementation, and then to present the Theorem that shows
that the graph-based analysis implements the PCR framework.We start by the policy
interpretation function.

Definition 3.18 (Interpretation of Policy Expression Graphs). Let d = (V,E, Vf , U) be
a declassification policy, according to Definition3.7. The policy interpretation function
int : D → ℘(Exp〈In × N〉) is:

int(d) =
⋃

nf∈Vf

expd(nf )

The interpretation function respects the notion of public expression, as shown by the
following Lemma.

Lemma 3.19. Let e be an expression, andd be a declassification policy. We have that:
public(e, d) ⇒ public(e, int(d)). In other words, ife is public according tod, then it is
also public according to the set of declassifiable expressions represented byd.

Proof. The proof is trivial, obtained by expanding Definitions2.6and3.14and combining
them with Definition3.18.

Now we proceed to show that the program expression graphs areprogram abstractions.

Lemma 3.20(Expression Graph as a Program Abstraction). Let C be a program. The
program expression graphG(C) is a program abstraction ofC which represents the fol-
lowing program states:

states(G(C)) = {σ | P (σ,G(C))}

whereP (σ,G(C)) is the one defined in Definition3.5.

Proof. Proof is achieved by combining the program semantics with the definition ofG to
demonstrate that ifσ ∈ states(C) thenP (σ,G(C)) holds.

Finally, we state the Theorem that links the implementationto the framework:

Theorem 3.21.The graph-based analysis defined as〈(D, int), (G, G), valid〉 implements
the PCR framework〈Pol, Prog, valid〉.

The proof, which can be found in the Appendix, is achieved by expanding the elements
of the equationvalid(G(C), d) ⇒ valid(C, int(d)). On the next section we proceed to
show that this implementation is tractable.
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3.5 Algorithms and Tractability

In this section we show the tractability of the graph-based implementation of the PCR
framework. For this, we present simple algorithms for the graph matching mechanism
and demonstrate that they have polynomial complexity. The algorithms presented here
are not meant to be optimal in any sense, but rather a proof of the tractability of the
analysis.

First, let us define our input sizen. We wish to have an that relates to the program’s
size. Thus, the natural approach is to considern as the number of lines in the source
code, which is equivalent to the number of non-compositional statements of a program
C. Forif-then-else andwhile commands, we naturally also count all the nested
commands. For the analysis that follows it is also importantto determine how the number
of edges in the program’s graph relates ton. We know thatif andwhile commands do
not generate edges, I/O operations and simple assignments generate each a single edge,
and function assignments generate as many edges as functionarguments. Thus, it is safe
to define the number of edges as a factor of the numbern of lines of code. We denote this
factorce and state that a program hascen edges. We can formally determine the value of
ce by the following:

ce = 1−
|Cwhile|+ |Cif |+ |Cskip|

n
+

∑

Cf∈Cfunc

args(Cf )− 1

n

where|Cwhile|, |Cif | and|Cskip| are the number ofwhile, if andskip commands inC,
respectively.Cfunc is the set of function assignment commands inC andargs(Cf ) returns
the number of arguments in the function on the RHS of assignment commandCf .

Before discussing the matching mechanism, it is important topoint the complexity of
the graph-building process. From Figure3.7 it is clear that functionG has a complexity
of O(n) for both space and time, as for every command inC, G generates a constant
number of elements in the graph. We also consider that a pre-processing is done in the
graph: nodes are previously checked for being inside of cycles in the graph, setting the
incycle(n) predicate for each noden. The algorithm for this pre-processing is omitted.

Now we proceed to build the algorithms. For simplicity, we split the analysis into 2 al-
gorithms: one for calculating input uniqueness relations and other for validating the graph,
which is also further divided into parts. It is clear that both algorithms can be merged,
but the separated analysis is more clear. First, we present the algorithm for calculating
input uniqueness relations. Algorithm3.1 accepts a graphg as input and calculates, for
every inputα, theα-uniqueness relation on every noden. Recalling Definition3.3 we
know that, for the input uniqueness calculation, the graph edges that directly leave input
channel nodes (e.g.nα → n) have a special meaning: they represent the distinct accesses
on that input channel. With that, each such edge represents adistinct input command
on the programC. Thus, here we refer to these edges asinput edges. Also, since some
algorithms don’t walk throughcontrol edges, we write(n, n′, td, u) for an edge whose
typetd is any butcontrol.

The algorithm has a simple approach: it initially considersthat every noden is α-
unique, for every input channelα. Then, it walks through the graph, starting on the input
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Algorithm 3.1: Input uniqueness calculation
function: MAIN (g)
init : ∀n ∈ nodes(g), e, e′ ∈ edges(g), α ∈ In : (α, n) ∈

uni(g),path(n, e) = ∅,visited(e, e′) = visitedn(e, α) = false
1 foreach (α,in) ∈ nodes(g) do
2 foreach (nα, n, td, u) ∈ edges(g) do
3 UNI ((nα, n, td, u), n, nα, u, g);

function: UNI (e = (nα, n, td, u), n
′, np, u

′, g)
4 path(n′, e) := path(np, e) ∪ np;
5 if ∃(n1, n′, fi, u

′), (n2, n′, fj , u
′) ∈ edges(g) : path(n{1,2}, e) 6= ∅, n′ 6∈

path(n{1,2}, e) then
6 NOTUNI (α, n′, g);

7 else ifincycle(n′) ∧ u′ 6= u then NOTUNI (α, n′, g);
8 else
9 foreach (n′, n′′, t′d, u

′′) ∈ edges(g) : ¬visited((n′, n′′, t′d, u
′′), e) do

10 visited((n′, n′′, t′d, u
′′), e) = true;

11 UNI (e, n′′, n′, u′′, g);

function: NOTUNI (α, n, g)
12 uni(g) := uni(g) \ (α, n);
13 foreach (n, n′, td, u) ∈ edges(g) : ¬visitedn((n, n′, td, u), α) do
14 visitedn((n, n′, td, u), α) = true;
15 NOTUNI (α, n′, g);
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channel nodes, verifying if any node does not satisfyα-uniqueness for theα input channel
from which the current walk began. FunctionMAIN initializes the structures and launches
each of the walks, starting on each input edge. Each walk is performed by the recursive
functionUNI. This function has 5 arguments: the input edgee = (nα, n, td, u) for which
input uniqueness will be checked, the current noden′ being checked, both the parent node
np and the control contextu′ from whichn′ was reached and the graphg. Upon entering,
the function first checks if the current node does not satisfyinput uniqueness for the input
edge being analyzed. The two first conditions of Definition3.3 are checked. The first
condition is checked through the use of structurepath(n′, e), which records, for every
input edge, the path of nodes used to reach noden′. Thus, the firstif command checks
if the current node has two different parent nodes that reachit through a function (f ) and
both are also reached by the input edgee. This, along withn′ not being on the path of
any of the parents imply that condition 1 of the Definition will be found on the node that
performs the join of two expressions on the same input. The second condition is checked
in the following: if the current noden′ is in a cycle, condition 2 is satisfied if the looping
contexts of the cycle and the input edge differ. If any of these conditions is met, then
node is notα-unique and functionNOTUNI is called. That function marks an argument
noden as not input unique for the argument input channel and also does so recursively for
every node reached byn, thus satisfying condition 3 of the definition. If the conditions
are not met, noden′ is still α-unique. Thus, the analysis proceeds to the child nodes of
n′. Here, the structuresvisited andvisitedn are used to keep track of which graph
edges have already been visited for that input edge analysisand for the propagation of
non-α-uniqueness, respectively. This is necessary to avoid infinite computation due to the
presence of cycles in the graph.

Now we proceed to analyze the complexity of this algorithm. We useC(·) to express
the worst-case time complexity of computation·, which can be a function or operator.
First, we know that functionMAIN makes a number of comparisons equal to the number
of input edges in the graph. This number is the same as the number of input commands
in the code. Since this is a fraction ofn, we denote itcin. Thus, we have thatC(MAIN) =
cin · C(UNI). If we make the worst-case assumption that every node is reached by every
input channel, we can analyze the algorithm to conclude that, for each edge in the graph,
there will be a call to eitherUNI or NOTUNI, for each input edge walk. To be more
precise, for a fraction of the edges ing, UNI will make a comparison on all the parent
nodes of the current node and callNOTUNI. For another fraction, it will also make the
comparison on the parent nodes, then the constant time comparison of theelse if, and
then callNOTUNI. For a third fraction, the algorithm makes the parent nodes comparison,
then the constant one, and finally executes theelse branch. The remaining fraction are
the edges reachable by the ones that triggered theNOTUNI call: these perform only the
computation ofNOTUNI. Here, we callcin the average indegree of nodes in the graph. So,
if we name these fractionsc1, c2, c3 andc4, we have that the cost of the whole computation
for each input edge is, on average:

c1cen · (cin + C(NOTUNI)) + c2cen · (cin + 1 + C(NOTUNI))+
c3cen · (cin + 1 + C(UNI.else)) + c4cen · C(NOTUNI)
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However, it is quite clear thatC(UNI.else) = C(NOTUNI), since the loops are essen-
tially the same. With this, we have:

C(UNI) = cen · (c1cin + c1C(UNI.else) + c2cin + c2 + c2C(UNI.else)
+c3cin + c3 + c3C(UNI.else) + c4C(UNI.else))

= cen · ((c1 + c2 + c3 + c4) · C(UNI.else) + (c1 + c2 + c3) · cin + c2 + c3)

But we know thatc1 + c2 + c3 + c4 = 1 and we can also round its partial sums up to 1, to
achieve:

C(UNI) = cen · (C(UNI.else) + cin + 1)

Now, theelse branch ofUNI (and also the main body ofNOTUNI) makes a num-
ber of comparisons equal to the outdegree of the node being analyzed, and for each of
these it makes an assignment and a recursive call. Thus, if wesay thatcout is the aver-
age outdegree of nodes in the graph, we can say that, on the average of all executions,
C(UNI.else) = C(NOTUNI) = cout. Thus, we have that:

C(UNI) = cen · (cout + cin + 1)
C(MAIN) = cin · (cen · (cout + cin + 1))

= n2cice · (cout + cin + 1)

We know that, by definition,ci is a fraction that ranges from 0 to 1. Althoughce can
be potentially infinite (as there are no bounds for the numberof arguments a function
takes), for it to have a value of ordern the program would need to have, on average,
each line of code with a function assignment in which the function takesn arguments.
Since this is quite unrealistic, we can safely assumece to be of an order smaller thann.
As for cin, the same reasoning applies, as the average indegree of nodes in the graph is
tightly related to the number of arguments functions take. Finally, a similar reasoning
also applies forcout: for it to have a value of ordern, each variable on the program
needs to be on the RHS of an assignment, on average,n times (notice that this condition
happens together with the aforementioned condition force). Since this is also unrealistic,
we also assumecout to be of an order belown. Thus, we have that our input uniqueness
calculation algorithm has worst-case time complexity ofO(n2). As for space complexity,
one can easily see thatpath can take(n · cin) · n of space ,visited takescen · cin
of space,visitedn also takes up tocen · cin (each channel accessed only once, having
cin channels), anduni(g) can take up ton · cin, thus giving the final space complexity of
n3ci + n2ceci + n2ceci + n2ci = n3ci + n2(2ceci + ci), which isO(n3).

We now proceed to the main graph validation algorithm. Algorithm 3.2 presents the
mechanism. The main analysis loop is located within lines 1-6 of theMAIN function. For
each output node in the graph, all the information paths fromthat node are calculated and
the node is checked to be data dependency safe for each such information path. Finally,
the node is checked to be control dependency safe. Should anyof these checks fail, the
function returnsfalse. Here, we writeMIP for a function call, andmip for a global
data structure. Notice that the body of functionMIP is presented and discussed further
ahead.
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Algorithm 3.2: Program expression graph validation
function: MAIN (g, d)
init : ∀e ∈ edges(g), n ∈ nodes(g), p ∈ G, γ ∈ Out : visitdds(e, p) =

visitcds(e, γ) = false,color(n) = white,cycle(n) = false
1 foreach (γ,out) ∈ nodes(g) do
2 MIP(nγ , g);
3 foreachp ∈ mip(nγ) do
4 if ¬DDS(nγ, p, d) then return false;

5 if ¬CDS(nγ , g, d) then return false;

6 return true;

function: DDS (n, p, d)
7 /* dds(n, p, d) is set with return value of this call */
8 foreachnf ∈ fnodes(d) do
9 if SIM(n, p, nf , d) then return true;

10 if type(n) = in then return false;
11 foreach (n′, n, t, u) ∈ edges(p) : ¬visitdds((n′, n, t, u), p) do
12 visitdds((n′, n, t, u), p) = true;
13 if ¬DDS(n′, p, d) then return false;

14 return true;

function: CDS (n, g, d)
15 foreach (n′, n, t, u) ∈ edges(g) : ¬visitcds((n′, n, t, u), γ) do
16 visitcds((n′, n, t, u), γ) = true;
17 if ¬CDS(n′, g, d) then return false;
18 if t = control then
19 foreachp ∈ mip(n′) do
20 if ¬dds(n′, p, d) then return false;

21 return true;
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We will first analyse functionsDDS andCDS. Both functions walk through the graph
backwards, checking fordds andcds. In the case ofDDS, a walk is made for each in-
formation pathp. The first thing it does is to check if the current noden simulates any
final node of the policyd, returningtrue if successful. For this it uses theSIM function,
which is left unspecified. Recalling our definition of simulation, it has 3 clauses: the first
consists of a simple node similarity check (check of types and labels), the third is a check
for input uniqueness, which uses the information pre-computed by the previous algo-
rithm, and finally the second clause consists of a slight variation of the classical definition
of weak simulation in automata. Ours is sufficiently similarto the classical definition
such that algorithms for the latter can be used in the former.Thus, from [Li09, AI08]
we know that such algorithm exists and is P-complete. If noden does not simulate any
policy final node, then the check continues by analysing its parents. Ifn is an input node,
that means the current walk in the graph went from output to input without any match
happening. That means the node is notdds andfalse is returned. Otherwise, the parent
nodes are analysed recursively, and noden will be deemeddds if all its parents aredds as
well. Structurevisitdds is used to keep track of visited edges, due to the cycles on the
graph. FunctionCDS works in a very similar way, except that it works on the graph itself,
and not on information paths. It walks the graph backwards deeming a nodecds if all its
parent nodes are alsocds and additionally if itscontrol edge parents are alsodds for
all their information paths. Note that it uses the buffereddds structure computed during
the calls toDDS and that nodes with no parents are alwayscds.

The complexity of the main function involves three parallelchecks. In order to de-
termine it, we first define the number of output nodes in the graph ascon (with co being
analogous toci in the previous analysis). Also, we need to define the number of informa-
tion paths a node can have. We know that a node has a number of information paths equal
to one plus the number ofφ edges that can reach it throughout the graph. Considering
a worst-case scenario in which a node is reached by every other node in the graph, this
number becomes the number ofφ assignments in the program, which we denote ascφn.
Thus, we have the complexity of the main function as:

C(MAIN) = con · (C(MIP) + cφn · C(DDS) + C(CDS))

Now, let us check the complexities ofDDS andCDS. If we make the worst-case as-
sumption that every output node is reached by every other node, we can conclude that
each of these functions will be recursively called for each edge in the graph (thus,cen
times). InDDS, we know thatSIM is called a number of times equals to the number of
final nodes in the policy. Here, we need to determine the size of the policy. Since this is
quite arbitrary (a big system can have a whole library of policies) we will consider it to be
another input size. Thus, we callm the number of nodes in the policy,ce′m the number of
edges on it, andcfm the number of final nodes. From [Li09, AI08] we can safely assume
the upper bound ofC(SIM) to beO(T · S), whereT is the number of transitions andS
the number of states of the system. For this, our system consists of both the program and
policy graphs. Thus, we considerC(SIM) = O((cen + ce′m) · (n +m)) = O(n2 +m2)
(recalling the discussion about the order ofce, which is also applied here force′). After
that,DDS makes a single comparison and then a number of comparisons equals to the
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number of parent nodes ofn. Using a similar reasoning forCDS, we know that each call
to it visits cin edges, on average, and for each makes a single comparison (that leads to
the recursive call) and another comparison that, if true (always true in worst-case), causes
it to loop for each information path of the parent node in question (cφn, worst-case), also
making a single comparison. Thus, we have:

C(DDS) = cen · (cfm · O(n
2 +m2) + 1 + cin)

C(CDS) = cen · (cin · (1 + cφn))

Now we proceed to the information path calculation function, represented in Algo-
rithm 3.3. Here, the treatment of cycles in the graph is a bit more complicated. We use
structurecolor(n) as follows: it returnswhite if noden has not yet been visited by
MIP, it returnsblack if n has already been visited and its information paths are all
known, and finally it returnsgray if n is currently being visited, i.e. the function call has
been made but not yet returned.

Upon entering the function,color(n) is set togray, indicating thatn is currently
being analyzed. The function then performs a backwards walkon the graph. For each
parent node ofn it checks the color of that node. If it is white, then the recursive call is
made. If it is black then the buffermip is used, in order to avoid redundancy. Otherwise,
the parent node is still being analyzed and this means a cyclehas just been completed.
In that case, the specific parent node on which the cycle was found is marked as acycle
root, via the structurecycle. Then no recursive call is made, to avoid a “livelock” from
happening. After this, lines 7 and 8 basically add the parentedge and the parent node’s
information paths (except when a cycle was completed) to thecurrent set, according to
Definition3.8of functionip on Section3.3.

After the first loop is done, current noden will have its information paths calculation
done, unless it is inside a cycle. In that case,n will have all its information path com-
ponents, with the exception of themip of the cycle root node. Also, functionJOIN is
used to ensure the definition ofmaximalinformation paths: if a node is in a cycle, then
all φ-edges that reach it within the control context of that cycleshould be part of a same
information path, ensuring that no information path is a subgraph of some other. The
function is called for everyu 6= 0 that reachesn. Then, ifn is a cycle root, this means it
has already accumulated all the cycle edges (of the cycle in which it is the root) in itsmip,
and all of its parents which are still marked as white can now be revisited:n is marked as
black, and with this the cycle nodes will be able to addmip(n) to their collections. Then,
the code from line 13 verifies ifn itself will need to be revisited: this is true if any of its
parentsn′ is not visited (i.e., is not colored black). If this is the case (which only hap-
pens for nodes which are within a cycle),n is marked back as being white, and function
MAKE_WHITE is called, which recursively turns white every descendant of n which was
previously marked black. TheMAKE_WHITE function is required due to the presence of
nested cycles: a node can be the cycle root of the inner cycle,but just a “regular” node
of the outer cycle. In this case, the calculation of the innercycle nodes’mips will only
be complete after the outer cycle has been treated. Note thatin the presence of nested
cycles one of the roots is treated first, and all the nodes within the other cycle return from
their analysis being marked for revisit (white). Then, after one of the roots is marked as



3. Graph-Based Implementation 61

Algorithm 3.3: Calculation of information paths
function: MIP (n, g)

1 color(n) := gray;
2 foreach (n′, n, td, u) ∈ edges(g) do
3 add := ∅;
4 if color(n′) = white then add := MIP(n′, g);
5 else ifcolor(n′) = black then add := mip(n′);
6 else ifcolor(n′) = gray then cycle(n′) := true;
7 if td = fi then mip(n) := mip(n)⊗ (add⊕ (n′, n, td, u));
8 else iftd = τ then mip(n) := mip(n) ∪ (add⊕ (n′, n, td, u));

9 if incycle(n) then foreach(n′, n, td, u 6= 0) ∈ edges(g) do JOIN(mip(n), u);
10 if cycle(n) then
11 color(n) := black;
12 foreach (n′, n, td, u) ∈ edges(g) : color(n′) = white do MIP(n′, g);

13 if ∃(n′, n, td, u) ∈ edges(g) : color(n′) 6= black then
14 color(n) := white;
15 foreach (n, n′′, td, u) ∈ edges(g) : color(n′′) = black do
16 MAKE_WHITE(n′′);

17 else color(n) := black;
18 return mip(n);

function: MAKE_WHITE (n)
19 color(n) = white;
20 foreach (n, n′, td, u) ∈ edges(g) : color(n′) = black do MAKE_WHITE(n′);

function: JOIN (mip, u)
21 foreachp, p′ ∈ mip do
22 p := p ∪ {(n, n′, td, u) | (n, n

′, td, u) ∈ p′ \ p)};
23 p′ := p′ ∪ {(n, n′, td, u) | (n, n

′, td, u) ∈ p \ p′)};
24 if p = p′ then mip := mip \ p′;



62 3.5. Algorithms and Tractability

visited, all nodes are revisited and the process is repeatedfor the other cycle nodes. There
is clearly room for improvement on the efficiency of this algorithm, but this would result
in making it more complex, which is not the aim here.

Figure3.10below shows in detail the node colouring steps of theMIP function for a
graph with a simple cycle. Here, unnecessary labels are omitted, dashed lines represent
φ-edges, and the small letterc in the center of a node represents that the node is a cycle
root (i.e.cycle is true for that node).

1 2 3 4

5 6 7 8

C C C C

9 10 11 12

C C C C

13

C

Figure 3.10: Algorithm3.3executing on a simple graph with a cycle

Figure3.11shows the node colouring steps for a more complex graph, withtwo nested
cycles. For clarity, not all steps are shown. Note howMAKE_WHITE is called after step
17, making the two nodes in the nested loop white. This necessary since themips of
these nodes still do not include the completemip of the outermost cycle root – this is
only possible after step 21.

For the complexity ofMIP we first have to determine how many times the function
will be recursively called. Assuming the worst-case scenario in which every output is
reached by every other node in the graph we know thatMIP reaches every node in the
graph. However, some nodes are visited more than once: each node is visited once plus
one more time for each distinct cycle it belongs to. However,due to the graph building
rules plus the fact that the code is in SSA format, we know thatthe number of distinct cy-
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Figure 3.11: Algorithm3.3executing on a graph with nested cycles

cles a node can belong to is determined by the number of nestedwhile commands within
which the variable that represents the node is assigned in the code. Thus, simplifying for
the worst-case scenario, this is proportional to the numberof while commands in the
program. Considering that every variable is assigned withinall the loops in the code, we
have that, in the worst-case scenario,MIP visits each node in the graphcwn times, with
cw being the ratio ofwhile commands inn. Thus, the function is calledcwn2 times.

Now we analyze the body of functionMIP. We first have a loop that runs forcin times
and within which two comparisons are made. After the second comparison, a set operation
is made with the information paths. Recalling that the maximum number of information
paths a node can have iscφn and the definitions of the operators⊕ and⊗, we can simplify
this operation to a worst-case complexity ofc2φn

2, which happens when the firstthen
branch (line 7) is taken. Then, assuming a worst-case in which all if commands are
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taken, we have a loop runningcin times and callingJOIN, then the comparison of line
10, resulting in a new loop runningcin times, then the comparison of line 13 which also
runs cin times, and cause a loop that runscout times, each of which making a call for
MAKE_WHITE. Thus, we have:

C(MIP) = cwn
2 · (cin · (1 + c2φn

2) + cin · C(JOIN) + cin + cin + cout · C(MAKE_WHITE))

Now, we check functionJOIN. It takes every pair of information paths in argument
mip and adds to each of them every edge with looping context equalto argumentu that
is present in one but not the other. Finally, if after this operation they are left identical,
one of them is removed from the set. The loop analyzes a set of size cφn, on average, and

takes every distinct pair of it. Thus, it runs for(cφn)
2−cφn

2
times. The set operations then

need to inspect every element of each information path to be performed. In a worst-case
scenario, information-paths are of size close ton. Thus, we consider each set operation
with complexity 2n. Finally, with the same assumptions, the last comparison runs at
complexityn and results in another set operation of constant complexity. Then, we have:

C(JOIN) =
c2
φ
n2−cφn

2
· (2n+ 2n+ n)

=
5c2

φ
n3−5cφn

2

2

Now, we calculate the average complexity of a call to function MAKE_WHITE. The
function has a constant complexity, but it recursively turns black nodes into white ones.
The worst case happens in a program where all commands are withing a same nested
loop. In this case, each call toMAKE_WHITE will visit a number of nodes on the order
of n. Then, we have thatC(MAKE_WHITE) = n. And thus, making the substitutions for
C(JOIN) andC(MAKE_WHITE), we have:

C(MIP) = cwn
2 · (cin · (1 + c2φn

2) + cin ·
5c2

φ
n3−5cφn

2

2
+ 2cin + coutn)

In order to reach the final complexity of the matching mechanism, we first discuss
about the constants.cw, cφ andcf , like co andci, are ratios from 0 to 1. Also, forcin, cout
andce the reasoning to consider them of an order lower thann applies. Thus, we have:

C(DDS) = cen · (cfm · O(n
2 +m2) + 1 + cin)

= O(n3m+ nm3)
C(CDS) = cen · (cin · (1 + cφn))

= O(n2)

C(MIP) = cwn
2 · (cin · (1 + c2φn

2) + cin ·
5c2

φ
n3−5cφn

2

2
+ 2cin + coutn)

= O(n5)
C(MAIN) = con · (C(MIP) + cφn · C(DDS) + C(CDS))

= con · O(n
5) + cocφn

2 · O(n3m+ nm3) + con · O(n
2)

= O(n6) +O(n5m+ n3m3) +O(n3)

=







O(n6) if n≫ m
O(n6) if n ≈ m
O(m3) if n≪ m
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As for the space complexity, we know that:visitdds takes up tocen · cφn of space,
visitcds takescen · con, color andcycle both taken andmip takesn · cφn. Thus
we have the final space complexity ofcecφn

2 + cecon
2 + 2n+ cφn

2 = O(n2).

3.6 User-Defined Functions

In this section we present an extension to our toy language, adding user-defined functions.
This extension is presented with updated versions of some definitions of chapters2 and3,
but we omit changes in the theorems and proofs, since they arestraightforward.

First, let us define how functions appear on programs. We update the language syntax
to:

C ::= skip | x := α | γ := x | x := f(y1, . . . , yk) | x := φc(a, b) | C1 ; C2

| depends(θ, c) | if c then C1 else C2 | while C ; c do C
| def F (vF1 , . . . , v

F
k ) C | return r | x := F (y1, . . . , yk)

We use a capitalF to distinguish user-defined functions from system functions (f ).
Also, we usebody(F ) to return the commandC which is the body of functionF and,
conversely,func(C) returns the name of the function in whichC is located in the code.
In order to make definitions simpler, we also consider the following: (1) user-defined
functions have unique names (no overloading); (2) input/output operations are not allowed
inside a function; (3) functions only have access to variables declared within their bodies,
plus the arguments (i.e. no global variables); and (4) for each functionF there is a number
of variables with fixed names, defined as follows:vFk represents thek-th argument of
functionF andrF represents its return value. These variables are defined during function
calls and returns, respectively. Note that (2) and (3) implythat user-defined functions
have no side effects.

Now, we present additional semantics rules to treat user-defined functions. First, we
add a new componentS ∈ S = Prog∗ to the program stateσ, which represents the call
stack. Operationspush(C, S) andpop(S) return a new stack resulted from pushing a
commandC and popping the top element, respectively. Operationtop(S) returns the top
element ofS, but without removing it.

〈def F (vF1 , . . . , v
F
k ) C, σ, π〉

τ
−→ 〈skip, σ, π〉 (Def.)

〈x := F (y1, . . . , yk) ; Cn, σ, π〉
τ
−→ 〈C ′ ; CF , σ′, π〉 (Call)

where C ′ = vF1 := y1 ; . . . ; v
F
k := yk;

CF = body(F )
Sσ′ = push(x := rF ; Cn, Sσ)

〈return r, σ, π〉
τ
−→ 〈rF := r ; top(Sσ), σ

′, π〉(Return)
where Sσ′ = pop(Sσ)

F = func(return r)
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Now we proceed to define how the program expression graph handles the user-defined
functions. First, there are two new types of edges,C⋆ andR⋆, which represent function
call and return, respectively. The⋆ subscript is a unique identifier, in order to represent
distinct calls of a same function. As for the looping contextannotations, commands within
a function but not inside any looping block will be executed in the looping context of the
calling command. Thus, the edges associated to these commands are annotated with the
function name, which serves to represent the situation justdescribed. Note that, with
this, the domain of looping context annotations is extendedto N ∪ Func, whereFunc is
the domain of user-defined function names. The additional rules for theG function are
presented below.

Gu(def F (vF1 , . . . , v
F
k ) C) = GF (C)

Gu(x := F (y1, . . . , yk)) = ny1

C⋆−→
u

nvF
1
, . . . , nyk

C⋆−→
u

nvF
k
, nrF

R⋆−→
u

nx

where⋆ = fresh()

Gu(return r) = nr
plain
−−−→

u
nrF

With this, an adjustment on the graph notation must be made, with the definition of
valid paths.

Definition 3.22 (Path validity). A pathw on an expression graph is said to be valid ac-
cording to the following grammar:

w ::= ws | wc | wr

t ::= plain | φi | fi
ws ::= tws | C⋆wsR⋆ws | ǫ
wc ::= C⋆wc | wswc | ǫ
wr ::= R⋆wr | wswr | ǫ

In other words, the notation
w
−→
u

∗
,

w
−→

∗
and→∗ only holds for paths defined by this gram-

mar.

In the above definition,ws represents paths which start and end outside of functions,
with call edges being eventually followed by their corresponding return edges. Pathswc

are the ones that start outside and end inside a function, while wr are the opposite case,
of paths that start inside and end outside of function calls.Note that ifwc andwr were
combined in a same path, this would result in, e.g. a path thattakes edgeC1 and thenR2,
which not valid.

Now the input uniqueness definition must account for edges labeled with function
names as control context. This can be accomplished by a slight adjustment on the second

item of Definition3.3, changed tonα →
∗ td−→

u
→∗ n →∗

t′
d−→
v
→∗ n, u 6= v, v ∈ N. Here,

v ∈ N means thatv is not a function nameF . With this, user-defined functions called
within loops do not harm input uniqueness calculation.

Next step is updating the definition ofexp. The function needs to keep track of which
function call was last made (the⋆ subscript). For this, we change it toexp⋆g, where⋆
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represents this property, and is omitted when it is undefined(no function call was made).
Thus, all current equations within the definition ofexp are adjusted so that the⋆ is also
passed to recursive calls to it. The formula fornx, however, is extended:

exp⋆g(nx) = Ψnx
(Exp)

in which

Exp = {f(e1, . . . , ek) | ∀n1, . . . , nk : ni fi−→ nx ∧ ei ∈ exp⋆g(n
i)}

∪
⋃

n′
τ−→nx

exp⋆g(n
′)

∪ exp⋆
′

g (n
′) (if n′ R⋆′−→ nx)

∪ exp⋆g(n
′) (if n′ C⋆−→ nx)

Notice that two new clauses are added: one for function returns and other for calls. Func-
tion return edges are always taken, updating the⋆. Call edges are only taken if they
represent the same return edge previously taken (as the graph is traversed “backwards”,
by following this definition return edges are taken before call edges).

In a similar fashion,cexp is also updated:

cexp⋆g(n) =
⋃

n′
t−→n

cexp⋆g(n
′) ∪

⋃

n′
control−−−−−→n

exp⋆g(n
′)

∪ cexp⋆
′

g (n
′) (if n′ R⋆′−→ nx)

∪ cexp⋆g(n
′) (if n′ C⋆−→ nx)

wheret 6= {C, R}

Finally, we can update the matching mechanism. Fortunately, with the⋆ notation we
can make the main change in the calculation of the information paths, leaving the rest of
the matching process unmodified. The change is equivalent tothe ones inexp andcexp:

ip⋆g(n) =



















































{∅} if 6→ n
⋃

n′
τ−→
u

n

ip⋆g(n
′)⊕ (n′, n, τ, u) if n is reached by one or moreτ edges

⊗

n′

fi−→
u

n

ip⋆g(n
′)⊕ (n′, n, fi, u) if n is reached by one or morefi edges

ip⋆
′

g (n
′)⊕ (n′, n, τ, u) if n is reached byn′ R⋆′−→

u
n, for any⋆′

ip⋆g(n
′)⊕ (n′, n, τ, u) if n is reached byn′ C⋆−→

u
n

With this, the definition for the matching remains unchanged, as the calculation of
information paths already handlesC andR edges, turning them intoτ edges. It is also
straightforward how to change the algorithms of the last section to support the user-
defined functions. Finally, since they are treated both in the semantics and on the graphs in
a similar fashion to function inlining, including the functions on the theorems and proofs
throughout this thesis is trivial. Notice that the definitions for both program and graph
validity remain unchanged.
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CHAPTER 4

Hybrid Static-Runtime Enforcer

In this chapter we extend our graph-based PCR approach in order to combine it with a
runtime enforcement mechanism. With this, we present a practical hybrid static-runtime
enforcer that is able to support policies that need both static and runtime information.
We modify the static analyzer so that it generates a kind of report after the code analy-
sis, in such a way that analysis is system independent. We define an intermediate step,
between static analysis and runtime enforcement, named pre-load check, that translates
the report from the previous step into the specific security labels of the target system,
and then generates a checklist of conditions that need runtime information to be satis-
fied. Finally, we define a lightweight runtime enforcer whichperforms the checks only
in the program points where they are necessary. Calls to the enforcer are injected in the
application’s code, prior to its execution, on the specific points where checks are needed,
thus further reducing the overhead of the enforcer. Since this mechanism is presented
in an implementation-oriented fashion, in this chapter we use the Java programming lan-
guage and the Android mobile platform as the target technologies for demonstrating the
approach.

In the next sections we present the hybrid enforcer, first by presenting some motivating
examples, all based on real mobile applications, in Section4.1,then giving an overview of
it in Section4.2. We then present the modification on graph-based PCR in Section 4.3, de-
fine the pre-load checker in Section4.4, and finally define the runtime enforcer, including
its code injection and experiments to measure its overhead in Section4.5.

The contents of this chapter are presented in the paper [RCEC11].

4.1 Motivating Examples

In this section we present three running examples that will be used throughout this chapter.
The examples are all within the context of mobile devices, and present problems which
current popular mobile platforms (e.g. Android, Apple iOS)cannot handle; indeed, these
problems cannot be handled by neither static nor runtime enforcement approaches, em-
phasizing the necessity for a combined approach. Since thischapter is implementation-
oriented and is no longer necessary to discuss the details ofgraph-based PCR, the code of
the examples is presented as standard Java-like algorithms, i.e. not pre-processed nor in
SSA format.

69
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Example 4.1(Classification). Consider a policy that allows applications to read the con-
tents of the phone’s contact list, but not send it to low levelchannels (e.g., an arbitrary
Internet connection). However, assume the user is allowed to mark as “trusted” certain
output locations, such as a network connection, an SMS or an email address. Thus, in-
formation derived from the contact list can only be sent to trusted output channels. In
this scenario, the static analyzer is needed to detect the flows of information within a
program, while the runtime enforcer is needed to check the dynamic security label of the
output channel. Algorithm4.1presents an example. In the following example algorithms
we use underlined text to indicate input and output operations.

Algorithm 4.1: Classification application

1 clist := getContactList();
2 counter := 0;
3 while hasNext(clist) do
4 contact := next(clist);
5 age := getAge(contact);
6 if age > 45 then counter := counter + 1;

7 text := “I have ” + counter + “ contacts over 45.”;
8 addr := readFromInput();
9 sendSMS(addr, text);

Example 4.2(Declassification). Consider a policy for location-based services. The pol-
icy states that a user’s location is private in general and cannot be output. However, there
are two allowed declassifications: (1) the timezone of a location, and (2) the result of a
function that compares whether two locations are near to each other. In this scenario, an
application can transmit its location to a different deviceusing a secure connection. In
particular, the application transmits data along with its corresponding security label to
the other device (assuming that the underlying system platform supports this). Here, the
static analyzer not only detects flows of information, but also points of the program that
match the expressions allowed by the declassification policy. Again, the runtime enforcer
checks for dynamic labels. See Algorithm4.2 where isNear only works with arguments
from a location input (such as a GPS).

Example 4.3(Iterative declassification). Now, consider a corporate application (Algo-
rithm 4.3) in which a device accesses the records of several products, and it outputs the
average of some property of the products (e.g. price, nutritional facts, cost, etc.). Accord-
ing to a declassification policy, the program can only outputthe average of a property for
a given number of products (and not their single values). Thestatic analyzer detects that
the program conforms with the declassification policy, but the condition of the minimum
amount of values the average has to contain is only checked during runtime.



4. Hybrid Static-Runtime Enforcer 71

Algorithm 4.2: Declassification application

1 secureConn := secConnect(“otherhost.somewhere.com”);
2 myLoc := getLocation();
3 myTz := timezone(myLoc);
4 otherTz := recv(secureConn);
5 if myTz = otherTz then
6 send(“ACK” , secureConn);
7 otherLoc := recv(secureConn);
8 near := isNear(myLoc, otherLoc);
9 if near then print(“Host is nearby!”);

Algorithm 4.3: Iterative declassification application

1 sum := 0;
2 num := 0;
3 db := openDBConnection();
4 while !exitSignal do
5 rec := fetch(db);
6 prop := getProperty(rec);
7 sum := sum+ prop;
8 num := num+ 1;

9 avg := sum÷ num;
10 output(avg);
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4.2 Approach

Our approach consists of a hybrid static-runtime mechanismorganized in three steps:
static program analyzer, pre-load checker, and runtime enforcer. In practice, the first two
steps perform most of the analysis, leaving the runtime enforcer to perform a few very
precise (and thus efficient) checks. Figure4.1 shows how the three steps interact with
each other, while in the following we give an overview of their role.

Figure 4.1: Overview of the 3-step enforcement

1. Static analyzer: it takes aprogramand identifies all its information flows, i.e. for
each output operation, it identifies which input operationsits value can potentially
depend on (including implicit flows). Additionally, it takes a set ofdeclassification
policiesand identifies which variables of the program hold expressions on inputs
allowed by the policies. Thus, it downgrades the security level of those variables
and of the corresponding flows of information. The information flows, combined
with the matched declassifications, are included in aflow reportof the program.

2. Pre-load checker:before the program is run, the checker takes the flow report from
the previous step and checks thesecurity labelsof the system in which the program
is about to run. The information flows with static labels are then validated at this
step (i.e.high cannot flow tolow). Flows containing I/O channels with dynamic
security labels can only be checked at runtime, and thus are marked for checking
in a runtime checklist. Also, declassifications from the previous step might have
constraints associated with them, some of which may only be checked at runtime.

3. Runtime enforcer: the lightweight enforcer verifies that the conditions of therun-
time checklist are satisfied at certain points of execution.The conditions may con-
sist of checks of security labels of channels as they are accessed, and also of count-
ing the number of times some loops in the program run. In orderto reduce runtime
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overhead, the calls to the enforcer are injected in the application bytecode, prior to
the program’s execution, on the specific program points thatneed checking.

4.2.1 Preliminary assumptions

Here we describe the assumptions made on the underlying system, which is part of the
Trusted Computing Base. The considered programming language is assumed to have a
well-defined set of I/O statements, which can be identified bythe static analyzer. These
I/O statements are “safe”, in the sense that their behaviouris always the expected one.
Also, functions referred by declassification policies (such astimezone, in Example4.2)
are also safe, meaning that they can not be abused or invertedin order to obtain the
original value of its arguments. Policies using unsafe functions are considered malformed
policies, and measuring the safety of a declassification policy is out of the scope of this
thesis. We do not present user-defined functions in the examples of this chapter, but these
can also be treated with the extension presented in Section3.6.

The underlying system includes a security labeling system,and provides an API
for handling the labels. We present the API, but leave its implementation unspecified,
since this thesis focuses on the enforcement of policies by programs, rather than on
the specification of a labeling system, a field with an alreadyextensive published liter-
ature [Mye99, BWW08, SCH08]. Thus, the API is composed of:

• getChannelLabel gets an I/O command and returns the security label of the asso-
ciated channel. If values need to be known at runtime, whilstAPI is called before
program’s execution, the returned label isruntime.

• A special security labeldata is used to denote channels with a dynamic label,
where each packet of data has a security label attached to it.For these kinds of
channels:

– getDataLabel returns the label of a packet received from an input command.

– setDataLabel sets the label of a packet to be sent by an output command.

• compareChannel takes two I/O commands and verifies if they access the same
I/O channel of the system. It returnsOK andNO in affirmative and negative cases,
respectively, andRT (for runtime) in the case that the arguments’ values need to be
known at runtime, in order to perform the comparison.

• maxLabel takes two labels and returns the most strict of them. If they are incom-
parable (at an equal level on the security lattice), returnsa join of both.

• ⊏,⊑,⊐ and⊒ are the comparison operators for labels.

4.3 Static Analyzer

The static analyzer is an adaptation of the graph-based PCR analysis that we introduced
in the previous chapter. The modifications are motivated by the following:
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• The static analyzer should now generate a report of all the information flows and de-
classification matchings within the program, rather than deciding by itself whether
the program is safe or not.

• The analyzer should now be system independent with regards to the security labels,
i.e.:

– Analysis should be purely symbolic, i.e. information flows and declassifica-
tion matching should be identified regardless of specific security labels, as
these might differ depending on the system where the programwill be exe-
cuted. The interpretation of specific security labels is left for the other steps
of the hybrid enforcement.

– The matching between input nodes in program and policy should also be sym-
bolic, in the sense that every input node in the former matches every input
node in the latter. Again, the matching of input nodes is leftfor the other steps
of the enforcement.

In this section, we first introduce some concepts and presentthe output of the static
analyzer through the examples. Then, we proceed to define howwe modify the PCR
analysis to produce such an output.

Program point. A program pointis used to identify an input (or output) operation
in the program, and may be referenced by both the source and the compiled code. For
each I/O operation detected by the static analyzer, a wrapper is generated around that
operation, ensuring that the same program point used in the source will be recognized in
the compiled code. We writeθi to denote theI/O operationon channelθ at program point
i. Note that this is different from the notation for sequential accesses on the channel, used
in the previous chapters. Whileθi denotes thei-th access on channelθ, θi denotes the
program statement at program pointi.

Flow report. The static analyzer generates an output calledflow report. It contains
all flows of information in the program, one for each output operation in the program
code, including declassification matchings. A flow is basically a relation between an
output operation and a set of input operations whose values can influence it. While a
formal definition of the flow report will be given at the end of this section, we first give
an intuition of it via our examples.

Consider again the program of Example4.1 (Classification): Table4.1apresents the
mappings of I/O statements to symbols (i.e. the Greek letters). The program points of the
operations are also identified: here we use simply the line number where the statement
takes place in the code. Table4.1bpresents the flow report. In particular, we have a single
flow that states that output operationγ9 (i.e., an output to channelγ that is made by the
statement on program point 9) potentially reveals information about input operationsα4

andβ8.
To illustrate how the flow report can contain information about the declassification

matchings detected on the code, let us consider again the program of Example4.2 (De-
classification), in which declassification policies are used. Table4.2asummarizes the
policy used, describing which expressions may be declassified. The top part of the table
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Statement I/O symbol Type Program point
next(clist) α Input 4
readFromInput() β Input 8
sendSMS(addr, text) γ Output 9

(a) Mappings of I/O channels to symbols

Flow report
{α4, β8} γ9

(b) Flow report

Table 4.1: Static analyzer output for Example4.1

identifies the expressions that can be declassified (timezone(. . .), isNear(. . .)), their fi-
nal nodes (∗1,∗2) and the new label to be applied (low) to the variables that hold these
expressions. The input nodes (nα, ∗in) match specific input channels, identified in the
bottom part of the table, whereany stands for any input channel. The mapping between
inputs and symbols works in the same way as in the previous example. Notice that, in
this case (Table4.2b), the same input channelβ is accessed at two different points of the
program (i.e. 4 and 7). The flow report (Table4.2c) includes the declassifications detected
by the static analyzer. For instance,{α2} 7→X1 low represents the case of variablemyTz,
set on line 3. This variable has a dependency with inputα2, but its content is matched
by the declassification policy. Thus, its dependency withα2 is changed to a dependency
with the label of policy node∗1 (i.e. low). Finally,X1 represents the set of constraints on
the declassification policy that need to be checked in one of the next two phases (either at
pre-load or at runtime). In other words, the expression{α2} 7→X1 low will eventually be
translated tolow if every constraint inX1 is satisfied, and toα2 otherwise.

Each element of a constraint setX is a pair with either one of two formats: (1) a pair
(αi, nd), where the first element is an input operation in the code, andthe second one
is an input node in the policy, representing the constraint thatαi andnd must represent
the same input channel; or (2) a pair(i, exp), in which i is a program point andexp is
an expression which represents a constraint on how many times program pointi has to
iterate on the running program.

Finally, we show the static analyzer output for Example4.3(Iterative declassification),
showing the use of a loop counting declassification constraint. This policy is illustrated
in Table4.3a. Notice that the policy also enforces input uniqueness of the looping value,
i.e. (α, ∗1) ∈ uni(d). Since input uniqueness is entirely treated by the graph-based PCR
static analyzer, we do not detail it here. The predicateiter(∗1), related to the looping
constraint, is discussed further ahead. The static analyzer works like in the previous
examples (mappings in Table4.3band flow report in Table4.3c).

Modifications on graph-based PCR.Here, we modify graph-based PCR to work to-
gether with the other two steps of our mechanism. As stated inthe beginning of this
section, the modifications are required since the analysis now must be system indepen-
dent (i.e. labels for a same input can vary in different systems) and some security labels
might be dynamic (i.e. their values being known only at runtime). Additionally, matching
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Expression Final node Label
timezone(nα) ∗1 low
isNear(nα, ∗

in) ∗2 low

Input node Input channel
nα getLocation()
∗in any

(a) Declassification policy

Statement I/O symbol Type Program point
getLocation α Input 2
recv(secureConn) β Input 4
send(“ACK” , secureConn) δ Output 6
recv(secureConn) β Input 7
print(“Host is nearby!”) γ Output 9

(b) Mappings of I/O channels to symbols

Flow report
{{α2} 7→X1 low, β4} δ6

{{α2} 7→X1 low, β4, {α2, β7} 7→X2 low} γ9

X1 = {(α
2, nα)}

X2 = {(α
2, nα), (β

7, ∗in)}

(c) Flow report

Table 4.2: Static analyzer output for Example4.2

of declassification policies might include constraints that can only be checked at runtime.
Thus, the analyzer no longer deems a program secure or not, but rather generates an output
that will be used by the two subsequent steps.

We extend the policy graphs to accommodate the new constraints. Recall from Sec-
tion 3.2 that the declassification policy graph has the formd = (V,E, Vf , U), whereV
andE are the vertices (nodes) and edges, respectively,Vf ⊆ V is the set of final nodes
(also denoted byfnodes(d)), andU is the set of input uniqueness constraints. We make
two modifications:

1. every input nodend in the policy that matches an input nodenα in the program
graph generates, upon matching, a constraint(αi, nd) for that policy matching,
wherei is the program point of the specific input operation that was matched, as the
matching of the input channel will be made in one of the two subsequent enforce-
ment steps;

2. we add another component,iter, which is a mapping from the policy nodes to
expressions. Wheniter(nd) is defined, it returns a constraint on how many times
the assignment of the variable that matches nodend must iterate. The expression in
iter(nd) has one free variable, namedit, which represents the number of iterations.
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Expression Final node Label
(add(getProperty(nα)))

∗ ∗1 low

Input node Input channel
nα fetch(openDBConnection())

iter(∗1) = it ≥ 25

(a) Declassification policy

Statement I/O symbol Type Program point
fetch(db) α Input 5
output(avg) γ Output 10

(b) Mappings of I/O channels to symbols

Flow report
{{α5} 7→X1 low} γ10

X1 = {(α
5, nα), (4, it ≥ 25)}

(c) Flow report

Table 4.3: Static analyzer output for Example4.3

Predicateconstr in Definition4.1defines how the constraints are generated.
With the notation defined, the flow report is generated from the program graph, via

the process defined below. Here we useid(C ′) to denote the program point of program
statementC ′ andlabel(nf ) to denote the security label of a policy final nodenf (i.e. the
label to which a variable that matches that policy will be downgraded to).

Definition 4.1 (Flow report). LetC be a program,g = G(C) the corresponding program
graph andd a declassification policy graph. We have that:

• For a variable nodenx in g, the set of input operations and declassifications that
potentially flow tonx is defined as:

flowg,d(nx) =
⋃

p∈mip(nx)

flowp,d(nx)

where:
flowp,d(nx) =






















{αid(x:=α)} if nα → nx

{
⋃

ny→nx

flowp,d(ny) 7→
X label(nf )} if ∃nf ∈ fnodes(d) : nx ∼p,d nf

whereX = constr(nx ∼p,d nf )
⋃

ny→nx

flowp,d(ny) otherwise

• For a simulation relationR between a node ing and a final node ind, the set of
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constraints for the matched declassification is defined as:

constr(R) =
{(αi, nd) | (nα, nd) ∈ R, ∃nx, n

′
d : nα → nx, (nx, n

′
d) ∈ R, i = id(x := α)} ∪

{(i, exp) | (nx, nd) ∈ R, iter(nd) = exp, ∃nc : nc
control
−−−−→ nx,

i = id(while c do)}

• Finally, the flow report of programC is defined as:

frd(C) =
⋃

nγ∈nodes(g)

frg,d(nγ)

whereg = G(C) and:
frg,d(nγ) =
{flowg,d(nx) ∪

⋃

nc

control−−−−→nγ

flowg,d(nc) γid(γ:=x) | nx ∈ g : nx → nγ}

Note that predicateflow is a simple walk in the graph, whose implementation is
straightforward. Algorithms from Section3.5 can be extended to implement the flow
report generation.

4.4 Pre-load Checker

The pre-load checker is the step responsible for matching the report generated by the
static analyzer with the security labels of the specific system of execution. Each infor-
mation flow from the flow report is checked by verifying the labels of the corresponding
I/O channels. This is done by using the system labeling API. Flows containing only
I/O channels with static labels are validated at this stage,while flows with dynamic la-
beled channels generate checks to be performed by the runtime enforcer. Also, the static
analyzer’s flow report may identify declassification matchings which contain additional
constraints to be checked. The pre-load checker also verifies some of these constraints,
and the ones that need runtime information are included in the runtime checklist.

In order to simplify definitions, two assumptions were made in our mechanism. First,
we consider that every declassification that needs to be checked during runtime isnec-
essary. That is, if the declassification constraints are not satisfied at runtime, then the
program is marked as unsafe without further analysis. This also means that nested de-
classifications do not need to be checked, as the failure of the outermost one will result in
stopping the execution. This assumption can be relaxed by extending our mechanism so
that the runtime checklist contains information of what to do when a declassification fails:
stop the program, still allow it or perform further checks, depending on the labels. In fa-
vor of clarity, we leave such extension for future work. Second, the flow report contains
all inputs that an output canpossiblydepend on. In other words, our runtime enforcement
is not permissive to the point of accepting safe executions of potentially unsafe programs.
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Again, the mechanism can be extended so that runtime checks verify if unsafe branches
are taken or not, but we leave this as future work.

The pre-load checker first translates the elements of the flowreport to their corre-
sponding labels in the target system. Each element in the runtime checklist has the format
(i, check), wherei is a program point andcheck a directive for a specific check to be per-
formed. The possible directives are detailed in Table4.4. The pre-load checker is defined
at the end of this section (Definition4.2), while we first give an intuition of its behaviour
via our examples.

Name Directive
count_iter Count number of iterations of current com-

mand.
eval(exp) Verify validity of expressionexp.
compare_ch(cmd) Checks whether the channel accessed by the

current input command is the same as the chan-
nel relative tocmd.

store_data_label Store data label of current input operation.
store_ch_label Store the label of the input channel accessed by

current input operation.
check_input(pp) Check if label relative to input operation at pro-

gram pointpp is smaller or equal than that of
the current output operation.

set_data_label(label) Set the data label of the current output operation
aslabel.

check_output(label) Check if channel label of current output com-
mand is larger or equal thanlabel.

Table 4.4: Runtime enforcer directives

In Example4.1 (Classification), after the static analyzer does its job, theprogram is
then compiled and the analyzer output is used by the pre-loadchecker just before the
program is executed. The pre-loader translates each I/O operation to its corresponding
label, as shown in Table4.5a. However, notice thatγ9 translates toruntime, which
means that its label can only be checked at runtime (as it depends on the value of variable
addr). Based on this table, a checklist for the runtime enforcer isalso generated, as shown
in Table4.5b. In this example, the checklist basically states that the label of the output
statement of program point 9 needs to be checked and satisfy the constraint of being at
leasthi.

In Example4.2 (Declassification), the pre-load checker must also check the policy
constraints, which are all mappings between input operations on the code and the ones
specified by the policy. These mapping can be checked entirely at this step, as shown in
Table4.6a. Table4.6bshows the translation of the flows to labels. Notice that, although
Definition 4.2states that declassifications are translated to just the policy label when the
check of the constraints does not fail, here we always show all the labels involved in
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Flow Labels
{α4, β8} γ9 {hi, low} runtime

(a) Label translations

Program point Statement Check condition
9 sendSMS(. . .) check_output(hi)

(b) Runtime checklist

Table 4.5: Pre-load checker output for Example4.1

the declassification, for clarity. Recall thatdata stands for a label that is set for each
transmission, as opposed toruntime (used in the previous example) which means that
the whole channel has a single security label, which is knownonly at runtime. Finally, the
runtime checklist is presented in Table4.6c, with 3 items. The first tells the enforcer that
the data label of input operation at program point 4 needs to be stored for further usage.
Then, the second check treats the first flow: the output channel with automatic label must
be labeled according to the inputs it depends on. Thus, the check is for the enforcer to
assign a label to the data sent by that output operation, as the maximum label of all the
inputs it can leak information on, i.e. the maximum betweenlow and the data label of
input at program point 4. Finally, the third check deals withthe second flow: for output
operation of program 9 to be safe, the label relative to inputoperation at program point
4, stored earlier, must be at most as strict as the label of theoutput command of program
point 9 (which islow).

Constraint Status
X1:
(α2, nα) OK
X2:
(α2, nα) OK
(β7, ∗in) OK

(a) Declassification con-
straints

Flow labels
{{high} 7→OK low, data} data

{{high} 7→OK low, data, {high, data} 7→OK low} low

(b) Label translations

Program point Statement Check condition
4 recv(. . .) store_data_label
6 send(. . .) set_data_label(max(in_label(4),low))
9 print(. . .) check_input(4)

(c) Runtime checklist

Table 4.6: Pre-load checker output for Example4.2

Finally, in Example4.3 (Iterative declassification) notice that the static analyzer gen-
erates an iteration counting constraint for the declassification matching (Table4.7a). The
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second constraint denotes that the statement at program point 4 must iterate at least 25
times. Also, notice that this constraint cannot be verified at pre-load time, so the checker
marks this asRT, meaning it needs to be checked at runtime. As for the checklist to be
passed to the runtime enforcer, for the only flow to be safe, the declassification constraints
must be all satisfied. Based on that, the checklist for the runtime enforcer has two items
(Table4.7c): a request for counting the number of times a loop will run, and then using
that number to validate the output operation.

Constraint (X1) Status
(α5, nα) OK

(4, it ≥ 25) RT

(a) Declassification constraints

Flow labels
{{high} 7→RT low} high

(b) Label translations

Program point Statement Check condition
4 while . . . do count_iter
10 output(. . . ) eval(iter_count(4) ≥ 25)

(c) Runtime checklist

Table 4.7: Pre-load checker output for Example4.3

In the definition below, we usef to denote a flow (from the flow report),dc to denote
a declassification within a flow,l for a label andpf for a “partial flow”: i.e. the left-
hand side of a flow, consisting of a set of input statements anddeclassifications. We
usecmd(nd) to return the command relative to policy nodend (obtained from a simple
lookup on the declassification policy mapping table). For a flow f , from(f) andto(f)
return the left-hand side (set of inputs and declassifications) and right-hand side (output),
respectively. The same applies for a declassificationdc, with alsoconstr(dc) denoting
its constraint set. Additionally,label(αi) returns the label of an I/O operation, using
the system labeling API (translatingαi to the corresponding I/O command). Consider
that, when an input statementαi of a flow f is translated to a labell, predicateid(l)
is set with the program pointi of the input statement. Finally, in the definition of the
checklist,typewriter font denotes enforcer directives (and thus treated as constant
symbols), while standard mathematical notation denotes expressions which are actually
evaluated. Functionmax is used over labels in the following way. If the set of input
labels only contain static labels (e.g.low, high), it evaluates to the most strict label
(high). However, if the set includes a dynamic label (data or runtime), it evaluates
to max(in_label(n),m), to be evaluated by the runtime enforcer, wheren is the
program point of the dynamic label andm the max of the static labels.

Definition 4.2 (Pre-load checker). Let C be a program,d a declassification policy and
frd(C) be the flow report for programC using policyd. The pre-load checker is defined
by the following steps:
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1. For each flowf ∈ frd(C), the translation off to security labels is defined as:

lbl(f) = lbl(from(f)) label(to(f))
lbl(pf) =

⋃

αi∈pf

label(αi) ∪
⋃

dc∈pf

lbl(dc)

lbl(dc) =

{

lbl(from(dc)) if check(constr(dc)) = NO

to(dc) if check(constr(dc)) ∈ {OK, RT}
check(X) = max(

⋃

x∈X

check(x))

wheremax orders values as:NO > RT > OK

check(x) =

{

compareChannel(αi, cmd(nd)) if x = (αi, nd)
RT if x = (i, exp)

wherecompareChannel is the function from the system labeling API.

2. The static validation of programC with policyd is defined as:

validate(C, d) ≡ ∀f ∈ frd(C) : validate(f)
validate(f) ≡ ∀l ∈ lbl(from(f)), l 6∈ {runtime, data} : l ⊑ label(to(f))

3. For the non-statically verifiable labels and constraintsof C and d, the runtime
checklist is defined as:

checklist(C, d) = {checklist(f) | f ∈ frd(C)}
checklist(f) =
{(id(l),store_data_label),(id(cmd(to(f))), check_input(id(l)))
| l ∈ lbl(from(f)) : l = data}
∪ {(id(l),store_ch_label),(id(cmd(to(f))), check_input(id(l)))
| l ∈ lbl(from(f)) : l = runtime}
∪ {(id(cmd(to(f))), set_data_label(max(lbl(from(f)))))
| label(to(f)) = data}
∪ {(id(cmd(to(f))), check_output(max(lbl(from(f)))))
| label(to(f)) = runtime}
∪ {(i,count_iter),(id(cmd(to(f))), eval(exp[iter_count(i)/it]))
| (i, exp) ∈ constr(dc), dc ∈ from(f)}
∪ {(i,compare_ch(cmd(nd)))
| (αi, nd) ∈ constr(dc), dc ∈ from(f), check((αi, nd)) = RT}

Aboutdata input channels inside loops.Since our enforcement is not permissive
(i.e. does not accept safe executions of possible unsafe programs), storing labels ofdata
input channels inside loops can cause problems, as the labelwould be overwritten at every
iteration of the loop. To solve this problem without permissiveness, our approach, when
trying to store a pre-existingdata label, replaces the stored one with a “most strict join”
of both. This can lead to imprecise analysis (i.e. over strict), but only in some rare cases:
when adata input channel is read within a loop, with only some of its values (the lower
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labeled) being aggregated together (higher labeled ones being discarded), and then sent
to an output. However, as previously explained, our approach can be extended to be
permissive, ruling out this imprecision.

Algorithm.Algorithm 4.4is a straightforward implementation of the pre-load checker.
Here, consider thatfr(C) is the flow report for programC. Also, when a labell is ob-
tained fromgetChannelLabel(cmd), an entry is made onid(l) representing the original
program point that generated the label. For the entries of the runtime checklist (chklst),
text intypewriter font represents the runtime enforcer directives, here treated as con-
stant strings, whereas text in standardmath notation represents statements that are ac-
tually evaluated by the pre-loader algorithm. Functionmax appears with two different
uses: on lines 13 and 18 it is used to calculate a maximum result for constraint checking,
using the orderingNO > RT > OK; on lines 31 and 33 it is used over labels by the
following: if the set of input labels only contain static labels (e.g.low, high), it evalu-
ates to the most strict label (high); if, however, the set includes a dynamic label (data
or runtime), it evaluates tomax(in_label(n),m), wheren is the program point
of the dynamic label andm the max of the static labels. In the latter case,max will be
evaluated at runtime.

4.5 Runtime Enforcer

The runtime enforcer has a very simple behaviour. As the program is executed, each
check on the checklist is performed as its corresponding program point is achieved. The
runtime enforcer itself is a simple program, containing different functions for each type
of check, and its own state-tracking variables. In this section we consider a Java-based
runtime environment. Thus, our enforcer is a Java class withonly static methods and
parameters. Consequently, only a single instance of the enforcer is instantiated for a
monitored program. Calls to the enforcer class are injected in the target application’s
bytecode, after the pre-load check, just before execution.Here we treat this code injection
as a preliminary step to the runtime enforcement, although it can also be considered a final
stage of the pre-load checker.

Code injection.The approach of injecting calls to the runtime enforcer in the appli-
cation bytecode, just before execution, brings advantagesfor two reasons. First, it keeps
the runtime enforcement stage with minimal overhead, as theinjected code is a simple
method call containing all information needed for that check. This precludes the need for
the enforcer to monitor every single instruction, and to iterate over the different types of
check. Second, it connects the program points calculated bythe static analyzer (over the
source code) with the information available to the runtime enforcer (which works on the
bytecode).

The injection is simple: for each check at the runtime checklist, a call for the en-
forcer to perform such a check is added just before the corresponding program point. We
demonstrate the process via an example: consider a Java implementation of Example4.1,
in Figure4.2. Figure4.3shows a snippet of the corresponding.dex bytecode, compiled
for Android’s Dalvik virtual machine, already with the injected code, identified by the
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Algorithm 4.4: Pre-load checker

1 chklst := ∅;
2 foreachf ∈ fr(C) do
3 fromLbl := ∅;
4 toLbl := getChannelLabel(cmd(to(f)));
5 foreache ∈ from(f) do
6 if e ∈ (In × N) then fromLbl ∪= getChannelLabel(cmd(e));
7 else ife ∈ Declass then
8 cmax := 0;
9 foreachx ∈ constr(e) do

10 if x ≡ (i, exp) then
11 chklst ∪= (i,count_iter);
12 chklst ∪=

(id(to(f)),eval(replace(exp, it,iter_count(i))));
13 cmax := max(cmax, RT);

14 else ifx ≡ (αi, nd) then
15 c := compareChannel(cmd(αi), cmd(nd));
16 if c = RT then
17 chklst ∪= (i,compare_ch(cmd(nd)));

18 cmax := max(cmax, c);

19 if cmax ∈ {OK, RT} then fromLbl ∪= to(e);
20 else foreachαi ∈ from(e) do
21 fromLbl ∪= getChannelLabel(cmd(αi));

22 foreach l ∈ fromLbl do
23 if l = data then
24 chklst ∪= (id(l),store_data_label);
25 chklst ∪= (id(to(f)),check_input(id(l)));

26 else ifl = runtime then
27 chklst ∪= (id(l),store_ch_label);
28 chklst ∪= (id(to(f)),check_input(id(l)));

29 else ifl ⊐ toLbl then return false;

30 if toLbl = data then
31 chklst ∪= (id(to(f)),set_data_label(max(fromLbl)));

32 else iftoLbl = runtime then
33 chklst ∪= (id(to(f)),check_output(max(fromLbl)));
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comment lines. Bold font is used to point the output instruction for which the check is
needed. Note that in the “debug info” of the bytecode, it can be seen that bytecode ad-
dress 0049 (recalculated from its original value, after thecode injection) corresponds to
program point 29, the program point where the output happensin the Java source code.
Here, the checkcheck_output of the enforcer is injected right before the output com-
mand. Since the code injection is a simple (and technology dependent) process, we omit
a detailed specification of it.

... ...
15: static void processContactList() {
16: String [] clist;
17: String contact, text, addr;
18: int counter, age;
19: clist = getContactList();
20: counter = 0;
21: while(hasNext(clist)) {
22: contact = getContact(clist);
23: age = getAge(contact);
24: if(age > 45)
25: counter = counter + 1;
26: }
27: text = "I have " + counter + " contacts over age 45";
28: addr = readFromInput();

29: sendSMS(addr, text);

30: System.out.println(text);
31: }

Figure 4.2: A Java implementation for Example4.1

The enforcer program.The enforcer provides a method for each check type. For each
case, a statement is executed and its result validated. If the statement is not satisfied (i.e.
expression does not hold, or command cannot be executed) then the enforcer halts the
calling thread, and reports the violation. For the considered Java enforcer, each check is
implemented by a method, e.g.check_output(label) is implemented by method
Enforcer .checkOutput(i, c, label), wherei andc are arguments representing the current
program point and command, respectively. For simplicity, we omit a detailed implemen-
tation of the enforcer, but the behaviour of each check is a straightforward implementation
of Table4.4, in the previous section.

4.5.1 Overhead

We have implemented our runtime enforcer in Java, and measured both its processing
and memory overhead, running with applications on an Android device. First, we discuss
the theoretical limits for this overhead, and then we proceed to show our experimental re-
sults. For the memory overhead, the enforcer keeps two buffers,iter_count andin_label,
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|[36c] Example1.processContactList:()V
...

0003e4: 7100 0900 0000| 0034: invoke-static {}, Example1.readFromInput:()Ljava
| /lang/String; // method@0009

0003ea: 0c01 | 0037: move-result-object v1
\\ Begin injected code
0003ec: 1302 1500 | 0038: const/16 v2, #int 21 // #0015

...
000408: 7140 0100 3254| 0046: invoke-static {v2, v3, v4, v5}, Enforcer.checkOu

| tput:(ILjava/lang/String;[Ljava/lang/Object;Ljav
| a/lang/String;)V // method@0001

\\ End injected code

00040e: 7120 0a00 0100| 0049: invoke-static {v1, v0}, Example1.sendSMS:(Ljava/

| lang/String;Ljava/lang/String;)V // method@000a
000414: 6201 0000 | 004c: sget-object v1, java.lang.System.out:Ljava/io/Pr

| intStream; // field@0000
000418: 6e20 0b00 0100| 004e: invoke-virtual {v1, v0}, java.io.PrintStream.pri

| ntln:(Ljava/lang/String;)V // method@000b
00041e: 0e00 | 0051: return-void

| debug info
| line_start: 14
| parameters_size: 0000
| 0000: prologue end
...
| 0049: advance pc

| 0049: line 29
...

Figure 4.3: Dalvik bytecode snippet for code of Figure4.2

which map a program point to an integer and a label, respectively. These buffers can be
implemented either with standard arrays or hash tables. Note that entries on each of the
two buffers point to different types of commands: entries initer_count point to looping
and entries inin_label to input commands. So, a worst-case scenario happens on a pro-
gram made entirely by loops and inputs, all loops being referenced by policies, all inputs
being dynamic, and a single output in the end, with all inputsflowing to it. In this case,
for a program withn commands, exactn− 1 entries are made on the buffers, each using
one memory word (32 or 64-bit). Note that, in practice: (1) the average case tends to
use considerable less memory, e.g. in our 3 examples, the ratios of (number entries/num-
ber commands) were 0/9, 1/9 and 1/10, respectively; and (2) programs tend to use much
more memory for their data than for their code, meaning that the bound ofn entries in the
buffers is usually low.

As for the processing overhead, note that each injected codepiece is a simple call
to one of the enforcer’s methods. These methods, in turn, areimplemented with the ex-
ecution and verification of a simple statement, with no loops. Thus, it is clear that the
enforcer methods have, by themselves, constant complexity, and that the enforcer does
not change the complexity of the monitored program. Once again, the number of checks
added to the program is bounded by the numbern of commands. But most practical cases
do not reach the boundn, since only operations on dynamic I/O channels and declassifica-
tion constraints generate checks. In our 3 examples, the ratios of (number checks/number
commands) were 1/9, 3/9 and 2/10, respectively. It should benoted that, in the classical
definition of a runtime execution monitor [Sch00], the runtime enforcer monitorsevery
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command of the program. Our enforcer, though, does not necessarily need to monitor
every instruction, since the task of identifying instructions that need monitoring is per-
formed by the previous stages of our hybrid approach.

We have implemented Android versions of the three examples of this chapter, plus
a number of benchmarking programs meant to stress the runtime enforcer performance.
Unfortunately, there are only a few proposals for hybrid approaches in literature, and they
all differ not only in how they are measured, but also on theirspecific goals. Thus, there
is not yet a “standard benchmark” for hybrid static-runtimeinformation flow and declas-
sification analysis, making a direct comparison of performance with other approaches not
possible at this moment. Our experiments have the purpose ofshowing that the overhead
of our runtime component is negligible for most practical scenarios.

Each benchmark has a different “profile” for accessing I/O.FileCopyperforms a copy
between files, reading blocks of 1KB at a time. However, each block has adata security
label. Thus, the runtime enforcer has to set the label of eachwrite with the label from
the previous read. This is an example of a program with extreme I/O access, all of which
checked by the runtime enforcer.FileEncryptis the same as the previous, but each block
is encrypted before being written. With this, the program incurs a considerable processing
time between I/O accesses.InfGatherandStatisticsare similar programs, which access
inputs from 10 different sources, and then perform a single output, whose value depends
on all previous inputs. In the former, all input channels have runtime security labels,
which have to be checked during access, and then compared to the output label. In the
latter, labels are static, but violate non-interference. However, some statistical calculation
is done over the data, and a declassification policy allows such computation. Thus, the
runtime enforcer is left to check if the input channels accessed by the program match the
ones described by the policy, and also count the number of input accesses made by the
main loop. Finally,Loopsis a program made by several loops, all of which are small in
size and have their number of iterations counted by the enforcer, presenting an extreme
example of almost every instruction being checked. Java source code for these examples,
as well as for the runtime enforcer implementation can be found in AppendixB.

Each program was executed 50 times with and without the callsto the runtime en-
forcer, and their processing times and memory usage was observed. Figure4.4 presents
the processing times of the programs. Error bars are for confidence intervals of 95%.

Note that only the “extreme” examples incurred a large processing overhead. InFile-
Copy, there is almost no processing between I/O accesses. The enforcer gets the data
label from each input read, and applies it to each output write. Thus, the enforcer nearly
does the same amount of computing as the original program itself. Notice how the en-
forcer overhead becomes minimal when processing is added between the I/O accesses, in
FileEncrypt. A similar thing happens inLoops, where the program is made entirely by
loops, and the enforcer counts number of iterations on all ofthem. This way, the amount
of injected code is large. In all other cases, overhead was almost imperceptible.

Table4.8presents the results for memory usage.AllocCountandAllocSizerepresent
number of memory allocations and used memory size, respectively. Each cell represents
the ratio between the value for running that program with andwithout the enforcer. As
expected, the overhead on used memory is minimal, being at most 1.3%, for theFileCopy
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Figure 4.4: Processing times of experiments

program, in which labels are stored in every I/O access. For programs in which loop
counting is done, the number of memory allocations can increase noticeably with the
enforcer, as seen inStatisticsandLoops. However, since for each loop only an integer is
used to count, the overhead on used memory size is still minimal.
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Program AllocCount AllocSize
Example1 1.012 1.003
Example2 1.019 1.002
Example3 1.000 1.000
FileCopy 1.022 1.013
FileEncrypt 1.000 1.000
InformationGather 1.084 1.000
Statistics 1.253 1.001
Loops 3.413 1.001

Table 4.8: Memory usage ratio of experiments
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CHAPTER 5

Open Problems

In this chapter we discuss some of the open problems left by this thesis. We first discuss
how precise the graph-based PCR implements the expression-matching framework, in
Section5.1. Then we discuss two open problems that arise from PCR analysis: the loop
counting problem in Section5.2 and the algebraic equivalence problem in Section5.3.
In Section5.4 we discuss the implementation of graph-based PCR on a real program-
ming language, such as Java or C++. Finally, in Section5.5we present a future research
question, on how to perform PCR analysis on compiled code, such as assembly language.

Along with the open problems, we also present research ideason how to pursue their
solution. These ideas are however insights, which need to befurther investigated. Thus,
we present them in a discursive manner, without a complete formalization to validate
them, laying the foundation for future work in the field.

This thesis focus on the enforcement of declassification policies, rather than their
specification. Thus, we do not include here open problems related to enhancing the rep-
resentation format of the policies, as we consider this a separated domain of problems.

5.1 Information Path Filtering

As stated before, graph-based PCR safely approximates the expression-matching frame-
work. In other words, if the framework rejects a program, then so does the implementa-
tion. However, the opposite is not true: a program deemed safe by the framework might
be rejected by the implementation. One of the main reasons for this happens due to the
way information paths are calculated: some of them are actually impossible to happen
during execution, and might represent insecure flows of information. In this section we
detail this problem, which we callinformation path filtering.

Consider Example5.1 below, with its corresponding program graph in Figure5.1.
Here, from the code we can easily conclude that the possible values sent to outputγ are
f(α, β) andf(β, α). However, by analyzing the program graph, and recalling information
path calculation from Definition3.8, we can see that the graph-based implementation con-
siders 4 different information paths reaching the node labeled γ: the paths that generate
valuesf(α, α) andf(β, β) are also considered. This is a clear example of the impreci-
sion of the graph-based implementation. Ifα andβ are both secret input channels, and
a declassification policy only allows the release of expressionsf(α, β) andf(β, α), then
the implementation rejects this program, as it assumes thatthe unsafe expressionsf(α, α)
andf(β, β) might eventually be output, which is not true.
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Example 5.1. Imprecision of the implementation:

bool c1 := someCondition();
int x0, y0, r0;

if c1 then
x1 := α;
y1 := β;

else
x2 := β;
y2 := α;

x3 := φc1(x1, x2);
y3 := φc1(y1, y2);
r1 := f(x3, y3);
γ := r1;

Figure 5.1: Program expression graph for Example5.1

A straightforward approach for this problem would be, as thename implies, filtering
the set of information paths prior to analysis, excluding those which are unreachable.
The problem then lies in determining whether or not an information path is reachable.
For the example above, this might look simple, as both nodes labeledx3 andy3 have an
incomingcontrol edge from nodec1. The unreachable information paths are those in
which two nodes receivingcontrol edges from a same third node receiveφ edges with
different indexes, i.e. oneφ1 and the otherφ2. However, some cases might not be so easily
detectable, as we can see in Example5.2. Here, the program graph is mostly the same as
the previous example, with the exception that there are now two conditional variables:c1
andc2. Figure5.2shows the partial program graph relative to these two variables.
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Example 5.2.Non-trivial example of imprecision:

int x0, y0, r0;
double a1 := θ;
a2 := add(a1, 5);
a3 := div(a2, 10);
bool c1 := geq(a3, 15);

if c1 then
x1 := α;

else
x2 := β;

x3 := φc1(x1, x2);
a4 := div(a2, 10);
c2 := geq(a4, 15);

if c2 then
y1 := β;

else
y2 := α;

y3 := φc2(y1, y2);
r1 := f(x3, y3);
γ := r1;

Figure 5.2: Program expression graph for variablesc1 andc2, in Example5.2

Note that the problem is essentially the same. However, someredundant programming
makes it harder to detect the unreachable information pathsjust by inspecting the graph
structure. The key to the problem lies in determining that nodes labeledc1 andc2 hold the
same values, for each information path they are both presentin. Fortunately, our graph
matching mechanism is centered exactly around the notion ofdetermining if two nodes
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hold the same expressions: this is our policy simulation, ofDefinition 3.9. Thus, we can
use policy simulation to determine whether two boolean nodes hold the same expression
in a given information path, and from there determine if the information path takes two
differentφ-edges that consider that same boolean expression to be bothtrue and false,
respectively. These information paths would then be taggedas unreachable. A tentative
definition of an unreachable information path is:

unreachable(p) ≡ ∃na, nb, nc1, nc2, n
′
a, n

′
b ∈ nodes(p) : nc1 ∼p,p nc2, nc2 ∼p,p nc1,

nc1
control
−−−−−→ na, nc2

control
−−−−−→ nb, n

′
a

φi−→ na, n
′
b

φj

−→ nb, i 6= j

With nodes(p) returning the set of nodes connected to the information pathp 1. Note that
since our policy simulation is unidirectional, we need to check for bothnc1 ∼p,p nc2 and
nc2 ∼p,p nc1. The formal validation of such filter is left here as an open problem.

Here we have dealt withif statements, which are one of two statement types in our
language that generateφ-edges in the graph. The other is thewhile statement. This kind
of statement can also cause imprecision in the implementation, but this kind of impreci-
sion is related to the policy representation format. This isdue to the fact that the graph
generates only a single maximal information path for awhile command, and this infor-
mation path captures all possible outcomes of the loop (i.e.not being run, and being run
an arbitrary number of times). Thus, the problem we just discussed for theif statement
do not happen here. What can happen however, is that the framework might specify a set
of declassifiable expressions which only occur when a given loop runs for specific num-
ber of iterations. In the graph-based implementation, boththe policy expression graph
and the matching mechanism are not expressive enough to handle the counting of loop
iterations. This problem, which affects the precision of the implementation, is treated
here as a separated problem, which we name theloop countingproblem, and discuss in
Section5.2.

Example5.2can be made more difficult to analyse if we change how the values held
by variablesc1 andc2 are constructed. For instance, in the example both variables hold the
valueα+5

10
≥ 15. We could, however, make variablec2 hold the value¬(α+5

2×5
< 15). Note

that the values are still equivalent, but just syntactically different. With this, the nodes
labeledc1 and c2 would no longer simulate each other, and the solution we proposed
above would not work. This, however, is an instance of a larger problem, named the
algebraic equivalenceproblem, which also affects the whole graph matching process, and
is discussed in Section5.3. We consider that a solution for this problem would be included
in our definition of policy simulation, thus also treating cases that affect information path
filtering, such as the aforementioned.

Using compiler optimization.Another field of research that can be of great help to
further enhance PCR analysis as a whole is compiler optimization. In fact, the SSA
form that we use to pre-process programs is used as an intermediate representation stage
by many modern compilers. Compiler optimization is able to identify redundancies and
unreachable parts of a code, and this information can be usedduring graph construction in

1Recall here that an information path is a set of edges
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order to avoid representing expressions which are never calculated, thus making it more
precise with respect to the framework. In particular, it canhelp in the following:

• Detecting conditionals which are always true or false. Withthis, graph construction
can skip entire unreachable sub-graphs (when conditionalsare always false), and
turnφ-edges intoplain edges (when conditionals are always true).

• Detecting conditionals which are bound to each other. A boolean variable’s value
might be bound to another, e.g.c2 = ¬c1. Modern compilers often detect and
optimize such situations. In the program graph context, this would simplify e.g.,
if commands nested insidewhile loops, in which both conditionals are bound to
each other.

• Detecting identical assignments done in both branches of a same conditional block.
In our approach, a situation like this would create a controldependency between
the condition and the assigned variable. However, as the assignment is the same
in both branches, no information from the condition can be inferred by observing
the value of the assigned variable, thus making the control dependency imprecise.
Compiler optimization usually treats this scenario by moving the assignment out-
side of (before) the conditional block, solving the imprecision.

Since this thesis is situated within the field of language-based security, we leave in-
tegration with compiler optimization as future work. However, this integration might be
somewhat simple, as compiler optimization can be performedbefore graph construction.
With this, the graph construction rules might remain unchanged, and the pre-optimization
would serve to ensure that the program does not contain certain structures that cause im-
precision, such as the ones cited above.

Using the hybrid enforcer.The information path filtering problem can also be handled
by a runtime enforcer, such as the one we propose in our hybridenforcer. For this, we
could add some extra information in the flow report, keeping track of which values con-
ditionals must satisfy, for each flow to actually happen, andthen have the enforcer keep
track of these conditionals. For example, consider the flow:

{αi, βj} γk

We can then have this flow be extended with the following information:

Flow Conditionals
αi  γk c1 = true, c2 = false

βj  γk c1 = true, c3 = true

The runtime enforcer would then have to keep track of conditionalsc1, c2 andc3. Note
that this extension would come at the cost of an increase on the overhead caused by the
enforcer. Also note that the extension goes in the same direction of making the enforcer
permissive, in the sense of being able to safely execute potentially unsafe programs. We
do not define our enforcer to be permissive for the sake of simplicity, as we discuss in
Section4.4.
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5.2 Loop Iteration Counting

Theloop countingproblem is a consequence of the inability of both the policy representa-
tion format and the matching mechanism to keep track of how many times a loop iterates.
The problem occurs when it is desired to have a declassification policy that describes an
iterative expression, but somehow limits the number of iterations for the expression to be
declassifiable. Consider again Example3.2, on page38. Here, if the program calculates
the average of a single input value, the mechanism will stilldeem it safe, as it complies
with the declassification policy. Thus, it is desirable to have an additional constraint that,
e.g. states that the policy is only applicable if the matching loop iterates a minimum num-
ber of times. This, along with the input-uniqueness restriction, would ensure a proper
disclosure of the average.

This problem only occurs in the implementation, as in the framework the set of de-
classifiable expressions can contain only expressions withthe accepted number of iterated
elements. Thus, a different approach for implementing our expression-matching frame-
work might altogether avoid it. As stated in the previous section, this problem adds to the
imprecision of the implementation.

Graph analysis.One approach is to analyze the node that holds the loop conditional
and try to determine all of its possible values. Consider again Example3.2: here, one can
easily see that the loop iterateslength(α) times. An automated mechanism should inspect
possible values of variablec3. One of these can bec1 = leq(i1, l1) = leq(0, length(α)).
The other is the value of iterative variablec2 = leq(i2, length(α)), with i2 also being iter-
ative. The key to the solution is automatically determiningthati2 begins as 1 and is added
1 at each iteration. Thus, the mechanism could conclude thatthe loop runslength(α)
times, with a similar constraint being applied to the policy. One possible research path to
achieve this is by designing a walk on the graph that builds, for each node, aregular tree
expression[CDG+07] that describes the iterative expressions held by that node. Again,
we leave further investigation of this issue as an open problem.

Using compiler optimization.Again, a possible path for this problem lies in compiler
optimization. Here, the solution would lie in using optimization techniques to find, for
each looping construct, a “loop invariant”, i.e. a set of bounds for the number of times
the loop runs. These bounds would then be included in the program graph, and used
during the matching process. Finding loop invariants is, however, a problem known to be
difficult [SSM04].

Using the hybrid enforcer.The use of a runtime enforcer, such as in our hybrid mech-
anism, renders the problem trivial. As demonstrated in Chapter 4, our runtime enforcer
uses runtime constraints in order to enforce loop iterationcounting. These are specified
along with the declassification policy, and the runtime enforcer counts the number of iter-
ations of the specific loops which are relevant for the matching. The incurred overhead, in
most practical cases, is very small, as demonstrated in Section 4.5.1. This shows that, for
an environment in which using a hybrid system is possible, loop counting is not a difficult
problem.
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5.3 Algebraic Equivalence of Expressions

Thealgebraic equivalenceproblem is related to the fact that expressions might be syntac-
tically different, but semantically equal [HO08]. For instance, the expressione1 = a(b+c)
is the same ase2 = ab + ac. Our current matching mechanism does not account for this
problem. In other words, if a policy allows for the declassification of expressione1 and a
program calculatese2, the program will not match the policy.

Since the framework is theoretical, one can state that the problem does not happen
on it, but rather only in the implementation. However, sincethe framework is based
on expression-matching, we believe that the problem will arise in most (if not any) im-
plementation of it. Different approaches for the implementation might impact on the
complexity of its solution, however.

Term Rewriting Systems.One possible research path for this problem is to design a
term rewriting system (TRS) [KBV01] in order to convert both program and policy graphs
to acanonical form. We believe that such a solution would need the following steps to be
achieved:

1. Design a TRS for the standard logic-arithmetic operationsof a programming lan-
guage. This TRS should be aequational basedTRS in which normal forms are
sums of products of powers, e.g.αβ2+α3γπ + δ(2α+β−5). As the TRS is built upon
an equational specification (ES), then, for every rule in theTRS, there is an expres-
sion in the forme1 = e2. We know that using an algorithm such as Knuth-Bendix
we can transform an equational specification into a TRS. For this, the equational
specification must have an ordering over terms defined, whichcan be the lexico-
graphic ordering over variable names and function symbols.It is known that such
algorithms for building a TRS over an ES build acompleteTRS, that is, a TRS with
both termination and confluence properties. The confluence property also implies
the unique normal form property. These properties are fundamental for the system
to be tractable and applicable.

2. Convert the TRS to aninformation path rewriting system(IPRS). Thus, the system
would make the same modifications of the TRS directly on the information paths2.
Note that this step is not trivial, and that some work is necessary to keep the TRS’s
termination and non-ambiguity (confluence) properties. Notably:

• Since nodes can have an outdegree larger than one, they can match more than
one rule, creating ambiguity. A pre-processing on the information path is
necessary, in which each node is “split” into a number of nodes equal to its
outdegree, each generated node with one outgoing edge, and the same incom-
ing edges of its progenitor. The process should be done in a “bottom-up”
fashion, from outputs to inputs, until it reaches the directchildren of input
nodes. These, which represent distinct input accesses, will not match the rule

2If a policy hasφ-edges outside of cycles, then consider that the policy is also broken into information
paths.
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(as their parents are notvar nodes), and will be the only ones having multiple
outgoing edges.

• Rewriting rules that identify multiple occurrences of a sameinput can only be
applied if the structures on the graph represent the very same input operation,
but not when they represent different accesses on a same channel. That is, two
occurrences ofα1 represent a same ground term (i.e.α1 + α1 = 2α1), while
α2 has to be treated as a different ground term. Thus, since eachimmediate
child of an input node represent a distinct input operation on the graph, the
ground terms of the IPRS are the sets of two nodes and an edge in the form
nα → n.

• Cycles need a special treatment. The straightforward solution should be treat-
ing thecycle roots(i.e. the nodes that receive the twoφ-edges) as “unmatch-
able”. The practical consequence of this is that rules wouldbe able to match
patterns both outside and inside a cycle, but not a pattern that spans both areas.

3. Finally, define how to add new operations to the IPRS, such that it retains its fun-
damental properties (termination and confluence). This also requires some work,
as standard TRS research does not tackle the problem of extending a TRS, whilst
retaining its properties. However, it is important to note that more complex pro-
gramming operations (such asenc, or the authentication ones from Example3.1)
tend to be simpler to be added to the IPRS, as they tend to have very few (or none
at all) equivalence rules.

With this, the IPRS would be used to convert both program and policy graphs to
canonical forms, prior to the matching. Since the solution would work at the matching
process, it would also be applicable for the algebraic equivalence aspect of the information
path filtering. Again, we leave a formalization of this approach as an open problem.

We believe that the solutions for the three aforementioned open problems (information
path filtering, loop counting and algebraic equivalence) would make the implementation
highly precise, with the only “rejected safe programs” being very specific examples of
unreachable code. And even those might be treated by a pre-optimization of the code.

5.4 Graph-Based PCR on a Real Programming Language

A crucial step for the adoption of PCR analysis in industry is applying it to a real pro-
gramming language, such as Java and C++. In this thesis we define the mechanism over
a simple toy language for the sake of simplicity of the definitions. Our toy language is
trivially shown to be Turing complete, and so programs implemented in other languages
can be converted to it. In this section we discuss how can thistoy language be extended to
include constructs of modern programming languages. It is noteworthy that most of these
extensions presentengineering, rather thanresearchproblems, another reason for being
left out of this thesis.

Control-flow constructs.These include statements such asswitch-case, repeat,
do-while, break, continue, goto (to static program labels) and others. Most of
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these statements can be easily supported by our mechanism, as there are known SSA
translation rules that handle these statements, usingφ-functions on control-flow branches,
in similar ways as to howif andwhile statements are treated.

Modularization. These include structures such as procedures, functions andobject-
orientation. We discuss in Section3.6 how to extend our mechanism to support user-
defined functions. That same approach, of generating a sub-graph of the function, and
then using edges for call and return can be applied for most ofsuch cases [RHS95]. In
object-oriented programming, the update of instance variables will result inφ-functions
being used every time such a variable is returned by a method.The same applies for
static and global variables. Again, interprocedural SSA translation rules already ex-
ist [LDB+99, SVKW07] and might be adapted to our framework.

Pointers and arrays. Extensions of SSA to handle arrays and pointers are well-
known [CCL+96, KS98, FKS00], and could be used to support these structures. The
main goal lies in determining how these structures affect the precision of the graph-based
implementation, and how to adjust it in order to to keep it precise. The main concern lies
in arrays with different positions holding values of different security levels. The inclusion
of such structures might incur in the need to extend the program expression graphs.

Unpredictable jumps.Exception control and computedgoto statements (i.e. jump to
arbitrary points of the code) pose bigger challenges. Thesestructures potentially create
implicit flows with larger portions of the code. For instance, using Java and C++ syntax
for exception handling, the code inside acatch block receives an implicit flow of in-
formation from every variable that is read/written within the correspondenttry block.
Extensions of SSA to handle exceptions do exist though [GPF05], but the effect of such
extensions on the precision of our implementation has yet tobe investigated.

Concurrency.Most static analysis techniques have difficulties in supporting concur-
rency. Even though deep characterization and formalization of this aspect is out of the
scope of this thesis, we do know thatφ-functions can be used to join versions of a vari-
able that can be assigned by different threads. With that, wecan keep the soundness of
our graph representation (i.e. each node representing the corresponding variable’s pos-
sible expressions), and analysis can still be adapted to work properly. As with the other
constructs, there are extensions on SSA meant to deal with concurrent programs in more
precise ways [SGW94, LPM99]. Also noteworthy is that concurrency can be treated by
the hybrid enforcer, by having variables which are shared between threads be modeled as
I/O channels of thedata type.

Extensions to standard SSA are known to be more expressive and allow to track more
information about a program. For instance, weak dynamic single assignment form [OK03]
aims to further help the analysis of loop and array based codes for parallel targets. Also,
static single information form (SSI) [Ana99] extends SSA to achieve symmetry for both
forward and reverse dataflow. Since SSA and its extensions are aimed mostly for compiler
construction and code optimization, the applicability of such extensions on information
flow analysis must be further investigated, for each case separately.
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5.5 Policy Controlled Release on Assembly Code

We conclude this chapter with the discussion of a long-term open problem not only for
PCR analysis, but for information flow and declassification analysis as a whole. This
problem, as the section name implies, is the one of performing PCR analysis on low-
level code, such as assembly code. The greatest benefit of such a solution would be a
practical merge of the access control and malware detectionfields. A mechanism that is
able to detect flows of information performed by compiled untrusted programs, supporting
declassification policies, will essentially render obsolete the two aforementioned fields
used by industry today.

Here, a program graph of the assembly code can be built, with memory addresses be-
ing treated like program variables. In fact, there is also research for making SSA form on
assembly code [LG99]. However, the use of assembly code raises some new challenges.

The first problem of such analysis is identifying implicit flows. Since assembly code
lacks the “block structure” of high level programming languages, regions of the code that
depend with a conditional must be found and identified, priorto analysis. As a simple
example, consider both pieces of code in Figure5.3. In this simple example it is clear
to see how compilation to assembly code implies in the loss ofthe original structure that
was present in the high-level code.

if x then
y := 1;

else
y := 2;

z := 3;

(a) High-level program

L1 : bnz r1, L2 % if x 6= 0 goto L2
move r2 <- 1 % y := 1
jmp L3

L2 : move r2 <- 2 % y := 2
L3 : move r3 <- 3 % z := 3

(b) Assembly program

Figure 5.3: Example of source to assembly compilation

A great challenge for such kind of analysis is handling control jumps to statically
unpredictable points of the code. For instance, consider agoto (or jump) command
that takes a memory reference as an argument. If the destination of the jump cannot be
calculated at static time (i.e. it depends on an input command), then the whole code is a
possible target for the jump, thus whichever control dependencies exist with the jumping
instruction will be extended to thewholecode. This is clearly too strict and some form of
new analysis will be needed to tackle this problem.

Some research in bringing information flow control to low-level code already exists,
although still far from reaching the expressive level that PCR achieves with source code.
Some approaches rely on using specially typed assembly languages [BR05, YI06] to guar-
antee non-interference, but this violates our principle ofseparating the analysis from the
code. Also with the aim of simplifying this kind of analysis,Java bytecode has become a
target for information flow analysis [GS05], as it is slightly simpler to analyze than native
machine code. Declassification policies are however not yetsupported, and consequently
neither is the full separation from program and policy that we aim.
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Thus, we believe that the question to be answered with regards to PCR analysis in
assembly code is not (yet)how to do it, but ratherif it can be done. We conclude this
chapter with a new research question, to be answered by future research:

Can the PCR framework be implemented for analysis of assembly code?
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CHAPTER 6

Concluding Remarks

In this thesis we have addressed the problem of information flow and declassification
analysis on legacy and untrusted programs. We recall the research question proposed in
Section1.3:

How to check information flow on legacy, untrusted and mobilecode?

We have answered this question by (i) decoupling declassification analysis from pro-
grams, (ii) designing decidable algorithms for checking declassification and (iii) adapting
these mechanisms to work in multiple systems and with littleto no runtime overhead.

6.1 Contributions

We have proposed 3 related mechanisms for information flow and declassification anal-
ysis, starting with a more theoretical one and ending with a more practical system, each
building upon its predecessor. We start with a purely theoretical framework, then move
to a computable implementation of the framework, and end with an extension of the im-
plementation which works with existing technologies. All proposed mechanisms work on
unannotated code, with declassification policies independent from it, thus satisfying the
necessary conditions to answer the research question.

We have introduced an expression-matchingframeworkthat defines validity of a pro-
gram with respect to the expressions calculated by it. The framework checks all the
expressions a given program can possibly output and checks them against a set of ex-
pressions which are allowed to be declassified (the set ofdeclassifiable expressions). We
formalized a property that states that the program does not reveal any more information
than that specified by such declassifiable expressions. We named this property Policy
Controlled Release (PCR).

We have also developed a high levelimplementationof the framework, which uses
a form of graphs to calculate whether a program satisfies PCR ornot. While the PCR
property that the framework refers to is undecidable, the algorithms we introduce for
implementing it are recursive, with polynomial complexity. Indeed, we show that our
implementation is asafe approximationof the framework, in the sense that some valid
programs can be rejected, but not the opposite. We present a form of graphs to repre-
sent expressions calculated by a program, along with a matching mechanism based on
automata simulation, as well as polynomial algorithms for the whole mechanism.

103
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Finally, we present anextensionof the implementation, in which we combine it with
runtime components to achieve an enforcement mechanism that can be applied to current
technologies and application examples. In order to tackle some aspects of information
flow enforcement that static analysis does not cover, we combine our implementation
with runtime enforcement techniques. We then show that thishybrid solution is not only
able to handle problems that current solutions are incapable of, but also with a negligible
runtime overhead for most cases. We use a mobile platform (Android) as the setting for
our examples. In particular, the hybrid approach achieves afew accomplishments that
current techniques do not: (1) it performs a system independent static analysis, due to
the presence of system-specific labeling system that is decoupled from program and pol-
icy, (2) supports dynamic (runtime) security labels, (3) handles runtime declassification
constraints, and (4) its runtime component is lightweight enough to be implemented on
mobile devices.

Our work takes a first step in a new direction in the information-flow field. We believe
the analysis of legacy and untrusted programs, along with a program-independent, policy-
based declassification mechanism will represent an important step towards bridging the
gap between academic research in the field and its widespreadadoption in industry. In the
rest of this chapter we present limitations of our work, in-depth discussion of some of the
concepts presented in this thesis, and then future work.

6.2 Limitations

We built our mechanism over some simple assumptions: we use asimple imperative toy
language; we define simple algorithms, with the purpose of demonstrating the tractability
of the implementation, but leaving more optimized algorithms out of the scope; and we
leave some operational issues untreated (but discussed). However, we pave the way for
these assumptions to be relaxed, towards a mechanism that will be able to analyze legacy
systems using newly created declassification policies.

Also, as previously mentioned, our graph-based implementation is a safe approxima-
tion of the framework. We discuss in Chapter5 a few cases in which our analysis can
deem a safe program unsafe. However, we do not know how many real programs would
be affected by such imprecision. Also, we do not know if thereis a limit (and what would
that limit be) to the precision that any tractable implementation of the PCR framework
can achieve. In other words: whether or not is it possible to have an implementation of
PCR which is 100% precise.

The concept of declassification requires policies not to be invertible. That is, if a
declassification policy allowsf(α) to be disclosed, in a scenario where anf−1 function
exists, then the policy is actually allowingα to be disclosed. Even if there is some mech-
anism to check if a given function has not been inverted throughout the code, nothing
would prevent the inverse function from being applied outside of the program. This is
a natural requirement for declassification, and we therefore we assume that well-formed
policies do not allow invertible expressions to be declassified.
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6.3 Discussion

Our flow-analysis is termination-insensitive [AHSS08], in the sense that it does not tackle
information flows caused by observing the termination behaviour of the program. An
example is a program which either executes a time consuming operation or quickly ter-
minates, depending on the value of a secret input. By observing when the program ter-
minates one can infer some information about the secret input. We can make the analysis
termination-sensitive either by disallowing while loops under high conditionals or intro-
ducing a flow between the conditional in which the loop is declared to all the output
channels in the program. However, we believe that both theseapproaches are too restric-
tive, resulting in the rejection of many safe programs. Disallowing the while loops under
high conditionals would also make the program dependent on the policy, which is exactly
what we want to avoid. We consider termination and timing channels to be easier to treat
outside of the scope of program analysis, i.e. in the level ofthe operating system, which
can impose limitations on the visibility of execution time and termination of processes.
Thus, we do not deal with termination and timing channels.

Sabelfeld and Sands have defined fourdimensions of declassification[SS05]: what
can be declassified, i.e. which functionf allows α′ = f(α) to be released;where in
the program can declassification happen;whocan perform it; andwhen, in terms of pre-
conditions, can it happen (e.g. data can only be declassifiedif a certain database has at
leastn entries). The policies used by our framework specify the expressions over inputs
that can be declassified, so they address thewhat dimension of declassification. This is
done by automatically detecting which operations are applied over secret data, and de-
termining whether or not the derived data is allowed to be disclosed. Also, our analysis
precludes the need for thewheredimension, since our enforcement matches a policy with
any part of the program that satisfies it. In the case of legacycode, the programs are typi-
cally written without information-flow policies explicitly defined. For untrusted code, we
have sought an approach that provides assurance without requiring to trust the program-
mer. Nevertheless, for cases in which thewheredimension is required, it is straightfor-
ward to specify program points at which a particular policy may be applied by associat-
ing this condition with the policy itself; no code-annotations are required. On the other
hand, utilizing thewheredimension extensively (i.e. determining which parts of thecode
are allowed to declassify) would be contrary to our goal of making the policy program-
independent. It is straightforward to extend our analysis to address thewho dimension
as well, as the system operator can control which policy graphs are used in analyzing the
program based onwhowrote the program and the policies, andwho is going to observe
the outputs from the output channels. Thewhendimension can be easily specified by a
series of pre-conditions to be checked. In our hybrid enforcer, these conditions can also
be checked at runtime, along with the pre-existing runtime checks. It is of note, however,
that this dimension is usually program and/or system dependent, as pre-conditions are
associated with specific states of the program and/or system.
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6.4 Future Work

Our work raises a number of new problems and future work. In Chapter5 we present and
discuss a number of open problems. Graph-based PCR can be madeapplicable to most
real scenarios by becoming more precise through a refinementof its information path
calculation mechanism (Section5.1) and being able to match policies and program points
that calculate expressions which are syntactically different but semantically equivalent,
such asα + α and2α (Section5.3). Also, it could greatly benefit from a solution to
the loop counting problem (Section5.2) that works entirely on the static analyzer level,
which would also further reduce runtime overhead in the hybrid enforcer. Extending our
mechanism to work with a real programming language such as Java or C++ would allow
this kind of analysis to be used in industry (Section5.4).

We believe that open problems are divided into the following3 main paths for future
work in the field:

• Quantify how precise graph-based PCR implements the expression-matching frame-
work, in order to determine how many safe programs could be deemed unsafe. If
this number is not negligible, then either improve the precision of our implemen-
tation or present another, more precise one. In other words,answer the question:
How precisely can the PCR expression-matching framework be implemented, in a
computable fashion?

• Extend both framework and implementation to work on a complete existing pro-
gramming language, such as Java or C++. From that, study the language-dependency
of the approach and answer the question:Can PCR analysis be defined in a language-
independent way?

• Bring the concepts of PCR analysis to a lower level programmingenvironment,
such as bytecode or assembly code. With this, information flow analysis would be
possible to be done in compiled programs, without the need for the correspond-
ing source code. This would greatly enhance the applicability of the analysis, since
many programs are provided only in their compiled form, especially the ones down-
loaded from the Internet from untrusted sources. This wouldallow, for instance,
using information flow to detect malware (viruses, worms, etc.), in a much more
efficient manner than that of current anti-virus technologies, that rely on libraries
of knownmalware. For this, a number of research challenges must be tackled, so
that the following question might be answered:Can the PCR framework be imple-
mented for analysis of assembly code?
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APPENDIX A

Proofs

A.1 Proof of Lemma 2.19

Proof. The proof is by construction. We inductively construct a relationQ between the
two traces such that it is a correspondence. In the base case,if S has zero steps then we
are done by relating〈τ, ω0〉 and〈τ, ω′

0〉. This is true because there are no variables and
ouputs defined yet and the safe inputs correspond sinceπ ≈D π′. In the induction step, a
correspondence relationQ between partial runS of lengthn and partial runS ′ of length
m can be extended to the partial runS.〈on+1, 〈Cn+1, σn+1, π〉〉 of lengthn+1 (if it exists)
and an extension of runS ′ by zero or more steps. When the active commands of both
the runs match, i.e.head(Cn) = head(C ′

m), the relationQ is extended to include the
pair (n + 1,m + 1). We prove thatQ′ = Q ∪ {(n + 1,m + 1)} is still a correspondence
by a straightforward case analysis of the type of the active command. When the active
commands in both the runs do not match, then the commands havelevelH, and the two
runs are extended until they both reach commands with levelL. Extending the corre-
spondence is straightforward in these high regions becausethe nondeclassifiable nature
of the control context makes output impossible and maintanence of state compatibility
hold trivially. The complete proof is as follows:

Case 1:head(Cn) = head(C ′
m). Since our program semantics given in Figure2.1are

deterministic, both runs take a single execution step producingSn+1 = 〈on+1, 〈Cn+1, σn+1,
π〉〉 andS ′

m+1 = 〈o′m+1, 〈C
′
m+1, σ

′
m+1, π

′〉〉. Given(n,m) ∈ Q, we extend the relationQ
with (n + 1,m + 1) obtainingQ′. We have to prove that this extension preserves the
correspondence property. We prove the following cases, based on the structure of the
commandhead(Cn):

• Case (Skip):Cn = C ′
m = skip;C andhead(Cn) = skip. From the semantics

we haveSn+1 = 〈τ, 〈C, σn, π〉〉 andS ′
m+1 = 〈τ, 〈C, σ′

m, π
′〉〉. Since there are no

output actions and the states do not change, it is easily checked that the induction
obligation—Q′ = Q ∪ {(n + 1,m + 1)} is also a correspondence—follows from
the induction hypothesis.

• Case (Input): Cn = C ′
m = x := α;C andhead(Cn) = x := α. From the seman-

tics we haveSn+1 = 〈τ, 〈skip;C, σn+1, π〉〉 andS ′
m+1 = 〈τ, 〈skip;C, σ

′
m+1, π〉〉.

1. Sinceon+1 = o′m+1 = τ , the outputs generated by the two traces do not
change; therefore,o(S0) . . . o(Sn+1) = o(S ′

0) . . . o(S
′
m+1).

117
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2. If cds(x, C,D), then from Proposition2.8 we have thatcds(α,C,D) holds.
Consequently, from the induction hypothesis we know thatIσn

(α) = Iσ′

m
(α)

and thereforeIσn+1
(α) = Iσn

(α) + 1 = Iσ′

m
(α) + 1 = Iσ′

m+1
(α). ThePC

of α remains the same in all the four states. From the induction hypothesis,
we know thatPC σn

(α) = PC σ′

m
(α), and from this the semantics gives us

PC σn+1
(x) = PC σ′

m+1
(x). AlsoEσn+1

(x) = αIσn (α) = αIσ′
m
(α) = Eσ′

m+1
(x).

Therefore,σn+1 ≍(C,D) σ
′
m+1.

3. TheL-contstatements also do not change.

ThereforeQ′ is a correspondence relation.

• Case (Output): Cn = C ′
m = γ := x;C and head(Cn) = γ := x. From

the semantics we haveSn+1 = 〈out(γ, V (Eσn
(x), π)), 〈skip;C, σn+1, π〉〉 and

S ′
m+1 = 〈out(γ, V (Eσ′

m
(x), π′)), 〈skip;C, σ′

m+1, π
′〉〉.

1. Since outputs happen only under declassifiable conditionals, this case can only
occur whensafe(γ, C,D) andsafe(x, C,D), which means thatcds(x, C,D)
anddds(x, C,D). From the induction hypothesis,σn ≍(C,D) σ

′
m. This com-

bines withcds(x, C,D) to give usEσn
(x) = Eσ′

m
(x). It now follows from

dds(x, C,D) that public(Eσn
(x), D). It then follows fromπ ≈D π′ and

Lemma2.11 that V (Eσn
(x), π) = V (Eσ′

m
(x), π′). Therefore the outputs in

both the transitions are the same.

2. Since none of the inputs or variables changed, the relevant parts ofσn+1

andσ′
m+1 remain the same. Only theO andPC of the outputγ change.

Oσn+1
(γ) = Oσn

(γ)∪V (Eσn
(x), π) andOσ′

m+1
(γ) = Oσ′

m
(γ)∪V (Eσ′

m
(x), π′).

PC σn+1
(γ) = PC σn

(γ)∪PC σn
(x) andPC σ′

m+1
(γ) = PC σ′

m
(γ)∪PC σ′

m
(x).

From the observations in the first item, we haveOσn+1
(γ) = Oσ′

m+1
(γ) and

PC σn+1
(γ) = PC σ′

m+1
(γ). Consequentlyσn+1 ≍(C,D) σ

′
m+1.

3. TheL-contcommands remain the same.

ThereforeQ′ = Q ∪ {(n+ 1,m+ 1)} is a correspondence relation.

• Case (Assign): Cn = C ′
m = x := f(y1, . . . , yk);C and head(Cn) = x :=

f(y1, . . . , yk). From the semantics we haveSn+1 = 〈τ, 〈skip;C, σn+1, π〉〉 and
S ′
m+1 = 〈τ, 〈skip;C, σ

′
m+1, π

′〉〉.

1. Sinceon+1 = o′m+1 = τ and from induction hypothesiso(S0) . . . o(Sn) =
o(S ′

0) . . . o(S
′
m), we haveo(S0) . . . o(Sn+1) = o(S ′

0) . . . o(S
′
m+1).

2. If cds(x, C,D), then from Proposition2.8it follows thatcds(y1, C,D)∧ . . .∧
cds(yk, C,D). From the induction hypothesis,(Eσn

(y1) = Eσ′

m
(y1))∧ . . . ∧

(Eσn
(yk) = Eσ′

m
(yk)) and thereforeEσn+1

(x) = f(Eσn
(y1), . . . ,Eσn

(yk)) =
f(Eσ′

m
(y1), . . . ,Eσ′

m
(yk)) = Eσ′

m+1
(x).
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• Case (Phi):Cn = C ′
m = x := φc(a, b);C andhead(Cn) = φc(a, b). From the se-

mantics we haveSn+1 = 〈τ, 〈skip;C, σn+1, π〉〉 andS ′
m+1 = 〈τ, 〈skip;C, σ

′
m+1,

π′〉〉.

1. The first part of the proof of this case is similar to part (1)of the proof ofCase
(Input).

2. If cds(x, C,D), then from Proposition2.8 we also know thatcds(c, C,D),
cds(a, C,D) andcds(b, C,D). From the induction hypothesis we know that
Eσn

(c) = Eσ′

m
(c) and therefore the same expression is assigned tox in both

cases. Also from the induction hypothesisEσn
(a) = Eσ′

m
(a) andEσn

(b) =
Eσ′

m
(b); consequentlyEσn+1

(x) = Eσ′

m+1
(x). Similarly, we havePC σn+1

(x) =
PC σ′

m+1
(x).

• Case (Depends):Cn = C ′
m = depends(θ, c);C andhead(Cn) = depends(θ, c).

From the semantics we have thatSn+1 = 〈τ, 〈skip;C, σn+1, π〉〉 andS ′
m+1 =

〈τ, 〈skip;C, σ′
m+1, π

′〉〉. If cds(θ, C,D), then from Proposition2.8 we know that
cds(c, C,D). Thus from the induction hypothesis we havePC σn

(c) = PC σ′

m
(c)

andPC σn
(θ) = PC σ′

m
(θ) and consequentlyPC σn+1

(θ) = PC σ′

m+1
(θ).

• Case (If): Cn = C ′
m = if c then Cthen else Celse;C and head(Cn) =

if c then Cthen else Celse. From the semantics we have thatSn+1 = 〈τ, 〈Cn+1,
σn, π〉〉 andS ′

m+1 = 〈τ, 〈C
′
m+1, σ

′
m, π

′〉〉.

1. Whencds(c, C,D) holds, from our induction hypothesis we haveEσn
(c) =

Eσ′

m
(c) and consequentlyV (Eσn

(c), π) = V (Eσ′

m
(c), π′). Therefore, in this

case both the traces take the same branch andCn+1 = C ′
m+1.

2. Whencds(c, C,D) does not hold,Cn+1 may not be equal toC ′
m+1. However,

by definition ofΓ in this case, we haveL-cont(Cn+1) = L-cont(C ′
m+1) =

L-cont(C).

Since, additionally, the state, the environment, and the output do not change, we
have the fact thatQ′ = Q ∪ {(n+ 1,m+ 1)} is a correspondence.

• Case (While): Cn = C ′
m = while C ; c do Cwhile;C and head(Cn) =

while C ; c do Cwhile. The proof for thewhile case is similar to that of the
if, except that whencds(c, C,D) does not hold,L-cont(Cn+1) = L-cont(Cn) =
L-cont(C ′

m) = L-cont(C ′
m+1).

Case 2:head(Cn) 6= head(C ′
m). Notice that we enter this case only afterCase (If)

or Case (While)is encountered in Case 1 and the variable representing the conditional
expressionc is not in cds. Since our program is safe, the output statements cannot oc-
cur inside a conditional expression that is not incds. Therefore, neitherhead(Cn) nor
head(C ′

m) is an output statement. Therefore, we can also note thaton = o′m = τ . Sim-
ilarly, any variables and inputs that are modified by these commands are not incds. In
particular, this means that we have〈Cn, σn, π〉

τ
−→ 〈Cn+1, σn+1, π〉 and〈C ′

m, σ
′
m, π

′〉
τ
−→
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〈C ′
m+1, σ

′
m+1, π〉. There are now two subcases, depending on whetherΓ(head(Cn+1)) is

H orL.

1. WhenΓ(head(Cn+1)) = H, we letQ′ = Q∪{(n+1,m)} and show thatQ′ is a cor-
respondence. For this, we observe that sinceQ is a correspondenceσn ≍(C,D) σn+1.
This follows from the above discussion that none of the modified variables or in-
puts inside a command that is typedH arecds. From induction hypothesis we have
σn ≍(C,D) σ

′
m. Therefore, by Lemma2.17we haveσn+1 ≍(C,D) σ

′
m. Since from

the induction hypothesiso(S0) . . . o(Sn) = o(S ′
0) . . . o(S

′
m) and sinceon+1 = τ ,

o(S0) . . . o(Sn+1) = o(S ′
0) . . . o(S

′
m). Γ(head(Cn+1)) = Γ(head(C ′

m)) = H.
L-cont(Cn+1) = L-cont(Cn) and therefore from the induction hypothesis and tran-
sitivity we haveL-cont(Cn+1) = L-cont(C ′

m). Therefore the new relationQ′ is a
correspondence.

2. WhenΓ(head(Cn+1)) = L, we letQ′ = Q∪ {(n,m+1), . . . , (n,m+ i)} ∪ {(n+
1,m + i + 1)} such that for eachj ∈ {m + 1, . . . ,m + i}, Γ(head(Cj)) = H
and Γ(head(Cm+i+1)) = L. Consequently, we haveoj = τ for j ∈ {m +
1, . . . m + i + 1} and therefore each ofo(S ′

0) . . . o(S
′
j) = o(S ′

0) . . . o(S
′
m). From

induction hypothesiso(S0) . . . o(Sn) = o(S ′
0) . . . o(S

′
m). Therefore, we have that

o(S0) . . . o(Sn) = o(S ′
0) . . . o(S

′
j) for eachj ∈ {m + 1, . . . ,m + i + 1}. The

(output-equivalence) is preserved inQ′. Similar to the first case, none of the modi-
fied variables or inputs in the partial runsS ′

m . . . S ′
m+i+1 or SnSn+1 arecds. There-

fore σn ≍(C,D) σn+1 andσ′
m ≍(C,D) σ′

j for eachj ∈ {m + 1, . . . ,m + i + 1}.
From induction hypothesis we haveσn ≍(C,D) σ

′
m. Therefore, by Lemma2.17we

haveσn ≍(C,D) σ′
j for j ∈ {m + 1, . . . ,m + i} andσn+1 ≍(C,D) σ′

m+1. From
the induction hypothesis we know that(n,m) ∈ Q andQ is a correspondence re-
lation. ThereforeL-cont(Cn) = L-cont(C ′

m) = Cn+1, since from our assumption
we know thathead(Cn+1) is the first command typedL. We also have the fact that
Γ(head(Cn)) = Γ(head(C ′

m+1)) = . . . = Γ(head(C ′
m+i)) = H, but theL-contof

each of these configurations remains constant. SoL-cont(Cn) = L-cont(C ′
m+1) =

. . . = L-cont(C ′
m+i) = Cn+1. Taking all these facts into consideration,Q′ is a

correspondence.

A.2 Proof of Theorem3.6

To prove this theorem we use the following lemmas and notation: we writeC ≦ C ′ if C
is a subterm ofC ′ or if C is skip. In this context we useC ≡ C ′ to denote synctatic
identity. Since the theorem is not affected by control context annotations on the graph,
we omit theu index when we refer to theG function.

Lemma A.1. If 〈C0, σ0, π0〉 →
∗ 〈C1;C2; ...;Cn, σ, π〉 with Ci non-compositional, then

Ci ≦ C0 (for i = 1, . . . , n).
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Proof. By inspecting the semantics one sees that any transition〈C, σ, π〉
o
−→ 〈C ′, σ′, π′〉

replaces the componenthead(C) by skip (rules (Input), (Output), (Assign), (Phi), (De-
pends)) or a subterm of the head (rules (If), (While), (Skip)). The remaining components
remain unchanged (rule (Seq)). The lemma follows directly.

Lemma A.2. If C ≦ C ′ thenG(C) - G(C ′).

Proof. We show monotonicity ofG by a straightforward induction on the structure of the
programC ′.

Case 1: If C ′ is skip or x := α or γ := x or x := y or x := f(y1, . . . , yk) or
x := φc(a, b) or depends(θ, c) thenC ≡ skip or C ≡ C ′. Thus, from the definition of
G, it is clear that eitherG(C) ≃ ∅ orG(C) ≃ G(C ′).

Case 2: If C ′ is C1 ; C2, if c then C1 else C2 or while C1 ; c do C2 then
C ≡ C ′, C ≦ C1 or C ≦ C2. If C ≡ C ′ then [def. G] G(C) ≃ G(C ′). If C ≦ Ci,
for i = {1, 2}, then by the induction hypothesis we have thatG(C) - G(Ci). But by the
definition ofG we know thatG(Ci) - G(C ′). Thus,G(C) - G(C ′).

Lemma A.3. For a starting programC0 such that〈C0, σ0, π0〉 →
∗ 〈C, σ, π〉 and any

transition 〈C, σ, π〉 → 〈C ′, σ′, π′〉 with head(C) ≦ C0 andP (σ,G(C0)) we have that
P (σ′, G(C0)) holds.

Proof. We use induction on the derivation of the transition. (Note that only (Seq) repre-
sents a step, all other cases are base cases.)

Case (Seq):ThenC ≡ C1;C2 for someC1, C2 and 〈C1, σ, π〉
o
−→ 〈C ′

1, σ
′, π′〉. As

head(C1) ≡ head(C) ≦ C0 andP (σ,G(C0)), we apply the induction hypothesis for this
transition, to give usP (σ′, G(C0)).

Cases (Skip),(While),(If):Thenσ′ = σ soP (σ′, G(C0)).
Case (Depends):ThenC ≡ depends(θ, c) for someθ, c andσ′ = σ except for compo-

nentPC on θ. Thus we need to show (forPPC(σ
′, G(C0))) that(θ, type(θ)) is in G(C0)

andPCσ′(θ) ⊆ cexp(nθ).

• Note thatdepends(θ, c) ≡ head(C) ≦ C0 thus nθ, nc ∈ [def. G] G(C) and
G(C) - [lemmaA.2] G(C0).

• PCσ(θ) ⊆ [hyp.PPC(σ,G(C0))] cexp(nθ).

• Note that(nc, nθ, t) ∈ G(depends(θ, c)) - G(C0) (namely witht = control)
thusPCσ(c) ⊆ [hyp.PPC(σ,G(C0))] cexp(nc) ⊆ [def. cexp] cexp(nθ).

• Note that(nc, nθ,control) ∈ G(C0) therefore{Eσ(c)} ⊆ [hyp.PE(σ,G(C0))]
exp(nc) ⊆ [def. cexp] cexp(nθ).

Case (Phi):ThenC ≡ x := φc(a, b) for somex, c, a, b andσ′ = σ except for com-
ponentsPC andE on x. The reasoning forPPC given the change toPC is as for case
(Depends) above. ForPE(σ

′, G(C0)) we need to show that(x,var) is in G(C0) and
Eσ′(x) ∈ exp(nx).
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• Note that(x := φc(a, b)) ≡ head(C) ≦ C0 thus (x,var) ∈ [def. G] G(C) -
[lemmaA.2] G(C0).

• Note thatEσ′(x) = EV (φc(a, b), σ) is eitherEσ(a) orEσ(b). As there existsu1 and
u2 such that(na, nx, φ1, u1) and(nb, nx, φ2, u2) (definition ofG, LemmaA.2) are
in G(C0) we have{Eσ(a), Eσ(b)} ⊆ exp(nx) from the assumptionPE(σ,G(C0)).

Case (Assign):ThenC ≡ x := f(y1, . . . , yk) for somex, f, y1, . . . , yk andσ = σ′

except for componentsE andPC onx. The reasoning forPPC given the change toPC
is similar to (but slightly simpler than, as there is no condition) that for case (Depends).
ForPE we need to show that(x,var) is inG(C0) andEσ′(x) ⊆ exp(nx).

• Note that(x := f(y1, . . . , yk)) ≡ head(C) ≦ C0 thus(x,var) ∈ [def. G] G(C) -
[lemmaA.2] G(C0).

• Note thatEσ(yi) ⊆ exp(nyi) and(yi, x, fi, u) ∈ edges(G(C0)) (for i = 1 . . . , k and
someu) thus{f(Eσ(y1), . . . , Eσ(yn))} ⊆ [def. exp] exp(nx).

Case (Output):ThenC ≡ γ := x for someγ, x andσ = σ′ except for components
O andPC onγ. The reasoning forPPC is again the same. ForPO we need to show that
(γ,out) ∈ G(C0) andOσ(γ) ∪ {Eσ(x)} ⊆ exp(nγ).

• Note that(γ := x) ≡ head(C) ≦ C0 thus we have that(γ,out) ∈ [def. G] G(C) -
[lemmaA.2] G(C0).

• The assumptionPO(σ,G(C0)) already givesOσ(γ) ⊆ exp(nγ) whilePE(σ,G(C0))
gives{Eσ(x)} ⊆ exp(nx) ⊆ [ (nx, nγ , t) ∈ G(C0), def.exp ] exp(nγ).

Case (Input):ThenC ≡ x := α for somex, α andσ = σ′ except for componentsE
andPC onx andI onα. The reasoning forPPC andPE is as before. ForPI(σ

′, G(C0))
we need to show that(α,in) ∈ G(C0). As (x := α) ≡ head(C) ≦ C0 and(α,in) ∈
G(C) this is direct from LemmaA.2.

We can now give the proof of the theorem:

Proof. By induction on the length of the (sub)trace we show that if:

〈C0, σ0, π0〉 →
∗ 〈C, σ, π〉

in which →∗ represents zero or more steps taken in the operational semantics, then
P (σ,G(C0)).

Base: For the case of zero steps taken from the initial configuration is trivial as no
variable is yet defined inE , O andPC , and I (α) = 1 for all input channelsα thus
P (σ0, G(C0)).

Step: For the step, consider any (sub) trace

〈C0, σ0, π0〉 →
∗ 〈Cn−1, σn−1, πn−1〉 → 〈Cn, σn, πn〉

with P (σn−1, G(C0)). Then, by LemmaA.1 we have thathead(Cn−1) ≦ C0. Thus, using
LemmaA.3 we getP (σn, G(C0)).
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A.3 Proof of Theorem3.13

For this theorem, we first present a supporting definition andtwo supporting lemmas.

Definition A.4 (Well-formed graph). An expression graph is said to be well-formed if:

1. Eachvar node has its set of incoming edges composed of either:

(a) Exactly oneplain edge.

(b) k edges labeledfi, i = 1..k, for functionf with k arguments.

(c) Exactly 2φ edges (φ1 andφ2) and onecontrol edge.

2. Eachout node has its set of incoming edges composed of 0 or moreplain edges
and, if a non-zero number of these exist, additionally 0 or more control edges.

3. Eachin node has its set of incoming edges composed of 0 or morecontrol
edges.

4. Eachconst node has indegree equals to zero.

5. Nodes of typesvar andconst have their set of outgoing edges composed of 0 or
more edges, of any type.

6. Eachin node has its set of outgoing edges composed of 0 or moreplain edges.

7. Eachout node has outdegree equal to zero.

Lemma A.5. For a well-formed graph, ifn′ (
τ
−→)∗ n thenexp(n′) ⊆ exp(n).

Proof. Definition of well formed graph guarantees that a node with anincomingτ edge
is either an output or a variable node. The definition ofexp then directly gives that if
n′ τ
−→ n thenexp(n′) ⊆ exp(n). Simple induction on length of the sequence ofτ steps

gives the result.

Lemma A.6. For a well-formed graph we have that if(ni)i=1...k(
τ
−→)∗

fi−→ n′(
τ
−→)∗n and

ei ∈ exp(ni) thenf(ei, . . . , ek) ∈ exp(n).

Proof. By LemmaA.5 it is sufficient to show that if for some immediate predecessors of

n, n′i(i = 1..k), we have(n′i)i=1...k
fi−→ n andei ∈ exp(ni) thenf(ei, . . . , ek) ∈ exp(n).

As n must be avar node (DefinitionA.4) this is directly clear from the definition of
exp.

Now we can present the proof of the Theorem:
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Proof. Note that we can constructexp as the unionexp(n) =
⋃

m∈N exp
m(n) with

expm(n) the monotonically growing sequence given by (only possiblenodes on the pro-
gram graph shown):

exp0 = ∅
expm+1(nN) = {N}
expm+1(nα) = {αi | i ∈ N}
expm+1(nγ) =

⋃

n′→nγ

expm(n′)

expm+1(nx) =

Ψnx





⋃

n′
τ−→nx

expm(n′)

∪ {f(e1, . . . , ek) | ∀n1, . . . , nk : ni fi−→ nx ∧ ei ∈ expg(n
i)}





Because any element ofexp(n) is introduced toexpm(n) at some finite stagem, it is
sufficient to show that for allm we have:

∀n, n′ : (n, n′) ∈ R ⇒ expm(n) ⊆ exp(n′) (A.1)

which is done by induction onm. For m = 0 there is nothing to prove. Assume for-
mula A.1 holds for somem ∈ N. We now show this property also holds form + 1 by
treating the four possible types of noden:

nN Assume(nN , n
′) ∈ R thennN ≃ n′. Thusn′ is a constant node with labelN or ∗.

This givesN ∈ exp(n′). But then:

expm+1(nN) = {N} ⊆ exp(n′)

nα The same as the previous case.

nγ Assume(nγ , n
′) ∈ R andn1, . . . , nk are the nodes that can reachnγ (i.e.,ni → nγ)

thennγ ≃ n′ (and thus the type ofn′ is alsoout) and there exist nodesn′1, . . . n′k

such that(ni, n′i) ∈ R (i = 1..k) andn′i (
τ
−→)∗ n′. But then:

expm+1(nγ) = (def.exp)
⋃

i=1..k exp
m(ni)

⊆ (ind.hyp.)
⋃

i=1..k exp(n
′i)

⊆ (lemmaA.5) exp(n′)

nx Assume(nx, n
′) ∈ R. First, we need to show that for sets of expressionsS andS ′,

we have thatS ⊆ S ′ ⇒ Ψnx
(S) ⊆ Ψn′(S ′). But sinceΨ is a filter, its monotonicity

is trivial, i.e. Ψn(S) ⊆ Ψn(S
′), for somen. With that, we only have to show that

Ψnx
(S) ⊆ Ψn′(S). We have thatnx ∼g,d n′, thus from Definitions3.9and3.3we

conclude that∀α : (α, n′) ∈ uni(d) ⇒ (α, nx) ∈ uni(g). It follows from (def.Ψ)
thatΨnx

(S) ⊆ Ψn′(S). Now we proceed to show thatexpm(nx) ⊆ exp(n′). The
case wheren′ τ

−→ n is the same as the previous case. Assumen1, . . . , nk are the
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nodes that can reachnx by anf step (ni fi−→ nx), thenn′ is also of typevar and

there exist nodes(ni, n′i) ∈ R and(n′i)i=1,,k
f
⇒ n′. But then:

expm+1(nx) = (def.exp) {f(e1, . . . , ek) | ei ∈ expm(ni) (for i = 1..k)}
⊆ (ind.hyp.){f(e1, . . . , ek) | ei ∈ exp(n′i) (for i = 1..k)}
⊆ (lemmaA.6) exp(n′)

A.4 Proof of Theorem3.15

Proof. For all 3 cases, we do the following: we apply Theorem3.6on the first component
of the LHS; use definitions ofdds andcds to unfold the second component of the LHS;
and unfold definition ofpublic on the RHS. The resulting equation, on all cases, will be a
variation of Theorem3.13, and thus proved the same way.

A.5 Proof of Theorem3.21

Proof. Items 1 and 2 of Definition3.17are achieved by Definition3.18and Lemma3.20,
respectively. For item 3, we basically have to show that, forsome programC and policy
d:

valid(G(C), d)⇒ valid(C, int(d))

Unfolding the definitions ofvalid , safe, valid andsafe, we have:

∀nγ ∈ nodes(G(C)) : dds(nγ, G(C), d) ∧ cds(nγ , G(C), d)⇒
∀γ ∈ Out : dds(γ, C, int(d)) ∧ cds(γ, C, int(d))

However, by the definition ofG and Theorem3.6, we know that every nodenγ ∈
nodes(G(C)) represents an output channelγ ∈ Out. Thus, we can remove the quantifiers
on both sides of the equation:

dds(nγ, G(C), d) ∧ cds(nγ, G(C), d)⇒ dds(γ, C, int(d)) ∧ cds(γ, C, int(d))

Now, we use Theorem3.15on the left side of the equation:

∀σ ∈ states(C), e ∈ Oσ(γ), e
′ ∈ PC σ(γ) : public(e, d) ∧ public(e′, d)⇒

dds(γ, C, int(d)) ∧ cds(γ, C, int(d))

Unfolding the remaining definitions ofdds andcds on the program we have:

∀σ ∈ states(C), e ∈ Oσ(γ), e
′ ∈ PC σ(γ) : public(e, d) ∧ public(e′, d)⇒

∀σ ∈ states(C), e ∈ Oσ(γ), e
′ ∈ PC σ(γ) : public(e, int(d)) ∧ public(e′, int(d))

Finally, we remove the quantifiers common to both sides to obtain:

public(e, d) ∧ public(e′, d)⇒ public(e, int(d)) ∧ public(e′, int(d))

which is Lemma3.19.
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APPENDIX B

Source Code

In this Appendix we include the source code of experiments performed in Section4.5.1.
Note that source code is sanitized for readability. For instance, preamble of files, contain-
ing lists ofimport directives are omitted. We present the source code of all benchmark
examples used, as well as the simple runtime enforcer implementation. On the bench-
mark examples, code comments identify lines that were included during code injection.
Enforced and non-enforced versions of the benchmarks differ only by those lines. Fi-
nally, note that the implementation of the runtime enforceraims for simplicity, and its
performance can be improved in a number of ways.

Example 1

1 pub l i c c l a s s Example1 {
2
3 void p r o c e s s C o n t a c t L i s t ( )throws Excep t i on {
4 S t r i n g [ ] c l i s t ;
5 S t r i n g c o n t a c t , t e x t , addr ;
6 i n t coun te r , age ;
7
8 c l i s t = g e t C o n t a c t L i s t ( ) ;
9 c o u n t e r = 0 ;

10
11 f o r ( i n t i =0 ; i < c l i s t . l e n g t h ; i ++) {
12 c o n t a c t = c l i s t [ i ] ;
13 age = getAge ( c o n t a c t ) ;
14
15 i f ( age > 45) c o u n t e r ++;
16 }
17
18 t e x t = " I have " + c o u n t e r + " c o n t a c t s over age 45 . " ;
19
20 addr = readFromInpu t ( ) ;
21 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
22 Runt imeEnfo rce r . checkOutpu t (21 , Example1Enforced .c l a s s. getMethod ( "

sendSMS " , S t r i n g .c l a s s , S t r i n g .c l a s s) , new Objec t [ ] { addr , t e x t } ,
new Labe l ( " h i " , 10) ) ;

23 sendSMS ( addr , t e x t ) ;
24 }
25
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26 S t r i n g [ ] g e t C o n t a c t L i s t ( ) throws Excep t i on {
27 Ar rayL i s t < S t r i n g > c o n t a c t s =new Ar rayL i s t < S t r i n g > ( ) ;
28 Scanner s =new Scanner (new F i l e ( C o n s t a n t s . FILE_PATH + " c o n t a c t s .

ex1 " ) ) ;
29
30 whi le ( s . hasNext ( ) ) c o n t a c t s . add ( s . nex tL i ne ( ) ) ;
31
32 s . c l o s e ( ) ;
33
34 S t r i n g [ ] con tA r ray = new S t r i n g [ c o n t a c t s . s i z e ( ) ] ;
35 con tA r ray = c o n t a c t s . t oA r ray ( con tA r ray ) ;
36 re turn con tA r ray ;
37 }
38
39 i n t getAge ( S t r i n g c o n t a c t ) {
40 re turn I n t e g e r . p a r s e I n t ( c o n t a c t . s u b s t r i n g ( c o n t a c t . l a s t I n d ex O f ( ’ ’ )

+1) ) ;
41 }
42
43 S t r i n g readFromInpu t ( )throws Excep t i on {
44 Scanner s =new Scanner (new F i l e ( C o n s t a n t s . FILE_PATH + " a d d r e s s . ex1

" ) ) ;
45 S t r i n g a d d r e s s = s . nex tL i ne ( ) ;
46 s . c l o s e ( ) ;
47
48 re turn a d d r e s s ;
49 }
50
51 pub l i c vo id sendSMS ( S t r i n g addr , S t r i n g t e x t )throws Excep t i on {
52 B u f f e r e d W r i t e r ou t =new B u f f e r e d W r i t e r (new F i l e W r i t e r (new F i l e (

C o n s t a n t s . FILE_PATH + " o u t p u t . ex1 " ) ) ) ;
53 ou t . w r i t e ( "SMS s e n t \ n " ) ;
54 ou t . w r i t e ( "To : " + addr + " \ n " ) ;
55 ou t . w r i t e ( " Con ten t : " + t e x t + " \ n " ) ;
56 ou t . c l o s e ( ) ;
57 }
58
59 pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws Excep t i on {
60 new Example1 ( ) . p r o c e s s C o n t a c t L i s t ( ) ;
61 }
62 }

Example 2

1 pub l i c c l a s s Example2 {
2
3 pub l i c vo id run ( ) throws Excep t i on {
4 S t r i n g secureConn , myLoc , myTz , o the rTz ;
5
6 secureConn = secConnec t ( " o t h e r h o s t . somewhere . com" ) ;
7 myLoc = g e t L o c a t i o n ( ) ;
8 myTz = t imezone ( myLoc ) ;
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9 o the rTz = recv ( secureConn ) ;
10 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
11 Runt imeEnfo rce r . s t o r e D a t a L a b e l (14 , o the rTz ) ;
12
13 i f ( myTz . e q u a l s ( o the rTz ) ) {
14 S t r i n g p a c k e t = "ACK" ;
15 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
16 Runt imeEnfo rce r . s e t D a t a L a b e l (20 , packe t ,new Labe l ( " low " , 1 ) ) ;
17 send ( packe t , secureConn ) ;
18 S t r i n g o the rLoc = recv ( secureConn ) ;
19 boolean nea r = i s N e a r ( myLoc , o the rLoc ) ;
20 i f ( nea r ) {
21 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
22 Runt imeEnfo rce r . c h e c k I n p u t (25 ,t h i s . g e t C l a s s ( ) . getMethod ( " p r i n t

" , S t r i n g . c l a s s) , new Objec t [ ] { " Host i s nearby ! " } , 14) ;
23 p r i n t ( " Host i s nearby ! " ) ;
24 }
25 }
26 }
27
28 pub l i c S t r i n g secConnec t ( S t r i n g addr )throws Excep t i on {
29 B u f f e r e d W r i t e r ou t =new B u f f e r e d W r i t e r (new F i l e W r i t e r (new F i l e (

C o n s t a n t s . FILE_PATH + " c o n n e c t i o n . ex2 " ) ) ) ;
30 ou t . w r i t e ( " Secure connec t w i th h o s t : " + addr + " \ n " ) ;
31
32 Scanner s =new Scanner (new F i l e ( C o n s t a n t s . FILE_PATH + " key . ex2 " ) ) ;
33 S t r i n g key = s . nex tL i ne ( ) ;
34 s . c l o s e ( ) ;
35
36 ou t . w r i t e ( "Key : " + key + " \ n " ) ;
37 ou t . c l o s e ( ) ;
38
39 re turn C o n s t a n t s . FILE_PATH + " c o n n e c t i o n . ex2 " ;
40 }
41
42 pub l i c S t r i n g g e t L o c a t i o n ( ) throws Excep t i on {
43 Scanner s =new Scanner (new F i l e ( C o n s t a n t s . FILE_PATH + " l o c a t i o n .

ex2 " ) ) ;
44 S t r i n g l o c = s . nex tL i ne ( ) ;
45 s . c l o s e ( ) ;
46
47 re turn l o c ;
48 }
49
50 / / s i m u l a t i n g t h e k ind o f compu ta t i on per fo rmed by t h i s t y p eo f

f u n c t i o n
51 pub l i c S t r i n g t imezone ( S t r i n g l o c ) {
52 double l on = Double . pa rseDoub le ( l o c . s u b s t r i n g ( l o c . l a s t I n d e x Of ( ’ ’ )

+1) ) ;
53 lon += 180;
54 i n t i = ( i n t ) ( l on / 30) ;
55 S t r i n g s t r = " undef " ;
56 sw i tch ( i ) {
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57 case 0 :
58 s t r = "A" ; break ;
59 case 1 :
60 s t r = "B" ; break ;
61 case 2 :
62 s t r = "C" ; break ;
63 case 3 :
64 s t r = "D" ; break ;
65 case 4 :
66 s t r = "E" ; break ;
67 case 5 :
68 s t r = "F" ; break ;
69 case 6 :
70 s t r = "G" ; break ;
71 case 7 :
72 s t r = "H" ; break ;
73 case 8 :
74 s t r = " I " ; break ;
75 case 9 :
76 s t r = " J " ; break ;
77 case 10 :
78 s t r = "K" ; break ;
79 case 11 :
80 s t r = "L" ; break ;
81 }
82 re turn s t r ;
83 }
84
85 pub l i c S t r i n g recv ( S t r i n g conn ) throws Excep t i on {
86 S t r i n g s t r = n u l l ;
87 Scanner s =new Scanner (new F i l e ( conn ) ) ;
88 s . nex tL i ne ( ) ;
89 s . nex tL i ne ( ) ;
90
91 i f ( s . hasNex tL ine ( ) ) s t r = " 56 .5376547 ,−47.1392201 " ;
92 e l s e s t r = "E" ;
93
94 s . c l o s e ( ) ;
95 re turn s t r ;
96 }
97
98 pub l i c vo id send ( S t r i n g t e x t , S t r i n g conn )throws Excep t i on {
99 B u f f e r e d W r i t e r ou t =new B u f f e r e d W r i t e r (new F i l e W r i t e r (new F i l e (

conn ) , t rue ) ) ;
100
101 ou t . w r i t e ( " Sen t : " + t e x t + " \ n " ) ;
102 ou t . c l o s e ( ) ;
103 }
104
105 pub l i c vo id p r i n t ( S t r i n g t e x t ) {
106 System . ou t . p r i n t l n ( t e x t ) ;
107 }
108
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109 pub l i c boolean i s N e a r ( S t r i n g loc1 , S t r i n g loc2 ) {
110 double x1 , y1 , x2 , y2 ;
111 x1 = Double . pa rseDoub le ( l oc1 . s u b s t r i n g ( 0 , l oc1 . indexOf ( ’ , ’ ) ) ) ;
112 y1 = Double . pa rseDoub le ( l oc1 . s u b s t r i n g ( l oc1 . l a s t I nd e x O f ( ’ ’ ) +1) ) ;
113 x2 = Double . pa rseDoub le ( l oc2 . s u b s t r i n g ( 0 , l oc2 . indexOf ( ’ , ’ ) ) ) ;
114 y2 = Double . pa rseDoub le ( l oc2 . s u b s t r i n g ( l oc2 . l a s t I nd e x O f ( ’ ’ ) +1) ) ;
115
116 re turn ( Math . abs ( x1−x2 ) <= 1) && ( Math . abs ( y1−y2 ) <= 1) ;
117 }
118
119 pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws Excep t i on {
120 new Example2 ( ) . run ( ) ;
121 }
122 }

Example 3

1 pub l i c c l a s s Example3 {
2
3 pub l i c vo id run ( ) throws Excep t i on {
4 i n t sum , num ;
5 double avg ;
6 Scanner db ;
7
8 sum = num = 0 ;
9 db = openDBConnect ion ( ) ;

10
11 whi le ( db . hasNex tL ine ( ) ) {
12 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
13 Runt imeEnfo rce r . c o u n t I t e r ( 1 5 ) ;
14 S t r i n g r e c = f e t c h ( db ) ;
15 i n t prop = g e t P r o p e r t y ( r e c ) ;
16 sum += prop ;
17 num++;
18 }
19
20 avg = (double ) sum / (double ) num ;
21 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
22 Runt imeEnfo rce r . e v a l ( 25 , Run t imeEnfo rce r . i t e r C o u n t[ 1 5 ] >= 25) ;
23 o u t p u t ( " " + avg ) ;
24 db . c l o s e ( ) ;
25 }
26
27 pub l i c Scanner openDBConnect ion ( )throws Excep t i on {
28 Scanner s =new Scanner (new F i l e ( C o n s t a n t s . FILE_PATH + " c o n n e c t i o n .

ex3 " ) ) ;
29 S t r i n g s t a t u s = s . nex tL i ne ( ) ;
30 i f ( ! s t a t u s . e q u a l s ( " Connec t ion OK" ) )throw new Excep t i on ( "Wrong

s t a t u s ! " ) ;
31
32 re turn s ;
33 }
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34
35 pub l i c S t r i n g f e t c h ( Scanner db ) {
36 re turn db . nex tL i ne ( ) ;
37 }
38
39 pub l i c vo id o u t p u t ( S t r i n g d a t a ) throws Excep t i on {
40 B u f f e r e d W r i t e r ou t =new B u f f e r e d W r i t e r (new F i l e W r i t e r (new F i l e (

C o n s t a n t s . FILE_PATH + " o u t p u t . ex3 " ) ) ) ;
41
42 ou t . w r i t e ( " Average : " + d a t a + " \ n " ) ;
43 ou t . c l o s e ( ) ;
44 }
45
46 pub l i c i n t g e t P r o p e r t y ( S t r i n g r e c ) {
47 re turn I n t e g e r . p a r s e I n t ( r e c . s u b s t r i n g ( r e c . l a s t I n d e x O f ( ’ ’ ) +1) ) ;
48 }
49
50 pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws Excep t i on {
51 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
52 Runt imeEnfo rce r . i n i t C o u n t e r ( 6 0 ) ;
53 new Example3 ( ) . run ( ) ;
54 }
55 }

FileCopy

1 pub l i c c l a s s Fi leCopy {
2
3 pub l i c vo id run ( ) throws Excep t i on {
4 F i l e I n p u t S t r e a m i n =new F i l e I n p u t S t r e a m (new F i l e ( C o n s t a n t s .

FILE_PATH + " i n p u t . f c " ) ) ;
5 F i l e O u t p u t S t r e a m ou t =new F i l e O u t p u t S t r e a m (new F i l e ( C o n s t a n t s .

FILE_PATH + " o u t p u t . f c " ) ) ;
6
7 i n t i ;
8 byte [ ] b = new byte [ 1 0 2 4 ] ;
9

10 whi le ( ( i = i n . r ead ( b ) ) != −1) {
11 / / Code i n j e c t i o n : f o l l o w i n g 2 l i n e s have been i n j e c t e d
12 Runt imeEnfo rce r . s t o r e D a t a L a b e l (19 , b ) ;
13 Run t imeEnfo rce r . s e t D a t a L a b e l (22 , b , Run t imeEnfo rce r. i n L a b e l . g e t

( 1 9 ) ) ;
14 ou t . w r i t e ( b , 0 , i ) ;
15 }
16
17 i n . c l o s e ( ) ;
18 ou t . c l o s e ( ) ;
19 }
20
21 pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws Excep t i on {
22 new Fi leCopy ( ) . run ( ) ;
23 }
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24 }

FileEncrypt

1 pub l i c c l a s s F i l e E n c r y p t {
2 C ipher c i p h e r ;
3 Secre tKeySpec aesKeySpec ;
4
5 pub l i c vo id run ( ) throws Excep t i on {
6 c i p h e r = Cipher . g e t I n s t a n c e ( "AES" ) ;
7 KeyGenera tor kgen = KeyGenera tor . g e t I n s t a n c e ( "AES" ) ;
8 kgen . i n i t ( 128 ) ;
9 Secre tKey key = kgen . genera teKey ( ) ;

10 byte [ ] aesKey = key . getEncoded ( ) ;
11 aesKeySpec =new Secre tKeySpec ( aesKey , "AES" ) ;
12
13 F i l e i n p u t = new F i l e ( C o n s t a n t s . FILE_PATH + " i n p u t . f c " ) ;
14 F i l e enc = new F i l e ( C o n s t a n t s . FILE_PATH + " enc . f c " ) ;
15 F i l e dec = new F i l e ( C o n s t a n t s . FILE_PATH + " dec . f c " ) ;
16
17 e n c r y p t ( i npu t , enc ) ;
18 d e c r y p t ( enc , dec ) ;
19 }
20
21 p r i v a t e vo id e n c r y p t ( F i l e in , F i l e ou t ) throws Excep t i on {
22 c i p h e r . i n i t ( C ipher .ENCRYPT_MODE, aesKeySpec ) ;
23
24 F i l e I n p u t S t r e a m i s =new F i l e I n p u t S t r e a m ( i n ) ;
25 C ipherOu tpu tS t ream os =new CipherOu tpu tS t ream (new F i l e O u t p u t S t r e a m

( ou t ) , c i p h e r ) ;
26
27 copy ( i s , os ) ;
28
29 i s . c l o s e ( ) ;
30 os . c l o s e ( ) ;
31 }
32
33 p r i v a t e vo id d e c r y p t ( F i l e in , F i l e ou t ) throws Excep t i on {
34 c i p h e r . i n i t ( C ipher .DECRYPT_MODE, aesKeySpec ) ;
35
36 C i p h e r I n p u t S t r e a m i s =new C i p h e r I n p u t S t r e a m (new F i l e I n p u t S t r e a m ( i n

) , c i p h e r ) ;
37 F i l e O u t p u t S t r e a m os =new F i l e O u t p u t S t r e a m ( ou t ) ;
38
39 copy ( i s , os ) ;
40
41 i s . c l o s e ( ) ;
42 os . c l o s e ( ) ;
43 }
44
45 p r i v a t e vo id copy ( I npu tS t ream in , Outpu tSt ream ou t )throws Excep t i on

{
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46 i n t i ;
47 byte [ ] b = new byte [ 1 0 2 4 ] ;
48
49 whi le ( ( i = i n . r ead ( b ) ) != −1) {
50 / / Code i n j e c t i o n : f o l l o w i n g 2 l i n e s have been i n j e c t e d
51 Runt imeEnfo rce r . s t o r e D a t a L a b e l (67 , b ) ;
52 Run t imeEnfo rce r . s e t D a t a L a b e l (70 , b , Run t imeEnfo rce r. i n L a b e l . g e t

( 1 9 ) ) ;
53 ou t . w r i t e ( b , 0 , i ) ;
54 }
55 }
56
57 pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws Excep t i on {
58 new F i l e E n c r y p t ( ) . run ( ) ;
59 }
60 }

InformationGather

1 pub l i c c l a s s I n f o r m a t i o n G a t h e r {
2
3 pub l i c vo id run ( ) throws Excep t i on {
4
5 byte [ ] d a t a = n u l l ;
6
7 f o r ( i n t num=0; num <= 9 ; num++) {
8 S t r i n g f i l e n a m e = " i n p u t . " + num ;
9 F i l e I n p u t S t r e a m i n =new F i l e I n p u t S t r e a m (new F i l e ( C o n s t a n t s .

FILE_PATH + f i l e n a m e ) ) ;
10 By teAr rayOutpu tS t ream ou t =new ByteAr rayOutpu tS t ream ( ) ;
11
12 i n t i ;
13 byte [ ] b = new byte [ 1 0 2 4 ] ;
14
15 whi le ( ( i = i n . r ead ( b ) ) != −1) ou t . w r i t e ( b , 0 , i ) ;
16 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
17 Runt imeEnfo rce r . s t o r eChLabe l (25 , i n . g e t C l a s s ( ) . getMethod ( " read " ,

byte [ ] . c l a s s) , new Objec t [ ] { in , b } ) ;
18
19 byte [ ] f i l e = ou t . t oBy teAr ray ( ) ;
20
21 i n . c l o s e ( ) ;
22 ou t . c l o s e ( ) ;
23
24 i f ( d a t a == n u l l ) d a t a = f i l e ;
25 e l s e fo r ( i n t j =0 ; j < f i l e . l e n g t h ; j ++) d a t a [ j ] += f i l e [ j ] ;
26 }
27
28 F i l e O u t p u t S t r e a m os =new F i l e O u t p u t S t r e a m (new F i l e ( C o n s t a n t s .

FILE_PATH + " o u t p u t . i g " ) ) ;
29 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
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30 Runt imeEnfo rce r . checkOutpu t (39 , os . g e t C l a s s ( ) . getMethod ( " w r i t e " ,
byte [ ] . c l a s s) , new Objec t [ ] { d a t a } , Run t imeEnfo rce r . i n L a b e l . g e t
( 2 5 ) ) ;

31 os . w r i t e ( d a t a ) ;
32 os . c l o s e ( ) ;
33 }
34
35 pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws Excep t i on {
36 new I n f o r m a t i o n G a t h e r ( ) . run ( ) ;
37 }
38 }

Loops

1 pub l i c c l a s s Loops {
2
3 pub l i c vo id run ( ) throws Excep t i on {
4 F i l e I n p u t S t r e a m i n =new F i l e I n p u t S t r e a m (new F i l e ( C o n s t a n t s .

FILE_PATH + " i n p u t . f c " ) ) ;
5 By teAr rayOutpu tS t ream ou t =new ByteAr rayOutpu tS t ream ( ) ;
6
7 i n t i ;
8 byte [ ] b = new byte [ 1 0 2 4 ] ;
9

10 whi le ( ( i = i n . r ead ( b ) ) != −1) ou t . w r i t e ( b , 0 , i ) ;
11 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
12 Runt imeEnfo rce r . compareCh (20 , i n . g e t C l a s s ( ) . getMethod ( " read " , byte

[ ] . c l a s s) , new Objec t [ ] { in , b } , F i l e I n p u t S t r e a m .c l a s s. getMethod (
" read " , byte [ ] . c l a s s) , n u l l ) ;

13
14 byte [ ] d a t a = ou t . t oBy teAr ray ( ) ;
15
16 i n . c l o s e ( ) ;
17 ou t . c l o s e ( ) ;
18
19 i n t b u f f e r = 0 ;
20
21 f o r ( i n t j =0 ; j < d a t a . l e n g t h ; j ++) {
22 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
23 Runt imeEnfo rce r . c o u n t I t e r ( 3 0 ) ;
24 b u f f e r ^= d a t a [ j ] ;
25 }
26
27 f o r ( i n t j =0 ; j < d a t a . l e n g t h / 2 ; j ++) {
28 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
29 Runt imeEnfo rce r . c o u n t I t e r ( 3 5 ) ;
30 i n t x = d a t a [ j ] % 14 ;
31 i n t y = d a t a [ j ] >> 2 ;
32 b u f f e r &= ( x ^ y ) ;
33 }
34
35 f o r ( i n t j = d a t a . l e n g t h / 2 ; j < d a t a . l e n g t h ; j ++) {
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36 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
37 Runt imeEnfo rce r . c o u n t I t e r ( 4 2 ) ;
38 d a t a [ j ] <<= 2 ;
39 }
40
41 f o r ( i n t j =0 ; j < d a t a . l e n g t h ; j += 2) {
42 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
43 Runt imeEnfo rce r . c o u n t I t e r ( 4 7 ) ;
44 d a t a [ j ] ^= 0xAA;
45 }
46
47 f o r ( i n t j =0 ; j < d a t a . l e n g t h ; j += 10) {
48 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
49 Runt imeEnfo rce r . c o u n t I t e r ( 5 2 ) ;
50 d a t a [ j ] ^= b u f f e r ;
51 }
52
53 F i l e O u t p u t S t r e a m os =new F i l e O u t p u t S t r e a m (new F i l e ( C o n s t a n t s .

FILE_PATH + " o u t p u t . l oops " ) ) ;
54 / / Code i n j e c t i o n : f o l l o w i n g 6 l i n e s have been i n j e c t e d
55 boolean e v a l = Run t imeEnfo rce r . i t e r C o u n t [ 3 0 ] >= ( d a t a . l eng th−2) ;
56 e v a l = e v a l && Runt imeEnfo rce r . i t e r C o u n t [ 3 5 ] < d a t a . l e ng t h ;
57 e v a l = e v a l && Runt imeEnfo rce r . i t e r C o u n t [ 4 2 ] < d a t a . l e ng t h ;
58 e v a l = e v a l && Runt imeEnfo rce r . i t e r C o u n t [ 4 7 ] < Run t imeEnfo rce r .

i t e r C o u n t [ 3 0 ] ;
59 e v a l = e v a l && Runt imeEnfo rce r . i t e r C o u n t [ 5 2 ] < Run t imeEnfo rce r .

i t e r C o u n t [ 4 7 ] ;
60 Run t imeEnfo rce r . e v a l ( 64 , e v a l ) ;
61 os . w r i t e ( d a t a ) ;
62 os . c l o s e ( ) ;
63 }
64
65 pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws Excep t i on {
66 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
67 Runt imeEnfo rce r . i n i t C o u n t e r ( 7 0 ) ;
68 new Loops ( ) . run ( ) ;
69 }
70 }

Statistics

1 pub l i c c l a s s S t a t i s t i c s {
2
3 pub l i c vo id run ( ) throws Excep t i on {
4
5 byte [ ] d a t a = n u l l ;
6
7 f o r ( i n t num=0; num <= 9 ; num++) {
8 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
9 Runt imeEnfo rce r . c o u n t I t e r ( 1 7 ) ;

10 S t r i n g f i l e n a m e = " i n p u t . " + num ;
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11 F i l e I n p u t S t r e a m i n =new F i l e I n p u t S t r e a m (new F i l e ( C o n s t a n t s .
FILE_PATH + f i l e n a m e ) ) ;

12 By teAr rayOutpu tS t ream ou t =new ByteAr rayOutpu tS t ream ( ) ;
13
14 i n t i ;
15 byte [ ] b = new byte [ 1 0 2 4 ] ;
16
17 whi le ( ( i = i n . r ead ( b ) ) != −1) ou t . w r i t e ( b , 0 , i ) ;
18 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
19 Runt imeEnfo rce r . compareCh (26 , i n . g e t C l a s s ( ) . getMethod ( " read " ,

byte [ ] . c l a s s) , new Objec t [ ] { in , b } , F i l e I n p u t S t r e a m .c l a s s.
getMethod ( " read " , byte [ ] . c l a s s) , new Objec t [ ] { C o n s t a n t s .
FILE_PATH + f i l e n a m e } ) ;

20
21 byte [ ] f i l e = ou t . t oBy teAr ray ( ) ;
22
23 i n . c l o s e ( ) ;
24 ou t . c l o s e ( ) ;
25
26 i f ( d a t a == n u l l ) d a t a = f i l e ;
27 e l s e fo r ( i n t j =0 ; j < f i l e . l e n g t h ; j ++) d a t a [ j ] += f i l e [ j ] ;
28 }
29
30 f o r ( i n t j =0 ; j < d a t a . l e n g t h ; j ++) d a t a [ j ] /= 10 ;
31
32 F i l e O u t p u t S t r e a m os =new F i l e O u t p u t S t r e a m (new F i l e ( C o n s t a n t s .

FILE_PATH + " o u t p u t . s " ) ) ;
33 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
34 Runt imeEnfo rce r . e v a l ( 42 , Run t imeEnfo rce r . i t e r C o u n t[ 1 7 ] >= 5) ;
35 os . w r i t e ( d a t a ) ;
36 os . c l o s e ( ) ;
37 }
38
39 pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws Excep t i on {
40 / / Code i n j e c t i o n : f o l l o w i n g 1 l i n e has been i n j e c t e d
41 Runt imeEnfo rce r . i n i t C o u n t e r ( 5 0 ) ;
42 new S t a t i s t i c s ( ) . run ( ) ;
43 }
44 }

Runtime Enforcer

1 pub l i c c l a s s Runt imeEnfo rce r {
2
3 pub l i c s t a t i c i n t [ ] i t e r C o u n t ;
4 pub l i c s t a t i c HashMap< I n t e g e r , Label > i n L a b e l ;
5 p r i v a t e s t a t i c Labe l ingSys tem l a b e l i n g S y s t e m ;
6
7 s t a t i c {
8 i n L a b e l = new HashMap< I n t e g e r , Label > ( ) ;
9 l a b e l i n g S y s t e m =new MockLabel ingSystem ( ) ;

10 }



138

11
12 pub l i c s t a t i c vo id i n i t C o u n t e r (i n t p rogS i ze ) {
13 i t e r C o u n t = new i n t [ p rogS i ze ] ;
14 }
15
16 pub l i c s t a t i c vo id c o u n t I t e r (i n t p r o g P o i n t ) {
17 i t e r C o u n t [ p r o g P o i n t ]++ ;
18 }
19
20 pub l i c s t a t i c vo id e v a l ( i n t progPo in t , boolean expr ) {
21 i f ( ! expr ) a b o r t ( " E x p r e s s i o n on i t e r a t i o n coun t no t s a t i s f i ed . " ,

p r o g P o i n t ) ;
22 }
23
24 pub l i c s t a t i c vo id compareCh (i n t progPo in t , Method cmd , Ob jec t [ ] a rgs

, Method otherCmd , Ob jec t [ ] o t h e r A r g s ) {
25 i f ( l a b e l i n g S y s t e m . compareChannel ( cmd , args , otherCmd , o th e r A r g s )

!= C h a n n e l S i m i l a r i t y .OK) a b o r t ( " I n p u t c h a n n e l s no t t h e same . " ,
p r o g P o i n t ) ;

26 }
27
28 pub l i c s t a t i c vo id s t o r e D a t a L a b e l (i n t progPo in t , Ob jec t d a t a ) {
29 i n L a b e l . pu t ( p rogPo in t , l a b e l i n g S y s t e m . ge t Da t aLabe l( d a t a ) ) ;
30 }
31
32 pub l i c s t a t i c vo id s t o r eChLabe l (i n t progPo in t , Method cmd , Ob jec t [ ]

a r g s ) {
33 Labe l l = l a b e l i n g S y s t e m . ge tChanne lLabe l ( cmd , a r g s ) ;
34 i f ( i n L a b e l . con ta insKey ( p r o g P o i n t ) ) l = max (new Labe l [ ] { l , i n L a b e l .

g e t ( p r o g P o i n t ) } ) ;
35 i n L a b e l . pu t ( p rogPo in t , l ) ;
36 }
37
38 pub l i c s t a t i c vo id c h e c k I n p u t (i n t progPo in t , Method cmd , Ob jec t [ ]

a rgs , i n t pp ) {
39 i f ( i n L a b e l . g e t ( pp ) . ge tVa lue ( ) > l a b e l i n g S y s t e m . ge tChanne lLabe l ( cmd

, a r g s ) . ge tVa lue ( ) ) a b o r t ( " I n p u t l a b e l h i g h e r than o u t p u tl a b e l
. " , p r o g P o i n t ) ;

40 }
41
42 pub l i c s t a t i c vo id s e t D a t a L a b e l (i n t progPo in t , Ob jec t da ta , Labe l

l a b e l ) {
43 i f ( ! l a b e l i n g S y s t e m . s e t D a t a L a b e l ( da ta ,l a b e l ) ) a b o r t ( " Data l a b e l

cou ld no t be s e t . " , p r o g P o i n t ) ;
44 }
45
46 pub l i c s t a t i c vo id checkOutpu t (i n t progPo in t , Method cmd , Ob jec t [ ]

a rgs , Labe l l a b e l ) {
47 i f ( l a b e l i n g S y s t e m . ge tChanne lLabe l ( cmd , a r g s ) . ge tVa lue () < l a b e l .

ge tVa lue ( ) ) a b o r t ( " Output l a b e l lower than i n p u t l a b e l . " ,
p r o g P o i n t ) ;

48 }
49
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50 p r i v a t e s t a t i c vo id a b o r t ( S t r i n g s t r , i n t pp ) {
51 System . e r r . p r i n t l n ( " Runtime e n f o r c e r v i o l a t i o n : " + s tr ) ;
52 System . e r r . p r i n t l n ( " Program p o i n t o f t h e check : " + pp ) ;
53 System . e r r . p r i n t l n ( " Abor t i ng ! " ) ;
54 System . e x i t ( 1 ) ;
55 }
56
57 pub l i c s t a t i c Labe l max ( Labe l [ ] l a b e l s ) {
58 Labe l max = l a b e l s [ 0 ] ;
59 f o r ( i n t i =1 ; i < l a b e l s . l e n g t h ; i ++) {
60 i f ( l a b e l s [ i ] . ge tVa lue ( ) > max . ge tVa lue ( ) ) max = l a b e l s [ i ] ;
61 }
62 re turn max ;
63 }
64 }
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List of Symbols

Expression-Matching Framework

IO Domain of input/output channels,IO = In ∪Out (page24).

Var Domain of program variables (page24).

Prog Domain of programs (page24).

Σ Domain of program states (page25).

Π Domain of execution environments (page25).

Ω Domain of configurations (page25).

Obs Domain of configuration transition labels (page25).

x, y, z, a, b Program variables, members ofVar (page24).

c Boolean program variable, used in conditionals (page24).

N Constant value (page24).

f Function, represented as a syntactic object (page26).

f Semantic evaluation of functionf to a value (page26).

α, β Input channels, members ofIn (page24).

γ, δ Output channels, members ofOut (page24).

θ Input or output channel, member ofIO (page24).

ρ Input/output channel, or program variable, member ofVar ∪ IO
(page24).

θn n-th value read from/written to channelθ (page24).

C Program, member ofProg (page24).

Ci Sub-program ofC (page24).

141
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head(C) First non-compositional statement ofC, a.k.a. the active com-
mand ofC (page24).

σ Program state,σ ∈ Σ = 〈E , I ,O ,PC 〉 (page25).

Eσ Mapping from variables to expressions on indexed input channels
(page25).

Iσ Mapping from input channels to numeric index of next value to
be read (page25).

Oσ Mapping from output channels to sets of expressions on indexed
inputs that could be sent over that output (page25).

PC σ Mapping from variables and channels (input/output) to setsof ex-
pressions on indexed inputs which are conditionally dependent to
the mapped variable/channel (page25).

π Execution environment,π ∈ Π = In × N→ Val (page25).

ω Configuration,ω ∈ Ω = 〈C, σ, π〉 (page25).

τ Non-observable transition,τ ∈ Obs (page25).

o Configuration transition label,o ∈ Obs is eitherτ or out(γ, v) for
some output channelγ and valuev (page25).

f [x
⊙
←− n] A variant off where the value assigned tox is f(x) ⊙ n, where

⊙ is any operator of the right type. Also,f [x ←− n](x) = n
(page25).

σinit Initial state (page27).

t, t′ Runs of a programC in an environmentπ (page27).

o(t) The sequence of (visible) output actions int (page28).

t ≡out t
′ Holds if o(t) = o(t′) (page28).

ω(t) The sequence of configurations int (page28).

T , T ′ Sets of runs (page28).

T ≡out T
′ Holds if ∀t ∈ T : ∃t′ ∈ T ′ : t ≡out t

′ (page28).

Run(C, π) All the runs of programC in environmentπ (page28).

D Set of declassifiable expressions,D ⊆ Exp〈In × N〉 (page28).

public(e,D) Expressione is public according toD (page28).
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states(C) Every possible state programC can achieve (page28).

dds(ρ, C,D) ρ is data dependency safe in every state achieved byC, with re-
spect toD (page29).

cds(ρ, C,D) ρ is control dependency safe in every state achieved byC, with
respect toD (page29).

safe(ρ, C,D) ρ is safe in every state achieved byC, with respect toD (page29).

valid(C,D) C is valid with respect toD (page29).

π1 ≈D π2 Environmentsπ1 andπ2 areD-equivalent (page30).

R(π,D) The knowledge ofπ revealed byD (page30).

K(π, C) The knowledge ofπ that can observed inC (page31).

PCR The Policy Controlled Release property (page31).

ΓC(C
′) The type of statementC ′ of programC,ΓC(C

′) ∈ {H,L} (page32).

σ1 ≍(C,D) σ2 Statesσ1 andσ2 are compatible forC andD (page33).

L-cont(C) The low continuation ofC, i.e. its first sub-statement which is not
typed high (page33).

Q A correspondence relation between two runst andt′ (page34).

Graph-Based Implementation

G Domain of program expression graphs (page41).

Vertex Domain of graph vertices (nodes) (page41).

Edge Domain of graph edges (page41).

D Domain of policy expression graphs (page45).

g Program expression graph,g ∈ G = (V,E) (page41).

V Set of vertices,V ⊆ Vertex (page41).

E Set of edges,E ⊆ Edge(page41).

n = (l, t) A graph vertex (node),n ∈ Vertex, wherel is a label (name) and
t is a type,t ∈ {var, in, out, const} (page41).

e = (n, n′, t, u) A graph edge,e ∈ Edge, wheren andn′ are the origin and desti-
nation vertices, respectively,t is a typet ∈ {plain, control, φi, fi},
wheref is any function name andi ∈ N andu ∈ N is a looping
context (page41).
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d Policy expression graph,d ∈ D = (V,E, Vf , U) (page45).

Vf Set of final vertices of a policy,Vf ⊆ V , for someV (page45).

U Set of input uniqueness restrictions of a policy,U ⊆ In × V , for
someV (page45).

n
t
−→
u

n′ A constructor that returns an edge(n, n′, t, u) (page41).

-,≺ Operators for graph subsets (page42).

G(C) Function that builds the graph of programC (page42).

edges(g) The set of edges of graphg (page42).

nodes(g) The set of nodes of graphg (page42).

n
t
−→
u

g n
′ Predicate that holds if(n, n′, t, u) ∈ edges(g) (page42).

n
t
−→
u

n′ Same as above, but wheng is implicit in the context. This over-

loads notation for edge constructor. Usage of each is alwaysclear
from the context (page42).

n
t
−→ n′ Same as above, withu irrelevant (page43).

n→ n′ Same as above, witht = plain (page43).

td An edge type that is different fromcontrol (page43).

n
w
−→

∗
n′ There exists a path (excludingcontrol edges) between nodesn

andn′, withw being the sequence of labels on this path (page43).

n→∗ n′ Same as above, withw irrelevant (page43).

n
w
−→
u

∗
n′ Same asn

w
−→

∗
n′, with the whole path in the same looping con-

textu (page43).

φ
−→ Either

φ1

−→ or
φ2

−→ (page43).

τ
−→ An edge whose type is eitherplain or φ (page43).

6→ n Indegree ofn is zero (page43).

type(n) Type of noden (page43).

uni(g) Set of all pairs of input uniqueness relations in graphg, uni(g) ⊆
In × Vertex (page43).

expg(n) All possible expressions held by noden in graphg (page44).
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cexpg(n) All conditional expressions the held by noden in graphg can
depend upon (page44).

P (σ, g) Stateσ and graphg correspond to each other (page45).

∗t A wildcard label for a policy node, wheret is the matching type,
omitted when equals tovar (page45).

fnodes(d) Set of final vertices (nodes) of policy graphd (page46).

uni(d) Set of input uniqueness restrictions of policy graphd (page46).

p Denotes an information path of some graph,p - g, for some
g ∈ G (page47).

ipg(n) The set of information paths that reach noden in graphg (page47).

mipg(n) The set of maximal information paths that reach noden in graph
g (page47).

n ≃ n′ Nodesn andn′ are similar, i.e. they have the same type and either
the labels are the same or one of them is a wildcard∗ (page47).

n ∼p,d n
′ Noden, in the information pathp, simulates noden′, in the pol-

icy graphd. ∼p,d denotes the largest policy simulation relation
betweenp andd (page48).

ddsp(n, d) Noden is data dependency safe in information pathp, with re-
spect to policyd (page49).

dds(n, g, d) Noden is data dependency safe in graphg, with respect to policy
d (page49).

cds(n, g, d) Noden is control dependency safe in graphg, with respect to
policy d (page49).

safe(n, g, d) Noden is safe in graphg, with respect to policyd (page49).

valid(g, d) Graphg is valid with respect to policyd (page49).

public(e, d) Expressione is public according to policyd (page51).

Pol A set of declassifiable expressions,Pol ⊆ Exp〈In×N〉 (page52).

〈Pol, Prog, valid〉 PCR framework (page52).

Pol A domain for declassification policies (page53).

P A policy interpretation functionP : Pol → Pol (page53).

Prog A domain for abstractions of programs (page53).
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C A program abstraction functionC : Prog → Prog (page53).

V A validation functionV : Prog × Pol → Bool, which, for a
programC and a policyd, satisfiesV(C(C), d)⇒ valid(C,P(d))
(page53).

〈(Pol ,P), (Prog ,C),V〉 An implementation of the PCR framework〈Pol, Prog, valid〉
(page53).

int(d) The policy interpretation function for policy expression graphs,
int : D → ℘(Exp〈In × N〉) (page53).

states(G(C)) The set of all program states inC thatG(C) can represent (page53).

C(·) The worst-case time complexity of computation·, which can be a
function or operator (page56).

Hybrid Static-Runtime Enforcer

θi The I/O operation on channelθ, performed at program pointi
(page74).

I  γi A flow that denotes that each element in the set of input operations
and declassification matchings inI potentially flows to output op-
erationγi (page74).

I 7→X l The representation of a declassification matching, denoting that
the input operations in setI flow to a variable which matches
a declassification policy, changing its label tol. X represents
the set of constraints associated with the matched declassification
(page75).

label(nf ) Security label associated to final policy nodenf (page77).

id(C) The program point of statementC (page77).

flowg,d(nx) The set of input operations and declassifications (according to
policy d) that potentially flow to variable nodenx ∈ nodes(g)
(page77).

constr(R) The set of constraints associated to the declassification matching
that corresponds to the node simulation relationR (page78).

frd(C) The flow report of programC, according to policyd (page78).

frg,d(nγ) The flow report relative to output nodenγ ∈ g, according to pol-
icy d (page78).

f A flow (page81).
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dc A declassification within a flow (page81).

l A security label (page81).

pf A partial flow, i.e. the left-hand side of a flow (page81).

from(f) The left-hand side of a flow (also used for a declassificationdc)
(page81).

to(f) The right-hand side of a flow (also used for a declassificationdc)
(page81).

constr(dc) The constraint set related to declassification matchingdc (page81).

label(αi) The security label of I/O operationαi (page81).

id(l) The program point of the input operation that was translatedto
labell (page81).

lbl(f) The translation of elements of flowf to their respective security
labels. Also used for a partial flowpf and a declassificationdc
(page82).

check(X) The static validation of declassification constraint setX. Also
used for a single elementx ∈ X (page82).

validate(C, d) The static validation of programC with policy d (page82).

validate(f) The static validation of flowf (page82).

checklist(C, d) The runtime checklist of programC with policy d (page82).

checklist(f) The runtime checklist relative to flowf (page82).
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Summary

Information Flow and Declassification Analysis for
Legacy and Untrusted Programs

Standard access control mechanisms are often insufficient to enforce compliance of
programs with security policies. For this reason, information flow analysis has become a
topic of increasing interest. In such type of analysis, the main property to be checked is
called non-interference, which basically states that the publicly observable behaviour of a
program is entirely independent of its secret, secure inputvalues.

However, simple non-interference is too restrictive for specifying and enforcing in-
formation flow policies in most programs. Exceptions to non-interference are provided
using declassification policies. Several approaches for enforcing declassification have
been proposed in the literature. In most of these approaches, the declassification policies
are embedded in the program itself or heavily tied to the variables in the program be-
ing analyzed, thereby providing at best little separation between the code and the policy.
Consequently, the previous approaches essentially requirethat the code be trusted, since
to trust that the correct policy is being enforced, we need totrust the source code.

In this thesis, we propose a novel framework for informationflow analysis, with sup-
port to declassification policies, related to the source code being analyzed via its I/O
channels. The framework supports many of the of declassification policies identified in
the literature. Based on flow-based static analysis, it represents a first step towards a new
approach that can be applied to untrusted and legacy source code to automatically ver-
ify that the analyzed program complies with the specified declassification policies. We
present a framework in which expressions over input channelvalues that could be output
by the program are compared to a set of declassification requirements. We build an imple-
mentation of such framework, which works by constructing a conservative approximation
of the such expressions, and by determining whether all of them satisfy the declassifica-
tion requirements stated in the policy. We introduce a representation of such expressions
that resembles tree automata. We prove that if a program is considered safe according
to our analysis then it satisfies a property we call Policy Controlled Release, which for-
malizes information-flow correctness according to our notion of declassification policy.
We demonstrate, through examples, that our approach works for several interesting and
useful declassification policies, including one involvingdeclassification of the average
of several confidential values. Finally, we extend the static analyzer to build a practical



hybrid static-runtime enforcement mechanism, consistingof 3 steps: static analysis, pre-
load checking, and runtime enforcement. We demonstrate howthe hybrid mechanism is
able to enforce real-world policies which are unable to be treated by standard approaches
from industry. Also, we show how this goal is achieved by keeping the static analysis step
system independent, and the runtime enforcement with minimum runtime overhead.
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