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Effects of nanoparticles and surfactant on droplets in shear flow
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We present three-dimensional numerical simulations, employing the well-established lattice Boltzmann

method, and investigate similarities and differences between surfactants and nanoparticles as additives

at a fluid–fluid interface. We report on their respective effects on the surface tension of such an

interface. Next, we subject a fluid droplet to shear and explore the deformation properties of the

droplet, its inclination angle relative to the shear flow, the dynamics of the particles at the interface, and

the possibility of breakup. Particles are seen not to affect the surface tension of the interface, although

they do change the overall interfacial free energy. The particles do not remain homogeneously

distributed over the interface, but form clusters in preferred regions that are stable for as long as the

shear is applied. However, although the overall structure remains stable, individual nanoparticles roam

the droplet interface, with a frequency of revolution that is highest in the middle of the droplet interface,

normal to the shear flow, and increases with capillary number. We recover Taylor’s law for small

deformation of droplets when surfactant or particles are added to the droplet interface. The effect of

surfactant is captured in the capillary number, but the inertia of adsorbed massive particles increases

deformation at higher capillary number and eventually leads to easier breakup of the droplet.
I. Introduction

Stabilizing emulsions by employing nanoparticles is a very

attractive tool in the food, cosmetics, oil and medical industries.

This method of emulsification complements the traditional use of

surfactants—amphiphilic molecules—as emulsification agents.

Using nanoparticles can have many advantages, such as reduced

cost and toxicity and the possibility of tailor-made nanoparticles,

which may include useful properties other than being an emul-

sifier, such as ferromagnetic particles1 or Janus particles.2

Although the effects of both emulsifiers can be similar, the

underlying physics is very different.3,4

Amphiphiles are chemical compounds which have both

hydrophilic and hydrophobic properties, restricted to specific

groups of the molecules. For example, surfactants are char-

acterized by their hydrophilic ‘‘head’’ and hydrophobic

‘‘tail(s)’’. When they are located at the fluid–fluid interface the

possibility exists for both parts of the molecule to reside in

their preferred fluid. This makes it energetically favourable for

them to accumulate at the interface, with a distinct alignment.

This process lowers interfacial tension and prevents the dem-

ixing of two immiscible fluids. As such, it gives rise to the

possibility of complicated structures, such as micelles and
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lamellae, gyroid mesophases and the aforementioned emulsion

droplets.5–8

Nanoparticles also find it energetically favourable to adsorp to

a fluid–fluid interface. However, this happens for a different

reason:maintaining suchan interface requiresmore energyper unit

area thanmaintaining a particle-fluid interface, and the adsorption

of a particle removes the former. Because of the scale of the energy

differences involved—orders of magnitude larger than thermal

fluctuations—this adsorption process tends to be irreversible.3 In

this way, neutrally wetting particles do not affect surface tensions

directly, but only change the interfacial free energy.

When such particles are used to stabilize an emulsion of

discrete droplets of one fluid suspended in another, continuous,

fluid, the result is known as a ‘‘Pickering emulsion’’.9,10 The

particles in these mixtures block Ostwald ripening, which is one

of the main processes leading to drop coarsening in emulsions.

Hence, blocking this process allows for a long-term stabilization

of such an emulsion. They are also a source of complex rheology

due to the irreversible adsorption of the particles as well as

interface bridging because of particle monolayers.11–13 More

recently, the use of nanoparticles has led to the discovery of the

‘‘bicontinuous interfacially jammed emulsion gel’’ (commonly

referred to as ‘‘bijel’’), first predicted by numerical simulations14

and later confirmed experimentally.15,16 In a bijel, an interface

between two continuous fluids (as opposed to having separate

droplets of one fluid) is covered and stabilized by particles. The

effect of parameters such as fluid:fluid ratio and particle wetta-

bility on the final phase a demixing system transforms into has

been investigated numerically.17–20
This journal is ª The Royal Society of Chemistry 2012
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The differences between the behaviour of amphiphiles and

nanoparticles and between their underlying mechanics as

described above ensure that many properties of systems

including nanoparticles cannot be explained by theories based

solely on the physics of amphiphiles. For nanoparticle-stabilized

systems, new models have been developed (and verified experi-

mentally), which take into account the features of these systems

that have no analogue in surfactant systems, such as the contact

angle of the nanoparticles, strong capillary forces between the

particles or the pH value and electrolyte concentration of the

solvents.21 Quantitatively, however, the description of these

systems still leaves a lot to be desired.

To properly understand the behaviour of large-scale mixtures

with many complex interfaces, such as Pickering emulsions and

bijels, one first needs a fundamental understanding of the

processes involved on smaller scales. Research was performed to

understand in detail how the presence of a nanoparticle22 or the

collective behaviour of multiple nanoparticles23,24 affects a flat

interface. In this work we investigate the stabilizing effect of

amphiphiles or hard spherical nanoparticles on curved interfaces,

modeled by a single droplet of a fluid suspended in another fluid.

Droplets subjected to shear flow display many kinds of inter-

esting behaviour, such as deforming away from a spherical

shape, exhibiting an inclination angle with respect to the shear

direction and breaking up into smaller droplets (beyond a critical

capillary number).25 Nanoparticles adsorbed at the droplet

interface show an inhomogeneous distribution and a non-trivial

motion over the droplet surface. Their presence also affects the

deformation and inclination properties of the droplet. We study

all these effects in detail in the current article.

Computer simulations are a valuable tool to compare these

systems directly, and we choose to employ the lattice Boltzmann

(LB) method, which is well-established in the literature (cf. ref.

26), for our research. The LB method is an alternative to tradi-

tionalNavier–Stokes solvers, and extensions have been developed

to allow for multiple fluids and their interactions,27–32 amphi-

philes6,33 and finite-sized particles of arbitrary shape and wetta-

bility which can interact with the fluids as well as each other.18,34–38

In section II we introduce the simulation method in detail.

Section III reports and explains our findings on surface tensions in

systems of a droplet stabilized by surfactant and nanoparticles.

The behaviour of the particles adsorbed to the droplet interface

when the droplet is subjected to shear is discussed in section IV.

This is followed by an analysis of the effect of nanoparticles and

surfactant on the deformation properties and inclination angles of

these droplets. The breakup of droplets is then briefly discussed.

Finally, conclusions and an outlook are provided in section V.
II. Simulation method

A. The lattice Boltzmann method

The lattice Boltzmann method has proven itself to be a very

successful tool for modeling fluids in science and engi-

neering.26,39,40 Compared to traditional Navier–Stokes solvers,

the method allows for an easy implementation of complex

boundary conditions and—due to the high degree of locality of

the algorithm—is well suited for implementation on parallel

supercomputers.7,20
This journal is ª The Royal Society of Chemistry 2012
The method is based on the Boltzmann equation, with its

positions x discretized in space on a cubic lattice with a lattice

constant Dx and with its time t discretized with a timestep Dt:

f c
i (x + ciDt,t + Dt) ¼ f c

i (x,t) + U
c

i(x,t), (1)

where f c
i (x,t) is the single-particle distribution function for fluid

component c, being propagated over the lattice with a discrete set

of lattice velocities ci and

Uc
i ðx; tÞ ¼ �f ci ðx; tÞ � f

eq
i ðrcðx; tÞ; ucðx; tÞÞ
ðsc=DtÞ (2)

is the Bhatnagar–Gross–Krook (BGK) collision operator.41

Here, f
eq

i (rc,uc) is the third-order equilibrium distribution

function

f
eq
i ðrc; ucÞ ¼ zir

c$

"
1þ ci$u

c

c2s
þ ðci$ucÞ2

2c4s
� ðuc$ucÞ

2c2s
þ ðci$ucÞ3

6c6s

� ðuc$ucÞðci$ucÞ
2c4s

#
; (3)

sc is the relaxation time for component c and zi is the coefficient

resulting from the velocity space discretization.42 We use a three-

dimensional lattice and a D3Q19 implementation (i ¼ 1,.,19),

which is to say that Dxi ¼ ciDt connects a lattice site with its

nearest neighbours and next-nearest neighbours on the lattice.

The Navier–Stokes equations can be recovered from eqn (1). The

macroscopic densities are given by ~rc(x,t) h rc(x,t)/rc0 ¼P
if
c
i(x,t), with rc0 being a reference density for component c. For

clarity of notation, the tilde is omitted from the densities from

now on. The macroscopic velocities are uc(x,t) ¼ P
i f

c
i (x,t)ci/

rc(x,t) in the low Knudsen number and low Mach number limit.

The speed of sound on the lattice is

cS ¼ 1ffiffiffi
3

p Dx

Dt
; (4)

from which one can calculate the kinematic viscosity of a fluid

component as

nc ¼ c2S Dt

�
sc

Dt
� 1

2

�
: (5)

For convenience, the lattice and time constants are taken to be

Dx ¼ Dt ¼ 1 from now on. In all simulations presented here, we

have chosen sc h 1 for all components, which then implies

vc ¼ 1/6 for all components. The size of the simulation volume is

denoted as Vbox ¼ nx $ ny $ nz.
B. Multicomponent lattice Boltzmann

When further fluid species c0 with a single-particle distribution

function f
c0

i (x,t) are to be modeled, an interaction force F
c

C(x,t) is

calculated locally according to the approach of Shan and Chen:27

Fc
Cðx; tÞ ¼ �Jcðx; tÞ

X
c0

gcc0
X
x0

Jc0 ðx0; tÞðx0 � xÞ ; (6)

with gcc0 a coupling constant and Jc(x,t) a monotonous weight

function representing an effective mass. Throughout this work,

this function takes the form
Soft Matter, 2012, 8, 6542–6556 | 6543
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Jcðx; tÞhJðrcðx; tÞÞ ¼ 1� e�rcðx;tÞ: (7)

This force is then incorporated into the collision term Uc
i in

eqn (1) by adding to the velocity uc(x,t) in the equilibrium

distribution the shift

Ducðx; tÞ ¼ scFc
Cðx; tÞ

rcðx; tÞ : (8)

Furthermore, this forcing affects the macroscopic bulk

velocity as

ucðx; tÞ ¼
P

i f
c
i ðx; tÞci

rcðx; tÞ � 1

2
Fc
Cðx; tÞ: (9)

In our case, the coupling strength gcc0 is negative in order to

obtain de-mixing and the sum over x0 in eqn (6) runs over all sites

separated from x by one of the discrete velocities ci. In the binary

fluid systems we refer to the fluid of the droplet (d) and the

medium (m) as ‘‘red’’ fluid (r) and ‘‘blue’’ fluid (b), respectively.

To simplify statements about the fluid:fluid ratio on lattice sites,

we introduce the order parameter f(x,t) ¼ rr(x,t) � rb(x,t),

referred to as ‘‘colour’’. The LB method is a diffuse interface

method, with an interface width of typically 5 lattice sites,

depending weakly on the coupling strength gbr. Owing to this,

there will typically also be a small but non-zero density of red

fluid population in the medium and of blue fluid population

inside the droplet. This will be touched upon in greater detail in

section III A.
C. Amphiphiles

Amphiphiles can be introduced to LB simulations in various

ways. While Benzi et al. have proposed a method that can reach

even vanishingly low surface tensions by including mid-range

interaction forces,43,44 we avoid taking into account additional

Brillouin zones and instead follow a model proposed by Chen

et al.6,33,45 Although this method suffices to recover the quali-

tative behaviour of surfactant, it is limited in the surface tension

reduction it can effect—60% reduction being the largest ach-

ieved in our simulations. However, availability of larger

reduction was deemed unnecessary for the purpose of the

present work.

In addition to having its own set of distribution functions

fsi(x,t), the amphiphilic surfactant (s) has a dipole vector d(x,t)

associated with it, representing the average orientation of the

amphiphiles at a lattice site. The direction of this dipole vector

can vary continuously. Its propagation is given by

f sðx; tþ 1Þdðx; tþ 1Þ ¼
X
i

�
~fi
sðx� ci; tÞ~dðx� ci; tÞ

�
: (10)

Here, the tildes denote the post-collision values—for a quan-

tityQc
i: ~Q

c
i hQc

i +Uc
i. The relaxation of the dipole vector can also

be described by a (vector) BGK process as

~dðx; tÞ ¼ dðx; tÞ � dðx; tÞ � deqðx; tÞ
sd

; (11)

with sd the relaxation time of the dipole orientation towards

a local equilibrium deq(x,t). Furthermore, the force terms as

described in eqn (6) are extended to account for the forces the

amphiphiles exert on the red and blue fluids:
6544 | Soft Matter, 2012, 8, 6542–6556
F
c
(x,t) ¼ F

c

C(x,t) + F
c

S(x,t), (12)

where the lower indices denote the source of the force and

C and S refer to ‘‘colour’’ and ‘‘surfactant’’, respectively. The new

addition to the force term takes the form

Fc
Sðx; tÞ ¼ �2Jcðx; tÞgcs

X
is0

~dðxþ ci; tÞ$qiJ
sðxþ ci; tÞ ; (13)

where gcs is the force coupling constant between an ordinary and

the amphiphilic species and qi is a second-rank tensor defined as

qih1� 3
cici

c2
; (14)

with 1 the second-rank identity tensor. Similarly, the forces

acting on the amphiphiles can be split into contributions from

amphiphiles and ordinary fluid:

F
s
(x,t) ¼ F

s

C(x,t) + F
s

S(x,t). (15)

These take the forms

Fs
Cðx; tÞ ¼ 2Jsðx; tÞ~dðx; tÞ$

X
c

gcs
X
is0

qiJ
cðxþ ci; tÞ (16)

and

Fs
Sðx; tÞ ¼ � 12

kcik2
gssJ

sðx; tÞ$
X
i

Jsðxþ ci; tÞ

�
�
~dðxþ ci; tÞ$qi$~dðx; tÞci þ

h
~dðxþ ci; tÞ~dðx; tÞ

þ ~dðx; tÞ~dðxþ ci; tÞ
i
$ci

�
; (17)

respectively. The coupling constant gss should be negative to

model attraction between two amphiphile tails and repulsion

between a head and a tail. For a full derivation of these equa-

tions, cf. ref. 6.
D. Nanoparticles

Nanoparticles are discretized on the lattice and coupled to both

fluid species by means of a modified bounce-back boundary

condition as pioneered by Ladd,34–36,46 resulting in a modified

lattice Boltzmann equation

f c
i (x + ci,t + 1) ¼ f c

�ı (x + ci,t) + U c
�ı (x + ci,t) + C, (18)

where C is a linear function of the local velocity of the particle

surface, and �ı are defined such that ci ¼ �c�ı. Wherever x is

occupied by a particle, eqn (1) is replaced by eqn (18). The

particle configuration is evolved in time, solving Newton’s

equations in the spirit of classical molecular dynamics simula-

tions. As the total momentum has to be conserved, an additional

force acting on the particle is needed to compensate for the

momentum change of the fluid caused by eqn (18):

F(t) ¼ (2f
c
�ı (x + ci,t) + C)c�ı. (19)

As the simulation evolves in time and a particle moves around,

the configuration of lattice sites occupied by the particle changes.

When a site is newly occupied by a particle, the fluids on that site

are deleted and their momentum is transferred to the particle

through a force
This journal is ª The Royal Society of Chemistry 2012
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FðtÞ ¼ �
X
c

rcðx; tÞucðx; tÞ: (20)

Lattice sites which have been newly vacated by a particle also

have to be treated. In Ladd’s original algorithm for a single fluid,

the initial fluid density rcinit would be used. However, in the case

of a multicomponent system this would cause artefacts, in

particular for the case of particles adsorped to an interface: fluid

b would be initialized where only fluid r ought to be present and

vice versa. To prevent such problems from occuring, a density

rcðx; tÞh 1

NFN

X
iFN

rcðxþ ciFN ; tÞ (21)

is defined, averaged over the NFN neighbouring fluid lattice

nodes xiFN, separated from x by the velocity vector ciFN. The fluid

on the vacated site is initialized with populations

f
c

i (x,t) ¼ rcnew(x,t)$f
eq
i (usurface(x,t),rnew(x,t)), (22)

where usurface(x,t) is the local velocity of the particle surface. Due

to non-zero repulsive Shan–Chen forces between the particle

surface and the surrounding fluid, the effective fluid density close

to the particle surface might be slightly smaller than the bulk

density leading to a mass drift over time if one chooses

rcnew(x,t) ¼ �rc(x,t). To suppress this effect we apply a correction

which keeps the total mass constant on long time scales, with

small fluctuations (of the order of 10�4 of the total mass) on

shorter time scales:18

rcnewðx; tÞ ¼ rcðx; tÞ
 
1� C0

P
cr

c
init

rcinit

DrcðtÞ
Vbox

!
; (23)

where Drc(t) is the total mass error of colour c at time t, and C0

can be used to tune the strength of the corrections. In this work,

C0 ¼ 2500 is used. To prevent instabilities, we restrict this density

to be not larger or smaller than the highest and lowest

surrounding density, respectively.

The potential between the particles is a Hertz potential which

approximates a hard core potential and has the following form

for two spheres with identical radii rp:
47

fH ¼ KH

�
2rp � rij

�5
2 for rij # 2rp; (24)

and zero otherwise. Here, rij h krijk h kri � rjk is the distance

between the centres for two spheres i,j located at ri and rj,

respectively, and KH is the force constant, which we choose to be

KH ¼ 100. Apart from the direct interaction described by the

Hertz potential we correct for the limited description of hydro-

dynamics when two particles come very close by means of

a lubrication correction. If the number of lattice points between

two particles is sufficient—at least one fluid site—the LB algo-

rithm reproduces the correct lubrication force automatically. If

particles approach beyond this limit, the flow is no longer suffi-

ciently resolved. The error can be corrected by an additional

force term

Flub
ij ¼ �3pncr2p

2
r̂ij r̂ij$

�
ui � uj

�� 1

rij � 2rp
� 1

Dc

�
; (25)

with ui and uj the velocities of particles i and j, respectively, and r̂ij
the unit vector pointing from the centre of particle i to the centre
This journal is ª The Royal Society of Chemistry 2012
of particle j.36 Furthermore, we choose a cutoff of this lubrication

force Dc ¼ 2/3.

The force in eqn (6) also includes interactions between a lattice

node outside of a particle and a lattice node inside a particle. To

calculate these interactions the lattice nodes in the outer shell of

the particle are filled with a ‘‘virtual’’ fluid corresponding to the

density defined in eqn (21): rcvirt(x,t) ¼ �rc(x,t). This density is

assigned to the population density f
c

rest(x,t) for which crest ¼ 0.

Advection and collision are not applied to this virtual fluid.

A system of two immiscible fluids and particles is considered.

We define a parameter Dr, the particle colour, which allows us to

control the interaction between the particle surface and the two

fluids. If Dr has a positive value, we add it to the red fluid

component as

rrvirt ¼ �rr + Dr. (26)

Otherwise we add its absolute value to the blue fluid as

rbvirt ¼ �rb � Dr. (27)

By changing Dr it is possible to control the contact angle qp of

the particle. The dependence of the contact angle on the particle

colour can be fitted by a linear relation, where the slope depends

on the actual simulation parameters. A particle colour

Dr¼ 0 corresponds to a contact angle of qp ¼ 90�, i.e. a neutrally
wetting particle. For a more detailed description of our simula-

tion algorithm the reader is referred to ref. 18.

An alternative method to introduce solid particles to free-

energy-based multicomponent LB simulations was introduced by

Stratford et al.,14,48 while Joshi and Sun published applications of

the multiphase Shan–Chen model with suspended particles.37
E. Boundary conditions

The simulation volume is bounded at the x¼ 1 and x¼ nx planes

by Lees–Edwards shear boundary conditions,49 which avoid

spatial inhomogeneities that occur when shear is induced by

moving walls. These boundary conditions have been adapted for

use in LB simulations by Wagner and Pagonabarraga,50 and the

reader is referred to this publication for technical details. In our

simulations the boundary conditions are set up in such a way as

to effect a shear rate _g ¼ 2us/(nx � 1) in the z-direction. The

remaining sides of the system are subject to ordinary periodic

boundary conditions.7,8
III. Surface tension

A. Theory

The Young–Laplace equation relates the pressure difference DP

over the interface between two fluids to the surface tension

s: DP ¼ �sV$n̂, with n̂ the surface normal. For a spherical

(undisturbed) droplet of one fluid of radius Rd inside another

fluid this equation takes the form

s ¼ RdDP

2
: (28)

Calculating the correct pressure jump DP ¼ Pd � Pm > 0 over

the interface, where Pd is the pressure inside the droplet and Pm is
Soft Matter, 2012, 8, 6542–6556 | 6545
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Fig. 1 A 1D profile of the local densities rr(x) (solid curve) and rb(x)

(dashed curve) along the z-axis and centred in the x–y plane, as used in

the calculation of the droplet mass Md. The droplet density of the red

fluid rrd and medium densities rcm are taken at the centre (circle) and edge

(squares) of the domain, respectively. The shaded area denotes the

summed effective total density of red fluid, which takes into account the

non-zero ‘‘background’’ density of the red fluid in the medium rrm by

subtracting it from the local densities.
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the pressure in the medium, requires some care. For a single-

component and single-phase system, local pressure in LB can be

calculated using the simple relation P(x) ¼ c2Sr(x) (here and in all

future equations, the time dependence has been suppressed in our

notation). However, when using the multicomponent Shan–

Chen model for a ternary system—consisting of simple fluid

species red r and blue b and a surfactant species s—there is a non-

zero presence of the local minority fluid throughout the system

and we have to use the more complicated expression

PðxÞ
c2S

¼ rrðxÞ þ rbðxÞ þ rsðxÞ þ
X
csc0

gcc0J
cðxÞJc0 ðxÞ

þ gssJ
sðxÞJsðxÞ; (29)

which takes into account pressure contributions of the fluid–fluid

interactions.

Because of the diffuse interface in LB simulations one has to

make sure that the measurements are performed far enough away

from the interface, so that the density is (almost) constant in the

neighbourhood. We have verified that the density profiles of

the system in equilibrium are flat on the inside and outside of the

droplet as little as five lattice sites away from the isosurface where

the colour field is zero. Hence, this effect does not cause

a problem in these cases. We therefore take a spatial average of

the pressure in the centre of the droplet over a small neigh-

bourhood (53 cube of lattice sites) as Pd, and the local spatial

average in a corner of the system (which due to the periodic

boundary conditions is the furthest away one can get) as Pm.

Densities of the fluids c—denoted as rcd and rcm—can now be

defined in a similar manner.

Calculating the radius of the droplet is also non-trivial, again

due to the diffuse interface. We have investigated three distinct

approaches, whose results have been in agreement up to less than

a lattice site—two methods based on detection of the f ¼ 0 iso-

surface and one based on total mass and density of the red fluid.

The latter method has been chosen, since it can most easily be

extended to the case of added particles, which will be explained

below. We consider the idea that all the surplus population of the

red fluid ought to be contained in a sphere of constant density.

We define a local effective density rreff(x) ¼ rr(x) � rrm to account

for the non-zero density of red fluid outside of the droplet. This

effective density is used to calculate the total droplet mass

Md ¼
X
x

rreffðxÞ: (30)

See Fig. 1 for an illustration of this process.

Using the relation for the droplet volume Vd ¼ Md / (r
r
d � rrm)

and assuming sphericity of the droplet leads to

Rd;mass ¼
"�

3

4p

�
Md

rrd � rrm

#1
3

: (31)

When nanoparticles are adsorbed at the droplet interface

(which could change the shape of the f ¼ 0 isosurface dramati-

cally depending on the number of particles and their position,

validating the choice of this particular method), a correction

term is needed to account for these particles. Recalling that the

radius of the spherical particles is denoted rp, we define a new

effective volume of the droplet Veff
d ¼ Vd + Vp, and approximate
6546 | Soft Matter, 2012, 8, 6542–6556
Vpznp=2ð4p=3 r3pÞ, where np is the number of particles,

expressing that we expect half of the particle volume to be on the

inside of the interface of the droplet, adding its volume to the

volume derived from the red fluid. Thus, the final equation for

the radius of the droplet is given by

Rd ¼
"�

3

4p

�
Md

rrd � rrm
þ np

2
r3p

#1
3

: (32)

From eqn (29) and eqn (28) one can see that the measured

surface tension depends on the fluid densities—linearly in first

order, but in a more complicated fashion in the cross terms,

where the form of the effective mass function J plays a role (cf.

eqn (7)). In light of this, we keep the initial density of the simple

fluid species constant across simulations.

B. Effect of amphiphiles

We now proceed to study the effect of added surfactant on the

system. The system is initialized as follows: a cubic simulation

volume nx ¼ ny ¼ nz ¼ 64 is considered, and the initial droplet is

chosen to have a radius ofRinit
d ¼ 0.3nx¼ 19.2 and is placed in the

centre of the system. These values were chosen after determining

the effect of the resolution of the lattice on the surface tension.

The total variation when increasing the system size from 483 to

1283 was seen to be less than 4%, and the best balance between

accuracy and computational effort was attained at 643. This error

is smaller than the errors from the sources described above. After

discretization, the interior droplet sites are set to have a density

rr ¼ rrinit and rb¼ 0. Conversely, the medium sites have rr¼ 0 and

rb ¼ rbinit, while the interface is crudely modeled by a linear

density gradient over 5 lattice sites. Because of stability reasons

and the shape of the effective mass function Jc we use rrinit ¼
rbinit ¼ 0.7 in all results presented here. In the case of added
This journal is ª The Royal Society of Chemistry 2012
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Fig. 2 Main plot: plotting the pressure jump over the fluid–fluid inter-

face against the inverse droplet radius, the Young–Laplace equation for

a spherical droplet allows us to calculate surface tensions as the slope of

fitted linear functions going through the origin DP ¼ s(2/Rd) for various

values of the Shan–Chen interaction parameter gbr. Inset: the surface

tension s is a monotonically increasing function of gbr. The lines connect

the results taken from the linear fits, while the symbols show the averaged

results of direct evaluation of the surface tension for single points on the

curves. Direct calculation of the surface tension is an accurate and effi-

cient method when considering many systems with different parameters,

which would require extra simulations with multiple droplet radii

otherwise.

Fig. 3 Main plot: by rescaling the effect of surfactant to

Dsrel h (s/s0 � 1)gbr the curves for different values of fluid–fluid inter-

action strength gbr can be made to collapse, illustrating the fact that the

effect of added surfactant scales with gbr. The error bars of the data points

are too small to be visible at this scale. Inset: surface tensions as a func-

tion of gbr for various concentrations of surfactant r
s
init. The lines are not

a fit, but included only to guide the eye. This shows qualitatively that the

surfactant lowers the surface tension, as expected. Again, the error bars

are too small to be visible in this plot.
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surfactant, the density is set to rs ¼ rsinit everywhere. The initial

surfactant density varies from simulation to simulation and will

always be reported explicitly. As the system approaches its

equilibrium state, surfactant accumulates at the interface,

causing the local density at the interface to be higher by a factor

of approximately two compared to the density in the bulk.

Reaching the equilibrium state from this initialization can take

a long time—to obtain stable results for the surface tension the

simulations have to run for tens of thousands of time steps for the

systems described in this paragraph (and up to several hundred

thousand timesteps in the case of a system with particles, as will

be described in section III C).

Firstly, we are interested in determining the surface tension

as a function of the fluid–fluid interaction strength gbr in the

case of a binary fluid system. We fix the coupling constants

related to the surfactant to limit the parameter space of interest

and choose grs ¼ gbs ¼ gss ¼ �0.005. As discussed in section II

C, these have to be negative to properly model the behaviour

of a surfactant. The actual values are chosen for their stability.

There are also some restrictions on our choice of gbr. For

gbr < 0.10 the fluids become miscible when surfactant with the

properties specified above is added, leading to ill-defined

interfaces and droplets. Furthermore, choosing gbr > 0.15 leads

to numerical instabilities.51 We therefore consider the values

0.10 # gbr # 0.15, restricting reachable surface tensions.

Rewriting eqn (28) as DP ¼ s(2/Rd) allows us to extract s by

considering it to be the slope of the pressure difference plotted

against twice the inverse droplet radius. Linear fits through the

origin correspond very well to the simulation results for 0.10 #

gbr # 0.15 (cf. Fig. 2). From this it follows that gbr can be

mapped onto the surface tension: s h s(gbr), with s(gbr)

a monotonically increasing function. The inset of Fig. 2 shows

that calculating surface tensions directly using a single droplet

radius together with eqn (28) is an accurate and efficient

method that does not require multiple simulations for a single

choice of gbr.

The qualitative result of creating a ternary system by adding an

amphiphilic surfactant component to the binary droplet system is

as expected: increasing surfactant density from rsinit ¼ 0.0 to

rsinit ¼ 0.15 and rsinit ¼ 0.25 lowers the surface tension by 30 to 50

percent (cf. the inset of Fig. 3). As mentioned in section II C, this

relatively modest reduction is due to limitations of the surfactant

model used for these simulations. It is, however, sufficient to

highlight the differences between the effect of amphiphiles and

nanoparticles. To find a quantitative relation between surfactant

concentration fraction fs h rsinit/(r
s
init + rbinit), interaction

strength and surface tension, it is useful to define

Dsrelh

�
s

s0

� 1

�
gbr; (33)

where s0 h s(fs ¼ 0). Plotting this quantity as a function of fs,

the data points collapse onto a universal curve, as shown in

Fig. 3. This illustrates the fact that the effect of the surfactant

scales with the interaction strength between the two non-

amphiphilic fluid species. We can use this data to obtain another

mapping: s h s(gbr,f
s) for fixed interaction strengths involving

the surfactant species. These mappings will later be used in

determining capillary numbers for systems of a droplet subjected

to shear.
This journal is ª The Royal Society of Chemistry 2012
C. Effect of nanoparticles

Next, the case of added (spherical and monodisperse) nano-

particles is considered. The fraction c of the droplet surface

removed by the adsorped particles is a parameter of interest.
Soft Matter, 2012, 8, 6542–6556 | 6547
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Fig. 4 Surface tension change as a function of particle droplet surface

coverage c (top x-axis, circles) and surfactant volume fraction fs (bottom

x-axis, squares). Here, s0 is the surface tension for the purely binary

system (i.e. c ¼ 0 and fs ¼ 0, respectively) with otherwise identical

parameters. For all cases gbr ¼ 0.10; for the system with surfactant

grs ¼ gbs ¼ gss ¼ �0.005 and for the system with particles rp ¼ 5.0,

mp ¼ 524, and qp ¼ 90�. Introducing 25% volume fraction of surfactant

into the system lowers the surface tension by almost 60%, while particles

affect it only very weakly. The slight drop in measured surface tension for

moderate values of c is caused by errors introduced in the calculation of

the droplet radius due to anisotropic particle distributions on account of

spurious currents at the droplet interface.
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The excluded surface area due to one neutrally wetting

particle is a spherical cap whose area is given by

Aex
p ¼ 2pRd Rd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

d � r2p

q� �
, from which follows that the total

coverage fraction of a spherical droplet is given by

chnp
Aex

p

Ad

¼ np

Rd �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

d � r2p

q
2Rd

: (34)

Since we use a diffuse interface method, any suspended

particles have to be of sufficient size compared to the interface

width to resolve their interfacial properties. In practice, this

means a typical spherical particle needs to have a diameter of at

least 10 LB length units, while a spherical droplet should be

larger than the particles by an order of magnitude. Allowing

then sufficient room for the deformation of the droplets to take

place without undue finite size effects, these calculations remain

computationally challenging, even for the case of a single

droplet and a highly efficient massively parallel simulation

environment. In order to be able to let the droplet deform

sufficiently in later simulations we also elongate the system in

the direction of the shear flow (z-direction): nx ¼ ny ¼ 256, nz ¼
512. The droplet is initialized as described above, with initial

radius Rinit
d ¼ 0.3$nx ¼ 76.8 and we choose gbr ¼ 0.10. The

particles have a radius rp ¼ 5.0 and are neutrally wetting

(qp ¼ 90�). Furthermore, they have a mass mp ¼ 524, which

corresponds to a density rp ¼ 1 (taken with respect to the

lattice). They are initialized on a spiral running over the surface

of the initial droplet from the north to south pole, resulting in

a very uniform initial distribution of particles at low computa-

tional cost.52 When the system is allowed to get into its equi-

librium state, however, some pattern formation of the particles

on the interface occurs, due to the occurrence of spurious

currents near the interface (as also observed in similar modeling

of liquid–vapour systems by Joshi and Sun37). This effect is

negligible when the system is not stationary: the currents are

much smaller than the effect of applying shear to the system, or,

for example, the effect of droplet movement in the formation of

a Pickering emulsion. In either case the particle ordering due to

the spurious currents is destroyed.

Adding particles with the aforementioned properties does not

affect surface tension at all—the presence of particles at the

interface only changes interfacial free energy directly by taking

away energetically expensive fluid–fluid interfacial area and

replacing it with cheap particle–fluid interfaces. To clarify this,

consider the free energy term Fs related to the surface tension of

the interface of the droplet D,

Fs ¼ #
vD

sdA; (35)

which integrates the surface tension over the interface. For

simplicity, the surface tension is taken to be constant over the

interface. There are now two possibilities to reduce this energy.

The first is to reduce the surface tension s, which is the effect of

added surfactant. Because s > 0 and the integration only pertains

to the fluid–fluid interface, the second possibility is to reduce the

area of integration vD, which is effected by adsorped particles.

The particles also add energy to the system by means of the

interfacial energy between the particle and either fluid, but as this

energy per unit surface area is much smaller than the fluid–fluid
6548 | Soft Matter, 2012, 8, 6542–6556
surface tension, the net effect is still a reduction of the free

energy.

A comparison of the addition of surfactant and nanoparticles

to a binary system can be seen in Fig. 4. Due to the anisotropic

distribution of the particles on the interface, errors are intro-

duced in the calculation of the droplet radius for intermediate

values of c, lowering the measured surface tension by up to 3%.

At higher c, the anisotropy disappears, and with it the calculated

change in surface tension, which returns to its original value for

c z 0.5. In the system with surfactant an identical value of

gbr ¼ 0.10 is used. Unlike adding particles, adding surfactant

lowers the surface tension (a 60% drop in surface tension for

rsinit ¼ 0.25).
IV. Droplet in shear flow

A. Theory

The system of a droplet of a fluid suspended in another fluid is

subjected to simple shear flow, which causes the droplet to

deform (cf. Fig. 5). To analyze this process we first define a set of

dimensionless variables. The dimensionless deformation

parameter

Dh
L� B

Lþ B
(36)

introduced by Taylor53,54 is used to describe the deformation of

the droplet, where L is the length and B is the breadth of the

droplet. If the droplet is a perfect prolate ellipsoid the length and
This journal is ª The Royal Society of Chemistry 2012
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Fig. 5 Representative deformation of a particle-covered droplet at

Ca ¼ 0.075, c ¼ 0.55. The shaded planes at the top and bottom are

subject to Lees–Edwards boundary conditions, inducing a shear rate

g_¼ 2us/(nx � 1) in the z-direction, as discussed in section II E. The shear

causes droplet deformationDh (L�B)/(L + B) and an inclination of the

droplet of angle qd, which is the angle the long axis L of the droplet forms

with the shear direction z.
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breadth can be related to the long and short axes, respectively,

but in other cases a length and breadth of a more irregular shape

can still be determined. One can easily see that for a spherical

droplet L¼ B, henceD¼ 0, and for a strongly deformed droplet,

L [ B, D / 1. Extraction of D from the data is effected

through the symmetric moment of inertia tensor

I ¼
2
4 I11 I12 I13
I12 I22 I23
I13 I23 I33

3
5: (37)

In order to define these moments of inertia, we first calculate

the centre-of-mass position of the droplet

xcom
d ¼

X
x˛Vbox

x$rrcomðxÞ; (38)

where a cutoff density rrcutoff is introduced to confine the

summation to the droplet:

rrcomðxÞ ¼
	
rrðxÞ if rrðxÞ. rrcutoff

0 otherwise:
(39)

The cutoff density should fulfill the condition rrm < rrcutoff < rrd
and can be chosen freely within that range with negligible effect

on the subsequent calculations. We use rrcutoff ¼ 0.1 in this work.

A droplet mass based on the density rrcom(x) is introduced for

later use:

Mcom
d ¼

X
x˛Vbox

rrcomðxÞ: (40)

Defining ~x h x � xcom
d allows us to express the elements of I as

Iij ¼
X

x˛Vbox

rrcomðxÞ
�
k~xk2dij � ~xi ~xj

�
; (41)

where dij is the Kronecker delta. The moment of inertia tensor Iell

of an ellipsoid of uniform density is a diagonal matrix with its

non-zero elements given by

I ellii ¼ Mell

5

�ð1� di1Þa2 þ ð1� di2Þb2 þ ð1� di3Þc2
�
; (42)
This journal is ª The Royal Society of Chemistry 2012
withMell the mass of the ellipsoid and a, b and c the lengths of the

axes. We now assume that the deformed droplet can be

approximated by such an ellipsoid, and Mell ¼ Mcom
d . The set of

equations obtained by combining the eigenvalues of I with eqn

(42) can be solved for a, b and c. The length and breadth of the

droplet are then defined as L ¼ max(a,b,c) and B ¼ min(a,b,c),

respectively.

A droplet thus deformed has lost its spherical shape and gains

a preferred alignment. This is expressed through the inclination

angle qd. It is calculated by taking the eigenvector L corre-

sponding to the long axis of the droplet of the moment of inertia

tensor I, and calculating the arctangent of the quotient of its x

and z components:

qd ¼ arctan
Lx

Lz

: (43)

A capillary number Ca can be defined as Ca h mm _gRd / s,

wheremm is the dynamic viscosity of themedium, _g is the shear rate

as imposed through theLees–Edwards boundary conditions,Rd is

the radius of the initial—undeformed, hence spherical—droplet

and s is the surface tension. However, using this definition of the

capillary number does not take into account the substantial

distortionof the linear shear gradient causedby thepresence of the

droplet, which leads to a dependence on the size of the simulation

volume, even in the case when only the resolution of the simula-

tion is increased. A better characterization of the system can

therefore be found in an effective capillary number:

Caeffh
mm _geffRd

s
; (44)

where an effective shear rate _geff is measured in the simulation,

instead of assuming the validity of an imposed shear rate set

directly by an input parameter. Fig. 6 depicts the measurement of

_geff for a droplet with initial radius Rd ¼ 39.2 in a system of size

nx ¼ ny ¼ 128, nz ¼ 256 and with us ¼ 0.05. Far away from the

droplet _geff z _g, but for those values of z over which the droplet

extends, typically _geff > _g. The slope of the velocity gradient

between the shear boundary and the droplet interface can be

measured, which is then averaged over the length of the droplet

to obtain the effective shear rate. This shear rate better charac-

terizes the system. When the effective capillary number is used,

taking into account the actual shear experienced by the droplet,

the dependence of the deformation on the system size disappears,

as shown in Fig. 7, where deformations of a droplet are plotted

against both Ca and Caeff. When the original capillary number is

used, the deformation curves diverge as the system size increases

from 642 $ 128 to 1282 $ 256 and 2562 $ 512, while the curves

collapse when plotted as a function of the effective capillary

number.

We also define the ratio of the droplet and medium viscosity

l h md / mm ¼ 1 in all presented data, as well as a Reynolds

number Rehrm _gR2
d=mm and an effective Reynolds number

Reeffh
rm _geffR2

d

mm

: (45)

Due to the variation in system size and shear rate, the Rey-

nolds number varies between approximately 0.6 < Reeff < 25, the

effect of which will be discussed in section IV C.
Soft Matter, 2012, 8, 6542–6556 | 6549
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Fig. 6 Representative z-velocity profiles of a droplet with initial radius

Rd ¼ 39.2, centred in a system with nx ¼ ny ¼ 128, nz ¼ 256 and us ¼ 0.05.

The cuts are taken in the x-direction at y ¼ 63 and taken through the

droplet (z ¼ 100) as well as at the edge of the periodic volume (z ¼ 0).

Also shown is what the imposed shear rate would look like in absence of

the droplet ( _g is the slope of this line). It is clear that far away from

the droplet, the measured shear is almost undisturbed and linear,

while the droplet locally strongly disturbs the effective shear profile. We

detect the droplet interface and calculate an effective shear rate _geff based

on the slope of the profile in the region between the shear boundary and

the droplet. Because of the deformation and inclination of the droplet this

curve will generally not be symmetrical for the top and bottom shear

boundaries for any particular given value of z, however, averaging over

the length of the droplet restores this symmetry.

Fig. 7 Dimensionless deformation D of a droplet in shear flow as

a function of capillary number Ca h mm _gRd / s (left) and effective

capillary number Caeff h mm _geffRd / s (right). Different symbols represent

different system sizes. The capillary number computed from an assumed

undisturbed shear profile gives rise to divergence in the relation between

Ca and the deformation when the system size changes (lines are included

to guide the eye). However, these points collapse on the curve which uses

the effective capillary number, which takes into account the actual shear

experienced by the droplet.

Fig. 8 Distribution of surfactant in a system of size nx ¼ ny ¼ 64,

nz¼ 128. The local surfactant density rs(x) is plotted on a 2D cut showing

the centred x–z plane through a droplet sheared with constant velocity

us ¼ 0.06 and rsinit ¼ 0.25 (Caeff ¼ 0.16). The snapshot is zoomed into the

droplet and as such does not accurately reflect confinement of the droplet

or the elongation of the system. The surfactant accumulates at the droplet

interface until saturation occurs. Compared to the remainder of the

interface, a slightly higher local density is observed at the tips of the

droplet (10 to 20 percent). This is caused by convection of

the surfactant.55
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B. Distribution of amphiphiles and nanoparticles

To understand the effect of amphiphiles and nanoparticles on the

deformation properties of the droplet, we first discuss how they
6550 | Soft Matter, 2012, 8, 6542–6556
position themselves at and move over the droplet interface as the

droplet is sheared.

The distribution of surfactant on a 2D cut through a sheared

droplet is shown in Fig. 8. In this example, the shear rate is held

constant at _g ¼ 0.002 and the initial surfactant density is set to

rsinit ¼ 0.25. As has been mentioned in section III B, the surfac-

tant accumulates at the interface. When the system is subjected to

shear, a slightly increased density of approximately 10 to 20

percent is observed at the tips of the droplet, due to convection of

the surfactant.55 This behaviour is more readily apparent for

lower rsinit and is different from our observations in the case of

adsorbed particles, as we will show below.

Even if the droplet interface is initially densely packed with

particles, this will no longer be the case when the droplet

deforms—the interfacial area increases while the number of

particles remains constant. The particles then have freedom to

move over the interface to some extent (cf. Fig. 9). In all cases,

however, detaching particles from the interface remains practi-

cally impossible. The particles are swept over the interface with

increasing velocity as they move away from the centre plane of

the system and up the shear gradient. If the particles would not

be affected by the shear flow, they would prefer to occupy

interface with high local curvature as can be explained by

a geometrical argument: the interface removed by a spherical

particle at a curved interface is larger than the circular area

removed from a flat interface, and this effect gets stronger as

curvature increases. This explains why in this dynamic equilib-

rium, most particles can be found at the tips of the droplet. This

can be observed in Fig. 9b at high capillary number, where the

relatively flat sections of the interface at the top and bottom of

the droplet have the lowest particle density and the strongly

curved section of the interface near the centre plane is much more

highly populated than the strongly curved section protruding

farther into the shear flow.

To quantify these phenomena, we employ a discrete pair

correlation function
This journal is ª The Royal Society of Chemistry 2012
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Fig. 9 Side-view examples of deformed droplets, for various particle

coverage fractions: (a) c ¼ 0.00, (b) c ¼ 0.27 and (c) c ¼ 0.55. In these

pictures the shear velocities are horizontal. In all these simulations gbr ¼
0.10, rp ¼ 5.0, mp ¼ 524, and qp ¼ 90�. One can see that although

increasing c from 0 to 0.27 does not strongly change the deformation of

the droplet, the particles themselves do exhibit interesting behaviour: they

prefer to stay in the middle of the channel where the shear flow is weakest

(recall that the top and bottom planes are moving, inducing flow in

opposite directions). This causes the formation of a band of particles near

the equator of the droplet, with the axis through the poles in the

x-direction. For packings of higher density there is an interplay between

shear forces and the curvature of the interface, which causes the afore-

mentioned band to grow asymmetrically as the particles prefer to occupy

interface with high local curvature. The particles also exhibit tank-

treading-like behaviour: they move around the interface following the

shear flow. The combined effect of this tank-treading-like movement and

the energy arguments described above leads to the formation of strings of

single particles, being swept from the band near one tip to the other tip.

Fig. 10 Main plot: normalized pair correlation function between

particles Gnorm(r), for c ¼ 0.41, rp ¼ 5.0 and various capillary numbers.

As the capillary number increases, the peaks both shift in position and

increase in height. The former effect is an indication of closer packing,

while the latter corresponds to the observation of preferred regions for

the particles as shown in Fig. 9b. Inset: the height of the first three peaks

of the normalized pair correlation function are shown as a function of the

effective capillary number. The strongest effect is seen for the very first

peak, which shows the largest growth in both relative and absolute sense

and increases in height by almost a factor of 3.
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GðrÞ ¼
Xnp
i¼1

Xi�1

j¼1

ðrþ1

r

d
�kri � rjk � R

�
dR; (46)

where d(x) is the Dirac delta function. Because of the system size,

the domain of the pair correlation function is limited to 0 # r <

nx/2¼ 128. Furthermore, we choose to employ Gnorm(r), which is

proportional to G(r) and is normalized to tend to 1 as r tends to

its maximum value. In Fig. 10 we show this normalized pair

correlation function for c ¼ 0.41, rp ¼ 5.0 and various capillary

numbers. In the main plot, two features are readily apparent: the

peaks of the function both shift in position and increase in height

as the capillary number is increased. The former effect indicates

a denser overall packing of the particles, which occurs despite the

fact that more interfacial area becomes available as the droplet

deforms. The latter effect corresponds to the emergence of

preferred regions for particles as described above. In the inset we

show the height of the first three peaks of Gnorm(r). The first peak

shows the largest increase, both in absolute and relative sense.

This is caused by the fact that at c ¼ 0.41 the band of particles

around the droplet is not dense everywhere, but is mostly

restricted to patches near the tips of the droplet. Thus, particles

having a close packing around them extending over more than

one particle distance (which would show peaks of higher order)
This journal is ª The Royal Society of Chemistry 2012
are more rare than those with just closely packed neighbours.

Finally, we have observed that when this structure is established

it is stable over time for as long as the system is subjected to

a constant shear. When this shear is removed, the particles

restore themselves to their former pattern, as described in section

III C, just as the droplet shape returns to that of a sphere.

Even though the overall structure of the particles on the

droplet interface remains stable over time, individual particles

move over the interface, performing a quasi-periodic motion.

Their trajectories follow the motion of the shear flow and loop

around the droplet with a rotational frequency u. We demon-

strate in Fig. 11 that this frequency is not constant for all

particles, instead showing a dependence on the position of the

particle along the y-axis. When deformation is considered for

ellipsoidal cuts of the droplet along the y-axis, the deformation is

highest in the centre of the droplet, giving particles greater

options for mobility that are also better-aligned with the shear

flow, leading to increased particle velocities. This is qualitatively

different from the tank-treading behaviour observed in, for

example, vesicles,56 which is characterized by a constant

frequency for all points. We also observe that the average rota-

tion frequency increases with increasing capillary number, in

spite of the fact that the particles need to follow longer paths to

complete one revolution as the droplet deforms. This increase in

frequency is concentrated on the particles in the centre of the

droplet, for the same reasons as mentioned above.
C. Droplet deformation and inclination

For small capillary numbers, Taylor predicts a linear dependence

of the deformation of a droplet on the capillary number,53,54 with

a particularly simple form for equiviscous fluids (lhmd / mm¼ 1):
Soft Matter, 2012, 8, 6542–6556 | 6551
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Fig. 11 Rotational frequency of particles u as a function of their posi-

tion on the y-axis for c¼ 0.55 and rp¼ 5.0 and various capillary numbers.

The rotational frequency does not explicitly take into account the

increase in the circumference of a cut of the droplet perpendicular to the

y-axis due to deformation. As the capillary number is increased through

increased shear rate, the particles’ rotation frequency increases, with

particles in the middle of the droplet being both the fastest and getting the

largest speedup, despite the fact that the particles in the middle travel the

longest paths. The differences in frequency highlight that the movement is

different from tank-treading as observed in, for example, vesicles.56

Fig. 12 Main plot: deformation parameter D as a function of the

effective capillary number Caeff for various interaction strengths gbr and

surfactant densities rs. The system size is nx ¼ ny ¼ 64, nz ¼ 128 and the

surfactant interaction strengths are fixed at grs ¼ gbs ¼ gss ¼ �0.005. The

capillary number is varied by changing the shear rate. Over the entire

domain, the curves collapse onto a universal curve, and for small capil-

lary number Taylor’s law is recovered (dashed line). Note that the squares

in this plot correspond to the squares in Fig. 7. Inset: The relation

between the capillary and Reynolds numbers is a linear one. The slope is

proportional to the surface tension (cf. eqn (48)).
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D ¼ 19md þ 16mm

16md þ 16mm

Ca ¼ 35

32
Ca: (47)

This law has been recovered in our simulations for the case of

binary systems with various system sizes and interaction

strengths, using the effective capillary number introduced in

section IV A. Combining eqn (44) and eqn (45) one can derive

a relation between the capillary and Reynolds numbers:

Reeff ¼ s

�
rmRd

m2
m

�
Caeff : (48)

As we change the capillary number explicitly by changing the

shear rate, the Reynolds number is proportional to the capillary

number for a fixed value of the surface tension. Inertial effects

increase the deformation, thus the deformations at high capillary

number are higher than predicted by the linear relation of

Taylor.

When a surfactant is added to the system, it lowers the surface

tension of the interface, affecting the capillary number (but

leaving the Reynolds number unchanged). Interaction strengths

gbr ¼ 0.10 and gbr ¼ 0.13 are used, while the surfactant interac-

tion strengths are fixed at grs ¼ gbs ¼ gss � 0.005 for the reasons

mentioned in section III B. The initial homogeneous surfactant

densities range from rsinit ¼ 0.0 to rsinit ¼ 0.3 in increments of 0.05

and the system size is nx ¼ ny ¼ 64, nz ¼ 128, with an initial

droplet radius of Rinit
d ¼ 0.3$nx ¼ 19.2. The deformations for

these systems are shown in Fig. 12. Since the change in surface

tension directly enters the capillary number, all curves (including

those not shown here for clarity) collapse onto a universal curve

as a function of Caeff, and Taylor’s law is reproduced for small

capillary numbers 0 < Caeff < 0.06. In the inset we show the

relation between the capillary and Reynolds numbers. It is clear
6552 | Soft Matter, 2012, 8, 6542–6556
that these relations are linear, and the slopes are proportional to

the surface tension (which is changed both implicitly and

explicitly), and agree with the values predicted by eqn (48).

Inclination angles of the droplet in its steady state are plotted

in Fig. 13. In the case of Stokes flow, one would expect the

inclination angle to be 45� for very small capillary number and to

observe a decrease of this angle as the capillary number is

increased, indicating a better alignment of the droplet with the

shear flow. However, as inertia plays a role here we observe that

in some cases qd first increases beyond 45�, before the inclination
decreases again and the droplet becomes elongated along the

shear direction. When the steady inclinations are considered as

a function of the Reynolds number, there exists a critical capil-

lary number for which the inclination angle never exceeds 45�.
Grouping the results at similar capillary numbers as datasets, we

estimate this to be Caeffcrit z 0.11. Our observations are consistent

with results obtained by Singh and Sarkar, using a front-tracking

finite-difference method.57

We now consider a system with nanoparticles as additives. The

fluid–fluid interaction strength is held fixed at gbr ¼ 0.10. As

before, the particles have a radius of rp ¼ 5.0 and are neutrally

wetting (qp ¼ 90�). Initially, we choose their mass to bemp ¼ 524,

as in section III C. As discussed previously, the introduction of

finite-sized particles introduces a lower bound on how small the

simulation volume can be to accommodate enough particles on

the interface and to avoid finite-size effects. For this reason, the

simulation volume is chosen to be nx ¼ ny ¼ 256, nz ¼ 512, with

an initial droplet radius of Rinit
d ¼ 0.3$nx ¼ 76.8, still keeping it as

small as possible to avoid excessive calculation time. The number

of particles is varied as np ¼ 0, 128, 256, 320, 384, 446 and 512,

which results in a surface coverage fraction of c ¼ 0 up to

c¼ 0.55. Again, the capillary number is changed by changing the
This journal is ª The Royal Society of Chemistry 2012
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Fig. 13 Inclination angle qd of a droplet as a function of the effective

capillary number Caeff for various interaction strengths gbr and surfactant

densities rs. The system size is nx ¼ ny ¼ 64, nz ¼ 128 and the surfactant

interaction strengths are fixed at grs ¼ gbs ¼ gss ¼–0.005. The capillary

number is varied by changing the shear rate. The high capillary numbers

are only reached by using the surface tension lowering effect of the added

surfactant, hence the varying ranges of the datasets presented here. As the

capillary number increases, qd can first increase beyond an angle of 45�

(dashed line) due to viscous effects. Only when the forces induced by the

shear start to dominate does the droplet align with the shear flow.57

Fig. 14 Main plot: deformation parameter D as a function of the

effective capillary number Caeff for various degrees of droplet interface

particle coverage fraction c. In all these simulations gbr ¼ 0.10, rp ¼ 5.0,

mp ¼ 524, and qp ¼ 90�. The system size is nx ¼ ny ¼ 256, nz ¼ 512. The

capillary number is varied by changing the shear rate. Lines are added to

guide the eye and clarify that the effect of adsorbed particles is very weak

for low c, but that the effect becomes noticeable at c > 0.4, where the

deformation increases with c at constant capillary number. In all cases,

however, Taylor’s law is reproduced for small Ca (dashed line). Note that

the squares in this plot correspond to the triangles in Fig. 7. Inset: as is the

case with surfactant, the Reynolds number scales linearly with the

capillary number. Since the nanoparticles do not affect the surface

tension, all curves have the same slope (cf. eqn (48)).
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shear rate. Some examples of the deformations thus realised are

shown in Fig. 9, for Caeff ¼ 0.04, 0.08, 0.12 and c ¼ 0.0 (a), c ¼
0.27 (b) and c ¼ 0.55 (c).

Although the effect of addition of surfactant on the defor-

mation and inclination of the droplet is automatically captured

by the definition of the capillary number, the adsorbed nano-

particles cause deviations from the previously observed behav-

iour. At low capillary number and low particle coverage, no

differences are apparent and Taylor’s law is reproduced (cf.

Fig. 14). When the coverage fraction grows beyond c > 0.40 the

deformations in this regime increase with increasing c and

constant capillary number. As it was the case for the system with

surfactant, the Reynolds number scales linearly with capillary

number. However, since the nanoparticles do not affect the

surface tension, all curves have the same slope (cf. inset of Fig. 14

and eqn (48)). This implies that the increased deformation in the

case of added nanoparticles is not caused by changes in inertia of

the fluids. On the other hand, the inertia of the particles them-

selves plays a decisive role here. We have investigated the

dependence of the droplet deformation on the size and mass of

the particles. Particle radii have been varied between 4.0 # rp #

10.0 and at Caeff ¼ 0.1 this has led to only a small change in

D. Yet, changing the mass of the particles directly has

a substantial effect. We have varied the mass of the particles over

two orders of magnitude, as shown in Fig. 15. c ¼ 0.55 and

Caeff ¼ 0.1 are kept constant and we have rescaled the mass scale

with the reference mass: m*
p ¼ mp/524. The particles are acceler-

ated as long as they are on the part of the droplet interface that

experiences a shear flow at least partially parallel to the particle

movement. Eventually, particles have to ‘‘round the corner’’ and

are forced to move perpendicular to or even antiparallel to the

shear flow. The increased inertia of heavier particles makes it
This journal is ª The Royal Society of Chemistry 2012
more difficult to change the movement of these particles, leading

to a situation where the droplet interface is in fact initially

dragged further away in the direction of the shear flow instead.

This process is balanced by the surface tension as the surface area

increases. This then explains the increase of deformation with

increasing particle mass. As our deformation is increased

substantially, the system size limits the deformation we can

induce. Therefore, the values presented here are underpredictions

of the actual effect of increased mass at high deformations, and

might indeed hide a breakup event.

The effect of particles on the inclination angle of the droplet is

quantified in Fig. 16. We now return to using particles with mass

mp ¼ 524. At low capillary number the disturbance caused to the

droplet shape by the particles makes the inclination hard to

measure. Due to the higher Reynolds numbers in these simula-

tions when compared to the system with added surfactant, the

inclination angle surpasses the 45� mark in all cases, even in the

case without any particles at all.57 As in the study of deformation,

the effect of a small number of particles is relatively minor, but

for c > 0.4, the inclination angle decreases sharply, as the droplet

becomes more elongated and aligned with the shear flow.

Increasing the particle mass also lowers the inclination angle, for

the reasons described above, as can be observed in the droplet

snapshots in Fig. 15.
D. Droplet breakup

When the capillary number is increased beyond the values shown

in this work so far, we first proceed into a regime of extreme
Soft Matter, 2012, 8, 6542–6556 | 6553
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Fig. 15 The deformation parameter D is shown as a function of the

rescaled mass of the particles m*
p ¼ mp/m

0
p, where m

0
p ¼ 524 is defined by

setting the density of the particle to 1. The particles have a radius rp¼ 5.0,

their coverage fraction is c¼ 0.55 and the capillary number is Caeff ¼ 0.1.

Snapshots of the droplets are included, showcasing the deformations of

the droplet. The inertia of the heavier particles causes additional defor-

mation as they drag the droplet interface in the direction of the

shear flow.

Fig. 16 Inclination angle qd as a function of the effective capillary

number Caeff for various degrees of droplet interface particle coverage

fraction c. In all these simulations gbr ¼ 0.10, rp ¼ 5.0,mp ¼ 524 and qp ¼
90�. The system size is nx ¼ ny ¼ 256, nz ¼ 512. The capillary number is

varied by changing the shear rate. Due to the higher Reynolds numbers in

these simulations when compared to the previous system, the inclination

angle surpasses the 45� mark (dashed line) in all cases, even in the case

without particles. As in the study of deformation, the effect of a small

number of particles seems to be relatively minor, but for c > 0.4, the

inclination angle decreases sharply.

Fig. 17 Example of the breakup of a droplet when subjected to shear

flow. The systems shown are identical (nx¼ ny¼ 256, nz¼ 512, gbr¼ 0.10,

us ¼ 0.07, Rinit
d ¼ 76.8, Caeff ¼ 0.15) apart from the introduction of

neutrally wetting particles of radius rp ¼ 5.0: (a) c ¼ 0.0, (b–g) c ¼ 0.55.

In (b–g) snapshots of the particle-covered droplet at different times are

shown. The system without particles has reached a steady state at t ¼
100 000 (a). At the same applied shear velocity, the droplet with the

particles breaks up into two droplets of similar size. At (b) t ¼ 50 000,

(c) t ¼ 70 000 (d) t ¼ 80 000 and (e) t ¼ 90 000 the droplet still holds

together, but the deformation is extreme, departing from the ellipsoidal

approximation and displaying a clear pinch-off. At (f) t ¼ 100 000 the

droplet has broken up into two similar-sized droplets, with the particles

still distributed much as they were on the original droplet. After some

relaxation the particles have redistributed themselves on the new inter-

faces at (g) t ¼ 150000.
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droplet deformation, where ellipsoidal approximations of the

droplet shape no longer hold. This is followed by a regime

of droplet breakup, where the surface tension cannot keep the

droplet together and two or more smaller droplets form. Their

increased relative surface area and smaller volume render them

more stable against new deformations or breakup events.
6554 | Soft Matter, 2012, 8, 6542–6556
A series of snapshots of this process is shown in Fig. 17. First,

a droplet without particles is shown in its steady state (a),

strongly deformed at an applied shear velocity us ¼ 0.07, but not

breaking up. At the same applied shear velocity, a particle-

covered droplet evolving in time is shown. First, deformations

take place within the ellipsoidal approximation (b and c). As the

droplet is deformed even more, a definite neck is observed

(d and e). When this neck pinches off, two droplets are formed.

In the highly deformed state just before breakup, the particles are

mostly found near the centre of the x-direction, on the parts of

the interface with highest curvature (this is an extreme example

of the distributions described in section IV B). This means that

just after the breakup, even though the new droplets are not very

strongly deformed, there is a large anisotropy in the distribution

of the particles, that is, one side of each droplet is mostly vacant

(f). After more relaxation, however, the particles redistribute

themselves over the interface in a similar fashion as before (g).

Analyzing this behaviour in detail remains outside the scope of

this work. We do remark that introducing adsorbed particles

decreases the resilience of the droplet against breakup, effectively

lowering the critical capillary number at which breakup occurs,

which can be viewed as an extension of the increased

deformations.
This journal is ª The Royal Society of Chemistry 2012
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V. Conclusion

In this work we have applied our implementation of the lattice

Boltzmann method, extended to deal with multiple fluid

components, surfactant and hard-sphere nanoparticles to study

physical phenomena related to a droplet in shear flow. Surface

tensions in a binary system can be mapped to the choice of

interaction strength between the fluid components and can be

further adjusted through the addition of a surfactant species. In

this way, the surface tension can be varied by an order of

magnitude within the stable parameter region. The addition of

spherical, neutrally wetting particles to the droplet interface does

not affect the surface tension, owing to the fact that these only

change interfacial free energy by removing part of the energeti-

cally unfavourable fluid–fluid interface.

When a droplet is subjected to simple shear flow, one of the

characterizations of the system is the capillary number, relating

the magnitude of the viscous forces to the magnitude of the

surface tension. We have found that a measured effective shear

rate better characterizes the system than the imposed shear rate,

owing to the distortion in the velocity fields created by the

presence of the droplet.

We have recovered Taylor’s law for small deformations of

a binary droplet, obtaining linear behaviour with the analytically

predicted slope. For higher capillary numbers, the deformation

increases more strongly than this linear relation. The surfactant

model also conforms to this law: when surfactant is introduced

into the system the capillary number is changed through the

induced change in surface tension. Therefore, the same curve as

found for the binary system is recovered.

The effect of the addition of nanoparticles adsorbed to the

droplet interface on the deformation properties of the droplet has

been studied. The particles are not homogeneously distributed

over the droplet surface, but form more densely packed patches

in areas with low shear velocities and high curvature. This

pattern is in a dynamic equilibrium, and particles rotate over the

droplet interface. Their rotational frequency increases with

capillary number and decreases with distance from the centre of

the system. For low capillary number or low coverage of the

interface the effect of these nanoparticles is negligible. However,

in the regime of high capillary number and high coverage (z50%

in the undeformed state) the presence of particles induces a larger

deformation at constant capillary number and a decrease in

inclination angle. This is caused by the inertia of the massive

particles. Finally, adsorbed particles make the droplets break up

more easily, lowering the critical capillary number at which

breakup occurs. Emulsions consisting of such particle-covered

droplets are expected to exhibit shear-thinning behaviour, as the

increased deformation at higher shear rates lowers the apparent

viscosity of such a complex fluid.
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