

Low-complexity wavelet-based scalable image & video coding
for home-use surveillance
Citation for published version (APA):
Loomans, M. J. H., Koeleman, C. J., & With, de, P. H. N. (2011). Low-complexity wavelet-based scalable image
& video coding for home-use surveillance. IEEE Transactions on Consumer Electronics, 57(2), 507-515.
https://doi.org/10.1109/TCE.2011.5955186

DOI:
10.1109/TCE.2011.5955186

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/TCE.2011.5955186
https://doi.org/10.1109/TCE.2011.5955186
https://research.tue.nl/en/publications/86135255-3b16-4f27-88b8-9b4722e732e5

M. J. H. Loomans et al.: Low-Complexity Wavelet-Based Scalable Image & Video Coding for Home-Use Surveillance 507

Contributed Paper
Manuscript received 04/12/11
Current version published 06/27/11
Electronic version published 06/27/11. 0098 3063/11/$20.00 © 2011 IEEE

Low-Complexity Wavelet-Based Scalable
Image & Video Coding for Home-Use Surveillance

Marijn J. H. Loomans, Student Member, IEEE, Cornelis J. Koeleman,
and Peter H. N. de With, Fellow, IEEE

Abstract — We study scalable image and video coding for

the surveillance of rooms and personal environments based
on inexpensive cameras and portable devices. The scalability
is achieved through a multi-level 2D dyadic wavelet
decomposition featuring an accurate low-cost integer wavelet
implementation with lifting. As our primary contribution, we
present a modification to the SPECK wavelet coefficient
encoding algorithm to significantly improve the efficiency of
an embedded system implementation. The modification
consists of storing the significance of all quadtree nodes in a
buffer, where each node comprises several coefficients. This
buffer is then used to efficiently construct the code with
minimal and direct memory access. Our approach allows
efficient parallel implementation on multi-core computer
systems and gives a substantial reduction of memory access
and thus power consumption. We report experimental results,
showing an approximate gain factor of 1,000 in execution
time compared to a straightforward SPECK implementation,
when combined with code optimization on a common digital
signal processor. This translates to 75 full color 4CIF 4:2:0
encoding cycles per second, clearly demonstrating the real-
time capabilities of the proposed modification.1

Index Terms — Scalable, Image Compression, Wavelet
Transforms, Embedded Systems, Image Coding.

I. INTRODUCTION

Real-world applications of scalable image and video coding
include surveillance of rooms and home premises. Part of this
application, is real-time compression using inexpensive
cameras and remote viewing on hand-held battery-powered
devices. Scalable coding based on wavelets [1], provides
intrinsic scalability in quality, resolution and complexity and
therefore matches well with home-use and hand-held
applications. Wavelets are efficiently implemented using the
lifting framework [2] and several integer-to-integer wavelets
have been proposed [3]-[4] to support lossless transformation
and enable efficient implementation on fixed-point arithmetic.
Zhang [5] applied integer scaling factors to the 5/3 integer

1 M. J. H. Loomans and C.J. Koeleman are with VDG Security B.V., 2718

TA, Zoetermeer, The Netherlands (e-mail: marijn.loomans@vdg-security.com
and rick.koeleman@vdg-security.com).

P. H. N. de With is with CycloMedia Technology B.V., 4181 AE,
Waardenburg, The Netherlands. (e-mail: p.h.n.de.with@tue.nl).

M. J. H. Loomans and P. H. N. de With are also with the Electrical
Engineering Department, Eindhoven University of Technology, 5600 MB,
Eindhoven, The Netherlands.

wavelet coefficients to maintain a lossless transformation and
improve rate-distortion performance. The wavelet coefficients
can effectively be coded using dedicated encoding algorithms,
such as EZW [6], SPIHT [7], SPECK [8] and EBCOT [9], of
which the latter is utilized in the JPEG2000 standard [10].
Despite the ongoing developments for wavelet transformation
and efficient coding techniques, a coding standard has not
been broadly employed in practice by a large group of users.
This is explained by the relatively high implementation
complexity and the absence of key applications. Both
drawbacks have limited the wide-spread use in consumer
electronics, especially in hand-held and battery-operated
devices, as these devices have stringent boundaries on energy
usage and thus computational complexity. Therefore, we have
concentrated on efficient implementation techniques of this
technology. Taking efficiency and power consumption as
leading principles, we reconsider the design of such coding
systems up to the algorithm level since this will yield a better
performance. This paper introduces algorithmic improvements
on specific places in the processing to obtain significant gains
in implementation efficiency and power consumption. One of
the initial processing steps is multi-level 2D dyadic wavelet
decomposition, featuring an accurate low-cost integer wavelet
implementation with lifting. An efficient embedded-systems
implementation of this was discussed by the authors in [11].
The primary contribution of this paper is a modification of the
SPECK codec, to make it more suitable for embedded
applications and obtain a significant improvement in memory
usage efficiency and avoid multiple coding iterations. This
modification embodies splitting the SPECK algorithm in two
stages, leading to the name of Two-Stage SPECK (TSSP). In
TSSP, special care is taken in the quadtree partitioning, to
facilitate encoding of non power-of-two image sizes. We
furthermore include two extensions: the first is a highly
scalable mode, which allows full scalability in all dimensions,
without a need to decode any part of the bit stream. The
second is an energy correction mode, that improves the rate-
distortion performance of the 5/3 integer wavelet significantly.
When all measures are included and code is further optimized,
we show that it is possible to achieve real-time performance
on a standard low-cost DSP.

The sequel of this paper is as follows. Section II introduces
the dyadic wavelet decomposition and lifting implementation
of the integer filters with energy correction. In Section III, we
provide the two processing stages in the TSSP coding
algorithm. Section IV presents two extensions to the TSSP

508 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

implementation: a highly scalable mode and a special 5/3
energy correction mode. Experimental results are discussed in
Section V and we conclude the paper in Section VI.

II. WAVELET-BASED IMAGE CODING

A. Multi-Level 2D Dyadic Wavelet Decomposition

In wavelet-based image coding, the input image is
transformed into the wavelet domain by 2D separable wavelet
filters. The result of the 2D wavelet transform consists of four
frequency bands, commonly referred to as the LL, HL, LH and
HH bands. The LL band represents the low-pass image in both
horizontal and vertical direction and can be seen as a down-
scaled version of the original image. The HL, LH and HH
bands contain high-pass image information. The LL band still
contains a large amount of spatial correlation and therefore,
the 2D wavelet transform is applied to this band several times,
up to a predetermined number of iterations. The number of
iterations can be limited by the resolution of the LL band, the
required number of bits to store the coefficients in memory
and/or the impact on coding performance. The dyadic wavelet
decomposition for three levels is represented in Figure 1(a).

Fig. 1. (a) Three level dyadic wavelet decomposition with (b) accumulated
energy correction factors for the 5/3 integer wavelet.

B. Lifting Framework and Integer Wavelets
Using the lifting framework [2], the wavelet can be

implemented with less multiplication and add operations than
the straightforward FIR implementation. Figure 2 shows the
lifting implementation.

Fig. 2. Lifting implementation of wavelet filtering.

Input samples are split into odd and even samples, after

which the even samples are filtered and used to adjust the odd
samples in the predict step. Likewise, the odd samples are then
filtered and used to adjust the even samples in the update step.
The figure shows a single set of update and predict steps, which
is sufficient to implement the 5/3 wavelet filter. For more
complex wavelet filters, more sets of update and predict steps
should be cascaded. For example, the 9/7-F integer filter has
two sets of update and predict steps. The multiplication factor

can be seen as a form of energy correction of the low- and high-
pass outputs. The 5/3 integer wavelet can be implemented by a
single lifting iteration, without any output multiplication.
Following the notation from [4], the predict step is defined by
(1), and the update step by (2), which are specified as

0 0
0

[1] []
[] []

2

s n s n
d n d n

, (1)

0

[] [1] 1
[] []

4 2

d n d n
s n s n

. (2)

In these equations, d[n] and s[n] are the high-pass and low-
pass output, respectively. Parameter d0[n] is the result of the
lazy wavelet, and represents the odd samples of the input x[n],
hence d0[n] = x[2n+1]. Similarly, s0[n] represents the even
input samples x[2n].

As can be derived from these formulas, the multiplication
factors in the predict and update steps are powers of two, and
therefore the 5/3 wavelet can be implemented with adders and
simple bit-shift arithmetic, thereby eliminating multiplier
arithmetic completely. This makes the 5/3 integer wavelet a
perfect candidate for fixed-point embedded implementations,
where complexity is a key design constraint.

Both the 5/3 and 9/7-F integer wavelet are fully reversible
and therefore lossless. Note that there is no energy correction
or scaling factor utilized for these integer wavelets, so that
they retain perfect reconstruction.

C. Multi-level 2D Energy Correction for 5/3 Int. Wavelets

 To balance the energy between the low- and high-pass
output of the 5/3 wavelet, we utilize a scaling factor K at the
end of the lifting process. For the standard 1D wavelet, a good
factor would be √2 for the low-pass output, and consequently,
the reciprocal value for the high-pass output. These factors are
well-defined real numbers and thus not suited for fixed-point
implementation.

Since the wavelet transform is separable, two 1D wavelet
filtering steps are performed in succession. We combine both
1D scaling factors into four alternative 2D scaling factors
after the 2D transform has completed. Using the initial 1D
scaling factor of K=√2, this results in the 2D scaling factors of
2, 1, 1 and ½ for the LL, HL, LH and HH bands respectively.
These 2D scaling factors can be efficiently implemented in
fixed-point arithmetic with bit-shifting.

The dyadic wavelet decomposition consists of multiple
filtering operations of the 2D wavelet transform at several
scales, as discussed in Section II-A. This computing structure
enables the extension of the 2D energy corrections to the
multi-level framework, which results in the scaling factors of
Figure 1(b), identical to those proposed by Zhang [5].

III. TWO-STAGE SPECK (TSSP)

Wavelet coefficients can be effectively coded using zero-
tree coders, such as EZW [6] and SPIHT [7]. These coders
utilize the property that the high-pass wavelet coefficients are

M. J. H. Loomans et al.: Low-Complexity Wavelet-Based Scalable Image & Video Coding for Home-Use Surveillance 509

sparsely distributed non-zero coefficient values, which also
have inter-band correlations. The zero-tree can be used to
efficiently code large regions of zeros, which occur at most
bit-levels of the wavelet tree. Since wavelets maintain a
certain form of spatial information in their frequency analysis
(unlike the FFT), the correlation between bands of the same
resolution and/or correlation across resolutions can be
exploited. An example of such correlation phenomena is
created by a sharp signal transient that introduces significant
wavelet coefficients across different frequency scales at
approximately the same spatial location.

SPECK [8] uses a different approach, where only the spatial
correlations between wavelet coefficients within a single
frequency band are utilized, by using quadtree partitioning. At
first glance, it seems unfortunate that the correlation of
coefficients between frequency and/or resolution bands is not
utilized. However, this has the benefit of local data utilization
employing cache memories more efficiently, which speeds up
the algorithm significantly. Moreover, it offers the possibility of
parallel implementations, in which different frequency bands
and resolutions can be processed simultaneously. Although
SPECK does not utilize the cross-frequency band correlations
and cross-resolution correlations, it still outperforms EZW and
SPIHT in terms of coding efficiency.

However, SPECK is still very data-dependent in decision
making, testing the significance of pixels sequentially. To
reduce this data-dependency, we propose to split SPECK in
two stages, as visualized in Figure 3: one data-independent
stage and one data-dependent stage, leading to the name Two-
Stage SPECK (TSSP). The first data-independent stage has a
fixed pre-determined access pattern, and supplies data to a
temporary buffer (bottom of Figure 3) with information about
the significance of quadtree partitioning elements. The first
stage has strong optimization possibilities and it can easily be
split in several independent processing areas having identical
computing structures and thus equal computation times,
thereby enabling parallelization on multi-core architectures.

Fig. 3. Schematic representation of the two-stage processing in TSSP.

The second, or data-dependent stage does not need to

investigate the significance of individual pixels, but utilizes
the temporary buffered data from the first stage. From this
buffer, significance information of the quadtree is used to
create sorting information for significant coefficient regions,
and to skip large insignificant coefficient regions. Similar to
the first stage, the computing structure can also be equalized
for areas, but the computation depth will contain data-
dependencies, leading to variations in computation time.

A. TSSP Quadtree Partitioning

To facilitate arbitrary image sizes, special care is taken in
TSSP to provide quadtree partitioning for non power-of-two

image sizes. At a certain point in the partitioning process,
when the width or height of blocks becomes odd, they cannot
be split into 4 blocks of equal size, and a decision needs to be
made on how the block is partitioned. TSSP supports two
quadtree partitioning methods. First, a partition called top/left
floor, which means that the size of the top-left partition is
determined with the floor operator (x). The second

partition is called top/left ceiling, and is based on the ceiling
operator (x). These two partitioning methods are visualized

in Figure 4 for an image of 1920×1088 resolution, for which
the quadtree partitioning becomes irregular at level 6, where
the block size is 30×17. For the wavelet transform, the same
rounding of the size of low- and high-pass bands should be
used. The top/left floor partitioning is recommended for
regular use, so that the low-pass band of the wavelet will have
the smallest size, thereby improving compression efficiency.
However, for shape-adaptive wavelets, it is desirable to
generate a larger low-pass band to preserve DC information,
and the top/left ceiling partitioning is preferred.

4x2

15
30

15
87

4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x23x2 4x2

4x3 4x33x3 4x3

87

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x23x2 4x2

4x3 4x33x3 4x3

4x2

15
30

15
8 7 8 7

4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2

4x2 4x2

3x2

3x2

4x2

4x2

4x2 4x2 3x24x2 4x2 4x2 3x24x2

4x3 4x3 3x34x3 4x3 4x3 3x34x3

(a)

(b)

Fig. 4. Size-invariant quadtree partition for a 30×17 region, based on (a)
floor and (b) ceiling functions for calculation of the top/left partition size.
The 30×17 region is the 6th decomposition step of a 1920×1088 image.

The depth of the quadtree NQTdepth is defined by the number of

quadtree partitioning steps that can be made until the remaining
area of coefficients has a width or height of 2 or 3 coefficients.
This can be calculated iteratively using the following pseudo
code, with QTdepth denoting the depth of the quadtree:

QTdepth = 0
while 4width and 4height do

2width width , 2height height

1QTdepth QTdepth

end while.

510 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

The number of elements in the quadtree NQTelem with l

quadtree levels can be calculated recursively by

() 4 (1) 1QTelem QTelemN l N l , (7)

with NQTelem(0) = 1 and l > 0. For several common video
resolutions, the quadtree depth NQTdepth and quadtree size
NQTelem(NQTdepth) is displayed in Table I. For wavelet
coefficients of int16 precision, the significance level of the
quadtree nodes can be stored in a uint4 element. The
resulting required buffer size for the whole significance level
buffer is also displayed in Table I.

TABLE I
SIZE OF TSSP QUADTREE AND SIGNIFICANCE LEVEL BUFFER.

Resolution NQTdepth NQTelem SL buffer size

1920×1088 9 349,525 171 kB
1920×1080 9 349,525 171 kB
1280×720 8 87,381 42.7 kB
704×576 8 87,381 42.7 kB
704×480 7 21,845 10.7 kB

B. TSSP Stage 1

At the first stage of the TSSP, the Significance Level (SL)
of every node of the quadtree is stored in a buffer. Since the
SL of a block is equal to the maximum of its four quadrants,
we generate this buffer from the quadtree leafs up to the trunk.
The buffer is organized such that the first element contains the
SL of the whole image, and the second element the SL of the
top-left quadrant, etc. By starting the calculations at the
bottom-right of the image and progressing in a reversed
Morton-order, we generate the SL buffer backwards. This
ordering process is visualized in Figure 5 for a quadtree of
depth 3 with 85 elements. The SL of the bottom-right 4 leafs is
calculated first, after which the SL of the node can be
calculated, indicated in the figure by white dots. Once all four
nodes at that level are calculated, the SL of the parent node
can be calculated, indicated in the figure by the gray dots.
Finally, the SL of the whole image is calculated, referring to
the black dot in the middle of the figure. This quadtree
consists of 64 leafs, 16 level-2 nodes (white dots), 4 level-1
nodes (gray dots) and 1 level-0 node (black dot), leading to a
total of 64+16+4+1=85 quadtree elements.

Fig. 5. Reversed Morton-order scanning in Stage 1 of the TSSP.

Processing in Stage 1 of the TSSP can be easily split over
multiple cores. For example, the image can be split in four
quadrants, and for each quadrant, the SL buffer is calculated in
parallel. Each computing thread is assigned to an individual
independent image region. When all regions are completed,
the first value of each of the four buffers is used to calculate
the SL of the whole image, and this value and the four buffers
are cascaded to form the final SL buffer. Parallel processing
can be implemented at any desired level, as processing can be
split in 4, 16, 64, etc. blocks.

C. TSSP Stage 2

In the second stage of the TSSP, the SL buffer created at the
first stage is used to make data-dependent coding decisions.
Based on the SL level of a node in the quadtree, it is
determined if this node is significant and should be partitioned
further, or if it should be skipped. Individual coefficients do
not need to be observed, since only information from the SL
buffer is used for decision making.

The order in the SL buffer is designed in such a way that the
reading in Stage 2 is always in the forward direction. As long
as the blocks and their partitions are significant, the next value
from the SL buffer is read. Once an insignificant block is
encountered, the whole quadtree below this block is
insignificant by definition, and will be skipped. The values in
the SL buffer that represent this insignificant part of the
quadtree can be skipped as well, and the number of SL values
to skip (∆index), can be calculated directly from the current
level in the quadtree (NQTlevel) by the following expression

1

0

4 1
(4) 1 1

3

QTlevel QTlevelN N
l

index
l

 . (8)

Sorting and refinement data is generated for all bit-planes in

parallel for each block and coefficient coding step. When blocks
are split or skipped, sorting data is generated, and when a leaf of
the quadtree is reached, individual coefficients are encoded,
thereby generating sorting and refinement data. As data is
generated for multiple bit-planes at once, we require temporary
sorting and refinement buffers for each of the bit-planes. These
buffers are ordered at the end of the coding stage to create the
final progressive-quality or progressive-resolution bit stream.
For int16 wavelet coefficients, we require 15 sorting and 15
refinement buffers, as the sign is stored in the sorting buffer of
the top bit-plane. If lossy coding is allowed, buffers for the
lower bit-planes can be omitted.

The encoding quality is adjusted by the minimum level of
significance of wavelet coefficients, indicated by the Bit-
Level Reduction parameter BLR. Any wavelet coefficient with
an absolute value smaller than 2BLR is considered insignificant.
Blocks and coefficients are encoded as follows.

Blocks encoding starts by reading its SL from the buffer
created in Stage 1. If the block is considered significant
(SL ≥ BLR), a '1' is written to the sorting buffer for the bit-plane
that has become significant, and a '0' in the sorting buffers for

M. J. H. Loomans et al.: Low-Complexity Wavelet-Based Scalable Image & Video Coding for Home-Use Surveillance 511

each bit-plane above that, to indicate their insignificance at
those bit-plane levels. Afterwards, the block is split into 4
quadrants according to the TSSP partitioning scheme, and the
process repeats itself, using the next value in the SL buffer. If
the block is considered not significant
(SL < BLR), a '0' is written to the sorting buffer for all bit-
planes, and the underlying tree is skipped. The skip in the SL
buffer is calculated using the current quadtree depth using (8).

Individual coefficients are encoded when a significant block
cannot be split into 4 quadrants, which occurs when we reach a
leaf of the quadtree, e.g. the 3×2 top-left block in Figure 4(a).
All coefficients in the block are encoded row-by-row, starting
from the top-left. The individual coefficient encoding process is
explained with an example using a coefficient value of 12,289,
and visualized in Figure 6. The value of 12,289 has its first
significant bit at bit-plane level 13, and therefore a '1' is written
to the sorting buffer for bit-plane 13, followed by a '0' indicating
the positive sign. For each of the sorting buffers above, a '0' is
written, indicating the coefficient is not yet significant for those
levels. For bit-plane levels 0—12, the refinement bits are written
to the respective refinement buffers.

Fig. 6. Individual coefficient encoding process in Stage 2 of the TSSP for
an example int16 coefficient value of 12,289.

After all frequency bands of a single wavelet level are

coded, the separate sorting and refinement buffers are ordered.
They can be simply cascaded to generate a progressive-quality
bit stream identical to the original SPECK bit stream, or they
can be placed in separate data blocks for each resolution and
bit-plane to facilitate highly scalable coding, which will be
further elaborated in the following section.

IV. TSSP EXTENSIONS

A. Highly Scalable (HS) Mode
 The basic TSSP bit stream only provides fine-grain

quality scalability by truncation of the bit stream, and can be
decoded using a regular SPECK decoder. To facilitate full
scalability in resolution and quality, and to enable the use of
the TSSP parser and decoder, the highly scalable TSSP bit
stream consists of separate data blocks, each with the bit
stream of a particular bit-plane and resolution level. If this
Highly Scalable (HS) mode is used, the TSSP decoder can be
constructed using the same principles and benefits as the
TSSP encoder, e.g. parallel processing of separate data blocks.

For the HS mode, additional header information is included,
which indicates the maximum and minimum bit-planes for

each resolution level, and the number of bits in each data
block, for both the sorting and refinement bits. Alignment of
the data blocks is also included, with standard alignment at
Byte level, to avoid difficult sub-Byte aligned copy
operations. Alternative alignment configurations can be used
as well, such as larger alignments that match memory bus
width, at the cost of a slightly less efficient bit stream.

The TSSP bit stream can be organized in a progressive-
quality or a progressive-resolution order. For the progressive-
quality order, data blocks of bit-planes of each resolution layer
are stored consecutively, followed by the data blocks for all
resolution levels of the next bit-plane. For the progressive-
resolution order, data blocks for all bit-planes of one
resolution layer are stored consecutively, followed by the bit-
planes of the next resolution layer.

Scalability is achieved through the use of the TSSP parser,
which prunes and reorders the TSSP bit stream at any time
after encoding, to create a bit stream with a desired quality,
resolution and progression order. This parser only utilizes
information from the header, and does not need to decode the
payload data from the data packets. As a result, the parser
only needs to create a new header, and reorder the bit stream
using simple and efficient memory copy operations. In a
network environment, data blocks can also be assigned
different Quality-Of-Service (QOS) levels, thereby enabling
graceful quality/resolution degradation in case of network
congestion.

B. 5/3 Energy Correction (53EC) Mode

TSSP can be extended with energy correction for the well-
known 5/3 integer wavelet. The 2D energy correction factors
of Section II-C for the 5/3 wavelet are powers of two. Instead
of correcting the wavelet coefficients, we alter the bit-plane
truncation of the scalable TSSP codec to achieve a similar
result. With this codec modification, we can use the original
5/3 integer wavelet, and achieve better lossy coding
performance, while still supporting lossless coding.

Figure 7 shows the data order of the regular scalable TSSP
codec for a 3-level dyadic decomposition, with frequency-
band labels identical to those used in Section II-A. The
encoded data for each frequency band and bit-plane level is

Fig. 7. Visualization of regular data block order in the TSSP bit stream.

512 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

visualized by the blocks, and the order in the bit stream by the
arrows between the blocks. In the 5/3 energy correction mode,
we modify the data order in the TSSP codec to match the 2D
energy correction visualized in Figure 1(b). In the regular
TSSP, the LH, HL and HH bands carry equal weight, and their
bit streams are combined in a single data block. For the
proposed 2D energy correction, we need to apply different
corrections to the LH and HL bands, than used for the HH
band. Therefore, in the modified data order, two separate data
blocks occur: one for the LH and HL bands, and one for the
HH band. The new data order, based on the additional data
blocks and energy correction, is visualized in Figure 8.

B
it-

p
la

n
e

s

LL2 HL2

LH2

HH2 HL1

LH1

HH1 HL0

LH0

HH0

LSB

1

2

3

4

5

MSB

Frequency bands / Resolution levels

Fig. 8. Visualization of the TSSP bit stream order with codec-based
energy correction, with data blocks per band and bit-plane.

Figure 9 shows the 5/3 energy correction mode data order,

but now stretched vertically to visualize the effective energy
correction of the blocks with factors ×8, ×4, ×2 and ×½.

Fig. 9. Visualization of TSSP bitstream with codec-based energy
correction, vertically stretched to clarify amount of 2D correction.

These factors are identical to the energy correction shown in
Figure 1(b). The energy correction is the same for the HH1
band and the LH2 and HL2 bands, but it should be noted that it
is not allowed to combine them into a single combined band,
since they originate from different spatial resolution levels.
Furthermore, additional descriptive information has to be
included for the extra blocks, which will slightly increase the
size of the bit stream.

V. EXPERIMENTAL RESULTS

Experiments have been conducted on the set of raw test
images depicted in Figure 10, using a YCbCr 4:2:0 color
standard. We prefer to utilize 6 levels of dyadic wavelet
decompositions, and for full-HD images we are required to
enlarge the standard images slightly, due to limitations in the
utilized SPECK codec implementation. This enlargement is
achieved by mirroring top and bottom image rows. As
discussed before, the TSSP codec is capable of encoding
arbitrary image sizes.

Fig. 10. Raw images used for experiments with various resolutions.

A. Lossy Performance Evaluation

Figure 11 shows the rate-distortion curves for several
images with diverse resolutions and using various lossy and
lossless wavelet transforms. The curves are generated using
the proposed TSSP codec in the Highly Scalable (HS) mode,
and encoded to (near-)lossless quality. The bit stream was
then truncated using the TSSP parser for a range of rate
points, and decoded with the TSSP decoder. For the lossy
wavelets, the 9/7 floating-point and the 5/3 integer wavelet
with Energy Correction (EC) are used. For the lossless
wavelets, the 9/7-F integer wavelet and the 5/3 integer wavelet
are applied, the latter with and without codec-based EC.

M. J. H. Loomans et al.: Low-Complexity Wavelet-Based Scalable Image & Video Coding for Home-Use Surveillance 513

0 50 100 150 200
26

28

30

32

34

36

38

40

42

44

46

Size (kB)

Y
 c

ha
nn

el
 P

S
N

R
 (

dB
)

Bob Marley 1920x1088

97 floating point wavelet

53 integer wavelet with LL and HH correction

53 integer wavelet with codec EC
53 integer wavelet without correction

97 integer wavelet without correction

0 50 100 150
26

28

30

32

34

36

38

40

42

44

46

Size (kB)

Y
 c

ha
nn

el
 P

S
N

R
 (

dB
)

Dude 1920x1088

97 floating point wavelet

53 integer wavelet with LL and HH correction

53 integer wavelet with codec EC
53 integer wavelet without correction

97 integer wavelet without correction

0 20 40 60 80 100 120 140 160 180
26

28

30

32

34

36

38

40

42

44

46

Size (kB)

Y
 c

ha
nn

el
 P

S
N

R
 (

dB
)

Pipe 1920x1088

97 floating point wavelet

53 integer wavelet with LL and HH correction

53 integer wavelet with codec EC
53 integer wavelet without correction

97 integer wavelet without correction

0 50 100 150 200
26

28

30

32

34

36

38

40

42

44

Size (kB)

Y
 c

ha
nn

el
 P

S
N

R
 (

dB
)

Videoclip 1920x1088

97 floating point wavelet

53 integer wavelet with LL and HH correction

53 integer wavelet with codec EC
53 integer wavelet without correction

97 integer wavelet without correction

0 20 40 60 80 100

20

25

30

35

40

Size (kB)

Y
 c

ha
nn

el
 P

S
N

R
 (

dB
)

City 704x576

97 floating point wavelet

53 integer wavelet with LL and HH correction

53 integer wavelet with codec EC
53 integer wavelet without correction

97 integer wavelet without correction

0 10 20 30 40 50 60
20

25

30

35

40

Size (kB)

Y
 c

ha
nn

el
 P

S
N

R
 (

dB
)

Lena 512x512

97 floating point wavelet

53 integer wavelet with LL and HH correction

53 integer wavelet with codec EC
53 integer wavelet without correction

97 integer wavelet without correction

Fig. 11. Rate-distortion curves for the 9/7 floating point wavelet and the 5/3 and 9/7 fixed point wavelets with various methods of Energy Correction
(EC) for the (a) Bob Marley, (b) Dude, (c) Pipe, (d) Videoclip, (e) City and (f) Lena test images.

For all images, the lossy 9/7 floating-point wavelet yields

the best performance, followed by the lossy 5/3 integer
wavelet with energy correction applied to the LL and HH
bands during wavelet calculation. For the lossless wavelets,
the 5/3 integer wavelet with energy correction performed in
the codec provides the best results, which are close to the
lossy 5/3 integer wavelet, followed by the 9/7-F integer
wavelet. The small loss in coding efficiency for the lossless
5/3 integer wavelet with codec-based energy correction, is
achieved with the additional benefit of retaining perfect
reconstruction. From these curves, it is also clearly visible that
the 5/3 wavelet without any form of EC is impractical for
lossy image coding, as it yields a quality degradation of up to
5 dB.

A performance difference exists between applying energy
correction in the wavelet and in the codec. This is partly
explained by the increase in bit-stream length when using
codec-based energy correction, due to the inclusion of extra
header information. The remaining performance loss is likely
due to the different incomplete wavelet coefficient rounding in
the decoder, followed by the inverse wavelet transform, with
and without internal energy correction.

Figure 12 shows the rate-distortion curves for two images at
the highest and lowest resolution, with and without the HS
mode activated. Without the HS mode activated, the TSSP bit

stream is identical to the SPECK bit stream and therefore,
their curves are interchangeable. For TSSP with the HS mode
activated, we observe a slight quality degradation at the same
rate, or a small rate increase at the same quality, which is
explained by the additional header information, and the Byte-
alignment for all data blocks. For larger images and higher
rates, the relative performance difference becomes smaller, as
the number of extra alignment bits becomes insignificant
compared to the number of bits in the larger data blocks. The
same applies to the required header bits for each data block.

0 10 20 30 40 50 60
24

26

28

30

32

34

36

38

40

42

44

Size (kB)

Y
 c

ha
nn

el
 P

S
N

R
 (

dB
)

TSSP HS mode on

TSSP HS mode off / SPECK

0 50 100 150 200
30

32

34

36

38

40

42

44

Size (kB)

Y
 c

ha
nn

el
 P

S
N

R
 (

dB
)

TSSP HS mode on

TSSP HS mode off / SPECK

Fig. 12. Rate Comparison between TSSP with Highly Scalable (HS) mode
on and off for the (a) Videoclip, (b) Lena test images, using the 9/7 DWT.

514 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

B. Lossless Performance Evaluation

Table II shows the compressed data sizes for the whole set
of test images generated by the TSSP codec with and without
Highly Scalable (HS) mode and for the SPECK codec. Since
the bit stream for TSSP without HS mode and the bit stream
for SPECK are identical, their lossless compression factors are
identical as well. The bit stream of TSSP using the highly
scalable mode includes additional header information and
alignment bits, increasing the data sizes by only 0.1%.

TABLE II

LOSSLESS PERFORMANCE COMPARISON USING THE 5/3 INTEGER WAVELET

FOR TSSP WITH AND WITHOUT HIGHLY SCALABLE MODE, AND SPECK.

Image TSSP with HS TSSP without HS SPECK

Videoclip 1103 kB (2.8×) 1102 kB (2.8×) 1102 kB (2.8×)
Bob M. 1059 kB (2.9×) 1058 kB (2.9×) 1058 kB (2.8×)
Dude 967 kB (3.2×) 966 kB (3.2×) 966 kB (3.2×)
Pipe 915 kB (3.3×) 915 kB (3.4×) 915 kB (3.4×)
Eye 764 kB (2.7×) 763 kB (2.7×) 763 kB (2.7×)
City still 275 kB (2.2×) 274 kB (2.2×) 274 kB (2.2×)
Crew still 220 kB (2.7×) 219 kB (2.7×) 219 kB (2.7×)
Lena 145 kB (2.7×) 144 kB (2.7×) 144 kB (2.7×)

To compare compression efficiency differences between the

different wavelet options, we calculated the lossless
compressed data sizes using the TSSP codec with highly
scalable mode on and evaluated the following three cases: (1)
using the 5/3 integer wavelet without Energy Correction (EC),
(2) using the 5/3 integer wavelet with codec-based energy
correction and (3) applying the 9/7-F integer wavelet. The
results for these three cases are listed in Table III.

TABLE III

TSSP LOSSLESS PERFORMANCE EVALUATION FOR SEVERAL INTEGER

WAVELETS AND EC OPTIONS AND HIGHLY SCALABLE MODE ACTIVATED.

Image 5/3 DWT, no EC 5/3 DWT, +EC 9/7-F DWT

Videoclip 1103 kB (2.8×) 1104 kB (2.8×) 1142 kB (2.7×)
Bob M. 1059 kB (2.9×) 1060 kB (2.9×) 1099 kB (2.8×)
Dude 967 kB (3.2×) 968 kB (3.2×) 1018 kB (3.0×)
Pipe 915 kB (3.3×) 916 kB (3.3×) 977 kB (3.1×)
Eye 764 kB (2.7×) 764 kB (2.7×) 792 kB (2.6×)
City still 275 kB (2.2×) 276 kB (2.2×) 282 kB (2.1×)
Crew still 220 kB (2.7×) 220 kB (2.7×) 226 kB (2.6×)
Lena 145 kB (2.7×) 145 kB (2.7×) 145 kB (2.7×)

We observe that the 5/3 integer wavelet without any form

of energy correction has the best lossless coding performance,
but the difference with codec-based energy correction is
negligible at only 0.1%. This small difference is due to the
small extra overhead caused by the split of the high-pass data
into two data blocks, which inevitably increases overhead in
header information and alignment bits. The 9/7-F integer
wavelet shows a slightly worse lossless performance of 3.5%
compared to the 5/3 integer wavelet.

C. Implementation Complexity

TSSP was explicitly designed for enabling real-time
implementation on embedded systems. To examine the

performance gain compared to a straightforward SPECK
implementation, we have ported the TSSP to the well-known
DM642 digital signal processor. Optimization techniques such
as SIMD (Single Instruction Multiple Data) and DMA (Direct
Memory Access) have been utilized to achieve maximum
computational and functional parallelism.

The SL buffer is placed in the Level-2 cache, together with
a ping-pong style buffer, used for input image caching using
DMA in Stage 1. For Stage 2, temporary sorting and
refinement bit-stream buffers for each of the bit-planes are
placed in the Level-2 cache, which are written to external
memory when full. These buffers are used to improve single
bit writing routines and have the size of a single uint32.

Table IV shows the cycle counts for a fully optimized TSSP
implementation, running at a clock speed of 600 MHz. The
cycle counts include memory transfers and stalls, and are
averaged over 1,000 frames of a typical surveillance type
video. The video is processed in YCbCr 4:2:0 color space.

TABLE IV

COMPUTATIONAL COMPLEXITY MEASUREMENTS FOR TSSP, FOR A 4CIF

SURVEILLANCE SEQUENCE IN MCYCLES, AVERAGED OVER 1,000 FRAMES.

Function Y channel Cb channel Cr channel

5/3 DWT 3.648 (26.65%) 1.076 (7.86%) 1.083 (7.91%)
Stage 1 1.531 (11.18%) 0.402 (2.94%) 0.402 (2.94%)
Stage 2 3.921 (28.64%) 0.740 (5.41%) 0.828 (6.05%)
Parser 0.037 (0.27%) 0.011 (0.08%) 0.012 (0.09%)

Total 9.137 (66.74%) 2.229 (16.28%) 2.325 (16.98%)

During these experiments, we have observed that the

processor never waited for DMA transfers to finish, indicating
that computations are currently the main bottleneck in this
implementation, not the memory transfers.

From Table IV, we can read the encoding of a single 4CIF
4:2:0 color image requires 13.691 MCycles, of which 7.884
MCycles are required for the TSSP encoding, and the
remaining 5.807 MCycles for the 5/3 integer wavelet
transform. At 600 MHz, this translates to more than 75 TSSP
encoding cycles per second, and more than 43 complete
encoding cycles per second.

A straightforward implementation of SPECK without code
optimization executed on the digital signal processor requires
approximately 10 seconds for encoding a monochrome 4CIF
image, while the optimized TSSP requires only 5.489
MCycles, translating to 9.15 ms at 600 MHz. Therefore,
together with the discussed code optimizations, the TSSP
reduces the execution time with a factor thousand, compared
to the straightforward SPECK implementation.

VI. CONCLUSIONS

In this paper, we have studied scalable image and video
coding for the surveillance of rooms and personal
environments for deployment in inexpensive cameras and
portable devices. To this end, we have proposed a Two-Stage
SPECK (TSSP) coding algorithm, in which the coding of
wavelet coefficients is split into two stages. The first data-

M. J. H. Loomans et al.: Low-Complexity Wavelet-Based Scalable Image & Video Coding for Home-Use Surveillance 515

independent stage involves a buffer with Significance Level
SL values for each of the nodes in the quadtree. The second
data-dependent stage employs this SL buffer to make coding
decisions for quadtree partitioning and the skipping of
insignificant portions of the quadtree, both for all bit-planes in
parallel.

A major advantage of the proposed processing is that the bit
stream for all bit-planes is generated in parallel, thereby
reducing the memory access by an order of magnitude.
Furthermore, the TSSP is well suited for execution on multi-
core systems, as it can be implemented in parallel at any
quadtree depth. It features regular access patterns, and in the
first processing stage, a fixed computational load.

The proposed extensions of our system generate other
benefits, such as improved scalability of the bit stream. First,
the Highly Scalable (HS) mode allows parsing of the bit
stream without payload decoding, thereby creating a bit
stream of any desired quality, resolution and bit stream order.
Second, the Energy Correction (EC) mode retains the perfect
reconstruction feature of the 5/3 integer wavelet, while
significantly improving lossy coding performance with a
negligible performance drop of only 0.1% at lossless coding.

To prove that the discussed design decisions make real-time
performance possible, we have implemented the proposed
TSSP on a commonly used digital signal processor. When all
measures are included and code is further optimized, we
achieve a gain factor of approximately 1000 in execution time
compared to a straightforward SPECK implementation. This
translates to a performance of more than 75 TSSP encoding
cycles of 4CIF 4:2:0 color images per second, clearly
demonstrating TSSP’s real-time capabilities.

REFERENCES
[1] I. Daubechies, “Orthonormal bases of compactly supported wavelets,”

Journal of Communictions on Pure & Applied Mathemetics, vol. 41, pp.
909–996, Oct. 1988.

[2] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,” Applied and Computational Harmonic Analysis,
vol. 3, no. 2, pp. 186–200, 1996.

[3] A. R. Calderbank, I. Daubechies, W. Sweldens, and Boon-Lock Yeo,
“Wavelet transforms that map integers to integers,” Applied and
Computational Harmonic Analysis, vol. 5, no. 3, pp. 332–369, 1998.

[4] M. Adams and F. Kossentni, “Reversible integer-to-integer wavelet
transforms for image compression: performance evaluation and
analysis,” IEEE Transactions on Image Processing, vol. 9, no. 6, pp.
1010–1024, Jun 2000.

[5] Li-Bao Zhang and Ke Wang, “Embedded multiple subbands scaling
image coding using reversible integer wavelet transforms,” Intelligent
Multimedia, Video and Speech Processing, 2004. IEEE Proceedings of
2004 International Symposium on, pp. 599–602, 2005

[6] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Transactions on Signal Processing, no. 41, pp.
3445– 3462, 1993.

[7] A. Said and W. Pearlman, “A new, fast, and efficient image codec based
on set partitioning in hierarchical trees,” CirSysVideo, vol. 6, no. 3, pp.
243–250, June 1996.

[8] A. Islam and W. A. Pearlman, “An embedded and efficient low
complexity hierarchical image coder,” Visual Communications and
Image Processing 1999, vol. 3653, no. 1, pp. 294–305, Jan. 1999.

[9] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Transactions on Image Processing, vol. 9, no. 7, pp.
1158–1170, 2000.

[10] C. Christopoulos, A. N. Skodras, and T. Ebrahimi, “Jpeg 2000 still
image coding system: An overview,” IEEE Transactions on Consumer
Electronics, no. 46, pp. 1103–1127, 2000.

[11] M. J. H. Loomans, C. J. Koeleman, and P. H. N. de With, “Realtime
multi-level wavelet lifting scheme on a fixed-point dsp for jpeg 2000
and scalable video coding,” in Digital Signal Processing, 2009 16th
International Conference on, 2009, pp. 1–6.

BIOGRAPHIES

Marijn J. H. Loomans (M’05) received his MSc. in
Electrical Engineering from Eindhoven University of
Technology (TU/e) and his Master of Technological
Design in Embedded Systems from the National
University of Singapore (NUS) in 2005 and 2004,
respectively. Currently he is pursuing his Ph.D. at VDG
Security BV and TU/e, where he is researching scalable
video coding for embedded surveillance systems. At the

ICCE 2011, he received the first place best paper award. His research interests
include scalable video coding and embedded-system implementations.

Cornelis J. Koeleman graduated in Electrical
Engineering from Utrecht Polytechnical College, the
Netherlands in 2002. Pursuing a career in embedded
processing and system design, he joined QEF where he
worked on machine vision technology for industrial
applications. He joined VDG Security in 2003, where he
was involved in several European projects concerning
video content analysis and embedded system design, such

as CANTATA and VICOMO. During his career, acting as a system architect,
he has supervised multiple university students in projects ranging from
embedded system to video compression and content analysis.

Peter H. N. de With (F’06) graduated in Electrical
Engineering from the University of Technology in
Eindhoven and received his Ph.D. degree from the
University of Technology Delft, The Netherlands in 1992.
He joined Philips Research Labs Eindhoven in 1984,
where he was until 1993 involved in several European
projects on SDTV and HDTV recording. In this period,
he contributed as a principal coding expert to the DV

standardization for digital camcording. Between 1994-1997, he was leading
the design of advanced programmable video architectures as a senior TV
systems architect. In 1997, he was appointed as full professor at the University
of Mannheim, Germany, at the faculty Computer Engineering, where he was
heading the chair on Digital Circuitry and Simulation. Between 2000 and
2007, he was with LogicaCMG (now Logica) in Eindhoven as a principal
consultant. In 2008, he joined CycloMedia Technology, The Netherlands, as
vice-president for video technology. Since 2000, he is professor at the
University of Technology Eindhoven, at the faculty of Electrical Engineering
and leading a research group on 3D video coding and video analysis. He has
written and co-authored over 300 papers on video coding, analysis,
architectures and their realization. He has received several awards for IEEE
CES Transactions papers, SPIE papers and company inventions. Mr. de With
is a Fellow of the IEEE, program/technical committee member of the IEEE
CES, ICIP and VCIP, a regular scientific board member or advisor to various
companies, and of the Dutch Imaging school ASCII, and board member of
various working groups.

