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Abstract — We study scalable image and video coding for 

the surveillance of rooms and personal environments based 
on inexpensive cameras and portable devices. The scalability 
is achieved through a multi-level 2D dyadic wavelet 
decomposition featuring an accurate low-cost integer wavelet 
implementation with lifting. As our primary contribution, we 
present a modification to the SPECK wavelet coefficient 
encoding algorithm to significantly improve the efficiency of 
an embedded system implementation. The modification 
consists of storing the significance of all quadtree nodes in a 
buffer, where each node comprises several coefficients. This 
buffer is then used to efficiently construct the code with 
minimal and direct memory access. Our approach allows 
efficient parallel implementation on multi-core computer 
systems and gives a substantial reduction of memory access 
and thus power consumption. We report experimental results, 
showing an approximate gain factor of 1,000 in execution 
time compared to a straightforward SPECK implementation, 
when combined with code optimization on a common digital 
signal processor. This translates to 75 full color 4CIF 4:2:0 
encoding cycles per second, clearly demonstrating the real-
time capabilities of the proposed modification.1 
 

Index Terms — Scalable, Image Compression, Wavelet 
Transforms, Embedded Systems, Image Coding.  

I. INTRODUCTION 

Real-world applications of scalable image and video coding 
include surveillance of rooms and home premises. Part of this 
application, is real-time compression using inexpensive 
cameras and remote viewing on hand-held battery-powered 
devices. Scalable coding based on wavelets [1], provides 
intrinsic scalability in quality, resolution and complexity and 
therefore matches well with home-use and hand-held 
applications. Wavelets are efficiently implemented using the 
lifting framework [2] and several integer-to-integer wavelets 
have been proposed [3]-[4] to support lossless transformation 
and enable efficient implementation on fixed-point arithmetic. 
Zhang [5] applied integer scaling factors to the 5/3 integer 
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wavelet coefficients to maintain a lossless transformation and 
improve rate-distortion performance. The wavelet coefficients 
can effectively be coded using dedicated encoding algorithms, 
such as EZW [6], SPIHT [7], SPECK [8] and EBCOT [9], of 
which the latter is utilized in the JPEG2000 standard [10]. 
Despite the ongoing developments for wavelet transformation 
and efficient coding techniques, a coding standard has not 
been broadly employed in practice by a large group of users. 
This is explained by the relatively high implementation 
complexity and the absence of key applications. Both 
drawbacks have limited the wide-spread use in consumer 
electronics, especially in hand-held and battery-operated 
devices, as these devices have stringent boundaries on energy 
usage and thus computational complexity. Therefore, we have 
concentrated on efficient implementation techniques of this 
technology. Taking efficiency and power consumption as 
leading principles, we reconsider the design of such coding 
systems up to the algorithm level since this will yield a better 
performance. This paper introduces algorithmic improvements 
on specific places in the processing to obtain significant gains 
in implementation efficiency and power consumption. One of 
the initial processing steps is multi-level 2D dyadic wavelet 
decomposition, featuring an accurate low-cost integer wavelet 
implementation with lifting. An efficient embedded-systems 
implementation of this was discussed by the authors in [11]. 
The primary contribution of this paper is a modification of the 
SPECK codec, to make it more suitable for embedded 
applications and obtain a significant improvement in memory 
usage efficiency and avoid multiple coding iterations. This 
modification embodies splitting the SPECK algorithm in two 
stages, leading to the name of Two-Stage SPECK (TSSP). In 
TSSP, special care is taken in the quadtree partitioning, to 
facilitate encoding of non power-of-two image sizes. We 
furthermore include two extensions: the first is a highly 
scalable mode, which allows full scalability in all dimensions, 
without a need to decode any part of the bit stream. The 
second is an energy correction mode, that improves the rate-
distortion performance of the 5/3 integer wavelet significantly. 
When all measures are included and code is further optimized, 
we show that it is possible to achieve real-time performance 
on a standard low-cost DSP. 

The sequel of this paper is as follows. Section II introduces 
the dyadic wavelet decomposition and lifting implementation 
of the integer filters with energy correction. In Section III, we 
provide the two processing stages in the TSSP coding 
algorithm. Section IV presents two extensions to the TSSP 
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implementation: a highly scalable mode and a special 5/3 
energy correction mode. Experimental results are discussed in 
Section V and we conclude the paper in Section VI. 

II. WAVELET-BASED IMAGE CODING 

A. Multi-Level 2D Dyadic Wavelet Decomposition 

In wavelet-based image coding, the input image is 
transformed into the wavelet domain by 2D separable wavelet 
filters. The result of the 2D wavelet transform consists of four 
frequency bands, commonly referred to as the LL, HL, LH and 
HH bands. The LL band represents the low-pass image in both 
horizontal and vertical direction and can be seen as a down-
scaled version of the original image. The HL, LH and HH 
bands contain high-pass image information. The LL band still 
contains a large amount of spatial correlation and therefore, 
the 2D wavelet transform is applied to this band several times, 
up to a predetermined number of iterations. The number of 
iterations can be limited by the resolution of the LL band, the 
required number of bits to store the coefficients in memory 
and/or the impact on coding performance. The dyadic wavelet 
decomposition for three levels is represented in Figure 1(a). 

 

         
Fig. 1. (a) Three level dyadic wavelet decomposition with (b) accumulated 
energy correction factors for the 5/3 integer wavelet.   
 

B. Lifting Framework and Integer Wavelets 
Using the lifting framework [2], the wavelet can be 

implemented with less multiplication and add operations than 
the straightforward FIR implementation. Figure 2 shows the 
lifting implementation. 

 

        
Fig. 2. Lifting implementation of wavelet filtering. 

 
Input samples are split into odd and even samples, after 

which the even samples are filtered and used to adjust the odd 
samples in the predict step. Likewise, the odd samples are then 
filtered and used to adjust the even samples in the update step. 
The figure shows a single set of update and predict steps, which 
is sufficient to implement the 5/3 wavelet filter. For more 
complex wavelet filters, more sets of update and predict steps 
should be cascaded. For example, the 9/7-F integer filter has 
two sets of update and predict steps. The multiplication factor 

can be seen as a form of energy correction of the low- and high-
pass outputs. The 5/3 integer wavelet can be implemented by a 
single lifting iteration, without any output multiplication. 
Following the notation from [4], the predict step is defined by 
(1), and the update step by (2), which are specified as 
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In these equations, d[n] and s[n] are the high-pass and low-
pass output, respectively. Parameter d0[n] is the result of the 
lazy wavelet, and represents the odd samples of the input x[n], 
hence d0[n] = x[2n+1]. Similarly, s0[n] represents the even 
input samples x[2n]. 

As can be derived from these formulas, the multiplication 
factors in the predict and update steps are powers of two, and 
therefore the 5/3 wavelet can be implemented with adders and 
simple bit-shift arithmetic, thereby eliminating multiplier 
arithmetic completely. This makes the 5/3 integer wavelet a 
perfect candidate for fixed-point embedded implementations, 
where complexity is a key design constraint.  

Both the 5/3 and 9/7-F integer wavelet are fully reversible 
and therefore lossless. Note that there is no energy correction 
or scaling factor utilized for these integer wavelets, so that 
they retain perfect reconstruction. 

C. Multi-level 2D Energy Correction for 5/3 Int. Wavelets 

  To balance the energy between the low- and high-pass 
output of the 5/3 wavelet, we utilize a scaling factor K at the 
end of the lifting process. For the standard 1D wavelet, a good 
factor would be √2 for the low-pass output, and consequently, 
the reciprocal value for the high-pass output. These factors are 
well-defined real numbers and thus not suited for fixed-point 
implementation. 

Since the wavelet transform is separable, two 1D wavelet 
filtering steps are performed in succession. We combine both 
1D scaling factors into four alternative 2D scaling factors 
after the 2D transform has completed. Using the initial 1D 
scaling factor of K=√2, this results in the 2D scaling factors of 
2, 1, 1 and ½ for the LL, HL, LH and HH bands respectively. 
These 2D scaling factors can be efficiently implemented in 
fixed-point arithmetic with bit-shifting. 

The dyadic wavelet decomposition consists of multiple 
filtering operations of the 2D wavelet transform at several 
scales, as discussed in Section II-A. This computing structure 
enables the extension of the 2D energy corrections to the 
multi-level framework, which results in the scaling factors of 
Figure 1(b), identical to those proposed by Zhang [5].  

III. TWO-STAGE SPECK (TSSP) 

Wavelet coefficients can be effectively coded using zero-
tree coders, such as EZW [6] and SPIHT [7]. These coders 
utilize the property that the high-pass wavelet coefficients are 
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sparsely distributed non-zero coefficient values, which also 
have inter-band correlations. The zero-tree can be used to 
efficiently code large regions of zeros, which occur at most 
bit-levels of the wavelet tree. Since wavelets maintain a 
certain form of spatial information in their frequency analysis 
(unlike the FFT), the correlation between bands of the same 
resolution and/or correlation across resolutions can be 
exploited. An example of such correlation phenomena is 
created by a sharp signal transient that introduces significant 
wavelet coefficients across different frequency scales at 
approximately the same spatial location. 

SPECK [8] uses a different approach, where only the spatial 
correlations between wavelet coefficients within a single 
frequency band are utilized, by using quadtree partitioning. At 
first glance, it seems unfortunate that the correlation of 
coefficients between frequency and/or resolution bands is not 
utilized. However, this has the benefit of local data utilization 
employing cache memories more efficiently, which speeds up 
the algorithm significantly. Moreover, it offers the possibility of 
parallel implementations, in which different frequency bands 
and resolutions can be processed simultaneously. Although 
SPECK does not utilize the cross-frequency band correlations 
and cross-resolution correlations, it still outperforms EZW and 
SPIHT in terms of coding efficiency. 

However, SPECK is still very data-dependent in decision 
making, testing the significance of pixels sequentially. To 
reduce this data-dependency, we propose to split SPECK in 
two stages, as visualized in Figure 3: one data-independent 
stage and one data-dependent stage, leading to the name Two-
Stage SPECK (TSSP). The first data-independent stage has a 
fixed pre-determined access pattern, and supplies data to a 
temporary buffer (bottom of Figure 3) with information about 
the significance of quadtree partitioning elements. The first 
stage has strong optimization possibilities and it can easily be 
split in several independent processing areas having identical 
computing structures and thus equal computation times, 
thereby enabling parallelization on multi-core architectures. 

 

    
 

Fig. 3. Schematic representation of the two-stage processing in TSSP. 

 
The second, or data-dependent stage does not need to 

investigate the significance of individual pixels, but utilizes 
the temporary buffered data from the first stage. From this 
buffer, significance information of the quadtree is used to 
create sorting information for significant coefficient regions, 
and to skip large insignificant coefficient regions. Similar to 
the first stage, the computing structure can also be equalized 
for areas, but the computation depth will contain data-
dependencies, leading to variations in computation time. 

A. TSSP Quadtree Partitioning 

To facilitate arbitrary image sizes, special care is taken in 
TSSP to provide quadtree partitioning for non power-of-two 

image sizes. At a certain point in the partitioning process, 
when the width or height of blocks becomes odd, they cannot 
be split into 4 blocks of equal size, and a decision needs to be 
made on how the block is partitioned. TSSP supports two 
quadtree partitioning methods. First, a partition called top/left 
floor, which means that the size of the top-left partition is 
determined with the floor operator ( x   ). The second 

partition is called top/left ceiling, and is based on the ceiling 
operator ( x   ). These two partitioning methods are visualized 

in Figure 4 for an image of 1920×1088 resolution, for which 
the quadtree partitioning becomes irregular at level 6, where 
the block size is 30×17. For the wavelet transform, the same 
rounding of the size of low- and high-pass bands should be 
used. The top/left floor partitioning is recommended for 
regular use, so that the low-pass band of the wavelet will have 
the smallest size, thereby improving compression efficiency. 
However, for shape-adaptive wavelets, it is desirable to 
generate a larger low-pass band to preserve DC information, 
and the top/left ceiling partitioning is preferred. 
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Fig. 4. Size-invariant quadtree partition for a 30×17 region, based on (a) 
floor and (b) ceiling functions for calculation of the top/left partition size. 
The 30×17 region is the 6th decomposition step of a 1920×1088 image.  

 
The depth of the quadtree NQTdepth is defined by the number of 

quadtree partitioning steps that can be made until the remaining 
area of coefficients has a width or height of 2 or 3 coefficients. 
This can be calculated iteratively using the following pseudo 
code, with QTdepth denoting the depth of the quadtree: 

 
QTdepth = 0 
while 4width   and 4height   do 

2width width   , 2height height    

1QTdepth QTdepth   

end while. 
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The number of elements in the quadtree NQTelem with l 

quadtree levels can be calculated recursively by 
 

( ) 4 ( 1) 1QTelem QTelemN l N l    , (7) 

 
with NQTelem(0) = 1 and l > 0. For several common video 
resolutions, the quadtree depth NQTdepth and quadtree size 
NQTelem(NQTdepth) is displayed in Table I. For wavelet 
coefficients of int16 precision, the significance level of the 
quadtree nodes can be stored in a uint4 element. The 
resulting required buffer size for the whole significance level 
buffer is also displayed in Table I. 
 

TABLE I 
SIZE OF TSSP QUADTREE AND SIGNIFICANCE LEVEL BUFFER. 

Resolution NQTdepth  NQTelem  SL buffer size

1920×1088 9 349,525 171 kB 
1920×1080 9 349,525 171 kB 
1280×720 8 87,381 42.7 kB 
704×576 8 87,381 42.7 kB 
704×480 7 21,845 10.7 kB 

 

B. TSSP Stage 1 

At the first stage of the TSSP, the Significance Level (SL) 
of every node of the quadtree is stored in a buffer. Since the 
SL of a block is equal to the maximum of its four quadrants, 
we generate this buffer from the quadtree leafs up to the trunk. 
The buffer is organized such that the first element contains the 
SL of the whole image, and the second element the SL of the 
top-left quadrant, etc. By starting the calculations at the 
bottom-right of the image and progressing in a reversed 
Morton-order, we generate the SL buffer backwards. This 
ordering process is visualized in Figure 5 for a quadtree of 
depth 3 with 85 elements. The SL of the bottom-right 4 leafs is 
calculated first, after which the SL of the node can be 
calculated, indicated in the figure by white dots. Once all four 
nodes at that level are calculated, the SL of the parent node 
can be calculated, indicated in the figure by the gray dots. 
Finally, the SL of the whole image is calculated, referring to 
the black dot in the middle of the figure. This quadtree 
consists of 64 leafs, 16 level-2 nodes (white dots), 4 level-1 
nodes (gray dots) and 1 level-0 node (black dot), leading to a 
total of 64+16+4+1=85 quadtree elements. 

 

 
     

Fig. 5. Reversed Morton-order scanning in Stage 1 of the TSSP. 

Processing in Stage 1 of the TSSP can be easily split over 
multiple cores. For example, the image can be split in four 
quadrants, and for each quadrant, the SL buffer is calculated in 
parallel. Each computing thread is assigned to an individual 
independent image region. When all regions are completed, 
the first value of each of the four buffers is used to calculate 
the SL of the whole image, and this value and the four buffers 
are cascaded to form the final SL buffer. Parallel processing 
can be implemented at any desired level, as processing can be 
split in 4, 16, 64, etc. blocks. 

C. TSSP Stage 2 

In the second stage of the TSSP, the SL buffer created at the 
first stage is used to make data-dependent coding decisions. 
Based on the SL level of a node in the quadtree, it is 
determined if this node is significant and should be partitioned 
further, or if it should be skipped. Individual coefficients do 
not need to be observed, since only information from the SL 
buffer is used for decision making. 

The order in the SL buffer is designed in such a way that the 
reading in Stage 2 is always in the forward direction. As long 
as the blocks and their partitions are significant, the next value 
from the SL buffer is read. Once an insignificant block is 
encountered, the whole quadtree below this block is 
insignificant by definition, and will be skipped. The values in 
the SL buffer that represent this insignificant part of the 
quadtree can be skipped as well, and the number of SL values 
to skip (∆index), can be calculated directly from the current 
level in the quadtree (NQTlevel) by the following expression 

 
1

0

4 1
(4 ) 1 1

3

QTlevel QTlevelN N
l

index
l






     . (8) 

 
Sorting and refinement data is generated for all bit-planes in 

parallel for each block and coefficient coding step. When blocks 
are split or skipped, sorting data is generated, and when a leaf of 
the quadtree is reached, individual coefficients are encoded, 
thereby generating sorting and refinement data. As data is 
generated for multiple bit-planes at once, we require temporary 
sorting and refinement buffers for each of the bit-planes. These 
buffers are ordered at the end of the coding stage to create the 
final progressive-quality or progressive-resolution bit stream. 
For int16 wavelet coefficients, we require 15 sorting and 15 
refinement buffers, as the sign is stored in the sorting buffer of 
the top bit-plane. If lossy coding is allowed, buffers for the 
lower bit-planes can be omitted. 

The encoding quality is adjusted by the minimum level of 
significance of wavelet coefficients, indicated by the Bit-
Level Reduction parameter BLR. Any wavelet coefficient with 
an absolute value smaller than 2BLR is considered insignificant. 
Blocks and coefficients are encoded as follows. 

Blocks encoding starts by reading its SL from the buffer 
created in Stage 1. If the block is considered significant 
(SL ≥ BLR), a '1' is written to the sorting buffer for the bit-plane 
that has become significant, and a '0' in the sorting buffers for 
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each bit-plane above that, to indicate their insignificance at 
those bit-plane levels. Afterwards, the block is split into 4 
quadrants according to the TSSP partitioning scheme, and the 
process repeats itself, using the next value in the SL buffer. If 
the block is considered not significant 
(SL < BLR), a '0' is written to the sorting buffer for all bit-
planes, and the underlying tree is skipped. The skip in the SL 
buffer is calculated using the current quadtree depth using (8). 

Individual coefficients are encoded when a significant block 
cannot be split into 4 quadrants, which occurs when we reach a 
leaf of the quadtree, e.g. the 3×2 top-left block in Figure 4(a). 
All coefficients in the block are encoded row-by-row, starting 
from the top-left. The individual coefficient encoding process is 
explained with an example using a coefficient value of 12,289, 
and visualized in Figure 6. The value of 12,289 has its first 
significant bit at bit-plane level 13, and therefore a '1' is written 
to the sorting buffer for bit-plane 13, followed by a '0' indicating 
the positive sign. For each of the sorting buffers above, a '0' is 
written, indicating the coefficient is not yet significant for those 
levels. For bit-plane levels 0—12, the refinement bits are written 
to the respective refinement buffers. 

         
 

Fig. 6. Individual coefficient encoding process in Stage 2 of the TSSP for 
an example int16 coefficient value of 12,289.   

 
After all frequency bands of a single wavelet level are 

coded, the separate sorting and refinement buffers are ordered. 
They can be simply cascaded to generate a progressive-quality 
bit stream identical to the original SPECK bit stream, or they 
can be placed in separate data blocks for each resolution and 
bit-plane to facilitate highly scalable coding, which will be 
further elaborated in the following section. 

IV. TSSP EXTENSIONS 

A. Highly Scalable (HS) Mode 
 The basic TSSP bit stream only provides fine-grain 

quality scalability by truncation of the bit stream, and can be 
decoded using a regular SPECK decoder. To facilitate full 
scalability in resolution and quality, and to enable the use of 
the TSSP parser and decoder, the highly scalable TSSP bit 
stream consists of separate data blocks, each with the bit 
stream of a particular bit-plane and resolution level. If this 
Highly Scalable (HS) mode is used, the TSSP decoder can be 
constructed using the same principles and benefits as the 
TSSP encoder, e.g. parallel processing of separate data blocks. 

For the HS mode, additional header information is included, 
which indicates the maximum and minimum bit-planes for 

each resolution level, and the number of bits in each data 
block, for both the sorting and refinement bits. Alignment of 
the data blocks is also included, with standard alignment at 
Byte level, to avoid difficult sub-Byte aligned copy 
operations. Alternative alignment configurations can be used 
as well, such as larger alignments that match memory bus 
width, at the cost of a slightly less efficient bit stream. 

The TSSP bit stream can be organized in a progressive-
quality or a progressive-resolution order. For the progressive-
quality order, data blocks of bit-planes of each resolution layer 
are stored consecutively, followed by the data blocks for all 
resolution levels of the next bit-plane. For the progressive-
resolution order, data blocks for all bit-planes of one 
resolution layer are stored consecutively, followed by the bit-
planes of the next resolution layer. 

Scalability is achieved through the use of the TSSP parser, 
which prunes and reorders the TSSP bit stream at any time 
after encoding, to create a bit stream with a desired quality, 
resolution and progression order. This parser only utilizes 
information from the header, and does not need to decode the 
payload data from the data packets. As a result, the parser 
only needs to create a new header, and reorder the bit stream 
using simple and efficient memory copy operations. In a 
network environment, data blocks can also be assigned 
different Quality-Of-Service (QOS) levels, thereby enabling 
graceful quality/resolution degradation in case of network 
congestion. 

B. 5/3 Energy Correction (53EC) Mode 

TSSP can be extended with energy correction for the well-
known 5/3 integer wavelet. The 2D energy correction factors 
of Section II-C for the 5/3 wavelet are powers of two. Instead 
of correcting the wavelet coefficients, we alter the bit-plane 
truncation of the scalable TSSP codec to achieve a similar 
result. With this codec modification, we can use the original 
5/3 integer wavelet, and achieve better lossy coding 
performance, while still supporting lossless coding. 

Figure 7 shows the data order of the regular scalable TSSP 
codec for a 3-level dyadic decomposition, with frequency- 
band labels identical to those used in Section II-A. The 
encoded data for each frequency band and bit-plane level is  
 

          

Fig. 7. Visualization of regular data block order in the TSSP bit stream. 
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visualized by the blocks, and the order in the bit stream by the 
arrows between the blocks. In the 5/3 energy correction mode, 
we modify the data order in the TSSP codec to match the 2D 
energy correction visualized in Figure 1(b). In the regular 
TSSP, the LH, HL and HH bands carry equal weight, and their 
bit streams are combined in a single data block. For the 
proposed 2D energy correction, we need to apply different 
corrections to the LH and HL bands, than used for the HH 
band. Therefore, in the modified data order, two separate data 
blocks occur: one for the LH and HL bands, and one for the 
HH band. The new data order, based on the additional data 
blocks and energy correction, is visualized in Figure 8. 
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Fig. 8. Visualization of the TSSP bit stream order with codec-based 
energy correction, with data blocks per band and bit-plane. 

 
Figure 9 shows the 5/3 energy correction mode data order, 

but now stretched vertically to visualize the effective energy 
correction of the blocks with factors ×8, ×4, ×2 and ×½. 

   

Fig. 9. Visualization of TSSP bitstream with codec-based energy 
correction, vertically stretched to clarify amount of 2D correction. 

These factors are identical to the energy correction shown in 
Figure 1(b). The energy correction is the same for the HH1 
band and the LH2 and HL2 bands, but it should be noted that it 
is not allowed to combine them into a single combined band, 
since they originate from different spatial resolution levels. 
Furthermore, additional descriptive information has to be 
included for the extra blocks, which will slightly increase the 
size of the bit stream. 

V. EXPERIMENTAL RESULTS 

Experiments have been conducted on the set of raw test 
images depicted in Figure 10, using a YCbCr 4:2:0 color 
standard. We prefer to utilize 6 levels of dyadic wavelet 
decompositions, and for full-HD images we are required to 
enlarge the standard images slightly, due to limitations in the 
utilized SPECK codec implementation. This enlargement is 
achieved by mirroring top and bottom image rows. As 
discussed before, the TSSP codec is capable of encoding 
arbitrary image sizes.  
 

 

Fig. 10. Raw images used for experiments with various resolutions. 
 

A. Lossy Performance Evaluation 

Figure 11 shows the rate-distortion curves for several 
images with diverse resolutions and using various lossy and 
lossless wavelet transforms. The curves are generated using 
the proposed TSSP codec in the Highly Scalable (HS) mode, 
and encoded to (near-)lossless quality. The bit stream was 
then truncated using the TSSP parser for a range of rate 
points, and decoded with the TSSP decoder. For the lossy 
wavelets, the 9/7 floating-point and the 5/3 integer wavelet 
with Energy Correction (EC) are used. For the lossless 
wavelets, the 9/7-F integer wavelet and the 5/3 integer wavelet 
are applied, the latter with and without codec-based EC. 
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Fig. 11. Rate-distortion curves for the 9/7 floating point wavelet and the 5/3 and 9/7 fixed point wavelets with various methods of Energy Correction 
(EC) for the (a) Bob Marley, (b) Dude, (c) Pipe, (d) Videoclip, (e) City and (f) Lena test images. 

 
For all images, the lossy 9/7 floating-point wavelet yields 

the best performance, followed by the lossy 5/3 integer 
wavelet with energy correction applied to the LL and HH 
bands during wavelet calculation. For the lossless wavelets, 
the 5/3 integer wavelet with energy correction performed in 
the codec provides the best results, which are close to the 
lossy 5/3 integer wavelet, followed by the 9/7-F integer 
wavelet. The small loss in coding efficiency for the lossless 
5/3 integer wavelet with codec-based energy correction, is 
achieved with the additional benefit of retaining perfect 
reconstruction. From these curves, it is also clearly visible that 
the 5/3 wavelet without any form of EC is impractical for 
lossy image coding, as it yields a quality degradation of up to 
5 dB. 

A performance difference exists between applying energy 
correction in the wavelet and in the codec. This is partly 
explained by the increase in bit-stream length when using 
codec-based energy correction, due to the inclusion of extra 
header information. The remaining performance loss is likely 
due to the different incomplete wavelet coefficient rounding in 
the decoder, followed by the inverse wavelet transform, with 
and without internal energy correction. 

Figure 12 shows the rate-distortion curves for two images at 
the highest and lowest resolution, with and without the HS 
mode activated. Without the HS mode activated, the TSSP bit 

stream is identical to the SPECK bit stream and therefore, 
their curves are interchangeable. For TSSP with the HS mode 
activated, we observe a slight quality degradation at the same 
rate, or a small rate increase at the same quality, which is 
explained by the additional header information, and the Byte-
alignment for all data blocks. For larger images and higher 
rates, the relative performance difference becomes smaller, as 
the number of extra alignment bits becomes insignificant 
compared to the number of bits in the larger data blocks. The 
same applies to the required header bits for each data block. 
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Fig. 12. Rate Comparison between TSSP with Highly Scalable (HS) mode 
on and off for the (a) Videoclip, (b) Lena test images, using the 9/7 DWT. 
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B. Lossless Performance Evaluation 

Table II shows the compressed data sizes for the whole set 
of test images generated by the TSSP codec with and without 
Highly Scalable (HS) mode and for the SPECK codec. Since 
the bit stream for TSSP without HS mode and the bit stream 
for SPECK are identical, their lossless compression factors are 
identical as well. The bit stream of TSSP using the highly 
scalable mode includes additional header information and 
alignment bits, increasing the data sizes by only 0.1%. 

 
TABLE II 

LOSSLESS PERFORMANCE COMPARISON USING THE 5/3 INTEGER WAVELET 

FOR TSSP WITH AND WITHOUT HIGHLY SCALABLE MODE, AND SPECK. 

Image TSSP with HS TSSP without HS SPECK 

Videoclip 1103 kB (2.8×) 1102 kB (2.8×) 1102 kB (2.8×) 
Bob M. 1059 kB (2.9×) 1058 kB (2.9×) 1058 kB (2.8×) 
Dude 967 kB (3.2×) 966 kB (3.2×) 966 kB (3.2×) 
Pipe 915 kB (3.3×) 915 kB (3.4×) 915 kB (3.4×) 
Eye 764 kB (2.7×) 763 kB (2.7×) 763 kB (2.7×) 
City still 275 kB (2.2×) 274 kB (2.2×) 274 kB (2.2×) 
Crew still 220 kB (2.7×) 219 kB (2.7×) 219 kB (2.7×) 
Lena 145 kB (2.7×) 144 kB (2.7×) 144 kB (2.7×) 

 
To compare compression efficiency differences between the 

different wavelet options, we calculated the lossless 
compressed data sizes using the TSSP codec with highly 
scalable mode on and evaluated the following three cases: (1) 
using the 5/3 integer wavelet without Energy Correction (EC), 
(2) using the 5/3 integer wavelet with codec-based energy 
correction and (3) applying the 9/7-F integer wavelet. The 
results for these three cases are listed in Table III.  

 
TABLE III 

TSSP LOSSLESS PERFORMANCE EVALUATION FOR SEVERAL INTEGER 

WAVELETS AND EC OPTIONS AND HIGHLY SCALABLE MODE ACTIVATED. 

Image 5/3 DWT, no EC 5/3 DWT, +EC 9/7-F DWT 

Videoclip 1103 kB (2.8×) 1104 kB (2.8×) 1142 kB (2.7×) 
Bob M. 1059 kB (2.9×) 1060 kB (2.9×) 1099 kB (2.8×) 
Dude 967 kB (3.2×) 968 kB (3.2×) 1018 kB (3.0×) 
Pipe 915 kB (3.3×) 916 kB (3.3×) 977 kB (3.1×) 
Eye 764 kB (2.7×) 764 kB (2.7×) 792 kB (2.6×) 
City still 275 kB (2.2×) 276 kB (2.2×) 282 kB (2.1×) 
Crew still 220 kB (2.7×) 220 kB (2.7×) 226 kB (2.6×) 
Lena 145 kB (2.7×) 145 kB (2.7×) 145 kB (2.7×) 

 
We observe that the 5/3 integer wavelet without any form 

of energy correction has the best lossless coding performance, 
but the difference with codec-based energy correction is 
negligible at only 0.1%. This small difference is due to the 
small extra overhead caused by the split of the high-pass data 
into two data blocks, which inevitably increases overhead in 
header information and alignment bits. The 9/7-F integer 
wavelet shows a slightly worse lossless performance of 3.5% 
compared to the 5/3 integer wavelet. 

C. Implementation Complexity 

TSSP was explicitly designed for enabling real-time 
implementation on embedded systems. To examine the 

performance gain compared to a straightforward SPECK 
implementation, we have ported the TSSP to the well-known 
DM642 digital signal processor. Optimization techniques such 
as SIMD (Single Instruction Multiple Data) and DMA (Direct 
Memory Access) have been utilized to achieve maximum 
computational and functional parallelism.  

The SL buffer is placed in the Level-2 cache, together with 
a ping-pong style buffer, used for input image caching using 
DMA in Stage 1. For Stage 2, temporary sorting and 
refinement bit-stream buffers for each of the bit-planes are 
placed in the Level-2 cache, which are written to external 
memory when full. These buffers are used to improve single 
bit writing routines and have the size of a single uint32. 

Table IV shows the cycle counts for a fully optimized TSSP 
implementation, running at a clock speed of 600 MHz. The 
cycle counts include memory transfers and stalls, and are 
averaged over 1,000 frames of a typical surveillance type 
video. The video is processed in YCbCr 4:2:0 color space. 

 
TABLE IV 

COMPUTATIONAL COMPLEXITY MEASUREMENTS FOR TSSP, FOR A 4CIF 

SURVEILLANCE SEQUENCE IN MCYCLES, AVERAGED OVER 1,000 FRAMES. 

Function Y channel Cb channel Cr channel 

5/3 DWT 3.648  (26.65%) 1.076  (7.86%) 1.083  (7.91%) 
Stage 1 1.531  (11.18%) 0.402  (2.94%) 0.402  (2.94%) 
Stage 2 3.921  (28.64%) 0.740  (5.41%) 0.828  (6.05%) 
Parser 0.037    (0.27%) 0.011  (0.08%) 0.012  (0.09%) 

Total 9.137  (66.74%) 2.229  (16.28%) 2.325  (16.98%) 

 
During these experiments, we have observed that the 

processor never waited for DMA transfers to finish, indicating 
that computations are currently the main bottleneck in this 
implementation, not the memory transfers. 

From Table IV, we can read the encoding of a single 4CIF 
4:2:0 color image requires 13.691 MCycles, of which 7.884 
MCycles are required for the TSSP encoding, and the 
remaining 5.807 MCycles for the 5/3 integer wavelet 
transform. At 600 MHz, this translates to more than 75 TSSP 
encoding cycles per second, and more than 43 complete 
encoding cycles per second. 

A straightforward implementation of SPECK without code 
optimization executed on the digital signal processor requires 
approximately 10 seconds for encoding a monochrome 4CIF 
image, while the optimized TSSP requires only 5.489 
MCycles, translating to 9.15 ms at 600 MHz. Therefore, 
together with the discussed code optimizations, the TSSP 
reduces the execution time with a factor thousand, compared 
to the straightforward SPECK implementation. 

VI. CONCLUSIONS 

In this paper, we have studied scalable image and video 
coding for the surveillance of rooms and personal 
environments for deployment in inexpensive cameras and 
portable devices. To this end, we have proposed a Two-Stage 
SPECK (TSSP) coding algorithm, in which the coding of 
wavelet coefficients is split into two stages. The first data-
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independent stage involves a buffer with Significance Level 
SL values for each of the nodes in the quadtree. The second 
data-dependent stage employs this SL buffer to make coding 
decisions for quadtree partitioning and the skipping of 
insignificant portions of the quadtree, both for all bit-planes in 
parallel. 

A major advantage of the proposed processing is that the bit 
stream for all bit-planes is generated in parallel, thereby 
reducing the memory access by an order of magnitude. 
Furthermore, the TSSP is well suited for execution on multi-
core systems, as it can be implemented in parallel at any 
quadtree depth. It features regular access patterns, and in the 
first processing stage, a fixed computational load. 

The proposed extensions of our system generate other 
benefits, such as improved scalability of the bit stream. First, 
the Highly Scalable (HS) mode allows parsing of the bit 
stream without payload decoding, thereby creating a bit 
stream of any desired quality, resolution and bit stream order. 
Second, the Energy Correction (EC) mode retains the perfect 
reconstruction feature of the 5/3 integer wavelet, while 
significantly improving lossy coding performance with a 
negligible performance drop of only 0.1% at lossless coding. 

To prove that the discussed design decisions make real-time 
performance possible, we have implemented the proposed 
TSSP on a commonly used digital signal processor. When all 
measures are included and code is further optimized, we 
achieve a gain factor of approximately 1000 in execution time 
compared to a straightforward SPECK implementation. This 
translates to a performance of more than 75 TSSP encoding 
cycles of 4CIF 4:2:0 color images per second, clearly 
demonstrating TSSP’s real-time capabilities. 
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