

Efficient reprogramming of sensor networks using incremental
updates and data compression
Citation for published version (APA):
Stolikj, M., Cuijpers, P. J. L., & Lukkien, J. J. (2012). Efficient reprogramming of sensor networks using
incremental updates and data compression. (Computer science reports; Vol. 1210). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/705e863e-29da-440c-b6b8-ba94a2cb61df

Technische Universiteit Eindhoven
 Department of Mathematics and Computer Science

Efficient reprogramming of sensor networks using incremental updates and data compression

Milosh Stolikj, Pieter J.L. Cuijpers, Johan J. Lukkien

12/10

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra

 prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1

Computer Science Reports 12-10
Eindhoven, June 2012

Efficient reprogramming of wireless sensor networks using

incremental updates and data compression

Milosh Stolikj, Pieter J. L. Cuijpers, Johan J. Lukkien
Eindhoven University of Technology

Department of Mathematics and Computer Science
System Architecture and Networking Group

{m.stolikj,p.j.l.cuijpers,j.j.lukkien}@tue.nl

May 2012

Abstract

Reprogramming is an important issue in wireless sensor networks. It enables users to extend
or correct functionality of a sensor network after deployment, at a low cost. In this paper, we
investigate two problems: improving the energy efficiency and improving the delay of reprogramming.
As enabling technologies we use data compression and incremental updates. We analyze different
algorithms for both approaches, as well as their combination, when applied to resource-constrained
devices. All algorithms are ported to the Contiki embedded operating system, and profiled for different
types of reprogramming. Our results show that there is a clear trade-off between performance and
resource requirements. Either VCDIFF, or the combination of Lempel-Ziv-77 or FastLZ compression
algorithms with BSDIFF for delta encoding, have the best overall performance compared to other
compression algorithms.

1 Introduction

Wireless Sensor Networks consist of interconnected autonomous sensor nodes placed over an area of
interest, with high density. Due to their low price and high deployment flexibility, they are more and more
used in various applications such as improving public safety [1], disaster management [2], environmental [3],
structural [4] and traffic monitoring [5] etc.

An important feature of wireless sensor networks is reprogramming, i.e. the capability to change
software functionality of nodes within the network at run time. Changes come in the form of updates,
consisting of new applications, bug fixes or modified parameters. Reprogramming is important both
during development, for fast prototyping and debugging, and after deployment, for adapting functionality.

We can categorize reprogramming according to the type of change that is required in the network and
on the nodes themselves. In general, we call these modifications updates. We can distinguish:

• an update of the operating system;

• an update of an application;

• an addition of a new application;

• a modification of parameters in an existing application.

Wireless sensor nodes are usually reprogrammed in two ways: either by flashing the node with a
complete firmware image, or by loading a partial executable binary. The second approach is more flexible
and allows easier extension of applications, without the need to reboot the operating system. Despite its
flexibility, it has limited support on existing sensor network platforms. However, the Contiki operating
system [6], which is used in this report, is specifically designed for wireless sensor networks and has
dynamic linking as a core functionality.

1

M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien

Updates are assembled at a host machine outside the sensor network, and they are initially injected in
the network through a gateway node. From then on, the update is spread within the network through
some propagation mechanism. In order to improve propagation time, a selected number of nodes, or even
all nodes that have received an update, forward it further to other nodes within their ranges (Figure 1).

Both firmware images and partial executables can be rather large. For instance, an image for the
TelosB motes [7] with the Contiki operating system is around 23 KB in size. Adding additional applications
can increase the size of the binary up to 48 KB. In order to transfer this image, between 200 and 430
IEEE 802.15.4 data frames must be used. Similarly, a partial executable (ELF) of an application can be
25 KB in size, and transferring it would require around 220 data frames.

Due to the high number of nodes within a network, the size of the data that needs to be sent, limited
capacity of nodes, and the erroneous wireless media, reprogramming is a non-trivial task. As the network
size increases, scalability issues such as delay, energy usage and reliability become crucial. During the
update process, the sensor network is unusable for other tasks. Finally, wireless transmission consumes
valuable energy from node batteries, essentially reducing their life time.

node node

nodegateway
update

server

Sensor Network

injection

updateupdate

update

Figure 1: Propagation of updates in a wireless sensor network.

Our research hypothesis is that reprogramming wireless sensor nodes can be made more energy-efficient
by compressing data before it is transmitted, and we want to investigate what is the best possible method
for compression. Using compression energy is saved directly, by sending and receiving less data, and
indirectly by keeping the media free, thus reducing the chances for collisions to occur. Since the processor
requires 10 times less energy than the wireless radio for transmission, the additional processing for
decompression is favourable to wireless transmission.

Two approaches to compression are commonly used. The first one is to apply data compression
algorithms directly to the updates (binary data). The second approach uses the fact that when an
application is updated, much of the old and new version remains the same. Therefore, by using incremental
updates, only the difference between the two would need to be known and transmitted. This difference
is expressed in scripts called deltas, and the according algorithms are known as delta encoding. Deltas
have a highly compressible structure and can actually improve the performance of the data compression
algorithms. A comforting fact is that since the data is compressed and encoded outside of the sensor
network, a sensor node only has to be able to decompress it and apply the delta.

Unfortunately, most compression and delta encoding algorithms are not designed for the scarce
resources of wireless sensor nodes. For instance, the Crossbow TelosB has a 8MHz microcontroller with
10kB RAM, 48kB program flash memory and 1MB serial flash, which makes it difficult to fit multiple
applications in the same memory space.

An ideal compression and delta encoding algorithm for sensor nodes should have the following
properties:

• Minimal energy usage,

• Minimal time to complete the reprogramming (delay),

• Minimal processing requirements,

• Small memory footprint (in ROM),

2

Efficient reprogramming of wireless sensor networks using incremental updates and data compression

• Small RAM usage.

The first two properties are necessary for making the entire compression step feasible - unless the
algorithm is able to considerably reduce the energy and time required for completing the update process,
there is no point in using it at all. Due to the high energy requirements for transmitting data over the
air, these properties are directly influenced by compression ratio, i.e. the ability to reduce the size of data
as much as possible.

The next three properties are more subtle, and come from the nature of the wireless nodes themselves.
As previously stated, they have limited resources including a slow processor, so algorithms running on
them have to be efficient or simple, in order to be used in real time. Additionally, compression is a support
feature and not the core functionality of the system, so it has to occupy as little space as possible. Small
memory footprint is important during run-time, to have enough room to fit other applications in ROM
and RAM memory. Furthermore, if reprogramming is a sporadic task, the small memory footprint would
allow the code for decompression to be sent along with the update, so that it can be run only when
needed.

An algorithm that optimally satisfies all requirements is not available. Therefore choosing one would
involve a trade off between performance (i.e. compression ratio) and resource requirements. The aim of
this report is also to show what are the gains and pitfalls of using data compression and incremental
updates in reprogramming wireless sensor networks.

Our contributions are three fold. First, we systematically analyze different types of software update in
sensor networks. Second, we benchmark how much resources are required to add support for compression
and delta encoding on sensor nodes. Finally, based on pre-defined requirements, we provide a decision
tree to find the best way to complete an update.

For our analysis, we selected seven data compression and three delta encoding algorithms. Then,
we used the two most promising delta encoding algorithms, along with the feasible data compression
algorithms, in four experiments for different update types, ranging from upgrade of the operating system to
modifying a parameter in an application. Our results show that using incremental update in combination
with data compression can reduce the size of updates up to 99%. Even simple techniques like run length
encoding can achieve 40% reduction in size of updates. The best combinations yielded up to 95% savings
in energy usage and delay.

The paper is structured as follows. Section 2 covers related work on compression and reprogramming
in embedded systems. Section 3 introduces common approaches to data compression and incremental
updates. Section 4 reports experimental results on combining compression and binary delta encoding
algorithms on sensors nodes. The results are discussed in section 5, along with ideas for future work.
Finally, section 6 gives conclusions and summary of the work presented in this paper.

2 Related work

Reprogramming has been an important area of interest in wireless sensor networks. Multiple solutions have
been developed for it, ranging from extensions for operating systems for supporting remote reconfiguration,
to the design of modular operating systems with features for dynamic linking and partial executables.

Modular operating systems such as Contiki [6], LiteOS [8] and RETOS [9] support dynamic linking
and loading. Contiki uses the ELF format for holding partial executables, including symbol and relocation
tables. This makes ELF binaries potentially large for transfer in noisy wireless sensor networks. In our
work we use firmware images and ELF executables for the Contiki operating system as test data, but due
to the general purpose nature of the algorithms used, the results are applicable to any other architecture
as well.

On the other hand, non-modular systems such as TinyOS [10] can only be reprogrammed by replacing
the entire firmware with a new one. Multiple mechanisms for disseminating firmwares and replacing
them on nodes have been developed for both single-hop (XNP [11]) and multi-hop networks (Trickle [12],
Deluge [13], MOAP [14], MNP [15], Stream [16], Cascade [17]). The same are often used by modular
operating systems for dissemination of partial executables.

Incremental update is especially appealing when large firmware images are considered for dissemination.
In [18], modified versions of the rsync and XNP protocols are used for generating deltas and their
dissemination, respectively. Zephyr [19] adds application-level modifications to decrease the difference
between consecutive application versions, then produces deltas with rsync and distributes them using

3

M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien

Stream. In [20], a tool similar to the UNIX diff is used to create deltas between versions. It extends
the delta functionality with two new instructions, named repair and patch, which enable more efficient
coding of the differences.

Considerable effort is directed towards expanding non-modular operating systems with dynamic
linking capabilities. For instance, TOSThreads [21] is a library for TinyOS which adds thread support as
well as dynamic linking of new services. Flexcup [22] takes a more general approach, aiming to provide on
the fly reinstall of software components without the help of the operating system, by using symbol and
relocation tables for every binary component. These tables are distributed along with the executable code
to nodes, where re-linking and address binding is done. As with ELF executables, symbol and relocation
tables can grow large, thus producing large updates.

Alternative methods such as virtual machines and middle-ware layers (Maté [23], OSAS [24]) overcome
limitations of large updates for distribution by running interpreted code. Since byte code is much smaller
compared to compiled binary code, updates in these systems can be easily distributed. The downside of
this approach is that interpreted execution is slower and some resources are always used by the virtual
machine. Still, the same problem is present if the operating system or the virtual machine engine need to
be updated.

Compression has been previously considered in sensor networks, mostly for data gathered from sensors.
In [25], several algorithms are compared on desktop machines, for compressing data from two test beds.
Similarly, in [26] compression algorithms are compared on ELF executables for the Contiki operating
system. However, during upgrades, only decompression is needed on resource-constrained devices. It is
presently unclear how much resources are needed to add only decompression. Furthermore, previous
studies do not consider combining incremental updates and compression algorithms, which is explored in
this work.

3 Methodology

3.1 Performing updates using data compression

Compression, and accordingly decompression, is added to the update process as shown in figure 2. It is an
intermediate phase with the aim to encode information with fewer bits than the original representation.
Many algorithms for it have been developed, ranging from task-specific to general purpose. Most general
purpose compression algorithms are intended to be run on desktop systems, utilizing resources which are
not available in resource-constrained devices. Therefore, even though some algorithms can compress data
well, they may be inapplicable to wireless sensor nodes.

Compression algorithms can be categorized according to their theoretical foundations. Often this
influences the amount of resources they use, as well as the maximum achievable compression ratio.

Since we are working with executable data, where every bit is equally important, we focus only on
lossless algorithms. Furthermore, compression is done on powerful systems, usually an update host outside
of the sensor network, so only decompression is needed on sensor nodes.

Binary

Distribution

Decompression

Update host

Sensor node

Compression

Binary

Figure 2: Overview of the update process when using data compression.

Entropy-based algorithms, such as Huffman coding [27], find optimal representation of symbols found
in uncompressed data. They establish a prefix-free code for each symbol in the input, which assures that
there is no code word that is a prefix of another code word. Then, every fixed-length symbol is replaced
by a variable-length prefix-free code word. Decompression is the opposite process: each code word is

4

Efficient reprogramming of wireless sensor networks using incremental updates and data compression

replaced by a fixed-length symbol. Entropy encoders are usually slow and require significant memory to
store prefix lists, but produce small compressed data.

Dictionary based compression algorithms, or Lempel-Ziv (LZ) [28] variants, maintain a look-up
dictionary of frequent symbols sequences. Whenever a match is found in the uncompressed data, it is
replaced with a reference to the dictionary. The dictionary can be simply the previous symbol (Run-length
encoding, RLE) or a sliding window of the previously processed data.

Table 1: Comparison of families of compression algorithms.

Algorithm family Method Resource usage Tested algorithms

Entropy-based Optimal encoding high Huffman
Dictionary-based Repeating sequences moderate LZ77, LZJB, FastLZ, RLE,

Sensor-LZW [29–31]
Probabilistic, composite Combination of several

tecniques
extremly high BZip2

In order to improve the compression ratio, data can be pre-processed. By re-arranging uncompressed
data, a more compressible representation can be achieved. We use one such algorithm, BZip2 [32],
as a reference point for the approximate maximum compression ratio, although it can not be run on
resource-constrained devices. Other means of pre-processing include use of additional data, such as
incremental updates.

3.2 Performing updates incrementally

Most changes in software come in the form of incremental updates, which either add additional functionality
or modify values of existing parameters. The old and new version share most of the code base, and the
difference between them is usually several times smaller than the size of the application itself.

Algorithms for delta encoding exploit this behaviour by extracting and distributing only the differences
between both versions. The delta contains instructions and data, which are used to reconstruct the new
version from the old one, a process called patching. Delta encoding algorithms differ in how the delta is
constructed and how the differences are detected. Similar to data compression, the delta creation is done
outside of the sensor network, and only patching functionality needs to be added on the sensor nodes.

Most algorithms differ in how the delta is constructed and how the differences are detected.

New

binary

Delta

generation

Distribution

Update host

Sensor node

Compression

Patching
New

binary

Old

binary

Old

binary

Decompression

Figure 3: Overview of the update process when using incremental update and data compression.

Rsync, and the corresponding RDIFF algorithm [33], use non-overlapping fixed-sized blocks for
matching identical data between the old and new version. Both versions are segmented into blocks, and
for each one, a rolling-checksum and a MD5 checksum are computed. Based on these checksums, the delta
is constructed of either references to blocks that already exist in the old version, or the entire content
of new or changed blocks. While the rolling checksum is implemented to be as fast as possible, a MD5

5

M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien

checksum is definitely not appropriate for sensor nodes. An obvious weakness of the algorithm is that if
two blocks differ in even one byte, the entire block content has to be present in the delta.

VCDIFF [34] is a format for encoding the difference between two data sets. The original idea for it
comes from the Lempel-Ziv 77 algorithm - the old and new version are concatenated; then the resulting
stream is compressed using LZ77 or a similar algorithm. From the output, the first part, which corresponds
to the old version, is omitted, leaving only the instructions for the decoder to decompress the new version.
VCDIFF features a detailed byte-code instruction set, consisting of a small number of instructions, which
can be used in different addressing modes, accessing both the old and the new data. Additionally, a cache
of recent addresses is held in memory. In this paper, we use Xdelta [35] as an encoder for generating
VCDIFF deltas. It uses additional heuristics for optimizing the generated instruction set, such as removing
completely covered instructions and combining small instructions into one, essentially reducing the delta
size.

BSDIFF [36] is considerably different from the previous two approaches. It uses two passes to
construct deltas. In the first pass, completely identical blocks are found in the two versions, using similar
methods like the previous two. Next, it tries to expand exact matches in both directions, such that every
prefix/suffix of the extension matches in at least half of its bytes. These matches roughly correspond to
modified lines of code. The delta is then constructed of three parts: a control block of commands for
reconstructing the new version; diff block of bytewise differences between approximate matches and an
extra block, consisting of new data. When there are large similarities between the old and new version,
the diff block consists of large series of zeroes, which can be easily compressed.

ABBBBACBBBAABBABBBBCBBBAABABBA

ABBBBCCBBBAABABBBBBCBBBAABACCFA

Source (Old data):

Target (New data):

COPY FROM=0, LEN=5

RDIFF delta

ADD 2: CC

COPY FROM=20, LEN=5

ADD 1: B

COPY FROM=0, LEN=5

ADD 2: BC

COPY FROM=20, LEN=5

ADD 6: BACCFA

COPY FROM=S0, LEN=5

VCDIFF delta

ADD 10: CCBBBAABAB

COPY FROM=T14, LEN=4

COPY FROM=T6, LEN=8

ADD 4: CCFA

Control block:

Diff block:

Extra block:

ADD 27, INSERT 4, SEEK 3

0000020000000-1100000000000

CCFA

BSDIFF delta

Figure 4: Comparison of the three delta types. For this example, RDIFF was set to use a blocks of 5
bytes. The RDIFF delta copies blocks of 5 bytes from the old data, everything in between is hardcoded
with ADD instructions. The VCDIFF delta copies the first 5 bytes from the old data (S0), adds the
next 10 bytes, then copies two block from the newly written data (T14 and T6). The last four bytes
are again added from the delta. Finally, the ADD instruction in the BSDIFF delta specifies that the
first 27 bytes from the old data and from the Diff block are summed. Zeroes in the Diff block mean that
the corresponding byte from the old data is unchanged. The INSERT instruction adds four bytes in
the Extra block to the output. The SEEK instruction moves the pointer in the old data to three places
forward, to the end of the stream.

The behaviour of all three different delta encoding algorithms on a small sample is shown in figure 4.
The RDIFF delta contains four COPY instructions for the corresponding 5 byte blocks from the input,
everything in between is hardcoded in the delta. The VCDIFF delta specifies two types of source addresses
for the COPY instruction - the first one references the old version, while the last two point to locations
in the newly generated output. Again, everything that is not captured in the COPY instructions is
hardcoded in the delta. Finally, BSDIFF has one ADD instruction, which performs binary addition
between bytes in the diff block and the corresponding bytes from the old version. The last four bytes are

6

Efficient reprogramming of wireless sensor networks using incremental updates and data compression

hardcoded, as part of the INSERT instruction.
All delta encoding algorithms use external compression algorithms to reduce the delta’s size. Therefore,

by adding delta encoding, a sensor node is reprogrammed as in Figure 3. Delta encoding can be seen
as a pre-processor; it is an initial phase that improves the performance of data compression algorithms.
An update host is responsible for producing deltas which need to be implemented on sensor nodes. A
delta might consist of multiple patches; each patch is compressed separately and distributed to the node.
There, after decompression, it is applied to the old version of the software. After all patches have been
applied, the new version is complete and may be used.

Table 2: Comparison of algorithms for differential update.

Algorithm Matching type Instruction set

rdiff identical blocks small
vcdiff identical blocks complex
bsdiff similar blocks small

4 Evaluation

This section describes the metrics we use for our tests, the hardware on which the tests are performed,
and the results for each metric.

4.1 Metrics

For algorithms running on resource-constrained devices, four metrics are relevant: code size of the
algorithm, memory used during execution, energy and delay. The size of compressed data and execution
time are two additional factors which directly determine energy and delay usage.

The reduction in size of the compressed data is quantified through the compression ratio. It is a
standard metric used to compare compression algorithms, defined as the reduction in size relative to the
uncompressed data:

compr ratio = (1− compressed size
uncompressed size) ∗ 100.

Therefore, higher values mean smaller compressed files, hence better performance.
On the other hand, decompressing data requires a certain amount of processor cycles. A high number

of processor instructions would result in large decompression times. Therefore, Regardless of processor
speed, this value should be as low as possible. The importance will be captured in an overall model.

Memory is limited in resource-constrained devices. This includes both memory required for holding
the code, which is stored in internal flash memory (ROM), and memory required during execution, in
RAM. Algorithms running on sensor nodes must have a small code footprint, up to a couple of kilobytes,
and use little memory during execution.

We estimate energy usage through a linear model which relies on the amount of time spent during
computation and transmission of data [37]. This is a lower bound of the real energy usage; we assume that
forwarding is done immediately, without additional processing, and we ignore MAC protocol behavior.
Adding those variables, especially the influence of a low duty-cycle MAC protocol, will result in higher
energy usage for transmission, penalising communication even further. In general, we estimate energy
usage for reprogramming a node within a network in which each node has (at most) h neighbours as:

E = kerr ∗ Erecv ∗ npackets + kerr ∗ h ∗ Esend ∗ npackets + Ecpu,

where kerr is the average number of times each packet is sent, npackets = d data size
payload sizee is the number of

sent/received packets, payload size is the maximum amount of data that can be fit in one data frame,
Erecv and Esend are the energy required to receive/send one packet and Ecpu is the energy required for
post-processing of the received data. Transmission energy is expressed as:

Esend/recv = ton ∗ Isend/recv ∗ V

7

M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien

where ton is the amount of time that the wireless radio is in sending/listening state. Previous research [38,
39] suggests that it takes 7ms to transmit a data frame. This includes time for performing the CSMA/CA
assessment, transmission of the actual data and receipt of the acknowledgment. For simplification
purposes, we assume that during reception, the radio chip is turned on for the same amount of time, and
it draws more current. This corresponds to the values present in specifications of various radio chipsets,
such as the CC2420.

Similarly, processing energy is calculated as:

Ecpu = Icpu ∗ V ∗ tcpu
where tcpu is the amount of processing time.

In the most basic case, where no post-processing is used, Ecpu can be ignored:

Ec1 = kerr ∗ Erecv ∗ duncompressed size
payload size e+ kerr ∗ h ∗ Esend ∗ duncompressed size

payload size e

In the second case, when only compression is used, the data needs to be decompressed after receipt.
Therefore, the energy usage can now be estimated as:

Ec2 = kerr ∗ Erecv ∗ d compressed size
payload size e+ kerr ∗ h ∗ Esend ∗ d compressed size

payload size e+ Edcmp

Finally, in the third case, when both incremental update and compression is used, both decompression
and patching needs to be performed after receipt of the data. Assuming that the entire update is
implemented through one patch, the energy usage can be estimated as:

Ec3 = kerr ∗ Erecv ∗ d compressed patch size
payload size e+ kerr ∗ h ∗ Esend ∗ d compressed patch size

payload size e+ Edcmp + Epatch

We estimate the time needed to complete an update with a similar model to the one used for energy
estimation. Again we estimate a lower bound of the delay, since we assume that forwarding is done
immediately, and that the MAC protocol does not introduce additional overhead:

D = kerr ∗ trecv ∗ npackets + kerr ∗ h ∗ tsend ∗ npackets + tcpu.

 0.009

 0.0095

 0.01

 0.0105

 0.011

 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

E
ne

rg
y

(J
)

D
el

ay
 (

s)

Processing time (s)

E2

E1

D2

D1

e1(x)
e2(x)
d1(x)
d2(x)

Figure 5: Example of two measurements where larger delay (D1¿D2) does not result in larger energy usage
(E1¡E2). Calculated for kerr = 1, h = 1, tsend = trecv = 7ms, Iproc = 1.8mA, Isend = 17.4mA, Irecv =
23mA. e1(x) and d1(x) correspond to energy usage and delay when npackets = 5, while e2(x) and d2(x)
use npackets = 6.

In most cases, the energy model and delay model give similar results. The difference between them
comes in the scaling factors added in the energy model for expressing energy usage. Therefore, these two
metrics give contradicting results when for two measurements:

kerr ∗ (trecv + h ∗ tsend) <
tproc1−tproc2

npackets2−npackets1
< kerr∗(Irecv∗trecv+h∗Isend∗tsend)

Iproc
.

Figure 5 illustrates one such situation. It shows two curves for estimated energy usage (e1 and e2)
and delay (t1 and t2), plotted against processing time. In the first case (e1 and d1), five data frames are
used, compared to six data frames in the second case (e2 and d2). If we look at the energy usage and
delay for two sample points, for instance at 1.04 and 1.12, we can notice that while energy usage is higher
for the second case (E2 > E1), the delay has the opposite behaviour (D2 < D1).

8

Efficient reprogramming of wireless sensor networks using incremental updates and data compression

4.2 Experimental setup and workflow

To verify the effect of compression and delta encoding in reprogramming wireless sensor networks, we
considered four scenarios for reprogramming: 1) Version upgrade of the operating system; 2) Installation
of a new application; 3) Version upgrade of an application, with large differences between versions; 4)
Small patch of an application, i.e. parameter reconfiguration. Every scenario except the first one consists
of two test cases: upgrading the system with a new firmware image and using partial executables (ELF)
(Table 3).

For each test case, both the initial version and the new version are available. First, we compress the
new version directly. Then, we produce an intermediate delta using each of the delta encoding algorithms,
and apply compression to them. We measure the compression ratio of the compressed delta’s with respect
to the size of the new version. Then, we measure the other five metrics mentioned in the previous section
only for decompression and patching, since data compression and delta creation is done outside of the
sensor network.

In our experiments, we use the Contiki operating system, running on Crossbow TelosB nodes [7],
with the Open Service Architecture for Sensors (OSAS) [24] application. The node contains an 8 MHz
TI MSP430 microcontroller with the Chipcon CC2420 IEEE 802.15.4 radio transceiver. It has 48 KB
program flash memory, 10 KB random access memory and 1 MB external flash.

Both decompression and patching algorithms were adapted to be run on the TelosB nodes1. Input
and output data is stored on the external serial flash and is accessed through the Contiki Coffee file
system [40]. All tests were executed 10 times, and timed using the Contiki clock module.

Table 3: Test scenarios and data size of firmware images and ELF executables.

Test Description Type Starting size Final size

1a Contiki 2.3 → Contiki 2.4 Firmware 22,924 20,624
1b Contiki 2.4 → Contiki 2.5 Firmware 20,624 22,980
2a Contiki 2.5 + Hello world → Contiki 2.5 + OSAS 2.0 Firmware 22,980 39,112
2b OSAS 2.0 (no previous version is available) ELF executable - 26,712
3a Contiki 2.5 + OSAS 1.0 → Contiki 2.5 + OSAS 2.0 Firmware 37,796 39,112
3b OSAS 1.0 → OSAS 2.0 ELF executable 25.784 26.712
4a Contiki 2.5 + OSAS 2.0 → Contiki 2.5 + OSAS 2.1 Firmware 39.112 39.112
4b OSAS 2.0 → OSAS 2.1 ELF executable 26,712 26,712

4.3 Results

Next we will discuss each of the aforementioned metrics individually.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

huff fastlz lz77 lzjb rle s-lzw bz2

C
o
m

p
re

s
s
io

n
 r

a
ti
o
 (

%
)

Algorithm

only comp.
bsdiff

rdiff
vcdiff

(a) Contiki 2.3 → 2.4

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

huff fastlz lz77 lzjb rle s-lzw bz2

C
o
m

p
re

s
s
io

n
 r

a
ti
o
 (

%
)

Algorithm

only comp.
bsdiff

rdiff
vcdiff

(b) Contiki 2.4 → 2.5

Figure 6: Compression ratio when upgrading the operating system (Test case 1).

1The source code of the algorithms, as well as the data used in the report is available at http://www.win.tue.nl/

~mstolikj/compression/. The port of VCDIFF to the MSP430 microcontroller was kindly provided by Nicolas Tsiftes.

9

http://www.win.tue.nl/~mstolikj/compression/
http://www.win.tue.nl/~mstolikj/compression/

M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

huff fastlz lz77 lzjb rle s-lzw bz2

C
o
m

p
re

s
s
io

n
 r

a
ti
o
 (

%
)

Algorithm

only comp.
bsdiff

rdiff
vcdiff

(a) Firmware update

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

huff fastlz lz77 lzjb rle s-lzw bz2

C
o
m

p
re

s
s
io

n
 r

a
ti
o
 (

%
)

Algorithm

only comp.
bsdiff

rdiff
vcdiff

(b) Partial executable

Figure 7: Compression ratio when installing a new application (Test case 2).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

huff fastlz lz77 lzjb rle s-lzw bz2

C
o
m

p
re

s
s
io

n
 r

a
ti
o
 (

%
)

Algorithm

only comp.
bsdiff

rdiff
vcdiff

(a) Firmware update

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

huff fastlz lz77 lzjb rle s-lzw bz2

C
o
m

p
re

s
s
io

n
 r

a
ti
o
 (

%
)

Algorithm

only comp.
bsdiff

rdiff
vcdiff

(b) Partial executable

Figure 8: Compression ratio when upgrading an application (Test case 3).

4.3.1 Compression ratio

Compression ratio is a factor which gives a strong indication what to expect from a compression algorithm
in terms of energy and delay savings. As illustrated on figures 6, 7, 8 and 9, due to the rather diverse
input samples, the compression ratio varies significantly between different test cases.

In the operating system update scenario, the compression ratio when using incremental update is
approximately 10% higher in test case 1a (figure 6a) compared to test case 1b (figure 6b), while direct
compression gives similar results. This is a clear indication that version 2.5 of the Contiki operating
system is a major update to version 2.4, unlike 2.4 to 2.3.

The compression ratio in test case 2a (figure 7a) is lower than in the first one because the new firmware
image is twice as large as the old one, hence a lot of data has not be seen before, and has to be inserted.
With ELF executables, since there is no initial version of the application, delta encoding can not be used.
Therefore, figure 7b shows only reported values by applying compression directly to the ELF executable.

The compression ratio shown in figure 8 is higher than in the previous two scenarios. The increase is
obvious in both cases, when using firmware images and partial executables. The difference between the
two versions is not as large as within the operating system, hence the deltas can be compressed better.

In the fourth scenario, the difference between the consecutive versions of the OSAS application is in
two bytes, i.e. only the value of one integer variable is changed. Figure 9 shows that the compression
ratio is very high, especially when using VCDIFF for delta encoding.

It is important to note that a parameter change may not always result in an assignment change in the
generated machine code. As shown on figure 10, due to compiler optimizations, for nearly the same input,
the compiler may generate completely different output. As a result, the old and new version will differ in
more than two bytes, which generates significantly larger deltas.

10

Efficient reprogramming of wireless sensor networks using incremental updates and data compression

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

huff fastlz lz77 lzjb rle s-lzw bz2

C
o
m

p
re

s
s
io

n
 r

a
ti
o
 (

%
)

Algorithm

only comp.
bsdiff

rdiff
vcdiff

(a) Firmware update

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

huff fastlz lz77 lzjb rle s-lzw bz2

C
o
m

p
re

s
s
io

n
 r

a
ti
o
 (

%
)

Algorithm

only comp.
bsdiff

rdiff
vcdiff

(b) Partial executable

Figure 9: Compression ratio when modifying a parameter (2 bytes) in an application (Test case 4).

Original source code

e t i m e r s e t (&et , CLOCK SECOND ∗ 6 00) ;

Generated assembly

5044 : mov #11264 , r13
5048 : mov #1, r14
504a : mov #4542 , r15
504 e : ca l l #0x69a4

New source code

e t i m e r s e t (&et , CLOCK SECOND ∗ 1800) ;
Generated assembly

5044 : mov #−31744, r13
5048 : mov #3, r14
504 c : mov #4542 , r15
5050 : ca l l #0x69a6

Figure 10: The compiler can generate completely different assembly/machine code for similar input.

In general, the compression ratio metric implies that incremental updates make significant difference
in the performance of compression algorithms. Depending on the approach and type of updates that need
to be compressed, between 37% and 99% compression ratio can be achieved.

Most compression algorithms behave similarly, with not more than 10% difference between them. The
two exceptions are Run Length Encoding as the worst compressor and BZip2 as the best one.

Using BSDIFF showed higher compression ratio compared to the other delta encoding algorithms
in all except the last test scenario. During the parameter change, VCDIFF produced smaller deltas.
Disappointingly, RDIFF was inferior to the other two algorithms in all test cases, and was therefore
omitted from the subsequent experiments.

4.4 Memory requirements

This metric determines the memory resources required to add decompression and delta encoding support.
It can be divided in two parts - memory required for holding the code, which is stored in internal flash
memory (ROM), and memory required during execution, in RAM.

Table 4 shows code and memory requirements for the six decompression algorithms, as well as the
patching code of the VCDIFF and BSDIFF algorithms, ported to the Crossbow TelosB motes. The code
size corresponds to the size of the .text segment of the ELF binary, while memory is the sum of static
memory and maximum stack memory used during execution.

From the table, it is evident that Run Length Encoding, Lempel-Ziv 77 and LZJB are lightweight in
terms of both code size and memory usage during execution; FastLZ has a larger code base, but still
uses little stack space. The Huffman decoder has a small codebase, but uses a lot of memory to store the
huffman tree, which contains 512 nodes. Finally, Sensor-LZW has the largest code base and uses the

11

M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien

Table 4: Code and memory footprint of different algorithms. All algorithms use a 2 byte buffer for holding
data from/to serial flash memory.

Algorithm Code (bytes) Memory (bytes)

huffman 388 3388
fastlz 878 145
lz77 376 144
lzjb 424 140
rle 198 131
s-lzw 1.281 2502

bsdiff 560 158
vcdiff 2.261 1714

most memory of all decompression algorithms.
The memory footprint of BSDIFF is small, both in code size and memory usage. On the other hand,

VCDIFF has a significantly larger code base, along with large memory footprint, mostly for storing the
instruction cache.

4.5 Processing requirements

The time required to decompress the BSDIFF/VCDIFF deltas from the previous section is shown in
figure 11. A buffer size of 2 bytes was used for all algorithms.

In all cases, Sensor-LZW and the Huffman decoder were the slowest algorithms. LZ77 and LZJB had
almost identical execution times, while RLE had significantly worse performance while decompressing
VCDIFF deltas. This comes down to the nature of the VCDIFF algorithm - run length encoding is added
to the instruction set and is done while the delta is generated. Therefore, performing run length encoding
on the delta does not give any improvement. Finally, on average, FastLZ was the fastest algorithm.

 0

 5

 10

 15

 20

1a 1b 2a 3a 3b 4a 4b

T
im

e
 (

s
e
c
o
n
d
s
)

Test case

huff
fastlz

lz77
lzjb

rle
s-lzw

(a) Decompression time for a BSDIFF patch

 0

 5

 10

 15

 20

1a 1b 2a 3a 3b 4a 4b

T
im

e
 (

s
e
c
o
n
d
s
)

Test case

huff
fastlz

lz77
lzjb

rle
s-lzw

(b) Decompression time for a VCDIFF patch

Figure 11: Time required for decompressing a patch.

Figure 11 shows that decompressing a VCDIFF delta is generally faster than decompressing a BSDIFF
delta. The main reason for this visible behaviour is that the size of the VCDIFF delta is always smaller
than the BSDIFF delta. This is especially expressed in test cases 4a and 4b, where the VCDIFF delta
is around 60 bytes, while the BSDIFF delta is 39,130/26,724 bytes respectively. The decompression
times become similar when the compressed BSDIFF delta is proportionally smaller than the compressed
VCDIFF delta.

The time required to perform a patch is given in figure 12. As before, a buffer of 2 bytes was used.

12

Efficient reprogramming of wireless sensor networks using incremental updates and data compression

Again, due to the size of the input data, the patching using VCDIFF is much faster than patching using
BSDIFF.

 0

 2

 4

 6

 8

 10

 12

 14

1a 1b 2a 3a 3b 4a 4b

T
im

e
 (

s
e
c
o
n
d
s
)

Test case

bsdiff vcdiff

Figure 12: Time required for patching.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

2 4 8 16 32 64 128 256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

Buffer size

lz77 lzjb fastlz rle

(a) Decompression time for the BSDIFF delta from test case 1a

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

2 4 8 16 32 64 128 256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

Buffer size

bsdiff vcdiff

(b) Patching time for test case 1a

Figure 13: Impact of buffer size on decompression and patching time.

A more detailed inspection of the buffer size gives significantly different insight. Figure 13a shows
the behaviour of decompression time for one test case (decompressing a BSDIFF delta in test case 1a),
with variable buffer size. From this experiment, Sensor-LZW and Huffman decoder were omitted, since
they already use a lot of memory. Buffering was implemented only for block reads/writes; the input
instructions are still read in sequences of 2 bytes. Buffer size plays an important role with FastLZ, LZ77
and LZJB - going from buffer size of 2 to 32 bytes gives almost 50% faster decompression. On the other
hand, RLE performance gets saturated with buffer size 16 and higher, since it only uses the larger buffer
when one symbol is written multiple times.

Similarly, figure 13b shows the impact of buffer size on patching time. The samples were computed
for test case 1a. A larger buffer significantly improves patching time for BSDIFF, and with a buffer of
128 bytes, it is almost the same as VCDIFF. The improvements are higher with BSDIFF because the
uncompressed BSDIFF delta is significantly larger than the VCDIFF delta, and reading it from the flash
memory takes a lot of time. The larger buffer is at double use here, and since the operation with the read
data is extremely simple, the BSDIFF performance gets close to VCDIFF. This is an important factor to
consider, since VCDIFF consumes much more memory than BSDIFF, which can be compensated in a
larger buffer.

13

M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien

Table 5: Crossbow TelosB specifications.

Current drawn - sending (Isend) 17.4 mA
Current drawn - receiving (Irecv) 23 mA
Current drawn - processor (Iproc) 1.8 mA
Input voltage (V) 3 V

4.6 Energy estimation

By replacing the specific values for the Crossbow TelosB sensor nodes (table 5) in the energy model
described in 4.1, the energy for sending, receiving and processing equals:

Esend = 0.365mJ
Erecv = 0.483mJ

Ecpu = tcpu ∗ 5.94mJ

According to these values, processing time of 1 second consumes as much power as sending and
receiving 7 data frames. This is the separation point which decides whether additional processing is
beneficial to direct transmission.

 0

 50

 100

 150

 200

 250

 300

1a 1b 2a 3a 3b 4a 4b

E
n
e
rg

y
 (

m
J
)

Test case

bsdiff + lz77
bsdiff + lzjb

bsdiff + fastlz
bsdiff + rle

bsdiff + s-lzw
bsdiff + huff

direct

(a) Decompression + BSDIFF

 0

 50

 100

 150

 200

 250

 300

1a 1b 2a 3a 3b 4a 4b

E
n
e
rg

y
 (

m
J
)

Test case

vcdiff + lz77
vcdiff + lzjb

vcdiff + fastlz
vcdiff + s-lzw

vcdiff + huff
vcdiff
direct

(b) Decompression + VCDIFF

 0

 50

 100

 150

 200

 250

 300

 350

 400

1a 1b 2a 3a 3b 4a 4b

E
n
e
rg

y
 (

m
J
)

Test case

 lz77
 lzjb

 fastlz
 rle

 s-lzw
 huff

direct

(c) Only decompression

Figure 14: Energy estimation using only decompression (c) and both patching and decompression (a, b).
(Constants: h = 1, kerr = 1, payload size = 114, buffer size = 128). ”Direct” shows the energy usage of
transmitting the data directly, without processing.

14

Efficient reprogramming of wireless sensor networks using incremental updates and data compression

 80

 100

 120

 140

 160

 180

 200

 220

 1 1.2 1.4 1.6 1.8 2

E
n

e
rg

y
 u

s
a

g
e

 (
m

J
)

Error rate

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff

(a) Error rate (kerr)

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4 5 6 7 8 9 10

E
n

e
rg

y
 u

s
a

g
e

 (
m

J
)

Number of nodes

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff

(b) Number of nodes (h)

 80

 100

 120

 140

 160

 180

 200

 220

 240

 50 60 70 80 90 100 110

E
n

e
rg

y
 u

s
a

g
e

 (
m

J
)

Packet size

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff

(c) Packet size (payload size)

 100

 150

 200

 250

 300

 350

 1 1.2 1.4 1.6 1.8 2

E
n

e
rg

y
 u

s
a

g
e

 (
m

J
)

Error rate

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff

(d) Error rate (kerr)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8 9 10

E
n

e
rg

y
 u

s
a

g
e

 (
m

J
)

Number of nodes

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff

(e) Number of nodes (h)

 50

 100

 150

 200

 250

 300

 350

 400

 50 60 70 80 90 100 110

E
n

e
rg

y
 u

s
a

g
e

 (
m

J
)

Packet size

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff

(f) Packet size (payload size)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 1.2 1.4 1.6 1.8 2

E
n

e
rg

y
 u

s
a

g
e

 (
m

J
)

Error rate

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff

(g) Error rate (kerr)

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

E
n

e
rg

y
 u

s
a

g
e

 (
m

J
)

Number of nodes

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff

(h) Number of nodes (h)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 50 60 70 80 90 100 110

E
n

e
rg

y
 u

s
a

g
e

 (
m

J
)

Packet size

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff

(i) Packet size (payload size)

Figure 15: Influence of error rate (kerr), number of nodes (h) and packet size (payload size) on energy
usage. Computed for test cases 1a (a-c), 3a (d-f) and 4a (g-i), using a 128 byte buffer.

The energy usage for updating one node (h = 1), in an ideal environment (kerr = 1) with 114 byte
packets (payload size) and 128 byte buffer, is shown in figure 14.

For reprogramming one node, using only compressed updates (figure 14c) is more energy efficient than
sending data directly, only when FastLZ is used. The additional processing introduced by LZ77 in some
cases pays off for the savings in data for transmission; all other algorithms require more energy.

On the other hand, the combination of any compression algorithm with either BSDIFF (figure 14a) or
VCDIFF (figure 14b) results in significant reductions in energy usage. For test cases 1a to 3b, highest
energy savings are achieved using BSDIFF in combination with LZ77 or FastLZ, while for test cases 4a
and 4b, the lowest energy usage is registered using only VCDIFF.

All compression algorithms perform reasonably well when used in combination with BSDIFF. Reduc-
tions in energy usage vary between 14% in the worst case, and up to 95% in the best case. The penalty
for low compression ratio or extremely high processing time is particularly evident for Run Length and
Huffman Encoding, since they provides less energy savings than any of the other algorithms.

VCDIFF has good performance even without using an additional compressor. In fact, only FastLZ
reduced the energy usage in all test cases, closely followed by LZ77. In the parameter change test cases,
since the VCDIFF delta already fits in one data frame, there is no need to apply additional compression
to it.

The number of neighbours in a network, retransmission rate of the wireless link and payload size
used in the model are external factors. They are either pre-set in the network, or defined by the physical

15

M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien

properties of the deployment area. As shown in figure 15, they can make significant difference in the
selection of an algorithm.

As the number of nodes in the network increases, the channel gets noisier or the packet size decreases,
the additional compression is favourable to faster execution time. This is evident in two cases. First,
LZ77 has lower energy footprint compared to FastLZ when used in combination with BSDIFF. Second,
using only VCDIFF requires more energy than adding additional compression through FastLZ or LZ77.

 0

 5

 10

 15

 20

 25

1a 1b 2a 3a 3b 4a 4b

D
e
la

y
 (

s
e
c
o
n
d
s
)

Test case

bsdiff + lz77
bsdiff + lzjb

bsdiff + fastlz
bsdiff + rle

bsdiff + s-lzw
bsdiff + huff

direct

(a) Decompression + BSDIFF

 0

 5

 10

 15

 20

 25

1a 1b 2a 3a 3b 4a 4b
D

e
la

y
 (

s
e
c
o
n
d
s
)

Test case

vcdiff + lz77
vcdiff + lzjb

vcdiff + fastlz
vcdiff + s-lzw

vcdiff + huff
vcdiff
direct

(b) Decompression + VCDIFF

 0

 5

 10

 15

 20

 25

1a 1b 2a 3a 3b 4a 4b

D
e
la

y
 (

s
e
c
o
n
d
s
)

Test case

 lz77
 lzjb

 fastlz
 rle

 s-lzw
 huff

direct

(c) Only decompression

Figure 16: Delay estimation using only decompression (c) and both patching and decompression (a,
b). (Constants: h = 1, kerr = 1, payload size = 114, buffer size = 128). ”Direct” shows the delay of
transmitting the data directly, without processing.

4.7 Delay

The time needed for updating one Crossbow TelosB node (h = 1), in an ideal environment (kerr = 1)
with 114 byte packets (payload size) and 128 byte buffer, is shown in figure 16.

For reprogramming one node, using only compressed updates (figure 16c) is much slower than sending
the data directly. Even the fastest algorithm, FastLZ, requires twice as more time.

Slightly improved results are obtained when incremental updates are used - the time required for
patching and decompression is larger than the time required to send the difference in data. This is evident
both for BSDIFF (figure 16a) and VCDIFF (figure 16b) combinations in test cases 1a to 3b. Using only
VCDIFF proves to be the only feasible option in these cases, introducing very little overhead.

In test cases 4a and 4b, the processing overhead is significantly smaller compared to the transmission
savings. Therefore, using LZ77, FastLZ or LZJB with BSDIFF, as well as only VCDIFF, is faster than
transmitting the entire binary data.

16

Efficient reprogramming of wireless sensor networks using incremental updates and data compression

As shown in figure 17, the constants in the delay formula have significant impact. In general, as the
number of nodes for update increases, the benefits of additional compression make up for the increased
processing time. The tipping point is different for all test cases, but notable changes can be seen starting
from two nodes. The impact of payload size and channel retransmission rate is smaller, but still influential.

 1

 2

 3

 4

 5

 6

 7

 1 1.2 1.4 1.6 1.8 2

D
e

la
y
 (

s
e

c
)

Error rate

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff
direct

(a) Error rate (kerr)

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

D
e

la
y
 (

s
e

c
)

Number of nodes

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff
direct

(b) Number of nodes (h)

 1

 2

 3

 4

 5

 6

 7

 8

 50 60 70 80 90 100 110

D
e

la
y
 (

s
e

c
)

Packet size

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff
direct

(c) Packet size (payload size)

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 1 1.2 1.4 1.6 1.8 2

D
e

la
y
 (

s
e
c
)

Error rate

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff
direct

(d) Error rate (kerr)

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

D
e

la
y
 (

s
e
c
)

Number of nodes

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff
direct

(e) Number of nodes (h)

 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

 50 60 70 80 90 100 110

D
e

la
y
 (

s
e
c
)

Packet size

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff
direct

(f) Packet size (payload size)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 1.2 1.4 1.6 1.8 2

D
e

la
y
 (

s
e

c
)

Error rate

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff
direct

(g) Error rate (kerr)

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

D
e

la
y
 (

s
e

c
)

Number of nodes

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff
direct

(h) Number of nodes (h)

 0

 2

 4

 6

 8

 10

 12

 50 60 70 80 90 100 110

D
e

la
y
 (

s
e

c
)

Packet size

bsdiff + lz77
bsdiff + fastlz
vcdiff + lz77

vcdiff + fastlz
vcdiff
direct

(i) Packet size (payload size)

Figure 17: Influence of error rate (kerr), number of nodes (h) and packet size (payload size) on delay.
Computed for test cases 1a (a-c), 3a (d-f) and 4a (g-i), using a 128 byte buffer.

5 Discussion

The results presented in this report suggest that reprogramming of wireless sensor networks can be
improved in terms of energy efficiency and time required for update by using data compression and
incremental updates. Improvements vary depending on the selection of specific algorithms.

Simply adding compression during reprogramming does not lead to decrease in energy performance or
faster updates. In fact, as shown in section 4, some compression algorithms can degrade performance.
Compression ratio for all algorithms is lower than reported in other studies, mostly due to the different
type of data being compressed. Binary data may not be as compressible as sensed data.

In contrast, using incremental updates showed solid results in all test cases. Up to 95% in energy
savings were registered, along with 95% faster updates. Even though highest improvements were registered
during parameter reconfiguration, the fact that reduction of 35% in energy consumption was the minimum
measured in specific configurations, gives strong arguments for using incremental updates in wireless
sensor networks.

17

M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien

Start

Scarce
memory?

No

Yes No

Yes No

NoYes

No

BSDIFF + FastLZ

Yes

Yes

Yes

No

Parameter
change?

Delay
priority?

Energy
priority?

High node
degree?

High node
degree?

BSDIFF + LZ77

BSDIFF + LZ77

BSDIFF + LZ77

BSDIFF + LZ77

VCDIFF

VCDIFF

Figure 18: Guideline for selecting the best option for incremental update.

Selecting the best approach for incremental updates depends on the particular implementation. The
four factors that play a role in the selection are available resources, type of update, network topology and
optimization goal (energy or delay). The three viable solutions are using BSDIFF with either LZ77 or
FastLZ, or using only VCDIFF. The entire decision tree is shown in figure 18.

The memory footprint of VCDIFF is a lot higher than BSDIFF with either LZ77 or FastLZ. Therefore,
if resources are scarce, VCDIFF is the least acceptable solution.

On the other hand, VCDIFF has incomparable performance in terms of both energy usage and delay
when simple changes like parameter change are considered. If most updates are of this type, then VCDIFF
is the option to use.

In case updates are more heterogeneous, the number of nodes in the network is small, and delay is a
priority, then VCDIFF is again the best option. When energy usage is a priority, or the network is fairly
large, then BSDIFF with LZ77 gives the best performance. Finally, when memory is scarce, the network
is small and delay is a priority, then BSDIFF with FastLZ is the preferred option.

The energy and delay estimation model presented in this report can be made more precise. At the
time being, it does not include MAC protocol behaviour, which can heavily influence the outcome of both
metrics. Furthermore, on architectures like the Crossbow TelosB, where flash memory is accessed through
the same bus as the radio chipset, issues may arise with synchronizing memory access with the radio
duty cycle. This timing may be crucial to the function of the wireless network itself, and proper isolation
should be taken into account. In such cases CPU intensive algorithms might be considered inappropriate.

Decompression and patching time can be decreased by extending the buffer to cover reading instructions
from the serial flash. This is a per-algorithm dependency which would result in a larger code base, but
would provide better performance.

Significant improvements can be reached by optimizing the incremental update process. One approach
would be to adapt the original data, i.e. firmware or executable binary, in such way that it becomes as
constant as possible between different versions. This can be achieved through function call indirection [19],
extracting and ordering of global variables etc. As a result, the delta scripts would be much smaller,
hence easier to compress.

Another approach would be segment an entire update into a set of independent patches. A complete

18

Efficient reprogramming of wireless sensor networks using incremental updates and data compression

upgrade to a new version would consist of applying all patches in a specific order. If two different binary
versions of the same application exists, intended for different nodes within the network, they can share a
subset of the patches, which will be distributed to all nodes within the network. This way the network
would be able to handle code differences much easier.

Finally, compression is only the initial step in energy-efficient reprogramming of wireless sensor
networks. A lot of open issues remain to be solved, such as integrating compression in existing or new
protocols for distributing images and application updates in wireless sensor networks. An additional
challenge is to complete all of the previously mentioned tasks in the limited memory that is available in
wireless sensor nodes, with as little code overhead as possible. Making this task feasible and integratable
will enable easier large-scale, long term deployment of wireless sensor networks.

6 Conclusion

In this report we investigated two approaches for efficient reprogramming of wireless sensor networks.
Firstly, we evaluated the performance of general purpose data compression algorithms applied directly
on binary data. Secondly, we compared three algorithms for incremental update using delta scripts and
combined them with the previously analyzed compression algorithms. Further tests were done on wireless
sensor nodes, measuring memory requirements, code footprint, execution time, energy usage and delay.

Results show that data compression in combination with incremental update can significantly decrease
energy usage and delay in reprogramming wireless sensor networks. The best option to perform incremental
updates depends on multiple factors, for which we have provided a decision tree. Best performance was
measured when using either the VCDIFF delta encoding algorithms, or the combination of BSDIFF for
delta encoding and LZ77 or FastLZ for decompression.

Acknowledgement

The authors would like to thank Martijn van den Heuvel and Richard Verhoeven for their valuable
discussions and improvements on this article, and to Nicolas Tsiftes for kindly providing the source code
to the VCDIFF decoder.

This work is supported in part by the Dutch P08 SenSafety Project, as part of the COMMIT program.

References

[1] K. Sha, W. Shi, and O. Watkins, “Using wireless sensor networks for fire rescue applications: Re-
quirements and challenges,” in Electro/information Technology, 2006 IEEE International Conference
on, pp. 239 –244, may 2006.

[2] E. Cayirci and T. Coplu, “Sendrom: sensor networks for disaster relief operations management,”
Wirel. Netw., vol. 13, pp. 409–423, June 2007.

[3] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless sensor networks
for habitat monitoring,” in Proceedings of the 1st ACM international workshop on Wireless sensor
networks and applications, WSNA ’02, (New York, NY, USA), pp. 88–97, ACM, 2002.

[4] D. Musiani, K. Lin, and T. S. Rosing, “Active sensing platform for wireless structural health
monitoring,” in Proceedings of the 6th international conference on Information processing in sensor
networks, IPSN ’07, (New York, NY, USA), pp. 390–399, ACM, 2007.

[5] S. Coleri, S. Y. Cheung, and P. Varaiya, “Sensor networks for monitoring traffic,” in In Allerton
Conference on Communication, Control and Computing, 2004.

[6] A. Dunkels, B. Grnvall, and T. Voigt, “Contiki - a lightweight and flexible operating system for tiny
networked sensors,” in Proc. IEEE Workshop on Embedded Networked Sensors (Emnets-I), 11 2004.

[7] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power wireless research,” in Proc.
Int. Symp. on Information processing in sensor networks, IPSN, IEEE Press, 2005.

19

M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien

[8] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The liteos operating system: Towards unix-like
abstractions for wireless sensor networks,” in Proc. of the 7th int. conf. on Information processing in
sensor networks, IPSN ’08, (Washington, DC, USA), pp. 233–244, IEEE Computer Society, 2008.

[9] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and C. Yoon, “Retos: resilient, expandable, and
threaded operating system for wireless sensor networks,” in Proc. of the 6th int. conf. on Information
processing in sensor networks, IPSN ’07, (New York, NY, USA), pp. 148–157, ACM, 2007.

[10] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and
D. Culler, “Tinyos: An operating system for sensor networks,” in in Ambient Intelligence, Springer
Verlag, 2004.

[11] I. Crossbow Technology, “Mote in-network programming user reference version 20030315,” 2003.

[12] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: a self-regulating algorithm for code propagation
and maintenance in wireless sensor networks,” in Proc. Symp. on Networked Systems Design and
Implementation - Volume 1, pp. 2–2, USENIX, 2004.

[13] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol for network
programming at scale,” in Proc. Int. Conf. on Embedded networked sensor systems, SenSys, pp. 81–94,
ACM, 2004.

[14] T. Stathopoulos, J. Heidemann, and D. Estrin, “A remote code update mechanism for wireless sensor
networks,” tech. rep., Center for Embedded Networked Sensing, 2003.

[15] S. Kulkarni and L. Wang, “Mnp: Multihop network reprogramming service for sensor networks,” in
Distributed Computing Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE int. conf. on, pp. 7 –16,
june 2005.

[16] R. Panta, I. Khalil, and S. Bagchi, “Stream: Low overhead wireless reprogramming for sensor
networks,” in Proc. Int. Conf. on Computer Communications, INFOCOM, pp. 928 –936, may 2007.

[17] C. Miller and C. Poellabauer, “Reliable and efficient reprogramming in sensor networks,” ACM
Trans. Sen. Netw., vol. 7, pp. 6:1–6:32, August 2010.

[18] J. Jeong and D. Culler, “Incremental network programming for wireless sensors,” in Conf. on Sensor
and Ad Hoc Communications and Networks, IEEE SECON, pp. 25 – 33, oct. 2004.

[19] R. K. Panta, S. Bagchi, and S. P. Midkiff, “Efficient incremental code update for sensor networks,”
ACM Trans. on Sensor Networks, vol. 7, pp. 30:1–30:32, February 2011.

[20] N. Reijers and K. Langendoen, “Efficient code distribution in wireless sensor networks,” in Proc.
ACM Int. Conf. on Wireless sensor networks and applications, WSNA ’03, (New York, NY, USA),
pp. 60–67, ACM, 2003.

[21] K. Klues, C.-J. M. Liang, J. Paek, R. Musăloiu-E, P. Levis, A. Terzis, and R. Govindan, “Tosthreads:
thread-safe and non-invasive preemption in tinyos,” in Proc. of the 7th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’09, (New York, NY, USA), pp. 127–140, ACM, 2009.

[22] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and K. Rothermel, “Flexcup: A
flexible and efficient code update mechanism for sensor networks,” in In Proc. of the Third European
Workshop on Wireless Sensor Networks (EWSN 2006, pp. 212–227, 2006.

[23] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor networks,” in Proc. of the 10th int.
conf. on Architectural support for programming languages and operating systems, ASPLOS-X, (New
York, NY, USA), pp. 85–95, ACM, 2002.

[24] R. Bosman, J. Lukkien, and R. Verhoeven, “An integral approach to programming sensor networks,”
in 6th IEEE Consumer Communications and Networking Conf., CCNC, pp. 1 –5, jan. 2009.

[25] K. Dolfus and T. Braun, “An evaluation of compression schemes for wireless networks,” in Int. Cong.
on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 1183
–1188, oct. 2010.

20

Efficient reprogramming of wireless sensor networks using incremental updates and data compression

[26] N. Tsiftes, A. Dunkels, and T. Voigt, “Efficient sensor network reprogramming through compression
of executable modules,” in Conf. on Sensor, Mesh and Ad Hoc Communications and Networks,
SECON, pp. 359 –367, june 2008.

[27] M. Nelson, The Data Compression Book. New York, NY, USA: Henry Holt and Co., Inc., 1991.

[28] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. on
Information Theory, vol. 23, pp. 337 – 343, may 1977.

[29] J. Bonwick, “Lzjb compression algorithm,” 1998.

[30] A. Hidayat, “Fastlz, free, open-source, portable real-time compression library,” 2011.

[31] C. M. Sadler and M. Martonosi, “Data compression algorithms for energy-constrained devices in delay
tolerant networks,” in Proc. Int. Conf. on Embedded networked sensor systems, SenSys, pp. 265–278,
2006.

[32] J. Seward, “A program and library for data compression. bzip2 and libbzip2,” 2010.

[33] A. Tridgell, “Efficient algorithms for sorting and synchronization,” 2000.

[34] D. Korn, J. MacDonald, J. Mogul, and K. Vo, “The VCDIFF Generic Differencing and Compression
Data Format.” RFC 3284 (Proposed Standard), June 2002.

[35] J. Macdonald, “Xdelta - open-source binary diff,” 2011.

[36] C. Percival, “Naive differences of executable code,” 2003.

[37] D. Albu, J. Lukkien, and R. Verhoeven, “Energy effect of on-node processing of ecg signals,” in
Consumer Electronics (ICCE), 2010 Digest of Technical Papers Int. Conf., pp. 7 –8, jan. 2010.

[38] T. R. Burchfield, S. Venkatesan, and D. Weiner, “Maximizing throughput in zigbee wireless networks
through analysis, simulations and implementations,” 2007.

[39] Jennic, “Calculating 802.15.4 data rates.” Application note JN-AN-1035, 08 2006.

[40] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt, “Enabling Large-Scale Storage in Sensor Networks
with the Coffee File System,” in Proceedings of the 8th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN 2009), (San Francisco, USA), Apr. 2009.

21

M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien

A Detailed information on input data

Algorithm
Binary bsdiff rdiff vcdiff

size c ratio size c ratio size c ratio size c ratio
huff 17,563 14.84 9,318 54.82 17,573 14.79 11,535 44.07
fastlz 16,653 19.25 8,486 58.85 16,664 19.20 11,390 44.77
lz77 16,201 21.45 8,048 60.98 16,212 21.39 11,172 45.83
lzjb 17,642 14.46 8,871 56.99 17,656 14.39 12,007 41.78
rle 20,736 0.00 10,679 48.22 20,746 0.00 13,345 35.29
s-lzw 17,911 13.15 8,030 61.06 17,917 13.13 11,636 43.58
bzip2 12,917 37.37 6,619 67.91 12,924 37.34 9,311 54.85

Delta size - 21,278 20,635 13,268
Entropy 6,717 3.313 6.656 6.746

Table 6: Compression ratio when upgrading from Contiki 2.3 to 2.4 (Test 1a). The starting image is
22.924 bytes long, while the final one is 20.624 bytes long.

Algorithm
Binary bsdiff rdiff vcdiff

size c ratio size c ratio size c ratio size c ratio
huff 19,585 14.77 12,264 46.63 19,595 14.73 13,733 40.24
fastlz 18,279 20.46 11,413 50.34 18,290 20.41 13,475 41.36
lz77 17,638 23.25 10,973 52.25 17,649 23.20 13,148 42.79
lzjb 19,487 15.20 11,904 48.20 19,499 15.15 14,363 37.50
rle 23,088 0.00 13,527 41.14 23,098 0.00 15,905 30.79
s-lzw 19,907 13.37 10,986 52.19 19,939 13.23 14,190 38.25
bzip2 14,047 38.87 9,061 60.57 14,046 38.88 10,928 52.45

Delta size - 24,270 22,991 15,813
Entropy 6.656 3.911 6.676 6.762

Table 7: Compression ratio when upgrading from Contiki 2.4 to 2.5 (Test 1b). The starting image is
20.624 bytes long, while the final one is 22.980 bytes long.

Algorithm
Binary bsdiff rdiff vcdiff

size c ratio size c ratio size c ratio size c ratio
huff 33,620 14.04 21,837 44.17 33,634 14.01 24,918 36.29
fastlz 31,553 19.33 19,484 50.18 31,577 19.27 24,422 37.56
lz77 30,406 22.26 18,317 53.17 30,425 22.21 23,811 39.12
lzjb 33,798 13.59 20,563 47.43 33,821 13.53 25,908 33.76
rle 39,415 0.00 24,928 36.27 39,428 0.00 28,779 26.42
s-lzw 34,181 12.61 19,575 49.95 34,235 12.47 25,666 34.38
bzip2 24,276 37.93 14,736 62.32 24,288 37.90 19,622 49.83

Delta size - 39,748 39,126 28,503
Entropy 6.780 4.316 6.780 6.878

Table 8: Compression ratio when installing a new application by flashing the firmware (Test 2a). The
starting image is 22,980 bytes long, while the final one is 39.112 bytes long.

22

Efficient reprogramming of wireless sensor networks using incremental updates and data compression

Algorithm
Binary

size c ratio
huff 18,648 30.19
fastlz 19,037 28.73
lz77 17,918 32.92
lzjb 19,471 27.11
rle 28,485 0.00
s-lzw 17,933 32.87
bzip2 13,417 49.77

File entropy 5.431

Table 9: Compression ratio when installing an new application (Test 2b). The partial executable is 26,712
bytes long.

Algorithm
Binary bsdiff rdiff vcdiff

size c ratio size c ratio size c ratio size c ratio
huff 33,620 14.04 12,030 69.24 33,634 14.01 20,001 48.86
fastlz 31,553 19.33 11,652 70.21 31,577 19.27 19,470 50.22
lz77 30,406 22.26 9,375 76.03 30,425 22.21 19,116 51.12
lzjb 33,798 13.59 11,947 69.45 33,821 13.53 20,672 47.15
rle 39,415 0.00 15,823 59.54 39,428 0.00 22,739 41.86
s-lzw 34,181 12.61 10,034 74.35 34,235 12.47 20,230 48.28
bzip2 24,276 37.93 7,406 81.06 24,288 37.90 16,251 58.45

Delta size - 39,580 39,126 22,550
Entropy 6.780 2.116 6.780 6.954

Table 10: Compression ratio when updating an application by flashing the firmware (Test 3a). The
starting image is 37,796 bytes long, while the final one is 39,112 bytes long.

Algorithm
Binary bsdiff rdiff vcdiff

size c ratio size c ratio size c ratio size c ratio
huff 18,648 30.19 10,911 59.15 18,658 30.15 11,804 55.81
fastlz 19,037 28.73 12,438 53.44 19,049 28.69 12,669 52.57
lz77 17,918 32.92 11,990 55.11 17,933 32.87 11,851 55.63
lzjb 19,471 27.11 12,903 51.70 19,483 27.06 12,496 53.22
rle 28,485 0.00 17,106 35.96 28,495 0.00 19,318 27.68
s-lzw 17,933 32.87 10,638 60.18 18,023 32.53 11,097 58.46
bzip2 13,417 49.77 8,919 66.61 13,456 49.63 9,210 65.52

Delta size - 27,396 26,723 17,589
Entropy 5.431 2.959 5.432 5.176

Table 11: Compression ratio when updating an application using partial executables (Test 3b). The
starting partial executable is 25,784 bytes long, while the final one is 26,712 bytes long.

Algorithm
Binary bsdiff rdiff vcdiff

size c ratio size c ratio size c ratio size c ratio
huff 33,620 14.04 4,905 87.46 1,893 95.16 78 99.80
fastlz 31,552 19.33 479 98.78 1,861 95.24 55 99.86
lz77 30,406 22.26 88 99.78 1,853 95.26 55 99.86
lzjb 33,800 13.58 1,336 96.58 1,993 94.90 60 99.85
rle 39,415 0.00 481 98.77 2,069 94.71 62 99.84
s-lzw 34,181 12.61 2,024 94.83 1,903 95.13 64 99.84
bzip2 24,262 37.97 75 99.81 1,758 95.51 112 99.71

Delta size - 39,130 2,061 60
Entropy 6.780 0.004 6.410 4.8670

Table 12: Compression ratio when modifying a parameter in an application by flashing the firmware (Test
4a). Both the starting and final images are 39,112 bytes long. Modification is in two bytes.

23

M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien

Algorithm
Binary bsdiff rdiff vcdiff

size c ratio size c ratio size c ratio size c ratio
huff 18,648 30.19 3,353 87.45 1,700 93.64 79 99.70
fastlz 19,035 28.74 331 98.76 1,625 93.92 54 99.80
lz77 17,918 32.92 78 99.71 1,657 93.80 54 99.80
lzjb 19,473 27.10 908 96.60 1,806 93.24 58 99.78
rle 28,485 0.00 333 98.75 2,136 92.00 60 99.78
s-lzw 17,933 32.87 1,385 94.82 1,700 93.64 62 99.77
bzip2 13,421 49.76 72 99.73 1,507 94.36 107 99.60

Delta size - 26,724 2,061 58
Entropy 5.431 0.006 5.777 4.901

Table 13: Compression ratio when modifying a parameter in an application using partial executables
(Test 4b). Both the starting and final partial executable are 26,712 bytes long. Modification is in two
bytes.

24

Science Reports Department of Mathematics and Computer Science
 Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the
requested reports).

In this series appeared (from 2009):

09/01 Wil M.P. van der Aalst, Kees M. van Hee, Compositional Service Trees
 Peter Massuthe, Natalia Sidorova and
 Jan Martijn van der Werf

09/02 P.J.l. Cuijpers, F.A.J. Koenders, Queue merge: a Binary Operator for Modeling Queueing Behavior
 M.G.P. Pustjens, B.A.G. Senders,
 P.J.A. van Tilburg, P. Verduin

09/03 Maarten G. Meulen, Frank P.M. Stappers Breadth-Bounded Model Checking
 and Tim A.C. Willemse

09/04 Muhammad Atif and MohammadReza Formal Specification and Analysis of Accelerated Heartbeat Protocols
 Mousavi

09/05 Michael Franssen Placeholder Calculus for First-Order logic

09/06 Daniel Trivellato, Fred Spiessens, POLIPO: Policies & OntoLogies for the Interoperability, Portability,
 Nicola Zannone and Sandro Etalle and autOnomy

09/07 Marco Zapletal, Wil M.P. van der Aalst, Pattern-based Analysis of Windows Workflow
 Nick Russell, Philipp Liegl and
 Hannes Werthner

09/08 Mike Holenderski, Reinder J. Bril Swift mode changes in memory constrained real-time systems
 and Johan J. Lukkien

09/09 Dragan Bošnački, Aad Mathijssen and Behavioural analysis of an I²C Linux Driver
 Yaroslav S. Usenko

09/10 Ugur Keskin In-Vehicle Communication Networks: A Literature Survey

09/11 Bas Ploeger Analysis of ACS using mCRL2

09/12 Wolfgang Boehmer, Christoph Brandt Evaluation of a Business Continuity Plan using Process Algebra
 and Jan Friso Groote and Modal Logic

09/13 Luca Aceto, Anna Ingolfsdottir, A Rule Format for Unit Elements
 MohammadReza Mousavi and
 Michel A. Reniers

09/14 Maja Pešić, Dragan Bošnački and Enacting Declarative Languages using LTL: Avoiding Errors and
 Wil M.P. van der Aalst Improving Performance

09/15 MohammadReza Mousavi and Proceedings of Formal Methods 2009 Doctoral Symposium
 Emil Sekerinski, Editors

09/16 Muhammad Atif Formal Analysis of Consensus Protocols in Asynchronous Distributed
 Systems

09/17 Jeroen Keiren and Tim A.C. Willemse Bisimulation Minimisations for Boolean Equation Systems

09/18 Kees van Hee, Jan Hidders, On-the-fly Auditing of Business Processes
 Geert-Jan Houben, Jan Paredaens,
 Philippe Thiran

10/01 Ammar Osaiweran, Marcel Boosten, Analytical Software Design: Introduction and Industrial Experience Report
 MohammadReza Mousavi

10/02 F.E.J. Kruseman Aretz Design and correctness proof of an emulation of the floating-point operations
 of the Electrologica X8. A case study

mailto:wsinsan@tue.nl

10/03 Luca Aceto, Matteo Cimini, Anna On Rule Formats for Zero and Unit Elements
 Ingolfsdottir, MohammadReza
 Mousavi and Michel A. Reniers

10/04 Hamid Reza Asaadi, Ramtin Khosravi, Towards Model-Based Testing of Electronic Funds Transfer Systems
 MohammadReza Mousavi, Neda Noroozi

10/05 Reinder J. Bril, Uğur Keskin, Schedulability analysis of synchronization protocols based on overrun without
 Moris Behnam, Thomas Nolte payback for hierarchical scheduling frameworks revisited

10/06 Zvezdan Protić Locally unique labeling of model elements for state-based model differences

10/07 C.G.U. Okwudire and R.J. Bril Converting existing analysis to the EDP resource model

10/08 Muhammed Atif, Sjoerd Cranen, Reconstruction and verification of group membership protocols
 MohammadReza Mousavi

10/09 Sjoerd Cranen, Jan Friso Groote, A linear translation from LTL to the first-order modal µ-calculus
 Michel Reniers

10/10 Mike Holenderski, Wim Cools Extending an Open-source Real-time Operating System with Hierarchical
 Reinder J. Bril, Johan J. Lukkien Scheduling

10/11 Eric van Wyk and Steffen Zschaler 1st Doctoral Symposium of the International Conference on Software Language
 Engineering (SLE)

10/12 Pre-Proceedings 3rd International Software Language Engineering Conference

10/13 Faisal Kamiran, Toon Calders and Discrimination Aware Decision Tree Learning
 Mykola Pechenizkiy

10/14 J.F. Groote, T.W.D.M. Kouters and Specification Guidelines to avoid the State Space Explosion Problem
 A.A.H. Osaiweran

10/15 Daniel Trivellato, Nicola Zannone and GEM: a Distributed Goal Evaluation Algorithm for Trust Management
 Sandro Etalle

10/16 L. Aceto, M. Cimini, A.Ingolfsdottir, Rule Formats for Distributivity
 M.R. Mousavi and M. A. Reniers

10/17 L. Aceto, A. Birgisson, A. Ingolfsdottir, Decompositional Reasoning about the History of Parallel Processes
 and M.R. Mousavi

10/18 P.D. Mosses, M.R. Mousavi and Robustness os Behavioral Equivalence on Open Terms
 M.A. Reniers

10/19 Harsh Beohar and Pieter Cuijpers Desynchronisability of (partial) closed loop systems

11/01 Kees M. van Hee, Natalia Sidorova Refinement of Synchronizable Places with Multi-workflow Nets -
 and Jan Martijn van der Werf Weak termination preserved!

11/02 M.F. van Amstel, M.G.J. van den Brand Using a DSL and Fine-grained Model Transformations to Explore the boundaries of
 and L.J.P. Engelen Model Verification

11/03 H.R. Mahrooghi and M.R. Mousavi Reconciling Operational and Epistemic Approaches to the Formal Analysis of
 Crypto-Based Security Protocols

11/04 J.F. Groote, A.A.H. Osaiweran and Benefits of Applying Formal Methods to Industrial Control Software
 J.H. Wesselius

11/05 Jan Friso Groote and Jan Lanik Semantics, bisimulation and congruence results for a general stochastic
 process operator

11/06 P.J.L. Cuijpers Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence

11/07 F.P.M. Stappers, M.A. Reniers and Transforming SOS Specifications to Linear Processes
 S. Weber

11/08 Debjyoti Bera, Kees M. van Hee, Michiel A Component Framework where Port Compatibility Implies Weak Termination
 van Osch and Jan Martijn van der Werf

11/09 Tseesuren Batsuuri, Reinder J. Bril and Model, analysis, and improvements for inter-vehicle communication
 Johan Lukkien using one-hop periodic broadcasting based on the 802.11p protocol

11/10 Neda Noroozi, Ramtin Khosravi, Synchronizing Asynchronous Conformance Testing
 MohammadReza Mousavi
 and Tim A.C. Willemse

11/11 Jeroen J.A. Keiren and Michel A. Reniers Type checking mCRL2

11/12 Muhammad Atif, MohammadReza Formal Verification of Unreliable Failure Detectors in Partially
 Mousavi and Ammar Osaiweran Synchronous Systems

11/13 J.F. Groote, A.A.H. Osaiweran and Experience report on developing the Front-end Client unit
 J.H. Wesselius under the control of formal methods

11/14 J.F. Groote, A.A.H. Osaiweran and Ananlyzing a Controller of a Power Distribution Unit
 J.H. Wesselius Using Formal Methods

11/15 John Businge, Alexander Serebrenik Eclipse API Usage: The Good and The Bad
 and Mark van den Brand

11/16 J.F. Groote, A.A.H. Osaiweran, Investigating the Effects of Designing Control Software
 M.T.W. Schuts and J.H. Wesselius using Push and Poll Strategies

11/17 M.F. van Amstel, A. Serebrenik Visualizing Traceability in Model Transformation Compositions
 And M.G.J. van den Brand

11/18 F.P.M. Stappers, M.A. Reniers, Dogfooding the Structural Operational Semantics of mCRL2
 J.F. Groote and S. Weber

12/01 S. Cranen Model checking the FlexRay startup phase

12/02 U. Khadim and P.J.L. Cuijpers Appendix C / G of the paper: Repairing Time-Determinism in
 the Process Algebra for Hybrid Systems ACP

12/03 M.M.H.P. van den Heuvel, P.J.L. Cuijpers, Revised budget allocations for fixed-priority-scheduled periodic resources
 J.J. Lukkien and N.W. Fisher

12/04 Ammar Osaiweran, Tom Fransen, Experience Report on Designing and Developing Control Components
 Jan Friso Groote and Bart van Rijnsoever using Formal Methods

12/05 Sjoerd Cranen, Jeroen J.A. Keiren and A cure for stuttering parity games
 Tim A.C. Willemse

12/06 A.P. van der Meer CIF MSOS type system

12/07 Dirk Fahland and Robert Prüfer Data and Abstraction for Scenario-Based Modeling with Petri Nets

12/08 Luc Engelen and Anton Wijs Checking Property Preservation of Refining Transformations for
 Model-Driven Development

12/09 M.M.H.P. van den Heuvel, M. Behnam, Opaque analysis for resource-sharing components in hierarchical real-time systems
 R.J. Bril, J.J. Lukkien and T. Nolte - extended version –

12/10 Milosh Stolikj, Pieter J. L. Cuijpers and Efficient reprogramming of sensor networks using incremental updates
 Johan J. Lukkien and data compression

12/11 John Businge, Alexander Serebrenik and Survival of Eclipse Third-party Plug-ins
 Mark van den Brand

	TITEL.PG12-10
	Blanco
	CSR-12-10
	Introduction
	Related work
	Methodology
	Performing updates using data compression
	Performing updates incrementally

	Evaluation
	Metrics
	Experimental setup and workflow
	Results
	Compression ratio

	Memory requirements
	Processing requirements
	Energy estimation
	Delay

	Discussion
	Conclusion
	Detailed information on input data

	Blanco
	PUBL.LS4csr 2009 tm

