
 

Model comparison for inflatables using boundary element
techniques
Citation for published version (APA):
Opstal, van, T. M., & Brummelen, van, E. H. (2012). Model comparison for inflatables using boundary element
techniques. In A. Andrade-Campos, N. Lopes, R. A. F. Valente, & H. Varum (Eds.), First ECCOMAS Young
Investigators Conference (ECCOMAS 2012 Young Investigators Conference, Aveiro, Portugal, April 24-27,
2012) (pp. 1-10)

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/0d410346-70cd-405b-89d8-0b078f78c261


YIC2012 — Universidade de Aveiro
First ECCOMAS Young Investigators Conference

A. Andrade-Campos, N. Lopes, R.A.F. Valente, H. Varum (editors)
24–27 April 2012, Aveiro. Portugal.

Model comparison for inflatables using boundary element techniques
T.M. van Opstal a,?, E.H. van Brummelen a

a Eindhoven University of Technology,
Dept. Mechanical Engineering,
Multiscale Engineering Fluid Dynamics
PO Box 513, 5600 MB Eindhoven, the Netherlands

?Corresponding author: t.m.v.opstal@tue.nl

Abstract. This paper focuses on numerical techniques for inflatable structures where, typically, the structure is a light mem-
brane enclosing an incompressible fluid. Large displacements and subdomains with high aspect ratio are often characteristic
of this class of problems, to which the finite-element/boundary-element (FE/BE) paradigm is an auspicious approach for numer-
ical approximation. The FE/BE approach constitutes discretizing the structure with the finite-element method and employing a
boundary-integral representation for the fluid problem for discretization with the boundary-element method. A marked advan-
tage of this representation with respect to the conventional partial-differential-equation-based view of finite-element methods for
fluids is the bypassing of volumetric meshing, rendering the FE/BE approach an enabling method for simulation of inflatables.
The present work compares different structure and fluid models and judges their applicability based on numerical results.
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1 INTRODUCTION

Inflatable structures appear in a wide variety of engineering applications, e.g., evacuation slides in aircraft, air beams
for temporary civil structures, stowable space structures and air cushions. One of the most prominent examples of
an inflatable structure is the airbag. Often, these inflatable structures are stowed in highly-complex folded config-
urations and, moreover, undergo large displacements during their deployment. Commonly, in computational fluid
dynamics a partial differential equation (PDE) governs the flow on the internal domain and numerical approximation
of this flow involves generating a mesh on this domain that should evolve with the structural motion. For realistic
stowed airbags, existing meshing procedures are far from generating a mesh robustly on the highly complex initial
geometry. Volumetric remeshing strategies furthermore fall short in maintaining sufficient regularity and resolution
for reliable predictions at a reasonable computational cost.

There is, therefore, a need for approximations to fluid response that bypass volume meshing. In industry, within
the context of airbag modeling, this is done by assuming a predefined (usually uniform) pressure distribution on the
structure. This approach however fails when a detailed understanding of the dynamics is required [9]. Inside the
folded geometry, the flow can however be assumed to be of a simple (viz. linear) nature. This pivotal assumption
allows for an equivalent boundary-integral representation of the fluid. This, in turn, renders the coupled system of
equations amenable to a FE/BE [3, 5, 15] approach in which both the fluid and structure are cast into variational forms
with the fluid–structure interface as domain, thus avoiding all computations on the deforming internal domain.

To gain understanding and judge the viability of the methodology, we first assess the FE/BE paradigm in a two-
dimensional setting. This work addresses modeling aspects and provides relatively simple computations to compare
different fluid and structure models. More advanced computations are deferred to [12, 13] in this work. Two alternate
structure models are derived. Also, the boundary-integral formulation of a hierarchy of three common fluid models
(viz. uniform pressure, potential flow and Stokes flow) are discussed. The setup of the remainder of this paper is
presented after the problem statement in §1.1.
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1.1 Problem statement
We introduce some notation and definitions to facilitate the subsequent discussion of the model. The symbol x is
simultaneously identified with a function and the value it attains at a particular point. We resort to index notation
(xi) when confusion may otherwise arise. The L2 inner product is denoted (a, b)L2(S) =

∫
S
aibi. The Lebesgue

measure of a space S is denoted m(S), and | · | denotes the Euclidean norm.

Ωt

Γt

Γq

Figure 1: Schematic geometry of inflatable structure.

To fix thoughts, consider a thin, flexible structure enclosing a linear, incompressible fluid as shown in figure 1. The
structure is assumed to be a d−1 dimensional surface in Rd, which, for some time t ∈ (0, T ), can be related to some
parameterization θ through the mapping (θ, t) 7→ x ∈ Γt. The boundary ∂Ωt of the fluid domain Ωt comprizes
an inflow boundary Γq , and a wet boundary Γt, which it shares with the structure. When no confusion arises, we
sometimes suppress the subscript t. The dimension of the problem is d, where d = 3 corresponds to the physical case
and d = 2 to the sought after planar environment in which we assess the FE/BE paradigm. Throughout, we consider
a space V of sufficiently smooth mappings S × (0, T )→ Rd satisfying the initial- and boundary conditions, inside
which we seek a structural response x. We test against V0, constructed as V, but with homogeneous initial- and
boundary conditions. The aggregated fluid-structure interaction problem can then be condensed into the following
variational formulation:
find x, λ ∈ V× R s.t. ∀w, µ ∈ V0 × R :

(%0x
′,w′)L2(S) − a(x;w) + (t(x),w)L2(S) + µV (x, t) + λ〈δxV (x, t),w〉 = 0. (1)

We consider the terms of this variational statement term-wise:

1. The inertia term, in which %0, the fabric density, is henceforth assumed unity for simplicity;

2. The stiffness semilinear form, a(·; ·), for which two choices are derived in section 2;

3. The fluid load, the fluid being interpreted as a Steklov-Poincaré operator assigning to each x a traction t. In
section 3 a hierarchy of fluid models is proposed for which t is explicitly derived;

4&5. Terms ensuring that fluid incompressibility is respected. The first of these is the volume constraint (cf. §3.1),
and the second its Fréchet derivative with respect to x.

After the introduction of the models, section 4 proceeds with a comparison by means of a prototypical inflation
problem, viz., the inflation of the pancake-shaped domain. On the basis of these simulations, we draw conclusions
in section 5.

2 STRUCTURE MODELS
Inherently, our final interest goes out to problems set in d = 3. Two competing views can be entertained in de-
riving an “equivalent structural response” in d = 2, by this we mean that the same qualitative behavior is present,
concerning internal forces. The main force present is the membrane (or in-plane) force, this behavior needs to be
retained. In addition, flexural rigidity is observed to be an important component of the model. Physically, a fold in
the fabric will resist total flattening due to the small amount of bending stiffness present. Numerically, we observe
that the stability of the model with only membrane contributions is severely reduced due to degeneracy. The small
bending contribution can thus be seen as a regularization. Finally, from the point of view of analysis, the introduced
extra regularity aids the establishment of bounds to the response. These motivations are elaborated upon in [12].
Concerning the two competing views, we first derive, in §2.1, the internal forces of a univariate string directly from
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three-dimensional elasticity and restrict the response to a plane. Alternatively, we can assume a bivariate description
of a fabric and consider the case where the response is constant perpendicular to our plane of interest, see §2.2. In
both cases we assume a linearly elastic response. In §2.3 we study the obtained constitutive relations from a physical
point of view and provide a qualitative comparison.

2.1 String Model
One departure point for a mathematical model of the airbag fabric, is the well-known equation of three-dimensional
elastodynamics. Consider an initial material domain ω0 and an evolving position field x : ω0 × (0, T ) −→ R3.
Define the current domain as ωt := x(ω0, t). The load due to internal stress, is given in Lagrangian form by

xi 7→ −
∂

∂χi
(FijSjk), (2)

see e.g. [10]. In this equation, Fij := ∂xi/∂χj is the deformation gradient and Sij is known as the 2nd Piola-
Kirchhoff stress tensor. The constitutive relation S(F ) is commonly derived from a potential energy functional
x 7→ Ψ(x) ∈ R≥0, as S := δEΨ with E := (F TF − I)/2 the Green-Lagrange strain tensor. We now introduce
the underlying assumptions for the planar membrane problem under consideration:

1. The three-dimensional body has a string-like shape with a small circumference. Introduce a univariate param-
eterization s 7→ χ(s) which maps S onto a centerline Γ0 ∈ ω0. The tangential direction can then be defined
as τ := (dχ/ds)|dχ/ds|−1. Then, we can postulate the strains perpendicular to this tangent to be negligible;

2. This parameterization is sufficiently smooth; and

3. We restrict the response to the plane, R2.

We choose the arc-length parameterization, such that |Dχ| = 1, and recall that the material under consideration is
taken linearly elastic, thus 2Ψ := ĉ(|Dx| − 1)2 (see [14]), with constant ĉ > 0. It now follows that gradχ = D,
F = Dx and S = δaΨ(δaE)−1 = ĉ(1 − |Dx|−1) where we have abbreviated |Dx|2 = a. We also add flexural
regularization controlled by 1� d̂ > 0 of the form d̂|D2x|2. This yields, for (2),

x 7→ −D(Dxĉ(1− |Dx|−1)) +D2(d̂D2x)

and the string semilinear form aς(x,w) := ĉ([1−|Dx|−1]Dx, Dw)L2(S) + d̂(D2x, D2w)L2(S). We note that this
variational form can also be derived by reversing the steps of setting up a force balance and chosing a parameteriza-
tion, as is done in [1, 14].

2.2 Kirchhoff-Love Model
In d = 3, the Kirchhoff-Love (K-L) shell is a commonly used fabric model (e.g. [4]) and provides an alternate
starting point for deriving an equivalent univariate structure model in d = 2. An introduction to this model can be
found in, for instance, reference [2]. In the following discussion, we assume knowledge of the basics of K-L shell
theory as elaborated upon in this reference. A parameterization θ of S ⊂ R2 is chosen, together with a reference
configuration χ(θ) and a current configuration x(θ, t). The cornerstone assumption to arrive at the planar model is
that the solution is constant in the out-of-plane direction. Aligning the coordinate system appropriately (i.e. defining
both θ2, χ3 and x3 perpendicular to the chosen plane) we can formulate this assumption as

x3 = 0,
∂xi
∂θ2

:= xi,2 = δi−3, (3)

respectively, in which indices behind the comma denote derivatives w.r.t. the corresponding parametric coordinate.
In K-L theory, the potential energy takes the form [2]

ak(x) =
1

2

∫
S

Hαβγδ(cεαβεγδ + dκαβκγδ),

where Hαβγδ := ηaαβ(χ)aγδ(χ) + 1
2 (1−η)(aαγ(χ)aβδ(χ) +aαδ(χ)aβγ(χ)) is the constitutive tensor, εαβ , καβ

are the strain and bending strain, c and d are scalar constants and η is Poisson’s ratio. We proceed by reducing the
building blocks of the K-L potential energy. The jacobian becomes x,α = x,1 =: Dx; the 1st fundamental form,
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Figure 2: Constitutive relation as proposed by [14] (solid) and as derived from K-L (dashed).

aαβ(x) := xi,αxi,β = x2
1,1 + x2

2,1 = |Dx|2; the contravariant metric tensor, aαβ(x) = [aαβ ]−1 = |Dx|−2; the
normal, ni := x,1 × x,2/|x,1 × x,2| = {x1,1, x2,1, 0} × {0, 0, 1}/|{x1,1, x2,1, 0} × {0, 0, 1}| =: rotijDxj/|Dx|;
and the 2nd fundamental form, bαβ := −xi,αβni = −niD2xi.
We chose a flat, unstretched reference configuration χ, such that |Dχ| = 1 and |D2χ| = 0. Strain then reduces
to εαβ = xi,αxi,β − χi,αχi,β = |Dx|2 − 1; and bending strain to καβ = −xi,αβni + χi,αβni(χ) = −niD2xi.
Introducing these building-blocks into the potential energy above yields

ak(x) =
1

2

∫ L

0

ĉ(|Dx|2 − 1)2 + d̂|niD2xi|2

where

ĉ :=

=1︷ ︸︸ ︷
|Dχ|−4 1

2

Eh

1− η2
, d̂ :=

ĉh2

12
,

E is Young’s modulus and h the membrane thickness. The bending term serves as a regularization and should not be
the dominant behavior, as explained at the beginning of this section. We assume that for regularization purposes a
linear approximation of this term suffices. Considering the decomposition |D2x| = |niD2xi|+|tiD2xi|, we assume
the last term to be negligible. Inserting this linear approximation into the energy functional and finally taking the
Gâteaux derivative, yields the desired form

ak(x;w) := 〈δxak(x),w〉 =

∫
S

ĉ(|Dx|2 − 1)DxiDwi + d̂D2xiD
2wi. (4)

2.3 Physical interpretation
We now compare the plane strain components of the stored energies of the above two derivations. Labeling the
stretch |Dx| =: ν ∈ (0,∞), the (magnitude of the) tension force in section 2.2, according to equation (4) reads
Tk(ν)/ĉ := ν2−1. This is different from the tension in section 2.1, Ts(ν)/ĉ = 1−ν−1. For a graphical comparison,
cf. figure 2. Both constitutive relationships can however be classified as elastic, as they depend only on the stretch.
From a physical standpoint, T (ν) should satisfy the following requirements [1, §2.2]:

1. strictly increasing. (T (ν2)− T (ν1))(ν2 − ν1) ≥ 0 with equality if and only if ν1 = ν2

2. natural reference configuration. T (1) = 0

3. tensile limit. T (ν)→∞ as ν →∞

4. compressive limit. T (ν)→ −∞ as ν → 0

We note that Ts and Tk violate the requirement on the tensile and compressive limits respectively. However, in view
of the application we anticipate small strains (|ν − 1| � 1). It is also in this regime that the response is seen to be
identical up to quadratic terms.

3 FLUID MODELS
The second modeling decision in the force balance (1) is that of the fluid response to a structural configuration x. We
consider the enclosed fluid to be incompressible, and a prescribed inflow to be given. Traditionally, the assumption
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of a uniform pressure has been employed to bypass the need for a volume mesh, see §3.1. This, however, provides
an inadequate approximation of the fluid behavior to capture the inflation dynamics. We will observe this in the
numerical experiments conducted in §4.2. Owing to the FE/BE approach, better approximations can be made without
resorting to a volumetric mesh. We present the potential flow model in §3.2 and the Stokes flow model in §3.3.
Uniform pressure, potential flow and Stokes flow provide a hierarchy of models, in the sense that they can be
derived from the incompressible Navier-Stokes equations (e.g. [7]), under decreasingly restrictive assumptions.

3.1 Uniform pressure
The simplest conceivable fluid model is a uniform pressure on Γt. This model is popular in applications as it
bypasses the computation of a fluid approximation on the intricately folded domain. The pressure is determined
based on the instantaneous volume of the airbag and injected mass, through a gas law. In [12] it is demonstrated
that, for incompressible flows, the uniform pressure level corresponds to the Lagrange multiplier pertaining to the
volume constraint V (x, t) = 0. In particular, with reference to equation (1), the volume constraint is defined as

V (x, t) := m(Ωt)− v(t) = 0, v(t) := m(Ω0)−
∫ t

0

∫
Γq

q,

where the x-dependence stems from the definition of Ωt through its boundary Γt = x(S, t), v is the predefined
evolution of the volume following from the sum of the initial volume and q : Γq× (0, T ) 7→ R, a predefined outflux.
The pressure level then corresponds to λ. The uniform-pressure model provides a trivial approximation for the
traction in equation (1):

tu := 0 (5)

Hence, the fluid modeling is indeed entirely bypassed.

3.2 Potential flow
Considering quasi-stationary, irrotational flow, the velocity can be expressed as the gradient of a velocity potential φ.
The fluid response is then entirely determined by incompressibility. According to the kinematic condition of fluid–
structure interaction (FSI), the normal velocity of the fluid on the interface coincides with to the normal velocity of
the structure. This condition is also called the slip condition. The Laplace-Neumann problem results:{

−∆φ = 0, on Ω,

∂nφ = n · x′ at ∂Ω.

Boundary integral theory provides a reformulation of this problem set on the boundary [11]. We give here the direct
formulation

cφ+Kpφ = Vp(n · x′),

where

Vpφ := − 1

2π

∮
∂Ω

(log r)φ(y)dmy, Kpψ := − 1

2π

∮
∂Ω

(x− y) · n(y)

r2
ψ(y)dmy

denote convolutions, the subscript p stressing the fact that the associated kernels are related to potential flow. Also,
r = |x− y| and c is a constant related to the geometry of the boundary, in the case of a smooth boundary, c = 1/2.
The weak form, on which the discretization is based, is obtained through an inner product with a test function w:(

w, (1/2 +Kp)φ
)
L2(∂Ω)

=
(
w, Vp(n · x′)

)
L2(∂Ω)

,

where we remark that the inner products are to be interpreted in the distributional sense. The traction acting on the
interface are determined by the potential through the well-known Bernoulli relation:

tp := −1

2
ρ|∇φ(x)|2, (6)

where ρ is the fluid density and ∇ the spatial gradient. Because of the quasi-stationarity assumption the term φ′

is disregarded. This would lead to significantly increasing complexity pertaining to extending φ, as we consider a
time-dependent fluid domain. The present discussion is a concise derivation. For more details cf. [12].
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Figure 3: Pancake-shaped domain, initial geometry.

3.3 Stokes flow
In the case of viscosity-dominated flow, we drop the irrotationality assumption, and arrive at the Stokes equation set
on Ω. The kinematic condition at ∂Ω now engenders a Dirichlet condition on the fluid velocity.

σij,j = 0, in Ω,

ui,i = 0, in Ω,

ui = x′i at ∂Ω.

with stress σij = δi−jp− µ(ui,j + uj,i), ti = σijnj , pressure p, velocity ui and viscosity µ. Note that, as opposed
to the potential flow model, both components of the velocity field are specified in the Stokes model, not only
the normal component. This kinematic condition is also called the no-slip condition. Again, a boundary integral
representation is available [8]. We present the direct formulation, which yields an implicit form of the sought-after
Steklov-Poincaré map. The according weak form reads:(

wk, (δi−k/2 + [Ks]
k
i )x′i

)
L2(∂Ω)

=
(
wk, [Vs]

k
i [−ts]i

)
L2(∂Ω)

, (7)

where

[Vs]
k
i ui :=

1

4πµ

∮
∂Ω

(
−δi−k log r +

(xi − yi)(xk − yk)

r2

)
ui(y)dmy,

[Ks]
k
i ti :=

1

π

∮
∂Ω

(xi − yi)(xk − yk)(xj − yj)nj
r4

ti(y)dmy

The minus sign before ts arises from considering the tractions acting on the structure, i.e., the reaction force. For a
more detailed discussion, cf. [13].

4 NUMERICAL EXPERIMENTS
We study the structure and fluid models of the previous two sections and apply them to the pancake inflation model
problem. The initial configuration is as given in figure 3 with geometrical parameters r = 1/3, w = 9. We set the
string rigidity to ĉ = 1 and the flexural rigidity to d̂ = 1 · 10−6. Moreover, we set the fluid density to ρ = 1 and, in
the case of Stokes flow, the viscosity to µ = 5 · 10−3. The inflow is specified as q = qσ(s)θ(t), with

σ(s) = 4s(r − s)/r2

θ(t) =
1

t2


(1− cos (πt/t1)) /2, 0 < t ≤ t1,
1, t1 < t ≤ t2,
(1 + cos (π(t− t2)/t1)) /2, t2 < t ≤ t1 + t2,

0, t1 + t2 < t < T.

In these relations we have t1 = 100, t2 = 200, T = 500 and the mean influx q = (m(Ω0) − m(ΩT ))/t2. The
final volume corresponds to that of a circle with a 5% larger circumference as the initial configuration. Note that the
mean flux has a negative sign as it is directed into the enclosure.
The parametric domain S is divided into 64 elements and the time step is 0.44. The structure weak form (1) is
discretized using H2(S)-conforming Hermite elements [6] and the resulting nonlinear system solved iteratively
with Newton’s method. The solution x(·, t) is projected (in the L2(S) sense) onto a linear basis in which the
isoparametric discretization of the fluid problem is set. This linear description enables easy analytic evaluation
of the singular integrals. Within a time-level we subcycle between the structure and fluid solvers in a partitioned
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Figure 4: Left panel: time evolution of the difference between the structural response measured in the L2(S) norm.
Right panel: snapshots of the response at the ×-marked time levels, x|k (solid), x|ς (dashed).

manner until convergence is reached. A simple backward Euler time-integration scheme is used for the temporal
discretization and provides the required numerical damping. We note that the Petrov-Galerkin interpretation of this
scheme utilizes a linear trial space and a piece-wise constant test space.
In the following, the responses are compared in the L2 norm, always dividing by m(S). We denote the response
using model a by x|a, where a ∈ {k, ς, u, p, s} denotes the kirchhoff-love-based, string, uniform pressure, potential
flow and stokes flow models respectively.

4.1 Comparison of structural models
The response for the different structural models is studied in combination with Stokes flow. The right panel of fig-
ure 4 displays snapshots of both structural responses. First, we observe an inflation phase and, ensuing, a periodic
“breathing motion”, in which the system oscillates due to the momentum supplied by the inflow and reactive forces
at the hinged supports. This motion is damped out slowly due to dissipation in the fluid and numerical dissipation in
the time integration and in the limit T →∞ will assume its steady position. The left panel of this figure shows that
the difference between the solutions jumps to O(10−4) immediately, due to strains introduced when constructing
the initial configuration. As the initial configuration is constructed similarly in all numerical experiments, this same
phenomenon is observed throughout the present section. The introduced spurious strains decay under mesh refine-
ment. The difference accumulates initially during the inflation period, remaining high during the breathing motion,
and decreasing as the system tends to its steady inflated position. The responses remain identical, quantitatively
speaking, as is seen in the right panel of figure 4, and the relative errors pertain mainly due to the out-of-phase
breathing motion.
We also consider the behavior as time tends to infinity, see figure 5. The left panel show the linear decay of the
difference in L2 sense of the responses for the two structure models, the right panel shows that the steady state
response is almost identical. The L2 difference for this plot is less than 10−6.

4.2 Comparison of fluid models
The hierarchy of fluid models are compared using the string model for the structure. Again we give the evolution of
the differences in the L2 norm, and snapshots of the response. In figure 6 we see that the uniform pressure model
and potential flow model produce almost identically the same initial inflation response, and qualitatively the same
response throughout the simulation. Stokes flow gives a qualitatively different response from the onset, due to the
added modeling of viscosity.
To see that this trend is more marked as the complexity of the problem increases, the experiment is repeated with
w = 20, corresponding to an aspect ratio of 30. This case has been selected to increase complexity while avoiding
self contact, which is not treated in the uniform pressure model. In addition we have divided the domain into
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Figure 5: Left panel: time evolution of the difference between the structural response measured in the L2(S) norm.
Right panel: steady state response, x|k (solid), x|ς (dashed).

153 elements, refined where initial geometry requires this, as well as a time step of 6.5 · 10−2, which are further
subdivided as required to resolve the lubrication forces in the Stokes simulation. The results are presented in figure 7.
Indeed, the effect of viscosity is more pronounced, causing the airbag to bulge and inflate very locally.

5 CONCLUSIONS
The FE/BE method is an enabling method within the realm of simulating inflatable structures, in view of the capability
to handle large displacements and complex geometries. To assess this method, a planar setting is adopted in this
paper. The corresponding mathematical modeling is discussed.
Two competing models are given for the structure, each attempting to mimic the behavior of the three-dimensional
model. The first is a string of which the motion is restricted to the plane, the second is a cross section of a Kirchhoff-
Love shell. It is seen that these models are identical up to linear terms. Numerical experiments confirm that these
models indeed behave very similarly. The similarity of the response for the two structural models can be attributed
to the fact that both models behave identically in the small-strain limit.
Also, a hierarchy of linear fluid models (viz., uniform pressure, potential flow and Stokes flow) is considered,
and their behavior investigated. Two notable conclusions can be drawn. Firstly, it is observed that the potential
flow model offers little advantage over uniform pressure in this context, as the numerical response is qualitatively
identical. Secondly, and conversely, the commonly used uniform pressure model gives predictions that are both
qualitatively and quantitatively different from the more refined Stokes model. We emphasize that this implies that
FE/BE significantly enhances numerical simulations on complex folded domains with respect to the conventional
uniform-pressure model, without the need to resort to volumetric meshing.
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Figure 6: Left panel: time evolution of the difference between the structural responses measured in the L2(S) norm,
(a, b) = (s, p) (solid), (a, b) = (p, u) (dashed). Right panel: snapshots of the response at the ×-marked time levels,
x|s (solid), x|p (dashed), x|u (dotted).
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Figure 7: Left panel: time evolution of the difference between the structural responses measured in the L2(S) norm.
Right panel: snapshots of the response at the ×-marked time levels, x|s (solid), x|u (dashed).
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