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Summary

The vibrational excitation of carbon dioxide gas is investigated. This
excitation process takes place during molecular coilisions. Therefore
we have studied in detail the thermal collision between two carbon
dioxide molecules. A derivation of the cross-sections, obtained by
means of the method of the distorted waves, and of the total number of
effective collisions per unit time is presented. We find direct excitation
for the bending vibration and indirect excitation for both symmetrical
and asymmetrical valence vibratign,

The energy-exchange process of the indirect excitations possibly
occurs not only within the molecules but also among the vibrational
modes of different molecules. There then exist ten possibilities of
exciting the symmetrical valence vibration and eight possibilities of
exciting the asymmetrical valence vibration.

From the excitation processes we arrive at the relaxation equations.
The corresponding relaxation times have been calculated. For tempe-
ratures below 600 °K the calculated relaxation times for the bending
vibration are less than twice the experimental values, which may be
considered a fair agreement in view of the uncertainty involved in the
interaction potential and in other approximations which had to be
introduced into the calculations.

Experimentally, the rate at which the energy approaches thermal equi-
librium in suddenly heated carbon dioxide gas has been studied by
vsing shock waves and the integrated Schlieren method for density
measurements. An optical method for the qualitative study of the densi-
ty distribution behind shock waves has been developed. The method,
which uses photo-electric recording, is based upon the Schlieren method
originally devised by Resler and Scheibe.

The experimental results agree fairly well with the predicted direct
excitation of the bending modes and the indirect excitation of the va-
lence mode in the temperature range of 440-816 °K. The measured
relaxation times for the direct excitation process range from 3.75 u sec
at 440 °K to 0.64 ¢ sec at 816 °K. The effect of impurities that are
introduced through leakage in the tube can be considered negligible.
The temperatures of the measured bending energies are slightly higher
than the corresponding temperatures of the valence energies, which in-
dicates that the time constant of the indirect excitation process is at
least one order of magnitude smaller than that of the direct excitation
process.

Résumé

Examen de I'excitation vibratoire du gaz d’anhydride carbonique.
Le processus d’excitation se déroule au cours des collisions moléculaires.
Pour cette raison, nous avons effectud une étude détaillée de la collision
thermique entre deux molécules d’anhydride carbonique. Présentation
d’une dérivation des sections droites, obtenue par la méthode des ondes
déformées, ainsi que du nombre total de collisions effectives par temps
unitaire. Nous observons une excitation directe pour la vibration de
flexion et une excitation indirecte pour la vibration de valence tant
symétrique qu’asymétrique.

Leprocessus d’échange énergétique des excitations indirectes se produit
non seulement au sein des molécules mais aussi parmi les modes vibra-
toires de différentes molécules. Il existe alors dix possibilités d’exciter
les vibrations de valence symétriques et huit possibilités d’exciter les
vibrations de valence asymétriques.

A partir du processus d’excitation, nous obtenons les équations de
relichement. Les temps de relichement correspondants ont été calculés.
A des températures au dessous de 600 °K, les temps de reldchement cal-
culés pour la vibration de flexion sont inférieures an double des valeurs
expérimentales, ce qui peut étre considéré comme assez conforme, étant
donné les aléas du potentiel d’interaction et autres approximations
qui durent étre englobées dans les calculs,
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Expérimentalement, la vitesse & laquelle I'énergie tend vers "équilibre
thermique dans le gaz d’anhydride carbonique subitement chauffé a
été étudiée en utilisant des ondes de choc ainsi que par la méthode densi-
métrique intégrée de Schlieren. On a congu une méthode optique pour
P’étude qualitative de la répartition énergétique en arriere des ondes de
chocs. Celte méthode, utilisant I'enregistrement pliotoélectrique, est
basée sur le systéme de Schlieren, laquelle fut goncue a lorigine par
Resler et Scheibe.

Les résultats expérimentaux s’accordent assez bien avec les prévisions
en matiére d’excitation directe des mbdes de flexion et d’excitation in-
directe du mode de valence pour des températures comprises entre
440 et 816 °K. Les temps de relachement relevés pour le processus
d’excitation directe s’échelonnent de 3,75 usec a 440 °K 4 0,64 psec 2
816 °K. On peut considérer comme négligeable I'effet des impuretés
introduites par les fuites dans le tube. Les températures des énergies de
flexion mesurées sont 1égérement supérieures aux températures corres-
pondantes des énergies de valence. Ceci montre que la constante de
temps du processus d’excitation indirecte est plus petite d’au moins un
ordre de grandeur que celle du processus d’excitation indirecte.

Zusammenfassung

Es werden die Schwingungen in gasférmigem Kohlendioxyd untersucht,
die durch Aufeinanderpralien der Molekiile hervorgerufen werden. Der
durch Wirmebewegung verursachte Aufeinanderprall zweier Kohlen-
dioxydmolekiile wird daher einer genaueren Untersuchung unterzogen.
Die mit der Methode der verzerrten Wellen abgeleiteten Querschnitte
und die Gesamtzahl der tatsichlichen ZusammenstfBe je Zeiteinheit
werden mathematisch abgeleitet. Es werden Biegeschwingungen direkt
und symmetrische und asymmetrische Valenzschwingungen indirekt
hervorgerufen.

Bei der indirekten Schwingungserregung kommt es méglicherweise
nicht nur zwischen den Molekiilen, sondern auch zwischen den Schwin-
gungsarten der verschiedenen Molekille zu einem Energieaustausch.
Es gibt dann zehn Moglichkeiten fiir die Erzeugung von symmetrischen
Valenzschwingungen und acht fur die Erzeugung von asymmetrischen
Valenzschwingungen.

Aus den Schwingungsvorgiingen werden die Gleichungen fiir das Ab-
klingen gefunden. Die entsprechenden Relaxationszeiten werden errech-
net. Bei Temperaturen unter 600 °K sind die errechneten Relaxations-
zeiten fiir die Biegeschwingungen kleiner als die zweifachen Versuchs-
werte, was wegen der Unbestimmtheit des Wechselwirkungspotentials
und anderer in den Berechnungen eingefithrter Néherungen als ziemlich
gute Ubereinstimmung betrachtet werden kann.

Mit StoBwellen und der integrierten Schlierenmethode fiir Dichte-
messungen wurde experimentell untersucht, wie schnell sich die Energie
in plotzlich erhitztem Kohlendioxydgas dem Wirmegleichgewicht
nihert. )

Es wurde eine optische Methode zur gualitativen Untersuchung der
hinter StoBwellen auftretenden Dichteverteilung entwickelt. Das auf
einer photoelekirische Aufzeichnung fuBBende Verfahren beruht auf der
Schlierenmethode, die urspriinglich von Resler und Scheibe erdacht
wurde.

Die Versuchswerte stimmen sowohl mit den voragusgesagten direkten
Biegeschwingungen als auch mit den indirekten Valenzschwingungen
im Temperaturbereich von 440-816 °K ziemlich gut iiberein. Die gemes-
senen Relaxationszeiten liegen bei der direkten Schwingung zwischen
3,75 us bei 440 °K und 0,64 ps bei 816 °K. Die Wirkung der durch
Undichtheit der Rohre hervorgerufenen Verunreinigung kann vernach-
ldssigt werden. Die Temperaturen fiir die gemessenen Biegeschwingungs-
energien liegen etwas hher als die entsprechenden Temperaturen fiir
die Valenzschwingungsenergien. Dies zeigt, da8 die Zeitkonstante fiir
die indirekte Schwingungserregung zumindest um eine Grifiznordnung
kleiner ist als die Zeitkonstante fit» die direkte.
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CHAPTER 1

INTRODUCTORY REMARKS

1.1. What does vibrational relaxation mean?

Relaxation phenomena are found in many types of physical processes, e.g.
in dielectric polarization, in paramagnetism and in molecular rotation and
vibration. These processes are generally characterized by the change of a
physical quantity, followed by a slower process of equilibration of other
quantities. The relaxation time is a characteristic time of such a process, so
that it gives an indication of the time in which essentially stationary conditions
will be reached after the initiation of a particular change of a physical quantity.
In order to get a physical understanding of the behaviour of the process one
often studies the periodic changes of the variables. This can be done by vary-
ing the amplitude and frequency of an independent variable and seeing what
happens to the dependent variables. In this way the relaxation phenomena do
not produce anything that would not have occurred anyway in a more static
process, but may prevent the production of something that would have happened
in a static process. For example, if one slowly supplies energy to a gas, this
energy will be distributed among all its degrees of freedom. However, if this
is done at a sufficiently high frequency there is no time to transfer the energy
to all its degrees of freedom. The energy will then only be found in the trans-
lational degrees of freedom. This result is well known in sound absorption and
dispersion techniques.

Normally, during these periodic changes one has to deal with very small
amplitudes, so that in an elementary study the relaxation process can be
described approximately by a linear differential equation in which only the
first and zero order terms are present. Fortunately, extensive theoretical
analysis of the vibrational relaxation equation for diatomic gases shows that
the process is fully described by this equation, irrespective of the magnitude
of both amplitude and frequency.

The mechanism of vibrational relaxation can be physically understood as
follows. Let us supply energy to a gas. This energy will be taken up by its
translational degrees of freedom, thus giving rise to a higher temperature. At
this.instant the new, increased translational energy is not in equilibrium with
the internal degrees of freedom. Energy must therefore flow from the trans-
fational to the internal degrees of freedom. This goes on until all degrees of
freedom (translational, rotational and vibrational) are in thermal equilibrium.
This process of equilibration will occur during the molecular collisions. Now,
it has been shown both theoretically and experimentally that the rotational
degrees of freedom adjust themselves very rapidly, as compared to the vibra-
tional degrees of freedom, so that when studying the vibrational relaxation
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we may consider both translation and rotation as external degrees of freedom
having no time delay for their adjustment to energy variation. The slower
process of energy exchange, by which the molecular vibrations obtain their
share of the energy, is called the vibrational relaxation.

Although the theoretical treatment of this slow energy exchange process is
complicated, Landau and Teller *) were able to show that, by assuming har-
monic oscillations, the vibrational relaxation of a diatomic gas could be re-
presented by the simple relation

dE 1

- = JEM)- E}
where 7 is a time constant, usually called the relaxation time, E is the momen-
tary value of the vibrational energy, and E(T’) the value it would have in equi-
librium with the external degrees of freedom. We see that the rate of restoring
the energy balance for the internal motion is proportional to the extent of the
imbalance.

The theory of vibrational relaxation is also very important for understanding
the molecular background of the so-called bulk viscosity. It is well known that
in many cases the motion of a mass element of a polyatomic gas cannot be
completely described by the Navier-Stokes equations that assume that shear
viscosity stress is due to shear flow along the considered element. This problem
arises especially in motion with strong density variations per unit time, such
as the Kantrowitz effect, and also in the acoustical studies of sound absorption
and dispersion. Tisza 2) has pointed out that in order to understand the absorption
and dispersion phenomena of polyatomic gases it is desirable to introduce also
a scalar viscosity called bulk viscosity, proportional to the time differential
of the density. Since in the hydrodynamic equation there is no physical distinc-
tion between the stresses due to the pressure and to the bulk viscosity it is clear
that one can replace pressure and bulk viscosity by one term called the effective
pressure, which is smaller than the pressure found by neglecting the bulk
viscosity. It has been shown by Broer 3) that this decrease of the pressure can
be fully described by the irreversible process of vibrational relaxation.

1.2. Historical development of the slow-collision problem

The problem of vibrational excitation by means of inelastic molecular
collisions has been studied by some authors in connexion with the structure,
temperature and density dependence of the vibrational relaxation. The main
difficulty in this study of inelastic collisions is how to obtain a solution of the
problem concerning the relative motion of two colliding molecules. It is not
so much the approximate solution of the Schrodinger wave equation, but rather
the restricted knowledge of the shape of the curve for the interaction potential
of two molecules that makes the calculations inaccurate. The transition pro-
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bability turns out to be very sensitive to small changes in the steepness of the
interaction potential. ‘

The Born approximation in the treatment of systems involving a time-depen-
dent perturbation has been successfully applied to the study of high velocity
collisions such as electron scattering. Similar success has not attended the
study of slow molecular collisions. The Born approximation considers the
incident and outgoing waves as simple plane waves and does not take into
account the distortion of the waves at the point of closest approach, where
transitions are most effective. At this point the Born approximation breaks
down.

Zener 4) successfully treated the relative motion of the centre of mass of two
molecules by describing this motion approximately with classical equations. He
found that energy exchange in a slow collision depended in a relatively simple
manner on three factors: the magnitude of the change in total energy; the
matrix elements with respect to the internal and final states of the interaction
energy at the closest distance of approach; and the duration of the collision.
He found that collisions were quite effective in the transfer of rotational energy
and ineffective in the transfer of vibrational energy.

Landau and Teller !} tried to approach the problem of excitation by using
Ehrenfest’s adiabatic principle. This principle states that if initially a periodic
motion of a system is in a certain quantum state and if the external conditions,
e.g. the strength of the external force, are changed very slowly, so that the
relative change of the external condition is small compared with the motion
of the system, the system must remain in an allowed quantum state under
the new conditions, just as if the new conditions has persisted for a long time,.
In particular, if the external force is restored to the initial condition, the sys-
tem will be in the same state as if the external conditions had not been changed.
Transitions can only occur if the external conditions change rapidly during the
motion of the system. If we now revert to the molecular collisions, Landau and
Teller concluded that the efficiency of vibrational excitation increased with the
ratio of the period of vibration to the duration of interaction. If this principle
is applied also to the rotational excitation, this ratio is found to be much larger
than for vibrational excitation. Consequently, the rotational excitation is
much more effective. This is in accordance with experimental results 5) showing
the very small relaxation time for rotational excitation *). The work of
Landau and Teller established the temperature dependence of the relaxation
time,

Herzfeld and his co-workers 6-7) took a great step forward when they showed
how a qualitatively good quantum-mechanical treatment of the relative motion
could be obtained in closed form. They used the one-dimensional solution

*) Herzfeld and Litovitz in their book 3), chapter VI, pp. 236-241 give an excellent review
of rotational relaxation times in gases.
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obtained by Jackson and Mott 8) in which an exponential, repulsive potential
was selected for mathematical reasons. However, the calculations were always
made for the collisions between an atom and a molecule and not for the collision
of a molecule with another molecule, which actually happens in a relaxation
process.

This relaxation process can be complicated when more vibrations, which
may also be degenerated, are available for the energy exchange.

In this field the calculations for the linear COs-molecule are especially inter-
esting because it happens that the energy quanta of the bending modes are
approximately half the quanta of the valence mode. Therefore it is possible,
during collisions, for two quanta of the bending modes to be transferred into
the valence mode. This case of exact resonance has been indicated by Slawsky,
Schwartz and Herzfeld %). But these authors did not consider the various possi-
bilities in which the energy can be exchanged. There is the possibility that one
quantum of the valence mode may be transferred in the collision not only
as two quanta of one of the degenerated bending modes, butalso as one quantum
to each of two independent bending modes. Moreover it may happen that the
energy is exchanged between the valence mode of one molecule and the bending
modes of the other,

1.3. The existence of more than one relaxation time

Since carbon dioxide has three normal modes of vibration, of which the
bending mode is degenerated, it has been suggested that there might be more
than one relaxation process, with different relaxation times. Fach vibration
may be excited differently. In this connexion it is necessary to distinguish
between two excitation processes different in principle: It is possible that the
vibrations obtain their energy independently from translation, in which case a
set of independent equations is obtained. This is called parallel excitation. The
other possibility is that the vibrational energy enters the molecule via one mode
and is redistributed from this mode to the others. This type of excitation is
called excitation in series.

Many experiments have been performed to {ry to establish whether carbon
dioxide has more than one relaxation time. These experiments were concerned
largely with the measurements of absorption and dispersion in the ultrasonic
region. However, the conclusions on the data are conflicting. Fricke 9), Piele-
meier ¥} and Vigoureux 1) found two relaxation times, while Shields 12),
Gutowski 13), Henderson and Klose 14) found that the experimental results
fitted the assumption of one relaxation time and one corresponding specific
heat.

According to the results of chapter 3 of the present work the valence vibra-
tion is excited in series and the relaxation time is much smaller than that of
the bending vibration. If this process, in which a single mode is slowly activated
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by translation, followed by a rapid energy transfer to other modes, occurs in
nature, the whole excitation process appears to the observer as if described by
one relaxation process. Therefore, from the theoretical point of view it is rather
improbable that any further information concerning the existence of more than
one relaxation process can be obtained from ultrasonic results unless one is
dealing with parallel excitation having widely differing relaxation times.

We shall try to obtain information experimentally by measuring the density
pattern behind a shock wave. This density pattern depends on the relaxation
process. Therefore, the rate at which the internal energy tends towards the
achieving of equilibrium and the absolute magnitude of this energy is found as
a function of the translational temperature. The result can be compared directly
to the relaxation equations.

1.4. Introduction to the present work

‘When the motion of the molecules is not disturbed, the translational, rotatio-
nal and vibrational degrees of freedom are to a good approximation indepen-
dent, The thermodynamic properties of a gas can then be calculated by summing
the separate contributions of these degrees of freedom. Quantam mechanically,
the motion of the molecule is described by the product of wave functions
associated with each degree of freedom.

Chapter 2 discusses the quantum theory of the rotation and vibration of the
COq-molecule, which is considered to be free and not subject to intermolecular
interaction. The rotation is treated as if one were dealing with a rigid rotator.
Further, since the vibrational amplitudes are small we may consider all vibra-
tions to behave in accordance with the laws of simple harmonic motion, which
description is an excellent approximation of the thermal energy levels. The
corresponding energy is then obtained from the Einstein formula for a har-
monic oscillator.

It has been established experimentally that the energies associated with the
various degrees of freedom are in thermal equilibrium. Therefore there must be
some link between these degrees of freedom, otherwise it would never be
possible to find such an equilibrium after distortion. It is generally accepted
that the mechanism for transferring energy comes into play when the molecules
are perturbed by a force field that interacts with various degrees of freedom. In
other words, the molecular collisions are essential to the energy transfer process.

In chapter 3 we treat the motion of the molecules in the presence of an inter-
molecular foree field. It is our purpose to study the molecular energy transfer
from motion as a whole to internal modes of the molecules. We shall consider
molecular collisions and not the simplified model of a collision between an
atom and a molecule. By doing this we shall be able to derive a full set of equa-
tions of vibrational energy. transfer according the various intermolecular ex-
change probabilities. Particular attention is given to the nature of the interaction
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potential, the assumption being made that its repulsive part is built up of the
sum of all repulsive potentials between atoms of different molecules. This
interaction potential, which excites the vibrations, must also somehow depend
on the interatomic distances in a molecule, because otherwise the exernal force
could never bring about a vibration within it. For example, during the inter-
action the repulsive force exerted by a COz-molecule on the nearer O-atom of
another molecule can be much greater than that exerted on the farther O-atom.
The overall force on the valence bonds of the molecule then tends to compress
it. The force field interacts directly with the vibration.

The quanta of translational and rotational energy are very small. This means
that in effect any translational and rotational energy is accessible, so that the
energy can be considered to have a classical distribution. This does not hold for
the vibrational energy, where the spacing between the energy levels is large. The
energy quanta of the bending mode, which has the smallest quanta, are greater
than 3k7 at room temperature and therefore cannot be treated classically.
Since these energy quanta are so large the vibrational excitation is thermally
accessible for only a relatively small number of molecules at room temperature,
This mainly accounts for the slow process of vibrational relaxation.

Throughout chapter 3 we have used the assumptions that
a) the rotation of the molecules plays no role on the energy exchange, and
b) since we consider small gas densities, triple collisions may be neglected.

The last two chapters are devoted to the experimental part of the study.
Chapter 4 deals with the shock-tube technique and a method to measure the
density profile. In chapter 5 the energy profiles and relaxation times from the
experimental data are given.
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CHAPTER 2

ROTATION AND VIBRATION OF A FREE CO,-MOLECULE

2.1. Introduction

The exact solution of the wave equation describing the motion of the indivi-
dual atoms of a molecule (relative to the centre of mass}is a difficult problem,
because molecules have as a rule a rather complex structure. However, the
empirical results of molecular spectroscopy on COz, as obtained by Dennison 15),
show that the energy values bear a simple relationship to one another, so that
the energy of the molecule can be conveniently considered to be made up of
two parts, called respectively the vibrational energy and the rotational energy.
This permits a simpler solution. These spectroscopic data suggest that it is
possible to treat the vibration and rotation of the molecule quite separately
and then to combine the results of the two calculations to represent the behavi-
our of the three atoms in the COz-molecule. The wave function of the molecule
will then be the product of u,, depending only on the rotational cobrdinates,
and v, which depends on the normal codrdinates of the molecule.

This is equivalent to saying that we can neglect all interaction between rota-
tional motion and vibrational motion of the molecule and that we may consider
the rotational motion as that of a rigid rotator. The validity of this approxima-
tion requires two assumptions. Firstly we assume that the amplitudes of the
vibrations of the atoms are, for the lower energy states, small compared with
the equilibrium distance between the atoms. Secondly we assume that the
force K, between the atoms and which is induced by the rotation is small
compared with the interatomic force K, associated with the vibrations.

These two assumptions can be justified by means of the following calculations.
Classically, we find the amplitude a of the ground state for the valence vibra-
tion to be given by

A %
a— (——) —58x10-2A,
4m® vy )

which is very small compared with the distance of L/2 = 1.13 A between the
carbon and the oxygen atom. Further, we obtain from the classical values of
Ky == 2kT/L and Ky = 4n?12 pya that

Ki/Ky = 8% 1073,

2.2. The normal modes of vibration

As we have mentioned, we shall employ the method of normal codrdinates
for treating the vibrational motion of the molecule. The linear COz-molecule
has only two degrees of rotational freedom and hence we have n = 3x3— 5
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or 4 vibrational degrees of freedom. The corresponding vibrational modes
may be represented by the following model

»1 O C <Q
0 0
P9 O C O
¥
v3 O— <-C O—

where vibration »; with normal cobrdinates s1 is longitudinal and symmetric
{valence mode); the twofold degenerated vibration v» with normal codrdinates
s21 and sgg describes the motion of the C-atom in a plane perpendicular to the
axis of the figure; vibration »3 with normal codrdinate s3 is longitudinal and
asymmetric. The vibrations »z and »3 have the property in common that during
the motion the distance between the O-atoms remains unchanged. In the vibra-
tion »1 the C-atom remains stationary.

The four vibrations are associated with three different wave numbers, which
can be obtained from spectroscopic data. The corresponding frequencies are
p1 = 4053 X 1010 sec~1; 2o = 2016 X 1010 sec—t; and vz = 7189 x 1010 gec-1,

We may describe the positions of the atoms of a COs-molecule with a per-
pendicular set of Cartesian cordinates, the molecular axis being along the
z-axis as indicated in fig. 1.

IX ])5 %
/ 2 / 2 7
9491
% X %

Fig. 1. Cobrdinates of atoms of a carbon dioxide molecule.

Let the O-atoms each have mass m and codrdinates x1yiz1 and x3ysz3, while
the C-atoms with mass A has the codrdinates xayazs. The kinetic energy is
then given by

T= 0} (X124 y12 + 212 + x3% -+ ys? + 23%) + 0 (x22 - y92 -+ 292) . (2.1a)

Next, we wish to express the kinetic energy of the vibrations in terms of the
normal cosrdinates.
We find for the Cartesian co6rdinates
M

X1 = X3 = ——— 531,

2m -+ M



. . M .

e e\ ¥ .
Jyi=Y)3 o+ M 22
. it M .

] =% § P a— — 83,

1 1 2m+M3
. L+ M .

=2 ey § ——— 89
“ ! 2m -+ M 3
. 2m .

R M
. 2m .

P Ay )
e o+ M 22
c 2m .
22_~2m+ﬂjs3'

Substituting these values in the expression for T we find

Ty ==~ 52 e »}; (.'57212 + 5202 + -.3‘82) » (2.1v)

where :
m 2mM
H1 = “2' N and pg == m .

Having found the kinetic energy of the vibrations we may proceed to express
the potential energy in terms of these four normal codrdinates. The expressions
for the potential energy will, to the first approximation, be of a homogeneous,
quadratic form. The geometric symmetry of the molecule requires the potential
to be an even function of the variables 51, s21, $22 and s3. Consequently the
coefficients of the cross terms vanish and we find

= 2r2u1v128512 + 272p0v92(s212+8222) + 2nZpavalsst. 2.2)

2.3. Wave equation

It is clear from the foregoing discussion that the approximate wave equation
for the rotation and vibration of the COz-molecule has the form

(Tr + 7 v T+ V@}‘,&mol == Erv‘/’mol; (23)
where
E,» is the sum total of the rotational and vibrational energies,
¥imot is the wave function describing rotation and vibration
Ay 1 b 1 22

Tp=— o — -
! 27 {sin® 619( ) + sin? & d g2
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and
R D2 h e o2
| LA
2p1 0512 2p0 (Z)sz ds292 0532

I being the moment of inertia of the molecule.

We can separate this equation into two parts by expressing ¥mer as the
product of Yy, a function of ¢ and &, and ,, a function of s1, 521, 522 and s3.

Pmol = Priho (24)

By substituting this in eq. (2.3) and dividing through ¢y, we find that the
left-hand side of the equation consists of the sum of two parts, one depending
only on the rotational codrdinates and the other only on the vibrational
cobrdinates. Each part must be equal to a constant. These two equations are

Ty = Epthy (2.3a)
and
(Tv ‘f‘ Vv)‘,t'v = Evl,z‘v, (23b)
where Epp = Er -+ Ey.
The rotational wave equation (2 3a) can be further separated into the
codrdinates ¢ and ¢ and then one finds the solution to be a spherical
harmonic (see Schiff 19), section 14, page 71):

1
%/17' = — e™¥ Nt ij (COS 'l(}), (2.5)
V2r
where m is a positive or negative integer or zero, j a positive integer or zero and
N is given by
_ 2+ 1~ Im)!

2 (G+Impt

The function P;m is called the associated Legendre function and, for a particu-
lar value, it is (2j + 1) —fold degenerated. The energy values of the rotation,
which are determined by the eigenvalues of the equation, form a discrete set
and are given by

R+ 1

P

21

The multiplying constants in eq. (2.5) will provide the normalization to unity
over the range of the variables.

In a similar way we can further treat the vibrational wave equation by sub-
stituting in eq. (2.3b) the product of four wave functions

Yo = Pu(s1)¥m,(521)dm,(s22)p{53), (2.6)

where each of the factors depends only on one normal cobrdinate.



We then obtain four equations of the type

B d2ja(s)

- 2 ds? -+ 2unyes2if(s) == Esfn(s) @70

with the condition that
ESI + E521 -+ ESQZ + ES3 = Ev-

The solution of this equation is given by Schiff 16) (section 13, page 60). It turns
out that Es forms also a set of discrete values and is given by

Es=hv(n+ %)

where # is an arbitrary positive integer or zero.

Finally we find as a result that quantum-mechanically the free motion of a
COqz-molecule (apart from the translational motion) may be described by a
discrete set of eigenfunctions and energy values, so that the motion for particular
energy values of rotation and vibration is given by

dmol = V——;,: €7 N* pm (cos®) dhn(s1) Ymy(521) Pmoy(s22) hp(s3)

w
and the energy is given by ~ (2.8)
W+ 1
B — _f(éf_) & hon(n - 3) + hvslmy - 3) + hvsma + 1)

+ hva(p + 1) .
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CHAPTER 3

THEORETICAL TREATMENT OF VIBRATIONAL EXCITATIONS
IN CARBON DIOXIDE

3.1, Introduction

The vibrational excitations of a gas may be described by a kinetic process,
which will, according to thermodynamics, finally result in thermal equilibrium
between all degrees of freedom. This excitation process takes place during mole-
cular collisions and it is basically described by each pair of colliding molecules.
A more fundamental study of such a process will therefore start with a consi-
deration in detail of the thermal collision between two molecules.

These collisions may be accompanied by rotational and vibrational transiti-
ons. As we have already seen in chapter 1, the rotational excitation takes place
very easily compared with vibrational excitation, so that rotational equilibrium
will have been attained long before vibrational equilibrium. In this chapter we
shall therefore begin with translational-rotational equilibrium and consider
only those collisions in which the translational energy excites the vibrations
with or without simultaneous rotational transitions. However, since rotational
transition probabilities are very large compared with vibrational transition
probabilities we may as well neglect the simultaneous rotational transitions
and study all collisions as if there were no rotational transitions. Further, one
might ask what chance there is of an energy exchange purely between rotation
and vibration during collision. Because the. time of a rotational cycle of the
molecule is much larger than that of a vibrational period, this type of transition
need not be expected from the point of view of the adiabatic principle. Thus we
shall treat the vibrational excitation by considering the exchange of energy
between translational and vibrational degrees of freedom.

The energy transitions can be treated in principle by solving the Schrédinger
wave equation for the whole system. However, in doing this it is found con-
venient to describe the motion of the two colliding molecules in terms of the
motion of the molecules relative to each other or to their centre of mass, of the
free motion of the centre of mass of the complete system, and of the motion of
the individual atoms of each molecule relative to its centre of mass. Quantum-
mechanically this means that the wave equation may contain the product of the
three corresponding wave functions. Now, the wave function describing the
motion of the centre of mass of the complete system can be taken out; it is of
no importance to our further considerations, because transitions can only be
effected by the relative motion of the two molecules. The wave function for
the atoms in a molecule has been derived in chapter 2. The appropriate solution
of the wave function describing the relative motion of the colliding molecules
will be our first aim in this treatment.



We shall start with the Schrodinger wave equation describing the relative
motion of the two molecules. Then we must determine the intermolecular forces
giving rise to the energy transitions. The straightforward solution of this equa-
tion is extremely laborious and almost impossible. Accordingly we have to
introduce some approximations in these calculations and to find such simplifi-
cations as will preserve the essentials of the physical situation. The solution of
this equation consists of three parts: the incident wave, the elastically scattered
wave and the inelastically scattered wave. It turns out that the collision cross-
section that can be derived from the solution of the wave equation is remarka-
bly influenced by the overlapping between the initial and scattered wave functi-
ons. Therefore the Born approximation of taking the incoming and outgoing
waves as simple plane waves is not adequate for molecular collisions. We shall
employ the method of the distorted waves 17), taking into account the distortion
of the incident and outgoing waves produced by the interaction potential.

3.2. Fundamental equations

The problem is to find the probable states of the harmonic vibrations of the
- molecule, initially in specified states, after it has been perturbed by a time-
dependent force which is initially zero and which returns to zero by the end of
the collision. As we must study the result of all collisions of a molecule we
prefer to use a time-independent approach in which the statistics of a succession
of individual collisions are represented by a stationary wave function. This will
be done by always considering the motion of the whole system of two colliding:
CO: molecules relative to its centre of mass. The configuration of the system is
described with respect to a set of space-fixed axes as indicated in fig. 2. The
corresponding wave function is described by, respectively, the cobrdinates r,
0 and ¢ of the relative motion and the codrdinates si, $21, 522, 53, h, @1 of the
“considered” molecule, and 51/, 8217, $22', §3°, P2, @ of the colliding molecules.
The wave function satisfies the wave equation

HY = E¥, (3.1)

Fig. 2. Cobrdinates describing the relative position of two colliding molecules.
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in which the Hamiltonian H is given by

2
H=—

. B2+ V+Tn T+ Ve +Tro+ Toe + Vo, (3.13)
{il

where subscript 1 refers to the considered molecule,
subscript 2 refers to the colliding molecule, and
¥ is the interaction potential.
h2k2
Hr
(the kinetic energy of the relative motion at infinity, where there is no inter-
action) and the energies Ey1 + En and Eys -+ Eps of the internal motion of
the two colliding molecules:
ﬁ?kz :

Ep = —— 4+ Epy + En + Erz + Ep2. (S*Ib)
2[Lr

The energy E; is the stationary total energy and equal to the sum of

Since the dependence of the internal motion of the molecules on the inter-
action potential is very small we shall expand the total wave function ¥ in
terms of the unperturbed functions describing the internal motion and of the
functions of the relative motion only, the latter being in the form of incident
and reflected waves:

V=2 Rk ‘!’moll ﬁbmolz ’ (3,2)

where the summation is taken over ail possible vibrational states of the two
molecules. The asymptotic form of ¥ is given by

¥, — {é’ik"z -+ Ego(ﬂ) eik"’r} Ymol 10 Ymol 20 + & lgk(g) elkr Yrmo1 1 Ymot 2.
P00 ¥ r (3.23)
The subscript zero indicates the initial state of the two molecules. The first
term represents the incoming particle moving along the polar axis 0 = 0.
The second represents the elastically scattered particle that is moving radially
outward. Further the summation is taken over all possible inelastically scattered
waves that are moving radially outward. The factor 1/r provides the well-
known decrease of amplitude with distance. Each term in this series contains for
the two molecules the same quantum numbers ji, m; and respectively jz, me,
because there are no rotational quantum jumps. Ry depends only on the rela-
tive motion of the centres of mass of the two molecules. The kinetic energy for
this motion at infinity is obtained by using eq. (3.1b) as the difference of the
total energy and the sum of vibrational and rotational energies.
Substitution of eq. (3.2) in eq. (3.1) and making use of eq. (2.3) we obtain
| A2 h2k?)

z ll'mol i ';l‘molz 4 P S Ry =2 VSl'moll ‘;l‘mol2 Ry. (33)
2}14‘ 21{117' .

Before we continue solving this equation it is necessary to make some re-



marks concerning the interaction potential. It is well known that in thermal
collisions the distance of closest approach is much larger than the interatomic
distances inside the molecule. Moreover, the dependence of the intermolecular
potential on the internal cotdrdinates of the two molecules is assumed to be
small. Therefore, the motion of the centre of mass of each molecule can be
considered as subjected to the average potential field caused by each atom.
This means that we can introduce for the function Ry an expansion in partial
waves with spherical harmonics

Ri(r,0) = Z Picos 6) % Judr), 3.9
{

where P; is a Legendre polynomial of order / and which describes the angular
dependence of the relative motion of the two centres of mass. Further, as we
shall see in the next section, the potential function ¥ will be the product of
V{(r}, which depends on the distance r between the two molecules, and U, which
depends on the relative spherical orientation and internal codrdinates of the two
molecules:

V= VU, ¢,s,5, 01, 02, 1, @2). (3.5)
Substitution of eq. (3.4) in eq. (3.3) gives for a partial wave
d? -+ 1 2
Ziﬁmoll ‘f‘molz e o 2 — ( ))ﬁlé:ﬂV(?’)UZIﬁmoll Sé‘mol2f:§k-
dr? r2 S h?

Again, the summation is taken over all possible vibrational states of two colli-

ding molecules. o
We study the excitation or de-excitation to other molecular states by multi-

plying both sides of this equation with the complex conjugated wave functions

¥ mor1n and P¥mor 24 associated with particular vibrational states of two free

molecules, and then integrating over all vibrational spaces s and s of these two

free molecules. We make use of the orthogonality of the functions and obtain
dz i+ 1

Fr R gf"c =

/

2
% (" 2 fue J U dmer1 ¥mo1 2 $¥mot 12 ¥*mo1 22 ds ds’. (3.6)

We shall find a solution of eq. (3.6) by applying the method of successive
approximations. However, before we do this, it is necessary to make some re-
marks about the functions and the matrix elements of the right-hand side of eq.
(3.6).

Let us first indicate the asymptotic form of fi;. Since the conditions of the
problem require one molecule to collide with the other, let us define function
Ry, as representing the incident and elastically scattered waves. This function
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has the asymptotic form

. 1 .

Rkn — e!kaz _!;_ — go(g) elk()r
00 ¥F

(see eq.(3.2a)). If we expand Ry, into a series of partial waves fix, we find their

asymptotic values to be

1 .
firy = 2 @D eidu, sin(kor — 3 In + S1,) (3.42)
F— oo 0

(cf. appendix I).
Further, an inelastically scattered wave has the asymptotic form

1
R; =" etkr g (0. (3.4b)

Consequently the partial waves fjz of Ry have the same radial dependence.
Since the vibrational transition probabilities are very small, it is clear that
the absolute value of the partial wave f; is also very small compared with that
of fix,- This means that by using the zero and first order approximations, we
can put
fiE® = fir,
and

St = fi .

Next, it can be confirmed that the off-diagonal matrix elements in eq.(3.6) are
small compared with the diagonal ones. The result is that we find the zero
order approximation by neglecting the off-diagonal matrix elements, and we
obtain for the elastic partial wave the equation

d2 {+1)
e b k2
dr® - r2

2
—};—:—r V(") fiks | U dhmot 10 $hmol 20 #*mot 10 $*mor 20 ds ds’, (3.6a)

Sk, =

where the subscript zero indicates the initial state of the vibrations of the mole-
cules. The first approximation to fiz is obtained by putting the zero approxi-
mation for fix, in the right-hand side and neglecting other off-diagonal terms,
Then we find for a particular inelastic wave

dz2 Kl+1 2 :
@ + k& ( 2 ) flk :Wk% V("}féko _f U‘f}mtxl 10 Pmol 20 z,i’[‘*mol in Si‘*mol an dsds’

2
-+ —k—t" V(”)ﬁk I U if‘imc:sl 1n ‘;i‘mol 21 i1‘{‘*1’1101 1n zffkmol 2n dsds’. (3~6b)
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The calculations of the symmetrical matrix elements on the right-hand side
of egs. (3.6a) and (3.6b) are straightforward. We substitute for ¢ime the expres-
sion (2.8) and integrate over all spaces of the vibrational modes. As we shall
see later, this integration gives for all modes unity, (except for the constant
factor in the potential U). Furthermore, since the corresponding spherical
harmonics in the diagonal matrix elements of eqs. (3.6a) and (3.6b) are identi-
cal, the result will for both elements be equal to M. Going back to eqs. (3.6a)

and (3.6b) we find as a result the following two fundamental equations

5 ,
3-(%5 + k22— l(l;'; ) 2—;;;- My V() fir, = 0 (3.72)
and
(& e D 2w, V(r)ff =2 M 3.7b
| 4 3 2 w= (r) firs, (3.7b)
where
M; = I v '#mo} 1o ‘{'Jmol 20 ‘ﬁ*mol lo i['*mol 20 dsds’ (3-83)
and
M, = _f Uibmol 10 $mol 20 ¥ ¥ mot 12 P mor 2a ds d¥'. (3.8b)

3.3. The interaction potential

So far we did not consider in detail the interaction potential which is the
origin of the collisions and of the energy transfer. The calculation of the inter-
action forces and potential is a difficult problem, since we know very little of
the complex molecular structure. It has not been possible to make a theoretical
determination of these forces. Therefore one has tried to overcome, with success,
these difficulties by deriving a semi-empirical formula such as the Lennard-

Jones expression
12 [
V=4 %( ”’) - (9) L=vswm, (3.92)

\r r

which describes the average potential between two molecules. It contains a
repulsive part V' and a attractive part V.

As a starting point one assumes spherical symmetry of the molecules. The
sixth-power term represents the attraction of the molecules at larger distances.
1t is the so-called Van der Waals force, which has a long-range action. The
twelfth-power term represents the short-range repulsive potential. The corres-
ponding strong repulsive force at very small distances arises from the over-
lapping of the electron clouds of the two molecules. By using this expression
one finds from the observed transport phenomena, such as viscosity data at
various temperatures the unknown parameters. According to Hirschfelder and
others 18) these parameters, in the case of COg, are:
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20 _200°K and rp— 3.95x10-% cm.

Since the behaviour of the repulsive part of the Lennard-Jones potential is
close to an exponential function and since the twelfth power has been chosen
arbitrarily, it might just as well be possible to represent the repulsion by an
exponential function such as

V' = Vs exp (—ar), (3.10a)

where Vg and a are constants.

The advantage of this exponential potential is that it facilitates considerably
the further mathematical treatment of the collision problem.

The attractive part of the potential is less important and just increases the
relative speed of the incoming particle.

Fortunately it is not necessary to know the value Vo of the potential since,
as we shall see later, the transitions are independent of this quantity. Physically
this can be indicated by the following argument. A strongly repulsive interaction
field prevents the molecules from approaching closely; the absolute value of the
wave function is therefore small in the region where the interaction is appreciable,
so that the transition probability will decrease. On the other hand a strong inter-
action field produces a strongly repulsive force, which in turn will increase the
transition probability.

According to Herzfeld 19) the repulsive part of the Lennard-Jones potential
can be treated as follows: We derive from eq. (3.9a)

o =V
r &p

and
dV_ e % <ro 12 (I’o 6?
dr r) r) f
From this
-1
/& av
= .
12 { +l/V+ao} dr T
[ ey 17}
The factor — {1 + l 7o —] changes but little with ¥in the region where
-~ £Q

collisions are effective, so that by taking this factor to be constant we have for
V-+ep the differential equation for an exponential. In other words we have to
use the potential

: V= Vyer — g. (3.9b)

The last term on the right-hand side represents the attractive part
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V= — g, (3.10b)

In order to find the unknown factor o, this potential is compared to the
Lennard-Jones expression.

De Wette and Slawsky 20) have required that the two potentials have two
points in common. These points are r, and r., respectively the zero point of the
potential and the classical turning point for the most effective collisions. At
the latter point the colliding molecule’s kinetic energy at temperature 7' is such
that the product of the area of cross-section of a collision and the Maxwell-
Boltzmann factor reaches a maximum (see also eq. (3.23) below). We have

go = Vo et (3.11a)
‘and
Ty = Vpeatec — gqg. (3.11b)

*

Division of eq. (3.11a) by eq. (3.11b) yields

T + eo = ga(fo*rC)
€0
or
i T: |
o« log( e+ e (3.12a)
Fo— Fe¢ €0

From the Lennard-Jones expression for the potential we find the following

relationship for r.
T—— 1
T; + o)y /°
r":%%(lw{_]/tveo)% ’
Fe &g

Substitution of this result in eq. (3.12a) yields

e e | S e R

The values of « as a function of temperature are given in tabel L

From this table we see that the factor « depends only slightly on the kinetic
energy of the colliding particles and approaches a constant value at large
energies and also at AFE == 0, the case of exact resonance. This affords the
possibility of using below (section 3.6) one exponential repulsive potential with
constant « in a consideration of all the kinetic energies of a Maxwell-Boltzmann
distribution.

It is clear that such a semi-empirical formula, derived from a consideration
of average orientations, can never be used in this form for the calculation of
vibrational transitions, because vibrational excitations only arise when indivi-
dual atoms are subjected to different fields of force. For this reason we want to
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TABLE 1
- 4Eq[k = 975° AE=0, or k=k,
re[10-8cm] | o [108 cm™1] | r.[108 cm] | «[108 cm™1]
300 3.47 5.10 3.80 - 5.54
400 3.38 4.95 3.77 5.46
500 3.35 : 4.90 3.73 5.40
600 332 4.84 3.69 5.36
700 3.27 4.79 3.68 5.34
800 3.24 4.78 3.66 5.33
900 3.21 4.77 3.65 5.33
1000 3.19 4.77 3.64 5.33

obtain an expression for the potential, and without averaging over all orienta-
tions, so that the small dependence of the repulsive potential on the interatomic
distances is included in this expression. In order to find this dependence in the
potential function we may assume with Jackson and Howarth 21), and with
Herzfeld and Litovitz 5) that the repulsive potential can be approximated by
the sum of all interatomic repulsive potentials between the atoms of two colli-
ding molecules. This includes the sum of the potential energy of one atom of a
molecule and all atoms of the other molecule:

Vi=2X ‘Vij(rzj) ) (3.13)
i

where i refers to any of the three atoms of one molecule and j to any of the
atoms of the other molecule of carbon dioxide, and ry; is the distance between
atoms i and j. In this way the potential energy is considered to be built up of
9 terms. The next step is, in analogy with eq. (3.10a), to assume an exponential
repulsive potential between such pairs of atoms, multiplied by a constant
factor.

Since in thermal collisions the distance of closest approach is much larger
than the interatomic distances, the atomic distance r; can be obtained quite
simply by adding to r the projections of the atomic displacements in the direc-
tion of r.

The potential between two C-atoms is then

Vee = Ve® exp—a {r 4 A1 s21 cospi sinI + A1 se2 sinfy sinly + A1 s3cosl
- A1 521" cosBa sinl'y + A s22” sinflz sinls 4+ A1 ss’ cosl2}, (3.13a)

where I" and B describe the spherical orientation of the particie relative to the
normal codrdinates. I'is the angle between the molecular axis and the vector r
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of the relative motion. The potential between the C-atom of one molecule and
the two O-atoms of the other molecule is

Veo = Vol exp —a {r- Aisz1 cos By sinl'1- A1sez sin 81 sin I+ A4wsg cos I

L . . .
+ 3 cos I's + Aosy” cos Io— Aasor’ cos By sin I's— Azses’ sin Bo sinls
— Asss’ cos Iz},

where L is the equilibrium distance between these two O-atoms. Since adss:’
is very small compared to unity it is convenient to substitute for the exponential
function the first two terms of a series expansion

exp (adosi’ cos I's) = 1 + adss:’ cos I'y.
We then obtain

‘el cos I . L cos I
Vco _ Vg:oo g 2 COSh (0’ 2 ——2)+ 2&1‘12‘8]_, COS Fz Sinh (a—z——g) §
exp —a {r—Ass21’ cos Bz sin I's— Aases” sin g sin I's— A3zs3’ cos I's

+ A1521 cos By sin Iy + Aises sin By sin It + Ayss cos F]_}. (3.13b)

Similarly we can sum the four potentials between the four pairs of O-atoms
in two different molecules as

‘ol cos 1’1)

. al cos Iy
Voo = Vgg"% 2 cosh ( -+ 2aAgsy cosI sinh (—T—) }

‘al cosT™
g 2cosh’ (w)

. 7oL cosly
+ 2a.Adesq1” cos e sinh (-——2 ) E

exp—a {r—AsSm cos By sinly — Aasge sin B sinf) — Agsg cos Iy
— A3s21’ cos Bz sin Iz — Azsae’ sin Ba sinI's — Assg’ cosI'g}.  (3.13¢c)

Finally, in analogy with eq. (3.13b), we find the potential between the two
O-atoms of one molecule and the C-atom of the other one as

LcosT’
Vco — Veoo g 2 cosh (a—_Cﬁm})

LcosT'
4 2aAdss1 cos I'y sinh (a cos 1) %

EXp —a {}‘—A3521 cOS ;81 sin I‘1 -—~A3Sgg sin 81 sin f'l ~—A383 COs ]11
-+ Ai1s21” cos Besinl’y + Aisze’ sin Bpsinle + Ais3’ coslz}. (3.13d)

The internal-motion coefficients 41, A2 and A4z are given by ratios, each of
which is the ratio of the atomic vibrational amplitude to the normal codrdinate
of the corresponding vibration. These coefficients can be easily obtained by
considering the conservation of momentum for the internal motion of the
molecules. We find

M 3

om+M 11"

2m 8 m
:_"I-——, A2=~—-——~:

— and Ag =
2m-+M 11 2m

NSRS

A
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It is clear that in our case we have to compare the sum of these nine potential
terms with the Lennard-Jones potential in order to find «. This can be done as
follows. The amplitudes of the vibrations for the lower energy states are very
small compared with the distance of closest approach, so that the potential
depends very little on these amplitudes. Therefore in our comparison with the
spherically symmetric expression we neglect this dependence on the vibrational
amplitudes and then find

jol. cosly al COS 1’2) %

Vo = Vel® + Vb 32 cosh k—?‘——) + 2 cosh (

o Vood gz cosh (“‘L—C;’Sfi)% %2 cosh (ﬁécgspgﬂ . (3.14)

We may therefore conclude that the interaction potential can be suitably repre-
sented by the difference between an exponential function ¥V exp(—ar) and a
constant sp. However, when substituting such a potential in the egs. (3.7a)
and (3.7b) we may as well add the constant to the kinetic energy and consider
the interaction potential as a purely exponential function.

3.4. General expression for the cross-section

The following section is concerned with the mathematical treatment of
equations (3.7a) and (3.7b), which we may use to obtain a solution for fiz. This
will be done analogously to the one-dimensional problem as treated by Jackson
and Mott 8). Let us first consider the auxiliary function Fy satisfying the
equation

d? G+ 2Zp }

\@+ k2 3 ——h?—Ma e““';sz=0 (3.15)

with boundary conditions Fiz = 0 for r = 0 and asymptotic value

Fi; — sin (kr—% I -+ 3515) .
o> 0
By comparing the asymptotic value of Fyx, with that of fix, in eq. (3.4a) we obtain
1 .
ﬁko = -1;' QI+ it eidu, Fig,.
et /]

Next, we substitute fix = YFy in eq. (3.7b) and obtain

dF dY d?y

dr dr ® dre

20+
k

[

== % exp (—ar) it efdue, Fig, M,.

Multiplying both sides by Fiz and integrating with respect to r between the
limits 0 and » we obtain



F

dY  2p 2141 .
Fu? o _.%l M]jm ~~~~~~ it eldik, MafFlk Fig, exp (—ar) dr.
s 0
0

Since we know the asymptotic value of Fi; we can integrate the last equation
for large values of r. We then find

it e, Ay M, ,

1 | 2041
Y= §— cot (kr—} ln + du) + Const%

o

where we have introduced the abbreviation

(=

2 Iad
Ay == % / Fyy, Fy exp (— ar) dr. (3.16)
o

0
With this result we find for r —> o0

2041
ko

1 ,
fik = Z {— cos (kr—4lr-+8:x)+ Const. sin (kr— b+ 82)} it eid, Ay M.

When comparing this with the asymptotic expression (3.4b) we can find the
integration constant before the sine term:

21+1

!
Jie = —exp {ilkr — ¥ Inr + 81)} P

it eidu, Aw M, . 3.17)
. 1 .
From expression (3.4b) we deduce that - igr(6)? is the number of mole-
¥
cules per unit volume at distance r which have undergone a transition in their
vibrational states during the collision. Of these, the number crossing unit area

k
per unit time is proportional to = lgr(M)12, whereas in the incident beam the
‘ ¥

number crossing unit area per unit time is proportional to k,. Hence we have
for the particle flux per unit angle and per unit incident flux

B — = auope
0()_k_olgk()‘ >

which is called the differential cross-section.
By substituting for gi(6) the expression in partial waves and using the asymp-
totic expression of eq. (3.17) we find for the differential cross-section

1 co
o(0) = |My % exp {i(8wx + Sue,)} (21 + 1) Py A, (3.18)
kok =0

The total inelastic cross-section o; is the total particle flux per unit incident
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flux and therefore the integral of eq. (3.18) over the sphere with unit radius. As
we shall see later, the product of the quantities M, and 4y is independent of the
codrdinates # and ¢ of the relative motion. Consequently, the evaluation of the
total cross-section is straightforward. Because of the orthogonality of the
Legendre polynomials it contains no products of factors involving different
values of . We find

47 @ '
M2 204 1) A2 3.19
Kk Ea 214 1) A (3.19)

oy =

3.5. Calculation of the values of 4;;

The exact solution of Ay, as defined by eq. (3.16) cannot be obtained except
for the case of { = 0. On account of the relatively slow variation in the quasi-
potential energy of the centrifugal force compared with the exponential form,
this potential will not produce any transition. The centrifugal potential will
only slow down the relative motion, so that according to Schwartz et al, 7) we
can calculate 4;x by substitating in eq. (3.15) :

ko? = k2 — M+ (3.20)

ret

Here we take the centrifugal potential to be a constant, its largest value being
at the classical turning point r = r,. This means that it is sufficient to consider
Aor and then find 4;x for any value of / by substituting in the result for / =0
the effective collision velocity k., in analogy with eq. (3.20).
The calculation of A, is similar to the one-dimensional problem and has been
carried out by Jackson and Mott 8). If we substitute
2¢2 2
z=——gﬁMa§ exp (— Jar)
a( B2
in eq. (3.15) and take / = 0, we obtain the equation

dzF 1(1F+\(£]2 DF—o
dz2 ' zdz \z2 ) o

2k
where g = —. Fis a Bessel function of order ig and argument iz. The solu-
o
tion of this equation turns out to be a modified Bessel function of the second
kind
o
Kig(z) = f e 2eosh ¥ cog g i du . (3.2
]

We now have to show that this solution satisfies the boundary conditions.
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2¢2 Y2
Forr = 0 we have z = — % % My % . We may suppose that ¥y is very large,
a

because the interaction potential goes to infinity as r approaches zero, i.c.
z-> oo as r—= 0. But Kj,(o0) is zero, and this accords with the boundary.
condition for r = 0.

For r—+ o0, we have z == 0. The value of K;,(0) can be obtained as follows.
If we substitute v = z cosh uin eq. (3.21) when z — 0, we find for small values of z

2ntay dy
+) 15
z v

[s]

Ki(2) = [ e} [(3;)”

0
From this it follows that

Ky =1 (5) "t 4 (5] r- i

2
or
12 Yzy-ig 2 Laqig
Kif2) — |- §ﬁ Ma§ } ¢t T'(ig) + §[ % ™ m, g } ekt I'(—ig).
h2 A2
Hence
l,fﬁ
Kio(0) = ( ) cos (kr -+ 7o),
\g sinh =g
where g is a phase shift. So we obtain
sinh wg\'/2
f‘qllﬂ p— (q—wg) K@q(g)

and with this

o

i
Aok = — (go g sinh mg, sinh mg)'/e — | Kig, Kigzdz .
2 M,

o
0

By using eq. (3.21) the integral in the equation above becomes
[+ - - ]

/ { / z e~z (cosh7 + cosh ) cos gou cos gf du dt dz .
g

kY

o 0o 0

Jackson and Mott first integrated with respect to z, substituted in the result
t+ u=2Tand t— u = 21, and obtained

o

1 [ cos(g + o) T JT f cos (go—q)U

dU
coshzT cosh? U

o
for this triple integral.



If we integrate ¢#?%/cosh? z round a closed rectangular contour— oo, 400, +
-+ 7i,— oo -+ =i, which encloses z == 4 «i, we find

oo

f o8 P dx = L wp/sinh 3 =p.

cosh? x
0

This result was used by Jackson and Mott in their solution for the triple
integral, Thus the result is

ma 1 (Goege Sinh w0, Sinh ) /2
A ==~~~ (G — 6> s 3.22
lk 8 M, (e goe’) cosh g, — cosh 7o ( )
where
2k K+1) ;1/2
ge = — 31—
o kgrgz s
and

ko MI1) s
Joo = — 11— =

_N !
a 1 kozrcgg

3.6. Total effective collisions per unit time

‘We notice that translation for our purpose can be considered as an external
degree of freedom and we therefore assume that the velocities of the molecules
are distributed according to the Maxwell-Boltzmann distribution law. The
number of molecules per unit volume with velocities in the given ranges
dvy, duy, dv; is then given by

[ m Nl CICEE W
dN, = N, K ) e-Tloz? g+ o 2KT doy dv,,

2= kT
where Ny is the total number of molecules per unit volume and m is the mass of
one molecule. We are interested in the collisions of the molecules with each
other. Therefore instead of dealing with all the molecules separately we con-
sider each time the relative motion of all molecules to one given molecule. The
energy of the relative motion of the two colliding molecules is equal to Ju,v%
where py == +m is their reduced mass and v, their relative velocity. Hence the
distribution of the gas molecules over the relative velocities can be obtained quite
simply by replacing m by pr.

We can express this with spherical coérdinates and then obtain, for the num-
ber of molecules per unit volume whose velocities relative to the given molecule
lie between v, and v -+ duy, the expression

0

T 2pr 372 .
dN?)r = No ( ) [ e Hr 72kT ’Ur2 d’b‘r.

2 kT
o
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The total number of effective collisions, i.e. collisions bringing about a cer-
tain vibrational transition, which are suffered by one molecule per unit time is
then equal to

oo

v 2;},,- 3 3/2 2
Q=N kT) ehv KT oy 3 dp, (3.23)
.
0

where o; is the cross-section of the molecules producing an effective collision

for a certain excitation process.
Let us first consider the collisions which activate the vibration. We can

. hk . . ..
substitute v, = and integrate with respect to k between the limiis zero
P
and infinity, using the condition

2
ke k? — _% 4E, (3.24)

where 4E is the energy exchanged with the vibrations. We obtain by using egs.
(3.19) and (3.22)

3
Qu = 7No 2\ (NS (2pur ABN Mo
&T) \ur) 3\ 2 ) M2
oo

. )
/ e RH2KT 5 (2 £ ]
I=0

0,

g. sinh 7q o, sinh mq,

dk, (3.25
(cosh nge — cosh wggq)? (3:25)

where we have put

- »
ko [

qoe _2% 1 {i+1) %lh 2
k02 ?'32 43

I-+1) -
because PP is negligible.
The preceding integral cannot be evaluated in closed form. However, the
following considerations will lead to a suitable solution. First of all we shall
only consider the integration for / == 0 and, in accordance with Schwartz et al. 7),
we find the integral for higher values of / by assuming that the only effect of the
long-range centrifugal force consists of a shift of the collision velocity.

Next, according to section 3, the kinetic energy in the expression for the cross-
section contains a shift 0. Therefore it is convenient to shift also the exponent
of the Maxwell-Boltzmann factor by the same amount, and for this we multiply
the integral by exp (eo/kT').

The integral has a sharp maximum, since the cross-section increases with
increasing k, while the Maxwell distribution decreases with increasing k,. The
value of k, for which the integrand reaches its maximum depends only slight-
ly on the temperature, viz. on T-16. At room temperature its maximum is
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about €720, This means that in a broad temperature range we can simplify
the integrand by using the first two terms of the expansion of eq. (3.24):

Hr
ko ~ k —+- w AE, (3.243)

so that we may write

sinh #g, sinh =g ~ e—2mla (ko—k) (3.26)

(cosh g, — cosh wg)?
Then we obtain in the integrand the expression
k2 2a

— Z(ko— 0§ 3.27
Sukd @ Ko 327

exp ] —

Thus far the integral is still too complicated. However, only molecules with
velocities near the maximum will play an important role. Then it is justifiable
to use the approximation of developing the exponential factor into a power
series around its maximum, as was done by Landau and Teller 1). Accordingly
we find for (3.27)

h2k2 2m
exp | — — T ko— k) g = exp {— 35— 3(x— b2}, (3.27a)
2[.erT 141
AE s
where b= g ——W—yi-——l- %
ah(2u, kKT)'2
h2 k2
and X% ==
2ukT

The dependence of the integrand on the remaining factor, namely g., is
negligible in comparison with the dependence on the exponential function;
therefore we may conveniently replace ¢ by its value at the maximum of the
integrand. The integral for / = 0 then becomes

<o

ha
fﬂ,lg_ b e—3b2+ea/kT j e—3x—b)? dx, (3.28)

23
b

Further, we make the substitution y = x — b in (3.28) and then use the limits
— 00 1o -+ o0 in the integral instead of —b to -+ o0; we thus obtain for the integral
4,(erT

aki?

w

3

b e—3b* teofkT V (3.28a)

So far we have found the integral for / = 0. Now, by considering the other
values of /, we notice that according to eq. (3.20) the effective collision velocity
becomes smaller as / increases. This means that if we replace the exponential
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Maxwell-Boltzmann factor by

expg__fiz_/kz_l(l-i—l))g

2urkT \ kel

we find also for those integrals the result given in (3.28a). Consequently, we
may write the integral over all terms as

_— '
=0

ah?

Since the product in the exponent changes by 104 for unit change of / we can
replace the summation by integration and then find for expression (3.29)

7 (urkTro)?
8 l/g(—" ’"ah:”) b e—3b2+eofkT, (3.29a)

Finally, we find

64  — 3o Yo (AEN 5.2 - AE{KT — 3b% + eg/kT ag
Qa = 1/67,3};05“" (KTY2(4EY rlb e 0 M,

) o M

(3.25a)

Next, we consider the collisions which de-activate the vibrations. During these
collisions there will be some energy transferred from the vibration to the relative
translational motion. It wiil be found that the evaluation of the de-activation
process is similar to that of the activation process. Since ke is smaller than k,
the integration is now with respect to k, between the limits zero and infinity.

2
We use the condition k% — ko? = 7": 4E and obtain analogously

64— w2 (KT)2 (AEY 2 b e—30>+eolKT B2

If 4F is large compared with the mean kinetic energy k7, Q, is much smaller
than Qg; the physical explanation is that collisions which activate the vibration
need more energy than those which de-activate the vibration, and are conse-
quently rarer.

So far we have derived an expression for the effective collisions per unit
time in the event of energy transfer between vibration and translation. However,
the method of approximation includes the following conditions. Firstly, we have
in expression (3.26) made the denominator equal to one. This is only acceptable
if

s :
W % & (1st condition).
A% a2 kT :

Secondly, in order to apply the expansion in eq. (3.24a) 4E may not be too
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large, i.e.
200 4B i conits
—— nd con .
{7 2pn) T T ( ition)
In table II the numerical values of these two conditions for the direct transfer
of one energy quantum at room temperature are given.

TABLE 11
1st condition 2nd condition
bending vibration 13.3 0.49
symmetrical valence vibration 21.1 0.62
asymmetrical valence vibration 30.6 0.74

We notice that the second condition is always fulfilled at temperatures above
room temperature.

Next, let us consider the case that the first condition is not satisfied. This
happens in exact resonance, where we have no translational energy transfer
but only transfer between the vibrational modes. The propagation vectors of
incoming and outgoing particle are equal. This also applies to large translational
energies, where we can neglect the difference in propagation vectors. We
simplify eq. (3.25) by substituting

. (ZW AE )2 sinh mq, sinh mq ko2a?
i _

ks k, \ H? (cosh ngo— coshmq)2 2

and so obtain for the effective collisions in the limit k —> k,

co

2 N2/ h 4(2#7 3/2Ma2 / o
=— No|- — _— —_— —h2Kk2p KT 21 4+ Dk3dk .
0.=7 () (W) \M) v | e F 14
0

The integration is straightforward and the evaluation of the sum will be
similar to the derivation of eq. (3.25a). We finally find

wr'l2 (kT)3/2 re2 eso/kT pf 2

Q. =162z N, o e (3.30)
We may write for convenience
M2
Qa,a,e = No Pa,a,e® (3.3))

M2’



where
3’{ 1/ 2 2

P.XAE) & Voms £ KD PAEPrED  apkr— 360 + kT (3.312)

3 At ot ’

64 — e (KTY'2 (AE) re? b
PXAE) = — V63 X1 (kT) 72 (AE)* rc e—3b% + a/kT (3.31b)

R 3 h4 0.4
Yo (kT2 r 2
P (48 = 0) = 16 Vam 2D o (3.310)
-2

We can consider P? as the translational transition probability for the excita-
tion of one molecule per unit time. Its values have been calculated and are given
in table 11T as a function of temperature.

TABLE 111
Translational Transition Probabilities

AEs/k == 975 °K AEs/k = 530 °K 4E =0

T P2 P2 Pg? P2 P2
300 | 77x10715 | 20x10713 | 7410712 | 43x10-11 | 1.7x10°8
400 | 3.3x10-13 | 38x10-12 | 7.4 <1011 | 2.8x10-10 | 2.2x10-8
500 | 3.4x10-12 | 24x10-11 | 3.3x10°10 | 93x10-10 | 2.8 108
600 1.8x 1011 | 92%x10-11 | 1.1x10-¢ 2.5x10-% 3.4x10-8
700 | 6.5x10°11 | 26x10-16 | 24109 5.1x10-9 4.1x10°8
800 1.9x10-19 | 6610710 } 45 10-° 8.7x 10 4.9x10-8
900 | 4.6x10-10 | 1.4x10-? 8.1x10-8 1.5% 108 5.7x 108
1000 | 9.2x10-10 | 2.5x 109 1.3x10-8 2.2x10-8 6.4x10-8

In this table 4 E» represents the energy exchange between translational motion
and bending vibration. 4Fj3 represents the energy obtained from the translatio-
nal motion when there is excitation of an asymmetric vibration at the expense
of a bending and a symmetric valence vibration.

The transition probabilities of the inelastic collisions are influenced remarka-
bly by the dependence of the translational transition probabilities on 4E, the
energy exchanged with translation. It is easy to understand that the inelastic
collision can hardly occur in the low-energy region. In endothermic reactions,
transitions cannot take place when the initial energy is less than the quantum
jump. On the other hand, from the expression obtained for the de-activation
probability we see that also for the exothermic reactions the transition probabi-
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lity increases with temperature. However, the result is that on balance we find
the excitation rate to become higher at higher temperatures. But when the initial
energy is extremely large, so that there is no appreciable difference between the
wave numbers of initial and final wave, we find that the excitation process
does not depend so strongly on the temperature. Physically, this can be des-
cribed by the following argument: if the initial velocity is extremely large, there
will be no time for the transition to take place during the collision and conse-
quently the probability will be small. On the other hand the total number of
collisions increases with temperature, so that the effective collisions may still
increase with temperature.

3.7. Transition probabilities of harmonic oscillators

The transition probability for vibrational excitation depends strongly on the
relative motion and the magnitude of the energy exchanged. It also depends,
but much less strongly, on transitions of the vibrational states. In this section
we shall only consider the transition probability as far as it depends on the
vibrational states. The dependence is described by the matrix element M,, as
defined by eq. (3.8b). This expression can be evaluated for any quantum jump
by using the harmonic-oscillator wave functions. The wave functions are given
by Schiff 16):

Pals) = (w ¢

e 2% x!

1 /2
) Hy (§s) exp (—% £257),
where H; is the Hermite polynomial of order x, and

2 pv\'2
= (5

The wave functions belonging to different states are orthogonal to each other.
Further the Hermite polynomials have the following recurrence relations:

&sHy = % Hp1 + xHg (3.322)
and

2x 41
(&5) 2Hy = 2]( Hzi2 + +

H;p + x(x_ 1) Hx—z . (3.32‘3)

In working out M, it is convenient to express the exponential functions of
the potential as power series in normal codrdinates. Each exponential function
is of the form exp(—ays), where s is one of the normal codrdinates and y
a function of the spherical orientation of the molecule. If we integrate over
the cobrdinate s we obtain an expression depending on y:
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For x = x' (i.e. if no energy has been transferred to this mode) the integral
turns out to be practically unity, i.e.

Tro=1. (3.33)
When there is an activation or de-activation by one quantum we can easily

evaluate the integral by using the recurrence relation (3.32a) and the orthogonal
property of the wave functions. We find, by neglecting higher-order terms,

hx+Dpl
Te,z41 = —ay {——] (activation) (3.34a)
drpy
and
hx 12
Ton1 — —ax [ ] (de-activation). (3.34b)
4y

When two quantum jumps are involved we similarly find, by using relation
(3.32b) and neglecting higher-order terms,

B(x+2) (x+1)7'e _—
| Tr g = %(QX)Z[W] (activation) (3.35a)
and
Rox(x—1) 12 o
T o2 = 3 ax)? [——} (de-activation). (3.35b)
1672292

Although there is no restriction that only one or two jumps be possible, we
can calculate that a change by more quanta in any mode during a collision is
so improbably as to be negligible,

If we work out the symmetrical matrix element 3, eq. (3.8a), we find by
using eq. (3.33) that

My = Vo 1 Pra, (3.36)
where ¥ is given by eq. (3.14).

3.8. Effective collisions caunsing the excitation of bending vibrations

The general expression for the effective collisions of the vibrational excita-
tion has been derived in section 6 of this chapter and is given by eq. (3.31). It is
clear that these effective collisions describe the role of the complex collisions in
which vibrational quanta plus or minus the necessary increment of translational
energy are exchanged between the colliding pair of molecules. This exchange
among or with the vibrational modes is described by the asymmetrical matrix
element Mo, defined by eq. (3.8b). However, before we can carry out the inte-
gration of Ma we have to specify which type of collisions at a particular time
are of importance. We always consider the case that the vibrational energy is
not in equilibrium with the rotational and translational energy and that we shall
reach the final equilibrium by energy transfer between translational and vibra-
tional degrees of freedom.
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Depending on the transfer process we can distinguish two possibilities. Part
of the collisions produce a direct energy transfer between translation and vi-
bration. Other collisions give rise to an energy exchange among the various
modes and thus produce indirect excitation.

The energy quanta of the v, and »3 vibrations are respectively twice and about
four times as large as those of the »; vibration. As was mentioned above, the
translational transition probability of the cross-section for direct excitation is
very sensitive to the magnitude of the energy exchange, so that by calculating
the cross-sections for direct excitation of the vibrations we find that as far as
they depend on translational motion the cross-sections of the »; and »3 vibra-
tions are many orders of magnitude smaller than the value found for the »o
vibration. This means that a direct excitation of the »; and »3 vibrations is much
less probable than that of the »o vibration. Further, as we have seen in section
7 of this chapter, the part of the transition probabilities that depends on the
vibrational state is for one quantum jump inversely proportional to the energy
quantum, and inversely proportional to the square of the quantum for two
quantum jumps. It is therefore found that for the »; and v3 vibrations a direct
excitation process is much less probable than an indirect excitation process.

Since there has to be an energy exchange between franslation and vibration
we may conclude that most of the vibrational energy by far is first fed into the
bending modes. Then, when the bending vibration has been excited, there may
be exchange among the vibrational modes.

In this section we shall calculate the effective collisions for the direct excita-
tion of the bending modes. It is sufficient to consider only one of the twofold
degenerated modes and to multiply the result with two in order to obtain the
total energy transferred into the bending modes. Furthermore we can, of course,
neglect multiple quantum jumps. During these collisions no energy is fed into
the v, »3 and degenerated »; vibrations. Their quantum numbers do not
change and according eq. (3.33) we substitute

Buw =1, Cumpm=1 Dp,p=1,
where B, C and D refer to the transition probabilities of respectively the »y,
degenerated »; and »3 vibrations.
By using the four potential functions given in egs. (3.13a), (3.13b), (3.13¢)
and (3.13d) and also eq. (3.34a), we find for activation

: L I’
Mo(vs) = — [AchcG + A1V eob %2 cosh (a__c;)s 2) g

L r L r
— Ag Voo® % 2 cosh (W}) § 3 2 cosh (CL—C;)S—Z) §
L o h INRE
—Achoog 2 cosh b ﬂ a cos By sin Iy [MQ] 1 o,
g 4mpgve



—37—

where M,(72) is the asymmetric matrix element of activation for the bending
mode. By using eq. (3.14) we obtain
M{vs) = —a cos By sin T A {':’-(-’.”_1"-»12} Vo et e, (3.37)
4 pave
where A4 is some value between 0 and 8/11,

In the absence of any theoretical information concerning the constant po-
tential factors we may assume that these factors, namely V0, Veo? and Vo0,
are of the same order of magnitude. If this is true we may say that, on account
of the large average argument of the hyperbolic functions, the factor 4 will be
close to As. Therefore we substitute 4 == 3/,

So far we have found the matrix element for a particular orientation and a
particular rotational state (j, m). Fortunately we do not have to consider all
rotational states, since by calculating the effective collisions from eq. (3.31)
we find that the rotational wave functions in eq. (3.37) for M, and in eq. (3.36)
for M, cancel. Therefore, we only have to consider all possible orientations
(9, ¢) according to the Maxwell-Boltzmann distribution law. This dependence
of the effective collisions will then be found in the fol]owmg integral

20 =
Zl; / [ sin® Iy sin &1 dfy dgs (3.38)

A
¢ 0

where I is the angle between the molecular axis and the vector r. I'} can be
expressed in terms of 8, #1 and g1 by the following equation:

sin? I'y == 1 — cos? 6 cos? & — sin? 4 sin? 9 cos? ¢
—2 cos 8 cos & sin 8 sin &4 cos ¢1.

These terms are substituted in (3.38) for the integration. The last term will
then have a value of 1. The other terms give, after integration,

%082 0 sin?2 0 (1—4) 4 = —1.

Thus the integral describing the spherical orientation of the molecule has the
value £.

Further, since we consider only one bending mode, cos f1, may have any
value, so that we have to substitute for cos? 8; its average value, which is
equal to 4.

The total number of effective collisions for the excitation of the bending
vibration can readily be found by substituting in the general expression for the
effective collisions, eq. (3.31), the matrix element for the bending vibration as
given by eq. (3.37) and the symmetrical matrix element as given by eq. (3.36).
We find

Qalv2) = § Ny le,,,mw+12 Pt (AEs), (3.39)a
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where

h(ﬂ"j—l)] . (3.402)

Crypomygr® = 02As® [—
417ng2

Similarly, one derives the effective collisions for de-excitation of one bending
mode and finds

Qa(v2) = % No Crypmyp—12 PaH(AE»), (3.39b)
where
hmio
leo,m10~12 = a2A33 [gp;;] (3.40b)

and 4Ep = hwy is the vibrational energy quantum of the bending mode.

3.9. Relaxation equation for the bending vibrations

The amount of energy supplied per unit time to the bending mode can be
obtained by multiplying Qu(v2)— Qa(v2) with the energy quantum associated
with this mode. By considering all molecules in a volume we notice that there
are many initial states of vibration and each state has an occupation density 4.
We define gm, as the number of molecules (per unit volume) in the vibrational
state 1. Further, it is sufficient to consider only one degenerated bending mode
and to multiply the result with two in order to obtain the total energy trans-
ferred into the bending vibration. By applying eqs. (3.39a) and (3.39b) for all
molecules per unit volume we get the following series for the rate of energy
transfer Fq2 of the bending vibration.
dE.

= % hva{goCo,i? + g1 Cr0® + . . . gy Congymg+1® -+ ..} No Po?

dE
—%hvs{g:1C1,0% + g2 Co,12 + .. . @my Congmy-12 + ...} No PP — 7 (3.41a)

where we have neglected double or other multiple quantum jumps because their
probabilities are many orders of magnitude smaller. The first part expresses
activation and the second part de-activation. The last term on the right-hand
side represents the exchange between vz and other vibrations. This series can
be simplified by using the following relationships, which are obtained from
eqs. (3.40a) and (3.40b):

le,mi—!—lz = (mi +1 Co,l2 (3.423)
and
Cinymg-1% = m1Co % . (3.42b)

By using eqgs. (3.31a) and (3.31b) we also obtain the relationship
Pi2(AEs) = Py AEy) e4E/kT,
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Eq. (3.41a) becomes

o0 o dE
= %;11’2 Ny Po? C0,12 E (ml’f"l)le"— e!wg/kT 2 mi4qmg { — Ti; .
=0 my =0

(3.41b)
Next we use the equations

o6 o
Ez—’zz 2 mlhvzqml and E quZNg.

iy = my =0
We then find
dE dE
-d—tz = 1 No Cox? Pa? (KT — 1) {BAT)— Ex}—- ., (3419)
2Noh
where Eo(T) == . cfolve , in other words Fo(T) is the equilibrium

energy of the bending vibration for the translational temperature 7, and Es
is its actual value.

If we neglect the last term in eq. (3.41c¢), so that we do not consider the ex-
change between bending and other vibrations, it can be shown by Montroll
and Schuler’s 22) theory that, if the bending vibrations are initially distributed
in their energy levels according to the Maxwell-Boltzmann distribution, this
distribution will persist during the excitation process, but that the effective
temperature will vary monotonically until the translational temperature is
achieved (see also appendix II). Although in our case there is at the same time
transfer of energy from bending vibrations to valence vibrations, we notice that
at low temperatures relatively little energy will be transferred in this way, so
that any possible disturbance of the Maxwell-Boltzmann distribution will be
so small as to be negligible. Thus at any time the bending modes have a definite
vibrational femperature.

3.10. Effective collisions causing the excitation of the symmetrical valence vi-
bration

In this section we shall consider a more complicated excitation process,
namely that of the valence mode, in which we shall again neglect the very small
probabilities of double or other multiple quantum jumps. We shall see that
energy can be supplied in various ways to the valence vibration and each
process is described by its own cross-section 23). Whe shall find ten different
probabilities for each collision in the excitation of the valence mode. In prin-
ciple we can distinguish four different transfer processes. Firstly we have the
possibility that a quantum is transferred by direct excitation. We obtain for this
part of the energy transfer an expression for the cross-section similar to that of
the bending vibration. However, it turns out that this cross-section is negligibly
small. Secondly there is a possibility that the transferred quantum A»; is ob-
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tained partly from one quantum A»; of one of the bending modes and the rest
from the translation during a collision. But also in this combination of direct
and indirect excitation processes the calculated transition probabilities are very
small compared with the third and fourth types of process.

Thirdly we consider the case that the energy is only exchanged between »;
and vy vibrations during elastic collisions. Since two bending quanta are
practically equal to one valence quantum, this transfer may occur without any
additional energy of translation. Then the », vibration is activated by the gain-
ing of one quantum, while the »o vibrations are de-activated by the losing of
two quanta. There are of course different ways in which this exchange can take
place. Therefore it is a convenient arrangement to consider now only those
collisions for which the quantum number of one of the four bending modes
in a coliding pair of molecules changes by two. In other words we consider
the four cross-sections for the energy transfer between one valence mode and
one bending mode.

The general expression for the effective collisions is given by eq. (3.31). The
first step in the evaluation of this expression is to study the asymmetrical matrix
element M, given by eq. (3.8b). During these binary collisions only the quan-
tum numbers of the v, vibration will change by one and one »g vibration by
two. The remaining six vibrational modes will remain unchanged and conse-
quently the integration over the corresponding cobrdinates, according to
eq. (3.33) yields practically unity.

Let us consider the case in which the energy is exchanged within the molecule.
By using the four potential functions, egs. (3.13a), (3.13b), (3.13c) and (3.13d),
as well-as eqs. (3.34a) and (3.35b) we find for M, in the case of activation

Lecos T ‘oL cos Tt
Ml (v) = [Vooﬂ 3 2 sinh (f‘-—‘ﬁ;—E)ggzcosh(“’—fg—s-ﬁ)%

Lcos T
4 Vegd 32 sinh (“ cos 1

) % ] adg cos I't 4 (ads cos By sin I')?

[h(no—f- l)rf’g { h2mio(mi,—1)

1;2
- , 3.43
— ] bt s (3.432)

16 72 po? vp?
where M,/(»1) is the asymmetric matrix element of activation for the first type

of process. On account of the large average argument of the hyperbolic func-

alcos I” (aL cos F)

tions we may replace sinh (-——2—-3 by cosh , and assuming

again that the constant potential factors are of the same order of magnitude we find
b(ne + D2
41y ]
4 [ﬁz miofmie— 1)
16 #2pg2py?

Mal(v1) = & ads cos Tt (adsg cos B sin I')? [

l'fg
} Vo brifra.  (3.43b)
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This is the matrix element for a particular orientation (1, B1) of the consider-
ed molecule. The result will be substituted in eq. (3.31). The value for M, is
given by eq. (3.36). Again we see that ¥y and the rotational wave functions
cancel. Next, we consider the Maxwell-Boltzmann distribution for the rotational
degrees of freedom. We do not have to consider the summation over the energy
states, but only the integration over the rotational cotrdinates. This integration
gives

2a
1 M
o / sind I'y cos? Iy sin $y ddrdes .
4or
¢ 0

SintI" cos?ly can be expressed in terms of 6, ¢ and ¢;. However, it is
easier to transform the integration variables &1 and ¢1 by taking the
direction of r as the polar axis. This gives for the integral
2 @
1 i '
o / sin® I'y cos? I'y sin I'y AT dgy =
0 0

105’

Since cos B1 can have all possible values between —1 and 1, and as ex-
pression (3.43b) appears in the form of its square after it has been substituted
in eq. (3.31), we must use the average value of cos? 8y, which is 4.

The total number of effective collisions, according to the first process, suffered
by one molecule per unit time during the activation of the valence mode by one
of its bending modes can be readily found by substituting in eq. (3.31) the matrix
element for the valence vibration, as given by eq. (3.43b), and the symmetrical
matrix element, as given by eq. (3.36). We find

1
Q4 (1) = % No Buyny+12 Cmyymyy-22 P2, (3.44a)
where
A(no+ 1)
Buymyi1® = a? Ag? [m} (3.452)
and
BEmy (m, ,—1)
Comypymyg—2® = % atAgh [_——16 o ot et ] (3.46a)

In a similar way we can calculate the de-activation of the valence mode by
one of its bending modes. We find

1
Qdl(y) = 35 No Bng,n,-1% Cinypymgpr2? (3.44b)
where
h
Bu, n,1% = a®As? [ ”"—] (3.45b)
4 11 1
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and
h%(mio+2) (m1o-+1)

Comiyyom +22 = :%t a?Azt
1o 10 16’)72 #22 ’Vz?‘

(3.46b)

So far we have considered the exchange with one of its bending modes of the
molecule under consideration. The calculation for the other mode is of course
similar, the only difference being that we now have to average over sin* §;
instead of cos? B1. Then we find for this type of transfer process

1 .
Qatt(1) = 5 No Buy,ny+1% Cmgyomyy—2° Pe? (3.47a)
and
1
Qal(v)) = 3 No Bn, 1,12 Cmgympgt2® Pe?. (3.47)b
The following possibility in this treatment is that the two bending quanta
are supplied by one bending mode of the incident molecule. Again, by using

the potential functions represented by egs. (3.13a), (3.13b), (3.13c) and (3.13d),
we find for the asymmetric matrix element the following form:

L I L T
M1 () = [Vwo 2 sinh (ﬁ) ggz cosh (“_g_g) i

+ (5 e

A3 co
B(no-+- D12 [ B2 (mi—1)
[ 4arpyvy ] {

.. falcos It .
2 sinh (-— ) } aAg cos I § (ads cos Bg sin I'g)2

]1/2 Yri thra.

16 72 po? py?
By using the foregoing discussion this can be simplified to

A(no -+ 1)]1/2

MaITI(3;) — 3 ady cos Ty (ads cos s sin rg)z[
dmpivy

[}'izml(ml — 1)
16772;&23‘}’22

Yy
} V() 31!‘?‘1 Sl‘rz-

We notice that the matrix element is now a function of the rotational codrdina-
tes of both molecules. Each orientation is described by its rotational degrees of
freedom and distributed according the Maxwell-Boltzmann distribution law.
By considering all orientations of the two colliding molecules, we have to
evaluate the following two integrals.

27 =

1
6] . f f sin? I'y sin 93 dds dgs,
o o
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where I's is the angle between the molecular axis of the incident molecule and
the vector r of the relative action. By transforming the integration variables so
that we take the direction of r as the polar axis we find for the integral &

27 @

(ii) f [ cos? I'y sin &1 d9; dey == §.

If we substitute these values in the equation for M,#I(y1) we find for the
cross-section of process 111

oot (91) = %Bno,ﬂ,o-}—lz Coyymg—22 T on @ l+1) — (3.48)

Since in eq. (3.48) the cross-section does not only depend on the relative
motion of the incident molecule we cannot simply integrate the cross-section
over all translational energies in order to find the total number of effective
collisions per unit time. After all, the incident molecule can be in any vibrational
state. Therefore we shall describe each incident molecule by the sum of all
possible vibrational energy states and replace the matrix element Ciyy,m,-2? by

E Cony,my—2® @y

M]_'

oo
X 4my

m1=0

Now we can integrate the cross-section in eq. (3.48), and find, similarly to
the derivation of egs. (3.44a) and (3.44b),

@«
2 le,ml—az Gmy

Q11 () = flg No Pe? By, 4135 —— (3.49a)
2 qmy
my=G
and
1 Z Cm1,m1+22 qml
QallI (1) = 15 Vo Pe? By, n,-12 20— . (3.49b)
zoqmz
my=

The effective collisions with the other bending mode result in

o0
1 Z Cm;,m;—zg Gmy
Qal¥ (v1) = = No P& Bupnyn® m=d (3.50a)
z qmy

my=0

and
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o
1 p sz,m2+22 Gmo
Qul? () = < No Pe® Bupin,-1? mIe . (3.50b)
' Z:;O Gy

Fourthly we have to consider the excitation process in which the valence
quantum is obtained from two of the four available bending modes, each giving
one quantum, This process is then described by six cross-sections. It is clear that
the mutual orientation of the respective normat codrdinates given by the rotatio-
nal codrdinates is not the same in each combination. Let us begin with the ex-
change within the considered molecule. Here the quantum numbers of the
valence mode and the two bending modes each change by one. The remaining
five modes do not change so that the integration of these modes gives unity.
We find then for the asymmetric matrix element the following expression:

L cos T r
M (v) = [V,,,,O %2 sinh (“ c;s —1> €§2cosh (“ﬁc_;’i_f) g +

. al cos I . .
Veo® §2 sinh (———-——2———) } ads cos I (ads sin I'1)2 cos By sin P

[hmo‘F])}lfz[ hmie rgg{ Az,

1;2
y— ] 1 Pra .

47?'[4.21’2 4‘”,(,&2112
Again the rotational wave functions cancel when we calculate the effective
collisions, so that the further mathematical treatment of the effective collisions
runs parallel to eqs. (3.44a) and (3.44b). But now in the Maxwell-Boltzmann
distribution of the rotational codrdinates we only have the following integral:
20 @ v

1 " 8
— int I 2 I sin 9y ddy dgpy = —.
4Wf/ sin® I'y cos? I’y sin 91 ddy des 105
o 0

We must average over sin? 81 cos? $1, which gives § and then we find for the
effective collisions

1
Qa¥ (v1) = 0 No Biyny+12 Crngyomig-12 Crggrmzy—12 Pe? (3.51a)

and

Qa¥ (n) = ——

105 No Bno,no—lg leo’mlo+12 szo,m20+12 Pez. (3.51b)

Next, we consider the possibility that the valence quantumis supplied by one
bending mode of the considered molecule and by one bending mode of an
incident molecule, each giving one quantum. We find for the asymmetric matrix
element



. al cos I'y al, cos I's
2 sinh ( 3 M) 2 cosh (—2-——)

Ma.VI (1’1) == [Vooo

Lcos I'
a 2 ——{) 2} a3A2 COS F1 A32 sin I'l C()Sﬁl sin Pz COs Bz

/A
(—A—;) Veol %2 sinh (

k(no+l)]1/2{ hmio ]1/2[ hmy

132
4«,&292] Yrt 2.

: 417[.011!1 4 nave
By studying all orientations in the effective collisions we find with the Maxwell-
Boltzmann distributions the following two integrals for the two colliding mol-
cules:

2w
1 2
. —_ cos? I'y sin? I'1 sin ¢ ddy dgy = —
Q) 4170[/0 e AT
0 0
and
20w
) 1 , 2
(i) —_ sin? I'y sin &5 ddy dgpz = -,
4 3
0 ¢

In the calculation of the effective collisions there are many vibrational states m;
for the incident molecules. Therefore it is convenient to describe each incident
molecule by the average state »1 of all colliding molecules and replace Cinymy—12
by

€0
2 Coym—1% gmy
my =0

<o

n Gy
In this way we then find for the effective collisions

o0
E Cm;,m1—12 qmy

1 -
Q" (1) = 45 Vo Pe By ny+1% Crmggomyp-12 20— (3.52a)
o
and
vi 1 9 miz———o Cmpmys1® gmy
Q1 (n) = 5 No Pe Buyn,~12 Cuiygymypp+t o . (3.52)
20 9m1
my e

With these results it is now easy to write down the effective collisions for the
other three combinations in which each of the two colliding molecules gives
-one quantum. They are
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o6
2 Cmymy-1% gm,

1 -
QaVH (‘Vl) == Zg Ny P2 Bno,no+12 me,mxo—lz m=9 . (3.53?)
EO Gms
my=
and
T Comymyer?
1 . - ma, M+l sz
Q&Vﬂ (1’1) = "4_5 No P2 Bno,no—lz me,mlo-z»lz =0 oy » (353b)
E Gms
ny=0
1 9 9 m12=0 le’ml—lz le
Q71 (1)) = YT o Pe 2Bn,,ny+12 Crngg,map—12 - (3.54a)
20 Imy
my =
and

o0
2 Cmymn®qm,

1
Q¥ () = 5 Mo Pe2 Buyny-1® Cogyymgyr1? =2 _ , (3.54b)
p qmy
my=0
> 2
C ~1% qm
1 -~ ma,m2 2
QaT* () = 7 No P Bupinyr® Cruzgmzgr? mz0 (3.55a)
20 qmy
=
and
1 m?xo sz,m2+12 qmy
QalX () = 1z No Pe® Bugny1® Cmggomyptn® - . (3.55b)
20 Gy
g ==

Finally, we have the probability that the valence quantum is obtained from the
two bending modes of the incident molecule, each giving one quantum. For
this case the asymmetric matrix element turns out to be

r
M X(v1) = [Vm" % 2 sinh (“z‘ C;’s J)g § 2 cosh(flic—zs—ﬁ) g +

A5\? { Lcos I
(A_l) Veo? § 2 sinh (g—c;)f——l) ﬂ ada cos I't (ads sin I'9)2 cos Ba sin B2
3

Iﬁ(n,,+ 1)]1/2[ by }‘/2[ hma

11’2
. l hr1 Pra .

darpyvy 42y

We find for all orientations of these two colliding molecules the following two
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integrals:
2 =
. 1 . 1
&) — [ cos? I sin &1 ddy dgy = <
4 | 3
o 0
2n @
. 1 [ 8
(i) i ./ v/ sind I'y sin 92 dds dgg = 5
[

The average value of sin 8 cos? s is §. The evaluation of the effective col-
lisions runs parallel to egs. (3.52a) and (3.52b). We find

oo o0
2 le,mrig gml ZO sz,mg—lz Gmy

1 ad o
QaX (1’1) = Zg NQ Pez Bno,ﬂo.{-lz =0 pos my= =
Z‘J le 2 qu
my=0 m=0
and (3.56a)
&0 50
1 ) > le,mﬁ-lz Gmy % sz,m2+12 Gy
Qu¥ (v1) = 5 No Pe? Buy,nr® ™=—, m=0___
2 gm > qmy
my=0 r=0

(3.56b)
3.11. Relaxation equation for the symmetrical valence vibration

In the preceding section we have studied the various ways in which the valence
mode of a considered molecule can be activated or de-activated. As we have
seen it turns out that there are ten different probabilities. The probability of an
effective collision is very small, so that we can take the sum of these ten probabi-
- lities for calculating the effectiveness of a collision. From these probabilities we
find the corresponding effective collisions per unit time. If we now multiply the
difference between the activating and de-activating collisions by the energy
quantum we find the amount of excitation energy supplied per unit time to the
valence mode of one molecule. By considering the sum of all molecules we shall
find the relaxation equation for this excitation process.

However, mathematically it is found more convenient to treat the different
excitation processes separately, so that we find each time the amount of energy
supplied per unit time to the valence mode of all molecules. Then, by taking
the sum of these results, we shall finally have the total rate of energy transferred
into the valence modes of all molecules. Let us start with the sum of all mole-
cules excited in accordance with process I of section 10 of this chapter. We get
dEy! 1

& % Ny Pe% hvi §Bo,12 C2,0%qo2+ Bo,12 C3,12q03 +... Bo,1% Ciny,my—22Gom,

[~ 20 &
+ 31,22 Z le,ml—”zg gimy + e ™ E EOBn,ﬁ~12 Cynl,m1+22 Qnml . (3-573)
n=1 py=

my==2
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where gam, is the number of molecules per unit volume with the vibration »;
in state » and the vibration » in state m;.

This series can be simplified by using the foliowing relatlonshlps obtained
from eqs. (3.45a). (3.45b), (3.46a) and (3.46b):

Bﬂ,'n-fwlg = (75‘5” 1)30,12 » (3.583,)
By,n—1%2 = nBp,1?, (3.58b)
Cony mer2? = Fm+2) (m +1)Co 22 , (3.59a)
le,ml g2 = + my(mm— 1) CO 2 (3.59b)
We obtain ’
dElI 1 { o€ =}
== = Ny P2 B2 Cop2 vy 3, % L (mi?—dnmy— 2n— mi) gum, ¢ -
dr 35 R0 =0

(3.57b)

Since the molecules are at any time distributed according to the Maxwell-
Boltzmann distribution law (cf. appendix II), we write

Gnmymgzp =

No exp {—(n+Dho1 /KTy —(my - PhvefkTa— (me+ Dhve [k Te—(p+Hhvs/kTa}

w0 ] oo o>
Y X X ¥ exp{—(nt+Dhv/kTi—(mi+Hhva/kTa—(me+Dhva/kTo—(p-+Dhvs/K T3}
n==0 m =0 my=0 p=0

(3.60)

This is the number of molecules per unit volume with the vibration »; in state #,
the vibration vz in states »n and ms, and the vibration »s in state p. With the
aid of this expression we derive

i h
Y m® exp(—— e ’pz)

n1y=0 kTZ
2 E ml qnml = No (3.61)
n=0 m=0 § exp( — T-]:iiz%
my =0 kTg
If we use the following abbreviation:
oo mihve 1
S foed P et N
iy P ( KT ) 1— exp (—hva/kTs)
eq. (3.61) becomes
kT3\? dZS/d’vz 1 + exp (hva/kT?)
= N, No. (3.62a
nzo m120 i Gmy "( h ) S {exp (kTa—tpe 0 0%
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We derive similarly

x® ® - 4 Ny
—d == , (3.62b
2 B, T = KTy — T} exp (kT — 137 02
® = — 2N,
— 2n = , 3.62¢
ngo m;Z#O Fums {exp (hvi/kT1)— 1} ( )
o W — -No
— = . 3.62d
2 B, T KT — T} (3.62d)
Eq. (3.57b) becomes with these expressions
dEI 1 1
T = N2 P2 Boi2 Coo2h
dr 35 e e e e e (hve/KT) — 1}2
1 hwa/KT:
+ exp (hro/kT) (3.57¢)

~ {exp (hva/kT2) — 1} {exp (hvy/kT)— 1})
By rhultiplying the first term on the right-hand side by

1 + exp (hvo/kT)
1 + exp (hvo/kT2)

and by using the relationship 2»2 = »1 we derive from eqgs. (3.40a) and
(3.46b) Co,z2 == % C0,14 and find

dEy7 1 exp (hvs/kT2) + 1 :

== — Np Po? By,1% Co 14 ET2) — Ei}, (3.57d

dr 707070 TN O exp (hvafkTz) — 1 {EiTe) — Ea}, (3.57d)
hvi N,
where ET3) = "1 o

exp (hvi/kTe)— 1

hvi N,
and E(Ty) = ¥ o

exp (hvy/kT7)— 1

represent the respective equilibrium energies of the valence vibration for the
temperatures 7 and 7%.

The same expression for the rate of energy transfer will be found by conside-
ring the second excitation process, eqgs. (3.47a) and (3.47b), in which we con-
sider the other bending mode.

Next we take the sum of all molecules which are activated or de-activated
according the third probability, described for each molecule by egs. (3.49a)
and (3.49b). By substituting eqgs. (3.58a) - (3.59b) into the egs. (3.49a) and
(3.49b) we find
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[+ <]
| % (i —dmin—2n—my) gm,
Ol (v))— Qg H(v1) =1—5N0P32 Co,22 By 12 =0 _
Gmy

(3.63a)

If we use the Maxwell-Boltzmann distribution for all g, we can evaluate the
series and find

QQ:III('Vl)‘— QdIII('Vl) o

1 1 {exp (hvo/kT2) + 1} 2
= No Pe? Co,2% By, 12 — . (3.63b
15 0T TOT IO rexp (hvafkTs)— 132 {exp (hva/kTz)— 1} § (3.630)
The rate of energy transferred to all molecules is
dElIII o0
Fralie Y qu {0ef I (v1) — QulTi(vy)} hv: . (3.64a)
n=0
We finally find
dEJIIT ]
L = L N2AP2Bo 2 Cao?h
dr G No? Pe? Bo,i? Co,2% hvy
[ 1 B 1 + exp (hve/kT3) ] (3.64b)
{exp (hve/kT2)— 132 {exp (hva/kT2)— 1} {exp (hvy/kT)— 137

By comparing this result with eq. (3.57¢) we find at once

dEyITT 1 exp (hve/KTs) + 1
J— e g— N P 2 B 2 C 4
dt 3000 PO O ek (hve/KTe) — 1

i {Ey(T2) — Ei} (3.64¢)

The same result will be obtained by considering eqgs. (3.50a) and (3.50b) over
all molecules.

Next, we shall continue to evaluate the energy rates associated with the last
six excitation probabilities, numbered with the indices V to X in the preceding
section.

The evaluation of eqs. (3.51a) and (3.51b) over all molecules is straight-
forward, We then find

vV w0
SE_Vl ! g Z 2 Z (B'n,nﬂ.z le,m1—12 sz,mz—l2

n=0 my=20) py==0
— By, n-12 le,m1+12 sz,m2+12) Guinymsy § , (3.65a)

o Pz
& 105 Ne Bl

which reduces to

dEV 1
o N, Py hvy Boa? Coit
& IOSNO > hvy By,1% Co,1

% > 2 2 (mumg—nmm—nmg—n) qnmlng . (3.65b)
n=0 =0 =0
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By using the Maxwa]l—Bo]tzfnann distribution of eq. (3.60) we find for the series

o 0o o0 No
= , 3.66
n§0 méo ng=e e qnmymy {exp (hv2/kTz) — 1}2 (3.66a)
£3 5o 2 (3.665)
— 2nm == , (3.
n=0 m=0 mp0 tnmime = o (/KT — 1} {exp (hva/KT2)—1}
oo o0 o0 ‘—NO
—n o . 3.66¢
P2 ,Eo »g‘;o nmime = {exp (/KT — 1) (3.66c)
With these expressions eq. (3.65b) becomes
dEVv 1
I = N2P2 2 4
i 105 Ng® Pg? Bg,12 Co,1% hvy
1 [ - exp (hva/kTy) } (3.650)
{exp (hvo/kT2) — 132 {exp (hv1/kT1) — 1} {exp (hve/kTe)— 1}~

Again, comparing this result with eq. (3.57c) we find

dEyY 1 exp (hva/kTs) + 1
e = No P Bya®Coat
dt 105 o L¢ 0,1 0,1 exp (h’l’z/sz)"‘ 1

g {Er(T2) — E1} .

From egs. (3.52a) and (3.52b) we find the rate of energy transfer for one
molecule to be

hv { QY (v1) — QaVI(n)} =
| 2 (rmemi— nmyo— nmi— n) qm,
e No Pe? Bo,1? Co,1® hvy ™2 = . (3.67a)
2 {{ml

m=0

Substituting for g, the Maxwell-Boltzmann distribution we find
hv1 { @V (»1) — Qa¥!(v)} =

1

75 No Pe® Bo,1% Co,1* hvy

[ Mip— R

1
{exp (hva/kTo)—1} —mit g — nJ . (3.67b)

By taking all molecules we obtain

dE"1 1 T3
P NoPP2Boa2Conthny £ X gum
dt 45 n=0m =0

[ Mie - n }
(expUmalkT)—13 "]
(3.68a)

The further evaluation runs parallel to £1¥ and so we find
dEYT 1 {exp (hve/kT3) + 1

T = L N,P2Boi? Coqt
de 45 0 e O 0N Fexp (hve/kTe) — 1

% {Ei(T2)— E1}. (3.68b)
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It is clear that combinations of egs. (3.53a) with (3.53b), (3.54a) with (3.54b),
and (3.55a) with (3.55b) will lead to the same result as the combination of
egs. (3.52a) with (3.52b).

Finally, we shall evaluate Qa*(v1) and Qa¥(v1) for all molecules. The rate
of energy transfer for one molecule is obtained from the eqs. (3.56a) and (3.56b)

hv1 {Qa%(v1) — QaX(v1)} =

% on
Y X (mume—nmi— nme—n) gmm,

”‘I_Nopez Bo,1? Co,1# hyy { =02t = = (3.692)
45 p! qmy > my
=0 my=0
= Ny P2 Bos? Coxt by [ ! — 2 —n
a5 e O O o b (hvafKT2)— 1} {exp (hwa/kTo)— 1}
(3.69b)

We obtain for all molecules

dEX 1 o
Y NoP2Bo 12 Conth
ar 75 NoPe? Bo,i* Cox ?’120%
[ 1 2n

{exp (hvo/kTo)— 132 {exp (hva/kT2)—1}

n} , (3.702)

which results in

dE X 1 hva/kT2) + 1)
_.} = — N, PeZ BO,12 C0,14 }exp( 7'2/ 2) -+ (
dr 45 (eXP (hva/kT2) — IS

{E(T2)— E1}. (3.70D)

The total energy transferred per unit time to the valence mode of all molecules
as the result of the ten excitation probabilities in each collision is simply obtained
by taking the sum of the ten terms E1, i.e. E17~¥. However, as we shall see in the
next section, the symmetric valence mode will also transfer some of its energy
into the asymmetric valence mode. Therefore we have to substract this energy
exchange from the calculated excitation energy.

dE \exp (Ava/kT2) + 1
71 0.216 Ny Pe? Bo1% Co,1t exp (hva/kT3) + 1)
d exp (hva/kT2)— IS

(BT B}~ S0 (BT

3.12. Effective collisions causing the excitation of the asymmetric valence vi-
bration

Since the energy quanta of the » vibration are much larger than those of
the other vibrations, direct excitation will have negligible probability. We find
also for this vibration an indirect excitation process. This mode will obtain
most of its energy from the other vibrational modes. During a collision each of
the six available modes can transfer a part of its energy into the »3 mode. How-
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ever, the largest excitation probability will be found when one quantum of the
v3 vibration is exchanged with one quantum of the »; and one quantum of the
vy vibration, while the excess energy is exchanged with the translational motion.
The other probabilities are negligibly small. In other words, we find that the
energy of the asymmetric vibration is supplied by the energy of the symmetric
valence vibration and of the bending vibrations. The energy of the valence
vibration is in turn obtained from the bending vibrations. The bending vibra-
tions, as we know, are directly excited by the translation.

It turns out that we have to consider eight excitation probabilities which
describe the whole excitation process. These probabilities are very small com-
pared with those for the excitation of the bending and the symmetric valence
vibrations, so that this excitation process still has to start when the other
vibrations have already reached the translational temperature.

Let us for our first process consider the case that the energy exchange is
confined to the considered molecule. Again we start from the general expression
for the effective collisions, as given by eq. (3.31), and evaluate the asymmetric
matrix element given by eq. (3.8b). The quantum numbers of the »1, vg and »3
vibrations change by one. The remaining five vibrational modes are unchanged,
so that the integration of eq. (3.8b) over their normal codrdinates gives unity.
By using the four potential functions of eqs. (3.13a), (3.13b), (3.13¢) and (3.13d),
we find for activation

\ Leos I Leos I
Mt (v3) = [VMO ;2 sinh (2 ~~~~~~~~ C;S 1) Z} 2 cosh (gcgi_z) é +

)
al cos 1"'1) é
)
hno }1/2{ hmlo

Veo® % 2 sinh( } a3 Az cos? I'y As?sin I' cos B

[h(Po*Fl)}l/z
darpuovs

a
} Q}{‘?‘l ift}?’g s
2

where M,/ (»3) is the asymmetric matrix element of activation of the »3 vibration
for the first type of process. On account of the large average argument of the

5

al cos I )

: . . . falcos I
hyperbolic functions we may replace sinh (—2— by cosh(

and assuming again that the constant potential factors are of the same order of
‘magnitude, we find

M H(v3) = o3 4a As? sin I'y cos? I'y cos By

i/ 1y 11/s
{ﬁ(pt)%—l)} { finty } { kmlaJ Vo drt vz, (3.72)

darpavs 4ruivy 4 pgvy

The integration over all rotational orientations gives
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2 &

1 7 2
o / f sin? I'y cost I'7 sin §1>d?91 dgy = 5
o ¢

Further, we substitute for cos? gy its average value, which is equal to 4. Again
we see that ¥, and the rotational wave functions cancel. The calculation of the
cross-section is straightforward. We notice, however, that the energy of one
quantum jump of the asymmetric valence vibration is larger than the sum of
one quantum of the »; vibration, and one quantum of the vy vibration, so that
we do not have the case of exact resonance encountered in section. 10, The excess
energy has to be exchanged with the translation.
We find for the effective collisions

Qal(vs) = gls‘ Ny Py? Dﬂ)o,pfﬁlz Biyn,-12 Congyyigp-1* (3.72a)
and
Qal(vg) = 3~15 No Pa® Dy,,p,-12 Buying+12 Cinggomygi1? (3.72b)
where
Dy, p,+1% = a‘a‘Agz[M] (3.73a)
4 povs
and
hp,
Dy, p,-1% = o243? {m] . (3.73b)

In the solving of eqs. (3.72a) and (3.72b), P, and P; are calculated in accor-
dance with eq. (3.31) by substituting AE = 4E;s, 4E3 = hvs— hvi— hv
being the excess energy transferred by the translational energy.

Since the bending mode is degenerated, we can for our second process take
the other bending mode. This will, of course, give the same value as that found
for process I, or expressed mathematically

1
Qall(v3) = 35 No Po? Dy, p,+1% Buyn,-12 Congg,mpp-12 (3.74a)
and

1
Qa'l(vs) = 35 No Pa? Dyp,,p,~12 Buy,ng412 Cmgy,mpptr® s (3.74b)

For our third process let us consider that the energy quantum #vs is sup-
plied by one of the bending modes of the incident molecule. The evaluation
of the effective collisions runs parallel to the foregoing processes. We find for
the integration over the rotational cotrdinates of the colliding molecules



55

2@ =
17 1
(1) 4—47 d/ f cos? I'y sin &y dd d(}71 == g
g 0
and
20 @
(i) L in? I'p sin ¥ dda d _2
1 ‘Tn’j S 2 SIN ¥2 2 (pzwg.
[

Furthermore, just as in the substitution of eq. (3.72) in eq. (3.31), we have
to average cos? B, which gives 3. When we work out the effective collisions
according to this process we notice that each of the incident molecules can be
in any state mi. Therefore we have to replace Ciy,m;—1% by the average value
of all matrix elements. Thus we find

o]
2 Coyymy-12 G
1 ~ 1.7 1
Qal"(v5) = 52 No Pa® Diypy1® Bug,nyt? m=e (3.752)
2 le

my =0

and

®
E le,mﬂ-lz qm,y

1 -
QaI(v3) = s No Po2 Dy, p,1% Buyng1? ™0 (3.75b)

o0

Z Gmy

m1=0

If for our fourth process we consider that the bending mode of the incident
molecule is degenerated, we find analogously

o0
Y Cuymy1? qm
1 -t 2177 2
QaIV('VB) = Ig No Pa2 Dpo,poﬂg Bno,ua-—lz - % (3.763)
Y qmy

=0

and

o0
C 2
1 Z_ my,my+1° Gmy
QalV(rg) = 13 No Pg? Dy, p,~1% Bn,,n 12 3370,,_,_5_, —+  (3.76b)
E qmz

=0

A fifth possibility is the supply of the valence quantum by the incident
molecule, and of the bending quantum by the considered molecule. The matrix
element according to this probability becomes, by using the potential functions
in eqs. (3.13a), (3.13b), (3.13¢) and (3.13d)



—_ 56 —

arto = [V focos( L2 T oo (£ 02 ) L

2
A\? . al. cos I's .
R Vo ¢ 2 sinh — adAz cos I'z A3? cos I'y sin I'; cos By
3
Ao+ 112 [ HBns 12| Ami, 1/
{ (po )} o [ 1o ] . (3.77)
4 pavs dapivy 4 mpavy

As usually we substitute this in eq. (3.31) and integrate over all rotational
codrdinates. This integration yields the product of the following two integrals:

P2
1 2
@) — / / cos? I'y sin? I'y sin &y ddy doy = —
4 | 15
0 o
and
273' w
.. 1 . 1
(ii) — cos? I'y sin P9 ddy dea = - .
47 J o) 3
0 ¢

Furthermore in eq. (3.77) we must substitute the average value of cos? g, which
is equal to .
The evaluation of the effective collisions according to this process gives

ol +
B _12 q
1 n§ 0,1 »
Q¥ (vg) = = No Pa? Dy, p,12 Conygumyy12 =0 (3.78a)
2 qn
n=0
and § 2
B
1 = n,n+1° 4n
Qa¥(vs) = ] No Pa? Dyp,,p,-1% Cinggymyg+1® __0—00__ . (3.78b)
5 o

If we now consider the other bending mode for our sixth process we find that
the effective collisions are given by

20
; By n1?
1 ;: n,n—1°qn
Qa¥(v3) = 75 Vo Pa® Dugyppia® Cmagymzgm1® e (3.792)
Eo Gn
[
and
§] Bpnii?q '
1 ~ #na+1" Yn
Qa¥¥(vs) = B No Pg? mep,,-lz Cimgpyngy+1° "_3.00—_ (3.79b)

2 In
n==0
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For our seventh and eighth possibilities let us consider that the two quanta
are both supplied by the incident molecule. The matrix element becomes

{  faLcos I
2sinh| ———; -+
. 2
A

Lcos I’
b 2—- Vcoo 32 sinh (a—z___g) Q QSAg COS Fg Asz CcOS P]_ sin Fg COs )82
3

Lcos I
MY (v3) = {Vagn %2 cosh (a : —r})

4

[ﬁ(po+1)}‘/2[ hin T/%[ hm1o
darpgvy

]% 1 ra.

4 vy 4arpaTy

(The matrix element of the eighth possibility can be found analogously).
In working out the effective collisions we have to evaluate the product of the
following two integrals for the rotational codrdinates:

2 @
1 77 1
G) o / j cos? I'ysin B dfh dps =3
Tr/
o 0
and 2w
~or 2
ii P in2 I’ 2 Iy sin 92 d¥2 dps = —,
(ii) ™ J/ ,-/ sin? I'y cos? Iy sin Pg dde deps T
¢ o

We then find for the effective collisions of the seventh process

1 2 Bn,n-lz gn le,ml—lgqml
Qa"M1(v3) = 7= No Pa? Dy, pyia® "= m= (3.50a)
2 ‘?n Z QM;
n=0Q my =0
and w -
1 2 Bunii’qn X le,na1+12qm1
Qa"17(vs) = 72 No Pa? Dy, p1 = m=0 (3.80b)
2 qn h) dmy
#=0 . m=0

If we now consider the other bending mode of the incident molecule, the
eighth process will yield

v 3 =
2 Bun-1%qa Zocmz,mg-dqu

1 - -t
QuV]II(-yS) - Zg Ny P2 Dp,,,poﬂz n=0 - m= - (3.81a)
n§0 n m22=0 m
and . -
1 ; Bnn1® gu 2_ sz,m2+12Qm2
QdVIII(rps) — E Ny Pg Dpa,Po—lg r=0 - =0 - (3.81b)
2 qn 2 gm
=0 my=0



3.13. Relaxation equation for the asymmetric valence vibration

The relaxation equation for the excitation of the »3 vibration can be found
by considering the effective collisions of the preceding section for all molecules.
This procedure runs for a great deal parallel to the evaluation of the relaxation
equation for the symmetric valence vibration. The principal difference is that
now we have at the same time also an energy exchange with the translation, so
that P,2 is smaller than Pg2.

Let us work out in detail process I for the excitation of the asymmetric valence
vibration. The rate at which energy is transferred to all molecules will be

dEs! © 0
a 2 5_‘. S Gnmyp {Qal(¥3) — Qal(vs)} hvs. (3.82a)
#=0 mp=0 p=0
By using egs. (3.72a) and (3.72b) this becomes
dEgl 1
i No hvs 2 Z Z Gnmyp {Pa® Dyp,p+1% Brn-12 Coy,mq—12
dr 35 n=0 m=0 p=0

Pg? Dy,p—12 Bp,n+1® Comy,my+1%} . (3.82b)

This series can be simplified by using eqgs. (3.40a), (3.40b) and (3.58a), (3.58b).
Furthermore we use the following relationships obtained from eqs. (3.73a)
and (3.73b):

Dy,pi1? = (p + 1) Do,22 (3.83a)
and E
Dyp,p1% = pDo,2?%. (3.83b)
We shall then find
dEs! 1 ® o
— == No P By 12 Co12 Do i2hvs | 2 2 X {mmp+1)
dr 35 n=0 my=0 p=0

— pn+1) (mr+1) e2BkT} oy |, (3.820)

where we have used eq. (3.31).
Since the vibrations have a Maxwell-Boltzmann distribution we can easily
evaluate the series in eq. (3.82c) by using eq. (3.60). Then we find

§ %": § nmip gumyp =
n=0 mi=0 p=0
No (3.84a)
{exp (hv1/kT1) —1} {exp (hvs/kT2) —1} {exp (Avs/kT3) —1}’ ’
o0 o0 w No .
2 B, B ey = KT — T} fexp Gk — 1} 34D
o0 oo -} ’ No
nm == N 3.84
2 2 B Py = e KTy — 1 exp (kT — 1§ 040
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IR No 3.84d
B By B drme = T~ Tiexp Gkl — 17 o4
=) o o No

= . 3.84e
22 Eo PAnmr = texp (hvs/kTs) — 1 (3.84¢)
With these expressions eq. (3.82c) becomes
dEd 1 hvi /KTy -+ hve/kTs + AE -1
= _ No Py2 By,12 Co 12 Dy 12 {exp (in/kT1 + hro/kT2 + AE3/KT) — 1
dz 35 {exp (hv1/kT1) — 1} { exp (hve/kT2)— 1}

[Es (T, T1,To)— Es], (3.82d)
where E3 = actual energy of the asymmetric valence vibration, and .

No h'l«'g .
{exp (hv1/kT1 + hvo/kTe + AE3/kT)— 1}

E3(T,T1, To) =

this being the energy for the asymmetric valence vibration at the temperature
determined by the translation as well as by the bending and symmetric valence
vibrations. This temperature can be represented by T, such that

G hvs/k
b /KTy + hvs/kTe + AEs/KT'

However, since this excitation process starts after the other vibrations have
reached the translational temperature, we find T equal to the translational
temperature 7.

Just as we have evaluated the relaxation equation associated with process 1,
we can evaluate each of the other seven processes. We shall then find that,
apart from a numerical factor, these equations are all of the same form as
that of process 1. These numerical factors are also found in the corresponding
effective collisions.

By taking the sum of the results for the eight excitation processes of the
vg vibration, we finally find the energy transferred per unit time:

dE: hri/kT 4 —

028N, Py2 By 12 Co,12 Do 32 {exp (hv1/kTs + hvo[kTs 4 AE5/kT)— 1}

ds {exp (hv1/kT1) — 1} {exp (hve/kT2) — 1}
[Es(T)— Es], (3.85)

where E3(T) is the energy of the »3 vibration at the translational temperature.

3.14. Relaxation times

The theory presented in this chapter for the calculation of the transfer of
vibrational energy provides also the relaxation time for the éxcitation of the
three vibrations. From the energy transfer equations (3.41c), (3.71) and (3.85)
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we see that the energy of molecules is connected with temperature hysteresis,
the value of the temperaturc depending also on the past value of the energy.

If one supplies energy to a gas, this energy is first supplied to the transiational
and rotational degrees of freedom, so that the temperature will at first be re-
latively high. Then, during a much slower process, the vibrational degrees of
the molecule absorb their share of the energy at the expense of the translational
and rotational energies. Consequently, during the period of excitation of the
vibrations the translational temperature will decrease toward an equilibrium,
which is of course also the equilibrium value of the vibrational temperature.
In other words the vibrational excitation has a time delay of which the charac-
teristic value is called the relaxation time. For the three vibrations these values
are as follows:

symmetric valence vibration

[ exp (h’Vz/kTg) -+ 1% -1
= 10.216 Ny P.? Bg,1% Cp,1% s 3.86)
712 { o Pe? Bo,1% Co,1 § exp (hna/kT5) — 1 (3.86)
bending vibration
( 1-1
Ty == {0.33 NoP 2 AEs) Cp 12 3 exp (Ava/kT2) — 1 % J , (3.87)
asymmetric valence vibration
Ty = [0.28 No PY(4E3) By,12 Co,1% Do,1?
{exp (hvl/le ~%~ k?fz/kTg + AEg,/kT)—- 1}} -1 (3 88)
{exp (h‘i’l/le) - 1} {exp (}‘t’&’z/‘kTg) e 1} ) ’

The numerical values of the relaxation times are given in table IV as functions
of the translational temperature.

TABLE IV
Relaxation Times
T 712 [sec] 7o [sec] 73 [sec]
300 3.7x10-5 1.2x 104 3.8x102
400 3.5x10-5 8.8 < 106 7.5x10-3
500 3.1x106-5 1.9x10-8 2.6x10-3
600 . 27 x10°5 6.4 107 1.1x10-3
700 241078 2.7x10-7 5.8x10-¢
800 2.1x10-5 1.3 x 107 38x104
900 1.8 103 7.9x10-8 2.4x 104
1000 1.6 X 10-5 5.1x10-8 1.6x104




Further, we have seen in this chapter that all energy is first supplied to the
most easily excited vibration. The other two vibrations obtain their share of
the energy from this vibration. Similar results are expected for other polyatomic
molecules which may have many vibrational frequencies. The vibrations with
higher frequencies will then be excited indirectly at the cost of the vibration
with the lowest frequency and only the small difference of energy quanta will
be exchanged with the translation. But, even in an exchange among the vibra-
tional modes, one can find very small transition probabilities, as we have seen
for the excitation of the asymmetric valence vibration.
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CHAPTER 4

EXPERIMENTAL PROCEDURE FOR MEASURING THE DENSITY
PROFILE BEHIND SHOCK WAVES

4.1. Shock waves

In the preceding chapter we have studied theoretically the energy transfer
among the vibrational degrees of freedom of a suddenly heated gas. Such a process
can be realized with shock waves produced in a shock tube. The construction
of a shock tube 24-25) is illustrated schematically in fig. 3a. Basically,
it consists of a high-pressure and low-pressure chamber, separated by a
thin diaphragm. The low-pressure chamber contains the test gas in the
initial condition. Compressed helium from a high-pressure cylinder is forced
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Fig. 3. a. Schematic representation of the shock tube, the length of which is set out along
the x-axis of the three following graphs; b. gas flow along the shock tube as a function of
time; ¢. pressure distribution along the shock tube at time #;; d. temperature distribution
along the shock tube at time ;.
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into the high-pressure chamber of the shock tube until the diaphragm
bursts. As the material of the diaphragm is highly stressed prior to ruopture,
it rapidly flattens against the wall of the tube, After the diaphragm has burst,
a compression wave moves into the test gas. The compression wave causes an
abrupt, steep transition in the pressure of the test gas, i.e. it forms a shock
wave, At the same time the expanding high-pressure gas moves also into the
low-pressure chamber. ' ‘

Usually the motion of the flow is represented by an x-¢ diagram, as shown
in fig. 3b. Here x is the codrdinate of a point in the long axis of the shock tube
and ¢ represents the time. The regions indicated by 0, 1, 2, 3 and 4 are respecti-
vely low-pressure gas, test gas behind the shock front, the expanded high-
pressure gas, the expansion fan of the high-pressure gas, and finally the high-
pressure gas still in its initial condition. The surface separating the two gasses
is called the contact surface. Figs. 3¢ and 3d show the pressure and temperature
distribution along the shock tube at a time #; after the diaphragm has burst,

The discontinuity conditions at the shock front can be derived from the prin-
ciples governing the conservation of mass, momentum and energy 28), If we
consider these principles in a coOrdinate system that is moving with the shock
front, so that the flow is reduced to a steady flow, we have the following
equations:

mass 1 potle == pslis 4.D
momentum: po + popto? = pr + pstts® 4.2
energy i CpTy + due? = CpTs + dusl, 4.3)

where p 1s the density, p is the pressure, u is the velocity, T is the absolute
temperature and Cp is the specific heat at constant pressure. The suffix o
indicates the initial state of the test gas, while the suffix s refers to the state of
the test gas immediately behind the shock front.

For convenience, we restrict ourselves to an ideal gas with constant specific
heat:

CpT=——-RT=—"_5S= ", 4.4)

where v is the ratio of the specific heats at constant pressure and constant
volume, i.e. Cp/Cy.

Next we shall introduce the shock-strength parameter &, which is equal to
half the relative velocities of the gas on both sides of the shock front #7):

Ug = Vo (1 + 8)
and
s = vo (1 — &). (4.5)



— 64—

From eqs. (4.1)-(4.5) we can derive the following expressions:

Po 1—‘“8

2 , 4.6
Yt (4.6)
Po_ 1—ve 4.7
P 14ye’
L = (1—ye( + ) (4.8)
T, (1 +y(l—e '
Further, the Mach numbers defined by u/c become
1
Mg TE (4.9)
I—ye
and
1 —
Mg —_—_° (4.10)
1+ ye

Since all these physical quantities are positive, the shock-strength parameter
is limited by the following restrictions:

0< &< Ify. @.11)

At the instant of bursting of the diaphragm, a centered rarefaction wave
propagates into the high-pressure chamber. From the unsteady isentropic ex-
pansion the following relationship can be derived. By considering Newton’s law
of motion, Fds = mdu, for a one-dimensional fluid element of thickness dx
during the passage of a sound wave, we get

dpdt = —pdxdu.

1
We substitute df = - dx, where ¢ is the velocity of sound in our gas, and find
¢

dp = —pedu. (4.12)
Poisson’s equation of state gives
d ar
¥_r, (4.13)
p y—1 T
By using eq. (4.4) one finds from egs. (4.12) and (4.13)
2
——————— ——dc +du =0,
ya—l

where the suffix 4 refers to the high-pressure gas. This integrates to

- ¢ + u = constant . (4.14)
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The latter equation will be applied in region 3 in order to relate the pressure
in region 4 to that in region 1.

From eq. (4.4) we find
P4) (54) 2yafys—1
WG
Applying eq. (4.14) we get

2 2
Cq — Co -+ us.
ya—1 ya—1

Further we know that the gas conditions across the contact surface are

P2 = ps
and

Uz = us,

where u; is the velocity of the test gas behind the shock front, but relative to
the shock tube. Hence the equation relating the pressure in the high-pressure
chamber to that behind the shock front is given by

Pa ( €4 Zyafya—1
ps 84—%(7/4—1)&) '
The pressure behind the moving shock wave can be expressed in terms of

the pressure before the shock front by eq. {4.7). The induced velocity u; =

uo — us imparted by the shock wave to the test gas can be obtained from egs.
(4.1)-(4.5):

(4.15)

2¢s ¢
{1 —yo)(1 + o)}'/e

Finally we obtain the desired result relating the strength of the shock wave
to the given initial conditions of the two gases in respectively the high-pressure
and low-pressure chambers

ps 1+ ye {1 — ye)(1 + e)}'fe 2yafys—1 “16)
po 1 —ye [{—ye)(1 + &} e— (ya— De cofes S

This equation relates the shock strength parameter ¢ to the pressure ratio
and the velocity-of-sound ratio across the diaphragm. It is clear that, in order
to produce strong shock waves, the ratio ¢,/cs must be as small as possible.
This can be ensured by using gases with low molecular weight, such as hydrogen
and helium, at high temperatures. In fig. 4 the pressure ratio pa/p, and the
temperature, density and pressure ratios across the shock front have been
plotted as functions of the shock strength parameter, both gases being initially
at room temperature. We have used y = 1.4 and y4 = 1.67. It is seen that with
shock waves very high pressures and temperatures can be produced.

g =
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Fig. 4. The pressure ratio pg/po and the temperature, density and pressure ratios across the
shock front plotted as functions of the shock-strength parameter e.

Although in practice we also have to make allowances for heat conduction,
frictional effects along the wall and variations of the specific heat with tempe-
rature, all of which we have neglected so far, the shock tube appears to approxi-
mate the theoretical performance reasonably well, at least for weak shocks.

The experiments were performed with a constant-area shock tube made of
steel and having a rectangular cross-section of 30 mm by 18 mm. The lengths
of the high-pressure and low-pressure chambers were about 1 m and 6 m respec-
tively. The rather big length of the low-pressure chamber was chosen in order
to improve the flatness of the shock wave and to decrease the effect of disturb-
ances due to the contact surface.

4.2. Some physical aspects to be considered when working with shock tubes

Shock waves have been used extensively to study the properties of gases at
high temperatures. The one-dimensional flow in a constant-area shock tube
provides unique possibilities for studying rapid physical and chemical processes
under controlled conditions of temperature and pressure.

In the preceding section we have seen that there is a sudden increase in
enthalpy across the discontinuity surface of the shock wave. The energy of flow



is here converted into random thermal energy. The gas behind the shock front
is, therefore, disturbed from its original equilibrium state. The effects most
likely to be important as the gas is heated are, besides the translational and
rotational excitation, firstly excitation of the vibrational degrees of freedom of
the molecules, secondly dissociation of the molecules into atoms, thirdly elec-
tronic excitation of the atoms, and finally ionization. However, as in our case
the enthalpy increase is not too large, we need only expect vibrational excitation.

In order to achieve a new equilibrium among all degrees of freedom of the
molecules several molecular collisions are needed. This number of collisions is
different for each degree of freedom. The translational degrees of freedom
obtain their share very quickly and arrive again at a Maxwell-Boltzmann
distribution with only a few collisions. It is also known that the rotational
degrees of freedom approach equilibrium with the translational energy very
rapidly by means of several molecular collisions. This does not hold for hydro-
gen because its moment of inertia is smaller than that of other molecules and
consequently the spacing between the rotational energy levels is larger. For this
reason the rotational relaxation time of hydrogen is larger than that of other
molecules. The relaxation times 7; and 7 for translation and rotation are for
most gases of the order of 10-% sec. or less.

So far the vibrational states of the molecule have not yet reached their final
equilibriom states. The time necessary for these vibrational modes to attain
equilibrium is known to be of the order of thousands of times that required
for translation and rotation. Since the vibrational relaxation times are some
orders of magnitude larger, we shall for our purpose consider translation and
rotation as external degrees of freedom having no relaxation time associated
with them.

The vibrational degrees of freedom of the molecule absorb their share of
energy at the expense of the translational and rotational energies. Generally,
during the period of excitation of the vibrations, the translational temperature
will decrease toward an equilibrium value, which is, of course, also the equi-
librium value of the vibrational temperature. However, as will be calculated in
the next chapter, the flow speed decreases in the period of excitation and
consequently extra kinetic energy is converted into thermal energy. Therefore
it might be possible for the overall effect of exciting the vibrations to increase
the temperature. It has been pointed out by Broer 28) that this happens with
sufficiently weak shock waves.

During the excitation the density will increase. At the same time the gas
moves over a certain distance, which we shall call the transition zone of the
vibrations. This density increase is studied in the present work.

4.3, Description of the instrument

The general principle of the system 29-39) is illustrated in fig. 5, which
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Fig. 5. Schematic representation of the experimental set-up for measuring density profiles by
means of a uniform light beam parallel to the shock front. The explanation of the symbols
used is given with fig. 6.

essentially reproduces the arrangement used by us. Light from a rectangular
source A (we used a mercury arc lamp with its axis normal to the plane of
the drawing) is focused on the slit S; by the lens B. The source slit S; has a
length of about 20 mm and a width of about 0.2 mm. S is in the focal plane
of the lens C. The light passing through the region D of the shock tube is
focused by the lens E on an inclined knife-edge S». If the inclined knife-edge S2
is displaced so far that it just intercepts the rays forming the image of Si, no
light will reach the photomultiplier F. This holds when there are no gradients
of the index of refraction in the gas traversed by the light beam. We neglect
diffraction effects and assume that the lenses are of good optical quality (free
from chromatic and spherical aberration and from astigmatism). On the other
hand, if the gas is disturbed in the region D, for example by a shock wave,
some of the light rays will be deflected, so that they may pass above the knife-
edge Sy and thus reach the photomultiplier F.

The windows in the shock tube consist of two plane-parallel plates, 2.5 cm
thick and 1.8 cm in diameter. Since we require a rectangular beam of light to
traverse the shock tube, there is a slit measuring 4 by 14 mm just outside the
left-hand side window. The slit can be adjusted very accurately with a worm-
wheel drive so as to make the long axis of the slit run parallel to the shock front.

The focal length of C is about 20 em and its diameter 5 cm. The projection
of the light rays through D in a plane normal to that of the drawing must be
as parallel as possible. This can be achieved by reducing the width of Sj, the
slit that represents our source. With such a set-up the maximum deviation is
about 5 x 10~4 radians; we shall see that this will give us a negligible measuring
error. The slit Sy uses only a small part of the image of the light source and we
can therefore work with light of a good uniform intensity across this virtual
source.

Fig. 6 is a sketch of the set-up in the plane XX and perpendicular to the plane
of fig. 5. PQ is the total length of slit .51, our virtual source. It is seen that the
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angle « subtended by half the length of the light source at the center of lens C
is approximately 10/200 radians. Every point of the source slit gives a fan of
rays which, after passage through the lens, form parallel beams making angles o’
to the optical axis, where 0 <C o’ < a. For a constant flux of light across the
window it is necessary that every point of the window can be reached by all
possible directions of light rays .Therefore the distance v between the shock
tube and the lens C should not be too large, and its maximum value is given
by (25—7)/v = 10/200, from which vpax = 360 mm.

~

Fig. 6. A sketch of the set-up in the plane XX of fig. 5. Lens B produces a real image (§1)
of course A in the focal plane of lens C. D is the region of the shock tube traversed by the light
beam. Lens E forms a real image (/) of S1 at the inclined knife-edge Sa. F is the photomultiplier
tube.

The diameter of lens E is large enough to catch all the light rays emerging
from D. Its focal length is rather short, namely about 50 mm. This leads to
a short image of the slit and makes it possible to use only a small part of the
photomultiplier surface. We have found that not every point of the photo-
multiplier has the same sensitivity, and therefore we use only the central part,
where the sensitivity is practically constant.

By moving a narrow slit of 1 mm width over the window of the shock tube
and observing the voltage indicated by the photomultiplier, we have checked
that the amount of light coming through the various points of the window is
nearly constant, the maximum deviation being not more than 3% of the average
value. ‘

We used a Du Mont photomultiplier, type 6292, which was adjusted so as
to produce an output proportional to the amount of incident light. We used
a Tektronix 545 oscilloscope which has high writing speeds and reproduces
the incoming signals faithfuily. If the photomultiplier tube is coupled to the
oscilloscope by means of a cathode follower able to respond to pulses -of
108 second, a time resolution of approximately 10-7 second is achieved.

The light source used was a General Electric BH-6 mercury arc, air cooled.
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4.4. Analysis of the method

At the moment the shock wave is passing through the parallel light beam,
the light is not only deflected by the density gradient just upstream from the
shock front but also refracted by the discontinuity of density in the shock front.
Refraction would not occur if we were dealing with a straight shock front,
whose narrow thickness could not affect the light rays.

It is known that the interaction of the shock wave with the boundary layer
on the wall of the shock tube (produced by the flow behind the shock) results
in a small curvature of the otherwise straight shock front near the wall. This
problem was studied theoretically by Hartunian 3'), who considered two-
dimensional flow with a shock wave and a laminar boundary layer, and ex-
perimentaily by Duff 32), The former by using the linearized shock relations
found for the shape of the shock wave

xs = 2Bs Vys, 4.17)
where B; is a complicated function of Mach number, Prantle number and
viscosity, and x;s and y; are the codrdinates respectively along, and perpendicular
to, the shock tube. For carbon dioxide we find from this equation B; = 0.024.

Because of this curvature effect of the shock front, we have to deal with the
oblique shock relations. However, we find the deviation of the average tempe-
rature of the gas behind the shock wave, compared with the calculated tempe-
rature obtained from the normal shock relations, to be so small as {o be
negligible. Therefore the properties of the gas behind the shock wave are
described sufficiently well by the normal shock relations.

But, as we shall see in the next section, the results obtained with theintegrated
Schlieren method include the curvature effect. Fortunately, the length of this
effect (maximum of xy) is small compared with the transition zone. For carbon
dioxide it is not more than 0.25 mm.

In this section we shall study the part of the optical signal that is only related
to the density gradient of the gas as the result of vibrational excitation. We start
our treatment with an exact determination of the path of a light ray in a medium
in which the index of refraction varies in one dimension only (x-direction). The
principle is illustrated in fig. 7. The light originally travels in the y-direction.
Let us consider a small segment 4B of the wave front of a deviated light wave
which makes an angle of ¢ with the x-axis. If the refractive index at A is u
and at B is p -+ dp, then after time 4¢, the wave will have moved to the posi-
tion A'B’, where

48 48
AAd"=ds=— and BB = .
I p+dp
Here 45 = ¢4t is the optical path of the wave front. Consequently
A 45 1d 1d
44 :_Qz___e‘% cos ¢ =-—-—M‘-:1y,

AB wopdx uodx
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Fig. 7. The deflection of a light beam in a medium whose refractive index varies in the x-
direction.

where dy = ds cos ¢, It follows that the angle between the direction of the
ray and the y codrdinate is given by

¥
71 du
= | — dy’. 4.18
$ /“dxy (4.18)

w

0

The refractive index u is related to gas density p by == 1+4-xp, where « is the
Gladstone-Dale constant depending on the gas and on the wavelength. In most
cases the value of «p is of the order of 104, Therefore, we can take the factor 1/u
in eq. (4.18) to be practically equal to unity.

Our purpose is to know how a density pattern will be recorded. Therefore it
is sufficient, for the sake of simplicity, to assume an exponential density increase
over the transition zone and see what happens to the recording. In fig. 8 the
shock front DE is moving to the right. Downstream from the front (to the right

WG |E
e
[
X,
e b
18
<

9438

Fig. 8. The paths of light rays through the transition zone behind the shock front DE. The
shock moves to the right and FG is an arbitrary ray at a distance xp behind the shock front.



in fig. 8) the gas still has its original density. The density behind the shock
front DE (to the left in fig. 8) can then be represented by

p=ps+ dp (1 — ex/}), (4.19)

where ps, 4p and A are respectively the density just behind the shock front,
the total density variation over the transition zone, and the relaxation distance.
Along the light path FG of a ray coming into the transition zone at the point xo,
we have, by using egs. (4.18) and (4.19),
d d 4
dp _dp_«dp n (4.20)
dy dx A
In practice ¢ is usually small and therefore equal to dx/dy on GF. Hence eq.
(4.20) becomes
x _ «dp p—y
dy? A
To solve this differential equation we multiply both sides by 2 dx/dy, integrate
with respect to y and apply the boundary condition dx/dy = 0 at y = 0, for
which x = xp. We then obtain
dx

— = (2dp e=olN)'s (1 — ebio=0)/X)la,
dy

Xo—x\)'2
This equation can be solved by making the substitution w == ;l - exp( OA )%
and applying the boundary condition x = x, for y = 0. We finally get the
following expression

e XA = g=Xo/A {1 — tanh? 52}; (2xdp e~%ol )2 i] ,

holding along FG. With the aid of this expression we can integrate eq. (4.20)
in order to find the total deflection ¢ of a light ray passing through the disturbed
region. We obtain

b
é = (2xdp e~*o/N)'/2 tanh 3 5 (2rdp e~/ X2 2 , (4.21)

where b is the breadth of the shock tube.

Next, we consider the light coming in over the small region dxo. Part of this
light will escape the inclined knife-edge and be caught by the photomultiplier,
in an amount proportional to the angle . Consequently, if the disturbed region
has advanced into the light beam to the point x = x3, we get a signal on the
oscilloscope screen equal to
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Psignal == C / <15 dx, ,
0

where C is a proportionality constant determined by the properties of the
instrument. By using eq. (4.21) we get

4C A3

\ b \b
[log cosh %ﬁ (2«4 p)lfzg —logcosh 3E,i (2«4 pe"xlff\)lfﬁﬂ. (4.22)

Prignal =

b
If we use the abbreviation z = 5 (2xdp)'/2, the equation takes the form

2

Psignal = [log cosh (z) — log cosh (z e~*1/2X)],
The quantity z is usually small. In our experiments b = 18 mm; « = 2.31 X
10¢ m3/kg; A &~ 0.5 mm; dp ~ 0.48 kg/m® and consequently z =~ 0.26. It is
therefore convenient to substitute an expansion of log cosh (z) in powers of z:
z2 4 £
1 h 2= e — 4 —— 4.23
og cosh z 3 12—}—45 (4.23)
By neglecting all terms but the first on the right-hand side of eq. (4.23) the
relative uncertainty would be only 1 per cent for z == 0.26. By subsituting
log cosh (z) = z%/2 in eq. (4.22) the expression for the signals becomes

psignat = Ch redp (1 — ex1/ A) . (4.24)

On comparing eqs. (4.24) and (4.19) we notice that the signal received on
the oscilloscope is proportional to the increase of the density distribution in
the transition zone.

The relaxation length A can be obtained from a picture of the signal. It is
equal to the ratio of the final value of psiygnai, which we call dpsignai, to its
derivative at the point x = 0. Using eq. (4.22) we derive

dpsignaé -2 2 Iog cosh z (4 25)
( d?aignai) ztanhz :
dx x=0
2log cosh z

The expression =7n is plotted in fig. 9 and may be con-

ztanh z
sidered as a correction factor. In the range in which we made our observations
the value of 5 was about 1.02.

Next we consider the effect of the inclination 8 of the knife-edge, which is
shown in fig. 10. The optical system is arranged in such a way that we have
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the straight line / projected completely on the knife when there is no disturbance
in the region D of the shock tube. The dotted line 7’ is the image of all light
rays that in the transition zone have obtained a certain deflection ¢ (see fig. 8).
The displacement § in fig. 10 is proportional to ¢. It is clear that the amount
of light falling on the photomultiplier is proportional to y, and that the lower
part of /' is blocked out. Further, it is seen that y, = 8 tan 8. Thus the sensi-
tivity is determined directly by tan . There is, however, a maximum for the
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Fig. 10. The inclined knife-edge on which the light rays are focused as a straight line. The
explanation of the symbols will be found on page 74.

angle B, given by the saturation of the system. Saturation means that some
light is deflected so far that its image on the knife-edge is displaced over a
distance 8 that is greater than s. In that case there is, of course, no longer a
definite relationship between the amount of light reaching the photomultiplier
and the angle of deflection. The maximum deflection through the transition
zone can be obtained from eq. (4.21). This is, for small values of z, equal to
biredp/A. Then we get

bKA p

A

fe (4.26)
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where fz is the focal length of lens E. From fig. 6 we see that

I=2f¢a. 4.27

The magnitude of the maximum value of 8 can be obtained from the equation
' 1

tan 8ma,x == g . (4'28)

By using eqgs. (4.26), (4.27) and (4.28) we derive for tan g the following condition

2aA

tan = .
Pmax bidp

4.29)

In some of our experiments dp was about 1.92 kg/m3 and A about 0.4 mm;
consequently we find Smax = 80°. Since the sensitivity was high enough for
our purpose, we took for our measurements S == 70° in order to obtain an
easier adjustment of the image on the knife-edge.

The sensitivity of this method depends directly on the brightness B and the
width d of the source slit. This, of course, requires as bright and uniform a light
source as possible to start with. Lamps affording a line source are therefore
superior to other types. There is a practical maximum for d, which is set by
the required accuracy of the measurements. A relatively wide slit provides some
deviation of the parallel light rays and produces an apparent shock thickness
due to optical effects. This feature can be minimized by careful alignment of
the optical system, and the apparent projection, due to this effect, of the shock

0.
front was of the order of g Xxb= 2
u 2% 200

2% of the relaxation distance A, which is 0.5 mm.

The signal is amplified in the photomultiplier and oscilloscope by a factor n,
which is limited by the noise levels. Hence the final sensitivity is proportional
to the following product:

% 18 = 0.009 mm; this is only

ndBx«dpbtan B
—

If in this expression we substitute the value of tan Bmax, we find that the sensi-
tivity is proportional to
ndBa.

Thus we see that theoretically the sensitivity depends neither on the breadth
of the shock tube nor on the density increase dp, nor even on the relaxation
distance A, provided only that the knife-edge can be properly adjusted to Bmax.
In principle the method will therefore retain its high sensitivity also for weak
shocks.

When using carbon dioxide as our test gas we obtain traces of the kind shown
in ﬁg.: 11. In the first part of the curve, 4B, the signal rises as a straight line.
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At the end of this part, indicated by B, we often found, especially at low
densities, a discontinuity in the slope of the profile, We therefore incline to
the opinion that the first part of the signal up to B, indicated by {, represents
the curvature of the shock front. The upper part, indicated by dpsignar represents
the density increase (behind the shock front) due to vibrational excitation. A
justification for the above statements will be given in the next section.

CI

9501
Fig. 11, A sketch of an oscillogram obtained with COq as the test gas as described on page 76.

From the trace on the oscilloscope screen it is also possible to determine the
Mach number of the shock. At the point 4" of the trace, where the signal falls,
the discontinuity in slope indicates that the shock front has left the light beam.
Evidently the parts AC and 4'C’ of the trace represent both the curvature effect
and the density variation over the transition zone. The time required by the
shock front to traverse the light beam is equal to 4¢. In that time the front has
moved over a distance m, equal to the slit width of 4 mm on the window. The
shock velocity up is equal to m/dr. Thus the Mach number M, of the shock
is given by

m

= 4.30
o (430)

@

where ¢, is the velocity of sound in the test gas before the shock front.

4.5, Curvature effect of the shock front

Owing to the curvature of the shock front, part of the parallel light rays will
cross the discontinuity surface and will consequently be refracted according
Sneil’s law of refraction. In this section we shall therefore study the refraction
of the light rays passing through the discontinuity of the shock front.

The first step in the treatment of this problem is to find an expression for
the density distribution in the shock front.

As our observations are carried out over less than half the height of the shock
tube and as the thickness of the boundary layer, which interacts with the shock
front, is very small compared with the two dimensions of the cross-section of
the tube, it may be reasonable to consider this problem only in the two dimen-
sions of breadth and length of the shock tube.
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For a two-dimensional oblique shock front the discontinuity conditions can
be derived from the principles of the conservation of mass, momentum and
energy, in about the same way as for the case of the straight shock front. The
velocity components of the oblique shock are indicated in fig. 12.

Fig. 12. The velocity components across an oblique shock (which represents an element of
the curved shock front).

Mass: Potlon = pstisn. (4.31)
Momentum perpendicular to the surface:
Poton® + Po = psiésa® -+ Ps. (4.32)
Momentum parallel to the surface:
Pollontlor = pstsnlist. 4.33)
Energy equation:
:)i'"l" RTO *{" ‘%‘ (uonz '1"‘ uotz) —— y—ii RTS + é (“3»;32 + usgz). (4.34)
From eqgs. (4.31) and (4.33) we find
Uor = Ugt.

By substituting this result in eq. (4.34) we get
y—1
RTs = RT, + _Ey— (uon2 - usn2)~

This result when substituted in eq. (4.32) gives
-1
Po [uanz 4 RTo] = Pz [“sng + RTy + ()/2—), (uon2 - usng)] . (435)

Next we wish to express these quantities in terms of the shock strength
parameter ¢. From eqs. (4.3), (4.5) and (4.8) we derive

L+ 1—ye) |,
T e Y52,

T
0 R



78—

The velocity components usn and usy are given by

ton = Vo (1 + &) sine
and

Usn == Vo (1 -+ s)@ sino.
Ps

If we substitute these expressions in eq. (4.35) we arrive at the density distribu-
tion along the shock front:

1 +4&
T e T 2= 79y 1)] cotBo
When the light rays reach the discontinuity surface they will be refracted
according to Snell’s law. The refractive index u is given by u = 1 + «p. For

low densities «p is of the order of 104,
According to Suell’s law

Ps (4.36)

sin ¢’ _ 1 4+ xpo

sin o 1 -+ kps

(4.37)

The angle of deflection of the light rays is given by w, where

w==g— 0,
Eq. (4.37) reduces to
cos w-— cotosinw = 1 — « (ps — po). (4.38)

The angle w is very small, so that
‘ cosw~1 and sinw~ w.
Along the shock front we have

dxs
cot o = ——

dys
By substituting eq. (4.36) in eq. (4.38) we obtain
2e — [2(1 — ye)/(1+y)] cot> ¢ dys
P e T 20— 7e)/(1+)] cot? o dxs

w ==

(4.39)

After refraction at the shock front, the light rays are further deflected by the
density gradient in the transition zone. However, this part of the deflection is
generally less than 159 of the refraction across the shock front. Therefore,
since we only study the qualitative effect of the curvature of the shock front
on the method of recording, we shall only consider the refraction across the
shock front. ‘

The amount of light falling on the photomultiplier is proportional to w.



Further, we call the part of the signal related to this curvature effect {. It is
given by

Xs,max
{=C j wdx . (4.40)

X3, min

Next we use the y-coordinate of the shock front and we find, by substituting
eq. {(4.39) in eq. (4.40),

Ys,max
(—c [ 2e—[2(1 — ye)j(1+y)] cot? o
e e T 20—yl )] coP o *
Fs,min /

The value of cot ¢ along the shock front can be obtained from eq. (4.17). It
turns out that the factor [2{(1— ye)/(1--y)] cot? ¢ is very small and approaches
2¢ for very small values of y;. Consequently, this factor may be neglected. The
upper limit is given by half the breadth of the shock tube. We find

b/2

28 [
{ = Cxpo = / dy .
0
By using eq. (4.6) we finally obtain
€
=Cb .
4 KPs 1 +¢

Now, by comparing { with the magnitude of the signal that represents the
total density increase (behind the shock front) due to vibrational excitation,
as derived in eq. (4.24), we find

APstynaz — A,O
g {ef(1+2)} ps

Fortunately, this ratio does not depend on the parameter B; of the shock
front (eq. 4.17), so that the result of this analysis is independent of the un-
certainty concerning the shock front profile, provided that the shock front can
be represented by a parabolic function. The above ratio is only a function of the
Mach number. When using CO; we find, for M, = 3,

é' =124 Psignal «

This resuit is in substantial agreement with the oscillographic observations of
a shock wave in CO», as was pointed out in the preceding section.
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4.6. Discussion

As the theoretical analysis of our method of shock-tube measurements is
fully borne out by experimental observations, we feel that this method has been
developed sufficiently to provide a faithful representation of the density pattern
produced by vibrational excitation behind a shock wave. The technique, how-

- ever, requires a great deal of attention being given to the proper optical align-
ment of the Schlieren system, to ensure that the light is of uniform intensity and
that the light rays are parallel to the shock front. This is done by using helium
as a test gas. Since helium is a monatomic gas and since the Mach numbers
involved are low, relaxation phenomena need not be considered. Therefore,
the only signal to be expected is related to the curvature effect of the shock
front along the wall. The length of this effect can be minimized by making the
light rays accurately parallel to the shock front. The minimum length of the
curvature effect in helium is about 0.15 mm.

In attempting to understand this effect better we worked out a series of runs
with, Mach numbers between 1.5 and 2.5. In spite of the high sensitivity we
could not correlate this effect with the Mach number. It seems to be more or
less independent of the initial density of the gas, and also of the shock strength.
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CHAPTER 5

EXPERIMENTAL RESULTS BEARING ON THE VIBRATIONAL
EXCITATION OF CARBON DIOXIDE 33)

3.1. Introduction

The main purpose of our experiment was to try to establish the process in
which translational and rotational energy is transferred to the vibrational degrees
of freedom. This was done by using the shock wave technique described in
chapter 4. This process, in which energy is supplied, by means of several elastic
and inelastic collisions, to the various modes of vibration, can be studied in
our experiment by measuring the density profile behind the shock wave as
described in chapter 4.

We have already seen that for shock waves translational and rotational
motion can be described by external degrees of freedom. Therefore we consider
that the attainment of the final state takes place in two stages. In the first, or -
intermediate, stage just behind the shock front, the vibrational temperature is
still equal to the gas temperature in front of the shock wave, while the trans-
lational and rotational temperature is that corresponding to the shocked gas
without vibrational degrees of freedom; the latter temperature lies, for shock
waves that are not too weak, above the final equilibrium value. In the second
stage, which takes place in what has previously been called the transition zone,
the vibrational energy, the pressure and the density increase and the temperature
decreases, while at the same time the gas flow decelerates, until the equilibrium
conditions of the gas are reached. This stage affords an opportunity to study
the desired energy-transfer process. In such experimental study we neglect the
energy associated with the asymmetric vibration, because this energy, at tem-
peratures below 1000 °K, is less than 8 % of the vibrational energy of the other
modes.

Since we are interested in the vibrational energy and since the density increase
and the velocity of the shock wave are the only two quantities that are measured
directly in our experiment, we want to express the vibrational energy in terms
of the density variation. This can be done by using the conservation equations.
From the measured density profile we shall then arrive at an energy profile
expressed as a function of time.

In chapter 3 we calculated theoretically the probabilitics of exciting the
vibrations of carbon dioxide molecules through collisions. These calculations
pointed to a direct excitation of the bending mode and an excitation in series
of the valence mode, as described by egs. (3.41c) and (3.71). The energy profile
being known from the experiment, we can obtain the rate of energy transfer for
any given time. If we now use the two predicted relaxation equations we can
obtain the individual energy profiles of the two bending modes and of the
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valence mode. In this way we may verify the theoretical predictions that have
been worked out in chapter 3, '

5.2. Formulae to obtain the vibrational energy and translational temperature as
a function of time

It is convenient to consider the total energy E of the molecules as being made
up of three parts:
E= Eea: + El - E2'

The first term, E,. represents the energy of the external degrees of freedom
(translation and rotation). E1 and E» are the energies of respectively the sym-
metric valence and the bending vibrations. We can similarly write for the
specific heats

Cp=Cp + Cop
and
Cy = Cy + Cup,
where
Cp = specific heat at constant pressure,
Cp == specific heat of the external degrees of freedom at constant
pressure,
Cy = specific heat at constant volume,
Cy = specific heat of the external degrees of freedom at constant
volume,

Cuwip = specific heat of the vibrational degrees of freedom.

With this notation the difference of the two specific heats becomes independerit
of Cy, i.e. the vibrational energy now has no direct bearing on the work done
in thermal expansion of the gas. The external degrees are fully excited even at
room temperature to ¥ R per degree of freedom. The vibrational heat capacity
Cuis, however, depends both on temperature and frequency. There are 5 external
degrees of freedom, so we find Cy = § R. The gas densities in our experiments
are low. Therefore they may be assumed to obey the equation of state of an
ideal gas:

p = pRT. (5.1)

Consequently we can derive Cp— Cy = Cp— Cp = R.

It is seen in fig. 13 that the variations of E; and E; with temperature are
considerable. A relatively large part of the energy supplied from outside will
go into the vibrations. The variations in the corresponding vibrational heat
capacities are also large in the temperature region in which we are interested.
Tt is therefore not possible to linearize the energy equations by taking Cup as
constant. Before expressing £1 and E3 in terms of the density variation, let us
for convenience introduce some definitions. The equilibrium state of the gas
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Fig. 13. Vibrational energy of the sum of the bending modes (E3), and of the valence mode (E1),
relative to their values at room temperature.

before the passing of the shock wave is indicated with the subscript ¢ and the
state just behind the shock front, where translation and rotation are the first
to reach equilibrium, with the subscript 5. We indicate the variable state at
any place behind the shock front with the subscript e. Since the translational
and rotational modes are fully excited, it is clear that state s is reached in a
process with constant specific heat. Therefore all the quantities in this state
can be simply obtained from the Rankine-Hugoniot equations with Cp/Cy =
1.4. This is done by using the Mach number measured for the shock wave 34%).
Knowing state s, we obtain the variable state ¢ by applying the conservation
equations relating to these states (we neglect friction effects and heat transfer
with the wall over the small relaxation distance).

Mass D polly == pstls = pglle == O (5.2)
Momentum: ps + paits? == po + pett?, (5.3)
Enefgy M ‘%‘ ugz + CPTg = ‘% 1432 + CPTg “‘i— E1 ““" E2 (5.4)

For the sake of simplicity we have taken the vibrational energy relative to its
energy in state 0. These equations are considered in a codrdinate system moving
with the shock front, so that the flow is reduced to a steady flow. From equa-
tions (5.1)-(5.4) we obtain for T,, and for the sum of E; -+ Es, the following
relationships:
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Ey+E C 2 i\ Cp On? ?
BrB_Crn(i-f) 20 gz - (%) g— Cr O’ %ﬂ""’—(@) é (5.5
R R Pe 2ps2R Pe R Rps® (pe ‘\pol )
and
2 / 2
T, = Pp,  2ntle (ﬁj L. (5.6)
Pe Rpsz ?Pe Pe
The final equilibrium states of £; and E» are related to T, by
hvi/kT,
Ey = 5.7
' ® exp (hn1/kT2) — 1 (-72)
and
hva/KT,
B = 2rT, KT (5.7b)

“exp (hvo/kT) — 1

The final equilibrium state will be obtained when p, reaches its maximum value,
. called pe,max, 50 that eqgs. (5.5), (5.6), (5.7a) and (5.7b) are satisfied. After we
have found pe,max in this way, we calculate dpmax (= pe,max — ps). This part
is represented by BC on the oscillogram shown in fig. 11.
By comparing the maximum density increase on the oscillogram, 4psignai,
with the calculated one, 4pmax, we find the scale factor of the measured profile.
Hence we shall obtain values of dp at intermediate time intervals, so that we
can work out pe = py -+ dp. For most calculations we used about 10 inter-
mediate time intervals between the shock front and final equilibrium. To im-
prove the accuracy of the measurements we made an optical enlargement of
the transparency obtained from the oscilloscope, the magnification factor
being 10.
Next we have to consider the time scale in our observations of the density.
It is clear from the description of the experimental set-up that we are measuring
the density profile behind the shock wave (whose velocity is », with respect to
the gas in the initial state). If we consider the shock wave to be stationary, so
that the gas in the initial state is imagined to travel towards the shock front
with a velocity u,, then we are in fact measuring the density profile at a speed
of u,. We want, however, to measure the time of the energy-transferring process
in a codrdinate system that is moving with the mean speed of the particles.
. t

This means that the actual time ¢ is equal to [wuofu, dr’, where ' is the recorded
0

time; if ¢ == 0, then the particles are at the shock front. Using eq. (5.2) we obtain

%
~

= / pelpo dt”. (5.8)
o

When by means of eqs. (5.5) and (5.8) we have arrived at the desired total energy
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profile as a function of time, we can apply the predicted relaxation equations of
(3.4lc) and (3.71):

dE: + E) 1 :
(£ :"2‘) @y By (5.9)
7 79
d 1 Y
dE: _ 1 (E1 (T2) — Ex} (5.10)
dr 12

the value of dEs/d: being neglected on account of its small magnitude. Here
E(Tz) means the energy of the valence mode at the temperature of the bending
modes, and E3(Te) is the energy of the bending modes at temperature 7.

Similarly by using egs. (5.6) and (5.8) we obtain the translational tempera-
ture profile as a function of .

5.3. Experimental results

With the aid of the derived equation we shall now calculate the individual
energies E; and Es. In eq. (5.10) dE;/ds represents the rate at which energy
is transferred to the valence modes. At 7 == 0, the vibrational modes are as-

dE
sumed to be in equilibrium, so that we obtain from eq. (5.10) ((Ttl> = 0.
=0

For t = 0 we can calculate the energy Eq(7.) and measure the slope of the
energy profile. £, which has been taken relative to its value at room tempe-
rature, is zero. For simplicity we shall divide the measured rate of energy
transfer by the gas pressure. In this way, and by using eq. (5.9) we calculate =
for atmospheric pressure as a function of the translational temperature. By
making a series of runs with different Mach numbers we obtained the relaxation
time g in the temperature range 440-816 °K. These values are found in table V
and plotted in fig. 14; they are necessary for the calculation of the individual
energy profiles.
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Fig. 14. Vibrational relaxation times of the bending modes as a function of the translational
temperature,
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Qualitatively, the present data compare quite well with those obtained by
Smiley and Winkler 35), who consider one relaxation time associated with the
total vibrational energy. They found the density profile behind the shock wave
by using the Mach-Zehnder interferometer.

TABLE V
M, Po Ts ps/pe,max Ei/R Es/R | 7o X108

1.75 0.967 441 0.868 17 122 3.74
1.96 0.766 490 0.847 25 168 3.36
2.13 “0.466 533 0.828 34 208 3
2.23 0.526 556 0.823 40 233 2.9
2.27 0.55 568 0.816 45 254 2.9
2.29 0.260 574 0.813 48 267 2.55
2.31 0.408 588 0.809 51 276 2.63
2.42 0.379 618 0.798 56 294 2.43
2.42 0.450 618 0.798 56 294 2.50
2.46 0.277 630 0.795 58 308 2.13
2.46 0.340 630 0.795 58 308 1.94
2.68 0.258 697 0.781 78 374 1.52
2.83 0.287 734 0.767 89 415 1.36
2.95 0.132 786 0.754 105 469 0.93
3.04 0.195 816 0.748 116 500 0.64

Next we consider just one calculated energy profile, of which we know
E1 + Es and T, at any instant. We measure at each point the rate of energy
transfer and calculate Eo(Te). Then by using eq. (5.9) we obtain the value of
E> at any instant, and from the sum we obtain also Ei. This procedure will be
shown in the following two examples:

I po =100 mm Hg; 7T, =2300°K and M,= 295
The Rankine-Hugeniot relationship gives
ps = 131 kg/em?;  ps = 0.91 kg/m3; 7, = 786 °K.
We can satisfy egs. (5.5), (5.6), (5.7a) and (5.7b) by substituting ps/p, = 0.754

E, + E
and finding at thermal equilibrium 7T, = 636 °K, W = 574 °K. Fur-

thermore we ﬁnd Pe,max — 1.207 and APmax == 0.297 kg/m?’.
From the density profile we obtain 12 time intervals, and in table VI we have
calculated the desired quantities. The energy profiles are shown in figs. 15 and 16.
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Fig. 15. The energy profile behind a shock wave, with My = 2.95.
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Fig. 16. The separate energy profiles of bending and valence modes behind a shock wave
having a Mach number My = 2.95.

TABLE VI
1003
1077 dp | pofpe | 1007| T, [PEEY A0 1108 BTN EyR| 1R
G2
o] o 1 o |786| o | 785 {09370 o | o
1 | 0119 | o884 | 41| 719|262 272 | 145|612 [ 218 44
2 | 0183 | 0833 | 85|687|382| 138 |17 |556]328] 54
3 | 0218 | 0807 1132] 671 | 445 86 | 185|530 370] 75
4 | 0238 | 0793 [17.9] 661 | 479 | 57 | 198 511|399 80
5 | 0253 | 0782 | 227|655 | 505 | 42 |20 |s01]a16]| 80
6 | 0262 | 0775 | 275|650 | 524 | 30 | 205|492 | 431 93
7 | 0271 | 077 |325| 646|538 | 20 |21 |484| 442 96
8 | 0278 | 0.765 |37.4| 643 | 551 | 15 |21 | 481 451 | 100
9 | 0.285 | 0.761 | 42.4| 640 | 562 o |2.14] 476 | 459 | 103
10 | 0291 | 0.757 | 47.4| 638 | 568 6 |2.14| 472 | 460 | 108 .
11 | 0295 | 0.755 | 52.4| 636 | 573 2 | 214 470 | 263 | 110
12 | 0207 | 0754 | 574|636 | 574| o |2.14] 469 | 469 | 105
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L. po == 148 mm Hg; Tp = 300 °K and M, = 3.04
ps = 2.00 kgfem?;  ps = 1.363 kg/m3; T = 816 °K
We can satisfy egs. (5.5), (5.6), (5.7a) and (5.7b) by substituting Ps . 0748
Pe

E1 + E.
LT 616 °K. We

and finding at thermal equilibrium 7, = 655 °K;

also find ps,max = 1.822 and dpmax = 0.459 kg/m?3. Next we obtained 8 time
intervals from the density profile and calculated the desired quantities, which
are set out in table VII. The energy profiles are shown in figs. 17 and 18.
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Fig. 17. The energy profile behind a shock wave, with My = 3.04.
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Fig. 18. The separate energy profiles of bending and valence modes behind a shock wave
having a Mach number My = 3.04.

The calculated values for E; and E3 in tables VI and VII give us further in-
formation about the second relaxation equation.
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TABLE VII
1063_

109¢| dp | pafpe | 107 | T, EER (Ej‘;52> 1087|209} By R | Ey/R
R

0 0 1 o |86 o | 119 |o64|783| 0 | 0

051 0.16 0.895 | 2.1 754 | 245 398 | 1.171 673 | 211 | 34
.51 028 0.830 | 6.6 711 | 406 150 | 1.55| 596 | 363 | 43
251 034 0.80 11.3 | 692 | 481 85 | 1.7 | 563 | 419 | 62
351 0386 | 0.780 | 16.2] 677 | 534 51 | 1.85] 539444 | 9
45 | 0.420 | 0765 |21.2] 667 | 572 32 | 190} 523 | 463 | 109
551 0448 | 0.754 | 263} 659 | 599 10 [ 1.95] 509 | 488 | 111
6.5 | 0456 | 0.751 | 31.5] 656 | 611 2.5 [20 | 504|499 112
75 | 0.459 | 0.749 | 36.5|655.5 614 1 120 |502] 500 114
8.5 1 0460 | 0.748 | 41.5] 655 | 616 0 {20 | 500} 500 116

5.4. Discussion

It is clear that the value of E3 calculated from the measured derivative of the

energy profile cannot be very accurate, because many observations and measure-

ments are involved. Moreover the valence energy is much smaller than the
bending energy, and by obtaining the former value from the sum, its relative
uncertainty should be large. In spite of these experimental uncertainties we
found in most calculations Ei(T2) > Ei. Furthermore we generally saw that
E; closely approached Fi(Tz). On account of these uncertainties it was not
possible to obtain reliable values for r12. However, we may conclude that the
experimental results are in fair agreement with the theoretical predictions and
that the second relaxation time of the indirect excitation is at least one order
of magnitude smaller than the relaxation time of the direct excitation. In other
words, the exchange of energy between the valence and the bending modes
takes place very rapidly, compared with the exchange between bending and
translational energy. This might be an explanation for the fact that many in-
vestigators could not find a second relaxation time in their observations of
absorption and dispersion in ultrasonics.

The temperature range in which we have made our observations is limited
by the following two considerations. For lower temperatures the valence mode
is only weakly excited, so that the valence energy is relatively small compared
with the bending energy. The specific heat at room temperature is for the valence
mode 0.07 R and for the bending mode 0.9 R. Therefore these small valence
energies cannot be found by our method. An upper limit of the temperature range
is set by the fact that we always have to eliminate from the density profile the
first steep part due to viscous effects at the wall of the shock tube. The higher
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the temperatures, the smaller the relaxation distance; consequently we found
it more difficult to separate these two parts.

Finally we will make some remarks on the purity of the gas. For our experi-
mental observations we have used extra dry COs, supplied by the Southern
Oxygen Company, with a purity of 99.84 J;. It contained 0.03 %, Oz and 0.1 %, No.
The water content was stated as 20 parts per million. The leakage rate of the
shock tube was less than 0.001 mm Hg per minute. The shock tube was usually
fired within one minute after filling. Since the usual pressure of CO2 was 100
to 700 mm before arrival of the shock, the total impurity level can have been
increased by only 0.001 %,. Moreover, it is most unlikely that these 10 parts
per million consisted entirely of water, the only impurity known to have a large
effect on the relaxation times.
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APPENDIX I
Asymptotic value of f1,

The general solution describing an incoming and an elastically scattered wave
is of the form

1
Ry, = ZIIPz (cos 0) — fu,(r) (L)

where /1, is a bounded solution of eq. (3.7a).
Since the interaction potential tends to zero sufficiently rapidly as » tends to
infinity, the bounded solution must at infinity have the form

Jix, st Dysin (kor — % Im + Siz,) , 1.2

where D; is an arbitrary constant and &;x, is a phase shift. The term % /v is
added so that 8;%, vanishes if the interaction potential is zero.

The constant factor D; in (1.2) must now be chosen so that Ry, shall have
the asymptotic form of

, 1 .
gikoz . _ go(6y etkor
r
In other words, D; must be chosen so that
1 ,
EI Py (cos 0) ~ fii, — etkoz (1.3)
r

will represent the outgoing wave only.
We require an expansion of e/k»z = eikor cosf in 1egendre polynomials
1

eikarcos 8 — 3 (2] 4- 1) it (—) Jisg (ko) Py (co5 6).
i 2kor

The Bessel function has the asymptotic form
2 A\
Ty or) = (m) sin (kor — 3 ).
Substituting this result in (1.3) we find the asymptotic form of the elastic
scattered wave as

1 1 )
,S_;Pz {cos 8) ~ §Dz sin (kor — % Im + 8i,) — 21+ 1) it e sin (kor — % In) g .
r 0
The two terms within the long brackets may be written as

eilkor—41m)

r ) 1
— [ % Dy eideo — (24Dt —
ko

2i

— % Dy e—z’Smg _(21_:,. 1) gz_l- % e-—i(kor—%lw)] .
ko
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This result, however, must represent an outgoing wave only. Therefore the
second term must vanish. We find

1 .
Dy = — (21 + 1) i e,
ko
Substitating this in eq. (I.2), we find the asymptotic value of fix, as

1 .
ﬁko —-?; ; (22 -} 1) it 8’8”90 sin (kof— % b -+ 81;;0) .
[and 0

APPENDIX 11

Maxwell-Bolizmann distribution for the valence vibrations

We wish to consider the distribution of the energy levels of excited symmetrical
valence vibrations initially in equilibrinm.

If we consider the first excitation process of the »; vibration we find that the
relaxation equation, in terms of the distribution of the energy levels, can be
written as

oo oo
e mz Ny Pg? gn-1 Bnml,nz E gm Cm,m-22 + gn+1 Bn+1,n2 p qm Cm,m+22
m=0 m=0

— qn By n? 2 é}m Cm,m—zz‘“l?n Bnu-1% 2 E}m Comi2® o, (IL1)
m=0 m=0

where g5 is the fraction of modes with energy state m. The terms on the right-
hand side are respectively: the number of molecules excited from state (# — 1)
to state n, the number of molecules de-excited from state (n - 1) to state n,
the number of molecules excited from state # to state (n -+ 1) and the number
of molecules de-excited from the state n to state (n — 1).

Since the bending vibrations may be considered to have a Maxwell-Boltz-
mann energy distribution, we derive, by using egs. (3.59a) and (3.59b):

b ém Con,m—22 = Cop 22 {exp (hva/kT2) — 1372

m=0

and

Y gm Cmymea? = Co,2? {exp (hva/kT2) — 1}-2 exp (2hwa/kT3) .
=0

Furthermore we use eqgs. (3.58a) and (3.58b) and find for eq. (IL1)

d 1
—(%ﬁ == ?;5— No Pe? 30,12 Co,z2 €Xp (Zhvg/sz) {exp (th/sz) — 1 }"2

[n exp (—2hvo/kT2) gn-1+ (1) gus1 — {n + (n 4 1) exp (—2hve/kT2) } gul,
(11.2)



If we now substitute 2vs = ) and, for the sake of simplicity, replace the first
factor on the right-hand side of eq. (IL.2) by Z, we obtain
dg,

71; =Z [nexp(—0) gn-1+(n+1) quar— {n+(n + D exp (—)}ga], (I1.3)

where 8; == - by /kTo.

If we next consider the other nine excitation processes for the symmetrical
valence vibration we find, apart from a numerical factor, the same relaxation
equation for the distribution of the energy levels.

When the integer # increases from zero to infinity, eq. (11.3) forms a set of
differential difference equations describing the relaxation of the symmetrical
valence vibrations.

The exact solution of equations of the type of eq. (IL.3) has been obtained
by Montroll and Shuler 2%) and is written in terms of a generating function:

Gzt) = 2 2 gn(2) .

If the initial energies have a Maxwell-Boltzmann distribution, the generating
function becomes

(1 = ) (1 — e0)
(e = ety + eB-8) (1—e=)] + 7 [(1 — 1) — e~0o (1—eBi-)]"
(11.4)
where 7 = Zt (1 — e~%), and 6, = hv1/kT, is associated with the temperature
corresponding to the initial distribution.
From this generating function we obtain

gn(t) = [1 — exp (— O)] exp (— n0),

G(z,t) =

where ’
e (1 — e(®1-00)) — b1 (1 — =00} |
-7 (] — 3(61—90)) —_ (1 — e‘“@o)

8 = log

In other words, the initial distribution of the symmetrical valence vibrations
relaxes to a final energy distribution via a sequence of energy distributions, all
of which obey a Maxwell-Boltzmann function. The effective temperature will
change from 7T, to T3, the effective temperature of the bending vibration.

In a similar way we can prove that also during the excitation of the asymmetric
valence vibrations the corresponding Maxwell-Boltzmann distributions persist.
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SAMENVATTING

Wanneer aan een gas warmte wordt toegevoegd, zal deze warmte aanvankelijk
alleen door de translatie en rotatie van de moleculen worden opgenomen. De
translatie-energie is nu niet in evenwicht met de vibratie-energic van het gas.
Dit evenwicht wordt hersteld tijdens moleculaire botsingen, wanneer energie
tussen de verschillende vrijheidsgraden wordt uitgewisseld. De wijze waarop
nu de moleculaire vibraties van koolzuurgas worden aangeslagen wordt hier
behandeld. De thermische beweging van twee botsende moleculen wordt quan-
tum-mechanisch behandeld, waarbij we gebruik maken van de methode van de
gestoorde golven. Het blijkt dat tijdens het aanslaan van de buigingstrilling er
een directe energie-uitwisseling met de translatie is, terwijl bij het aanslaan van
de symmetrische en asymmetrische valentietrilling er een energie-uitwisseling
tussen de vibraties onderling is.

De energie-overdracht tussen de verschillende vibraties zal niet uitsluitend
binnen het molecule plaatsvinden, want er bestaan ook mogelijkheden dat dit
kan gebeuren tussen verschillende moleculen. We vinden tien mogelijkheden
voor de energie-overdracht aan de symmetrische valentietrilling en acht
mogelijkheden voor de asymmetrische valentietrilling.

Nadat het aantal effectieve botsingen dat een molecule per seconde ondergaat
is berekend, worden vervolgens de drie relaxatievergelijkingen voor de vibraties
opgesteld. De bijbehorende relaxatietijden zijn berekend. Voor temperaturen
beneden de 600°K blijken de berekende en overeenkomstige experimentele
relaxatietijden voor de buigingstrilling minder dan een factor twee te schelen.
Dit is, gezien de beperkte kennis van de intermoleculaire potentiaal en andere
benaderingen die in de berekeningen moesten worden gebruikt, een vrij goede
overeenstemming.

Het blijkt, dat de op deze wijze gevonden relaxatievergelijkingen voor
de vier vibratievrijheidsgraden van eenvoudige gedaante zijn. Zij bestaan
slechts uit termen van de nulde en eerste orde, onafhankelifk van de
energiesprong die de vibraties ondergaan. Tevens is hierbij gevonden, dat
tijdens deze relaxaties de energie van iedere vibratie blijft voldoen aan de
Maxwell-Boltzmann verdeling, waarbij de effektieve temperatuur variéert.

Experimenteel is deze energie-overdracht bestudeerd met behulp van schok-
golven. De dichtheidsveranderingen achter het schokfront die het gevolg zijn
van relaxaties zijn met de geintegreerde Schlicren-methode gemeten. Deze
optische methode is zodanig ontwikkeld dat de dichtheidsverandering over een
bepaalde afstand nu direkt wordt gemeten. Uit de gevonden dichtheidsverande-
ring kan het verloop van de vibratie-energie als functie van tijd en-translatie-
temperatuur worden bepaald.

In het temperatuurgebied van 440°K tot 816 °K bevestigen de gevonden
resultaten een directe energie-overdracht tussen buigingstrilling en translatie en
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een onderlinge uitwisseling van energie tussen buigings- en valentietrilling. De
gemeten relaxatietijden voor de directe energie-overdracht vari€ren van 3.75 p
sec bij 440 °K tot 0.64 psec bij 816 °K. De invloed van eventuele verontreini-
gingen, door het lekken van de schokbuis ontstaan, kan verwaarloosd worden.
De temperatuur van de gemeten energie voor de buigingstrilling ligt juist
boven de overeenkomstige temperatuur van de energie voor de valentietrilling,
hetgeen betekent dat de relaxatietijd voor het indirecte relaxatieproces minstens
een factor 10 kleiner is dan de relaxatietijd van het directe relaxatieproces.
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STELLINGEN

1
Bij drie-atomige gassen met lineaire moleculen vindt de energie-overdracht
tussen translatie en vibratie plaats via de slapste vibratie van het molecule.

Dit proefschrift, hoofdstuk III.

II

Het relaxatieproces voor de energie van een willekeurige vibratie van een drie-
atomig gas met lineaire moleculen kan worden beschreven met de eenvoudige

relatie

dE 1

— —=_{E—Ey,

dt T
waarbij E” de energie van deze vibratie voorstelt bij een temperatuur die bepaald
wordt door de vrijheidsgraden die aan deze vibratie energie overdragen.

Vergelijk dit proefschrift, hoofsdtuk HI.

111

In de door Herzfeld gegeven quantum—mechanische berekening voor de
gelijktijdige rotatie- en vibratie-overgangen van twee-atomige gassen wordt
de foutieve veronderstelling gemaakt dat de diagonaal matrix elementen voor
verschillende waarschijnlijkheidstoestanden aan elkaar gelijk zijn.

Karl F. Herzfeld and Theodore A. Litovitz, Absorption and

Dispersion of Ultrasonic Waves, pag. 303 e.v. Academic Press
New York and London (1959).

Iv

Met behulp van de z.g. Schlieren methode kan langs optische weg de dicht-
heidsgradiént van gasstromingen gemeten worden. Het is echter mogelijk om
met deze methode bij niet stationnaire, één-dimensionale stromingen ook de
grootte van de dichtheidsverandering over een bepaald gebied te meten.

Vergelijk dit proefschrift, hoofdstuk IV.

v

Het is bekend dat de toelaatbare axiale belasting van een rond staafje hard-
metaal aanzienlijk verhoogd kan worden als dit hardmetaal voorzien is van
krimpringen. De hoogst mogelijke krimpdruk wordt niet bepaald door de
toelaatbare tangentiaalspanning in de krimpringen, zoals Christiansen, Kistler



en Gogarty menen, maar veel meer door de toelaatbare radiaalspanningen in de
krimpringen. :

E. B. Christiansen, 8. 8. Kistler and W. B. Gogarty, Rev. Sc.
Instr. 32, 775 (1961). ’

VI

Voor het bereiken van super hoge drukken is zowel de calibratie als de spannings-
toestand van de gebruikte materialen bij de cilindervormige segmentenappara-
tuur gunstiger dan bij een tetraedrische apparatuur.

H. T. Hall, Rev. 8c. Instr., 29, 267 (1958).

Vil

Dedoor Kao gegeven afleiding voor de mechanische krachten die in diglectrische
materialen kunnen ontstaan als gevolg van de electrische veldsterkte houdt geen
rekening met de drukafhankelijkheid van de dielectrische constante.

K. C. Kao, Br. J. Appl. Phys. 12, 629, (1961).

VI

De wijze waarop Henderson en Klose gezocht hebben naar de aanwezigheid van
meer dan een relaxatietijd voor de vibratie-energie van koolzuurgas shuit de
mogelijkheid voor een energie-overdracht in serie uit.

M. C. Henderson and J. Z. Klose, J. Acoust. Soc. Amer.,
31, 29, (1959).

X

Voor het fabriceren langs hydrothermale weg van grote synthetische kwarts-
kristallen zonder barsten is het gewenst de entkristallen in een omgeving met
voldoend kleine temperatuurgradiént te plaatsen.

X
Een fundamentele vereenvoudiging van het systeem van aanslag regeling der
inkomstenbelasting naar Amerikaans voorbeeld, inhoudende dat de belasting-

plichtigen in beginsel zelf hun belastingschuld vaststellen en dat de fiscus zich
beperkt tot repressieve contrdle verdient veel aanbeveling.
Vergelijk pleidooi van de algemene vergadering van vereni-

ging van inspecteurs van ’s rijks belastingen 1962.
Weekblad voor fiscaal recht No 4608, 9 juni 1962.

X1

In tegenstelling tot sommige adviezen is het voor bestuurders van automobielen
met voorwielaandrijving raadzaam om bij het begin van slip in bochten zoveel
gas te geven dat het voertuig geen snelheid verliest.

Autokampioen, no 40, okt. 1962.

Dissertatic W. J. Witteman,
5 maart 1963.



