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Summary 

The vibrational excitation of carbon dioxide gas is investigated. This 
excitation process takes place during molecular collisions. Therefore 
we have studied in detail the thermal collision between two carbon 
dioxide molecules. A derivation of the cross-sections, obtained by 
means of the metbod of the distorted waves, and ofthe total number of 
effective collisions per unit time is presented. We find direct excitation 
for the bending vibration and indirect excitation for both symmetdcal 
and asymmetrical valenee vibratiQn. 

The energy-exchange process of the indirect excitations possibly 
occurs not only within the molecules but also among the vibrational 
modes of different molecules. There then exist ten possibilities of 
exciting the symmetrical valenee vibration and eight possibilities of 
exciting the asymmetrical valenee vibration. 

From the excitation processes we arrive at the relaxation equations. 
The corresponding relaxation times have been calculated. For tempe­
ratures below 600 "K the calculated relaxation times for the bending 
vibration are less than twice the experimental values, which may be 
considered a fair agreement in view of the uncertainty involved in the 
interaction potendal and in other approximations which had to be 
introduced into the calculations. 

Experimentally, the rate at which the energy approaches thermal equi­
librium in suddenly heated carbon dioxide gas has been studied by 
using shock waves and the integrated Schlieren metbod for density 
measurements. An optica! metbod for the qualitative study of the densi­
ty distribution bebind shock waves bas been developed. The method, 
which uses photo-electric recording, is based upon the Schlieren metbod 
originally devised by Resler and Scheibe. 

The experimental results agree fairly welt with the predicted direct 
excitation of the bending modes and the indirect excitation of the va­
lence mode in the temperature range of 440-816 "K. The measured 
relaxation times for the direct excitation process range from 3.75 IL sec 
at 440 "K to 0.64 rt sec at 816 °K. The effect of impurities that are 
introduced through leakage in the tube can be considered negligible. 
The temperatures of the measured bending energies are slightly higher 
than the corresponding temperatures of the valenee energies, which in­
dicates that the time constant of the indirect excitation process is at 
least one order of magnitude smaller than that of the direct excitation 
process. 

Résumé 

Examen de l'excitation vibratoire du gaz d'anhydride carbonique. 
Le processus d'excitation se déroule au cours des collisions moléculaires. 
Pour cette raison, nous avons effectué une étude détaillée de la collision 
thermique entre deux molécules d'anhydride carbonique. Présentation 
d'une dérivation des sections droites, obtenue par la méthode des ondes 
déformées, ainsi que du nombre total de collisions effectives par temps 
unitaire. Nous observons une excitation directe pour la vibration de 
flexion et une excitation indirecte pour la vibration de valenee tant 
symétrique qu'asymétrique. 

Le processus d' échange énergétique des excitations indirectes se produit 
non seulement au sein des molécules mais aussi parmi les modes vibra­
toires de différentes molécules. Il existe alors dix possibilités d'exciter 
les vibrations de valenee symétriques et buit possibilités d'exciter les 
vibrations de valenee asymétriques. 

A partir du processus d'excitation, nous obtenons les équations de 
relächement. Les temps de relächement corréspondants ont été calculés. 
A des températures au dessous de 600 °K, les temps de relächement cal­
culés pour la vibration de flexion sont inférieures au double des valeurs 
expérimentales, ce qui peut être considéré comme assez conforme, étant 
donné les aléas du potentiel d'interaction et autres approximations 
qui durent être englobées dans les calculs. 
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Expérimentalement, la vitesse à laquelle l'énergie tend vers l'équilibre 
thermique dans Ie gaz d'anhydride carbonique subitement chauffé a 
été étudiée en utilisant des ondes dechoc ainsi que par la méthode densi­
métrique intégrée de Schlieren. On a conçu une méthode optique pour 
!'étude qualitative de la répartition énergétique en arrière des ondes de 
chocs. Cette méthode, utilisant l'enregistrement r:10toélectrique, est 
basée sur Ie système de Sehlieren, laquelle fut çoncue à !'origine par 
Resler et Scheibe. 

Les résultats expérimentaux s'aecordent assez bien avec les prévisions 
en matière d'excitation directe des mbdes de flexion et d'excitation in­
directe du mode de valenee pour des températures comprises entre 
440 et 816 °K. Les temps de relachement relevés pour Ie processus 
d'excitation directe s'échelonnent de 3,75 IJ.Sec à 440 oK à 0,64 f.I.Sec à 
816 oK. On peut considérer comme négligeable l'effet des impuretés 
introduites par les fuites dans le tube. Les températures des énergies de 
flexion mesurées sont légèrement supérieures aux températmes corres­
pondantes des énergies de valence. Ceci montre que la constante de 
temps du processus d'excitation indirecte est plus petite d'au moins un 
ordre de grandeur que celle du processus d'excitation indirecte. 

Zusammenfassung 

Es werden die Schwingungen in gasförmigem Kohlendioxyd untersuchC 
die durch Aufeinanderprallen der Moleküle hervorgerufen werden. Der 
durch Wärmebewegung verursachte Aufeinanderprall zweier Kohlen­
dioxydmoleküle wird daher einer genaueren Untersuchung unterzogen. 
Die mit der Methode der verzeerten Wellen abgeleiteten Querschnitte 
und die Gesamtzahl der tatsächlichen ZusammenstöBe je Zeiteinheit 
werden mathematisch abgeleitet. Es werden Biegeschwingungen direkt 
und symmetrische und asymmetrische Valenzschwingungen indirekt 
hervorgerufen. 

Bei der indirekten Schwingungserregung kommt es möglicherweise 
nicht nur zwischen den Molekülen, sondern auch zwischen den Schwin­
gungsarten der versebiedenen Moleküle zu einem Energieaustausch. 
Es gibt dann zehn Möglichkeiten für die Erzeugung von symmetrischen 
Valenzschwingungen und acht für die Erzeugung von asymmetrischen 
Valenzschwîngungen. 

Aus den Schwingungsvorgängen werden die Gleichungen für das Ab­
klingen gefunden. Die entsprechenden Relaxationszeiten werden errech­
net. Bei Temperaturen unter 600 oK sind die errechneten Relaxations­
zeiten für die Biegeschwingungen kleiner als die zweifachen Versuchs­
werte, was wegen der Unbestimmtheit des Wechselwirkungspotentials 
und anderer in den Berechnungen eingeführter Näherungen als ziemlich 
gute Übereinstimmung betrachtet werden kano. 

Mit StoBwellen und der integrierten Schlierenmethode für Dichte­
messungen wurde experimenten untersucht, wie schnell sîch die Energie 
in plötzlich erhitztem Kohlendioxydgas dem Wärmegleichgewicht 
nähert. 

Es wurde eine optische Methode zur qualitativen Untersuchung der 
hinter StoBwellen auftretenden Dichteverteilung entwickelt. Das auf 
einer photoelektrische Aufzeichnung fuBende Verfahren beruht auf der 
Schlierenmethode, die ursprünglich von Resler und Scheibe erdacht 
wurde. 

Die Versuchswerte stimmen sowohl mit den vorausgesagten direkten 
Biegeschwingungen als auch mit den indirekten Valenzschwingungen 
im Temperaturbereich von 440-816 °K ziemlich gut überein. Die gemes­
seoen Relaxationszeiten liegen bei der direkten Schwingung zwischen 
3,75 IJ.S bei 440 "K und 0,64 f.I.S bei 816 °K. Die Wirkung der durch 
Undichtheit der Röhre hervoegerufenen Verunreinigung kann vernach­
lässigt werden. Die Temperaturen fûr die gemessen en Biegeschwingungs­
energien liegen etwas höher als die entsprechenden Temperaturen für 
die Valenzschwingungsenergien. Dies zeigt, daB die Zeiikonstante Hir 
die indirekte Schwingungserregung zumindest urn eine GröBznordnung 
kleiner ist als die Zeitkonstante fü~ die direkte. 
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CHAPTER 1 

INTRODUCTORY REMARKS 

1.1. Wbat does vibrational relaxation mean? 

Relaxation phenomena are found in many types of physical processes, e.g. 
in dielectric polarization, in paramagnetism and in molecular rotation and 
vibration. These processes are generally characterized by the change of a 
physical quantity, foliowed by a slower process of equilibration of other 
quantities. The relaxation time is a characteristic time of such a process, so 
that it gives an indication of the time in which essentially stationary conditions 
will be reached after the initiatien of a partienlar change of a physical quantity. 
In order to get a physical understanding of the behaviour of the process one 
often studies the pedodie changes of the variables. This can be done by vary­
ing the amplitude and frequency of an independent variabie and seeing what 
happens to the dependent variables. In this way the relaxation phenomena do 
not produce anything that would not have occurred anyway in a more static 
process, but may prevent the production of something that would have happened 
in a static process. For example, if one slowly supplies energy to a gas, this 
energy will be distributed among all its degrees of freedom. However, if this 
is done at a sufficiently high frequency there is no time to transfer the energy 
to all its degrees of freedom. The energy will then only be found in the trans­
lational degrees of freedom. This result is well known in sound absorption and 
dispersion techniques. 

Normally, during these periodic changes one has to deal with very small 
amplitudes, so that in an elementary study the relaxation process can be 
described approximately by a linear differential equation in which only the 
first and zero order terms are present. Fortunately, extensive theoretica! 
analysis of the vibrational relaxation equation for diatomic gases shows that 
the process is fully described by this equation, irrespective of the magnitude 
of both amplitude and frequency. 

The mechanism of vibrational relaxation can be physically understood as 
follows. Let us supply energy to a gas. This energy will be taken up by its 
translational degrees of freedom, thus giving rise to a higher temperature. At 
this instant the new, increased translational energy is not in equilibrium with 
the internat degrees of freedom. Energy must therefore flow from the trans­
lational to the internal degrees of freedom. This goes on until all degrees of 
freedom (translational, rotational and vibrational) are in thermal equilibrium. 
This process of equilibration will occur during the molecular collisions. Now, 
it has been shown both theoretically and experimentally that the rotational 
degrees of freedom adjust themselves very rapidly, as compared to the vibra­
tional degrees of freedom, so that when studying the vibrational relaxation 
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we may consider both translation and rotation as external degrees of freedom 
having no time delay for their adjustment to energy variation. The slower 
process of energy exchange, by which the molecular vibrations obtain their 
share of the energy, is called the vibrational relaxation. 

Although the theoretica} treatment of this slow energy exchange process is 
complicated, Landau and Teller 1) were able to show that, by assuming har­
monie oscillations, the vibrational relaxation of a diatomic gas could be re­
presented by the simple relation 

dE 

dt 

1 

T 
{E(T)- E}, 

where T is a time constant, usually called the relaxation time, Eis the momen­
tary value of the vibrational energy, and E(T) the value it would have in equi­
librium with the external degrees of freedom. We see that the rate of restoring 
the energy balance for the internal motion is proportional to the extent of the 
imbalance. 

The theory of vibrational relaxation is also very important for understanding 
the molecular background of the so-called bulk viscosity. lt is well known that 
in many cases the motion of a mass element of a polyatomic gas cannot he 
completely described by the Navier-Stokes equations that assume that shear 
viscosity stress is due to shear flow along the considered element. This problem 
arises especially in motion with strong density variations per unit time, such 
as the Kantrowitz effect, and also in the acoustical studies of sound absorption 
and dispersion. Tisza 2) bas pointed out that in order to understand theabsorption 
and dispersion phenomena of polyatomic gases it is desirabie to introduce also 
a scalar viscosity ca1led bulk viscosity, proportional to the time differential 
of the density. Since in the hydrodynamic equation there is no physical distinc­
tion between the stresses due to the pressure and to the bulk viscosity it is clear 
that one can replace pressure and bulk viscosity by one term called the effective 
pressure, which is smaller than the pressure found by neglecting the bulk 
viscosity. It bas been shown by Broer 3) that this decrease of the pressure can 
he fully described by the irreversible process of vibrational relaxation. 

1.2. Ristorical development of the slow-colUsion problem 

The problem of vibrational excitation by means of inelastic molecular 
collisions bas been stuclied by some authors in connexion with the structure, 
temperature and density dependenee of the vibrational relaxation. The main 
difficulty in this study of inelastic collisions is how to obtain a solution of the 
problem concerning the relative motion of two colliding molecules. It is not 
so much the approximate solution of the Schrödinger wave equation, but rather 
the restricted knowledge of the shape ofthe curve for the interaction potential 
of two molecules that makes the calculations inaccurate. The transition pro-
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bability turns out to be very sensitive to small changes in the steepness of the 
interaction potential. 

The Born approximation in the treatment of systems involving a time-depen­
dent perturbation has been successfully applied to the study of high velocity 
collisions such as electron scattering. Similar success has not attended the 
study of slow molecular collisions. The Born approximation considers the 
incident and outgoing waves as simple plane waves and does not take into 
account the distortion of the waves at the point of ciosest approach, where. 
transitions are most effective. At this point the Born approximation breaks 
down. 

Zener 4) successfully treated the relative motion of the centre of mass of two 
molecules by descrihing this motion approximately with classica! equations. He 
found that energy exchange in a slow collision depended in a relatively simple 
manner on three factors: the magnitude of the change in total energy; the 
matrix elements with respect to the internat and final states of the interaction 
energy at the ciosest distance of approach; and the duration of the collision. 
He found that collisions were quite effective in the transfer of rotational energy 
and ineffective in the transfer of vibrational energy. 

Landau and Teller 1) tried to approach the problem of excitation by using 
Ehrenfest's adiabatic principle. This principle states that if initially a periodic 
motion of a system is in a certain quanturn state and if the external conditions, 
e.g. the strength of the external force, are changed very slowly, so that the 
relative change of the external condition is small compared with the motion 
of the system, the system must remain in an allowed quanturn state under 
the new conditions, just as if the new conditions has persisted for a long time. 
In particular, if the external force is restored to the initia! condition, the sys­
tem will be in the samestate as ifthe external conditions hadnotbeen changed. 
Transitions can only occur if the external conditions change rapidly during the 
motion of the system. If we now revert to the molecular collisions, Landau and 
Teller concluded that the efficiency ofvibrational excitation increased with the 
ratio of the period of vibration to the duration of interaction. If this principle 
is applied also to the rotational excitation, this ratio is found to be much larger 
than for vibrational excitation. Consequently, the rotational excitation is 
much more effective. This is in accordance with experimental results 5) showing 
the very small relaxation time for rotational excitation *). The work of 
Landau and Teller established the temperature dependenee of the relaxation 
time. 

Herzfeld and his co-workers 6 - 7) took a great step forward when they showed 
how a qualitatively good quantum-mechanical treatment of the relative motion 
could be obtained in closed form. They used the one-dimensional solution 

") Herzfeld and Litovitzin their book S), chapter VI, pp. 236-241 give an excellent review 
of rotational relaxation times in gases. 
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obtained by Jacksou and Mott 8) in which an exponential, repulsive potential 
was selected for mathematica} reasons. However, the calculations were always 
made for the collisions between an atom and a molecule and not for the collision 
of a molecule with another molecule, which actually happens in a relaxation 
process. 

This relaxation process can be complicated when more vibrations, which 
may also be degenerated, are available for the energy exchange. 

In this field the calculations for the linear C02-molecule are especially inter­
esting because it happens that the energy quanta of the bending modes are 
approximately half the quanta of the valenee mode. Therefore it is possible, 
during collisions, for two quanta of the bending modes to be transferred into 
the valenee mode. This case of exact resonance bas been indicated by Slawsky, 
Schwartz and Herzfeld ll). But these authors did not consider the various possi­
hilities in which the energy can be exchanged. There is the possibility that one 
quanturn of the valenee mode may be transferred in the callision not only 
as two quanta of one of the degenerated bending modes, but also as one quanturn 
to each of two independent bending modes. Moreover it may happen that the 
energy is exchanged between the valenee mode of one molecule and the bending 
modes of the other. 

1.3. The existence of more than one relaxation time 

Since carbon dioxide bas three normal modes of vibration, of which the 
bending mode is degenerated, it bas been suggested that there might be more 
than one relaxation process, with different relaxation times. Each vibration 
may be excited differently. In this connexion it is necessary to distinguish 
between two excitation processes different in principle: It is possible that the 
vibrations obtain their energy independently from translation, in which case a 
set of independent equations is obtained. This is called parallel excitation. The 
other possibility is that the vibrational energy enters the molecule via one mode 
and is redistributed from this mode to the others. This type of excitation is 
called excitation in series. 

Many experiments have been performed to try to establish whether carbon 
dioxide bas more than one relaxation time. These experiments were concerned 
largely with the measurements of absorption and dispersion in the ultrasonic 
region. However, the conclusions on the data are conflicting. Fricke 9), Piele­
meier 10) and Vigoureux 11) found two relaxation times, while Shields 12), 

Gutowski 13), Hendersou and Klose 14) found that the experimental results 
fitted the assumption of one relaxation time and one conesponding specific 
heat. 

According to the results of chapter 3 of the present work the valenee vibra­
tion is excited in series and the relaxation time is much smaller than that of 
the bending vibration. Ifthis process, in which a single mode is slowly activated 
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by translation, fo1lowed by a rapid energy transfer to other modes, occurs in 
nature, the whole excitation process appears to the observer as if described by 
one relaxation process. Therefore,·from the theoretica] point of view it is rather 
improbable that any further information concerning the existence of more than 
one relaxation process can be obtained from ultrasonic results unless one is 
dealing with parallel excitation having widely differing relaxation times. 

We shall try to obtain information experimentally by measuring the density 
pattem bebind a shock wave. This density pattem depends on the relaxation 
process. Therefore, the rate at which the internat energy tends towards the 
achieving of equilibrium and the absolute magnitude of this energy is found as 
a function of the translational temperature. The result can be compared directly 
to the relaxation equations. 

1.4. Introduetion to the present work 

When the motion of the molecules is not disturbed, the translational, rotatio~ 
nal and vibrational degrees of freedom are to a good approximation indepen­
dent. The thermodynamic properties of a gas can then be calculated by summing 
theseparate contributions of these degrees offreedom. Quanturn mechanically, 
the motion of the molecule is described by the product of wave functions 
associated with each degree of freedom. 

Chapter 2 discusses the quanturn theory of the rotation and vibration of the 
C02-molecule, wbich is considered to be free and not subject to intermolecular 
interaction. The rotation is treated as if one were dealing with a rigid rotator. 
Further, since the vibrational amplitudes are small we may consider all vibra­
tions to behave in accordance with the laws of simple harmonie motion, which 
description is an excellent approximation of the thermal energy levels. The 
corresponding energy is then obtained from the Einstein formula for a har­
monie oscillator. 

lt bas been established experimentally that the energies associated with the 
various degrees offreerlom are inthermal equilibrium. Therefore there must be 
some link between these degrees of freedom, otherwise it would never be 
possible to find such an equilibrium after distortion. It is generally accepted 
that the mechanism for transferring energy comes into play when the molecules 
are perturbed by a force field that interacts with various degrees of freedom. In 
other words, the molecular collisions are essential to the energy transfer process. 

In chapter 3 we treat the motion of the molecules in tbe presence of an inter­
molecular force field. It is our purpose to study the molecular energy transfer 
from motion as a whole to internalmodes of the molecules. We shall consider 
molecular collisions and not the simplified model of a cellision between an 
atom and a molecule. By doing this we shall be able to derive a full set of equa­
tions of vibrational energy transfer according the various intermolecular ex­
change probabilities. Partienlar attention is given to the nature of the interaction 
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potential, the assumption being made that its repulsive part is built up of the 
sum of all repulsive potentials between atoms of different molecules. This 
interaction potential, which excites the vibrations, must also somehow depend 
on the interatomie distances in a molecule, because otherwise the exernal force 
could never bring about a vibration within it. For example, during the inter­
action the repulsive force exerted by a C02-molecule on the nearer 0-atom of 
another molecule can be much greater than that exerted on the farther 0-atom. 
The overall force on the valenee honds of the molecule then tends to compress 
it. The force field interacts directly with the vibration. 

The quanta of translational and rotational energy are very small. This means 
that in effect any translational and rotational energy is accessible, so that the 
energy can be considered to have a classical distribution. This does not hold for 
the vibrational energy, where the spacing between the energy levels is large. The 
energy quanta of the bending mode, which bas the smallest quanta, are greater 
than 3kT at room temperature and therefore cannot be treated classically. 
Since these energy quanta are so large the vibrational excitation is thermally 
accessible for only a relatively small number of molecules at room temperature. 
This mainly accounts for the slow process of vibrational relaxation. 

Throughout chapter 3 we have used the assumptions that 
a) the rotation of the molecules plays no role on the energy exchange, and 
b) since we consider small gas densities, triple collisions may be neglected. 

The last two chapters are devoted to the experimental part of the study. 
Chapter 4 deals with the shock-tube technique and a metbod to measure the 
density profile. In chapter 5 the energy profiles and relaxation times from the 
experimental data are given. 
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CHAPTER 2 

ROTATION AND VlDRATION OF A FREE C01-MOLECULE 

2.1. Introduetion 

The exact solution of the wave equation descrihing the motion of the indivi­
dual atoms of a molecule (relative to the centre of mass) is a difficult problem, 
because molecules have as a rule a rather complex structure. However, the 
empirica} results of molecular spectroscopy on co2, as obtained by Dennison Hi), 
show that the energy values bear a simple relationship to one another, so that 
the energy of the molecule can be conveniently considered to be made up of 
two parts, called respectively the vibrational energy and the rotational energy. 
This permits a simpter solution. These spectroscopie data suggest that it is 
possible to treat the vibration and rotation of the molecule quite separately 
and then to combine the results of the two calculations to represent the behavi­
our ofthe three atoms in the C02-molecule. The wave function ofthe molecule 
will then be the product of 'lfJr, depending only on the rotational coördinates, 
and 'lfJv which depends on the normal coördinates of the molecule. 

This is equivalent to saying that we can neglect all interaction between rota­
tional motion and vibrational motion ofthe molecule and that we may consider 
the rotational motion as that of a rigid rotator. The validity of this approxima­
tion requires two assumptions. Firstly we assume that the amplitudes of the 
vibrations of the atoms are, for the lower energy states, small compared with 
the equilibrium distance between the atoms. Secondly we assume that the 
force Kr between the atoms and which is induced by the rotation is small 
compared with the inter~tomic force Kv associated with the vibrations. 

These two assumptions can be justified by means of the following calculations. 
Classically, we find the amplitude a of the gtound state for the valenee vibra­
tion to be given by 

a = ( h )t = 5.8 x 10-2 A, 
4rr2 'lll,Ul) 

which is very small compared with the distance of L/2 = 1.13 A between the 
carbon and the oxygen atom. Further, we obtain from the classical values of 
Kr 2kT/L and Kv 47721112 ,u1a that 

Kr/Kv 8 x IQ-3. 

2.2. The normal modes of vibration 

As we have mentioned, we shall employ the metbod of normal coördinates 
for treating the vibrational motion of the molecule. The linear C02-molecule 
bas only two degrees of rotational freedom and hence we have n = 3 x 3 5 
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or 4 vibrational degrees of freedom. The corresponding viQrational modes 
may be represented by the following model 

'Jil o-.. c -rO 

t t 
'1'2 0 c 0 

+ 
'~'a o-.. -re 0--7 

where vibration Pl with normal coördinates s1 is longitudinal and symmetrie 
(valence mode); the twofold degenerated vibration v2 with normal coördinates 
s21 and s22 describes the motion of the C-atom in a plane perpendicular to the 
axis of the figure; vibration va with normal coördinate sa is longitudinal and 
asymmetrie. The vibrations vz and va have the property in common that during 
the motion the distance between the 0-atoms remains unchanged. In the vibra­
tion v1 the C-atom remains stationary. 

The four vibrations are associated with three different wave numbers, which 
can be obtained from spectroscopie data. The corresponding frequencies are 
v1 = 4053 x 1010 sec-I; v2 = 2016 x 1010 sec-1; and v3 7189 x 1010 sec-1. 

We may describe the positions of the atoms of a COz-molecule with a per­
pendienlar set of Cartesian coördinates, the molecular axis being along the 
z-axis as indicated in fig. 1. 

Fig. 1. Coördinates of atoms of a carbon dioxide molecule. 

Let the 0-atoms each have mass m and coördinates XIYIZl and xayaza, while 
the C-atoms with mass M has the coördinates x2y2z2. The kinetic energy is 
then given by 

Next, we wish to express the kinetic energy of the vibrations in terms of the 
normal coördinates. 
We find for the Cartesian coördinates 

XI= Xa 
M . 

----S21 
2m+M ' 
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. . M . 
y1 = ya = 2m + M S22, 

. . M . 
z1 =!s1+ sa, 

2m+M 

. . M . 
za = -! s1 + 2m + M sa, 

2m 
X2 - 2m+M s:n, 

2m . 
----- S22, 

2m+M 

2m . 
- sa. 

2m+M 

Substituting these values in the expression for T we find 

where 
m 

/Ll 2' and 
2mM 

2m+M 

(2.lb) 

Having found the kinetic energy ofthe vibrations we may proceed to express 
the potentialenergyin termsof these four normal coördinates. The expressions 
for the potential energy will, to the first approximation, be of a homogeneous, 
quadratic form. The geometrie symmetry of the molecule requires the potential 
to be an even function of the variables s1, S21, S22 and ss. Consequently the 
coefficients of the cross terms vanish and we find 

2.3. Wave equation 

It is clear from the foregoing discussion that the approximate wave equation 
for the rotation and vibration of the COz-molecule has the form 

where 
Erv is the sum total of the rotational and vibrational energies, 
!fomol is the wave function descrihing rotation and vibration 

ft2 ~ 1 () () 1 ()2 ~ - - (sin#-)+----
2/ sin# ?:># {)# sin2 # () rp2 

(2.3) 
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and 

Tv 
fz2 ()2 /i2 ( ()2 ()2 ()2 ) 

- 2p,l OS~~ 2p,2 OS212 + <ls222 + i:)sa2 • 

I being the moment of inertia of the molecule. 

We can separate this equation into two parts by expressing !fomoi as the 
product of !fr, a function of rp and {}, and !fv, a function of s1, s21, s22 and sa. 

(2.4) 

By substituting this in eq. (2.3) and dividing through !fv!fr, we find that the 
left-hand side of the equation consists of the sum of two parts, one depending 
only on the rotational coördinates and the other only on the vibrational 
coördinates. Each part must he equal to a constant. These two equations are 

(2.3a) 
and 

(2.3b) 
where Erv = Er + Ev. 

The rotational wave equation (2.3a) can be further separated into the 
coördinates rp and {} and then one finds the solution to be a spherical 
harmonie (see Schiff16), section 14, page 71): 

1 
!fr = v- etmrp Nt pim (cos {}), 

21T 
(2.5) 

where mis a positive or negative integer or zero,j a positive integer or zero and 
Nis given by 

2j + 1 (j- !mi)! 
N=~-~---~-. 

2 U+ lml)! 

The function P1m is called the associated Legendre function and, for a particu­
lar value, it is (2j + 1) -fold degenerated. The energy values of the rotation, 
which are determined by the eigenvalues of the equation, form a discrete set 
and are given by 

fz2j(j + 1) 
Er=-··--. 

2/ 

The multiplying constauts in eq. (2.5) will provide the normalization to unity 
over the range of the varia bles. 

In a similar way we can further treat the vibrational wave equation by sub­
stituting in eq. (2.3b) the product of four wave functions 

!fv !fon(sl)!fom1(S2I)!fm2(S22)!fop(sa), (2.6) 

where each of the factors depends only on one normal coördinate. 
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Wethen obtain four equations of the type 

(2.7) 

with the condition that 

Es1 Es21 + Es22 + Es3 = Ev. 

The solution ofthis equation is given by Schiff 16) (section 13, page 60). It tnrns 
out that Es forms also a set of discrete values and is given by 

Es= hv(n + !) 
where n is an arbitrary positive integer or zero. 

Finally we find as a result that quantum-mechanically the free motion of a 
C02-molecnle (apart from the translational motion) may be described by a 
discrete set of eigenfunctions and energy values, so that the motion for partienlar 
energy valnes of rota ti on and vibration is given by 

.Pmo< ~ 1 
"-N' Ptm (cosO) .Po(',) .Pm,(,u).pm,(a,,j.pp(SS) ~ 

and the energy is given by . (2.8) 

n2 ·c · · 1) j 
Erv -1-~; -1- hv1(n + !) + hv2(m1 + !) + hv2(m2 + !) 

+ hv3(p + !) . 
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CHAPTER 3 

THEORETICAL TREATMENT OF VIBRATIONAL EXCITATIONS 
IN CARBON DIOXIDE 

3.1. Introduetion 

The vibrational excitations of a gas may be described by a kinetic process, 
which will, according to thermodynamics, finally result in thermal equilibrium 
between all degrees offreedom. This excitation process takes place during mole­
cular collisions and it is basically described by each pair of colliding molecules. 
A more fundamental study of such a process will therefore start with a consi­
deration in detail of the thermal collision between two molecules. 

These collisions may be accompanied by rotational and vibrational transiti­
ons. As we have already seen in chapter I, the rotational excitation takes place 
very easily compared with vibrational excitation, so that rotational equilibrium 
will have been attained long before vibrational equilibrium. In this chapter we 
shall therefore begin with translational-rotational equilibrium and consicter 
only those collisions in which the translational energy excites the vibrations 
with or without simultaneous rotational transîtions. However, since rotational 
transition probabilities are very large compared with vibrational transition 
probabilities we may as well neglect the simultaneous rotational transitions 
and study all collisions as if there were no rotational transitions. Further, one 
might ask what chance there is of an energy exchange purely between rotation 
and vibration during collision. Because the. time of a rotational cycle of the 
molecule is much larger than that of a vibrational period, this type of transition 
need not be expected from the point of view of the adiabatic principle. Thus we 
shall treat the vibrational excitation by consirlering the exchange of energy 
between translational and vibrational degrees of freedom. 

The energy transitions can be. treated in principle by solving the Schrödinger 
wave equation for the whole system. However, in doing this it is found con­
venient to describe the motion of the two colliding molecules in terms of the 
motion of the molecules relative to each other or to their centre of mass, of the 
free motion of the centre of mass of the complete system, and of the motion of 
the individual atoms of each molecule relative to its centre of mass. Quantum­
mechanically this means that the wave equation may contain the product of the 
three conesponding wave functions. Now, the wave function descrihing the 
motion of the centre of mass of the complete system can he taken out; it is of 
no importance to our further considerations, because transitions can only he 
effected by the relative motion of the two molecules. The wave function for 
the atoms in a molecule has been derived in chapter 2. The appropriate solution 
of the wave function descrihing the relative motion of the colliding molecules 
will he our first aim in this treatment. 
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We shall start with the Schrödinger wave equation descrihing the relative 
motion ofthe two molecules. Then we must determine the intermolecular forces 
giving rise to the energy transitions. The straightforward solution of this equa~ 
tion is extremely laborious and almost impossible. Accordingly we have to 
introduce some approximations in these calculations and to find such simplifi~ 
cations as will preserve the essentials of the physical situation. The solution of 
this equation consists of three parts: the incident wave, the elastically scattered 
wave and the inelastically scattered wave. It turns out that the collision cross­
section that can be derived from the solution of the wave equation is remarka­
bly infiuenced by the overlapping between the initial and scattered wave functi­
ons. Therefore the Born approximation of taking the incoming and outgoing 
waves as simple plane waves is not adequate for molecular collisions. We shall 
employ the metbod of the distorted waves 17), taking into account the distortion 
of the incident and outgoing waves produced by the interaction potential. 

3.2. Fundamental equations 

The problem is to find the probah Ie states of the harmonie vibrations of the 
molecule, initially in specified states, after it has been perturbed by a time­
dependent force which is initially zero and which returns to zero by the end of 
the collision. As we must study the result of all collisions of a molecule we 
pref er to use a time-independent approach in which the statistics of a succession 
of individual collisions are represented by a stationary wave function. This will 
he done by always consirlering the motion of the whole system of two colliding 
C02 molecules relative to its centre of mass. The contiguration of the system is 
described with respect to a set of space-fixed axes as indicated in fig. 2. The 
corresponding wave function is described by, respectively, the coördinates r, 
8 and cf> of the relative motion and the coördinates s1, s21, s22, s3, fh, ((!1 of the 
"considered" molecule, and s1', s21 ', s22', s3', #2, ({12 of the colliding molecules. 
The wave function satisfies the wave equation 

(3.1) 

91?1 

Fig. 2. Coördinates descrihing the relative position of two colliding molecules. 
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in which the Hamiltonian H is given by 
/i2 

H = - Ar2 + V+ Tr1 ~- Tv1 + Vv1 -r- Trz + Tv2 + Vvz, (3.la) 
2p,r 

where subscript l refers to the · considered molecule, 
subscript 2 refers to the colliding molecule, and 
V is the interaction potential. 

1i2k2 
The energy Et is the stationary total energy and equal to the sum of 

2p,r 
(the kinetic energy of the relative motion at infinity, where there is no inter­
action) and the energies Er1 + E111 and Erz + Ev2 of the internal motion of 
the two colliding molecules: 

Ji2k2 
Et = + Ert + Ev1 + Erz + Et'2 . 

2p,r 
(3.lb) 

Since the dependenee of the internal motion of the molecules on the inter­
action potential is very small we shall expand the total wave function lJI in . 
terms of the unperturbed functions descrihing the internat motion and of the 
functions of the relative motion only, the latter being in the form of incident 
and reflected waves: 

lfl = I: R~t tfmol 1 tfmol2 , (3.2) 

where the summation is taken over all possible vibrational states of the two 
molecules. The asymptotic form of lJI is given by 

IT/ 'k 1 'k 1 'k r r __".. {el oZ + -go( e) el or} tfmollo tfmol 20 + 1.} gk( 0) el r tfmoll tfmol 2 · 
r-+<X> r r (3.2a) 

The subscript zero indicates the initial state of the two molecules. The first 
term represents the incoming partiele moving along the polar axis e 0. 
The second represents the elastically scattered partiele that is moving radially 
ontward. Further the summation is taken over all possible inelastically scattered 
waves that are moving radially outward. The factor 1/r provides the well­
known decrease of amplitude with distance. Each term in this series contains for 
the two molecules the same quanturn numbers h, mr and respectively h, mz, 
because there are no rotational quanturn jumps. Rk depends only on the rela­
ti ve motion of the eentres of mass of the two molecules. The kinetic energy for 
this motion at infinity is obtained by using eq. (3.lb) as the difference of the 
total energy and the sum of vibrational and rotational energies. 

Substitution of eq. (3.2) in eq. (3.1) and making use of eq. (2.3) we obtain 

~
' Ji2 1i2k2j 

I: tPmoll tfmol 2 - Ar2 + --( R~t 
2p,r 2p,r ) 

I: V tfmoll tfmol 2 Rk . (3.3) 

Before we continue solving this equation it is necessary to make some re-
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marks concerning the interaction potential. It is well known that in thermal 
collisions the distance of ciosest approach is much larger than the interatomie 
distauces inside the molecule. Moreover, the dependenee of the intermolecular 
potential on the internal coördinates of the two molecules is assumed to be 
small. Therefore, the motion of the centre of mass of each molecule can be 
considered as subjected to the average potential field caused by each atom. 
This means that we can introduce for the function R~c an expansion in partial 
waves with spherical harmonies 

1 
R~c(r,O) = 1: Pt(cos IJ)- fz~c(r), 

I r 
(3.4) 

where Pz is a Legendre polynomial of order I and which describes the angular 
dependenee of the relative motion of the two eentres of mass. Further, as we 
shall see in the next section, the potential function V will be the product of 
V(r), which depends on the distance r between the two molecules, and U, which 
depends on the relative spherical orientation and internal coördinates ofthe two 
molecules: 

V= V(r)U(O, cp, s, s', fh, {}z, q;1, q;2). (3.5) 

Substitution of eq. (3.4) in eq. (3.3) gives for a partial wave 

~d2 l(l+ 1)/ 2}1-r 
1: tPmoil tPmol2 (dr2 + k 2

- , 2 ~ fz~t = /i2 V(r) U 1: tPmoll tPmoiz/zk. 

Again, the summation is taken over all possible vibrational states of two colli­
ding molecules. 

We study the excitation or de-excitation to other molecular states by multi­
plying both sides of this equation with the complex conjugated wave functions 
if;* moll n and if;* mol 2n associated with particular vibrational states of two free 
molecules, and then integrating over all vibrational spaces s and s' of these two 
free molecules. We make use of the orthogonality of the functions and obtain 

~ 
d2 
--+k2 
dr2 

l(l + 1) ~ 
fik= 

r2 ' 

2
P.r V(r) 1: 'ik J U t/;moll tPmol2 if;*molln if;*mol2n ds ds'. (3.6) 1z2 jl . 

We shall find a solution of eq. (3.6) by applying the metbod of successive 
approximations. However, before we do this, it is necessary to make some re­
marks about the functions and the matrixelementsof the right-hand side of eq. 
(3.6). 

Let us first indicate the asymptotic form of fi~c. Since the conditions of the 
problem require one molecule to collide with the other, let us define function 
R~c0 as representing the incident and elastically scattered waves. This function 
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has the asymptotic form 

1 .k go(fJ) ei or 
r 

(see eq.(3.2a)). Ifwe expand R~t0 into a series ofpartial wavesfrko we find their 
asymptotic values to be 

(3.4a) 

( cf. appendix I). 
Further, an inelastically scattered wave has the asymptotic form 

(3.4b) 

Consequently the partial waves fuc of R~t have the same radial dependence. 
Since the vibrational transition probabilities are very small, it is clear that 

the absolute value of the partial wave fuc is also very small compared with that 
of fik,y This means that by using the zero and first order approximations, we 
can put 

and 

Next, it can be confirmed that the off-diagonal matrixelementsin eq. (3.6) are 
small compared with the diagonal ones. The result is that we find the zero 
order approximation by neglecting the off-diagonal matrix elements, and we 
obtain for the elastic partial wave the equation 

l(l+ 1) t fuc = 
y2 ~ 0 

~ V(r)fucó J U .Pmollo .Pmol2o .P*mollo .P*mol2o ds ds', (3.6a) 

where the subscript zero indicates the initia} state of the vibrations of the mole­
cules. The first approximation to fik is obtained by putting the zero approxi­
mation for /zkó in the right-hand side and neglecting other off-diagonal terms. 
Then we find for a particular inelastic wave 

~ d2 l(l+ I)l 2f.kr * * · , 
fdr2 k2 ~~/lk =-112 V(r)/zkó J U'-fimollo '-fimol2o ,P molln ,P mol2ndsds 

+ 2; V(r)/zk J U t/Jmolln '-fimol2n '-fi*molln '-fi*mol2n dsds'. (3.6b) 
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The calculations of the symmetrical matrix elements on the right-hand side 
of eqs. (3.6a) and (3.6b) are straightforward. We substitute for tfrmoi the expres­
sion {2.8) and integrate over all spaces of the vibrational modes. As we shall 
see later, this integration gives for all modes unity, (except for the constant 
factor in the potential U). Furthermore, since the corresponding spherical 
harmonies in the diagonal matrixelementsof eqs. (3.6a) and (3.6b) are identi­
cal, the result will for both elements be equal to Ma. Going back to eqs. (3.6a) 
and (3.6b) we findas aresult the following two fundamental equations 

and 

where 

and 

l(l+ 1) 
~~ 

l(l+ 1) 2p.r ~ 
----Ma V(r) fikó = 0 

y2 1i2 

Ma J U tPmollo !fomol 2o tfr* mol lo ifl* mol Zo ds ds' 

Ma= J U!fomollo !fomol2o !fo*molln !fo*mol2n ds ds'. 

3.3. The interaction potentlal 

(3.7a) 

(3.7b) 

(3.8a) 

(3.8b) 

So far we did not consider in detail the interaction potential which is the 
origin of the collisions and of the energy transfer. The calculation of the inter­
action forces and potential is a difficult problem, since we know very little of 
the complex molecular structure. lt has not been possible to make a theoretica! 
determination of these forces. Therefore one has tried to overcome, with success, 
these difficulties by deriving a semi-empirica! formula such as the Lennard­
Jones expression 

~ ('0)12 
V= 4 eo t ,-;: V'+ V", (3.9a) 

which describes the average potential between two molecules. lt contains a 
repulsive part V' and a attractive part V". 

As a starting point one assumes spherical symmetry of the molecules. The 
sixth-power term represents the attraction of the molecules at Iarger distances. 
lt is the so-called Van der Waals force, which has a long-range action. The 
twelfth-power term represents the short-range repulsive potential. The corres­
ponding strong repulsive force at very small distauces arises from the over­
lapping of the electron clouds of the two molecules. By using this expression 
one finds from the observed transport phenomena, such as viscosity data at 
various temperatures the unknown parameters. According to Hirschfelder and 
others 18) these parameters, in the case of Cüz, are: 
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k 
200 °K and r0 = 3.95 x I0-8 cm . 

Since the behaviour of the repulsive part of the Lennard-Jones potential is 
close to an exponential function and since the twelfth power has been chosen 
arbitrarily, it might just as well be possible to represent the repulsion by an 
exponential function such as 

V'= Vo exp(-ur), (3.10a) 

where Vo and u are constants. 
The advantage of this exponential potential is that it facilitates considerably 

the further mathematica! treatment of the collision problem. 
The attractive part of the potential is less important and just increases the 

relative speed of the incoming particle. 
Fortunately it is not necessary to know the value Vo of the potential since, 

as we shall see later, the transitions are independent ofthis quantity. Physically 
this can be indicated by the following argument. A strongly repulsive interaction 
field prevents the molecules from a pproaehing closely; the absolute value of the 
wave function is therefore small in the region where the interaction is appreciable, 
so that the transition probability will decrease. On the other handastrong inter­
action field produces a strongly repulsive force, which in turn will increase the 
transition probability. 

According to Herzfeld 19) the repulsive part of the Lennard-Jones potential 
can be treated as follows: We derive from eq. (3.9a) 

and 

From this 

(
ro' 6 [ -;) =t 1+ 

_ dV = 4so 1 12 (~)12 
dr r ( r 

r [ V/~ --1+ 
12 V+ 

dV 

dr 
V eo. 

r [ J/~ The factor 
12 

1 + 1 V-I changes but little with Vin the region where 

collisions are effective, so that by taking this factor to be constant we have for 
V +so the differential equation for an exponential. In other words we have to 
use the potential 

V Vo e--ar so. (3.9b) 

The last term on the right-hand side represents the attractive part 
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V"=- eo. (3.10b) 

In order to find the unknown factor a, this potential is compared to the 
Lennard-Jones expression. 

De Wette and Slawsky 20) have required that the two potentials have two 
points in common. These points are r o and r c, respectively the zero point of the 
potential and the classica} turning point for the most effective collisions. At 
the latter point the colliding molecule's kinetic energy at temperature T is such 
that the product of the area of cross-section of a collision and the Maxwell­
Boltzmann factor reaches a maximum (see also eq. (3.23) below). We have 

(3.lla) 
and 

Tt Vo e-arc - ëo. (3.11b) 

Division of eq. (3.Ila) by eq. (3.llb) yields 

Tt + eo 

or 

1 (Tt + eo\ 
a log I· 

ro-rc eo 1 
(3.12a) 

From the Lennard-Jones expression for the potential we find the following 
relationship for re 

Substitution of this result in eq. (3.12a) yields 

1 ]', I - 1/6 -1 

~ [log (-~~~~) ][ 1 - ~ + ( 1 + V Tt : eo) ~ J . a (3.12b) 

The values of a as a function of temperature are given in tabel I. 
From this table we see that the factor a depends only slightly on the kinetic 

energy of the colliding particles and approaches a constant value at large 
energies and also at LJE 0, the case of exact resonance. This affords the 
possibility of using below (section 3.6) one exponential repulsive potential with 
constant a in a consideration of all the kinetic energiesof a Maxwell-Boltzmann 
distribution. 

It is clear that such a semi-empirica] formula, derived from a consideration 
of average orientations, can never he used in this form for the calculation of 
vibrational transitions, because vibrational excitations only arise when indivi­
dual atoms are subjected to differentfieldsof force. For this reason we want to 
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TABLEI 

T 
LlE2/k = 975o LlE= 0, or k= k

0 

re [I0-8 cm] a [108 cm-1] re [10-8 cm] a [108 cm-1] 

300 3.47 5.10 3.80 5.54 
400 3.38 4.95 3.77 5.46 
500 3.35 4.90 3.73 5.40 
600 3.32 4.84 3.69 5.36 
700 3.27 4.79 3.68 5.34 
800 3.24 4.78 3.66 5.33 
900 3.21 4.77 3.65 5.33 

1000 3.19 4.77 3.64 5.33 

obtain an expression for the potential, and without averaging over all orienta­
tions, so that the small dependenee of the repulsive potential on the interatomie 
distances is included in this expression. In order to find this dependenee in the 
potential function we may assume with Jackson and Howarth 21), and with 
Herzfeld and Litovitz 5) that the repulsive potential can be approximated by 
the sum of all interatomie repulsive potentials between the atoms of two colli­
ding molecules. This includes the sum of the potential energy of one atom of a 
molecule and all atoms of the other molecule: 

V' = E YiJ(riJ), (3.13) 
ij 

where i refers to any of the three atoms of one molecule and j to any of the 
atoms of the other molecule of carbon dioxide, and riJ is the distance between 
atoms i and j. In this way the potential energy is considered to be built up of 
9 terms. The next step is, in analogy with eq. (3.10a), to assume an exponential 
repulsive potential between such pairs of atoms, multiplied by a constant 
factor. 

Since in thermal collisions the distance of ciosest approach is much larger 
than the interatomie distances, the atomie distance riJ can be obtained quite 
simply by adding to r the projections of the atomie displacements in the direc­
tion of r. 

The potential between two C-atoms is then 

Vee= Vee0 exp -a {r + Al S21 COS/31 sin Tl + Al S22 sin/31 sin Tl + Al sa cosrl 
+ A1 s21' cos/32 sinT2 + A1 s22' sin/32 sinT2 + A1 sa' cosT2}, (3.13a) 

where r and {3 describe the spherical orientation of the partiele relative to the 
normal coördinates. ris the angle between the molecular axis and the vector r 
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of the relative motion. The potential between the C-atom of one molecule and 
the two 0-atoms of the other molecule is 

Vco Vco0 exp -a {r+ A1s21 cos /31 sin T1 +A 1822 sin (31 sin Ft+ A1sa cos T1 
L 

± 2 cos r2 ± A2Sl1 cos r2-AaS211 cos f3z sin r2-ASS221 sin !32 sinTz 
Assa' cos Tz}, 

where L is the equilibrium distance between these two 0-atoms. Since aAzs1' 
is very small compared to unity it is convenient to substitute for the exponential 
function the fi.rst two terms of a series expansion 

exp (aA2s1' cos F,J) 1 + aA2s1' cos Tz. 
We then obtain 

Vco = Vco0 l2 cosh (aL c~s r 2
) + 2aA2:S11 cos rz sinh CL c~s Tz) t 

exp -a {r-Ass21' cos f3z sin Tz-Assz2' sin f3z sin T2-Aasa' cos T2 

-!-- A1s21 cos /31 sin T1 + A1s22 sin /31 sin Tt + Atsa cos Tl}. (3.13b) 

Similarly we can sum the four potentials between the four pairs of 0-atoms 
in two different molecules as 

f2 cosh' (aL c~sT2) + 2aA2st' cosT2 sinheL c;srz) ~ 

exp-a {r-Aas21 cos (31 sinTt -Aas22 sin f3t sinTt -Aasa cos T1 

-Ass21' cos f3z sinTz -Aas22' sin f12 sinT2 -Assa' cosTz}. (3.13c) 

Finally, in analogy with eq. (3.13b), we find the potential between the two 
0-atoms of one molecule and the C-atom of the other one as 

Vco = Vco0 ~ 2 cosh (aL c~srl) + 2aAzs1 cos rl sinh CL c~srl) ~ 
exp -a {r- Aas21 cos f3t sin Ft-Ass22 sin (31 sin T1-Aasa cos T1 

+ Ats21' cos f12 sinTz + A1s22' sin f3z sinT2 + Atsa' cosTz}. (3.13d) 

The internal-motion coefficients At, Az and As are given by ratios, el!ch of 
which is the ratio of the atomie vibrational amplitude to the normal coördinate 
of the corresponding vibration. These coefficients can be easily obtained by 
consirlering the conservation of momenturn for the internal motion of the 
molecules. We find 

2m 
A1----

2m+M 

8 
11' 

m 

2m 

1 
-
2 

and As 
M 3 

2m+M · 11 
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It is clear that in our case we have to compare the sum of these nine potential 
terms with the Lennard-Jones potential in order to find a. This can be done as 
follows. The amplitudes of the vibrations for the lower energy states are very 
small compared with the distance of dosest approach, so that the potential 
depends very little on these amplitudes. Therefore in our comparison with the 
spherically symmetrie expression we neglect this dependenee on the vibrational 
amplitudes and then find 

j (aL cosr1)H (aL cosr2) ~ V Qoo ~2 cosh 
2 112 cosh --

2
-- ) . (3.14) 

We may therefore conclude that the interaction potential can be suitably repre­
sented by the difference between an exponential function Vo exp(-ar) and a 
constant so. However, when substituting such a potential in the eqs. (3.7a) 
and (3.7b) we may as well add the constant to the kinetic energy and consider 
the interaction potential as a purely exponential function. 

3.4. General expression for the cross-section 

The following section is concerned with the mathematica! treatment of 
equations (3.7a) and (3.7b), which we may use to obtain a solution forfzk· This 
wil! be done analogously to the one-dimensional problem as treated by Jackson 
and Mott 8). Let us first consider the auxiliary function Fzk satisfying the 
equation 

2Jtr Î M e-ar , F1k = 0 
h2 a \ 

(3.15) 

with boundary conditions Fck 0 for r = 0 and asymptotic value 

Fz~t ---+ sin (kr- -t /71' + ozk). 
r,7 oo 

Bycomparingthe asymptoticvalue of Fz~c0 with that of/z~c0 in eq. (3.4a) we obtain 

1 . 
/zko = (2/ + 1) i 1 ei0llcó Fzkó· 

ko 

Next, we substitute fik YFzk in eq. (3. 7b) and obtain 

dFzk dY d2Y 
2 dr dr + Fzk dr2 

Multiplying both sides by Fzk and integrating with respect to r between the 
limits 0 and r we obtain 
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r 

Since we know the asymptotic value of F1k we can integrate the last equation 
for large values of r. Wethen find 

where we have introduced the abbreviation 

(3.16) 

With this result we find for r --;.. oo 

1 21+1 . 
}ik= k {- cos(kr-!hr+8zk)+Const. sin(kr-tf7T+3zk)} ko i1 etl3u,() Azk Ma. 

When comparing this with the asymptotic expression (3.4b) we can find the 
integration constant before the sine term: 

/zk = exp { i(kr (3.17) 

1 
From expression (3.4b) wededuce that- lgk(8)1 2 is the number of mole­

r2 

cules per unit volume at distance r which have undergone a transition in their 
vibrational states during the collision. Of these, the number crossing unit area 

k 
per unit time is proportional to 2 lgk(8)1 2, whereas in the incident beam the 

r 
number crossing unit area per unit time is proportional to k 0 • Hence we have 
for the partiele flux per unit angle and per unit incident flux 

which is called the differential cross-section. 
By substituting for gk( 8) the expression in partial waves and using the asymp­

totic expression of eq. (3.17) we find for the differential cross-section 

a(lJ) 
1 00 

IMa :E exp {i(olk + 81k6)} (21 1) Pz Azk! 2 • 
ko3k 1=0 

(3.18) 

The total inelastic cross-section at is the total partiele flux per unit incident 
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flux and therefore the integral of eq. (3.18) over the sphere with unit radius. As 
we shall see later, the product ofthe quantities Maand Alk is independent ofthe 
coördinates (} and rfo of the relative motion. Consequently, the evaluation of the 
total cross-section is straightforward. Because of the orthogonality of the 
Legendre polynomials it contains no products of factors involving different 
values of!. We find 

(3.19) 

3.5. Calculation of the values of Auc 

The exact solution of Azk as defined by eq. (3.16) cannot be obtained except 
for the case of I = 0. On account of the relatively slow variation in the quasi­
potential energy of the centrifugal force compared with the exponential form, 
this potential will not produce any transition. The centrifugal potential wiJl 
only slow down the relative motion, so that according to Schwartz et al. 7) we 
can calculate Azk by substituting in eq. (3.15) 

ke2 = k2- l(l 1) 
rc2 

(3.20) 

Here we take the centrifugal potential to be a constant, its largest value being 
at the classical turning point r re. This means that it is sufficient to consider 
A ok and then find Azk for any value of l by substituting intheresult for l 0 
the effective collision velocity ke, in analogy with eq. (3.20). 

The calculation of A ok is similar to the one-dimensional problem and bas been 
carried out by Jackson and Mott S). If we substitute 

2 ~ 2f-Lr ~
1

/2 z = -Ma exp (-!ar) 
a h2 

in eq. (3.15) and takel 0, we obtain the equation 

2k 

d2F 1 dF ·(q2 + -+-dz2 z dz ,z2 

where q Fis a Besset function of order iq and argument iz. The so!U-
a 

tion of this equation turns out to be a modified Besset function of the second 
kind 

00 

Kîq(z) J e-z cosh u cos q u du. 

0 

(3.21) 

We now have to show that this solution satisfies the boundary conditions. 
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2 ~ 2p.r ~
1

/2 For r 0 we have z =- -Ma . We may suppose that Vo is very large, 
a f12 

because the interaction potential goes to infinity as r approaches zero, i.e. 
z --;.. co as r --;.. 0. But Kiq( co) is zero, and this accords with the boundary 
condition for r = 0. 

For r-'J> co, we have z = 0. The value of Kiq(O) can be obtained as follows. 
Ifwe substitute v = zcosh u in eq. (3.21) when z 0, wefindfor sma11 values ofz 

00 

f [(2v)iq (2v)-tq] dv 
Ktq(z) = e-v! --; + --; v . 

0 

From this it follows that 

(
z) -iq (z)iq 

Kiq(z) = t 2 r(iq) + t 2 r(- iq) 

or 

Kiq(Z) 

Hence 

Ktq(O) = (' . 7T ·)

112 

cos (kr + ?Jo), 
,q Sinh7Tq 

where ?JO is a phase shift. So we obtain 

Fuc = 

and with this 

By using eq. (3.21) the integral in the equation above becomes 

00 00 00 
~~ t+ r J J J z e-z (cosh t + cosh u) cos q0u cos qt du dt dz. 

0 0 0 

Jacksou and Mott first integrated with respect to z, substituted in the result 
t + u = 2T and t- u = 2U, and obtained 

00 00 

~ r cos(q + q0) T dT f cos (qo- q)U dU 
2 ,; cosh2 T cosh2 U 

0 0 

for this triple integral. 
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Ifweintegrate etvz;cosh2 z rounda closed rectangular contour- oo, + oo, + oo 
+ 1ri, oo + 1ri, which encloses z t 1ri, we find 

00 

f cospx dx 
cosh2 x 

0 

t 1rpjsinh t 1rp. 

This result was used by Jackson and Mott in their solution for the triple 
integral. Th11s the result is 

where 

and 
2ko i 
-'1 

a ( 

3.6. Total eft'ective collisions per unit time 

/(/+ 1) ~ 1/2 

ko2 rc2 \ • 

(3.22) 

We notice that translation for our purpose can be considered as an extemal 
degree of freedom and we therefore assume that the veloeities of the molecules 
are distributed according to the Maxwell-Boltzmann distribution law. The 
number of molecules per unit volume with veloeities in the given ranges 
dvx, dvy, dvz is then given by 

dNv =No (21T:T) 3f2e-m(vx2+!tyLivz2)f2kT dvx dvy dvz, 

where No is the total number of molecules per unit volume and m is the mass of 
one molecule. We are interested in the collisions of the molecules with each 
other. Therefore instead of dealing with all the molecules separately we con­
sider each time the relative motion of all molecules to one given molecule. The 
energy of the relative motion of the two colliding molecules is equal to tJLrV2r 

where /Lr tm is their reduced mass and vr their relative velocity. Hence the 
distri bution of the gas molecules over the relative veloeities can be obtained quite 
simply by replacing m by !Lr· 

We can express this with spherical coördinates and then obtain, for the num­
ber of molecules per unit volume whose veloeities relative to the given molecule 
lie between vr and vr + dvr, the expression 

00 

dNv = - No -- e-P.rVr /2kT v,2 dvr. 7T (2/Lr)3

/2 r 2 

r 2 1rkT , 
0 
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The total number of effective collisions, i.e. collisions brioging about a eer­
taio vibrational transition, which are suffered by one molecule per unit time is 
then equal to 

Q (3.23) 

where at is the cross-section of the molecules producing an effective collision 
for a certain excitation process. 

Let us first consider the collisions which activate the vibration. We can 

hko 
substitute vr - and integrate with respect to k between the limits zero 

/Lr 
and infinity, using the condition 

2/1-r 
k 2- k2 = LJE (3.24) 

0 h2 ' 

where iJE is the energy exchanged with the vibrations. We obtain by using eqs. 
(3.19) and (3.22) 

-· ( 2/1-r )a/2 ( h )4 7T3 ( 2/1-r iJE) M a2 -LlE/kT Qa - 7TNo -- - - e 
7TkT /Lr a3 h2 Mo2 

00 

Ir .. 2k"/Z kT 00 qe sinh 7Tq0e sinh 7Tqe 
e-u " ft ~ (2/ + /) dk, 

,, t =o ( cosh 7Tqe cosh 1rq 0,)2 

0 

where we have put 

l(l+l) . 
because -- IS negligible. 

ko2 rc2 

(3.25) 

The preceding integral cannot be evaluated in closed form. However, the 
following considerations will lead to a suitable solution. First of all we shall 
only consider the integration for l 0 and, in accordance with Schwartz et al. 7), 
we find the integral for higher values of I by assuming that the only effect of the 
long-range centrifugal force consists of a shift of tbe collision velocity. 

Next, according to section 3, the kinetic energy in the expression for the cross­
section contains a shift so. Therefore it is convenient to shift also the exponent 
of the Maxwell-Boltzmann factor by the same amount, and for this we multiply 
the integral by exp (eo/kT). 

The integral has a sharp maximum, since the cross-section increases with 
increasing ko while the Maxwell distribution decreases wïth increasing k 0 • The 
value of ko for which the integrand reaches its maximum depends only slight­
ly on the temperature, viz. on T-116• At room temperature its maximum is 
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about e-2°. This means that in a broad temperature range we can simplify 
the integrand by using the first two terms of the expansion of eq. (3.24): 

so that we may write 

JLr 
kA~ k + -iJE 

V klï2 ' 

sinh 1rq0 sinh 1rq 2 1 (k k) -------- """' e- '1T a o-
(cosh 1rq0 cosh 1rq)2 """' • 

Then we obtain in the integrand the expression 

~ 1i2k2 21T ~ 
exp t- 2JLrkT- a (ko- k) )" 

(3.24a) 

(3.26) 

(3.27) 

Thus far the integral is still too complicated. However, only molecules with 
veloeities near the maximum will play an important role. Then it is justitiabie 
to use the approximation of developing the exponentlal factor into a power 
series around its maximum, as was done by Landau and Tel1er 1 ). Accordingly 
we find for (3.27) 

where 

and 

~ 1i2k2 21T ~ 
exp - -- (k0 - k) = exp {- 3b2 3(x- b)2}, (3.27a) 

2JLrkT a 

b - ~ 1T JLr iJE 
I ali(2JLr 

h2k2 
x2 = 

2JLkT 

The dependenee of the integrand on the remaining factor, namely qe, is 
negligible in comparison with the dependenee on the exponential function; 
therefore we may conveniently replace q by its value at the maximum of the 
integrand. The integral for l = 0 then becomes 

!' 

b2 +•o/kT j e-3(x-b)2 dx. (3.28) 

0 

Further, we make the substitution y = x b in (3.28) and then use the limits 
oo to + oo in the integral insteadof -b to + oo; we thus obtain for the integral 

4JLrkT b e-3b2+<"o/kT l /~. 
ali2 r 3 

(3.28a) 

So far we have found the integral for I= 0. Now, by consiclering the other 
values of l, we notice that according to eq. (3.20) the effective collision velocity 
becomes smaller as l increases. This means that if we reptace the exponential 
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Maxwell-Boltzmann factor by 

exp ~-~ ( k2- l(l+l)) { 
{ 2{trkT \ , rc2 Î 

we find also for those integrals the result given in (3.28a). Consequently, we 
may write the integral over alltermsas 

4JL kT vr;, oo _r_b e-3b2 +•o/kT __ ~ (21+ 1) e-fi2/2~LrkT{I(l+ l)/re2 }, 

ah2 3 l=O 
(3.29) 

Since the product in the exponent changes by I0-4 for unit change of I we can 
replace the summation by integration and then find for expression (3.29) 

V7T (JLrkTrc)2 
8 - b e-3b2 +·•o/kT, 

3 ah4 
(3.29a) 

Finally, we find 

64 - {tr3/2 (kT)1/2 (AE)2 rc2 b e-LlE/kT- 3b2 + eofkT Ma2 
Qa = - V6 1r3 N 0 -. (3.25a) 

3 ~~ ~2 

Next, we consider the collisions which de-activate the vibrations. During these 
collisions there wi11 be some energy transferred from the vibration to the relative 
translational motion. It will be found that the evaluation of the de-activation 
process is similar to that of the activa ti on process. Since k 0 is smal1er than k, 
the integration is now with respect to ko between the limits zero and infinity. 

2/Lr 
We use the condition k2 k 0

2 = - LlE and obtain analogously 
Ji2 

64 
16
-

3 
u {t//2 (kT)112 (LlE)2 rc2 b e-3b2+eo/kT Ma2 

3 
f TT 1vo li 4 a 4 M <:12 (3.25b) 

Jf AE is large compared with the mean kinetic energy kT, Qa is much smaller 
than Qd; the physical explanation is that collisions which activate the vibration 
need more energy than those which de-activate the vibration, and are conse­
quently rarer. 

So far we have derived an expression for the effective collisions per unit 
time in the event of energy transfer between vibration and translation. However, 
the method of approximation includes the fol1owing conditions. Firstly, we have 
in expression (3.26) made the denominator equal to one. This is only acceptable 
if 

(I st condition). 

Secondly, in order to apply the expansion in eq. (3.24a) AE may not be too 
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~ 2ah ( LlE)1
/2 Î2/a 

r;(2Ftr)1/2 kT\ < 
1 (2nd condition). 

In table 11 the numerical values of these two conditions for the direct transfer 
of one energy quanturn at room temperature are given. 

bending vibration 
symmetrical valenee vibration 
asymmetrical valenee vibration 

TABLE 11 

1 st condition 

13.3 
21.1 
30.6 

2nd condition 

0.49 
0.62 
0.74 

We notice that the secoud condition is always fulfilled at temperatures above 
room temperature. 

Next, let us consider the case that the first condition is not satisfied. This 
happens in exact resonance, where we have no translational energy transfer 
but on1y transfer between the vibrational modes. The propagation veetors of 
incoming and outgoing partiele are equal. This also applies to large translational 
energies, where we can neglect the difference in propagation vectors. We 
simplify eq. (3.25) by substituting 

. (2fLr LlE)2 sinh 1rqo sinh 1rq hm ~-------
k-+ ko li2 ( cosh 1rqo- cosh 1rq)2 

k 2 2 o a 

and so obtain for the effective collisionsin the limit k ~o-- ko 

00 

The integration is straightforward and the evaluation of the sum wil! be 
similar to the derivation of eq. (3.25a). We finally find 

We may write for convenience 

M2 
Qa,d,e = NoP a,d,e

2 M : 2 , 

(3.30) 

(3.31) 
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where 

(3.3lc) 

We can consicter P2 as the translational transition probability for the excita­
tion of one molecule per unit time. lts values have been calculated and are given 
in table III as a function of temperature. 

TABLE UI 

Translational Transition Probabilities 

.dE2/k 975 °K .1Ea/k = 530 oK .dE= 0 

T Pa2 pi12 Pa2 I pd2 I Pe2 

300 7.7x I0-15 2.0x I0- 13 7.4x I0-12 4.3x I0-11 l.7x 10-8 

400 3.3 x ]Q-13 3.8 x JQ-12 7.4 x I0-11 2.8 x 1Q-10 2.2 x to-s 
500 3.4 x J0-12 2.4x I0-11 3.3 x I0-10 9.3 x I0-10 2.8 x I o-s 
600 1.8 x J0-11 9.2x 10-11 1.1 x 10-9 2.5 x 10-9 3.4x w-s 
700 6.5 x 10-11 2.6 x I0--10 2.4x I0- 9 5.lxi0-9 4.1 x I0-8 

800 1.9 x I0-10 6.6xJo-1o 4.5 x I0-9 8.7 x I0-9 4.9x w-s 
900 4.6x 10-10 1.4 x I0-9 S.lxl0-8 1.5 x I0-8 5.7 x to-s 

1000 9.2x I0-1o 2.5 x IQ-9 l.3xlos 2.2x w-s 6.4x I0-8 

In this table .dE2 represents the energy exchange between translational motion 
and bending vibration . .1Ea represents the energy obtained from the translatio­
nal motion when there is excitation of an asymmetrie vibration at the expense 
of a bending and a symmetrie valenee vibration. 

The transition probabilities of the inelastic collisions are influenced remarka­
bly by the dependenee of the translational transition probabilities on .dE, the 
energy exchanged with translation. Tt is easy to understand that the inelastic 
Collision can hardly occur in the Iow-energy region. In endothermic reactions, 
transitions cannot take place when the initial energy is Iess than the quanturn 
jump. On the other hand, from the expression obtained for the de-activation 
probability we see that also for the exothermic reactions the transition pro babi-



-34-

lity increases with temperature. However, the result is that on balance we find 
the excitation rate to become higher at higher temperatures. But when the initlal 
energy is extremely large, so that there is no appreciable difference between the 
wave numbers of initial and final wave, we find that the excitation process 
does not depend so strongly on the temperature. Physically, this can be des­
cribed by the following argument: if the initial velocity is extremely large, there 
will be no time for the transition to take place during the collision and conse­
quently the probability will be small. On the other hand the total number of 
collisions increases with temperature, so that the effectlve collisions may still 
increase with temperature. 

3.7. Transition probabilities of harmonie oscillators 

The transition probability for vibrational excitation depends strongly on the 
relative motion and the magnitude of the energy exchanged. It also depends, 
but much less strongly, on transitions of the vibrational states. In this section 
we shall only consider the transition probability as far as it depends on the 
vibrational states. The dependenee is described by the matrix element Ma, as 
defined by eq. (3.8b). This expression can be evaluated for any quanturn jump 
by using the harmonie-oscillator wave functlons. The wave functions are given 
by Schiff 16): 

where Hx is the Hermite polynomial of order x, and 

ç (27T: ~y/2. 
The wave functions betonging to different states are orthogonal to each other. 
Further the Hermite polynomials have the following recurrence relations: 

(3.32a) 
and 

1 2x+l 
4 Hx+2 + 

2 
Hx + x(x-1) Hx-2· (3.32b) 

In working out Ma it is convenient to express the exponentlal functions of 
the potentlal as power series in normal coördinates. Each exponential function 
is of the form exp(-axs), where s is one of the normal coördinates and x 
a function of the spherical orientation of the molecule. If we integrate over 
the coördinate s we obtain an expression depending on x: 

Tx,x' f t/Jx {1- axs + ~ (axs)2 
••••• } tPx' ds . 

-oo 
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For x= x' (i.e. if no energy has been transferred to this mode) the integral 
turns out to be practically unity, i.e. 

Tx,x 1. (3.33) 

When there is an activation or de-activation by one quanturn we can easily 
evaluate the integral by using the recurrence relation (3.32a) and the orthogonal 
property of the wave functions. We find, by neglecting higher-order terms, 

[ 
li(x + 1) ]

1
/a 

Tx,x+l -ax (activation) 
4rrp:v 

(3.34a) 

and 

Tx,x-1 ( de-activation ). (3.34b) 

When two quanturn jumps are involved we similarly find, by using relation 
(3.32b) and neglecting higher-order terms, 

and 

[
Ji2(x+ 2) (x+ 1)]1/a 

Tx,x+2 ~(a.x)2 l67r2ft2'1'2 (activation) 

[ 
Ji2x(x-1) ]1

/2 
T 9 - .l.(a.x)2 ----
x,x-~ - 2 167T2ft2'112 ( de-activation). 

(3.35a) 

(3.35b) 

Although there is no restrietion that only one or two jumps be possible, we 
can calculate that a change by more quanta in any mode during a collision is 
so improbably as to be negligible. 

If we work out the symmetrical matrix element Ma, eq. (3.8a), we find by 
using eq. (3.33) that 

Ma = Vo o/rl o/r2, 
where Vo is given by eq. (3.14). 

3.8. Effective collisions cansing tbe excitation of bending vibrations 

(3.36) 

The general expression for the effective collisions of the vibrational excita­
tion has been derived insection 6 ofthis chapter and is given by eq. (3.31). It is 
clear that these effective collisions describe the role of the complex collisions in 
which vibrational quanta plus or minus the necessary increment of translational 
energy are exchanged between the colliding pair of molecules. This exchange 
among or with the vibrational modes is described by the asymmetrical matrix 
element Ma, defined by eq. (3.8b). However, before we can carry out the inte­
gration of Ma. we have to specify which type of collisions at a particular time 
are of importance. We always consider the case that the vibrational energy is 
not in equilibrium with the rotational and translational energy and that we shall 
reach the final equilibrium by energy transfer between translational and vibra­
tional degrees of freedom. 
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Depending on the transfer process we can distinguish two possibilities. Part 
of the collisions produce a direct energy transfer between translation and vi­
bration. Other collisions give rise to an energy exchange among the various 
modes and thus produce indirect excitation. 

The energy quanta of the v1 and '113 vibrations are respectively twice and about 
four times as large as those of the v2 vibration. As was mentioned above, the 
translational transition probability of the cross-section for direct excitation is 
very sensitive to the magnitude of the energy exchange, so that by calculating 
the cross-sections for direct excitation of the vibrations we find that as far as 
they depend on translational motion the cross-sections of the Vt and va vibra­
tions are many orders of magnitude smaller than the value found for the v2 

vibration. This means that a direct excitation ofthe v1 and v3 vibrations is much 
less probable than that of the v2 vibration. Further, as we have seen in section 
7 of this chapter, the part of the transition probabilities that depends on the 
vibrational state is for one quanturn jump inversely proportional to the energy 
quantum, and inversely proportional to the square of the quanturn for two 
quanturn jumps. It is therefore found that for the v1 and v3 vibrations a direct 
excitation processis much less probable than an indirect excitation process. 

Since there bas to be an energy exchange between translation and vibration 
we may conclude that most of the vibrational energy by far is first fed into the 
bending modes. Then, when the bending vibration has been excited, there may 
be exchange among the vibrational modes. 

In this section we shall calculate the etfective collisions for the direct excita­
tion of the bending modes. It is suftleient to consider only one of the twofold 
degenerated modes and to multiply the result with two in order to obtain the 
total energy transferred into the bending modes. Furthermore we can, of course, 
neglect multiple quanturn jumps. During these collisions no energy is fed into 
the Vt, '113 and degenerated v2 vibrations. Their quanturn numbers do not 
change and according eq. (3.33) we substitute 

Bn0 ,n 1, Cm26 ,m2= 1, Dp0 ,p = 1, 

where B, C and D refer to the transition probabilities of respectively the V1, 

degenerated '~'2 and '1'3 vibrations. 
By using the four potential functions given in eqs. (3.13a), (3.13b), (3.13c) 

and (3.13d) and also eq. (3.34a), we find for activation 

Ma(v2) = [ A1Vcc0 A1Vc00 ~ 2 cosh (aLc;s r 2
) t 

-A3 VooO ~ 2 cosh ( aLc;s r~) ~ f 2 cosh ( aLc;s r 2
) ~ 
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where Ma( v2) is the asymmetrie matrix element of activation for the bending 
mode. By using eq. (3.14) we obtain 

(3.37) 

where A is some value between 0 and 8/11. 
In the absence of any theoretica! information concerning the constant po­

tential factors we may assume that these factors, namely Vcco, Vcoo and V00o, 
are of the sameorder of magnitude. If this is true we may say that, on account 
of the large average argument of the hyperbolic functions, the factor A wiJl be 
close to A3. Therefore we substitute A 3/n. 

So far we have found the matrix element for a particular orientation and a 
particular rotational state (j, m). Fortunately we do not have to consider all 
rotational states, since by calculating the effective collisions from eq. (3.31) 
we find that the rotational wave functions in eq. (3.37) forMa and in eq. (3.36) 
for Ma canceL Therefore, we only have to consider all possible orientations 
(ff, cp) according to the Maxweii-Boltzmann distribution law. This dependenee 
of the effective coUisions will then be found in the following integral 

21T 1T 

1 ~ r 41r 1 sin2 r1 sin ff1 dff1 dipl, 
·' ~ 

(3.38) 

0 0 

where r1 is the angle between the molecular axis and the vector r. r1 can be 
expressed in terms of 0, ff1 and ipl by the following equation: 

sin2 r1 l- cos2 0 cos2 ff1- sin2 0 sin2 fh cos2 1p1 

-2 cos e cos f}l sin e sin f}l cos iJll· 

These terms are substituted in (3.38) for the integration. The last term will 
then have a value of 1. The other terms give, after integration, 

-t cos2 0 sin2 0 (I-tH = 

Thus the integral descrihing the spherical orientation of the molecule bas the 
value!. 

Further, since we consider only one bending mode, cos fh, may have any 
value, so that we have to substitute for cos2 fh its average value, which is 
equal tot. 

The total number of effective collisions for the excitation of the bending 
vibration can readily be found by substituting in the general expression for the 
effective collisions, eq. (3.31), the matrix element for the bending vibration as 
given by eq. (3.37) and the symmetrical matrix element as given by eq. (3.36). 
We find 

(3.39)a 
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where 

(3.40a) 

Similarly, one derives the effective collisions for de-excitation of one bending 
mode and finds 

(3.39b) 
where 

2 _ 2 2 [ lim1o ] Cm1ó,mlb-1 -a As --
4rrf.L2'~~2 

(3.40b) 

and dE2 = hv2 is the vibrational energy quanturn of the bending mode. 

3.9. Relaxation equation for the bending vibrations 

The amount of energy supplied per unit time to the bending mode can he 
obtained by multiplying Qa( v2)- Qa(P2) with the energy quanturn associated 
with this mode. By considering all molecules in a volume we notice that there 
are many initial states of vibration and each state has an accupation density q. 
Wedefine qrn1 as the number of molecules (per unit volume) in the vibrational 
state m1. Further, it is sufficient to consider only one degenerated bending mode 
and to multiply the result with two in order to obtain the total energy trans­
ferred into the bending vibration. By applying eqs. (3.39a) and (3.39b) for all 
molecules per unit volume we get the following series for the rate of energy 
transfer E2 of the bending vibration. 

where we have neglected double or other multiple quanturn jumps because their 
probabilities are many orders of magnitude smaller. The first part expresses 
activation and the second part de-activation. The last term on the right-hand 
side represents the exchange between v2 and other vibrations. This series can 
be simplified by using the following relationships, which are obtained from 
eqs. (3.40a) and (3.40b): 

and 

By using eqs. (3.31a) and (3.3Ib) we also obtain the relationship 

Pa2(LJE2) = Pa2(LJE2) eLJEz/kT. 

(3.42a) 

(3.42b) 
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Eq. (3.41a) becomes 

Next we use the equations 

00 00 

E2 = 2 l:: m1 hvz qm1 and l:: qm1 =No. 
m1=0 m1=0 

Wethen find 

dE2 
- = ~3 No Co 12 Pa2 (eh 112fkT- 1) {E2(T) 
dt ' 

dE 
E2}- dt, (3.41c) 

where E2(T) 
2 No hv2 . 

-----~. --, m other words E2(T) is the equilibrium 
exp (hv2/kT)- 1 

energy of the bending vibration for the translational temperature T, and E2 
is its actual value. 

If we neglect the last term in eq. (3.41c), so that we do not consider the ex­
change between bending and other vibrations, it can be shown by Montroll 
and Schuler's 22) theory that, if the bending vibrations are initially distributed 
in their energy levels according to the Maxwell-Boltzmann distribution, this 
distribution will persist during the excitation process, but that the effective 
temperature will vary monotonically until the translational temperature is 
achieved ( see also appendix Il). Although in our case there is at the same time 
transfer of energy from bending vibrations to valenee vibrations, we notice that 
at low temperatures relatively little energy will be transferred in this way, so 
that any possible disturbance of the Maxwell-Boltzmann distribution will be 
so small as to be negligible. Thus at any time the bending modes have a definite 
vibrational temperature. 

3.10. Etfective collisions causing the excitation of tbe symmetrical valenee vi­
bration 

In this section we shall consider a more complicated excitation process, 
namely that of the valenee mode, in which we shall again neglect the very small 
probabilities of double or other multiple quanturn jumps. We shall see that 
energy can be supp1ied in various ways to the valenee vibration and each 
process is described by its own cross-section ll3). Whe shall find ten different 
probabilities for each collision in the excitation of the valenee mode. In prin­
ciple we can distinguish four different transfer proeesses. Firstly we have the 
possibility that a quanturn is transferred by direct excitation. We obtain for this 
part of the energy transfer an expression for the cross-section similar to that of 
the bending vibration. However, it turns out that this cross-section is negligibly 
small. Secondly there is a possibility that the transferred quanturn hv1 is ob-
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tained partly from one quanturn hv2 of one of the bending modes and the rest 
from the translation during a collision. But also in this combination of direct 
and indirect excitation processes the calculated transition probabilities are very 
small compared with the third and fourth types of process. 

Thirdly we consider the case that the energy is only exchanged between v1 

and v2 vibrations during elastic co1lisions. Since two bending quanta are 
practically equal to one valenee quantum, this transfer may occur without any 
additional energy of translation. Then the v1 vibration is activated by the gain­
ing of one quantum, while the v2 vibrations are de-activated by the losing of 
two quanta. There are of course different ways in which this exchange can take 
place. Therefore it is a convenient arrangement to consider now only those 
collisions for which the quanturn number of one of the four bending modes 
in a colliding pair of molecules changes by two. In other words we consider 
the four cross-sections for the energy transfer between one valenee mode and 
one bending mode. 

The general expression for the effective collisionsis given by eq. (3.31). The 
first step in the evaluation of this expression is to study the asymmetrical matrix 
element Ma, given by eq. (3.8b). During these binary collisions only the quan­
turn numbers of the v1 vibration wi11 change by one and one v2 vibration by 
two. The remaining six vibrational modes will remain unchanged and conse­
quently the integration over the corresponding coördinates, according to 
eq. (3.33) yields practically unity. 

Let us consider the case in which the energy is exchanged within the molecule. 
By using the four potential functions, eqs. (3.13a), (3.13b), (3.13c) and (3.13d), 
as well, as eqs. (3.34a) and (3.35b) we find for Ma in the case of activation 

[ 
~ (aL cos T1) t ~ (aL cos T2) t 

V000 ? 2 sinh 
2 

q 2 cosh \-2- ~ 

~ (aL cos r1) ~] + VcoO ?2 sinh ~····· 
2 

~ aA2 cos Ft t (aAa cos fh sin Ft)2 

(3.43a) 

where Mal( v1) is the asymmetrie matrix element of activation for the first type 
of process. On account of the large average argument of the hyperbolic func-

(
aL cos r) (aL cos r) tions we may reptace sinh 

2 
-, by cosh 

2 
, and assuming 

again that the constant potential factors are ofthe sameorder of magnitude wefind 

[
li(n0 + 1)]1

/2 
Ma/(Yl) t aA2 cos T1 (aAa cos fh sin TI)2 

4-n-lP.l'Pl 

[
li2 mto(mto- 1)]1

/ 2 

16 2 2 2 
Vo i{lrli{lr2. (3.43b) 

7r P-2 'P2 
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This is the matrix elementfora particular orientation ( r1, fh) of the consider­
ed molecule. The result will be substituted in eq. (3.31). The value for Ma is 
given by eq. (3.36). Again we see that Vo and the rotational wave functions 
cancel. Next, we consider the Maxwell-Bo1tzmann distribution for the rotational 
degrees of freedom. We do nothave to consider the sommation over the energy 
states, but only the inlegration over the rotational coördinates. This inlegration 
gives 

0 0 

Sin4 T1 cos2 T1 can be expressed in terms of 8, fh and 'Pl· Ho wever, it is 
easier to transform the integration variables fh and r:p1 by taking the 
direction of r as the polar axis. This gives for the integral 

21T 1T 

l f (' 8 j sin4 n cos2 rl sin rl drl dtpl = 
41T • 105 

0 0 

Since cos /31 can have all possible values between 1 and + 1, and as ex­
pression (3.43b) appears in the form of its squareafterit has been substituted 
in eq. (3.31), we must use the average value of cos4 /31, which is t· 

The total number of effective collisions, according to the first proeess, suffered 
by one molecule per unit time during the activation of the valenee mode by one 
of its bending modescan be readily found by substituting in eq. (3.31) the matrix 
element for the valenee vibration, as given by eq. (3.43b), and the symmetrical 
matrix element, as given by eq. (3.36). We find 

1 
Qal(vl) 

35 
No Bn",n()+I2 Cm10,m1()-2 2 Pe2 , (3.44a) 

where 

(3.45a) 

and 

CmttJ•mt0 -2
2 ! a 4Aa4 

161T2 P-22 '1'22 
(3.46a) 

In a similar way we can calculate the de-activation of the valenee mode by 
one of its bending modes. We find 

(3.44b) 

where 

(3.45b) 



42 

and 

(3.46b) 

So far we have considered the exchange with one of its bending modes of the 
molecule under consideration. The calculation for the other mode is of course 
similar, the only difference being that we now have to average over sin4 fh 
instead of cos4 f:h. Then we find for this type of transfer process 

(3.47a) 

and 

(3.47)b 

The following possibility in this treatment is that the two bending quanta 
are supplied by one bending mode of the incident molecule. Again, by using 
the potential functions represented by eqs. (3.13a), (3.13b), (3.13c) and (3.13d), 
we find for the asymmetrie matrix element the following form: 

By using the foregoing discussion this can be simplified to 

We notice that the matrix element is now a function ofthe rotational coördina­
tes of both molecules. Each orientation is described by its rotational degrees of 
freedom and distributed according the Maxwell-Boltzmann distribution law. 
By consirlering all orientations of the two colliding molecules, we have to 
evaluate the following two integrals. 

(i) 

2w w 

~ f J sin4 r2 sin {}2 d{}2 d<p2 , 

0 0 
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where r2 is the angle between the molecular axis of the incident molecule and 
the vector r of the relative action. By transforming the integration variables so 
that we take the direction of r as the polar axis we find for the integral Jk. 

(ii) 

27T 1T 

L f f cos2 n sin fh d#1 drp1 

0 0 

]._ 
3 • 

lfwe substitute these values in the equation for Ma1II(Pl) we find for the 
cross-section of process UI 

1 4rr oo ke4 
ua,III (vl) = 15 Bno,no+12 Cml,ml-22 k 3k }:; (21+1) -2 . 

o 1=0 a 
(3.48) 

Since in eq. (3.48) the cross-section does not only depend on the relative 
motion of the incident molecule we cannot simply integrate the cross-section 
over all translational energies in order to find the total number of effective 
collisions per unit time. After all, the incident molecule can be in any vibrational 
state. Therefore we shall describe each incident molecule by the sum of all 
possible vibrational energy states and replace the matrix element Cm1,mcz2 by 

00 

}:; Cml>ml-22 qml 
m1=0 

Now we can integrate the cross-section in eq. (3.48), and find, similarly to 
the derivation of eqs. (3.44a) and (3.44b), 

(3.49a) 

and 

(3.49b) 

The effective collisions with the other bending mode result in 

(3.50a) 

and 
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oe 

1 ~ Cm2,'m2+22 qm2 

QalV (vr) = 15 No Pe2 Bno,no-12 mz=O oo 

~ qm2 

(3.50b) 

m2=.0 

Fourthly we have to consider the excitation process in which the valenee 
quanturn is obtained from two ofthe four available bending modes, each giving 
one quantum. This process is then described by si x cross-sections. It is clear that 
the mutual orientation of the respective normal coördinates given by the rotatio­
nal coördinates is not the same in each combination. Let us begin with the ex­
change within the considered molecule. Here the quanturn numbers of the 
valenee mode and the two bending modes each change by one. The remaining 
five modes do not change so that the integration of these modes gives unity. 
We find then for the asymmetrie matrix element the following expression: 

MaV(vl) [ Voo0 ~2 sinh (aL c~s Tr) ~ ~ 2 cosh(~L c~s r 2
) ~ + 

Again the rotational wave functions cancel when we calculate the effective 
collisions, so that the further mathematica] treatment of the effective collisions 
runs parallel to eqs. (3.44a) and (3.44b). But now in the Maxwell-Boltzmann 
distri bution of the rotational coördinates we only have the following integral: 

21T 1T 

I J A 8 - J sin4 rl cos2 rr sin fh d-&r dtpr = ···-
4~ 105 

0 0 

We must average over sin2 fh cos2 fh, which gives tandthen we find for the 
effective collisions 

(3.5la) 

and 

(3.5lb) 

Next, we consider the possibility that thevalencequantumissuppliedbyone 
bending mode of the considered molecule and by one bending mode of an 
incident molecule, each giving one quantum. We find for the asymmetrie matrix 
element 



-45 

[ ~ . (aL cos r1) H (aL cos F2) l 
V00o ( 2 smh 

2 
) ( 2 cosh 

2 
~ 

By studying all orientations in the effective collisions we find with the Maxwell­
Boltzmann distributions the following two integrals for the two colliding mol­
cules: 

(i) 

and 

(i i) 

21T 1T 

~ f f cos2 T1 sin2 T1 sin fh dD-1 dq;1 

0 0 

21T 1T 

2 

15 

In the ca1culation of the effective collisions there are many vibrational states m1 

for the incident molecules. Therefore it is convenient to describe each incident 
molecule by the average state m1 of all colliding molecules and replace Cm1 m1-1

2 

by 

In this way we then find for the effective collisions 

(3.52a) 

and 

(3.52b) 

With these results it is now easy to write down the effective collisions for the 
other three combinations in which each of the two colliding molecules gives 

· one quanturn. They are 
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(3.53a) 

and 

(3.54a) 

and 

1 

45 
No Pe2 Bn0 ,n0 --12 Cnl2o•mu+l2 "'-"--_::_-.:::-----, (3.54b) 

2: qm1 
m1=0 

(3.55a) 

and 

1 

45 
No Pe2 Bn0 ,n0 -12 Cm20,mu+12 ::_:!:_-=--~----

2: qm2 

(3.55b) 

»12=0 

Finally, we have the probability that the valenee quanturn is obtained from the 
two bending modes of the incident molecule, each giving one quantum. For 
this case the asymmetrie matrix element turns out to be 

(Al)2 ) (aL cos r1) t] A
3 

Vco0 i 2 sinh 
2 

) aA2 cos F1 (aA3 sin F 2)2 cos fJ2 sin fJ2 

We find for all orientations of these two colliding molecules the fo11owing two 



integrals: 

(i) 

(ii) 
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211' 11' 

L J J cos2 r1 sin ih dih d!J?1 = i 
0 0 

211' 11' 

1 
( /(' sin4 r2 sin 1}2 d1}2 d!J?2 

411' .J • 

8 

15 
0 0 

The average value of sin2 {12 cos2 fJz is t. The evaluation of the effective col­
lisions runs parallel to eqs. (3.52a) and (3.52b). We find 

00 

1 
QaX (VI)= 

45 
No Pe2 Bn

0
,n

0
+12 =-~·'---:::-----··-· 

2: qm1 
m,=O 

and (3.56a) 
00 00 

1 1: Cm1>m1+1
2

qm1 2: Cm2,m2+1
2

qm2 
-No Pe2 Bn n -12 m1~----- m2=() ___ ~--
45 o• o oo oo 

2: qml 2: qm2 
m1=0 m2=0 

(3.56b) 
3.11. Relaxation equation for the symmetrical valenee vibration 

In the preceding section we have studied the various ways in which the valenee 
mode of a considered molecule can be activated or de-activated. As we have 
seen it turns out that there are ten different probabilities. The probability of an 
effective collision is very small, so that we ean take the sum of these ten probabi­
lities for ealculating the effectiveness of a collision. From these probabilities we 
find the corresponding effective collisions per unit time. lf we now multiply the 
difference between the activating and de-activating collisions by the energy 
quanturn we find the amount of excitation energy supplied per unit time to the 
valenee mode of one molecule. By consirlering the sum of all molecules we shall 
find the relaxation equation for this excitation process. 

However, mathematically it is found more convenient to treat the different 
exeitation processes separately, so that we find each time the amount of energy 
supplied per unit time to the valenee mode of all molecules. Then, by taking 
the sum of these results, we shall finally have the total rate of energy transferred 
into the valenee modes of aU molecules. Let us start with the sum of all mole­
cules exeited in aecordance with process I of section 10 of this chapter. We get 

dE1 1 1 ~ dt = 
35 

No Pe2 h'P1 (Bo,12 C2,o2qoz+Bo,12 C3,12qo3 + ... Bo,12 Cml>m1-z2qom1 

+ B1,22 m~2 Cml>mt-22 q1m1 + ... - n~J m~o Bn,n-!
2 Cml>mt+22 

qnm1 ~· (3.57a) 



-48-

where qnm1 is the number of molecules per unit volume with the vibration v1 
in state n and the vibration vz in state m1. 

This series can be simplified by using the following relationships, obtained 
from eqs. (3.45a). (3.45b), (3.46a) and (3.46b): 

Bn,n+l2 = (n+ l)Bo,12 , 

We obtain 

(3.58a) 

(3.58b) 

(3.59a) 

(3.59b) 

Since the molecules are at any time distributed according to the Maxwell­
Boltzmann distribution law (cf. appendix II), we write 

qnm1m2P 

No exp { -(n+t)hvt/kTt-(mt +t)hv2/kT2-(m2+t)hv2/kT2-{p+t)hva/kTa} 
00 00 00 00 

~ ~ ~ ~ exp { -(n+ I)hvt/kTJ-(mt +t)hv2/kT2-(m2+t)hv2/kT2-(p+t)hva/kT3} 
n=O m,,~o mz=O p=O 

(3.60) 

This is the number of molecules per unit volume with the vibration v1 in state n, 
the vibration v2 in states m1 and m2, and the vibration va in state p. With the 
aid of this expression we derive 

00 00 

~ ~ m12 qnmt = (3.61) 
n=O m,=O . 

If we use the following abbreviation: 

oo ( mklTh. 2'/J2) -- .1 1 S = m~,·O exp ·· 
= exp ( -hv2/kT2)' 

eq. (3.61) becomes 

:i: :i: m12 qnm
1 

= No (kT2)
2 _d:~/dv22 = 1 + exp (hv2jkT2) No. 

n=o m1=o h S { exp (hv2/kT2)-l }2 
(3.62a) 
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We derive similarly 

Eq. (3.57b) becomes with these expressions 

dE11 I 
- =- No2 Pe2 Bo,12 Co,22 hv1 
dt 35 {exp (hv2jkTz) I}2 

1 + exp (hv2/kT2) 

By multiplying the first term on the right-hand side by 

I + exp (hv2/kT2) 

1 + exp (hv2/kTz) 

(3.62c) 

(3.62d) 

(3.57c) 

and by · using the relationship 2v2 = Y1 we derive from eqs. (3.40a) and 
(3.46b) Co,22 = t Co,14 and find 

dE1I 1 ~ exp (hv2/kTz) + 1 ~ - = NoPe2 Bo,12 Co,14 {E1(T2) -- E1}, (3.57d) 
dt 70 exp (hvzjkT2)- 1 

where 

and 

represent the respective equilibrium energies of the valenee vibration for the 
temperatures T1 and Tz. 

The same expression for the rate of energy transfer will be found by consirle­
ring the second excitation process, eqs. (3.47a) and (3.47b), in which we con­
sider the other bending mode. 

Next we take the sum of all molecules which are activated or de-activated 
according the third probability, described for each molecule by eqs. (3.49a) 
and (3.49b). By substituting eqs. (3.58a)- (3.59b) into the eqs. (3.49a) and 
(3.49b) we find 
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(3.63a) 

If we use the Maxwell-Boltzmann distribution for all qrn1 we can evaluate the 
series and find 

{exp (hv2/kT2) + 1}? (
3
.
63

b) 
n {exp (hvz/kT2) 1} r 

The rate of energy transferred to all molecules is 

dEllil "" 
- = ~ qn {Qaiii(vi)- Qaiii(vJ)} hv1. 
dt n=O 

(3.64a) 

We finally find 

1 1 + exp (hvz/kT2) J 
{exp (hv2/kT2)- 1}{exp (hvi/kTI)- 1} · (

3
.
64

b) 

By camparing this result with eq. (3.57c) we findat once 

dE1IIl 1 N. p 2 B 2 C 4 ~ exp (hv2/kT2) + 1 l {E T ) E } 
dt 30 ° e 0 '

1 0
'
1 

( exp (hv2/kT2)- 1 ~ I( 
2 - 1 (3.64c) 

The same result will be obtained by consictering eqs. (3.50a) and (3.50b) over 
all molecules. 

Next, we shall continue to evaluate the energy rates associated with the last 
six excitation probabilities, numbered with the indices V to X in the preceding 
section. 

The evaluation of eqs. (3.5la) and (3.5lb) over all molecules is straight­
forward. Wethen find 

(3.65a) 

(3.65b) 
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By using the Maxwell-Boltzmann distribution of eq. (3.60) we find for the series 

(3.66a) 

00 00 00 

~ ~ ~ - 2nm1 qnm1m2 

-2No 
c--------:-~--·· '(3.66b) 
{exp (hv1/kT1)-1} {exp(hv2/kT2)-l} n=O mt=O mz=O 

00 00 00 -~ 

~ ~ ~ -nqnmtmz = · 
n=O mt=O m2=0 {exp(hYI/kTI)-1} 

(3.66c) 

With these expressions eq. (3.65b) becomes 

1 

105 
No2 Pl• Bo,12 Co,14 hv1 

[ 
1 1 + exp (hv2/kT2) 

{exp (hY2/kT2) 1}2 {exp (hY1/kTI)- 1} {exp (hvz/kT2) 
1}] . (3.65c) 

Again, comparing this result with eq. (3.57c) we find 

dE1V 1 N. p 2 B 2 C 4 ~ exp (hv2/kT2) + 1t {E T,) E} 
dt 105 ° e 

0
'
1 0

'
1 ? exp (hv2/kT2)--' 1' I( 

2 
-

1 
· 

From eqs. (3.52a) and (3.52b) we find the rate of energy transfer for one 
molecule to be 

Substituting for qm1 the Maxwell-Boltzmann distribution we find 

hv1 {QaV1(vl)- QaV1(vl)} = 

1 [ m1o- n 1 
45 NoPe

2
Bo,l

2
Co,14hvl {exp(hvil/kT

2
)- 1} -mmo-nj. 

By taking all molecules we obtain 

(3.67a) 

(3.67b) 

dE1VI l 00 00 
[ m10 n ] 

-d = 45 NoPl· Boy Cor hv1 ~ ~ qnm1 { (h /kT:) l} -nm1o-n . 
t n=O mt=O exp 'V2 2 -

(3.68a) 
The further evaluation runs parallel to E1V and so we find 

E1}. (3.68b) 
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It is clear that combinations ofeqs.(3.53a)with(3.53b),(3.54a)with(3.54b), 
and (3.55a) with (3.55b) will lead to the same result as the combination of 
eqs. (3.52a) with (3.52b). 

Finally, we shall evaluate QaX(vl) and QaX(vl) for all molecules. The rate 
of energy transfer for one molecule is obtained from the eqs. (3.56a) and (3.56b) 

hv1 {QaX(vl) QaX(vl)} = 

2n n]. 
{exp (hvz/kTz)-1} 

(3.69b) 

We obtain for all molecules 

1 ~ 
-NoPe2 Bo,l2 Co,t 4 hYl ~ qn 
45 n=O 

1 2n n], (3.70a) 

which results in 

The total energy transferred per unit time to the valenee mode of all molecules 
astheresult of the ten excitation probabilities in each collision is simply obtained 
by taking the sum ofthe ten termsE1, i.e. E1r-x. However, as we shall seein the 
next section, the symmetrie valenee mode will also transfer some of its energy 
into the asymmetrie valenee mode. Therefore we have to substract this energy 
exchange from the calculated excitation energy. 

dE1 ~, exp (hvz/kTz) + I) dEa' -- = 0.216NoPe2 Bo,12 Co,l4 1 {E1(Tz)-E1}- . (3.71) 
dt exp (hv2/kTz)- 1) dt 

3.12. Effective coJJisions causing the excitation of the asymmetrie valenee vi­
bration 

Since the energy quanta of the va vibration are much larger than those of 
the other vibrations, direct excitation will have negligible probability. We find 
also for this vibration an indirect excitation process. This mode will obtain 
most of its energy from the other vibrational modes. During a collision each of 
the six available modes can transfer a part of its energy into the va mode. How-
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ever, the largest excitation probability will be found when one quanturn of the 
Pa vibration is exchanged with one quanturn of the PI and one quanturn of the 
Pz vibration, while the excess energy is exchanged with the translational motion. 
The other probabilities are negtigibly small. In other words, we find that the 
energy of the asymmetrie vibration is supplied by the energy of the symmetrie 
valenee vibration and of the bending vibrations. The energy of the valenee 
vibration is in turn obtained from the bending vibrations. The bending vibra­
tions, as we know, are directly excited by the translation. 

It tums out that we have to consider eight excitation probabilities which 
describe the whole excitation process. These probabilities are very smal\ oom­
pared with those for the excitation of the bending and the symmetrie valenee 
vibrations, so that this excitation process still bas to start when the other 
vibrations have already reached the translational temperature. 

Let us for our first process consider the case that the energy exchange is 
confined to the considered molecule. Again we start from the general expression 
for the effective collisions, as given by eq. (3.31), and evaluate the asymmetrie 
matrix element given by eq. (3.8b). The quanturn numbers of the P1, Pz and Pa 
vibrations change by one. The remaining five vibrational modes are unchanged, 
so that the integration of eq. (3.8b) over their normal coördinates gives unity. 
By using the four potential functions of eqs. (3.13a), (3.13b), (3.13c) and (3.13d), 
we find for activation 

[ 
) . (aLcos F1) (' (aL cos Fz) ~ M 11/ (Pa)= Vooo ( 2 smh ·············-

2
- ' ( 2 cosh ~ 2- ) + 

where Mal (Pa) is the asymmetrie matrix element of activa ti on of the 'P3 vibration 
for the first type of process. On account of the large average argument of the 

(
aL cos F1') hyperbolic functions we may replace sinh by cosh --

2
--- , 

and assuming again that the constant potential factors are of the same order of 
. magnitude, we find 

Mal( Pa) = a 3 A2 As2 sin F1 cos2 F1 cos fh 

The integration over all rotational orientations gives 
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21T 1T 

~ ;· J sin2 r1 cos4 r1 sin fh dD1 dqJ1 
2 

35 
0 0 

Further, we substitute for cos2 /31 its average value, which is equal tot. Again 
we see that Vo and the rotational wave functions cancel. The calculation of the 
cross-section is straightforward. We notice, however, that the energy of one 
quanturn jump of the asymmetrie valenee vibration is larger than the sum of 
one quanturn of the v1 vibration, and one quanturn of the v2 vibration, so that 
we do not have the case of exact resonance encountered in section 10. The excess 
energy has to be exchanged with the translation. 

We find for the effective col11sions 

(3.72a) 

and 

(3.72b) 

where 

D 2- 2A 2[/i(pa+l)] 
Po.Pa+l - a 3 A_ 

"t7Tf'2'V3 
(3.73a) 

and 

(3.73b) 

In the solving of eqs. (3.72a) and (3.72b), Pa and Pa are calculated in acear­
dance with eq. (3.31) by substituting LJE LJEs, LJEs hvs- hv1- hv2 
being the excess energy transferred by the translational energy. 

Since the bending mode is degenerated, we can for our secoud process take 
the other bending mode. This will, of course, give the same value as that found 
for process I, or expressed mathematically 

(3.74a) 

and 

(3.74b) 

For our third process let us consider that the energy quanturn hvs is sup­
plied by one of the bending modes of the incident molecule. The evaluation 
of the effective collisions runs parallel to the foregoing processes. We find for 
the integration over the rotational coördinates of the colliding molecules 
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21T 1T 

(i) j cos4 r1 sin fh d#1 drp1 
1 ~! 

4-rro/ 

1 

5 
0 0 

and 
21T 'lT 

~ f f sin2 r2 sin #2 d#2 drp2 
2 

(ii) 
3 

0 0 

Furthermore, justas in the substitution of eq. (3. 72) in eq. (3.31), we have 
to average cos2 {32, which gives t. When we work out the effective collisions 
according to this process we notice that each of the incident molecules can be 
in any state m1. Therefore we have to reptace Cmt.m1 ~12 by the average value 
of all matrix elements. Thus we find 

(3.75a) 

and 

(3.75b) 

If for our fourth process we consider that the bending mode of the incident 
molecule is degenerated, we find analogously 

(3.76a) 

and 

(3.76b) 

A fifth possibility is the supply of the valenee quanturn by the incident 
molecule, and of the bending quanturn by the considered molecule. The matrix 
element according to this probability becomes, by using the potential functions 
in eqs. (3.13a), (3.13b), (3.13c) and (3.13d) 
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MaV(v3) = [ Voo0 ~2 cosh(aL ~s r 1
) n 2sinh(aL c;s r 2

) ~+ 

(~:) 2 

Vwo ~ 2 sinh (aL c;s r 2
) ~] a3 A2 cos A32 cos T1 sin T1 cos /h 

(3.77) 

As usually we substitute this in eq. (3.31) and integrate over all rotational 
coördinates. This integration yields the product of the following two integrals: 

(i) 

and 

(ii) 

2?T ?T 

:_ r r cos2 T1 sin2 T1 sin fh dD1 dqJ1 
41T.; .; 

0 0 

2?T 7T 

1 
( ( cos2 r2 sin fJ2 dD2 dqJ2 = ~ . 

41T .; .; 3 
0 0 

2 

15 

Furthermore in eq. (3.77) we must substitute the average value of cos2 fJ, which 
is equal to !. 

The evaluation of the effective collisions according to this process gives 

(3.78a) 

and 

(3.78b) 

If we now consider the other bending mode for our sixth process we find that 
the effective collisions are given by 

(3.79a) 

and 

1 
QaVI(v3} = 45 No Pa2 Dpo,Po-12 Cm2o•m2o+12 -----

L qn 

(3.79b) 

n=O 
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For our seventh and eighth possibilities let us consider that the two quanta 
are both supplied by the incident molecule. The matrix element becomes 

(The matrix element of the eighth possibility can be found analogously). 
In working out the effective collisions we have to evaluate the product of the 

following two integrals for the rotational coördinates: 
21T 7r 

(i) 
1 I' I' 1 

I J cosz F1 sin fh dD-1 drpr =-
47T,; 3 

0 0 

and 21T 1T 

(ii) 
l I" I' 2 

/ / sin2 rz cos2 Fz sin fh d02 dq;2 = - . 
47T .; ~· 15 

0 0 

We then find for the effective collisions of the seventh process 

and 

00 

l l,; Bn,n-12 qn 
N. p 2 D 2 n=O 

45 
o a P

0
,P

0
+1 __ ® __ _ 

l,; qn 
n=O 

(X) 

l,; Bn,n+l2 qr; 
:

5 
No Pd2 Dp

0
,p

0
-12 ::_ ... :~®---~ 

l,; qn 
n=O 

(X) 

l,; Cml>ml-12qm1 
mr=O 

00 

l,; CmJ,mt+l2qml 
mr=O 

00 

(3.80a) 

(3.80b) 

If we now consider the other bending mode of the incident molecule, the 
eighth process will yield 

(3.81a) 

and 

(3.8lb) 
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3.13. Relaxation equation for the asymmetrie valenee vibration 

The relaxation equation for the excitation of the 'Pa vibration can be found 
by consirlering the effective eollisions of the preeeding seetion for all molecules. 
This procedure runs for a great deal parallel to the evaluation of the relaxation 
equation for the symmetrie valenee vibration. The prineipal difference is that 
now we have at the same time also an energy exèhange with the translation, so 
that Pa2 is smaller than Pa2• 

Let us workout in detail proeess I for the exeitation ofthe asymmetrie valenee 
vibration. The rate at which energy is transferred to all molecules wiJl be 

dEal oo oo oo 

dt = n~o m~o p~o qnmtP {Qa1('Pa)- Qa1('Pa)} hv3. (3.82a) 

By using eqs. (3.72a) and (3.72b) this beeomes 

dEal 1 oo oo oo 

dt 35 No hvs n~o m~O p;O qnmtP {Pa2 Dp,p+12 Bn,n-12 Cml,mt-12 

Pa2 Dp,p-12 Bn,n+l2 Cml>m1+12}. (3.82b) 

This seriescan be simplified by using eqs. (3.40a), (3.40b) and (3.58a), (3.58b). 
Furthermore we use the following relationships obtained from eqs. (3.73a) 
and (3. 73b): 

and 

We shall then find 

dEa1 

dt 

1 
NoPa2 Bo,12Co,12 Do,12 hva r~ ~ ~ {nm1(p+l) 

35 n=O m1 =0 p=O 

(3.83a) 

(3.83b) 

- p(n+ l)(m1 + 1) eÁEa/kT} qnm1p J , (3.82c) 

where we have used eq. (3.31). 
Since the vibrations have a Maxwell-Boltzmann distribution we can easily 

evaluate the series in eq. (3.82c) by using eq. (3.60). Then we find 

00 00 00 

~ ~ ~ nm1p qnm1p 
n=O mt=O p=O 

{exp (h'Pt/kTI) 1 }{exp (hv2/kT2) -l}{exp (hvafkTa) 

00 00 00 ~ 

~ ~ ~ nm1 qnm1p = -,----------------,-
n=O m1=0 p=O {exp (hv2/kT2)-

00 00 00 

~ ~ ~ npqnm1p 
n=O m1=0 p=O (hvt/kT1)- l}{exp (hva/kTa) 

(3.84a) 

(3.84b) 

(3.84c) 
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oo oo oo N 0 
~ ~ ~ m1 P qnm1p = , (3.84d) 

n=O m1=o p=O {exp(hv2/kTz)- l}{exp(hvs/kTs)- 1} 

oo oo oo No 
~ ~ ~ P qntn1P = (3.84e) 

n=O m1=0 p=O {exp (hva/kTs)-

With these expressions eq. (3.82c) becomes 

dEsi 1 
2 

{ exp (hv1/kT1 + hv2/kTz + LJEs/kT)- 1} 
= - NoP a2 Bo,12 Co,12 Do,l -=-=----,----,--,--·~--=-----:--------=-

dt 35 {exp (hv1/kT1) 1}{ exp thv2/kT2) 1} 

[Es (T, T1, T2) Es] , (3.82d) 

where Es = actual energy of the asymmetrie valenee vibration, and 

No hvs 
Es (T, T1, T2) = -----------------,-

{exp (hv1/kT1 + hv2/kT2 

this being the energy for the asymmetrie valenee vibration at the temperature 
determined by the translation as well as by the bending and symmetrie valenee 
vibrations. This temperature can be represented by T, such that 

hvafk 

However, since this excitation process starts after the other vibrations have 
reached the translational temperature, we find T equal to the translational 
temperature T. 

Just as we have evaluated the relaxation equation associated with proeess I, 
we can evaluate each of the other seven processes. We shall then find that, 
apart from a numerical factor, these equations are all of the same form as 
that of proeess I. These numerical factors are also found in the corresponding 
effective collisions. 

By taking the sum of the results for the eight excitation processes of the 
va vibration, we finally find the energy transferred per unit time: 

{exp(hv1/kT1 + hv·2/kT2 L1EsfkT)- 1} 
0.28 No Pa2 Bo 12 Co 12 Do 12 ···--:---,-------__:_ 

· ' ' ' { exp (hv1/kT1) 1} { exp (hv2/kT2) I} 

dEs 

dt 

[Es(T)- Es], (3.85) 

where Es(T) is the energy of the vs vibration at the translational temperature. 

3.14. Relaxation times 

The theory presented in this chapter for the calculation of the transfer of 
vibrational energy provides also the relaxation time for the èxcitation of the 
three vibrations. From the energy transfer equations (3.41c), (3.71) and (3.85) 
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we see that the energy of molecules is connected with temperature hysteresis, 
the value of the temperature dcpending also on the past value of the energy. 

If one supplies energy to a gas, this energy is first supplied to the translational 
and rotational degrees of freedom, so that the temperature will at first be rew 
latively high. Then, during a much slower proeess, the vibrational degrees of 
the molecule absorb their share of the energy at the expense of the translational 
and rotational energies. Consequently, during the period of excitation of the 
vibrations the translational temperature will decrease toward an equilibrium, 
which is of course also the equilibrium value of the vibrational temperature. 
In other words the vibrational excitation has a time delay of which the charac­
teristic value is called the relaxation time. For the three vibrations these values 
are as follows: 

symmetrie valenee vibration 

[
0.216 N p 2 B 2 C 4 ~ exp (hv2/kT2) + 1 

712 o e 0,1 0,1 ( exp (hv2/kT2) - 1 (3.86) 

bending vibration 

'T2 = [o.33 NoPa2(iJE2) Co,12 ~ exp (hv2/kT2) IJ -1 
1 ~ ' (3.87) 

asymmetrie valenee vibration 

T3 = [o.28NoPa2(iJEs)Bo,12 Co,12 Do,12 

{exp (hv1/kT1 hv2/kTz + iJEs/kT) -1 

(3.88) 

The numerical valnes of the relaxation times are given in table IV as functions 
of the translational temperature. 

TABLE IV 

Relaxation Times 

T '1"12 [sec] '1"2 [sec) 'T3 [sec] 

300 3.7x I0-5 1.2x I0-4 3.8 x I0-2 

400 3.5x I0-5 8.8x I0-6 7.5 x I0-3 

500 3.lxl0-5 1.9x I0-6 2.6x I0-3 
600 2.7 x I0-5 6.4x I0-7 l.l x 10-3 
700 2.4x 10-5 2.7x I0-7 5.8 x I0-4 
800 2.1 x I0-5 1.3 x I0-7 3.8x 10-4 

900 1.8 x I0-5 7.9 x w-s 2.4x I0-4 

1000 1.6 x I0-5 5.1 x w-s 1.6x I0-4 
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Further, we have seen in this chapter that all energy is first supplied to the 
most easily excited vibration. The other two vibrations obtain their share of 
the energy from this vibration. Similar results are expected for other polyatomie 
molecules which may have many vibrational frequencies. The vibrations with 
higher frequencies will then be excited indirectly at the cost of the vibration · 
with the lowest frequency and only the small difference of energy quanta will 
be exchanged with the translation. But, even in an exchange among the vibra­
tional modes, one can find very small transition probabilities, as we have seen 
for the excitation of the asymmetrie valenee vibration. 
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CHAPTER 4 

EXPERIMENTAL PROCEDURE FOR MEASURING THE DENSITY 
PROFILE BEHIND SHOCK WAVES 

4.1. Shock waves 

In the preceding chapter we have studied theoretically the energy transfer 
among the vibrational degrees offreerlom of a suddenly heated gas. Such a process 
can be realized with shock waves produced in a shock tube. The construction 
of a shock tube 24-25) is illustrated schematically in fig. 3a. Basically, 
it consists of a high-pressure and low-pressure chamber, separated by a 
thin diaphragm. The low-pressure chamber contains the test gas in the 
initial condition. Compressed helium from a high-pressure cylinder is forced 
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Fig. 3. a. Schematic representation of the shock tube, the length of which is set out along 
the x-axis of the three following graphs; b. gas flow along the shock tube as a function of 
time; c. pressure distribution along the shock tube at time tt; d. temperafure distribution 
along the shock tube at time fl. 
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into the high-pressure chamber of the shock tube until the diaphragm 
bursts. As the material of the diaphragm is highly stressed prior to rupture, 
it rapidly flattens against the wall of the tube. After the diaphragm has burst, 
a compression wave moves into the test gas. The compression wave causes an 
abrupt, steep transition in the pressure of the test gas, i.e. it forms a shock 
wave. At the same time the expanding high-pressure gas moves also into the 
low-pressure chamber. 

Usually the motion of the flow is represented by an x-t diagram, as shown 
in fig. 3b. Here x is the coördinate of a point in the long axis of the shock tube 
and t represents the time. The regions indicated by 0, 1, 2, 3 and 4 are respecti­
vely low-pressure gas, test gas behind the shock front, the expanded high­
pressure gas, the expansion fan of the high-pressure gas, and finally the high­
pressure gas still in its initial condition. The surface separating the two gasses 
is called the contact surface. Figs. 3c and 3d show the pressure and temperature 
distribution along the shock tube at a time t1 after the diaphragm has burst. 

The discontinuity conditions at the shock front can be derived from the prin­
ciples governing the conservation of mass, momenturn and energy 26). If we 
consider these principles in a coördinate system that is moving with the shock 
front, so that the flow is reduced to a steady flow, we have the following 
equations: 

mass poUo PsUs 

momenturn: Po Po(Lo2 = Ps + psUs2 

energy 

(4.1) 

(4.2) 

(4.3) 

where p is the density, p is the pressure, u is the velocity, T is the absolute 
temperature and Cp is the specific heat at constant pressure. The suffix o 
indicates the initial state of the test gas, while the suffix s refers to the state of 
the test gas immediately behind the shock front. 

For convenience, we restriet ourselves to anideal gas with constant specific 
heat: 

y y p 
CpT=--RT= -

y-1 y-lp 

c2 
--, 
y-1 

(4.4) 

where y is the ratio of the specific heats at constant pressure and constant 
volume, i.e. CpfCv. 

Next we shall introduce the shock-strength parameter e, which is equal to 
half the relative veloeities of the gas on both sides of the shock front 27): 

Uo = Vo (1 + e) 

and 
Us Vo (1 e). (4.5) 
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From eqs. (4.1)-(4.5) we can derive the following expressions: 

Po 1-e 
--

' Ps I+ e 

Po 1 ye 

1 + ye ' Ps 

To (1 - ye)(l + e) 

Ts (1 + ye)(l- e) 

Further, the Mach numbers defined by ufc beoome 

1 + e 

and 
1-ye 

e 
Ms2 = ---

1 + ye 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

Since all these physical quantities are positive, the shock-strength parameter 
is limited by the following restrictions: 

0 < e < lfy. ( 4.11) 

At the instant of bursting of the diaphragm, a centered rarefaction wave 
propagates into the high-pressure chamber. From the unsteady isentropic ex­
pansion the following relationship can be derived. By consiclering Newton's law 
of motion, Fdt = mdu, for a one-dimensional ftuid element of thickness dx 
during the passage of a sound wave, we get 

dpdt = - pdxdu. 
l 

We substitute dt - dx, where c is the velocity of sound in our gas, and find 
c 

dp -pcdu. 

Poisson's equation of state gives 

dp y dT 

p y-1 T 

By using eq. (4.4) one finds from eqs. (4.12) and (4.13) 

2 
de+ du 0, 

')'4-1 

where the suffix 4 refers to the high-pressure gas. This integrates to 

2 
-- c u = constant . 
')'4-1 

(4.12) 

(4.13) 

(4.14) 
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The latter equation will be applied in region 3 in order to relate the pressure 
in region 4 to that in region 1. 

From eq. (4.4) we find 

Applying eq. (4.14) we get 
2 2 

C4 = -- C2 + U2. 
y4-l y4-l 

Forther we know that the gas conditions across the contact surface are 

and 

where ui is the velocity of the test gas behind the shock front, but relative to 
the shock tube. Hence the equation relating the pressure in the high-pressure 
chamber to that bebind the shock front is given by 

(4.15) 

The pressure bebind the moving shock wave can be expressed in terms of 
the pressure before the shock front by eq. (4.7). The indoeed velocity Ui = 

u0 u8 imparted by the shock wave to the test gas can be obtained from eqs. 
(4.1)-(4.5): 

{(I - ye)(l 

Finally we obtain the desired result relating the strength of the shock wave 
to the given initia! conditions of the two gases in respectively the high-pressure 
and low-pressure chambers 

1 + ye [ {(1 -- ye)(l + e)Y/2 ]2Y4/Y4-l 

I ye {(I- ye)(l + e)l/2- (y4 l)e Co/C4 
(4.16) 

This equation relates the shock strength parameter e to the pressure ratio 
and the velocity-of-sound ratio across the diaphragm. It is clear that, in order 
to produce strong shock waves, the ratio c0 /C4 must be as small as J?OSsible. 
This can be ensured by using gases with Iow molecular weight, such as hydrogen 
and helium, at high temperatures. In fig. 4 the pressure ratio p4/p0 and the 
temperature, density and pressure ratios across the shock front have been 
plottedas functions of the shock strength parameter, both gases being initially 
at room temperature. We have used y 1.4 and Y4 = 1.67. lt is seen that with 
shock waves very high pressores and temperatures can be produced. 
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Fig. 4. The pressure ratio P4/Po and the temperature, density and pressure ratios across the 
shock front plotted as functions of the shock-strength parameter "· 

Although in practice we also have to make allowances for heat conduction, 
frictional effects along the wall and variations of the specHic heat with tempe­
rature, all ofwhich we have neglected so far, the shock tube appears to approxi­
mate the theoretica! performance reasonably well, at least for weak shocks. 

The experiments were performed with a constant-area shock tube made of 
steeland having a rectangular cross-section of 30 mm by 18 mm. The lengtbs 
of the high-pressure and low-pressure ebarobers were a bout 1 m and 6 m respec­
tively. The rather biglengthof the low-pressure chamber was chosen in order 
to improve the ftatness of the shock wave and to decrease the effect of disturb­
ances due to the contact surface. 

4.2. Some physical aspects to be considered when working with shock tubes 

Shock waves have been used extensively to study the propérties of gases at 
high temperatures. The one-dimensional flow in a constant-area shock tube 
provides unique possibilities for studying rapid physical and chemical processes 
under controlled conditions of temperature and pressure. 

In the preceding section we have seen that there is a sudden increase in 
enthalpy across the discontinuity surface of the shock wave. The energy of flow 
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is bere converted into random thermal energy. The gas bebind tbe shock front 
is, therefore, disturbed from its original equilibrium state. Tbe effects most 
1ikely to he important as tbe gas is heated are, besides tbe translational and 
rotational excitation, firstly excitation of tbe vibrational degrees of freedom of 
tbe molecules, secondly dissociation of the molecules into atoms, thirdly elec­
tronic excitation of the atoms, and finally ionization. However, as in our case 
the enthalpy increase is not too large, we need only expect vibrational excitation. 

In order to achieve a new equilibrium among all degrees of freedom of the 
molecules several molecular collisions are needed. This number of collisions is 
different for each degree of freedom. The translational degrees of freedom 
obtain their share very quickly and arrive again at a Maxwell-Boltzmann 
distribution with only a few collisions. It is also known that the rotational 
degrees of freedom approach equilibrium with the translational energy very 
rapidly by means of several molecular collisions. This does not hold for hydro­
gen because its moment of inertia is smaller than that of other molecules and 
consequently the spacing between the rotational energy levels is larger. For this 
reason the rotational relaxation time of hydrogen is larger than that of other 
molecules. The relaxation times '~'t and '~'r for translation and rotation are for 
most gases of the order of I0-9 sec. or less. 

So far the vibrational states of the molecule have not yet reached their final 
equilibrium states. The time necessary for these vibrational modes to attain 
equilibrium is known to he of the order of thousands of times that required 
for translation and rotation. Since the vibrational relaxation times are some 
orders of magnitude larger, we shall for our purpose consider translation and 
rotation as external degrees of freedom having no relaxation time associated 
with them. 

The vibrational degrees of freedom of the molecule absorb their share of 
energy at the expense of the translational and rotational energies. Generally, 
during the period of excitation of tbe vibrations, the translational temperature 
will decrease toward an equilibrium value, which is, of course, also the equi­
librium value of the vibrational temperature. Ho wever, as will be calculated in 
the next chapter, the flow speed decreases in the period of excitation and 
consequently extra kinetic energy is converted into thermal energy. Therefore 
it might be possible for the overall effect of exciting the vibrations to increase 
the temperature. It bas been pointed out by Broer 28) that this happens with 
sufficiently weak shock waves. 

During the excitation the density will increase. At the same time the gas 
moves over a certain distance, which we shall call the transition zone of the 
vibrations. This density increase is studied in the present work. 

4.3. Description of the instrument 

The general principle of the system 29-30) is illustrated m fig. 5, which 
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Fig. 5. Schematic representation of the experimental set-up for measuring density profiles by 
means of a uniform light beam parallel to the shock front. The explanation of the symbols 
used is given with fig. 6. 

essentially reproduces the arrangement used by us. Light from a reetangolar 
souree A (we used a mercury are lamp with its axis normalto the plane of 
the drawing) is focused on the slit S1 by the lens B. The souree slit S1 has a 
length of about 20 mm and a width of about 0.2 mm. S1 is in the focal plane 
of the lens C. The light passing through the region D of the shock tube is 
focused by the lens Eon an inclined knife-edge S2. If the inclined knife-edge S2 
is displaced so far that it just intercepts the rays forming the image of sl, no 
light will reach the photomultiplier F. This holds when there are no gradients 
of the index of refraction in the gas traversed by the light beam. We neglect 
diffraction effects and assume that the lenses are of good optical quality (free 
from chromatic and spherical a herration and from astigmatism). On the other 
hand, if the gas is disturbed in the region D, for example by a shock wave, 
some of the light rays will be deflected, so that they may pass above the knife­
edge S2 and thus reach the photomultiplier F. 

The windows in the shock tube consist of two plane-parallel plates, 2.5 cm 
thick and 1.8 cm in diameter. Since we require a reetangolar beam of light to 
traverse the shock tube, there is a slit measuring 4 by 14 mm just outside the 
left-hand side window. The slit can be adjusted very accurately with a worm­
wheet drive so as to make the long axis of the slit run parallel to the shock front. 

The focal length of C is about 20 cm and its diameter 5 cm. The projection 
of the light rays through D in a plane normal to that of the drawing must be 
as parallel as possible. This can be achieved by reducing the width of S1, the 
slit that represents our source. With such a set-up the maximum deviation is 
about 5 x I0-4 radians; we shall see that this will give us a negligible measuring 
error. The slit S1 uses only a small part of the image of the light souree and we 
can therefore work with light of a good uniform intensity across this virtual 
source. 

Fig. 6 is a sketch of the set-up in the plane XX and perpendicular to the plane 
of fig. 5. PQ is the totallength of slit S1, our virtual source. It is seen that the 
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angle a subtended by half the length of the light souree at the center of lens C 
is approximately l0/200 radians. Every point of the souree slit gives a fan of 
rays which, after passage through the lens, form parallel beams makingangles a' 

to the optical axis, where 0 < a' < a. For a constant flux of light across the 
window it is necessary that every point of the window can be reached by all 
possible directions of light rays .Therefore the distance v between the shock 
tube and the lens C should not be too large, and its maximum value is given 
by (25-7)/v = l0/200, from which Vmax = 360 mm. 

x 

S,=20 

~~{x 
I 
I 
I 
I 

Fig. 6. A sketch of the set-up in the plane XX of fig. 5. Lens B produces a real image (SI) 
of course A in the focal plane of lens C. Dis the region of the shock tube traversed by the light 
beam. Lens E forms a real image(/) of S1 at the inclined knife-edge S2. Fis the photomultiplier 
tube. 

The diameter of lens Eis large enough to catch all the light rays emerging 
from D. lts focallength is rather short, namely about 50 mm. This leads to 
a short image of the slit and makes it possible to use only a small part of the 
photomultiplier surface. We have found that not every point of the photo­
multiplier bas the same. sensitivity, and therefore we use only the central part, 
where the sensitivity is practically constant. 

By moving a narrow slit of 1 mm width over the window of the shock tube 
and observing the voltage indicated by the photomultiplier, we have checked 
that the arnount of light coming through the various points of the window is 
nearly constant, the maximum deviation being notmore than 5% ofthe average 
value. · 

We used a Du Mont photomultiplier, type 6292, which was adjusted so as 
to produce an output proportional to the amount of incident light. We used 
a Tektronix 545 oscilloscope which bas high writing speeds and reproduces 
the incoming signals faithfully. If the photomultiplier tube is coupled to the 
oscilloscope by means of a catbode follower able to respond to pulses ·of 
10-s second, a time resolution of approximately I0-7 second is achieved. 

The light souree used was a General Electric BH-6 mercury are, air cooled. 
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4.4. Analysis of the metbod 

At the moment the shock wave is passing through the parallellight beam, 
the light is not only deflected by the density gradient just upstream from the 
shock front but also refracted by the discontinuity of density in the shock front. 
Refraction would not occur if we were dealing with a straight shock front, 
whose narrow thickness could not affect the light rays. 

It is known that the interaction of the shock wave with the boundary layer 
on the wall of the shock tube (produced by the flow bebind the shock) results 
in a small curvature of the otherwise straight shock front near the wall. This 
problem was studied theoretically by Hartunian 31), who considered two­
dimensional flow with a shock wave and a laminar boundary layer, and ex­
perimentally by Duff 32). The farmer by using the linearized shock relations 
found for the shape of the shock wave 

Xs = 2Bs Vys, (4.17) 

where Bs is a complicated function of Mach number, Prantle number and 
viscosity, and x 8 and Ys are the coördinates respectively along, and perpendicular 
to, the shock tube. For carbon dioxide we find from this equation Bs 0.024. 

Because of this curvature effect of the shock front, we have to deal with the 
oblique shock relations. However, we find the deviation of the average tempe­
rafure of the gas bebind the shock wave, compared with the calculated tempe­
rature obtained from the normal shock relations, to be so small as to be 
negligible. Therefore the properties of the gas bebind the shock wave are 
described sufficiently well by the normal shock relations. 

But, as we shall see in the next section, the results obtained with the integrated 
Schlieren metbod include the curvature effect. Fortunately, the length of this 
effect (maximum of Xs) is small compared with the transition zone. For carbon 
dioxide it is not more than 0.25 mm. 

In this section we shall study the part of the optica! signal that is only related 
to the density gradient ofthe gas astheresult ofvibrational excitation. We start 
our treatment with an exact determination of the path of a light ray in a medium 
in which the index of refraction varies in one dimeosion only (x-direction). The 
principle is illustrated in fig. 7. The light originally travels in the y-direction. 
Let us consider a small segment AB of the wave front of a deviated light wave 
which makes an angle of cp with the x-axis. If the refractive index at A is fL 

and at Bis fL + dfL, then after time .Jt, the wave will have moved to the posi­
tion A' B', where 

.JS 
AA' = .Js = and 

fL 

.JS 
BB'=~··--~ 

fL + dfL 

Here .JS = c.Jt is the optica! path of the wave front. Consequently 

AQ .JS 1 dfL 1 dfL 
- COS cp = - .J V 

fL fL dx fL dx ' ' AB 
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y 

A' 

x 

Fig. 7. The deflection of a light beam in a medium whose refractive index varies in the x· 
direction. 

where Ll y = Lis cos <{>. It follows that the angle between the direction of the 
ray and the y coördinate is given by 

y 

I
r I dfL 
-- dy'. 

,; fL dx 
0 

(4.18) 

The refractive index fL is related to gas density p by fL I +~<p, where Kis the 
Gladstone-Dale constant depending on the gas and on the wavelength. In most 
cases the value of~< pis of the order of I 0-4. Therefore, we cao take the factor 1 I fL 

in eq. (4.18) to be practically equal to unity. 
Our purpose is to know how a density pattern will be recorded. Therefore it 

is sufficient, for the sake of simplicity, to assume an exponential density increase 
over the transition zone and see what happens to the recording. In fig. 8 the 
shock front DE is moving to the right. Downstream from the front (to the right 

Fig. 8. The paths of light rays through the transition zone bebind the shock front DE. The 
shock moves to the right and FG is an arbitrary ray at a distance xu bebind the shock front. 
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in fig. 8) the gas still has its original density. The density behind the shock 
front DE (to the left in fig. 8) can then be represented by 

p = p8 +Lip (1- e-xfÀ), (4.19) 

where p8 , Ll p and À are respectively the density just behind the shock front, 
the total density variation over the transition zone, and the relaxation distance. 
Along the light path FG of a ray coming into the transi~ion zone at the point xo, 
we have, by using eqs. (4.18) and (4.19), 

dep= d,u. =KLip e-x/À, 

dy dx À 
(4.20) 

In practice 4> is usually small and therefore equal to dxfdy on GF. Hence eq. 
( 4.20) becomes 

To solve this differential equation we multiply both sides by 2 dx/dy, integrate 
with respecttoy and apply the boundary condition dx/dy = 0 at y = 0, for 
which x xo. Wethen obtain 

dx 

dy 

This equation can be solved by makingthe substitution w 

and applying the boundary condition x = x0 for y 
following expression 

~~- exp(Xo~X)r2 
0. We finally get the 

e-X{ À e-Xo/À [}- tanh21~,\ (2KLJp e-Xo/À)1f2 n , 
' . 

holding along FG. With the aid of this expression we can integrate eq. (4.20) 
in order to find the total deflection 4> of a light ray passing through the disturbed 
region. We obtain 

4> (2KLlp e-xo{À)
112 tanh ~ ;À (2KLlp e-xvfÀ)1iz ~, (4.21) 

where b is the breadth of the shock tube. 
Next, we consider the light coming in over the small region dx0• Part of this 

light will escape the inclined knife-edge and be caught by the photomultiplier, 
in an amount proportional to the angle cp. Consequently, if the disturbed region 
has advanced into the light beam to the point x = x1, we get a signal on the 
oscilloscope screen equal to 
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Xl 

Pstgnal C I 4> dxo , 

0 

where C is a proportionality constant determined by the properties 
instrument. By using eq. (4.21) we get 

4C ,.\2 f ) b 1 l 
Pstunal = -b- log cosh (

2
..\ (2KLip) ha~ 

of the 

b 
If we use the abbreviation z 

2
,\ (2KLlp)1/2, the equation takes the form 

4CA2 

Psignal [log cosh (z)- log cosh (z e-xl/2À)). 
b 

The quantity z is usually small. In our experiments b 18 mm; K 2.31 x 
I0-4 m3/kg; A R:; 0.5 mm; Llp R:; 0.48 kg/m3 and consequently z R:; 0.26. It is 
therefore convenient to substitute an expansion of log cosh (z) in powers of z: 

z2 z4 z6 
log cosh z 

2 12 
+ 

45 
- (4.23) 

By neglecting aU terms but the fint on the right-hand side of eq. (4.23) the 
relative uncertainty would be only 1 per cent for z = 0.26. By subsituting 
log cosh (z) = z 2/2 in eq. (4.22) the expression for the signals becomes 

Psignal C b KLlp (1 - e-XI/>·). (4.24) 

On comparing eqs. ( 4.24) and ( 4.19) we notice that the signal received on 
the oscilloscope is proportional to the increase of the density distribution in 
the transition zone. 

The relaxation length À can be obtained from a picture of the signal. It is 
equal to the ratio of the final value of Pstunaz, which we call Llpsignaz. to its 
derivative at the point x 0. Using eq. (4.22) we derive 

The expression 
2log cosh .i 

z tanh z 

(4.25) 

7J is plotted in fig. 9 and may be con-

sidered as a correction factor: In the range in which we made our observations 
the value of 7J was about 1.02. 

Next we consider the effect of the incHnation f3 of the knife-edge, which is 
shown in fig. 10. The optical system is arranged in such a way that we have 
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~Sr-----,------,----~----~ 

Fig. 9. Correction factor 71 as a function of z (b/2/\)(2~J.L1p)t. 

the straight line 1 projected completely on the knife when there is no disturbance 
in the region D of the shock tube. The dotted line l' is the image of all light 
rays that in the transition zone have obtained a certain defiection 4> (see fig. 8). 
The displacement ó in fig. lO is proportional to 4>. It is clear that the amount 
of light falling on the photomultiplier is proportional to Yo and that the lower 
part of 1' is blocked out. Further, it is seen that yo = 8 tan /3. Thus the sensi­
tivity is determined directly by tan /3. There is, however, a maximum for the 

Fig. 10. The inclined knife~edge on which the light rays are focused as a straight line. The 
explanation of the symbols wil! be found on page 74. 

angle /3, given by the saturation of the system. Saturation means that some 
light is defiected so far that its image on the knife-edge is displaced over a 
distance 8 that is greater than s. In that case there is, of course, no longer a 
definite relationship between the amount of light reaching the photomultiplier 
and the angle of defiection. The maximum deflection through the transition 
zone can be obtained from eq. (4.21). This is, for small valnes of z, equal to 
bKLlpjÀ. Then we get 

s (4.26) 



-75-

where jE is the focal length of lens E. From fig. 6 we see that 

I= 2jE a. (4.27) 

The magnitude of the maximum value of {3 can be obtained from the equation 

tan f3max 
l 

(4.28) 
s 

By using eqs. ( 4.26), ( 4.27) and ( 4.28) we derive for tan {3 the following condition 

tan f3max 
2aÀ 

bKLip 
(4.29) 

Insome of our experimentsLip was about 1.92 kg/m3 and À about 0.4 mm; 
consequently we find f3max = 80°. Since the sensitivity was high enough for 
our purpose, we took for our measurements {3 70° in order to obtain an 
easier adjustment of the image on the knife-edge. 

The sensitivity of this metbod depends directly on the brightness B and the 
width d of the souree slit. This, of course, requires as bright and uniform a light 
souree as possible to start with. Lamps affording a line souree are therefore 
superior to other types. There is a practical maximum for d, which is set by 
the required accuracy of the measurements. A relatively wide slit provides some 
deviation of the parallellight rays and produces an apparent shock thickness 
due to optical effects. This feature can be minimized by careful alignment of 
the optical system, and the apparent projection, due to this effect, of the shock 

d 0.2 
front was of the order of - x b = --- x 18 0.009 mm; this is only 

u 2x 200 
2% of the relaxation distance À, which is 0.5 mm. 

The signal is amplified in the photomultiplier and oscilloscope by a factor n, 
which is limited by the noise levels. Hence the final sensitivity is proportional 
to the following product: 

nd B KLip b tan {3 

À 

If in this expression we substitute the value of tan f3max, we find that the sensi­
tivity is proportional to 

ndBa. 
Thus we see that theoretically the sensitivity depends neither on the breadth 
of the shock tube nor on the density increase Ll p, nor even on the relaxation 
distallee À, provided only that the knife-edge can be properly adjusted to f3max· 

In principle the metbod will therefore retain its high sensitivity also for weak 
shocks. 

When using carbon dioxide as our test gas we obtain traces ofthe kind shown 
in fig .. 11. In the first part of the curve, AB, the signal rises as a straight line. 
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At the end of this part, indicated by B, we often found, especially at low 
densities, a discontinuity in the slope of the profile. We therefore incline to 
the opinion that the first part of the signal up to B, indicated by Ç, represents 
the curvature of the shock front. The upper part, indicated by L1 Psignal represents 
the density increase (bebind the shock front) due to vibrational excitation. A 
justification for the above statements will be given in the next section. 

A C' 
9501 

Fig. 11. A sketch of an oscillogram obtained with C02 as the test gas as described on page 76. 

From the trace on the oscilloscope screen it is also possible to determine the 
Mach number of the shock. At the point A' of the trace, where the signal falls, 
the discontinuity in slope indicates that the shock front has left the light beam. 
Evidently the parts AC and A'C' ofthe trace represent both the curvature effect 
and the density variation over the transition zone. The time required by the 
shock front to traverse the light beam is equal to Llt. In that time the front has 
moved over a distance m, equal to the slit width of 4 mm on the window. The 
shock velocity uo is equal to mjLit. Thus the Mach number Mo of the shock 
is given by 

m 
--, 
Llt Co 

(4.30) 

where Co is the velocity of sound in the test gas before the shock front. 

4.5. Curvature effect of the shock front 

Owing to the curvature of the shock front, part of the parallellight rays will 
cross the discontinuity surface and will consequently he refracted according 
Snell's law of refraction. In this section we shall therefore study the refraction 
of the light rays passing through the discontinuity of the shock front. 

The first step in the treatment of this problem is to find an expression for 
the density distribution in the shock front. 

As our observations are carried out over less than half the height of the shock 
tube and as the thickness of the boundary layer, which interacts with the shock 
front, is very small compared with the two dimensions of the cross-section of 
the tube, it may be reasonable to consider this problem only in the two dimen­
sions of breadth and length of the shock tube. 
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Fora two-dimensional oblique shock front the discontinuity conditions can 
be derived from the principles of the conservation of mass, momenturn and 
energy, in about the same way as for the case of the straight shock front. The 
velocity components of the oblique shock are indicated in fig. 12. 

Fig. 12. The velocity components across an oblique shock (which represents an element of 
the curved shock front). 

Mass: PoUon = PsUsn· 

Momenturn perpendicular to the surface: 

PoUon2 +Po PsUsn2 + Ps· 

Momenturn parallel to the surface: 

poUonUot = PsUsnUst. 

Energy equation: 

y 
RTo + t (Uon2 + Uot2) 

y-1 

From eqs. (4.31) and (4.33) we find 

Uot = Ust· 

By substituting this result in eq. (4.34) we get 

y-1 
RTs = RTo + (Uon 2 U8 n 2}. 

2y 

This result when substituted in eq. (4.32) gives 

y-1 
RTo] = Ps [Usn2 + R·To + -- (Uon 2 - Usn2)]. 

2y 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

Next we wish to express these quantities in terms of the shock strength 
parameters. From eqs. (4.3), (4.5) and (4.8) we derive 

(1 + e)(l ye) 
To = Vo 2• 

yR 
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The velocity components Uon and u 8 n are given by 

Uon Vo (1 + e) sin 0' 

and 

(1 , ) Po . 
Usn v o 1 e sm (]'. 

Ps 

If we substitute these expressionsin eq. (4.35) we arrive at the density distribu­
tion along the shock front: 

Ps =Pol e + [2(1- ye)/(r+l)] cot2 a 
(4.36) 

When the light rays reach the discontinuity surface they will be refracted 
according to Snell's law. The refractive index f-L is given by fL = 1 Kp. For 
low densities KP is of the order of 10-4 • 

According to Snell's law 

sin a' 

sin a 

The angle of deflection of the light rays is given by w, where 

Eq. (4.37) reduces to 

I w a- a. 

cos w cot a sin w K (ps-Po). 

The angle w is very small, so that 

cos w !':::; 1 and sin w !':::; w. 

Along the shock front we have 

cot a 

By substituting eq. (4.36) in eq. (4.38) we obtain 

2e [2(1- ye)/(1 +r)] cot2 a dys 
w = Kpo -· • 

1-e + [2 (1- ye)/(1 +r)] cot2 a dxs 

(4.37) 

(4.38) 

(4.39) 

After refraction at the shock front, the light rays are further deflected by the 
density gradient in the transition zone. However, this part of the deflection is 
generally less than 15% of the refraction across the shock front. Therefore, 
since we only study the qualitative effect of the curvature of the shock front 
on the metbod of recording, we shall only consider the refraction across the 
shock front. 

The amount of light falling on the photomultiplier is proportional to w. 
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Further, we call the part of the signa! re'!ated to this curvature effect ~- It is 
given by 

Xs,max .. 
~ cjwdx. (4.40) 

Xs~min 

Next we use the y-coördinate of the shock front and we find, by substituting 
eq. (4.39) in eq. (4.40), 

Ys,ma.x 

~' 2e 
CKcpo j [2 (1 - ye)/( 1 +y)] cot2 a 

1- e 
----~-·-------··· dys. 

[2 (1- ye)/(1 +Y)] cot2 a 

Ys,min 

The value of cot a along the shock front can be obtained from eq. (4.17). It 
turns out that the factor [2 (1- ye)/(1 +Y )] cot2 a is very small and approaches 
2e for very small values of ys. Consequently, this factor may be neglected.The 
upper limit is given by half the breadth of the shock tube. We find 

b/2 
2e ~' 

~ = CKp0 - / dy. 
1 e ~ 

0 

By using eq. (4.6) we finally obtain 

Now, by comparing ~ with the magnitude of the signal that represents the 
total density increase (bebind the shock front) due to vibrational excitation, 
as derived in eq. (4.24), we find 

t1psignal Jp 

~ {e/(l+e)}ps 

Fortunately, this ratio does not depend on the parameter B8 of the shock 
front (eq. 4.17), so that the result of this analysis is independent of the un­
certainty concerning the shock front profile, provided that the shock front can 
be represented by a parabo1ic function. The above ratio is only a function ofthe 
Mach number. When using COz we find, for Mo = 3, 

' 1.2 J Psignal • 

This result is in substantial agreement with the oscillographic observations of 
a shock wave in co2, as was pointed out in the preceding section. 
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4.6. Discussion 

As the theoretica! analysis of our methad of shock-tube measurements is 
fully home out by experimental observations, we feel that this metbod has been 
developed sufficiently to provide a faithful representation ofthe density pattem 
produced by vibrational excitation bebind a shock wave. The technique, how­
ever, requires a great deal of attention being given to the proper optica! align­
ment of the Schlieren system, to ensure that the light is of uniform intensity and 
that the light rays are parallel to the shock front. This is done by using helium 
as a test gas. Since helium is a manatomie gas and since the Mach numbers 
involved are low, relaxation phenomena need not he considered. Therefore, 
the only signal to he expected is related to the curvature effect of the shock 
front along the wall. The length of this effect can be minimized by making the 
light rays accurately parallel to the shock front. The minimum length of the 
curvature effect in helium is about 0.15 mm. 

In attempting to understand this effect better we worked out a series of runs 
with, Mach numbers between 1.5 and 2.5. In spite of the high sensitivity we 
could not correlate this effect with the Mach number. It seems to he more or 
less independent of the initial density of the gas, and also of the shock strength. 
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CHAPTER 5 

EXPERIMENTAL RESULTS REARING ON THE VIBRATIONAL 
EXCITATION OF CARBON DIOXIDE 33) 

5.1. Introduetion 

The main purpose of our experiment was to try to establish the process in 
which translational and rotational energy is transferred to the vibrational degrees 
of freedom. This was done by using the shock wave technique described in 
chapter 4. This process, in which energy is supplied, by means of several elastic 
and inelastic collisions, to the various modes of vibration, can he studied in 
our experiment by measuring the density profile bebind the shock wave as 
described in chapter 4. 

We have already seen that for shock waves translational and rotational 
motion can he described by external degrees of freedom. Therefore we consider 
that the attainment of the final state takes place in two stages. In the first, or 
intermediate, stage just bebind the shock front, the vibrational temperature is 
still equal to the gas temperature in front of the shock wave, while the trans­
lational and rotational temperature is that corresponding to the shocked gas 
without vibrational degrees of freedom; the latter temperature lies, for shock 
waves that are not too weak, above the final equilibrium value. In the secoud 
stage, which takes place in what bas previously been called the transition zone, 
the vibrational energy, the pressure and the density increase and the temperature 
decreases, while at the same time the gas flow decelerates, until the equilibrium 
conditions of the gas are reached. This stage affords an opportunity to study 
the desired energy-transfer process. In such experimental study we neglect the 
energy associated with the asymmetrie vibration, because this energy, at tem­
peratures below 1000 °K, is less than 8 % of the vibrational energy of the other 
modes. 

Since we are interested in the vibrational energy and since the density increase 
and the velocity ofthe shock wave are the only two quantities thataremeasured 
directly in our experiment, we want to express the vibrational energy in terms 
of the density variation. This can be done by using the conservation equations. 
From the measured density profile we shall then arrive at an energy profile 
expressed as a function of time. 

In chapter 3 we calculated theoretically the probabilities of exciting the 
vibrations of carbon dioxide molecules through collisions. These calculations 
pointed to a direct excitation of the bending mode and an excitation in series 
ofthe valenee mode, as described by eqs. (3.4lc) and (3.71). The energy profile 
being known from the experiment, we can obtain the rate of energy transfer for 
any given time. If we now use the two predicted relaxation equations we can 
obtain the individual energy profiles of the two bending modes and of the 



-82-

valenee mode. In this way we may verify the theoretica! predictions that have 
heen worked out in chapter 3. 

5.2. Formulae to obtain the vibrational energy and translational temperature as 
a function of time 

It is convenient to consider the total energy E of the molecules as being made 
up of three parts: 

The first term, Eex represents the energy of the external degrees of freedom 
( translation and rotation). E1 and E2 are the energies of respectively the sym­
metrie valenee and the bending vibrations. We can similarly write for the 
specific heats 

and 

Cv 
Cv 

Cv = Cv + C.,ib, 

specific heat at constant pressure, 
specific heat of the external degrees of freedom at constant 
pressure, 
specific heat at constant volume, 
specific heat of the external degrees of freedom at constant 
volume, 
specific heat of the vibrational degrees of freedom. 

With this notation the difference of the two specific heats becomes independent 
of Cvîb, i.e. the vibrational energy now has no direct hearing on the work done 
in thermal expansion of the gas. The external degrees are fully excited even at 
room temperature to 1 R per degree of freedom. The vihrational heat capacity 
Cmb, however, depends both on temperature and frequency. There are 5 external 
degrees of freedom, so we find Cv i R. The gas densities in our experiments 
are low. Therefore they may he assumed to obey the equation of state of an 
ideal gas: 

p = pRT. (5.1) 

Consequently we can derive - Cv = Cp- Cv R. 
It is seen in fig. 13 that the variations of E1 and E2 with temperature are 

considerable. A relatively large part of the energy supplied from outside will 
go into the vibrations. The variations in the corresponding vibrational heat 
capacities are also large in the temperature region in which we are interested. 
It is therefore not possible to linearize the energy equations hy taking Cvii> as 
constant. Before expressing E1 and E2 in terms of the density variation, let us 
for convenience introduce some definitions. The equilibrium state of the gas 
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Fig. 13. Vibrational energy of the sum of the bending modes (E2), and of the valenee mode (El), 
relative to their values at room temperature. 

before the passing of the shock wave is indicated with the subscript o and the 
state just bebind the shock front, where translation and rotation are the first 
to reach equilibrium, with the subscript s. We indicate the variabie state at 
any place bebind the- shock front with the subscript e. Since the translational 
and rotational modes are fully excited, it is clear that state s is reached in a 
process with constant specific heat. Therefore all the quantities in this state 
can be simply obtained from the Rankine-Hugoniot equations with CpfCv = 

1 .4. This is done by using the Mach number measured for the shock wave 34). 

Knowing state s, we obtain the variabie state e by applying the conservation 
equations relating tothese states (we neglect friction effects and heat transfer 
with the wall over the small relaxation distance). 

Mass 

Energy 

: PoUo = PsUs = peUe Qm (5.2) 

(5.3) 

(5.4) 

For the sake of simplicity we have taken the vibrational energy relative to its 
energy in state o. These equations are considered in a coördinate system moving 
with the shock front, so that the flow is reduced toa steady flow. From equa­
tions (5.1)-(5.4) we obtain for Te, and for the sum of E1 + Ez, the following 
relationships: 
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E1+E2 
-~···-

R 

and 

The final equilibrium states of E1 and E2 are related to Te by 

hY1jkTe 
RTe~··-~-~~-

exp (hYJ/kTe) I 
and 

(5.5) 

(5.6) 

(5.7a) 

(5.7b) 

The final equilibrium state will he obtained when Pe reaches its maximum value, 
called Pe,max, so that eqs. (5.5), (5.6), (5.7a) and (5.7b) are satisfied. After we 
have found Pe,max in this way, we calculate Llpmax pe,max- p8). This part 
is represented by BC on the oscillogram shown in fig. 11. 

By comparing the maximum density increase on the oscillogram, L1p8ignal, 

with the calculated one, L1 Pmax, we find the scale factor of the measured profile. 
Hence we shall obtain values of Llp at intermediate time intervals, so that we 
can work out Pe = p8 + Llp. For most calculations we used about 10 inter­
mediate time intervals between the shock front and final equilibrium. To im­
prove the accuracy of the measurements we made an optica! enlargement of 
the transparency obtained from the oscilloscope, the magnification factor 
being 10. 

Next we have to consider the time scale in our observations of the density. 
It is clear from the description of the experimental set-up that we are measuring 
the density profile bebind the shock wave (whose velocity is Uo with respect to 
the gas in the initial state). If we consider the shock wave to be stationary, so 
that the gas in the initial state is imagined to travel towards the shock front 
with a velocity Uo, then we are in fact measuring the density profile at a speed 
of u0 • We want, ho wever, to measure the time of the energy-transferring process 
in a coördinate system that is moving with the mean speed of the particles. 

t' 

This means that the actual timet is equal to J Uo/ue dt', where t' is the recorded 
0 

time; ift' 0, then the particles are at the shock front. Using eq. (5.2) we obtain 
t' 
(' 

t = J Pel Po dt' · 

0 

(5.8) 

When by means of eqs. (5.5) and (5.8) we have arrived at the desired total energy 
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profile as a function of time, we can apply the predicted relaxation equations of 
(3.4lc) and (3.71): 

d(E1 

dt 

dE1 

dt 

(5.9) 

(5.10} 

the value of dE3jdt being neglected on account of its small magnitude. Here 
E1(T2) means the energy of the valenee mode at the temperature of the bending 
modes, and E2(Te) is the energy of the bending modes at temperature Te. 

Similarly by using eqs. (5.6) and (5.8) we obtain the translational tempera­
ture profile as a function of t. 

5.3. ExperimentaJ resuJts 

With the aid of the derived equation we shall now calcu1ate the individual 
energies E1 and Ez. In eq. (5.10) dE1/dt represents the rate at which energy 
is transferred to the valenee modes. At t 0, the vibrational modes are as-

sumed to be in equilibrium, so that we obtain from eq. (5.10) (dEI) = 0. 
dt t=O 

For t 0 we can calculate the energy E2(Te) and measure the slope of the 
energy profile. E2, which has been taken relative to its value at room tempe­
rature, is zero. For simplicity we shall divide the measured rate of energy 
transfer by the gas pressure. In this way, and by using eq. (5.9) we calculate -r2 
for atmospheric pressure as a function of the translational temperature. By 
makinga series of runs with different Mach numbers we obtained the relaxation 
time -r2 in the temperature range 440-816 °K. These values are found in tableV 
and plotted in fig. 14; they are necessary for the calculation of the individual 
energy profiles. 
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Fig. 14. Vibrational relaxation times of the bending modes as a function of the translational 
temperature. 
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Qualitatively, the present data compare quite well with those obtained by 
Smiley and Winkier 35), who consider one relaxation time associated with the 
total vibrational energy. They found the density profile bebind the shock wave 
by using the Mach-Zehnder interferometer. 

TABLEV 

Mo Ts Ps/Pe,max 2Xl06 

1.75 0.967 441 0.868 17 122 3.74 
1.96 0.766 490 0.847 25 168 3.36 
2.13 . 0.466 533 0.828 34 208 3 
2.23 0.526 556 0.823 40 233 2.9 
2.27 0.55 568 0.816 45 254 2.9 
2.29 0.260 574 0.813 48 267 2.55 
2.31 0.408 588 0.809 51 276 2.63 
2.42 0.379 618 0.798 56 294 2.43 
2.42 0.450 618 0.798 56 294 2.50 
2.46 0.277 630 0.795 58 308 2.13 
2.46 0.340 630 0.795 58 308 1.94 
2.68 0.258 697 0.781 78 374 1.52 
2.83 0.287 734 0.767 89 415 1.36 
2.95 0.132 786 0.754 105 469 0.93 
3.04 0.195 816 0.748 116 500 0.64 

Next we consider just one calculated energy profile, of which we know 
E1 + E2 and Te at any instant. We measure at each point the rate of energy 
transfer and calculate E2(Te). Then by using eq. (5.9) we obtain the value of 
E2 at any instant, and from the sum we obtain also E1. This procedure will be 
shown in the following two examples: 

I. po 100 mm Hg; To = 300 oK and Mo 2.95. 

The Rankine-Hugeniot relationship gives 

Ps 1.31 kgjcm2 ; Ps = 0.91 kgfm3; Ts 786 °K. 

We can satisfy eqs. (5.5), (5.6), (5.7a) and (5.7b) by substituting Ps!Pe = 0.754 

and finding at thermal equilibrium Te= 636 oK, E1 + E2 
514 °K. Fur­

R 
thermore we find Pe,max 1.207 and Llpmax = 0.297 kgfm3. 

From the density profile we obtain 12 time intervals, and in table VI we have 
calculated the desired quantities. The energy profiles are shown in figs. 15 and 16. 
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Fig. 15. The energy profile bebind a shock wave, with Mo 2.95. 
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Fig. 16. The separate energy profiles of bending and valenee modes bebind a shock wave 
having a Mach number Mo 2.95. 

TABLE VI 

E1+E2 
]()6~ 

E2(Te) 107t' Llp Ps/Pe 107t Te dt 106'1'2 E2/R EI/R -R-
(: RE2] 

r--R~ 

0 0 1 0 786 0 785 0.93 730 0 0 
1 0.119 0.884 4.1 719 262 272 1.45 612 218 44 
2 0.183 0.833 8.5 687 382 138 1.7 556 328 54 
3 0.218 0.807 13.2 671 445 86 1.85 530 370 75 
4 0.238 0.793 17.9 661 479 57 1.98 511 399 80 
5 0.253 0.782 22.7 655 505 42 2.0 501 416 89 
6 0.262 0.775 27.5 650 524 30 2.05 492 431 93 
7 0.271 0.77 32.5 646 538 20 2.1 484 442 96 
8 0.278 0.765 37.4 643 551 15 2.1 481 451 100 
9 0.285 0.761 42.4 640 562 9 2.14 476 459 103 

10 0.291 0.757 47.4 638 568 6 2.14 472 460 108 
11 0.295 0.755 52.4 636 573 2 2.14 470 463 110 
12 0.297 0.754 57.4 636 574 0 2.14 469 469 105 
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II. po 148 mm Hg; To = 300 °K and Mo 3.04 

Ps = 2.00 kgfcm2 ; Ps 1.363 kg/m3 ; Ts 816 °K 

We can satisfy eqs. (5.5), (5.6), (5.7a) and (5.7b) by substituting Ps = 0.748 
Pe 

and finding at thermal equilibrium Te 
E ' E 

655 oK; 
1

' 
2 

= 616 °K. We 
R 

also find Pe.max = 1.822 and Llpmax = 0.459 kg/m3 • Next we obtained 8 time 
intervals from the density profile and calculated the desired quantities, which 
are set out in table VII. The energy profiles are shown in figs. 17 and 18. 
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Fig. 17. The energy profile bebind a shock wave, with Mo = 3.04. 
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Fig. 18. The separate energy profiles of bending and valenee modes bebind a shock wave 
having a Mach number Mo 3.04. 

The calculated values for E1 and E2 in tables VI and VII give us further in­
formation about the second relaxation equation. 
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TABLE VII 

E1+E2 
106~ 

E2(Te) I06t' Lip Ps/Pe 107t Te 
dt 1067"2 E2/R E1/R '---R (E1 ~E2) 

-ii-

0 0 1 0 816 0 1190 0.64 783 0 0 
0.5 0.16 0.895 2.1 754 245 398 1.17 673 211 34 
1.5 0.28 0.830 6.6 711 406 ISO 1.55 596 363 43 
2.5 0.34 0.80 11.3 692 481 85 1.7 563 419 62 
3.5 0.386 0.780 16.2 677 534 51 1.85 539 444 90 
4.5 0.420 0.765 21.2 667 572 32 1.90 523 463 109 
5.5 0.448 0.754 26.3 659 599 10 1.95 509 488 111 
6.5 0.456 0.751 31.5 656 611 2.5 2.0 504 499 112 
7.5 0.459 0.749 36.5 655.5 614 1 2.0 502 500 114 
8.5 0.460 0.748 41.5 655 616 0 2.0 500 500 116 

5.4. Discussion 

It is clear that the value of E2 calculated from the measured derivative of the 
energy profile cannot be very accurate, because many observations and measure­
ments are involved. Moreover the valenee energy is much smaller than the 
bending energy, and by obtaining the former value from the sum, its relative 
uncertainty should be large. In spite of these experimental uncertainties we 
found in most calculations E1(T2) > Furthermore we generally saw that 
E1 closely approached E1(T2). On account of these uncertainties it was not 
possible to obtain reliable values for 7"12· However, we may conclude that the 
experimental results are in fair agreement with the theoretica! predictions and 
that the second relaxation time of the indirect excitation is at least one order 
of magnitude smaller than the relaxation time of the direct excitation. In other 
words, the exchange of energy between the valenee and the bending modes 
takes place very rapidly, compared with the exchange between bending and 
translational energy. This might be an explanation for the fact that many in­
vestigators could not find a second relaxation time in their observations of 
absorption and dispersion in ultrasonics. 

The temperature range in which we have made our observations is limited 
by the following two considerations. For lower temperatures the valenee mode 
is only weakly excited, so that the valenee energy is relatively small compared 
with the bending energy. The specific heat at room temperature is for the valenee 
mode 0.07 R and for the bending mode 0.9 R. Therefore these small valenee 
energies cannot be found by our method. An upper limit ofthe temperature range 
is set by the fact that we always have to eliminate from the density profile the 
first steep part due to viscous effects at the wall of the shock tube. The higher 
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the temperatures, the smaller the relaxation distance; consequently we found 
it more difficult to separate these two parts. 

Finally we will make some remarks on the purity of the gas. For our experi­
mental observations we have used extra dry C02, supplied by the Southern 
Oxygen Company, with a purity of99.84 %. It contained 0.03% Oz and 0.1% Nz. 
The water content was stated as 20 parts per million. The leakage rate of the 
shock tube was less than 0.001 mm Hg per minute. The shock tube was usually 
fired within one minute after filling. Since the usual pressure of C02 was 100 
to 700 mm before arrival of the shock, the total impurity level can have been 
increased by only 0.001 %. Moreover, it is most unlikely that these 10 parts 
per million consisted entirely of water, the only impurity known to have a large 
effect on the relaxation times. 
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APPENDIX I 

Asymptotic value of /uc0 

The general solution descrihing an incoming and an elastically scattered wave 
is of the form 

1 
L Pz (cos 0)- /llcJr), 
I r 

(1.1) 

where fiko is a bounded solution of eq. (3.7a). 
Since the interaction potential tends to zero sufficiently rapidly as r tends to 

infinity, the bounded solution must at infinity have the form 

/tko ~ Dz sin (kor t !TT + Ozk0) , (1.2) 
r-+ oo 

where Dz is an arbitrary constant and Ozt.;0 is a phase shift. The term t !TT is 
added so that Ba

0 
vanishes if the interaction potential is zero. 

The constant factor Dz in (1.2) must now be chosen so that R1c
0 

shall have 
the asymptotic form of 

'k 1 'k el oz + _ go(O) el or 
r 

In other words, Dz must be chosen so that 

L Pz (cos 0) ~fik - eikoz 
1 r o 

(1.3) 

will represent the outgoing wave only. 
We require an expansion of eikoz = eikorcos 6 in Legendre polynomials 

eikorcos () L (21 + 1) il (~)
112 

Jw;;(k0r) Pz (cos 8). 
l 2kor 

The Bessel function bas the asymptotic form 

( 
2 )

1
/z 

Jz+t(kor) ~ -- sin (kor-t !TT). 
r-• oo TT k 0 r. 

Substituting this result in (1.3) we find the asymptotic form of the elastic 
scattered wave as 

L Pz (cos 0) 
1 ~ Dz sin (kor- t !TT + D!Tc0 )- (21 

l r( 1) il 2_ sin (kor-t !TT)~. 
ko ~ 

The two terms within the long brackets may be written as 

~ [ ~ Dz eiOlko- (2! + 1) il 2_ I ei(kor-thr) 
2l ( ko) 

- ~ Dt e-i Ozk0 -(21 + 1) jl ;
0 

~ e-i(kor-t /1r) J . 
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This result, however, must represent an outgoing wave only. Therefore the 
second term must vanish. We find 

1 ·< 
- (2/ + 1) il el"lko. 
ko 

Substituting this in eq. (I.2), we find the asymptotic value of /rko as 

1 
1l fi~c0 -+ (21 + 1) il e1 lko sin (kor--! l7T + Öz~c0). 

r'oo ko 

APPENDIX 11 

Maxwell-Boltzmann distribution for the valenee vibrations 

We wish to consicter the distri bution of the energy levels of excited symmetrical 
valenee vibrations initially in equilibrium. 

If we con si der the first excitation process of the v1 vibration we find that the 
relaxation equation, in terms of the distribution of the energy levels, can be 
written as 

where qm is the fraction of modes with energy state m. The terms on the right­
hand side are respectively: the number of molecules excited from state (n 1) 
to state n, the number of molecules de-excited from state (n + 1) to state n, 
the number of molecules excited from staten to state (n +I) and the number 
of molecules de-excited from the state n to state (n -- 1). 

Since the bending vibrations may be considered to have a Maxwell-Boltz­
mann energy distribution, we derive, by using eqs. (3.59a) and (3.59b): 

00 

~ qm Cm,1n-22 = Co,22 {exp (hv2/kT2)- I }-2 
m=O 

and 
00 

~ qm Cm,m+22 = Co,22 {exp (hvz/kT2) 1 }-2 exp (2hv2/kTz). 
m=O 

Furthermore we use eqs. (3.58a) and (3.58b) and find for eq. (II.l) 

dqn I dt = 
35 

No Pe2 Bo,12 Co,22 exp (lhv2/kT2) { exp (hP2jkT2} 1 }-2 

[n exp ( -2hv2/kT2) qn-1 + (n+ 1) qn+l- {n + (n + 1} exp (-lhv2/kT2)} qnJ, 
(II.2) 



93 

If we now substitute 2vz = v1 and, for the sake of simplicity, replace the first 
factor on the right-hand side of eq. (11.2) by Z, we obtain 

dqn 
dt ~= Z [n exp ( -(h) qn-l + (n + 1) qn-rl- {n + (n + 1) exp ( -lh)}qn], (11.3) 

where lh = hv1/kT2. 
If we next consider the other nine excitation processes for the symmetrical 

valenee vibration we find, apart from a numerical factor, the same relaxation 
equation for the distribution of the energy levels. 

When the integer n increases from zero to infinity, eq. (II.3) forms a set of 
differential difference equations descrihing the relaxation of the symmetrical 
valenee vibrations. 

The exact solution of equations of the type of eq. (11.3) bas been obtained 
by Montroll and Shuler 22) and is written in terms of a generating function: 

00 

G(z,t) = ~ zn qn (t) • 
n~o 

lf the initia! energies have a Maxwell-Boltzmann distribution, the generating 
function becomes 

G(z,t) 

(11.4) 
where ,.. = Zt (1 e-81), and 80 hv1fkT0 is associated with the temperature 
corresponding to the initial distribution. 

From this generating function we obtain 

qn(t) = [1 - exp e)] exp (- ne)' 
where 

In other words, the initial distribution of the symmetrical valenee vibrations 
relaxes to a final energy distri bution via a sequence of energy distributions, all 
of which obey a Maxwell-Boltzmann function. The effective temperature will 
change from T0 to T2, the effective temperature of the bending vibration. 

In a similar way we can prove that also during the excitation of the asymmetrie 
valenee vibrations the corresponding Maxwell-Boltzmann distributions persist. 



-94-

REPERENCES 

1) Landau, L., and Teller, E., Phys. Z. Sowjetunion, 10, 34, 1936. 
2) Tisza, L., Phys. Rev. 61, 531, 1942. 
3) Broer, L. J. F., Appl. sci. Res. AS, 55, 1954. 
4) Zener, C., Phys. Rev. 38, 277, 1931. 
5) Herzfeld, K. F. and Litovitz, T. A., Absorption and Dispersion of Ultrasonic Waves 

Academie Press, New York, 1959. 
6) Slawsky, Z.I., Schwartz, R. N. and Herzfeld, K. F., J. chem. Phys. 20, 1591, 1952. 
7) Schwartz, R. N. and Herzfeld, K. F., J. chem. Phys. 22, 767, 1954. 
S) Jackson, J. M. and Mott, N. F., Proc. Roy. Soc. London A137, 703, 1932. 
9) Fricke, E. F., J. acoust. Soc. Amer. 15, 22, 1943. 

10) Pielemeier, W. H., J. acoust. Soc. Amer. 15, 22, 1943. 
11) Vigoureux, P., Ultrasonics, John Wiley and Sons, Inc., New York, 1951, p. 78. 
12) Shields, F. D., J. acoust. Soc. Amer. 29, 450, 1957. 
13) Gutowski, F. A., J. acoust. Soc. Amer. 28, 478, 1956. 
14) Henderson, M. C. and Klose, J. Z., J. acoust. Soc. Amer. 31, 29, 1959. 
15) Dennison, D. M., Rev. mod. Phys. 3, 280, 1931. 
16) Schiff, L. I., Quanturn Mechanics, Mc.Graw-Hill, New York, 1955. 
17) Mott, N. F. and Massey, H. S., The Theory of Atomie Collisions, University Press 

Cambridge, England, 1952. 
18) Bird, R. B., Hirschfelder, J. 0. and Curtiss, C. K., Molecular Theory of Gases and 

Liquids. 
19) Rossini, F. D., ed., Thermodynamics and Physics of Matter, Section H, Princeton Univ. 

Press, Princeton, New Yersey, 1955. 
20) de Wette, F. W. and Slawsky, Z. 1., Physica, 20, 1169, 1954. 
21) Jackson, J. M. and Howarth, A., Proc. Roy. Soc. A152, 515, 1935. 
22) Montrolt, E. W. and Shu1er, K. E., J. chem. Phys. 26, 454, 1957. 
23) Witteman, W. J., J. chem. Phys. 35, 1, 1961. 
24) Bleakney, W., Weimer, D. K. and Fletcher, C. H., Rev. sci. Instr. 20, 807, 1949. 
25) Resler, E. L., Lin, S. C. and Kantrowitz, A., J. appl. Phys. 23, 1390, 1952. 
26) Courant, R. and Friedrichs, K. 0., Supersonic Flow and Shock Waves, Interscience, 

New York, 1948. 
27) Broer, L. J. F., Ned. Tijdschr. Natuurk. 20, 205, 1954. 
28) Broer, L. J. F., Appl. sci. Res. A2, 447, 1951. 
29) Resler, Jr., E. L. and Scheibe, M., J. acoust. Soc. Amer. 27, 932, 1955. 
30) Wi tteman, W. J., Rev. sci. Instr. 32, 292, 1961. 
31) Hartunian, R. A., Phys. of Fluids, 4, 1059, 1961. 
33) Duff, R. E., Phys. of Fluids, 2, 207, 1959. 
33) Witteman, W. J., J. chem. Phys., 37, 655, 1962. 
34) Keenan, J. H. and Kay, J., Gas Tables, John Wiley and Sons, Inc., New York, 1948. 
35) Smiley, E. F. and Winkler, E. H., J. chem. Phys. 22, 2018, 1954. 



95-

SAMENVATTING 

Wanneer aan een gas warmte wordt toegevoegd, zal deze warmte aanvankelijk 
alleen door de translatie en rotatie van de moleculen worden opgenomen. De 
translatie-energie is nu niet in evenwicht met de vibratie-energie van het gas. 
Dit evenwicht wordt hersteld tijdens moleculaire botsingen, wanneer energie 
tussen de verschillende vrijheidsgraden wordt uitgewisseld. De wijze waarop 
nu de moleculaire vibraties van koolzuurgas worden aangeslagen wordt hier 
behandeld. De thermische beweging van twee botsende moleculen wordt quan­
turn-mechanisch behandeld, waarbij we gebruik maken van de methode van de 
gestoorde golven. Het blijkt dat tijdens het aanslaan van de buigingstrilling er 
een directe energie-uitwisseling met de translatie is, terwijl bij het aanslaan van 
de symmetrische en asymmetrische valentietrilling er een energie-uitwisseling 
tussen de vibraties onderling is. 

De energie-overdracht tussen de verschillende vibraties zal niet uitsluitend 
binnen het molecule plaatsvinden, want er bestaan ook mogelijkheden dat dit 
kan gebeuren tussen verschillende moleculen. We vinden tien mogelijkheden 
voor de energie-overdracht aan de symmetrische valentietrilling en acht 
mogelijkheden voor de asymmetrische valentietrilling. 

Nadat het aantal effectieve botsingen dat een molecule per seconde ondergaat 
is berekend, worden vervolgens de drie relaxatievergelijkingen voor de vibraties 
opgesteld. De bijbehorende relaxatietijden zijn berekend. Voor temperaturen 
beneden de 600 oK blijken de berekende en overeenkomstige experimentele 
relaxatietijden voor de buigingstrilling minder dan een factor twee te schelen. 
Dit is, gezien de beperkte kennis van de intermoleculaire potentiaal en andere 
benaderingen die in de berekeningen moesten worden gebruikt, een vrij goede 
overeenstemming. 

Het blijkt, dat de op deze wijze gevonden relaxatievergelijkingen voor 
de vier vibratievrijheidsgraden van eenvoudige gedaante zijn. Zij bestaan 
slechts uit termen van de nulde en eerste orde, onafhankelijk van de 
energiesprong die de vibraties ondergaan. Tevens is hierbij gevonden, dat 
tijdens deze relaxaties de energie van iedere vibratie blijft voldoen aan de 
Maxwell-Boltzmann verdeling, waarbij de effektieve temperatuur variëert. 

Experimenteel is deze energie-overdracht bestudeerd met behulp van schok­
golven. De dichtheidsveranderingen achter het schokfront die het gevolg zijn 
van relaxaties zijn met de geïntegreerde Schlieren-methode gemeten. Deze 
optische methode is zodanig ontwikkeld dat de dichtheidsverandering over een 
bepaalde afstand nu direkt wordt gemeten. Uit de gevonden dichtheidsverande­
ring kan het verloop van de vibratie-energie als functie van tijd en translatie­
temperatuur worden bepaald. 

In het temperatuurgebied van 440 oK tot 816 oK bevestigen de gevonden 
resultaten een directe energie-overdracht tussen buigingstrilling en translatie en 
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een onderlinge uitwisseling van energie tussen buigings- en valentietrilling. De 
gemeten relaxatietijden voor de directe energie-overdracht variëren van 3.75 JL 

sec bij 440 °K tot 0.64 JLSec bij 816 °K. De invloed van eventuele verontreini­
gingen, door het lekken van de schokbuis ontstaan, kan verwaarloosd worden. 

De temperatuur van de gemeten energie voor de buigingstrilling ligt juist 
boven de overeenkomstige temperatuur van de energie voor de valentietrilling, 
hetgeen betekent dat de relaxatietijd voor het indirecte relaxatieproces minstens 
een factor 10 kleiner is dan de relaxatietijd van het directe relaxatieproces. 
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STELLINGEN 

I 

Bij drie-atomige gassen met lineaire moleculen vindt de energie-overdracht 
tussen translatie en vibratie plaats via de slapste vibratie van het molecule. 

Dit proefschrift, hoofdstuk III. 

II 

Het relaxatieproces voor de energie van een willekeurige vibratie van een drie­
atomig gas met lineaire moleculen kan worden beschreven met de eenvoudige 
relatie 

dE = ~ ~ E' - E ~ , 
dt 7 ( ~ 

waarbij E' de energie van deze vibratie voorstelt bij een temperatuur die bepaald 
wordt door de vrijheidsgraden die aan deze vibratie energie overdragen. 

Vergelijk dit proefschrift, hoofsdtuk IJL 

III 

In de door Herzfeld gegeven quanturn-mechanische berekening voor de 
gelijktijdige rotatie- en vibratie-overgangen van twee-atomige gassen wordt 
de foutieve veronderstelling gemaakt dat de diagonaal matrix elementen voor 
verschillende waarschijnlijkheidstoestanden aan elkaar gelijk zijn. 

Kar! F. Herzfeld and Theodore A. Litovitz, Absorption and 
Dispersion of Ultrasonic Waves, pag. 303 e.v. Academie Press 
New York and London (1959). 

IV 

Met behulp van de z.g. Schlieren methode kan langs optische weg de dicht­
heidsgradiënt van gasstromingen gemeten worden. Het is echter mogelijk om 
met deze methode bij niet stationnaire, één-dimensionale stromingen ook de 
grootte van de dichtheidsverandering over een bepaald gebied te meten. 

Vergelijk dit proefschrift, hoofdstuk IV. 

V 

Het is bekend dat de toelaatbare axiale belasting van een rond staafje hard­
metaal aanzienlijk verhoogd kan worden als dit hardmetaal voorzien is van 
krimpringen. De hoogst mogelijke krimpdruk wordt niet bepaald door de 
toelaatbare tangentiaalspanning in de krimpringen, zoals Christiansen, Kistier 



/ 

en Gogarty menen, maar veel meer door de toelaatbare radiaalspanningen in de 
krimpringen. 

E. B. Christiansen, S. S. Kistierand W. B. Gogarty, Rev. Sc. 
Instr. 32, 775 (1961). · 

VI 

Voor het bereiken van super hoge drukken is zowel decalibratie als de spannings~ 
toestand van de gebruikte materialen bij de cilindervormige segmentenappara­
tuur gunstiger dan bij een tetraedrische apparatuur. 

H.T. Hall, Rev. Sc. Instr., 29,267 (1958). 

VIl 

De door Kao gegeven afleiding voor de mechanische krachten die in diëlectrische 
materialen kunnen ontstaan als gevolg van de electrische veldsterkte houdt geen 
rekening met de drukafhankelijkheid van de dielectrische constante. 

K. C. Kao, Br. J. Appl. Phys. 12,629, (1961). 

VIII 

De wijze waarop Hendersou en Klose gezocht hebben naar de aanwezigheid van 
meer dan een relaxatietijd voor de vibratie~energie van koolzuurgas sluit de 
mogelijkheid voor een energie~overdracht in serie uit. 

M. C. Henderson and J. Z. Klose, J. Acoust. Soc. Amer., 
31, 29, (1959). 

IX 

Voor het fabriceren langs hydrothermale weg van grote synthetische kwarts~ 
kristallen zonder barsten is het gewenst de entkristallen in een omgeving met 
voldoend kleine temperatuurgradiënt te plaatsen. 

x 
Een fundamentele vereenvoudiging van het systeem van aanslag regeling der 
inkomstenbelasting naar Amerikaans voorbeeld, inhoudende dat de belasting­
plichtigen in beginsel zelf hun belastingschuld vaststellen en dat de fiscus zich 
beperkt tot repressieve contröle verdient veel aanbeveling. 

Vergelijk pleidooi van de algemene vergadering van vereni­
ging van inspecteurs van 's rijksbelastingen 1962. 
Weckblad voor fiscaal recht No 4608, 9 juni 1962. 

XI 

In tegenstelling tot sommige adviezen is het voor bestuurders van automobielen 
met voorwielaandrijving raadzaam om bij het begin van slip in bochten zoveel 
gas te geven dat het voertuig geen snelheid verliest. 

Dissertatie W. J. Witteman, 
S maart 1963. 

Autokampioen, no 40, okt. 1962. 


