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ABSTRACT

This thesis deals with the evaluation of the electrical performance of
the antenna system that consists of a single offset parabolic reflector
fed by a corrugated elliptical horn radiator. Such an antenna system
can be designed to have a radiation pattern characterized by a main
lobe with an elliptical cross-section, by low sidelobes, and by a low
level of cross-polarized radiation, in the case of circular polariza-
tion. Then the antenna system is suitable for application as the trans-
mitting antenna of a broadcasting satellite.

The investigation of the antenna-system performance proceeds in two
steps. The first contribution of this study concerns the development

of a theory that explains the wave propagation and radiation charac-
teristics of a corrugated elliptical horn with arbitrary geometrical
parameters. The problem of wave propagation is solved on the basis of
the anisotropic surface-impedance model for the corrugated boundary of
the horn. The analysis of the horn radiation is based on the Kirchhoff-
Huygens approximation in which it is assumed that the radiation field
is completely determined by the field distribution at the horn aperture
only. Two methods are employed for the calculation of the horn radia-
tion, namely, the aperture-field integration method and the wave-
expansion method. Numerical results obtained by both methods aﬂd expe-
rimental results are presented.

The second contribution of this thesis pertains to a computational
procedure developed to numerically determine the radiation field of the
antenna system. This (secondary) radiation field is considered as
arising from the surface current that is induced in the parabolic re-
flector by the (primary) radiation field from the horn. The computa-
tional procedure contains the horn and reflector geometries as input
parameters, and by varying these parameters one may search for an
antenna system design that is optimal in some sense with respect to
electrical performance. In this manner the computational procedure
provides a design through computation versus the alternative of a
design based on experimentation. Various numerical and experimental
results for the electrical performance of the antenna system are

presented.
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1. GENERAL INTRODUCTION

1.1. Introduction

Man-made satellites are nowadays used for many purposes, e.g., for
radiocommunications, meteorological observations, navigation, resources
exploration and space research. The first communication satellites were
placed in low-altitude orbits. Such satellites are not permanently visible
from a fixed point on the earth; their positions are not stationary, hence,
earth~-station antennas with complicated tracking facilities are needed. At
present, however, most communication satellites are positioned in the geo-
stationary orbit, which is nominally the circle in the equatorial plane

with radius 42164.04 km, centred at the centre of gravity of the earth.

As early as 1945, Arthur C. Clarke suggested the idea to use geostationary
satellites for communication purposes [3]. Some 20 years later radiocom-
munication systems using geostationary satellites indeed became operational.
Presently, another important step forward in the application of satellites
is due to be made with the introduction of geostationary satellites for the
broadcasting-satellite service.

Up till now, broadcast programmes have been transmitted by terrestrial
systems. Under normal propagation conditions the reach of a tele-

vision signal is then confined to the relatively small area of optical
coverage around the transmitter. To make possible nation-wide reception of
broadcast programmes several terrestrial transmitters are required, thus
leading to the use of a lot of frequency assignments. For coverage of
gparsely populated, mountainous or remote areas, a terrestrial transmit
system is not very attractive from an economic point of view. Also, inter—
ference~free reception of additional programmes may not be guaranteed be-

cause of the limited frequency spectrum available for terrestrial services.

Economic coverage of large geographical areas, as well as relief from the
frequency shortage, can be achieved by use of broadcasting satellites in
the geostationary orbit that operate in other (higher) frequency bands.
aAccording to the Radio Regulations [10], the broadcasting-satellite service
is "a radiocommunication service in which signals transmitted or retrans-
mitted by space stations are intended for direct reception by the general

public. In the broadcasting-satellite service, the term 'direct reception'
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shall encompass'both individual reception and community reception®.

The planning of the broadcaéting-satellite service has been based on

the following desiderata:

- individual reception;

- nation-wide coverage;

- efficient use of the radio-frequency spectrum and of the geostationary
orbit.

At the World Administrative Radio Conference for the planning of the

broadcasting-satellite service held in Geneva in January 1977, regulations

have been drawn up for the efficient and orderly use of the fregquency
spectrum and the geostationary orbit by countries in Region 1 {Europe,

USSR, Africa), and in Region 3 (Asia, Australia) [6]. At the Regional

Administrative Conference held in Geneva in June - July 1983, regula-

tions have been adopted for the broadcasting-satellite service for the

countries in Region 2 (North and South America) [7]. At these conferences

various provisions have been agreed on with regard to:

- the reference patterns for the copolarized radiation and the cross-polarized
radiation of both the satellite transmitting antenna and the earth-station
receiving antenna;

- the power flux-density from the satellite antenna;

- the required signal quality at reception;

-~ the frequency channels for each country {(in the frequency band 11.7 -~ 12.2
GHz for countries in Regions 2and 3; in the frequency band 11.7 -~ 12.5 GHz
for countries in Region 1};

- the use of circularly polarized radiation;

- the satellite orbital positions;

and other performance requirements.

The requlations adopted give rise to particularly stringent requirements

to be imposed on the electrical performance of the satellite transmitting

antenna, namely [6], [7]:

- the radiation must be circularly polarized in the service area;

-~ in Regions 1 and 3 the main lobe of the radiation pattern should have an
elliptical cross-section, and in Region 2 the cross-section may be either
elliptically or irregularly shaped;

- the radiation patterns may not exceed certain reference patterns for co-

polarized and cross~polarized radiation.
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If the agreed specifications are not met, a signal with unacceptable
level may be received outside the intended coverage area, thus leading

to potential interference with signals present in a neighbouring coverage
area. In Figure 1.1 coverage areas for some European countries, assuming
radiation patterns with an elliptical cross-section, are shown. The
various aspects of satellite-broadcasting are discussed in more detail

in section 1.2, where we shall also explain the basic concepts and

terminology employed.

Fig. 1.1. Coverage areas for some European countries, assuming radiation
patterns with an elliptical cross—section. The country symbols
are taken from Table 1 of the Preface to the International

Freguency List [9].
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Antennas are key elements in radiocommunication systems. The antenna-
system performance depends critical;y on the feed or the primary
radiator. Designs for a broadcasting-satellite transmitting antenna
which meets the requirements listed above, are discussed in section 1.3.
One of these designs concerns the tiansmitting antenna of TV-SAT, the
broadcasting satellite of the Federal Republic of Germany. The antenna
configuration consists of a corrugated elliptical horn radiator and an
offset parabolic reflector (see Figure 1.2), and its radiation pattern
has a main lobe with an elliptical cross-section. From experiments it
was found [5] that the transmitting antenna of TV-SAT has most favourable
properties with respect to electrical performance, Weight and reflector
dimensions. In particular, the electrical performance of the antenna is

claimed to meet the stringent requirements that apply in Region 1 [6].

PARABOLIC
REFLECTOR

PARABOLOID
AXIS

ELLIPTICAL
HORN

Fig. 1.2. Design for the transmitting antenna for satellite-broadcasting.

In the present thesis we are concerned with a theoretical study of the
antenna configuration of Figure 1.2, consisting of an offset parabolic
reflector fed by a corrugated elliptical horn radiator. The electrical
pefformancé of the antenna configuration is investigated by analytical
and numerical methods, and the results obtained are compared with those
of experiments. Our investigation p?o¢eeds in two steps. In chapters 3
and 4 we present a detailed analysis of the wave propagation and the
radiation associated with a corrugated elliptical horn. In chapter 5 a
numerical procedure is developed for the calculation of the radiation
field of the antenna system, due to the combined action of the corrugated

elliptical horn (primary radiator) and the parabolic reflector (secondary
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radiator). For a more detailed survey of the contents of this thesis

we refer to section 1.4.

In conclusion, we feel that the present study makes two contributions,
The main contribution which is also of independent interest, concerns
the development of a theory that explains the wave propagation and
radiation characteristics of a corrugated elliptical horn with arbitrary
geometrical parameters. Our second contribution pertains to the computa-
tional procedure developed to numerically determine the radiation field
of the antenna system, with the horn and reflector geometries as input
parameters. This procedure can be used to predict the electrical perfor-
mance of an antenna system with given horn and reflector parameters.
Next,by varying these parameters one may search for an antenna design
that is optimal in some sense with respect to electrical performance. In
this manner the computational procedure is a most useful tool in the
actual designing of the antenna system. The procedure provides a design
through computation versus the alternative of a design based on costly

experimentation.

1.2. Aspects of broadcasting by satellite

The main feature of a geostationary satellite is its fixed position
relative to the earth {(except for small but manageable perturbations).
Such a satellite is permanently visible from a certain fixed part of the
surface of the earth. Hence, the electromagnetic field transmitted by a
directional satellite antenna can be received in a specific area on the
earth. Another important consequence of the fixed satellite position is
that a small earth-station antenna need not be equipped with costly
tracking facilities, due to the wide main lobe of its radiation pattern.
A disadvantage of operating from the geostationary orbit is the large
basic signal attenuation associated with radio-wave propagation over
long distances, i.e. the free-space attenuation. Modern satellites,
however, can provide sufficient power flux-density for adequate signal
reception by means of a small, inexpensive earth-station antemna, thus
making possible direct reception by the general public. The required
power flux-density at the surface of the earth should be the larger,
the smaller the dimensions of the receiving antenna are. Furthermore,
the total power transmitted by a satellite antenna is proportional to

the size of the area to be covered.
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From the Radio Regulations [10] we quote:

"In the broadcasting-satellite service the term 'direct reception by

the general public' shall encompasé both

individual reception (see [10, No. 123]): the reception of emissions

from a space station in the broadcasting-satellite service by simple
domestic installations and in particular those possessing small antennae;
and

community reception (see [10, No. 124]1): the reception of emissions from a
space station in the broadcasting-satellite service by receiving eguipment,
which in some cases may be complex and have antennae larger than those used
for individualffeception, and intended for use:

- by a group of the general public at one location; or

- through a distribution system covering a limited area".

In general, an inexpensive receiving antenna of small dimensions has a
radiation pattern with rather high sidelobes and a wide main lobe. Con-
sequently, such an antenna has a poor ability to discriminate between
different signal sources that transmit electromagnetic fields with similar
characteristics such as frequency and polarization. As a result, coordina~
tion of services is necessary to keep signal interference at acceptable
levels.

Purthermore, the poor ability to discriminate between signal sources
limits the spacing of geostationary satellites, and limits the number of
times that a frequency can be re-assigned. Receiving earth-station
antennas that have a radiation pattern with a narrower main lobe and lower
sidelobes towards the geostationary orbit, would make possible a smaller
spacing of geostationary satellites and, consequently, a more efficient
use of the geostaticnary orbit, at the expense of earth-station cost.

From the Radio Regulations [10] we now quote the definitions of "service
area", "coverage area", and "beam area", and the accompanying notes; see
Annex 8 to Appendix 30 of [10]. The additional remarks, not between quota-
tion-marks, are ours.

"The service area is the area on the surface of the Earth in which the
administration responsible for the service has the right to demand that
the agreed protection conditions be provided.

Nete: In the definition of service area, it is made clear that within the
service area the agreed protection conditions can be demanded. This is

the area where there should be at least the wanted power flux-density and
protection against interference based on the agreed protecﬁion ratio for

the agreed percentage of time".



-7

"The coverage area is the area on the surface of the Earth delineated

by a contour of a constant given value of power flux-density which

would permit the wanted quality of reception in the absence of inter-
ference.

Note 1: In accordance with the provisions of No. 2674 of the Radio
Regulations, the coverage area must be the smallest area which encompasses
the service area.

Note 2: The coverage area, which will normally encompass the entire service
area, will result from the intersection of the antenna beam (elliptical or
circular) with the surface of the Earth, and will be defined by a given
value of power flux-density. For example, in the case of a Region 1 or 3
country with a service planned for individual reception, it would be the
area delineated by the contcur corresponding to a level of -103 dB(W/mZ)
for 99% of the worst month. There will usually be an area outside the
service area but within the coverage area in which the power flux-density
will be at least equivalent to the minimum specified value; however,
protection against interference will not be provided in this area".

Remark 1: In the case of a Region 2 country, the level should be -107 dB
(w/m%) [71. ‘

Remark 2: In Region 2, the main lobe of the radiation pattern of a satellite
transmitting antenna may have either an elliptically or an irregularly
shaped cross-section [7]. The latter cross-section should match with a
coverage area bounded by an irregular contour.

"The beam area is the area delineated by the intersection of the half-power
beam of the satellite transmitting antenna with the surface of the Earth.
Note: The beam area is simply that area on the Earth's surface correspon-
ding to the -3 dB points on the satellite antenna radiation pattern. In
many cases the beam area would almost coincide with the coverage area, the
discrepancy being accounted foery the permanent difference in path lengths
from the satellite throughout the beam area, and aléo by the permanent
variations, if any, in propagation factors across the area. However, for a
service area where the maximum dimension as seen from the satellite
position is less than 0.6° {the agreed minimum practicable satellite half-
power beamwidth}, there could be a significant difference between the beam
area and the coverage area".

Remark: The minimum value of 0.6° for the half~power beamwidth applies for
countries in Regions 1 and 3 [6]. For Region 2 countries a minimum value

of 0.8° has been adopted [71.
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For a Region 2 country the coverage area may be irregularly shaped. In

that case the satellite transmittidg antenna is required to have a radi-

ation pattern with its main lobe having a cross-section that matches the

irreqular shape. .fuch a radiation pattern can be realized by means of

multiple narrow beams transmitted by multiple primary radiators, which

are suitably combined to form the required shape of the main lobe. A

specially shaped beam has a number of advantages over a simple elliptical

beam, viz.

- the power flux-density throughout the coverage area can be made nearly
uniform;

- the transmitted power can be concentrated in the service area;

-~ the total power transmitted by the satellite antenna is therefore smaller;

- the undesirable spillover of radiation into neighbouring areas is re-
duced, while coverage of the intended area is maintained. As a result, the
number of times that a frequency can be re-assigned, is larger.

However, also some disadvantages should be mentioned, viz.

~ an antenna with a radiation pattern of a specially shaped cross-section
has larger reflector dimensions;

- the feed system iz complex, voluminous and heavy.

In section 1.1 we listed several requirements to be imposed on the electri-
cal performance of a satellite transmitting antenna. In these requirements
the polarization of the radiation plays a prominent role. For convenience
of the reader we now explain in some detail the concepts of polarization,
orthogonal polarization, copolarization and cross polarization.

According to the usual convention the polarization of an electromagnetic
field at an observation point P refers to the physical electric field
vector E(;,t), where r is the position vector of P and t stands for time.
We assume that P is éufficiently far from the sources of the field. Then
the field wector at P lies in a plane V, normal to the direction of wave
propagation at P. In the case of a harmonic time dependence exp(jwt) with
w denoting the angular frequency, the physical electric field vector

€{r,t) is given by

e(r,t) = Re{E(T)exp(jut)} , {1.1)

where Re means taking the real part and E(r) is the complex electric field

vector at P. The latter wvector is expressed as



Efr) = Eltr) + jEZ(r), (1.2)

where él(;) is the real part and Ez(f) is the imaginary part of E(r);
»

see Figure 1.3. Then it follows that

£(r,t) = E1<E>coswt - éz (¥) sinwt. (1.3)

Fig. 1.3. Electric field vectors at the observation point P and

polarization ellipse.

It can easily be shown that the extremity of the vector E(;,t) at P
traverses an ellipse in the plane V, with centre at P. This ellipsé is
called the polarization ellipse (see Figure 1.3), and the field at P

is said to be elliptically polarized. Furthermore, the polarization is
called right-handed (left-handed} if the polarization ellipse is traversed
in a clockwise (anti-clockwise) direction for an observer looking in the
direction of wave propagation at P.

Two special cases are of interest. The extremity of the vector E(E,t) at
P describes a line segment if the vectors E1(§) and ﬁz(f) are linearly

dependent, or equivalently if
E(E) xE () =0, Ex) # 0, (1.4)

where the asterisk means complex conjugation. In that -case the field at P
is said to be linearly polarized, and the axial ratio of the polarization
ellipse (minor axis divided by major axis) is equal to 0. The polarization
ellipse degenerates into a circle if the vectors 51(§) and'é:(?) are per-

pendicular and have equal length, or equivalently if

E(r).E{(xr) = 0 , E{r) # 0 . (1.5)
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Then the field at P is said to be circularly polarized, and the axial
ratio of the polarization ellipse is equal to 1.

From (1.2) it is clear that an elliptically polarized field can be re—
presented by the sum of two linearly polarized fields with a phase dif~
ference T/2. Generally, any elliptically polarized field can be decom~
posed into two linearly polarized fields with field vectors pointing in
perpendicular directions, but not necessarily with a phase difference
T/2. The same result holds for a circularly polarized field but now the
linearly polarized constituents do have a phase difference w/2. Further-
more, any elliptically polarized field can also be decomposed into two
circularly polarized fields, one with a right-handed polarization and
the other with a left-handed polarization. To show this we introduce
unit vectors é? and éq at P in the plane V, such that épl éq and

ep X eq = er where er is the unit vectof in the direction of wave propa-
gation at P. Next the electric field E(r) is expressed as

E(r) = ER(r) + BL(r), {1.6)

in which the complex field vectors ER(E) and EL(;) are given by

ER&) L{E(r) . & +4E(r) . & J(& -j8 ), (1.7)
el q P q

EL(r)

‘

L{E(E) . e -3E(D) . e e +je ). (1.8)
p q P g

Since E_(r).E_(r) = E (1).E_(r) = 0, the fields E_(r) and E_(r) are cir-
cularly polarized, and it can easily be verified that the polarization
is right-handed for ER(E} and left-handed for EL(E). As a special case
of the present result we have: any linearly polarized field can be re~
presented by the sum of a right-handed and a left-handed circularly
polarized field with the same strength. ]

We now come to the definition of the concept of orthogonal polarization.
Two elliptically polarized fields are said to be orthogonally polarized
if their polarization ellipses

- have the same axial ratio;

- have perpendicular major axes {(not applicable for circular polarizations);

~ are traversed in opposite senses (not applicable for linear polarizations).

By means of this concept the previous decomposition results can be refor-
mulated as follows. Any elliptically polarized field can be decomposed

into an orthogonally polarized pair of linearly polarized fields, and
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into an orthogonally polarized pair of circularly polarized fields.

Finally, the polarization type of an antenna radiation field is con-
veniently described in terms of "copolarization" and "cross polarization®.
The copolarization is a reference polarization which is usually taken to
be a linear polarization with a given direction or a circular polarization
with a given sense of rotation. The term cross polarization refers to the

polarization orthogonal to the copolarization.

For convenience we also assign a polarization type to antennas, and we
shortly speak of ellipticélly, linearly and circularly polarized antennas.
For a transmitting antenna the polarization type is identical to that of
the field radiated by the antenna. The polarization type of a receiving
antenna is identical to the polarization type of the incident field that
gives rise to maximum signal reception. For maximum signal transfer between
a transmitting antenna and a receiving antenna, it is necessary that the
polarization ellipses associated with the antennas

- have the same axial -ratio;

- have parallel major axes (not applicable for circular polarizations);

- are traversed in the same directions {(not applicable for linear polarizations);

in that case the antennas are said to be copolarized [11]. A circularly
polarized receiving antenna, located in the coverage area of a circularly
polarized transmitting antenna, should be simply pointed at the latter
antenna, without further alignment being necessary for maximum signal re-
ception. In this respect circularly polarized radiation is preferable to
radiation of another polarization type, and this explains the requirement
that the radiation must be circularly polarized in the service area [6],
[7]. The absence of the need to align the receiving antenna makes circu-
larly polarized radiation particularly attractive for satellite-broad-
casting in the 12 GHz frequency band, where a very large number of re-
ceiving antennas (whether for individual or community reception) is a
condition for eccnomié viability of the service.

Signal transfer will be suppressed if the transmitting antenna and the
receiving antenna are orthogonally polarized. Hence, by use of orthogo-
nally polarized fields, emissions in the same frequency band from neigh-
bouring satellites can be discriminated from each other. Freguency re-use

by polarization discrimination therefore contributes to the efficient use



-1~

of the frequency spectrum and of the geostationary orbit. In practice,
the suppression of orthogonally polarized signals is not complete, due
to imperfect polarization characteristics of both the satellite trans-
mitting antenna and the earth-station receiving antenna, i.e., the co-
polarized wave as well as the cross-polarized wave are radiated and
received. In addition, a transmitted wave will be depolarized on its
path through the atmosphere, due to various atmospheric effects, for
instance rain [8]. Depolarization means that an initially copolarized
radiation is converted into radiation that also contains a cross-
polarized component, which may lead to interference. Because of the
depolarization effects induced by the atmosphere it is necessary to
further tignten the requirements on the antenna polarization characte-

ristics.

We end this section by specifying the reference patterns for the co-
polarized radiation and the cross-polarized radiation of a broadcasting-
satellite transmitting antenna. The reference patterns in Figure 1.4 apply
to the circularly polarized radiation of a transmitting antenna for
countries in Regions 1 and 3 [6]. The abscissa in Figure 1.4 is the angle
® normalized to ¢o, that is the angle corresponding to the -3 dB beam-
width of the reference pattern for the copolarized radiation. In practice,
it may be difficult to meet the specification for the copolarized radia-
tion at angles @/@0 &~ 1.5 which requires the sidelobe radiation level to
be below -30 dB, and the specification for the cross-polarized radiation
which must not exceed a level of -33 dB. The reference patterns in Figure
1.5 apply to the circularly polarized radiation of a transmitting antenna
for countries in Region 2 [7]. Also some other reference patterns, showing
a faster roll-off of the main lobe of the copolarized radiation beyond the
angle @/@o = 0.5 (leading to reduced interference), have been adopted [7].
From Figure 1.5 we observe that the sidelobe radiation level of the co-
polarized radiation is required to be below -25 dB, whereas the cross-
polarized radiation must not exceed a level of -30 dB. These specifica-

tions are less severe than the specifications shown in Figure 1.4.
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mitting antenna for countries in Region 2. Curve C represents
the minus on-axis gain. Curve A continues as curve C after its
intersection with curve C. Curve B continues as curve A after

its intersection with curve A [7].



1.3. Designs for broadcasting—satellite transmitting antennas

As pointed out in the previous sections,the electrical performance of a
satellite transmitting antenna should meet stringent requirements, in
particular with regard to the sidelobe radiation level of the copolarized
radiation and to the level of the cross~polarized radiation. These require-
ments cannot possibly be met by a transmitting antenna system in which block~
age of radiation occurs, i.e. where the wave reflected by the main re-
flector is partly blocked and scattered by the feed system and its sup~
porting struts [4]. Therefore, an axisymmetric single reflector antenna
such as the front-fed parabolic antenna, and axisymmetric dual reflector
antennas such as the Cassegrain antenna and the Gregorian antenna (both
with a parabolic main reflector), deserve no further consideration. Block-
age can be avoided by tilting the feed system so as to use another portion
of the reflecting parabolic surface as the main reflector. The resulting
designs are known as the single offset parabolic reflector antenna, the
offset Cassegrain antenna and the offset Gregorian antenna, respectively.
The latter two are known as double offset antennas.

An additional advantage of an offset transmitting antenna is the absence
of direct reflection of radiation power back into the feed system. This
results in a low voltage standing-wave ratioc and, in case of multiple feed
elements, in a low electromagnetic coupling between the elements via the
reflector. Offset Cassegrain and offset Gregorian antennas are not as
compact as the single offset reflector antenna. Therefore, the use of a
double offset antenna as a satellite antenna is restricted by the volu-
metric constraints imposed by the dimensions of présent—day launch
vehicles [5]. Also, in a double offset antenna the requirement on the side-
lobe radiation level may not easily be met owing to the spillover of primary
radiation beyond the subreflector into directions close to the main beam
direction, and owing to diffraction effects arising at the rim of the
subreflector [5]. Obviously, these effects do not occur in a single offset
reflector antenna. ,

In view of the stringent regquirements imposed on the dimensions and on

the electrical performance of a broadcasting-satellite transmitting antenna,
the single offset reflector antenna is the most likely candidate to

be used in an antenna-system design. Therefore, the discussion is now
further restricted to antenna systems with a single offsget parabolic re-

flector that is fed by a primary radiator.
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According to the provisions agreed on in [6], [7] (see section 1.1),
circularly polarized radiation is to be used for satellite broadcasting
in the 12 GHz frequency band. Now a circularly polarized field when re-
flected by a parabolic reflector, remains circularly polarized but with
opposite sense of rotation [2]. Therefore, the requirement on the pola-
rization of the secondary radiation translates into the requirement that
the primary radiation incident on the parabolic reflector must be circu-
larly polarized. A single offset parabolic reflector antenna transmitting
circularly polarized radiation, is known to exhibit a slightly displaced
(squinted) radiation pattern. The squint occurs in the plane pefpendicular
to the plane of offset, and its direction depends on whether the circu-
lar polarization is right-handed or left-handed [2]. The squint effect
can be compensated for by antenna pointing.
Turning to the requirement that the main lobe of the secondary radiation
pattern should have either an elliptically or an irregularly shaped
cross~section, we shall discuss two current types of antenna systems.
The first type employs a single offset parabolic reflector with an
elliptical aperture, and a feed system that consists of an array of pri-
mary radiators fed DBy a power distribution network. The required secon-
dary radiation pattern is realized by a proper combination of the radia-
tion patterns caused by each of the primary radiators. For each array
element one needs a polarizer, a transition from the feeding waveguide
to the radiator, an attenuator and a phase shifter. Such an array-type
feed tends to become complex, bulky and heavy. Apart from the power loss
in the feeding network, an array-type feed exhibits some further draw-
backs such as
- degradation of the polarization purity of the radiation of the array,
due to the electromagnetic coupling between the array elements;
- high spillover loss of radiation beyond the main reflector, due to high
sidelobes in the radiation pattern of the feed system.
Two examples of such an antenna system with multiple feed elements are
now briefly reviewed. The first example concerns the transmitting antenna
of the broadcasting satellite of Japan [12]. In this case the array-type
feed consists of three conical horns, the focal length of the reflector
is 0.85 m, and the elliptical aperture of the reflector has a major and
a minor axis of 1.59 m and 1.03 m, respectively. According to the regu-
lations in [6], the angles of -3 dB beamwidth in the principal planes of

o o
the secondary radiation pattern are allowed to be 3.50° and 3.30 . The
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radiation patterns due to the three primary radiators have been

properly combined such that the resﬁltant secondary radiation pattern

has a main lobe with an irregularly;shaped cross—-section that effectively
covers the service area of Japan. Ffom measured results published in [12]
it is concluded that the levels of both the copolarized sidelobe radia-
tion and the cross-~polarized radiation meet the requirements which are in
force [6].

Our second example of an antenna system with multiple feed elements con-
cerns the satellite transmitting antenna proposed for the coverage of
Great Britain [1]. Here, the angles of -3 dB beamwidth in the principal
planes of the secondary radiation pattern should be 1.84° and 0,.72° [61.
The array-type feed consists of ten cylindrical waveguides, the focal length
of the parabolic reflector is 1.64 m, and the elliptical aperture of the
reflector has a major and a minor axis of 2.72 m and 1.05 m, respectively.
The radiation patterns due to the primary radiators are combined to yield
a resultant radiation pattern, the main lobe of which has the required
elliptical cross-section at the -3 dB power level. From the measured
results reported in [1], it is concluded that both the requirement on the
elliptical cross-section of the main lobe and the requirement on the co-
polarized sidelobe radiation (level below -30 dB), can be met. However,
the requirement on the cross-polarized radiation (level below -33 dB)

will not be satisfied, due to the degraded polarization purity of the
radiation of the array-type feed.

We now come to our second type of antenna system, which employs a single
offset parabolic reflector and a feed system that consists of one single
primary radiator, viz., either a corrugated rectangular horn or a corrugated
elliptical horn. For both types of horns the copolarized radiation has a
pattern with an elliptical cross-section. Therefore, such a primary radia-
tor can be used for the efficient illumination of a reflector with a
(nearly) elliptical boundary. Whether a rectangular or an elliptical horn
is considered for application in a broadcasting-satellite transmitting
antenna, depends on the polarization purity of the circularly polarized
radiation obtainable with such a horn.

As an example of an antenna systemwith a single primary radiator, we refer
to the transmitting antenna of the broadcasting satellite TV-SAT of the
Federal Republic of Germany [5]. According to the provisions in [6], the
angles of -3 dB beamwidth in the principal planes of the secondary radia-

tion pattern should be 1.62° and 0.72°. The primary radiator of the
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antenna system is a corrugated elliptical horn. From theoretical and
experimental analyses it has been found that an elliptical horn is pre-
ferable to a corrugated rectangular horn, because for an elliptical

horn the required polarization purity of the radiation is obtainable
over a broader frequency band [5]. Well-designed corrugated elliptical
horns are indeed capable of generating circularly polarized radiation
with a radiation pattern that has an elliptical cross-section, in a
frequency band that is sufficiently large for the application under
consideration [13]. It has also been found for the transmitting antenna
of TV-SAT, that a feed system consisting of a corrugated elliptical horn
is preferable to an array-type feed [5). Advantages reported concern the
directive gain which is 0.3 dB higher, a lower level of the sidelcobke
radiation, and a lower weight. The focal length of the parabolic reflec-
tor of TV-SAT is 1.5 m. The offset reflector coincides with that part of
the parabolic surface that matches the radiation pattefn with elliptical
cross-section, caused by the tilted horn [5]. As a result, a nearly
elliptical reflector aperture is obtained, see Figure 1.6. The aperture
dimensions in the offset plane and in the plane perpendicular to that,
are 1.4 m and 2.7 m, respectively. From the measured results published
in [5]}, it is concluded that the electrical performance of the trans-
mitting antenna of TV-SAT meets both the requirements on the copolarized
radiation (sidelobe radiation level below -30 dB, and elliptical cross-
section of the main lobe of the secondary radiation pattern), and the

cross~polarized radiation (level below -33 dB).

PARABOLIC  jee-mmmmm--]
REFLECTOR
SR | PROJECTED
N APERTURE
ELLIPTICAL ]
HORN

Fig. 1.6. Offset parabolic reflector antenna and its projected aperture.
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Finally we summarize the main results of this section:

1. The stringent requirements on the dimensions and on the electrical
performance of a broadcasting-satellite transmitting antenna can be
met by an antenna system in which a single offset reflector antenna
is used.

2. The main lobe of the secondary radiation pattern of a multiple-~feed
antenna system can be composed to have an irregularly shaped cross-
section by use of a properly excited array-type feed.

3. In order to realize that the main lobe has an elliptically shaped

. cross~section, either a multiple-element or a single-element feed
system can be employed. Suitable feed systems with a single element
are the corrugated rectangular and elliptical horns.

4. Disadvantagés of a multiple~element feed system versus a single-ele-
ment feed system, refer to a greater complexity, larger dimensions
and weight, and potentially, a degraded electrical performance.
Advantages include operational flexibility (use for different coun-

tries) and, potentially, more efficient coverage of the service area.

1.4. Survey of the contents

The ultimate goal of this thesis is to determine the radiation field of

an antenna system that consists of an offset parabolic reflector fed by

a corrugated elliptical horn radiator. The approach to achieve this goal
is most conveniently described in backward order. The final radiation
field of the antenna system is considered to be due to the surface current
59 induced in the parabolic reflector surface. Then the radiation field
can be determined from a well-known integral representation for the elec-
tromagnetic.field in terms of the current 35. The surface current is in-
duced by the primaryradiation of the corrugated elliptical horn, which
acts as an incident wave on the reflector surface. The exact value of the
current 35 cannot be determined analytically. Therefore we employ the
standard physical-optics approximation in which the surface current is
approximated by 35 = 25:{51. Here, ﬁi is the magnetic field of the inci-
dent primary radiation at the reflector surface, and n is the unit vector
normal to the reflector surface at the point of incidence pointing towards
“the illuminated side of the reflector.

The next step deals with the evaluation of the magnetic field ﬁi at the

reflector surface. As a first option the field H" can be found from
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measured data [5]. However, such a specification of the field at the
reflector surface requires a large number of measurements to be per-
formed on an already manufactured horn. Secondly, the magnetic field
ﬁi can be determined from an integral representation for the primary
radiation field in terms of the field distribution in the aperture of
the elliptical horn, based on the Kirchhoff-Huygens approximation. Of
course, the latter analytical approach is feasible only if the aperture
field is known. The second approach has been followed by Vokurka [13]
in the case of an elliptical horn with a small flare angle. Thereby the
field in the aperture of the corrugated horn is taken to be equal to
the modal field of an infinitely long corrugated elliptical waveguide.
More accurate results are obtained if the modal field is multiplied by
a proper phase distribution function that accounts for the spherical-
wave nature of the aperture field. Clearly, Vokurka's analysis [13] is
only valid for elliptical horns with small flare angle.
In the present thesis the magnetic field ﬁi at the reflector surface is
analytically determined by means of the Kirchhoff-Huygens integral re-
presentation involving the field distribution in the aperture of the
corrugated elliptical horn. The aperture field is now taken to be equal
to the modal field of an infinitely long corrugated elliptical ccne. In
order to determine this modal field we develop a new theory of electro-
magnetic wave propagation in a corrugated elliptical cone with an arbi-
trary flare angle. In this manner the previous restriction to elliptical
horns with small flare angle [13] is removed. The modal field components
are found to be represented by series of Lamé functions. The latter spe-
cial functions come up in the solution of the Helmholtz eguation by se-
paration of variables in sphero-conal coordinates. These coordinates are
most convenient for the present purpose because they fit the geometry of
the elliptical cone.
In conclusion, to evaluate the secondary radiation pattern of a single
offset parabolic reflector antenna fed by a corrugated elliptical horn,
we need to know: -
1. the induced current distribution on the reflector surface;
2. the electromagnetic field at the reflector, due to the primary radia-
tion of the horn;
3. the field in the aperture of the corrugated elliptical horn;

4. the modal field in the corrugated elliptical cone.
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The topics in this list determine, in reversed order, the subject-
matter of the subsequent chapters of the present thesis.

Chapter 2 dealsg with a number of mathematical preliminaries. The geo-
metry of the elliptical-conical horn is described in texms of sphero-
conal coordinates. In these coordinates the .Helmholtz equation can be
solved by separation of variables, and the mathematical functions
involved, viz. Lamé functions, are treated in detail.

In chapter 3 the problem of wave propagation in a corrugated elliptical
cone is solved on the basis of the anisotropic surface-~impedance model
for the corrugated wall of the cone. As a result, the modal fields in a
corrugated elliptical cone are determined.

In chapter 4 the radiation properties of corrugated elliptical horns are
investigated. Two analytical methods are developed for the evaluation of
the radiation patterns, namely, the wave-expansion method and the aperture-
field integration method. General properties of radiation fields from cor-
rugated elliptical hormns are derived, and numerical and experimental re-
sults are presented for the radiation fields of a number of horns.
Chapter 5 deals with the radiation characteristics of the antenna system
that consists of a single offset parabolic reflector illuminated by a
corrugated elliptical horn. Numerical results for the final radiation
field are compared with experimental results.

In chapter 6 the main results of this thesis are summarized.
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2. SPHERO-CONAL COORDINATES AND LAME FUNCTIONS

2.1. Introduction

In this chapter we give, in sufficient detail, the tools needed in the
investigation of wave propagation and radiation problems for elliptical
conical horns, which willvbe dealt with in subsequent chapters. Our
first concern is to introduce suitable coordinates to describe the
geometry of the horn, Furthermore, the mathematical functions which

are the solutions of the separated Helmholtz equation will be discussed.
A familiar method for solving the scalar Helmholtz equation is sepa-
ration of variables. For that purpose we need an oxthogonal system of
coordinates that fits the elliptical~conical geometry of the horn.

In addition, separation into ordinary differential equations, having
easy~to~-find solutions, must be possible. The coordinate system that
meets these regquirements is the s@hero—conal system in trigonometric
form {5], [7]. As we will see, its coordinate surfaces have a simple
geometrical interpretation and their computation only involves sines
and cosines. Furthermore, the transition to the well-known spherical
coordinate system can be easily established. Thus the solutions to
field problems for circular-conical devices are contained in the ellip-
tical-conical solutions.

Separating the Helmholtz equation we arrive at three ordinary differ-
ential equations:

(a) the differential equation of “épherical" Bessel functions;

{b) the Lamé differential equation with nonperiodic boundary conditions;

(c) the Lamé differential eqguation with periodic boundary conditions.

The solutions of the first and third equations have been well docu~
mented for quite a long time. For "spherical" Bessel functions we can
refer to [1, Chapter 10}, and for the periodic Lamé functions to [3],
[4]. 1t is, however, only recently that the solutions of the nonperiodic
Lamé equation have been shown to be connected with those of the
periodic Lamé equation. This contribution to the theory of Lamé
functions is due to Jansen and can be found in his Ph.D. thesis [5]

and in a slightly revised version [6]. This knowledge of the nonperiodic
Lamé functions will facilitate the investigation of wave propagation and

radiation problems for elliptical horns.
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2.2. The trigonometric representation of sphero-conal

coordinates

The sphero-conal coordinates, denoted by (r,0,¢$), are

tesian coordinates (x,y,z) by

Ed
]

r sin 6 cos ¢,

r(i - k2 cesze)l2 sing,

]
]

r cosf (1 - k'2 sin2¢)%,

N
]

where

rz20, 0<8<w, O0<¢c<2m

related to Car-

(2.1)

(2.2)

(2.3)

(2.4)

The representation by eguations (2.1)-(2.3) is chosen to let the sphero-

conal system coincide with the spherical coordinate system, in its

commonly used form, when k' = O.

The surfaces r = r , 8 =0 and ¢ = ¢ , where r , 8 and ¢ are con-
o o o o’ “o o

stants, are called coordinate surfaces (see Figure 2.la). Before

Fig. 2.la. The sphero-conal coordinate system.




-25~

investigating the geometry of the coordinate surfaces, we will briefly
discuss coordinate curves, unit vectors and scale factors of the sphero-
conal coordinate system.

Each pair of coordinate surfaces intersects in a coordinate curve,
designated by the variable coordinate. A ¢-curve, for instance, is
given by r = L € = 60 and 0 € ¢ < 27. The various coordinate curves
on the surface r = ro in Figures 2.1a and 2.1b are described in terms
of the angular coordinates 0,9 as follows (at point ¥, € = 0 and

¢ =7/2),

DA: 8 = 60 y 0 < ¢ < T/2;
ED: 0 € 0 ¢ 60 p ¢ =0 ;
EF: 8=0 , 0<sdsm/20rTm26¢>n/2;
FAa: seseo, ¢ = u/2;
GJ: 0 <6 < n/2, ¢=¢oi
JR: 8 =w/2, ¢ <¢< /2.

We note that GJ is part of a B-curve, along which only the coordinate
© varies, while pA is part of a ¢-curve, along which only the coordi-~
nate ¢ varies. Furthermore, we observe that each point of EF is des-
cribed by two coordinate triples, viz. (ro, 0, ¢) and (ro, 0, m-¢).
The coordinate system is called orthogonal if the coordinate surfaces
intersect at right angles. For such a system, the set of unit vectors
tangent to the coordinate curves, and in the direction of increasing
cooxrdinate values, is at each point identical with a set of unit
vectors normal to the coordinate surfaces. Denote the unit vectors of
the Cartesian coordinate system by &_, éy, &, and let r=x & +y éy'+
+ zézlgethe position vector of a point P. Then the vectors tangent to

the r-, 6- and ¢-curves at P are given by, respectively

8ind cosé
%; @ = | (1 - k% cos?6)” sing (2.5)
cos O(1 ~ k'2 sin2 ¢)%
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cosf cosd

2 s
%§ ) =r k cosg 51n2 . sind
(1 - k" cos™ 8)

2

-gin 0(1 - k' sin2 tj));2

~sinf sind .

D=1 | (1-%cos?®)” cosé

sind cos¢

2
-t !
k cosB 3

(1 - k* sin2 ¢)% ]

(2.6)

2.7)

These vectors are not necessarily of unit length. Their lengths are

called the scale factors of the coordinate system. Denoting these

factors by hr' he and h¢, we find from egquations (2.5)-(2.7) that

= 19 (3 =
hr = 155 (x)| =1 ,
3 = k2 sin26 + k'2 cosz¢\&
hg = |35 ()] = =l 7 2.
1 - k% cos” 8
ho= 10 5l = k2 sin%0 + x'2 cos2¢\5
¢~§$(r) = r{ 2 2 ¥
1 - k' sin"¢

(2.8)

(2.9)

(2.10)

The unit vectors ér' ée, é¢’ regpectively in the direction of in-

creasing v, 8 and ¢, are given by

. =13 -
T hr 5;-{r) 4
13 -
& = hg 35 (1
St
%% % B -

(2.11)

(2.12)

(2.13)

We note that the vector product ér x ée equals é¢. Hence r,0,¢ form in

this oxrder a right-handed system of coordinates. In Figure 2.1b it is
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Fig. 2.1b. Unit vectors at various points.
1: ér; 22 ée; 3: é¢.

shown how the sphero-conal unit vectors change direction from point to

b!

tangent to the surface r = rys at points in the yz~plane. Expressions

point. Special attention must be paid to the umit vectors ée, é

for the latter unit vectors in terms of the Cartesian unit vectors éx,
éy, éz follow from equations (2.11)~(2.13) and are given below. We

will distinguish three cases:

1. Curve EF: 8 = 0, 0 € ¢ € /2. Then we find
2 2.k
= 8 - -t - it .
&y = &, é¢ (1 - k' sin™¢) éy k'sing éz.

2. Curve FE: 0 = 0, ©/2 € ¢ € 7. In this case we get

N 2 . 2.k .
= [ - - ¥ 1]
&g éx' é¢ (1 - kX" sin"¢)" &_+ k' sind éz.

3. Curve FK: 0 € 6 < /2, ¢ = n/2. Now we have

8. =k cosb éy - {1 - k2 c::»,sze)L2 éz, &

8 o 8y

Note that, for points with r = L and 6 = 0, we must specify the ¢-
interval in order to obtain an unambiguous relation between sphero-

conal and Cartesian unit vectors.
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The arc-length element ds along a coordinate curve at P is

ds = dr =, {(r-curve), (2.14)
ds = hede , (B-curve}, (2.15)
ds = h¢d¢ s {($~cuxve). (2.16)

Now we will discuss the geometry of the cooxdinate surfaces in more
detail. The following equations for the coordinate surfaces can be
obtained from (2.1)-(2.3) by eliminating the sphero-congl coordinates

which are variable for the surface under consideration:

2 2 2 2

r = ro X +y + 2= ro H {2.17}
2 2.2 2
8 =6, —5—+ ]2(y T (2-18)
sin”0 1-k"cos™ 8 cos 8
o o o
2 2,2 2
b=¢_ + 2 = . (2.19)

2 2.2 . 2
cos ¢0 1-k*"sin ¢o sin ¢0

Equation (2.17) represents a sphere of radius x, with centre at the
origin (see Figure 2.1a}. Equation (2.18) describes an elliptical cone
along the z-axis with vertex at the origin. The intersection of tﬁis
cone 6 = eo and the plane z = z, = r, k‘coseo (= OB) is an ellipse,
described by

x2 y2
+ = 1
2 2 2 -2 2
z) tan 60 zy {k sec 60-1)

(2.19a)

-

see Figure 2.1a. We note that tan® 8, < k2 sec? 6, - 1, hence the minor

axis lies in the xz-plane and the major axis in the yz-plane. The semi-
minor axis be is

, tan 8] (2.20)

and the semi-major axis ae is



-2G e

21(1 - k2 cos2 00)&
. = - ’
AB K cos 6, I |z, tanbl| , (2.21)

where Bé is the angle between OA and the z-axis; see Figure 2.1a. From
equation (2.20) it can be seen that the cone has a semi-opening angle
60 in the xz-plane, measured from the positive z-axis. The aspect ratio

of the ellipse (minor axis divided by major axis) is

are(k,eo) = tansc/tane'o . (2.22)

In Figures 2.2 and 2.3, eé is plotted against Go and a ge respectively.

g, {degr)

; ¢
0 §,(degr) 90 .0 3rg 1
i ' [ . 3 ¥ . : .
Fig. 2.2. 60 as a function of 00, Fig. 2.3. 80 as a function of a g
parameter ag parameter 90.

The semi-interfocal distance or linear eccentricity egr defined by

2 = ag - bg, is measured along AB and equals

%o
k' 21
S S YR ' 2.23
6 T~ kK cos 0 rok { )

Inversely, when the aspect ratio a g of the elliptical cone 8§ = BO is

given, we can determine the parameter k from
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2
a

x? = ;9 - , : (2.24)
1 - (1-a” .} cos™ 6
r6 o

and k' from equation (2.4). In Figure 2.4, k' is plotted as a function
of 60, with a g as a parameter.
The coordinate surface 8 = 80, described by eguation (2.18), can serve

as the surface of a z-oriented horn with elliptical cross-section.

90 Pyldegr) 0

-
oy
b3

are=ar¢=01

ozsf

033 (1)
] Vel
™ 0s ~ \\§§=:: y

09

0 ,!degr) 90

Fig.2.4. k‘2 as a function of QO: Fig. 2.5. (1) Projection onte the

parameter a g xy-plane of the ¢~curve
k2 as a function of ¢o; r=rx,, 0 = 60, 0 < ¢ < 2m
parameter ar¢. {2) Cross~section of the

cone 6 = GO and the plane

8321-

Next we consider the ¢~curve, described by r = LI 9 = Bo' 0< ¢ < 2m.
Its projection onto the xy-plane is an ellipse (see Figure 2.5) given
by

2 2

5 X T+ 23’ 5 =1, (2.24a)
r~ sin“8 r~ (1-k" cos” 8 )
[ o o o’

This ellipse has a semi-minor axis bg and & semi-major axis aé given by
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N

b
0
- (2.25)

b*=r sind = . a¥ =r (1—k2 cos2 6 )
o o 8 o o

6 8
where'be, ay are given by (2.20), {2.21); see Figure 2.5. The aspect

ratio a; of the ellipse (2.24a) is

e

o= X0 L (1-a? 2 4%

ayy ™ {1 (1 are) cos 90) . (2.26)
The relationship between are and a;e is graphically shown in Figure 2.6.
Because 0 < arB < 1, we find that a:e assumes values between sineo

and 1. .

Equation (2.19) represents an elliptical cone along the y-axis with
vertex at the origin. Although this cone will not be used in the
present study, we will discuss some of its properties here for the sake
of completeness. The coordinate surface ¢ = ¢° is a cone in the
half-space y > 0 if 0 < ¢o < 7, and in the half-space y € 0 if

7 < ¢o < 27. The intersection of the cone (2.19) and the plane y =

=Yy, =vrok'sin¢o {=OH) is an ellipse (see Figure 2.1a), given by

2 2
+ Z =1 . (2.26a)

2 2 2. ,-2 2
Yy cot ¢o yl(k csc ¢0 1)

We note that cot2¢o < k‘~2csc2¢o - 1, hence the minor axis lies in the

xy-plane and the major axis in the yz-plane. The semi-minor axis b¢ is

by = I = Iy1 cot ¢ | {2.27)

and the semi-major axis a¢ is

y, (12 sinzcbO)Lz
3 = GH = eI = ly, cot¢é| . ‘ (2.28)
o

where ¢é is the angle between OG and the z-axis (see Figure 2.la). From
equation (2.27) it is seen that the cone ¢ = ¢0 has a semi-opening
angle /2 -~ ¢° in the xy~plane, measured from the positive y-axis. The

aspect ratio of the ellipse is
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= t )
ar¢(k3¢o} tan¢°ftan¢0 . (2.29)
. . 2 2 2
The semi-interfocal distance e¢, defined by e¢ = a¢ - b¢, is measured

along GH and equals

ky1
rk. (2.30})

€, T e
$ k 31n¢o o

Inversely, when the aspect ratio a_, of the elliptical cone ¢ = ¢° is

given, we can deternine the paramezzr k' from
a2
k2 = rg — . v (2.31)
1 - (1—ar¢) sin ¢0

and k from equation (2.4). In Figure 2.4, k2 is plottea as a function

¢

The projection of the O-curve, described by r = LN 0 B¢sm, §= ¢°

of @o, with a, asa parameter.

or ¢ =M - ¢o' onto the xz-plane is an ellipse given by

x2 z2
= 2.31
r2 c052 ' r2 (1—-]‘:‘2 sin2 ) b ( »
o ¢o o QSo
This ellipse has a semi-minor axis b$ and a semi-major axis a$ given
by
b* =r cosp = EQ‘ a¥* = ¢ (l-k'2 sin2¢ )12 = a (2.32)
¢ 1) o k' ! ¢ o o ¢ -

where b¢, a¢ are given by (2.27), (2.28). The aspect ratio a;¢ of the
ellipse is
arQ 2 2,k
* ] = - - i
ar¢ X (1 (1 ar¢) sin ¢°) . ' (2.33)

Figure 2.6 depicts the relationship between a;¢ and ar¢. We find that

a;¢ assumes values between !cos¢of and 1.

Degenerate surfaces of the coordinate system are also of practical

interest [8], [9]. These surfaces are angular sectors of the yz-plane.



33w

3
1 0 A 1 1 curve Go (degr) ¢o (degx)
a 30
b 20 70
o c 30 &0
® <
= 4a 40 50
e 50 40
£ 60 30
a b/ ¢/ df ef §
0 0
0 3re L

Fig. 2.6. Relationship between a;e and a g parameter 80.

Relationship between a;¢ and ar¢; parameter ¢Q.

Iif eo = 0 (or 60 = M), equation (2,18) describes a sector symmetric
with respect to the z-axis and having a semi-angle equal to arctan(k'/k).
When crossing the sector 6, = 0 (ox 80 = T), the unit

vectors ée, & change direction (see Figure 2.1b). It is at these

sectors that idditional conditions must be imposed upon the Lamé functions
as we will see in sections 2.4 and 2.5. If ¢o = 7/2 {or ¢Q = 37/2)
equation (2.19) describes a sector symmetric with respect to the y-axis
and having a semi-angle equal to arctan(k/k'). Together, these four

sectors cover the complete yz-plane.

In some of the computations in the sections 4.4.1 and 4.4.2 we use a
rectangular grid of points imposed upon an elliptical area like the
projection in Figure 2.5. At the grid points we need to know r, § and ¢
as functions of x, y and z. The relationship between the two sets of
cooxrdinates is best obtained in two steps: first, determine the spheri-
cal coordinates r, 0' and ¢' as functions of x, y and z; second, de-
termine the sphero-conal coordinates 6 and ¢ as functions of r, 6' and
¢'. The results of the two steps are given below. The coordinate r is
determined by r = (x2 + y2 + 22)%. The spherical coordinates (r, 0', ¢")

are related to Cartesian coordinates by

X
1

r 2in8' cosé' , (2.34)

r sin®' sind' , (2.35)

~
it
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z = r cosf' . (2.36)

From these equations we find

2
cosB' = z/r , sinB' = (1 - 359% . (2.37)
X
cosd' = x(£? - 22)'% , sing' = y(r2 - zz)"z . (2.38)

The spherco-conal coordinates are then obtained from

sinf' cosd' = sinb cosp , (2.39)
sing' sing' = (1 - k% cos0)? sind , (2.40)
cosd' = cosd (1 - k'2 sin® §)7 . (2.41)

From equations {(2.39) and (2.40) we have

cos¢ = sin@' cos'/sind ,

sing = sinB' sind' (1 - k% cos20) ¢ . (2.42)

By adding the squares of the two equations (2.42) we are led to a
guadratic equation in cosze, viz.

2

k cos46 - {1 + kzcosze' - k'2

sinze’sin2¢') c0329 + cos?e' = 0. (2.43)

The latter equation can easily be solved for cosze and we find

00826 = —15 [1 + kzcosze’ - k'2 sinze' sinzé' +
2k
i_{(1+k200328‘ - k'zsinze'sin2¢')2 - 4k2cosze‘}¥] . {2.44)

Since B = §' if ¢' = 0, it is readily seen that in eguation (2.44) the
minus sign must be used. From equation (2.44) we know cos8, except for
the sign, hence we find 6 or 7 - 0. Knowing c0926 we can determine ¢
from the equations (2.42). The computations of ¢ and ¢ simplify for
special values of ¢'. If ¢' = O we find ¢ = 0 and 6 = O'. If ¢' = n/2,

which corresponds to the half-plane
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x = 0, y 20, -0 < z < ©, (2.45)

we get, using equation (2.39), ¢ = 7/2 0or O =0or 6 =7. If ¢ = /2

we derive from equation (2.41)

6 = arccos(k_1 cosB'), if |cosB'| < k . (2.46)

If 6 = 0 we find from equation (2.40)

¢ = arcsin(k'_lsine') or ¢ = W—arcsin(k'_lsine'), if cosB' 2 k. (2.47)

If 6 = T we derive from equation (2.40)
¢ = arcsin(k'—lsine') or ¢ = ﬂ—arcsin(k'_lsinﬁ'), if cosf' < -k. (2.48)

2.3. Differential operators and integral theorems

In this section we present expressions for the differential operators
gradient, divergence, curl and Laplacian in the system of sphero-conal
coordinates. These operators can be shortly written in terms of the
vector differential operator V (del or nabla). The latter operator is
split into a radial operator Vr, and a transversal operator Vt, i.e.
transversal with respect to r. Let Y define a differentiable scalar
function and let F = Frér + Feée + F¢é¢ be a differentiable vector
function of position. Then we have for the gradient, divergence, curl

and Laplacian in sphero-conal coordinates:

1
Vi = grad = er + ;-Vt Vo, (2.49a)
VY= éy é (2.49b)
r or r ' -
_L W, L,
Vt¢ = 4% 35 %9 i 3 e¢ ’ (2.49c)
0 o
he EQ
where hé =T h$ = e and he, h¢ are given by (2.9), (2.10);
V.F=aivF=V.F+~V.F , (2.50a)
r r t
Fol 3 2
Vr’F = 7 3% (r Fr) , (2.50b)
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= -1,3 3 .
V .F = (hgh$> {3@ (h¢Fe) * 5 (h6F¢)} ; (2.50¢)
Y<F = curl F=V x F + l-V x F , (2.51a)
b r t
V.xF = (htht) "t {a (hF.) - & (nir)} & (2.51b)
t 8% 30 “¢'e’ T B ‘Vee r ! ‘ :
Fol 2 NI I B .
V xF = ¢ { T (F) - == (h¢P¢)} &g + ig{a (hyFg) - 35(F, '} é ; (2.51¢)
2 1 .2
$ My = er + ;§'Vt¢ ' (2.52a)
2,1 08 29y
V= 25 (x® 52 (2.52b)
2. -1 .9 @ 70 3y
Ve = (h*h*) {5 55 - 3¢ Bé)} . {2.52¢)
ha 3

The following formulas from vector analysis are useful for further

work and can easily be proved:

V=0 (2.53)
vt.vtx(wﬁ) =0 ; ' (2.54)
V- (e xV ) = 0 ; (2.55)
&,V x(e XV 0) = VI . (2.56)

Por later use we present some integral theorems which relate surface
integrals over a spherical cap to line integrals along its boundary [2].
Let @ be a spherical cap of the unit sphere, described by r = 1,

0<6 ¢ 60, 0 € ¢ < 27. The boundary ¢ of  is a ¢~curve, given by r=1,
0 = 60, 0 < ¢ < 27, Let §t be the transverse component of the vector

F. Then the surface divergence theorem reads

[Jv F a0 =[F . ac . - (2.57)
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where df = hgh;a@d¢ is the surface area element and dc = h$d¢ is the

arc-length element. If { denotes the complete unit sphere, we have

f{ Vt.Ft ae =0 . {2.57a)
£

By substituting ﬁt = ¥,V.¥, into equation (2.57) we find

2
{{ V0,V 0, + $,V b )a0 = / b,V 0,8y dc (2.58)
[o4

which is Green's first identity for a surface. Interchanging the sub-
scripts 1 and 2 and subtracting the result from equation {2.58), we

obtain Green's second identity for a surface:
2 2 A
&{ W, Vb, = U,V )8R = £ W,V 0, - WV 0,0 .85 do . (2.59)

Replacing §t in equation (2.57) by érxwﬁ, we find

[JvvaF.e_aa+ [[ VxF.e a0 = | W§.é¢ dc . (2.60)
Q Q c
If Y = constant, equation (2.60) becomes

b de , (2.61)

[[vxFe aa=[F.e
Q c

which is Stokes' theorem.
By substituting ?t = & x) V y, into the divergence theorem (2.57) we

obtain

[V =vy,.e aa= ¥V, by8, do = -f UV by -8y de (2.62)
Q c c

In subsequent sections these integral theorems will be used, for
instance, in proving orthogonality properties of the solutions for the

scalar Helmholtz equation in a region bounded by an elliptical cone.

2.4. The scalar Helmholtz eguation

In the next chapter we will study the electromagnetic fields inside a

cone of elliptical cross-section. As a preliminary we now investigate
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the solutions of the scalar Helmholtz equation in sphero-conal coordi~
nates. We employ separation of variables to solve the homogenéous
scalar Helmholtz equation

vy o+ k¥ =0, (2.63)
where k* = ZW/XO is the free-space wave number and ko the free-space
wavelength. In addition the wave function ¢ must satisfy some homo-
genecus boundary condition and the resulting boundary value problem
will be shown to have a discrete set of eigensolutions or modes. The
simplest boundary value problems that we will encounter involve the
coordinate surface S, given by 6 = 60, on which the wave function Y

satisfies either of the following boundary conditions

blg =0, (2.64)
o

LU
o

the Dirichlet and Neumann conditions, or short-circuit and open~circuit
conditions, respectively. The Helmholtz equation (2.63) is to be solved
in the region r > 0, 0 < 8 < 60, 0<$ < 27, i.e. inside the elliptical

cone 5. We shall look for solutions of the form
Y = R(x} v{0,¢) , (2.66)

in which the radial and transverse dependence of Y have been separated.

By substitution of (2.66) into (2.63) the Helmholtz equation becomes

2
V(0,017 R + Rx) 45 V2 v(0,0) + k*7R(x) v(8,6) = 0 . (2.67)
X

Then by the standard separation argument we arrive at the following

equations for R{r) and v(0,¢),
70 + v - vern IR = 0, (2.68)
V20(8,) + VORHIV(R,0) = 0, o  (2.69)

where v(v+l) = ¥ is the separation constant. The boundary conditions
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(2.64) and (2.65) reduce to

vie.9) |y =0, (2.70)
Q
av(B,d) -
36 o 0 (2.71)
(o]

The differential equation (2.69) together with the boundary condition
(2.70) or (2.71) constitute an eigenvalue problem. For specific values
of u*, called eigenvalues, the problem has a non~trivial solution v Z O,
which is called the corresponding eigenfunction. Jansen [6, p. 24] has
shown that there exists a denumerable set of eigenvalues and corres-—
ponding eigenfunctions in both cases of the Dirichlet condition (2.70)
and the Neumann condition (2.71). It is readily seen that all eigen-
values are non-negative. Indeed, let (U*,v) be a solution of the eigen-
value problem and let v* be the complex conjugate of v. Then by sub-
stituting.$1 = y¥, mz = v into Green's first identity (2.58) and using
the boundary condition (2.70) or (2.71) we obtain

{g |v,v% a0
NI
Q

Here £ is the spherical cap, described by r = 1, 0 € 0 < Go, 0 < ¢ < 2m

u* (2.72)

Consider next a pair of solutions (uf, Vl) and (u;, vz) of the eigen-
value problem. Then by substituting wl =V, wz = v, into Green's
identities (2.58), (2.59), we arrive at the following results:

if Wy # W3,

{{ v,v, & =0, (2.73)
[f 9, Vv, a@=0; (2.74)
Q

ifuf=uj=u*andv, =v,=v,

1 2

[f 19w @@= ff . (2.75)
2 Q
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Hence, the two eigenfunctions v, and v, as well as their gradients are

1
orthogonal if u; # ug.

We now come to a more detailed study of the differential equations for
the radial and transversal parts of Y. Written out in full equation
(2.68) yields
a_ rz dr(r)

(r° === + {k*

2r2
ar ar

- v(v+1)} R{x) =0, (2.76)
which is the differential eguation of the "gpherical" Bessel functions
[1, chapter 10]. Solutions are the "spherical" Bessel functions of the
first kind
1%
}

jv(k*r) = (g5

* .
s Ty D 2.77

the "spherical” Bessel functions of the second kind

n T Lk
y, (k') = (550 Yot (k*xr) , (2.78)

and the "spherical” Bessel functions of the third kind, the "spherical"

Hankel functions,

hél) (k*) = 3 Gern) + gy, (D) (2.79)

héz) {(k*r)

jv (k*r) - jYV (k*r) . (2.80)

- Here, Jv+% and Y\H_ls are the Bessel functions of the first and second
kind, respectively, and j is the imaginary unit. The kind of solution
to be employed depends on the particular problem under comnsideration.
In forthcoming chapters use will be made of the asymptotic expansions
of the "spherical' Bessel functions for large argument k*r. For con—

venience they are listed below:

3, (k¥ = k*r) "} cos(k*r - Ygiw) , (2.81)
¥, (k*r) = (k*r) "} sin(k*r - Eglﬂ) , (2.82)



]

niY e & 0 T el - S md (2.83)
b ey = T expl-3 00 - B m) (2.84)

A useful relation in power-flow calculations is

1

(1) (gar) -{rh(1)(k*r)}*]= - ko), (2.85)

Im[h

where the asterisk, except for that in k*, means complex conjugation.
In the derivation of equation (2.85) we have made use of the Wronskian

for the “spherical" Bessel functions [1, form. 10.1.6]. If h(l) is

(2)

replaced by h , the right-hand side of (2.85) changes sign.

The partial differential equation (2.69) for the transverse dependence

written out in full yields

h*i* { (g%'-XiQLQ—> + 3¢ hf _XLQ;ELq} + U*v{0,$) = 0 . - {2.86)
8¢ 8 $

To avelid singularities we have to explicitly require that the wave
function ¢ is a singie-valued continuously differentiable function in
the region inside the cone 5. Thus, in addition to the boundary con-

ditions (2.70) and (2.71), the following conditions must be satisfied:

(6,00 _ 3v(e,2m

v{B,0) = v(8,2m) , 9% 3¢ . {2.87)
v(0,6) = v(0,T-6) » 3“§§'¢’ = O (2.88)

These conditions imply "periodicity" of § with respect to the coordi-
nate ¢, and continuity of Y and its gradient across the sector 0 = 0.

Separating v(0,¢) as
vi{0,9) = 0(0)P(¢) , (2.89)

and introducing the separation constant A*, we find that equation
(2.86) smeparates into the following two Lamé eguations:

% d

(i~ k cos 6) {1 kzcos 9)12 d@(ﬁ)} + (U*k sin 0 A*)0(0) =0, (2.90)
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(1-x*2sin%$) * -35{(1-k'2sin2¢)12 d¢$¢)} + (K 2cosZeA) B (9) = 0 . (2.91)
Let
A= A%+ ke, (2.92)

then equations (2.90} and (2.91) beconme

(1-k2cos26) * gg{(1~kzcos29)% de{e)}+{u*(1—k cos28)-A}0(8) = 0 , (2.93)

(1-k'2sin’g) ™ %{—g{(l-k’zsinch)% g-qdi%@—}+{u*(1-k‘zsin2¢)-(u*-k)}@(:t) = 0.
(2.94)

Sclutions of the € Lamé equation are the odd and even nonperiodic Lamé
functions. Solutions of the ¢ Lamé equation are the odd and even
simple-periodic Lamé functions with period 7 or 27. A function &(¢) is ' -
called even symmetric if &(n-¢)=P(¢$), and odd symmetric if B (n-¢}=-0(¢),
corresponding to symmetries with respect to ¢ = w/2 and ¢ = 3n/2,

As a consequence of these symmetry relations we find from equation
(2.88),

39(0)

» - 0, if ¢ is even symmetric , (2.94a)
and
0(0) = 0, if & is odd symmetric . (2.94b)

So far we have separated the scalar Helmholtz equation into three
ordinary differential equations and we have indicated some properties
of the solutions of these equations. In the next section we will deal
in more detail with the nonperiodic and the simple-periodic Lamé

functions.

2.5. The Lamé functions

2.5.1 Lamé functions reqular inside the elliptical cone

We first consider the simple-periodic Lamé functions which are
solutions of the ¢ Lamé equation (2.94). The symmetry (odd or even),
and the periodicity (period T or 2w) of the simple-periocdic Lamé

functions are reflected in the Fourier-series representations of these
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functions. Based on these symmetry and periodicity properties, we
distinguish four classes of Lamé functions. The notation is taken from
Jansen [6, p. 48]. We note again that the symmetry holds with respect
to ¢ = w/2 and ¢ = 3m/2.

Class I. The functions are even symmetric with period w, and have the
{2n)

property $(¢) = ¢(n+¢) = ®(7-$). The functions are denoted by L o (¢)
and their series representation is
(2n) T (20
n - n - .
Lo, (9 ] a0 cos 2rg , n=0,1,2,.... (2.95)

r=0

Class II. The functions are odd symmetric with period 23, and have the
property &(¢) = -B(m+d) = ~d{(w-¢). The functions are denoted by

Léin+1)(¢) and their series representation is
(2n+1)(¢} = Z Aé22:1) cos(2r+1)d, n = 0,1,2,... . (2.96)

Class III. The functions are odd symmetric with period 7, and have the

property ®(¢) = d(m+d) = ~d(7-¢). The functions are denoted by

Léin)(¢) and their series representation is
Re<d
2
{ n} {d}} = E B;in)s‘ln 2rd , n=1,2,3,... . (2.97)
r=1

Class IV. The functions are even symmetric with period 27, and
have the property ®(¢) = -d(m+d) = ¢(m-¢). The functions are denoted

4
by L(2n 1)(45) and their series representation is

sin(2r+1)¢, n=0,1,2,... . (2.98)

For each type of periodic solution the coefficients Ar or Br must
satisfy a three-term recurrence relation, which is obtained by sub-
stitution of the series representation into the ¢ Lamé equation (2.94).
The recurrence relations can be rewritten in matrix notation thus

leading to an eigenvalue problem for infinite tridiagonal matrices.
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For a given v and k', the esigenvalues and the corresponding eigenvectors
can be computed. The eigenvalues determine the admissible values of the
parameter A in eqguation (2.94), whereas the eigenvectors are proportion-
al to the seguences of Ar or Br‘ According to [6, Lemma 2.6, p. 31]
only the eigenvalues A satisfying 0 < X < u* need to be considered. In
the proof of this lemma use has been made of the conditions at 8 =
and the boundary conditions at 0 = 80 for the nonperiodic Lamé
functions. Having determined the coefficients Ar and Br,the various
Lamé functions can be numerically evaluated by means of their series
representations. Details regarding the calculation of the eigen-
values and eigenvectors of the infinite tridiagonal matrices are

to be found in [6, Chapter 4]. According to [6, Theorem 3.1, p. 50]

the Fourier series (2.95)~(2.98) and their derivatives converge uni-
formly in [0, 2w].
For later use in chapters 3 and 4 we establish some integral relations
for periodic Lamé functions. Let (X;, L(m)(é)) and (A* (n)(¢)) be
solutions of the ¢ Lamé equation (2.91) thh y* = uf = vy (v +1) and
u* U; = v (v2+1}, respectively. In equation (2.%91) we replace u*,

A*, 8(¢) by u*, R*, L(m) (n) ).

Then, by integrating cover ¢ from 0 to 27 and using the perlodicxty of

(¢), and the result is multiplied by L

®, we obtain

2r

5 [ x%cos%p 1k sin’) ™ 11 (9 L(“)
0 1

{6y ap +

27 5
X f (1-k* %sin’) L ) () L " () ap =
1 2

i
= [ ax?
0

2.5 d (m) a . (n)
sin’9) " g5 {ch1(¢)} 3 {ch2(¢)} as . (2.99)
By interchanging the two solutions we are led to the relation (2.993)

with p; and A; replaced by u; and A;, respectively. By subtracting the

latter relation from equation (2.,99) we find
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o, 2 (m) (n)
(Wg=u3) f k' 2cos2é (1-k' 2sind) cﬁ @ g n (¢)d¢
1
o g 2 (m) (n)
= (-0 [ (ke Tsin9) T (¢)L n (¢)a¢ . (2.100)
0

From equations (2.99) and (2.100) we furthermore derive

2w
f (1-k'2sin2¢)% d {L(m)(¢)} d {L(n)(¢)} as =
0

pais (m)

= wirtousd) - [ (ke sin®) 70 ov, (¢)L‘“)
4]

(¢) a¢ . (2.101)

If p; = n; = u* = v(v+l) and l; # k;, we have from equations (2.99) and
(2.100},

am 2. 2, -k
[ (1-k'“sin“y) L V) L Y4rap = o, {2.102)
0

2t
2.2, . 5d . (m),.,d ¢ (n -
é (1-k'“sin" ¢} 55-{ch%¢)} {L %¢)}d¢

27 5 (m)

= u* f k'zcos d(1-k'“sin ¢) (n)

($) L. (dra¢ . (2.103)

If uf = u; = B* = vy(v+l) and m = n, we have from equation (2.99),

2n
2. 2.0% (4 _(m) 2.,
é (1-k'“sin“¢) {d¢ L ($)r}°ap =

27 2m
= p* I k'2c052¢(1—k'2sin2¢)_%{L(m)

0

(¢} a¢+A* f (1~k'2sin2¢)-%{L(m)(¢)} do.
0

(2.104)

Similar integral relations can be derived for periodic Lamé functions
of other classes. Equation {2.102) is a special case of the general
orthogonality relation for two solutions (Aé, @m) and (R;, @n} of the
¢ Lamé equation (2.91),
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2%
[ (-x
o

2sin2¢)'li 9 ($)% ($)ad = 0 , (2.105)

valid if Aé # X;; compare with [6, p. 35].

Next we consider the 6 Lamé equation (2.93), in which p%* = v{vtl) and
the parameter A has been determined as part of the solution of the ¢
Lamé equation (2.94). Corresponding to the four classes of simple~
periodic ¢ Lamé functions, Jansen [6, section 3.2] introduced four
classes of nonperiodic ¢ Lamé functions. The latter functions must

satisfy the 8 Lamé equation (2.93) and the boundary condition

d?éO) = 0, for classes I and 1V, (2.106)
0(0) = 0, for classes II and III; (2.107)
2

see (2.94a) and (2.94b). If k' = 0, one has A =m", m = 0,1,2,..., in
the Lamé differential equations (2.94) and (2.93). Then the 0 Lamé

equation (2.93) reduces to the Legendre differential equation

sind gg {sind Q%égl} + {v{v+1}sin28 - mz}@(G} =0, (2.108)
of which the fundamental solutions are the associated Legendre
functions of the first and second kind, Pg(cose) and Qﬁ(cose). Guided
by this result, Jansen [6, section 3.2] then constructed solutions of
equation (2.93), that are represented by series of Legendre functions
Pﬁ(cose). For the solutions.of classes I and 1II he started from the

series representation

oo

o) = | e Pt(cose) , (2.109)
m=0

whereas the solutions of classes III and IV are represented by

(l—kzcosze);2 bt m
0(8) = ~—— = mZO d P (cosb). (2.110)

By substitution of these series representations into the 6 Lamé

equation {2.93) and by application of the known recurrence relations
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for Legendre functions, one is led’tc three~term recurrence relations
for the coefficients <y and d . Jansen [6, p. 55-58] has shown that
these recurrence relations can be transformed into the recurrence
relations for the coefficients Am and Bm occurring in the Fourier-
series representations of the periodic Lamé functions. More specific,

Jansen found that

cm = T(m) Am . (2.111)
dm =m T{m) Bm N ) (2.112)

where T{m) satisfies the recurrence relation

T{m) = ~(v-m) {vim+l) T(m+2), m = 0,1,2,... , {2.113)

and can be taken as, for instance,

2™ rdh - Y
T(m) = . (2.114)
Vim+1 m-y
rE i

We now introduce four classes of nonperiodic Lamé functions repre-
sented by series of Legendre functions PS(cosB). The notation is taken

from Jansen {6, p. 58].

Class I. The functions satisfy the boundary condition d0(0)/daf=0 and
(2n)

are denoted by LC

oV (8); their series representation is

(2n)

2
. P\)m(cose), ne=0,1,2,.0. . (2.115)

(2n)y, _ ¥
chv’(e) mZO T(2m) A

Class II. The functions satisfy the boundary condition ©(0) = 0 and

are denoted by Lé§$+1){3); their series representation is

o
L0+ gy o I T(2m1) al20) P28 ool L, n = 0,1,2,... . (2.116)
cpy =0 m+1 v

Class III. The functions satisfy the boundary condition ©(0) = 0 and

(2n)

are denoted by Lspv (8); their series representation is
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2 2.% o
(2n) _ (1-k“cos”6) (2n) 2m _
Lopy 0) = —— m§1 2m T(2m) B, S (cosB), n = 1,2,3,...

(2.117)

Class IV. The functions satisfy the boundary condition a9(0)/88=0 and

are denoted by L(§3+1)(9): their series representation is
L2 g | (1K c0s%0) ? (2w 1) T (2me1) B2 2L g6y
spv sinf =0 2mtl v ’

n=0,1,2,... . (2.118)

According to [6, Theorem 3.3, p. 59] these series converge uniformly

on any closed subinterval of the interval 0 < 8 < 2 arctan{(1+k)/(1-kﬁk.
In [6, Chapter 7] other series representations have been derived which
converge uniformly on any closed subinterval of [0,m). However, in the

present study the series represented by (2.115)-(2.118), suffice.

The recurrence relations for the functions Pﬁ(cose), m= 0,1,2,...,
v > 0, also hold for the functions Q@(cosﬁ). Consequently, there are
another four classes of nonperiodic Lamé functions. They are given by

the series representations (2.115)-(2.118), with Pm(cose) replaced by
(2“)(0) L9200 gy 127 9y ang

* Poqu B
(%), [6, p. 59]. These solutlons are not bounded at 6 = O,

Q (cosB); they are denoted by L
(2n+1)
Sq

Finally, from (2.89) the solutions for v(8,9) are found.to be pro-—
ducts of a simple-periodic Lamé function of class I, II, III or IV,
given by (2.95)-{2.98), and the corresponding nonperiodic Lamé function
of the same class, given by (2.115)-(2.118). The function v{(0,¢) is
required to satisfy the Dirichlet condition (2.70) or the Neumann con-
dition (2.71) on the coordinate surface S, given by 8 = 90. On imposing

these conditions we are led to the equation

(2n)
Lepy

(8) = 0, or 4 L(Zn)

(6 y/ab = 0, (2.119)
and similar equations for the other classes of Lamé functions.
Bquation (2.119), which is to be considered as a transcendental
equation in the variable v, has a denumerable set of non-negative
roots V. The corresponding values of p* = v{v+l) are the eigenvalues
of the problem (2.69}-(2.71), and the functions v(0,¢$) determined
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above are the corresponding eigenfunctions. Thus we have completely
solved now the eigenvalue problem (2.69)~(2.71), in terms of Lamé

functions.

For later use in chapters 3 and 4 we establish some integral relations

for nonperiodic Lamé functions. To keep the presentation general, we

shall not require that the Dirichlet condition (2.70) or the Neumann

condition (2,71) applies on the coordinate surface S, given by 6 = 60.

(m) (n)

* *

Let (Am,‘chvl(e)) and (An, Lqpvz

equation (2.90) with pu* = u¥ = vy, (V+1) and p* = p* = v, (v +1), respec-

1 11 2 272

(m) (e)

?

{8). Then by integrating over B

(0)) be solutions of the & Lamé

tively. In equation (2.90) we replace u*, A*, ©(0) by u*, A;,
{n}

Cpvy
from 0 to 60 and using the boundary conditions (2.106), (2.107), we

and the result is multiplied by L

cbtain

&

0
wr [ (1-k%cos) “26in%0 L(m) (e) L(;L

0 PYy 2

(0)ao +

Loy & ®)} =

2 2
+ {1-k“cos SO} cpv, o a6 cpv,

%

M [ (1-k%ees?e) 7 L (m) ® L
m

(6)as +
0 Vi CPV,

%

2 2, %4 {m) d (n)
- — — . 2.120
+ é (1-k“cos“0) * o5 {chv1(e>} 6 {chvz(e’}ﬁs (s )
By interchanging the two solutions we are led to the relation (2.120)

with uf and A; replaced by u§ and A;, respectively. By subtracting the

latter relation from equation (2.120) we find

0
g
p-ug) [ (1-k%cos’®) ™ ksin’e L‘ @ 0 )Z(S)de
0 Yy
6
0 B ) e

_ _ _ 2 2 .-
= (O A;)é (1-k“cos“g) LCPV1(6)L°PV2

- (1-k%cos?s )% (n) (eongg{a(m’ ®, ) }+ (1-k2cos e ), © )55 {a(“)

(m)
{6 3.
cpY, cpv, PV cpv, o

o (2.121)
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From equations (2.120) and (2.121) we furthermore derive

%

2 2,.%d -, (m a (n} =
(u;—ug) é (1-k“cos“0) 55-{chvi(e)} 56-{chv2(e)}de =

8

0
(A*us-Asut) é (1-k2cos?e) ™% ™

cpv1

(n)
(&) LCPVz

(8)aq, -

2 20k {(n} d , (m
(1-k“cos eo) W3 LCP\’Q(%) B {chv

® )} +
1 ©

2 2, M {m) d {n)
+ (1-k"cos“8 )" u} chv1<eo) 55-{chv <eo)} .

2

(2.122)

If uf = u; = u* = v{v+l) and A; # k;, we have from equations (2.121)

and (2.120),
60

2 2. % _(m) (n) _
é {1-k"cos™8) chv(e) LCPV(S)dB =

(

e (1on2 o2 (e (D) a_ ¢ (m) _y (m) 4 . (n) _
= (1-k"cos™0 ) [chv‘eo)ae {2770 )y - (6 )1 (eo>}]/(kg A%),

cpv . o cpyv o a0 Tepv

8
0
2 2..% a {m) d (n)
é (1-k“cos“8) 55-{chv(e)} 55-{chv<e)} as =
80
N 2 2..0-% 2 . 2. (m) (n)
= Y g (1-k“cos“8) " * k“sin“0 chv(e) acpv(e)ae +

2

+ (1-k cosze )!2
[

@ 5, 4 () -
A& chv(ea) dae {chv(eo}}Z(A; Ag) -

.2 2, K {n) a (m)
(l-k‘cos 0" Ax chv(eo) E§~{chv(eo)}/(kg-xz> .

(2.123)

(2.124)

If ui—= pz = p* = V(v+l) and m = n, we have from equation (2.120),
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%

* _ 2 {m) _ % (m) (m) _
u f (1-k2cos0) " Asin %otn (01286 + (1-k%cos% ) T g (8 G Ly (8 1=

8 6
0 0
= f (l—kzcos 8) [d {L(m}(al}] a8 + R* f (1—k cos 9) %{ (m’(e>} ae .
4]

(2.125)

Similar integral relations can be derived for the nonperiocdic Lamé
functions of other classes.

If u; = u; = p* = v{v+l) and A& # A;, and if the Dirichlet or Neumann

condition applies, we have from equation (2.123),

%

f (1~-k2cosze)-12 (m) (n)
O ~

(9) L. (9) a8 =0 . (2.125a)

Using equation {2.105) and eguations of the type (2.125a), we can

ecasily show that equations (2.73) and (2.74) also hold if u; = uz and
* %
Xm # An.

2.5.2. Lamé functions reqular on the unit sphere

So far we have investigated the solutions of the scalar Helmholtz
equation

Vzw + k*zw =0,

which are regular in the region r > 0, 0 < 6 < 90, 0< ¢ < 2w, i.e.
inside the elliptical cone S, and which satisfy some homogeneous
boundary condition at the surface § = 60. In this section we study the
solutions which are regular in the region r > ro 0<B <7, 0< < 2m,
outside a sphere of radius ro. Such solutions are needed in chapter 4,
in the analysis of the radiation of an elliptical horn. As in

(2.66) we look for solutions of the form
Y = R(xr) v{(8,9) ,

in which the radial and transverse dependence have been separated. By
substitution of Y into the Helmholtz equation and using the standard

separation argument, we arrive at the following equations for R(r) and
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V(6:¢)r
rQV];';R(r) r o0 -yt R =0, 1> r (2.126)
vi v(8,6) + u* v(6,6) = O , 0<6<m 0<6<2m, (2.127)

where p* is the separation constant. The solutions of equation (2.126)
have been presented in (2.77)-(2.80). Eguation (2.127) constitutes
again an eigenvalue problem: for specific values of p*, called eigen~-
values, equation (2.127) has a non-trivial solution v Z 0, which is
called the corresponding eigenfunction. Notice that in the present
case there is no additional boundary condition, but instead the eigen-
function v is required to be regular for 0 < 6 < 7, 0 € ¢ < 2w, i.e.
on the unit sphere. Different from the previous treatment of the
eigenvalue problem in a conical region, the eigenvalues U* can now be
determined a priori. To that end we express the operator Vi in (2.127)
in terms of spherical coordinates 0',¢', as defined in (2.34)-(2.36).
Then it is well known [2a] that the eigenvalues and eigenfunctions are
given by

p* = v(v+ly, v=0,1,2,... ; P {cosB’ )Cos

(m¢*), m = 0,1,.,v.(2.128)
To each eigenvalue U* = v{u+l) correspond 2v+1 linearly independent
eigenfunctions which are spherical harmonics of order V. Furthermore,
the eigenfunctions (2.128) form a complete orthogonal system on the
unit sphere. We now set P* = v(u+l) in (2.127), where it is understood
throughout that v stands for a non-negative integer, i.e. vV = 0,1;2,...
Then it remains to determine the eigenfunctions v(0,¢) in terms of the
sphero-conal coordinates 8,¢. It will be shown that v(6,¢) can be
represented by a product of 6 and ¢ Lamé functions which are regular
for 0 € 6 <w, 0< ¢ < 2w, i.e. on the entire unit sphere.

Proceeding as in (2.89)-(2.94), we substitute v(8,¢) = €(0)%{¢), then

equation (2.127) separates into the two Lamé equations

(1~ k2c:c>sze);2 d {(1-k cos 9};2 d@(@)} +{\Mv+1)k sin 9~A*}O(6) = 0

L4

0<so<m, (2.129)
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(1-x*2sin%p) -g;l;{',(1--1<'2sim\2<;>f5 é‘I’("”} + (VvED k' 2cos?o+A* 18 (9) =

< ¢ <2, (2.130)
where A* is the separation constant. Next, by setting A =)*+ 9(v+1)k'%
the Lamé equations transform into
(1-kZcos28) * S5 (1-kcos’0) ® a@<e)} + {v(w1) (1-k%cos20)-110(8) = O,

osecT (2.131)

-k Zein’p)* S 1k a1’y * Ly v ik Psin’slo @) =

<o <oam . (2.132)

The solutions of the ¢ Lamé equation (2.132) are again the odd and

even simple-periodic Lamé functions with period T or 27m. Four classes
of ¢ Lamé functions are distinguished, which are represented by the
Pourier series (2.95)-(2.98). The 0 Lamé equation (2.131) is accompanied
by the boundary conditions

4a0(0) _ de(m

% @ 0, if ® is even symmetric (classes I and IV), (2.133)

Q(0) = (m) = 0, if ¢ is odd symmetric (classes II and III);{2.134)

compare (2.94a), (2.94b)}. These conditions reflect the reguirement
that ©(8) should be regular over the entire range 0 < 8 < 7, in
particular at 6 = 0 and 6 = 7. Similar to [6, Lemma 2.6, p. 31], one
can easily show now that for given k' and v, the separation constant

A must satisfy
0 £ A< v{vrl) . (2.135)

The soluticns of the § Lamé equation (2.131) are the nonperiodic Lamé
functions. The four classes of 0 Lamé functions can be represented by
series of lLegendre functions pﬁ(cese) as in (2.115)-(2.118). These
series involve the coefficient T(m) given by (2.114). Noté that T (m}
contains I'-functions of arguments -v/2 and {(m-v)/2. Since T'(z) has
simple poles at z = 0,-1,-2,... [1, Chapter 6], the choice of T(m) is

inadequate in the present case where Vv and m are integers. Therefore
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we replace T(m) by an alternative solution T*{m) of the recurrence

relation (2.113), given by

Vim+1
2

r(m) = (-1) /2], r(3§9»+ 13/ T Yy s m=0,1,2,... , {2.136)

in which [m/2] denotes the largest integer € m/2. Clearly, T*(m) is
well defined if v < m+2, which is sufficient for our purposes.

We now investigate the ¢ and O Lamé functions of class II in more

detail. The ¢ Lawé functions are represented by

L(2n+1) {2n+1)

<0
v @ = 3 By .y cos(2r+l)d , n=0,1,2,... , (2.137)
r=0

and the corresponding 6 Lamé functions by

L(2n+1)

(2n+1) §2m+1
cpv

(]
(0) = ] T+ (2m+1) A, 07 PO

=0

(cosB), n=0,1,2,.., (2.138)

where T(2m+1) has been replaced by T*(2m+1). By substitution of the
formal series (2.137) into the ¢ Lamé equation (2.132), it is found
that the coefficients A(2n+1)
2r+1
given in [6, p. 49]. This recurrence relation can be rewritten in

must satisfy the recurrence relation

matrix notation leading to an eigenvalue problem for an infinite tri-

diagonal matrix of the form

- -
a 1 C 1 0
By 23 3
< N N
M= \\\ S AN H (2.139)
» > AN
\\\ N AN
A N N
0 Por-1 Pars1 C2pet
N S AN N

here the precise values of the elements ar, br’ c, can be gathered
from [6, p. 51]. Por given k' and v (which is now an intéger), the
eigenvalues and corresponding eligenvectors can be computed. As before,
the eigenvalues determine the admissible values of the separation

constant A in (2.132), whereas the eigenvector is proportional to the
(2n+1)

sequence of coefficients A2r+1

. We distinguish two cases, viz.
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[

(1) R 22""1' = 0,1,2,... ’ (2.140)

(iiy v

[
]

2842, £=0,1,2,... . (2.141)

Case (i). Por odd integer v = 24+1, it is found that the element
b22+1 = 0 in (2.139). Hence, the matrix M can be partitioned as

M= , (2.142)

where Ml is an {(4+1)x({4+1) tridiagonal matrix and M2 is an infinite

tridiagonal matrix. The matrix M, has f£+1 eigenvalues denoted by

1
A2n+1’ n=0,1,...,%, with corresponding eigenvectors [A;2n+1),
A§2n+1)‘ wee , A

éiﬁ:l)]T. Bach of these eigenvectors is supplemented

by zero-elements A{2n+1) = A(zn+1)
28+3 2845

Then the resulting vectors are eigenvectors of the infinite matrix M,

= ... = 0.

corresponding to the eigenvalues A2n+1' In this manner we have found
{+1 eigenvalues and eigenvectors of the matrix M. The simple-periodic
Lamé functions corresponding to these eigenvectors, are conseqguently

represented by finite series (trigonometric polynomials)

2
(2n+1) _ (2n+1) _ _
Loy ¢) = IZO Byay  cos(2r+)d , n = 0,1,...,8, V= 2041, (2.143)
It can be shown that only the 2+1 eigenvalues A of M, and M give

2n+l 1
rise to values of A that satisfy the criterion (2.135). Hence, the

remaining eigenvalues and eigenvectors of M may be discarded. The §

Lamé functions of class IT are also represented by finite series, viz.

%

(2n+1) = " L (2n+l)  2m+l _
Lepy (80 = Y T(2m+1) Bye1 By {cos®), n = 0,1,2,...,%,
m=0
v = 28+1 . C(2.144)
. (2n+1) .
Here, the truncation is due to the fact that A2m+1 =0 if m > &,

2mt+1

whereas T*{2m+1) Pv {cosB) is finite if m > L. For given k' and
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= 28+1, we have found £+1 ¢ Lamé functions and 2+1 corresponding 6
Lamé functions of class II. The & Lamé functions {2.144) are in fact

polynomials in cos® and sin8, hence they are regular for 0 € 6 < w.

Case (ii§. For even integer v = 28+2, it is found that the element

Cogat = 0 in (2.139). The matrix M is therefore partitioned as

M= | - , (2.145)

in which M, is again an {I+1)x{(8+1) tridiagonal matrix. The matrix M

1 1
has %+1 eigenvalues denoted by A , n=20,1,...,%, with corresponding
(2n+1) _(2n+1) 22 onen) T
eigenvectors [A n P A3 o roere s Bop s 1. Bach of these eigen~-

(2n+1)
2845 7 7T
- determined by the remaining equations of the infinite eigenvalue

vectors is supplementea by elements A532§1), A , that are

problem, viz.

(2n+1) (Zn+1) (2n+1) _ (2n+1)
bore1Por-1 TariiPortt ToorsiPorss T MopriPorsr

r = L+1, 2+2, 4+3,... . {2.146)

These elements are not all zero and the resulting extended vectors are
eigenvectors of the infinite matrix M, corresponding to the eigenvalues
A2n+1’ Thus we have found %+1 eigenvalues and eigenvectors of the matrix
M. The remaining eigenvalues of M are identical to the eigenvalues of
the infinite matrix M2' and the eigenvectors of M are equal to those of
M, supplemented by the zerc-elements Af2n+1) ;2n+1) el = Aéiﬁil)-a
However, these eigenvalues and eigenvectors may be discarded because
they give rise to values of A that violate the criterion (2.135). The ¢
Lamé functions of class II, corresponding to the first 2+1 eigenvectors,
are now represented by infinite series

(2n+1) {(2n+1)

4 = X A cos(2r+1)¢ , n = 0,1,...,%, V= 2842 . (2.147)
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The corresponding © Lamé functions of class II, however, are given by

finite series

[)
{2n+1) B (2n+1)_2m+1 _
chv (8) = mZO T (2m+1)A, TRy (cos8), n = 0,1,2,...,%,

v = 2842, (2.148)

because Pim+1(cose) = 0 and T*(2m+1) is finite by (2.136), if m > L.
For given k' and v = 2+2, we have found %+1 ¢ Lamé functions and f+1

corresponding 8 Lamé functions of class II. As for the Lamé functions
(2n+1)
L
w N
uniformly in [0, 27] by [6, Theorem 3.1, p. 50]. The 6 Lamé functions

($) the Fourier series (2.147) and its derivative converge

(2.148) are in fact polynomials in cosf and sin®, hence they are

regular for 0 € 8 ¢ m.

The previous analysis for functions of class II, immediately carries
over to Lamé functions of classes I, III, IV. In the case of functions
Cof glass IV, the underlying matrix M can be partitioned in exactly the
same manner as in (2.142) and (2.145), for odd and even integer v,
respectively. Both for v = 2841 and v = 2242, £ = 0,1,2,..., we find
that only the first &+1 eigenvalues of M give rise to values of A that
satisfy the criterion (2.135). The corresponding simple-periocdic Lamé

functions of class IV are represented by

2
20 ) o T B g 0r1)g, 0= 0,1,2,...,8, 1f v = 2041,
sV =0 2r+1
(2.149)
o0 N .
L 6y 2§ B2 ginere)d, no=0,1,2,...,8, if v = 2042,
sV =0 2r+1
(2.150)

The corresponding § Lamé functions of class IV are represented by

2 2..% %
(2n+1) _ (1=k"cos™8) " - - (2n+1) 2mt+i
Loy (O =g I Cothyrm1) Byttt ROY (cos8),

=0
h'=,01112!000124' (2.151)

both for v = 2241 and v = 28+2. For given k' and v = 28+1 or v = 2842,

we find 2+1 ¢ Lamé functions and £+1 corresponding ® Lamé functions of
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class 1V, which are regular for 0 € ¢ < 27 and 0 € O < 7, respectively.

In the cases of Lamé functions of classes I and III the underlying
matrices M can be partitioned as in (2,142) if v = 28+2, and as in
(2.145) if v = 28+1. Thus, compared to the previous analysis of
classes II and IV, the roles of odd and even integers v have inter-
changed. As before we only take into account the eigenvalues of M
which give rise to values of A that satisfy the criterion (2.135).
Then the simple-periodic Lamé functions of class 1 are represented by

o0
L2y = 7 2™ osorg, n=0,1,2,...,8, if v = 2041, (2.152)
oV 2r
=0 )
£+1
L2y = 7 a®osarg, no=0,1,2,...,041, if v = 2042.  (2.153)
cv =0 2r

The corresponding 6 Lamé functions of class I are given by

[v/2]
(6) = J T (2m) A
n=0

L(2n)
cpv

(2n)

2m
om Py (cos®), n = o,1,2,...,[v/2],>A (2.154)

both for v = 28+1 and v = 28+2; here, [v/2] denotes the largest integer
< v/2.

The simple-periodic Lamé functions of class IIT are represented by

o«
L6y = 7 B cinorg, n=1,2,3,...,8, if v = 2041, (2.155)
sV 2r
r=1
f+1
Léﬁn)(¢) =3 Béin)sin2r¢, no=1,2,3,...,00, if v = 2042,  (2.156)
r=1

The corresponding 8 Lamé functions of class III are

2 2. % [v/2]
(2n} _ (1-k"cos”8) . (2n) _2m
LSP\’ (8) = —=ind 2 2m T* (2m) BZm P‘) {cosb),

m=1
n=1,2,..., [v/2], (2.157)

both for v = 28+1 and v = 28+2, For given k' and integer v, we have
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thus found [v/2]+1% Lamé functions of class I and [v/2] Lamé functions
of class ITI. The ¢ and & Lamé functions of classes I and III are
regular for 0 € ¢ < 27 and 0 < § < 7, respectively. For completenass’
sake we also consider the case v = 0. Then it is found from the
criterion (2.135) that X = 0. Correspondingly we have one ¢ Lamé
function and one § Lamé function, both of class I and given by
Lég}(¢) =1, (0)(9) 1, in accordance with (2.128).

Summarizing, for given k' and integer v = 0,1,2,..., we have found
[v/2]+1 Lamé functions of class I, [(v+1)/2] Lamé functions of class II,
[v/2] Lamé functions of class III, and [{v+1)}/2] Lamé functions of class
IV. Thus the total number of Lamé functions is 2v+1, which is equal to
the number of eigenfunctions in (2.128) corresponding to the eigen-
value U* = v{u+l). The eigenfunctions v(8,¢) can now be represented by

products of 0 and ¢ Lamé functions according to the following list:

I, (2!’1) (e @) (21’).) 0) L(‘?‘n) (¢), v=0,1,2,..., n= 0'14'0"'[\)/2}’
(2.158a)
. v e = 10 @M e, v = 1,2,3,00,
n=20,1,..., [(v-1}/2],
(2.158b)
rrz. v (2% (0,4) = (2“’(6} L2 (0), v =2,3,..0, 0= 1,2,...,[V/2]
(2.158¢)
. v 6,4 = L‘i“*l}(e)n‘2"+1)(¢). v =1,2,3,...,

n=0,1,..., [(v-1)/2].

{2.1584a)

The eigenfunctions are regular for 0 < 8 < m, 0 € ¢ < 2m, i.e. on the

unit sphere.

For later use we present some integral theorems, similar to those
given in (2.57)~(2.62). Let { be the unit sphere, described by r = 1,
£8<m 0< ¢ <27, and let ?t be the transverse component of the

vector F. Then the surface divergence theorem reads
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}{ Vt. € at =20, (2.159)
Q
where 4f} = hgh$d6d¢'is the surface area element. By substituting
F = vlvtv2 into equation (2.159) we find

5 :
%{ (Vtvl.Vtvz + vlvtvz)dﬂ =0, (2.160)
Q

which is Green's first identity for the surface {). Interchanging the
subscripts 1 and 2 and subtracting the result from equation (2,160},

we obtain Green's second identity for the surface {:

2 2
§§ (vlvtv2 - vzvtvl)dﬂ =0 . (2.161)
Q

Replacing Ft in equation (2.159) by ér x vF, we find
§§ th x,F.er aQ + %{ Vtv X F.ér an =0 . {2.162)

If v = constant, equation {(2.162) becomes
%% ?t x F.& aR =0,
f

which is Stokes' theorem.
By substituting ﬁt = ér X vlvtv2 into the divergence theorem (2.159) we

obtain

f§ Vtvl b4 Vtvz.ér Q=0 . ) (2.163)
Q2

The integral theorems presented above are now used to establish integral
relations and orthogonality properties for the @ and ¢ Lamé functions
which are regular on the unit sphere. Let (u;,vi) and (p;,vé) be
solutions of the eigenvalue problem (2.127}) with uf = vi(v1+1),

ug = v2<v2+1), where Vl,v are non-~negative integers. Then by substi-

2
tuting these solutions into Green's identities (2.160), (2.161), we
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obtain the following results.
* *
If py # ul,

f{ vlvzdn =0, ‘ (2.164)
Y]

%{ Vtvl.vtvz ast= 0 ; (2, 165)
Q

if up =3 = u* and v, = vy, =V,

g |v,v]%a0 = u> % viaa . (2.166)
9} Q \

Thus the two eigenfunctions vy and v, as well as their transverse

gradients are orthogonal if uI # u;.

It is easily verified that the integral relations (2.99)~(2.105) for
periodic Lamé functions remain valid for the ¢ Lamé functions corres—
ponding to integer values of v, as derived in this section. Next we
establish integral relations for the 0 Lamé functions corresponding

m gy)

to integer values of v; compare (2.120)-(2.125a). Let (Rg, chv

and {k;, Légi (8)) be solutions of the 6 Lamé equation {2.129) 1 with
v = v1 and v = v2, respectively, where vl, “2 are non-negative
integers. In eguation (2.129} we replace v, A*, 0(8) by Ve A;,
LéZLl(G), and the result is multiplied by Lé;iz(e). Then by integrating
over 8 from 0 to T and using the boundary conditions (2.133) or (2.134),
we obtain
T2 2.-h 2 2. (m) (n)

vy v+ g (1-k"cos”0) * kx"sin"0 chvl(ﬁ} chv2(9)dﬁ =

K “5 _(m) (n)
= 2+ [ (1-k%eos?0) chvltey SOLE

0

T2 2. %4 . (m d_ ¢ (n)

+ j(; (1-k"cos"8) * I {ch\)1 0} {chvzte)}de . (2.167)
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By interchanging the two solutions we find the relation (2.167) with

v, and lg replaced by vz and l;, respectively. By subtracting the

1
latter result from equation (2.167), we obtain

m

‘ 2 2,.-% 2 2. (m) -
(v, (0 +1)=v (v +1) } é (1-k“cos“8) " * k“sin”8 LCP“1(9) L 2(6) an
o2 2 % (m) {n)
= (A*-2%) [ (1-k“cos“®) L' (8) Loy (8) ab. (2.168)
) CPVy PV,

From equations (2.168) and (2.167) we derive

' m 2 2. ~% (m) n)
{A% v, (u#1) =A% v (v 1) } é (1~k"cos"8) chvl(e) L 2(8) as =
-t w+1)-v, (v +1)} | (1-xPcos28)” L™ @ S (e))ae. (2.169)
RS | 272 ° c cpvy PV, * ‘

If v, = v, = Vv and A; # A;, we have from equations (2.168) and (2.167),

1 2
" 2 2. % < ) (n)
(1-k"cos”0) (9) L ( y a8 = 0, (2.170)
- 2 gy ae
0
! 2 2..-% 2 (m) (n)
vl [ (1-k%cos?8) T * k®sin6 Lo o(8) Lot (8) a8 =
)y cpv
" 2 2. %43 , (m) d ;o (n)
= é (1-k“cos“8) 33'{chv(e)} 55-{chv(e>}ae . (2.171)

I1f vl = v2 =v and m = n, we find from egquation {(2.167),

Ll

viv+1) (1~k200326)—% xsin®e {L(m)(e)} ag =
0
H 2 2, 4 ( ) H 29958 (m)
= 2% [ (1-k“cos“8) L " (e)} a0 + [ (1-k’cos®e) P (1] 230.
L Fy ae

(2.1?2)
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Similar integral relations can be easily derived for the 0 Lamé

functions of other classes, corresponding to integer values of v,

The eigenfunctions v(6,¢), regular on the unit sphere, have been
listed in (2.158), represented by products of 0 and ¢ Lamé Ffunctions.
According to (2.164), any two eigenfunctions corresponding to different

eigenvalues are orthogonal, hence, for example,

f{ v (6,9) vé“’<e § ar=0,if v £v, . (2.173)
1 .
Q

It follows immediately from (2.102) and (2.170) that the relation
(2.173) also holds if v1
functions corresponding to the same eigenvalue. Thus we donclude that
(“)(e $), v<n)(8 $), given by (2.158), form an

the eigenfunctions Yoy
orthogonal system on the unit sphere §, with the orthogonality

=V,, m # n, i.e. for two d@ifferent eigen-

relations

g i 5,4) v (n) (e )82 = 0 1€ v, # v,, and if v

1 1= v2, m # n;(2.174a)
Q
}{ (m)<e $) v‘“’(e $) A2 = 0 ; (2.174b)
1
0

%{ (m)(e $) v(n)(e $)d2 = 0 if vy # Vo and if V=V, m # n.(2.174c)
Q Vi
Accoxding to (2.165), the transverse gradients of any two eigenfunctions

(2.158), corresponding to different eigenvalues are orthogonal, hence,

for instance,

f{ v, v(m’<e R A ‘“’(e $an=01fv £V, . (2.175)
Q

By using (2.49c), (2.102) and (2.170}), we can easily show that (2.175)
also holds if v, = Vv

1 2
different eigenfunctions corresponding to the same eigenvalue. Hence,

, m #n, i.e. for the transverse gradients of two

the transverse gradients of the eigenfunctions (2.158) form an oxrtho-

gonal system on the unit sphere {I, with the orthogonality relations
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{m)

(n} _ . - .
Vt vcv1(6,¢).vt vcv2(9,¢}dﬂ =0 if v, # V,, and if V=V, m # n;
2 ({2.176a)
v ov™e,0.7. v™0,¢)a0 = 0 ; (2.176b)
t ey, TP Te Tsy ; .
1 2
Q
(m) (n}) g . : =
f{ Vtvsv1(6,¢).Vtvsv2(6,¢)dﬁ = 0 if vy # V,s and if Vy =V, m #n.
Q (2.176¢)

Finally, we summarize the main results of this section.

1. Por integer values of v the § Lamé functions can be represented by
finite series of Legendre functions Pﬁ(cos@), and are regular for
0<6 <.

2. For odd integer values of v the ¢ Lamé functions of classes II and
IV can be represented by finite Fourier series, and those of
classes I and III by infinite Fourier series.

For even integer values of v the ¢ Lamé functions of classes I and
IIT can be represented by finite Fourier series, and those of
classes II and IV by infinite PFourier series.

3. The eigenfunctions vég)(8,¢), véz)(6,¢}, represented in (2.158) by
products of © and ¢ Lamé functions, form a complete orthogonal
system on the unit sphere : 0 € & € 7, 0 € ¢ < 27. Let £(8,¢) be
an arbitrary scalar function defined on the unit sphere, which to-
gether with its first and second derivatives 1s continuous. Then

£(8,¢) can be represented by the series-expansion

oG

v = v
_ (n) (n)
£(6,9) = VZO ngo a v, 10,9 + vzi n§1 bon Yy (8:9) . (2.177)

in which the expansion coefficients avn and bvn are determined by

- (n} (n) 2
a.\}n = H f(e:d)) VC\) (el(b)dg / ﬁ{vc\)(er‘b)} dﬂ r (2°178)
0
b = %{ £8,4) v™(8,6)180 / f{ v e, ¥2an . (2.179)
vn sV sv
Q N



2.6.

(1]

[2]
[2a]
(3]
[4]

(5]

(6]

[7]

18]

(o]

-5~

References

Abramowitz, M., and I.A. Stegun (Editors), Handbook of Mathematical
Functions, with Formulas, Graphs and Mathematical Tables. National
Bureau of Standarxrds, Washington, 1964. (Applied Mathematics Sevies,
no. 55).

Bladel, J. van, Electromagnetic Fields. McGraw-Hill, New York, 1964,
p. 499-505,

Courant, R., and D, Hilbert, Methods of Mathematical Physics, Vol. I,
Interscience, New‘York, 1953, Chapter VII, § 5.

Ince, E.L., The periodic Lamé functions. Proc. Roy. Soc. Edinburgh
Sect. A 60 (1940), 47-63.

Ince, E.L., Further investigations into the periodic Lamé
functions. Proc. Roy. Soc. Edinburgh Sect.A 60 (1940), 83-99.
Jansen, J.K.M., Simple-periodic and ‘Non-periodic Lamé Functions and
their Application in the Theory of Conical Waveguides. Ph.D. Thesis,
Eindhoven University of Technology, Eindhoven, 1976.

Jansen, J.K.M., Simple-periodic and Non-periodic Lamé Functions.
Mathematical Centre Tracts 72, Math. Centrum, Amsterdam, 1977.
Kong, A.C., The Propagation and Radiation Properties of Waveguides
and Horns of Elliptical Cross~section. Ph.D. Thesis, University

of Surrey, Guildford, 1971.

Sahalos, J.N., and G.A. Thiele, The eigenfunction solution to
scattered fields and surface currents of a vertex. IEEE Trans.
Antennas and Propagat. AP~31 (1983}, 206-210.

Satterwhite, R., Diffraction by a guarter plane, the exact
solution, and some numerical results, IFEE Trans. Antennas and
Propagat. AP-22 (1974), 500~503.



3



-67-

3. WAVE PROPAGATION IN ELLIPTICAL CONES

3.1. Introduction

We start this chapter with a survey of previous researches relevant to
our present study.

In- 1971 Kong [8] reported about his investigation of wave propagation
and radiation problems for elliptical-~cylindrical waveguides and
elliptical-conical horns with smooth walls of perfectly conducting
material. The modes in the waveguide have been classified into four
classes, reflecting that the fields of the modes are odd or even
symmetric, and transverse electric or transverse magnetic. The field
components of the modes have been expressed in terms of Mathieu
functions. The beamwidths of the radiation patterns of the guide, when
excited by one of the lowest modes, the eTE11 or °'I‘E11 cylindrical
mode, are controlled by varying the aspect ratio of the elliptical
guide. The two modes mentioned give rise to radiation patterns that
differ from each other. Consequently, the guide cannot radiate cir-~
cularly polarized waves in all directions in space. Furthermore, it
ﬁas been found that for both modes of operation the beamwidths are
frequency-dependent: they decrease monotonically with increasing
frequency for all aspect ratios.

Kong has also studied the propagation of waves in elliptical~conical
horns of infinite length. As in the case of the elliptical guide the
modes have been classified into four classes. The field components of
the conical modes have been expressed in terms of spherical Bessel
functions, simple-periodic Lamé functions and nonperiodic Lamé
functions. The latter functions have been computed by numerical in-
tegration methods. The radiation patterns due to the two principal
modes, the

and oTE conical modes, have been determined by a

TE

e 11 11
Kirchhoff-Huygens integration of the modal fields at the aperture of
a truncated cone. The radiation patterns associated with these modes
are not identical, which implies that the horn cannot radiate
circularly polarized waves in all directions in space. The variation
of beamwidth with frequency has been studied. It has been found that
radiation patterns with beamwidths that are frequency-independent,

can be achieved.
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In 1973 Jansen and Jeuken [6] published the results of their research
of wave propagation and radiation problems for elliptical—cyiindrical
waveguides with anisotropic impedance boundary. Their objective has
been to study whether such devices can radiate circularly polarized
waves in all directions in space, whereas the radiation patterns have
elliptical cross-sections. Some interesting properties have beén de~
rived for electromagnetic fields for which E = i‘jzoﬁ. Here, Zo is the
free-gspace wave impedance which equals (pofeo)%, where Hois the per-
meability and so the permittivity of free space. It has been shown that,
if E= i_jZOH on a closed surface § enclosing the field sources, then
the same relation holds for the electric and magnetic fields at any
observation point P outside S. If P is in the far-field region of the
sources, then the fields at P are circularly polarized.

It has been found in [6] that the impedance boundary conditions are only
satisfied by hybrid modes which involve both transverse electric and
transverse magnetic fields. The modes have been classified

into odd and even symmetric modes, that have pairwise identical cut-
off frequencies, identical propagation constants and identical
radiation patterns of elliptical cross-section. These modes, when

added with a phase difference of 900, give rise to fields for which

B = i.jzoﬁ. Hence, the waveguide has, in theory, the required
radiation properties. Several corrugated antennas have been constructed
and tested to check the wvalidity of the theory. In the analysis of
these antennas the influence of the corrugations has been accounted

for by the anisotropic impedance boundary conditions. Reasonable
agreement between theoretical and measured results has been found
provided the dimensions of the aperture of the antenna are not small

in terms of wavelength.

In 1976 Jansen [7] investigated the electromagnetic fields in elliptical
cones with smooth walls of perfectly conducting material. He has ex~
pressed the fields in texms of spherical Bessel functions, simple-
pericdic Lamé functions and nonperiodic Lamé functions, as it was done
before by ¥ong [8]. In Jansen's study emphasis has been on theoretical
and computational aspects of the Lamé functions. The main results from [7]
have already been recalled in chapter 2 of the present thesis.

In 1979 and 1980, vokurka [9], [10] published results of measurements
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and computations for corrugated elliptical horn radiators with small
flare angles. Special attention has been paid to the mode excitation.
The coupling section between the exciting waveguide and the horn is
important for single-mode excitation. Excellent polarization purity
and equality of radiation patterns have been found for odd and even
hybrid modes. The theoretical results for the copolarized radiation
are in good agreement with experimental results. The computed results
have been obtained by approximating the aperture field of the elliptical
horn by the waveguide modal fieldmultiplied by a quadratic phase dis-
tribution. Vokurka has concluded that the corrugated elliptical horxn
radiators with small flare angles are eminently suitable for appli-
cations where radiation patterns with elliptical cross-sections and
high polarization purity are required, such as fof the broadcasting~

satellite service.

In 1982 Fasold et al. [3] reported on the design of an antenna system.
intended for use on board of TV-SAT for the coverage of Western Germany
by a circularly polarized elliptical beam. They have used an antenna
system consisting of an offset . parabolic reflector fed by a corrugated'
elliptical horn. The measured radiation patterns of an experimental
model of the antenna system show that it is possible to meet the
WARC-77 regulations [4]. Measured radiation patterns of the horn
radiator have been used in the computation of the secondary radiation

patterns.

The main point of this survey is that corrugated elliptical horn
radiators have radiation patterns with elliptical cross—-sections and
high polarization purity. These properties can be utilized in, for
instance, reflector antennas of broadcasting satellites. For the com—
putation of the radiation pattern of a reflector antenna we need to
know the performance of its feeding element. In this and the following
chapters we will develop methods for determining the wave propagétion
and radiation behaviour for anisotropic elliptical horns with
arbitrary flare angles and aspect ratios. The investigation of wave
propagation in elliptical cones starts with the introduction of trans-
verse electric (TE) and transverse magnetic (TM) field solutions for
Maxwell's equations in the sphero-conal coordinate system. These

solutions constitute a complete set of waves (modes}), in teyms of
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which an arbitrary field can be expanded. In perfectly conducting
cones TE and T™M solutions can exist independently. In anisotropic
cones, however, the field solutions are ¢f a hybrid nature. They are
represented by TE~ and TM~fields that are coupled. The analysis for
the elliptical cone with a corrugated boundary will be based on the
anisotropic surface-impedance model which does not take into account

the actual electromagnetic fields inside the corrugations.

3.2. The perfectly conducting elliptical cone

This section deals with the solution of Maxwell's equations inside a
perfectly conducting elliptical cone. The solutions are expressed in
terms of the sphero-conal coordinates r,9,¢, as introduced in (2.1)~-
(2.3). The semi-infinite elliptical cone is described by 6 = 90 (see
Figure 2.1a), and its aspect ratio is are. The medium inside the cone is
free space with permittivity eo and permeability uo. Inside the cone,
that is, for r > 0, 0 € 68 < 60, 0 € ¢ < 21, the solutions of Maxwell's
equations separate into two sets as has been proved by Jansen [7,
Theorem 5.3, p. 86]. For one set the electric field has a zero radial
component: these solutions are of transverse electric (TE) type. The
TE~-field components are derivable from a magnetic vector potential that
has a single component in the radial direction. For the second set the
magnetic field has a zero radial component: these solutions are of
transverse magnetic (TM)} type. The TM-field components are derivable
from an electric vector potential that has a single component in the

radial direction.

Assuming a time dependence exp{jwt), Maxwell's equations read

VxE

[}

-jwuoﬁ, {(3.1)

VxH

jwe E. (3.2)
° ;

The decomposition of the electromagnetic field inside an elliptical
cone into TE- and TM-fields follows from [7, Theorem 5.3, p. 86]. This
theorem states that any electromagnetic field in a simply connected,

source~-free space domain can be written as
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e
)

—jwuo Vx{r&hér) + VxVx{rweér), {3.3)

2
i

VxVx(rwhér) + jwso Vx(rweér), (3.4}

where the potentials wh and we satisfy the Helmholtz equation

2 *2 -
VU Y =0 (3.4a)

5

in which k* = w(eouo} = ZﬂfAO is the free-space wave number and XO is

the free-space wavelength. From equations (3.3) and (3.4) we find that
the TE~field is given by

E = -jwuo Vx(r¢hér), (3.5)
H = VxVx(r&hér), (3.6)

and the TM~-field by

E = Vx?x(rweér), (3.7)

m
it

jwao Vx(r@eér). (3.8)

Hence, in terms of the sphero-conal coordinates r,8,$, the components

of the TE~field are

) nE 30 h* 3Y
B, = 0 u, = i Gee 3 s g
07 g e
S 9% (xy, )
g o2 Ui (3:9)
8  n* 3 ' ®  rhr 08zad ' :
é 8
. 2
Jou 3y g 9T
Ey = ne W %’E’g 5036 '

and the components of the TM-field are

B =1

= ’k*
r rheh¢

* 3¢ 3 hg am

{ae X 30t Ea*hg 5%

)}tH=Of
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2 .
B, = "}_a_& H. = ](DEO"BE (3.10)
0 rha oraf ! €} h* 8¢ ' °
¢
Bz(rw ) -jwe 3
E =....1__—e_ H = — S
[} rh$ ordd ! [} hg a6

The expressions for the non~vanishing radial components are equal to
—viwh,e/r by equation (2.52¢), hence, by using (2.66) and (2.69) we
derive that these components equal v(v+1)¢h'e/r. We now use these
results to determine the TE~ and TM-fields inside the perfectly con-
ducting cone described by 0 = 80. At the cone surface the tangential
electric field components must vanish, hence, from (3.9) and (3.10) we

have the boundary conditions

2
5§.(¢h)1e =0, (3.11)

(=]

=0, (3.12)

for the TE- and TM-fields, respectively. Thus the potentials wh and $e
must satisfy the Helmholtz equation (3.4a) and the homogeneous boundary
condition (3.11) or (3.12). The latter problem has been extensively
discussed in sections 2.4 and 2.5. By use of the method of se-
paration of variables it has been found there that the problem has a
denumerable set of eigensoclutions or modes. The modes cobtained are
represented by products of spherical Bessel functions, nonperiodic @
Lamé functions and simple-periodic ¢ Lamé functions. We now choose the

spherical Bessel function to be héz)

{k*r), see (2.80), which means
that the mode is propagating in the outward radial direction, Then the
corresponding outward propagating TE- and TM~modes are derived from the

potentials ¢h and we, given by

(2) {m) {m)
hv {(k*r} chv<e) ch (¢), (3.13)
or

(2) {m) {m)
hv (k*r) Lspvte) st (¢), {3.14)
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in which the mode~number v is determined by either of the boundary

conditions (3.11} or (3.12).

We list in full detail the expressicns for the field components of the

TE~ and TM-modes inside the cone under consideration.

TE mode :
<cmn
E =0,
=Jwu,
" (2) (m) a (m)
By = —pw— b7 (k*r) L o (8) % {L (45)}
[} n n
W @), & gpm (m
Ed} = '—}Tg— v (k*r) = {L (e)} L ($),
n n
1 2y (m) {m)
H, = 3 Vp(V#1) b7 en) B (8) I (¢), (3.15)
n n
_ 1 a d (m) (m)
By = 4% ar {rh Yy S {o oV e} L, (¢),
0 Ya
_1.a .. (2 (m) a_ g (m
Hy = why & {rn'? gexry } L, v (6) T {chn(q))}.

vhere m = 0,1,2,..., n=1,2,3,..., and \)n is the n~th positive root of

(m) _
{chvw)} =0 . (3.16)
O
TE mode:
smn
Er = 0,
~jw
L2 (m) a_ (m)
E, = e {(k* L e L
Juu
(2) (m) (m)
Ey = 5 Vn k*r) S {LSP\) ®} o {@}, (3.17)



'

(2} (m) (m)

4
]

1
. ;vn(vnﬂ) h v (k*r) L, {6) L, (¢).
1 2 d {m)
Hy = hE dr {rh( Yy} & L mv (61} L(m)(¢),
n n
_ 1. a (2) (m) a_ (m}
By = ] ax {rn v (k*r)} L n{@) k) {L <¢)}

where m = 1,2,3,..., n=1,2,3,..., and Vn is the n-th positive root of

4 ﬁfm’(en = o. A ‘ (3.18)

™ mode :
cmn

1 (2) (m) (m)

E =TV, v +1) hn (k*r) va (8) L. (¢>),
_1 4 (m) (m)
Eq = rng {rh D xrr }} {chv (Nl L., @,
n n
. - (2) (m) a (m)
By = ¥ a {rn " (x*1)} Loy & Y {L (¢)},
[o] Va n
{3.19}
H =0,
r
JwE
o . {2) (m) a (m)
He = —pw by (k*r) Lo (0) oo {n (¢)}
¢ n
-jwe
_ o . (2) a ¢ (m) (m}
H¢ = oy hvn (k*r) 5 {chv (e} L, v (4},

wvhere m = 0,1,2,..., n=1,2,3,..., and vn is the n-th positive root of

(m)(e) = 0. (3.20)

8
o
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™ mode:
smi
-1 (2) (m) (m)
B, =TV (v +1) h (k*r) L spV 8y L (¢),
n n
.l oa @ d (m) <m1
Eq mE {zh h k*r)} {L P (0} Lg (¢).
n
.1 a (2) (m) {m)
E, = rh$ a {rh v (k*r)} L, (6} -{L (¢)}
(3.21)
H =0,
r
B = % B ey 1™ () L (1 (m’(q:)}
G h$ ”n spY aé !
~Jue
_ (2), 4 . (m) (m)
Hy = 'Bg‘"’hv {k*r) 5 {Lspv (0} Ly, (4.
n n n

 wherem = 1,2,3,..., n=1,2,3,..., and vn is the n-th positive root of

{m)

Spv(e) = 0. (3.22)

By use of the large-argument approximation (2.84) of héz)

(k*r), it is
found that for large k*r the transverse field compénents of the modes
decay according to rwl, whereas the radial field componenfs decay
according to r—z. Furthermore, the characteristic wave impedance in the
radial direction, given by Ee/HCb or equivalently by ~E¢fﬁe, tends to

the free~space wave impedance Zo = (uOZso)& for large values of k*r.

We now investigate the symmetry properties of the fields and classify
the modes accordingly into odd and even symmetric modes. A mode is
called odd symmetric if the magnetic field is symmetric with respect
to ¢ = 0, that is with respect tothe xz-plane in Figure 2.1a (the minor
axis of the elliptical cone is in this plane). A mode is called even
gymuetric if the electric field is symmetric with xespecﬁ to ¢ = O,
Using the symmetry properties of the periodic Lamé functions, given by
(2.85)~-(2.98), we then derive that the mcm and mm modes are odd
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symmetric because

Hy(9) = Hy(21-0), Hy(§) = -H,(21-$); (3.23)

these modes will be denoted by oTEmn and OTan, respectively. Likewise,

we derive that the TE and ™ modes are even symmetric because
smn cmn
Ee(¢) = Ee(Zw«¢), E¢(¢) = -E¢(2w~¢): {3.24)

these modes will be denoted by eTEmn and eTan’ respectively. We point
out that this classification differs from those in [7] and [8], which
are based on the symmetry properties of the potentials wh and we.

As an example we present in Table 3.1 the numerical values of the mode~

numbers v as a function of 00, for the odd and even TE and ™ modes

in perfectly conducting elliptical cones with are = &.lin Table1;.2 we
present the corresponding numerical results for a circular cone in’
which case aIe = 1, Then the difference between odd and even symmetry
disappears. The mode-numbers in Table 3.2 have also been calculated
from equations (3.16), (3.18), (3.20) and (3.22). The results given in
Tables 3.1 and 3.2 agree with those of [8] and [5], respectively.

In the Figures 3.la and 3.1b we have plotted examples of the normalized
transverse electric field of the O‘I‘E11 and OTM11 modes. The examples
pertain to an elliptical cone with the parameters eo = 20° and ag = L.
The mode-numbers V are obtained from the Table 3.1. Note that the

transverse fields in the yz-plane do not wvanigh at the boundary.

A comment on the convergence interval of the series representing the
nonperiodic Lamé functions is now in order. According to [7, Theorem
3.3, p. 59] the series given by (2.115)}-(2.118) converge uniformly on
any closed subinterval of the interval 0 € 8 < 2 arz:i:.am{(1+k)/(1—k)}!5 =
Gc‘ Because 0 € k ¢ 1 it is found that SC 2 /2. Cones described by

8 = 60 < 7/2 will be dealt with, so Gc > ed and the series represented

by (2.115)-(2.118) suffice in the present study.

For an outward propagating TE mode the time-average power-flow in the
radial direction through a spherical cap S, described by r = X r
08¢ GQ, 0 € ¢ < 2w, is given by [2]
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8, (degr.) oTt11 eTE11 ™y T
5 19.7930 10.3396  38.7951  28.3210
6 16.4242  8.5711 32.2595  23.5592
7 14.0198  7.3135  27.5932  20.1642
8 12,2183 6.3752  24.0953  17.6233
9 10.8186  5.6497 21.3761  15.6516
10 9.7002  5.0729 19.2022  14.0784

11 8.7863  4.6043  17.4247  12.7948

12 8.0258  4.2167 15.9444  11.7283

13 7.3832  3.8913  14.6929  10.8287

14 6.8332  3.6148 13.6210  10.0602

15 6.3574  3.3772  12.6927  9.3964

16 5.9417  3.1712  11.8812  8.8177

17 5.5756  2.9911 11.1658  8.3089

18 5.2507  2.8325 10.5304  7.8583

19 4.9605  2.6921  9.9624  7.4566

20 4.6999  2.5669  9.4516  7.0965

21 4.4645  2.5549  8.9900  6.7719

22 . 4.2508  2.3540  8.5707  6.4780

23 4.0562  2.2629  8.1882  6.2106

24 3.8781  2.1802  7.8378  5.9665

25 3.7146  2.1050  7.5158  5.7427

Table 3.1. Numerical values of the mode-numbers Vv as a function of
60, for the odd and even TE,y and TMll modes in a perfectly
conducting elliptical cone § = 60, with a_, = k.

rQ

P =%Re [[ExB*.e as=%re [[E xH*e as, (3.25)
g r

where 4§ = ri hg hg a0dd. P can be expressed as an integral of the
square of vh(6,¢), which represents the transverse dependence of the
potential wh of the TE mode, as will be shown now.

From equation (3.9) we find that the transverse fields, expressed in

terms of the potential wh' are given by

E, = Jwu & x Vtwh . (3.26)
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60 (degr.) TEll TM11 Bo(degr.) TE11 TM11
5 20.6155 43.4110 16 6,1481 13.2304
6 17.1026 36.0935% 17 5.7637 12.4239
7 14.5943  30.8669 18 5.4224 11.7070
8 12,7139 26.9471 19 5.1174 11,0657
9 11.2522 23.8985 20 4,.8432 10.4885

10 10.0835 21.4598 21 4.5958 9.9664

11 9.1279 19.4645 22 4.3706 9.4918

12 8.3322 17.8019 23 4.1656 9.0585

13 7.6594 16.3952 24 3.9779 8.6613

14 - 7.0832 15,1895 - 25 3.8056 8.2960

15 6.5843 14.1446

Table 3.2. Numerical values of the mode~numbers v as a function of 90,

for the TEII and 'I'Ml1

circular cone 8 = 90.

modes in arperfectly conducting

13
H, = oo Vo (). (3.27)
Here wh is given by either (3.13} or (3.14), which are shortly written

as

_(2) .
wh = hv (k*r) vh(9,¢), - ) (3.28)
where vh(6,¢) represents the transverse dependence. Then equations

(3.26) and {3.27) reduce to

= (2}

= 3 *
E_ = M, hv (k*r) ér x Vt vh(e,¢), {3.29)

J1d @
B = T35 {x b (k*r)} Y, v, (0,6). , (3.30)
Inserting {3.29) and (3.30) into (3.25) and using (2.75) and (2.85}, we
arrive at

0 27
TE

1 Fp o2 .
P =3 vivtl) g3£ g v, (8,6) h¥ ny asdd. (3.31)
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Fig. 3.1a. Normalized transverse electric field, in the xz-plane {—)

and the yz-plane ({(~=-=), of the OTE mode in a perfectly

11
conducting elliptical cone; 0 = 20°, aq =4 0= 36.05°.

Fig. 3.1b. Normalized transverse electric field, in the xz-plane (—)

and the yz~plane (~~~)}, of the oTM mode in a perfectly

11
conducting elliptical cone; 8 = 20°, a =4 0= 36.05°.
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In the same manner we evaluate the radial power-flow of an outward
propagating TM mode. The relationships between the transverse fields
and the potential we are found from equation (3.10) to be

13
=7 Ve () (3.32)

14

t

H = ~jue erxvtwe. (3.33)
Here we is given by either (3.13) or (3.14), which are shortly written

as

1)

. @)
e = hv (k*r) ve(0,¢), (3.34)

where ve(9,¢) represents the transverse dependence. Substituting this

expression into (3.32) and (3.33) we find

19 (2)
¢ ?a—f{rhv x*r)} Vv (6,0, (3.35)

= - s (2},
H = -jue hv (k*x) érth ve(8,¢}. {3.36)
Inserting (3.35) and (3.36) into (3.25) and using again equations
(2.75) and (2.85), we find

6 2w

1 -1 7, 2
P =5 vV Z ({g"e(e’d’) h*h* d8d¢. (3.37)

"2

07

‘Note that PfE and PSM are independent of r. Hence, the mode power is

preserved as it should.

Some brief remarks about the orthogonality (in integral sense) of the
field components are in order. For any two different modes the radial
field components are orthogonal by equation (2.73). The transverse
electric fields of two Qifferent TE or TM modes are orthogonal by
equation (2.74). The transverse electric fields of a TE and a T™™ mode
are orthogonal, which can be proved by using equations (2.62) and (3.12).

These statements algo hold for the transverse magnetic fields.

Finally, we point out that the transverse fields inside a perfectly
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conducting cone do not satisfy the relation Et =+ Zo H, . Hence, the

fields at the aperture of a truncated cone do not satisfytthis relation
either, and as a consequence the radiated field in the far zone is not
circularly polariged. To show this, we start from the expressions (3.15),
{(3.17), (3.19) and (3.21) for the field components of the TE and TM

modes. For TE modes the transverse field components are related by

193 - -

T 3% (rEt) = Jwu érth, {3.38)
whereas for TM modes one has

L3 (v ) = -jue &.xE (3.39)
¥ 9r t o r t° ®

Clearly, neither of these relations is compatible Wwith Et = i'jzoﬁt'
Next we observe that for a combination of TE and TM modes the trans-

verse field components are related by E

1

e
boundary conditions on ¢e and ¢h; see (3.11) and (3.12). Therefore, the

e = 3 Z° Ht, if and only if

=+ 3 ZQ wh' However, the cone under consideration imposes different

relation Et =+ 3 zo §t is not satisfied by the transverse fields in-
side a perfectly conducting cone.

in the next section we consider the elliptical cone with an anisotropic
boundary that imposes identical boundary conditions on ﬁt and ﬁt. In~
side such a cone there do exist electromagnetic field solutions which
satisfy the relation Et =+ 3 Zo ﬁt.

3.3. The elliptical cone with aniscotropic boundary

Fields for which Et =+ 3 Zo ﬁt can be supported by devices with trans-
versely corrugated boundaries as it is known, for instance, from the
theory of circular conical horns [5] and of elliptical-cylindrical
waveguides [6]. In the analysis of the latter devices the influence of
the corrugationgshas been accounted for by impedance boundary conditions
that involve constant radial (longitudinal in the waveguide case) and
circumferential impedances. This model of the corrugated boundary

is called the anisotropic surface-impedance model. For a circular
conical horn with corrugations of proper depth and width, the boundary

conditions are-



P < o 2

E, =2H {3.40)

¢

E = Z (3.41)

d}l d)tEr'

where r and ¢' are spherical coordinates. For an elliptical waveguide

with proper corrugations, the boundary conditions read

E

[}
=
2]
-

2 2T (3.42)

E

]
o3
e

n B (3.43)
where z and N are elliptical-cylindrical coordinates. The number of
corrugations per wavelength must be sufficiently large. The corrugation
depth must be approximately a quarter of a wavelength and the width of
the dams must be smali compared with the width of the corrugations.

For a corrugated elliptical cone 0 = 60 we employ the same anisotropic
surface~impedance model. Thus our starting point is that the influence
of transverse corrugations of proper width and depth can be approxi-

mately described by the boundary conditions

Er = ZrH (3.44)

@’

=2 Hr' (3.45)

Bp = %

at 8 = 80; here, r,8,¢ are sphero-conal coordinates. We restrict our-

¢

result we then arrive at the boundary conditions

selves to the idealized case of impedances Z, = 0 and Zr =, AS a

E¢ = Q, ZOH¢ = 0, (3.46)

Er # 0, Zogr # 0. . ) (3.47)

We now prove that these boundary conditions are only satisfied by
specific hybrid fields, having both electric and magnetic field
componenté in the radial direction. The proof is analogous to that
given in the investigation of the anisotropic elliptical waveguide [6].
First we prove that neither a pure TE-field nor a pure TM-field
satisfies the boundary conditions (3.46). From (3.15), together with
(3.46), we find for a TEcm—field
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d (m) - (m) -
?e{l‘cpv(e)}e 0, chv(eo) 0. ‘ (3.48)

o
These two conditions are not satisfied simultaneously. Likewise it can
be shown that a TE_ -, TM - or TM_-field does not satisfy (3.46).

sm cm sm :

Next we consider a TEC—field derived from the potential

(@) T (m) (m) ‘
P, =h)" (k*r) mZO <, chv(e) L., (). (3.48a)

Then the boundary conditions (3.46) give rise to the set of equations

Lo+

I cnSs Tom®} 20 @) =0, © (3.49)
n=0

[«

I e, o) S o= o. (3.50)

w0 ™ cpVv o as

By use of the orthogonality relation (2.102) we derive from (3.49) the

conditions

cn 35 (o (®)} L O e ot (3.51)
o

which obviously are not satisfied. Similarly it can be shown that a

TES-, TMC—, or TMs—field does not satisfy (3.46). Even the sum of a

TEC- and a TEs-field, derived from the potential

(2) (k*r) { Z o (m)(e) L(m)(¢) + z s (m)(e) L(m)(¢)} (3.52)

U} h
h m=0 m=1 © st

does not satisfy (3.46). Now the boundary conditions (3.46) give rise

to

0

d (m) (m) (m) (m) -
mZO ) E{ch\)‘eo’}l‘ () + 2 s —{Lspv(eo)}L (¢) = 0, (3.53)

and
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= o
) (m) d (m) {m} a {m) -
mZO n z.cpv(eo) E{Lw "} + mZ1 s, Lspv(eo) W{st (1} = 0. (3.54)

From (3.53), together with (2.105), we find

d (m)
<y 55»{LC§Q<6>} . =0, m=0,1,2,..., (3.55)
[»}
d_ . (m) = =
Sm d@ {Lsp\)(e)} 6 Oy m = 11213l--°r (3.56}
o]

which clearly are not satisfied. Analogously it can be prowved that the
sum of a TMC— and a Tmsufield will not satisfy (3.46).

From the analysis above we conclude that neither a TE-field nor a TM-
field satisfies the boundary conditions ({3.46).

We now consider the superposition of a TE-field and a TM~-field. We
start from a TEC-—field plus a TMC-field, derived from the potentials

o
-1 (@) (m) (m)
Uy = %, b k*r) ] oe Lopy(®) Tgy (017 (3.57)
m=0
L@ 3 (m) (m) ' ]
b, = b, (k*r)m.z-oczm chv(e) L, @ {3.58)

respectively. In this case the boundary conditions (3.46) give rise to

o0 o ‘

1 d ;. (m m . 1 @ oy A o,y o

hE mZO “1m aﬁ{chvteo) }I‘cv @ hé =0 €om chv(eo) ﬁ{ch @} =0,
{3.59)

and

x [~
1 (m) a ;. (m 1 4 . (m) {m) _
E;‘: mzc clm ch\)(eo) E{Lc\) (‘N} M hg mZO c2m E{ch\)(eo) }Lc\) (¢) = 0.
3 (3.60)
Here we have made use of
14a (2) N (2)
Ta {m\; k*r)} » k*n " (k*r), (3.61)

which is valid for k*r >> 1, hence for points not too close to the apex
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of the elliptical cone. From (3.59) and (3.60), together with (2.102) and
f a {L(m)(¢)} L(“}(¢) ap = 0, (3.62)
o @

we find clm = o = 0 for every m. Hence, the superposition of a TEc~
field and a TMc~fie1d does not satisfy the boundary conditions (3.46).
Similarly it can be shown that the sum of a TEs-field and a TMS-field

will not satisfy (3.46).

Next we deal with the two remaining possibilities, viz. the super-
position of a TE ~ and a ™ -field, and the superposition of a TE -
and a TM —fleld. We will show that in these two cases non-trivial
sclutions exist for the wave propagatlon preblem in anisotropic
cones, We start from a TEC- pluszaTMs-fleld. The field components due
to the TEc~part are derived from the potential

ozt a2 g Z a_ L™ (g L P ' (3.63)

O . m Y
hY =0 Ccp

and those due to the TMs—part are derived from the potential

1_ (2
¥, = b ) Z b L

m=1

(m) (3.84)

(8) L (¢).

. The following expressions for the field components apply, taken from
(3.15) and (3.21):

I_1 (2) (m) (m)
E, =Zv(v+1) h o™ (k*1) 2 b L (0) L (d), (3.65)
m=1
I_ =3k @)y T s 1@ e L
Ey h$ h™ (k*r) 1 a cp\)( ) —6{ (1 +
1 (2) S od ()
+ T dr {rn* e*r)} mzi m E§{L ) 8y} L Y@y, (3.66)
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I k* a {m
E¢=i—§— Y x*r) Z a, 55 o @) 1 (g +
m=0
1 4 2
* iy 02 ko } mz n Lapy(®) 35 (Lw) @)}, (3.67)
z 5 =L yur) n'? (ko) E a 1™ (g 1™ (4 (3.68)
or r Y =0 m - cpv ’ .
o
I 1 2
z By = ?55_'5? e ten} ] e Sl @) 1% @)+
m=()
jk* . (2) s m) ., & (m}
+ P h * .
hi; , (k*x) 2 b Lspv(e) % {L. 7}, (3.69)
1 a
on¢ i {rh (k*r)} z a, L(m) (6) a—(’;{L(m) 3} -
¢ m=0
- 3T B2 ey Gf b d—{ (8)} L(m) (¢ (3.70)
hg v mei B 48 ! ’ °

where it has been used that wuo = k*Zo and weozo = k*. A field solution

of the form (3.65)-(3.70) which satisfies the boundary conditions (3.46),
is called a I-mode. Because of its composing parts, TE - and T™M -flelds,
it is evident that it is an odd symmetric hybrid mode. We now remove the
Hankel function derivatives by use of (3.61), which is valid for k*r >>1,
Then, by imposing the conditions (3.46) on the field components (3.,67) and
(3.70), we find

by a g (m) S @ .. d g (m
m m
8} L (9 - ] b L8 L, 9} =
h* Z % cpv{ o “. Tm Tspv o ag
8 m=0 m=1 (3.71)
and
o h*
{m) (m) ¢ a_ . (m) -
mzo a cp\}(eox —d¢ {n, )} + s mZ1 b 35 (L sp\)(eon L Yi¢) = o.

(3.72)

The derivatives of the periodic Lamé functions are expanded as
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(m) v 2. 2 =% _(n) ‘
d‘b{:.sf: W= ] r_(-ksin’$)7 L (), (3.73)

n=0

2

) oyt = Zq (1-k+%sin’0) ™ 1.2 49, (3.74)

a¢{L

where, by use of the orthogonality properties {2.105},

Mg (m) (n) 2w -5 ()

t =] ailey @I L oy (@) ad/ f (1-k* %sin’$) {r ] 2 (4)Y2a6, (3.75)
4]
2 2%

G = | 55 11 p® @0} 2 wrags [ ks’ 00 9012 ag. (3.76)
0 0

We note that rmn # fom and 9n # qnm' From (3.71) and (3.72), to-
gether with (3.75), (3.76), and the orthogonality properties (2.105),

we find

o

a2 2 (1) (@) .
ai(l k" cos B ) {chv(9°ﬁ~— Z n Sp\)(60) rge i

0,1,2,..,43.77)

(2o

2

2, B 4a (m)
bi(l-k cos 90) a§{L

(i) -
(6 )} rn cp\)

spv Vo (90) Qe b= 1,2,... (3.78)

m-O

The unknowns in these eguations are the coefficients a and the

i Py
mode-number V. We now introduce the vectors a = {ao, a . az,...] ,
B = [b,, by, bB,...}? and the diagonal matrices C, C', S, S' with

diagonal elements

_ (D) N S (i)
¢y = cpv(eo), ¢}, = (1-k"cos"® ) —w{L (9)}1
o (3.79)
=) ,___2 2 (i)
Syy = Spv(eo), s!, = -{1-k"cos“0 ) ——{Lspv(e)}]e .
(o]
and the non-symmetric matrices R and Q defined by
R = {rmi} , 0= {qmi} . (3.80)

Then equations (3.77) and (3.78) can be shortly written as
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cC''a=R 8b, ’ (3.81)

8'b = QT c a, (3.82)

where T means transposed. Egquations (3.81) and (3.82) clearly show
that the TE~ and TM-parts of the hybrid mode are coupled. With the

abbreviations (C')“1 RTS = A and (S')-l QTC = B we find

BAb = B, {3.83)
ab = a, (3.84)
or equivalently

AR = a, ’ {3.85)
Ba = b. ' (3.86)

Consequently, the problem of wave propagation in an elliptical cone
with anisotropic boundary has been reduced to the problem of finding
the numbers v for which an infinite non-symmetric matrix, namely, the
matrix  BA, has an eigenvalue equal to 1. The corresponding eigen-—
vector then represénts the vector b, whereupon the vector a is de-
termined from (3.84). Some aspects of the numerical calculation of v,

a and B, will be discussed at the end of this section.

So: far we have proved the existence of the odd symmetric hybrid mode,
denoted by I-mode. We now show that a second type of solution, the so-
called hybrid II-mode, is possible. The II-modes are cbtained from the
superposition of a TES— and a TMc—field. These fields are even
symmetyric., Hence, a II-mode is even symmetric. The field components
due to the TEs-part are derived from the potential

¢§I - z-i h(Z}

" ( )
m

(m)
b, SPV(G) st %), (3.87)
=1

and those due to the TMc~part are derived from the potential

RN ¢

T (m) (m)
e N {k*r) a L {8) L

$). (3.88)
mo | CPV cv
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We note that

2 UL = L, (3.89)

P
= -z ¥, | (3.90)

The following expressions for the field components of a II-mode are

obtained from (3.17) and (3.19):

I v (m) (m)
E - =-o v(v+1) h (k*r) a, ch\)(e) L. (), (3.91)
=0
1T ik* . (2) (m) a_ (m)
E,;” = - I (k*r) 2 b Lo (8) Z {n ' (®} -
) h$ 1 spV da¢
1 a (2) d (m)
- % o (xh)" k) } 2 a 55-{ L@} L Yo, (3.92)
0 m=0
I (2) p a ( ) ()
m m
By = hg (k*r) Z b 5 (Lgn, @} Ly ) -
1 4 (2) (m) a (m)
zﬁg ar { h (k*r)} mg - cpv(e) % {L (M}, (3.93)
Ir _1 (2) (m)
2 B~ = V(1) h” (k*r) m§1 By Lgpy(®) L Y, (3.94)
IT _ 1 4 (2) - (m) (m) _
zZ Hy = mh¥ ar {rh ' (x*r)} Z b, 35 L <e)} L, (®)
m=1
(2) p m) o, 4 (m)
m
(k*r) a_ L (8) L't , (3.95)
h$ m=0 @ cpv ap
Ir _ 1 4 (m) a_ (m)
ZEy = Th dr {rh ) k*n) } Z by Tgpy (0 & L'} +
¢ m=1
k* L (2) d (m) (m)
+ g* L (k*) X a3 Cop @} L (0). (3.96)

(]
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Note that the field components of I~ and II-modes are related by

E" = Z H , (3.97)
[0}

ET = —ZOH . (3.98)

BE- =0, Z H~ =0, at 0 = eo, (3.99)

from which the unknowns v, a and b must be determined. Using (3.,97)
and (3.98), the conditions {3.99) are found to be eguivalent to the

boundary conditions for the I-mode, viz.
= 0, at 6 =06, (3.100)

Consequently, it has been found that the wave propagation problem in
an. anisotropic elliptical cone admits two types of solutions, viz. odd
and even symmetric hybrid modes, that have pairwise identical mode~
numbers v, identical vectors a and identical vectors b. At this point
it is stressed that the hybrid modes have been found subject to (3.61),
which is valid for k*r >> 1.

Some remarks are now in order; throughout it is understood that k*r >> 1,

such that the approximations (3.61) and (2.84) apply.
1. The transverse electric and magnetic fields are perpendicular,

=I , =I =11 . =II
Et L Ht, Et L Ht . (3.101)

2. The transverse electric and magnetic field components are related
by

T_ I T_ .z

Ee z°a¢, E¢ zoae, (3.102)
IT _ I IT _ _, 4T

Ee = ZOH¢ R E¢ zone R . {3.103)

or egquivalently.,
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Al =8 xB, zHT=g& xBT. (3.104)
ot ¥

From (3.102} and (3.103), together with the anisotropic boundary
conditiong (3.46), we deduce that all transverse field components
vanish at 8 = eo.

The time-average power-~flow in the radial direction, through a
spherical cap § in the cone 0 = 80, ig derived from (3.25). The

derivation in the case of a hybrid mode runs along the same lines

as that of PZE and PfM in (3.31) and {3.37), respectively. As an

example we now determine the power-flow Pz of a I-mode. Let

v = vp/n (k*r), (3.105)

v (k*r), V: = ﬁ)ifhm

v

in which wi and wz are given by (3.63) and (3.64), respectively.
From (3.29), (3.30), (3.35) and (3.36), together with (2.84), we
then find that the transverse fields expressed in terms of VI and

h
I .
ve, are given by

=I_ ., -1 I_ I s %, _ vl
E,=3Jr (z & x Vtvh Vt v,) exp{-j (k*r ~§-ﬂ)}, (3.106)
eyt wvlsz e xvvh) expl-i ktr - Zlml. 3107
t th =] r te 2

By substitution of (3.106) and (3.107) into (3.25) and by use of
(2.62), one is led to

27 8 2w

8
o o]
1 12 1 -1 1,2

] = 22 {}; glvtvh hghraad + 5 2 ({ éwtve] hjhsadag +

R (vI)}I ag (3.108)
0 9

From (3.25), together with (3.97) and (3.98), we find that the
power-£flow Pix of a II-mode is equal to the power-flow Pi of a
I-mode. '
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5. If a I- and a II-mode, differing in phase by 900, are combined as
(&, &) +3(E ", &) = (E, ), we find that the total field satisfies
E= T jzoﬁ. This is exactly the kind of field we need for circular

polarization applications.

6. Thus far we have dealt with outward propagating I- and II-modes. The
analysis for inward propagating modes runs along the same lines. Ex-

pressions for the inward propagating modes are obtained when replacing
{2) 1)
h,

o (k*r) by hv (k*r) in (3.65)-~{3.70) and (3.91)-(3.96). Provided
k*r >> 1, the boundary conditions (3.46) then lead to the set of
equations
BAB' = b, (3.109)
ab' = -a°*, . (3.110)

or equivalently

aBa'=a', , (3.111)
Ba' = <b'. ' (3.112)

The primes on the vectors a} b} have been introduced to dis-

tinguish them from the vectors 5, 5, pertaining to outward propa-

gating modes. We note that (3.109)-(3.112) involve the same matrices

A and B as (3.83)-(3.86). Hence, an inward propagating mode and its
outward propagating counterpart have identical mode-numbers V. From
(3.83)~(3.84) and (3.109)-(3.110) we find that either the vector a

or the vector b changes sign if the propagation direction of a mode

is reversed. The transverse field components of the inward propagating

modes are related by

.ZH = -8 % E_. . (3.113)

We now investigate (3.83) and (3.84) in more detail., On closer examin-
ation of the expansion coefficients rmn, qmn' given by (3.75), (3.76),
we find that
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£ = qmn =0, if min is odd, (3.114)

which is due to the symmetry properties of the simple-periodic Lamé
functions; see Appendix 3.4. Consequently, the matrices R and Q, as
well as the matrices A, B, AB and BA, are so-called chessboard matrices.
This implies that (3.83) can be split into two sets of equations, one
for the eigenvector [b2, b, b6,...]T and one for the eigenvector
<[b1, b3, b5' ...]T. Hence, the problem of determining the hybrid I- and 1I-

modes separates into independent problems for the modes of period m in ¢
and for the modes of period 27 in ¢. This can be seen as follows. The
number m+n is even if both m and n are even or if both m and n are odd.
In the first case the modal soclution involves the simple-periodic Lamé
functions of the classes I and III having period 7. In the second case
the modal solution involves the simple-periodic Lamé functions of the
classes II and IV having period 27.

It can be shown that the mcdal fields of period w, when used as the
fields at the aperture of a truncated cone, give rise to radiation
patterns with a dipin the forward direction. Applications that utilize
this property will not be dealt with in the present study. Henceforth,
we restrict the investigation to the modes of period 27 in ¢. In
accordance with [1] the I- and II-modes of period 7 in ¢ are labeled
OEB and eEH modes, respectively, and those of period 2% in ¢ are
labeled oHE and eHE modes, respectively; here the subscripts o and e
refer to odd and even symmetric, respectively, as defined in (3.23)
and (3.24).

For the HE modes we have numerically solved (3.83) and (3.84). The
matrix BA and the vectors a and b are truncated to a finite size N,
where the choice of N depends on the mode and on the aspect ratio 2 .4
of the cone under consideration. The lower the aspect ratio the higher
the size N must be. In the most important range of the aspect ratio,
% top%q we have used a size N ranging between 6 and 9.

The elements of the matrices contain nonperiodic Lamé functions, their
derivatives, and integrals of the simple~pericdic Lamé functions. Nuﬁe-
rical procedures developed by Jansen [7] have been used for the com-
putation of the Lamé functions and their derivatives. The series, re-
presenting the Lamé functions, have been truncated. Approximately 25
terms suffice for the computations if the aspect ratio is in the range
mentioned above. Standard numerical procedures have been used for
determining the eigenvalues of the matrix BA as a function of the para-

meter v. In this manner we have ascertained intervals for Vv, in which BA
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has an eigenvalue A egual to 1. Then, using a rootfinding procedure we
have determined, with a high degree of accuracy, the value of v such
that A-1 = 0. Furthermore, the corresponding eigenvector has been com-
puted. Having obtained v and b, we can determine a and all the field

components of the mode under consideration.

As an example we present in Table 3.3 the numerical values of v as a

6" for the odd or even symmetric HE11 mode in

anisotropic elliptical cones. The results for the circular cone

function of 80 and a

(ar6=51), computed by means of the theory for the elliptical cone in
the manner mentioned above, agree with those in [5], [1], which have
been obtained from a simpler theory. In the Figures 3.2a-b we have
plotted the normalized transverse electric field of the °HE11 mode

for some anisotropic elliptical cones, whereas in the Figure 3.2c

the same has been done for the OBE31 mode. The corresponding numerical
values of the elements of the truncated vectors a and b have been

listed below these figures.

In conclusion we summarize the main results of this section. The problem
of wave propagation in a corrugated elliptical cone has been sclved by
use of the idealized anisotropic surface-impedance model. It has been
proved that only specific fields satisfy the anisotropic boundary con-
ditions. These field solutions are valid at points not too close to the
apex of the cone. They have both electric and magnetic field components
in the radial direction, and they are called hybrid modes. Odd and even
symmetric hybrid modes have been found and it has been shown that these
modes can be combined to yield an electromagnetic field (ﬁ, H) that
satisfies the relation E = i.jzoﬁ.

The problem of determining the hybrid modes has been formulated in

matrix notation. The unknowns of the latter problem are the mode-number
v, and the vectors a and b. It has been found that the odd and even
symmetric hybrid modes have pairwise identical mode-numbers v, identical
vectors a and identical vectors b. The unknowns v, a and b have been
numerically determined and the results have been presented in tables and
figures. For given v, a and b, the electromagnetic fields inside a cone
can be determined. In the calculation of the radiation of a truncated
cone we will assume that the electromagnetic fields at the aperture of the
cone are the same as would exist there if the cone extended to infinity.

Radiation computations will be dealt with in the next chapter.
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9;\ as 1 1/2 1/3 1/4 0.1 0.05
5 27.0739  21.2033 19.7893 19.1911 18.3070 18.1079
6 22.4844 17.6086 16.4392 15.9479  15.2397 15.0901
7 19.2071 15.0443 14.0507 13.86367 13.0544 12.9381
8 16.7499  13.1240 12.2632 11.9076 11.4195 11.3265
9 14.8395 11.86331 10.8763 10.5664 10.1508 10.0749
10 13.3119  10.4426 9.7691 9.4966 9.1383 9.0750
11 12.0626 9.4706 8.8665 8.6238 8.3117 8.2582
12 11.0221 8.6623 8.1162 7.8988 7.6243 7.5785
13 10.1422 7.9523 7.4832 7.2872 7.0440 7.0042
14 9.3885 7.3968 6.9423 6. 7646 6.5476 6.5128
15 8.7357 6.8926 6.4750 6.3132 6.1183 6.0875
16 8.1649 6.4527 6.0675 5.9195 5.7435 5.7161
17 7.6617 6.0657 5.7092 5.5733 5.4135 5.3889
i8 7.2148 5.7227 5.3917 5.2665 5.1208 5.0986
19 6.8152 5.4167 5.1087 4.9929 4.8595 4.8394
20 6.4560 5.1422 4.8548 4.7475 4.6248 4.6065
21 6.1313 4.8947 4.6259 4.5262 4.4130 4.3962
22 5.8364 4.6704 4.4186 4.3256 4.2209 4.2054
23 5.5674 4.4663 4.2299 4.1431 4.0458 4.0315
24 5.3212 4.2799 4.0576 3.9764 3.8858 3.8725
25 5.0949 4.1099 3.8997 3.8235 3.7389 3.7266

Table 3.3. Numerxical values of the mode-numbers v as a function of

60 (degr.) and érB' for the HE,, mode in anisotropic

11
elliptical cones.
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9'(degr}

Fig. 3.2a. Normalized transverse electric field, in the xz-plane (—}

and the yz-plane (---), of the HE mode in an anisotropic

11
s o [}
elliptical cone; ag = 1/3, 90 3.37°, eé = 10",
= 29.5328.
The numerical values of the elements of the truncated

vectors a and b are

a, = -6.6380.10° 1 , b, = 9.9283.10 -t
a, = 3.2634 - b, =-1.1927.10"} ,
3 -2 3 -3
a, =-5.2264.107° , b, = 2.4594.107 ,
a, = 3.0084.10°% b, = -4.1047.10 -6
ay = -8.1008.10°° , by = -2.1196.10 -7,
a,, = 3.4782.10°° , by, = 5.4525.10 -8,
N -1.1035.10°° , by, = -1.4557.10 -8,
a,_ = 3.2784.107 , b 3.7113.107° ,
15 T 1o
ay; = -7.8957.107° , b = -7.8371.107'°.
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9’ (degr)

Fig. 3.2b. Normalized transverse electric field, in the xz-plane (—-)

and the yz-plane {=-~), of thecFE mode in an anisotropic

11
i . = . = o = o

elliptical cone; a4 1/2, GO 207, 60 36.057,

v = 5.1422.

The numerical values of the elements of the truncated

vectors a and b are

a, = 7.2311 ., b, =-9.9900.107"
a; = 2.4916.10:; » by = 4.4756.10:§ .
ag = -1.4311.107° , by = 6.9231.107° ,
a, = -2.2483.107° , b, = 9.7053.10"" ,
2, = -1.2682.10:; , by = 1.8333.10:?0 ,
a = -1.7738.10_9 » by = ~6.7o75.1o_11 ,
ay = 1.7721.1040 : by= 7.7768.10_12 ,
a = -2.0433.10-11 P b= -7.5356.10_13 ,
a;, = 2.0559.10°  , b, = 6.6897.10 .
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40

/

Fig. 3.2c. Normalized transverse electric field, in the xz-plane (—)

and the yz~plane (---), of thecﬁE mode in an anisotropic

31
i . = = ° Vo= °

elliptical cone; ag 1/2, 80 207, 90 36.057,

v = 99,3115,

The numerical wvalues of the elements of the truncated

vectors a and b are

a, = -7.4668.10° %, b, = -5.3613.10° "
a, = 3.4378 L b, = ~8.4394.10:; .
ag =-1.3546.10" , b, = 1.8273.10 .
a, = —4.7788.10": » b, = 8.4286.10°°
ag = -1.1697.10-7 r by = 3.8788.10_; ,
a,;; = -1.6194.10_9 » b= 5.9187.10_12 ,
a5 = -3.6537.10 " , b .= 9.1656.10 .

5 = 1.0602.10719, by = 5.8942.10712 ,
a;, = -1.3822.10" 1, by, = -a.2397.10713 |
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3.4. Appendix

Through integration by parts and by use of the periodicity properties
of the periodic Lamé functions, it is easily seen that the numerator

of (3.75),and that of (3.76) with m and n interchanged, are opposite.Hence,
to prove (3.114) it is sufficient to verify that rm = 0 ifm+ n is

odd. The numerator of expression (3.75) for rmn can be written as

27

[ )@ §5 0l @r)as - f Loy @ S5 @))ag +

0
] (m)

+ [ L ) (o+m) E&'{L ™ (4+m) Yas. (3.115)
0

For even superscripts we have (see equations (2.95)-(2.98)),

(n) _ . (n)

ch (¢) = ch (p+m), (3.116)
(m) _ . (m)

st () = L v (p+m) , (3.117)

and for odd superscripts one has

(n) = _.(n)

Lo, (9 = -L_ 7 (¢+m), , (3.118)
(m) _ (m)

st (¢) = (p+T) . (3.119)

Consequently, the two integrals in the right-hand side of (3.115)

cancel if m+n is odd, which proves (3.114).
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4. RADIATION CHARACTERISTICS OF ELLIPTICAL HORNS WITH ANISOTROPIC
BOUNDARY

4.1, Introduction

The radiation behaviour of truncated elliptical cones will be discussed

in this chapter. A theory is developed starting from the Kirchhoff-Huygens

approximation to the radiation problem and computed results will be com-

pared with experimental results.

In general, knowledge of the tangential fields on a closed surface sur-

rounding the sources of radiation is necessary and sufficient to determine

the radiation field outside the surface. In the Kirchhoff-Huygens approxi-~

mation it is assumed that the radiation field is completely determined by

the field distribution at the antenna aperture surface only. The aperture

field is thereby taken to be identical to some given modal field of the

infinite cone. This simplification of the radiation problem is permissible

provided the following assumptions are valid [2]:

1. the outside surface of the horn does not contribute to the radiation;

2. unwanted modes, possibly generated at the throat and at the mouth of
the horn, can be néglected.

To meet these assumptions it is required that

a. the horn antenna has been constructed from electrically good conducting

' material;

b. the horn flare angle is not too large, say less than 45 degrees;

c. the horn length is large in terms of wavelength.

Regarding the application of such horns in communication links it is
required that two orthogonal modes of one type of polarization (linear or
circular), give rise to identical radiation patterns. It will be found that

the elliptical horns with anisotropic boundary meet this requirement.

On the basis of the Kirchhoff-Huygens approximation the radiation field

of the horn is given by an integral representation in terms of the

aperture field. From this’integral repregentation general radiation
properties of horn aperture fields are derived, dependent on the properties
of the exciting modal field.

Two methods are employed for the computation of the radiation pattern of
the horn. Onevﬁethod,.the aperture-field integration method, is suitable
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to evaluate the radiating near-field and far-field patterns. In this
method the Kirchhoff-Huygens integral representation for the radiation
field is converted into a sampling-like representation by a series of
products of Presnel integrals and Fourier coefficients of the aperture
field.

In the second method, the wave-expansion method, the fields outside the
horn are expanded in terms of sphero-conal TE and TM modes. If the
aperture fields are known, the expansion coefficients can be determined
by matching the fields at the aperture and by using the orthogonality
properties of the TE and TM modes of free space. In principle this method
can be used to evaluate the radiation field at any observation point
outside the horn. On the other hand, from the computational point of view
the expansion method is more involved than the integration metheod, in
particular for long horns.

The well-known wave-expansion method for the analysis of circular horns
[5] is a special case of the expansion method mentioned above. In the
far-field region of circular horns the aperture-field integration

method and the wave-expansion method are mathematically equivalent [9].
In section 4.5 numerical results cobtained by the integration and
expansion methods will be compared with each other and with experimental

results.

4.2. General properties of radiation fields from elliptical horns with

anisotropic boundary

This section deals with general radiation properties of horn aperture
fields caused by the hybrid modes discussed in section 3.3. These
properties are best derived from the integral representations for the

fields outside the horn and the properties of the modes mentioned.

Consider an elliptical horn with an aperture S, (see Figure 4.1). The
aperture fields denoted by ﬁ(;a) and g(;a)' are the only sources of the
electromagnetic fields outside the horn. Then the fields ocutside the
horn are given by [11, p. 19}

== _ = - . -1 - - -
E(xy) =V x éf{nxx(ra)} G(x ,x )aS + (Jue )™ ¥ xV x gf{ﬁxﬁ{ra) YG(E ¥ ) s,
a a
(4.1}
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and

ﬁ(EP) =V, % éf{ﬁ x H(r )} G(Ep;?a)as -

a

-Gun )7t VR x éf{ﬁ x B(x,)} a(x .7 )as, (4.2)
a

with

_ _ emp(-3k*|z -t |)
Glr ,x_ ) = P 2
p a

an|z |
P a

in which (see Figure 4.1}:
;a is the position vector of the aperture point @,
Ep is the position vector of the observation point P,

fi is the unit vector normal to Sa at ¢,

?px ts the curl operator with respect to the coordinates of P.

Fig. 4.1. Horn aperture Sa and the observation point P.

If the horn aperture fields are related by ﬁ(fa) = i_jzoﬁ(fa), then it
is found from (4.1) and (4.2) that the fields at an arbitrary obser-
vation point P satisfy the relation ﬁ(fp) = i_jzoﬁ(fp).

Equations (4.1) and (4.2) express that the fields at P are obtainable
from the tangential fields on Sa' As the fields in the immediate
vicinity of the aperture Sa are not of interest in the present study,
it is assumed that k*ifp—fa] >> 1, where k* = 2n/A_ and A  is the free-
space wavelength. This assumption restricts the investigation to the

radiating near-field and far-field regions of the horn antenna. The
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first region extends from a few wavelengths away from the antenna to
2D /l , where D is the diameter of the antenna aperture. The second
region is commonly taken to exist beyond a distance 2D fk from the

antenna [8].

Carrying out the vector operations Vpx in (4.1) and (4.2), and assuming
that k*iEp»Ea[ >> 1, it is found that these representations simplify to
[11, p. 20]

E(r ) =2 k ff[f x{an(r )}*Z b x{f x{an(r 113 ——-exp(-jk*r yas,
T
Sa (4.3)

and

Z H(r ) = ~1—- ff{z # x{nxﬁ(r ) 2 x{f x{an(r )}}] "-'exp( Jk*r, yds,

5, "1 (4.4)

in whichr, = ¢ -r , r 1 = rl/rl.

p =Ty Ty < IE ], andE

In the radiating near-field and far-field regions further approximations
.can be made [11, p. 20-25]. The unit vector fl is replaced by the unit

vector EP along ;p' and r, in the denominator is replaced by rp. In the

1
exponential function a more accurate approximation of the distance Tes
denoted by ;1. must be used [7], [11, p. 22-23]. Explicit expressions for

?1 are given in subsegquent sections. Inserting the approximations into

(4.3) and (4.4) one finds

E(Ep) =, xﬁf[nxm(r )22 xlfufi(F ) Hexp (-3k*2, ) aS, (4.5)
2
and
Hir =-k* ‘-- B o s
ZOH(rp) z%;;-fpng[Zonxﬁ(ra)+fpx{an(ra)}}exp( jk*z )as. (4.6)
a

From these eguations it is readily seen that
ZOH(r ) = 2 xE(rP). (4.7)

It is recalled that if the aperture fields are related by E(E ) =
= +3Z ] H(r ), then the fields at a point P satisfy E(r ) = +32 H(rp).
From the latter relation and (4.7) it follows that E(rp) E(rp) 0,
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hence, subject to the approximations mentioned above, the field at P is
circularly polarized. If in the double-signed expressions the upper (lower)
sign applies, then the circular polarization is counter-clockwise (clockwise)
with respect to the direction of propagation. Thus, aperture fields '
that satisfy E(Ea) =+ jzoﬁ(za) generate purely circularly polarized
fields. Such aperture fields are obtained by a suitable combination of I-
and II-modes, as has been shown in section 3.3; in fact, this is a con-
sequence of (3.97) and (3.98). If these modes are utilized separately,

then the electric fields denoted by §I(§p} and EII(EP), respectively, are
geometrically orthogonal. The orthogonality is proved as follows. From
(3.97), (3.98), it is found that B (z,) = 2 B (r) and E' (r ) =-2_f ()

From thgse relations and (4.5)~(4.7) we then derive
Bl E) =2 xE(E, (4.8)
P p B

which implies the orthogonality

BB @) =o. (4.9)
P P
The properties of some power radiation patterns are now investigated by

considering Poynting's vector

- 1 - e -

P{r ) = = Re{E(r )xH*(r )} . (4.10)
P2 P P

From (4.10) and (4.7) one has

Br) = 5%; |E<§P)§2 2 (4.11)
tet B (F,) = B'(£)~3E (£,) and A (f)) = B ()-3f" (z,) be the
aperture fields of an a-mode. By use of the relations (3.97), (3.98),
it is found that these fields satisfy éa(;a) = jzoﬁa(Ea). The fields
Ea(rp) and Huirp), determined from (4.5) and (4.6), then give rise to
the Poynting vector

== _ 1. .=I,- 2, 1=II = |2
P(rp) = 55—'{|E (rp}! + |E (rp)i }fp

=L 151312

=z |& {rp)l £ (4.12)
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where use has been made of (4.8). Note that the a-mode generates radi-

ation fields that are counter-clockwise circularly polarized.

L= =I - -IT - - - =T - =II =
Let EB(ra) = B (ra)+jE (ra) and HB(ra) = H (ra)+ja (ra) be the aper-
ture fields of a B-mode. Using (3.97) and (3.98), it is found that these
fields satisfy EB(ra) = -jZOHB

for the a~ and the B-modes can be easily shown. Hence, these twe modes

(Ea). The equality of the Poynting vectors

give rise to the same power radiation patterns, while from the analysis
of the polarization properties it is known that the associated radiation
fields are oppositely circularly polarized.

From {4.11) and (4.8) it readily follows that the power radiation patterns
of a I~ and a II-mode are equal. The associated radiation fields, however,

are perpendicular to each other.

The analysis given above has revealed a number of interesting proper—
ties of the radiation fields of the elliptical horn with anisotropic
boundary. These properties are of great importance in telecommunications

applications.

4.3. Sphero-conal wave-expansion method for radiation computation

In recent years, corrugated elliptical horns have received a lot of
attention inview of their application as a primary radiator in satellite
antennas for the direct TV broadcasting service [16], [17]. The use of
such a horn for the illumination of a single offset parabolic reflector
has been described in [6]. The major axis of the horn aperture is 6A°
at the frequency 12 GHz, whereas the focal length of the reflector is
1.5 m. The reflector is in the radiating near-field region of the horn.

This region extends to approximately 1.8 m from the horn aperture.

One approach to the calculation of the radiation fields frow elliptical
horns employs a wave-expansion method. Consider an elliptical hornm with. -

a radial length ra, an opening angle eo, and an aspect ratio ar ; See

(2
Pigure 4.2, The observation point and the aperture point are described

by sphero-conal coordinates (rp, GP, ¢P) and (ra, 8, ¢}, respectively,
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(rp,sp,gop)

P

Fig. 4.2. Coordinates for the wave~expansion computations.

In the free-space region outside the sphere of radius X, any
electromagnetic field can be decomposed into TE and TM modes.

Since the region is simply connected, such a decomposition exists

by [10, Theorem 5.3, p. 86].

The expansion coefficients are determined by matching toc the given
tangential fields on the sphere of radius r = X, and by invoking the
orthogonality properties of the TE and TM modes of free space. Knowing
the coefficients, the electromagnetic fields outside the sphere of
radius r,  can be calculated. It is thereby assumed that on the sphere
r = ra, the fields are non-zerc only at the cap 0 £ 8 s 60 , in
accordance with the adopted Kirchoff-Huygens approximation; see section
4.1.

The equations needed for handling the computation problem stated above,
are now given. The assumed time dependence exp(jWt) will be suppressed
throughout. With reference to (3.3) and (3.4}, the decomposition for odd
symmetric fields, valid for rp z ra, reads

n) 1

(n) n) = .- (n} = .~
(-2, Vx{rpwcv (rp)rp}+bsv E;'VXVX{rpwsv (rp)rp}],

(4.13)
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32 H_ (r ) = { X [aég) 1* VxVx{rpwé::) (EP)ED}-b duxir ¢ }],
v=1 n=0 =

(4.14)

{n}

where a and b( n)
<y

are the coefficients of the odd symmetric TE and
TM free~space modes, respectively. These modes are derived from the

potentlals w(n) w(n)

, which are ‘solutions of the scalar Helmholtz
equation (3.4a) that are regular in the region rp 2 . 0 < Gp < W,

0 =< ¢p % 27. Such solutions have been determined in section 2.5.2, viz.

n) =, _ . (2) 4 {n) ) =, _ ., 2) ()
@CV (rp) = hv (k r )v (6 ,¢ )y ¢sv (rp) = hv (k*r )V (9 .¢ )y
(4.15)
. {n) (n} :
where Vo r Vg rare given by (2.158a-d).

Likewise, the decomposition for even symmetric fields reads

s (n) = - (n) (n) = -
E (r ) = v§1 nZO[-a Vx{rpwsv (rp);P}+-bcv E;VxVx{rp¢c“ (rp)rp}],

{4.186)

©

- {n) (n -
iz 8, (r ) \Ei nzaia 5 ;;Vx\?x{rp\bs {r )r }- b vx{r w (rp)rP}],

(4.17)
(n) (n} . .
where a_, and bcv are the coefficients of the even symmetric TEs and
TMC free-space modes, respectively. The definitions of odd and even sym-
metric fields are in accordance with (3.23) and (3.24), respectively.

Introduce the wvectors

=) =, _ (n). sln) = (n} = .=

Moo (rp) = V"{rp"’cv p}, Moy (rp) VX{rpxpsv (rp)rp}, (4.18)
={n) = . _ - g 2y 2 lg (n) - -

NC\J (rp) = k* VXvX{r w p rp}, NS\) (Z’P) k* xvx{rpwsv (rp)rp}'

(4.19)

then the expansions (4.13) and (4.14) can be shortly written as
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- - M (n) (n) (n)=(n) =
E(r) = } Z {a () + b MRz, (4.20)
o p val =0 cv P sy sV | p
- - % (n)= (n) (n) (n)
128 (7)) = ) Z {a_, (r ) + b (r '}, (4.21)

v=1 n=0

whereas (4.16) and (4.17) become

= = (n} (n) (n) (n)
E(r) =] ]flag (r ) +b (x )}, (4.22)
e p vel n=0 cv cv P
- (n)g (n) (R)z(n) =
iz 8, (7)) = v£1 n-E-:O{a oy (r p) + by By )T (4.23)

It can easily be shown that M and N are related by

(n) (n) -(n) enin)

UxM = ~R*NC, Vs = -k*N, (4.24)
[ea¥] cy sV 8V

g™ = ™ g o e @) (4.25)
o o\ sy B9

Using these equations it is readily verified thatthe fields represented
by (4.20), (4.21), satisfy

VxEO(rp) = -quoﬁo(rp), VxHO(rp) = 3m€°Eo(rp), {4.26)
and those represented by (4.22), (4.23), satisfy
Ver(rp}==-jmu0He(rp), VxHe(rP) = jweoEe(rP), {4.27)
which are Maxwell's equations.

By use of (4.15) the vectors M and N can be expressed in terms of the

spherical Hankel function héz)(k*r ) and the functions vég), v(n), viz.

sV
={n),= , _ .2} o (n)
Mcv (rp} = hv (k*rp)rpn(?t vcv (Bp.¢p), (4.28)
s{n) = -1 .
N {x ) = (k*r ) [v(v+1)h (k x5 )v (6 ,¢ )r +
ev p P

+

a (2) 8 (n) 4.29
ax, ER NN R R AR U B (4.29)
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R0) = (@)
Mgy (Fp) =07 (k¥ )r xV v (e IRE (4.30)

(n)
8v

(2)

N (k*r )-1[\3(v+1)h
P v

= (n) o
(:p) (k*rp)vsv (ep,¢p)rp +

‘“’(e 0 1r (4.31)

+

& @
drp {rphv (k*rp)} v.v

in which the vector operation Vpx has been partly carried out. According

to (2.158a-d) the functions vég’, vés) are products of Lamé functions,

ol Y (n n) - L(n) o) 1 ) (6. (4.32)
(8yrd) = Lp (8) Lo "(o)0 ven) (@0 ( o,

The vector operation V in (4.28) and (4.29) can be carried out by means

of (2.49c¢), thus 1eading to the following expressions for the vectors ﬁ(n)

(11)

and N .
~{n)= . _ 1 (2} * (n} 4 L(n) }}e +
Moy {rp} = h% v {(k*r p)L pv(e? d¢ (¢
L @D ey S (1 (“)(e )}L(“)(¢ e, (4.33)
*ax By p’ @ _ “cpv o'
2 P

=(n} - . _ v(vti} . (2)
New (rp) N k*rp h, (k*rp (3 )L (¢ )r

—1_ 2) s a ., (n) (), s

+ k*rphg drp {r h rp)} a%{:ﬁcpv(ep} }ch (¢p}ee +

(2 )(k*r yin i 6,)

(xz)
cov d¢ {L

a
Y orar ar Uphy

(¢ )le,. (4.34)
Pe p e
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Here, ;p' é@' é¢ are the sphero-conal unit vectors at the observation

point P; furthermore, hg = hefr, h; = h¢/r, where the scale factors
6' ¢, are given by (2. 9),n(2 10), with € = p' ¢ = ¢p. Expressions
for the vectors M(n) and Nsv are found from (4.33) and (4.34) when

replacing the subscrlpt ¢ by s.

To determine the expansion coefficients we make use of the vectors M

and N being orthogonal in integral sense. To show this, let Vir Vo be
(n) (n)
ey f st , v =20,1,2,...,

=0,1,...,Y, as given by (4.32). Furthermore, let §! denote the unit

any pair of functions from the complete set v

sphere described by rp =1, 0 < SP <m, 0% ¢p £ 21, Then, in view of
(2.163), (2.174a-c) and (2.176a-c), we have the orthogonality relations

}%(r xV V1 ). (r xV 2 140 = }# v vy vV Y aa = if vy % Vo (4.35)

Q Q

ﬁ;; xV v ‘V vy daQ = f{ v vy xV V2 T dQ (4.36)
p t1

Q

ﬁ{vlvzdﬂ =0 if v, * Vo (4.37)

Q

Together with (4.28) -~ (4.31) these relations imply that the vector

functions M(n) ﬁ;g), N(S), N(n) form an orthogonal system on the unit
sphere. It is easily verified that also the vectors M and ﬁt are

orthogonal in integral sense; here ﬁt denotes the transverse part of N.

As an example we now deal in detail with the expansion of the odd
symmetric fields of the elliptical horn with anisotropic boundary, in

the region r 2 r , 0£ 0 <m, 0<¢ < 27. The electric field E_ (¥ )
p a p p a a

i

tangential to the sphere r r. is taken to-be zero outside the
aperture of the horn. At the aperture, Ea(ra) is taken to be equal to
the tangential field of the odd symmetric I-mode of the infinite cone.
This tangential field has components given by ({3.66) and (3.67}, in
which the notation v for the mode-number is changed into V', to avoid
confusion. The modal field is assumed to have period 27 in ¢ {QHE mode) ,

hence the coefficients a, and b2m (with even subscripts) in (3.66) and

2m
(3.67) vanish. It is understood that the mode-number v' and the sequences
{a 1. {b }, have been determined in the manner described below (3.86).

2m+1 2m+1
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The expansion of éa(;a) according to (4.20) now reads

o [(v-1)/2] i
- z 2 {a(2n+1)ﬁ(2n+1)(z (2n+1)N(2n+1) )} (4.38)
v=1 n=0 cv oy a sv tsv
in which Nézz 1 denotes the transverse part of N(2n+i}, see (4.31).

To determine a specific expansion coefficient, multlply (4.38) by the
appropriate M or ﬁt and integrate the result over the sphere r = ra.

By use of the orthogonality properties of M and N, it is then found

that
(2n+1) Poon_ = (2n+1) (2n+1) -
= Fh%
. g g E (r).u o) Bph3aeas/ f f iM, )! hhjdeds,
(4.39)
and
eo 27
2n+1 - (2 +1) (2n+1)
o) g g B (F,).Foy' (7,)hghzasas/ f f K2 & ) |%n §n3a0ds.
(4.40)

The integral in the denominator of -(4.39) can be reduced to an

2
integral of the sguare of vévn+1); Indeed, by use of (4.28) and (2.166)

we derive

T 27T

f f lﬁ(2n+1)(E )‘2 h*ded¢ {h (2)(k*r )} I(2n+1) (4.41)
cy a 8¢

00

in which
1 T 20 (2n+1)

I(2n+ ) v(vi1) f [ v (9, @)} h h*d@d¢ {4.42)

cv 0o 8¢

The integral in the denominator of (4.40) is likewise reducible to an
{2n+1)
8V

(4.31), together with (2.166), we now find

integral of the square of v . By use of the transverse part of
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w27
= (2n+1) = .2 B -2 4 . . (2) 2 (2n+1)
({ é{ Ny () hghjaead = (k*r )" [glrh ™ (*r)}] . T
a
{4.43)
where
T 2%
12D L ey [ 2 (6,491 nrnrasag. (4.44)
sv 00 sv 8¢

To evaluate the numerators of (4.39) and (4.40), we insert the
expansions (3.66) and (3.67) for the components of the aperture field
Ea(;a)‘ The resulting double integrals can be further reduced by means
of the integral relations for simple~periodic and nonperiodic Lamé
functions. Explicit expressions for these numerators are givén in
Appendix 4.6.1. Note that if a4 = 1, corresponding to the case of a
circular cone, all integrals can be evaluated, thus leading to closed-

form expressions for the expansion coefficients [12].

(2n+1) b(2n+1)
cv M- Y
observation point P outside the sphere r = T are determined from

After having evaluated a , the fields at an arbitrary
(4.20), (4.21). In numerical computations the summations over Vv are
truncated at some integer vmax' which is related to the electrical
length k*ra of the horn. An acceptable truncation value is

Viax = [k*ra], in which [k*ra] denotes the largest integer < k*ra.
Free-space modes with v > vmax do not contribute significantly, as is
confirmed by the comparison of the modal power-flow Pa through the
aperture, and the running total of the radiation power of the expansion
modes as a function of V. The total radiation power Ptot of the
expansion modes equals Pa' The power flow Pa is determined from
(3.108). The power flow P

tot
by integration of the radial component of the time-average Poynting

through the sphere of radius rp is found

vector §(§P) given by

B(E ) =+ RelE (¥ )xB*(T (4.45)
B(r ) =7 RelB (r )xii(r) }. ,
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By substitution of (4.20) and (4.21) into (4.45), and by integration
over the sphere of“radius rp, using the orthogonality properties of
M and N, and the property {2.85) of the spherical Bessel functions,

it is found that Ptot' due to the odd symmetric HE mode, equals

@ [(v-1)/2]
2. -1
P .= (22 k)7 ]

(2n+1) 1 2_(2n+1) (2n+1) 12_(2n+1)
t. iacv : l Icv +[b | Is ).

sV vV

V=1 n=Q (4.46)

Features characterizing the radiation behaviour of a horn are the power
radiation pattern, the gain function, the phase pattern and the phase
centre.

The power radiation pattern F(fp) and the gain function g(EP) of the
horn are defined by

r) = A" ' (4.47)
F(rP) Pr(rp)/Pr(rp,O:O):
and

r) = T {4.48)
g(rP) 4wPr(rp)ZPa,

in which PI(EP), the power radiated per unit solid angle, is defined by

I ' (4.49)
p

- 21z - -~
Pr(rp) = rpr(rp).r
The phase pattern is equal to the difference between the phases of the
electric field at the observation point and at a reference point. From
the phase pattern one may determine the surfaces of constant phase or
equiphase surfaces. Consider next the equiphase lines which arise as
the intersection of the equiphase surfaces with a plane V through the
axis of the horn (z-axis). In the far-field region these equiphase lines
are approximately circles and their centre of curvature is called the
phase centre in the plane V. To determine the location of the phase
centre, we refer to the planar cross-section through the z-axis shown
in Figure 4.3. Here, the point O is the apex of the horn; Pc is the
phase centre; P is the observation point; Po is the reference point;

P and Po are described by sphero-conal coordinates (rp,@p,¢p) and
(rp;0,0), respectively. It is assumed that the equiphase line through
Po is a circle with centre Pc' Let the electric fields at P and at Po

differ in phase by 8. Then the displacement A of Pc relative to the
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apex 0 is given by

A= 5f[k*{1—(1~k‘2sin2¢?)1/2

cosep}], (ep.cbp) * (0,0). {4.50)
This result can be derived in the same manner as in [11, p. 63], [15].
It should be noted that (4.50) is valid only in the far-field region.
Moreover, it has been assumed that the equiphase lines are circles, at
least to a good approximation, with their centre on the z-axis. If these
conditions are not met, general formulae for the centre of curvature of
an eguiphase line must be used [13], [14].

In general A # 0, hence the origin of the sphero-conal coordinate
system used in the wave-expansion method does not coincide with the
phase centre; the latter point is commonly taken as the point relative
to which measurements are carried out. Furthermore, measured results
are recorded as a function of spherical coordinates, whereas computed
results are determined as a function of sphero-conal coordinates. The
spherical coordinates of an observation point on a sphere centred at Pc
can always be transformed into the sphero-conal coordinates of that
point, now on a sphere centred at the apex of the horn. 50 extra trans-
formations and computations will be needed in order to compare the com-
puted and measured results. The details of these calculations, however,

will be omitted.

P
P{%.8p.%) e °l

equiphase
line

n-U

Fig. 4.3. Geometry for the phase centre computation.
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Some remarks about the wave-expansion method are now in order. For
each occCurring pair of integers v, n, the coefficients a(2n+1)
(2n+1)' of the free-space modes, and the Fourier coeff;c::nts 3522:1),
B<23+1>, of the Lamé functions have to be computed. For each chser—
vation point arrays of sines, cosines and associateé Legendre functions
must be calculated to determine the Lamé functions and their deriva-
tives. Next, the summations accordyng to (4.20) and (4.21) must be
carried out. Therefore, both core ﬁemory usage and computer processing
time rapidly become excessive if Vmax is large. Consequently, from the
numerical point of view the proposed wave-expansion method is not very
suitable for the calculation of the radiation properties of elliptical
horns that are long in terms of wavelength, The next section deals with
a method which for long horns is more favourable from the computational
point of view.

Numerical results based on the wave-expansion method and experimental
results for elliptical horns with anisotropic boundary are given in

section 4.5.

4.4. Aperture-field integration method for radiation computation

‘An alternative approach to the calculation of the radiation fields

of horn antennas employs an aperture-field integration method. The
basic equations have already been presented in section 4.2 where the
fields E(r Ve H(r ), at an observation point P have been expressed in
terms of integrals of the aperture~field vectors E(r Y. H(r }. over
the aperture surface Sa' For convenience equations (4.3) and (4.4) are

recalled:

E(Ep} = H (2, x{an(r V}-z 2 x(2 x{ﬁxmz 1] L ooxpt- jk*r,)as,
1
: %2 (4.51)

ZA(E) = L fj[z 2 i (E,) b2, x(2, x(8xB (7 ) 1}] = exp(-3k*z,)as,

5 "1 , (4.52}

in which ;1 = ;p_;a' r, = |§1!, and ;1 = ;1/ri.
These expressions will now be simplified to a form convenient for the
numerical evaluation of the radiating near-field and the far field of
horn antennas. In sections 4.4.1 and 4.4.2 the analysis is carried out

for the aperture surface coinciding with a spherical cap and for a

planar aperture, respectively. In both cases sampling-like representations

for the fields at P will result; compare with [4].
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4.4.1. The spherical cap aperture

Consider an elliptical horn of length T with an opening angle 90 and
an aspect ratio are; see Figure 4.4. The geometry of such a horn has
been described in section 2.2. The apex of the horn is at the origin

of the coordinate system. The aperture surface Sa is a spherical cap
of radius X+ The aperture point Q is described by the position vector
r, = (x,y,2), where (x,y,z) are Cartesian coordinates. The z-coordinate

of the point Q is related to ra,x,y, by

z = (ri—xg—yz)%. ’ {4.52a)

The surface area element dS of the spherical cap is given by

92,2

_ 3z 3z,2,% B '
as = “*"ax) + (3y) }Flaxay = (r,/2)dxdy. (4.52p)

Fig. 4.4. Coordinates for the radiation computation;sa is a spherical

cap aperture.

The observation point P has spherical coordinates (rp,ﬁé,¢é} and

Cartesian coordinates (xp,yp,zp). The unit vector r, is given by
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t, =r,/r

1 1 1 = (rp—ra)/lrp—ra| =

{ (xp-X)ex+(yP—y)ey+(ZP—Z) ez}/r1 . (4.53)

The unit vector n at Q, normal to the aperture, equals the unit vector

ra, viz.
n=r = e +ye e .
n r, (xeX yey+zez)/ra (4.54)

In the integrands of (4.51) and (4.52) the distance r, occurs in the
denominator of an amplitude-type expression and in the exponential

. A
expression exp(-jk rl). In the denominator,r1 is approximated by

%

r = (r2+r2—2r z )5, (4.55)
p a ap

10
that is the distance from P to the centre of the aperture on the z-axis.

In the exponential expression an approximation of r, is used that is correct
up to quadratic terms in x and y. Such an approximation is obtained by
retaining the relevant terms in the expansion of the distance r, = QP in
powers of x,y. This distance is

3

- - - - - = 2,.2 = - gk
r, = |rp-ra| = (rp—ra,rp-ra) = {rp+ra - 2(ra,rp)} . {(4.56)

On the spherical cap one has, up to quadratic terms in x,vy,

2+ 2 2, 2 2 ’
z=r, - EE;X— v if x4y << r . (4.57)
a

By substitution of (4.57) intco (4.56) and by use of (4.55) it is found

that
2 2
2 _ S AL (4.58)
r, = {rlo 2(xxp+yyP Zra zp)} .

The latter expression is expanded in powers of X,y, up to second order.

Thus we find for ¥ the approximation

2 2
XxX_+yy XYX_ Y z X 2 z Yy
Bl -5 EeE -2 g GE - (459)
10 x £
Lo a r, 10 a I, 10
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In Table 4.1 some values of the phase error, due to the replacement of

Y by ;1 in the exponential expression exp(—jk*rl), are given,
(a) (b)
© o . _ o
gr ¢§ = 9p° ¢§ = 270 ¢é = 90 ¢p =270
10° 0.54° ~0.55° -0.96° -2.05°
20° 0.73° -0.68° -3.92° -5.33°
30° 0.59° -0.52° -6.74° -7.85°

Table 4.1. Phase errors (degr.) due to

the replacement of r

1

in

exp(-jk*rl) by
(a) ?1, given by (4.59);

{b) the Fresnel small-angle approximation of ;1, which is

2 .
obtained by discarding terms with Xpyp' xp and yp in
(4.59);

r = 0.9m, r, = 0.44m, x = Om, y = 0.03m, freguency 12 GHz.

P

Because of the approximation (4.57), the present analysis is restricted
to long horn antennas with small flare angle. The aperture fields of
see (3.104).

the electric field E(r ) is found by the inteqration of, for instance,

such horns satlsfy the relation 2 H(r )=t xE(r ); Hence,

H(ra} over the aperture of the horn according to (4.51). The expressions
for the Cartesian components of tHe electric field at P are derived
from (4.51) by carrying out the vector Products and by inserting the

approximate expressions for ry. Thus we find

jk*z .
- o
EA—4 + I,-1)+ I ~Ig)+x (T T
Ex(rp) . r3 [r10 a(Ig ypIS+ZpI I X y { I ) xpz ( B) xp( 16
10
+yv (I, ,~I, _+2I,.-2I_,)+z (21 I +I }+(r +y2 )(1 -I Y1,
LR R b At T ikl T L™ 21y 9

{4.60)

18

)+
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. jk*z
= - ~I )4y (I .~I, )+
Ey(rp) 4m: [rmra(I sz3+x I -1 )+ypzp(16 IS)-t-xPyp(Ig Iz) yp( 20 16)
10
- x4 -
+z (112 -I +2I2 2119)+xp(2117 ~21 1'13+121)+(ra xp z )(I I )],
(4.61)
jk*z
r) = - -1,)+z_(I +
E (rp) 4ﬂr3 [rlor (16 pr4+yPI3 18)+xpzp(x -1 )+y z (I ) z { 18” 20)
10
2
+x I -1 .
+xp{124 I,,+21,,-21 )+y (21, -21, -1, 41, }*(ra oY, )( 8 6)]
(4.62)
Here,
Ii = }’f hi(x'y)exP(‘jk*}‘i)dde: i=1,2,...,24, (4.63)
1 Sxy
in which the integration domain Sxy is described by
2 2
X + L <, (4.64)

rzsinQG rz(l-kzcosze )
a o a o

as follows from {2.24a) with r, replaced by r . The parameter k is
found from (2.24). The semi~axes of the elliptlcal domain 8 xy are
bé =Y sin6 and ag=r_ (1- kzcos 9 )%

The expressicns for hi(X,y) in terms of the coordinates x,y,z, and the
Cartesian components of H(ra) are listed in Appendix 4.6.2. Note that z

is determined by (4.52a).

The evaluation of the integrals (4.63) is now discussed. The integration
variables & = x/bg and 1 = y/ae are introduced. Furthermore, it is
assumed that the Fresnel small-angle (FSA) approximation can be applied
[7]. This means that in (4.59) terms with xpyp, xi and y2 are neglected.
Common to these terms is that they are proportional to sln 95

" In Table 4.1 some values of the phase error, due to the replacement of

r, in exp(—jk*ri) by the FSA approximation of ?1, are given.

1
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Now Ii can be recast in the form

11 2 2

n
I, =c, {1 Ilhi(b‘gﬁ,aen)exp{j(a1€+0=2n-81 5 -8, Didaran, 1= 1,2,..24,

(4.65)

where

= Wk TR ) .
Sy beaeexp( jk rio}, (4.66)

Py * g - * .
@, k*bexPZria, a, =k aeyp/rlo, - (4.67)
B, =k*b*? z /(r.r.), B, =k*a®z /(r.r, ) ' (4.68)

1 8 “p’ “ta"i10"’ 2 8 “p’ ‘Ta"10'’

if £2+n2 * 1 then hi(bga;aen)i 0, else as defined in Appendix 4.6.2.

(4.69)}
Introduce the inner product
. 1 1 .
<f,g> = [ [ f*g azan, - : . (4.70)
-1 -1

where the asterisk means complex conjugation, then (4.65) can be expressed as

2 2
- g &.. g D =
Ii =c, < h;,exp{j(alg+azn 81 5 32 3 3}>  ,i=1,2,...,24. (4.71)

Furthermore, the basig functions
fm(im) = ‘%’expij(mﬂ&n‘n‘n)}. m,n = O:i'1 :'I_:Zr-'p (4.72)

are introduced, which are orthonormal on the square -1 < £ < 1,
-1 ¢y ¢ 1. By expansion of‘hi in terms of fmn it is found that Ii can
be written as

oG o . -
I, =c, ) i H (mamy (o8 ,0,,8), 1=1,2,...,24, (4.73)

IRl TS0

in which
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=. * > o
ﬁi{mn,nﬁ} 2 <“hi'fmn

11
= [ [ b, b¥E,a n exp{3 (mrg+nm) Jagdn, (4.74)
-1 -1

and

. 2 2
_ 1 e £ _p Dy, o
"’m“‘x'ﬁz'“z'sz’ =3 <fm,exp{j(a1§+u2n 8, 5~ By 3 ) }>

1 2 1 2
= L (o B B 23 temg D =
=3 _{ expl3 (a}£-8, 2 }aE][; _{ expl 3 (a;n~B, 5-)}an]
1 \ 1 .
u [5 olai,B,) 17 2lay8,) 1, (4.75)
with
a{ = a,-mr, ai = a,-nf, ’ ‘(4.76)
1 gz
¢, B) = [ explj(aE-B3)}aE. (4.77)
-1

The coefficients Hi(mﬂ,nﬂ) are the two-dimensional Fourier coefficients
of the functions hi(bgi,aen). These coefficients are calculated from
samples of hi by use of the Fast Fourier Transform (FFT) technigue [3a].
The coefficients Hi(mw,nw} only depend on the aperture field and the
geometry of the elliptical horn; they are independent of the coordinates
of the observation point P. The functions wmn' however, are independent
of the aperture field; they only depend on the coordinates of P and the
geometry of the horn antenna.

Some properties of ¢®{a,B) and its representation in terms of Presnel
integrals are given in Appendix 4.6.3. The numerical computation of the

Fresnel integrals has been based on the algorithm given in [3].

The foregoing analysis leads to the following procedure for the deter-
mination of the radiation field of a long horn antenna with small
flare angle:
1. specify the horn parameters Ee Bo, arO' and compute k, bs, ae;

see (2.24), (2.25).
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2. Specify the hybrid mode. The corresponding modal field can be computed
by means of the method described in section 3.3,

3. Choose discrete sample points (£,n) and determine the Cartesian,
spherical and sphero-conal coordinates of these points; see the end
of section 2.2. Next determine the samples of hi from the modal field.

4. Compute the Fourier coefficients Bi(mw,nﬁ) of h, by use of FFT.

i
5. Specify the observation point P, and calculate wmn and Ii.

6. Determine the electric field components at P.

7. Repeat steps 5 and 6 for other observation points and determine the

radiation properties of the horn antenna.

In order to compare the computed and the measured results, extra trans-
formations of the computed electric field components are necessary if the
coordinate systems for the computations and for the measurements do not
coincide. The observation angles and distances,especially in the radiating
near-field region of the horn,are sensitive to a displacement of the origiﬁ,
as can be seen in Figure 4.4a. These transformations are however simple and

will not be presented in detail.

observation
point

origin in origin in
computations  measurements .

Fig. 4.4a., Displacement of the origin for the coordinate systems

used in the computations and in the measurements.

The computation of a large number of integrals is necesséxy if the method
described above is employed. Each of these integrals, however, can easily
be evaluated. Fewer integrals have to be calculated if the aperture of

the horn 1s a planar surface, as will be shown in the next section.
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4.4.2. The planar aperture

Consider again the elliptical horn with an opening angle 60 and an aspect
ratio a g- The aperture surface Sa of the horn is now a planar surface

perpendicular to the z-axis at z = z,i see Figure 4.5.

To simplify (4.51) and (4.52) to a form convenient for numerical evaluation,

we proceed along the same lines as in the previous section.

The aperture point Q is given by the position vector ;a = (x,y,za). The
vector n, normal to Sa' equals the unit vector in the z-direction. The
surface area element of Sa is given by dS = dxdy. The observation point P
has spherical coordinates (rp, Bé, Qé) and Cartesian coordinates

{(x_, y Z_ ).
PYP P

\\ 80
\\
6 ~Ta Q—éﬁ ‘
T T
y P !

P

Fig. 4.5. Coordinates for the radiation computation; Sa is a planar aperture,

The unit vector 51 is given by

fl = rl/r1 =ﬂ(r?-ra)/lrp—ra| =

#

{(xp—x)éx+(yp-y)éy+(zp—za)éz}/r1- (4.78)

In the denominator of amplitude-type expressions, as occurring in the
integrands of (4,51) and (4,52), r, is approximated by

2 2 i
rlO = (r—p +za -Zzpza) ‘ (4.79)
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that is the distance from P to the centre of the aperture on the z-exis.

1 is used

that is correct up to quadratic terms in x and y., This approximation is

In the exponential expression exp(—ﬂk*ri) an approximation of r

obtained by retaining the relevant terms in the expansion of T, in powers
of x,v. By use of (4,79) it is found that
r, = |f-F | = (F-F,F-f)"=
1 p a p a' pa
2, 2 2, 2.5
o +z -2z z -2(xx_+ +x 4 =
{rpapa(Pyyp)xy}
2 2, 2.k
{rlo 2(xxp+yyp)+x +y 1°. (4.80)

By expansion of (4.80) in powers of x,y, up to second order, we find for

r the approximation
2 2
XX+ X X 2 2
N oo Ty WY s I S
r r + (1 } + ( ) . {4.81)
1 10 40 3 r2 Erlo r2 2r10
10 10 10

Note that ?1 has been derived without the assumption x2+y2 << ri as in (4.57).
Hence, the present analysis is not restricted to long horn antennas with
small flare angle, in contrast with the analysis in section 4.4.1.

In Table 4.2 some values of the phase error, due to the replacement of T,

by ?1 in the exponential expression exp(-jk*rl), are given.

(a) {b)
6! v o= 90° v = 270° ' = 90° v = 270°
p % % % %
10° 0.25° -0.26° -1.25° -1.76°
20° 0.29° -0.28° -4.36° -4.93°
30° 0.18° -0.17° . -7.14° -7.50°

Table 4.2. Phase errors{degr.) due to the replacement of r in exp(-jk*rl)by

1

{a) §1, given by (4.81);
{b) the Fresnel small-angle approximation of ;1, which is obtained
. 2 2
by discarding terms with x x_  and in {4.81});
Y g pr: o Yp

rp = 0.%m, Z, = 0.44m, x = Om, y = 0.03m, frequency 12 GHz.



-126-~

The Cartesian components of E(EP) are again derived from -(4.51) by
carrying out the vector products and by inserting the approximate

expressions for ry- We now arrive at

- k*
e - - - + +
Ex(rp) 4ﬂr3 [rlO(zp za)K1 prB yp(K7 2K10) + xpypK5
10
+ {y (2 z) }K KK ] (4.82)
E (r) = Jk* [r, (z -z )K +x (2K_+K, ) + Yy K, - x y K_ -
Yy P 41Tr3 10°"p a2 "p 7 10 p 9 p’p 6
10
2 2
- +(z - -K,, - .
{xp (zp z) }KS 17K, (4.83)
E (r) = —JE:—-[ (K +K -X K -y K ) + (z -z )( x K +y K K +K_ )], (4.84)
z p 4Trr3 374" p1l“p2 6 8 "9
10
- where
=[f gi(x,y)exp(-jk*?l)dxdy, i=1,2,...,14. (4.85)
Sy
The expressions for gi(x,y) in terms of the coordinates x,y, and the
Cartesian components of the aperture fields, are listed in Appendix
4.6.4.
The integration domain Sxy is described by
x2 2
+ g <1, (4.86)

zztanze zz(k-zsecza -1)
a o a o

found from (2.1%a) with zy replaced by z,- The semi-axes of this ellipti-

cal domain are b, = |z_tan® | and a, = |z (1-k2
a o (5] a

2, %
6 cos 90) /(kcoseo)|.

The evaluation of Ki is analogous to that of Ii, discussed in. the previous
section. The integration variables & = x/be and N = y/ae are introduced.
For convenience it is again assumed that the Fresnel small-angle (FSA) approxi-

2
mation can be applied. This means that in (4.81) terms with xpyoy Xp and
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yg are neglected. In Table 4.2 some values of the phase error, due to

the replacement of r, in exp(—jk*ri) by the FSA approximation of ?1, are

1
given.

The integral Ki can be converted into the series representation

K, =¢, 2_ }j- G, (mm,nmY (o, By,0,,8,), 1= 1,2,...,14, (4.87)
M=—0C [}t L.
where
11
G, mm,nm) = [ [g,(b.E,an exp{] (mrE+nmm) }aEan, (4.88)
i 201 6°'"¢

1
wmn<a3,83,a4,84) = Z¢(013~m7¢;83)@{a4-mr,84), with & given by (4.77), {(4.88a)

e = beaeexp(—jk*rlo), (4.89)
= * = *
ay =k bexpf?io . a, =k aeyplrlo , (4.30)
B, = k*bzfr B = k*az/r v - (4.91)
3 8’ "107 4 o’ 7107 -

if £2+n2 > 1 then gi(beg,aen) =0, else as defined in Appendix 4.6.4.

(4.92)
The coefficients Gi(mw,nﬂ) are the two-dimensional Fourier coefficients
of the functions gi(beg,aen). These coefficients are calculated from samples
of 9 by use of the FFT technique.
It is pointed out that the coefficients Gi(mﬂ,nn) are only dependent on
the aperture fields and the geometry of the horn antenna, whereas the
functions wmn are only dependent on the coordinates of the observation

point and on the horn geometry.

The stepwise procedure présented in the previous section for finding the
radiation field of an elliptical horn antenna here also applies,

Extra transformations and computations may again be necessary in order
to compare the computed and the measured results, as has been outlined

at the end of section 4.4.1.
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Comparing the methods developed in sections 4.4.1 and 4.4.2, we conclude
that in the case of the planar aperture less integrals have to be computed

and that the phase errors introduced are about the same.

4.5, Numerical and experimental results

The numerical evaluation of the radiation fields of some elliptical
horn antennas has been carried out by means of a digital computer.
Results based on the sphero-conal wave-expansion method of section 4.3
and the aperture-field integration method of section 4.4.2 will be
discussed.

Three different horn antennas are dealt with. For future reference they
are labeled A,B,C. The main parameters of these antennas are summarized

in Table 4.3.

Antenna Length (m) 60 (degr.) ag
0.05 30° 1/3
0.33 3.37° 1/3
0.44 3.37° 1/3

Table 4.3. Main parameters of the elliptical horn antennas A,B,C.

Antenna A is considered first. It is assumed that the odd symmetric HE11

mode,denoted by HE, ,is incident. The mode-number V' is determined by
o

11
use of the method described in section 3.3. It is found that V' = 3.2743.

The radiation properties are determined by use of the wave-expansion method

described in section 4.3. The frequency is taken to be 12 GHz. The expansion

2n+1) na b(2n+1), where v = 1,2,...,13 =v__,
cv sV max

n=20,1,2,..., [(v-1)/2], are calculated by means of (4.39) and (4.40),

coefficients a

respectively. Next the radiation properties are determined from the electric
field as given by (4.20). The computed results are shown in the Figures
4.6.1-4.6.7. The values of rp (the distance from the observation point to
the apex of the horn) are 0.15m, 0.3m, O.6m, 1.2m, and the associated

curves are labeled a,b,c,d, respectively. The spherical angle with the
positive z-axis (the forward direction of the antenna) is displayed along

the horizontal axis of the plots.
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The radiation patterns in the xz-plane (Figure 4.6.1) broaden gradually
for increasing rp. The phase diagrams in the xz-plane (Figure 4.6.3)

show that the phase decreases for increasing angle with the horn axis, in-
dicating that the phase centres in the xz-plane (Figure 4.6.5) are not
located at the apex of the horn.

The radiation patterns in the yz-plane (Figure 4.6.2) are nearly indepen-
dent of rp over a large angular range. The phase diagrams in the yz-plane
(Figure 4.6.4) show that the phase is almost constant over a large angular
range which means that the phase centres in the yz-plane (Figure 4.6.6)
are located in the immediate vicinity of the apex of the horn. Note that
the phase centres in the xz~ and the yz-planes do not coincide. The ratio
of the -3 dB beamwidths in the xz~ and the yz-planes increases for increas—
ing rp. Numerical values are 1:1.59, 1:1.35, 1:1.24, 1:1.19, for the cases
a,b,c,d, respectively. The beamwidths of the patterns in the xz-plane (the
minor axis of the horn is in this plane) are smaller than those in the yz~
plane.

The relative pﬁwer contributions (percentage of the power Pa) of the free-
space modes to the total radiated power are plotted as a function of the mode-number
Vv in Figure 4.6.7. For given integer v the contributions of the free-space
modes with n = 0,1,2,..., [(v-1}/2], to the total radiated power are taken
together. From this plot it is readily seen that the free-space modes with
V2 Ve = 13 haxdly contribute.

The computed wvalues of the on-axis gain are 14.67 dB, 14.19 4B, 13.92 4B,

13.79 dB, for the cases a,b,c,d, respectively.

Some computed results for antenna B are now discussed. As in the case of
antenna A the oﬁgll mode is assumed to be incident and the freqguency is
taken to be 12 GHz. The mode-number is v'=29.5328. The numerical results
obtained by the sphero-conal wave-expansion method are shown in Figures
4.7.1 - 4.7.3. The values of rp are 0.625m, 0.74m, 1.25m, 2.5m, and the
associated curves are labeled a,b,c,d, respectively.

The radiation patterns in the xz-plane (Figure 4.7.1) and in the yz-plane
{Figure 4.7.2) broaden for increasing rp. The ratios of the -3 dB beam-
widths in the xz- and the yz-planes are 1.98:1, 2.06:1, 2.15:1, 2.21:1,
for the cases a,b,c,d, respectively. The ratioc of the beamwidths increases
for increasing rp. Note that now the broadest patterns are found in the

plane of the minor axis of the horn antenna (xz-plane).
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From the far-field phase pattern at rp = 2.,5m {which has not been plotted),
it is found that the corresponding phase centre in the xz-plane is located
inside the horn slightly behind the aperture of the antenna, The phase
centre in the yz-plane is locateé inside the horn, approximately 0.8 A,
“behind the aperture.

The relative power contributions of the free-space modes to the total
radiated power of antenna B areplotted as a function of v in Figure 4.7.3.
For given integer V the contributions of the free-space modes with

n=0,1,2,..., [(v-1)/2] are again taken together. In this example

vmax = 84, and from Figure 4.7.3 it is concluded that the summation over
V can indeed be truncated at thig value of vmax'

The computed values of the on-axis gain are 22.53 dB, 21.34 dB, 19.09 4B,
17.75 dB, for the case a,b,c,d, respectively.

Finally, numerical and experimental results for antenna C are presented.
For the computations it is assumed that the oHEil mode is incident. The
mode-number V' is again determined by use of the method of section 3.3
which utilizes the anisotropic surface-impedance model for the corrugated
boundary. As in the case of the aﬂgli mode in antenna B the mode~number is
V' = 29.5328.

The aperture surface of antenna € is a planar surface. The computed
radiation fields of antenna C are obtained by use of the aperture-

field integration method of section 4.4.2 and by use of the wave-expansion
method of section 4.3. The wave-expansion method is used despite the fact
that the horn has a planar aperture. Because of the large horn length and
the small flare angle the deviation of the spherical cap aperture from

the planar aperture is small. The measured radiation patterns of the
antenna excited by the odd symmetric oHEll and the even symmetric eHE11
modes have been recorded in an indoor test facility. In far-field measure-
ments a standard gain horn is used '‘as the transmitting antenna, whereas
the horn under test is used as the receiving antenna. In near-field
measurements a dielectric loaded P-band receiving probe is applied and

the horn is used as the transmitting antenna. By rotating the horn,
radiation patterns are recorded as a function of the spherical angle with
the horn axis. The centre of rotation coincides with either the apex of
the horn or the phase centre in the plane of measurement. Some results

are shown in Figures 4.8.1 -~ 4.8.6. Experimental results for antenna C
have been published before by Vokurka [17].
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In Figures 4.8.1 - 4.8.3 experimental and computed results for the radia- -
ting near-field region are plotted. The distance between the observation
points and the apex of the horn is constant, viz. r_ = 0.94m. The computed
value of the on-axis gain at 12 GHz is 23.7 dB.

In Figures 4.8.4 - 4.8.6 the results of far-field measurements and compu-
tations are shown. Now the distance between the observation points and

the -appropriate phase centres on the z-axis is constant, namely 2.5m. The
computed value of the on-axis gain at 12 GHz is now 20.4 dB.

The locations of the phase centres differ for the radiating near-field

and far-field situations. In the former case the positions are 0.1%m and

0.0lm from the aperture centre (inside the horn), in the yz-plane

and the xz-plane, respectively; for the odd (even)symmetric mode the
yz-plane coincides with the E°(H®)plane, and the xz-plane coincides

with the Ho(Ee)plane. In the far-field situation the respective
positions of the phase centres are 0.056m and 0.012m from the aperture
centre (inside the horn). The positions mentioned follow from experiments

at 12 GHz.

From Figures 4.8.1 - 4.8.6 the following conclusions are drawn.

1. The computed results, obtained from the wave-expansion method and the
aperture-field integration method, and the measured results agree to
a large extent in the radiating near-field region as well as in the
far-field region. Hence, both numerical methods are suitable for the
calculation of the near-field and far-field radiation patterns of
the antenna under consideration.

2. The measured radiation patterns of the odd and even hybrid modes are
almost equal in a large angular region at all frequencies considered.
These results, valid in both the near-field and the far-field regions,
are in agreement with the theoretical results of section 4.2, which
have been derived by use of the properties of the hybrid modes given
in section 3.3.

3. The concept of phase centre is feasible only for small angular regions
around the beam axis as can be seen from the phase diagrams. However,
the locations of the phase centres differ if the planes of measurement
are different. Consequently, phase errors will be inevitable if this
type of horn is used for the illumination of a parabolic reflector

antenna.
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At the end of section 4.3 it has been indicated that for long horns the
wave~expansion method is not very suitable from the computational point
of view, Comparison of core memory usage and computer processing times
for the two numerical methods employed, shows indeed that the wave-
expansion method is at a disadvantage by approximately a factor 5.

Finally, our overall conclusion is that the results obtained so far,
inspire confidence in the method for the investigation of the wave
propagation in corrugated elliptical cones (section 3.3), in the
methods for the computation of the radiation fields of corrugated
elliptical horns (chapter @), and in the assumptions which underlie

these methods.
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Fig. 4.6.1. Computed radiation patterns in the xz~plane for antenna A
excited by the OI-IE” mode; frequency 12 GHz; (a) rp = 0.15 m;
(b) ¥ =0.3m; (¢) r =0.6m; (4) r = 1.2 n;
P P P

{(wave~expansion method).
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Fig. 4.6.2. Computed radiation patterns in the yz-plane for antenna A
excited by the OHE“ mode; frequency 12 GHz; (a) rp = (.15 m;
(b) * =0.3m; {(c) r =0.6m; (d) r = 1.2 m;
p P P

{wave-axpansion method}.
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Fig. 4.6.3. Computed phase patterns in the xz~plane for antenna A
excited by the OHE11 mode; fregquency 12 GHz; (a) rp = 0,15 m;
(b) r =0.3m; (¢} r =0.6m (d) r = 1.2 m;
P 14 P

{wave~expansion method) .
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Fig. 4.6.4. Computed phase patterns in the yz-plane for antenna A

excited by the OHE mode; frequency 12 GHz; (a) rp = .15 m;

11
b)) r =0.3m; (¢) r =0.6m (d) r = 1.2 m;
P P P

{wave—-expansion method).
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Fig. 4.6.5. Distance to the apex, of the phase centre in the xz-plane for Antenna A
excited by the OHE11
(b)) r =0.3m; (¢) r_=0.6m (d) r = 1.2 m;
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FPig. 4.6.6. Distance to the apex, of the phase centre in the yz-plane for Antenna A

excited by the oHE mode; frequency 12 GHz; (a) rp = 0.15 m;

11
b = 0.3 m; = 0.6 m; (4 = 1.2 m;
(b} rp m; (¢} r? m; {d) rp m

(wave-expansion method).



~136~

301

Y
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Fig. 4.6.7. Relative power contribution of the expansion modes to the

total radiated power of antenna A excited by the OHE11
mode; frequency 12 GHz; 1 € v £ Vmax = 13. For given Vv
the contributions of the expansion modes with

n=20,1,2,...,[{v-1)}/2], are taken together.
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Fig. 4.7.1. Computed radiation patterns in the xz-plane for antenna B

excited by the 6HE mode; frequency 12 GHz; (a) rp = 0.625 m;

11
(b)) r =0.74m; (c) r = 1.25m; (d) r_ = 2.5 m;
p P P

{(wave-expansion method).
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Fig. 4.7.2. Computed radiation patterns in the yz-plane for antenna B
excited by the OHE“ mode; frequency 12 GHz; (a) rp = 0.625 m;
{b) r, = 0.74 m; (o) T, = 1.25 m; (Q) x, = 2.5 m;

{(wave-expansion method) .
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Fig. 4.7.3. Relative power contribution of the expansion modes to the

total radiated power of antenna B excited by the mode;

ofiyy
frequency 12 GHz; 1 s v ¢ vmax = 84. For given v the contri-
butions of the expansion modes with n = 0,1,2,...,[ (v-1}/21,

are taken together.
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Radiating near-field patterns for antenna Cj

frequency 10.25 GHz; rP = 0.94 m;

.... computed, oHE11 mode, aperture-field integration method;

--—- measured, oH mode;
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measured, HE mode.
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Radiating near-field patterns for antenna C;
frequency 11.75 GHz; rp = 0.94 m;

+... computed, oHE mode, aperture-field integration method;

11
~-—— measured, OHE11 mode;

measured, mode.

eHEll
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Fig. 4.8.3. Radiating near-field patterns for antenna C;
frequency 12 GHz; rp = 0.94 n;

.... computed, OQE mode, aperture~field integration method;
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*x%% Computed, OHE11 mode, wave-expansion method;
—--——- meagured, OHE11 mode ;
measured, eHE11 mode.
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Fig. 4.8.4. Far-field patterns for antenna C; frequency 10.25 GHz;
.... computed, OHEll mode, aperture-field integration method;

-~ measured, 08E11 mode;

measured, eﬁgll mode;
the distance between the observation point and the phase

centre is 2.5 m.
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Fig. 4.8.5. Far-field patterns for antenna C; frequency 11.75 GHz;

..-. computed, OHE 11 mode, aperture-field integration method;

——-= measured, OHE11 mode;
measured, HE mode;
e 11

the distance between the obserxrvation point and the phase

centre is 2.5 m,
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Fig. 4.8.6. Far~field patterns for antenna C; frequency 12 GHz;
..., computed, OHE11 mode, aperture-field integration method;
¥*¥% computed, OHE11 mode, wave-expansion method;
---- measured, HE , mode;

11
measured, HE mode;
e 11

the distance between the observation point and the phase

centre is 2.5 m.
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4.6. Appendices

4.6.1. Bvaluation of the numerators of (4.39) and (4.40)

The aperture field Ea(;a) is equal to the tangential field of the odd
symmetric HE mode of the infinite cone. This tangential field has com-
ponents given by (3.66) and (3.67), in which a, = bzm = 0 and v should
be replaced by v'. Insert the expansions (3.66) and (3.67) into the
numerator of (4.39). Then the resulting double integrals can be reduced
by use of the integral relations (2.101) and (2.122) for simple~periodic
and nonperiodic Lamé functions. As a result it is found that the numera-

tor of (4.39) can be expressed as

(2) (2) (1_]{2005290):1 T (2m+1) (2n+1)
kb Y et Dby (k*ra)m—r-—;goazml[u*'ncp ‘eo)éé‘{r‘ (e )1-
(2n+1) (2m+1) 2 -k (2mt+1) (2n+1)
Lo (90)35{1' (8 )}](})' (1-k*?sin’¢) Loyt (®L_J (¢)dd+
L ld @ (2) w .
T a;{rh (x*r)} i} hv (k ra)
a
[=+]
(2n+1) (2m+1) (2n41) (o0 d g Gmtt)
-ch omtilepy O Tgpys (@ )jL () d¢{ ($)}ad, (4.93)

where U*' = V' (V'+1}, px = v{v+l),

By use of the Fourier-series representations (2.96) and (2.98) for
simple~periodic Lamé functions, the final integral in (4.93) can be

evaluated as

(2m+1)
sv!

(2n+1)_(2m+1)

?“chnﬂ)
2t+1 2t+1

o B % {r (¢)}ag = 1:2 (2t+1)a
0

t=0

(4.93a}

{(2n+1) B(2m+1)
2t+1 7 T2e+1 !
also depend on v, V', respectively; this dependence has been suppressed

Here it should be kept in mind that the coefficients A

in the notation.
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In the same manner it is found that the numerator of (4.40) can be

expressed as

(1~k2c0526 )%
[s]

4 (2}
3 E;{xh k*r)}~—{rh k*r)} -——;;T:;;——-—"
k*r r
a a
by L2mH) o d o (2n) L (2n+1) (2m+1)
J b a_
E):O ome1 [ Egpur (O getR U (6 ) Tt 2 (e°>de{ (6}71-
2Zn 2 . 2. % (2m¢l) . (2n+1) ' (2) 2
. f (1-k'"sin"¢) st' (éa)L (¢)d¢+i (k*r ) {rh( }k*r)} .
0 a r
a
v (2m+1) @ar1) . T Omiy ..a . (2n¢1)
g_a a1 Popyr  Bollgn, (85) {}Lw. g (L7 @l 490
The final integral in (4.94) can be evaluated as
2T (am+1) A ;. (2n+1) s (2m+1) _ (2n+1)
{)ch' gy lrg,@lad = ﬂ2_0(2t+1’Azt+1 Boes1 (4.94a)

4.6.2. Expressions for hj(x,y,), i=1,2,...,24

The expressions for hi==hi(x,y) are given by

2

hy=H , bo=xH/z , h,=y B,/z . b= xH
h2 = Hy , h8 = yHX/z P h14 = xnyfz ’ h20 = Yﬂx '
n3 = ax/z . h9 = yﬁz/z . h15 = xyHy/z ’ h21 = yHy '
h, = H /= h, . = xza /= h, = xyB /=z h,., = yH_,
4 y/ * 10 N 2 1 2" 7 a2 4
h_ = H/ h=2H/ h, = xHB h,, = zH
5 T FplF e My TEESE . Ny, X ro B3 T ERy
h. = xB /=z h, ., = yZB /z h, = xH . h., = zB .
6 v 12 P'S ' 18 v 24 v
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4.6.3. Properties of 9(0,f)

The function ¢{(a,B) is defined by

b

2
o(,8) = [ expli(ac-8 5)lat, (4.95)

i
-

where o,B, are assumed to be real; furthermore, B > O.

The following properties of ®(o,B) can easily be proved:

®(0,0) = 2, $(a,0) = 2sin{a)/a; ) . (4.96)
&{a,B) = &(-a,B), ¥{a,~B) = &* (0, B); (4.97)
o x ocz a+f a+8
#{a,B) = (gﬁ exp(jigﬁ{C( &;—JS( &;-C( %,+js( %;}-
(wB) (n8) (n8) (%8)
= (-i%exp(J [{C ((a+8) )-38, O e a+6) ) } sgn {a+8)~
(a-8)* (a-8)?
- {Cz( 38 )=38, ( 28 Ysgn (a~B8) ] =
(a+6) (a-B)>
= (—é exp(j'EQ{F( i) SO (0B} -F ( 2B )} sgn (a~B) 1}, {4.98)
if B > 0.

The Fresnel-type integrals occurring in (4.98) are defined by

X x
cix) = [ cos(gtz}at, s(x) = sin(%tz)dt, [1, p. 3001, (4.99)
0 0

5k T
c,(x) = (2m) [ €7 cost at, s,(x) = (2077 [ £77 sint at, x 2 0,
¢]

[1, p. 300], (4.100)

cw =, & %) s, st =s,E *%) sgn (x), (4.101)

F(x) sz(x) - 38,(x), x2 0, [3]. (4.102)
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4.6.4. Expressions for giix,y), i =1,2,...,14

The expressions for 9, = gi(x,y) are given by

=E 95 = ZOH 1 gy = xZOHy ’ 9y3 = X¥Z_H_

]

=E , = =

qZ g6 Z B, ., g10 yZOH . 914 xyZ H
= xzz H ,
QX

2
= YE = =
9 YE . 9g YZOHXI 99 b4 ZOH ‘
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5. ELECTRICAL PERFORMANCE OF AN OFFSET REFLECTOR ANTENNA SYSTEM FED BY A

CORRUGATED ELLIPTICAL HORN RADIATOR

5.1, Introduction

In section 1.3 we’have briefly reviewed some designs for high-
performance broadcasting-satellite transmitting antennas.‘Particular
attention was paid to the antenna system that consists of a single
offset parabolic reflector and a corrugated elliptical horn as the
primary radiator. This antenna system has favourable properties. with
respect to its electrical performance: from experiments it was found
that the secondary radiation pattern is characterized by a main lobe
with an elliptical cross~section, by low copolarized sidelobe radiation
(level below -30 dB), and by low cross-polarized radiation of circular
polarization (level below -33 dB). In the present chapter the radiation
fi=ld of the antenna system is evaluated by analytical and numerical
methods. We will calculate the main lobe of the secondary radiation
pattern, the copclarized sidelobe radiation, and the cross-—polarized
radiation in the angular region around boresight. The numerical results
obtained are compared with the results of measuréments on the antenna
s&stem.

The radiation field of the antenna system is determined from the well-
known integral representation for the electromagnetic field in temms of
the surface current 35 induced in the parabolic reflector surface. The
surface current is induced by the primary radiation from the corrugated
elliptical horn, which acts as an incident electromagnetic wave on the
reflector surface. The exact value of the current Es cannot be deter-
mined analytically. Therefore, the standard physical-optics approxima-
tion is employed, whereby the surface current is approximated by

35 = 20 X ﬁi. Here, Ei is the magnetic field of the incident primary
radiation at the reflector surface, and n is the unit vector normal to
the reflector surface at the point of incidence pointing towards the
illuminated side of the parabolic reflector. The magnetic field ﬁi is
determined from an integral representation for the primary radiation
field in terms of the field distribution in the horn aperture, based
on the Kirchhoff-Huygens approximation; see chapter 4. Thereby the
field in the aperture of the corrugated elliptical horn is taken to be
equal to the modal field of an infinitely long corrugated elliptical
cone. In this manner the radiation field is completely determined ana-
lytically. Starting from this analytical formulation we next develop a

numerical procedure for the computation of the secondary radiation
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pattern of thne antenna system.

The results of measurements on the antenna system under consideration
were placed at our disposal by Messerschmitt-B&lkow-Blohm GmbH, Munich,
Germany. Since these measurements refer to linearly polarized radiation
from the antenna system, our numerical results are restricted to this
case only. In the case of circularly pclarized radiation from the
antenna system, the radiation field may be calculated in the same man-

ner; however, we have not carried out the actual calculation.

5.2. Evaluation of the radiation field of the antenna system

This section deéls with the analytical and numerical evaluation of the
secondary radiation field of a single offset parabolic reflector illu-
minated by a corrugated elliptical horn radiator. First we introduce
suitable coordinates to describe the geometry of the antenna system.
We shall employ Cartesian coordinates x,y,2 and spherical coordinates
r,8,¢, which are related as in (2.34) - (2.36). Notice the slight dif-
ference in notation: the present spherical coordinates should not be
confused with the sphero-conal coordinates of chapter 2. The unit vec-
tors of the coordinate systems are denoted by %,¥,2, and f,é,@, res-
pectively.

The reflector surface S, of which the cross-section with the yz-plane
is shown in Figure 5.1a, is part of a paraboloid of revolution. The
paraboloid has a focal length £, its focal point F is at the origin

of the coordinate systems, and its axis of revolution coincides with

the z-axis.

(b)

Fig. 5.1, Geometry of the offset parabolic reflector.
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The equation of the paraboloid is

(22

z = -f+ 4fY . (5.1)
2f

¥~ Tocosh -2)

in Cartesian and spherical coordinates, respectively. The surface area

element 4dS of the paraboleoid is

2 2.y 2,2y
as =11+ 5" + @3 Yaxay = (1 +37L) “axay. (5.3)
% oy 4f2

Let Q be an arbitrary point on S, with position wvector Eq and spherical
coordinates (rq,eq,¢q). Then the unit vector n at Q, normal to § and

with a positive z~component, is given by

8 5] 0
e - -3 - — I v in ~3 2
n cos 5 Cos¢qx cos 5 91n¢qy + sin 5 z, (5.4)
or
- g - Oy =
n = - sin -ag - gos -23 8. (5.5}

The offset reflector is cut out from the paraboloid surface by an
elliptical cylinder given by the equation
y-dl 2

2
ﬁ;;) + b1 y = 1. . (5.6)

Obviously, the projection of the rim of the offset reflector onto a

plane z = constant is an ellipse with semi-major axis a, along the x-

1
axis and semi-minor axis b, along the y-axis. In particular, the

ellipse in the plane z = zl through the point U encloses the projected
aperture of the reflector:; see Figure 5.1b. We note that this aperture
and the one shown in Figure 1.6 have slightly different shapes.

In Figure 5.1a the angle between the lines FL and FU is denoted by 201.
This angle is bisected by the line FC. The angle between the line FC

and the negative z-axis is denoted by 0 the so~-called offset angle

off’
of the reflector. The offset plane, that is the symmetry plane of the
reflector, coincides with the yz-plane. The y-coordinate of the point
C is denoted by cy- The following relations for the geometrical param-

eters of the reflector can easily be derived, viz.
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- 2fs:.n61 . - 2fsln90ff 4 - 2fsln6eff 5.7
B A A r T ——— e — r T ——— . -
1 cos@off+cosel 1 1+coseoff 1 coseoff+00591

Note that d13>c ;, hence, the point C is not on the axis of the ellip-

tical cylinder.1
Next we describe the geometry of the feed system that consists of a cor-
rugated elliptical horn with an opening angle Bo and an aspect ratio

a g- The apex of the horn is at the point 0, and the horn axis lies in
the yz-plane and passes through the focal point F; see Figure 5.2. The
horn has a planar elliptical aperture at the distance z, £rom the apex.
The major axis of the elliptical aperture is in the yz-plane, and the

minor axis is in the plane through OF perpendicular to the yz-~plane. The

angle subtended by the minor axis at the apex 0 is equal to 280.

S
eoffz‘ \F ,

TN
Z

3

Fig. 5.2. Geometry of the elliptical horn radiator.

To fix the position of the horn it remains to specify the distance OF
between the apex O of the horn and the focal point F of the reflector,
and the angle Goff+15between the horn axis and the negative z-axis;
see Figure 5.2. The distance OF also determines the distances between
the focus of the reflector and the phase centres of the radiation field
of the horn. The angle § measures the deflection of the horn axis from
the bisector FC; for most practical offset reflectors one has 0< 8% 40,
[41, [5]. The geometrical parameters OF and § serve as input parameters
» in the computational procedure for the determination of the radiation
field of the antenna system. By varying these input parameters one may
search for the best horn position so as to realize an optimal illumina-

tion of the offset parabolic reflector. In this manner the distance OF
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and the angle § are ascertained on the basis of computations.

We now turn to the evaluation of the radiation field of the antenna
system. The secondary radiation field is viewed as arising from the
surface current Es(;q) inducéd in the parabolic reflector surface;
here rq is the position vector of the point Q on the reflector (see
Figure 5.1a). Let P be an observation point, with position vector r
and spherical coordinates {(r,8,¢), in the far-zone region of the re-~
flector. Then the radiation field ﬁ(?), H(r) at P is given by the

following integral representation in terms of the surface current

J (r ):
8 g
BEE) = cff[3 () - {3 _(F).7)5] jk'r_.r)ds 5.8
(x) éf C s g s(rq rirlexp (3 g r)ds, (5.8)
- - e =1 ~ - =
H{r) ==Z° r x E{(r), (5.9)
where
¢ = s exp (-jk 1) ‘ ‘ (5.10)
“‘4"{]’]{ Xp 3] rl, \ ‘ .
¥ = sinBcosdx + sinfsindy + cos0z; (5.11)

see [3, Sections 2.5 and 3.61. The surface current is induced by the
primary radiation from the corrugated elliptical horn, which acts as
an incident wave on the reflector surface. The exact value of the
current 35 cannot be determined analytically. Therefore we ehploy the
standard physical-optics approximation in which the surface current is

approximated by

35=2ﬁxﬁis {5.12)
see [3, Section 3.6.]. Here, ﬁl is the magnetic field of the incident
primary radiation at the reflector surface, and n is the unit normal

vector introduced in (5.4) and (5.5). The vector Es is expressed as
J =gx+Jdy+dz. o (5.13)
s X Y z

From (5.8), (5.11) and (5.13) the Cartesian components'Ex, Ey, Ez of
the electric fleld at P are found to be given by
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E = Ix(l—sin26c052¢) - Iysin28c0s¢sin¢ - Izcosesinecos¢, {5.14)
.2 , 25 . 2 . .

Ey = «Ix31n Bcosdsing + Iy(1-51n Osin"¢) - Izc03651n651n¢, (5.15)
E, = -Ixcosesin6c05¢ - chosﬁsinesin¢ + zzsinze, (5.16)
where

1, = ¢ [ 3 exp(ix’T _.7)as, i=x,v,2. (5.17)
i g 1 q

The spherical components EB’ E¢ of the electric field at P are given by
Ee = Ixcosecos¢ + chosﬁsz.nqS - Izsme, . {5.18)
E, =-I sinp + I cos (5.19)
¢ x ¢ y ¢ 14

while the radial component Er vanishes. The electric field at P depends
on the surface current component Jz through the integral Iz' From (5.18)
and {5.19) it is seen that Jz makes no contribution to the field com~

ponent E¢, whereas its contribution to the component E, is small for

angles 8 close to zero. Hence, in the angular region aiound the posi-
tive z-axis (6 =0) the contribution of the surface current Jz to the
radiation field is a second-order effect [7, Section 12.41.

To enable a cémparison with measured data, the radiation field of the
antenna system is decomposed into copolarized and cross~polarized radi-
ation fields. The directions of these fields are described by the
orthogonal unit vectors éco and écr' respectively. These vectors are
now specified in concurrence with standard measurement practice [6].
Consider first the case of a radiation field that is due to excitation
of the horn by an odd symmetric mode. Then at € =0 the radiation field
is polarized in the §-direction. In this case the unit vectors éco and

e  are specified by [6, eq. (8a,b)]

cr
éco = singb + cos¢$

= ~(1-cosf)cospsindx + {1—(1-cose)sin2¢}§ - sinBsindz, (5.20)
e = cos¢é- sin¢$

cr

i

{1—(1—cose)cosz¢}§ - (l—cose)cos¢sin¢§ - sinfcosdz . {5.21)
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Likewise, in the case of excitation by an even symmetric mode, the
radiation field at 8=0 is polarized in the x-direction. Then the vec-
tors &__ and écr are given by (5.20) and (5.21) with ¢ replaced by

¢ + m/2, corresponding to an interchange of roles of the vectors. The
copolarized radiation field ECO(E) and the cross-polarized radiation
field<Ecr(r) at P are now determined from

E @ = {Em.e_Je_ ., E (r) = {E@).e_ Je_. (5.22)

The copolarized radiation pattern Fco(f) and the cross-polarized

radiation pattern Fcr(;) are defined by

F () =P (O)/p {r,0,0) , ¥ (r) =p (r)/p_ (r,0,0), {5.23)
oo [o{e) [sie] cr cr Co
in which
- -1 2= = .2 - -1 21z =42
P o) = (22) x |Eco(r)i P P (D) = (22)7x !Ecr(r)g‘. (5.24)

To numerically evaluate the copolarized and cross-polarized radiation
patterns, it is necessary to compute the two-dimensional integrals

{(5.17). By use of (5.1), (5.3} and (5.11), we rewrite (5.17) as

2 2 2 2
I, =¢ /! Jiexpfjk*{sine(xcos¢*ysin¢) + ccsé(fiigL——f)}3(1+ 5131)%dxdy,

8 4f2
Xy
i=x,vy,2, (5.25)
where the elliptical integration domain sxy is described by
y-d, 2
% b s 1. (5.26)
3y by

The normalized integration variables § = x/a1 and n = {y—dl)/b1 are

introduced. Then I, can be recast in the form

i
11 g2 n2
%=ca£.yﬁwmmmhmgmp%g§-625>h@m .(am)
where
2

Ca = Calblexp[jk*{(z%-f)cose + alsinesin¢}], k (5.28)
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*
k b,d
o , o cinfed 11 _
o, = k a151n6c05¢ PooQy = k blslnesln¢ + —5F (cosb-1), (5.29)
k*’a‘z k*b:i
81 = '—E— (1-cos8), 82 = —2f_ (1“0056); ) (5.30)
2.2 2
a‘E +(b ntd, )} X *

- 1 17 ik, 2,222 o

ki{Em) Ji{1+ 2 } expl e (2l +b n"+2b, 1n)]
if 52+n2 <1, (5.31)

- . 2 2

kiii,n) 0 ifE 4+ > 1. (5.32)

The integral (5.27) is evaluated by the same numerical procedure as
has been used in the calculation of the horn radiation, based on the
aperture~field integration method; see sections 4.4.1 and 4.4.2. Thus
by expansion of ki(E,n) in terms of the basis functions fmn(gwﬂ) in-

troduced in (4.72), the integral Ii is reduced to the sampling-like

representation
°$0 Too
I, =c, I X tmmnmy (o8008, (5.33)
w00 [yee—-00
in which
1 1 : .
K, (wm,nm) = f jki(g,n)exp{j(me;mm)}dgdn , (5.34)
~1 -1
and
1
wmn(ul'gz'az'ﬁz) -3~@(al—mn,sl)@(az-nﬂ,ﬁz), {5.35)

with & given by (4.77). The coefficients Ki(mw,nﬂ) are the two-dimen-
sional Fourier coefficients of the functions kitg,n). These coeffi-
cients are calculated from samples of ki by use of the Fast Fourier
Transform (FFT) technique [2]. The coefficients Ki(mﬂ,nw) depend only
on the geometry of the reflector and on the induced current in the
reflector surface; they are independent of the coordinates of the
observation point P. The functions wmn' however, are independent of
the;induced current; they only depend on the coordinates of P and on

the geometry of the reflector.
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The mathematical procedure developed here, leads to the following
scheme to‘numerically evaluate the radiation patterns of the antenna
system:

1. Specify the horn and reflector parameters, the position of the horn
relative to the focal point F, and the direction of the horn axis.

2. Choose discrete sample points (£,n), and calculate the coordinates
of the associated points on the reflector.

3. Compute the samples ki(g,n). The c?mponents Ji of the surface .
current are found from 39 = 2n x A . The incident magnetic field i
at the reflector surface due to the primary radiation from the horn,
is calculated by means of the aperture-field integration method of
section 4.4.2.

4., Compute the Fourier coefficients Ki(mﬂ,nw) of ki by use of FFT.

5. Specify the coordinates of the observation point P, and calculate
wmn and Ii' )

6. Compute the copolarized radiation field Eco and the cross-polarized
radiation field Ecr at P.

7. Repeat steps 5 and 6 for other observation points and determine the

radiation patterns of the antenna system.

5.3.. Numerical and experimental results

In this section we present numerical and experimental results for the
radiation field of the antenna system that consists of a single offset
parabelic reflector and a corrugated elliptical horn as the primary
radiator. The geometry of the antenna system has been described in the
previous section. The geometrical parameters of the horn and of the
reflector will be specified below. The measured results have been re-
corded for the antenna system in the two cases of OHE ~-mode excita-

i1
tion and HE  -mode excitation of the horn. A theoretical analysis of

the radiaiioilfields in these two cases is presented in Appendix 5.4.
There it is shown that the radiation fields due to excitations by odd
and even modes are orthogonal, and the corresponding copolarized radi-
ation patterns are equal, both up to a good approximation. The errors
invoived in these approximate results are small if the angle 6 is
close to zero, i.e. in the angular region around the positive z-axis.
Because of the (approximate) egquality of radiation patterns, the

numerical computation of the radiation field of the antenna system is
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restricted to the case of OHEll-mode excitation of the horn. Through-

out the frequency is set at 12 GHz.
The geometrical parameters of the offset parabolic reflector considered

are given by (cf. Figure 5.1)

‘ o
£=1.50m; 0 =34.8 ; ©

a, = 1.30 m; b1 =0.80m ; ¢

27.15° ;

]

1 0.94 m ; dlx 1.00 m.

The semi-opening angle in the plane perpendicular to the offset plane,
subtended at the focus, is 42.50.

The primary radiator considered is the corrugated elliptical horn with
the parameters (c¢f. Figure 5.2)

z =0.324m; & =504 ; a, =0.5.
a o 8

The position of the horn is specified by (¢f. Figure 5.2)
OF = 0.31m; &= 2.

The computed phase centres in the i and E® planes {principal planes

of the horn) are located at the centre of the horn aperture, and inside
the horn on the horn axis at 0.034 m from the aperture, respectively.
Hence, the focal point of the reflector lies between the two phase
centres, at 0.014 m from the phase centre in the i plane and at

0.02 m from the phase centre in the E® pléne. In Figures 5.3 and 5.4
computed and measured results for the radiation patterns of the antenna
system are plotted as a function of the spherical angle 8. The computer
processing time for the field evaluation following the stepwise proce-
dure given in section 5.2, is approximately 4 seconds per observation

point.
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angle{degr)

Fig. 5.3. Far-field patterns in the Ho, ES plane (xz-plane) for the
single offset parabolic reflector fed by a corrugated
elliptical horn; frequency 12 GHz:

.... computed copolarized radiation, oHEll—m°de excitation;

++++ computed cross-polarized radiation, -mode excitation:;

HE
o 11
- ~ — measured copolarized radiation, 0H311~m0de excitation;

measured copolarized radiation, eHEII—mOde excitation;

(measurements, courtesy of MBB, Munich).
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Far-field patterns in the Eo, H plane (yz-plane) for the
single offset parabolic reflector fed by a corrugated ellip-
tical horn; frequency 12 GHz;

.... computed copolarized radiation, oHE“-mode excitation;
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e 11
(measurements, courtesy of MBB, Munich).

---- measured copolarized radiation, -mode. excitation;

— measured copolarized radiation, -mode excitation;
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From the computed and measured results for the radiation in the xz-plane

e
{Ho, E~ plane of the antenna system), as shown in Figure 5.3, the follow-

ing conclusions are drawn:

1.

2.

Excellent agreement between the computed and measured results in the
region of the main lobe is observed.

The radiation patterns of the antenna system in the two cases of

OHEll- and HE_ _~-mode excitation of the horn are virtuvally identical.

e 11
The patterns are symmetric with respect to the direction 8 = 0.

‘The measured sidelobe levels are below -31 dB, whereas the computed

sidelobe levels are below -~40 dB.
The computed maximum level of the cross-polarized radiation (in the
case of linear polarization) is ~24.3 dB.

The angle of -3 dB beamwidth is 0.77°.

From the computed and measured results for the radiation in the yz-plane

{EQ, Be plane of the antenna system), as shown in Figure 5.4, the follow-

ing conclusions are drawn:

1.

2.

4.
5.

6.

Very good agreement between the computed and measured results is
established.

The radiation pattern of the antenna system in the case of
OHEll—mode excitation of the horn is somewhat narrower than the one
corresponding to eHEil—mode excitation of the horn. This is attributed
to a slightly broader primary radiation pattern in the yz~plane in
the case of OHE11~mode excitation.

The computed and measured radiation patterns show a small asymmetry
with respect to the direction 8 = 0. In general, the radiation level
at the angle © is higher in the half-plane ¢ = /2 (left part of
Figure 5.4) than it is in the half-plane ¢ = 3/2 (right part of
Figure 5.4). Computed results show that the asymmetry increases for
decreasing §. The asymmetry of the patterns is attributed to the
asymmetric reflector geometry, which results in the upper part of the
reflector being under-illuminated relative to the lower part of the
reflector.

The computed sidelobes are well defined. The level of sidelobe radi-
ation is below -30 dB. )
Cross-polarized radiation in the yz~plane {the offset plane of the
reflector) is absent.

The angle of -3 dB beamwidth is 1.41°,
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Computed results for the copdblarized radiation in the Eoplane of the

antenna system in the case of OHE -mode excitation, show a very small

pattern shift away from thé direcé;on @ = 0. The maximum of the co-
polarized radiation occurs in the direction § = 0.02° in the half-plane
¢ = 3n/2 (cf. Pigure 5.4). This shift of the radiation pattern in the
offset plane of the antenna system is known as the beam squint for
linearly polarized radiation [1]. From the computed results it is
furthermore observed that the copolarized radiation in the xz-plane is
below the reference curve A, given in Figure 1.4. The main lobe of the
copolarized radiation in the yz-plane, however, is not everywhere below

the reference curve A.

Our final conclusions are the following:

1. The single offset parabolic reflector fed by a corrugated elliptical
horn, can indeed provide a secondary radiation pattern that has a
rapidly decaying main lobe with an elliptical cross-section, and
that has low sidelobes. Furthermore, the secondary radiation patterns

of the antenna system in the cases of OHE - and eﬁell-mode excitation

of the horn are virtually the same. H
2. The horn and reflector geometries are input parameters of the compu-
tational procedure to numerically determine the radiation field of
the antenna system, By varying these input parameters one may search
for an antenna design that is optimal with regard to electrical per-
formance. In this manner the computational procedure provides a
design through computation versus the alternative of a design based
on experimentation.
3. The analytical and numerical approach to the evaluation of the elec-
trical performance of the antenna system, as developed in this section,
is rapid (with respect to computer processing time), successful and

reliable.
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5.4. Appendix

As a supplement to section 5.2, this appendix deals with the radiation
fields of the antenna system in the two cases of excitation of the horn
by an odd symmetric mode {(I-mode) and by the associated even symmetric

mode (II-mode). The resulting electromagnetic fields are distinguished
by the superscripts I and II, respectively. It has been shown in section

4.2 that in the radiating near-field and far-field regions of the horn
the primary radiation fields (EI, ﬁI) and (EII, ﬁII) are related by (see
(4.7) and (4.8))

- - -T - - -
ZOH =r x EI, ZOH 1. rx E, E = x ET, {5.36)
where the unit vector r at the cbservation point points in the outward
radial direction. These primary radiation fields act as incident fields
on the parabolic reflector of the antenna system. Then we have from

{5.36) that the spherical components of the incident fields at the re-

flector surface satisfy

I 1 II I

Eg = ZOH¢ = -E¢ = zoﬁe , (5.37)
I 1 II I

E¢ = -zoﬂe = Ee = ZOH¢ . (5.38)

The surface currents 3;, E;I induced in the reflector are determined
from the physical-optics approximation (5.12), which is now further
evaluated by use of (5.5). At the point (rq,eq,¢q} of the reflector
surface the Cartesian components Jx' Jy' Jz of the surface current are

found to be given by

¢}
Jx = 2(Hesin¢q—ﬂ¢cos¢q)sin ?g , (5.39)
6
JY = -2(Hecos¢q+ﬁ¢sin¢q)sin ?§~, (5.40)
8
J, = *2H¢cos ?§', (5.41)

where the superscripts I and II have been suppressed for simplicity.
By means of (5.37) and (5.38) it easily follows that the current com-

ponents are related by

J_=J Joo= -J . {5.42)
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Consequently, the radiation integrals Ii introduced in (5.17) are

related by
I_ _II I IT
I, = Iy , Iy = -1 . (5.43)

The secondary radiation fields (EI, ﬁI) and (EII, ﬁII) of the antenna
system are considered to be due to the surface currents 32 and E:I,
respectively. The spherical components of the electric fields El and
EII at the observation point (r,8,¢) are given by (5.18) - (5.19),
expressed in terms of the corresponding integrals IX, IY and Iz. We
now assume that the spherical angle § is close to zero such that

cosf & 1 and the term Izsine may be neglected in (5.18). Then the

spherical components of the electric fields are approximately given by

I I I I I I
= + i = - i + 5.44
Eg Ixcos¢ Iysln¢ , ‘E¢ Ix51n¢ chos¢ , ( )
II 11 11 _, 11 11 _, II
= + ’ = - + . .
Ee I, cos¢ Iy sing E¢ I sind Iy cos (5.45)
By use of (5.43) we immediately find that E; = EiI, E; = -E;I, which

means that the electric fields EI and EII are orthogonal and have equal
strength.

The copolarized radiation fields of the anterina system due to excitation
by the I- and II- modes are denoted by Ezo,and Eiz, respectively. The

directions of these fields are described by the unit vectors éZo and

I .
eco' given by (cf. (5.20))

-1 oz < ~IT z s
o = sind® + cosdd, e, = cos® - sindd. (5.46)

From (5.22) and (5.44) - (5.45) it is easily found that

-I
B

I =II IT1
ERES L

E_ I
CcoO X

. (5.47)

Hence, because of (5.43), the field vectors Eio and ﬁzi have equal
strength and the corresponding radiation patterns are identical.
Summarizing, we have shown that the secondary radiation fields due to
excitations by odd and even symmetric modes are orthogonal, and the
corresponding copolarized radiation patterns are equal. From the deriva-
tion it is clear that these results are valid up to a good approximation
if the angle 6 is close to zero, i.e. in the angular region around the

positive z-axis.
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6. SUMMARY AND CONCLUSIONS

In chapter 1 the design regquirements for the transmitting antenna of a
broadcasting satellite have been reviewed. Such an antenna should
radiate a circularly polarized field and the radiation pattern must
have a main lobe with a prescribed cross-section, low sidelobes and a
low level of cross polarization. As a most likely candidate to fulfil
these requirements we have considered the antenna system that congists
of a single offset parabolic reflector fed by a corrugated elliptical
horn radiator. The approach to evaluate the electrical performance of
this antenna system has been outlined.

Chapter 2 deals with a number of mathematical preliminaries. The geo-
metry of the elliptical conical horn has -been described. in terms of
sphero-conal coordinates. In this orthogonal coordinate system the
scalar Helmholtz equation can be solved by separation of variables. The
special mathematical functions involved, viz. the simple-~periodic and
nonperiodic Lamé functions, have been treated in detail.

In chapter 3 the wave propagation in elliptical cones has been studied.
Cur investigation started with the introduction of transverse electric
(TE) and transverse magnetic (TM) field solutions to Maxwell's equations
in the. sphero-conal coordinate system. These solutions constitute a com-
plete set of modes, in terms of which an arbitrary field can be expanded.
The problem of wavé propagation in a corrugated elliptical cone has been
solved on the basis of the idealized anisotropic surface~impedance model
for the corrugated boundary of the cone. It has been shown that only
specific fields satisfy the associated anisotropilc boundary conditions.
These field solutions which are valid at points not too close to the
apex of the cone, comprisé both electric and magnetic field components
in the radial direction, and they ére called hybrid modes. 0Odd and even
symmetric hybrid modes have been found and it has been shown that these
modes can be combined to yield an electromagnetic field (E,H) that
satisfies the relation E = ijzoﬁ‘ The field components of the hybrid -
modes are represented by series of products. of simple-periodic and non-
periodic Lamé functions, multiplied by a spherical Hankel function of
order V + %. The series-representations involve two sets of expansion
coefficients which have been shortly denoted by the (infinitewdimensio—

nal) coefficient vectors a and b. Then the problem of determining the
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hybrid modes has been reduced to a problem in linear algebra, in which
the unknowns are the mode-number v, and the vectors a and b. It has
been found that the odd and even symmetric hybrid modes have pairwise
identical mode-numbers v, and are pairwise described by the same coef~-
ficient vectors a and b. For a number of corrugated elliptical cones
the quantities v, a and b have been numerically determined, whereupon
the medal fields inside the cone can be evaluated. The results have
been presented in tables and figures.
Chapter 4 deals with the radiation characteristics of elliptical horns
with an anisotropic boundary. Our analysis of the radiation problem is
based on the Kirchhoff-Huygens approximation, in which it is assumed
that the radiation field is completely determined by the field distri-
bution at the horn aperture only. The latter aperture field is then
taken to be identical to some given modal field of the infinite corru-
gated cone, as determined in section 3.3. In this manner the radiation
field of the horn is found to be given by an integral representation in
terms of the aperture field. From this integral representation general
radiation properties of horn aperture fields have been derived, depen-
dent on the properties of the exciting modal field. Thus it has been
shown that the radiation fields due to an odd symmetric hybrid mode and
to the associated even symmetric hybrid wmode, are orthogonal, while the
corresponding power radiation patterns are identical. Furthermore, it
has been shown that if the horn aperture fields are related by
E =3 jzoﬁ, then the same relation holds for the electromagnetic field
(E,H) at an arbitrary observation point in the radiating near-field or
far-field regions, thus leading to.a circularly polarized radiation
field in these regions.
Two methods have been employed for the calculation of the radiation
'pattern of the horn. One method, the aperture-field integration method,
is suitable to determine the radiating near~field and far~field patterns.
In this method the Kirchhoff-Huygens integral representation for the
radiation field is converted into a sampling-like representation by a
series of products of Fresnel integrals and Fourier coefficients of the
aperture field., These Fourier coefficients have been numerically
evaluated by means of the Fast Fourier Transform technique.
In the second method, called the wave—expansion method, the electro-

magnetic field outside the horn is expanded in terms of sphero-conal TE
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and TM modes. For a given horn aperture field the expansion coefficients
can be determined by matching the fields at the aperture and by using
the orthogonality properties of the TE and TM modes of free space. Then
the radiation field can be numerically evaluated at any observation
point outside the horn. It has been pointed out that the wave-expansion
method is not very suitable in the case of a long horn, because of the
slow convergence of the modal expansion for the radiation field.
Numerical results obtained by both methods and experimental results
have been presented. The computed results and the measured results
agree to a large extent both in the radiating near-field region and

in the far-field region. Radiation patterns with an elliptical cross-
section have been found. The measured radiation patterns due to an

odd symmetric hybrid mode and to the associated even symmetric hybrid
mode, are almost eqﬁal in a large angular region at all freguencies
considered. This equality of measured radiation patterns is in agree-
ment with the theoretical result. As a consegquence, if a corrugated
elliptical horn is excited by the combination of an odd symmetric
hybrid mode and the associated even symmetric hybrid mode with a phase
difference m/2, the resulting radiation field will indeed be circularly
polarized and the radiation pattern has an elliptical cross-section.
Furthermore, it has been found_that the concept of phase centre of the
radiated far field is feasible only in a small angular range around the
beam axis. However, the location of the phase centre differs if the
planes of measurement (or of computation) are different. Consequently,
phase errors will be inevitable if this type of horn is used for the
illumination of a parabolic reflector antenna. Also, the positioning

of the horn relative to the focal point of the reflector requires care-
ful consideration.

In chapter 5 we have investigated the radiation characteristics of the
single offset parabelic reflector fed by a corrugated elliptical horn
radiator. The secondary radiation field, that is the field radiated by
the reflector, has been determined from the well-known integral repre-
sentation for the field in terms of the induced surface current Ss in
the reflector. In the physical-optics approximation the current Js is
simply related to the tangential components of the incident magnetic
field ﬁi at the reflector surface. This incident field which is due

to the primary radiation by the corrugated elliptical horn, can be
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determined by the methods of chapter 4. Here it is understood that the
primary radiation is excited by some given modal field of the infinite
corrugated cone. To numerically evaluate the secondary radiation field,
the integral representation for the field has again been converted into
a sampling-like representation by a series of products of Fresnel inte-
grals and Fourier coefficients of the reflector current. These Fourier
coefficients have been determined by means of the Fast Fourier Trans-
form technique.

From a theoretical analysis it has been found that the radiation fields
of the antenna system due to excitations of the horn by odd and even
symmetric modes are orthogonal, and the corresponding copolarized radi-
ation patterns are equal, both up to a good approximation. These results
are confirmed by experiments: the measured radiation patterns of the
and HE _-mode excitation of

11" e 11
the horn are virtually identical. Very good agreement has been

antenna system in the two cases of OHE

established between the computed results and measured data for the
secondary radiation of the antenna system. The single offset parabolic
reflector fed by a corrugated elliptical horn radiator does provide a
secondary radiation pattern that has a rapidly decaying main lobe with
an elliptical cross-section, and that has low sidelobes.

The geometrical parameters of the horn and of the parabolic reflector
are input parameters of the computational procedure to numerically
determine the radiation field of the antemnna system, By varying these
input parameters one may search for an antenna design that is optimal
with respect to electrical performance. In this manner the computational
procedure provides a design through computation versus the alternative
of a design based on experimentation. The analytical and numerical
approach to the evaluation of the electrical performance of the antenna
system is rapid (with respect to computer processing time), successful
and reliable.
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SAMENVATTING

Dit proefschrift gaat over de bepaling van het stralingsdiagram van

het antennesysteem dat bestaat uit een parabolische reflektor gevoed
door een gegroefde elliptische hoornstraler. Een dergelijk antenne-
systeem kan zodanig ontworpen worden dat het stralingsdiagram geken-
merkt wordt door een hoofdlus met een elliptische doorsnede, door lage
zijlussen, en door een laag niveau van kruispolarisatie in het geval

van circulair gepolariseerde straling. Vanwege deze eigenschappen kan
het antennesysteem gebruikt worden als zendantenne van een omroep-
satelliet.

In het onderzoek van de stralingseigenschappen van het antennesysteen
kunnen twee deelbijdragen worden onderscheiden. De eerste bijdrage die
in dit proefschrift wordt beschreven, betreft de ontwikkeling van een
theorie voor de verklaring van golfvoortplanting in en straling van

een gegroefde elliptische hoorn met willekeurige geometrische para-
meters. Het deelprobleem van de golfvoortplanting wordt opgelost op
basis van het anisotrope oppervlakte-impedantiemodel voor de gegroefde
wand van de hoorn. De straling van de hoorn wordt geanalyseerd uitgaande
van de Kirchhoff-Huygens benadering van het stralingsprobleem. In deze
benadering wordt aangenomen dat het stralingsveld volledig bepaald wordt
door de veldverdeling in de apertuur van de hoorn. Twee methoden worden
toegepast voor de berekening van de straling van de hoorn, namelijk de
methode waarbij het stralingsveld voorgesteld wordt door integralen in
termen van het apertuurveld, en de methode waarbij het stralingsveld
ontwikkeld wordt naar modi. Numerieke resultaten bepaald met beide
methoden, en experimentele resultaten worden gegeven.

De tweede bijdrage van het onderzoek bestaat uit de ontwikkeling van een
rekenprocedure voor de numerieke bepaling van de straling van het anten-
nesysteem. Het -(secundaire) stralingsveld wordt verocorzaakt door de
elektrische stromen die in de parabolische reflektor worden geinduceerd
door het (primaire) stralingsveld van de hoorn. De rekenprocedure heeft
als invoergegevens de geometrische parameters van de hogrn en de reflek-~
tor. Door stralingsberekeningen uit te voeren voor verschillende waarden
van de invoergegevens kan men vaststellen bij welke parameterwaarden het
stralingsveld van het antennesysteem aan de vereiste specificaties vol-
doet. Op deze wijze is het mogelijk om een antennesysteem te ontwerpen
op basis van berekeningen in plaats van op basis van experimenten.
Numerieke en experimentele resultaten voor de straling van het antenne-

systeem worden gegeven.



~174-



175

CURRICULUM VITAE

De auteur van‘dit proefschrift werd op 13 juli 1949 geboren te Bladel.
van 1961 tot 1966 volgde hij de opleiding HBS-B aan het Rythovius
College te Eersel. Van 1966 tot 1970 doorliep hij de HTS, afdeling
Elektrotechniek, aan het Instituut voor Hoger Beroepscnderwijs te
Eindhoven. Van 1972 tot 1978 volgde hij de studie voor elektrotechnisch
ingenieur aan de Technische Hogeschool Eindhoven. Van 1978 tot 1984
werkte hij als wetenschappelijk assistent in de vakgroep Theoretische
Elektrotechniek, afdeling Elektrotechniek, Technische Hogeschool
Eindhoven. Het in dit proefschrift beschreven onderzoek werd in deze

periode uitgevoerd.



-176-



=177~



-178-



~-179-



-180-



Stellingen

behorend bij het proefschrift van

S.C.J. Worm

Eindhoven, 14 mei 1985



1. De sterkte van een ontvangen stoorsignaal is lager naarmate de
ontvangantenne een lagere gevoeligheid heeft in de richting van
het stoorsignaal. De door Ishimaru en Held ontwikkelde methode
voor de synthese van een stralingsdiagram met een aantal zijlus-
sen van hetzelfde niveau, is in aangepaste vorm bruikbaar voor
de synthese van een stralingsdiagram met een zijlus van een ver-

laagd niveau in de richting van het stoorsignaal.

Ishimaru, A., and G.Held, Analysis and synthesis of
radiation patterms from circular apertures.

Can. J. Phys. 38 (1960}, 78~59.

Worm, 5.C.d., Radiation patterns of circular apertures
with prescribed sidelobe levels. TH-Report 79-E-37,
Bindhoven University of Técknology, Eindhoven, 1979.

2, Laat het elektromagnetisch veld in een circulaire apertuur 0 < r < 1,
0 < ¢ < 27, beschreven worden door een rotatiesymmetrische apertuur-
verdeling £(r) met randwaarde £(1) = 0; hierbij zijn r,¢ pool-
codrdinaten. Dan is de verhouding van het apertuurrendement en de
ruimtelijke spreiding van het uitgestraalde vermogen maximaal

indien f(r) = 1 - r2.

Worm, S.C.d., Optimization of some aperture antenna
performance indices with and without patterm constraints.
TH~Report 80-E-112, Eindhoven University of Technology,
Eindhoven, 1980.

3. De lengte van een 'dual-hybrid-mode' belichter voor efficiente
belichting van een radiotelescoop zoals die gegeven wordt door Vau,

kan aanzienlijk gereduceerd worden.

Vu, I.B., Low-noise dual-hybrid-mode horn - an experimental
model. Int. J. Electron. 34 (1873), 391-400.

Worm, S.C.d., Compact dual-hybrid-mode feeds with low
crosspolar radiation. Eleetronics Letters 15 (1979),
740-741,



4.

Het verdient de voorkeur om voor TE~ en TM-modl in elliptische
cylinders en in elliptische kegels, de classificatie naar modi met
even en oneven symmetrie te baseren op de symmetrie-eigenschappen van

de elektrische veldlijnen.

De door Thurlings gebruikte methode ter bepaling van de groefdiepte
nodig voor de realisatie van een anisotrope impedantiewand met impe-
danties Zn = { en Zz = ® in een gegroefde elliptische golfpiip, is

onjuist.

Thurlings, L.F.G., Some properties of the corrugated
elliptical waveguide. Report ET-5-~1375, Eindhoven
University of Technology, Eindhoven, 1975.

Chaviello beweert dat voor signaalontvangst van geostationaire
satellieten met geringe tussenruimte, gebruik moet worden gemaakt

van een ontvangantenne met elliptische apertuur waarvan de lange as
locdrecht op het vlak van de geostationaire baan staat. Deze bewering

is onjuist.

Chaviello, A., 2° Satellite spacing: an FCC challenge
to microwave engineers. Microwave Journal 26 (1983),
No. 8, &6~44.

Volgens Dragone worden in de apertuur van een gegroefde rechthoekige
hoorn, bij excitatie door een oneven symmetrische hybride mode en bij
excitatie door de overeenkomstige even symmetrische hybride mode,
identieke amplitude-~verdelingen gerealiseerd. Deze bewering wordt niet

gestaafd door experimentele resultaten.

Dragone, C., A rectangular horn of four corrugated plates.
IEEE Trans. Antennas and Propagat. AP-33 (1985), 160-164.



8. Het stralingsdiagram van een gegroefde elliptische hoornantenne is

rotatiesymmetrisch bij een bepaalde keuze van de hoornafmetingen.

9. De depotvondst van IJzertijdkeramiek op de Werft te Bladel doet ver-
moeden dat archeologisch onderzoek aldaar, naar een nederzetting uit

de IJzertijd, met succes kan worden uitgevoerd.

Brabantse Oudheden, Bijdragen tot de studie van het
Brabants Heem, Deel XVI, Eindhoven, 1877.



