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Abstract

Main-chain liquid crystalline polymers (LCPs) are used to produce
strong fibers due to their ability to form highly-ordered orientational
states. For sufficiently long chains it is known that loss of entropy in
such highly-ordered states is partly recovered by the formation of so-
called hairpins or kinks. The presence of hairpins not only modifies the
microstructure of LCPs, but it has also been conjectured that hairpins
influence their macroscopic mechanical behavior. In this paper the influ-
ence of hairpins on the rheological properties of concentrated solutions of
LCPs is studied.
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1 Introduction

The ability of liquid crystalline polymers (LCPs) to form highly-ordered ori-
entational states with extraordinary mechanical properties explains why LCPs
are industrially used to produce strong fibres and are the subject of numerous
studies in academic circles. LCPs, as all high-molecular weight polymers, show
many characteristic timescales in their relaxation behavior where short respec-
tively large timescales are to be associated with relaxation of small respectively
large parts of the chain. The largest relaxation time is related to the relaxation
of the chain as a whole and dominates its macroscopic behavior. This fact justi-
fies the success of approaches in which only the longest relaxation time is taken
into account [1]. For isotropic solutions of flexible polymers, therefore, theories
based on rather coarse representations of the chain microstructure adequately
describe the relaxation behavior of these systems. Examples of such theories
are the Rouse- and Zimm models of unentangled polymer liquids and the repta-
tion model of entangled polymer liquids. The situation with solutions of LCPs,
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however, is much more complicated due to the fact that the persistence length
of the chains is not negligible compared to their contour length. The persistence
length is the distance along the chain over which orientational correlations per-
sist. This leads to an anisotropic equilibrium state and a dependence of the
distribution function on the nematic order parameter. Moreover, there exist
several different classes of LCPs having a different chain microstructure such
as main-chain and side-chain LCPs. Nevertheless, it is very useful to develop
simplified models of LCP solution dynamics that only depend on a few mi-
crostructural parameters and allow one to study the effect of these parameters
on the macroscopic properties of the LCP solutions in detail.

One of the most studied model of this type is the Doi rigid-rod model [3], [4],
[5], [6]. The rigid-rod model, as its name suggests, neglects flexibility altogether
and is applicable to LCPs for which the persistence length is of the same order
as the chain length. In general, however, LCPs of sufficient length (molecular
weight) are semi-flexible and hence form an intermediate case between that of
rigid rods and completely flexible polymers. Consequently, models for semi-
flexible LCPs were developed starting from both extremes. Either by extending
the applicability of models for flexible polymers [1] or by relaxing the rigid
constraint in the rigid-rod model by introducing the so-called slightly bending
rod model [7], [8], [9].

For sufficiently long main-chain LCPs in highly-ordered orientational states
it was de Gennes [10] who suggested that the loss of entropy would be partly
recovered by the formation of so-called hairpins or kinks. The aim of the current
work is to adopt the model of the Rouse-chain to describe the influence of
hairpins on the rheological properties of solutions of highly-ordered semi-flexible
LCPs in simple types of flow.

In the papers of the other authors the formation and dynamics of hairpins
is also discussed [11].
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2 Degrees of freedom of the rod-spring chain

In this section we will describe our model for a solution of main-chain LCPs
containing hairpins. Each polymer chain is modeled as a sequence of N rigid
rods, which we will call nematogens or beads, connected by N−1 flexible springs
(see fig. 1 ). In reality main-chain LCPs are semi-flexible and will have some
persistence length. This is reflected in the model via the parameter l - the length
of each of the nematogens. The springs connecting the rods reflect the partial
flexibility of the chains.

The orientational ordering of the nematogens in the solution is usually de-
scribed by a so-called order parameter S, which is a tensor of the second order.
But in the limit of strong ordering S can be represented by the diadic product
of some unit vector n. This vector is called the director.

The relaxation of the orientation of the nematogens happens much faster
then the relaxation of the whole backbone of the chain, i.e. the orientational
relaxation of the nematogens is a fast process. This means that in the limit of
the high ordering and on the timescales of the relaxation of the chain backbone
the orientation of the nematogens can be taken as parallel to the director. Thus,
we will not need to specify the orientation of each nematogen.

Rk
Rk+1

l

n

rc

rk+1

rk

O

Figure 1: The fraction of a chain around k-th nematogen. Here rc is the center
of mass of the chain, Rk is the vector connecting center of mass of the chain and
the center of a k-th nematogen, O is the origin of the laboratory reference frame,
rk is the vector connecting the origin O with the center of a k-th nematogen, n

is the director.

3



The set of coordinates describing the configuration of one chain may be
easily deduced from the picture above (fig. 1). This set can be chosen in many
different ways. The most obvious choice is {r1, r2, ..., rN}. Here all the vectors
are connecting the origin of some chosen laboratory reference frame with the
centers of nematogens. On the fig. 1 this origin is denoted as O.

Another way is to introduce the other set of variables: {rc,R1,R2, ...,RN}.
Here rc is pointing from the origin O to the center of mass of the chain. Vectors
Rk are connecting the center of mass of the chain with the center of its k-th
nematogen. Among N + 1 vectors in this set only N are independent. This is

because by definition of the center of mass
N
∑

m=1
Rm = 0. Of course we employ

here the fact that all the nematogens have equal masses. The relation with the
previous set is next:

rc =
1

N

N
∑

m=1

rm

Rk = rk − rc

We can also introduce the set {rc,b1,b2, ...,bN−1} consisting of the center-
mass vector of the chain and N −1 connector vectors. They are defined in terms
of the first set of vectors as

rc =
1

N

N
∑

m=1

rm

bk = rk+1 − rk

The most convenient choice of the coordinates is usually dictated by the form
of equations that are describing the system. But we will start the description in
terms of the first set {r1, r2, ..., rN}, because of the very transparent meaning
of all the vectors in it. Later, when the system of equations of motion for all
nematogens will be stated we will change the coordinates to bring this system
of equations to the most simple form.

3 Dynamics of the polymer chain

In this section we will state the set of equations that are governing the dynamics
of a chain. The mechanical motion of an object in classical mechanics the New-
ton’s second law of motion is used. It says that the sum of all generalized forces
acting on the molecule or it’s part is equal to the change of the corresponding
generalized momentum.

dp

dt
= F

The force on the righthand-side includes all the interactions exerted to the se-
lected body. For example, if we select as a body one nematogen, then it is sub-
jected to an action of the neighboring nematogens through ”entropic springs”
and to collisions with the other molecules due to thermal motion. The con-
tribution from the collisions is usually separated into two parts. The average
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force acting on the nematogen which we will call hydrodynamic force and the
stochastic force with mean-value equal to zero and describing fluctuations of
the momentum transfer caused by collisions. Our assumptions about the form
of hydrodynamic force and stochastic force play essential role in the model. In
this work we will consider the stochastic force to be a ”time-derivative” of the
Wiener process, i.e. white noise. The hydrodynamic force is taken in anisotropic
Stocks form, i.e. linear dependence of the relative velocity with respect to the
media and anisotropic viscosity coefficient. This assumption mimics the fact
that nematogen experiences less resistance from the surrounding media when
moves along itself, but not perpendicular to itself.

Fresist = −ζ (n) · vrelative

ζ (n) = ζ‖I + ζ⊥ (I − nn)

The interaction between parts of the same molecule is usually called intramolec-
ular interaction. In our case this is the interaction with the neighboring ne-
matogens through the ”entropic springs”. This interaction can be represented
as the gradient of some potential. In the previous section it was mentioned
that the orientational degrees of freedom of the nematogens are treated here as
the fast variables. To average them out we first can consider each chain, if it
is long enough, as a thermodynamic system with fixed positions of the centers
of nematogens and ”temperature” equal to the temperature of the surrounding
media. In time of order of the angular relaxation time it will come to equilibrium
with respect to fast angular variables. The potential which describes the energy
of the chain in this case should be not the pure mechanical potential energy,
but Helmholtz free energy which includes also the entropic contribution of the
angular degrees of freedom. Analysis made in [1], [2] shows that the free energy
of a single chain in the highly-ordered regime with the presence of hairpins can
be taken in the next form.

F =
1

2
w0

N−1
∑

m=1

(rm+1 − rm) ·K0 · (rm+1 − rm) +

+
1

2
w1

N−1
∑

m=1

(rm+1 − rm − ln) ·K1 · (rm+1 − rm − ln) (1)

Here w0 is a fraction of the hairpin states, w1 = 1−w0. K0 = k0I - ”elasticity”
matrix on the hairpin state, K1 = k0nn + k1 (I − nn) - ”elasticity” matrix on
the normal state. The anisotropy in elasticity is caused by nematic interaction
of the nematogens.

At this point it is necessary to specify what is meant here by hairpin state.
The simplest way to explain this is by use of the fig. 2. In the previous section
we have said that the orientation of the nematogen should be parallel to the
director n. But there is still two options left. If we introduce vector um as
depicted on the fig. 2, then we call the state of the spring to be a hairpin
state if the two consequent vectors um and um+1 are pointing in the opposite
direction. Otherwise, we call the state of spring to be normal.
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a.

b.

um

um

um+1

um+1

Figure 2: a. The normal state. um and um+1 are pointing in the same direction.
b. The hairpin state. um and um+1 are pointing in the opposite directions.

After introducing a free energy of the chain we can now write equations for
motion of the nematogens (for s ∈ {1, 2, ..., N}).

mr̈s(t) = −
∂F (r1, ..., rN )

∂rs

− ζ (n) · (ṙs(t) − vmed(rs, t)) + fs(t) (2)

Here m stands for the mass of the nematogen, vmed is the velocity of the sur-
rounding media, fs is the stochastic force acting on the s-th nematogen.

For the nematogen committing Brownian motion the inertial term in equa-
tion (2) is negligible compared to viscosity term. This allows us to omit the
inertial term in the equation (2).

In most of the cases the flow can be considered to be uniform on the scale
of the polymer chain. This motivates us to focus on the case of a uniform flow.
In the uniform flow, i.e. the flow with the constant in space κ = ∇vmed, the
velocity of the flow at any point r can be found as κ · r + vorigin. The term
vorigin can be eliminated by the proper choice of the origin. To do so we need
to find a point which does not move during the whole time of the flow. This is
always possible to do if −vorigin belongs to the range of operator κ. However,
it may happen that the still point is changing its position in time. Then we
have to either take the system of reference following that point, either take into
account the term vorigin. For the cases of non-steady but uniform elongational
or shear flows, which are of major interest here, there are always still points
with zero velocity. That is why we omit vorigin in the foregoing calculations.

vmed (rs, t) = κ · rs (3)
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The expressions for ∂F
∂rs

are readily obtained by the straightforward differ-
entiation.
For s = 1

∂F

∂rs

= − (K · (r2 − r1) − w1lK1 · n) (4)

For s ∈ {2, ..., N − 1}

∂F

∂rs

= −K · (rm+1 + rm−1 − 2rm) (5)

For s = N
∂F

∂rs

= − (K · (rN−1 − rN ) + w1lK1 · n) (6)

Here K stands for w0K0 + w1K1.
Finally, from (2),(3),(4),(5),(6) we get the set of equations governing the

motion of the chain.
For s = 1

ζ (n) · (r1 − κ · r1) = K · (r2 − r1) − w1lK1 · n + f1 (t) (7)

For s ∈ {2, ..., N − 1}

ζ (n) · (rs − κ · rs) = K · (rm+1 + rm−1 − 2rm) + fs (t) (8)

For s = N

ζ (n) · (rN − κ · rN ) = K · (rN−1 − rN ) + w1lK1 · n + fN (t) (9)

Now we have to specify the properties of the stochastic force fs (t). By def-
inition this force models a deviation of the instantaneous force acting on the
nematogen due to the collisions with other particles from the average value of
the collision force, which is called the hydrodynamic force. Thus, the average
of the fluctuation force should be equal to zero. This holds for all s ∈ {1, ..., N}

〈fs (t)〉 = 0 (10)

The properties of the stochastic force are deduced from the equipartition
theorem. This theorem says that the average thermal energy per each quadratic
degree of freedom in thermal equilibrium should be 1

2T . Boltzmanns constant
is omitted here, because we express temperature in energy units.

〈fs(t)fs′ (t′)〉 = 2ζ (n) δss′Tδ (t − t′) (11)

We finalize this section with the conclusion that the dynamics of a rod-
spring chain in a presence of nematic field boils down to the system of stochastic
differential equations (7),(8),(9) supplemented with a definition of the properties
of stochastic forces (10), (11).

7



4 Normal modes expansion

In the previous section we have stated the system of stochastic differential equa-
tions describing the dynamics of a polymer chain. This system consists of N

coupled equations. In this section our aim is to decouple those equations. In
order to do that we will perform a sequence of changes of coordinates.

First, we want to separate the translational motion of the chain as a whole
from the internal motions. This can be done by going to the set of variables
{rc,b1, ...,bN−1} described in section 2. Then equation for the rc is obtained
by taking sum of equations for all r1, r2, ...rN and equations for bs is obtained
from the difference of equations for rs+1 and rs.

Nζ · (ṙc − κ · rc) = fc(t) (12)

Here fc(t) =
N
∑

s=1
fs(t).

〈fc (t)〉 =

N
∑

s=1

〈fc (t)〉 = 0 (13)

〈fc(t)fc(t
′)〉 =

N
∑

s=1

N
∑

s′=1

〈fs(t)fs′ (t′)〉 = 2Nζ (n)Tδ (t − t′) (14)

Equation for internal degrees of freedom. For s = 1

ζ ·
(

ḃ1 − κ · b1

)

= K · (−2b1 + b2) + w1lk0n + f2 − f1 (15)

For s ∈ {2, ..., N − 2}

ζ ·
(

ḃs − κ · bs

)

= K · (bs+1 − 2bs + bs−1) + fs+1 − fs (16)

For s = N − 1

ζ ·
(

ḃN−1 − κ · bN−1

)

= K · (bN−2 − 2bN−1) + w1lk0n + fN − fN−1 (17)

We introduce stochastic forces gs = fs+1 − fs for s ∈ {1, 2, ..., N − 1} and a
Rouse matrix Aps = 2δp,s − δp+1,s − δp,s+1. Then equations (15),(16),(17) can
be written in a general form for p ∈ {1, 2, ..., N − 1}

ζ(n)·
(

ḃp − κ · bp

)

= −K(n)·

N−1
∑

s=1

Ap,sbs+w1lk0n (δp,1 + δp,N−1)+gp(t) (18)

〈gp(t)〉 = 0 (19)

〈gp(t)gp′(t′)〉 = 2Ap,p′ζ(n)Tδ (t − t′) (20)

By means of this change of variables we have separated translational motion of
the center of mass (12) from the internal motions of the chain (18). We see that
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N − 1 equations for internal motions are coupled. The problem of decoupling
of these equations boils down to diagonalization of Rouse matrix. It is known
that Rouse matrix of sizes (N − 1) × (N − 1) can be diagonalized by matrix

Γm,p =
√

2
N

sin
(

πpm
N

)

.

Jm,s = λmδm,s =

N−1
∑

p=1

N−1
∑

n=1

Γm,pAp,n

(

Γ−1
)

n,s

where λm = 4 sin2
(

πm
2N

)

- the eigenvalues of the Rouse matrix.
These considerations motivate us to perform the next change of variables.

qm =
N−1
∑

s=1

Γm,sbs (21)

Equations for coordinates qm is derived from (18) by replacing of bs in terms of
qm and by following multiplication by Γm,p with following summation by index
p. We get for m ∈ {1, ..., N − 1}

ζ(n) · (q̇m − κ · qm) = −λmK(n) · qm + αmw1lk0n + hm(t) (22)

We used here some new notations.

αm =

N−1
∑

p=1

Γm,p (δp,1 + δp,N−1) =

√

2

N
(1 − (−1)m) sin

(πm

N

)

(23)

hm(t) =

N−1
∑

p=1

Γm,pgp(t) (24)

〈hm(t)〉 = 0 (25)

〈hm(t)hm′(t′)〉 =

N−1
∑

p=1

N−1
∑

p′=1

Γm,pΓm′,p′ 〈gm(t)gm′(t′)〉

We employ expression (20) and the fact that matrix Γ is orthogonal and sym-
metric to derive the expression for 〈hm(t)hm′(t′)〉.

〈hm(t)hm′(t′)〉 = 2ζ(n)λmTδm,m′δ (t − t′) (26)

We arrive to the set of N − 1 independent equations for internal motion of
the chain. The fact that all these equations are independent allows us to claim
for new coordinates qm to be normal modes.

q̇m − κ · qm = −λmτ−1 · qm + αmw1lτ‖n + vm(t) (27)

τ−1(n) = ζ
−1(n) · K(n) = τ−1

‖ nn + τ−1
⊥ (I − nn) (28)
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vm(t) = ζ−1(n) · hm(t) (29)

〈vm〉 = 0 (30)

〈vm(t)vm′ (t′)〉 = 2ζ−1(n)λmTδm,m′δ (t − t′) (31)

It is left to nondimensionalize these equations by the following transformation:

q̃m =
qm

l
ṽm(t̃) =

τ‖

l
vm(τ‖t̃)

t̃ =
t

τ‖
κ̃ = κτ‖

τ̃−1 = τ−1τ‖ ζ̃
−1

= ζ−1ζ‖

τ =
τ⊥

τ‖
ζ =

ζ⊥

ζ‖

Θ =
2T

k0l2

After these replacements we get following set of equations to describe internal
motion of the chain.

d

dt
q̃p = −

(

λpτ̃
−1 − κ̃

)

· q̃p + αpw1n + ṽp

(

t̃
)

(32)

〈

ṽp

(

t̃
)〉

= 0 (33)

〈

ṽp

(

t̃
)

ṽp′

(

t̃′
)〉

= ζ̃
−1

Θλpδp,p′δ
(

t̃ − t̃′
)

(34)

We finish this section with the set of equations (32), (33), (34). If the director
dynamics is prescribed, these equations allow us to compute q̃p. On the basis
of internal dynamics of the polymer chain we can deduce the macroscopic prop-
erties of the LCP solution, such as stress tensor, which are of major interest in
this work. Formally (32) is a linear differential equation with respect to q̃p and
can be formally solved if κ̃

(

t̃
)

,n
(

t̃
)

and ṽp

(

t̃
)

are given.

5 Ensemble average behavior of normal-modes

coordinates

Our aim here is to write the analytical solution for the equation (32) and then
to deduce the ensemble averages

〈

q̃p(t̃)
〉

,
〈

q̃p(t̃)q̃p(t̃)
〉

from it. This can be done
on the basis of derivations made in Appendix I.

First we introduce new notations

Ap(t̃) ≡ −
(

λpτ̃
−1(t̃) − κ(t̃)

)

(35)

ap(t̃) ≡ αpw1n(t̃) + ṽp(t̃) (36)
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Mp(t) is a matrix satisfying initial-value problem.






Ṁp(t̃) = Ap(t̃) · Mp(t̃)

Mp(0) = I

(37)

Then the solution of (32) is following from (63)

q̃p(t̃) = Mp(t̃) · q̃p(0) + Mp(t̃) ·

t̃
∫

0

ds M−1
p (s) · ap(s) (38)

where q̃p(0) is the initial value.
Averaging (38) gives the behavior of

〈

q̃p(t̃)
〉

.

〈

q̃p(t̃)
〉

= Mp(t̃) · 〈q̃p(0)〉 + αpw1Mp(t̃) ·

t̃
∫

0

ds M−1
p (s) · n(s) (39)

By taking the diadic product of (38) by itself we get an expression for
〈

q̃p(t̃)q̃p(t̃)
〉

.
〈

q̃p(t̃)q̃p(t̃)
〉

=
〈

q̃p(t̃)
〉 〈

q̃p(t̃)
〉

+ Mp(t̃) ·Bp(t̃) ·
(

Mp(t̃)
)T

(40)

where Bp(t̃) satisfies the following initial-value problem.






Ḃp(t̃) = ΘλpM
−1
p (t̃) · ζ̃

−1
(t̃) ·

(

M−1
p

)T

Bp(0) = 〈q̃p(0)q̃p(0)〉 − 〈q̃p(0)〉 〈q̃p(0)〉

(41)

These three quantities will be the major objects when computing stresses.
Now let’s decide what initial conditions for 〈q̃p(0)〉 and 〈q̃p(0)q̃p(0)〉 are

worthwhile being discussed. We will be interested in the cases when the polymer
solution is at rest before moment of time t = 0 and after that moment is
subjected to some deformation. Thus, we can take for the initial conditions
〈q̃p(0)〉 and 〈q̃p(0)q̃p(0)〉 their values in the equilibrium state. This means we
have to derive an expressions for 〈q̃p〉eq

and 〈q̃pq̃p〉eq
in equilibrium, i.e. they

should come from (39) and (40) in the limit t → ∞ with κ(t) = 0. In Appendix
II the expression for 〈q̃p〉eq

and 〈q̃pq̃p〉eq
are obtained. They are given by (67)

and (71). It follows that if the system was in equilibrium at moment t̃ = 0, then

Bp(0) = Θ τ̃ · ζ̃
−1

(42)

To sum up the results derived in this section we want to make a remark. If the
time-evolution of the director is prescribed, then by means of (37),(39),(40) and
(41) we can track the evolution of ensemble averages

〈

q̃p(t̃)
〉

and
〈

q̃p(t̃)q̃p(t̃)
〉

.
But, the evolution of the director is by itself determined by the evolution of the
conformations of the chains, i.e. of ensemble averages of

〈

q̃p(t̃)
〉

,
〈

q̃p(t̃)q̃p(t̃)
〉

or even more complicated combinations. Therefore in the next section we focus
on establishing the missing link between the evolution of n(t̃) and the average
conformations of the chains.
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6 Director orientation equation

As it was said in the end of the previous section we are aiming here to establish
the equation for the director orientation evolution. The major physical prin-
ciple that we will put in the ground is the minimization of the Helmholz free
energy of the chains with respect to fast variables. Really, the relaxation of
the orientational degrees of freedom happens much faster then the relaxation
of the backbones conformation. This means that at the timescale of changes
for

〈

q̃p(t̃)
〉

,
〈

q̃p(t̃)q̃p(t̃)
〉

we can consider the system to be in an equilibrium
with respect to the orientation of the nematogens. In the highly-ordered limit
orientation of the nematogens is determined by the orientation of the director.
This brings us to a conclusion that the director should minimize the total free
energy of the chains. In an earlier sections we have already stated the free en-
ergy of a single chain in a mean nematic of the surrounding molecules by (1).
The total free energy of all chains is a sum of the free energy aver all chains plus
the interaction term. But we have already taken the interaction between the
chains in a mean-field way when writing the free energy of a single chain. The
fact that each chain is subjected to a nematic field created by the surrounding
is already taken into account. Thus the sum of free energies (1) over all chains
already contains part of interactions modeled in a mean-field way. But we did
not take into account the entanglements between chains, which are usually im-
portant in a concentrated solutions. On the other hand in the highly-ordered
state these entanglements are expected to be much weaker than in a disordered
state. As the first approach we will not take them into account and later from
the comparisons of the current theory with experimental data we will see how
good is this approach.

The free energy of the whole set of

Fsys =

Nch
∑

i=1

Fi (43)

Here Fi is a free energy of an i-th chain. The assumption for all chains to
have equal number of nematogens and the law of large numbers allows us to
transform (43) into

Fsys = Nch 〈F 〉 (44)

Here F is a free energy of a single chain.
To simplify further derivations we make the expression for Fsys dimensionless

by the following transformation.

F̃sys =
Fsys

Nch
1
2k0l2

(45)

From (1) and derivations in the Appendix III, namely results (79),(80),(81),
follows

F̃sys =
N−1
∑

m=1

2w1 (Λ : nn− p · n) + C (46)

12



The problem is to minimize (46) with respect to n for given Λ, p, C, upon the
constrain n · n = 1. We use Lagrange multipliers method in order to find a
minimizer. First we build Lagrange function

L = Λ : nn− p · n + µ (n · n− 1) (47)

Here µ is Lagrange multiplier. The multiplier 2w1 and constant C are omitted
because they do not influence the position of the minimum. Let {e1, e2, e3} be
the normalized eigenbasis of operator Λ and {Λ1, Λ2, Λ3} are the eigenvlaues of
Λ. Then

Λ =

3
∑

i=1

Λieiei (48)

p =

3
∑

i=1

piei (49)

n =

3
∑

i=1

niei (50)

Here pi and ni are the coordinates of p and n in this basis. Now we look for a
global minimum of L.

∂L

∂ni

= 2ni (Λi + µ) − pi = 0 i ∈ {1, 2, 3} (51)

∂L

∂µ
=

3
∑

i=1

(

n2
i − 1

)

= 0 (52)

From (51,) follows the equation for µ

3
∑

i=1

p2
i

4 (µ + Λi)
2 = 1 (53)

If µ is found then coordinates of n can be easily found from the equations

ni =
pi

2 (µ + Λi)
(54)

From Sylvester’s criteria follows that provided Λi > 0 for i ∈ {1, 2, 3} expression
(54) gives the minimum we were looking for.

The evolution of ensemble averages is dependent on the evolution of the
director. The orientation of the director is determined by the ensemble averages
〈

q̃p(t̃)q̃p(t̃)
〉

and
〈

q̃p(t̃)
〉

. This means equations (39), (40) and (53), (54) should
be used simultaneously.

7 The particle contribution to the stress tensor

In the concentrated polymer solutions usually the main contribution to the
stress tensor is due to the polymer chains, but not due to a solvent. The

13



particle contribution to the stress tensor can be computed by a famous Kramers-
Kirkwood formula

σ(p)(t) = −
1

V

Nbeads
∑

m=1

〈Fm(t)rm(t)〉 (55)

Here V is a volume of the solution, Nbeads - the total number of beads in the
solution. In our case Nbeads = NchainsN .

Our aim is to express (55) in terms of the set of normal coordinates {q̃1, q̃2, ..., q̃N−1}.
The details of the derivation are in the Appendix IV. Here we give just the result.

σ(p)(t) = −PidI +
2Pid

NΘ

N−1
∑

m=1

(

K̃ ·
〈

q̃p(t̃)q̃p(t̃)
〉

−
w1αm

λm

n
〈

q̃p(t̃)
〉

)

(56)

where

Pid =
NchainsNT

V
(57)

K̃ = ζ̃ · τ̃−1 (58)

8 Discussion

In the current work we have formulated a discrete microscopic model for a mono-
domain highly-ordered nematic LCP solution. This model is the extension of the
model formulated in the work [1]. The continuous limit of this model is studied
in [2]. In the continuous limit the chain acquires an infinite number of degrees
of freedom. In order to prevent the blow-up of the response functions the proper
cut-off for the number of degrees of freedom is needed. The right mathematical
way of doing this procedure is a subtle procedure. By considering the model for
discrete chain we confirm that the cut-off introduced in the work [2] is properly
done. Moreover, the discrete model is more suitable for the numerical studies
which will be required in the most cases, besides very simple viscometric flows.
These are the arguments in favor of the discrete formulation.
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Appendix I. Formal solution of a linear matrix
differential equation

In this appendix one of the methods of solving systems of linear inhomoge-
neous first order differential equations with time-dependent coefficients is shown.
Let x be a time-dependent vector in R

n solving the initial-value problem.






ẋ(t) = A(t) · x(t) + b(t)

x(0) = x0

(59)

Here A is a time-dependent matrix of size n × n and b is a given time-
dependent vector in R

n.
Our aim is to get an analytic expression for solution of the initial-value

problem (59). In order to get the solution we will first solve a corresponding
homogeneous equation and later use the modified method of variation of a con-
stant. Our guess for the solution of the corresponding homogeneous equation is
x (t) = M (t) ·x0, where M (t) is an unknown matrix to be found. Equation for
M(t) can be established by direct substitution of x(t) into ẋ(t) = A(t) · x(t).

Ṁ(t) · x0 = A(t) · M(t) · x0

This equation should be satisfied for any initial conditions x0. Thus we
obtain an equation for M(t). Supplemented with the initial condition x(0) =
M(0) · x0 = x0, i.e. M(0) = I, we obtain an initial-value problem for M(t).







Ṁ(t) = A(t) ·M(t)

M(0) = I

(60)

Now we turn back to the problem (59) with inhomogeneous equation. We
will look for solution in the form x(t) = M(t) · c(t), where c(0) = x0 and M(t)
is described by (60). By direct substitution of the suggested for x(t) expression
into (59) we obtain an initial-value problem for c(t).







ċ(t) = M−1(t) · b(t)

c(0) = x0

(61)

If the matrix M−1(t) is known and the a vector b(t) is given, then the
problem (61) can be directly integrated.

c(t) = x0 +

t
∫

0

ds M−1(s) · b(s) (62)

From (62) we readily obtain an expression for x(t).

x(t) = M(t) · x0 + M(t) ·

t
∫

0

ds M−1(s) · b(s) (63)
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This expression contains both M and M−1. Sometimes it is more convenient to
solve an evolution equation for M−1 instead of inverting M for every moment
of time. Equation for M−1 is easily derived from (60) and by the use of the
definition of inverse matrix M−1(t) · M(t) = I.







Ṁ−1(t) = −M−1(t) ·A(t)

M−1(0) = I

(64)

We conclude this appendix giving the solution of the problem (59) in terms
of (63), (60), (64).
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Appendix II. Average quantities in equilibrium
state
In the case of equilibrium κ̃(t̃) = 0 and n does not change its direction in time.
In this case system (37) can be explicitly solved.

Mp(t̃) = exp
(

−λpτ̃
−1t̃

)

(65)

Then from (39)

〈

q̃p(t̃)
〉

= exp
(

−λpτ̃
−1t̃

)

· 〈q̃p(0)〉 +

t̃
∫

0

ds exp
(

−λpτ̃
−1(t̃ − s)

)

· αpw1n (66)

In the limit t → ∞ this boils down to

〈q̃p〉eq
=

αpw1

λp

n (67)

In order to get an expression for 〈q̃pq̃p〉eq
we can use the result (40).

〈q̃pq̃p〉eq
= 〈q̃p〉eq

〈q̃p〉eq
+ lim

t̃→∞
Mp(t̃) · Bp(t̃) ·

(

Mp(t̃)
)T

(68)

Expression for Bp(t̃) can be found (41) by direct integration, because in equi-

librium state matrices Mp(t̃) are known and ζ̃ is just a constant matrix. Thus
in equilibrium we get

Bp(t̃) =
1

2
Θ τ̃ · ζ̃

−1
· exp

(

2λpτ̃
−1t̃

)

+ Bp(0) (69)

and

lim
t̃→∞

Mp(t̃) · Bp(t̃) ·
(

Mp(t̃)
)T

=
1

2
Θ τ̃ · ζ̃

−1
(70)

Finally we get an expression for 〈q̃pq̃p〉eq

〈q̃pq̃p〉eq
=

α2
pw

2
1

λ2
p

nn +
1

2
Θ τ̃ · ζ̃

−1
(71)

This result is in agreement with equipartition theorem.
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Appendix III. Free energy of the ensemble of
chains
In this section we derive formula for dimensionless free energy of the system of
chains expressed in normal-mode coordinates. We start from (1) and definition
(45). First we turn from the set of coordinates {r̃1, ..., r̃N} to R̃c, b̃1, ..., b̃N−1.
They differ from the coordinated introduced in the section 2 just by division by
the length-scale l.

F̃sys =
1

k0

N−1
∑

m=1

[

w0

〈

b̃m · K0 · b̃m

〉

+ w1

〈(

b̃m − n
)

·K1 ·
(

b̃m − n
)〉]

Then we open the brackets and employ the symmetry of operator K1

F̃sys =
1

k0

N−1
∑

m=1

[

(w0K0 + w1K1) :
〈

b̃mb̃m

〉

+ w1K1 :
(

nn − 2n
〈

b̃m

〉)]

Then we employ the expressions K0 = k0I and K1 = k0nn + k1(I − nn) to get

F̃sys = 2w1 (Λ : nn − p · n) + C (72)

where

Λ =
1

2

(

1 −
k1

k0

) N−1
∑

m=1

〈

b̃mb̃m

〉

(73)

p =

N−1
∑

m=1

〈

b̃m

〉

(74)

C =

(

w0 + w1
k1

k0

) N−1
∑

m=1

〈

b̃m · b̃m

〉

+ w1 (N − 1) (75)

Now we want to express Λ, p and C in terms of the coordinates {q̃1, q̃2, ..., q̃N−1}.

N−1
∑

m=1

〈

b̃mb̃m

〉

=

N−1
∑

m=1

N−1
∑

n=1

N−1
∑

s=1

(

Γ−1
)

m,s

(

Γ−1
)

m,n
〈q̃sq̃n〉

We use Γ−1 = ΓT to get

N−1
∑

m=1

〈

b̃mb̃m

〉

=

N−1
∑

n=1

〈q̃nq̃n〉 (76)

Similarly,

N−1
∑

m=1

〈

b̃m

〉

=

N−1
∑

m=1

N−1
∑

n=1

(

Γ−1
)

m,n
〈q̃n〉 =

N−1
∑

n=1

βn 〈q̃n〉 (77)
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where

βn =

N−1
∑

m=1

Γ−1
m,n =

√

2

N

N−1
∑

m=1

sin
(πnm

N

)

We use formula

N
∑

m=1

sin(am) =
1

sin
(

a
2

) sin

(

aN

2

)

sin

(

a (N + 1)

2

)

to get

βn =
αn

λn

(78)

Thus we rewrite (73),(74),(75) in coordinates {q̃1, q̃2, ..., q̃N−1}

Λ =
1

2

(

1 −
k1

k0

) N−1
∑

m=1

〈q̃mq̃m〉 (79)

p =

N−1
∑

m=1

αm

λm

〈q̃m〉 (80)

C =

(

w0 + w1
k1

k0

) N−1
∑

m=1

〈q̃m · q̃m〉 + w1 (N − 1) (81)

Results (79),(80),(81) allow us to express the free energy (72) in terms of coor-
dinates {q̃1, q̃2, ..., q̃N−1}.
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