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A lattice Boltzmann method for axisymmetric multiphase flows is presented and validated. The method is
capable of accurately modeling flows with variable density. We develop the classic Shan-Chen multiphase model
[Phys. Rev. E 47, 1815 (1993)] for axisymmetric flows. The model can be used to efficiently simulate single and
multiphase flows. The convergence to the axisymmetric Navier-Stokes equations is demonstrated analytically by
means of a Chapmann-Enskog expansion and numerically through several test cases. In particular, the model is
benchmarked for its accuracy in reproducing the dynamics of the oscillations of an axially symmetric droplet
and on the capillary breakup of a viscous liquid thread. Very good quantitative agreement between the numerical
solutions and the analytical results is observed.

DOI: 10.1103/PhysRevE.88.013309 PACS number(s): 47.11.−j, 05.20.Dd, 47.55.df, 47.61.Jd

I. INTRODUCTION

Multiphase flows occur in a large variety of phenomena,
in nature and industrial applications alike. In both types of
applications it is often necessary to accurately and efficiently
simulate the dynamics of interfaces under different flow
conditions. A paradigmatic industrial application concerns the
formation of small ink droplets from inkjet printer nozzles
[1]. When both flow geometry and initial conditions display
axial symmetry, one expects that the flow will preserve
that symmetry at any later time. Under such conditions it
is advantageous to employ numerical methods capable of
exploiting the symmetry of the problem. The computational
costs of a three-dimensional (3D) axisymmetric simulation
is very close to that of two dimensions, presenting thus
a considerable advantage over fully 3D simulations. When
one deals with multiphase methods characterized by diffused
interfaces, such as the ones common in the lattice Boltzmann
method, the availability of additional computational resources
allows one to decrease the interface width with respect to
the other characteristic length scales in the problem. The
possibility to get closer to the “sharp-interface” limit has thus
a direct impact on the accuracy of the numerical solutions for
diffuse interface multiphase solvers.

The lattice Boltzmann method (LBM) [2] has been widely
employed to study multiphase flows in complex geometries
under both laminar and turbulent flow conditions [3]. In recent
years several implementations of the axisymmetric LBM for
single-phase systems have been proposed [4–9], while, in
comparison, relatively little attention has been devoted to the
case of the multiphase flow [10,11].

The aim of the present paper is to introduce an accurate
and efficient algorithm to study generic axisymmetric, density-
varying flows and in particular multiphase flows. The proposed
algorithm is easy to implement, is accurate, and its multiphase
model builds upon the widely used Shan-Chen model [12,13].
One particular advantage of having the axisymmetric imple-

mentation of the Shan-Chen model is that it allows one to retain
the same parameters of the fully 3D model (e.g., coupling
strength, surface tension, and phase diagram) thus allowing us
to easily switch between axisymmetric and full 3D Shan-Chen
investigations, according to what is needed.

The paper is organized as follows. In Sec. II we present our
lattice Boltzmann method. In Secs. III and IV we present the
results of several benchmarks of the method against single
and multiphase flows, respectively. In Sec. V conclusions
are drawn. The derivation of the additional terms for the
axisymmetric LBM model is presented in the Appendix.

II. MODEL

A. Multiphase lattice Boltzmann method

In this section we introduce the notation and quickly recall
the basics of the Shan-Chen LBM; in particular we focus on
the 2D and nine velocities (D2Q9) Shan-Chen (SC) model for
multiphase flow [12,13]. The LBM is defined on a Cartesian,
2D lattice together with the nine velocities ci and distribution
functions fi . The time evolution of the populations is a
combination of free streaming and collisions:

fi(x + ciδt,t + δt) = fi(x,t) − 1

τ

[
fi(x,t) − f

eq
i (ρ,ueq)

]
.

(1)

In the particular case of Eq. (1), we have further made use of
the so-called BGK approximation where a single relaxation
time τ is used to relax the population distributions towards the
equilibrium distributions f

eq
i . In our notations the relaxation

parameter τ is scaled by the time step δt . The kinematic
viscosity of the fluid ν is related to the relaxation parameter τ

by ν = c2
s δt (τ − 0.5), where cs = √

1/3 is the speed of sound
for the D2Q9 model. The fluid density is defined as ρ = ∑

i fi .
In the SC model the internal or external force F is added to
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the system by shifting the equilibrium velocity as [12,13]

ueq = 1

ρ

(∑
i

cifi + τ δt F

)
, (2)

while the hydrodynamic velocity is defined as

u = 1

ρ

(∑
i

cifi + δt

2
F

)
. (3)

The short-range (first neighbors) Shan-Chen force F(x) at
position x is defined as

F(x) = −Gψ(x)
∑

i

Wiψ(x + ciδt)ci , (4)

where G is the interaction strength, and the Wi’s are
the lattice dependent weights. The density functional is
ψ(ρ(x)) = ρ0[1 − exp(−ρ(x)/ρ0)] where ρ0 is a reference
density and is equal to unity for the results presented in this
paper. From this setting it follows that the bulk pressure pNI

and pressure tensor Pαβ (for δt = 1) are given by

pNI = c2
s ρ + c2

s G

2
ψ(ρ)2, (5)

Pαβ =
(

c2
s ρ + c2

s G

2
ψ2 + c4

s G

2
ψ∇2

c ψ + c4
s G

4
| ∇c ψ |2

)
δαβ

− c4
s G

2
∂αψ∂βψ +

(
τ − 1

2

)2 1

ρ
FαFβ, (6)

respectively, and the surface tension γlv is given by

γlv = −Gc4
s

2

∫ ∞

−∞
(∇cψ · n̂)2 dn, (7)

where δαβ is the Kronecker δ function, n̂ is the unit vector
normal to the interface, and ∇c and ∇2

c are the 2D Cartesian
gradient and Laplacian operator, respectively (see [13–15] for
details). Varying the interaction strength G and choosing an
average density, it can be shown that the system can phase
separate and model the coexistence of a liquid and its vapor.
This multiphase system is characterized by a larger density in
the liquid phase and a lower density in the vapor phase and by
a surface tension at the interface separating the two phases. For
the scheme proposed in Refs. [12,13] the surface tension given
by Eq. (7) should have a τ -correction term, which is due to the
last term of Eq. (6), and hence the surface tension is given by

γ̃lv = −Gc4
s

2

∫ ∞

−∞
(∇cψ · n̂)2 dn

+
(

τ − 1

2

)2 ∫ ∞

−∞
(F · n̂)2 1

ρ
dn. (8)

The τ -correction term in Eq. (8) is the consequence of the
choice of the scheme used for adding the external or internal
forces in LBE, for example, if we use the force incorporation
scheme proposed in Ref. [16] the surface tension should not
have the τ correction.

B. Axisymmetric Navier-Stokes equations

When the boundary conditions, the initial configuration,
and all external forces are axisymmetric, one does expect that

the solution of the Navier-Stokes (NS) equations will preserve
the axial symmetry at any later time. The continuity and NS
equations in the cylindrical coordinates (z,r,θ ), in absence of
external forces read

∂tρ + ∂β(ρuβ) = −r−1ρur, (9)

and

ρ(∂tuz + uβ∂βuz) = −∂zp + ∂β[μ(∂βuz + ∂zuβ)]

+ r−1μ(∂ruz + ∂zur ), (10a)

ρ(∂tur + uβ∂βur ) = −∂rp + ∂β[μ(∂βur + ∂ruβ)]

+ 2μ∂r (r−1ur ), (10b)

respectively, where μ = νρ, is the dynamic viscosity and ν

is the kinematic viscosity of the fluid. The index β runs
over the set {z,r}, and when an index appears twice in a
single term it represents the standard Einstein summation
convention. In principle an axisymmetric flow may have an
azimuthal component of the velocity field, uθ . In Eqs. (9)
and (10) we assume that the flows that we consider have no
swirl, i.e., uθ = 0, and that other hydrodynamic variables are
independent of θ . We can thus write ur = ur (z,r; t), uθ = 0,
uz = uz(z,r; t), and ρ = ρ(z,r; t).

The axisymmetric version of the continuity and NS equa-
tions have been recast in a form, Eqs. (9) and (10), to easily
highlight the similarities with respect to 2D flows in a (z,r)
plane. Our approach employs a 2D LBM to solve for the
two-dimensional part of the equations and explicitly treat the
additional terms.

The continuity equation differs from the purely 2D one
because of the presence of a source or sink term on the right
hand side of Eq. (9); this term is responsible for a locally
increasing mass whenever fluid is moving towards the axis,
and for decreasing mass when moving away. The physical role
of this term is to maintain 3D mass conservation (a density ρ

at a distance r must be weighted with a 2πr factor).
The NS equations have also been rewritten in a way to

highlight the 2D equations. The additional contributions that
make the 3D axisymmetric equations differ from the 2D ones
are the terms r−1μ(∂ruz + ∂zur ) and 2μ∂r (r−1ur ) on the right
hand side of Eqs. (10). In our LBM model these terms are also
explicitly evaluated and added as additional forcing terms.

The idea to model the 3D axisymmetric LBM with a
2D LBM supplemented with appropriate source terms has
already been employed in a number of studies, for single-phase
axisymmetric LBM models [4,5,17,18] and for the multiphase
LBM as well [10,11]. Here we will develop an axisymmetric
version of the Shan-Chen model [12,13].

From here onwards we will use the following notations:
x = (z,r), u = (uz,ur ), and ∇c = (∂z,∂r ), where the z axis is
the horizontal axis and the r axis is the vertical axis.

C. LBM for axisymmetric flow

The first step in deriving a LBM for axisymmetric multi-
phase flows is to derive a model that can properly deal with
density variations. In particular, the LBM should recover the
axisymmetric continuity Eq. (9) and NS Eqs. (10) by means
of a Chapman-Enskog (CE) expansion in the long-wavelength
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and long-time-scale limit. In order to derive such a model
we start from the 2D LBM with the addition of appropriate
space- and time-varying microscopic sources hi (see also
[4,5,17,18]). We employ the following lattice Boltzmann
equation:

fi(x + ciδt,t + δt) − fi(x,t)

= − 1

τ

[
fi(x,t) − f

eq
i (ρ,ueq)

]+ δthi(x + ciδt/2,t + δt/2),

(11)

where the source terms hi , are evaluated at fractional time
steps. It can be shown, see the Appendix, that when the
additional term hi in Eq. (11) has the following form:

hi = Wi

(
−ρur

r
+ 1

c2
s

(cizHz + cirHr )

)
, (12)

with

Hz = ciz

r
(μ(∂ruz + ∂zur ) − ρuruz), (13a)

Hr = cir

r

[
2μ

(
∂rur − ur

r

)
− ρu2

r

]
, (13b)

the CE expansion of Eq. (11) provides the axisymmetric
version of the continuity and of the NS Eqs. (9) and (10),
respectively. Details on the CE expansion are reported in
the Appendix. The equations introduced here are enough
to describe a fluid with variable density in axisymmetric
geometry. We performed validations of the numerical model
(not reported) by observing the behavior of the volume for the
case of a droplet approaching the axis. While the 2D volume in
the system was not conserved, the properly defined 3D volume
was conserved with good accuracy.

D. LBM for axisymmetric multiphase flow

With a lattice Boltzmann method capable of handling
density variations the additional steps towards the definition
of the axisymmetric version of the SC multiphase model
only consists in the correct definition of the SC force. The
expression for the SC force in three dimensions is

F(x) = −Gψ(x)
∑

i

Wiψ(x + ciδt)ci . (14)

To find the lattice expression for the axisymmetric case we
proceed by passing to the continuum limit, by expressing
the continuum force in cylindrical coordinates and then by
separating the 2D SC force from the additional axisymmetric
contributions.

By means of a Taylor expansion for ψ(x + ciδt) one
easily obtains the following continuum expression for the SC
force [15]:

F(x) = −Gc2
s δt ψ(x)∇ψ(x) − G

2
c4
s (δt)3ψ(x)∇(∇2ψ(x))

+O[(δt)5]. (15)

The above force expression is lattice independent and
holds true for any 3D coordinate system. We restrict
Eq. (15) to the case of axisymmetric flows by express-
ing both the gradient ∇ and the Laplace ∇2 operators

in cylindrical coordinates given by ∇ ≡ (∂z,∂r ) = ∇c and
∇2 ≡ (∂zz + ∂rr + r−1∂r ) = ∇2

c + r−1∂r . Thus, in the axisym-
metric case, Eq. (15) reduces to

F(x) = −Gc2
s δt ψ(x)∇cψ(x) − G

2
c4
s (δt)3ψ(x)∇c

(∇2
c ψ(x)

)

+ Fγ,sym(x) + O[(δt)5], (16)

where

Fγ,sym(x) = −G

2
c4
s (δt)3ψ(x)∇c(r−1∂rψ(x)). (17)

From Eq. (16) we immediately recognize that the first two
terms on the right hand side are the ones that one obtains
from the Shan-Chen model in two dimensions. The last term
in Eq. (16), Fγ,sym, is the additional term responsible for
the three dimensionality. This extra contributions needs to be
accurately taken into account in order to model the axisym-
metric Shan-Chen multiphase systems in three dimensions. In
particular, this term is extremely important in order to correctly
implement a 3D surface tension force which responds to
curvatures, both along the axis and in the azimuthal direction.
The two components of the additional term can be rewritten
as

Fγ,sym
z = −G

2
c4
s (δt)3ψr−1∂zrψ, (18a)

Fγ,sym
r = −G

2
c4
s ψ(δt)3(r−1∂rrψ − r−2∂rψ). (18b)

The evaluation of the terms F
γ,sym
z and F

γ,sym
r requires

an approximation for the derivatives accurate up to order
(δt)4 or higher. Such an accuracy ensures the isotropy of the
“reconstructed” 3D axisymmetric Shan-Chen force and thus
the isotropy of the resulting surface tension along the interface.

In our implementation we used the following isotropic fifth-
order accurate finite difference approximations on the D2Q9
lattice (see Fig. 1). For a scalar valued function φ(x) it reads

∂rφ(x) = 1

36

8∑
i=1

[8φ(x + ciδt) −φ(x + 2ciδt)]cir

+O[(δt)5], (19a)

∂rrφ(x) = 1

36

8∑
i=1

[8∂rφ(x + ciδt) − ∂rφ(x + 2ciδt)]cir

+O[(δt)5], (19b)

∂zrφ(x) = 1

12
[−∂rφ(x + 2c1δt) + 8∂rφ(x + c1δt)

− 8∂rφ(x + c3δt) + ∂rφ(x + 2c3δt)] + O[(δt)6],

(19c)

where ∂rφ(x) in Eq. (19c) is approximated as

∂rφ(x) = 1
12 [−φ(x + 2c2δt) + 8φ(x + c2δt)

− 8φ(x + c4δt) + φ(x + 2c4δt)] + O[(δt)6].

(19d)

From the SC model the present axisymmtric implemen-
tation does inherit all advantages as well as the limitations.
One of the limitations is the relatively small density contrast
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FIG. 1. Schematics of the axisymmetric geometry, eventually in
presence of gravity or an external force aligned with the z axis.
Schematics also show the lattice velocities for the D2Q9 model.

that can be achieved. Other multiphase LBM models, for
which a similar axisymmetric extension could similarly be
worked out, may allow us to achieve larger density contrasts.
In the SC model both the density ratio ρl/ρv and the surface
tension γ depend upon a single parameter G. Decreasing
the value of G increases both the surface tension and the
density ratio between two phases. Higher surface tension gives
smaller interface width that leads to higher truncation error in
the gradient approximation at the interface. This makes the
numerical scheme unstable for too high values of G. As a
rule of thumb, a density ratio of ρl/ρv � 35 (G � −6.0) still
ensures the stability of the SC model. Therefore, the current
axisymmetric SC model, as much as the standard SC model,
is limited to a density ratio around 35.

E. Boundary conditions

In axisymmetric flows the boundary conditions for the
distribution functions fi need to be prescribed at all boundaries
including the axis. In our approach we impose boundary
conditions before the streaming step (prestreaming). We use
midgrid point specular reflection boundary conditions on the
axis [19]; this choice allows us to avoid the singularity due
to the force terms containing 1/r . Midgrid bounceback or
midgrid specular reflection boundary conditions are used to
impose either hydrodynamic no-slip or free-slip conditions
at the other walls, respectively [19]. In order to impose a
prescribed velocity or pressure at inlet and outlet boundaries,
we impose the equilibrium distribution functions f

eq
i , eval-

uated using the desired hydrodynamic velocity and density
values. For our LBM simulations we use unit time step (δt = 1)
and unit grid spacing (δz = δr = 1), hence the length can be
measured in terms of the number of nodes. We are using the
symmetry boundary condition for the derivative evaluation in
Eqs. (13) and (17) at the axis. For the other three boundaries
we impose the derivative terms to be zero.

III. NUMERICAL VALIDATION FOR SINGLE-PHASE
AXISYMMETRIC LBM

Here we present the validation of the axisymmetric LBM for
single-phase flow simulations by comparing it with analytical
solutions for the test cases: the axial flow through a tube and
the outward radial flow between two parallel discs. These two
tests complement each other because they correspond to flows
parallel and orthogonal to the axis, respectively. Both flow
problems have analytical steady state solutions that help us to
validate the accuracy of the axial and radial components of the

velocity. All physical quantities in this paper, unless otherwise
stated, are reported in lattice units (l.u.), the relaxation time
has been keep fixed for all the simulations, τ = 1, and the
simulations have been carried out on a rectangular domain
of size H × R = Nz × Nr . The steady state in the following
single-phase simulations is defined when the total kinetic
energy of the system, Eke = π

∑
Nz

(
∑

Nr
rρ|u|2), becomes

constant up to the machine precision.

A. Flow through a pipe

In this test we consider the constant-density flow of a fluid
with density ρ and kinematic viscosity ν flowing inside a
circular pipe of radius R. The flow is driven by a constant
body force ρg along the the axis of the pipe. The schematic
illustration of the flow geometry is presented in Fig. 1.
Assuming ur (z,r) = 0 and a no-slip condition on the inner
surface (r = R) of the pipe, the steady state solution for the
axisymmetric NS Eq. (10) for this problem is given by [20]

uz(z,r) = U1

[
1 −

(
r

R

)2]
, (20)

where U1 = ur (z,0) = gR2/(4ν), is the maximum velocity in
the pipe.

For the LBM simulation we used the no-slip boundary
condition at the inner surface of the pipe, and periodic
boundary conditions at the open ends of the pipe. The body
force g = 10−5 is applied at each node of the simulation
domain. The LBM simulations are carried out until the
simulation reaches its steady state. The result of the LBM
simulation shown in Fig. 2 is in very good agreement with the
analytical solution in Eq. (20). This validates the single phase
axisymmetric LBM for the case where there is no velocity in
the radial direction.

B. Outward radial flow between two parallel discs

Another important test to validate the single-phase axisym-
metric LBM is the simulation of the outward radial flow
between two parallel discs separated by a distance H . The
schematic of the flow setup for this problem is reported in

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

A
xi

al
 v

el
oc

it
y,

 u
z/

U
1

r/R

LBM
Analytical solution

FIG. 2. A comparison of the axial velocity profile as obtained
form the LBM simulations (circles) vs the analytical solution (solid
line) Eq. (20). Simulation parameters: Nz × Nr = 16 × 16, R = Nr ,
ρ = 1, ν = 0.167, g = 10−5, U1 = uz(0) = 3.84 × 10−3.
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FIG. 3. Schematics of the physical setup to study outward radial
flow between two parallel discs. The arrows show the direction of
the inlet mass flow. The LBM is used to simulate the flow domain
0 � z � H , Ri � r � R. We assume that the flow is fully developed
for r � Ri and hence the axial velocity uz vanishes in this region.

Fig. 3. Assuming uz(z,r) = 0 for Ri � r � R, the no-slip
boundary condition on the discs, and a constant mass flow rate
Q along the radial direction, the solution of the NS Eq. (10)
corresponding to this problem is given by [20]

ur (z,r) = −U2

(
4Ri

H 2

)
z(z − H )

r
, (21)

where U2 = ur (H/2,Ri) = 3Q/(4πRiH ). The LBM results
shown in Fig. 4 are carried out for the flow domain
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FIG. 4. A comparison of the radial velocity profile ur as obtained
form LBM simulations (circles) vs the analytical solution (solid
lines) of Eq. (21). Simulation parameters: Nz × Nr = 32 × 120,
R = Nr − 0.5, H = Nz, Ri = 9.5, ρ = 1, ν = 0.167, Q = 0.5, and
U2 = 3.93 × 10−4. Top figure shows the comparison at z = 15.5.
Bottom figure from top to bottom shows the curves correspond to the
radial distances r/R = 0.8, 0.2, 0.1, and 0.08.

Ri � r � R,0 � z � H and using the no-slip boundary con-
dition along the discs. The velocity profile given by Eq. (21)
is applied at the inlet boundary while the outlet is considered
as an open boundary. The LBM results shown in Fig. 4 are
in very good agreement with the analytical solution Eq. (21).
This validates the single phase axisymmetric LBM for the case
of a radial velocity.

IV. NUMERICAL VALIDATION FOR AXISYMMETRIC
MULTIPHASE MODEL

In this section we present the validation for our axisymmet-
ric multiphase LBM for three standard test cases: Laplace law,
oscillation of a viscous drop, and the Rayleigh-Plateau (RP)
instability.

A. Laplace test

In this validation we compare the in-out pressure differ-
ences for different droplet radii. According to the Laplace law
the in-out pressure difference �p for a droplet of radius RD is
given by

�p = 2γlv

RD
, (22)

where γlv is the liquid-vapor interfacial tension. For this
validation we first estimate the value of the surface tension
using Eq. (7) (Guo scheme [16]) and Eq. (8) (SC scheme [13])
for both 2D and axisymmetric LBM. The data obtained from
these simulations are reported in Table I. Both the Guo and
SC scheme are consistent with the fact that for the SC model
the surface tension should only depend on the value of the
interaction parameter G.

In the next step we do a series of axisymmetric LBM
simulations for different droplet radii and measure the in-out
pressure difference. When comparing the in-out pressure
difference for a drop (Laplace test) and the pressure drop
given by Eq. (22), we find that the maximum relative error in
pressure difference for the Guo scheme [16] and the SC scheme
[13] is 2% and 20%, respectively. This difference might be
due to following reason: The external force, F ≡ (Fz,Fr ),
can be incorporated in the LBM in several different ways
[16,21,22]. However, depending on the chosen forcing scheme,
the Chapman-Enskog (CE) expansion has different truncation
error terms in the continuity and Navier-Stokes equations. For
instance, if one uses the force addition scheme as proposed

TABLE I. Surface tension evaluated using Eq. (8) (columns 2
and 3) and Eq. (7) (columns 4 and 5). Here γ 2D

lv ,γ axis
lv denote the surface

tensions obtained from 2D and axisymmetric LBM, respectively.
Simulation parameters: Nz × Nr = 1 × 64, τ = 1, initial interface
position, r = 32.

SC Guo

G γ̃ 2D
lv γ̃ axis

lv γ 2D
lv γ axis

lv

−4.5 0.0220 0.0220 0.0135 0.0136
−5.0 0.0579 0.0579 0.0376 0.0378
−5.5 0.0995 0.0996 0.0681 0.0683
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by Guo et al. [16] one obtains the continuity equation given
by Eq. (9), whereas by using the scheme proposed by Shan
and Chen [12] the CE gives us the following axisymmetric
continuity equation:

∂ρ

∂t
+ ∇ · (ρu) = −

(
τ − δt

2

)
∇ · F.

Different right hand side terms in the continuity equations
result in different densities inside the droplet (in the Laplace
test) and one may obtain different pressure, via the equation of
state given by Eq. (5). In the axisymmetric continuity equation,
with the SC scheme, the gradient operator has an additional
term −(τ − δt

2 )Fr

r
. Because this term goes as r−1 we expect

that this may be responsible for the larger numerical errors,
thus leading to the departure of about 20% for what concerns
the pressure difference.

B. Oscillating droplet

Here we consider the dynamics of the oscillation of an
axisymmetric droplet in order to validate the axisymmetric
multiphase LBM. We compare the frequency of the oscillation
of the droplet obtained from the LBM simulation with the
analytical solution reported in Miller and Scriven [23]. The
frequency of the second mode for the oscillation of a liquid
droplet immersed in another fluid is given by

ω2 = ω∗
2 − 0.5α(ω∗

2)1/2 + 0.25α2, (23)

where

ω∗
2 =

√
24γlv

R3
D(2ρv + 3ρl)

,

and RD is the radius of the drop at equilibrium, γlv is the surface
tension, ρl,ρv are the densities of the liquid and vapor phases,
respectively. The parameter α is given by

α = 25
√

νlνvρlρv√
2RD(2ρv + 3ρl)(

√
νlρl + √

νvρv)
,

where νl,νv are the kinematic viscosities of the liquid and
vapor phase [23].

In the LBM simulations for this test we use the free-
slip boundary condition at the top boundary and periodic
boundary conditions at the left and right boundaries. The LBM
simulations are initialized with an axisymmetric ellipsoid,
(z/Ra)2 + (r/Rb)2 = 1, where Ra,Rb are the intercepts on the
z and r axis, respectively, with total volume 4πRaR

2
b/3. Due

to the surface tension, the ellipsoidal droplet oscillates and
due to viscous damping it does finally attain an equilibrium
spherical shape with radius RD = (RaR

2
b)1/3 (due to volume

conservation). The time evolution of one of these LBM
simulations is shown in Fig. 5. The time is measured in the
capillary time scale, tcap =

√
R3

Dρl/γlv. The LBM simulations
are performed to validate the effect of the droplet size RD on the
frequency of oscillation ω2. In order to calculate the frequency
of the oscillation we first measure the length of the intercept on
the r axis as a function of time A(t) with A(t = 0) = Rb, and
then we fit the function g(t) = RD + a exp(−bt) sin(ω2t + d)
(see Fig. 6). We find that the numerical estimation of the
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FIG. 5. Time evolution of the shape of an ellipsoidal droplet
immersed in a fluid with different density. Simulation parameters:
Nz × Nr = 320 × 128, G = −6. ρl = 2.65, ρv = 0.075, (z0,r0) =
(160.0,0.5). Labels indicate the time corresponding to the different
droplet shapes.

frequency of the oscillation of the droplet is in excellent
agreement with the theoretically expected value, with a
maximum relative error of approximately 1% (see Fig. 6).
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FIG. 6. Top panel: amplitude A(t) of the oscillations vs time t

for different equilibrium droplet radii RD. Solid lines are obtained
by fitting the function g(t) = RD + a exp(−bt) sin(ω2t + d) to the
data obtained from LBM simulations. Bottom panel: dimensionless
frequency of the second mode of oscillation ω2 vs the equilibrium
droplet radius RD. Simulation parameters: Nz × Nr = 320 × 128,
G = −6.
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C. Rayleigh-Plateau (RP) instability

The last problem that we consider for the validation is the
breakup of a liquid thread into multiple droplets. The problem
was first studied experimentally by Plateau [24] and later
theoretically by Lord Rayleigh [25], and is currently referred
to as Rayleigh-Plateau (RP) instability. The RP instability
has been extensively studied experimentally, theoretically,
and numerically [24–27]. Moreover, the problem is fully
axisymmetric and therefore suitable for the validation of our
multiphase axisymmetric LBM model.

In this validation we check the instability criterion: a liquid
cylinder of radius RC is unstable, if the wavelength of a
disturbance λ on the surface of a liquid cylinder is longer then
its circumference 2πRC. Moreover, we compare the radius
of the resulting drops with experimental [28] and numerical
data [29].

For the LBM simulations we use the free-slip boundary
condition at the top boundary and periodic boundary condi-
tions at the left and right boundaries. The LBM simulations
are performed in a domain of size Nz × Nr = λ × 450. The
wavelength λ of the noise runs over 576, 768, 1024, 1280,
1536, and 1792 for different wave numbers, κ = 2π/λ.
We represent the wave number in dimensionless form as
κ∗ = κRC. The SC interaction parameter G = −6.0, liquid
density ρl = 2.68, vapor density ρv = 0.078, surface tension
γlv = 0.141, and kinematic viscosity ν = 0.016 are fixed for
these simulations. For these parameters the Ohnesorge number
Oh = ν

√
ρl/(γlvRC) = 0.09. The axial velocity field in the

liquid cylinder is initialized by using the sinusoidal velocity
field as uz(z,r) = εu sin(2πz/λ). For our LBM simulation we
use εu < 5 × 10−3.

The time evolution of the RP instability corresponding
to two different wave numbers κ∗ = 2πRC/λ is shown in
Fig. 7. The time is measured in the capillary time scale, tcap =√

R3
Cρl/γlv. In our simulations we find that the cylinder breaks

up into two or more droplets as long as the condition κ∗ < 1
is satisfied (corresponding to the RP instability criterion,

0.00

23.71

24.70

25.03

25.36

32.93

0.00

25.36

27.99

29.31

30.63

49.40

FIG. 7. Growth of the Rayleigh-Plateau instability with time. Left
panel: κ∗ = 0.65; right panel: κ∗ = 0.39. Labels on figures indicate
the corresponding dimensionless time t/tcap.
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FIG. 8. (Color online) Dimensionless wave number κ∗ vs dimen-
sionless droplet radius R/RC. Triangle markers represents the data
obtained from the SJ model for Oh = 0.1 [29], circle markers rep-
resent the data from experiments [28], and square markers represent
data from the axisymmetric LBM simulations for Oh = 0.09.

2πRC < λ). Furthermore, the comparisons of drop sizes for
different wave numbers shown in Fig. 8 is in excellent
agreement with the results of the slender jet approximation
model (SJ) [29] and with experimental data [28].

V. CONCLUSIONS

In the present paper we introduced an axisymmetric LBM
formulation that can be employed for single-phase as well
as for multiphase flows. The multiphase model is the widely
employed Shan-Chen model and the axisymmetric version
here described is particularly convenient as it allows one to
easily switch from 3D to 2D axisymmetric simulations while
maintaining the usual Shan-Chen parameters (i.e., densities
and coupling strength). The lattice Boltzmann axisymmetric
model allows for the solution of multiphase flows at the
computational cost of a 2D simulation. One particular inter-
esting application comes from the possibility of increasing
the system size, thus reducing the relative size of the LBM
diffuse interface with respect to all other length scales in
the flow. We presented several validations for single-phase
as well as for multiphase flows. In the case of multiphase
flows we have quantitatively validated the mass conservation
and the dynamics of an axially symmetric oscillating droplet.
We have also successfully validated the present model for the
contraction of viscous ligament for Re ∼ 7 and We ∼ 1 [30].
Currently, we are employing the model to study the flow from
inkjet nozzles at Re ∼ 100 and We ∼ 50. Of course there may
be limitations on the use of any type of axisymmetric model
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concerning higher Re and We number flows. This concerns the
case where velocity and/or density may develop fluctuations
that break the axisymmetry. These types of flows clearly can
never be captured by axisymmetric flows solver. The constraint
of axis symmetry may partially be relaxed by models that keep
into account azimuthal perturbation to lowest order; this will
be the subject of future work.

ACKNOWLEDGMENTS

We acknowledge useful discussions with R. Jeurissen, T.
Driessen, and L. Biferale. This work is part of the research
program of the Foundation for Fundamental Research on
Matter (FOM), which is part of the Netherlands Organization
for Scientific Research (NWO).

APPENDIX: CHAPMAN-ENSKOG ON MODIFIED LBM

The modified lattice Boltzmann Eq. (11) for the distribution function fi(x,t) reads

fi(x + ciδt,t + δt) − fi(x,t) = − 1

τ

[
fi(x,t) − f

eq
i (ρ,ueq)

] + δthi(x + ciδt/2,t + δt/2), (A1)

where hi is the source terms, ci is the lattice velocities, τ is the relaxation parameter, and f
eq
i is the discrete second order

approximation of the Maxwell-Boltzmann distribution function,

f
eq
i (ρ,u) = Wiρ

[
1 + 1

c2
s

(ci · u) + 1

2c4
s

(ci · ueq)2 − 1

2c2
s

|ueq|2
]
, (A2)

where cs is the speed of sound and Wi’s are the weight factors to ensure the symmetry of the lattice. For the D2Q9 LB model with
BGK collision operator the speed of sound, cs = √

1/3, W0 = 4/9, Wi = 1/9 for i = 1,2,3,4, and Wi = 1/36 for i = 5,6,7,8.
In general these weights are positive and satisfy following symmetry conditions [31]:∑

i

Wi = 1,
∑

i

Wiciα = 0,
∑

i

Wiciαciβ = c2
s δαβ,

∑
i

Wiciαciβciγ = 0,

(A3)∑
i

Wiciαciβciγ ciδ = c4
s (δαβδγ δ + δαγ δβδ + δαδδβγ ),

∑
i

Wiciαciβciγ ciδciη = 0.

The hydrodynamic density ρ and momentum (ρu) are given by the zeroth and first moment of the distribution function respectively,
i.e.,

ρ(x,t) =
∑

i

fi(x,t), (A4a)

(ρu)(x,t) =
∑

i

cifi(x,t). (A4b)

In the absence of any external force, ueq = u. In order to establish a relation between the LB Eq. (A1) continuity Eq. (9) and
the NS equations (10) it is necessary to separate different time scales. We distinguish between slow and fast varying quantities
by using two time scales and one space scale [31]. We expand the time and space derivative (∇c: the gradient operator in the
Cartesian coordinate system) using a formal parameter ε as

∂t = ε∂
(1)
t + ε2∂

(2)
t + O(ε3), ∇c = ε∇c

(1) + O(ε2), (A5)

and the distribution function, fi as

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + O(ε3). (A6)

The expansion parameter is formal in the sense that it allows us to keep track of the terms with a different order of magnitude
with respect to f

(0)
i . The zeroth order contribution f

(0)
i is exactly the same as the equilibrium distribution function f

eq
i . The first

and second order perturbations in fi do not contribute to hydrodynamic density and momentum [31]:∑
i

f
(1)
i =

∑
i

f
(2)
i = 0, (A7a)

∑
i

cif
(1)
i =

∑
i

cif
(2)
i = 0. (A7b)

The source term hi does not have any zeroth order contribution and is expanded as

hi = εh
(1)
i + ε2h

(2)
i + O(ε3). (A8)
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Taylor series of fi and hi around (x,t) are given by

fi(x + ciδt,t + δt) = fi(x,t) + δt(∂t + ciα∂α)fi(x,t) + (δt)2

2
(∂t + ciα∂α)2fi(x,t) + O[(δt)3], (A9)

hi(x + ciδt/2,t + δt/2) = hi(x,t) + δt

2
(∂t + ciα∂α)hi(x,t) + 1

2

(
δt

2

)2

(∂t + ciα∂α)2hi(x,t) + O[(δt)3], (A10)

where ciα is the αth component of ci , and ∂α represents the partial derivative with respect to the αth component of x. Indices
α,β,γ,δ are used in the following derivation ranges over the set {z,r}, and when an index appears twice in a single term it
represents the standard Einstein summation convention. Using Eqs. (A5), (A6), (A9), and (A10) in Eq. (A1) and rearranging the
terms we obtain a series in ε,

ε
[
δt

(
∂

(1)
t f

(0)
i + ciα∂ (1)

α f
(0)
i

)] + ε2

[
δt

(
∂

(2)
t f

(0)
i + ∂

(1)
t f

(1)
i + ciα∂ (1)

α f
(1)
i

)
+ (δt)2

2

(
∂

(1)
t ∂

(1)
t f

(0)
i + ciαciβ∂ (1)

α ∂
(1)
β f

(0)
i + 2ciα∂

(1)
t ∂ (1)

α f
(0)
i

)]

= ε

[
− 1

τ
f

(1)
i + δth

(1)
i

]
+ ε2

[
− 1

τ
f

(2)
i + δth

(2)
i + (δt)2

2

(
∂

(1)
t + ciα∂ (1)

α

)
h

(1)
i

]
+ O(ε3). (A11)

Comparing the coefficients of ε, ε2 and omitting ε3 terms in Eq. (A11) gives us

δt
(
∂

(1)
t f

(0)
i + ciα∂ (1)

α f
(0)
i

) = − 1

τ
f

(1)
i + δth

(1)
i , (A12)

δt
(
∂

(2)
t f

(0)
i + ∂

(1)
t f

(1)
i + ciα∂ (1)

α f
(1)
i

) + (δt)2

2

(
∂

(1)
t ∂

(1)
t f

(0)
i + ciαciβ∂ (1)

α ∂
(1)
β f

(0)
i + 2ciα∂

(1)
t ∂ (1)

α f
(0)
i

)
= − 1

τ
f

(2)
i + δth

(2)
i + (δt)2

2

(
∂

(1)
t + ciα∂ (1)

α

)
h

(1)
i , (A13)

respectively. In the following steps of the CE expansion we will take the zeroth and first lattice velocity moments of Eqs. (A12) and
(A13). The zeroth moment of Eqs. (A12) and (A13) will give us the mass conservation up to ε and ε2 order terms, respectively, and
the first moment of Eqs. (A12) and (A13) will give us the momentum conservation up to ε and ε2 order terms, respectively. Finally
by using Eq. (A5) we will obtain equations that conserve the hydrodynamic mass and momentum up to O(ε2) perturbations in fi .

1. Mass conservation

The zeroth order moment is obtained by taking summation of Eq. (A12) over index i, and the first order moment is obtained
by multiplying Eq. (A12) by ci and taking the summation over index i. The zeroth and first order moments of Eq. (A12) along
with Eqs. (A4) and (A7) gives us

∂
(1)
t ρ + ∂ (1)

α (ρuα) =
∑

i

h
(1)
i , (A14)

∂
(1)
t (ρuβ) + ∂ (1)

α �
(0)
αβ =

∑
i

ciβh
(1)
i , (A15)

respectively. �
(0)
αβ in Eq. (A15) is the zeroth order stress tensor, and using Eq. (A2) it can be expressed in terms of hydrodynamic

variables [31]

�
(0)
αβ ≡

∑
i

ciαciβf
(0)
i = ρ

(
c2
s δαβ + uαuβ

)
. (A16)

Using Eq. (A16) in Eq. (A15) gives us

∂
(1)
t (ρuβ) + ∂ (1)

α (ρuαuβ) = −∂β

(
c2
s ρ

) +
∑

i

ciβh
(1)
i , (A17)

Eq. (A14) gives us the density change in convective time scale. In order to estimate the density change in during the diffusive
process, we take the zeroth moment of Eq. (A13),

δt

(
∂

(2)
t

∑
i

f
(0)
i + ∂

(1)
t

∑
i

f
(1)
i + ∂ (1)

α

∑
i

ciαf
(1)
i

)
+ (δt)2

2

(
∂

(1)
t ∂

(1)
t

∑
i

f
(0)
i + ∂ (1)

α ∂
(1)
β

∑
i

ciαciβf
(0)
i + 2∂

(1)
t ∂ (1)

α

∑
i

ciαf
(0)
i

)

= − 1

τ

∑
i

f
(2)
i + δt

∑
i

h
(2)
i + (δt)2

2

(
∂

(1)
t

∑
i

h
(1)
i + ∂ (1)

α

∑
i

ciαh
(1)
i

)
.

013309-9



SRIVASTAVA, PERLEKAR, BOONKKAMP, VERMA, AND TOSCHI PHYSICAL REVIEW E 88, 013309 (2013)

Using Eqs. (A7), (A4), and (A16) we get

∂
(2)
t ρ + δt

2

(
∂

(1)
t ∂

(1)
t ρ + ∂ (1)

α ∂
(1)
β �

(0)
αβ + 2∂

(1)
t ∂ (1)

α (ρuα)
) =

∑
i

h
(2)
i + δt

2

(
∂

(1)
t

∑
i

h
(1)
i + ∂ (1)

α

∑
i

ciαh
(1)
i

)
.

∂
(2)
t ρ + δt

2

[
∂

(1)
t

(
∂

(1)
t ρ + ∂ (1)

α (ρuα)
) + ∂ (1)

α

(
∂

(1)
t (ρuα) + ∂

(1)
β �

(0)
αβ

)] =
∑

i

h
(2)
i + δt

2

(
∂

(1)
t

∑
i

h
(1)
i + ∂ (1)

α

∑
i

ciαh
(1)
i

)
.

Finally using Eqs. (A14) and (A17) we get

∂
(2)
t ρ + δt

2

(
∂

(1)
t

∑
i

h
(1)
i + ∂ (1)

α

∑
i

ciαh
(1)
i

)
=

∑
i

h
(2)
i + δt

2

(
∂

(1)
t

∑
i

h
(1)
i + ∂ (1)

α

∑
i

ciαh
(1)
i

)
. (A18)

Rearranging the terms of Eq. (A18) gives us rate of change of density density with diffusive time scale,

∂
(2)
t ρ =

∑
i

h
(2)
i . (A19)

We assume that the source term h2
i does not change the density at diffusive time scale, i.e.,∑

i

h
(2)
i = 0. (A20)

Using the relation ε(A14) + ε2 (A19) we get

∂tρ + ∂α(ρuα) = ε
∑

i

h
(1)
i + ε2

∑
i

h
(2)
i . (A21)

If we choose

εh
(1)
i = −Wiρur

r
, (A22)

then ∑
i

h
(1)
i = −1

ε

ρur

r
, (A23a)

∑
i

ciαh
(1)
i = 0, (A23b)

∑
i

ciαciβh
(1)
i = −c2

s

1

ε

ρur

r
δαβ. (A23c)

Using Eqs. (A21), (A23a), and (A20) gives us

∂tρ + ∂α(ρuα) = −ρur

r
. (A24)

Equation (A24) is the axisymmetric continuity Eq. (9).

2. Momentum conservation

Similarly, in order to calculate the rate of momentum change with respect to diffusive time scale, we take the first moment of
Eq. (A13),

δt

(
∂

(2)
t

∑
i

ciγ f
(0)
i + ∂

(1)
t

∑
i

ciγ f
(1)
i + ∂ (1)

α

∑
i

ciαciγ f
(1)
i

)

+ (δt)2

2

(
∂

(1)
t ∂

(1)
t

∑
i

ciγ f
(0)
i + ∂ (1)

α ∂
(1)
β

∑
i

ciαciβciγ f
(0)
i + 2∂

(1)
t ∂ (1)

α

∑
i

ciαciγ f
(0)
i

)

= − 1

τ

∑
i

ciγ f
(2)
i + δt

∑
i

ciγ h
(2)
i + (δt)2

2

(
∂

(1)
t

∑
i

ciγ h
(1)
i + δt

2
∂ (1)
α

∑
i

ciγ ciαh
(1)
i

)
,
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using Eqs. (A4), (A7), and (A23a) we get

∂
(2)
t (ρuγ ) + ∂ (1)

α �(1)
αγ + δt

2

(
∂

(1)
t ∂

(1)
t (ρuγ ) + ∂ (1)

α ∂
(1)
β P

(0)
αβγ + 2∂

(1)
t ∂ (1)

α �(0)
αγ

) =
∑

i

ciγ h
(2)
i − c2

s

1

ε
∂ (1)
γ

(
ρur

r

)
, (A25)

where

P
(0)
αβγ ≡

∑
i

ciαciβciγ f
(0)
i , (A26)

�(1)
αγ ≡

∑
i

ciαciγ f
(1)
i . (A27)

Using Eqs. (A2) and (A3) in Eq. (A26) we get

P
(0)
αβγ = 1

c2
s

∑
i

Wiciαciβciγ ciδ(ρuδ) = c2
s (δαβ(ρuγ ) + δβγ (ρuα) + δαγ (ρuβ)), (A28)

and Eq. (A12) in Eq. (A27) gives

�(1)
αγ = δtτ

∑
i

ciαciγ

(
h

(1)
i − ciδ∂

(1)
δ f

(0)
i − ∂

(1)
t f

(0)
i

) = δtτ
∑

i

ciαciγ h
(1)
i − δtτ

(
∂

(1)
δ P

(0)
αγ δ + ∂

(1)
t �(0)

αγ

)
. (A29)

Substituting Eqs. (A17) and (A29) in Eq. (A25) and rearranging gives

∂
(2)
t (ρuγ ) − δt

(
τ − 1

2

)(
∂ (1)
α ∂

(1)
δ P

(0)
αγ δ + ∂

(1)
t ∂ (1)

α �(0)
αγ

) = c2
s

1

ε
δt

(
τ − 1

2

)
∂ (1)
γ

(
ρur

r

)
+

∑
i

ciγ h
(2)
i . (A30)

In order to obtain the NS Eq. (10) from the lattice Boltzmann Eq. (A1) it is necessary that the hydrodynamic velocity satisfies
the low Mach number Ma condition, i.e., O(Ma3) terms are very small and can be neglected from Eq. (A30). For the LB method
the Mach number is defined as Ma = u/cs , where u is the characteristic hydrodynamic velocity and cs is the speed of sound in
the LB method. The third order velocity appears only in the expression ∂

(1)
t ∂ (1)

α �(0)
αγ in Eq. (A30):

∂
(1)
t ∂ (1)

α �(0)
αγ = ∂

(1)
t

(
∂ (1)
α �(0)

αγ

) = ∂
(1)
t

[
∂ (1)
α

(
ρuαuγ + c2

s ρδαγ

)] = ∂
(1)
t ∂ (1)

α (ρuαuγ ) + c2
s ∂

(1)
γ

(
∂

(1)
t ρ

)
= ∂ (1)

α

(
∂

(1)
t (ρuα)uγ + ∂

(1)
t (ρuγ )uα − (

∂
(1)
t ρ

)
uαuγ

) + c2
s ∂

(1)
γ

(
∂

(1)
t ρ

)
.

Using Eqs. (A14), (A17), and (A23a) we get

∂
(1)
t ∂ (1)

α �(0)
αγ = −∂ (1)

α

((
∂

(1)
t ρ

)
uαuγ + uγ ∂

(1)
β �

(0)
αβ + uα∂

(1)
β �

(0)
γβ

) − c2
s ∂

(1)
γ

(
∂

(1)
β

(
ρuβ

) + 1

ε

ρur

r

)

= −∂ (1)
α

[(
∂

(1)
t ρ

)
uαuγ + uγ ∂

(1)
β

(
ρuαuβ + c2

s ρδαβ

) + uα∂
(1)
β

(
ρuγ uβ + c2

s ρδγβ

)] − c2
s ∂

(1)
γ

(
∂

(1)
β (ρuβ) + 1

ε

ρur

r

)

= −∂ (1)
α

((
∂

(1)
t ρ

)
uαuγ + uγ ∂

(1)
β (ρuαuβ) + uα∂

(1)
β (ρuγ uβ) + c2

s

(
uγ

(
∂ (1)
α ρ

) + uα

(
∂ (1)
γ ρ

))
− c2

s ∂
(1)
γ

(
∂

(1)
β (ρuβ) + 1

ε

ρur

r

)
.

Neglecting the terms uα∂
(1)
β (ρuβuγ ), (∂ (1)

t ρ)uαuγ , and uγ ∂
(1)
β (ρuβuα) (these terms are of order Ma3) from the last equation we

get

∂
(1)
t ∂ (1)

α �(0)
αγ = −c2

s ∂
(1)
α

(
uγ

(
∂ (1)
α ρ

) + uα

(
∂ (1)
γ ρ

)) − c2
s ∂

(1)
γ

(
∂

(1)
β (ρuβ) + 1

ε

ρur

r

)
. (A31)

Hence using Eqs. (A28) and (A31), the second term on the left hand side of Eq. (A30) becomes

∂ (1)
α ∂

(1)
δ P

(0)
αγ δ + ∂

(1)
t ∂ (1)

α �(0)
αγ = c2

s

(
∂

(1)
δ ∂

(1)
δ

(
ρuγ

) + 2∂
(1)
δ ∂ (1)

γ (ρuδ)
) − c2

s ∂
(1)
α

(
uγ

(
∂ (1)
α ρ

)
+uα

(
∂ (1)
γ ρ

) + ∂ (1)
γ (ρuβ)

) − c2
s

1

ε
∂ (1)
γ

(
ρur

r

)
;
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rearranging the terms we get

∂ (1)
α ∂

(1)
δ P

(0)
αγ δ + ∂

(1)
t ∂ (1)

α �(0)
αγ

= c2
s

(
∂

(1)
δ ∂

(1)
δ (ρuγ ) + 2∂

(1)
δ ∂ (1)

γ (ρuδ) − ∂
(1)
β

(
uγ ∂ (1)

α ρ
) − ∂

(1)
β

(
uα∂ (1)

γ ρ
) − ∂

(1)
β ∂ (1)

γ (ρuβ)
) − c2

s

1

ε
∂ (1)
γ

(
ρur

r

)

= c2
s

(
∂

(1)
δ ∂

(1)
δ (ρuγ ) + ∂

(1)
δ ∂ (1)

γ (ρuδ) − ∂
(1)
β

(
uγ ∂ (1)

α ρ
) − ∂

(1)
β

(
uα∂ (1)

γ ρ
)) − c2

s

1

ε
∂ (1)
γ

(
ρur

r

)

= c2
s

(
∂

(1)
δ

(
ρ∂

(1)
δ uγ

) + ∂
(1)
δ

(
ρ∂ (1)

γ uδ

)) − c2
s

1

ε
∂ (1)
γ

(
ρur

r

)
. (A32)

Substituting Eq. (A32) back in to Eq. (A30) gives us

∂
(2)
t (ρuγ ) − c2

s δt

(
τ − 1

2

)(
∂

(1)
δ

(
ρ∂

(1)
δ uγ

) + ∂
(1)
δ

(
ρ∂ (1)

γ uδ

)) + c2
s

1

ε
δt

(
τ − 1

2

)
∂ (1)
γ

(
ρur

r

)

= c2
s

1

ε
δt

(
τ − 1

2

)
∂ (1)
γ

(
ρur

r

)
+

∑
i

ciγ h
(2)
i . (A33)

Using Eq. (A23a) and rearranging we get

∂
(2)
t (ρuγ ) = c2

s δt

(
τ − 1

2

)
∂

(1)
δ

[
ρ
(
∂

(1)
δ uγ + ∂ (1)

γ uδ

)] +
∑

i

ciγ h
(2)
i . (A34)

Using the relation ε (A17) + ε2 (A34) along with Eq. (A5) we get

∂t (ρuγ ) + ∂α(ρuαuγ ) = −∂γ

(
c2
s ρ

) + c2
s δt

(
τ − 1

2

)
∂δ

[
ρ
(
∂δuγ + ∂γ uδ

)] + ε2
∑

i

ciγ h
(2)
i . (A35)

If we define ν = c2
s δt(τ − 0.5) and p = c2

s ρ Eq. (A35) becomes

∂t (ρuγ ) + ∂α(ρuαuγ ) = −∂γ p + ν∂δ[ρ(∂δuγ + ∂γ uδ)] + ε2
∑

i

ciγ h
(2)
i . (A36)

Equation (A36) represents the axisymmetric NS equation if the source term h
(2)
i satisfies the following conditions:

ε2
∑

i

cirh
(2)
i = 2μ∂r

(
ur

r

)
− ρu2

r

r
, (A37)

ε2
∑

i

cizh
(2)
i = μ

r
(∂ruz + ∂zur ) − ρuruz

r
. (A38)

Finally we summarize the conditions on h
(1)
i and h

(2)
i that give us the axisymmetric NS equation in the long-wavelength and small

Mach number limit: ∑
i

h
(1)
i = −1

ε

ρur

r
,

∑
i

cirh
(1)
i = 0,

∑
i

cizh
(1)
i = 0,

and ∑
i

h
(2)
i = 0,

∑
i

cirh
(2)
i = 1

ε2

[
2μ∂r

(
ur

r

)
− ρu2

r

r

]
,

∑
i

cizh
(2)
i = 1

ε2

(
μ

r
(∂ruz + ∂zur ) − ρuruz

r

)
,

hence

hi = εh
(1)
i + ε2h

(2)
i ,

= Wi

(
−ρur

r
+ 1

c2
s

(
cizHz + cirHr

))
,

which is the same as Eq. (13). This ends our Chapman-Enskog expansion procedure to obtain the axisymmetric NS from the
modified LB equation. We do not impose any additional condition on the density of fluid ρ.
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Soumis aux Seules Forces Moléculaires, Vol. II (Gauthier Villars,
Paris, 1873), p. 319.

[25] J. W. S. Lord Rayleigh, Proc. Lond. Math. Soc. 10, 4 (1879).
[26] P. Lafrance, Phys. Fluids 18, 428 (1975).
[27] S. Tomotika, Proc. R. Soc. London A 150, 322 (1935).
[28] D. F. Rutland and G. J. Jameson, J. Fluid Mech. 46, 267

(2006).
[29] T. Driessen and R. Jeurissen, Int. J. Comp. Fluid Dyn. 25, 333

(2011).
[30] S. Srivastava, T. Driessen, R. Jeurissen, H. Wijshoff, and

F. Toschi, arXiv:1305.6189.
[31] D. A. Wolf-Gladrow, Lattice Gas Cellular Automata and Lattice

Boltzmann Models, Vol. 1725 of Lecture Notes in Mathematics
(Springer-Verlag, Berlin, 2000).

013309-13

http://dx.doi.org/10.1103/PhysRevE.75.056703
http://dx.doi.org/10.1103/PhysRevE.80.016701
http://dx.doi.org/10.1103/PhysRevE.79.046708
http://dx.doi.org/10.1103/PhysRevE.79.046708
http://dx.doi.org/10.1103/PhysRevE.81.056707
http://dx.doi.org/10.1103/PhysRevE.81.056707
http://dx.doi.org/10.1103/PhysRevE.78.046703
http://dx.doi.org/10.1103/PhysRevE.78.046703
http://dx.doi.org/10.1103/PhysRevE.71.056706
http://dx.doi.org/10.1103/PhysRevE.75.026701
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.49.2941
http://dx.doi.org/10.1023/A:1014527108336
http://dx.doi.org/10.1103/PhysRevE.74.021509
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1103/PhysRevE.76.059902
http://dx.doi.org/10.1103/PhysRevE.77.026703
http://dx.doi.org/10.1103/PhysRevE.61.5307
http://dx.doi.org/10.1103/PhysRevE.84.046710
http://dx.doi.org/10.1103/PhysRevE.84.046710
http://dx.doi.org/10.1017/S0022112068000832
http://dx.doi.org/10.1063/1.861168
http://dx.doi.org/10.1098/rspa.1935.0104
http://dx.doi.org/10.1017/S0022112071000521
http://dx.doi.org/10.1017/S0022112071000521
http://dx.doi.org/10.1080/10618562.2011.594797
http://dx.doi.org/10.1080/10618562.2011.594797
http://arXiv.org/abs/1305.6189



