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Abstract

We propose a unified approach to reversible and irreversible pca dynam-
ics, and we show that in the case of 1D and 2D nearest neighbour Ising
systems with periodic boundary conditions we are able to compute the
stationary measure of the dynamics also when the latter is irreversible
We also show how, according to [DPSS12], the stationary measure is
very close to the Gibbs for a suitable choice of the parameters of the
pca dynamics, both in the reversible and in the irreversible cases. We
discuss some numerical aspects regarding this topic, including a possible
parallel implementation.

1 introduction

In this paper we propose a connection between two different subjects that
have been quite studied over the last two decades, that is, the general study of
non-equilibrium statistical mechanics and the description of equilibrium sta-
tistical mechanics with the specific use of a Probabilistic Cellular Automaton
(pca). Starting from a series of seminal papers, e.g. [GKLM89, LMS90, MS93],
a certain effort has been spent in order to give a dynamical description of the
equilibrium statistical mechanics by means of pcas. A pca is a discrete-time
Markov chain (mc) on a product space SV such that the transition probability
P(σ, τ) is a product measure

P(σ, τ) = ∏
i∈V

pi(τi | σ) , (1.1)

where pi(τi | σ) is a probability on S for all i ∈ V and σ ∈ SV . Given
a probability measure µ on SV , the question is whether a pca may be
constructed whose stationary measure is µ. In the context of the equilibrium
statistical mechanics we are obviously interested to the case in which µ is
a Gibbs measure. It is well known that such a problem is rather difficult.
For instance, in [KV80] it is shown that no pca can be designed in such
a way to be reversible with respect to the stationary distribution of a 2D
Ising model. In [LMS90] and [CN03] a pca is introduced whose invariant,
reversible measure π is related to the Ising model as follows. The projection
of π to the even sites, i.e., those (i, j) ∈ Z2 with i + j even, coincides with
the same projection of the Ising model, and the same holds for odd sites.
However, opposite to the Ising model, spins at even sites are independent
under the measure π of those at odd sites. Recently, one of the authors
has proved in [DPSS12] that the pca from [CN03] can be simply modified
in order to provide a way to approximately sample from a Gibbs measure.
The sense of this statement will be clarified in Section 2. This result was
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achieved following some ideas first introduced in [ISS07] and later exploited
in [Sco11] to provide an easy example of cutoff.
On the other hand, one of the main subjects of the recent research in statis-
tical mechanics has been the study of non-equilibrium statistical mechan-
ics, in particular when a stationary state can be defined. Several different
approaches have been proposed, see e.g. [GC95a, GC95b], [JL10] and the
references therein. In contrast with the case of equilibrium statistical me-
chanics, where a well defined recipe, the Gibbs measure, is always available,
in the non-equilibrium case the subject is far from a complete and general
understanding. The study of the stationary measure in the non-equilibrium
context can not leave aside the dynamics of the process whereas the Gibbs
recipe has exactly this advantage.
In this paper we propose, starting from the results in [DPSS12], a unified
description of equilibrium and non-equilibrium statistical mechanics in terms
of pca. It turns out that such a description gives to the chance to compute
explicitly the stationary state of a set of the statistical mechanics models,
including the nearest neighbour Ising model in 1 and 2 dimensions. An
extension of the class of system for which this approach give rise to explicit
computations seems very likely with the use of relatively easy arguments.
The paper is organised as follows. In Section 2 we will define, according
to [DPSS12], a class of reversible and irreversible pca dynamics. We will
prove that if a weak balance condition is verified then we are able to explicitly
write the unique stationary measure of the chain. In Section 3 we show that
the Ising systems introduced in Section 2 are weakly balanced whenever
periodic boundary conditions are imposed. Finally, in Section 4 we present
some numerical/simulative aspects of pcas. In particular, we show that in
the irreversible case a stationary current is present in the system, and under
suitable conditions what we call Ising waves arise.

2 reversible and irreversible pca dynamics

Let us consider a two-body spin system, defined by an Hamiltonian of the form

H(σ) = − ∑
(x,y)

J{x,y}σx σy , (2.1)

where Λ is a finite set, σ ∈ X = {−1,+1}Λ, and the sum in (2.1) is extended
to the unordered pairs {x, y} with x, y ∈ Λ. The Gibbs measure associated
to the Hamiltonian (2.1) is then

πG(σ) =
e−H(σ)

Z
, (2.2)

where Z = ∑σ e−H(σ). It is possible to construct Markovian, ergodic dynam-
ics having stationary measure is precisely πG(σ). The long run behaviour
of the chain can then be used to sample from πG(σ). Those Markovian
dynamics are typically based on single spin-flip transition probabilities, see
for instance [Bre99, LPW09] and the references therein.
One of the authors has recently proved in [DPSS12] that an approximate
sampling of Gibbs measure (2.2) can be actually achieved also by means of a
reversible pca dynamics. Consider the following Hamiltonian, defined on
pairs of configurations (σ, τ),

H(σ, τ) = − ∑
(x,y)

Jx,y σx τy − q ∑
x

σx τx , (2.3)

where

Jx,y = Jy,x =
J{x,y}

2
, ∀ x, y ∈ Λ . (2.4)

The last term in the Hamiltonian (2.3), proportional to the parameter q > 0,
represents an inertial term, i.e., the tendency of the system to remain in
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the current state σ. We next define a homogeneous mc whose transition
probabilities are

P(σ, τ) =
e−H(σ,τ)

Zσ
, (2.5)

where
Zσ = ∑

τ

e−H(σ,τ) . (2.6)

From (2.4) H(σ, σ′) = H(σ′, σ), thus the Hamiltonian (2.3) is symmetric for
the exchange σ ↔ σ′. It is then immediate to see that such a mc is ergodic
and reversible with respect to the measure

π(σ) =
Zσ

Z
, (2.7)

where Z = ∑σ Zσ. The following result holds

theorem 1 [DPSS12] If e−2q = o
(
|Λ| 12

)
as |Λ| → ∞ then

lim
Λ→∞

dTV (π, πG) = 0 (2.8)

where dTV(·, ·) is the usual total-variation distance and πG is given by (2.1)–(2.2).

Remark 1. The long run behaviour of the collective dynamics defined by (2.5)
can be used to perform an approximate sampling of a Gibbs distribution in
the sense of (2.8). Note that in [DPSS12] the limit (2.8) is obtained without
making any use of reversibility.

Having in mind a generalisation of this picture to irreversible mcs, let us
define a non-symmetric Hamiltonian on pairs of configurations by simply
taking (2.3), where now Jx,y 6= Jy,x.

Definition 1. Whenever Jx,y 6= 0 ⇒ Jy,x = 0 we will say that the spin sys-
tem (2.3) is completely asymmetric.

The new chain will evolve according to (2.5). Due to the lack of symmetry of
the interaction Jx,y, the mc is no longer reversible with respect to (2.7) because
H(σ, τ) 6= H(τ, σ) and the detailed balance condition is not satisfied. How-
ever, we can still consider π(σ) given by (2.7) and compute ∑σ π(σ)P(σ, τ).
This yields

∑
σ

π(σ)P(σ, τ) = ∑
σ

Zσ

Z
e−H(σ,τ)

Zσ
= ∑

σ

e−H(σ,τ)

Z
. (2.9)

proposition 2 Consider the following mc

P(σ, τ) =
e−H(σ,τ)

Zσ
, (2.10)

H(σ, τ) = − ∑
(x,y)

Jx,yσx τy − q ∑
x

σx τx , (2.11)

Zσ = ∑
τ

e−H(σ,τ) , (2.12)

where no assumption is made on Jx,y. Suppose the following Weak Balance Condi-
tion (wbc) holds

∑
τ

e−H(σ,τ) = ∑
τ

e−H(τ,σ) , ∀ σ ∈ X . (2.13)

Then the probability distribution

π(σ) =
Zσ

Z
with Z = ∑

σ

Zσ , (2.14)

is the stationary distribution of the chain.
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Proof. By (2.9) and (2.13),

∑
σ

π(σ)P(σ, τ) = ∑
τ

e−H(τ,σ)

Z
=

Zτ

Z
= π(τ) . (2.15)

Therefore (2.14) is stationary.

Remark 2. The wbc (2.13) determines a class of mcs for which the station-
ary distribution is (2.14), some examples within this class are presented in
Section 3. The fulfilment of the wbc is indeed a weaker requirement than
the detailed balance principle, which holds for the reversible dynamics due
to (2.4).

We end the present section with a couple of important remarks

Remark 3. Given a function g : X ×X → R, its expectation with respect to
the stationary measure over pairs of subsequent configurations is

〈g(σ, τ)〉 = ∑
σ,τ

π(σ)P(σ, τ)g(σ, τ) = ∑
σ,τ

e−H(σ,τ)g(σ, τ)

Z
. (2.16)

Hence, the two-step stationary measure of the dynamics is Gibbsian in the
sense of (2.16).

Remark 4. Given a function g : X ×X → R, consider

J (g) = 〈g(σ, τ)− g(τ, σ)〉 . (2.17)

Whenever J (g) 6= 0 we see a current of the function g. In the reversible case
J (g) is identically zero for each g, while in the irreversible case it may be in
general different from zero.

3 weakly balanced ising irreversible systems

We prove the wbc (2.13) for some examples of 1D and 2D nearest neighbour
Ising systems. Similar proofs can be done in more general cases.

3.1 Weak balance for 1D nearest neighbour Ising systems

The Hamiltonian of the 1D nearest neighbour Ising model is given by

H(σ) = −
L

∑
i=1

Ji σi σi+1 . (3.1)

Here we assume that the strength of the interaction Ji may in general depend
on the site i. The sum on i may be performed using either periodic boundary
conditions or empty boundary condition. In the first case sites 1 and L + 1
coincide (Ising system on the circle). In the second case JL = 0 (Ising system
on the segment).
We can introduce a pca reversible dynamics for this model starting from the
pair Hamiltonian

H(σ, τ) = −
L

∑
i=1

[
Ji
2
(σi τi+1 + τi σi+1) + qσiτi

]
, (3.2)

and then defining the pca dynamics with the transition probabilities

P(σ, τ) =
e−H(σ,τ)

Zσ
. (3.3)

Both periodic and empty boundary conditions can be considered for the
sum (3.2). This reversible pca dynamics can be generalised to an irreversible
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case in two ways. The first possibility is to define a completely asymmetric
system by the pair Hamiltonian

H(σ, τ) = −
L

∑
i=1

[Ji σi τi+1 + qσiτi] . (3.4)

This is a particularly simple irreversible system, and the wbc can be directly
checked in one line

∑
τ

e−H(σ,τ) = 2L ∏
i

cosh(Ji−1σi−1 + qσi)

= 2L ∏
i

cosh(Ji−1σi + qσi−1) = ∑
τ

e−H(τ,σ) , (3.5)

where in the second equality we have used the parity of the hyperbolic cosine.
We will now compute Z using the following elementary identities

cosh(a + b) = cosh a cosh b + sinh a sinh b , (3.6)

sinh(a + b) = sinh a cosh b + cosh a sinh b . (3.7)

When the system is defined on the circle,

Z = ∑
σ,τ

e−H(σ,τ) = (cosh q)L ∏
i

cosh Ji + (sinh q)L ∏
i

sinh Ji , (3.8)

by (3.6) and (3.7), and by the parity of the hyperbolic sine and cosine. When
the system is defined on the segment

Z = ∑
σ,τ

e−H(σ,τ) = (cosh q)L ∏
i

cosh Ji . (3.9)

In this simple 1D case it is also easy to exhibit a function g such that J (g) 6= 0.
Let us take for instance the family gi(σ, τ) = σiτi+1. For the Ising system on
the segment,

J (gi) =〈σiτi+1 − τiσi+1〉 = Z−1 ∑
σ,τ

e−H(σ,τ)(σiτi+1 − τiσi+1)

=Z−12L ∑
σ

[
σi sinh(Jiσi + qσi+1)∏

l 6=i
cosh(Jlσl + qσl+1)

−σi+1 sinh(Ji−1σi−1 + qσi)∏
l 6=i

cosh(Jl−1σl−1 + qσl)

]
= tanh Ji(1− tanh2 q) . (3.10)

The second option to generalise the pca dynamics defined by the Hamil-
tonian (3.2) is to define a partially asymmetric system. The proof of the
wbc (2.13) relies on the hypothesis that the system is translationally invari-
ant. As such, the system has to be defined on the circle with Ji = J for all
1 ≤ i ≤ L. The pair Hamiltonian then becomes

H(σ, τ) = −
L

∑
i=1

[αJ σi τi+1 + (1− α)Jτi σi+1 + qσiτi] , (3.11)

where 0 < α < 1. The proof of wbc for the 2D version of (3.4) is presented in
Section 3.2. The actual proof of the wbc for (3.11) is similar with respect to
that – but much easier. It is left as an exercise to the reader.

3.2 Weak balance for 2D nearest neighbour completely asymmetric Ising systems

We now consider the translationally invariant Ising model on a 2D square
lattice Λ with N × N sites, with periodic boundary conditions. To this
purpose we introduce some notation. The configuration σ ∈ {−1,+1}Λ has
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value σi,j in the site x = (i, j) of the torus Λ. The Hamiltonian of the system
is defined by the expression

H(σ) = − ∑
{(i,j),(k,l)}
n.n. pairs

J σi,j σk,l , (3.12)

that we can rewrite more explicitly as

H(σ) = −J
N

∑
i,j=1

(
σi,j σi,j+1 + σij σi+1,j

)
. (3.13)

Similarly to the previous section, the reversible pca dynamics associated
to (3.13) is determined by the pair Hamiltonian

H(σ, τ) =− J
2

N

∑
i,j=1

(
σi,j τi,j+1 + σi,j+1 τi,j + σi+1,j τi,j + σij τi+1,j

)
− q

N

∑
i,j=1

σi,j τi,j . (3.14)

According to (2.5) and (2.6), the Hamiltonian above defines an homogeneous
mc, which is again ergodic and reversible with respect to the measure π(σ),
given by formulas (2.7) and (3.14).
To generalise this picture to irreversible mcs, we define an irreversible pca

considering a completely asymmetric version of the dynamics above. We
define the following Hamiltonian

H(σ, τ) = −J
N

∑
i,j=1

(σi,j τi,j+1 + σi,j τi+1,j)− q
N

∑
i,j=1

σi,j τi,j (3.15)

proposition 3 The irreversible pca defined as in (2.5)–(2.6) by the Hamilto-
nian (3.15) is weakly balanced, i.e.,

∑
τ

e−H(σ,τ) = ∑
τ

e−H(τ,σ) , ∀ σ ∈ X . (3.16)

Hence, π(σ) = Zσ
Z is the stationary measure of such an irreversible pca.

Proof. By direct computation we have that

∑
τ

e−H(σ,τ) =: Z→σ = 2|Λ|∏
i,j

cosh
(

J(σi−1,j + σi,j−1) + qσi,j
)

, (3.17)

∑
τ

e−H(τ,σ) =: Z←σ = 2|Λ|∏
i,j

cosh
(

J(σi+1,j + σi,j+1) + qσi,j
)

. (3.18)

The parity of the hyperbolic cosine then yields

cosh
(

J(σi±1,j + σi,j±1) + qσi,j
)
=


cosh(2J + q) if σi±1,j = σi,j±1 = σi,j ,
cosh(2J − q) if σi±1,j = σi,j±1 = −σi,j ,
cosh(q) if σi±1,j 6= σi,j±1 .

(3.19)
The three different values depend on the configuration σ when it is repre-
sented in terms of Peierls contours. Indeed, once a configuration σ and the
corresponding set of Peierls contour Γ are chosen, then the contribution of
the single term i, j appearing in the products of (3.17) (resp. (3.18)) depends
on the contribution the dual edges below and to the left (resp. above and
to the right) of the site i, j. If none of them belongs to any Peierls contour,
the contribution will be cosh(2J + q); if both of them belong to some Peierls
contour, then the contribution will be cosh(2J − q); if exactly one of them
belongs to a Peierls contour and the other does not, then the contribution
will be cosh(q). Hence, the first part of the Proposition follows simply noting
that for all configurations of Peierls contours the number of elbows in the
SW direction is the same of the number of elbows NE-oriented.
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Remark 5. Remark 1 implies that Theorem 1 holds also in this case. Thus,
if e−2q = o

(
|Λ| 12

)
as |Λ| → ∞ then π(σ), defined by (2.7) and (3.15),

tends asymptotically in total-variation distance to the Gibbs measure πG(σ),
defined by (2.2) and (3.13).

4 parallelization, phase transition, ising waves

In this section we present some numerical studies about the 2D Ising model
pca we have discussed in Section 3.2 above, that is, the discrete-time mc

defined by (2.5)–(2.6). Both (3.14) and (3.15) will be considered as the Hamil-
tonian of the system.
mcs can be easily implemented and simulated on any computer using the so-
called random mapping representation, see e.g. [Häg02]. Random processes of
the kind of pca can be simulated using the very same approach. The product
form of the transition matrix (1.1) ensures that the spins flip independently,
so a unique random map will serve all the spins. To fix the ideas, let us
consider the reversible pca defined by (2.5), (2.6) and (3.14). If we define the
local field to be

hi,j(σ) =
J
2
(
σi−1,j + σi+1,j + σi,j−1 + σi,j+1

)
. (4.1)

Then equation (3.14) becomes

H(σ, τ) = −
N

∑
i,j=1

[
hi,j(σ) + q σi,j

]
τi,j . (4.2)

Thus, the transition probabilities (2.5)–(2.6) become

P(σ, τ) = ∏
i,j

exp
[
τi,j
(
hi,j(σ) + qσi,j

)]
2 cosh

(
hi,j(σ) + qσi,j

) . (4.3)

The update procedure of a spin at vertex (i, j) is sketched in the pseudocode
given by Listing 1. The number of floating point operations required for the
update of a single spin is very low. Indeed, the problem of simulating the
evolution of such a mc is not particularly complex, involving only simple
operations on many data elements. This is particularly suited for a Graphics
Processing Unit (gpu) because it closely resembles the operations involved
in graphic applications. Moreover, from (1.1) there is no dependency in the
probabilistic update rule for the evolution of the spins. Therefore they can be
updated simultaneously, making the problem embarrassingly parallel. The
natural choice to efficiently implement such a model seems to be Compute
Unified Device Architecture (cuda).
cuda maps geometry onto blocks of threads executing simultaneously. It is
then natural to map a configuration σ, stored as a square matrix of size N×N,

Listing 1: Update procedure for the spin in site (i,j)

1 for each neighbour (k,l) of (i,j)
p += sigma ((k,l))

3 end for
p *= -J

5 p -= q * sigma((i,j))
p = 1 / (1 + exp(2p))

7

if rand() < p then
9 tau((i,j)) = 1

else
11 tau((i,j)) = -1

end if �
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onto a square grid of blocks. Each block is able to run multiple threads,
simultaneously updating a portion of the configuration matrix σ. The update
rule (1.1) ensures that no inter-thread dependencies arise as the transition
probabilities depend only on the previous time-step configuration. The only
aspect that must be carefully regarded is the memory access, because the
memory is the main potential performance inhibitor in gpus. It is hence very
important to optimise for memory access. Dividing the two dimensional
matrix into a set of square tiles is a good strategy to efficiently use the
gpu’s shared memory and minimise the number of global memory reads.
However, the presence of periodic boundary conditions causes a non uniform
access pattern on the boundary, that is, the impossibility to achieve coalesced
memory and so high memory bandwidth. This latter issue disappears if one
considers non-periodic boundary conditions.
Figure 1 shows the execution time of 500 successive transitions of the pca for
different values of the number of sites N in each dimension. In particular,
we see that for a square lattice of size 14000× 14000 the execution time is
less than one minute. Together with Theorem 1 this paves the way for an
extremely sped-up Gibbs sampling.
Let us now consider the irreversible pca defined by (2.5),(2.6) and (3.15), with
initial state σi,j = −1 for all sites (i, j). To have fairly readable pictures, we set
the size of the square lattice equal to 50× 50. The evolution of the dynamics
for J = 0.5 and q = 1.0 is presented in Figure 2a, whereas the evolution for
J = 0.5 and q = 3.0 Figure 2b. In the latter case the product |Λ| 12 e−2q is
small, then from Theorem 1 we may expect the typical configurations of pcas

and serial Glauber dynamics to be rather alike. Indeed, Figure 2b displays
roundish clusters of +1 spins, quite similar to the standard Ising droplets.
Clearly the total asymmetry of the interaction is still visible as the droplets
present a moderate degree of stretching along the SE direction. The droplets
stretch is even more evident in Figure 2a, where the contributions to the
Hamiltonian due to the local field and to the inertial term are comparable.
In Figure 3 the value of q is fixed to the value 1

2 . For a large value of J the
system exhibits spontaneous magnetization (Fig. 3b), whereas for a small
value of q the system exhibit a paramagnetic behaviour (Fig. 3a). Figure 3 then
suggests the presence of a phase transition, and a comparison of Figure 3a
with Figures 2a–b clearly implies that the critical temperature, if any exists,
must be function of both J and q.
The last argument has shown the need to explore the whole plane J, q. A
region of this plane we find rather interesting is that for J large and q small.
Here the spin-flipping is not hampered by the contribution −q σi,j τi,j, so the
alignment of a spin with its souhtern and western nearest neighbour costs
virtually nothing. Figure 4 shows the evolution for J = 1.5 and q = 0.1.
Due to the mechanism we have just described, the droplets steadily drift in
the NE direction. The constant drift suggests the presence of a current of a
family of functions

gi,j(σ, τ) = τi,j(σi−1,j + σi,j−1) , (4.4)

which generalise to the 2D case what we have already discovered in (3.10).
Figure 4 also suggests that there is another mechanism at work along the
mentioned drift. Due to the total asymmetry of the interaction, the growth
of the droplets along the SW direction is preferred. We propose for such
elongated, drifting droplets the name of Ising waves.
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Figure 1: Execution time of 500 steps of the pca dynamics defined
by (2.5), (2.6) and (3.14). Different values of N are considered. Simulations
were run on a Nvidia Tesla K20s gpu.

(a) q = 1.0

(b) q = 3.0

Figure 2: Simulation of nine successive steps of the pca dynamics defined
by (2.5),(2.6) and (3.15), with N = 50, J = 0.5 and different values of q. Blue
dots represents +1 spins.

9



(a) J = 0.5

(b) J = 1.0

Figure 3: Simulation of nine successive steps of the pca dynamics defined
by (2.5),(2.6) and (3.15), with N = 50, q = 0.5 and different values of J.
Blue dots represents +1 spins. Figure (b) shows a negative spontaneous
magnetisation which is not observed in (a).
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Figure 4: Simulation of nine successive steps of the pca dynamics defined
by (2.5),(2.6) and (3.15), with N = 50, J = 1.5 and q = 0.1. Blue dots
represents +1 spins.
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