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SUMMARY 

1, Introduetion 

This dissertation concerns itself with the nature of 

turbulence in a medium with large electrical conductivity. By and 

large, the matter in the universa, except in peculiar conditions 

like on the surface of the earth, is in an ionised state and as 

we see and interpret it, the existence of large scale magnetic 

fields and their impact on various dynamical phenomena in cosmie 

soales are a verified experimental fact, The question of the 

crigin of these magnetic fields has been a matter for considerable 

scien tific s peculation and curies i ty, ever si nee a sys tema tic 

analysis of the astrophysical phenomena was started, ( Cf. the 

review articles by L, !.!estel1 and E.N. Parker2 , ) 

Repreaenting the various trends in cosmology and astro-

physics, there have been two distinctly different approaches to 

the explanation of these fields, from the very start. One view 

which is closely related to the Big Bang ~heory, trie~ to p~oduce 

the magnetic field- almast simultaneously with the Big Bang and 

does not make any attempts to analyse its origin. This leaves the 

problem of the initial magnetic field to be explained by the 

cosmologist. Though as a point of view it is not disputable, it 

is aesthetically not appealing, since it tries to evade the 
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question rathe,r than answer it. This is generally referred to as 

"the Fossil Theory". 

An: alternate. view is. one of "Dynamo Action". A very general 

definition of dynamo action is the transformation of kinatic energy 

of mass motion into electrodynamic and consequently into magnatie 
. . 

energy. The equations 'of motion for .the fluid and the magnatie 

field in á. highly·conducting medium, under the simplifying assump ... 

tion of incompressibilitY can be wri tten 

~; -t 1!·~ U. :: -yp +l>Vs~ -rlyx e)x k + ~ 

ob -"at 

V· lA. ::. o .... 1 • 1 

where "1.6(!.r) is the local hydrodynamica! veloei ty of the 

fluid and b (.(r.. 7rfo..) y._ is the local magnatie induction 

fo. • magnatie permeabili ty, ')) • kinematic viscosity and 

). • magnatie diffusivity of the medium, F (x,t ) refers to all 

other types of body force which are responsible for the velocity 

field. 

The question boils down to constructing a pattern of motions 

which can support a pattem of magnatie fields. It is a matter of 

ultimata consistency, to feed back the generated fields into the 

equations for balanoe of momenturn and check that at the steady-

state, the Lorentz force balances the sum of all other forces. 
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In a celebrated theorem3, Cowling proved the impossibility 

of having a stationary axisymmetric homogeneaus dynamo, supported 

by fluid motions. This had a considerable influence on thinking 

on Stellar D~amos, ever since. Bullard and Gellmann4, Herzen­

berg5 and Backus6 tried to look at this problem by relaxing the 

conditions of stationarity, homogeneity and axial symmetry, one 

at a time. 

But in all these questions, the non-linear dynamical 

equations for the velocity and magnetic field we:re in spirit 

treated in a quasi-linear way. Further, the basic "seed" field, 

with which the system starts in a non-stationary situation was 

never replenisbed and when its sourees were switched off, the 

whole field structure which dependedon it as an ini.tial value, 

died down too. This in an inherent difficulty, with all approa-

ches i.n which the so-called Dynamo equation for the magnetic 

field is treated as an ini tial value problem wi th a given 

velocity fie]d which is independent of the magnetic field. 

Because of the linearity of this equation, the formal solution to 

this has the structure in time of a Green's operator subject to 

the bo:;.ndary value.s and the veloei ty field. Attempts to ge t r:id of 

this difficulty will have to borrow on some non-linear aspects of 

the problem. ( This seems to be a necessary requirement, irrespec-

tive of the level of looking at this question: whether in a 

strictly stationary state or a statistically-steady state. We will 

have an occasion to comeback to this, when we discuss our results.) 
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The question of the amplification of the "seed" field, 

using thè features of the turbulence in the medium was first 

oonsidered by Batchelor7 and Biermann and Sch1Üter8• Their ana­

lysis depended considerably on the accepted understanding of the 

nature of turbulence in hydrodynamica, based on the ideas of 

Kolmogorov at that time. In Sectien 2 we will review the ideas of 

Kolmogorov and the developments by Bateheler and Biermann and 

SchlÜter, in Sectien ). 

This is where the analysis reported in this dissertation 

started. We took the point of view that, since the basic feed back 

to the seed field from hydrodynamica! sourees will have to depend 

on non-linear analysis, thus it is necessary to consider a dyna-

~·~ mical ~approach to the evolution of turbulence in an·elelltrically 

conducting medium, in the presence of electrical currents. We 

started our analysis using the Direct Interaction Approximation 

of Kraichnan9, because this was {and still is) the only theory 

which is adequate to fit the needs of the analysis. In Section 4, 

we will review some of the salient points of this theory. Since 

a number of reviewsexist at the moment (10, 11, 12 ) we will 

restriet our analysis of the theory considerably to points, which 

concern the extension to hydramagnaties of these ideas. In Section 

5 we will review some of the salient alterations, in the hydro­

magnetic context and our metbod of attack. Section 6 will review 

some of the results of the analysis, with a special stress on 

limitations. In Section 7 we will try to bring the situation in 

the subject upto date, with respect to contemporary literature 
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and attempt an evaluation of the prospects for the future in 

this field. 

2, Kolmogorov's gypotheses. 

To develop the ideas of Kolmogorov (13atb) we will reeast 

the hydrodynamic equations, in a Foui·ier-transformed repres~nta-

tion as 

where 

where 

2. 1 

In the case of homogeneaus isotropie turbulencet since all 

mean motions vanish, the local pressure fluctuations are all 

dynamically determined by the Reynolds stresses and so these are 

eliminated, in writing 2 in terms of the velocity fluctuations, 

This is standard practice in turbulence theory ( See for e.g. 

Leslie
12 

page 4 ) 

This model representation enables one to visualise the 

the effect of the non-linear term in the equation for the mode 

with wave number ~ in terms of dynamica! interaction between 

modes with numbers ~ and ~ such that ~ = ~ + ~· Thus energy is 

being transferred from mode to mode because of this interaction, 
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If equation 2,1, we put }) = 0 and (_{'l) =: 0 and calcu-

late 

.!..~ '!:. 'U,'*(Vt,t-) U (f: ,_, :"IM (ft) L. 'U.jA.J U~tr) U..J9) 
.Z.d... 6. - ~ / • \I - - tl ~ ... -- . - ... "'-'*, - ---

we oari eas;ily see using the properties of N\"lm (l) wHh 

respect to symmetry that the right hand side vanishes. This is 

the so .. called "conservative proparty of the non-linear inter..; 

action", which is a prime mover in turbulence theory. Thus the 

non-linear term neither creates nor destroys energy. 

( This, one could. have checked directly from the original 

equations (1.1) as well ). The non-linear term only shuffles 

energy around from mode to mode, The interaction between modes is 

persistent in time. We see bere itself a divergence from tradi-

tional concepts of collisions in statistica! mechanica. 

But if one can grade the modes accordine to spatial size 

and see whether there exists a region of 'mode space' in which the 

energy input from macroscopie boundary dependent sourees and the 

viscous drain into microscopie motion of the fluid can be neglec-

ted, it may be useful. This region of modes would be completely 

dynamically determined by the non-linear shuffling between modes. 

One can make this requirement rigarous by asserting that for this 

region the net input of energy from either macroscopie sourees or 

from modes from other regions exactly balances the net output of 

energy to other regions of mode space and by viscous dissipation. 

Such a situation can produce a state of statistica! equilibrium 

amongst the modes. 
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For this concept to be really useful, one will have to see 

what it means in terms of the observational features of turbulence 

in the first plaoe. The observational part can best be summarised 

in a rhyme due to L.F.Richardson: 

"Big whorls have little whorls, which feed on their velocity; 

Little whorlshave smaller whorls, and so on unto viscosity." 

If one looks at a turbulent fluid, suddenly a whirl makes 

its appearance and as one fellows its path through the fluid, it 

seems to get smallerand finally disappear. This is qualitatively 

what one calls an "Eddy" in turbulence. It is a localised distur­

bance in the fluid, which propagates through the fluid and in so 

doing ultimately disappears. Tt is important to realise that 

localised wave packets of disturbances are quite different in 

character from the ordered pattern of wave motions, which are 

typified by the Fourier modes in equation (2,1). 

Traditional stability analysis of hydrodynamica! flows 

and the theoretica! insight which onu obtains into the nature of 

the instability have all been carried out in the normal mode 

representation for the particular geometry of flows oonsidered, 

The general underlying moral that one learns from ttis can be 

summarised thus: 

When the basic primary flow beoomes unstable for large 

Reynolds number typified by the scale of the flow and its velocity, 

superposed on this flow grow a secondary pattern of motions 
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typified by a size of the order of the most unstable disturbance 

on the primary flow .• Conceivably, this secondary motion grows to 

a finite intensity, which depends on the amount of "instability 

energy" availa.ble from the prima.ry flow. lf this energy is 

sufficiently large, so that the typical Reynolds number for this 

second~ry motion is large enough this pattarn of motions also 

bacomes unstable. On this grow~ a tertiary pattarn of motions and 

so on. Thus in a fully turbulent fluid, there exist'a complex 

superposition of motions of various scales linked to a previous 

(or a larger) scale for energy input and to a later (or a smaller) 

scale for energy drain. Further, in the limit of homogeneaus 

isotropie turbulence, each of these second~ry and higher order 
/be 

pattarn of motions will have to replaced by a continuous range of 

wave numbers, rather than a discrete set. 

This dynamical information which one pieces together from 

stability analysis cannot still be effectively used to decide what 

happened to a whirl or an eddy in a straight forward fashion. 

Kolmogorov's analysis is a subtle fusing together of these 

stability results with the general considerations of mode space, 

which we put forward earlier in this section. Since a clear review 

of Kol~ogorov's arguments seems necessary for the hydromagnetic 

situation, we shall here quote part of his arguments in full: 

The first observation of Kolmogorov hinges on the fact that 

the concept of isotropy as introduced by Taylor15 and later deve-
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loped by others cannot be used to separate various regions of 

mode space, as sequentially connected ( with a constant stationary 

energy flow from region to region). To do this one will have to 

identify eddies or vertices, which are localised quantities in co-

ordinate space, with modes which are collectiva coordinates. 

To make this conneetion even closer, Kolmogorov argues that 

to remove the systematic larger scale motion away, when one consi-

ders motion of a certain scale, ons should restriet oneself to the 

differential velocity between two neighbouring points separated 

by a distance characteristic of the same scale. This leads to t.he 

concept of Local Isotropy: that the probability distribution of 

these differential veloeities is invariant wiht respect to trans-

lation, rotation and reflection of the system of coordinates. 

To ~uote Kolmogorov: 

" We shall denote by 

the components of velocity at the moment t, at the point with 

cartesian coordinates x, , }(a , x
3 

, ••••••• Introduce in the 

four dimensional space x, , Xa. , ;x.
3

,. t- ) new coordinates 
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is a certain fixed point in the four dimensional domain G •••• 

Thè velocity components in the coordinates are 

~. ( P) u.. (PJ - U) p(OJ) 

Suppose for some fixed values of ~ ( p<OJ ) the poin~s. 

p(k)k • 1,2~ •••••••.•• n having in the coordinate system {1), the 

c.oordinates · 1!--.l~ and --5 <.:fu , are si tuated in the domain 

G. Then we may define a 3n-dimensional distribution law of 

probabilities ~~ for the quantities 

where. 'U..._( p fOi} "' 'U~01 are given. Generally speaking, the dis-

tribution law ~~ depende on the parameters 

Defini tion 1. The turbulence is called locally homogeneaus in the 

domain G, if for every fixed n, CJ~t.." and s(k), the distribution 

r- "'(OI L. (O} '11 ( 6J 
law 'f'""'\ is independent of A.~ , 1 and ""- , as 

long as the points p(k) are all si tuated in G. 

Definition 2. The turbulence is called locally isotropie in the 

domain G, if it is homogeneaus and if, besides,the distribution 

laws mentioned in definition 1, are invariant with respect to 

rotations and reflections of the original system" of coordinate 

In oomparisen with the notion of isotropie turbulence, 

introduced by Taylor, this definition of locally isotropie 
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turbulence is narrower in the sense that one demands the inde­

pendenee of the distribution law t: fromt(o), i.e. steadiness 
1\ 

in time, and is wider. in the sense that restrictions are imposed 

only on the distribution laws of differences of veloeities and not 

of the veloeities themselves." 

At this point, .in his paper, Kolmogorov digresses to 

offersome general considerations, in faveur of the hypothesis, 

in a footnote: 

" For very large R ( Reynolds Number ) the turbulent. flow 

may be thought of in the following way: on the averaged flow 

characterised by the mathematical expectations U 
0 are super-

posed the pulsations the first order consisting of disorderly 

displacements of separate fluid volumes, one with respect to 
(IJ 

another of diameters of the order of magnitude .e_ = ,e ( where 

.( is the Prand tl' s mixing length ) ; the order of magnitude 

of these re1.a.tive veloei ties, we denote by (9-0 ' . The pulsations 

of the fire t order are for very large R, in their turn unsteady 

and on them are superposed the pulsations of the seeond order 
.f. LJ (IJ 

wi th mixing length .(. < (. and relative veloeities 

such a process of sueeessive refinement of turbulent pulsations 

may be earried through, until for some pulsations of sufficiently 

large order n, the Reynolds number 

R{n, = (t_<"' ty-<"')/v 

becomes so small that the effect of viscosity on the pulsations 

of the order n finally prevents the formations of pulsations of 

order n + 1. 
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" From the .energetic point of view, it is natural to imagine 

the proce,ss of t~rbulent mixing in the following way: the .pulsa­

tions of the first order absorb the energy of the motion ànd pass·· 

it. 0ver. succes.siyely. to pulsations of higher orders. The energy 

of the finest pUlsaf;.ions is dispereed in the energy of heat duè 

to viscosity. 

" In virtue of the chaotic mechanism of the translation of 

motion from the pulsations of the lower orders to the pulsations 

of higher orders, it is natural to assume that in the domains of 
(I) 

the space, whose dimensions are small compared with e ' t4e 

fine pulsations of the higher orders are subjected to approxi-

mat.ely spaoe-isotropie statistica! regime. Wi thin small time 

intervars, it is natural to consider this regime approximately 

steady even when the flow on the whole is not steady. 

Since for very large R, the differences 

of the velocity components in neighbouring points p and p(o) 

of the four-dimensional space ( X, >Xa., x3 > I:- are 

determined nearly exclusively by pulsations of higher orders, 

scheme presen ted leads us to the hypothesis of loc al isotropy 

small domains G, in the sense of definitions 1 and 2 " 

the 

in 

Further arguments of Kolmogorov go through easily. These 
(JL) (b) 

refer to the pulsations of order .:n... where l 7/ or t\) e where 
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..(_ (t\> is the se ale of the fines,t puls a ti ons, whose energy is 

• directly dispersed into heat by viscosity. 

We quoted in full some of the arguments of Kolmogorov, 

since we found that they offer considerable depth of vision and 

insight, which were missed by many of the readers for a number of 

years, Further, the concept of invariance with respect to random 

Galilian transfermations, which one tries to impose on the Eulerian 

solutions in turbulence theory - has its crigin in these arguments. 

The concept of independent evolution of intermediate pulsations, 

free of viscosity on the one hand and free of the larger scale 

( or lower order ) pulsations is now translated in terros of diffe-

rences of veloeities between two neighbouring space-time points 

in a domain, which is embedded in larger domains, which are moving 

randomly and which, in its own turn contains domains which are em-

bedded in i t, in a similar fashion. Further, there is an under-

lying hypothesis that 1ohe intermediate pulsations, effectively 

transmit the energy they receive from larger pulsations, down to 

the smaller ones, without loss or gain, so that the scheme of 

energy-transfer is in a sense of stationary energy flow-across 

the region of " Equivalent mode space " 

We raise this latter point, because this is an important 

feature, which plays a vital role in the generalisation to 

hydromagnetics of Kolmogorov 1 s ideas. Befere one is able to make 

use of it, it is necessary that a steady stationary pattern of 

energy transfer amongst the modes be set up. The net input of 

19 



{0/ 
energy from macroscopie ( or l ) pulsations must balance the 

( 
tf (f'l> ) net out flow of energy from the finest pulsations or ~ 

into viscous losses. 

3. Early Developments 1!1 H,ydromagnetic Turbulence. 

The first question .to be. considered in this field was 

whether a weak random excitation in the magnetic spectrum of a 

certain scale will grow or decay when left to interact with a 

steady homogeneaus and isotropie turbulent velocity field 

( Batchelor, Biermann7 and Sch1Üter8 ). Even to transcribe lite-

rally some of the arguments of Kolmogorov - about the nature of 

equilibrium between modes in a neighbourhood of mode space is 

rather difficult in this case. Firstly, the magnatie mode space 

is unexcited; further one has .to distinguish between flow of 

energy within the magnatie mode space and the flow of energy bet-

ween the magnetic and velocity mode spaces. In the hydrodynamic 

case, the concept of statistica! independenee of modes from diffe­

. rent and distant regions of mode space was substantiated by 

Kolmogorov, as seen in the previous section, by two requirements. 

First there we re regions of mode space, where there was a statis-

tical equilibrium between net input of energy from larger soales 

of motions and net output of energy to smaller scales. Secondly, 

a steady larger scale motion can be seen only to bodily convect 

smaller soales of motion, without distarting them. This idea was 

made rigoreus with arguments of Local Isotropy and used to draw 

conclusions about independenee of distant regions of mode space 

or the Localness of Transfer in mode space. 
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Both of these argu:ments are inapplicable to the question 

posed above. In the magnetic mode spaeet in the initial condition 

specified above, equilibrium has not been set up. For translating 

the arguments about Local Isotropy to hydromagnetics, one must be 

able to transfer attention to differential magnetic intensities, 

rather than absolute magnetic intensities. This feature in the 

case of fluid velocityt naturally led to alocal Galilean transfer-

mation for a certain order of pulsations such that the 

effect of the lower order pulsations can be subtracted out by a 

choice of local coordinates. But such a choice for the magnetic 

case is not possible. The simpl~ physical reasoning for this 

failure lies in the possibility of Alfven mode coupling between 

different scales. 

From both these consideratlons, it seems clear that to 

decide the fate of a random magnetic excitat.ion in a turbulent 

medium further dynamical analysis is required. We carried out 

such an analysis. Ottr dynamical study was basl'!d on a model 

representation for turbulence, which will be described In the 

next section. 

4. The Direct - Interaction Approximation. 

Kraichnan9 expounded his closure procedure for the problem 

of homogeneaus isotropie fully developed turbulence, in two papers, 

in 1958 and 1959. Though the main basic schematics of the procedure 

have remained invariantt the significanee and interpretations of 
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the various steps have changed over the years. Further, as we 

mentioned ea.rlier, there are quite a number of critioal rèviews 

of the theory, both .wi th respect to foundations and with respeot 

t.o validi ty in the ,context of turbulenee ( 11 , 12, 16, 17, 18 ) 

We will try to put forward a physically motivated "deri-

vation" of the Direct-Interaction Approximation. We will not 

attempt to juati:fy the procedure, but we will try to indicate how 

one tries to bridge the gaps between analytica! generalities and 

practical reasonableness. 

To illustrate the method, we will start with a model 

equation, which ha.s a structure very similar to the Fourier-mode 

representation of Navier-Stokes equations. Treatements of this type 

of the Direct-Interaction Procedure abound in literature (10,11, 

12,19 ) 

Here A are the dynamical modes, ç: is a random souree 
1... (. 

term, the statistica! properties of which are given completely. 

In practica, the various turbulent modes draw their energy from 

macroscopie boundary dependent sources. For a viscous fluid, there 

is a loss of energy from the dynamical modes and this takes a.way 

the energy from the turbulent modes into the thermal energy of the 

fluid. In the idealisation of turbulence, through the symmetry 

conditions of isotropy and homogeneity we have eliminated the 

input of energy. We are retaining the viscosity still, since we 

are interestad in the region of modes, where viscosity also plays 

22 



an important role. Thus from energetic considerations, we include 

here a random souree term. Though, in general the ~ature of the 

statistical equilibrium among the modes wUI be a function of 

these farces, we will try to arrange matters such that their 

dependenee is global, rather than in detail.There is yet another 

reason to deal wi th these ~ • This has to do wi th the arguments 

of dynamical damping among the modes We will talk of this later. 

We are interestad in constructing all possible information 

about the statistical structure of the A~ ~~ , when they are 

in a statistically-steady state. The number of modes is consi-

dered large, so that the dynamical effect of the coupling with 

other modes to a given mode is appreciable. The coupling matrix 

is a known algebraic function of its indices. Let us look 

at a particular triad (a,b,c) of the modes, which are such that 

the coupling coefficients l'\O.be. , lY\t.co.. , "" .. ,b are not all 

trivially zero. We rewr1te the equation of motion of the a,b,c 

modes as 

At a certain time &. , we switch off the interaction bet-

ween the three specific modes a, b and c. The three modes are still 

interacting with an infinity of modes and indirectly through 
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these infinity, with others. Since the number of such contributions 

to the RHS of an.y of these equations is rather large, the effect 

of the swi tch-off of one tri ad interaction does not change matters 

very .much. In otherwords, around the state of equilibrium, 

attained through the. non-linear interaction of an infini ty of 

modes the dynamica! change in the behaviour of any specific mode 

due to interaction with a specific sét of two mode§ is small. 

This is what Kraichnan calls the Weak Dependenee Principle. This 

is an exact statement, which has its origins in the assumptions 

of homogeneity of the turbulence t both wi th respect to boundary 

condi ti ons .and dri ving force-s tructure. The Direct In teraction 

Approximation sets up an elaborate scheme-with which to explóit 

this perturbation basis, But this intuitive schema of separating 

the contribution f~om a finite subset of modes, in contrast with 

the rest of the modes and saying that their difference is dyna­

mically small cannot be formulated in terms of a small parameter 

theory, Kraichnan•s point of view was to assert that the non­

linear contributions to a given mode play two different roles, 

depending on whwether we include in their contribution a finite 

subset of modes or an infinity of modes. Within a finite subset 

of n modes it is the non-linear interaction which builds corre-

lations and ends up generating non-vanishing correlation 

<Ac.A~A'A.Al Alf\ ............... ~upto the order n • ( For 

e.g. in the oase of a strongly interacting " gas " of N 

particles ( the range of interaction being infinite ) the signi­

ficant correlation that would be necessary to typify the state 

would involve all the N particles. Any argument based on any 
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type oÏ hierarchy trunca.tion would not make sense. ) But any 

finitesetof modes never end up with such a correlation because 

during the same time, the non-linear interactioniby each of~the 

modes of the subset with the rest óf the modestands to decarrelate 

them. Thus it is important to distinguish the role played by the 

non-linear terms in building up the correlations and again in 

breaking them up. 

The choice of a triad as the fundamental brick of inter-

action from which the buildir.g-up of the correlation within a 

finite subset arises is made first by the equations of motion 

themselves. Since the third cumulant ( or what is the same in 

homogeneaus turbulence, the third moment( A, All A-t.) ) must play 

an important role in deciding the energy transfer between modes 

and as the structure of the equation always couples this to the 

interaction between three modes, it would always involve an ir­

reducible triad. ( An irreducible triad is one in which all three 

modes are always simultaneously interacting. ) The general tree 

of interactions between more modes can be built up in terms of 

multiples of triads. So it was Kraichnan's rationale that the first 

non-trivial Direct Interaction prescription Setween a finite set 

of modes will have to start with a triad. 

Further Kraichnan makes another novel assertien which is 

again very difficult to find fault withor to.justify. This is 

the so-called Maximal Randomness Condition. This asserts that 

there are no prferred modes in the system; in other words in the 
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equa.tions of motion of a typical mode, the various ooupling co-

efficients with different modes are all of the same order. This 

coupled to the fact that we have envisaged a statistically steady 

state of homogeneous turbulence would imply that there are no 

preterred modes. The statistica! dependenee among the modes will 

be induced completely by the non-linear interactions and not at 

-.11 by any boundary condi tions or external forces. 

The various requirements that we have listed so far. to 

define the Direct Interaction Approximation. like the existence 

of a large number of modes and the concept of Maximum Randomness 

will all hold at large Reynolds numbers: but this in itself says 

nothing a.bout the utilit,y of our approximation procedure for 

large Reynolds numbers. ( Necessary but not sufficient! ) 

We will now try to illustrate next the notion of an Impulse-

Response Tensor, which plays a crucial role in Kraichnan's 

theory. We will denote the turbulent system in short hand as a 

sum of a triad and the rest of the modes(Co.)~,c)t"::: (t,I,IC.)'\ 
~ .... 1( ') 

At a certain time f;. we can specify their dynamica! state by a 

set of values A~\e}, A~:~HoJ>AcCI·v,C'(o·.; 3<.=FC\,b,c~ We 

introduce in the equation of motion of Ao. an infini ti smal 

driving force ~~ • This will produce an alteration in the 

"" "' amplitude of Ao.. from Ao. to Ao. -T'S' Ao.. • This 0 Ao. at all later 

times f:- 7' to will depend of course on the va lues of Ao. l..t-J 

for all f: 7 t-.,. and on the 

change i"t:, . If the state of the modes when this 'bto. was 
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introduced can be considered as a state of statistica! equilibrium, 

this change would depend on the entire speetral features of the 
<'J 

A (t.) . The formal " Green 1 s " opera tor which rel a tes the change 

in the amplitude of A ,l b at a time t, due to change in the 

driving force 'btb<tjat time t 1 
, is the impulse response tensor 

FromintuitiTe considerations, one infers that because of the 

randomness in the system, a change in the amplitude of one mode, 

will be correlated to itself only for a finite time. Alternately, 

the response of the mode will also be correlated to the distur-

bance which produces i t only for a fini te time. Formally avera.ging 

over an ensemble of disturbances Of' , we can gener~te the 

averaged impulsa-response tensor. But in equations 4,2, 4,5 and 

4.4, we replace the total contribution due to the <.,d, k -sum 

as - ).,1\-J , - t\~rJ and - ).c.( 1-J • We see tha t. these ;i\ 1~ are 

generally random but are ofcourse functions of the state of the 

modes (, <f • 'K • If we vary the state of the modes C, ~. K 
f'-

around value Aa<t; A ~<u.-) at \-0 we will be vary-

ing A (1-·J 
'V 

around a value À ( l;J by an amo\lrl'!, Ó À 

The response of the system to this & À will be defined by our 

definition of G as above: but now our averaging over an ensemble 

of Ó À cannot be done independent of the G. This crucial 

interchange of arguments between the random souree and the effec-

tive force due to the non-linear coupling among modes is the secend 

reasen for our introduetion of the random force. The argument here 

is quite reminiscent of the introduetion of an effective field in 
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Hartree-Fook type of calculations. In.stead of an effecti ve field, 

we talk of an effective dynamical damping, which a mode sees due 

to its coupling to the rest of the modes. 

Realising that this relaxation time is real and finite one 

can formally re present i t by the eigenvalue of an undefined 

operator À~ r) acting on AJ .., . In: particular À~ r) may 

be a non-linear functional of the state of the modes at all 

. t• t' < t prev~ous ~mes and it will in general have an integral 

structure in time. Incorporating these one can give a formal defi-

ni ti on of G as 

L ~+ Va..+ À~\-)) Gt .. ~f:,f:::J o(e- t:') 

We hope to include in À~\-J all or significant pai'ts of 

the relaxation due to non-linear interaction ( by this we imply 

the coupling of the (a,b,c) modes to (i,j,k) modeà ). Using this 

definition, one can generata the integration forward in time of 

the modes A A A • Their interaction wi th the rest of a... b. 0 

the modes being typified by the &~~f: ,t'J ,Grb~f:., (:') • G<',J t.~)etc. 

These arguments are quite reminiscent of the ideas of 

Prandtl and Heisenberg in introducing the notion of eddy-viscosity 

( a review of thes~ can be found in Beran ). We rewrite the 

equation of motion for a typical mode Ao... as 

(.TI- + )),_-+ .\,.(~j A..(~J ""~be A~o<b Ac.< .. ) +t;,.Cb 4.7 

Here the Direct Interaction of the triad (a,b,c) is isola-

ted on the R H S and the relaxation due to the rest of the modes 
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is contained in the operator )~rJ , Now, we assert that these 

two contributions are not completely independent, but the consis-

tent treatment of Direct Interaction, with the background relaxa-

tion due to the indirect interaction should de termine ).o.l \-1 

completely. What we are offering here is not an exact justifica-

tion, but a motivation. 

If we introduce a formal variatien of one of the amplitud~s 
"'-

Ao..(\-) at time t.. , around "!. value A .... \1-~) , the equation of 

motion of this 8 A~ b can be wri tten 

In the equ.ations of motion of the modes b and c, there wil1 be 

terms due to this variatien 

(~ +- ))b + /\bO-}; Ö A;,<b ~ \Vîbc-. 0 ( Ac..U·; A0\.0-J) -t Dtbft-.J 
4.9 

,Aeet-;) ó A~ I-J ::::. v,C.,.b ~ (A~h Ab(~:) + o\~(b 
' 4. Î 0 

We can use the response tensors of the modes a, band c and rewrite 

In writing equations (4.11) and (4.12), we have used the 

interchangeability of the effective force on a mode by the mode-

coupling terms as well. Further the use of the concept of Maximal 
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Randomness reduces the G's to diagonal terms in .the modes. A 

thorough justification of this on statiatica1 grounds is attempted 

·in a paper by Kraichnan 
19. ·We will omit this consideration here, 

. Hereafter., we wi 11 drop one of the suffixes on ' G' s and use only 

one. But we only want to point out that this step is quite general 

and does not still involve the Direct Interaction Approximation 

i tself. Incorporating these into equatHm for E' AJ:.~J we can wri te 

Dividing through by [Ç".._(~'J and averaging over an ensemble of 

realisations of the variation ~ ,we can rewrite 

The other terms vanish using the arguments of Maximal Randomness 

and Weak Dependenee both resulting from the assumption of homo­

genei ty. <( (5" A iA (f: ) ) is Dotbil'lg but the averaged impulse 
S"~.jt'J 

response tensor of the mode Ao. defined around a neighbour-
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,.._, 
hood of v~lues of the modes A 
equation 4.14 hasthe form 

• A typical term on the R H S of 

This involves the total modal response of th.- two interac-

ting modes a and b 1 during the time they are intcracting with the 

mode c. This is an elementary triau interaction, which builds th~ 

non-linear mode coupling, we have no justification to neglect 

these terms, even in the limit of a weak contribution by one triad 

in contrast with all the resto~ the triads, Form~lly carrying 

out the averaging around a statistica! equilibrium, wi th fluct<.l:l-

tions around it, we can rewrite this term as 

G (t t: ') <.. A <r J b I C. 
Ac.(\-'J> G~ c t',t") 

+ < (;'b (t ,t') ~~c.U·> Ac.C\-•J G~ U',t"J> 

4.16 

( Here we are introducing an idea of fluctuations around 

the statistica! equilibrium, envisaged in mode space, by 'in argu-

ment similar to Kolmogorov's in the last section. These fluctua-

tions should not be confused wi th fluctuations in Lhe modes A, 

~hich are the basic dynamica! variables, we are consiclering in 

the analysis, The fluctuations, which typify the response of a 

mode are related to fluctuations in the parameters, which determ:ine 

the equilibrium form of the spectrum. These are related to the 

macroscopie input of energy which builds the stationary energy 

flow and the total microscopie loss of energy through viseaus 

losses, which limit this flow, At the present stage of this argu-
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ment to develop a closure scheme for turbulenoe, there seems to 

bè no justification to negleot the seoond term of (4. 16 ). This 

queation is diaouased by the author in a separate paper
2
3 ). 

Restrioting one's attention to the average propagator 

alone, equation 4.15 reduoes to r• Gf.,. et·. e) < AJt-1 Actt'J) Go.(l:.: 1:'>} dt' .. ~ 4.17 

Now at this stage it is an assertien of Kràichnan that the total 

relaxational contribution due to all the modes ).Jh is a sum 

over elimentary triad contributions on the R H S of the above 

equation. For turbulence, around a: defined statistical equilibrium, 

with l!1iLe fluctuations around ~t, it seems to be a reasonable 

assumption. A formal justifioation of this is not offerd here, 

since our aimis tomotivate the derivation only •. Thus one can 

write for the A.,.,{\-1 {:-

'' = ....::;"" M r Gr(.(f:. t~ < A"'H:J AmCf~ 
Gr~~..(f:, t,~ L- ~~A'I,.,.ft I""> (t' t'/cH' 4.18 

.f f M.. \.3'\ " f 

The main achievement of this argument is that every modu-

lation of the amplitude of any mode is propagating in time with 

a response function determined by a sum of triad contributions. 

Further this contribution is effectively a relaxation. The formal 

closure problem in defining the response is achieved by oparating 

around a neighbourhood of values in the function-space of ampli­

tudes of modes. This is not nec.el!l,!!&rily, a unique way of prescrihing 

this relaxation. Thia question haa not received the attention, it 

deserves. For example, Edwards20 conaiders the eigenvalue of the 

relaxation operator to be defined by considerations of generalised 

entropy and approach to equilibrium, from an arbitrary deviation. 
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More reoently, Kraiohnan and Herring, in a series of papers 

have tried to oompare the various approaches and try to generalise 

them. Accounts of these can be found in Leslie's book. The main 

point in our argument above is to show that explicit appeal to 

direct interaction is not necessary in defining the equation for G. 

This generalised response tensor is made use of in evalua-

ting a typical higher order correlation between modes. For example, 

if there is a non-vanishing contribution to a third order moment 

.(Aa...(~, Ab{f::'J AJt'Y which satisfies all the restrictions to 

symmetries, we try to eva1uate it using the G. The corre1at:ion bet-

ween the modes is built up by the direct interaction between the 

three modes. While the three modes are interacting, their inter-

action with the rest tends effectively to suppress their an:p1itud~os 

and th10.s reduce the direct interaction. The building up of the 

correlation is thus restricted by the finite mcnnory time o!' any 

particular mode, about what happened to itself in the past, d1'e 

of effective relaxation. t' 

A ( r:-_ (LI /.") 11-" 
A ct' I) ::- c:::;- ( A Ct--' .._(\"~' ure '-) '-'' ,.._-

c < ~ "- 0 "~ 
e,Al " 

to the existence 

In wr:iting this we negleot the effect of viscosity nnd the 

driving force, in consananee with ideas of Maximal Handomness. 

This term can be rewritten as 
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It looks at this stage that we have achieved nothing, since we 

have ended up with a fourth order moment bere. This moment can be 

rewri tten 

< AJI:> Ab<t'J A/t''J AJt"J) . 
< AO\(t} Att..Cf:"J>< Ab(t'J -A~t"y DqiZ ~bM 

+ < AJ. tJ A b(t'; A,/t '') Aft\rt·~ 
. "'· b:.f;. Q, M. 

The second term is an irreducible fourth order moment, which is 

a correlation between four modes. The assertien of direct inter~ 

action statea that th~ correlation between any subset of modes 
triads of 

is built up in terms o;/interactions, Thus we neglect this term. 

In fact, the number of terms in this oategory is large compared 

to the number included in the factored category, But the assertien 

is that these include another infinity of intermediate modes, 

which are summed over and their contributions would be r~ndom and 

average to zero. 

At face value, this approximation does not seem to be any 

different from the usual cumulant disaard procedure, incorporated 

at the level of the fourth .order moment. As has been pointed by 

Leslie in his book ( loc.cit. ) the difference lies in the use of 

the relaxation features of the Ga (t,t' ). This actually intro­

duces into the evaluation of the cumulant of any order a part of 

the contribution from every higher order cumulant, but only a 

part. Thus we effect closure. The attractive aspects of the Direct 
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Interaction Procedure lie in some other features which we will 

just mention. One is the energetically consistent way of dealing 

with the non-linear interaction. This ensures that the approxi­

mation does not violate any of the energy conservation require­

ments andfor the requirements of positive definiteness of the 

probability distribution of the modes. These and ot-her questions 

are considererl "in great detail in Leslie's hook. 

Por the applica ti on to hydromagnetic turbulence, which we 

report here, the essential point about the Direct Interaction 

Approximation is its energetic consistency and the information, 

one derives from it, abou~ the correlation and relaxation times 

of fluctuations, from a dynamical point of view. Since we are 

interes ted in inves ti ga ting the pos si bili ty of transfer of enE>rgy 

from the velocity fluctuations to the magnetic field fluctuations, 

we woula like to base our arguments on a tteory which is manifest­

ly energy-conserving. 

When Kraichnan tried to solve the c]osed equations for the 

energy spectrum anct the impulse response function, he discovered 

that there was still a gap to fill in the logic, befere one could 

look for agreement with Kolmogorov's asymptotic analysis in the 

inertial range. As we saw in the previous section, Kolmogorov's 

argument implied the exi.stence of a unique time scale ( through 

the existence of a unique typical differential velocity associa-

ted with a certain scale. In the arguments of Kraichnan, the 

dynamics provides equations for two typical time soales for a 
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givea mode, the correlation and relaxation times and it is not 

apriori elear that they are equal. Part of this confusion arises 

because of the fact that the oorrelation one talks of in the 

Dir~et Interaction Approximation are Eulerian .Correlation times 

and Kolmogorov 1 s arguments of Local Isotropy imply a Lagrangian 

frame work. Seoondly the Eulerian analysis introduces transfer of 

energy between distant modes in mode space, as a steady balancing. 

flow. The net transfer of energy across a wave number may be 

essentially looal,but the distant wave. number coupling gives rise 

to .a large inflow into the region, balanced by an equally large 

outflow from the region. This is connected wi th a di vergen oe in 

20 the steady state energy transport schema ( See Edwards and also 

Leslie loc.cit. ) This can be correoted by a rigoreus Lagrangian 

formulation, as has been done by Kraichnan in a series of papers. 

Equally, they can be remedied by considering a trunoation in the 

mode-mode ooupling terms, in the relaxation function equations. 

A rigarous justifioation for this procedure can be provided 

in terms of the Lagrangian Ristory formulation. A simple intuitive 

justification was provided by Kadomtsev. Borrowing from tradition-

al arguments of Landau damping in wave-partiele coupling in plasma 

physics, he argued that two neighbour:ing "physical" eddies ,·;whieh 

are really localised wave packets, which are close tagether and 

have phase veloeities which are nearly equal, interact persistently 

for a long time and transfer sufficient energy. This is the so-~ 

called resonant coupling. At the same time two dissimilar wave 

paokets with distinèt~y different wave lengtbs just pass through 
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one another without much distartion of óne or the other. This so­

called adiabatic coupling is overestimated by the Direct Inter­

action. A correct remedy can be provided by introducing a 

" Coherence time " or a " Goherenee length " for a wave p.'icket 

of a certain scale ;;~.nd incorporating interaction only with modes 

within that range to determine the effective relaxation of the 

modes due to non-linear interaction. 

We try to fol1ow this simpler scheme of i::Jcorporating the 

" Locally Isotropie View " of turbuler,ce. The choic•~ is part-ially 

for simplicity. Further in the hydromagnetic context, as we shall 

see in the next section, lhe arguments of Local Isotropy are them­

selves suspect, so much so it is not clear whether all the elabo-

rate effort of LagranDian History formulation worth i~ 

s. Turbulence and 

In Section 2, we eLJcidat•d tre argumc;nts 0f.' l(olmogorov 

to postulate the existence uf a range of intermedi!.tte pulsa.tions 

of veloei ty, which are de termined comple tely by p!ÜSa t:ions of 

ne orders and not by the large;,;t or the smA.llest pulsa-

tions. The main thrust of this argument ca:ne fro:n the a.ssertion 

tha t thG differentlal veloei ty betwe~:m two neighbo>1ring points 

separa.ted by a distance of the order of intermediate <>Ca.les is 

determined eompletely by pulsations of the same order. The coupling 

with too large or too small scales, whlch ( borrowing a term 

from Kadomtsev ) can be called adiabatic interaction effectively 
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produces neglegible effeots. The larger fluctuations essentially 

convect the intermediate scales, without d:i.stortion and the inter-

media te se ales in their turn convee t the smaller soales without 

distorti.on • One can eliminate this convection;.;without distartion 

by systematically formulating the whole scheme in terms of diffe-

22 
rential veloeities of fluid elements. Kraichnan , Kadomtsev and 

later Edwards ( loc,cit. ) independently discovered that the flaw 

in Kraichnàn 1 s original ar~~ment to construct a proper inertial 

range lay in the impraper handling of a divergence, and a singu-

larity in the response equation. 

But the question is how good the assertions of Kolmogorov 

are in the context of hydromagnetios. The sin.ple argument abotlt 

transferring to local differential veloeities and gauging away 

larger soale motions cannot be aarried out with magnatie intensi-

ties. Absolute magnetic intensities play a crucial role in deter-

mining the dynamica of even very small magnatie disturbances, in 

the spirit of Alfv~n wave coupling. Thus the different regions 

of the magnatie mode space never beoome even statistically inde-

pendant. An absolute and thorough analysis of this question, for 

a turbulent system in the presence of an external homogeneaus 

and constant magnetic field is still laoking, This should elarify 

some of the fundamental ideas. 

We visualise a simplar situation in a system in whioh 

primarily the turbulence starts off in hydrodynamica! modes. It 

reaohea a steady state, with an energy-oontaining range, an iner-
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tial range and a dissipative range. This can be described by the 

Direct Interaction Procedure of Kraichnan, with suitable modifi­

cations to take care of the importance of the resonance interaction 

rather than adiabatic interaction. Now we introduce a randomised 

disturbance in the magnetic modes in the form of a loc~lised 

speetral exci tation well wi t.hin the scales of the inertial range, 

with wave number and frequency widths compatible with elementary 

ideas of Kolmogorov (A ~~ique spatia: scale implies a unique time 

scale, This implicit equality of all relevent frequencies of 

interest for a given scale of motion ies a definite dispersjon 

relation for coherent motion and a relation between fluctuation 

and dissipaticn processes for incoherent ruotions. Por want of a 

simple shorthand notatien for i t, we refer to i t a:c; the Kolmo,wrov 

Fluctuation-Diusipation Relation ( KFDR LJ Ac the interactior. 

builds up within the magnetic epectrum between different modes, 

this simple K.P.D.R will not persist. S1owly the m:J.gnetic spectrum 

wiJl start building up long ~ange in mode space and 

the K.F.D.R will be modified to includ<> effects of exci.tatior. :in 

other ranges. In our second paper, we try to find the modjfied 

FDR for the hydromagnetic case assuming that the !CF .D.R is un­

altered for the hydrodynamical part, 

Apart from the particular questions of relevenae to astro­

physics, we feel that this isolation of the lack of generality of 

Kolmogorov's assertions in the hydromagn0tic context and its 

logical implications are the main and significant aspects of our 

results. We want to stress this, since the basic underlying argu-
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ments here are independent of a particular dynamical soheme to 

.deal with turbulence, though our results in detail would be modu­

lated by the sucoess and pitfalls of the model. 

In our study of the relationship between correlation and 

relaxation features of the fluctuations in the magnatie modes we 

isolate two separate a:::sumptions to be equivalent to the analysis 

of Kolmogorov. First, which we have discussed in great detail, 

arises from the lack of applicability of the Local Isotropy ideas, 

~n an unaltered form to the magnatie modes. This questions the 

validi ty of asserting that the coupling in mode space is completely 

looal. The second is the assertien that th~ correlation and relaxa­

tion times are equal. 

In the pure hydrodynamic case, this bas been tested by the 

·Lagrangian Ristory formulation of the Direct Interaction Approxi­

mation, by Kraichnan. But, from a general point of view, in the 

absence of a valid proof of the applicability of Local Isotropy 

ideas to hydromagnetics, this equality, which implies a trans­

cription of a fluctuation-dissipation relation conceivably proved 

for Lagrangian correlation and relaxation times to Eulerian ones 

is unjustified. We carry out a so-called Reduced Lagrangian 

Ristory Modif'ication, in which we leave ·the magnetic modes, un­

altered by Kolmogorovian prescriptions. 

In the f'ollowing sectien we will discuss our results and 

try to draw some general conclusions about their applicability 

to problems in nature. 
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6. Analysis of Results. 

There are three distinct though inter-related questions 

that we ask in our three papers included in this dissertation. 

The first is the ultimate fate of a weak random excitation in 

the magnetic mode spectrum of a turbulent fluid. This question is 

discussed in the first paper. The main conclusion of this paper 

is to focus attention on the importance of dynamical analysi3 of 

the equations, rather than stochastic analysis. By this, we refer 

to the many approaches in which the tur'bulent velocity fielè. is 

considered as a gi ven s tochas tic dri ving term in the eq_ua ti ons of 

the magnetic mode, Further simplifying assumptions about the auto­

correlation times of the velocity fluctuations are made, such. that 

the statistical history of the magnetic modes and the velocify 

modes are on different scales of time. This leads to a kind of 

Langevin point of view for the magnetic mode equations. These 

approaches are not justified for the magnetic modes; alsothe neglec­

ting of the r,orentz force terros from the veloei ty equations cannot 

be uniformly justified for all scales of tte velocity field, 

though i t can be justified as an ini tial cor;di t.ion. This is a 

positive conclusion from our study. There is an overriding nega­

tive conclusion of the same investigation, viz: that the theories 

of turbulence, which are based on arguments of auymptotic equili­

brium between various transfer machanisms in mode space are not 

accurate enough to resolve the delicate balance of transfer in 

magnetic mode space, which produce local amplification or transfer 

to distant wave numbers. This inadequacy is partly because of the 
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lack of understanding of the fundamental non-equilibrium features 

of the energy balance which is responsible for· cross-field and 

self-field transfers in mode space. Qui te strangely, this question 

does not seem to have interestad many people in the neld of non-

equilibrium statistica! mechanica a~;~ it should have. It is our 

satisfaotion that our study tri es to focus attention on this 

question from a statistica! dynamica! point of view. 

The second question that we pose for ourselves is to 

analyse the steady-state features of the spectra of the two fields 

and in partioular to analyse it to the.same level of completeness 

dynamically. as ha3 been done by Kraichnan in the hydrodynamica! 

case. In this, we find a reevaluation of the prescriptions of 

Kolmogorov about the equali ty of the correlation and relaxation 

times of a typical mode is required for the magnetic modes. The 

various modifica tions which we incorporate imply rather dras tic 

assumptions about the time structure of the correlation-relaxation 

features. The results show profound effects in terms of wide 

varia.tions in integral parameters. Also the power làw of the 

spectra in the inertial range are altered significantly too. But 

the most persuasive result of the calculation is the detailed 

equipartition between the magnatie and velocity modes through out 

the extended inertial range. This is a s·ignif'icant re sult from 

general dynamioa1 considera.tions. Each of the types of modes has 

a spectrum which is far from equilibrium. ( i-.$-'_, or ~-~2.. as 

against ~2.. for equiparti tion ) But for each wave number, the 

magnetic and velocity modes are in equipartition. This substanti-

ates the conjectures of Biermann and Schlüter. 
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In the third paper we try to fill up the evolutionary gap 

between the initial and final state analyses of the first and 

second papers. Here our aim was two fold. First to study in detail 

the dynamica! effect of the Lorentz force terms. This shows itself 

in limi ting the growth of the highest wave numbers and produc:ing 

equiparti tion. 

The second question was a bit more subtle. This was to check 

whether an arbitrary localiscd magnetic speetral disturb:u:ce of 

weak intens i ty will tend to produce transfer of energy to smaller 

waTe numbers. In traditional arguments of cascade of energy in 

turbulence one implicitly a8sumes that enerr:;y always cascades up 

thP. wave number spectrum. This underlies the logic of univeraal 

equilibrium. But when thA form of the magnetic spectrum is :liffe­

rent from the equilibrium form ( both in terms of functiemal 

dependenee on wave nwr.ber and relative strength wi th respect to 

velocity spectrum ) the transfer should take plaoe to neutralise 

this difference even if i t meant back-transfer in wave number spétCe 

to smaller wave numbers, This is at best a guess, till one verifies 

it by an explicit calcula,tion. In our third paper, we demonstrate 

this by a carefully planned model, which confirma our conjecture. 

What can we say about the applicabili ty of the models to 

concrete situations in the laboratory or in astrophysi.cs? Area­

listic study should have started wi:th a specific well-defined 

problem with particular boundary and initial values and proper 

and complete definitions of sourees of input of energy into the 
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turbulence if any. We chose to s tudy an in! in i te sys tem wi th no . 

. boundaries, to minimis~ the oomplications of. àlgebra in dealing 

with complicated tensorial equations. Symmetry conditions of. 

homogeneity and isotropy were intro~uced like this. Similarly 

assumptions of statistica! stationarity in time were introduoed. 

These limit the applications considera.bly. 

The basic model of Direct Interaction Approximation itself 

involves explicitly onlyone of the symmetry assumptions listed 

above, that of homogeneity alone. Thus from a symmetry point of 

view, the D.I.A is leas restrictive. We invoke .from the very 

beginning a continuum point of view for the'fluid and consider it 

incompressible. Thus all effects involving finite.temperature 

andJor discrete partiele structure of the medium are exoluáed. 

We have already indicated the limi tations of the D.I.A 

itself • ( Further details can be found in the oft-quoted book of 

Leslie Our study raises a serieus doubt about incorporating 

assumptions of isotropy in turbulent systems with strong magnatie 

fields. As one starts building up sufficient energy in the smaller 

wave number components of the magnatie modes, they will have a 

profound effect on smaller scala fluctuations through intensity­

coupling. The changes in the larger scala magnetic mode parameters 

will af.fect the speetral characteristics of the smaller scales, 

in terms of enhanced fluctuations of speetral parameters. This 

phenomenen of intermittency will be more and more pronounced as 

the range of. the coupling in mode space beoomes larger and larger. 
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This seems to be an unstable situation atleast, in this way of 

looking at things. As the dependenee o.tj. J.arger soales beoomes 

strenger and strenger, the requirements of Maximal Randomness and 

their isotropy may break down. This is a conjecture, which is yet 

to be substantiated. 

Contemporary Developments Future. 

Jn our paper I of this dissertation we had reviewed the 

si tua ti on in the field of hydromagne tie turbulence 1Jpto 1967 r'l ther 

e.Atensively and thoroughly. The :;ituation upto that moment was 

rather specula ti ve, wi th li ttle or no stress c:m dynar.:t i. cal analysj s. 

It was the main contont.i.on of our paper that. a thorough dynamical 

analysis W'iS necessary, b•.1t lilmost i.mposs ble under the f·xjsting 

state of theories of Lurbulence, nt that time, without extensive 

calculation. 

Around thP. same period, in thc .field of turbulent dynamos, 

with a publication of a series of papers by Krause, R~dler and 

Steenbeck24 , a new intere;:;t was stirrPd up aboul; thc symmetry 

condit i ons of turbulf:ncn. Arguine purely from kinema tic gromHls, 

Steenbeek and Krause suggested that the laek of reflexional 

symmetry in turbulence, which is very often a oomcon feature in 

astrophysical systCJms may be an important factor in tb: turbulent 

regeneration of magnotie fields, This idea has been analysed fur­

ther by a number of Bilthors in recent years, ( Parker
25 Moffatt26 

See a review of this field by Roberts27 ). Much of this work was 
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based on a double seale analysis, in whieh the soales of the 

magnetic spectrum were considered uniformly larger than the s.cales 

of the velocity spectrum. Thus the dynamica! coupling between the 

maenetic and velocity fields we1·e trea ted by a s tochas tic pre scrip-

tion, very much in the spirit of Langevin Processes. There have 

·. 28 
been attempts by Moffatt to remedy this. This truncated dynamioal 

treatment makes i t very difficul t to see the dynamical effects 

which we ànalyse in the strictly isotropie case, for the turbulence 

in a pseudo-isotropie case. Quite recently, Frisch, Pouquet, Leorat 

and Ma<611re
29 have tried to investigate the possibility of an in• 

verse cascade of magnetic helicity in m'.l.gnetohydrodynamic turbu-

lence. Their study is strictly restricted to an inviscid ensemble 

of flows with cutoffs for the ldwer and hieher wave numbers. Such 

ensembles are characterised by absolute equilibrium spectr11 giving 

f2.2-
the classical equipartition r< spectrum for each field and 

further equipartition of magnatie and kinatic energy. The utility 

of these results in intarprating realistic flows with finite 

dissipation and no cut-off in wave numbers is at the moment peda-

gogic. A dynamically-equiválent study of the pseudo-isotropie 

case with methods similar to ours will prove forbiddingly difficult 

and is perhaps not worth the effort, for reasous which we have 

discussed in the last section. 

Notwithstanding these reservations, there have been attempts 

by Vainshtein)o,; 1 and by Vainshtein and Betdovich32 , to apply 

a theory of the D.I.A type with additional simplifying assumptions 

to explain large scale magnatie phenomena in astrophysics. There 
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have also been attempts by Vainshtein33 to study the generation 

of a magnetic field by acoustic turbulence. 

In conclusion, there seems to be a considerable amo1mt of 

work which reiterates the basic premise and faith of our calcula­

tions that the turbulence inthefluid does regenerate the magnetje 

energy. There have also been nun;erica] c·'"'lculations of r.todel 

equations to check these conjectures 34 • 3 ~. They seem to bear out 

the general expectations. 

Much as one would like sorne observational evidence regarding 

the nature of M.H. D.Turbulcmce in astropr.ysical sys tems, the 

information one has is very sketchy and highly indirect. Tt should 

be interestint:- to see whethor measurements of interplanatory mag-

netic fields, information about which has becorne availa"ole through 

satellite data, in rPcent years, will be able to throw any light 

on· these. 
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Growth of Turbulent Magnetic Fields 
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AND 

S. NAGARAJAN* 

Phymu Departmen!) l\'ew York t:niversity1 New York, l'f~ew Yorlc 
(Reeêtved 27 June l966, .final manuscript received 5 December 1966) 

The ev?lu.tio~ of a wea~, random initia.l ma.gnetic field in a highiy conducting, isotropicallv tur­
lmlent fiu1d Js ~1scu~d wtth the aid of the e~~f't expression for initia} growth of the magnetic e"'nergy 
~pectrum. Eq~upartltion argumen~s~ .the vort1c1ty analogy, a~d the known tudmienee approximations 
all are fo~nd H1fi:d:q.uate fur predwtmg whether the magnetiC energy eventually dies away or grows 
e~~C:n.entw.Uy. T!us JS true for any ratio of ma.gnetic difiusivity À to kinematic viseosity v. The pos-
sJtnlmcs of event"ual gtowth and eventual deeay are both admitted, and, for each, the shape 
of the magnet;(',-e~e~gy spectrum in tiJe case ).. >> .. is by simple dynamical arguments, If 
there 1.&. gr~wth,, ~t 1s ?-~nclude? U:at the roagnetic spectrum below the Ohmic cut-off eventually 
re.a.c~es eqmparut10n w1th the kmeuc-energy spectrum roughly in the fashion predicted bv Biermann 
~nd ~(:hlüterl wit~ the principal excep~îons tha.t the spectrum: of in the eèrulpartition 
merbal mnge ev-olvt'-8 to the form ~-·~~ ~nd ,that equipa.rtition , with rapidly falling 
spectrum. throughpart ~f th~ OhmiC dtsslpatton range. The evoh1twn of the magnetic spectrum in 
the we.ak-fie-ld À >): v reg1~e 1s_ ai1:'0 computed numerica.lly with a simplified transfer approximation 
suggest.ed by the Lagrangmn-h1story direct---interaction equaUons. This calcula.tîon turns out to yield 
a.n eventunJ very wc~tk exponentiai growth of magnetîc energy. 

1. SUMMARY OF PREVIOUS WORK 

THE behavior of a weak, turbulent magnetic 
field in a highly conducting fluid has been een­

sielered hy a number of author:l. The early treat­
ments of Batchelor' and Biermann and Schlüter' 
differed substantially. Biermann and Schlütcr noted 
that the turbulent velocity field should stretch lines 
of force and thcreby inerease magnetie energy at the 
expense of kinetic energy. They assumed that this 
woulel continue until equipartition of magnetie and 
kinetic energy was reached, whereupon the Lorentz 
forces would inhibit the stretching. They proposeel 
that the characteristic e-fo!ding time for intensifica­
tion of magnetic loops of given size woulel be the 
order of the circulation time for the turbulent edelies 
of that size. This implied that equipartit.ion would 
be reached first at the smallest scales in the inertlal 
range, and then praeeed down the spectrum to the 
hydroelynamic energy-containing range. 

Batchelor observed that the equation of motion 
for weak magnetic fields is identical with that for 
vorticity (Lorentz farces neglected), if the magnetic 
eliffusivity À anel kinematic viscosity " are equal. 
In this case, he proposed that an initia! magnetic 

• Present addre6S: Tata lnstitute of Fundamental Re­
search1 Bombay1 India. 
(
19

;;g .. K. Bawhelor, l'roc. Roy. Soc. (London) A201, 405 

'L. Biermann and A. Schlüter, Phys. Rov. 82, 863 (1951). 
' K. Moffatt, J. Fluid :\1ech. 11, 625 (! 961 ). 
• P. G. Saffman, J. Fluid Meeh. 18, 449 (1964). 
'Y. -H. Pao, Phys. Fluids 6, 632 (llJ6:5). 
'E. N. Parker, Astrophys. J. 138, 226, 552 (1963). 

spectrum identical in form to the vorticity spectrum 
would be in equilibrium, neither growing nor decay­
ing on time scales short compared to the lîfetime 
of the turbulence. If X > v, Batchelor that 
Ohmic elissipation effects on the magnetic woulel . 
be stronger than viscous effects on the vorticity 
field and that, therefore, the magnetic field should 
eventua!ly decay. Ii À < r, he concluded that the 
magnetie field would grow until approximate equi­
partit.ion was reached at the top of the inertlal range. 
Lorentz forces would then inhibit further growth, 
anel eqnipartition never would be reached at lower 
wavenumbers, . the magnetic spectrum always re­
sembling the vorticity spectrnm, with intensit.y in­
creasing with wavenumber up to the dissipative 
cut-off. If the initia! magnetic cxcitation was intro­
duced at low wavenumbers, Batchelor predicted that 
stretching of magnetic lines of force would at first 
increase the magnetic energy regarelless of the ratio 
X/v, anel there woulel be transfer of the magnetic 
energy to higher wavenumbers as it was amplified. 
In the case X/v > 1, growth would cease when the 
dominant spatial scale of the magnetic field was 
reduced to a characteristic Ohmic dissipation lèngth, 
anel thereafter the magnetic energy would die down 
monotonically. In the case V" < 1, growth woulel 
continue until the equilibrium vorticity-like spec­
trum resulted. 

Further elevelopments and modifications of 
Batchelor's ideas have been presenteel hy Moffatt." 

Related treatinents have been given by Saffman,' 
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Pao, • a.nd Pa.rker. • These authors use different 
niethods, but all three conelude th&t, wh&tever the 
value of )./v, an initia! weak field should die away 
a.fter initia! a.mplifieation or, at best," should be 
a.m:plüied by a finite factor to a steady-state level 
where Lorentz forces are still unimportant. 

All authors seem to agree tha.t an initia! low­
wa.venumber magnetic excitation is at first a.m­
plified. There is complete disagreement about wh&t 
happens a.fter that. 

2. INITlAL GROWTH .OF BNERGY TlUNSli'ER 

The standard inoompressible hydromagnetic equa­
tions áre7 

vV")u = -(u·V)u + (b·V)b- Vp, (2.1) 

XV')b = -(u·V)b + (b·V)u, (2.2) 

where { ) denotes aversging over an Îl!otropic en­
semble of flow realizations. These functions satisfy 

E(t) [ [E(k, t) + F(k, I)] dk, (2.8) 

where E(l} is the total energy per unit mass. In 
addition to the overall conservation of E(t) by the 
nonlinear interaetion, tbe interaction of each triad 
of wave veetors ±k, ±k', and ::!:: (k - k') is in­
dividually eonservative. 

If (2.5) and (2.6} are multiplied by u~(k) and 
b~(k), respectively, the ensemble averages of the 
real parts of the results yield the energy-bala.nce 
equations 

(al at + 2vk')E(k, t) = T(k, t) + L(k, 1), 

(a/at + 2Xk')F(k, t) = J(k, t), 

(2.9) 

(2.10) 

V·u =0, V·b =0, (2.3) where 

where u(x, t} and (4".pp)'10b(x, t) are the velocity 
and magnetic induction fields, v is kinematic vis­
cosity, X is magnetic diffusivity, I' is susceptibility, 
p is ftuid density, and f1P is pressure. 

The total energy jp f (/u/' + JbJ') tfx, as well 
as f u·b tfx, is conserved by the hydromagnetic 
interaetion. 

Let the fields obey cyelic bounda.ry oonditions 
on a cubical bOx of side L. The Foorier amplitudes 
defined by 

u(x, t) • 2: u(k, t)e'"'", b(x, t) = 2: b(k, t)e'"'' 
k k (2~ 

satisfy 

(IJ/Qt + vk")u,(k) = ik,.P11(k) 2: [b1(k')l>.(k - k') .. 
- u1(k')u.(k k')], (2.5) 

(él/at + >.k')b,(k) ik. 2: [u,(k k')l>.(k'). .. 
u.(k - k')b,(k')], (2.6) 

where 

P11(k) = &11 k,k;/k' 

and the argument t is omitted. The sums in (2.4)­
(2.6) are over all wavenumbers allowed by the 
cyclie bounda.ry conditions. 

In the case of isotropie turhulence ( which requires 
L -+ .., ),· scalar encrgy-spectrum functions may be 
defined by 

(L/2 ... )'(u,(k, t)u~(k, t)) .. (4...k'r'P"(k)E(k, t), (
2

.7) 

(L/2".)'(b,(k, t)b~(k, t)) = (4...k•r'P,,(k)F(k, t), 

T(k, t) = 4...k'(Lj2 ... )' 

·Im {k. 2: (u,(k', l)u_(k- k', tM(k, t)}}, {2.11) .. 
L(k, t) = -4...k'(Lj2.,.)' 

· Im {k* 2: (b,(k', t)b.(k- k', tM(k, t)>l, (2.12) .. 
J(k, t) 4...k'(L/Z...)" 

·Im Ik. 2: ([b,(k', t)u.(k- k', I) 
k' 

- b.(k'' !}u,(k - k'' t)]b,(k, t))l. (2.13) 

Here T(k, t) is the ordina.ry hydrodynamic transfer 
function, while L(k, t) and J (k, t) deseribe the 
exchange of encrgy between kinetic and magnetic 
degrees of freedom. The conservation properties give 

· [ T(k, t)dk = 0, 
(2.14) 

[ [L(k, t) + J(k, t)] à~ = 0. 

Suppose th&t the magnetic and velocity fields are 
statistically independent and isotropie at the initia! 
time t = 0, a.nd that the magnetic field is muJ... 
tivariate normal at I 0. Thes~ conditions are 
appropriate to the introduetion of a randomly pbased 
magnetic seed field into pre-existing turhulence. The 
velocity field is not assumed to be normally dis­
tributed at I 0. 

This ensemble gives 

L(k, 0) = J(k, 0) • 0 

'T. G. Cl>wling. Magndhhydrl>ll.ynam.ïu (Interocience and the functions [ûL(k, t)/at],.0 and IW(k, t)/at),.0 

Publishem, Ine., New York, 1957). which deseribe the initia! build-np of E>.ilergy wansfer 
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can be determined exactiy. The results are valuable 
for illustrating the various transfer mechanisms, 
wnich contmue tv operate at later times. To obtain, 
differentiatt ::uz~ and :2.13J, use (2.5) and (2.6) 
to exoress tt1c time-derivatlves. and use (2. i) to 
reduc~ the prorincts of covarianc~s which result from 
the independenee anè normahty of the initia! mag­
netic fieid. The fmai equations are 

" [iiL(k, t)liiC,., = kj;' [k'a,.,F(p, 0) 
• L 

- p'c.",E(k. O)]F(q, 0} <!:p_<i.s.. , 
pç 

[éiJ(k, t)/iltj •• , = k r.r [k'd.",F(p, o) 
• <L 

- p'n,.,F(k, O)]E(q, 0) ~ 
pq 

- k !1 p'j,.,F(k, O)F(q, 0) dp dq_ 
• pq 

(2.15) 

(2.16) 

Here f f • denotes integration over all p, q such 
that k, p, and q can form a triangle, and 

a,., = t\1 - xyz- 2y'z'), c,., =: pk-'z(1 - y'), 

d.", = 1 + xyz, h, .. = pk-'(z + xy) = 1- y', 

(2.17) 

where x, y, z are the cosines of the interior angles 
opposite the triangle sicles k, p, q, respectively.• 

The conservation properties are associated with 
trigonometrie identities among the geometrical co­
eflicients: 

akpq = akop ~ 0, d~cpq_ = d"vk = dqkp 2 0, hkpa 2 0, 

k2
jkpo = p2

C11kq, k2
hk"q, = p2

hpkq 1 CkJ>q + C,~:qp = 2ak.va 1 

(2.18) 

In (2.15) and (2.16), the terms hnear in F and 
bilinear in F separately conserve the total energy. 
This can he verified from (2.18), and is also clear 
from the fact that conservation of energy holds 
whatever the ratio of magnetic. to kinetic energy. 
If the initia! magnetic field is sufliciently weak in 
the sense 

F(k) « E(k) (all k), (2.19) 

the terms bilinear in F can be consistently neglected 
in (2.15) and (2.16), leaving 

s These geometrical coeffic1ents are identical with those 
obtained in the direct-interaction dosure approximation for 
hydromagnetic turbulence [R. H. Kraichnan, Phys. Rev. 109, 
1407 (1958)]. Some algebraic errors in this relerenee are 
corrected in (2.17). 

[iiL(k, t)iotJ,_, 

- . ff' dpdq - - kE(k, 0) p c, .. F(q, 0) , 
• pq 

[iiJ(k, t)/iltj,. 0 = k .fi [k'd .. ,F(p, 0) 

- p'h,.,F(k, O)]E(q, 0) dp dq_ 
pq 

(2.20) 

(2.21) 

Equation (2.21) can be obtained directly by omit­
ting the (b · V)b term at the outset. However (2.20), 
which describes the small reaction of magnetic field 
on velocity field, requires the (b · V)b term. The 
normality assumption on the initia! magnetic field 
is not needed to get (2.20) and (2.21); it affects 
only the transfer terms bilinear in F. 

The coeflicients d,., and h.", in (2.21) are never 
negative, since lxl, IYI, lzl are always :s; 1. Con­
sequently, the d term always represents a positive 
flow of energy into magnetic wavenumber k due 
to interaction with magnetic wavenumber p and 
velocity wavenumber q, while the h term always 
represents a flow of energy out of magnetic wave­
number k. The h term is "'F(k, 0), so that it can 
he interpreted as a dynamica! damping analogous 
to the 2Àk2F(k, 0) term in the energy-balance 
equation. 

3. INABILITY TO PREDICT WHETHER 
DYNAMOS EXIST 

3.1. Equipartition Arguments 

Lee' has shown that when À = v = 0, (2.5) and 
(2.6) yield Liouville's theorem, if the real and 
imaginary partsof the Fourier amplitudes are taken 
as phase-space coordinates. Since the energy is a 
simple sum of squares of these coordinates, an 
immediate consequence is that there are forma! 
equilibrium ensembles with equipartition of energy 
over all the degrees of freedom. Since the density 
of modes is « k', these ensembles have · 

E(k) = F(k) "' k'. (3.1) 

Do the nondissipative equipartition-equilibrium 
properties lead to valid inferences about the growth 
or decay of weak initia! magnetic fields when À and 
v do not vanish? The usual arguments of statistica! 
mechanics suggest that, in the absence of contrary 
constraints, the dynamica! interaction should act 
to carry a nonequilibrium initia! state toward equi­
partition. This can happen in two ways in the 
weak-field hydromagnetic problem. The (b · V)u 
term in (2.2) can transfer energy from the strongly 
excited velocity field to the magnetic field. The 

'T. D. Lee, Qua~t. Appl. Math. 10, 69 (1952). 
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(u·V)b term cannot do this, but it can spread tbe 
existing magnetic energy out over 1c space. 

.Both proeésses can be demonstrated from thè 
weak-field initiai-transfer formulas. First, consider 
the contribution to (2.21) from p ~ k, wbicb in­
volves the factor 

lc'd,., p'h,., ~ k'(d,,, - h, .. ) = lc'(xyz + y'). 

Since p ~k implies x ~ y, then 

xyz + y2 ~ y'(l + z), 

whicb is non-negative because izi < 1. Tberefore, 
the interaction of the magnetic modes within any suffi­
ciently narrow wavenumber. band gives a positive flow 
of energy into that band from the velocity field. This 
is true regardless of which modes contain the kinelic 
energy. 

Next, suppose that 1c is witbin the range of mag­
netic wavenumbers initially excited, and k' without. 
Then F(k', O) =0, and tbe non-negativity of the coeffi­
cients shows that the L'Ontribution to [M(k, t)/ilt], •• 
from p ~ k' is negative, while the contribution to 
IM(k', 1)/é!ll,.o from p ~ k is positive. Thereforc, 
energy is lost from the excited wavenumber and gained 
by the unezcited one, so that the net effect is a spread 
of miJgnetic energy in k space. There is traMfer into 
the unezcited wavenumber whether it lies above or below 
the excited one, aiUl regardles8 of which wawmumbers 
contain the kinetic energy. 

Absolute equilibrium is never achieved in actual 
turbulence, because of dissipation and the related 
fact that energy never reaches very high wave­
numbers. In this case, it seems impossible to teil 
what will eventually happen from the facta oo far 
develóped. Suppose that at some time t therc is a 
cruelal band of wavenumbers which contains most 
of the magnetic energy. The spreading proeess will 
sweep the energy out of the band, principally to 
higher wavenumbers, while the local enhancement 
process will pump energy into the band from the 
velocity field. If the rate of sweeping out exceeds 
the rate of local enbancement, the magnetic energy 
in the band will decay, in the absence. of a supporting 
reservoir of magnetic energy at lower wavenumbers. 

The Gibbs statistical mechanics does not deal with 
rates and cannot resolve·whether local enbancement 
of sweeping out wins the competition. Tbé ingr'e­
dients of that theory are only the form of the cón­
stant of motion and Lióuville's theorem. The·detailed 
structure of the equàtions of motion, whlch de­
termines the rates of eompeting proeesses, :is not 
used. In faet it is èasy, with the aîd of the projection 
operator P<i(k), to alter (2.5) and (2.6} so that the 
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ratio of the contributions from the (b·V)u and 
(b· V)b terms to that from the (u• V)b term bas 
any desired value, but neither the form of the energy 
nor Liouville's tbeorem are changed. Thus the ratio 
Qf sweeping-out to local enhancement can be made 
anything desited without affecting the Gibbs equi­

·librium. 
In absolute statistica! equilibrium there is no 

competition among diJferent processes and the proc­
ess rates do not affect the equilibrium. The property 
of deta.iled balance states that eaeh triad interaction 
is individually in equilibrium and gives no net energy 
transfer in or .out of any degree of freedom. This 
is an exact property: tbc energy is a sum of squares 
oo that tbe canónical ensemble is Gaussian and all 
the triplemomentsin (2.11)-(2.13) vanish. 

3.2. The Vorticity Analogy 

Equation (2.2) for b is identieal with the equation 
of motion for the vorticity, if À = • and the (b • V)b 
term in (2.1) is neglected.' This suggests that vor­
ticity crcation by stretching of vortex tubes should 
have a magnetie counterpart. Furthermore, it yields 
an inunediate partienlar solution for the weak-field 
magnetic spectrum when X = v. The identity of 
the equations means that there is an ensemble of 
solutions 

b(x, t) cc V xu(x, t), (3.2) 

which implies 
F(k, t) "" k'E(k, t). (3.3) 

If (3.2) is satisfied for all x at any t, it is preserved 
by (2.1) and (2.2) with the (b· V)b term omitted. 
Finally, the neglect of Lorcntz foroes should, reason­
ably, have a negligible effect on tbe evolution of 
b(x, t), if (2.19) is satisfied with sufficient strength, 
so that the neglect of (b • V)b is justified. 

When X ;6 v, the vorticity analogy is less sharp, 
as bas been stressed by Cowling1 :w~ .qthers. How­
ever, a cruci~ trouble arises ,aliè~Y ip the case 
X v. Equ.atiön (3.2) prescri~ :a :definite phase 
relation b~tween magnetic and \teloçity field every­
wbere · in , every · rcalization. This · pliasing is not 
required by (2.2) and is not satisfied by a.random 
ensemble of ma.gnetic fields with the spectrum (3.3). 

One implication of the artificial phase eonstraint 
is that, by (3.2) and (2.14}, 

f k-'J(k, t) dk = 0. (3.4) 

In other words, the quantity 

Q(t) = { Q(k, t) dk "" { k-'F(k, t) dk (3.5) 
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is conserved by the interaction, in precise analogy to 
the conservation of kînetic energy. Q(t) and Q(k, t) 
can he interpreted as the mean-square and spectrum 
function of the vector potcntial! 

Equation (3.4) requires that .T (k, t) be negative for 
somc k. In contrast, it can he shown that, when 
(3.2) is noL imposed. the phascs of the magnetic 
field can be chosen to yicld 

J(k, t) ~ 0 (all k) 

at some instant I, whatever th~ functîons E(k, i) 
and F(k. t) are. Moreovcr, if the initia! mugnetic 
field has random phascs. the initia! growth of J(k, t) 
always makes the left-hand side of (0.4) > 0. 
tion (2.21), with (2.1Sj, the sine and eosine 
for a piane triangle, and a renaming of variablcs, 
yields 

f k-'[aJ(k, t)/dt],., dk 

f dp f dq l(p, q)Q(p, O)E(q, 0), (3.6) 

where 

I(p, q) 

= pq r [p'(l - x')x/(p' + q' 2pqx)] ctx. (3.7) 
<.--1 

Tbe numerator of th<> mt.egrand of l(p, q) is anti­
symmetrie in x and ~0 for 0 :'::" :'::" 1. The de­
nominator is ~0 for -1 :::; x S 1 and dccreases· 
monotonically as x increases. Hencc, I(p, q) > 0 
for all p and q. 

Clearly (3.2) represents a sevcre artificial con­
straint on the growth oî the magnetic field. It im­
poses a conservation propert.y whieh is unidirec­
tionally violatoo in the mean if the initia! magnetic 
seed fields are random. This fact limits the inferences 
which validly can he made from the vorticity an­
alogy. The growth of vorticity in one region of the 
spectrum must always be accompanied by loss of 
vorticity in another region. If (3.4) were true, the 
growtb of magnetic energy would suffer the same 
constraint. Magnetic energy at high wavenumbers 
could be sustained against Ohmic Jo&'! only by with­
drawals oJ magnetic energy from lower wavc­
numbers. After the reservoir at Jow wavenumbers 
were exhausted, the magnetic spectrum would neces­
sarily decay at all wavenumbers.'" Since (3.4) does 
not hold if the phases of the seed field are 
the possibility is open that J (k, t) evolves to 

1c CL L. :'\.Ie$kl. in 
(North-Holland Pubjishing 
lands. 1965 ), p. 424. 

multaneously pnsitive values at all k, so that the 
magnetic field exhibits true spontaneous growth and 
increases îndefinitely, until the weak-field condition 
is Yiolated. A corollary is that the vortieity analogy 
does not indicate what ratio Àjv, if any, marks the 
division between decay and spnntaneous growth. 

3.3. Inadequacy of Approximate Turbulence Theories 

X o general principle so far expounded appears to 
d.:termine whether turbulent dynamos exist. It. 
should be stressed that the failures of the equiparti­
tion considerations and the vorticity analogy are 
not on points of rigor but because crucial physical 
questions are untouched. In order to decide whether 
dynamos exist, i t seems necessary to treat the de­
tail cd dynamics of the turbulence quantitatively so 
as to determine whether the local energy-enhancing 
or the sweeping-out processes are stronger. The 
e-folding timt>S associated witb both kinds of proct>ss 
>tre plausibly of the same ordef of magnitude: the 
cddy circulation time of some crucial hand of wave­
numbers that dominates the magnetic spectrum. If 

it is necessary to find the numerical ratio of two 
e-folding times which have the same func­

tional dependenee on the basic flow parameters. 
This kind of task seems beyond the capabilities 

of the kinds of approximate turbulence theori.es 
which are now available. The approximations may 
include the principal dynamica! processes and es­
timate their orders of magnitude correctly. But it 
is impossible to obtain numerical boun.ds on errors 
and therefore impossible to obta•n reliable bahmees 
between competing processes whose strengtbs are 
camparabie and whose out-eome is not controlled by 
a helpful conservation law. To put it another way, 
the magnitude of the asymptotic growth rate of the 
rnagnetic spectrum can (hopefully) be determined 
approximately, but not the sign of the growth rate. 
The dynamo problem seems to pose a uniquely 
difficult challcnge to theorists. Unless some valid 
way of looking at the problem is uncovered which 
eliminates the need for detailed dynamica! knowl­
edge, attack by direct computer experiment may 
be required. 

The confiicting predictions of event.ual growth or 
decay reached in previous publisbed work appear 
to arise · from neglecting or denying either local­
enhancement or sweeping-out processes in critica! 
wavenurnber regions. Biermann and Schlüter' pre­
cliet exponential growth for any À/ v, but ignore 
completely the transfer of magnetic energy benveen 
different k bands. Moffatt' infers decay for i<. » v, 
in the abse:ce of steady input. But he considers 

55 



R. H. KRAICHXA:-1 AND S. NAGARAJAN 

only one-way transfer outward in k space, a.ccom­
pa.nied by amplifieation. The possibility of dornina­
.tion by local processes like those demonstratod m 
See. 3.1, where both the higherand the lom1r of the 
pair of magnetic wavenumbers gain energy, m n?t 
admitted. SalTman • prediets decay for À « v,. m 
the absence of steady input. He exammes the regwn 
far above the viscous cut-off of the velocity field 
a.nd concludes that these waveuurobers are stabie 
to magnetic disturbances (see also Moffatt"). But 
the possibility that the magnetic spectrum is sup­
ported by loeal-enhancement processas at !~':er 
wavenumbers is denled by an appeal to the vortlctty 
analogy. Pao• exrunines the same ~on as Saff_m~n 
with different conclusions (amplificatton by 11 fimte 
factor instead of eventual decay), but also omits 
the possibility of spontaneons growth at lower wave­
numbers. Pa.rker" considers only one-way transfer 
of magnetic energy ontward in k space, which pre­
eindes a self.,.,upported dynamo at the outset. 

The thrce seetiollll to follow give estimates of the 
behavior of the magnetic energy spectrum for each 
of the two possibilities, eventual growth or eventual 
decay, in the case where À » •· No attempt U: made 
to guess which possibility prevails. The estunates 
a.re made by sinlple dynamica! reasoning ba.sed on 
the theory of the Kolmogorov inertlal range. To a 
oonsiderable ëxteht, .they reproduce or overlap eon­
clusions by previous workers, but, taken in entirety, 
they do not agrce with any of the authors. For the 
possibility of eventual growth, estimates are made 
of what happens when the magnetic field beoomes 
strong enough that reaction on the velocity field 
is no Jonger negligible. 

Following the qualitative analysis, the growth in 
the weak-field regime is calculated numerically using 
a simplified ciosure approximation suggested by the 
Lagrangian-hîstory direct-interaction equations. •• 
The- result is eventual weak exponentlal growth of 
the magnetic spectrum at all wavenumhers. This 
is not evidence that aetual turbulence behaves 
similarly. Instead, the results reinforce the conclu­
sion that the bala.nee between local enhancement 
and sweepiug-out is too close to .he résolved by 
approl!:imate theories like any now available. 

4. GROWTB RAT.E Al'iD SPECTRUM SHAPE IF 
TH8RE IS BXPOl'IERTIAL GROWTH 

Suppose that the Reynolds number is large and 
that, prior to introduetion of a magnetic seed field, 

uK. Moll'att, J. Plukl Meel>. 17 22.5 (19113). 
11 R. H. Kraielman, Phya. Ftuid.; 8, S75 (1965); 9, 1728, 

1884, 1937 (lllll6). 

ss 

the turbulence is isetropic a.nd exhibit.s a Kolmogorov 
inertial range in which the kinetic-energy spectrum is 

(4.1) 

where C is a number of order one a.nd ~ is the rate 
of dissipation of kinetic energy by viscosity, per 
unit ma.ss. Equation (4.1) holds for 

k. « k « k,, (4.2) 

where k0 is a typical energy-range wavenumber and 
k, = (f/v3

)
11

' is the Kolmogorov dissipation wave­
number. For k > k., E(k) is a mpidly decreasing 
function of k. The latter waveuurober range will 
not be oonsidered in this paper. 

Now Jet a weak, statistically-isotropic, and mn­
domly-pha.sed. magnetic excitation be introduced. 
Weak means that the Lorentz forces produce changes 
in the velocity field so smalt that they can be neg­
lected in determining what the velocity field does 
to the magnetic field. 

If k is in the inertial range, the typieal cireulation 
time for the eddies of size k-' is (.k")-11

'. This is 
pla.usibly the charaeteristic time for distonion of 
the magnetic field on the seale ~;-•, provided that 
Ohmic dissipation effects a.re negligible. The Ohmic 
decay time at this scale is (Àk•r ', so that km= ( EjÀ 3 ) 

11
' 

is the waveuurober at which distortion a.nd dissipa­
tion effects on the magnetic 'field can be expected 
to be comparable. Assume that the magnètic 
Reynolds number is large; that is, 

ko « kM « k., ( 4.3} 

since À » • bas been taken. 
If k0 « k « km, the eha.racteristic e-folding time 

for precessas which act to produce local equipartition 
between kinetic and magnetic energy and the char­
acteristic time for removal of magnetic energy from 
the neighoorbood of k by sweeping-out.ward proc­
e8ses should each be of the order of the local eddy 
circulation time. There does not apPea.r to be a.nother 
relevant time. If local enhancement overpowel'l! 
swceping out, the growth rate for net increa.se of 
the magnetie spectrum F(k} should then be of order 
(<Af)"'. Since this rate increa.'lCS with k, the fa.stest 
growth can be expected in the region k"' k".. For 
k > k,., the Ohmic damping overpowers the local 
enhancement processes. Thus the region k - k... 
should eventually oommate the spectrum, whatever 
the shape of the initia! spectrum, and the tot.al 
magnetie energy should then increase expenentially 
with a growth rate 

a = K(Ek!)'" "" K(E/">.)11•, {4.4) 
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·.vhere K is a numerwal constant. If the eventual 
aet balance between local enhancement, 3Weeping­
flUtward, and local dissipat10n is very dose at wave­
nurobers near the spectrum maximum, K could be 
small compared to one. 

The form of the asymptotic spectrum for k « k. 
and k » k. is easily estimated. In the exponential­
growth regime, the principal magnetic excitation 
should be associated with irregularly twisted and 
elongated current loops whose transverse dirneusion 
is ~k-;" 1 • The loops repcesent a dipole field. Con­
sequently their spectrum should exhibit an excitation 
per wave-vector mode which is ""k' for k « k •. 
Since the densit.y of modes in wavenumber space 
is oc k', this implies 

F(k) "'k' (4.5) 

For k_ <..'C k « k., F(k) should fall off rapidly, 
so that eddies of size k-' act on magnetic fields 
which are nearly uniform across an eddy. The action 
of these eddies against the strong Ohmic damping 
then produces slight wiggling and stretching of the 
lines of force. This situation ha.s been treated by 
Golitsyn" and Moffatt.' Their :.nalyses agrcc, and 
give 

F'(k) « k-lVl (k. « k « k,). (4.6) 

A simple physical argument leads to l.4.6): The 
rate-of-strain associated with eddies of size -k-• 
is ~lk'E(k)] 1n The amplitude of the magnetic field 
excited :.t scales -k-' should be proportional to this 
rate-of.-strain, proportiona! to the underlying mag­
netic field at lower wavenumbers, and inversely 
proportional to the damping rate lik'. Since kP(k) 
mea.surcs the mean square of the amplitude, t.his 
implies 

P(k) ~ (Xk')-'b;k'E(k), (4.7) 

where 3bÏ/2 is the total magnetic cnergy per unit 
ma.ss at lower wavenumbers. Equations (4.7) and 
(4.1) yield (4.6). Equation !!.7) further implies that 
F(k) falls off rapidly for k > k,. 

An idealized rcpresentation of the asymptotic 
P(k) in the exponential-growth weak-field regime 
is given in Fig. 1. .-\.11 the features inferrcd above 
are supported by the more detailed analytica! and 
numerical results of Secs. 7 and 8. 

5. APPROACH TO EQUIPARTITION IF 
GROWTH PREVAILS 

If the magnetic energy grows exponentially as 
described in Sec. 4, the Lorentz forccs eventually 

13 G. S. Golitsyn, Dok!. Akad. Nauk SSSR 132, 315 (1960) 
[English trans!.: Soviet Phys.-Doklody 5, 536 (1960)]. 

log[ki(<IX')"~ 

Fm. 1. Idealized mag;netac energy spectrum F(k) a.nd 
kinetic energy spectrum E(k) m the exponentuû-grnwth 
weak-field regime. 

bccome significant and finally some equilibrium par­
tition of energy between magnetic and velocity field 
should he reached. It has been argued" that the 
equilibrium inertial range of hydromagnetic tur­
bulence exhibits exact equipartition between mag­
netic and kinetic energy [F(k) = E(k)j and a 
spectrum law E(k) "'k-'1'inplaL>eoftheKolmogorov 
law (4.1). The change in spectrum law is associated 
with a transformation of the physical character of 
the inertial-range motion. If the magnetic energy 
at wavenumbers below an inertial-range wavenUffi­
ber k is larger than the kinetic energy in wave­
numbers ?:. k, then the tension of the effectively 
uniform lines of force associated with the low wave­
numbers changes the eddy motion ~t wavenumber 
k into Alfvén waves propagating along the lines 
of force. 

The Alfvén period (b0k) ', where 3b~/2 is the total 
contemporaneous magnetic energy per unit mass, 
is the characteristic time for exchange of energy 
between magnetic and kinetic modes at the same k, 
while the energy cascade up the spectrum is a.sso­
ciatcd with the scattering between the waves 
travelling in opposite directions a.long the lines of 
force. This scattering is weak, in the sense that !itt.le 
of a wave's energy is scattered out in one A!fvén 
period." As a result, the efficiency of cascade is 

"R. H. Kraichnan, Phys. Fluids 8, 1385 (1965). 

57 



866 R. H. KRAICHNAN AND S. NAGARAJAN 

reduced, rela.tive to the pure hydrodynamic case, 
and there is a pile-up of the energy sent up from 
below, which raises the spectrum from the (klk.r•" 
level to the (klko)-312 level. The equilibrium spec­
trum is F(k) = E(k) ,..._ (.b.)'"k-312

, while • is the 
same order of magnitude as in a pure hydrodynamic 
flow with the same energy-ra.nge parameters. 

The effects just described imply an approach to 
equipartit.ion agrecing in important respects with 
that proposed by Biermann and Schlüter.' Equi­
partition should he reached first at k ,.....,. k., where 
the weak-lield spectrum peaks, and should then 
spread down the spectrum until the energy range 
is reached. While tbis process is going on. the spec­
trum law for kinetic energy is -5/3 below the 
equipartition region and -3l2 within the region, 
up to wavemumhers where dissipation becomes 
important. 

The effects of Ohmic dissipation to he expected 
during the spread of equipartition are more complex 
than in the weak-field regime. For k < boiÀ, the 
Alfvén f~uency bok exceeds Àk2

, which implies that 
equipart.ition between F{k) and E(k) is maintained 
in the fooe of the Ohmic loss. If the wavenumber k4 

at whieh the -312 region cuts.off is <boiÀ, it can 
then he determined by equating the mte of total 

I 

"".". 

I 
I 

I 

~" fk-f..bj}J)/.~· 

I 

~ 

I 
I 

I 
I 

log[kl{.!x' J ... ] 

. PlG. 2. Idealized OP_e<~tre. after a.n """~ive equipartition 
~ bas been establisbed. The eurved lme..segment.à the 
equtpa. rtition . O~tion subrange. The ~ ooo­
temperruteoUB tnllglletie energy is atJJ /2. The dasbed liW!S 
show F(k) a.nd E(k) at the earliertime when equipartition 

. waa fini!. att.•li11e<bt k.. Note lóhat both.F(k) and E(k) have 
decreaaed at lligh I< sinoo that. time. 

58 

energy cascade • to the Ohmic dissipation, taking 
k ,...., •lb: as the low end of the -312 range: 

À(Eb0)'
12k:" "'•, k.- (•b;'I'A2

)
11

', (5.1) 

where numerical factors are neglected. 
In the region !:, < k < b0/À, equipartition is 

maintained and the competition hetween rising 
Ohmic dumping and weakening cascade should give 
a rapid fall-off of the spectrum. Analogy to a pure 
hydrodynamic dissipation range suggests that the 
fall-off is exponential in character. For k » b0 /À, 
equipart.ition cannot be maintained against Ohmic 
loss, and the asymptotic dynamica should he those 
of a weakly conducting tluid. If so, the -5/3 law 
for E(k) should he re-established, but with a cascade 
rate much smaller than • if the equlpartition dis­
sipation range is exteMive, while F(k) should hebave 
lîke k -u ;a. 

When equipartition is first reached, 

b0 ,...., [k.E(k.)]111 
......, (•À)114

, 

so thtJ.t k., k,, and b0I'A are all about the same. 
As the equipartition region grows, k, moves down­
ward from k. and bo/À moves upward, aince b0 

increases. Thus the preeedîng discussion is self-con­
sistent. The pan~.meter • is expected to stay roughly 
constant during the spread of equipartition, because 
it represents the conservative cascade of total energy 
up from the energy containing wavenumbers. After 
the "Cquipartition region is extensive, this cascade 
is balanced principally by Ohmie dissipation. The 
spectrum structure during the spread of equiparti­
tion is shown în idealized form in Fig. 2. 

When equipartition bas rea.ched down to . the 
energy-containing wavenumbers k., then b • ....., v., 
where 3v!/2 .is the kinetic energy per unit mass. 
At that stage, the ·preceding formulas give 

(5.2) 

where 

R.... = Vo/ (Ak.) '(5.3) 

is the magnetic Reynolds nuniber of the turbulent 
motion. For comparison, 

(5.4) 

since E ,....., v".,k0 is an accepted consequence of the 
energy-l'l!.ngC dyna.mics. 

lt·ean be objected that the contînued approach 
to equipartition at lower wav.enumbers does not 
follow 1ogically from the supposition of exponential 
growth under weak-field conditions. I•erhaps alter. 
equipartition is reached in the neighborbood -of k.,. 
the magnetic spectrum attains a steady 1orm tba.~ 
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falls off toward lower wavenumbers. Such behavior 
has been suggested by Batchelor,' although for À < v. 

This possibility seems unlikely. The supposition of 
exponentlal growth implies that local enhaneement 
processes at k ~ km prevail over sweeping-outw:1rd 
processes and local Ohmic losses. At k « km, the 
Ohmic loss in one eddy-circulation time { the e-folding 
time for local enhancement) is less than at k - km. 
Also, a spectrum which rises with k tends to inhibit 
the sweeping-outward procP~ses. The net transfer 
between different wavenumber regions is the re­
sultant of a two-way exchange, and the back-flow 
from high t{) loiV wavenumbers is roughly propor­
tional to the excitation at the higher wavcnumbers 
( cf. Sec. 2). Both considerations suggest that if loc al 
enh:mcement processes can give exponentlal growth 
at k - /cm, where the spectrum bends over, they 
surely ean do so at lower wavenumbers, where the 
speeturm is rising with wavenumber. Of course, a 
Jonger e-folding time is expeet.ed at the lower wave­
nurobers becausc the eddy-cireulation time is Jonger. 

6. STEADY-STATE SPECTRUM IF THERE IS 
NOT SPONTANEOUS GROWTH 

If an initia! weak magnetic field eventually dies 
away, contrary to the supposition of Secs. 4 and 5, 
then a statistically steady supply of magnetic energy 
should produce a steady-state spectrum. An attempt 
wil! now be made to estimate the form of this 
spectrum if thc input is in a band of wavenumbers 
k,, « km• 

Moffatt' ha.~ treo.ted the problem on the basis of 
the vorticity analogy and finds F(/c) a: !;'"' for 
Ie,,« k « It is important to note that derivations 
of the vorticity spectrum in the J{olmogorov 
inertio.l range are possible only because there is the 
parameter • which measuréi! the conservative cascade 
of kinetic energy up the spectrum. In the magnetic­
field-vorticity analogy, the quantity analogous to 
kinetic energy is Q(t), the me;;n square of the vector 
potenhaL 3 Ilowever, Q is nol conserved if the phase 
of the initia! magnetic seed field is random. As 
shown in Sec. 3.2, the initia! growth of Q is always 
positivo. Thus the ku' law for F(k) cannot validly 
be inferred. 

If it is meaningful at all to speak of a cascade 
of magnetic energy analogous to the cascade of 
vorticity, then the t@dency of Q to grow implies 
that the parameter ana!ogous to < is not a constant, 
but instead increases with Ie. The increase is a.~so­
ciated wîth the local enhanccment proccsses, which 
add to Q at each step of the cascade. Sim.ilarity 
considerations suggest that the amplification of Q 

during each, say, doubling of wavenumber in the 
cascade should be constant throughout the region 
k,. « k « km. Comparison with the vorticity resnlt 
then gives F(k) "' Ie", with n > t;;l. 

However, there is an upper limit on n. The extita·· 
tion at wavenumbers ~km is dipoio in charactér so 
that it contributes a low-wavenumber tail oc k' to 
F(k), accordîng to an argument of Sec. 4. Then if 
n were > 4, there would be a driven excitation in 
the neîghborhood of k,. that exeeeded the input, 
excitation and the system would be rcgeneralive, 
contradloting the present supposition that the mag­
netic field cannot maintain itself. Thus tbc final 
result is 

F(k) a: k", t < n ::Ç 4 (k,. «Ie« /cm). (0.1) 

It should be stressed that the value of the exponent 
n in (6.1) depends on the numerical value of lhe 
effectivo amplification per cascade st,cp, In the 
absence of a relevant conserV!!tlon law, it dat" not 
seem possîble to determine n by general eonsiciera­
tions. In order to sho.rpen (6.1), it st'f'ms necessary 
to make detailed dynamica! caieulations. 

For k »km, the argumentsof Sec. 4 should !lpply 
equally wel! under the present assumptions, so that 
the spectrum should obey (4.6), as eondutled by 
Moffatt. 

7. AN APPROXIMATE LONG-TIME TRANSFER 
FORMULA 

Consider the approximate Jong-time Lram;fcr 
formulM 

L(k, t) -kE(k, t) JJ p'c,.,F(q, t)o,., dp dq, (7 .1) 
,, pq 

J(k, t) I; ff. [k'd,.,F(p, t)O," 

- p'h,.,F(k, t)O,,,]E(q, t) f!E!Yz , (7 .2) 
pq 

where the quantity 8,., an effective memory tim;; 
for the interaction of wavenumbers k, p, q. If üm 
0 factors were removed from (7.1) and (7 the 
right-hand sides would be idcntieal with tlw <.:wet 
expressions (2.20) and (2.21) for the initia) tim•è 
derivatives of L(k, t) and .J (k, t) in the >n-ak-fiüld 
regime. Thus (7.1) and (7.2) may be interprc-t~d 
as follows. They incorporate all the procPSses which 
contribute to the initia! development of cncl'gy 
transfer, and with the same geometrical eocffident,s. 
However, they recognize that the initia[ growth of 
phase correlation between magnetic and velocity 
field (growth of triple mome.nts) cannot continue 
forever; if it did, L(k, t) and J (k, t) would t.ecome 
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infinite. Instead, the phase oorrelation among modes 
k, p, q should level oli at some relevant relaxation 
or memory time. 

Equations (7.1) and (7.2} may be derived by the 
Lagrangian-history direct-interaction approxima­
tion," wbich also yields integrodiflerent.i&l equations 
tha.t determin«; e .... ThiE faet wiJ: not be nsed ir: 
the present application. Equations (7 .11 and (7 .2) 
will be taken on their merits. an<i the 6.". will be 
approximated acoording to simple ideas. The dis­
cussion wil! make elear that more relined approxi­
mation and a detailed derivatl.or, wouiè .add little 
to the persuasiveness of the tinal results. 

Since a eosine never ~reeds oru; m absolute val.ue. 
the coeffieients a.". and n ... are never negattve. Thus 
tbe first term on tbe right-hand side of ~7 .2) rep­
resents a positive input of energy at magnetic wave­
numbar k tha.t is proportional. to both Ftp, ti an<i 
B(IJ, t}. In 11ther words, it represeBts a driving of 
wavenumber k by magnatie wavenumber p and 
kinetie wavenumber g. There are two typea of 
eharacteristic times which should detennine the 
elfective memory time a ... for tbe driving proeess. 
First, the memory time is limited by the elfective 
eorrelation times oi the driving amplitudes.Seoond, 
it is limited by tbe effective damping time 'of the 
driven mode. lf k is sulliciently large, tbe latter 
time is just tbe Ohmic damping time (>J:1

)-'. For 
lower k, tbere will also be eftective damping by eddy 
prooesses, expressible Q1 an eddy diffusivity. 

A simple form incorporating these ideas i3 

s ... = [(u•t + ~~: + E: + t:r'", (7 .a> 
where 11., ~.. and t. are, respectiveiy, tbe eftective 
reciprooa.l times for eddy damping of magnetic mode 
k. correlation of magnetic mode p, and correlation 
of velocity mode ~ TJte partienlar functional form 
is ébosen for convenience and bas no deeper justi.­
fieation. 

The second term on the right-hand side of (7.2) 
is al.ways negative, .representing a -loss of energy 
from ~c mode k. Since tbc interaction of 
!Dllpetic and velocity fic1ds conserves tbc total. 
enetgy, tbis loas must show up as a net gain in 
ln83IJ.CtÎC modè p and velocity ~e q. The con­
serva.tion-~uirement lmposes a relation among the 
I f&etors in tbe two termsof {1.2} and in (7:1) which 
t.s already been il!oorpomted in writing tbe eqUa-
4.ions: tbe three factors are all tbe same, exeept for 
a permutation of indices. I t is easily verified tha.t, 
wbatever the fonn of ·u.", and of tbe spectra F(k, t} 
and E(k, t), (7.1), (7 .2), and (2.11» yit!ld the secoud 
conservation law · (2.14). -In the .wea.k-lield regime, 
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L(k,, I) is too sma.U to affect the evolution of B(k, t) 
appreciably, but it is important to the logical. oon­
sisteney of the transfer approximAtion that tbe dE:­
tailed conserva.tion properties of the exact equations 
of motior. survive. 

When tht: velocity speetrum has the form 1.4.P 
at ali wavenumben; of ~terest. the idea.. underlying 
the KolmogoroY theot:· suggest that '1•· h, and l• 
should all be proportiona; to the loclil reelprocal 
edd.'·-circulation time { ,);';' ·•, with numerical oo­
efticients of order one. The final form of û.", in thls 
case is then 

fi ... = [(tJ.:')< + •'1\A~k':' 
-r A~·" *' A:~t")r'", (7 .4) 

where A,, A,. and A, are the numerical coefticients. 

8. NUMERICAL RESULTS AND TBElR 
INTERPRETATION 

The magnetie spectrum growth was caloulated 
numericalJ.y in the wea.k-lield regime using tbe ap­
proximate transfer formulas of Sec. 7: The oonstants 
in (4.1) and (7.4) were assigned the val.ues 

C = -1.5, A, = 1.5, A1 "" A, = 1.0, (8.1) 

and tbe initia!. magnetie-energy spectrum was given 
theform 

fi'{k, O) o: k' exp [, -2(k/k,J'J, (8.:2} 

which has a maximum at k = k, •. The valuei: ... = 
0.0027 k. was-taken as an arbitmry choice sa.tisfying 
k,. « k •. 

The equality of eftective magnatie and ltinetic 
modal. oorrelation times assumed in (8.t) was chosen 
as the simplest possibility. Theeddy-damping time 
was taken shorter tha.n i;he eorrelation times because 
inertial.-range cal.culations for hydrodynamie tur­
bulence indicated such helmvinr lor eddy damping 
of velocity mndes." The partienlar choice Ui for 
the mtio of tbe times is arbitrary. It should be noted 
tbat olily tbe ratios of tbe A's can affect the nature 
of tbe transfer. Cb.anging the val.ue of the Kol­
mogorov oonst~mt C or sealing the A's by a oonstant 
factor multiplies J (k, !) by the same factor for all 
k and is equivalent to a rescal.ing of time and wav-&­

number units. 
The results 1lf tbe cal.culation are displayed in 

Figs. 3 to 6. The growth i>f total.. magnetic energy 
was monotonie. The initia! val.ue of tbe exponential. 
growth rate for total energy was about .0.4(E/'-)'/•, 
:and the growth rate -decreased monotonically to an 
asymptotic value 2-3 X w-•Ü/'-)'10 whioo was 
aehieved by t -·w'(VI!)"'. 
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The evolution of the spectrum (Fig. 4) fel! into 
three stages. First, there was a rapidly established 
inerease in energy at high wavenumbers aeoom­
pa.nied by a slowly growing and enormously smaller 
loss in the region around k, •. N ext, the increase at 
high wavenumbers continued, while the rate of loss 
in the region of initiàl excitation decreased. Finally, 
the energy grew at all wavenumbers and the spec­
trum evolved toward an asymptotic equilibrium 
shape with the intensity increasing at the saffie 
expenential growth rate everywhere. The maximum 
loss of energy at k,, was 27%, at t - 300(>-/ •) "'. 
By the ènd of the calculation [t- 4.6 X lO'(i-/ •)"'], 
the total energy was amplified by 8.8 X 107 and 
the spectrum level at k,. was 3.8 X 10' times its 
initia! value. 

The energy maximum in the asymptotic spectrum 
was at k ~ 0.12 k •. Throughout the evolution, most 
of the positive contributions to r: J (k, t) dk were 
at wavenumbers near and above this asymptotie 

·maximum, with a a:mall positive con tribution at 
wavenumbers below the region of peak initia! ex­
citation. The form of J(k, I) during the first and 
third stages of evolution is shown in Figs. 5 and 6. 

The shape of the asymptotic spectrum at wave­
numbers below and above the maximum is consistent 

.,. 

.,. 

1000 z.coo 
(dX)"'t 

FIG. 3. Growth of total magnetic energy F(t) computed with 
the n.pproximate transfer function, 

log10(k/k.,) 

Fw. 4. Evolution of F(k, t) computed w:ith the approximate 
transfer fune:tion. Curve 11 t = 0; curve 2, t = 1L4; curve 3, 
t = 114; curve 4. t = 1140. These timea are measured in the 
unit (X/ •)"'· 

with (4.5) and (4.6). The latter results are also 
easily obtained analytically from (7.2)-(7.4) under 
the assumption that most of the energy is at wave­
numbers the order of { .;;..•) ' 1

' and is growing with 
time. 

A feature of particular interest is that the energy 
increase was dominated by high wavenumbers even 
at the earliest times of evolution, when insufficient 
excitation had developed at intermediate wavenum­
bers to support a cascade. At these times, there was 
strong direct energy coupling over. a jurnp of two 
decades in wavenumber. This phenomenon has a. 
simple physical interpreta.tion and appears not to 
be an artifa.ct of the approximation. The generation 
of smali-scale magnetic excitation by small eddies 
depends on the strength of the magnetic field rather 
than the gradient of the field, since this excitation 
can be visualized as a wiggling of the lines of force. 
Thus the rate of energy transfer to high wave­
nurobers depends principally upon the total mag­
netic energy in lower wavenumbers and is largely 
independent of how low in wavenumber that energy 
may be. The absolute rate of energy input to the 
high wa.venumbers (as oppesed to the exponential 
growth rate/ increases with time during the initia! 
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-·( 
\~ 

\ 
\ 
\ 

-·~-~.----~-2~--~-~.----~0~--~t-~ 
lo!1,0{k/k10) 

Fm. 5. Magnetic en transfer, and dissipation. ~eet.rn 
a.t-t- IJ:.il(l</•)"'· C F(k,l); curve 2, log,.jJ(k, 1)1; 
curve 3, ~og;, [2M'F(k t)J. t) is normalized by its peak 
valllé at timet, while ](Ie, ti and 2M:'Ji'(k, t).both are nonnal­
ized by the peak value of J(k, t). The break& in curve 2 mark 
challl!el! of 8ign of J(k. t}; tbe transfer is negative in the 
middle ecgment. 

stage of evolution because the total magnetic energy 
at lower wavenumbers încreruses. 

The transfer maeha.nism for the magnetic field 
differs profoundly from that fufca. oonvected pa.ssive 
scalar field. In the Jatter case, genera.~ion {)f smal!· 
Sèale exeita.tion depends on the magnitude of the 
gradients on whicll the small-scale eddies can act, and 
vanishes if tbe initia! excitation is spatially uniform. 

•I -1 0 

logiO(klk.,l 

F;o. &. Magnetie ellètf!Y, transfer, and dissipation speetra 
alter the asymptotie <!XJ><!oential growth rate bas been at. 
tsined [l • ...so(ll.} •)."'J. Tbe CU!"VlOI are labeled"" in Fig. 5. 
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At the maximum of the asymptotic energy >!){.'e­
trum (k ~ 0.12 k,.), the reeiprocal eddy cîrcul:uion 
time (ek')"' is -ü.2ö(</À)'1', while tbeOhmiedc-oay 
rate Àk2 is -ü.Ol4(</À) 112

• The total oontribuüon 
to J(k, I) at this wavenumber can be dtvided inro 
positive contributions (from tria.d interactions yi<J!d­
ing local enbancement) and negative oontributi<•llfl 
(from triad interactions a.ssoeiated with sweepicg­
out proeesses). It is fairly clea.r, a.nd verified by tbe 
calculation, that either thc positive or the negativ<~ 
oontributions, taleen alone, would give alocal growth 
rat<: with absolute valuc the order of tbe recipi'()(.'B.l 
eddy cireulation time. Sinee tbe actual asymptotic 
growtb rate is only 2.3 x m-·(~/À)"", the lo!:al 
enhancement &llà sweeping-out prooesses are very 
nea.rly in balanee. They 3iffer, to first approximatinn, 
oniy by the relatively small Ohmic dissipation rate .. 

This el01re balanoe is the most important result 
of the calculation. The prediction of eventual growth 
rather than decay cannot he deemed persuasive, 
because it may oo reversible by a change in the fonn 
of the transfer approximation, or even by a change 
in the rntios of tbc A's. But ~t is l!ignific&ll1; tbat 
a ph:rsically plausible transfer function, which in­
.cludes consistently all the prooesses found in ·.the 
exact initia! transfer fonnula, gives a. neck-a.nd-nec1c 
race between enhancement a.nd sweeping outwatil. · 
This a.dds substance'to the eoneinsion that a.pprox­
imate turbulence theories cannot be relied upon 1o 
predict whether turbulent dynamoo exist. However, 
if eventual growth does prevail in nature, the p~ 
dictions of .{7:1) and (7.2) ma,y be valid in con­
siderable detail. 

In some applications it may turn out not to be 
erucial whether there are self-sustaining dynamos. 
If the inertial range is very extensive, a.nd the input 
magnetic excitation is on a large enough spatiàl · 
scale and sufficiently persistent, the tutbulence may 
'produce large amplification of the magnetic energy 
at times ilf interest whether tbe eventual fate is 
growth or decay. I t remains possfule that well-eoo­
strueted turbulence approrimations eau be useful 
in predicting the earlier stages of growth, whätever 
happens later. 
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ABSTRACT 

The direct interaction approximation for hydromagnetic 

turbulence maintained by stationary, isotropic, random stirring 

forces is formulated in the wave-number-frequency domain. Simpli­

fying assumptions are introduced about the functional forms of 

correlation and response functions of the velocity and magnatie 

fields and a closed set of six nonlinear integral equations are 

derived for them. These are solved through an iterative procedure, 

for prescribed spectra and frequencies of the random stirring 

forces. Kolmogorov 1 s ideas of local isotropy and their relavenee 

to the hydromagnetic situation are reviewed with the special 

view to study the Galilean non-invarianee of the hydromagnetic 

equations to a random constant magnatie field transformation. 
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Lagrangian implications of this are discuseed and a recipe 

through which this non-invarianee can be taken care of is 

suggested and exploited. Solutions to the steady-state equations 

under these limitations display an unequivocal almost-exact 

and detailed equipartition between magnetic and velocity modes 

in the inertial range. The peculiar hydramagnatie non-invarianee 

tends only to accentuate this. 

KEY WO HDS: Turbulence, Non-equilibrium Statis ti cal Mechanica" 

Generaliaed relaxation processes, i\fagnetohydrodynamics, Plasma 

turbulence, Astrophysics, Turbulent Dynamo. 
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1. Introduetion 

1 
In an earlier paper , an attempt was made to predict 

unequivocally whether in a highly conducting, isotropically 

turbulent fluid, a random, weak initial magnetic field would 

grow and, if so, to determine the kinematic conditions under 

which this wo.uld ensue. It was concluded that the present day 

dynamical theories of turbulence were inadequate in resolving 

the question of growth or decay uniquely. But, granting that 

one or the other alternative wins, one could cpredi..ct the ultimate 

magnetic energy spectrum. In this paper, we explore the question 

of ul timate evolutionary steady-state assuming that the growth 

wins. 

In Section 2, we derive the direct-interaction approxi-

mation equations in the isotropic, homogeneous and stationary 

hydromagnetic case, which bring the magnatie situation to the 

samelevel of completenessas the hydrodynamic situation2 •3• 

In Section 3, we devalop this formalism, in the wave number-

frequency domain, for the stationary situation. In Section 4~ 

this model is further developed with an idea of trying to 

explore what minimal information about the time structure of 

the correlation and response functions would be needed to 

determine the steady-state spectra of the velocity and magnetic 

modes. Assuming a functional form for these two functions, the 

complicat~d non-linear dispersion-theoretic formalism connecting 

the two Green's functions~ speetral functions and correlation 

functions is reduced to six integral equations. 
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In Section 5, a not-too-detailed survey of the Kolmogorov 

ideas of local isotropy and their relevenae in the hydromagnetic 

context is given. It is argued that, in fact, the usual dis­

crepency between the unmodified direct interaction inertial­

range solutions, which display an energy range-inertial-range 

coupling and the Kolmogorov spectrum, which is stFictly local 

in wave number space, arises from the confusion betw.een 

Lagrangian and Eulerian correlation times4 ,5. These are connected 

with the invariance of the Navier-Stokes equations under random 

Galilean Transformations. But the hydromagnetic equations 

display an asymmetry, in so far as a constant magnetic field 

cannot be gauged out, in the same way as a constant velocity 

field can, in a co-moving coordinate system. 

In Section 6, an iterative procedure, through which 

these equations can be solved numerically is described. Various 

modifications to the iterative procedure, through which the 

various Lagrangian and quasi-Lagrangian history behaviour can 

be approximately taken care of are delineated, Finally, a 

partial Lagrangian modification through which the. Galilean 

non-invarianee of the hydromagnetic equations in relation to 

magnatie terms is explicitly taken care of is described. 

ln Sectien 7, the results of this study are oempared 

critically with ether investigations. It is concluded that the 

really oonvincing, invariant result of the analysis, which 

remains oomman in all modifications is that in the steady-
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state, there is an almost-exact and detailed equipartition bet-

ween magnetic and velocity modes in the inerti~l range, Further, 

the reduced Lagrangian history hydromagnetic modification also 

shows that the peculiar non-invarianee tends to increase the 

energy-level in the magnetic spectrum. 

2. Eguations in the Stationary Rydromagnetic Case 

We will start with a recapitulation of the direct inter-

action approximation for hydromagnetic turbulence, which is 

homogeneous,isotropic and stationary. The standard incompressible 

hydromagnetic equations are6 

( .L _ v v2-J u. ex ,;t-) 
7>t- - -

(V~~)= o _; (P'-1:!!} = 0 
( 1 ) 

where u (K-; r) - - are the 

velucity and magnetic induction fields, ~ -~s the random 

solenoidal dri ving force, /' p is the pressure and V, >., f-, f> 

are the kinematic viscosity, magnetic diffusivity, susceptibi-

lity and de,fity of the fluid, respectively. 

The direct interaction~losure procedure of Kraichnan, 

when applied to these set of equations yields in the stationary 

situationc:• 6 
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(~ +V~1-)Wv(&;l-) = ff11''-#'<J~d1_fd~. 
tb b -.& 

. [ ct.c•.~>/V Gtv(i;!JI.'-,,VCP~t:H) ~lccr;~-+y 
+~"'(pjt-+\) \v~(q _.,.+S)1 

-1. bc~. ''-ct) Gt"' (I» >tu) \J v(<ht-+-s) 

+ c Cl .. t,,) <n ~Cl'~ ~-4-a) ~t'flc"; ~~!J} '-"\t.;-!)J 
+ ~( fq~ (2) 

ob 

(
ê> -r .).~2..)\v~A;~ = JJ1f~p,.c::lpc:J,fc:!..&. 
~ ./ 0 _, 

-1~<-.t>,,) <;~(p;t-4!1)Wv(9;++s) .. ___ _ 

+Hi,l',,) GtiW't(p; 1-~sJ Wtwt(h t-+s.!JW"'c-;0 

oó 
(3) 

(;:_ +)) ~L) Grv(~.;t-) =. ~t-J- //vlp,~pdCfjcU. 
fj _.,.. 

• [lb(ft .. ",'l)~y(p:,t:-!!.) 'v\JV(~~t--~) 

+cel. "'V Gr~(r-.t--!) \\/'(<.t ~t:-~1&vCfl;a~ 
(4) 

06 

( ""?> +-.>.~.2...) G""'C~;t:) :. ~1-J- jj-rr*.."<J-Lpd<Jj~. 
~-=- / Q -a 



Here SJ denotes integration over all ; , ~ s11 ch that 
~ -

~ r and , can form a triangle 
.""...,- - . -3j s ~ 'l·Cx-_y} 
hl'(t!.;t-) -=- (2..1TJ d C~- ~) <~C!;I-J· ~(~;ov e. - --

.i.l·f~-v 
W~(t>l-) ~c~l\r3Jd3(~-:tJ<- ~C!;rJ.~(~;~e.- -

FCV-) = (~-.)-' f.!'C~ -:t)< i_CIP) · ~c:r c)Je.'~~"'i) 

and o6 

f ~.V(l;.S) \='('-;N!.)~g 
-eb 

...... _V ( -4l.). L - L ') /' 'IV\ (4 L L ') Ut fl. ~:; <t" and ut t~:.,; ~;;:- ç are the average Green 1 s 

functions which give the mean response of the amplitude of mode 

k(V or M) at time t to an infinitesimal perturbation of that mode 

at ttme t' 

i 1 
G (_~;o) 

Gï"i(i;(:-) =:::. 0 };;<.0 
(6) 

The geometrical coefficients in the integrals on the 

right hand sides of (2) to (5) are given by 

h 

bte..\>,<t) := <J"'/ll)l_X'j-+%.3
) h.('t«-,\','1).=~\>(~J (X'j-tZ:) 

ccl,r,<tJ = ll'lft.) ;r-(1 '<:I".J l~c~,r.'l): (~l~"i::{l "' ... ) 
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where x,y and z are the cosinas of the interior angles opposite 

to the triangle sides k,~ and S respectively. There are some 

relations between these geometrical coefficients, which illus-

trate the overall conservation properties of the non-linear 

interaction and the conservation•preservation feature of the 

direct interaction approximation. They are 

.1 o..< .. ,,f'/'l) b(6 .. 1»,,) + \:,(\,.ct,;) 

- C(~~P,ct)+ C(l,.<t,.p) 

d(l .. t>,~) - "(1t ... ,,) + ~ Cl~,,tj 

a..(~_,p,9) - a..(il,~.~) ?!:. 0 

The energy-spectrum functions Ev (k), Em (k) and the 

modal correlation functions Rv(k;t), Rm(k;t) are defined 

. according to 
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Similarly for the force field 

with the initia! conditions 

I 

2· Wave number - freguency 

Consider the frequency domain functions given by 

In all these a = V or M. 

From the reality, stationarJ.ty and isotropy of the U J ft! 
and {. , i t follows that -

\ W 4 
{ l ~ IV) 1 = WQ ( ft ; - w) 

\ ~~{Qc.:w)) 
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= 

From the reality, stationarity and isotropy properties 

and the causa! definitions of the Green's functions follow the 

dispersion relations 

in which 

with the identification Pt 1 is the principal part and 

Re'i. J the real part. ( a • '{ or M ) 

The transforma of (2-5) are 

t-,·w + >-t-1 +@(I: w) + @...,(i:w5J Gtfi(•:U)) =- \ (11) 

Ge.' Co,)+ )) ft2--t- I( .. ! lol) + Lft\ (ft: \Al)]~ 'V ( fl; W) 

with the following identifications: 
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IV' 

From the defini tior:.s of 'No. ( it: w) and the coeffecien ts O.(ft,p, '.1) 
and d.(J~:f','l) , it follows that\(~:W.), 

and ,\'(~:.w) are positive ':l.nd real. 

From (10) "Uld. (11) we get 

From ( 12), ( 13), ) and ) we get 

(25) 

Equations {22) to (25) constitute a complete set of four 

integral equations for determining the Green's functions and 
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eovarianées of the veloei ty a.nd magnatie fie.ld, given the form 

of the forcing field covariance. 

A· Charaeteristic Frequency Approximation • 

. In (2) and (3), if we get t = 0, we get the energy 

balance equations 

v {k'- E" ( ~) = JJ~ '- cipc!c{( it~c•.t>.~) Ev(l>) EvC'l) 
b.. M L ecv vv~ *· t:"J 

-t:o .. b(Cl>.P,9) E"Ctt) E"(q) f}(vvv;. t,9,l)} 

-+1~'-o..(i.~.o,) E""C~} 'E"'C,fB(VM\VI > ~ .. l\<t) 

;....~"l.cc~ ... t,9) E.VCl) E~<u eCMMVj p,<Lil)3] 

+ 1:: ~ c. i) e l ~) 

(26) 

À~2- E.~(i.) =-ff.2.ia.r:t clp.,ll~ cH~ .. \',<t) E~~; E"'(~J 
A 9(tt~M\I) ~ .. t,,) 

-~~~(4' .. \'~<t)E'"b9E"C~) 9(ti'VM ~ p,<t,fi) 

.,- \'.._ ~(1>.1',,) t:'( 1.) E"'C~) eCvMM H,'\, v.)i1 

and 

oll 

er~) =- fJ).) ~v(,,-!) ~(~.-3) _.,. (29) 

74 



These two equations involving Ev (k) and Em (k) can be 

solved if we could provide at least integral info:cmation 

regarcting the G '.2. and R. 1
--!> , in the form of the g _ 

functions defined above. In sofar as steady-state energy balance 

relations are involved, no more than this much is needed. 

Keeping this in mind, we will explore the frequency relation-

ship, which we derived in the last sectien and try to find the 

minimal overall information about the time structure of the 

Green's functions and correlation functions, (or what amounts 

to the same, their frequency structure), that will be 

necessary to solve for the speetral functions. 

Let us define correlation frequencies t 11 Ctlt), S,.} ~) 
and response frequencies 1'1 ( fof.) and '7 ( ~) for mode k in the 

'" "" 
velocity and magnetic modes 

-1 <>I') \ ~}~J =i Rv(~,r).Jr 
....... 

oo 

l '1..} ~)]-' = .. ( G." ( i<,r) <i t 

respectively by 
. -1 0<1 

;> ['S"'c~~ =-[ R 11C~,tJ<:~t-

and the characteristic frequency of the stirring farces by 

ls c ~ ~r' i ~\ c ~. t ) á 1:- ( 31 ) 

Relations between these frequencies and the speetral 

functions can be obtained by integrating (3), (4), (5) and (6) 

over the time t from zero to infinity. But remembering that 

the time average of a function is equal to its zero frequency 

Fourier component, we can get just the same from (22), (23), 

(24) and (25) by putting (1.)-:.o , With these substitutions ani 

a few manipulations, these yield 
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. i.~ 1/ ft.) = )>i_'-+-Jf i:Ct".d t>..l<tlbt" .. ~~ ,) E.~~J (t.(vv.,; ~.CJ) 

+ C(~_.l',9) E\'1\(9) e,(M~.; \>,9)] 

~f . (32) 

'VI ( ~) = XlL+ ff ~.J .. ~~l~C9r.t,CJ)Ev(<t) t}.(MV;J>,<t) 
'"" fj 

+À(~ .. ~,<t}E~(~) f),(VM> ~,<t)J 

\_'Si~)]_, = [ 1} ~~~~ [ ~ FCtl.)2_ svce-.) ec~~-' 

+ ff(•'/.2.",)..1pJ<j acttr,•l)J §_~Çlll=_i<t) e:~-l" V; P, ~) 
o. ..... E."ciL) 

+ E~C") E.~(~J 8 (W\ \'11:, \>, ~ J]l 04) 
Ev C ft.) .:.. ' _J 

Rearranging (26) and (27), we get 



L SS~ d.j> JtJ J( tt ~,,_-i t.'\r '> E v(tt) 9CI"~ ~\ v~ ~.\', <t' 
Em(k)"' A .._ 

L >.~'"+SS~~ clf>-49l_tc~ .. v,9)El·v8C~vrll_; t.~,fY 
h (37) 

+ JC~_,r,9) E-11\(9) 8CVMM_:, r,'1,ft~ 

04 

rC(J b r ""'a( ~-'b. . \ 
a ( b. h ao \ _ ~Ra.(b-! )R {;·-!)::: i<lll.,) R }Jv.)) R r_ï;;w) 
Ug_,a.. >r, 1)-...;o r, .· ) . -'oa (39) 

where in writing (38) and (39), use is made of the fact that 

R - functions are even functions of time. 

(32) to (37) along with (36), (39) and (28) for the 

constitute a complete set, We have to know some more about the 

G and R - functions apart from their characteristic 

frequencies to be able to solve these. In particular, the over­

lap integrals defined by the t1'~ , between the G and R-

functions taken two or three at a time are important in deciding 

the internal correlation-relaxation features of the non-1inear 

. t t• 2 
1n erac 10n 

We can try to approximate these overlap integrals by 

assuming some suitable funotional farms for the G and R-

functions subject to equations which restric.t their ini tial 

77 



values, symmetry with respect to time reversal and integral 

features. In fact any general form A R.'l<.p t_- Afl:-J ~ where 

À(~J is a positive definite polynómial in t withall 

coefficients positive would be a sufficient though net a 

necessary ohoice. This includes the usual Fokker-Plank type of 
-At-

rela.xation tol' e_ ' as the first member. The statistica! model 

of turbulence based on the Generalised Liouville Equations of 

Edwards7 would follow if we make this approximation, along with 

some further simplifications. But the basic phase relaxation 

process, which tends to produce correlation as well as de-

correlation in the turbulent situation is strictly non-linear 

and as can clearly be seen from the studies of Kraichnan2•3, 

rion-Markovian. Asymptotic considerations that lead to art 

inertiàl range spectrum also indicate that the asymptotic 

equations to the Green's functions have the form 

(40( 

We can consider this as typical of the eddy relaxation 

processas in turbulence and as such it is very dissimilar to 

the usual molecular friction and dynamical friction terms 

which arise in a Fokker-Plank type of approach. Further 

experimental observations regarding the correlation analysis 
_,. .. é- 2.. 

of velocity also tand to bear out more an € rather than 

an e-)t..,~ type of rela.xation2•3•8• Kraichnan9 has oempared the 

results of the complete direct interaction equations, with the 

approximate equations, invalving functional forms of the 

exponential and gaussian type in the steady state for hydro-
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dynamic turbulence. He found that the agreement was better with 

the gaussian form. Keeping these in mind we will take a gaussian 

functional form for the functions G and R 

Rv(~~ (:) = e.~<.~ l- ~ if ('!v(f,.)t-Y'] 
R~(~:t-) = e1-p~-i;-1r(~~c~)t-l-j 

V r r )'il.7 c;. (~>1::-) :::: ~~Pl.- -Çn(Y\/et.)t_ J 

G""Ca;~:-) == 

~(it.,\:-) -

e..~~1--!::- n(~Jtlt.)tY} 
~ .,:..~' 1- (scV<.H·)~~~ 

With this identification, one gets 

(41 ) 

-r-x e co.. b ~~~" .... ) = 'iC1!~5J2--r c~.c~~\ c~~t~~l.( :2.--
\j 

-,-1/ 

G, (CA, b j ~\ 9) -==-1J'1~~~l- -t- [ !~, qB'L_{ 'L 

B .. ca..b, r,9) = 1.H.,c~w + c ~b(~)r-r.._ 
l [ "'P--D,_ + [Sc ~21 ,_ r)/~ 

-...) (42) 

Thus (42) along with (32) to (37) complete our require-

ments. An iterative method for their solution will be described 

in Sectien 6. 

5. Kolmogorov's Hypotheses and Turbulence. 

The basic arguments that lead to the direct interaction 

approximation and their compatibility with the ideas of 
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Kolmogorov, for hydrodynamic turbulence have been discuseed in 

great detail by Kraichnan3•4•5. The basic reasoning that leads 

to the Kolmogorov concept of sealing- that large scale motions 

should carry small eddies about, without distarting them,is 

essentially Lagrangian in spirit. Thus the Eulerian history 

correlations which are the starting points in the direct 

interaction approximation, must be suitably modified to correct 

for Lagrangian history. 

As has been discuseed by Kraichnan4•5, the convection 

without distortien of the small scale motions by the large 

scale motions, which is the basic assumption underlying 

Kolmogorov's ideas, owes its justification to an exact invariance 

proparty of the Navier-Stokes equations. A constant homogeneaus 

velocity field can be gauged away by transforming to a comaving 

coordinate system. This Galilean invariance, which is an exact 

proparty of the Navier-Stokes equations,when formulated in terms 

of Lagrangian veloeities and correlations, rather than Eulerian 

veloeities and correlations would make the Kolmogorov assump-

tion more plausible. One could get to the same result, at least 

' in so far as steady-state energy-balance information is 

concerned through systematic procedures of modifying the 

Navier-Stokes equations so as to eliminate the conveetien of a 

given spatial scale by much larger soales (by a prescribed 

ratio). These modifications have been considered by Kraichnan3•4· 

He has also comparèd them with a systematic Lagrangian Ristory 

tormulation of correlations. 

80 



But the hydramagnatie equations do not show such an uni­

versal invariance. The coupling between different scales now 

can take place through velocity as well as magnatie field 

elements. The velocity field shows the Galilean invariance. 

But the magnatie field does not. This is because a magnatie 

field of a eertaio scale is coupled to every magnatie loop and 

eddy of smaller scales, thro,Igh the possibili ty of an Alfven 

wave excitation. Thus the coupling between different soales is 

changed profoundly with the introduetion of a large seale 

magnatie field, The loeal-isotropy concept of Kolmogorov, which 

implies that the detailed information about low wave number 

structure is degraded through transfer of energy in the wave 

number space, has no ~priori validity in the hydromagnetic case. 

Thus it is more plausible that the ideas10 , that lead to an 

inertial range in the unmodified direct interaction schema, 

where the energy-containing range excitation explicitly appears 

in the inertial range spectrum. An unequivocal answer to this 

will be available - only when a Lagrangian history study of the 

hydromagnetic equations is taken up in all its completeness as 

in the hydrodynamica! case by Kraichnan. A similar investigation 

is underway. 

From the experience gained in the construction of quasi­

Lagrangian solutions with the direct interaction scheme in the 

hydrodynamic case, a number of. modifications suggest themselves. 

We shall in the.following section discuss some of these modifi­

cations and their utility in the construction of the solutions 

in the hydromagnetic case. 
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6, Iterati ve Solutions For The Spectra And Charaeteris tic 

Frequencies. 

Des pi te all the simplifica ti ons tha t we have introduoed 

in seotion 4, the final set (32) to (37) (along with (42) ) 

is still formidable, They are a set of six coupled nonlinear 

integral equations for the six quantities Ev(k) , Em (k) , 

lj-y<~) , ~w\ 4k) , 1..J ~) and 1~ ~ . These are formally 

solvable, if the spectrum F(k) and the charaoteristic 

frequency fCtz..) of the external dri ving force are gi ven. 

Explicit analytica! solutions are ruled out and only numerical 

solution suggests itself. But,even so, the double integral over 

wave number spaoe and the number o.f equations to be solved and 

functions to.be determined make it a huge and monstrous calcu-

lation even in modern digital machines. We reaort to a procedure 

of iteration. If one can start with a set of trial or guess 

values for the 1'~ , l '~ and ê.
1
& for a given spectrum.F(k) 

and characteristic frequencygtk) of the random force, we can 

substitute these in the kernel functions of the integral 

equations ànd evaluate a new set of values for'>?,l +-E'!.. 

These new sets of values may be suitably mixed with the old set 

and a new iteration started with this set. This iterative 

.procedure converges unequivocally and efficiently because of the 

non-linearity (One of the very few occasions in life, when non-

linearity is a help! ) • So much is easier said than done. To be 

able to reduoe this to a traetabie numerical problem, one has 

to repiaoe the infinite range of wave numbers by a discrete set 
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of wave numbers. The two integrations over p and q in k-space 

with a restrietion that k • ~+~make .a reduction of the 

double integral to a straightforward single integral impossi'ble, 

In turbulence, most of the interaction in wave number space is 

very local and so the discretisation of the wave number space 

must be sufficiently smooth to include a number of possible 

triads of modes in a region, to take care of the effective 

contribution to transfer or relaxation. At the same time, we 

require a fairly long chain of wave numbers going over a 

considerable numb~r of ootave intervals, in any calculation, 

as the one we envisage here, where we want to include a 

meaningful division into an energy-containing range, inertial 

range and a dissipative range for the velocity and magnetic 

modes. And this beoomes not an acdemic question but a crucial 

one, since we have a set of six integral equations which we 

want to iterate and solve. Since each equation has a double 

integral structure, which is basically irreducible, the memory 

requirements increase and 6 x N
2 

as a function of the number 

N of discrete steps in k, that we allow. 

We choose a set of twenty-five half-oetave steps in k. 

We use a discretisation for the weight factors in the k 

integrals, which is very well described elsewhere
11

• The exter­

nal force has a flat spectrum which is non-zero for the first 

four modes of the velocity and zero for the rest. In a set of 

preliminary calculation, both the number of modes for which the 

force is non-zero and the relative value in the non-zero region 
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were kept variable to check reliability of the various 

numerical procedures. The particular choice was made so that 

for the discrete wave number range, which is allowed by the 

limitations of the computer, a meaningful energy containing range, 

inertial range and dissipative tail are possible. The iterations 

were performed on an IBM 7094 and a CDC '600. 

First making a suitable ohoioe of the kinematic para­

meters, viscosity V and resistivity À for the system, we 

iterate the complete Unmodified Direct Interaction Schema and 

converga on a set of solutions. Then we decrease either V or 

À by a fixed ratio and again iterate to get a new oonverged 

set, with the old converged set as a starting point. In this way, 

we construct a set of solutions, wherein V and A run 

through a range of values such that their ratio changes from 

one-tenth to ten. In these results, the Eulerian relaxations 

are allowed to include energy-range mixing. This leads to two 

distinct characteristic frequencies for each spectrum, for a 

given: scale k • Bath these show modula.tion by energy-containing 

range parameters. The physical interpretation of this is given 

by Kraichnan, in the hydrodynamica! context2• 

Next we impose a less restricted detailed-balance 

condition than Kolmogorov's9. We require that the relaxation 

and' correlation frequencies are equal in the inertial range, but 

still leaving them with arbitrary energy range mixing. Thus we 

replace 04) and 05) for the ~~~ with 
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(43) 

(44) 

This leads to equality of the correlation and relaxation 

frequencies in the inertial range and 

pative range5. 

in the dissi-

With these modifications, we iterate the set to get a 

new set of converged spectra. The direct interaction scheme is 

otherwise left unaltered, in so far as the conveetien of small 

eddies by large scale motions is concerned. 

To get the complete Kolmogorov sealing without worry­

ing about the 'Galilean non-invarianc~ of the hydromagnetic 

equations with respect to a constant random magnetic field, we 

make an alternate and more restrietivo modific~tion. :n (36) and 

) -~Y;,.,.. 
(37) we replace the B(o.bc )~,?,'i - fc,ctors by [E-"-(~)-ft,....l 

This assumption implies that, for every scale of motion, ( or 

magnetic :'ield ) ther'' exists only one :J.rtique scale of time and 

that it is decided completely b the local value of the spectrum 

at that scale. An equivalent way of introducing this assumption 

would be to leave (36) and (37) unaltered but in (32) to (35) 

to restriet the p, q integrations by re~uiring thc~t ~ <<>{ r 
~Z<>l.. "\ where ~ is a cut-off parameter. The cut-off parameter 

~ is so ohosen that the ~~~ calculated from (34) and (55) 

are equal to the ~~~ calculated from (43) anu (44). We also 
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check to see whether the main integral par~meters and features 

obtained this way agree with the solutions, obtained by the other 

Kolmogorov modLfication, In fact the cut-off parameter is varied. 

to achieve this. We find that for our half-oetave discrete k set, 

a choice ..( ~ ~ does this reasonably. 

We then construct what we call a reduced Lagrangian 

history direct interaction hydromagnetic modification. In this 

we impose the Kolmogorov modification ( with restrietion in the 

p , q integration ) only on the velocity terms. This leaves the 

magnetic eddy-damping times and correlation times to be moduhted, 

b. energy-containing range parameters. 

For each of these modifica ti ons, -<;t varie ty of in tegral 

parameters, which typify the structure and characteristic of the 

energy-containing, inertlal and dissipative ranges of both the 

velocity and magnatie are ealculated. 

Let us define for our discrete k - space 

~1" is the total energy density in th~ system and Ev and EM 

are the energy-densi ties in the veloei ty .;and magnatie modes of 

turbulence. From these, one ean define root-mean square 

"velooities" of excitation in the velocity, magnatie and total 
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The total dissipations in the velocity, magnetic and 

the combined systems are defined as 

,., 
ev=..., 1- '\:."Cil) 'f<.~D~ ~ E.tV\ Àt: C:(~)û~;J:::--:'1 =-Gv..rfr., 

Following Ba.tchelor
12 

we can defëne characteristic 

lengths L, ,LM'L,-and Àv ,À.M, À,- which typify the 'integral 

scale' and the Tayler micro-scale for each of these modes and 

their sum. The integral scale typifies that region of the spec-

trum which contributes dominantly to the energy in the parti-

cular mode. The micro-scales on the other hand show the 

dispersion of energy in wave-n~mber space and thus typify the 

characteristic of the dissipation spectra. 

ril-i 
11 -:;! >'z... \ 5 I;_,- ( ).) +-A) j 
--! '.,__ E ï _. 

With the definitions of these lengths and 

"velocities" we are in a position to define the effective 

Reynolds numbers in each of these ranges for the respective 

systems. 

) 
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Following Kraichnan3 , we can alsodefine Reynolds numbers, 

which characterise the energy-range in each of these modes. 

These are 

V 
R = 0 

In tables I - III, we give the values of these integral 

parameters for the various modifications and choice of ~ 

and ~ 

1. Discussion the Results. 

1 In a previous paper , a detailed survey of the various 

kinematic approaches to the problem of the growth of a weak 

random magnetic excitation in a turbulent fluid were given. 

All these approaches try to look at the growth characteristics 

of the magnatie field, by direct analogous extensions of the 

arguments that lead to the asymptotic Kolmogorov spectrum in 

the pure hydrodynamic case. Arguments along these lines, 

exploiting the analogy between the dynamo equation and the 

vorticity equation were put forward by Batchelor13 and his 

ideas have been developed further by Moffat~4. Similar arguments 

based on the rates of strain, assuming ~hat the dynamica! 

equilibrium character of the transfer in the univeraal range is 

unaffected by the Lorentz forces, have been given by Saffman15, 

P&o 16 
and Parker17. A very subtle but unavoidable prerequisite 

for all such roodels is the concept of unidirectional cascade of 

energy.in the wave number spectrum. The velocity field in the 
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pure hydrodynamic case is in statistica! equilibrium and the 

~ transport of energy proceeds towards larger wave numbers. 

In the weak magnatie case, which is not even in statistica! 

equilibrium in the first place, there is no ~ priori justifi-

cation to believe that the cascade should be unidirectional. In 

fact, the nature of the dynamical couplings between the magnatie 

and velocity terms do not justify this assumption. Further the 

Galilean non-invarianee of the hydromagnetic equations, with 

respect to the magnetic terms make the Kolmogorovian require-

ments of localness of cascade questionable. Thus, from two 

different considerations, there is reason to expect that the 

structure of the transfer in the hydromagnetic case will be 

profoundly different from its pure hydrodynamica! counter-

part. 

18 There have been attempts by Chandrasekhar , Roberts 

.19 .20 21 . 22 and Tatsum~ , Tatsum~ , Betchov and De~ssler to construct 

theories for magnetohydrodynamical ttJ.rbulence, based on dynami-

cal approaches. Their procedures depend either on disaarding the 

fourth order cumulants or neglecting the non-linear cross field 

terros completely, thus restricting their applicability to either 

weak fields or the final state of decay. 

In our aarlier paper, for the weak field case, we attemp-

ted to check the balance between the local-enhancement and 

sweeping-out processes. In the absence of any quantitative know-

ledge about the characteristic times of relaxation and correla-
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tion for the two fields and beeause of the closeness of the 

balsnee between the two competing prooesses, we ooncluded that 

the net result of growth or deeay oannot be deemed eonclusive. 

Already in the weak field case, the nonlocalness of the cascade, 

which is a direc eonsequenoe of the impossibility of conveetien 

without distortien in the magnetic case, manifested itself even 
' 

at the earlier times of evolution, as a direct:,enrgy coupling 

over a jump of two decades in wave number. Thus the generation 

of the small scale magnatie excitation by small eddies depends 

on the strength of the field rather than the gradient of the 

field. This focuses one's attention on the inadequacy of the 

usual analogy between magnatie fields and a convected passiva 

soalar field23 • 

We have bere tried to construct a steady-state theory, 

in which the loeal relaxation times are now treated as internal 

parameters and are determined consistently along with the spectrum. 

Thus many of the arbitrary assumptions of the aarlier paper 

removed. But simultaneously, mathematica! simplicity and conve-

nience have forced us to make assumptions about the funotional 

form of the correlation and response functions. Further, we have 

only partially been able to take care of the Lagrangian modifi-

cation. Thus our study fills an important gap in our aarlier work; 

the relativa and absolute values of the relaxation times are 

determined together with the spectra. 

The main results of this calculation are presented in 

figures I - XI • In each of these, we plot the speetral 
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functions Ev (k) and ~ (k) as well as the spectra of the 

vorticity G (k) = k2 
EV (k) and the current J (k) = k2 ~ (k) 

Figs. I - III and first curve of figure IV give the 

spectra for the unmodified direct interaction approximation, 

when no attempt has been made to correct for Lagrangian History. 

One would expect from asymptctic inertial range considera­

tions 
10

(see footnote in reference 10) to get a i,-3/~ power 

'1::>& ~V ... ~ 
law in the inertial range. This is found to ~. Figure II 

gives the inertial range for one of these curves in an enlarged 

scala, to accantuata the point. Further in the inertial range 

detailed equipartition is a striking rasult. 

Figs. IV ii, V and VI give the spectra, when we make 

the restricted detailed balance assumption of ~~~ in the 

inertial range. Qualitatively, this already depresses the energy 

range mixing, which is a feature of the unmodified direct inter-

action equations. In this sense they are intermediary to the 

complete Kolmogorov adaptation and the complete ~ulerian results. 

The oversbooting of the magnatie spectrum in the energy-contai-

ning range is an indication of the effective coupling distance 

in the wave number space. The oversbooting distance is typi-

cally the range over which equilibrium is reached in the 

energy range. 

Figs. VII and VIII display tha spectra whan we make 

complete Kolmogorov modifications for both the magnatie and 
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velocity relaxations. The depraasion of the magnatie spectrum 

for low wave numbers and the longer wave number interval neces­

sary before Em (k) builde up to equipartition are noteworthy. 

Figs. IX and X display the spectra when we make the 

reduced Lagrangian history modification. Fig. XI presente the 

magnatie and velocity spectra for the inertial range in these 

cases in an enlarged scale. This clearly shows a tendency to a 

two-piece inertial range for magnatie spectrum : a. ~!V-s 

region in the low inertial range and a region in the 

high inertial range. In the 
-'i/ :a-

~ region, the magnatie 

spectrum oversboots above the velocity. 10 

The qualitative nature of the curves does not charge 

very profoundly, when we make such drastic assumptions about 

the time-structure of the correlation-relaxation features. 

They all feature equipartition in the inertial range and the 

behaviour in the dissipative and far-dissipative ranges, when 

')..1 -'.<.), is compatible with the results of Moffatt14 , 

Golitsyn24 and Saffman15 , from equilibrium considerations. 

The various modifications, which either take an extreme 

Kolmogorovian or Eulerian point of vie~ change the total 

energy and the coupling between the ranges profoundly, as 

displayed by the effect on the partition ratio, i • e • the 

ratio of the magnatie to the velocity spectrum in the normal 

range. 
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Thus the main persuasive result of this calculation is 

that in the steady-state the total energies in the magnetic and 

velocity modes are comparable and that there is a detailed 

eguipartition between the two modes in the extended inertial 

range.By and large, in magnitude and detail, this corrobo­

rates the conjectures of Biermann and Sch1Üter.
25 

This result coupled with the results of the previous 

paper can be taken as a really compelling demonstratien of the 

possibility of the existence of a turbulent dynamo. Since our 

scheme of calculations are based on a detailed dynamical 

theory, it is possible to extend these results to the non­

stationary case or to situations with further complications, 

as are likely in the astrophysical conditions. 

In two recent papers, 26 Parker has investigated the 

back-transfer to low wave numbers from large wave number 

excitations of the magnetic spectrum, through a prescribed 

stationary random velocity field, when its correlation time 

is short. The main question, which Parker raises in his paper 

is whether in a realistic t~rbulent situation when the 

characteristic times of growth in any scale are of the order 

of the eddy-circulation time in that scale, there would be a 

back-transfer in wave number space. Further, there is a long­

range coupling in the magnetic spectrum, through the qonvect~ye 

terms, which lead to the additional non-Galileau features. 

These questions will bedealt with in a substquent paper. 
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The skewness of the distribution of the derivatives of 

velocity and magnatie field and the cross-field skewness 

factors are also evaluated in these calculations, though not 

explicitly. These and the related quantities like rate of 

vorticity production and current production will be discussed 

in a forthcoming paper. 
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FIGURE CAPTIONS 

Unmodified direct interaction spectra for the case 

Same as Fig. 1 hut exploded to show fine structure 

in the inerti~l and dissipative ranges. The power 

law in the inertial range is unmistakably - 3/::t-

Unmodified direct interaction spectra for 

C,. 5 -S v-.:.. S 'X to- 'A -::::. "''o 

Unmodified directinteraction spectra wi th V-::. À 

~S 
:;. 5 '1<./0 at the top. The bottorn curves are for 

the same set of V and A but w i th ~ ~ ""'7 

modification in the inertial range. The insensiti-

vity of the functional forms of the spectra to the 

modification is striking. 

Direct interaction spectra with ~ ~'1 

cation in the inertial range for V: 
-<1-5 X I 0 

modifi­
-S G x 1 o 

Direct interaction spectra with ~~11 in the 

inertial r3nge for 

Spectra with 
-s 

\I:>.S'1-1o for 

Kolmogorov modifications for both the magnetic and 

velocity relaxations. 
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Spectra. with '\):. Sx1o-C,. À-:. 5'XIö5 at the 

top a.nd \>-:... >.. :. S "AID-$ at the bottom, both 

with complete Kolmogorov modifica.tions for the 

magnetic and velocity relaxations. The more or 

less identical structure in the energy-containing 

range and the difference in level, in the dissi-

pative range between the three sets of Kolmogorov 

modifications is noteworthy. 

Reduced Lagrangian Bistory spectra for V:::::. S ')(.Jo 

>. -=- s ,..,o-s 
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Reduced Lagrangian Ristory spectra for V:::::. S X lO-S 

~ -~ >.'%- SXIO- at the top and 'V-::. ).'.::.SX/o{\)•tt•"')) 

... - • .... M . 
Reduced Lagrangian Ristory E (k) for various 

val ues of )J ). in an enlarged scale to show 

the Lagrangian Ristory features. 
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EVOLUTION OF TURBULENT MAGNETIC FIELDS- APPROACH 

TO A STEADY STATE 

S. NAGARAJAN 

MATSCIENCE, Madras 20. India, and 
Université Libre de Bruxelles. Brussels, Belgium 

Abstract. The dynamica! evolution of a weak, random, magnetic excitation in a turbulent electrically­
conducting fiuid is examined under varying kinematic conditions. lt is found that the results of an 
earlier paper (Kraichnan and Nagarajan, 1967) can be reliably extended to a stage of evolution 
wherein the magnetic spectrum has reached local equipartition with the velocity. The transfer of the 
magnetic energy to smaller wavenumbers (larger scales) is considerable and significant. This result is 
highly pertinent to the turbulent dynamo question, which has been variously investigated recently. The 
relevanee of the coupling of the rms magnetic field to the magnetic modes of all scales in deciding the 
efficiency of this transfer is discussed. 

1. Introduetion and Review 

In a number of recent investigations, (Parker, 1970; Moffatt, 1970; Parker, 1969; 
Krause, 1968; Rädler, 1968; Steenbeek et al., 1966; Steenbeek and Krause, 1966, 
1967; Krause and Rädler, 1971; Fitremann and Frisch, 1969; Vainshtein, 1970), the 
question of regeneration of a magnetic field, by turbulent motions has been recon­
sidered, under a variety of kinematic assumptions about the turbulence. In an earlier 
paper (Kraichnan and Nagarajan, 1967), we have reviewed the previous workon this 
subject in great detail and found that simple intuitive statistica) arguments like equi­
partition, or analogical and beuristic kinematic considerations like the vorticity analogy 
are highly inadequate in resolving this question. In a recent paper, Kraichnan (1970) 
has considered the analogous question of the growth and propagation of the devia­
tions between the point-to-point velocity fields in two flow systems, which are statisti­
cally identical. Here again, one finds that the ultimate evolution depends on the quan­
titative competition between the Iocal-enhancement and sweeping-away processes 
in the wave-number domain. One needs a considerable amount of knowledge of the 
internal dynamics and characteristic times, and assertions of kinematic nature based 
on universa! equilibrium hypotheses àre highly inadequate. 

In our paper referred to earlier, we could notcarry our calculations very much for­
ward in time, because we had no reliable information about the internal time struc­
ture of the combined fields of velocity and magnetic field, at that time. In a more 
recent paper (Nagarajan, 1971), we have investigated the internat structure of the 
steady state spectra on the basis ()fa detailed dynamica! theory. In this, we have also 
reviewed the relevanee of the ideas of Kolmogorov to the hydromagnetic case, 
keeping in mind the Galilean non-invarianee of the hydromagnetic equations to a 
'random constant magnetic field transformation. The cascade of energy in the hydro­
magnetic case is not strictly Iocal in the wave number domain. A large scale rms 
magnetic field presents the possibility of Alfvén wave propagation along it and thus 
provides a significant dynamica! coupling between magnetic fields of large and small 
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488 S.NAOARAJAN 

seales. Our steady state considerations provide us with the necessary information 
about the local internal relaxation features and their relative magnitudes, so much so 
we plan to extend our earlier study of evolution of weak magnetic fields - to a stage 
in which the spectrum of the magnetic field bas evolved sufficiently to a point of 
dynamical feedback to the velocity field and consequently a statistica! steady-state. 

And since we are basing our calculations on a well-considered dynamical theory . 
of turbulence, we will be able to throw some light on the nature of the transfer of 
energy in the magnetic spectrum: in particular, without using either oversimplifica­
tions or idealisations of the eharaeterîstic length and time scales of the magnetie field 
and turbulence as have been done by Moffatt (1970), Parker (1969), Fitremann and 
Frisch ( 1969)or Vainshtein (1970). 

2. The Dynamical Model 

We start with a steady turbulence with an extended inertial range. The choice of the 
kinematic parameters and the wave number range is made suitably, so that we can 
talk of an extended equilibrium range, without worrying a bout the sourees of input of 
energy into the system from the geometrie range. Further, there exists a sufficiently 
notiCeable dissipative tail to the spectrum at the high wave number end. The form of 
the spectrum and parameters are ehosen so ·as to be compatible with the asymptotic 
requirements of the direct interaction approximation of Kraichnan (1958, 1959, 1965, 
1966), with suitable modifications to reproduce Kolmogorov sealing. 

A disturbance which is localized in the wave number range ofthe magnetie spectrum 
is introduced at time t =0. 

Following the notations of our earlier papers (Kraichnan, 1958; Kraichnan and 
Nagarajan, 1967; Nagarajan, 1971), we can write the equation for the secular evolu­
tion ofthe two spectrafortimes > 0 as 

110 

(a~+ 2vk
2

) Ev (k; T) 

IJ 2;q dp dq [{k 2akpqEV (p; T) Ev (q; T) or:;r 

- p2bkpqEv (k; T) Ev (q; T) O~~v} 
+ { k2 akpqEM (p; T) EM ( q; T) or::M 
-p2Ck~v(k;T)EM(q;T)O_!!:v}] · (1) 

(a~+ 2Ä. k
2
)EM(k; T) 

=IJ 2;q dp dq [k2dk~M (p; T) Ev (q; 'Î') o::v 
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- p2hkpqEM(k; T) Ev(q; T) O![M 
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The speetral functions Ev (k; T) and EM (k; T) are connected to the velocity and 
magnetic fieldsas follows: 

Wv(k; t, t') (2n)- 3 J d3 (x- y) (U(x; t)·U(y; t')) eik·(x-y) 

WM (k; t, t') = (2n:r 3 J d3 (x- y) (W(x; t)·W(y; t')) eik·(x-y) 
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where U(x, t) is the fiuid velocity and (4nJ-~Q) 1 i2 W(x, t) is the magnetic induction 
field, (! is the fiuid density, J.l the magnetic susceptibility of the fluid, v and À are the 
kinematic ·viscosity and magnetic diffusivity respectively. 
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We assume the turbulence to be homogeneons and isotropie 

~ ( t + t') tWv (k; t, t') = (4ttk2
)-

1 Ev k; T Rv(k; t- t') . 

. ( t + t') tWM(k; t, t') = (4ttk2
)-

1 EM k; -2- RM(k; t- t') 
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where wv { } and WM { } are energy functions and Rv { } and RM { } are modal 
correlation functions. 

The (J'~s which appear in EquaÜons (l) and (2) are the effective memory times ofthe 
interaction between the three respective wave numbers. They are given by 

"" 
~(T) = f Gf(T- s) R~(T + s) R~fT +s) ds 

-ao 
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(where a, b, c= V or M) and Gv (k; T) and GM (k; T) are the averaged response 
functions of the velocity and magnetic fields for the given wave number respectively. 

In a general turbulent system in which a weak macroscopie (i.e. geometrie range) 
disturbance in the magnetic spectrum is introducedat time t=O, the 6'-s will be very 
complicated functions of the correlation and response features of the turbulence 

-os 

-06 

~ 

w -o7 

-oa 

-09 

-10 

-n 

-s 
T = 1.0 X10 

~= 0.01 

6 11 16 

(LOG./2 K+1) 

Fig.3. 

"\ 
\ 

"\ 
\ 

\ 
\ 

\ 

21 

\ 
\ 

\ 
\ 

\ 

26 

and initia) magnetic field. But if we assume that the weak magnetic excitation is 
sufficiently localized in the inertial range, the secular time dependenee ofthe O'-s can 
be ig~ored. This point has been discussed in detail by Kraichnan (1959) in the 
hydrodynamic context. In the magnetic situation also much of the argument goes 
through unaltered. 
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We choose a form for the correlation and relaxation functions and the O'-s from 

Nagarajan,1971. 

R"(k; t) = exp{- !n(Ca(k) t)2
} 

G0 (k; T) = exp{- !n('la(k) t)2
} 
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Our elaborate study of the various extreme considerations of Galilean-invariance 
and Kolmogorov's arguments on the one hand and Galilean non-invariant Eulerian 
solutions on the other in the steady-state case {Nagarajan, 1971) convinces us that 
in so far as energy transfer information is concerned, the details of the internat corre-
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lation times are not very important. Using the results of this study, we evolve a 
quasi-Lagrangian scheme. We take the velocity correlations and relaxations to be 
Kolmogorovian i.e. decided by the Jocal parameters of the position in the wave 
number spectrum. The magnetic terms are modulated by energy range parameters as 
in the unmodified direct interaction approximation of Kraichnan (1959, 1965). With 
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these preliminaries one can write 

'v(k)=[Ev(k; T)er 12 

l'fv(k) = [{(v(kW + (vk2)2]lf2 

,".(k) = (v 0 k) 

'1 ... (k) = [{Çm(kW + p. e)2J1'2. 

21 26 
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Here o0 is the rms velocity in the energy range. (It will be apparent that this energy­
range mixing was the reasou why we chose the initial magnetic excitation to be lo­
calizeá in the inertial range. But for that the results ofthe hydrodynamic case or even 
the steady-state study will be inapplicable.) We choose a convenient unit of wave 
numbers and time scales such that o0 =I. 
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3. Evolution Study 
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Now that all the quantities in Equations (I) and (2) are completely defined, we inte­
grate them forward in time. In time, they have the character of a set of non-linear 
coupled differential equations. But for each time value there is an integral to be per-
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formed over the contributions from various regions of wave number space. We dis­
cretise the wave number region into twenty-five logarithmic half-oetave intervals. 

The details of this procedure are much the same as in an earlier paper (Nagarajan, 
1971). We perform the time integration using a fourth-order variabie-step Runge­
Kutta Scheme. The details of the numerical scheme are given elsewhere (Nagarajan, 
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1970). We shall bere consider only the results and their astrophysical implications. 
Figure I shows the initial speetral disposition in one of the runs. The dotted line 

gives the velocity spectrum, and the continuous line, the magnetic disturbance. 
tfro is the value of the initia) ratio of the magnetic spectrum to the velocity spectrum 
at nonzero points, which is a parameter of the run. Though we are going to display 
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here only initial disturbances which have the same speetral shape as the velocity and 
are localised in wave number space in a delta-function way, we had performed a 
number of runs with a variety of initial shapes ak" exp( -bkm) and initial ratio 1/10 • 

There was no pathological feature arising from the initial choice either numerically 
or otherwise. 
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Figures 2 and 3 give the spectra at characteristic times t = 1.0 x w- 5 and 
t=l.Ox 10- 4

• These time scales are so normalised that they are unity for the Iargest 
wave numbers in our system. The noteworthy feature of the curves is that the energy 
bas now moved both to higherand lower wave numbers. The rate of transfer to lower 
wave numbers is essentially smaller than the rate of transfer to higher wave numbers, 
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because the characteristic times of transfer are of the order of the internal times of the 
given scale. 

Figures 4 and 5 give the spectra at t=S.Ox 10- 4 and l.Ox 10- 3 • Aiready, within a 
time of the order of the local eddy-circulation time in the largest wave numbers, the 
magnetic spectrum has wrapped up sufficiently to almost equality with the velocity 
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spectrum at the highest wave number. Figure 5 to some extent and Figure 6, in a 
more profound way show that the magnetic spectrum bas overshot significantly above 
the velocity at lowest scales. This arises because of two reasons: (1) The choice of 
kinematic parameters v and ) .. In this run À is very much smaller, so much so the 
magnetic spectrum has a longer dissipative tail. (2) The second reason for the over-
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shooting is the fact that the form of the spectrum is still non-equilibrium so much so 
the approach to local equipartition is in an overstabie way. 

Figure 7 and more prominently Figure 8 show how the feature of equipartition is 
transferred to smaller wave numbers, much in the same way as argued by Biermann 
and Schlüter (1951). By now the evolution has reached a stage in which any peculiar 
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dependenee on choice of initia! form has been completely lost. Figures 9 and 10, 
which are for the samerun fortimes t=O.l and 0.2~ show that by now the evolution 
lias reached a stage when one can safely conclude about ultimate features. The nu­
merical integration times involved at this stage are so large that one stops the éal­
culations because no new features are likely to evolve from further evolution study. 

Figures 11, 12 and 13 feature the final and initia! spectrafora few other runs which 
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start different initial ratios and kinematic parameters. These are meant for the purist 
to show that pathological features are not included in the choice of initial assumptions. 

In all these runs, at a fairly advanced evolution, the speetral shape reaches an 
approximate form A (t) k 4 exp {- B (t) k2

}. Thereafter the integral features of the 
spectrum evolve more or less without change of form. 
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4. Conclusions 

Apart from the fact that this evolution study fills many a gap in our earlier study, this 
proves more or less conclusively that there is no reason to expect, in evolving non­
equilibrium hydromagnetic turbulence, that the transfer will take place only to larger 
wave numbers. In fact, the transfer to smaller wave numbers is significant and this 
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can providejust the missing link in the turbulent dynamo problem. The regeneration of 
larger magnetic loops through a co-operative interaction of the velocity fluctuations 
of all scales and magnetic fluctuations of smaller scales is not only feasible but very 
significant. In our study, we findthat this is facilitated by two dynamica( requirements. 
Firstly, the non-equilibrium feature of the magnetic spectrum: the ultimate steady-

T: 0.2 
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0
= 0.001 
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Fig.l2. 

state magnetic spectrum will be in equipartition with the velocity in all scales other 
than thè ones where either the inputs of energy from external sourees of the train of 
energy through molecular dissipation depresses or raises either of them. Any other 
form of the speetral ratio is not an invariant form which will be left invariant by the 
non-linear interaction. The non-linear interaction will change the ratio to get into the 
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equilibrium form. Secondly, the Galilean non-invariance: The fact that a magnetic 
field cannot be gauged out makes a profound modification in the internal dynamics. 
Here probably one can stretch our comparison a bit with other recent studies. Krause 
(1968), Rädler (1968), Steenbeek et al. (1966), Steenbeek and Krause (1966, 1967), 
Krause and Rädler (1971) and Moffatt (1970) have considered the oc-effect ofregenera-
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tion in great detail. A certain aspect of the oc-effect is included in our Galilean non­
invarianee picture, because a larger magnetic loop, when it is impressed on a system of 
smaller magnetic and velocity fluctuations, introduces a condition of reflectional non­
invariance. Beyond this point one cannot carry the ana1ogies because their inferences 
about the values of the oc-effect are based on equilibrium transfer theory, which as 
our study has clearly shown, are inapplicable. 
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Parker (1969) and Vainshtein (1970) have asked much the same question, as we 
have, but sirree they had to invoke some extreme idealisations to get their results, the 
physical validity oftheir conclusions is in doubt. Qualitatively, our results corroborate 
theirs. 

Robinson and Rusbridge (1971 ), in a study of Plasma turbulence in the Zeta plasmas, 
have found that plasma turbulence seems to resembie ftuid turbulence except that the 
turbulent elements are enlarged along the meao magnetic field to form rolls and 
suggest that an appropriate comparison would have to explain the existence of 
significant transfer to large scales from small-scales, as against isotopic hydrodynamic 
theory, which will not permit this. One hopes that it wil! not be too presumptuous to 
believe that the effect, they findis contained in our procedure. Further the importance 
of this to heat transfer in the preserree of magnetic turbulence is also very tempting. 
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Discussion 

Nakagawa: What is your assumption concerning the initia! velocity and magnetic field spectra? 
Nagarajan: The initia! velocity is in quasi-equilibrium with an extended inertial range. The magnetic 

spectrum is localized in the middle of the inertial range in all but one of the runs, with a level of 
excitation very much lower than the velocity. 

Weiss: After equipartition has been achieved for intermediate wave numbers, is your steady 
energy spectrum maintained over periods comparable with the resistive decay time for the smallest 
wave numbers? 

Nagarajan: Yes. We follow the time evolution until the initia! form dependenee is wasbed out. 
Essentially this turns out to be larger than the resisti ve time scale of the initia! specimen. But after 
that time, the further buildup of the spectrum - even towards smaller wave numbers - takes energy 
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from the velocity spectrum. This time-invariant self-preserving form with the tail in steady-state with 
the velocity, keeps growing in over-all energy and extent. This may look like a violation of simpte 
physical and statistica! requirernents. But it is not. 

OJwling: In many ways the assumptions made (nature of background fields, motions, statistica! 
assumptions) appear to be as important in the theory of magnetohydrodynamic tucbulence as the 
detailed theory. 

Nagarajan: True: statistical description does not in any sense minimize the number of necessary 
assumptions. But the statistical theory bas an advantage in that one requires only on-the-average 
features. So many of the phasing requirements are weakened. But the main feature of this investigation 
bas been to show that the back-transfer in wave-ntimber spectrum is significant, which can have truly 
deel> conceptual consequences. 
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STELLINGEN 

1. Weak turbulence ordering used by Sagdeev and Galeev (and 

later by a number of authors) based on the accupation 

number representation for a steady set of interacting waves 

is invalid, because it does not distinguish in a proper 

manner between coherent waves (space-time coherence in the 

infinite domain)&fluctuations (localised random wave packets 

with finite life-times). 

Sagdeev R.Z. and Galeev A.A., Non-linear Plasma 

Theory (W.A.Benjamin Inc., 1969) 

2. The energy balance equations for the speetral transport in 

plasma turbulent reactors derived by Tsytovich and further 

developed by ter Haar are inappropriate for the case of 

plasma turbulence, because of the use of a Detailed Balance 

Condition. 

3ee Tsytovich V.N. and Kaplan S.A., Plasma Astro­

physics (i'ergamon Pre ss 1973) and Norman C.A. and 

ter HaarD., Plasma Turbulent Heactors; An Astro-

physical faradigm, Physics Reports no:6 1975. 

). The use of the term, 'non-linear dispersion relation', to 

define the propagation and decay of fluctuations in a 

turbulent medium is misleading. It is further unjustified 

except in the case of complete isotropy and statistical 



stationarity in time, even in a restrioted sense. 

Sagdeev and 6aleev, loc. cit.,.Kadomtsev B.B., 

Plasma Turbulenoe Pergamon Press 1 1965. see chapters 

3 and 5 of the summary in this dissertation 

4. rduch of what has been derived for the case of wave propaga­

tion in a random medium cannot be applied to a turbulent 

medium, even under limi ting condi tions of se para ti on of 

scales of turbulence, wave lengths of the waves and the 

depth of propagation in the medium. The interplay of various 

transfer phenomena to the fluctuating components of the wave 

from the medium will make the 'Freezing Approximation' of 

· turbulence invalid, after the medium has been irradicated by 

the wave for a while. 

See a review of Wave Propagation in Random Media by 

U.Frisch in Probabiliatic Methode in Applied Mathe­

matica, ed. by A.J. Bharucha-Reid Academie Press, (1968) 

5. Despita over abundence in scientific activity and output, 

there is a lack of fundamental breakthroughs in science. 

This is an inescapable outcome of the economie attractions 

of the golden age of patronage of science, by a society 

which was frightened by it. 

6. It seems fashionable these days to play down the intellectual 

aapacts of soientific pursuite (Perhaps the dropping of the 

term natural philosophy to refer to scienoe is an outoome 



from this). Few scientists would call themselves intellectuals 

evenintheir own interpretation of the word 'intellectual'. 

Th is is a pi ty. 

1. Much of what goes around in the literature in the name of 

"Non-linear Intuition" is the result of a carefully covered 

random linear analysis (This dissertation not completely 

ex cl uded! ) • 

See for e.g., W.Heisenberg in "Topics in Non-linear 

i'hysics" ed. by Norman Zabusky, (Springer 1968) 

8. Turbulence is a phenomenon which is appealed to in order to 

shroud all and sundry difficulties of measurements, obser­

vation, comprehension and interpretation of phenomena at large. 

9. Vleak turbulence is nat necessarily easier to deal with than 

streng turbulence, 

10. Modern operational approaches to scientific education convert 

scientists into walking "Encyclopaedias of Recipes" rather 

than perceptive creative thinkers. 

11. A corollary of proposition 10;- A global neglect of teaching 

of chronological development and proper perspective of the 

history of science to serieus students in science is raspon­

sibie for the romantic Idolatry of concepts and people in 

science. 



12. A true'scientist is an Iconoclast. 

13. To be totally consistent, a theory must ~e empty. ("To be 

completely consistent, a man must be a·saint or a crook" 

v. Goethe ). 


