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SUMMARY

.1, Introduction

VThis dissertation concerns itself with the nature of
turbulence in a medium with large electrical conductivity. By and
large, the matter in the universe, except in peculiar conditions
like on the surface of the earth, is in an ionised state and as
we see and interprei it, the existence of large scale magnetic
fieids and their impact on various dynamical phenomena in cosmic
scales are a verifiedkeXperimental fact, The question of the
origin of these magnetic fields has been a matter for considerable
scientific speculaticn and curicsity, ever since a systematic
analysis of the aétrophysical phenomena was started. {( Cf. the

review articles by L. Mestel' and E.N. Parker-, )

Representing the various trends in cosmology and astro-
physics, there have been two distincily different approaches to
the explanation of these fielﬁs, from the wery start. One view
which is closely related’to the Big Bang Theory, tries to produce
thé magnetic field - almost simultaneously with the Big Bang and
does not make any attempts to analyse its origin. This leaves the
problem of the ini{ial magnetic field to be explained by the
cosmologist. Though as a point of view it is not disputable, it

is aesthetically not appealing, since it tries to evade the



question rather than a'r‘isrwer‘ i};.y This is generally referired to as

"the Fossil Theory",

' An”a}iemia‘.;tg":viévv; iﬁsfbng éf "Dynamo Acfion". ‘Aliver'y :éénefél
' définition of &yha;x;é acﬁ‘ion‘ ié" the transfo?ma;tioh of kinefié energy
of mass mqtion into ’eie‘ctr‘yqdy’namic and cpnsequehtly into magnetic
‘e‘nekrgy. Thé equations ‘of motion for the fluid and the magnetic
field ‘in 8 hié@lsr ic'oridu’cting x;aedl:i‘.um', undsr thé simp‘lyif,yix"xg assump=

tion of incompressibility’ can be written

2B tuen = -Fp sV UHTXB) L+ E

v

v
4 T

rUER = bEY +A VR

- ,,.—-,, o] SR V-b=o '

where ’% (5,}-) ’i‘s the::;;ca‘l hydrodynamical vel,ocitj of the

fluid and \) ('4.70&_’)},’” ~ is the local magnetic inductipn

. A~ = magnetic permeability, % = kinematic viscosity and
A = pagnetic diffusivity of the medium, F (x,t ) refers to all

other types of body force‘ which ai'e responsible for the velocity

field.

The questi§n boils dbwn' i;o constructing a pgttern of motions
which can suppért a pattern of agne‘t'ic fields. It is a matter of
ultimate consvisfency, to feed back the generated fields into the
equations for balance Vof momentum and check that at tﬁe steady~

state, the Loreniz forcé, balances the sum of all other forces,.



In a celebrated theoremB, Cowling proved the impossibility
of having a stationary axisymmetiric homogeneous dynamoc, supported
by fluid motions. This had a considerable influence on thinking

4

on Stellar Dgnamos, ever since., Bullard and Gellmann', Herzen-

5 and Backus6 tried to look at this problem by relaxing the

berg
conditions of stationarity, homogeneity and axial symmetry, ocne

at a time.

But in all these yuestions, the non-linear dynamical
eyuations for the velocity and magnetic field were in spirit
treated in a quasi-linear way. Further, the basic "seed" field,
with which the system starts in a non-stiationary situation was
never replenished and when its sources were switched off, the
whole field structure which depended on it as an initial value,
died down too. This i5 an inherent difficulty, with all approa-
ches in which the so-called Dynamo equation for the magnetic
field is treated as an initial value problem with a given
velocity field which is independent of the magnetic field.

Because of the linearity of this equation, the formal solution to
this has the structure in time of a CGreen's operator subject to
the boundary values and the veloecity field., Attempts to get rid of
this difficulty #ill have to borrow on some non-linear aspects of
the problem., { This seems to be a necessary reguirement, irrespec-
tive of the level of looking at this guestion: whether in a
strictly stationary state or a statistically-steady state. We will

have an cccasion to come back to this, when we discuss our results. )



The quéstioh‘of'the‘amplification of the "seced" field,
usiné the featurés‘of‘fhe‘turbulence in the medium was first:
¢$ﬁaidered by‘Batchélbf7 and Biermann and Schlﬁters. Their”anaa‘r
lySis depéﬁdéd cdnsidergbly on the accepted understandiﬁg,of~the’

’ haturekéf‘turbﬁleﬁeefin hydrodynamics, based on the ideaé of /
‘Kblmogérov‘at that‘time. In Section 2 we will review the ideas ofVV

Kolmogorov and the developments by Batchelor and Biermann and

Schlliter, in Section 3.

This is where the analysis reported in this dissertation
started, We took the point of view that, since the basic feed back
to the seed field from hydrédynamical sources will have to depend
on non-linear anélysis, thus it is necessary to consider a dyna-
‘“Eic&l*apprdach to the evolution of turbulence in-an-electrically
cénducting medium, in the'presence of electrical currents. We |
started our analysis using the Direct Interaction Approximation

9

of Kréichnan , because this was (and still is) the only theory
which is adequaté to fit the needs of the analysis. In Section 4,
we will review some of the salient points of this theory, Since

a number of reviewé exist at the moment (10, 11, 12 ) we will
restrict our analysis of the theory considerably to points, which
concern the extension to hydromagnetics of these ideas. In Section
5 we will review some of the salient alterations, in the hydro-
magnetic context and our method of attack. Section 6 will review
some of the results of the analysis, with a special stress on
limitations, In Section 7 we will try to bring the situation in

the subject upto date, with respect to contemporary literature

10



and attempt an evaluation of the prospects for the future in

this field.

2. KXolmogorov's Hypotheses.

To develop the ideas of Kolmogorov (13a,b) we will recast

the hydrodynamic equations, in a Fourier-transformed representa-

tion as

(,;’: +» &L)u‘(&,}-) = M,\R) ‘ﬂ;)(f)u»f,jj + f&)
k=pry

where

Mol &) = - <[&, R+ & p,,,,(g)]

where

Pie) = (B~ Hh)

2.1
In the case of homogeneous isotrepic turbulence, since all
mean motions vanish, the local pressure fluctuations are all
dynamically determined by the Reynolds stresses and sco these are
eliminated, in writing 2 in terms of the velocity fluctuations,

This is standard practice in turbulence theory { See for e.g.

Leslie12 page 4 )

This model representation enables one to visualise the
the effect of the neon-linear term in the equation for the mode
with wave‘number k in terms of dynamical interaction between
modes with numbers p and g such that k = p + g. Thus energy is

being transferred from mode to mode because of this interaction.

11



If in equation 2.1, we put P=p and 6;_(‘5.) =0 V and calcu-
B ‘~1ated""‘,‘¥‘ ' , *7 :
RS TR RN U =IM (&) T WRKEUG)
’we’cég;easily‘see using fhe p#operties of “ﬂtgg.(ii) wifh,
N respe¢t to symmetry that the right hand side vanishes., This is
thélségcalled "cbnservative property of the nbn-linear inters

action", which is a prime mover in turbulence theory. Thus the

non-linear term neither creates nor destroys energy.

( This, one could have checked directly from the original
equations {1.1) as well ). The non-linear term only shuffles
energy around from mode to mode. The interaction between modes is
persistent in time. We see here itself a divergence from tradi-’

tional concepts of collisions in statistical mechanics,

Buf if one can grade the modes according to spatial size
and see whether\there exists a region of 'mode space' in which the
energy input from macroscopic boundéry dependent sources and the
‘viscous drain into microscopic ﬁotion of the fluid can be neglec—
ted, it may be useful. This region of modes would be completiely
dynamically determined by the non~linear shuffling between modes.
One can make this requirement rigorous by asserting that for this
region the net input of energy from either macroscopic sources or
from modes from other regioms exactly balances the net output of
energy to other regions of’mode space and by viscous dissipation.
Such a situation can produce a state of statistical equilibrium

~amongst the modes,

12



Por this concept to be really useful, one will have to see
what it means in terms of the observational features of turbulence
in the first place. The observatiional part can best be summarised
in a rhyme due to L.F.Richardson:

"Big whorls have 1ittle whorls, which feed on their velocity;

Little whorls have smaller whorls, and so on unto viscosity."

If one looks at a turbulent fluid, suddenly a whirl makes
its appearance and as one follows its path through the fluid, it
seems to get smaller and finally disappear. This is gqualitatively
what one calls an "Eddy" in turbulence, It is a localised distur-
bance in the fluid, which propagafes through the fluid and in so
doing ultimately disappears. It is important to realise that
localised wave packets of disturbances are quite different in
character from the ordered pattern of wave motions, which are

typified by the Fourier modes in equation (2.1).

Traditional stability analysis of hydrodynamical flows
and the theoretical insight which one obtains into the nature of
the instability have all been carried cut in the normal mode
representation for the particular geometry of flows considered.
The general underlying moral thuat one learns from this can be

summarised thus:

When the basic primary flow becomes unstable for large
Reynolds number typified by the scale of the flow and its velocity,

superposed on this flow grow a secondary pattern of motions

13



typified Ey,a size of the order of the most unstable disturbance
‘én the’brimary floi, Conceivably, this secondary motion*grows to
' a finite iﬁfensity, whicﬁ‘depends on thé amount of "instability
Aenergy" available,from the primary flow. If this energy is
’sufficien‘tly large, so that the typical Reynolds number for this
‘secbndary moﬁion ig large énough this pattern of motions also -
becomes ﬁnstab}e.‘cn this growg a tertiary pattern of motions and
so on. Thus in a fully turbulent fluid, there exista compiex
superposition of motions of various scales linked to a previous
{or a 1arger) écalevfor energy input and to a later (or a smaller)
scale‘for energy drain, Further, in the limit of homogenecus
isotropici£Urbglence, each of these secondary and higher order
patiern of motions will have to/ﬁi;laced by a continuous range of

wave numbers, rather than a discrete set.

This dynamical information which one pieces together from
stability analysis cannot still be effectively used to decide what

happened to a whirl or an eddy in a straight forward fashien,

Kolmogorov's analysis is a subtle fusing together of these
stability‘resﬁlts with the general considerations of mode space,
which we put forward earlier in this section. Since a clear review
.of Kolmogorov's arguments seems necessary for the hydromagnetic

situation, we shall here gquote part of his arguments in full::

The first observation of Kolmogorov hinges on the fact that

5

the concept of isotropy as introduced by Taylcr1 and later deve-

14



loped by others cannot be used to separate various regions of
mode space, as sequentizlly connected { with a constant stationary
energy flow from region to region)., To do this one will have to
videntify eddies or vortices, which are localised quantities in co-

ordinate space, with modes which are collective coordinates.

To make this connection even closer, Kolmogorov argues that
to remove the systematic larger scale motion away, when one consi-
ders motion of a ¢ertain scale, one shouid restrict oneself to the
differential velocity between two neighbouring points separated
by a distance characteristic of the came scale. This leads to the
concept of Local Isotropy: that the probability distribution of
these differential velocities is invariant wiht respect to trans-
lation, rotation and reflection of the system of coordinates.

To quote Kolmogorov:

" We shall denote by
ULP) = U (XX, Xur) =123

the components of velocity at the moment t, at the point with

cartesian coordinates X, 2 Xy 4 X ....Introduce in the

3 e

four dimensional space ( X, y Xy s Rgst ) new coordinates
— - tey — [ 3] 17
Ya = Xq X UL PV (E-€) ;
K = £ - EO)
W have

8
P = (X A K, v

¥



is a certain fixed point in the four dimensional domain G....

‘I‘hé ?elocity» components in the coordinates are

w (P) = U (P — ULP™)

. Suppose for some fixed values of 'L{Q ¢ F“’ ) tha pazntsv', ‘

P(k)k = 1,2,..0.0....0 having in the coordinate system (1), the
‘ (R )

- coordinates - y.‘ rand & y are situated in the domain .
G, Then we may define a 3n-dimensional distribution law of

probabilities ¥y, for the quantities

, & {
w%{ > = w‘( P t)) 3 =h1,3 5 g‘“f""".“

where ’u,d\(P“’) = u:" are given. Generally speaking, the dis-

tribution law Y—',“ depends on the parameters
o2 ©) o) § Y k>
x,\ > \' p) 'ue\ 3 Ld‘* 3 "8

Definition 1. The turbulence is called locally homogeneous in the
domain G, if for every fixed n, (‘-j(h and s(k), the distribution
law ¥,  is independent of x(” , v and 'l{;” , as
long as the points p(k) are all situated in G.

Definition 2. The turbulence is called locally isotropic in the
domain G, if it is homogeneous and if, besides, the distribution
laws mentioned in definition 1, are invariant with respect to

rotations and reflections of the original system.. of coordinate

axes ( x,, X,, Xy Yo

In comparison with the notion of isotropic turbulence,

introduced by Taylor, this definition of loecally isotropic

218



turbulence is narrower in the sense that one demands the inde-
pendence of the distribution law Y:‘ fromt(o), i.e. steadiness
in timé, and is‘wider.in the sense that reatrictibns are imposed .
only on the distribution laws of differences of velocities and not

of the velocities themselves."

At fhis‘point, in his paper, Kolmogorov digresses fto
offer some general considerations, in favour of the hypothesis,
in a footnote:

" For very large R ( Reynolds Number ) the turbulent flow
may be thought of in the following way: on the averaged flow
characterised by the mathematical expectations il, are super-
posed the pulsations of igg first order consisting of disorderlyv
diéplacements of separaterfluid volumes, one with respect to
another of diameters of the order of magnitude {élz:ff {where

{( is the Prandtl's mixing length ); the order of magnitude
of these relati&e velocities, we denote by ﬁ#" . The pulsations
of the first order are for very large R, in their turn unsteady
and on themr are superposed the pulsations of the second order
with mixing length .fxz:<’lz(“ and relative velocities
such a process of successive refinement of turbulent pulsations
may be carried through, until for some pulsations of sufficiently
iarge order n, the Reynolds number

n;
Q(Y\) — (E,( I}(M/}/})
becomes so small that the effect of viscosity on the pulsations

of the order n finally prevents the formations of pulsations of

order n + 1,

17



" Frﬁm the energetic point of view, it is natural to 1mag1ne,
the process of turbulent mixing in the following way: the pulsa- |
§ t1ons of" the first order absorb the energy of the motzon and pass
’ 1t over su008551ve11 to pulsations of higher orders. The energy

of the f:nest pulsations is dlspersed in the ~energy of heat due

o v1scoszty.

'ik'"‘in’virtae of the chaotic mechanism of the tranélation éf '
\motxon from the pulsations of the lower orders to the pulsations
"~ of h;gher orders, 1t is natural tc assume that in the domalns of -
the Space, whoae dimensions are small compared with 'C " , the
jflne;pulsatzens of the higher orders are subjected to approxi-
mately space-isotropic statistical regime( Within small time
linterﬁélé,fit is naturél“%o consider this regime approximately

steady even when the flow on the whole is not steady.

Since for very large R, the differences
. (-5
W e = UP)— U P

of'éhé vélocity components in neighbouring points P and P(o)v
of the four-dimensional space ( X,3X5, X3 3 b ) are
déte;mined nearly gxclusively by pulsations of higher orders, the
‘scheme presented leads us to the hypothesis of local isotropy in

small domains~G, in the sense of definitions 1 and 2 ,..."

‘Further arguments of Kolmogorov go through easily. These

‘refer to the pulsatlons of order J'L. where { ’7701‘ Y { where

18



‘e(“’ is the scale of the finest pulsations, whose energy is

»
directly dispersed into heat by viscosity.

We quoted in full some of the arguments of Kolmogorov,
since we found that they offer considerable depth of vision and
insight, which were missed by many of the readers for a number of
years. Further, the concept of invariance with respect to random
Galilian transfermations, which one tries to impose on the Eulerian
solutions in turbulence theory - has its origin in these arguments.
The concept of independent evolution of intermediate pulsations,
free of viscosity on the one hand and free of the larger scale
{ or lower order ) pulsations is now translated in terms of diffe-
rences of velocities hetween iwo neighbouring space-time peoints
in a domain, which is embedded in larger domains, which are moving
randomly and which, in its own turn contains domains which are em-
bedded in it, in & similar fashion. Further, there is an under-
lying hypothesis that ‘the intermediate pulsations, effectively
transmit the energy they receive from larger pulsations, down to
the smaller ones, without loss or gain, so that the scheme of
energy~transfer is in a sense of stationary energy flow-across

the region of " Equivalent mode space ",

We raise this latter point, because this is an important
feature, which plays a vital role in the generalisation to
hydromagnetics of Kolmogorov's ideas. Before one is able to make
use of it, it is necessary that a steady stationary pattern of

energy transfer amongst the modes be set up. The net input of



energy from macroscoplc ( or lf ) pulsations must baiance the
net out flow of energy from the f;nest pulsatlons ( or 4{ Y

into viscous 1¢sses.,“

3, Early Developments In Hydromagnetic: Turbulence.

The fxrst questlon to be consxdered in this field was
whether a weak random ex01tation in the magnetlc speotrum of a
certain scale w111 grow or decay when left to interact with a
steady‘homogeneous and isotropic turbﬁlent velocity field

( ‘Batchelor, Biermann'

and Schliter® ); Even to transcribe lite-
rally some of the arguments of Kdimogdrgv - about the nature of
equilibrium between modes in a neighboufhéod'of mode space is
rather difficult in this case. Firstly, the magnetic mode space
is unexgigéd further one has to dlst1ngulsh between flow_of
energy within the magnetic mode Space and the flow of energy bet-
ween the magnetic and velocity mode spaces, In the hyﬁrodynaﬁic
case, the concéét of statistical independénée of modes from diffe-
‘rent and distant regions of mode space was substantlated by
Kolmogorov, as seen in the previous section, by two reguirements,
First there were regions of mode space, where there was a statis-
tical equilibrium between net input of energy from larger scales
of motions and net output of energy to smaller scales. Secondly,
a steady larger scale motion can be seen oaly to bodily convect
smaller scales of motion, without distorting them. This idea was
made rigorous with arguments of Local Isotropy and used to draw

conclusions about independence of distant regions of mode space

or the Iocalness of Transfer in mode space.

20



Both of these arguments are inapplicable to the question
posed above, In the magnetic mode space, in the ipitial condition
specified above, equilibrium has not been set up. For translating
the arguments about Local Isotropy to hydromagnetics, one must be
able to transfer attention to differential magnetic intensities,
rather than absolute magnetic intensities. This feature in the
case of fluid velocity, naturally led to a local Galilean transfer-

()
mation for a certain order of pulsations f: such that the
effect of the lower order pulsations can be subtracted out by a
choice of local coordinates. But such a choice for the magnetic
case is not possible., The simple physical reasoning for this

failure lies in the possibility of Alf%en mode coupling between

different scales,

Frcm both these considerations, it seems clear that to
decide the fate of & random magnetic excitation in a turbulent
medium further‘dynamical anzalysis is reguired. We carried out
such an analysis, Our dynamical study was based on a model
representation for turbulence, which will be described in the

next section.

4, The Direct - Interaction Approximation.

Kraichnan9 expounded his closure procedure for the problem
of homogeneous isctropic fully developed turbulence, in two papers,
in 1958 and 1959. Though the main basic schematics of the procedure

have remained invariant, the significance and interpretations of

21



the various steys'héve changed over the years. Further, as we
mentioﬁéd,eaiiﬁer,‘ﬁhéré~are'quite a number of critical reviews
'of the theory, both with respect to foundations and with respect -

to validity in the .context of turbulence ( 11, 12, 16, 17, 18 )

' We will try to put forward a physically motivated "deri-
?étion" of tﬁe Direct-Interaction ﬁppraximétion. We will not
) attempiftb justify(the proceduré, but we wiil try fto indicate hoyy
one_tries to bridgevthe gaps between analytical generalities and

" practical reasonableness.

To illuétrate'the method, we will start with a model
equation, which has a structure very similar to the Fourier-mode
representation of Navier-Stokes equations, Treatements of this type

of the Direct-Interaction Procedure abound in literature (10,11,

(5—‘;*?".) A, = ?; M, A R+ R 4.1
‘ Here A‘“ are the dynamical modes, \‘.‘t is a random source

,~ter@,/the statistical properties of which are given completely.
in practice, the various turbulent modes draw their energy from
macroscopic boundary dependent sources, For a viscous fluid, there
is a loss of energy from the dynamical modes and this takes away

" the energ& from the turbulent modes into the thermal energy of the
fluid. In the idealisation of turbulence, through the symmetry
conditions of isotropy and homogeneity we have eliminated the
input'af energy. Ve Are retaining the viscosity still; since we

are interested in the region of modes, where viscosity also plays

22



an important role. Thus from energetic considerations, we include
here a random source term. Though, in general the nature of the
statistical equilibrium among the modes will be a function of
these forces, we will {ry to arrange matters such that their
dependence is global, rather than in detail.There is yet another
reason to deal with these ‘i. . This has to do with the arguments

of dynamical damping among the modes We will talk of this later.,

We are interested in constructing all possible information
about the statistical structure of the AL_L& s, when they are
in a statistically-sieady state. The number of modes is consi-
dered large, so that the dynamical effect of the coupling with
other modes to a given mode is appreciable. The coupling matrix
“A‘JK is a known algebraic function of its indices. Let us look
at a particular triad (a,b,c)} of the modes, which are such that
the coupling coefficients Mabe N Mbq‘_ , Mn\s are not all

trivially zero. We rewrite the equation of motion of the a,b,c

modes as

(d*'v&A—MQMAA‘*"ZM AA‘*‘F
3 XEhe 4,2

(T ) Ay = Mo Alag +§Z_M,,MA,AK+F5 s

2 ﬁ
"—+V)A Meas Ao by +32“¥a oAxr B 4.4

At a certain time 6; y Wwe switch off the interaction bet-
ween the three specific modes a, b and c. The three modes are still

interacting with an infinity of modes and indirectly through



these infinity, with others. Since the number of such contributions
to the RHS of any of these equations is rather lafge, the efféct
- of the switch-off of one'triad interaction does noﬁ change matters
very much. In other words, around the state of equxllbrlum, ‘
attained through the non-linear 1nteracticn of an infinity of °
modes the dynamlcal change in the behaviour of any specific mode‘

due to 1nteractzon with a Apeczflc set of twq;mgﬁgﬁ is small.

This is what Kralchnan calls the Weak Dependence Principle. Thls
is an éxact statement, which has itsroriginsyin the assumptions
of homogeneiiy of the turbulence, both with respect to boundary
conditions @nd driving férce-structure. The Direct Interaction

‘ Appfoiimationfsets‘uy an elaborate scheme;with which to expioit
this perturbation basis. But this intuitive scheme of separating
the contribution from a f;hite subset‘of“;édes, in contraéf with
the rest of the modes and sayiog that their difference is dyna-
mically smali cannot be formulated in terms of a small paraméter"'

“theéry.'Kraichnan's point of view was to assert that the non-
linear contributions to a given mode piay two different roles,
depending on whwether we include in their contribution a finite
sgbset of modes or an infinity of modes. Within a finite subset
of n modes it is the non.linear interaction which builds corre-

lations and ends up generating non-vanishing correlation

<A¢,A;‘ax&¢ Am ................}upto the order n . ( For

€.g., in the case of a strongly interacting " gas " of N
particles ( the range of interaction being infinite ) the signi~-
ficant correlation that would be necessary to typify the state

would involve all the N particles., Any argument based on any
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type of hierarchy truncation would not make sense. ) But any
finite set of modes never end up with such a correlation because
during the same time, the non-linear interaction by each ofithe
modes of the subset with the rest of the modes tends to decorrelate
them. Thus it is important teo distinguish the role played by the
non-linear terms in building up the correlations and again in

breaking them up.

The choice of a triad as the fundamental brick of inter-

action from which the building-up of the correlation within a

finite subset arises is made first by the equations of motion
themselves, Singe the third cumulant { or what is the same in
homogeneous turbulence, the third moment{A( A& AK? ) must play
an important role in deciding the energy transfer between modes
and as the structure of the equation always couples this to the
interaction between three modes, it would always involve an ir-
reducible triad. ( An irreducible triad is one in which all thrse
modes are always simultaneously interacting. ) The general tree
of interactions between more modes can be built up in terms of
multiples of triads. So it was Kraichnan's rationale that the first
non-trivial Direct Interaction prescription between a finite set‘

of modes will have to start with a triad.

Further Kraichnan makes another novel assertion which is
again very difficult to find fault with or to.justify. This is
the so-called Maximal Randomness Condition. This asserts that

there are no prferred modes in the system; in other words in the

25



equations of motion of'a;typioal mode, the various coupling co-
Vefficients with different modes are all of the same order, This ,

i couﬁle&'td tﬁe‘féét thﬁt we have envisaged a statistically’steady
' ',staté of homogéﬁeouS'turbulence would imply that therevaré no- |
préferred’modés“The statistiéal'dependence among the modes’uill‘,
‘be induced compiétely by the non-linear interactions and not at

all by any boundary conditions or external forces.,

The various requirements that we have listed so far to
defipe\the Direct Interaction Approximation, like the existence
of a large number of modes and the concept of Maximum Randomness
wilvl‘ all hold at large Reynolds numbers: but this in itself saysi
nothingdwa.pout kthe utility of our approximation procedurg??r

- " large Reynolds numbers, { Necessary but not sufficient! )

‘We will now try to illustrate next the notion of an Impulse-

Response Tensor, which plays a crucial role in Xraichnan's

thye,ory. We will dencte the turbulent system in short hand as a

‘sum of a triad and the rest of the modes ((o.,b,c).;%‘i(‘é,x))

4t . a certain time t° we can sPecify’:,heir dypamical state by a
set of values Ké\'.) , Kh(h) . 'ﬁ:ﬂ"d ,C A‘(h) > “:Fq’b'c)) We
introduce in the equation of motion of F\a an infinitismal
driving force Sﬁ + This will produce an alteration in the

~t
amplitude of A, from A

On

o~
to A+ 3 Ay . This & A, at all later
times & 7% will depend ofcourse on the values of Ao\(’h
At ALv) and At for all £ for allé 7k and on the

change f?,,‘ . If the state of the modes when this 'S"F“ was
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introduced can be considered as a state of statistical equilibrium,
this change would depend on the entire spectral features of the
A“(h) . The formal " Green's " operator which relates the change
in the amplitude of AO}\') at a time +t, due to change in the

driving force i?éi"}at time ¢° , is the impulse response tensor

t

A = ft @&b(t, £ SV ot

Th 445
Fromintuitive considerations, one infers that because of the
randomness in the system, a change in the amplitude of one mode,
will be correlated to itself only for a finite time. Alternately,
the response of the mode will also be correlated to the distur-
bance which produces it only for g finite time. Formally averaging
over an ensemble of disturbances SF , we can generate the
averaged impulse-response tensor, But in equations 4.2, 4.5 and
4.4, we replace the total contribution due to the (,§,K -sum
as ">\o~(\” y ~n\b(\v and - )\éh e see that these A& are
generally random but are ofcourse functions of the state of the
modes (,d,K . If we vary the state of the modes (,¢, %
around value KL(H y za(‘h ’ “SK{&'; at F, we will be vary-
ing :,\‘(i») around a value X(l:) by an amount & A .
The response of the system to this 8 A %ill be defined by our
definition of G as above: but now 6ur averaging over an ensemble
of & A  cannot be done independent of the G. This crucial
interchange of arguments beiween the random source and the effec-
tive force due to the non-linear coupling among modes is the second
reason for our introduction of the random force. The argument here

is quite reminiscent of the introduction of an effective field in
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’:'{artree-Fock ‘type of calculatlons. Instead of an effectlve f;,eld,
we talk of an eff’ect;ve dyna,mmal damping, which a mode sees due

to. ;ts couplmng to the Test of the moées.

Realising” t‘hat-»thi\s rela}éation ‘time is real and finite one
~can fermaily repfes‘ent‘i'l‘; by the eigenvalue of an undefined
Oparatgr A’S\') acting on Ao\( s-, . In particular ,\.S\») may
be a non-linear functional of the state of the modes at all
pfevious times f£' < F  and it will in general have an integral
structure’ in Vtime'f Incorporating these one can give a formal defi-

mtzon of G as

L...-—yv +/\{\-;>Gr ey = SE-ev »

We hope to include in- )\QW} all-or significant parts of
the rélaxa;tion due to non-linear interaction { by this we imply
the coupling of the (a,b,c) modes to {i,j,k) moées ). Using this
defmltion, one can generate the integration forward in time of
the modes A Ab , Ac . Thelr interaction with the rest of
the modes being typified by the G‘t ((: £ Gb(& £, egu'-f'jetc.

These arguments are quite reminiscent of the ideas of
Prandtl and Heisenberg in introducing the notion of eddy-viscosity
{ a review of these can be found in Beran ). We rewrite the

equation of motion for a typical mode A& as',

=
(a..; + Vot A (%) Ay = Mg, Adm Ah f’r:(b e

Here the BDirect Interaction of the triad (a,b,c) is isola-

ted on the R H S and the relaxation due to the rest of the modes
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is contained in the operator A’SVJ . Now, we assert that these
two contributions are not completely independent, but the consis-
tent treatment of Direct Interaction, with the background relaxa-
tion due to the indirect interaction should determine ,A°$¥q
completely, What we are offering here is not an exact justifica-

tion, but a motivation,

If we introduce a formal variation of one of the amplitudes
A°S¥) at time &, , around a value A°}¥.; , the equation of
motion of this & AL can be written
d A o ( S 7 ;
(E;T—* Vot At 1 T AL = M%CS Agw Ade) + SR{;S

In the equations of motion of the modes b and ¢, there will be

terms duve %o this variation

(2 oy r 2 ) Tag = M, B (A Adlb) )+ 8% ()
' 4.9

(% 4 y(_ + Ac(\‘)) g A(’S Vo= MCng {:A&“) Ah{l‘i) + 8\1“’)

4,10

We can use the response tensors of the modes a, b and ¢ and rewrite

& -
g = [ G (66050, SROV TRt

¢ 7
SALr = U(h, @,,cc(t,&g)immé(ﬁéru ALF)+ SFCHSDKQ)&; -

In writing equations {4.11) and (4.12), we have used the
interchangeability of the effective force on a mode by the mode-

coupling terms as well, Further the use of the concept of Maximal
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Randomness reduces the G's to diagonal terms in the modes. A

}thorough austificatlon of this on statistical grounds is attempted o

“in a paper by Kralchnan 9 -We will omi‘t fhlu consideration here.
o Hereafter,, we mll drop one of the sut“f‘ixes‘vanA “G's and use only -
one., VBut'we only want to poeint‘ out: tl;xat thfl‘s step 13 quite geheral
" and does not still involve the Direct Interaction Approximatiori -

1tself. Incorporatmg these into equatzon for SM\’) we can write ‘
f._., VA SAM = My, Ao
i(te} e, e)m,, 8CA (w)A“‘HS?‘Jd&:}

+ M, Axe)zg de G,
'[M“" § (ALY A +5\?“’«’_}=E-;~ S‘f\m

S
4.13

Dividing through by SFQ(\»‘) and averaging over an ensemble of

realisations of the variation 5 ywe can rewrite

d )
[ fy, + A(\—]< 2&»
SAL

_ ' N (t' [ e
- Ma\m Mbc« &:4 &b(t' € Ar’ } AJ ’ SHE“,F

¢ Gt b SAL
+ Mabc Mc;s :t.(&cto&) Aé"’ &b(‘")qu(‘m))'i-g(f‘ : ,1)4.

The other terms vanish using the arguments of Maximal Randomness
_ and Weak Dependence both resulting from the assumption of homo-

geneity. < 5 Am“") is mothing but the averaged impulse
Tolt?

response tensor of the mode defined around a neighbour-

o
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Lo
hood of values of the modes A . A typical term on the R E S of

equation 4.14 hasthe form
< @b(e'(:') At A (ko GT,\(E‘,EWD
4.15

This involves the total modal response of the two interac-

ting modes a and b, during the time they are intcracting with the

mode. ¢. This is an elementary triad interaction, which builds the

non-linear mode coupling, we have no justification to neglect

these terms, even in the limit of a wezak contribution by one triad

in contrast with all the rest of the triads, Formally carrying

out the averaging around a statistical eguilibrium, with fluctua-

tions around it, we can rewrite this term as

éb('b'6|)< Ac(\“) Ac(\")> MG-;\‘m(t',t_u)
et A A S

(‘Lo\\qu_ (&Y = G y &

i

&-G)
4,15
{ Here we are introducing an idea of fluctuations around
the statistical eguilibrium, envisaged in mode space, by an argu-
ment similar to Kolmogorov's in the last section. These fluctua-

tions should not be confused with fluctuations in Llhe modes 4,

which are the basic dynamical variables, we are considering in

the analysis, The fluctuations, which typify the response of a
mode are related to fluctuations in the parameters, which determine
the equilibrium form of the spectrum., These are related to the
macroscopic input of energy which builds the stationary energy

flow and the total microscopic loss of energy through viscous

losses, which limit this flow,., At the present stage of this argu-
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ment to develop & closure scheme for turbulence, there seems to
bé no justification to neglect'thé second term of (4.16). This

guestion is discussed by the author in a separate paper25 )

Restricting one's attention to the average propagator ‘

alone, equatlon 4.15 reduces to

f G (¢, &) <A¢(+;A ) G l€, €7 ék’ .

Now ‘at this stage it is an assertion of Kraichnan that the total
relaxational contribution due to all the modes Aé\-; is a sum
over elimentary triad contributions on the R H § of the above
equation. For turbulence, around & defined statistical equilibrium,
with little fluctuations around it, it seems to be a reasonable
assumption. A formal justification of this is not offerd here,

,,,,, since our aim is tonotiQate the derivation_ only. Thus one can

write for the A W)

o CG(& e < A& Ant)
Adn GlE Y _{’,Zm. Magmen ¢y JE, €V ae

The main achievement of this argument is that every modu~
lation of the amplitude of any mode is propagating in time with
a response function determined by a sum of triad contributions.
Further this contribution is effectively a relaxation. The formal
closure problem in defining the response is achieved by operating
around a neighbourhood of values in the function-space of ampli~-

" tudes of modes., This is not necessarily a unique way of preacribiﬂg
Athis relaxation. Thie question has not received the attention, it
deserves. For example, Edwardszc considers the eigenvalue of the
relaxation operator to be defined hy considerations of generalised

entropy and approach to equilibrium, from an arbitrary deviation.

N
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More recently, Kraichnan and Herring, in a series of papers
have tried to compare the warious approaches and itry to generalise
them. Accounts of these can be found in Leslie's book. The main
peint in our argument above is to show that explicit appeal to

direct interaction is not necessary in defining the equation for G.

This generalised response tensor is made use of In evalua-
ting a typical higher order correlation betiween modes. For example,
if there is a non-vanishing contribution to a third order moment
(A&(H Ab((:') é\é*‘f} which satisfies all the restrictions to
symmetries, we try to evaluate it using the G, The correlation bet-
ween the modes is built up by the direct interaction between the
three modes. While the three modes are interacting, their inter-
action with the rest tends effectively to suppress their amplitudes
and thus reduce the direct interaction. The building up of the
correlation is thus restricted by the finite memory time of any
particular mode, about what happened to itself in the past, due

to the existence of effective relaxation.

LA e ha) = 2 AL A (G(%‘ £ et

. Mc({a&. Ae.{t”) A"‘(t“) ’

4.19
In writing this we neglect the effect of viscosity and the
driving force, in consonance with ideas of Maximal Handomnese,.

This fterm can be rewritten as
Q " ' < A (t') A () A {i'"b
Mcam& dt” GlE, e < Rglh AGET B 7l =27y 50
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it looks at this stage that we have achieved nothing, since we
have ended up with a fourth:order moment here. This moment can ‘be

rewrltten

<A({'>A<fz') A(UA,,(&")>
= < AH AJEDT ALY ALt DSQQSM

+ AL ASEY Ae ") At
 apidm

\

4.21

The secon@ term is an irreducible fourth order moment, which is

a correlation between four modes., The assertion of direct inter-
actlon states that the correlation between any subset of modes

triads of

is ?Qllt ggrzn te;ms o;f;ntergq§1ons.”?hus wgwneglgéf‘this ferm.
’In fact, the number of terms in this category is large compared

to the number included in the factored category. Bgt the assertion
is that these include another infinity of intermediate modes,

which are summed over and their contributions would be random and

average to zero,

At face value, this approximation does not seem to be any
different from the usual cumulant discard procedure, incorporated
at the level of the fourthuordér moment, As has been pointed by
Leslie in his book ( loc.cit. ) the difference lies in the use of
the relaxation features of the 6, (t,t' ). This actually intro-
duces into the evaluation of the cumulant of any order a part of
the contribution from every higher order cumulant, but only a

part. Thus we effect closure, The attractive aspects of the Direct
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Interaction Procedure lie in some other features which we will
just mention. One is the energetically consistent way of dealing
with the non-linear inferaction. This ensures that the approxi-
mation does not violate any of the energy conservation require-
ments and/or the requirements of positive definiteness of the
probability distribution of the modes. These and other guesticns

are considered in great detail in Leslie's book.

For the application to hydromugnetic turbulence, which we
report here, the essential point about the Direct Interaction
Approximation is its energetic consistency and the information,
one derives from it, aboug the correlation and relaxation times
of fluctuations, from a dynamical point of view, Since we are
interested in investigating the possibility of transfer of energy
from the velocity fluctuations to the magnetic field fluctuations,
we would like to base our arguments on a thecry which is manifest-

ly energy-conserving.

When Kraichnan tried to solve the closed equations for the
energy spectrum and the impulse response function, he discovered
that there was still a gap to fill in the logic, before one could
look for agreement with Kolmogorov's asymptotic analysis in the
inertial range. As we saw in the previous section, Kolmogorov's
argument implied the existence of a unique time scale { through
the existence of a unique typical differential velocity associa-
ted with a certain scale. ) In the arguments of Kraichnan, the

dynamics provides equations for two typical time scales for a
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gi&en mode, the éorrelation and relaxation times and it is not

arpriori'clear ﬁh&t they are équél°‘Part §f this confusion arises
‘Vibecause of the fact that the correlatlon one talks of in the
Direct Intaractlon Approximatlon are Eulerlan Correlation times
and Kolmogorov's arguments of Local Isotropy imply a Lagranglan
‘frame wark. Secondly the Eulerian analysls introduces transfer of
energy between distant modes in mode space, as a steady balancing .
: flow. The net transfer of energy across a wave nnmber may be

essentlally Iocal but the distant wave number coupling gives rise

to a large inflow into the region, balanCed by anreQually large
outflow from the region. This isAconnected with a divergence in
the,sféady state energy transport scheme { See Edwardszo and also
Leslie ;oc.ciﬁf:) This can bé cofrected by gwrigorgus Lagrgngiﬁn‘
formulation, as has been dbne by Kraichnan in a series of papers.
“Equally, ﬁhey can be remedied by considering a truncation in the

mode-mode coupling terms, in the relaxation funciion equations.

A rigorous justification for this procedure can be provided
in tgrms of the Lagrangian History formulation. A simple intuitivé
Justification was provided by Kadomtsev. Borrowing from tradition-

. al arguments of Laﬁdau damping in wave-particle coupling in plasma
physics, he argued that two neighbouring "physical® eddies,vwhich
are really localised wave packéts, which are close together and
have phase velocities whiéh are nearly equal, interact persistently
for a long time and transfer sufficient energy. This is the so-:
called resonant coupling. At the same time two dissimilar wave

packets with distinetly different wave lengths just pass through
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one another without much distortion of dne or the other. This so-
called adiabatic coupling is overestimated by the Direct Inter-
action. A correct remedy can be provided by introducing a

" Coherence time " or a " Coherence length " for a wave packet

of a certain scale and incorporating interaction only with modes
within that range to determine the effective relaxation of the

modes due ito non-linear interaction,

We try to follow this simpler scheme of incorporating the
" Locally Isotropic View " of turbulence. The choice is partially
for simplicity, Further in the hydromagnetic contexti, as we shall
see¢ in the next section, the arguments of Local Isotropy are them-

selves suspect, £o much so it is not clear whether all the elabo-

rate effort of lLagrangian History formulation iz worth it,

5. Hydromagnetic Turbulence and Kolmogorovian Arguments,

In Bection 2, we elucidated the arguments of Kolmogorov
to postulate the existence of a range of intermediate pulsations
of velocity, which are determined completely by pulsations of
neighbouring orders and not by the largest or the smallesti pulsz-
tions, The main thrust of this argument came from the assertion
that the differential velocity between two neighbouring points
separated by a distance of the order of intermediate scales is
determined completely by pulsations of the same order, The coupling
with too large or %oo emall scales, which { borrowing a term

from Kadomtsev ) can be called adiabatic interaction effectively
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producés neglegible effects. The larger fluctuations essentially
. convect the intermediéte gcales, without distorfion and the inter-«
v mediate scales in their turn con?ec; the smaller scales without -
di’s-tcb»r‘tiokn . One can eliminate this convection-without distortion
by SyStematically formulating thé whole scheme in terms of diffe-

rential velocities of‘fluid elements. Kr&ichnanzz, Kadomtsev and

later Edwards { loc.cit. ) independently discovered that the flaw
in Kraichnan's original argument to construct a proper inertial
B rénge lay in the improper handling of a divergence, and a singu-

larity in the response equation.

But the guestion is how good the assertions of Kolmogorov

are in the context of hydromagnetics, The simple argument about

\

transferring to lbcal differential velocities and gauging away
larger scale motioné cannot be carried out with magnetic intensi-
ties. Absolute magnetic intensifies play a crucial role in deter-
mining the dynamics of even very small magnetic disturbances, in
the spirit of Alfvén wave coupling. Thus the different regions

of the magnetic mode space never become‘evén statistically inde-
pendént. An absolute and thorough analysis of this question, for
a turbulent system in the presence of an external homogenecus

and constant magnetic field is still lacking. This should e¢larify

some of the fundamental ideas.

We visualise a simpler situation in a system in which
primarily the turbulence starts off in hydrodynamiéal modes. It

reaches a steady state, with an energy-containing range, an iner-
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tial range and a dissipative range. This can be described by the
Direct Interaction Procedure of Kraichnan, with suitable modifi-
cations to take care of the importance of the resonance interaction
rather than adiabatic interaction. Now we introduce a randomised
disturbance in the magnetic modes in the form of a lccalised
spectral excitation well within the scales of the inertial range,
with wave number and frequency widths coméatible with elementary
ideas of Kolmogorov [ A unique spatial scale implies a unigue time
scale, This implicit equality of all relevent frequencies of
interest for a given scale of motion implies a definite dispersion
relation for coherent motion and a relation between fluctuation
and dissipation processes for incoherent motions. For want of a
simple shorthand notation for it, we refer to it as the Kolmogorov
Fluctuation-Dissipation Relation { KFDR l] Ac the interaction
builds up within the magnetic gpectrum between different modes,
this simple K.F.D.R wiil not persist. Slowly the magnetic spectrum
will start building up long range dependences in mode space and
the K.¥.D.R will be modified to include effectis of execitation in
other ranges. In our second paper, we try to find the modified

FDR for the hydromagnetic case azscuming that the K.F.D.R is un-

altered for the hydrodynamical part,

Apart from the particular questions of relevence to astro-
physics, we feel that this isolation of the lack of generality of
Kelmogorov's assertions in the hydromagnetic context and its
logical implications are the main and significant aspects of our

results, We want to stress this, since the basic underlying argu-
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ments here are independent of a particular dynamical scheme to
'»deai ﬁith turbulence, though our results in detail would be mo&u-

lated by the success and pitfalls of the model.

In our study of the relatiénship between correlation and
relaxation features of the fluctuations in the magnetic modes we
is&late two sééarate assumptions to be eqﬁivalent to the analysis
offKolmogcrov. First, which we havé discussed in great detail,

karises from the lack of applicability of the Local Isotropy ideas,
dn an unaltered form to the magnetic modes. This questions the
validity of assefting that the coupling in mode space is completely
loeal. The second is the éssartion that tha‘correlation and relaxa-

tion times are equal.

In the pure hydrodynamic case, this has been tested by the
‘:Lagrangian History formulation of the Direct Interaction Approxi-
mation, by Kraichnan. But, from a general point ofvéiew, in the
absence of a valid éroof ofvthe applicability of lLocal Isotropy
ideas to hydromagnetics, this equality, which implies a trans-
cription of a fluctuation-dissipation relation conceivably proved -
for Lagrangian correlation and relaxation times to Eulerian ones
is unjustified. We éarry out a so-called Reduced Lagrahgian
ﬁistofy Modification, in which we leave the magnetic modes, un-

altered by Kolmogorovian prescriptions.

In the following section we will discuss our results and

try to draw some general conclusions about their applicability

to problems in nature,
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6. Analysis of Results.

There are three distinct though inter-related gquestions
that we ask in our three papers included in this dissertation.
The first is the ultimate fate of a weak random excitation in
the magnetic mode spectrum of a turbulent fluid, This gquestion is
discussed in the first paper. The main conclusion of this paper
is to focus attention on the importance of dynamical analysis of
the eguations, rather than stochastic analysis. By this, we refer
to the many approaches in which the turbulent velocity field is
considered as a given stochastic driving term in the equations of
the magnetic mode., Further simplifying assumptions about the anto-
correlation times of the velocity fluctuations are made, such that
the statistical history of the magnetic modes and the velociiy

modes are on different scales of time. This leads to a kind of

Langevin point of view for the magnetic mode equations. These

approaches are not justified for the magnetic modes; alsothe neglec-
ting of the lorentz force terms from the velocity equations cannot
be uniformly justified for all scales of the velocity [ield,
though it can be justified as an initial condition, This is a
positive conclusion from our study. There is an overriding nega-
tive conclusion of the same investigation, viz: that the theories
of tﬁrbulence, which are based on argumenis of asymptotic equili-
brium between various transfer machanisms in mode space are not
accurate enough to resolve the delicate balance of transfer in
magnetic mode space, which produce local amplification or transfer

to distant wave numbers, This inadequacy is partly because of the
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lack of understandihg of the fundamental non-equilibrium features
of the energy balance whiéh’ié responsible for cross-field and
ééifnfield transfersVin mode space., Quite stirangely, this question
does nbtrseem to have interested many people in the field of non-
equilihrium statistical mechanics‘as’it should have. It is our
gsatisfaction that our study tries to‘focus attention on this

quesfion,from s statistical dynamical point of view,

The second question that we ﬁoée for oaféelves is to
vanalyse the steady-state features of the spectfa of the two fields
and in particular to analyse it to theAsame levei of coméleteness
&ynamically, as has‘beén done by Kraichnan in the hydrodynamical
case, In this, we find;a reevaluation of tﬁe prescriptions of
KélmogO{ov about the equa;ity of the cprrelgtion agévrelaxatigg,
ti&es of a typical mode is required for the ﬁagnetic modes, The
various modifications which we incorporate imply raiher drast;c
assumptions about the time structure of the correlation-relaxation
features. The results show profound effects in terms of wide
varigtions in integral parameters. Also the power law of the
spectra in the inertial range are altered significantly too. But
the most persuésive result of the calculation is the detsiled
equipartition between the magnetic and velocity modes through out
the extended inertial range. This is a significant result from
' general dynamical considerations, Each of the types af modes has
a s?ectrum which is far from equilibrium. ( Qﬁfy‘s or f(—yl as
agdinst ﬁf‘ for equipartition } But for each ﬁave number, the
magnetic and velocity hodes are in equipartition, This substanti-

ates the conjectures of Biermann and Schliter.,
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In the third paper we try to fill up the evolutionary gap
between the initial and final state analyses of the first and
second papers, Here our aim was two fold. First to study in detail
the dynamical effect of the Lorentz force terms. This shows itself
in limiting the growth of the highest wave numbers and producing

equipartition.

The second gquestion was a bit more subtle, This was to check
whether an arbitrary localiscd magnetic speciral disturbance of
weak intensity will tend to produce transfer of energy to smaller
wave numbers. In fraditional arguments of cascade of energy in
turbulence one implicitly assvmes that energy always cascades up
the wave number spectrum. This underlies the logic of universal
equilibrium, But when the form of the magnetic spectrum is diffe-
rent from the eguilibrium form { both in terms of functional

dependence on wave number and relative strength with respect to

velocity spectrum ) the transfer should take place to neutralise
this difference even if 1t meant back-transfer in wave number spuace
to smaller wave numbers, This is at best a guess, till one verifies
it by an explicit calculation. In our third paper, we cdemonsirate

this by a carefully planned model, wnich confirms our conjeciure,

What can we say about the applicability of the models to
concrete situations in the laboratory or in astrophysics? 4 rea-
listic study should have started with a specific well-defined
problem with particular boundary and initial values and proper

and complete definitions of sources of input of energy into the

43



turbulence if any. We chose to study an\infinite system with no.
" . boundaries, to minimise the complications of algebra in dealingv’
- with~cdmplicated tensorial equations. Symmetry conditions.of
homogeﬁeity and isotropy were introduced like this, Si@ilarly'kn'
assumbtions of stafistical stationérity in time were intréduCed;

These limit the applications considerably.

The bésic model of Direct Interaction Approximatiqn itse;f
involvés explicitly onlyone of the symmetfy a§sumptipns listed V
‘ above, that of homogeneity alone. Thus from a éymmétry point of
view; the D,I.A is less restrictive.‘We-invqke,from the very
begiﬂning a continuum point of viéw for the’fluid and coﬁsider it
" incompressible. Thus all effects involving finite.temperature

and for discrete particle structure of the medium are excluded, -

We have already indicated the limitations of the D.I;A
itself . ( Further details can be found in the’oft-quéted book of
 Leslie ) Our study raises a serious doubt about incorporating

assumptions of isotropy in turbulent systems with strong magnetic
fields. As one starts building up sufficient energy in the smaller
wave number componeﬁts of the magnetic modes, they will have a
profound effect on smaller scale fluctustions through inténsity;
coupling. The changes in the larger scale magheticvmode parameters
will affect the spectral characteristics of the smaller scales,

in terms of enhanced fluctuations of spectral parameters. This
phenomenan of intermittency will be more and more pronounced as

the range of the coupling in mode space becomes larger and larger.
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This seems to be an unstable situation atleast, in this way of
looking at things. As the dependence on larger scales becomes
strdnger andrstronger, the requirements of Maximal Randomness and
their isotropy may break down, This is a conjecture, which is yet

to be substantiated.

Te Contemporary Developments and Future,

In our paper I of this dissertation we had reviewed the
situation in the field of hydromagnetic turbulence upto 1967 rather
estensively and thoroughly. The situation upto that moment was
rather speculative, with 1little or no stress on dynamical analysis,
It was the main contention of cur paper that a therough dynamical
analyeis was necessary, bul almosti impossible under the existing
state of theories of turbulence, at that time, without extensive

calculation.

Around the same periocd, in the field of turbulent dynamos,
with a publication of a series of papers by Krause, ERdler and

24

Steenbeck ', a new interect was stivrred up sboul the sywmmetry
conditions of turbulence. Arguing purely from kinematic grounds,
Steenbeck and Krause suggested that thé lack of reflexional
symmefry in turbulence, which is very often a common feature in
astrophysical systems may be an important factor in the turbulent
regeneration of magnetic fields. This idea has been analysed fur-
26

2
ther by a number of authors in recent years, ( Parker 2 Moffatt

See a review of this field by Roberts?! ). Much of this work was
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. based on a‘doublé sgéle analysis, in which the scales of the
maénetic Speétrum were considered uniformly larger than the scales
of the velcéigy spectfum. Thus the dynamical coupling between the
maéﬁefic and velocity fields wers treated by a étochastic prescrip-
tidn,kveryréﬁéh in the spirit of Lahgevin Processes. There have
béaﬁ:atteépts'b}yﬁoffattzs to>remédy this, This truncated dynamical
tteaﬁ@ént‘makes:it very difficult to see the dynamical effects
which we éﬁalyse in the strictly isotropic case, for the turbulence
‘ in'a pséudo—isotrapic case, Quite recently, Frisch, Pouguet, Leorat
" and Mazure29 have tried to investigate the(pcssibility of an in-
verse cascade of magnetic helicity in mugnetohydrodynamic turbu-
léhce. Tﬁeir study is strictlyvrestricted to'aﬁ inviscid enéembie
~of flows with cutoffs for the ldwer and higher wave numbers. Such
fménéembies”;re charaéteriaeé by absolute equilihr&uh'specféa giving
the classical equipartition ﬁ&z— spectrum for each field and
further eguipartition &f magnetic and kinetic enefg . The utility
of these results in interpreting realistic flows with finite
dissipation and no cut-off in wave numbers is at the moment peda-
gogic. A4 dynamically-equivalent study of the pseudo-isotropic

casé with methods similar to ours will prove forbiddingly difficult
and is perhaps‘not'worth the effort, for reasons which we have

discussed in the last section.

Fotwithstanding these reservations, there have been attempts

30,31 and by Vainshtein and Eefdovichaz, to apply

by Vainshtein
-a& theory of the D,I,A type with additional simplifying assumptions

to explain large scale magnetic phenomena in astrophysics. There
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Zz
have also been attempts by Vainshteinﬁ’,to study the generation

of a magnetic field by acoustic turbulence.

In conclusion, there seems to be a considerable amount of
work which reiterates the basic premise and faith of our calcula-
tions that the turbulence in the fluid does regenerate the magnetic
energy. There have also been numerical culculations of model

o . 34,35
equations to check these conjectures . They seem to bear out

the general expectations.

Much as one would like some observational evidence regarding
the nature of M.H.D.Turbulence in astrophysical systems, the
information one has is very sketchy and highly indirect. 1t should
be interesting to see whether measuremenis of interplanatory mag-
netic fields, information about which has become available through
satellite data, in recent years, will bé able to throw any light

orn - these.,
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The evolution of & wesk, random initial magnetic field in a highly eonducting, isotropically tur-
Dulent fluid is discussed with the aid of the exact expression for initial growth of the magnetic energy
spectrum. Equipartition arguments, the vorticity anslogy, and the known turbulence approximations
sll are found inadequate for predicting whether the magnetic energy eventually dies away or grows
exponentially. This is true for any ratio of magnetic diffusivity » to kinematic viscosity ». The pos-
sibilities of eventual growth and eventual decay are therefore bath admitted, and, for each, the shape
of the magnetic-energy spectrum in the case A 3 » is estimated by simple dynamical arguments. If
there i growth, it is concluded that the magnetic spectrum below the Ohmic cut-off eventually
reaches equipartition with the kinetic-energy spectrum roughly in the fashion predicted by Biermann
and Schliter, with the principal excepiions that the spectrum of kinetic energy in the equipartition
inertial range evolves to the form k~%% and that equipartition is malntained, with rapidly falling
spectrum. through part of the Ohmic dissipation range. The evolution of the magnetic spectrum in
the weak-field N 3 » regime is alc computed numerically with a simplified transfer approximation
suggested by the Lagrangian-history direct-interaction equations. This caleulation turns out to yield
an eventunl very weak exponential growth of magnetic energy.
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1. SUMMARY OF PREVIOUS WORK

HE behavior of a weak, turbulent magnetic

field in o highly conducting fluid has been con-
sidered by a number of authors.'™" The early treat-
ments of Batchelor' and Biermann and Schlliter®
differed substantially. Biermann and Schlitter noted
that the turbulent velocity field should streteh lines
of force and thereby increase magnetic energy at the
expense of kinetic energy. They assumed that this
would econtinue until equipartition of magnetic and
kinetic energy was reached, whereupon the Lorents
forces would inhibit the stretching. They proposed
that the characteristic e-folding time for intensifica-
tion of magnetic loops of given size would be the
order of the circulation time for the turbulent eddies
of that size. This implied that equipartition would
be reached first at the smallest scales in the inertial
range, and then proceed down the spectrum to the
hydrodynamic energy-containing range.

Batchelor observed that the equation of motion
for weak magnetic fields is identical with that for
vorticity (Lorents forces neglected), if the magnetic
diffusivity X and kinematic viscosity » are equal.
In this case, he proposed that an initial magnetic

* Present address: Tata Institute of Fundamental Re-
search, Bombay, lndia.
(195{? K. atchek)r, Pmc Roy. Sce. {London) A201, 405

)
2 L. Biermann and A. Schliiter, Phys. Rev 82, 863 (1951).
3 K Moffatt, J. Fluid Mech. 11 825 (19613,
P. G. Saffman, J. Fluid Meeh, 18, 449 (1964).
& Y ~H. Pao, Phys Fluids 6, 632 (1963}
$ E, N, Parker, Astrophys. J. 138, 226, 552 (1983},

spectrum identical in form to the vorticity spectrum
would be in equilibrium, neither growing nor decay-
ing on time scales short compared to the lifetime
of the turbulence. If » > », Batchelor argued that
Ohmic dissipation effects on the magnetic field would .
be stronger than viscous effects on the vorticity
field and that, therefore, the magnetic field should
eventually decay. If A < », he concluded that the
magnetic field would grow until approximate equi-
partition was reached at the top of the inertial range.
Lorentz forces would then inhibit further growth,
and eguipartition never would be reached at lower
wavenumbers, .the magnetic spectrum always re-
sembling the vorticity spectrur, with intensity in-
creasing with wavenumber up to the dissipative
cut-off. If the initial magnetic excitation was intro-
duced at low wavenumbers, Batchelor predicted that
stretching of magnetic lines of force would at first
inerease the magnetic energy regardless of the ratio
A/», and there would be transfer of the magnetic
energy to higher wavenumbers as it was amplified.
In the case \/» > 1, growth would cease when the
dommant spatial scale of the magnetic field was
reduced to a characteristic Ohmic dissipation length,
and thereafter the magnetic energy would die down
monotonically. In the case A/v < 1, growth would
continue until the equilibrium vorticity-like spee-
trum resulted.

Further developments and modifications of
Batchelor’s ideas have been presented by Moffatt.?

Related treatinents have been given by Saffman,*
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Pao,® and Parker.” These zuthors use different
methods, but all three conelude that, whatever the
value of A/», an initial weak field should die away
after initial amplification or, at best,’ should be
amplified by a finite factor to a steady-state level
where Lorentz forces are still unimporiant.

All authors seem to agree that an initial low-
wavenumber magnetic excitation is at first am-
plified. There is complete disagreement about what
happens after that.

2. INITIAL GROWTH OF ENERGY TRANSFER

The standard incompressible hydromagnetic equa-
tions sre”

@3/t — Wi = ~u-Vi+ O~ Vp, 21
8/0t = AV = ~@-Vh + (b- Ve, (22
Vau=0 Vb=0 2.3)

where u(x, £} and (dxpp)'/*bix, ) are the velocity
and magnetic induction fields, » is kinematic vis-
cosity, » is magnetic diffusivity, u is susceptibility,
p is fluid density, and pp is pressure.

The total energy 3o [ (ul* + [bf") &z, as well
as [ u-b d'z, is conserved by the hydromagnetic
interaction.

Let the fields obey cyclic boundary conditions

“on a cubical box of side L. The Fourier amphitudes
defined by
u(x, ) = ok, %, b, ) = 3 blk, e
x , * 24
satisfy

(@/0t + vk yul) = kP (&) "Z: [b;(k)buk — k)

—w& &~ k), (2.5
9/3t + NeOb,(K) = ik, {Y, {udk — K)baE)
- un(k s k’)bi(k')]: (2‘6}

v\vhem
P.-; ) = 5;; - kiki/kz

and the argument { is omitted. The sums in (2.4)-
(2.6) are over all wavenumbers allowed by the
cyclic boundary conditions.

In the case of isotropic turbulence (which requires
L —+ o), 'scalar energy-spectrum functions may be
" defined by

(L/Z‘)a(“i(kt t}“’v{k: i)) = (kkx)_‘Pii{k)'E(k: l)l (2‘?)
(L/20)"(b.(k, ObY(k, ) = 4xk")"Po,GFk, O,

*T. G Cowling, M
Publishers, Inc., New York, 1957).
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where { } denotes averaging over an .isotropic en-
sembie of flow realizations. These functions satisfy

5O = [ (B 0+ FO, 01, @8

where E(f) is the total energy per unit mass. In
addition to the overall conservation of E(l) by the
nonlinesr interaction, the interaction of each triad
of wave vectors xk, K, and +(k ~ k) Is in-
dividually conservative.

If (2.5) and (2.6) are multiplied by u%(k) and
b*(k), respectively, the ensemble averages of the
real parts of the results yield the energy-balance
equations C :

(8/8t + BIDER, ) = Tk, O + Lk, 0,
(3/8t + DDk, O = J(&, 1),

@9)
(2.10)
where
Tk, ) = 4k (L/2%) X

-Im {ka 2: (i, D ~ W, ik, B)),  (2.11)
Lik, ) = —4xk* (L7200 ‘

Im (k. ; &', Obe — F/, tutll, D), (212)
Jk, ) = 4k’ (L/2%)

JIm (ke ;} {qb’, Dl — X, 0

— b, u.tk — &, 9165, D). (2.13)
Here T'(k, 1) is the ordinary hydrodynamic transfer
function, while L{(k, ¢} and J(k, #) describe the
exchange of energy between kinetic and magnetic
degrees of freedom. The conservation properties give

~f"r(k, Ddk =0,
o @.14)

f., "Lk, 9 + Ik, ] dk = 0.

Suppose that the magnetic and velocity fields are
statistically independent and isotropic at the initial
time ¢ = 0, and that the magnetic field is mul-
tivariate normal at £ = 0. These conditions are
appropriate to the introduction of a randomly phased
magnetic seed field into pre-existing turbulence. The
velocity field is nof assumed to be normally dis-
tributed at ¢ = 0.

This ensemble gives

Lk, 0) = J(k,0) = 0

and the functions [8L(k, 1)/8t},. and {37 (%, §)/8l);.0
which describe the initial build-up of ehg:gy, transfer
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can be determined exactiy. The results are valuable
for illustrating the various transfer mechanisms,
which continue 16 operate at later times. To obtain,
differentiate 2.12: ané {2.13), use (2.5) and (2.6)
to express the time-derivatives, and use (2.7) to
reduce the producis of covariances which result from
the independence ancé normality of the initial mag-
netic field. The finai equations are

ot
[L(k, )/l e = kji (K 6eyoF(p, 0)

~ Foumelk, 0P, 0 B, (215
(BJ(k, §/08j.—c = k [ ;: (kdsn P (p, O}
— PPk, O)E(q, ©) 208
—k fA PindFk, OF(g, O)d—’;% @.16)

Here [[, denotes integration over all p, ¢ such
that &, p, and ¢ can form a triangle, and

Qe = 31 — zyz — 207°), Cipo = PR 2(1 — o),
Gpe =1+ 22, hipe =pk e+ 2y) =1 — o,

Jie = PET2(1 ~ 27), 2.17)

where z, y, z are the cosines of the interior angles
opposite the triangle sides k, p, g, respectively.®

The conservation properties are associated with
trigonometric identities among the geometrical co-
efficients:

Gipe = oy 2 0, dige = dpus =4, 20, hupe 2 0,
kzjkw = chvhu k2hkn = chpkq: Cipa T Crap = 28y,
Pine + Grap = ipe- (2.18)

In (2.15) and (2.16), the terms linear in F and
bilinear in F separately conserve the total energy.
This can be verified from (2.18), and is also clear
from the fact that conservation of energy holds
whatever the ratio of magnetic. to kinetic energy.
If the initial magnetic field is sufficiently weak in
the sense

Fk) < E(k) (allk), (2.19)

the terms bilinear in F can be consistently neglected
in (2.15) and (2.16), leaving

8 These geometrical coefficients are identical with those
obtained in the direct-interaction closure approximation for
hydromagnetic turbulence [R. H. Kraichnan, Phys. Rev. 109,
1407 (1958)]. Some algebraic errors in this reference are
corrected in (2.17).
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[OL(k, )/60.-.
L ) dp dq
= —kB, 0) [[ penb@ 0 BH,  @20)
Ik, 0/0%es = k [[ WinF@,0)
o A
~ Pk, ), 0 ZH. @

Equation (2.21) can be obtained directly by omit-
ting the (b+ V)b term at the outset. However (2.20),
which deseribes the small reaction of magnetic field
on velocity field, requires the (b-V)b term. The
normality assumption on the initial magnetic field
is not needed to get (2.20) and (2.21); it affects
only the transfer terms bilinear in F.

The coefficients d,,, and h,,, in (2.21) are never
negative, since [z|, |y, |z| are always <1. Con-
sequently, the d term always represents a positive
fiow of energy into magnetic wavenumber k due
to interaction with magnetic wavenumber p and
velocity wavenumber ¢, while the & term always
represents a flow of energy out of magnetic wave-
number k. The k term is « F(k, 0), so that it can
be interpreted as a dynamical damping analogous
to the 2Mk’F(k, 0) term in the energy-balance
equation.

3. INABILITY TO PREDICT WHETHER
DYNAMOS EXIST

3.1. Equipartition Arguments
Lee® has shown that when A = » = 0, (2.5) and
(2.6) yield Liouville’s theorem, if ‘the real and
imaginary parts of the Fourier amplitudes are taken
as phase-space coordinates. Since the energy is a
simple sum of squares of these coordinates, an
immediate consequence is that there are formal
equilibrium ensembles with equipartition of energy
over all the degrees of freedom. Since the density

of modes is «k?, these ensembles have
Ek) = F&) « K. 3.1)
Do the nondissipative equipartition-equilibrium
properties lead to valid inferences about the growth
or decay of weak initial magnetic fields when A and
v do not vanish? The usual arguments of statistical
mechanies suggest that, in the absence of contrary
constraints, the dynamical interaction should act
to carry a nonequilibrium initial state toward equi-
partition. This can happen in two ways in the
weak-field hydromagnetic problem. The (b-V)u
term in (2.2) can transfer energy from the strongly
excited velocity field to the magnetic field. The

* T. D. Lee, Quart. Appl. Math. 10, 69 (1952).
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- {u-V)b term cannot do this, but it can spread the
existing magnetic energy out over k space.

Both processes can be demonstrated from the

weak-field initial-transfer formulas. First, consider
" the contribution to (2.21) from p & &, which in-
volves the factor

By — Phase X Kdine = hint) = Kayz + ).
Since p =k implies z &2 y, then
e+ Y+ 2),

which is non-negative because |2| < 1. Therefore,
the interaction of the magnetic modes within any suffi-
ciently narrow wavenumber band gives a positive flow
of energy tnio that band from the velocity field. This
s true regardless of which modes contain the kinelic
energy.

Next, suppose that & is within the range of mag-
netic wavenumbers initially excited, and &’ without.
Then F(%', 0) =0, and the non-negativity of the coeffi-
cients shows that the contribution to [8J(k, £/},
‘from p & k' is negative, while the contribution to
[aJ (&', £)/8t};n0 from p
energy is lost from the and g
ﬁgt&eunexcﬁeém,wﬁmt&eneteﬁec&isasprs&d
of magmm mergg; in Ic space. There is transfer info
the hether it lies above or below
" the excited one, and regardless of which wavenumbers
contain the kinetic energy.

Absolute equilibrium is never achieved in actual
turbulence, because of dissipation and the related
faet that energy never reaches very high wave-
numbers. In this case, it seems impossible to tell
what will eventually happen from the facts so far
developed. Suppose that at some time ¢ there is 8
crucial band of wavenumbers which contains most
of the magnetic energy. The spreading process will
sweep the energy out of the band, principally to
higher wavenumbers, while the local enhancement

Hiocd S 3

process will pump energy into the band from the

velocity field. If the rate of sweeping out exceeds
the rate of local enhancement, the magnetic energy
in the band will decay, in the absence of a supporting
reservoir of magnetic energy at lower wavenumbers.

The Gibbs statistical mechanics does not deal with
rates and eannot resolve-whether local enhancement
of sweeping out wins the competition. The ingre~
dients of that theory are only the form of the con-
stant of motion and Liouville’s theorem. The detailed
structure of the equations of motion, which de-
termines the rates of competing processes, is not
used. In fact it is éasy, with the aid of the projection
operator P,;(k), to alter (2.5) and (2.6} so that the

54
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ratio of the contributions from the (b-V)u and
(b-V)b terms to that from the (u-V)b term has
any desired value, but neither the form of the energy
nor Liouville’s theorem are changed. Thus the ratio
of sweeping-out to local enhancement can be made
anything desited without affecting the Gibbs equi-
“Hbrium. -

In absolute statistical equilibrium there is no
competition among different processes and the proe-
ess rates do not affect the equilibrium. The property
of detailed balance states that each triad interaction
is individually in equilibrium and gives no net energy
transfer in or out of any degree of freedom. This
is an exact property: the energy is a sum of squares
so0 that the canonical ensemble is Gaussian and all
the triple moments in (2.11)~(2.13) vanish,

3.2, The Vorticity Analogy

Eqguation (2.2) for b is identical with the equation
of motion for the vorticity, if » = » and the (b- V)b
term in (2.1) is neglected.’ This suggests that vor-
ticity creation by stretching of vortex tubes should
have a magnetic counterpart. Furthermore, it yiclds
an immediate particular solution for the weak-field
magnetic spectrum when A ». The identity of
the equations means that there is an ensemble of
solutions

bix, §) « 7 xulx, 8, 32)
which implies
Flk, § « KEE, 9. 3.3)

If (3.2) is satisfied for all x at any {, it is preserved
by (2.1) and (2.2) with the (b-V)b term omitted.
Finally, the neglect of Lorents forces should, reason-
ably, have 2 neghgible effect on the evolution of
b(x, &), if (2.19) is satisfied with sufficient strength,
50 that the neglect of (b-WV)b is justified.

When A # », the vorticity s.nalogy is less sharp,
as has been stressed by Cowlmg ami chers How-
ever, & crucial trouble arises alr
A = » Equation (3.2) prescnbes a deﬁmte phase
relatmn beﬁween magnetic and veloc:ty field every-
where in  every - realization. This’ phasmg is not
reqmred by (2.2) and is not satisfied by a random
ensemble of magnetic fields with the spectrum (3.3).
- One implication of the artificial phase constraint
is that, by (3.2) and (2.19), .

fo TEE G dk =0 3.4
In other words, the quantity v
=~ [ ek oa=[ rreoa 69
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is conserved by the interaction, in precise analogy to
the conservation of kinetic energy. Q(f) and @k, §
can be interpreted as the nean-square and spectrum
function of the vestor potential®

Equation {3.4) requires that J(X, £} be negative for
some k. In contrast, it can be shown that, when
(3.2) i& not imposed. the phases of the magnetic
field can be chosen to yicld

J, 1> 0 (allk)

at some instant ¢, whatever the functions E(k, 1)
and F(k. {) are. Moreover, if the initial magnetic
field has random phascs. the initial growth of J(k, )
always makes the left-hand side of (3.4) >0. Equa-
tion (2.21), with (2.18), the sine and cosine laws
for a plane triangle, and a renaming of variables,
vields

f EHOT(k, /980 dk
L3

= f: dp f: dg Iip, OQp, OF(g, 0), (3.6
where '
p, 9
- [1 @' — e/t + ¢ — 2pez)] dx. BT)

The numerator of the integrand of I(p, ¢} is anti-
symmetric in 2 and >0 for 0 < 2 < 1. The de-
nominator is >0 for —~1 < 2 < | and decreases
monotonically as z increases. Hence, I(p, ¢} > 0
for all p and ¢.

Clearly (3.2) represenis a severe artificial con-
straint on the growth of the magnetic field. It im-
poses a conservation property which is unidirec-
tionally violated in the mean if the initial magnetic
seed fields are random. This fact limits the inferences
which validly ean be made from the vorticity an-
alogy. The growth of vorticity in one region of the
spectrum must always be accompanied by loss of
vorticity in another region. If (3.4) were true, the
growth of magnetic energy would suffer the same
constraint. Magnetic energy at high wavenumbers
could be sustained against Ohmic loss only by with-
drawals of magnetic energy from lower wave-
numbers. After the reservoir at low wavenumbers
were exhausted, the magnetic spectrum would neces-
sarily decay at all wavenumbers.'® Since (3.4) does
not hold if the phases of the seed field are random,
the possibility is open that J(k, ¢) evolves to si-

1w . L. Mestel, in Siellar and Solar Magnetic 1Fie&is‘

{North-Holland Publishing Company, Amsterdam, Nether-
lands, 1963), p. 424.

TURBULENT MAGNETIC FIELDS

863

multaneously positive values at all %, so that the
magnetic field exhibits true spontaneous growth and
inereases indefinitely, until the weak-field condition
is violated. A corollary is that the vorticity analogy
does not indieate what ratio A/», if any, marke the
division between decay and spontaneous growth.

3.3. Inadequacy of Approximate Turbulence Theories

No general principle so far expounded appears to
determine whether turbulent dynamos exist. It
should be stressed that the failures of the equiparti-
tion considerations and the vorticity analogy are
not on points of rigor but because crucial physical
questions are untouched. In order to decide whether
dynamos exist, it seems necessary to treat the de-
tailed dynamics of the turbulence guantitatively so
as to determine whether the local energy-enhancing
or the sweeping-out processes are stronger. The
e-folding times associated with both kinds of process
are plausibly of the same order of magnitude: the
eddy circulation time of some crucial band of wave-
numbers that dominates the magnetic spectrum. If
80, it is necessary to find the numerical ratio of two
effective e-folding times which have the same func-
tional dependence on the basic flow parameters.

This kind of task seems beyond the capabilities
of the kinds of approximate turbulence theories
which are now available. The approximations may
include the prineipal dynamical processes and es-
timate their orders of magnitude correctly. But it
is impossible to obtain numerical bounds on errors
and therefore impossible to obtain reliable balances
between competing processes whose strengths are
comparable and whose outcome is not controlled by
a helpful conservation law. To put it another way,
the magnitude of the asymptotic growth rate of the
magnetic spectrum can (hopefully) be determined
approximately, but not the sign of the growth rate.
The dynamo problem seems to pose a uniquely
difficult challenge to theorists. Unless some valid
way of looking at the problem is uncovered which
eliminates the need for detailed dynamical knowl-
edge, attack by direct computer experiment may
be required.

The conflicting predictions of eventual growth or
decay reached in previous published work appear
to arise from neglecting or denying sither local-
enhancement or sweeping-out processes in eritical
wavenumber regions. Biermann and Schltter’ pre-
dict exponential growth for any X/», but ignore
completely the transfer of magnetic energy between
different %k bands. Moffatt® infers decay for A > »,
in the absence of steady input. But he considers
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only one-way transfer outward in k space, accom-
panied by amplification. The possibility of domina~
tion by local processes like those demoustrated in
Sec. 3.1, where both the higher and the lower of the
pair of magnetic wavenumbers gain energy, is not
admitted. Saffman® predicts deeay for A < v, in
the absence of steady input. He examines the region
far above the viscous cut-off of the velocity field
and concludes that these wavenumbers are stable
to magnetic disturbances (see also Moffatt'). But
the possibility that the magnetic spectrum is sup-
ported by local-enh t pre at lower
wavenumbers is denied by an appeal to the vortieity
analogy. Pas® examines the same region as Saffman
with different conclusions (amplification by a finite
factor instead of eventual decay), but also omits
the possibility of spontaneous growth at lower wave-
numbers. Parker® considers only one-way transfer
of magnetic energy outward in k space, which pre-
cludes a self-supported dynamo at the outset.

The three sections to follow give estimates of the
behavior of the magnetic energy spectrum for each
of the two possibilities, eventual growth or eventual
decay, in the ease where A > ». No attempt is made
to guess which possibility prevails. The estimates
are made by simple dynamical reasoning based on
the theory of the Kolmogorov inertial range. To &

" ¢considerable extént, they reproduce or overlap con-
clusions by previous workers, bui, taken in entirety,
they do not agree with any of the authors. For the
possibility of eventual growth, estimates are made
of what happens when the magnetic field becomes
strong epough that reaction on the velocity field
is po longer negligible.

Following the gualitative analysis, the growth in
the weak-field regime is ealculated numerically using
a simplified closure approximation suggested by the
Lagrangian-history direct-interaction equations.’
The result is eventual weak exponential growth of
the magnetic spectrum at all wavenumbers, This
is not. evidence that actual turbulence behaves
similarly. Instead, the results reinforce the conciu-
sion that the balance between local enhancement
and sweeping-out is too close fo be résolved by
approximate theories like any now available.

4. GROWTH RATE AND SPECTRUM SHAPE I¥
THERE IS EXPORENTIAL GROWTH

Suppose that the Reynolds number is large and
that, prior {o introduction of a magnetic seed field,

“%W%&%J Fluid Mech. 17 225(1933

Phys. Fluids 8, 575 (1965); 9, 1728,
1884, 1037 (1966).
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the turbulence is isotropic and exhibits a Kolmogorov
inertial range in which the kinetic-energy speetrum is

EE) = €%, 4.1}

where C is a number of order one and ¢ is the rate
of dissipation of kinetic energy by viscosity, per
unit mass. Equation (4.1} holds for

ke K k& Ky, 4.2

where k&, is & typical energy-range wavenumber and
k, = (¢/+°)'"* is the Kolmogorov dissipation wave-
number, For £ > k,, E(k) is a rapidly decressing
function of 4. The latter wavenumber range will
not be considered in this paper.

Now let a weak, statistically-isotropie, and ran-
domly-phased magnetic excitation be introduced.
Wenk means that the Lorentz forces produce changes
in the velocity field so small that they ean be neg-~
lected in determining what the velocity feld does
to the magnetic feld.

If k is in the inertial range, the typical eirculation
time for the eddies of size k™" is (%)%, This is
plausibly the characteristic time for distortion of
the magnetic field on the seale k™, provided that
Ohmic dissipation effects are negligible. The Ohmie
decay time at thisscale is (Ak%) ™', so that k,, = (¢/A°)"*
is the wavenumber at which distortion and dissipa-
tion effects on the magnetic field can be expected
to be comparable. Assume that the magnetic
Reynolds number is large; that is,

ko L ko K ki,

since A 3> » has been taken.

If ky € k < k., the characteristic e-folding time
for processes which act to produce local equipartition
between kinetic and magnetic energy and the char-
acteristic time for removal of magnetic energy from
the neighborhood of & by sweeping-outward proc-
esses should each be of the order of the local eddy
circulation time. There does not appear to be another
relevant time. If local enhancement overpowers
sweeping out, the growth rate for net increase of
the magnetic spectrum F(k) should then be of order
(k")*. Since this rate increases with k, the fastest
growth can be expected in the region k ~ k. For
&k > k,, the Ohmic damping overpowers the local

h ment pr Thus the region & ~ k,

Id tually d te the spectrum, whatever
the shape of the initial spectrum, and the total
‘magnetic energy should then increase exponentially
with a growth rate .

(4.3)

o = K@) = KN, @)
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where K is a numertcal constant, If the eventual
aet balance between local enhancement, sweeping-
outward, and loesl dissipation s very close at wave-
numbers near the spectrum maximum, & could be
small compared to one.

The form of the asymptotic spectrum for k & &,
and k 2> k., is easily estimated. In the exponential-
growth regime, the principal magnetic excitation
should be associated with irregularly twisted and
elongated current loops whose transverse dimension
is ~k;'. The loops represent a dipole field. Con-
sequently their speetrum should exhibit an excitation
per wave-vector mode which is «k® for k « k,.
Since the density of modes in wavenumber space
is «k*, this imples

Fk) = k' (ke << k). (4.5}

For k., < k < k,, Fik) should fall off rapidly,
so that eddies of size k™' act on magnetic fields
which are nearly uniform across an eddy. The action
of these eddies against the strong Ohmic damping
then produces slight wiggling and stretehing of the
lines of foree. This situation has been treated by
Golitsyn™ and Moffatt.® Their analyses agree, and
give

Plk) « 7 ha Kk << k,). 4.6)

A simple physical argument leads to (4.6): The
rate-of-strain associated with eddies of size ~k7'
is ~[E*E{k)]'*. The amplitude of the magnetic field
exeited at scales ~4 ™" should be proportional to this
rate-of-strain, proportional to the underlying mag-
netic field at lower wavenumbers, and inversely
proportional to the damping rate Ak%. Since kF (k)
measures the mean square of the amplitude, this
implies

Fik) ~ (N U E ), 4.7)

where 3b8/2 is the total magnetic energy per unit
mass at lower wavenumbers. Equations (+.7) and
(4.1) yield {4.6). Equation {4.7} further implies that
Bk} falls off rapidly for k > k,.

- An idealized representation of the asymptotic
F(k} in the exponential-growth weak-field regime
ig given in Fig. 1. All the features inferred above
are supported by the more detailed analytical and
numerical results of Secs. 7 and 8.

8, APPROACH TO EQUIPARTITION IF
GROWTH PREVAILS

If the magnetic evergy grows exponentially as
described in See. 4, the Lorentz forces eventually

13 (3, 8. Golitayn, Dokl. Akad. Nauk 8S8R 132, 315 (1960)
{English transl.: Soviet Phys.—Doklady 5, 536 (1960)].
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Fic. 1. Idealized magnelic energy spectrum F(k) and
kinetic energy spectrum E(k) in the exponem.m!-gmwth
wenk-field regime.

become significant and finally some equilibrium par-
tition of energy between magnetic and velocity field
should be reached. It has been argued™ that the
equilibrium inertial range of hydromagnetic tur-
bulence exhibits exact equipartition between mag-
netic and kinetic energy [F{k) = E({)| and a
spectrum law E(k) « k%% in place of the Kolmogorov
law (4.1). The change in spectrum law is associated
with a transformation of the physical character of
the inertial-range motion. If the magnetic energy
at wavenumbers below an inertial-range wavenum-
ber k is larger than the kinetic energy in wave-
numbers 2k, then the tension of the effectively
uniform lines of force associated with the low wave-
numbers changes the eddy motion at wavenumber
k into Alfvén waves propagating aloug the lines
of force.

The Alivén period (bok) ™', where 3b2/2 is the total
contemporaneous magnetic energy per unit mass,
is the characteristic time for exchange of enecrgy
between magnetic and kinetic modes at the same X,
while the energy cascade up the spectrum is asso-
ciated with the scattering between the waves
travelling in opposite directions along the lines of
force. This scattering is weak, in the sense that little
of a wave’s energy is scattered out in ome Alfvén
pertod.'* As a result, the efficiency of cascade is

¥ B H. Kraichnan, Phys. Fluids 8, 1385 (1965).
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rediced, relative to the pure hydrodynamic case,
and there is a pile-up of the energy sent up from
below, which raises the spectrum from the (k/%o) %"
level to the (k/ko)™** level. The equilibrium spec-
trum is F(k) = E{k) ~ (ebp) k™", while ¢ is the
same order of magnitude as in a pure hydrodynamic
flow with the same energv-range parameters.

The effects just described imply an approach to
equipartition agreeing in important respeets with
that proposed by Biermann and Schliter” Equi-
partition should be reached first at & ~ k,, where
the weak-field spectrum peaks, and should then
spread down the spectrum until the energy range
is reached. While this process is going on. the spec-
trum law for kinetic energy is ~5/3 below the
equipartition region and —3/2 within the region,
up to wavenumbers where dissipation becomes
important.

The effects of Ohmic dissipation to be expected
during the spread of equipartition are more complex
than in the weak-field regime. For & < b/, the
Alfvén frequency bk exceeds Ak®, which implies that

equipartition between F{k} and E(k) is maintained
in the face of the Ohmic loss. If the wavenumber &,
at which the —3/2 region cuts off is <by/}, it can
then be determined by equating the rate of total

log[E(k»}/(eA’}"'] or lagFlkA®]

toglk /<73 )™)

. Pie. 2 Idenhzed tra after m -extensive equipartition
tab'l)n‘;c lme-semata the

~total
wxf The dashed lines

. e:qulparhtmn 0‘--“

poranecus magnetic energy is
S
& A No 21 Ve
" decreased at high k since that time. ) and B(k) bave
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energy cascade e to the Ohmic dissipation, taking
k ~ ¢/b} as the low end of the —3/2 range:

Mebe) ki ~ e, ko~ (e NV,

where numerical factors are neglected.

In the region Ly < k < by/A, equipartition is
maintained and the competition between rising
Ohmic damping and weakening cascade should give
a rapid fall-off of the spectrum. Analogy to a pure
hydrodynamic dissipation range suggests that the
fall-off is exponential in character. For k 3> by/),
equipartition cannot be maintained against Ohmic
loss, and the ‘asymptotic dynamics should be those
of a weakly conducting fluid. If so, the —5/3 law
for E(k) should be re-established, but with a caseade
rate much smaller than ¢ if the equipartition dis-
sipation range is extensive, while F{k) should behave
like &7V,

When equipartition is first reached,

50 ~ {k.,E(k., ]x/t o~ (.‘.}\ U(’

so that k,, k., and b,/h are all about the same.
As the equipartition region grows, k, moves down-
ward from k, and b,/A moves upward, since b,
inereases. Thus the preceding discussion is self-con-~
sistent. The parameter ¢ is expected to stay roughly
constant during the spread of equipartition, because
it represents the conservative cascade of total energy
up from the energy containing wavepumbers. After

6.1}

- the equipartition region is extensive, this cascade

is balanced principslly by Ohmie dissipation. The
spectrum structure during the spread of equiparti-
tion is shown in idealized form in Fig. 2.

When equipartition has reached down to the
energy-containing wavenumbers &y, then b, ~ v,
where 3v3/2 is the kinetic energy per unit mass.
At that stage, the preceding fermulas give

ko~ BE3ke, /N~ Rusde,  (52)
where g ’ : )
Rmu = l«'n/ ()‘kﬁ) (5'3) N
is the magnetic Reynolds number of the turbulent
motion. For comparison,

G4

ko ~ B3R,
since ¢ ~ vik, is an accepted consequence of the '
energy-range dynamies.

It-can be objected that the continued appmch
to equipartition at lower wavenumbers does not
follow {ogically from the supposition of exponential
growth under weak-field conditions. Perhaps after -
equipartition is reached in the neighborhood of %,

‘the magnetic spectmm attains o steady form ﬁm& -
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falls off toward lower wavenumbers. Such behavior
has been suggested by Batchelor,' although for A < ».
This possibility seems unlikely. The supposition of
exponential growth implies that local enhancement
processes at k ~ k,, prevail over sweeping-outward
processes and local Ohmic losses. At & <« &, the
Ohmic loss in one eddy-cireulation time {the e-folding
time for local enhancement} is less than at kb ~ k.
Also, a spectrum which rises with % tends to inhibit
the sweeping-outward processes, The net transfer
between different wavenumber regions is the re-
sultant of a fwo-way exchange, and the back-flow
from high to low wavenumbers is roughly propor-
tional to the excitation at the higher wavenumbers
(cf. Sec. 2), Both considerations suggest that if local
enhancement processes can give exponential growth
at & ~ £k, where the spectrum bends over, they
surely ean do so at lower wavenumbers, where the
specturm is rising with wavenumber. Of course, a
longer e-folding time is expected at the lower wave-
numbers because the eddy-circulation time is longer.

6. STEADY-STATE SPECTRUM IF THERE 1S
NOT SPONTANEOUS GROWTH

If an initial weak magnetic field eventually dies
away, contrary to the supposition of Secs. 4 and 5,
then a statistically steady supply of magnetic energy
should produce a steady-state spectrum. An attempt
will now be made to estimate the form of this
spectrum if the input is in a band of wavenumbers
ki K ke

Moffatt® has treated the problem on the basis of
the vorticity analogy and finds F(k) « %' for
ki K k& k. It is important to note that derivations
of the ¢°k'* vorticity spectrum in the Kolmogorov
inertial range are possible only because there 4 the
parameter ¢ which measures the conservative cascade
of kinetic energy up the spectrum. In the magnetic-
field-vorticity analogy, the quantity analogous to
kinetic energy is Q(¢), the mean square of the vector
potential.® However, @ is not conserved if the phase
of the initial magnetic seed field is random. As
shown in Sec. 3.2, the initial growth of @ is always
positive. Thus the &Y% law for F(k) cannot validly
be inferred.

If it is meaningful at all to speak of a cascade
of magnetic energy analogous to the cascade of
vorticity, then the tendency of @ to grow implies
that the parameter analogous to e is not a constant,
but instead increases with k. The increase is asso-
ciated with the local enhanecement processes, which
add to @ at each step of the cascade. Similarity
considerations suggest that the amplification of @
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during each, say, doubling of wavenumber in the
cascade should be cobstant throughout the region
kin & K <€ k,,. Comparison with the vorticity resalt
then gives F(k) = £°, withn > 1/3.

However, there is an upper limit on n. The excita-
tion at wavenumbers ~&, is dipole in character so
that it contributes a low-wavenumber tail =% 1o
F(k), according to an argument of Sec. 4. Then il
n were >4, there would be a driven exeitation is
the neighborhood of k.. that exceeded the inpub
excitation and the system would be regenerative,
contradicting the present supposition that the mag-
netic field canuot maintain itself. Thus the final
result is

Fiby « k*, 1<n<4 (h<k<k) 6.1

It should be stressed that the value of the exponent
n in (6.1) depends on the numerical value of the
effective amplification per cascade step. In the
absence of a relevant conservation law, it Joes not
seem possible to determine n by general considers-
tions. In order to sharpen (6.1), it seems necossary
to make detailed dysamical caleulations.

For k 3> k,, the arguments of Sec. 4 should apply
equally well under the present assumptions, so that
the spectrum should obey (4.6}, as concluded by
Moffatt.

7. AN APPROXIMATE LONG-TIME TRANSFER
FORMULA

Consider the approximate Jong-time transfer
formulas

., o , dp d |
10,6 = kB 0 [ penlia, 0a B, @)

T, 0 = [[ WdnFip, 00
A
= Pl 03B 0 B3, @)

where the guantity 8., is an effective memory tims
for the interaction of wavenumbers &, p, 9. If the
§ factors were removed from (7.1) and (7.2}, the
right-hand sides would be identical with the exacs
expressions (2.20) and (2.21) for the initial time
derivatives of Lk, t) and J{k, &) in the weak-fickd
regime. Thus (7.1} and (7.2) may be interpreted
as follows. They incorporate all the processes which
contribute to the initial development of encrgy
transfer, and with the same geometrical cocfficients. .
However, they recognize that the initial growih of

phase correlation between magnetic and velocity

field (growth of triple moments) cannot continue

forever; if it did, L(k, &) and J{&, ¢) would become
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infinite. Instead, the phase correlation among modes
k, p, ¢ should level off at some relevant relaxation
or memory time.

Equations (7.1) and {7.2} may be derived by the
Lagrangian-history  direct-inleraction approxima-
tion,* which alse vields integrodifferential equations
that determine §,,. This fact will not be used in
the present application. Bquations (7.1} and (7.2)

" will be taken on their merits. and the 6, will be
approximated according to simpie ideas. The dis-
cussion will make clear that more refined approxi-
mation and a detailed derivauion woulc add littie
to the persuasiveness of the final results.

Sinee & cosine never exceeds one in absolute value,
the coefficients &,,, and &, are never negative. Thus
the first ‘term on the right-hand side of (7.2) rep-
resents a positive input of energy at magnetic wave-
pumber k that is proportional to both F(p, {} and

E(g, §). In other words, it represents a driving of

wavenumber & by magnetic wavenumber p and
kinetic wavenumber ¢g. There are two types of
characteristic times which should determine the
effective memory time 8y, for the driving process.
‘First, the memory time is limited by the effective
correlation times of the driving amplitudes. Becond,
it is limited by the effective damping time of the
driven mode. If k is sufficiently large, the latter
_time is just the Ohmic damping time (\*)™'. For
Jower k, there will also be effective damping by eddy

processes, expressible by an eddy diffusivity.

A simple form incorporsting these ideas is
b = (Y + R4 £ 4+ 0, 03

" where w, £, and {, are, respectively, the effective
reciprocal times for eddy damping of magnetic mode
k, correlation of magnetic mode p, and correlation
of velocity mode ¢. The particular functional form
is chosen for convenience and has no deeper justi-
fication.

The second term on the right-hand side of (7.2)
is always negative, representing a-loss of energy
from -magnetic mode -%. Since the interaction of
magnetic and velocity fields ves the total
energy, this loss must show up a8 a net gain in
magnetic modé p and velocity mode g. The con-
servation requirement imposes a relation among the
# factors in the two terms of (7.2} and in (7:1) which
has already been incorporsted in writing the equs-
-tions: the three factors are all the same, except for
a permutation of indices. It is easily verified that,
whatever the form of 6,,, and of the spectra ¥k, )
and E(k, £), (7.1), (7.2), and (2.18} yield the second
conservation law {2.14). In the.weak-field regime,
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Lk, £} is too small to afiect the evolution of Elk, &)
appreciably, but it is important to the logical con-
sistency of the transfer approximation that the de-
tailed conservation properties of the exact equations
of motior: survive.

When the velocity specirum has the form (417
at ali wavenumbers of inwerest, the ideas underlying
the Kolmogorov theory suggest thai ». £, and {,
should all be proportiona: w the local reciprocal
eddv-cireulation time {7, with numerical co-
efficients of order one. The final form of 6, in this
case is then

,ﬁn' = [(AkZ}E “i" e,!!,\rAil;L‘i
+ A + A7), 7.4
where 4,, 4,, and 4, are the numerical coefficients.

8. NUMERICAL RESULTS AND THEIR
INTERPRETATION
The magnetic spectrum growth was caloulated
numerically in the weak-field regime using the ap-
proximate transfer formulas of Sec. 7. The constants
in (4.1) and (7.4) were assigned the vakies

C=15 A =15 d,=4,=10, (@ 1)

and the initial magnetic-energy spectrum was given
the form

Pk, 0) = &' exp {—2(k/kw)"l, 8:2)
which has a maximum at & = k,,. The value%,., =
0.0027 %,. was taken as an arbitrary choice satisfying
kin K ko

The equality of efiective magnetic and kinetic
modal correlation times assumed in (8.1) was chosen
s the simplest possibility. The eddy-damping time
was taken shorter than the correlation times because
inertial-range caleulations for hydrodynamic tur-
bulence indicated such behavior for eddy damping
of velocity modes.'* The particular choice 1.5 for
the ratio of the times is arbitrary. It should be noted
that only the ratios of the A’s can affect the nature
of the transfer. Changing the value of the XKol-

_mogorov constent C or scaling the A’s by a constant

factor multiplies J(k, t) by the same factor for all
k and is equivaleni to s rescaling of time and wave-
number units.

The results of the calculation are displayed in
Figs. 3 to 6. The growth of total magnetic energy
was monotonic. The initial value of the exponential
growth rate for total energy was about 0.4(e/)",
and the growth rate decreased monotonically to an
asymptotic value 23 X H7™(¢/M)Y* which was
achieved by ¢ ~'10°(A/&)**.
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The evolution of the spectrum (Fig. 4) fell into
three stages. First, there was a rapidly established
increase in energy al high wavenumbers accom-
panied by a slowly growing and encrmously smaller
Ioss in the region around k... Next, the increase at
high wavenumbers continued, while the rate of loss
in the region of initial excitation decreased. Finally,
the energy grew at all wavenumbers and the spec-
trum evolved toward an asymptotic eguilibrium
shape with the intensity increasing at the same
exponential growth rate everywhere. The maximum
loss of energy at ki, was 279, at & ~ 300(\/¢)'%.
By the énd of the calculation [t ~ 4.6 X 10°(x/¢)"%),
the total energy was amplified by 88 X 107 and
the spectrum level at k., was 3.8 X 10° times its
initial value.

The epergy maximum in the asymptotic spectrum
was at k ~ 0.12 k... Throughout the evolution, most
of the positive contributions to [3 J(k, t) dk were
at wavenumbers near and above this asymptotic
‘maximum, with a small positive contribution at
wavenumbers below the region of peak initial ex-
citation. The form of J{k, {) during the first and

- third stages of evolution is shown in Figs. 5 and 6.

The shape of the asymptotic spectrum at wave-

numbers below and above the maximum is consistent

osk
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Fic. 3. Growth of total megnetic energy #(¢) computed with
the approximate transfer runetion,

i
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Fic. 4. Evolution of #{k, t) computed with the approximate
transfer function. Curve 1,1 = 0; curve 2, t = 11.4; curve 3,
t = 114; curve 4, t = 1140. These times are measured in the
unit {3/,

with (4.5) and (4.6). The latter results are also
easily obtained analytically from (7.2)-(7.4) under
the assumption that most of the energy is at wave-
numbers the order of (¢/A°)"* and is growing with
time.

A feature of particular interest is that the energy
increase was dominated by high wavenumbers even
at the earliest times of evolution, when insufficient
excitation had developed at intermediate wavenum-
bers to support a cascade, At these times, there was
strong direct energy coupling over a jump of two
decades in wavenumber. This phenomenon has a
simple physical interpretation and appears not to
be an artifact of the approximation. The generation
of small-scale magnetic excitation by small eddies
depends on the strength of the magnetic field rather
than the gradient of the field, since this excitation
can be visualized as a wiggling of the lines of force.
Thus the rate of energy transfer to high wave-
numbers depends principally upon the total mag-
netic energy in lower wavenumbers and is largely
independent of how low in wavenumber that energy
may be. The absolute rate of energy input to the
high wavenumbers (as opposed to the exponential
growth rate} inereases with tume during the initial
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stage of evolution becsuse the total magnetic energy
at lower wavenumbers increases.

The transfer machanism for the magnetic field
differs profoundly from that fora conveeted-passive
sealar field. In the Iatter case, generation of small-
seale excitation depends on the magnitude of the
gradients on which the small-scale eddies can act, and
vanighes if the initial excitation is spatially uniform.
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At the maximum of the asymptotic energy spee-
trum (k ~ 0.12 k,,), the reciprocal eddy circulaiion
time (k)" is ~0.25(¢/2)"?, while the Ohmic decay
rate Ak is ~0.014(¢/A). The total contribution
to J{&, {) at this wavenumber can be divided into
positive contributions (from triad interactions yinid-
ing local enhancement) and negative contributicos
(from triad interactions associated with sweepicg-
out processesi. It is fairly clear, and verified by the
caleulation, that either the positive or the negative
contributions, taken slone, would give alocal growth
rate with absolute value the order of the reciprocal
eddy circulation time. Since the actual asymptotic
growth rate is only 2.3 X 107%(¢/3)Y5, the lotal .
enhancement and sweeping-out processes are very
nearly in balance. They differ, to first approximafion,
oniy by the relatively small Olunie dissipation rate. .

This elose balance is the most important result
of the calculation, The prediction of eventual growth
rather than decay cannot be deemed persuasive,
because it may be reversible by a change in the form
of the transfer approximation, or even by a change
in the ratios of the A’s. But it is significant that
a physically plausible transfer function, which in-

cludes consistently all the processes found in-the

exact initial transfer formula, gives a neck-and-neck
race between enhancement and sweeping outward. .
This adds substance-to the conclusion that approx-
imate turbulence theories cannot be relied upon to.
predict whether turbulent dynamos exist. However,
if eventual growth does prevail in nature, the pre- .
distions of (7:1) and (7.2) may be valid in con-
giderable detail.

In some applications it may turn out pot to be
crucial whether there are self-sustaining dynamos.
If the inertial range is very extensive, and the inpat
magnetic excitation is on a large enough spatial ©
scale and sufficiently persistent, the turbulence may

-produce large amplification of the magpetic energy -

at times of interest whether the eventual fate is

growth or deeay. It remains possible that well-con--
structed turbulence approximations can be useful
in predicting the earlier stages of growth, Whatever :
‘happens later.
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ABSTRACT

The direct interaction approximation for hydromagnetic
turbulence maintained by stationary, isotropic, random stirring
forces is formulated in the wave-number-frequency domain, Simpli-
fying assumptions are introduced about the functional forms of ‘
correlation and response functions of the velocity and magnetic
fields and a closed set of six nonlinear integral equations are
derived for them., These are solved through an iierative procedure,
for prescribed spectra and frequencies of the random stirring
forces. Kolmogorov's ideas of local isotropy and their relevence
to the hydromagnetic situation are reviewed with the special
view to study the Galilean non-invariance of the hydromagnetic

equations to a random constant magnetic field transformation.
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Lugrangian implications of this are discussed and a recipe
through which this non-invariancercan be taken care of is
suggested and exploited. Solutions to the steady-state equations
under these limitations display an unequivocal almost-exact

and detailed equipartition between magnetic and velocity modes
in the inertial range. The peculiar hydromagnetic¢ non-invariance

tends only to accentuate this,

KEY WORD3: Turbulénce, Non-equilibrium Statistical Mechanics,
Generalised relaxation processes, Magnetohydrodynamics, Plasma

turbulence, Astrophysics, Turbulert Dynamo.
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1. Introduction

In an earlier paperl, an attempt was made to predict
unequivocally whether in a highly conducting; isotropically
turbulent filuid, a random, weak initial magnetic field would
grow and, if so, to determine the kinematic conditions under
which this would ensue. It was concluded that the present day
dynamical theories of turbulence were inadequate in resolving
the question of growth or decay uniquely. But, granting that
one or the other alternative wins, one could predict the ultimate
magnetic energy spectrum. In this paper, we explore %he guestion

of ultimate evolutionary steady-state assuming that the growth

wins,

In Section 2, we derive the direct-intéraction approxi-
mation equations in the isotropic, homogeneous and stationary
hydromagnetic case, which bring the magnetic situation to the
same level of completeness as the hydrodynamic situation2’5.

In Section 3, we develop this formalism, in the wave number-
frequency domain, for the stationary situation. In Section 4,
this model is further developed with an idea of trying to
explore what minimal information about the timé structure of

the correlation and response functions would be needed to
determine the steady-state spectra of the velocity and magnetic
modes. Assuming a functional form for these two functions, the
complicated non-linear dispersion-theoretic formalism connecting

the two Green's functions, spectral functions and correlation

functions is reduced to six integral equations.



In Section 5, a not-too-detailed survey of the Kolmogorov
ideas of iocél isotropy and their relevence in the hydromagnetic
context is given, It is argued that, in fact, the usual dis-
cre#ency between the unmodified direct interaction inertiale.
range solutions, which display an energy range-inertial-range
coupling and the Kolmogorov spectrum, which is strictly local
in wave number space, arises from the confusion between
Lagrangian and Eulerian correlation times4’5. These are connected
with the invariance of the Navier-Stokes equations under random
Galilean Transformations., But the hydromagnetic eguations
display an asymmetry, in so far as a constant magnetic field
cannot be gauged out, in the same way as a constant velocity

field can, in a co-moving coordinate system.

In Section 6, an iterative procedure, through which
these equations can be solved numerically is described. Various
modifications to the iterative procedure, through which the
various Lagrangian and quasi-Lagrangian history behaviour can
be approximately taken care of are delineated. Finally, a
partial Lagrangian modification through which the Galilean
non-invariance of the hydfomagnetic,equations in relation to

magnetic terms is explicitly taken care of is described.

In Section 7, the results of this study are compared
eritically with other investigations. It is concluded that the
really convincing, invariant result of the analysis, which

remains common in all modifications is that in the steady-
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state, there is an almost-exact and detailed equipartition bet-
ween magnetic and velocity modes in the inertial range, Further,
the reduced Lagrangian history hydromagnetic modification also
shows that the peculiar non-invariance tends to increase the

energy-level in the magnetic spectrum.

2. Equations in the Stationary Hyd;omagnetic Case

We will start with a recapitulation of the direct inter-
action approximation for hydromagnetic turbulence, which is
homogeneous,isotropic and stationary. The standard incompressible
hydromagnetic equations ar96

(%,pvbjgtcgse) = - VpHW QW -UP)U+ §

~

(Z - Avs) Wiy = —(u-p)w +(wW-2)¥
‘— A~

— . LW =
(v.x)= @ ; (p@)=e (1)

where %(5))-) and (4.7/'/»/’))\/2' M)'(E,fj are the
velocity and magnetic induction fields, 56? ~is the random

solenoidal driving force, /}5 is the pressure and Y /\,/IAIF
are the kinematic viscosity, magnetic diffusivity, susceptibi-

lity and dedity of the fluid, respectively.

The direct interaction -closure procedure of Kraichnan,
when applied to these set of equations yields in the stationary

. .2
situation '
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(4)
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Here .[f denotes integration over all P, ci such that
: T 2

& ‘9 and 9§ can form a triangle
w—F

—
-

- 'k'(’."
(g = (2 [5G 8) KU Gsr)- k(o) €54

3 ) <&-Ix-9)
Wiy = @[22y )< W) B e

(R-(x4)

F(e:¥) =<Q‘9'3f43C5-2)<ﬁ(i"")'f(ifw) o x

and od

Z(&ye) = [b&vfﬁ%) Fla;e43)d 8

"
Gtv('&s E—i—’) and G (Q; é*‘i“) are the average Green's
functions which give the mean response of the ami:litude of mode

k{V or M} at time t to an infinitesimal perturbation of that mode

at teme t’
3
G‘i (R30) = \

Gig(ise)=° £ <o )

The geometrical coeefficients in the integrals on the
right hand sides of (2) to {5) are given by
0lk,p,9) = (1-292-2922%) |dCRpY) = \4xy2

n
beg pq) = (Pla)(x9+22) hiw,pa) = (P7a) (xy+2)

cetpa) = (R 2U-93)  ycepy) = (le)=(-x)
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where x,y and z are the cosines of the interior angles opposite
to the triangle sides k,p and g respectively. There are some
relations between these geometrical coefficients, which illus-
trafe the overall conservation properties of the non-linear
interaction and the conservation~preservation feature of tﬁe

direct interaction approximation. They are

S dalkpg) = blRPI) + blk,9,p)
= cl(&Ppa)+ c(R,9,p)

d(&,b,9) = k(ﬁ,v,&) + 5 (k9P

o (&pa) = alkap) =z o0

d(833) = dBgp)=dlbie) o
& b(kr9) = p* b(e,&,9)

£* W(&,p,9) = b* W(p&9)

k= c(rrq) = P Ly(p.&9))

The energy-spectrum functions B8 (x), E® (k) and the
modal correlation functions Rv(k;t), R®(k;t) are defined

~according to ‘

Z Wk, K = (TR EVCR) RY(R,¥)

W'ty = @ ) E"R) R7(kY)
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Similarly for the force field

Fle,v) = (¢7me&)" Fle) M(k.y)
with the initial conditions
Rv(ﬁ,o)‘-‘—i

; R™(ko)=1 35 Mk, 0) =/

3.

Wave number - frequency domain

Consider the frequency domain functions given by

?
Y

a N
(k.w)

i

- ® {ar a4 ¢
(aw) Jde, w(k:H) d

¥ (heo) = @' Lo Flrimat

4

= (QW) f e,cw G (&,r)d¢E
ob

R (&:w) = (ezm"’lo e " R (& )4t

o

M (hw) = (am)” Le_ M(8:F)dE

(7)

In all these a = ¥ or M,

From the reality, stationarity and isotropy of the z;,
and 1; , it follows that

wi(tw) = \ \R’?“(,&m)l W (& ; ~w)
iso. (iﬁ.:ik{) = \ 22 :)3 = iiﬁ‘%:gtj,~uﬁ)
¥ o(Rw) = “;\fx’:mm)l = ¥ (k:-w)
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k From the reality, stationarity and isotropy properties

and the causal definitions of the Green's functions follow the

dispersion relations

‘ o
=2 = b : LR a & w' (”'u‘_’d !
Go(Riw) = P (R:0) 74T P3[ PO (ks ) ”J?m

‘ ‘ qQ ~ a
in which F (&: w) = QQE G (& b.))]r
with the identification P} 3 is the principal part and
"Rel J the real part, (a =V or M)

The transforms of {2-5) are
t-CHL)‘+);;§; T (Rw) + Iﬁ(““@‘ﬂ g'?ﬁ-‘“’) =1 ()
[}-Jw,-g, AR+ W (e wj-&- @M(ﬁ:w)—] GM(R:w) = ) an
[-cw«\' v&’#-&-}:(ﬁ:w) fim(ﬁi@)]\:)v(ﬁ"w)
= [Tehw) + T (8:0)] ECaoig ¥ ®0h )
‘ L)

o s 2w
Bl ARy ®(8:w) + @"‘(@:w)'_]m(w)z M) G ((?;:;o)

with the following identifications:
o ob v .
Z(Q:”)zgrtpﬁpag 6C$,p,q);];duf G () WG w-w) (12)
S0y = ﬂ?rkps dpdq c(k, P,'«))f‘* w @ (psa) W95 W
o - Ta e (15)
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®(k:w)= {f T&pydp o9 Alk,p, 9)}‘“‘ & s w') \'&3"(‘7;«»—”) (16)
@“(a,m ;ﬂ“ﬁfe?‘)é#eﬁéf H)ﬁw GY(psi0r) W™ (9 w-w)

(17)
Vikw) = ﬁﬂﬁf“)“‘ﬁ?‘j‘? a(ém){dm W (p: w)kj (75ww)
(18)
vt W)= IT@ﬁ‘Jf’d‘f G(in‘{@w W (f’u}‘ W f‘),w,w:)
’ ) (19)
AME:w) = ﬂﬁra dpdlg d(ﬁr, dw W™ (b w, ) v ‘(1 0w)
(20)
é(%: w = Grv (&:w) ‘F(ﬁ_—aﬁ:{)
(21)

From the definitions of \A} (&: b..‘i, and the coeffecients Q(&rﬂ})

and CJ-LQ,V, C,*) , it follows that Y\Q W) s
\‘N(%; ;,0:) and ,\\‘;?&,u}) are positive and real,

From {10) and (11) we get

~ =)

G\'V(& (A>> ruw 4~1)P&“‘“1-';§“\%v.) \-4_"3. “’j’ (22)

» -1
G(eiw) = E‘ W+ AR+ B(h:w)+ @mﬁm’.}? (23)

From {12}, {13}, (22} and (23%) we get

W(e:w) = V(8 0) + TV ) + Tl )] (&R w))

24 )

o ~ 2
W™Rg:w)= Ak ]G‘mfﬁ:w)\ -

Equations (22) to (25) constitute a complete set of four

integral equations for determining the CGreen's functions and
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covariances of the velocity and magnetic field, given the form

of the forcing field covariance.

4, Characteristic Frequency Approximation,

" In (2) and (3), if we get t = O, we get the'energy

" balance equations

v (R _dpq| (R ackya Ev(\‘ E
p%."E (&) -.g-?m P B, ) e(v)vv;&,)m)
- b(®&,p9) E'(®) E') Blvvv: ?,"hﬁ)}

+J8 ot p) EMR) ENOQ) OVMM; Rpa)
“phclerg) E'CR) B Bmmy; 2.8 |

+ £ FC) a®
(26)

AR EM(R) = j_(;_,dpdq[i%" a(Rya) E%ps EMa)
B(mwmy; R,p 3)

- :—f?\c&,vﬁ)E &) EVCq) G(MVM ; p,9,R)
> v" J(Rp) BN ENC) Q(VMMsm,&)E

where (27)
8("‘ be fmn) JAAG«(QS)R(M«S)R@@
(&,b,c = Vor M)  (29)
. -and
Q(fe) faa@(% a) v\(g .3) | 29)
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These two equations involving E' (k) ana E™ (k) can be
solved if we could provide at least integral information
regarding the G's and R's , in the form of the £F._
functions defined above. In sofar as steady-state energy balance
relations are invelved, no more than this much is needed.
Keeping this in mind, we will explore the fregquency relation-
ship, which we derived in the last section and try to find the
minimal overall information about the time structure of the
Green's functions and correlation functions, {or what amounts
to the same, their frequency structure), that will be
necessary to solve for the spectral functions.

Let us define correlation freguencies gv(ﬁ). ém( €°~>
and response frequencies 07\'(&) and 'ﬂm(ﬁ‘) for mode k in the

velocity and magnetic modes respectively by

- 2 - (FO ,
rgv(ﬁ.ﬂ = J(; R'(&,r)dr [%m(%% =4, RY(g e)dt

ol - o
. _ o - - f o,
m (W] = & Rnae 5 {ml = | Gikedt
v g Vo - ve (30)
and the characteristic frequency of the stirring forces by

- ]

s’ = [ mceeae o

Relations between these frequencies and the spectral
functions can be obtained by integrating (3), (4), (5) and (6)
over the time t from zero to infinity. But remembering that
the time average of a Tunction is egqual to its zero frequency
Fourier component, we can get just the same from (22), (23),
(24) and (25) by putting @d>=o . With these substitutions and

a few manipulations, these yield



| v, Ry, Ya, O(vvs
708) = »R 4~fﬂf ze P %ib(%,v,q) Et9) Q(WJM)
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(32)
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+)(k13) ENCa) 6,(VM;5 p,9)S
(33)
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ENG ) EN o (MM P9 7l oo
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6, 0R "= P [f 5 ae SCe1)

E™Ce) EYCH) 0, (v
=Y O SLAA ;m/ﬂ
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Rearranging {26) and (27), we get

Fe) ec&).;_ﬂ g—‘”‘ pdqr(tey, %ﬁE CP)E(\WV sRp,9)

+. E (p')E- (§)GCVMM ﬁﬁ)] (36) |

[ e[ £hdr 495 beRp ) E'C) BVY; h3.8)
) ,

+c(Rp9) ENC) QMM R ]

E' (k)=
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‘& ) .
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where /fo o
o 5
O (abir9)=aTanR ;9 ‘/JwG“!j»;w)Q"(%g}
' (38)
04
N . d ﬁ (',us} Ei g sw)
g, (o bspa)= QR (p )R = o RbmI R3]

where in writing (38) and (39), use is made of the fact that

R - functions are even functions of time.

(32) to (37) along with (38), (39) and (28) for the
constitute a complete set, We have to know some more about the
G and R - functions apart from their characteristic
frequencies to be able to solve these, In particular, the over-
lap integrals defined by the 63'5 y between the G and R -
functions taken two or three at a time are important in deciding
the internal correlation-relaxation features of the non-linear

. .2
interaction .

We can try to approximate these overlap integrals by
assuming some suitable functional forms for the G and R -

functions subject to equations which restrict their initial
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values, symmetry with respect to time reversal and integral
features. In fact a.ny general form ﬁgxp {_.. ,\(&;E ; wheré
A(k)‘is a positive definite polyﬁémial in & with all
coefficients positive would be a sufficient though not’a
7ﬁecessary choice. This includes the usual FokkefePlank type of

""  as the first member. The statistical model

relaxation & e
éf turbulence based on the Generalised Liouville Equations of
Eawards would follow if we make this approximation, along with
some further simplifications, But the bas;c phase relaxation
1process,:which tends to produce correlétion as ﬁell as de-
correlatién in fhe turbulent situation is strictly non-lineaf
and as can clearly be seen from the studies of KfaﬁchnanZ;j,
ﬁon»Markovian. Asymptotic considerations that lead fo aﬁ.

: equations‘to the Green's functions have the form

) = = -8) Gr |
o = ZAOED[GuEnGnds

‘We can consider this as typical of the eddy relaxation
”prqcesses in turbulence and as such it is very dissimilar to
{he usual molecular friction and dynamical ffictién térms
which arise in & Fokker-Plank type of approach. Further
expefiment&l observationsvregarding the corfeiation analysis .

- -ater
of velocity also tend to bear out more an € rather than

213:8 Kraichnan9

- ) ’

an ¢ e type of relaxation has compared the
results of the complete direct interaction equations, with the
approximate equatiohs,'involving functional forms of'the

exponential and gauésian type in the steady state fér hydro-
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dynamic turbulence. He found that the agreement was better with

the gaussian form. Keeping these in mind we will take a gaussian

functional form for the functions ¢ and R

RV(&,¢) = expG-Lm (S (@€)* f
R™(R:#) = @xp§ - 7 (5, CR06)%]

.7
G'(R,0) = expS- LT RENTY

G (&;e) = expa~-*¢wi"1w§&}&}"}
MR, ) = axp?:— ufru“ﬁ(§f%~)€)?’§

With this identification, one gets

x g
0o bestra) =3 Do) L6 L8l
PP

o Gavs by =30kl + [Sol( T

8,(abs b)) =FLEW] + [%mﬂm}’&
| = 2 ‘")/2_

ow) = T DT - Lself

Thus (42) along with (32) to (37) complete our reguire-

(42)

ments. An iterative method for their solution will be described

in Section 6.

5. Kolmogorov's Hypotheses and Hydromagnetic Turbulence,

The bhasic arguments that lead to the direct interaction

approximation and their compatibility with the ideas of

(41)

78



Kolmogorov, for hydrodynamic turbulence have been discussed in

great detail by Kraichnan3’4’5. The basic reasoning that leads

to the Kolmogorov concept of scaling- that large scale motions
should carry small eddies about, without distorting them,is
esse#ti&lly Lagrangian in spirit. Thus the Eulerian history
correlations which‘are the starting points in the direct
interaction approximation, must be suitably modified to correct

for Lagrangian history.

As has been discussed by Kraichnan4’5

s the convection
‘without distortion of the small scale motions by the large

scale motions, which is the basic assumption underlying
‘Kolmogbrov's ideas, oweé its justification to an exact invariance
p?operty of the Navier-Stokes equations. 4 constant homogeneéﬁs
velocity field can be gauged away by transforming to a comoving
coordinate system., This Galilean invariance, which is an exact
property of the Navier-Stokes egquations,when formulated in terms
of Lagrangian velocities and correlations, rather than Bulerian
velocities and correlations would ﬁake the Kolmogorov assump-
tion more plausible. One could get to the same result, at least
in so far as steady-state energy-balance information is

concerned through systematic procedures of modifying the

' Navier-Stokes equations so as to eliminate the convection of a
given spatial scale by much larger scales (by a prescribed
ratio)., These modifications have been considered by Kraichpan’*4*

He has also compared them with a systematic Lagrangian History

formulation of correlations.
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But the hydromagnetic eguations do not show such an uni-
versal invariance. The coupling between different scales now
can take place through velocity as well as magnetic fieild
elements. The velocity field shows the Galilean invariance.
But the magnetic field does not. This is because a magnetic
field of a certain scale is coupled to every magnetic loop and
eddy of smaller scales, through the possibility of an Alfven
wave excitation. Thus the coupling between different scales is
changed profoundly with the introduction of a large scale
magnetic field. The local-isotropy concept of Kolmogorov, which
implies that the detailed information about low wave number
structure is degraded through transfer of energy in the wave
number space, has no a priori validity in the hydromagnetic case.
Thus it is more plausible that the ideas10, that lead to an
inertial range in the unmodified direct interaction scheme,
where the energy-containing range excitation explicitly appears
in the inertial range spectrum. An unequivocal answer to this
will be available - only when a Lagrangian history study of the
hydromagnetic equations is taken up in all its completeness as
in the hydrodynamical case by Kraichnan. A similar investigation

is underway.

Frem the experience gained in the construction of quasi-
Lagrangian solutions with the direct interaction scheme in the
hydrodynamic case, a number of medifications suggest themselves.
We shall in the following section distuss some of these modifi-
cations and their utility in the construction of the solutions

in the hydromagnetic case.

81



"6, Iterative Solutions For The Spectra And Characteristic

' Frequencies.

’ Desplte all the simplifications that we have introduced
ih,éect1on 4, the final set (32) to (37) (along Wlth {42) )
iéjstill‘formidable. They are a set of six coupled nonlinear
integralféquatiéhs for the six quantities E'(k) s E® (k) ,
%v(ﬁ) ;,’ (Swg k} y 'Y!v( &) and "L‘sﬁ) These are formally
~,solvab1e,;if the spectrum F(k) and the characteristic
frequency j?(f%) of the extermal driving force are given.
Expliciﬁ Analytiéai solutions are ruled out and only numerical
soiuﬁion suggests itself, But,even.so, the double integral over
‘wave number spaoe and the number of eguations to be solved and
;functzons toube determlned make it a hug; and monstrous calcu-
lation even in modern digital machines. We resort to a procedure
of iteration. If one can start with a set of trial or guess

v;a.lqes for the "7’3 N S"% Cand E'a fora given spectrum.F(k)
k'axd characterisfic frequencyé{(h)of the random force, we can
substitute these in the kernel functions of the integral
equations éndkevaluate a new set of values forY & wE'S .
These‘new‘éets‘of values may be suitably mixed with the old set
vand é new iteratidn_started with this set. This iterative
\procedure,ccnéergeé uneguivocally and efficiently because of the
non-linearity (One of the very few occasions in life, when non-
lineérity is ‘a help! ). So much is easier said than done. To be
kable to reduce. this to é tractable nﬁmefical problem, one has

'to replace the infinite range of wave numbers by a discrete set
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of wave numbers. The two integrations over p and q in k-space
With a restriction that k = p + g make a reduction of the
double integral to a straightforward single integral impossible,
In turbulence, most of the interaction in . wave number space is
very local and so the discretisation of the wave number space
must be sufficiently smooth to include a number of possible
triads of modes in a region, to take care of the effective
contribution to transfer or relaxation. At the same time, we
require a fairly long chain of wave numbers going over a
considerable number of octave intervals, in any calculation,

as the one we envisage here, where we want to include a
meaningful division into an energy-containing range, inertial
range,and a dissipative range for the velocity and magnetic
modes., And this becomes not an acdemic question but a crucial .
one, since we have a set of six integral eguations which we
want to iterate and solve., Since each egquation has a double
integral structure, which is basically irreducible, the memory
requirements increase and 6 x N2 as a function of the number

N of discrete steps in k, that we allow.

We choose a set of twenty-five half-~octave steps in k.
We use a discretisation for the weight factors in the k
integfals, which is very well described elsewhere11. The exter-
nal force has a flat spectrum which is non-zero for the first
four modes of the velocity and zero for the rest. In a set of
preliminary calculation, both the number of modes for which the

force is non-zero and the relative value in the non-zero region
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weievkept variéble to check reliability of the various
‘nuéerical procedures, The particular choice was made so that

" for the &iéérete wave number range, which is allowed by the
limitations of the computer, a meaningful energy containing range,
.inertial range and dissipative tail are possible., The iterations

were performed on an IBM 7094 and a CDC 3600.

First making a suitable choice of the kinematic parapr
. meters, viscosity 1 and resistivity A for the system, we
iterate the complete Unmodified Direct Interaction Scheme and
'bonverge on a set of solutions. Then we decrease either ¥V or
‘iA Sy a fixed ratio and again iterate to.get a new converged

set, with the old converged set as a starting point. In this way,

wéTconééiuct a set ;f solﬁ£ions,’wheréin< 1,~ and pA Tun
threugh a range'of values such that their ratio changes from
Hone-tehth'to ten. In these results, the Bulerian relaxations
/ ‘grg'allowed to include energy-range mixing: This leads to two
. disfinct characteristic frequencies for each spectrum, for a
given scﬁie k . Both these show modulation by energy-containing
iange‘paraﬁéters. The physical interpretation of fhis is’giVen
by K;éichna’n, in the hydrodynamical contextg.

7

Next we impose a less restricted detailed-balance

9

gendition than Kolmogorov's”., We require that the relaxation
and correlation freguencies are equal in the inertial range, but
8till leaving them'with arbitrary energy range mixing. Thus we

replace (34) and (35) for the g‘é with
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se0) =[Ot e

oY e

ey = LY = (re)r] (44)
This leads to equality of the correlation and relaxation

freguencies in the inertial range and (S 4"’] in the dissi-

5

pative range”,

With these modifications, we iterate the set to get a
new set of converged spectra. The direct interaction scheme is
otherwise left unaltered, in so far as the convection of small

eddies by large scale motions is concerned.

To get the complete Kolmogorov scaling without worry-'
ing about the 'Galilean non-invariance of the hydromagnetic
equations with respect to a constant random magnetic field, we
make an alternate and more restrictive modification. In (Z6) and
(37) we replace the B{abe )ﬁ,p‘q) - factors by EEG( ﬁ}ﬁ:‘g\é’
This assumption implies that, for every scale of motion, { or
magnetic field )} there exists only one unigue scale of time and
that it is decided completely b, the local value of the specirum
at that scale. 4n egquivalent way of introducing this assumption
wouli be to leave {36} and (37) unaltered but in (32) to (39)
to restrict the p, 4 integrations by reguiring that ﬁa < Py

€K<F(3 where = 1is a cut-off parameter. ?he cut-off parameter
ol is so chosen that the %’ % caleulated from (34) and (39)

are equal to the &' calculated from (43) and (44). We also

85



- check to see whether the main integral parameters and features

obtained this way agree with the solutions, obtained by the other
Kolmogorov modification.. In fact the cut-off parameter is varied
to achieve this., We find that for our half-octave discrete k set,

a choice ol = ¥ does this reasonably.

We then construct what we call a reduced Lagrangian
history direct interaction hydromagnetic modification. In this
we impose the Kolmogorov modification { with restriction in the
Py a integration ) only on the velocity terms, This leaves the
magnetic eddy-damping times and correlation times to be modulated,

b energy-containing range paramefers.

For each of these modifications, a variety of integral
parameters, which typify the structure and characteristic of the
energy~containing, inertial and dissipative ranges of both the

velocity and magnetic are calculated,

Let us define for our discrete k - space

Bz Twat SEFETIR B - Bk

YE1, is the total energy density in thg system and Ev aﬁd EE
are the energy-densities in the velocity.and magnetic modes of
turbulénce. From these, one can define root-mean square
"velocities" of excitation in the velocity, magnetic and tectal

modes, which characterise the energy containing range
O, = %ifliivfﬁig 5 *&¢== S%%}Vimnzﬁéf’ 3'=€°==Si§iE57443
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The total dissipations in the velocity, magnetic and

the combined systfems are defined as

_\)%t(&)% D% é — ?): w('&} >€7:€V+€T‘,}

1
Following Batchelor 2 we can define characteristic

lengths [, ,Lm,ifand A, ,,\M, A which typify the 'integral

¥
scale! and the Tayler micro-scale for each of these modes and
their sum, The integral scale typifies that region of the spec-
trum which contributes dominantly to the energy in the parti-
cular mode. The Tayler micro-scales on the other hand show the

dispersion of energy in wave-number space znd thus typify the

characteristic lengths of the dissipation spectra,

if
3 %‘“%:@3@ l=n 1«‘:,:&)0é
L = |l ww‘:‘_;_. gﬂw, =
v L= -
L= ™ = :
AP -
Y 5 . N ) R
= - =
A, = ‘BB, VAT Am” e
V e — - o~ .
v ) >
(ﬂiﬁfs—wﬂa~ >\ _ FE E.T.\})'hr\;i
Ly & e 3 - 1 =
Le= F=oa > — oo

With the definitions of these lengths and
"velocities” we are in a position to define the effective
Reynolds numbers in each of these ranges for the respective
systems.

Vo Lo s R™Me RLaA s Rz Lo
R_= U ly LT Nk A S R E e BT

- AT RS
g:; o, N, » s 2 = R A ,RA_OQM\TQW\)
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Following Kraichnani, we can also define Reynolds numbers,
which characterise the energy-range in each of these modes,
These are

- s -) _)
QV — ()64'” (SEE)) ! ot R‘z = R (em YRS R:-: e(:le_r(m-,ﬂ

°

In tables I - III, we give the values of these integral
parameters for the various modifications and choice of R

and A .

7. Discussion of the HResults.

In a previous paper1, a detailed sufvey of the various

kinematic approaches to the problem of the growth of a weak

random magnetic exéitation in a turbulent fluid were given,
All these approaches try to look at the growth characteristics
of the‘magnetic field, by direct analogous extensions of the
arguments that lead to the asymptotic Kolmogorov sPectruﬁ in
the pure hydrodynamic case, Arguments along these lines,

exploiting the analogy beiween the dynamo equation and the

13

vorticity equation were put forward by Batchelor © and his

14

ideas have been developed further by Moffate . Similar arguments

based on the rates of strain, assuming that the dynamical
equilibrium character of the transfer in the universal range is

15

unaffected by the Lorentz forces, have been given by Saffman 7,

6

.1
Pao and Parker17. A very subtle but unavoidable preregquisite

for all such models is the concepi of unidirectional cascade of

energy in the wave number spectrum. The velocity field in the
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pure hydrodynamic case is in statistical equilibrium and the
net transport of energy proceeds towards larger wave numbers.
In the weak magnetic case, which is not even in statistical
equilibrium in the first place, there is no a2 priori justifi-
cation to believe that the cascade should be unidirectional. In
fact, the nature of the dynamical couplings between the magnetic
and velocity terms do not justify this assumption. Further the
Galilean non-invariance of the hydromagnetic equations, with
respect to the magnetic terms make the Kolmogorovian require-
ments of localness of cascade questionable, Thus, from two
different considerations, there is reason to expect that the
structure of the transfer in the hydromagnetic case will be
profoundly different from its pure hydrodynamical counter-

part,

There have been attempts by Chandrasekhar18, Roberts
and Tatsumi19,,Tatsum120, Betchov2j and Deissler22 to construct
theories for magnetohydrodynamical turbulence, based on dynami-
cal approaches, Their procedures depend either on discarding the
fourth order cumulants or neglecting the non-linear cross field
terms completely, thus restricting their applicability to either

weak fields or the final state of decay.

In our earlier paper, for the weak field case, we attemp-
ted to check the balance between the local-enhancement and
sweeping-out processes, In the absence of any quantitative know-

ledge about the characteristic times of relaxation and correla-

as



tion for the two fields and because of the closeness of the :
balance between the two competing processes, we concluded that
the net result of growth or decay cannot be deemgd conclusive.
Already in the weak field case, the nonlocalness of the cascade,
which is a direc consequence of the impossibility of convection
without distortion in the magnetic ?ase, manifested itself even
at the earlier times of evolution, as a direectienrgy coupling
over a jump of two decades in wave number. Thus the generation
~of the small scale magnetic excitation by small eddies depends
on the strength of the field rather than the gradient of the
field, This focuses one's attention on the inadequacy of the
usual analogy beiween magnetic fields and a convected passive

scalar fieldzs.

" We héve here tried to construct a steady-state theory,
‘iﬁ'which the local relaxation times are now treated as internal
parameters and are determined consistently along with the spectrum.
Thus many of the arbitrary assumptions of the earlier paper
removed, But simultaneously, mathematical simplicity and conve-
nience have férced us to make assumptions about the functional
‘form of the correlation and response functions. Further, we have
only partially been able to take care of the Lagrangian modifi-
cation. Thus our study fills an important gap in our earlier work;
the relative and absolute values of the relaxation times are

determined fogether with the spectra,

The main results of this calculation are presented in

- figures I - XI . In each of these, we plot the spectral
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functions E' (k) and E® (k) as well as the spectra of the

o 2
vorticity G (k) = k° EV {k) and the curremt J (k) = K e (k)

Figs. I - III and first curve of figure IV give the
spectra for the unmodified direct interaction approximation,
when no attempt has been made to correct for Lagrangian History.
One would expect from asymptctic inertizl range considera-

1 -3
tions O(?ee footnote in reference 10) to get a 1& /2- povwer

. . kv
law in the inertial range. This is found tottaﬁgf Figure II
gives the inertial range for one of these curves in an enlarged

scale, to accentuate the point, Further in the inertial range

detailed equipartition is a striking result.

Figs. IV ii, V and VI give the spectra, when we make
the restricted detailed balance assumption of %H:*I in the
inertial range., Qualitatively, this already depresses the energy
range mixing, which is a feature of the unmodified direct inter-
action egquations. In this sense they are intermediary to the
complete Kolmogorov adaptation and the complete Bulerian results,
The overshooting of the magnetic spectrum in the energy-contai-
ning range is an indication of the effective coupling distiance
in the wave number space., The overshooting distance is typi-
caliy the range over which equilibrium is reached in the

energy range.

Figs., VII and VIII display the spectra when we make

complete Kolmogorov modifications for both the magnetic and -



. velocity relaxations, The depression of the magnetic spectrum
for low wave numbers and the longer wave number interval neces-

sary before E" (k) builds up to equipartition are noteworthy.

Figs, IX and X display the spectra when we make the
reduced Lagrangian history modification. Fig, XI presents the
magnetic and velocity spectra for the inertial range in these
cases in an enlarged scale, This clearly shows a tendency to a

‘ . . . ~5/3
two-piece inertial range for magnetic spectrum : o ‘Q&
_region in the low inertial range and a {1'3ﬁ” region in the
N -3
high inertial range. In the * /a'region, the magnetic

spectrum overshoots above the velocity.10

_Wwfhéwqualitative nature of the curves does 56£W6£5£ge‘
‘ very proféundly, when we make such drastic assumptions about
the time-structure of the correlation-relaxation features,
They all feature equipartition in the inertial range and the
behaviour in the dissipative and far-dissipative ranges, when

Vv &£< X is compatible with the results of befatt14,

Golitsynd 15

and Saffman s from equilibrium considerations.
The various modifications, which either take an extreme
Kolmogorovian or Eulerian point of view change the total
energy and the coupling between the ranges profoundly, as
displayed by the effect on the partition ratio, i . e . the
ratio of the magnetic to the velocity spectrum in the normal

range.

g2



Thus the main persuasive result of this calculation is

that in the steady-state the total energies in the magnetic and

velocity modes are comparable and that there is a detailed

equipartition between the two modes in the extended inertial

range.By and large, in magnitude and detail, this corrobo-
25

rates the conjectures of Biermann and Schlliter,

This result coupled with the results of the previous
paper can be taken as a really compelling demonstration of the
possibility of the existence of a turbulent dynamo. Since our
scheme of calculations are based on a detailed dynamical
theory, it is possible to extend these results to the non-
stationary case or to situations with further complications,

as are likely in the astrophysical conditions.

In two recent papers,26 Parker has investigated the
back~transfer to low wave numbers from large wave number
excitations of the magnetic spectrum, through a prescribed
stationary random velocity field, when its correlation time
is short. The main question, which Parker raises in his paper
is whether in a realistic turbulent situation when the
charscteristic times of growth in any scale are of the order
of the eddy-circulation time in that scale, there would be a
back-transfer in wave number space., Further, there is a long-
range coupling in the magnetic spectrum, through the gonvective
terms, which lead to the additional non-Galilean features.

These guestions will be dealt with in a subséguent paper.



The skewness of the distribution of the derivatives of
velocity and magnetic field and the cross-field skewness
factors are alsc evaluated in these calculations, though not
bexplicitly. These and the related quantities like rate of
vorticity production and current production will be discussed

in a forthcoming paper,
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Table

Table

Table

I.

I1.

III.

TABLE CAPTIONS

Values of net energy and dissipation for the velo-
eity, magnetic and total modes, for the various

modifications and different choice of V and A

The AMA excitations and the corresponding
Reynolds numbers for the velocity, magnetic and
total modes, for the various modifications and

different choice of Vv and A

The Reynolds numbers characterising the integral
scale and the dissipative scale for the velocity,
magnetic and total modes for the various modifi-

cations and differnt choice of V and A .
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TYPE w, | v A E |Em |Er | & e, e,
SRte | mie f Rle
o 110 | 5x1073 | sx10™ | 14.574 | 8.890 |23.474 |0.4081 |3.964 | 4.372
«\{‘ Jg.: 1 5x1072 | 5x107° | 15.083 93.‘518 24,602 | 2,511 |[2.562 5,072
t i
o *; 10 5x10'4 5x1o'5 14.492 | 9.019 |23.511 |3.959 |0.4382 | 4.397
a 1710 | s5x1077 | sx1074 | 18.489 | 9.021 [27.511 | 0.4714 | 4.660 | 5.131
o« & -5 S
v it 1 5x10 5x10 19,132 | 9.853 | 28.984 | 3.008 3,110 | 6,118
el ~ -4 -5
, 10 | sx10%| sx107%| 18.353 | 9.229 |27.582 |4.652 | 0.5326| 5.184
= 1/10 | 5x1072| sx1074| 17.086 | 4.046 |21.132 |0.2975 | 2,883 | 3.181
o
3 T 1 51077 | 5x1077| 13.639 | 3.634 |17.273 |2.452 | 2.492 | 4.944
§ Al 10 | sx1074| sx1072| 135.438 | 3.504 |17.032 | 3.666 | 0.6346| 4.301
o 1710 | sx107%| sx1074| 13.869 | 3.916 | 17.784 | 0.8134 | 1.110 | 1.923
= (o] [+ < .
B 2 & 1 5x10°2| 5x107°| 14.046 | 4.418 | 18.464 | 1.467 | 0.6148 0.2081
=3 o [ |
S 10 | sx1074] sx1072| 13.698 | 4.261 |18.159 | 1.628 | 0.3338; 1.962

I 31dvL



66

LV ™ T
TYPE f v A O“ €\° ol F:m ?o Q\,
o xs0¥ xiat x/0"
R:l % 1/10 5x1o‘5 5;:10“‘4 27 | 2,436 | 3.996 |46.260 0.1776 2.03%7
: = | 1 5x107° | 5x107° | 3.171 | 2.519 | 4.050 | 8.056 | 3.145 |10.610
Ll
- 10 | sx107% |sx1077 | 3.108 | 2.452 | 3.959 | 0.4716 |16.500 2.0%2
1/10 | 5x107 | 5x10™* | 3.510 | 2.452 | 2.263 |64.460 | 0.1552 | 2.384
N 5o
0 ,{4 1 5%10 5x1077 2.571 | 2.563 | 4.3%96 |10.820 2.774 12.210
& W 10 | 5x107% | 5x107° | 3.498| 2.480 | 4.288 | 0.6436 | 14.220 2,572
S 1/10  5x107° | sx107% | %.375] 1.642 | 1.700 |87.210 | 0.05047 | 2.269
O
é’ ‘i“ 1 5x107° | 5x1077 | 3.019| 1.556 | 3.393 | 6.745 | 0.4711 | 5.304
g
o V¥ 10| 5x107% |5x10™° | 2,995 1.548 | 3.370 | 0.4378 | 1.809 1,090
=
5 g s | 170 5x107° | 51074 | 3,041 1.616 | 3.443 |21.020 | 0.1228 | 2.658
“g’ E § 1 5x1077 | 5x10™7 3,060 1,716 | 3.508 | 11.960 | 2.822 14.2560
5] 3] — '
PoE B g0 | sx107 51072 | 3.022| 1.725 | 3.479 | 1.024 | 5.299 2.716
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\ ' " T v T
TYPE /\ V A Ry | R | R, Ry o, R, N
‘ x| xie3| o xaet x1o x o Xio
o 110 | 5x107> | sx1074 | 5.373 |1.856 | 0.9776| 2.634 | 1.632 | 5.494
» ?; 1 5x107° | 5x107™° | 5.275 [18.020 | 5.251 | 1.099 | 6.867 12,610
1 ’ .
oo },F 10 | sx107% | sx1073 | 0.5375|18.540 | 0.9760| 0.2666 | 15.730 5.405
] 1710 | 5x1070 [5x107% | 6.016 |1.229 | 1.025 | 3.109 1,526 5,965
=~ ] ) |
& 1 5x107° |5x10™2 | 5.906 |11.860 | 5.490 | 1.274 6.451 | 13.530
i
& 10 | sx1074 | 52107 | 0.6017[12.330 | 1.022 | 0.3107 | 14.600 | 5.797
. 110 | 5x107° |5x107% | 5.690 | 0.5598 0.9748| 6.617 | 0.8701 | 5.796
[ .
% N4 10 5x1o‘4 5x1o'5 10,5981 6.277 1 1.018 | 0.2563 5.210 ° 3.574
e
. g . 1/10 5x1072 | 5x10™% | 5.820 | 0.9543] 1.016 | 1.776 1,357 3.884
A v = : ! L
S 58| sx107° | 5x1¢™> | 5.778 | 9.115 | 5.486 | 1.339 | 6.506 | 14.780
B S E| 10 |500%|5x107% | o0.5849 9.119| 1.006 | 0.3920 | 8.916 5.410
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FIGURE CAPTIONS

Fig. 1. Unmodified direct interaction spectra for the case

v= Sxis”C and A= Bxio ¢

Fig. 2. Same as Fig. 1 but exploded to show fine structure
in the inertial and dissipative ranges. The power
law in the inertial range is unmistakably — ¥

Fig. 3. Unmodified direct interaction spectra for

- -5
yv= 5 X1o™r A= 5%r0

Fig. 4. Unmodified directinteraction spectra with W = A
= leo"s at the top. The bottom curves are for
the same set of W and A but with 3”"17
modification in the irnertial range, The insensiti-
vity of the functional forms of the spectra to the

modification is striking.

Fig. 5 Direct interaction spectra with g:.'fl modifi-
cation in the inertial range for p= & X’o

-4
and AN = Bx 10

Fig. 6. Direct interaction spectra with CS::.'Y) in the
- -5
inertial range for V= 5%rse and A= Sx/o

- -G
Fig. 7. Spectra with Vv = B Xrse s \ A= Bxje for

Kolmogorov modifications for both the magnetic and

velocity relaxations.

101



Fig.

' Fig.

Fig.

‘Fig.

102

8.

9.

10,

11,

Spectra with V= Bxic”* A= 5%16% 44 tne

top and W= A = Bx%0"° at the bottom, both
with complete Kolmogorov modifications for the
magnetic and velocity relaxations. The more or
less identical sitructure in the energy-containing
range and the difference in level, in the dissi-

pative range between the three sets of Kolmogorov

modifications is noteworthy.

Reduced Lagrangian History spectra for V= § x:a“*

}\ - 57\30‘5

Reduced Lagrangian History spectra for V= § X 103

%

- -5
A= X110 at the top and W= A25X%X/0 yonemy

Reduced Lagrangian History E ¥ (k) for various
values of Yy A  in an enlarged scale to show

the Lagrangian History features,
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EVOLUTION OF TURBULENT MAGNETIC FIELDS — APPROACH
TO A STEADY STATE

S. NAGARAJAN

MATSCIENCE, Madras 20, India, and
Université Libre de Bruxelles, Brussels, Belgium

Abstract. The dynamical evolution of a weak, random, magnetic excitation in a turbulent electrically-
conducting fluid is examined under varying kinematic conditions. It is found that the results of an
earlier paper (Kraichnan and Nagarajan, 1967) can be reliably extended to a stage of evolution
wherein the magnetic spectrum has reached local equipartition with the velocity. The transfer of the
magnetic energy to smaller wavenumbers {larger scales) is considerable and significant. This result is
highly pertinent to the turbulent dynamo question, which has been variously investigated recently. The
relevance of the coupling of the rms magnetic field to the magnetic modes of all scales in deciding the
efficiency of this transfer is discussed.

1. Introduction and Review

In a number of recent investigations, (Parker, 1970; Moffatt, 1970; Parker, 1969;
Krause, 1968; Ridler, 1968; Steenbeck er al., 1966; Steenbeck and Krause, 1966,
1967; Krause and Radler, 1971; Fitremann and Frisch, 1969; Vainshtein, 1970), the
question of regeneration of a magnetic field, by turbulent motions has been recon-
sidered, under a variety of kinematic assumptions about the turbulence. In an earlier
paper (Kraichnan and Nagarajan, 1967), we have reviewed the previous work on this
subject in great detail and found that simple intuitive statistical arguments like equi-
partition, or analogical and heuristic kinematic considerations like the vorticity analogy
are highly inadequate in resolving this question. In a recent paper, Kraichnan (1970)
has considered the analogous question of the growth and propagation of the devia-
tions between the point-to-point velocity fields in two flow systems, which are statisti-
cally identical. Here again, one finds that the ultimate evolution depends on the quan-
titative competition between the local-enhancement and sweeping-away processes
in the wave-number domain. One needs a considerable amount of knowledge of the
internal dynamics and characteristic times, and assertions of kinematic nature based
on universal equilibrium hypotheses are highly inadequate.

In our paper referred to earlier, we could not carry our calculations very much for-
ward in time, because we had no reliable information about the internal time struc-
ture of the combined fields of velocity and magnetic field, at that time. In a more
recent paper (Nagarajan, 1971), we have investigated the internal structure of the
steady state spectra on the basis of a detailed dynamical theory. In this, we have also

- reviewed the relevance of the ideas of Kolmogorov to the hydromagnetic case,
keeping in mind the Galilean non-invariance of the hydromagnetic equations to a
random constant magnetic field transformation. The cascade of energy in the hydro-
magnetic case is not strictly local in the wave number domain. A large scale rms
magnetic field presents the possibility of Alfvén wave propagation along it and thus
provides a significant dynamical coupling between magnetic fields of large and small
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scales. Our steady state considerations provide us with the necessary information
about the local internal relaxation features and their relative magnitudes, so much so
we plan to extend our earlier study of evolution of weak magnetic fields — to a stage
in which the spectrum of the magnetic field has evolved sufficiently to a point of
dynamical feedback to the velocity field and consequently a statistical steady-state.
And since we are basing our calculations on a well-considered dynamical theory

of turbulence, we will be able to throw some light on the nature of the transfer of
energy in the magnetic spectrum: in particular, without using either oversimplifica-
tions or idealisations of the characteristic length and time scales of the magnetic field
and turbulence as have been done by Moffatt (1970), Parker (1969), Fitremann and
Frisch (1969) or Vainshtein (1970).

2. The Dynamical Model

We start with a steady turbulence with an extended inertial range. The choice of the
~ kinematic parameters and the wave number range is made suitably, so that we can

talk of an extended equilibrium range, without worrying about the sources of input of
energy into the system from the geometric range. Further, there exists a sufficiently
noticeable dissipative tail to the spectrum at the high wave number end. The form of.
the spectrum and parameters are chosen so ‘as to be compatible with the asymptotic
requirements of the direct interaction approximation of Kraichnan (1958, 1959, 1965, _
1966), with suitable modifications to reproduce Kolmogorov scaling.

A disturbance which is localized in the wave number range of the magnetic spectrum
is introduced at time 1 =0, »

Following the notations of our earlier papers (Kraichnan, 1958; Kraichnan and
Nagarajan, 1967; Nagarajan, 1971), we can write the equation for the secular evolu-
tion of the two spectra for times >0 as

a 2 14 .
(ﬁ+2vk )E (k; T)

k
= ” %92 dpdq[{k’a,E" (p; TYE (q; T) 61

~ PPbipE” (ks TYEY (q; T) 025

pak
+ {K’a,, E™ (p; T) EM(q; T) 6™

kpq

— P*CipE” (ks T) EM(q; T) 024731 - ()
6 ’ 2) .
(é? + 24k ) E*(k; T)
— k ‘ 2 . . i
—ﬂ o dp da [ B (5 T) B (45 T) 01"

= PPl EM(k; TYEY (q; T) 0MV™

pak

~ P YipE™ (ks T) EM(q; T) 6V 4™ @
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The spectral functions E¥ (k; T') and E™(k; T) are connected to the velocity and
magnetic fields as follows:

WY (k;t, 1) =(2m)"? f @ (x— y) <U(x; 1) U(y; £)) e*&

W (ks 1) = (2m)7 f & (x = y) KW (x5 1) W(y; 1)) &7

00 Y - T 7 T T
\\\ v = 10_4
AN x=10°
~01 \ ~
\
\ .
A\ T=20
\
\
"02 AN Y- 001 g
< N
—r \
ul \\
° -03 \ .
= \
8 AN
wd \
N
..0[‘ b Y -]
N
AN
N
\
\
\
-05 \ N "
N\
\
\
\
-06 r N N
-07 | | 1 i | |
1 6 1 16 21 26
(LOG., K+1)
Fig. 1.

where U(x, ) is the fluid velocity and (4nug)'*> W(x, t) is the magnetic induction
field, g is the fluid density, u the magnetic susceptibility of the fluid, v and A are the
kinematic viscosity and magnetic diffusivity respectively.
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We agsume the turbulence to be homogeneous and isotropic
: - i+t
WY (k;t, ) = (4nk?) " EY (k; _2..> RV(k;t—1).

. - ot .
WM (ks t, t') = (4nk®)™" EX (k; T) RM(kst—1)
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..07 -

106G, E(K)
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..4” l | l | i
: 6 n 16 2 26
| (LOG; K +1)

. Fig. 2.

where WY { }and WM { }are energy functions and RV{ }and RM{ }aremodal
correlation functions. B

The 6'-s which appear in Equations (i) and (2) are the effective memory times of the
interaction between the three respective wave numbers. They are given by

62 (T) = f GE(T — 5) RE(T + ) RY(T +5) ds
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(where a, b, c=V or M) and G"(k;T) and G (k; T) are the averaged response
functions of the velocity and magnetic ficlds for the given wave number respectively.

In a general turbulent system in which a weak macroscopic (i.e. geometric range)
disturbance in the magnetic spectrum is introduced at time ¢ =0, the 6’-s will be very
complicated functions of the correlation and response features of the turbulence

“04 T T : T ™% T T
AN
v = ‘IO“4 \\
-10"¢% \\\
-05 . -
AY
T=1.0x10"° \\
\
_06 - _ -
Y = 0.01 '
=
“-07 | -
e
10)
jo)
—
-08 + ]
_09 .. -—
_10 - -
-1 1 i I | | 1
1 6 " 16 21 26
(LOG.; K+1)
Fig. 3.

and initial magnetic field. But if we assume that the weak magnetic excitation is
sufficiently localized in the inertial range, the secular time dependence of the §-s can
be ignored. This point has been discussed in detail by Kraichran (1959) in the
hydrodynamic context. In the magnetic situation also much of the argument goes
through unaltered.
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We choose a form for the correlation and relaxation functions and the @'-s from
Nagarajan, 1971.
' R(k; ) = exp{~ 4n ({. (k) 1)*}
G*(k; T) = exp {— 3n(na (k) 1)’}

- 04 I r T ‘
-05 + -
-06 | -
<
WL -
24
[
S ‘ ‘ ,
_.~08+ - , ~ a
- 09 v=10*
A=10"¢
- -4
-10 ; T =1.0x10 i
¥, =001
-1 ! ) ] | i ]
1 6 1 16 21 26
(LOG.; K +1)
Fig. 4.
which gives for 8 :

Oipe = [ ()} + {G(P)}* + {L (1712

Our elaborate study of the various extreme considerations of Galilean-invariance
and Kolmogorov’s arguments on the one hand and Galilean non-invariant Eulerian
solutions on the other in the steady-state case (Nagarajan, 1971) convinces us that
in so far as energy transfer information is concerned, the details of the internal corre-
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lation times are not very important. Using the results of this study, we evolve a
quasi-Lagrangian scheme. We take the velocity correlations and relaxations to be
Kolmogorovian i.e. decided by the local parameters of the position in the wave
number spectrum. The magnetic terms are modulated by energy range parameters as
in the unmodified direct interaction approximation of Kraichnan (1959, 1965). With

-04 T T T
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_06 - =}
< -07} -
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= 08 f -
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-10 |- T=:10x10"° -
Y= 0.01
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1 6 I} 16 2! 26
(LOG.; K +1)

Fig. 5.

A these preliminaries one can write
&y (k) = [E” (k; T) K*)'7
ny (k) = [{& (R} + (vk?)]'*
{m (k) = (vok)
M (k) = [{Cw ()Y + (A K7)]V2.
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Here v, is the rms velocity in the energy range. (It will be apparent that this energy-
range mixing was the reason why we chose the initial magnetic excitation to be lo-

" . calized in the inertial range. But for that the results of the hydrodynamic case or even

the steady-state study will be inapplicable.) We choose a convenient unit of wave
numbers and time scales such that v, =1.
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Fig. 6.

3. Evolution Study

Now that ail the quantities in Equations (1) and (2) are completely defined, we inte-
grate them forward in time. In time, they have the character of a set of non-linear
coupled differential equations. But for each time value there is an integral to be per-
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formed over the contributions from various regions of wave number space. We dis-
cretise the wave number region into twenty-five logarithmic half-octave intervals.

The details of this procedure are much the same as in an earlier paper (Nagarajan,
1971). We perform the time integration using a fourth-order variable-step Runge-
Kutta Scheme. The details of the numerical scheme are given elsewhere (Nagarajan,
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T
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1
<
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-1 1 ' =
1 6 1 16 21 26

(LOGv; K +1)

Fig. 7.

1970). We shall here consider only the results and their astrophysical implications.

Figure 1 shows the initial spectral disposition in one of the runs. The dotted line
gives the velocity spectrum, and the continuous line, the magnetic disturbance.
¥, is the value of the initial ratio of the magnetic spectrum to the velocity spectrum
at nonzero points, which is a parameter of the run. Though we are going to display
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here only initial disturbances which have the same spectral shape as the velocity and
are localised in wave number space in a delta-function way, we had performed a
number of runs with a variety of initial shapes ak” exp(—b5k™) and initial ratio ¢,,.
There was no pathological feature arising from the initial choice either numerically
or otherwise.
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Fig. 8.

Figures 2 and 3 give the spectra at characteristic times f=1.0x10~° and
t=1.0x 10~ %, These time scales are so normalised that they are unity for the largest
wave numbers in our system. The noteworthy feature of the curves is that the energy
. has now moved both to higher and lower wave numbers, The rate of transfer to lower
wave numbers is essentially smaller than the rate of transfer to higher wave numbers,

118



EVOLUTION OF TURBULENT MAGNETIC FIELDS 497

because the characteristic times of transfer are of the order of the internal times of the
given scale.

Figures 4 and 5 give the spectra at t=5,0x 10" % and 1.0 x 107>, Already, within a
time of the order of the local eddy-circulation time in the largest wave numbers, the
magnetic spectrum has wrapped up sufficiently to almost equality with the velocity
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~05 |

-06 F

LOG,, E(K)

-08 -

_09 -

~-10 =

-1 i i 1 { 1

1 7 6 ] 16 21 26
(LOGv; K+1)
Fig. 9.

spectrum at the highest wave number. Figure 5 to some extent and Figure 6, in a
more profound way show that the magnetic spectrum has overshot significantly above
the velocity at lowest scales. This arises because of two reasons: (1) The choice of
kinematic parameters v and A. In this run A is very much smaller, so much so the
magnetic spectrum has a longer dissipative tail. (2) The second reason for the over-
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‘shootmg is the fact that the form of the spectrum is still non-ethbnum so much so
the approach to local equipartition is in an overstable way.

Figure 7 and more prominently Figure 8 show how the feature of eqmpartmon is
transferred to smaller wave numbers, much in the same way as argued by Biermann
and Schliiter (1951). By now the evolution has reached a stage in which any peculiar

-03 Y

-04 F

E(K}

LOG,,

T=025

\gz 0.0

-10 | I | ! L
1 6 h 16 21 26

(LOGv; K+1)
Fig. 10.

‘dependence on choice of initial form has been completely lost. Figures 9 and 10,
which are for the same run for times ¢=0.1 and 0.25 show that by now the evolution
Has reached a stage when one can safely conclude about ultimate features. The nu-
" merical integration times involved at this stage are so large that one stops the cal-
- culations because no new features are likely to evolve from further evolution study.
Figures 11, 12 and 13 feature the final and initial spectra for a few other runs which
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start different initial ratios and kinematic parameters. These are meant for the purist
to show that pathological features are not included in the choice of initial assumptions.

In all these runs, at a fairly advanced evolution, the spectral shape reaches an
approximate form A(t)k* exp {—B(¢) k*}. Thereafter the integral features of the
spectrum evolve more or less without change of form.
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Fig. 11.

4. Conclusions

Apart from the fact that this evolution study fills many a gap in our earlier study, this
proves more or less conclusively that there is no reason to expect, in evolving non-
equilibrium hydromagnetic turbulence, that the transfer will take place only to larger
wave numbers. In fact, the transfer to smaller wave numbers is significant and this
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can provide just the missing link in the turbulent dynamo problem. The regeneration of
larger magnetic loops through a co-operative interaction of the velocity fluctuations
of all scales and magnetic fluctuations of smaller scales is not only feasible but very
- significant, In our study, we find that this is facilitated by two dynamical requirements.
" Firstly, the non-equilibrium feature of the magnetic spectrum: the ultimate steady-
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. Fig. 12,

state magnetic spectrum will be in equipartition with the velocity in all scales other
than the ones where either the inputs of energy from external sources of the train of
energy through molecular dissipation depresses or raises either of them. Any other
farm of the spectral ratio is not an invariant form which will be left invariant by the
. non-linear interaction. The non-linear interaction will change the ratio to get into the
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equilibrium form. Secondly, the Galilean non-invariance: The fact that a magnetic
field cannot be gauged out makes a profound modification in the internal dynamics.
Here probably one can stretch our comparison a bit with other recent studies. Krause
(1968), Radler (1968), Steenbeck et al. (1966), Steenbeck and Krause (1966, 1967),
Krause and Rédler (1971) and Moffatt (1970) have considered the a-effect of regenera-
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Fig. 13.

tion in great detail. A certain aspect of the a-effect is included in our Galilean non-
invariance picture, because a larger magnetic loop, when it is impressed on a system of
smaller magnetic and velocity fluctuations, introduces a condition of reflectional non-
invariance. Beyond this point one cannot carry the analogies because their inferences
about the values of the a-effect are based on equilibrium transfer theory, which as
our study has clearly shown, are inapplicable. '
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Parker (1969) and Vainshtein (1970) have asked much the same question, as we
have, but since they had to invoke some extreme idealisations to get their results, the
physical validity of their conclusions is in doubt. Qualitatively, our results corroborate
theirs.

Robinson and Rusbridge (1971), in a study of Plasma turbulence in the Zeta plasmas,
have found that plasma turbulence seems to resemble fluid turbulence except that the
turbulent elements are enlarged along the mean magnetic field to form rolls and
suggest that an appropriate comparison would have to explain the existence of
significant transfer to large scales from small-scales, as against isotopic hydrodynamic
theory, which will not permit this. One hopes that it will not be too presumptuous to
believe that the effect, they find is contained in our procedure. Further the importance
of this to heat transfer in the presence of magnetic turbulence is also very tempting.
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Discussion

Nakagawa: What is your assumption concerning the initial velocity and magnetic field spectra?

Nagarajan: The initial velocity is in quasi-equilibrium with an extended inertial range. The magnetic
spectrum is localized in the middle of the inertial range in all but one of the runs, with a level of
excitation very much lower than the velocity.

Weiss: After equipartition has been achieved for intermediate wave numbers, is your steady
energy spectrum maintained over periods comparable with the resistive decay time for the smallest
wave numbers?

Nagarajan: Yes. We follow the time evolution until the initial form dependence is washed out.
Essentially this turns out to be larger than the resistive time scale of the initial specimen. But after
that time, the further buildup of the spectrum — even towards smaller wave numbers — takes energy
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from the velocity spectrum. This time-invariant self-preserving form with the tail in steady-state with
the velocity, keeps growing in over-all energy and extent. This may look like a violation of simple
physical and statistical requirements. But it is not.

Cowling: In many ways the assumptions made {natare of background fields, motions, statistical
assumptions) appear to be as important in the theory of magnetohydrodynamic turbulence as the
detailed theory,

Nagarajan: True: statistical description does not in any sense minimize the number of necessary
assumptions. But the statistical theory has an advantage in that one requires only on-the-average
features. So many of the phasing requirements are weakened. But the main feature of this investigation
has been to show that the back-transfer in wave-number spectrum is significant, which can have truly
deep conceptual consequences.
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STELLINGEN

Weak turbulence ordering used by Sagdeev and Galeev {and
later by a number of authors)} based on the occupation
number representation for a steady set of interacting waves
is invalid, because it does not distinguish in a proper
manner between coherent waves (space-time coherence in the
infinite domain)&fluctuations (localised random wave packets
with finite life-times).

Sagdeev R.Z, and Galeev A.A., Non-linear Plasma

Theory (¥.A.Benjamin Inc., 1969)

The energy balance equations for the spectral transport in
plasma turbulent reactors derived by Tsytovich and further
developed by ter Haar are inappropriate for the case of
plasma turbulence, because of the use of a Detailed Balance
Condition.
Seé Tsytovich V.N. and Kaplan S.4., Plasma Astro-
physics (Pergamon Press 1973) and Norman C.A. and
ter Haar D., Plasma Turbulent Reactors; An Astro-

physical paradigm, Physics Reports 17¢ no:6 1975.

The use of the term, 'non-linear dispersion relation', to
define the propagation and decay of fluctuations in a
turbulent medium is misleading. It is further unjustified

except in the case of complete isotropy and statistical



stationarity in time, even in a restricted sense.

Sagdeev and Galeev, loc, c¢it.,,Kadomtsev B.B.,
Plasma Turbulence Pergamon Press,; 1965, see chapters

3 and 5 of the summary in this dissertation

Much of what has been derived for the case of wave propaga-
tion in a random medium cannot be applied to a turbulent
medium, even under limiting conditions of separation of
scales of turbulence, wave lengths of the waves and the
depth of propagation in the medium. The interplay of various

transfer phenomena to the fluctuating components of the wave

from the medium will make the 'Freezing Approximation' of

" turbulence invalid, after the medium has been irradicated by

the wave for a while.
See a review of Wave Propagation in Random Media by
U.Frisch in Probabilistic Methods in Applied Mathe-

matics, ed. by A.J. Bharucha-Rejid Academic Press, {1968)

Despite over abundence in scientific activity and output,
there is a lack of fundamental breakthroughs in science,
This is an inescapable outcome of the economic attractions
of the golden age of patronage of science, by a society

which was frightened by it.

It seems fashionable these days to play down the intellectual
aspects of scientific pursuits (Perhaps the dropping of the

term natural philosophy to refer to science is an outcome



9.

10.

1.

from this)., Few scientists would call themselves intellectuals
even in their own interpretation of the word 'intellectual!'.

This is a pity.

Much of what goes around in the literature in the name of
"Non-linear Intuition" is the result of a carefully covered
random linear analysis (This dissertation not completely
excluded!).

See for e,g,, V.Heisenberg in "Topics in Non-linear

Physics" ed. by Norman Zabusky, (Springer 1968)

Turbulence is a phenomenon which is appealed to in order to

shroud all and sundry difficulties of measurements, obser-

vation, comprehension and interpretation of phenomena at large.

Weak turbulence is not necessarily easier to deal with than

strong turbulence.

Modern operational approaches to scientific education convert
scientists into walking "Bncyclopaedias of Recipes" rather

than perceptive creative thinkers.

A corollary of proposition 10;- A global neglect of teaching
of chronological development and proper perspective of the
history of science to serious students in science is respon-
sible for the romantic Idolatry of concepts and people in

science.,
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A true“scientist is an Iconoclast.

To be totally consistent, a theory must be empty. ("To be
completely consistent, a man must be a saint or a crook"

v.Goethe).



