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4.2 Integral Equation for Connected Array of Loaded Dipoles . . . . . . . . . . 56

4.2.1 Separation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 One-Dimensional Equation . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Total Currents on the Gaps . . . . . . . . . . . . . . . . . . . . . . 60

4.2.4 Spectral Integral Equation . . . . . . . . . . . . . . . . . . . . . . . 60
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Chapter 1

Introduction

The rapid advancement in telecommunication and radar technology is placing increasing

demands on wireless system performance and functionality. In particular, many of today’s

satellite communication and radar systems necessitate phased array antennas that are

capable of wideband/multi-band operation and good polarization purity over a wide scan

volume.

Wideband and multi-band arrays are receiving growing attention for both military and

commercial applications, since they can provide multi-function capability with a single

aperture. In environments where multiple sensors are competing for the same physical

space, the possibility to concurrently support communications, electronic warfare and radar

functions with a single phased array would result in size, weight and cost advantages.

However, the need to maintain the antenna performance stable over a very large frequency

band (in terms of polarization, radiation pattern quality, efficiency and matching) sets very

demanding requirements on the antenna system and poses several technological challenges.

Particularly important is the aspect of polarization purity, since most of these applications

require antennas that can provide dual-linear and circular polarization.

Nevertheless, as it will be subsequently pointed out in this chapter, the antenna solu-

tions typically used for wideband wide-scan applications trade off matching performance

against polarization efficiency. Thus, to fulfill the above mentioned system and technology

challenges, new advanced array architectures, new design guidelines and new accurate the-

oretical formulations have to be developed. Within this dissertation, all these aspects will

be addressed, focusing in particular on the concept of “connected arrays”: this antenna

solution represents one of the most promising concepts in the field of wideband arrays, for

being able to achieve both broad bandwidth and low cross polarization.



2 1. Introduction

1.1 The Need for Wideband Wide-Scan Phased Ar-

rays

Wideband, wide-scan phased arrays are attractive for their potential to enable new system

functionality and increased integration. For example, the development of such antenna

arrays responds to the trend in advanced naval and airborne military environments toward

combining multiple functions on the same radiating apertures. Besides multi-function

radars in X-band and lower, other applications can benefit from antenna arrays with such

characteristics: these range from communication applications in Ku-bands [1] to earth-

based deep space investigation (e.g. Square Kilometer Array [2]) or satellite based sub-mm

wave instruments (e.g. SPICA [3]).

This section gives an overview of the main specific applications on which the research of

this thesis focuses.

1.1.1 In-Flight Entertainment: ACTiFE

In satellite communications, a single wideband feed antenna can strongly reduce space

and weight when supporting many communication channels. An important commercial

application that demands an advanced solution for satellite-to-aircraft communication is

the in-flight entertainment. An activity has been recently proposed by the European Space

Agency, which requires the development of advanced antenna concepts for aircraft in-flight

entertainment (ACTiFE) [1]. Funding from this project supported part of the research on

connected arrays presented in this dissertation.

For such application, the use of wide-scan angle arrays with extreme polarization require-

ments is necessary. The beam of the array antenna is required to be electronically steer-

able. The antenna should be integrated in the aircraft fuselage and be able to cover the full

hemisphere (±90◦ in elevation and 360◦ in azimuth). This allows the system to maintain

a good pointing and a good signal reception under all possible flight operations, including

high-latitude air routes.

For the in-flight entertainment application, the antenna is required to support two orthog-

onal polarizations, characterized by isolation between the channels better than 15 dB over

the entire hemisphere. Moreover, to minimize the impact of the antenna on the aircrafts, a

single antenna for both the uplink and the downlink bands is preferred, with a wide band-

width (about 30%, from 10.7 to 14.5 GHz) to operate on both transmit (Tx) and receive

(Rx) bands. The antenna could be constituted by a unique conformal or multi-faceted

solution that minimizes the dimension of the aperture for any given desired gain in all
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directions. However, such a solution does not lend itself to a simple implementation with

Printed Circuit Board (PCB) technology. A small number of flat panels, or even a single

panel with very wide-angle beam steering in combination with minor mechanical scanning,

could be adopted as an alternative solution. In this case, it is crucial that the array can

maintain stable matching and polarization performance over a very wide scan volume (up

to 45◦ − 60◦ in elevation).

1.1.2 Wideband and Multi-Band Radars

Also in radar applications, the need for specialized multi-function operations (e.g., simulta-

neous surveillance, discrimination, tracking), the use of high data rates, and the ability to

withstand adverse environmental conditions have stimulated considerable research activity

in the area of wideband phased arrays.

The proliferation of advanced sensor and communication systems aboard military platforms

(ships, aircraft, land vehicles, etc.) has led to an increasingly large number of associated

antenna systems. Since space, weight, and antenna siting for optimal coverage are at a

premium on these platforms, it is desirable to reduce the number of antennas by consol-

idating the functionality of several systems into a single shared aperture. As this system

integration increases, a single antenna is often required to support multiple services across

ultra-wideband (UWB) frequency ranges. Moreover, if a wideband aperture is shared be-

tween radar and communication systems, multiple polarizations have to be guaranteed,

setting the necessity for good polarization purity of the radiators.

The development of connected arrays for multi-function radars has been one of the focuses

at The Netherlands Organization for Applied Scientific Research (TNO) in the last years.

Part of the work described in this thesis was supported by the TNO Radar Program [4].

1.1.3 Radio Astronomy: the Square Kilometer Array

Another important application for wideband wide-scan arrays is radio astronomy, for which

phased arrays can be used by themselves or as feeds of large reflector antennas. An ongoing

project that may use phased arrays in both these configurations is the Square Kilometer

Array (SKA) [2,5,6]. The SKA is an international project aimed at building a huge radio

telescope that will provide an increase in sensitivity of two orders of magnitude over existing

telescopes. The SKA is planned to operate over an extremely wide frequency range, from

70 MHz to 25 GHz. Although there have been different suggestions for antennas, nowadays

it is likely that the final array design for SKA will utilize Vivaldi antennas for the individual
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elements [7]. However, these antennas have some limitations, as pointed out in the next

section.

Connected arrays are recently attracting growing interest as a valid option for radio as-

tronomy applications. For instance, the Commonwealth Scientific and Industrial Research

Organization (CSIRO), which is the Australian national science agency, is investigating

the capability of wideband connected array antennas for the Australian Square Kilometer

Array Pathfinder (ASKAP) radio telescope [8].

1.2 State of the Art: Limitations of Present Solutions

The solutions typically used for wideband wide-scan applications trade off matching per-

formance against polarization purity. Before presenting an overview of the most typically

adopted antennas and their performance, let us introduce the definitions of bandwidth and

cross polarization which we will refer to within this dissertation.

Definition of Bandwidth

The bandwidth of an antenna does not have a unique definition. Depending on

the operational requirements of the application for which the antenna is to be

used, the functional bandwidth of an antenna might be limited by any one or

several of the following factors: change of pattern shape or pattern direction,

increase in side-lobe level, loss in gain, change of polarization characteristics, or

deterioration of the impedance response. For the sake of fair comparison with

the literature and previous works, it is important to specify the definition of

bandwidth that will be used in this thesis, as of course much larger bandwidths

can be obtained with more relaxed requirements.

Unless differently specified, the definition for bandwidth used within this dis-

sertation is that band within which the array shows an active S11 lower than

−10 dB when pointing at broadside and at 45◦ on the E- and H-planes. In

other words, the bandwidth is given by the overlap between the −10 dB bands

for broadside, 45◦ E-plane scan and 45◦ H-plane scan.

For bandwidths that are less than one octave, we will use the percent band-

width, defined as (fH − fL)/fc %, where fc is the center frequency, and fL, fH

are the lower and upper cut-off frequencies, respectively. For wider bandwidths

we will instead refer to the fractional or ratio bandwidth, defined as fH : fL.
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Definition of Cross Polarization

The cross-polarization (X-pol) level is herein defined as the ratio between co-

polarized and cross-polarized fields, determined according to the third definition

from Ludwig [9]. The co-polar and the cross-polar unit vectors for an electric

current directed along x are given by

îco = cos ϕ θ̂ − sin ϕ ϕ̂ (1.1)

îcross = sin ϕ θ̂ + cos ϕ ϕ̂ (1.2)

referring to the coordinate system defined in Fig. 1.1. According to this defini-

tion, a short electric dipole does not radiate any cross-polarized field in the E-

and H-plane, as rigorously proved in [10]. However, cross polarization appears

on all other planes, for which ϕ 6= 0◦ and ϕ 6= 90◦. By using the well known

expression of the far-field radiation from a short electric dipole, one can easily

show that, once fixed the elevation angle θ, the highest X-pol level is observed

in the diagonal plane (D-plane), for which ϕ = 45◦. This is evident from Fig.

1.2, where the X-pol level relative to a short dipole placed along the x-axis is

shown in terms of the observation angles θ and ϕ. If we focus on a volume of

±45◦ in elevation, the worst case occurs for θ = 45◦ and ϕ = 45◦, when the

X-pol reaches the value of −15 dB.

Similarly to a short dipole, the X-pol level of well sampled linearly polarized

array is ideally zero when observing in the main planes, while is higher in the

D-plane. For this reason, we characterize the polarization performance on the

D-plane for maximum elevation angle, which is considered as the worst case.

When scanning up to 45◦, the X-pol levels are given for θ = 45◦ and ϕ = 45◦,

as depicted in Fig. 1.1.

An overview of some typical array elements for wideband wide-scan applications is reported

in Table 1.1. The elements are compared in terms of bandwidth and X-pol level, according

to the afore-given definitions.

Although tapered slot (or Vivaldi) antennas are characterized by very large impedance

matching bandwidths [11, 12], they exhibit relatively poor performance in terms of polar-

ization purity, especially when large scan angles are required. In particular, high X-pol

levels are observed when scanning in the diagonal plane [10, 13–15]. The high X-pol is
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Figure 1.1: Reference coordinate system and definition of E- H- and D-plane for a dipole; X-pol is
characterized for observations at θ = 45◦ and ϕ = 45◦.

Figure 1.2: X-pol level radiated by a short electric dipole along x toward the direction defined by θ and
ϕ, according to the reference coordinate system in Fig. 1.1.

attributed to the non-linearly polarized nature of the radiating currents in Vivaldi an-

tennas. In fact, due to the flare of the metallization, the current distribution along the

element inherently comprises a vertical component (orthogonal to the aperture plane),

which increases the cross-polar radiation.

A better polarization performance can be achieved by exploiting a denser sampling of

the array, with array periods that are smaller than a quarter wavelength. However, such

a configuration would increase the number of required Transmit/Receive (T/R) modules,

which poses significant challenges in cost and construction of the array. The arrangement of

Vivaldi antennas in an “egg-crate” configuration [16,17] is necessary to improve polarization
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Table 1.1: Comparison of antenna elements for wide-scan angle phased arrays in terms of bandwidth
(S11 < −10 dB within a 45◦ scan volume) and X-pol levels (for scanning to 45◦ in the D-plane).

performance in dual-polarization application.

On the other hand, phased arrays based on resonant elements that resort to completely

planar feeds can achieve better polarization purity, but only moderate bandwidths (∼ 25%).

Some examples are given by stacked patches [18–20], cavity-backed patches [21] or cavity-

backed folded dipoles [22].

To overcome the limitations stated above, there is a recent trend aiming at reducing X-

pol by making arrays of long slots or dipoles periodically fed: these arrays are indicated

as connected arrays of slot or dipoles. Connected arrays offer wide bandwidth, while

maintaining low X-pol levels.
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(a) (b)

Figure 1.3: Current distribution on dipole elements in array configuration: (a) resonant unconnected
dipoles; (b) connected dipoles.

1.3 Connected Arrays

In standard narrow-band array designs, the objective is to keep low mutual coupling be-

tween the radiating elements not to alter too much the performance of each isolated ele-

ment.

In recent years, a new approach has arisen for the design of broadband arrays in which

mutual coupling is intentionally introduced between the array elements. A simple way to

enhance the coupling between neighboring elements is to electrically connect them one to

another. A connected array can be briefly described as an array of slots or dipoles which

are electrically connected to each other. In this way, the array is no longer composed

of separated resonant elements, but can be considered as a single antenna periodically

fed. The current distribution on resonant narrow-band dipoles is sinusoidal and frequency

dependent, as shown in Fig. 1.3(a). Contrarily, connected arrays achieve wideband perfor-

mance, due to the fact that the connections between neighboring elements allow currents

to remain nearly constant with frequency (see Fig. 1.3(b)).

Another attractive feature of connected arrays is their capability to achieve good polariza-

tion purity, in virtue of the planarity of the radiating currents. For this reason, in about

the last ten years, connected arrays have emerged as one of the most valid alternatives to

the aforementioned solutions (Sec. 1.2), as they can guarantee both the broad band and

the low cross polarization.
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1.3.1 Historical Context

While the origin of connected arrays stems from the concept of self complementarity [23,24],

recently it was R. C. Hansen [25] who brought the concept of connected arrays of dipoles

to the attention of the antenna community. The design strategy for arrays of disconnected

dipoles presented in [26], while appearing different because it is based on capacitively-

coupled dipoles, presents some similarities as the one based on connected arrays. Indeed,

the purpose and effect of the capacitive loading in [26] is to obtain almost continuous

currents among the different dipole elements, thus realizing the continuous current sheet

proposed by Wheeler [27,28]. This is the same scope of the connected-dipole arrays.

In [29] the connected-dipole concept was extended to the dual structure, based on slots.

In [30] and [31] the Green’s functions (GF) of such long slot arrays were derived and

presented in analytical form, starting from a spectral representation of the field in each

slot [32]. This work demonstrated that the bandwidth achievable with connected arrays in

free space is theoretically infinite, for infinitely long slots or dipoles. In practical designs,

the bandwidth is not infinite, but it is limited only by the finite dimensions of the array.

The low frequency limit occurs when the array length is roughly λ/4. A very wideband

(10:1) long slot array, operating in the frequency range 200-2000 MHz, was reported in [33].

The true limiting factor on connected array bandwidth is the metallic back plane that is

needed to ensure unidirectional radiation [34]. However, thanks to the availability of the

analytical GF that greatly facilitates the design, a broad band (4:1) was achieved with

a connected array demonstrator with backing reflector in [35]. This consisted of a 4 × 8

backed connected array of slots radiating at broadside with good efficiency (VSWR<2) on

a bandwidth that spanned from 150 MHz to 600 MHz.

1.4 Novel Contributions in This Thesis

Starting from the theoretical formulation available at the beginning of the study, this

dissertation, on the one hand, further develops the theory of connected arrays, based on a

spectral GF formalism. On the other hand, the study addresses and proposes solutions to

the issues associated with the practical design of such arrays.

The main novel aspects that have been investigated can be summarized as follows:

• An extension of the GF formalism to the cases of receiving arrays and arrays that

include load impedances at the feed points.
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• An investigation on the scan performance of connected array of dipoles and slots,

based on the analysis of the singularities of the pertinent GFs.

• A rigorous equivalent circuit for the array unit cell, whose components are expressed

in analytical form. This circuit representation constitutes a powerful design tool and

provides gain in physical insight on both local and global behaviors of the array.

• A rigorous study on finiteness effects, which can be dominant in connected arrays, due

to the high inter-element mutual coupling. Both numerical and analytical methods

are presented. The link with the load impedance of the array elements is also pointed

out, giving useful guidelines for the design of the array element to minimize edge

effects.

• The design of practical feed structures for these arrays, aiming at reducing common-

mode propagation into the feed lines. The problem of common mode is extensively

addressed and explained in this thesis and it is believed to be the major practical issue

for all very wideband arrays. A solution is proposed and experimentally validated by

a prototype demonstrator.

1.5 Outline of the Thesis

This thesis is structured in two main parts. In the first part, which includes Chapters 2 to 5,

the focus is on the theoretical analysis and the derivation of closed-form analytical formulas

for the modelling of connected arrays. The second part, which comprises Chapters 6 and 7,

reports on the practical design, the implementation of feed structures and the experimental

verification. More in detail, the dissertation is organized as follows.

In Chapter 2, the theoretical formulation for the analysis of connected array is presented,

as it constitutes the mathematical basis for the subsequent chapters. The derivation of the

GF of a single infinite dipole is reported, as well as its generalization to a infinite periodic

array of connected dipoles. Finally, analytical formulas for the active input impedance are

given, for connected arrays of slots and dipoles with or without backing reflector. These

expressions are remarkably useful for the design of a connected array, since they set a

one-to-one correspondence between geometrical parameters and antenna parameters, thus

constituting a faster alternative to numerical methods.

In Chapter 31, the scanning performance of connected arrays is investigated, with emphasis

1This chapter is an extended version of the article [J1] (a list of the author’s publications is included
at the end of this dissertation, p. 209)
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on the comparison between slot and dipole elements when the arrays are backed by a

metallic plane. Based on this study, a connected-dipole design with a bandwidth in the

order of 40% and wide sampling periods (dx = dy ≈ 0.5 λ0 at the highest useful frequency)

is presented and discussed, showing its full functionality even when scanning up to ±45◦.

In Chapter 42, an equivalent circuit representation of the array unit cell is derived. The

analytical expression of the element input impedance can be expanded in different terms,

each representable in circuit form. The circuit is a very powerful design tool, as all its com-

ponents can be analytically derived from the geometrical parameters of the element. The

equivalent circuit is used to interpret the experimental results from a dual-band connected

array demonstrator, based on passive Radar Cross Section (RCS) measurements.

Chapter 5 presents a GF-based procedure to assess edge effects in finite connected arrays.

First, the electric current distribution on the array is rigorously derived. Later on, the

introduction of a few simplifying assumptions allows the derivation of an analytical ap-

proximation for the current distribution. This formalism provides meaningful insights in

the induced dominant edge-wave mechanism.

Starting from the ideal design, in Chapter 6, the practical implementation of the feed

structure is addressed. Two novel solutions are presented to avoid common-mode cur-

rent propagation on the vertical feed lines. Simulation results obtained via commercial

electromagnetic tools are presented.

Based on the common-mode rejection circuit described in Chapter 6, a wideband, wide-

scan phased array of 7 × 7 connected dipoles has been designed and fabricated for 3 to 5

GHz operation. The measured results from the prototype demonstrator are presented in

Chapter 7 for experimental validation.

Chapter 8 concludes with a review of the most significant results presented in this thesis

and an outlook on possible future developments.

2This chapter is an extended version of the article [J3] (a list of the author’s publications is included
at the end of this dissertation, p. 209)
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Chapter 2

Spectral Green’s Functions of

Connected Arrays

This chapter presents the theoretical formulation adopted for the analysis of connected

arrays. The formulation is explained in detail for connected dipoles, whereas only final

results are given for connected slots, as the extension is a straightforward application of

the Babinet’s principle. First, the problem of a single infinite dipole is considered and

formalized in terms of a spectral domain integral equation. The spectral solution to this

problem can be found in a closed form, therefore no discretization method (e.g. moment

method) is necessary. The generalization of the procedure to an infinite periodic array of

connected dipoles via Floquet’s theorem is then described and leads to analytical formulas

for the active input impedance of an array element. These formulas constitute, on the one

hand, a very useful tool for the design of connected arrays; on the other hand, they can be

expanded in constitutive terms or analyzed in terms of singularities to gain a deep physical

insight into both the localized and the global behaviors of these arrays.

2.1 Green’s Functions of an Infinite Dipole or Slot

The derivation of the spectral Green’s Function (GF) for a single infinite slot excited by

a delta-gap source was reported in [32, 36, 37]. In this section, a simple extension of the

formulation is described in detail, for the case of a single infinite dipole. Similar final

expressions can be derived for the case of an infinite slot and are also reported, without

detailed proof, for the sake of completeness.

The geometry under analysis is depicted in Fig. 2.1(a) and consists of an infinitely long

dipole oriented along x. The width wd is assumed to be uniform along x and small compared
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(a) (b)

Figure 2.1: (a) Infinite dipole in free space excited by a δ-gap source; (b) equivalent unknown surface
current distribution j s(x, y).

to the wavelength. The dipole is excited by an electric field oriented along x, applied across

a gap of dimension δd, and uniformly distributed over the width wd. It should be noted

that such a field is an idealized model (δ-gap source) and it is here considered for the sake

of simplicity. More realistic feed structures will be widely described in Chapter 6.

This initial problem can be simplified by applying an equivalence theorem. Equivalent

magnetic and electric currents can be defined on the surface coinciding with the (x, y) plane,

so that the boundary conditions for the tangential components of the electromagnetic field

are satisfied:

ẑ × (h+ − h−) = j s(x, y) ẑ × (e+ − e−) = −ms(x, y) (2.1)

where the subscripts + and − refer to the electric and magnetic field at z > 0 and z < 0,

respectively. The tangential electric field vanishes on the conductive part of the dipole;

thus, from the (2.1), only the surface electric currents can be different from zero. Also in

the gap region the magnetic current vanishes from the second equation in (2.1), since the

tangential components of the electric field are continuous (ẑ × e+ = ẑ × e− for z → 0).

Hence, the equivalent problem becomes the one in Fig. 2.1(b), where only electric surface

currents j s(x, y) are distributed over the region occupied by the dipole.

If the dipole width is assumed to be small with respect to the wavelength, the unknown

currents can be considered as oriented along x only, i.e. j s(x, y) = jx(x, y)x̂. By imposing

the continuity of the total electric field along the dipole axis (y = 0), the following integral

equation is obtained:
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∞∫

−∞

wd/2∫

−wd/2

gEJ
xx (x− x′,−y′)jx(x

′, y′)dx′dy′ = −ei
x(x, 0) (2.2)

where ei
x(x, y) is the x-oriented impressed electric field. The integral at the left hand side

(LHS) is the secondary field radiated by the electric current on the strip. gEJ
xx represents

the spatial scalar GF associated with the electric field radiated by an electric current, and

its expression is derived in the spectral domain in Appendix A.

Equation (2.2) is a two-dimensional convolution integral in the two spatial variables x′

and y′. However, under the assumption of small width of the dipole with respect to

the wavelength, a separable space dependence of the unknown current can be assumed:

jx(x
′, y′) = i(x′)jt(y

′). The transverse y-dependence is chosen to satisfy the edge singularity

condition:

jt(y
′) =

2

wdπ

1√
1−

(
2y′
wd

)2
(2.3)

where the normalization constant 2/(wdπ) is such that i(x′) represents a net current flow

along the dipole at any point x = x′.

In a similar way, the x-component of the impressed electric field can also be expressed as

the product between two functions of the longitudinal (x) and transverse (y) variables;

that is, in the transmission case, ei
x(x, y) = (V0/δd)rectδd

(x)rectwd
(y), where V0 is the

amplitude of the excitation voltage and the rectangular function rectT (x) is equal to 1 if

x ∈ [−T/2, T/2] and 0 otherwise.

With this separable functional dependence, the integral equation (2.2) can be written as

∞∫

−∞




wd/2∫

−wd/2

gEJ
xx (x− x′,−y′)jt(y

′)dy′




︸ ︷︷ ︸
d(x−x′)

i(x′)dx′ = −V0

δd

rectδd
(x). (2.4)

By grouping the terms depending on y′ together, a function d(x−x′) can be defined as the

space-convolution integral in the transverse variable y′. Since the GFs of stratified media

are known in closed form in the spectral domain, it is convenient to express the integral
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equation (2.4) in the same domain. The spatial convolution
∫∞
−∞ d(x−x′)i(x′)dx′ is Fourier

transformed into the product of the spectra:

1

2π

∞∫

−∞

D(kx)I(kx)e
−jkxxdkx = − 1

2π
V0

∞∫

−∞

sinc
(

kxδd

2

)
e−jkxxdkx. (2.5)

D(kx), I(kx) and sinc(kxδd

2
) are the Fourier transforms of the spatial functions d(x), i(x)

and 1
δd

rectδd
(x), respectively. We assume a time (t) dependence of the fields according to

the exponential function ejωt, where ω is the radian frequency. Since Eq. (2.5) is valid for

any x, one can equate the integrands at the right- and left-hand side, which leads to

I(kx) =
−V0 sinc

(
kxδd

2

)

D(kx)
. (2.6)

The current along the entire dipole axis can be expressed at any position x as an inverse

Fourier transform:

i(x) =
1

2π

∞∫

−∞

−V0 sinc(kx)

D(kx)
e−jkxxdkx. (2.7)

Recalling the definition of the function d(x) in Eq. (2.4), the denominator D(kx) can be

written as

D(kx) =
1

2π

∞∫

−∞

G̃EJ
xx (kx,−y′)jt(y

′)dy′ (2.8)

where G̃EJ
xx (kx, y) is the Fourier transform, with respect to the longitudinal spatial variable

(x) only, of the spatial GF gEJ
xx (x, y). Using Parseval’s theorem, Eq. (2.8) can be also

expressed as

D(kx) =
1

2π

∞∫

−∞

GEJ
xx (kx, ky)Jt(ky)dky. (2.9)

Jt is the Fourier transform of the transverse electric current distribution in (2.3) and it can

be easily proved to be equal to J0(kywd/2), with J0 being the Bessel function of the first
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kind and of zeroth order. The expression for the xx component of the dyadic GF GEJ is

given in Appendix A (Eq. (A.29)) and can be substituted in (2.9), which leads to

D(kx) =
1

2π

∞∫

−∞

−vTMk2
x + vTEk2

y

k2
ρ

J0

(
kywd

2

)
dky (2.10)

with kρ =
√

k2
x + k2

y. The values of the voltages vTM and vTE depend on the specific

stratification along the z axis. In the next sections, the integral in Eq. (2.10) will be

evaluated for the two specific cases: a dipole in free space and in the presence of a backing

reflector.

2.1.1 Current Solution for an Infinite Dipole

Free Space

Equation (2.10) contains a generic expression of the scalar electric field GF, valid for general

stratification along z. The explicit expression of the GF, for the specific case of a dipole in

free space, is derived in Appendix A, and given by the expression (A.67). By substituting

(A.67) for z = 0 in (2.10), one obtains

Dfs(kx) = − ζ0

2k0

1

2π

∞∫

−∞

k2
0 − k2

x√
k2

0 − k2
x − k2

y

J0

(
kywd

2

)
dky (2.11)

where k0 is the wave number in free space and ζ0 is the free space characteristic impedance.

This spectral integration can be performed in analytical form by resorting to the following

identity [38]:

∞∫

−∞

J0

(
kywd

2

)
√

k2
0 − k2

x − k2
y

dky = πJ0

(
wd

4

√
k2

0 − k2
x

)
H

(2)
0

(
wd

4

√
k2

0 − k2
x

)
(2.12)

where H
(2)
0 is the Hankel function of the second type and zeroth order. The longitudinal

spectral GF becomes

Dfs(kx) = − ζ0

4k0

(k2
0 − k2

x)J0

(
wd

4

√
k2

0 − k2
x

)
H

(2)
0

(
wd

4

√
k2

0 − k2
x

)
. (2.13)



18 2. Spectral Green’s Functions of Connected Arrays

Figure 2.2: Infinite dipole in the presence of a backing reflector at distance hd.

One can note that, to obtain the same result, an equivalent approach can be adopted,

which starts from the GF of an infinite filament current and proceeds with the integration

over the finite width of the dipole.

Backing Reflector

Let us now consider the inclusion of an infinite backing reflector located at z = −hd, as

shown in Fig. 2.2. In this case, by using the expression of the scalar GF given in Eq.

(A.72), Eq. (2.10) can be written as follows:

Dbr(kx) = − ζ0

2k0

1

2π

∞∫

−∞

k2
0 − k2

x√
k2

0 − k2
x − k2

y

J0

(
kywd

2

)
(1− e−j2kzhd)dky. (2.14)

The integral can be then split into two terms:

Dbr(kx) = Dfs(kx) + Drefl(kx) =

− ζ0

2k0

1

2π
(k2

0 − k2
x)




∞∫

−∞

J0

(
kywd

2

)
√

k2
0 − k2

x − k2
y

dky −
∞∫

−∞

J0

(
kywd

2

)
√

k2
0 − k2

x − k2
y

e−j2kzhddky


 (2.15)

where Dfs(kx) has already been evaluated in Eq. (2.13), while the reflected contribution,

assuming a small width of the dipole compared to the wavelength (J0(kywd/2) ≈ 1), is

given by
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Drefl(kx) ≈ ζ0

2k0

(k2
0 − k2

x)
1

2π

∞∫

−∞

e−j2kzhd

√
k2

0 − k2
x − k2

y

dky. (2.16)

The integral in the last equation can be expressed in closed form [39] in terms of Hankel

function, which results in the following total expression:

Dbr(kx) ≈ ζ0(k
2
0 − k2

x)

4k0

·
(

H
(2)
0

(
2hd

√
k2

0 − k2
x

)
− J0

(
wd

4

√
k2

0 − k2
x

)
H

(2)
0

(
wd

4

√
k2

0 − k2
x

))
. (2.17)

Once analytical expressions have been derived for the function D(kx), the current spec-

trum can be evaluated by using Eq. (2.6), while the spatial current distribution can be

numerically calculated from the inverse Fourier integral in Eq. (2.7).

2.1.2 Current Solution for an Infinite Slot in Free Space and with

Backing Reflector

A very similar procedure can be followed for an infinite slot, to find the longitudinal voltage

distribution along its axis. The geometry in this case would be the one in Fig. 2.3(a).

An equivalent problem is shown in Fig. 2.3(b), where the slot region is replaced with

an equivalent magnetic current distribution ms(x, y) over an infinitely thin and perfectly

conducting surface.

Assuming a functional separability of the equivalent surface current between transverse

and longitudinal dependence (ms(x, y) = v(x)mt(y)x̂), and following the same steps as for

the dipole case, we can write the voltage distribution along the x axis as

v(x) =
1

2π

∞∫

−∞

I0 sinc
(

kxδs

2

)

Dslot(kx)
e−jkxxdkx (2.18)

where I0 is the current amplitude of the excitation. The spectral function Dslot(kx) assumes

different forms in the free space case and in the presence of a backing reflector. For free

space, it is given by

Dslot
fs =

1

ζ0k0

(k2
0 − k2

x)J0

(
ws

4

√
k2

0 − k2
x

)
H

(2)
0

(
ws

4

√
k2

0 − k2
x

)
(2.19)
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(a) (b)

Figure 2.3: (a) Infinite slot in free space excited by a δ-gap source; (b) equivalent unknown surface current
distribution ms(x, y).

Figure 2.4: Infinite slot in the presence of a backing reflector at distance hs.

while, in the case of a metallic reflector at distance hs from the plane of the slot, as depicted

in Fig. 2.4, it is given by

Dslot
br (kx) = − 1

ζ0k0

(k2
0 − k2

x)·
(

H
(2)
0

(
2hs

√
k2

0 − k2
x

)
− J0

(
ws

4

√
k2

0 − k2
x

)
H

(2)
0

(
ws

4

√
k2

0 − k2
x

))
. (2.20)
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(a) (b)

Figure 2.5: (a) Infinite periodic array of dipoles in free space excited by δ-gap sources; (b) equivalent
unknown current distribution j s(x, y).

2.2 Green’s Function of 2-D Periodic Connected Ar-

rays

The theoretical formulation described for a single infinite dipole can be generalized to the

case of an infinite periodic array of dipoles. The initial problem is shown in Fig. 2.5(a).

It consists of a periodic array of x-oriented dipoles at distance dy, each one excited at an

infinite number of gaps, with period dx. The cross section wd of the dipole is uniform in

x and electrically small. Figure 2.5(b) represents a simpler problem obtained by applying

the equivalence principle.

By enforcing the continuity of the tangential electric field along the x axis (y = 0), as it

was done for the single dipole in Eq. (2.2), one can write

∞∫

−∞

∞∫

−∞

gEJ
xx (x− x′,−y′)jx(x

′, y′)dx′dy′ = −ei
x(x, 0). (2.21)

For a transmitting array, the impressed field is given by an infinite sum of rectangular

functions centered in the feeding points:

ei
x(x, 0) =

∞∑
nx=−∞

V0

δd

rectδd
(x− nxdx)e

−jkx0nxdx (2.22)
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where kx0 = k0 sin θ0 cos ϕ0 is the longitudinal excitation law when the array is scanning

toward the direction (θ0, ϕ0). In the transverse direction we define ky0 = k0 sin θ0 sin ϕ0.

The spatial integral in (2.21), whose domain is the entire surface represented by the plane

(x′, y′), can be expressed as the sum of an infinite number of integrals over the array

periodic cells:

∞∑
nx=−∞

∞∑
ny=−∞

nxdx+ dx
2∫

nxdx− dx
2

nydy+
dy
2∫

nydy− dy
2

gEJ
xx (x− x′,−y′)i(x′)jt(y

′)dx′dy′ = −ei
x(x, 0). (2.23)

By resorting to the variable substitutions x′ = x′ − nxdx , y′ = y′ − nydy and writing the

GF in the spectral domain, one obtains

1

4π2

+∞∫

−∞

+∞∫

−∞

∞∑
nx=−∞

∞∑
ny=−∞

dx
2∫

− dx
2

dy
2∫

− dy
2

i(x′ − nxdx)jt(y
′ − nydy)G

EJ
xx (kx, ky)

ejkxnxdxejkynydye−jkxxejkxx′ejkyy′dkxdkydx′dy′ = −ei
x(x, 0). (2.24)

Due to periodicity along the x- and y-directions, one can write i(x′−nxdx) = i(x′)e−jkx0nxdx

and jt(y
′ − nydy) = jt(y

′)e−jky0nydy . Hence, by grouping the terms depending on x′ and y′,

one can identify two Fourier transforms (between parentheses):

1

4π2

+∞∫

−∞

+∞∫

−∞

∞∑
nx=−∞

∞∑
ny=−∞




dx
2∫

− dx
2

i(x′)ejkxx′dx′







dy
2∫

− dy
2

jt(y
′)ejkyy′dy′


 ·

GEJ
xx (kx, ky)e

j(kx−kx0)nxdxej(ky−ky0)nydye−jkxxdkxdky = −ei
x(x, 0). (2.25)

Therefore, by writing also the impressed field at the right hand side (RHS), defined by Eq.

(2.22), as an inverse Fourier transform, the integral equation becomes

1

4π2

+∞∫

−∞

+∞∫

−∞

∞∑
nx=−∞

∞∑
ny=−∞

I(kx)J0

(
kywd

2

)
GEJ

xx (kx, ky)e
j(kx−kx0)nxdxej(ky−ky0)nydye−jkxxdkxdky =

− 1

2π

+∞∫

−∞

V0 sinc
(

kxδd

2

) ∞∑
nx=−∞

ej(kx−kx0)nxdxe−jkxxdkx. (2.26)



2.2. Green’s Function of 2-D Periodic Connected Arrays 23

We can now resort to Poisson’s summation formula [40], which relates the Fourier series

coefficients of the periodic summation of a function f to values of the function’s continuous

Fourier transform:

∞∑
n=−∞

f(n) =
∞∑

m=−∞

∞∫

−∞

f(ν)e−j2πmνdν. (2.27)

By applying Poisson’s sum formula to the infinite sums in Eq. (2.26), after a few algebraic

steps, we obtain the following expressions:

∞∑
nx=−∞

ej(kx−kx0)nxdx =
2π

dx

∞∑
mx=−∞

δ(kx − kxm)

∞∑
ny=−∞

ej(ky−ky0)nydy =
2π

dy

∞∑
my=−∞

δ(ky − kym)

(2.28)

where kxm = kx0 − 2πmx

dx
, kym = ky0 − 2πmy

dy
are referred to as the Floquet wave numbers,

and δ represents the Dirac distribution. Equation (2.26) then becomes

1

dxdy

+∞∫

−∞

+∞∫

−∞

I(kx)J0

(
kywd

2

)
GEJ

xx (kx, ky)
∞∑

mx=−∞
δ(kx − kxm)

∞∑
my=−∞

δ(ky − kym)e−jkxxdkxdky =

− 1

dx

+∞∫

−∞

V0 sinc
(

kxδd

2

) ∞∑
mx=−∞

δ(kx − kxm)e−jkxxdkx. (2.29)

From the property of the Dirac δ-distribution, the integration over a continuous spectral

variable becomes a summation over the discrete Floquet wave numbers kxm, kym:

1

dxdy

∞∑
mx=−∞

∞∑
my=−∞

I(kxm)J0(
kymwd

2
)GEJ

xx (kxm, kym)e−jkxmx =

− V0

dx

∞∑
mx=−∞

sinc
(

kxmδd

2

)
e−jkxmx. (2.30)

Defining
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D∞(kx) =
1

dy

∞∑
my=−∞

J0(
kymwd

2
)GEJ

xx (kx, kym) (2.31)

leads to

1

dx

∞∑
mx=−∞

I(kxm)D∞(kxm)e−jkxmx = −V0

dx

∞∑
mx=−∞

sinc(kxδd

2
)e−jkxmx. (2.32)

Since the previous identity holds for any x, one can equate the respective spectra for each

plane wave (e−jkxmx), thus obtaining the discrete current spectrum:

I(kxm) =
−V0 sinc

(
kxmδd

2

)

D∞(kxm)
. (2.33)

2.2.1 Active Impedance of a Unit Cell for Connected Arrays of

Dipoles

The spectrum in Eq. (2.33) can be inversely Fourier transformed, which leads to an explicit

spatial expression of the current:

i(x) =
1

dx

∞∑
mx=−∞

−V0 sinc
(

kxmδd

2

)

D∞(kxm)
e−jkxmx. (2.34)

The active input admittance can be calculated at any feed point in an infinite periodic

array, for instance for the array element in the origin (nx = ny = 0). In this case, the

active input impedance is

y =
1

δd

δd
2∫

− δd
2

i(x)dx =
1

dx

∞∑
mx=−∞

−V0 sinc2
(

kxmδd

2

)

D∞(kxm)
(2.35)

where we used the identity 1
δd

δd/2∫
−δd/2

e−jkxmxdx = sinc(kxmδd/2).

By substituting Eq. (2.31) in Eq. (2.35), with the explicit expression of the scalar spectral

GF for free space (Eq. (A.67)), leads to
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Figure 2.6: Infinite periodic array of dipoles in the presence of a backing reflector located at z = −hd.

yfs
dipole =

2k0dy

ζ0dx

∞∑
mx=−∞

sinc2(kxmδd/2)

(k2
0 − k2

xm)
∞∑

my=−∞

J0(kym
wd
2 )

kzm

(2.36)

where kzm =
√

k2
0 − k2

xm − k2
ym and we assumed a unit voltage excitation (V0 = 1).

If a backing reflector is included, as shown in Fig. 2.6, the expression (2.35) is still valid,

but the pertinent expression of the GF is the one in Eq. (A.70). The input admittance in

this case is given by

ybr
dipole =

k0dy

ζ0dx

∞∑
mx=−∞

sinc2(kxmδd/2)

(k2
0 − k2

xm)
∞∑

my=−∞

J0(kym
wd
2 )

kzm(1−j cot(kzmhd))

. (2.37)

The evaluation of the admittance in (2.36) and (2.37) involves infinite series of Floquet

modes. However, the spectral sums can be truncated to a finite number of terms. The

convergence rate of the series depends on the geometry of the unit cell. To highlight this

aspect, Figs. 2.7(a) and 2.7(b) show the active impedances zfs
dipole and zbr

dipole, which are

the reciprocals of the admittances defined by Eqs. (2.36) and (2.37), as a function of the

number of Floquet modes considered in the spectral sums in mx and my. Three cases are

considered: wd = δd = 0.1 λ0; wd = 0.1 λ0, δd = 0.01 λ0; and wd = 0.01 λ0, δd = 0.1 λ0.

The remaining geometrical parameters are set to dx = dy = 0.5 λ0, hd = 0.25 λ0, with

λ0 being the wavelength at the frequency f0. The calculation frequency is equal to 0.6f0

and the array is scanned to broadside. It can be noted that a slower convergence of the

spectral sums occurs for either a small gap or a small width of the dipole. In fact, an

higher number of modes is required to model the reactive energy associated with small
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(a) (b)

Figure 2.7: Analytical expression of the active impedance for a connected array of dipoles as a function
of the number of Floquet modes in the spectral sums in Eqs. (2.36) and (2.37): (a) free space; (b)
backing reflector. The dimensions are dx = dy = 0.5 λ0, hd = 0.25 λ0, with λ0 being the wavelength
at the frequency f0. Three cases are considered: 1) wd = δd = 0.1 λ0; 2) wd = 0.1 λ0, δd = 0.01 λ0; 3)
wd = 0.01 λ0, δd = 0.1 λ0. The calculation frequency is 0.6f0 and a broadside scanning is considered.

dimensions of the dipole gap (capacitive) or the dipole width (inductive) in the expression

of the input admittance.

Figure 2.8 shows the active impedances zfs
dipole and zbr

dipole as a function of the frequency

for a connected array of dipoles in free space and with backing reflector, respectively.

For validation of the GF-based procedure, the results of the analytical expressions are

compared with full-wave simulations obtained via Ansoft HFSS [41]. The curves refer

to dx = dy = 0.5 λ0, wd = δd = 0.1 λ0, hd = 0.25 λ0, with λ0 being the wavelength at

the frequency f0. The Floquet sums in Eqs. (2.36) and (2.37) have been truncated at

mx = ±20 and my = ±20, as higher order modes are negligible for this choice of the

geometrical parameters, as shown in Fig. 2.7. A good agreement can be observed when

comparing the analytical expressions with HFSS results. Although the results are not

reported here for the sake of brevity, the same accuracy was observed for scanning angles,

and for different geometrical parameters.
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(a) (b)

Figure 2.8: Analytical expression of the active impedance for a connected array of dipoles, compared with
HFSS: (a) free space; (b) backing reflector. The dimensions are dx = dy = 0.5 λ0, wd = δd = 0.1 λ0,
hd = 0.25 λ0, with λ0 being the wavelength at the frequency f0, and a broadside scanning is assumed.

2.2.2 Active Impedance of a Unit Cell for Connected Arrays of

Slots

Similar expressions can be obtained for the active input impedance of the unit cell of

an infinite array of slots, with or without backing reflector (Fig. 2.9). The pertinent

expressions are given by

zfs
slot =

k0ζ0dy

2dx

∞∑
mx=−∞

sinc2(kxmδs/2)

(k2
0 − k2

xm)
∞∑

my=−∞

J0(kym
ws
2 )

kzm

(2.38)

for free space and

zbr
slot =

k0ζ0dy

dx

∞∑
mx=−∞

sinc2(kxmδs/2)

(k2
0 − k2

xm)
∞∑

my=−∞

J0(kym
ws
2 )(1−j cot(kzmhs))

kzm

(2.39)

for a backed array.

Figures 2.10(a) and (b) show the active impedances given by Eqs. (2.38) and (2.39),

respectively. The considered geometrical parameters are dx = dy = 0.5 λ0, ws = δs = 0.1 λ0,

hs = 0.25 λ0, where λ0 is the wavelength at the frequency f0. Comparisons with HFSS
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(a) (b)

Figure 2.9: Infinite periodic array of slots (a) in free space and (b) with backing reflector at distance hs.

(a) (b)

Figure 2.10: Analytical expression of the active impedance for a connected array of dipoles, compared
with HFSS: (a) free space; (b) backing reflector. The dimensions are dx = dy = 0.5 λ0, ws = δs = 0.1 λ0,
hs = 0.25 λ0, with λ0 being the wavelength at the frequency f0.

show a similar accuracy in the dipole case, reported in Fig. 2.8.

The analytical expressions for the active impedance given in Eqs. (2.36), (2.37), (2.38) and

(2.39) represent a very powerful tool for the design of connected arrays. As demonstrated

in [30, 31], for both the cases of array of connected dipoles and slots in free space, the
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bandwidth is theoretically unlimited in the sense that, although there is an upper cut-off

frequency, there is practically no cut-off at the low end of the band. Indeed, for the static

case at zero frequency, the array in free-space can be interpreted as an infinite current sheet

whose impedance tends to the parallel of two free-space impedances (ζ0/2). This is true for

an infinite array without a back plane, since the reflector would short-circuit the current

sheet in the static case. The low-frequency characteristics of the array can be obtained by

retaining only the lowest-order terms (mx = 0, my = 0) in Eqs. (2.36) and (2.38). The

resulting expression of the impedance is frequency independent, as it was shown in [31].

The presence of a back plane introduces a dependence on the frequency, thus reducing the

bandwidth of the connected array. A study of the array performance, for the case where a

backing plane is included, is reported in Chapter 3.
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Chapter 3

Scanning Behavior of Backed

Connected Arrays

In this chapter, the scanning properties of connected array are investigated, with focus on

the comparison between slots and dipoles. The scan performance of this type of arrays is

governed by a number of factors, such as the array sampling, the distance from the ground

plane and the reactive energy associated with the feed points. In particular, it is shown

how the capacitive energy stored in the feed gaps of connected dipoles can be used to match

the array for wide-scan angles. This observation sets a preference for connected dipoles

over connected slots. A design with a bandwidth in the order of 40% and wide sampling

periods (dx = dy ≈ 0.5 λ0 at the highest useful frequency) is presented and discussed. The

designed array keeps its full functionality even when scanning up to ±45◦.

3.1 Impedance of Connected Arrays when Scanning

The slot and dipole arrays under consideration are shown in Fig. 3.1(a) and (b), respec-

tively, together with the pertinent reference system and characterizing parameters. The

derivation of the Green’s Function (GF) for connected arrays of slots and dipoles was de-

scribed in Chapter 2 and led to analytical expressions for the input impedance/admittance

in the case of backed arrays (Eqs. (2.39) and (2.37)). For the slot case in Fig. 3.1(a), the

active input impedance of an array element can be expressed as follows:

zbr
slot =

k0ζ0dy

dx

∞∑
mx=−∞

sinc2(kxmδs/2)

(k2
0 − k2

xm)
∞∑

my=−∞

J0(kym
ws
2 )(1−j cot(kzmhs))

kzm

(3.1)
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(a) (b)

Figure 3.1: Two-dimensional periodic connected arrays of (a) slots and (b) dipoles with backing reflector.

where J0 is the Bessel function of zeroth order of the first kind, k0 is the free-space

propagation constant, kxm = k0 sin θ0 cos ϕ0 − 2πmx

dx
, kym = k0 sin θ0 sin ϕ0 − 2πmy

dy
, and

kzm =
√

k2
0 − k2

xm − k2
ym. The array is pointing toward the direction defined by the angles

θ = θ0 and ϕ = ϕ0.

For the dipole structure with backing reflector depicted in Fig. 3.1(b), the active input

admittance at each feed can be written as

ybr
dipole =

1

zbr
dipole

=
k0dy

ζ0dx

∞∑
mx=−∞

sinc2(kxmδd/2)

(k2
0 − k2

xm)
∞∑

my=−∞

J0(kym
wd
2 )

kzm(1−j cot(kzmhd))

. (3.2)

Note that here it is assumed that both slots and dipoles in Fig. 3.1 are oriented along x.

This implies that the connected array of dipoles operates in a polarization orthogonal to

the one associated with the connected array of slots.

3.1.1 Dominant Floquet Wave

Both expressions (3.1) and (3.2) present a clear resonance condition. The condition can

be gathered by considering only the first mode (mx = my = 0) in the double Floquet

summations. Note that the dominant mode representation is a realistic hypothesis only

when the array is extremely well sampled (low frequency). Under this approximation, the

slot array impedance becomes
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z̃br
slot = zbr

slot

∣∣
mx=my=0

=
ζ0dy

dx

cos θ

(1− sin2 θ cos2 ϕ)(1− j cot(k0hs cos θ))
. (3.3)

For the dipole case, retaining only the dominant mode, one obtains a similar expression:

z̃br
dipole = zbr

dipole

∣∣
mx=my=0

=
ζ0dx

dy

1− sin2 θ cos2 ϕ

cos θ(1− j cot(k0hd cos θ))
. (3.4)

The only difference with respect to Eq. (3.3) resides in the changed ϕ-dependence, con-

sistently with the fact that the E- and H-planes are inverted in the dipole configuration

with respect to the slots. The similarity between Eqs. (3.3) and (3.4) implies that there

are no major differences in bandwidth between slots and dipoles, if only the fundamental

Floquet mode is considered.

The resonance of the impedance is clearly given by the condition k0hs,d cos θ = π/2, which

implies hs,d = λ0/4 for broadside radiation. When this condition occurs, and if we assume

a square periodic cell (dx = dy), it is easy to see from Eqs. (3.3) and (3.4) that z̃br
slot =

z̃br
dipole = ζ0. Such value of the active impedance is twice as large as the asymptotic value

for low frequency of a connected array of slots or dipoles without backing reflector (ζ0/2).

The factor 2 derives from the fact that an array in free space radiates equally in the upper

and lower half spaces. On the contrary, with a backing reflector, all the power provided to

the radiating aperture is radiated in the upper half space.

If the array is pointing broadside only, the low-frequency approximations of the input

impedance in Eqs. (3.3) and (3.4) state that the array can be matched with a real trans-

mission line to present a reflection coefficient lower than −10 dB over about a 75% relative

bandwidth. This can be observed from the continuous curves in Fig. 3.2, pertaining to a

connected-dipole array. The height from the ground plane is hd = 0.25 λ0, where λ0 = c0
f0

and c0 is the free-space velocity. The curves are plotted as a function of the frequency,

normalized with respect to f0. The transmission-line characteristic impedance that guar-

antees the widest frequency bandwidth is the one the matches the free-space impedance

(377 Ω). Figure 3.2 also shows the effects of scanning on the fundamental mode of the

input impedance and the corresponding reflection coefficient, assuming a 377 Ω feeding

line. The array scanning produces two important effects.

• The input resistance is lowered by a factor of cos θ when scanning in the E-plane and

increased by a factor of sec θ when scanning in the H-plane. This effect is readily

apparent from Eqs. (3.3) and (3.4).
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(a) (b)

Figure 3.2: Scanning behavior of a connected array of dipoles, considering only the fundamental Floquet
mode (mx = my = 0): (a) active impedance and (b) reflection coefficient, assuming a 377 Ω feeding line.

• Another important impact on the matching of the arrays as a function of the scan-

ning results from the shift of the resonance frequency. As the scan angle grows, for

example to 45◦, the electrical length (k0hs cos θ) becomes smaller. This implies that

the resonance condition is achieved for a frequency that is 40% higher with respect

to broadside (Fig. 3.2(b)).

If the low-frequency approximation is dropped, the full expression in (3.1) and (3.2) have

to be considered. A parametric analysis has been performed for a connected array of slots,

implementing Eq. (3.1). The maximum possible overlap between the matching bandwidth

achieved at broadside and at 45◦ scan, on both planes, is about 30%. An example of this

behavior is shown in Fig. 3.3, which reports the reflection coefficient of a well sampled array,

with respect to a 400 Ω transmission line. The periods of the array are dx = dy = 0.4 λ0

and the curves are plotted as a function of the frequency, normalized with respect to f0.

The results are shown for the cases of scanning at broadside and toward θ = 45◦, in the

two main planes.

The curves in Fig. 3.3 highlight two drawbacks. The first is that only a moderate band-

width is achieved (28%). The second is that the array is highly sampled at the highest

frequency of operation, which would imply the need for a very large number of Trans-

mit/Receive (T/R) modules in a large array. The aim of this study is to identify a structure

that, while maximizing the bandwidth (aiming at 40%) for wide scanning, also minimizes
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Figure 3.3: Active reflection coefficient, with respect to a 400 Ω feeding line, of a connected array of slots
with dx = dy = 0.4 λ0, ws = δs = 0.2 λ0, hs = 0.31 λ0. Curves are shown for broadside scan and for beam
scan toward θ = 45◦ in the two main planes.

the number of T/R modules.

3.2 Analysis of Polar Singularities of the Longitudinal

Spectra

In this section, we discuss the feasibility of reducing the distance between the radiating

elements and the backing reflector, hs or hd, to shift the operational bandwidth of the array

at higher frequency, while maintaining the same sampling period. The distance from the

back plane influences the position and the nature of the poles arising from the longitudinal

dispersion equation. These poles are associated with waves that can propagate along the

array. In fact, the connection between the different feeds in connected arrays implies the

propagation of waves along the longitudinal direction of the slots or dipoles. Here we

will discuss the nature of these propagations, highlighting the main differences between

connected slots and dipoles.

3.2.1 Leaky Wave Poles in Connected Slots

Connected arrays of slots backed by a ground plane (Fig. 3.1(a)) can support leaky waves.

To investigate the properties of such leaky waves, one must study their propagation along

the slots. To this aim, it is necessary to do one step back and consider each of the slots

in the array, as if it was excited by only one feed. In that case, the representation of the
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voltage along each slot would be obtained as an inverse integral in kx, similar to Eq. (2.18),

but with a periodic GF that accounts for the periodicity along the transverse direction (y).

Let us concentrate the attention to the case in which the array is phased to radiate in

the plane ϕ = 0 (so that ky0 = k0 sin θ sin ϕ = 0) and investigate the spectrum in kx.

Expected branch point singularities appear in±k0. However, also polar singularities emerge

as solutions of the dispersion equation that is obtained by looking for the zeros of the

denominator in Eq. (3.1):

(k2
0 − k2

x)
∞∑

my=−∞

J0

(
kym

ws

2

)
(1− j cot(kzmhs))

kzm

= 0 (3.5)

where kzm =
√

k2
0 − k2

x − k2
ym. The discrete wave number kxm is replaced with the contin-

uous spectral variable kx, because we are assuming that there is no periodicity along x,

but only one feed is present in each slot.

The dispersion equation can be solved numerically with the aid of a first order Newton

method [42], which is a simple descent along the gradient following an accurate starting

point. Figure 3.4 shows the results of the dispersion analysis in the portion of the complex

plane for which −k0 < Re{kx} < k0 and −k0 < Im{kx} < k0. The dashed curves indicate

the location of pole singularities ksl
xp of the GF, as a function of the slots widths (ws) and

parameterized for different heights (hs) of the antenna from the backing reflector. The

array is characterized by dx = dy = 0.5 λ0, with λ0 = 2π/k0.

The poles represented in Fig. 3.4 are of the leaky wave type, in the sense that they are

characterized by a propagation constant Re{ksl
xp} and by an attenuation constant Im{ksl

xp},
the latter associated with radiation losses.

When the backing reflector is farther away from the radiating slots, the propagating mode

of the slot ksl
xp is quasi-TEM, travelling almost parallel to the slot direction. As hs becomes

smaller, the mode field distributions are increasingly affected by the presence of the backing

reflector. As a consequence, the poles present an increasingly larger imaginary part. Most

importantly, they present a smaller real part, meaning that they might be relevant also for

arrays scanning in directions closer to broadside, since the condition sin θ = Re{ksl
xp/k0}

may occur. An increasing width of the slots is also associated with an increased dispersion.

In fact, the field is less tightly bound to the slots when their width is larger, so the impact

of the ground plane becomes significant.

Curves similar to those in Fig. 3.4 have been obtained also for ϕ 6= 0, i.e. for scanning in

planes different from the H-plane. However, since equivalent qualitative conclusions were



3.2. Analysis of Polar Singularities of the Longitudinal Spectra 37

Figure 3.4: Polar singularities in the complex kx/k0 plane when the array is pointing broadside. The
dimensions are dx = dy = 0.5 λ0, δs = 0.1λ0, while ws and hs are varying.

obtained, they are not reported here. Lower values of hs imply poles in the visible region

of the kx spectrum.

To highlight the negative effect due to the compatibility of connected-slot arrays with leaky

wave poles, Fig. 3.5 shows the real parts of the input impedance of a connected-slot array,

over a broad frequency range. Indicating with λc the wavelength at the desired maximum

operating frequency, the curves are given for hs = 0.1 λc and hs = 0.4 λc. The remaining

array parameters are fixed at ws = 0.2 λc, dx = dy = 0.5 λc and δs = 0.05 λc. The curves

are also given for different scan directions (broadside and 45◦ in the E- and H-planes). It is

clear that, for smaller heights, the resonances are indeed shifted toward higher frequencies.

However, smaller heights imply the drastic narrowing of the useful band when scanning in

the E-plane.

Given these findings, it is clear that reducing hs to achieve matching at higher frequencies,

and accordingly to reduce the number of T/R modules, it is not a viable solution since the

scan performance is seriously degraded.

3.2.2 TEM Poles in Connected Dipoles

If a similar dispersion analysis is performed for the connected-dipole array, in the presence

of a backing reflector, no leaky wave poles are found when hd is relatively small. This

can be shown fairly easily. In the case of dipoles, one needs to find the solutions of the

following dispersion equation, which is obtained by searching the zeros of the denominator
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Figure 3.5: Active resistance of a connected-slot array as a function of the frequency for two values of the
height from the backing reflector.

of the expression in Eq. (3.2):

(k2
0 − k2

x)
∞∑

my=−∞

J0

(
kym

wd

2

)

kzm(1− j cot(kzmhd))
= 0. (3.6)

Despite the similarity with Eq. (3.5), the analytic solutions of Eq. (3.6) are simpler to

characterize. Solutions are found explicitly, for arbitrary values of frequency, azimuthal

angle ϕ, and distance from the ground plane hd, in correspondence of kx = ±k0. They

are associated with guided micro-strip like (TEM) modes. Other poles emerge at higher

frequencies. In fact, they arise from the reduced dispersion equation

∞∑
my=−∞

J0

(
kym

wd

2

)

kzm(1− j cot(kzmhd))
= 0. (3.7)

The possible solutions of this reduced dispersion equation are found by observing that

• 1− j cot(kzmhd) = 2/(1− e−jkzm2hd), as proved in Eq. (A.71);

• for a well sampled radiating array, kzm is always purely imaginary except when

my = 0, in which case kz0 = k0 cos θ;

• both real and imaginary parts of Eq. (3.7) must be zero to have a solution of the

dispersion equation.
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Figure 3.6: Active resistance of a connected-dipole array as a function of the frequency for two values of
the height from the backing reflector.

From the last two conditions it follows that the contribution to the summation associated

with the mode of index my = 0 must present a zero by itself. This is only possible when

(1 − e−jk0 cos θ2hd) = 0, which leads to hd = n λ0

2 cos θ
, where n is integer. Thus, the distance

between the ground plane and the dipoles should be at least larger than half wavelength to

have another pole, different from the micro-strip TEM mode (kx = ±k0), to be compatible

with the structure. However, this can be easily avoided in practical designs.

The micro-strip modes are important since they guide power from one feed to the next,

but they do not cause important degradation of the main focused radiation, since they

contribute to radiation toward θ ≈ 90◦. Accordingly, the reduction of the height (hd)

does not present drawbacks specifically associated with scanning. However, a dipole array,

whether connected or not, has a significantly reduced radiation bandwidth when hd is

small with respect to the wavelength. This can be observed in Fig. 3.6, which compares

the real part of the impedances associated with two arrays of different heights, but identical

sampling. The other dimensions are wd = δd = 0.05 λc and dx = dy = 0.5 λc. Differently

from the slot case, for the dipoles we observe not only a shift of the resonance when varying

the distance hd from the ground plane, but also much higher impedance values for lower

hd.

Overall, one can conclude that the nature of the dominant waves in connected arrays of

dipoles is much simpler (pure TEM) than the one (leaky) of connected arrays of slots.

However, for both structures, a lower height does not bring significant advantages.
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3.3 Bandwidth Dependence on the Gap Width

So far it has been established that the impedances of backed connected dipoles and slots

exhibit a similar dependence on the periodicity and the distance from the ground plane.

The aspect in which they truly differ is the reactive energy stored in the feeds, associated

with the size of the feed gap. In the connected-slot case this reactive energy plays only a

marginal role, while in the case of connected dipoles it can be used to effectively achieve

wider matching bandwidths.

The reactance of the feed is mathematically represented by the higher order Floquet modes

in the admittance of the connected dipoles in Eq. (3.2) or in the impedance of the connected

slots in Eq. (3.1). This energy is localized in the proximity of each gap. Thus, for instance

in a connected-slot array, one can assume that the concentrated inductance in each of the

δ-gaps in every slot is the same as that localized in a single δ-gap of a unique infinitely

extended slot in absence of the backing reflector. Analogously, one can assume that the

concentrated capacitance associated with the δ-gaps in a connected-dipole array is the

same as that of a single feed of an infinite dipole in free space. For the interested reader,

these lumped equivalent impedances were provided in [43].

3.3.1 Slot Case: Lumped Inductance

In the connected-slot array case, the reactive energy localized at the feeding points is mod-

elled by an inductance. This lumped inductance is in series with respect to an equivalent

circuit representing the input impedance. That is because, in a well sampled array, the

real part of the impedance is only associated with the term mx = 0 of the Floquet mode

summation in Eq. (3.1). The imaginary part depends also on all the other additive modes

in mx. Figure 3.7(a) shows the equivalent circuit for the active impedance of a connected-

slot array. The dynamic portion of the impedance Zdyn
slot can be introduced as the difference

between the input impedance and the concentrated inductive reactance associated with the

gap. To highlight the effects of this inductance, Fig. 3.8 shows a parametric investigation

of the input impedance, as a function of the frequency, for increasing dimension of the gap

(δs). It can be noted that the real part of the impedance is indeed not dependent from

the dimension of the gap. At the lower frequencies, for all values of δs, the imaginary part

of the impedance is inductive (positive). That is because the slots are operating in the

close vicinity of the backing reflector, which acts as a short circuit. Then, as the frequency

grows, the waves reflected from the ground plane tend to add less destructively to the ones

directly radiated toward free space, until a resonance condition is achieved. Eventually,
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(a) (b)

Figure 3.7: Equivalent circuit representing the active impedance at each feed in (a) connected arrays of
slots, with inductive gap feed, and (b) connected arrays of dipoles, with capacitive gap feed.

Figure 3.8: Active impedance of a connected-slot array as a function of the frequency for different gap
widths, given hs = 0.3 λc, ws = 0.2 λc, dx = dy = 0.5 λc.

the resonance condition, when the imaginary part of the input impedance is equal to zero,

depends on the specific width of the δ-gap. It is apparent that for larger (less inductive)

gaps the condition of zero reactance occurs at slightly higher frequencies.

3.3.2 Dipole Case: Lumped Capacitance

In the case of connected dipoles, the gaps can instead be truly used as a design parameter

to enlarge the bandwidth. Here a lumped capacitance representing the stored energy is in

parallel with respect to the equivalent circuit of the input impedance, as in Fig. 3.7(b).

That is because the capacitance is associated with the summation of the higher order

contributions to the input admittance. Note that, in this case, in the equivalent circuit
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the dynamic impedance Zdyn
dipole is equal to 1

Y dyn
dipole

, where the dynamic admittance Y dyn
dipole is

the difference between the input admittance and the capacitive susceptance. If the array

is densely sampled, the real part of the admittance is associated with the mx = 0 mode

only, while the imaginary part depends also on contributions from higher order modes.

Parametric curves of the input admittance as a function of the frequency are shown in

Fig. 3.9(a), for increasing dimension of the gap (δd). The susceptance is inductive (< 0)

for all the values of δd at the lower frequencies, when the dipoles are very close to the

ground plane (short circuit). For higher frequencies, resonant conditions are achieved in

different frequency points, depending on the specific width of the δ-gap. Let us observe

the corresponding input impedance curves, shown in Fig. 3.9(b): when the gaps are small

and the stored capacitive energy is high, the real part of the impedance defines a relatively

narrow bell as in the connected-slot array case (Fig. 3.8). However, when the dimension

of the gap increases, and accordingly the gaps store less capacitive energy, the overall

impedance bell appears lower, much wider, and shifted toward higher frequencies. Also

the imaginary part of the input impedance is less variable for larger sizes of the feeding

gap. The same effect is not present in the slot case, where the series inductance would

not affect the real part of the impedance. Thus, we can state that the gap’s capacitance

is a key design parameter that can be tuned to obtain a wider matching bandwidth of the

connected-dipole array.

The most attractive aspect about this design parameter is that it allows to enlarge the

impedance bells independently of the scanning angle to which the array is pointing. It is

thus apparent that, if one is interested in broad bandwidth and wide-angle scanning, one

should aim at a configuration that implements this controlled capacity condition.

3.4 Double Feed for the Dipoles

From the curves in Fig. 3.9, it appears that the best matching would be achieved for

δd = 0.15 λ0. However, the practical realization of such large gaps is not simple, since it

would require feeding lines (for instance coplanar strip lines) with inter-conductor distances

so large that they would radiate and consequently worsen the polarization performance.

The solution that we envisage is to excite a connected array of dipoles with a double

feed in each periodic cell. The schematic view of the feeding arrangement is shown in

Fig. 3.10. In this case, the effective capacitance at each cell is essentially divided by

two, since the two feeds are connected in series. It is clear that, due to the logarithmic

dependence of the capacitance from the gap width [43], much narrower gaps can be used
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(a) (b)

Figure 3.9: Active (a) admittance and (b) impedance of a connected-dipole array as a function of the
frequency, for different gap-widths, given hd = 0.3 λc, wd = 0.05 λc, dx = dy = 0.5 λc.

Figure 3.10: Schematic geometry of a double-feed configuration that guarantees low equivalent feed ca-
pacitance, while the width each of the gap is maintained small.

in the double feed case to obtain similar impedance curves, with respect to the single feed

configuration. With such small gaps, the dipoles can be fed by transmission lines with

negligible losses for cross-polar radiation. Figure 3.11 shows the comparison between the

input impedances in the two cases of single feed with δd = 0.125 λ0, and double feed with

δd = 0.01 λ0. An optimized array configuration based on a double feed per each unit cell

was found to have 40% relative bandwidth, scanning up to 45◦, as shown in Fig. 3.12.
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Figure 3.11: Real and imaginary part of the active impedance of a connected dipole with single feed
(δd = 0.125 λ0), and with double feed (∆ = 0.29 λ0, δd = 0.01λ0).

Figure 3.12: Active reflection coefficients, with respect to a 350 Ω feeding line, of a dipole array with
dx = dy = 0.45 λ0, wd = 0.05 λ0, δd = 0.01 λ0, ∆ = 0.29λ0 and hd = 0.31 λ0. Curves are shown for
scanning at broadside and toward θ = 45◦ in the two main planes.

The feeds are at a distance ∆ = 0.29 λ0, the gap size δd is chosen equal to 0.01 λ0, the

dipole width is wd = 0.05 λ0, and the height from the ground plane is hd = 0.31 λ0. Note

that dx = dy = 0.45 λ0 = 0.5 λmax, with λmax being the wavelength at the maximal useful

operational frequency.

To simplify the analysis with only minimal loss of generality, the double-feed curves in Fig.

3.11 and in Fig. 3.12 have been obtained representing the double-feed configuration by two

delta-gap generators in each cell. Then the cell input impedance is the sum of two equal feed

impedances, each of them defined as the inverse of the average active admittance observed
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at the two ports. The description, the meaning and the mathematical representation of

this implementation are discussed in the next section.

3.4.1 Active Admittance for Multiple Feeds per Unit Cell

The excitation at two feed points can be modelled as two impressed electric fields e1,2(x),

such to create a voltage drop of 1 Volt at each feed. Assuming that the separation between

the two feed points inside the same cell is ∆, the x-dependence of the electric field can be

expressed as

e1,2(x) =
1

δd

Πδd

(
x± ∆

2

)
, where Πδd

(x) =

{
1 if x ∈ [− δd

2
, δd

2
]

0 otherwise
. (3.8)

Accordingly, the Fourier transform (FT) of the entire impressed electric field on the cell is

E(kx) =

δd
2
−∆

2∫

− δd
2
−∆

2

e1(x
′)ejkxx′dx′ +

δd
2

+∆
2∫

− δd
2

+∆
2

e2(x
′)ejkxx′dx′ = 2 cos

(
kx

∆

2

)
sinc

(
kx

δd

2

)
. (3.9)

In a two-dimensional periodic array, following the same procedure as in Sec. 2.2, the

current distribution along the dipole associated with the excitation in Eq. (3.8) can be

written as

i(x) =
k0dy

ζ0dx

∞∑
mx=−∞

2 cos
(

kxm∆
2

)
sinc

(
kxmδd

2

)
e−jkxmx

(k2
0 − k2

xm)
∞∑

my=−∞

J0(kym
wd
2 )

kzm(1−j cot(kzmhd))

. (3.10)

By proceeding as in Eq. (2.35), we can calculate the admittance in a gap feed of a dipole

excited by unitary impressed voltage drop as the average electric current flowing in the

gap. Accordingly, the active admittance in each of the two feeds can be expressed as

y1,2 =
1

δd

δd
2
∓∆

2∫

− δd
2
∓∆

2

i(x′)dx′. (3.11)

By substituting Eq. (3.10) in Eq. (3.11), and by performing the integration in the x′-

variable, we obtain



46 3. Scanning Behavior of Backed Connected Arrays

Figure 3.13: Schematic representation of the double feed excitation in a unit cell and related electric field
vector lines.

y1,2 =
k0dy

ζ0dx

∞∑
mx=−∞

2 cos
(

kxm∆
2

)
sinc2

(
kxmδd

2

)
e±jkxm

∆
2

(k2
0 − k2

xm)
∞∑

my=−∞

J0(kym
wd
2 )

kzm(1−j cot(kzmhd))

. (3.12)

By comparing Eq. (3.12) with Eq. (3.2), it is apparent that, for a well sampled array in

which only the mx = my = 0 mode is dominant, the admittance at each feed point, in

this double feed configuration, is twice as large as the admittance of the same array with

a single feed per cell. As a result, within this approximation, the input impedance at each

of the two feeds roughly becomes half the single-feed value. Only when the two ports are

connected in series, is the single-feed value approximately recovered.

In practice, when the cell is fed at two points which are physically separated, the mainte-

nance of a voltage excitation at the same amplitude and phase for the two ports can be

achieved by means transmission lines that implement a series feeding scheme, as shown in

Fig. 3.13. In that case, the active input admittance at the section AA′ cannot be evaluated

without introducing an explicit phase shift.

However, it might be convenient and useful to refer to the concept of the average input

admittance yav
in for each feed, which is defined as

yav
in =

y1 + y2

2
=

k0dy

ζ0dx

∞∑
mx=−∞

2 cos2
(

kxm∆
2

)
sinc2

(
kxmδd

2

)

(k2
0 − k2

xm)
∞∑

my=−∞

J0(kym
wd
2 )

kzm(1−j cot(kzmhd))

. (3.13)

As a consequence, the average input impedance of each feed in a double cell is zav
in = 1

yav
in

.

Finally, the cell input impedance is zcell = 2zav
in . This is the impedance plotted in dashed

lines in Fig. 3.11 and to which Fig. 3.12 refers.

Since, for broadside radiation, the double feed structure is actually a practical implemen-

tation of a feed sampling twice as dense, one might think that it is simply the effect of the
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denser sampling that helps the matching. However, this is only partly true. In fact, when

the array is phased to scan, the two feed points are associated with the same phase. The

practical realization of such a double feed [44,45] requires the connection of the two feeds

via an appropriate transmission line, as shown in Fig. 3.13.

This final configuration that includes the double feed represents a schematic design, without

explicit feeding network, that will be chosen as the basis for the development of a prototype

demonstrator that will be presented in Chapter 6.

3.5 Active Array Far-Field Patterns

The radiation patterns of an 8× 8 finite array are investigated with the aid of the appro-

priate analytical expressions for the far-field co- and cross-polarized directivities. These

expressions can be evaluated using a windowing approximation, which is accurate only for

very large arrays, or they can be derived directly from the GF and thus remain valid even

for a small connected array. By finite array we indicate an array where a finite number of

excitations are considered along the longitudinal direction, while the metallization is still

infinitely extended.

The very widely used approximations based on infinite array theory [46,47] and subsequent

windowing [48], although very efficient from the computational point of view, would fail in

equivalently small array cases. This is because of the intrinsic nature of connected arrays:

they are characterized by a strong mutual coupling, which implies that global array effects

need to be accounted for. Finally, the low cross-polarization level when scanning in the

diagonal plane is highlighted as the main characterizing feature of these broadband arrays.

The single most important reason for developing phased arrays based on connected dipoles

or slots is the possibility to obtain radiation patterns of the highest polarization purity for

wide scan angles and over large frequency bands. The present Green’s function formalism

enables the analytical evaluation of the radiation patterns. This not only saves computation

time during the design process, but eventually rigorously demonstrates the properties of

polarization purity of these arrays.

Before proceeding with the derivation of the radiated fields, it is worth noting that in this

section we will focus on active far fields radiated by active currents. This means that,

as typically done in large phased arrays, the radiating currents are those present when

all feeds are excited with an ideal, uniform-amplitude, impressed voltages (electric field).

In reality, one can only use real generators. Thus, a feed network that implements such

uniform voltage generators independently of the scan angle and the frequency must be
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properly designed and could turn out to be very challenging. This is particularly true in

the present case of connected arrays, for which the mutual coupling between the elements

is very high. The practical realization of a connected-dipole array prototype will be the

subject of Chapter 6. For the present time we will make use of the active current ideal

model.

The electric far field can be simply obtained from the expression of the magnetic potential,

as demonstrated in Appendix B (Sec. B.2.3), and in particular:

Eθ ' −jω cos θ cos ϕAx

Eϕ ' jω sin ϕAx.
(3.14)

It is also useful to remind that, according to the third Ludwig definition [9], the co- and

cross-polarized directivities radiated by an array of dipoles oriented along x are given by

Dco =
4π | Eθ cos ϕ− Eϕ sin ϕ |2

2ζ0Pr

Dcross =
4π | Eθ sin ϕ + Eϕ cos ϕ |2

2ζ0Pr

(3.15)

where Pr is the power radiated by the complete array.

The magnetic vector potential A is oriented along the dipoles A = Axx̂ and its approx-

imation for observation points r in the far-field region is derived in Appendix B (Eq.

(B.5)):

Ax(r) ≈ Jx(k0 sin θ cos ϕ, k0 sin θ sin ϕ)
µe−jk0r

4πr
(1− e−jk02hd cos θ) (3.16)

where Jx(kx, ky) is the Fourier transform of the electric current distribution on the array.

For the present structure, Jx(ky, ky) can be expressed as the product of two separate

variables: i.e. Jx(ky, ky) = Jy
x(ky)I(kx). The key step in the evaluation of the far field is

the approximation of the equivalent currents on the finite array.

3.5.1 Transverse Windowing Approximation

The so called windowing approach [48] can be used in approximating the current distribu-

tion transverse to the array, Jy
x(ky). Initially, the array is considered to be infinite, with

currents on each element presenting the same amplitude but different phases. The phase
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shift is dictated by the direction in which the array is focusing its radiation. In a second

stage, the finiteness of the structure is accounted for by considering the total field as radi-

ated by a only a finite number of contributions. Indicating with Ny the number of elements

along y and remembering that in each dipole the distribution satisfies the edge-singular

condition, it results:

Jy
x(ky) ≈ AF (ky − ky0, Ny, dy)J0

(
1

2
wdky

)
(3.17)

where we introduced the array factor

AF (ky − ky0, Ny, dy) =

Nx/2∑

nx=−Nx/2

ej(ky−ky0)nydy . (3.18)

3.5.2 Longitudinal Windowing Approximation

A windowing approach, based on infinite array theory, can be used also to approximate

the longitudinal current distribution. The derivation of an analytical expression that im-

plements the windowing can be obtained with a few algebraic manipulations, reported in

Sec. B.2.1. The procedure consists in evaluating the current on a single periodic cell in in-

finite array environment. The spectrum is then calculated by integration over an aperture

composed of a finite number of these cells, which leads to:

Iw(kx) = −V0AF (kx − kx0, Nx, dx)
∞∑

mx=−∞

sinc
(

kxmδd

2

)
sinc

(
(kx−kxm)dx

2

)

D∞(kxm)
. (3.19)

The use of (3.17) and (3.19) inside (3.16) and then in (3.15) provides the same directivity

patterns as common commercial software tools also based on infinite array theory and

windowing. A validation is presented in Fig. 3.14, where the active single element pattern

in the E- and the H-plane is shown and compared with equivalent results obtained with

the commercial software Ansoft Designer [49]. The array taken as reference for this figure,

and also for the following ones, is the array characterized by the double feed configuration

that was introduced in Sec. 3.4. The elementary cell dimensions, the dipole geometrical

details and the height of the ground plane are the same as the ones to which Fig. 3.12

refers.
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Figure 3.14: Directivity of the active element pattern in the E- and the H-plane, for broadside radiation.
The comparison is with the results provided by the commercial tool Ansoft Designer resorting to the same
type of approximation. The elementary cell dimensions in terms of the wavelength are the same as in Fig.
3.12.

Despite the agreement between our calculations and the results of the commercial software,

the accuracy of the results obtained by using the longitudinal windowing approach is openly

questionable, as will be discussed in the next section.

3.5.3 Longitudinal Green’s Function

The difference between the current distributions of two elements of a finite array might be

non negligible. In fact, in Sec. 3.2, we have demonstrated analytically that in any connected

array, slots or dipoles, a dominant propagating mode is supported by the structure with

backing reflector, even at low frequencies. This mode is a leaky wave in the slot case or a

bounded micro-strip type of mode in a connected-dipole array. In particular, in the dipole

case, the waves travelling from the edges in the longitudinal direction are not attenuated

if no source impedance is included in the model of the feed. This suggests that an infinite

array approximation could be inadequate, as it completely neglects longitudinal standing

waves and associated strong current tapering, that could exist even in the presence of

uniform excitations.

The expression of the current spectrum in the case of a finite number of δ-gap sources can

be derived from Eq. (B.9) as

I(kx) = V0AF (kx − kx0, Nx, dx)
sinc(kxδd/2)

D∞(kx)
(3.20)
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(a) (b)

Figure 3.15: Broadside active array pattern from an 8×8 connected-dipole array with the same parameters
as in Fig. 3.12. Comparison between longitudinal windowing and longitudinal GF approach: (a) H-plane
and (b) E-plane.

This expression is based on the exact GF and is more accurate than Eq. (3.19). Moreover,

its evaluation implies reduced computational costs, since it does not involve a spectral sum

in mx.

3.5.4 Pattern Quality

Let us now investigate the far-field co-polar directivity patterns radiated by an array of 8

dipoles, each of them fed by 8 δ-gap feeds. The calculation frequency is f0 = c0/ λ0, where

c0 is the free space speed of light. The array dimensions in terms of the wavelength are

dx = dy = 0.5 λ0, δd = wd = 0.05 λ0, hd = 0.31 λ0.

For all radiation patterns presented in this section, we used the windowing approximation

for the electric current distribution in the transverse direction, introduced in Sec. 3.5.1.

For the longitudinal electric current distribution, two different expressions have been used:

the windowing approximation (Sec. 3.5.2) and the exact Green’s function (Sec. 3.5.3).

Figures 3.15 and 3.16 show a comparison between the results achieved with these two

expressions. It is apparent that for scanning and observations in the H-plane (Fig. 3.15(a)

for broadside pointing and Fig. 3.16(a) for 45◦ scanning), the results are hardly influenced

by the approximation used in the longitudinal plane. On the contrary, for E-plane scanning

(Figs. 3.15(b) and 3.16(b)), the use of the complete GF shows higher side lobe levels
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(a) (b)

Figure 3.16: Active array patterns, scanning at elevations of 45◦, from an 8 × 8 connected-dipole array
with the same parameters as in Fig. 3.12. Comparison between longitudinal windowing and longitudinal
GF approach: (a) H-plane and (b) E-plane.

and also broader beams at 45◦. The difference can be explained from the fact that the

windowing approximation assumes that the currents on each element are identical, except

for weighting coefficients. The same assumption is not made in the second approach, which

is more accurate. The use of the GF predicts also higher radiation at grazing angles. The

actual values of grazing radiation are not very significant, since they will be affected as

well by the finite length of the dipoles. However, their visibility suggests the necessity

to control end-point longitudinal radiation when dealing with connected arrays of small

dimension.

Finally, Fig. 3.17 presents a comparison between the co-polar and the cross-polar direc-

tivity obtained when the array is scanned to θ = 45◦ in the diagonal plane (ϕ = 45◦). The

cross-polarized field is at least 15 dB lower than the co-polarized field. This level of low

cross polarization is the same as that of a single elementary dipole operating in free space

(Sec. 1.2). Thus, it represents the lowest value theoretically achievable by planar array of

linearly polarized dipoles [10].
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Figure 3.17: Co- and cross-polarized directivities in the diagonal plane (ϕ = 45◦), as a function of the
elevation angle θ. The fields are again those radiated from an 8×8 connected-dipole array with dimensions
as in Fig. 3.12.

3.6 Conclusions

A comparison between the scan performance of connected arrays of dipoles and slots in

the presence of a backing reflector was shown. The comparison was based on a rigorous

Green’s function formulation. The investigation revealed that broad band matching can

be obtained by tuning the reactive energy contained in the feeds of the connected dipoles,

independently from the scan angle. Last but not least, we presented a planar connected

array of dipoles with 40% bandwidth, even when scanning in elevation to 45◦. The array

was shown to radiate with the lowest theoretical cross-polarization levels for a planar

singly polarized array. The number of required T/R modules remains limited, with 0.5 λ0

sampling at the highest operational frequency. The use of the rigorous GF in the prediction

of the far fields in the E-plane provides more accurate results with respect to a standard

windowing technique and is even less computationally intensive.



54 3. Scanning Behavior of Backed Connected Arrays



Chapter 4

Equivalent Circuit Representation of

Connected Arrays

The spectral Green’s Functions (GFs) of connected arrays were derived analytically in

Chapter 2, for slots and dipoles, with and without backing reflector. All these GFs con-

sidered arrays operating in transmission (Tx). In this chapter, the formalism is extended

to receiving arrays, including the presence of loads. When the arrays are assumed to be

infinitely extended and periodically excited, the extension to reception (Rx) allows the

derivation of a rigorous equivalent circuit for the array unit cell. This equivalent circuit is

based on GFs, thus each component can be associated with a specific physical wave mecha-

nism. Moreover, all components are evaluated analytically. The equivalent network can be

used to represent the electromagnetic field distribution in transmission and/or reception.

This chapter is structured as follows: the first part is theoretical and presents the derivation

of the spectral distribution of the electric currents on the array, as a function of the incident

electric field and the load impedance. In the second part, the equivalent circuit is presented

and its applicability to evaluate the power absorbed by the arrays is demonstrated. Based

on the equivalent circuit representation of the array, we will discuss the amount of power

transmitted, received and/or scattered by a connected array, for different antenna con-

figurations. The full efficiency of an array with backing reflector is demonstrated and

explained. Finally, in the third part, measured results from a dual-band connected array

demonstrator are used to validate the equivalent circuit.
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4.1 Limitations of Equivalent Norton or Thévenin Cir-

cuits

The use of the equivalent Norton or Thévenin circuits for antennas in reception [50,51], [52,

p. 85] can lead to improper physical interpretation, as pointed out in [53, 54]. In fact, it

is erroneous to associate the equivalent Thévenin impedance with scattered or reradiated

power. This would imply that, under conjugate matching condition, only half of the

incoming power can be received by an antenna. This issue has been more recently discussed

in [55–61]. In particular, [61] was the first to demonstrate analytically that all the power

incident on an antenna array can be received if the antenna is supported by a backing

reflector. An alternative equivalent circuit for phased arrays in reception has been proposed

in [26]. However, although retaining deep physical insight, that circuit was not rigorously

derived, accounting only for the energy included in the fundamental propagating Floquet

wave.

Here, a rigorous equivalent circuit for planar connected phased arrays is provided. Unlike

the Thévenin or Norton equivalence, the circuit here proposed can be used to quantify the

scattered fields as well as the currents flowing into the loads. The representation is based

on a GF formulation and, as a consequence, it accounts for all Floquet modes, including

those associated with reactive energy. The circuit can be easily used for all types of planar

stratifications such as dielectric layers, backing reflectors and also integrated Frequency

Selective Surfaces (FSSs) [62].

The extension includes, on the one hand, the introduction of generators directly propor-

tional to the amplitude of the incoming plane waves rather than the voltage induced in

open circuit condition and, on the other hand, an expansion of the antenna impedance in

different components, each with a well defined physical meaning.

4.2 Integral Equation for Connected Array of Loaded

Dipoles

The connected array of dipoles under analysis is shown in Figure 4.1. It is assumed to be

composed of an infinite number of x-oriented dipoles of width w, periodically spaced by

dy along y, in free space. The dipoles are fed at periodic locations, spaced by dx, by a

transmission line of characteristic impedance Zl. In the transmit case, the incident field

propagates toward the array along the mentioned transmission lines (e+
tl ∝ V +

tl ). In the

reception case, the incident field is associated with an incoming plane wave e+
pw. In both
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Figure 4.1: Two-dimensional connected array of dipoles in transmit or receive mode.

cases, on each n-th feeding point the incident fields e
Tx/Rx
i are equal in amplitude and with

progressive phase to account for scanning or different directions of incidence. Note that

a generic plane wave can be represented as superposition of transverse electric (TE) and

transverse magnetic (TM) components (transverse with respect to the plane of incidence):

e+
pw = e+

TE + e+
TM . The TE and TM unit vectors are parallel to ϕ̂ and θ̂, respectively.

This starting problem will be transformed into an equivalent completely planar one, to

deal with planar boundary conditions. The equivalent problem is obtained by substituting

the feeding transmission line with a distributed surface impedance that fills the gap region,

as depicted in Fig. 4.2. Accordingly, boundary conditions are imposed on the total fields

etot,htot as follows:

etot = Zsurf ẑ × (h
(1)
tot − h

(2)
tot) (4.1)

where h
(1)
tot and h

(2)
tot represent the total magnetic field for z > 0 and z < 0, respectively.

This equation is valid on the entire array surface Σc

⋃
Σg, if we assume that the surface

impedance Zsurf (x, y) is a discontinuous function that is equal to zero on the conductive

part of the dipoles (Σc), and different from zero on the gaps (Σg).

The total electric field can be expressed as etot = ei + es, i.e. the superposition of the

incident and the scattered field. The latter is the electric field radiated by equivalent

electric currents j = ẑ × (h
(1)
tot − h

(2)
tot) distributed on the surface Σg

⋃
Σc. Focusing only

on the longitudinal (x) component of the electric field and the electric currents, we can

express Eq. (4.1) in integral form as
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Figure 4.2: Definition of gap region Σg and conductive region Σc in the array plane and equivalent planar
problem.

∫

Σc
⋃

Σg

jx(ρ
′)gxx(ρ,ρ′)dρ′ = −ei

x(ρ) + Zsurf (ρ)jx(ρ) (4.2)

where gxx is the free-space GF, ρ ≡ (x, y), and ei
x, jx are the x-components of the incident

field and the equivalent electric surface current density, respectively.

The incident electric field is the total electric field on the array in absence of the dipoles. It

assumes different forms in the transmit and receive cases. In the transmit case, the absence

of the dipoles implies an array of transmission lines terminated in open circuit. Thus for

each feeding point eTx
i,x = etl(z = 0) = 2e+

tl (see inset of Fig. 4.2). In the reception case,

the presence of the feed lines should be considered as well. However, if only differential

currents are allowed to propagate along these lines, the incident field is unperturbed and

can be assumed to coincide with the incoming plane wave, eRx
i,x = e+

pw. Common-mode

currents on the feed lines and their impact on the array performance will be discussed in

Chapter 6 and are neglected in the present investigation.

4.2.1 Separation of Variables

With little loss of generality, the incident electric field along x can be assumed to be ex-

pressed as the product of two functions of the longitudinal (x) and transverse (y) variables,

i.e. ei
x(ρ) = ei

x(x)ft(y), with ft(y = 0) = 1. Also the electric current on each dipole, when

the dipole width is small in terms of wavelength, can be assumed to be characterized



4.2. Integral Equation for Connected Array of Loaded Dipoles 59

by a separable functional dependence from the transverse and longitudinal dimensions,

jx(ρ) =
∑∞

ny=−∞ iny(x)jt(y). In the following we will assume that the electric current

on different dipoles are related by iny(x) = iny=0(x)e−jky0nydy , where ky0 = k0 sin θ sin ϕ

is the transverse excitation law when the array is scanning toward or receiving from the

direction given by (θ, ϕ), defined as in Fig. 4.1. The transverse y-dependence of the

electric current in each dipole is assumed to comply with the quasi-static edge singularity,

i.e. jt(y) = 2/(wπ)(1−(2y/w)2)−1/2. This choice suggests to assume a surface impedance

distribution as follows:

Zsurf (x, y) =





Zl

w

δ

π

2

√
1− (

2y

w
)2 ∀(x, y) ∈ Σg

0 ∀(x, y) ∈ Σc

(4.3)

so that, for every ny, we can write

Zsurf (x, y = nydy)jx(x, y = nydy) =
Zl

δ
χg(x)iny(x)

with χg(x) =

{
1 ∀x ∈ Σg

0 ∀x ∈ Σc

.—————-
(4.4)

4.2.2 One-Dimensional Equation

When Eq. (4.2) is enforced on the axis of the zeroth dipole (ny = 0), it can be compactly

expressed as a one dimensional integral equation in the space domain:

∞∫

−∞

i(x′)dl(x, x′)dx′= −ei
x(x) +

Zl

δ
χg(x)i(x) (4.5)

where we used the notation i(x) = iny=0(x), and

dl(x, x′) =
∞∑

ny=−∞

∞∫

−∞

jt(y
′ − nydy)gxx(x, x′, y=0, y′)dy′e−jky0nydy (4.6)

is the spatial expression of the longitudinal (x) dependence on the GF, once the dependence

from the transverse dimension (y) is accounted for.
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4.2.3 Total Currents on the Gaps

Equation (4.5) is a Fredholm integral equation of the second kind for the unknown spatial

current distribution i(x). To simplify the solution, it is convenient to assume that the gaps

are small in terms of wavelength (δ-gap generator/load). Thus, the current in the gaps can

be approximated with its total value:

χg(x)i(x) ≈
∞∑

nx=−∞
itot
nx

Πδ(x− nxdx)

with Πδ(x) =

{
1 for x ∈ (− δ

2
, δ

2
)

0 elsewhere

(4.7)

and

itot
nx

=
1

δ

nxdx+δ/2∫

nxdx−δ/2

i(x)dx. (4.8)

4.2.4 Spectral Integral Equation

Upon substituting (4.7) in (4.5) and expressing the equation in the spectral domain, the

spatial convolution in the left hand side (LHS) becomes a spectral product, so that we

obtain

∞∫

−∞

I(kx)Dl(kx)e
−jkxxdkx =

∞∫

−∞

(
−Ei

x(kx)+Zl

∞∑
nx=−∞

itot
nx

sinc
(

kxδ
2

)
ejkxnxdx

)
e−jkxxdkx (4.9)

with

Dl(kx) =
1

dy

∞∑
my=−∞

J0

(
kymw

2

)
Gxx(kx, kym). (4.10)

In the last equation, Dl is expressed as an infinite summation over the transverse Floquet

wavenumbers kym = ky0 − 2πmy/dy, due to periodicity in the transverse direction. Gxx is

the spectral domain representation of the electric field GF of an electric source, in absence

of the dipoles. J0 is the zeroth order Bessel function of the first kind, corresponding to the

Fourier transform (FT) of the transverse current distribution jt(y).
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4.3 Solution for Periodic Arrays and Thévenin Cir-

cuits

Equation (4.9) is characterized by a continuous spectral integration and remains valid also

for a finite number of feeds along the longitudinal direction. In that case, the infinite

summation in nx is truncated after a finite number of terms. However, when the array

is assumed to be periodically excited by an infinite number of feeds, the currents in the

gaps are related by itot
nx

= itot
0 e−jkx0nxdx , with kx0 = k0 sin θ cos ϕ. Accordingly, the spectral

integration in kx can be expressed as spectral summation in kxm = kx0 − 2πmx/dx. The

solution for the current spectrum is then obtained by equating each spectral component

with a procedure similar to the one presented in Sec. 2.2, and the result is

I(kxm) =
−Ei

x(kxm) + Zli
tot
0 sinc

(
kxmδ

2

)

Dl(kxm)
. (4.11)

The spatial current distribution on the zeroth dipole (ny = 0) is then derived by performing

a discrete inverse Fourier transform (FT):

i(x) =
1

dx

∞∑
mx=−∞

I(kxm)e−jkxmx. (4.12)

It can be noted that the last two equations are not written in explicit form yet, as they

depend on the unknown term itot
0 . The explicit expressions can be obtained by substituting

Eq. (4.12) in (4.8) to evaluate the total current on the gap with nx = 0. This calculation,

after simple but tedious algebraic manipulations, leads to

itot
0 =

Za

Za + Zl

1

dx

∞∑
mx=−∞

−Ei
x(kxm) sinc(kxmδ

2
)

Dl(kxm)
(4.13)

where we introduced the infinite array antenna impedance Za = 1/Ya. The antenna admit-

tance Ya can be defined from Eq. (2.35), assuming an array in transmission with unitary

voltage excitations:

Ya =
1

Za

=
1

dx

∞∑
mx=−∞

− sinc2(kxmδ
2

)

Dl(kxm)
. (4.14)
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(a) (b)

Figure 4.3: Equivalent Thévenin circuit of the 0-th element of the array in transmit mode (a) and receive
mode (b).

4.3.1 Transmit Case

When the array is studied in transmission, the incident field can be assumed to be concen-

trated in the dipole gaps and uniformly distributed. The spectral expression for a δ-gap

excitation can be written as

Ei
x(kxm) = V Tx

g sinc

(
kxmδ

2

)
(4.15)

where V Tx
g = 2e+

tl/δ = 2V +
tl .

When this expression is substituted in Eq. (4.13), the electric current itot
0 becomes

itot
0 =

V Tx
g

Zl + Za

. (4.16)

Thus, a typical Thévenin-like equivalent circuit as the on in Fig. 4.3(a) can be used to

describe the current in the feeding gaps of a transmitting connected array. As pointed out

in Sec. 4.1, Zl and V Tx
g are Thévenin equivalent impedance and the voltage generator,

just mathematical representations; thus, these components should not be interpreted with

a physical mechanism. For instance, let us consider a lossless transmission line as in Fig.

4.4(a). The line can be replaced by a Thévenin generator as in Fig. 4.4(b). This latter is

equivalent if one is interested to know the current that is flowing into the load Za. However,

in the condition of conjugate matching, there would be no real power dissipation in the

impedance Zl, as no power is lost in the feeding transmission line.

4.3.2 Receive Case

When the array is analyzed in reception, a plane-wave excitation can be assumed. Since

the x-component of the incident field is periodic, with constant amplitude and linear phase



4.4. Expansion of the Thévenin Circuits in Equivalent Networks 63

(a) (b)

Figure 4.4: Equivalent Thévenin circuit of the 0-th element of the array in transmit mode (a) and receive
mode (b).

(proportional to kx0) over a unit cell, in the spectral domain it can be expressed as

Ei
x(kxm) = e+

pwdxδmx (4.17)

where e+
pw is the amplitude of the incident electric field and δmx is the Kronecker delta,

which is 1 for mx = 0 and 0 otherwise. By substituting this expression of the incident field

in Eq. (4.13), one obtains

itot
0 =

V Rx
g

Za + Zl

(4.18)

where

V Rx
g = Za

−e+
pw sinc(kx0δ

2
)

Dl(kx0)
. (4.19)

Thus, also in the receiving case, the equivalent circuit for the current in the feeding gaps

can be recognized to be the one, Thévenin-like, in Fig. 4.3(b). This circuit is derived

by directly solving the integral equation for the unknown current. In this case, Za is the

Thévenin equivalent impedance, which should not be blindly associated with scattered

power (see Sec. 4.1).

4.4 Expansion of the Thévenin Circuits in Equivalent

Networks

The equivalent circuits in Fig. 4.3 give an accurate description of the power that is ab-

sorbed by the loads (receive case) or the power that is radiated in free space (transmit
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case). However, these two circuits do not explicitly describe the interactions between the

capacitive energy in the feed gaps, the inductive energy surrounding the dipoles, and the

propagating fields associated with the lower order Floquet waves. A particularly inter-

esting case from an application point of view is the one in which only the fundamental

Floquet mode (mx = 0, my = 0) is in propagation. This is a low-frequency approximation

and is valid as long as the array is well sampled. In this case, an expanded rigorous circuit

representation that accounts for all the above mentioned interactions can be derived. This

circuit representation can be obtained expanding the antenna admittance and isolating

different terms with a well defined physical meaning. It is evident from Eq. (4.14) that

the antenna admittance is expressed as a double summation in mx and, implicitly via Dl,

in my (see Eq. (4.10)). Let us introduce a notation that implies summation over unspec-

ified scripts, i.e. Ya = Y
my
mx . The starting point to obtain the expanded equivalent circuit

representation is the isolation in Ya of the term associated with mx = 0:

Ya = Y my
mx

= Y
my

mx=0 + Y
my

mx 6=0 =
1

dx

− sinc2(kx0δ
2

)

Dl(kx0)
+

1

dx

∑

mx 6=0

− sinc2(kxmδ
2

)

Dl(kxm)
. (4.20)

Z
my

mx=0 = 1/Y
my

mx=0 can be further expressed as the series of two impedances by expanding

the explicit expression of Dl in two terms associated with my = 0 and my 6= 0, respectively:

Z
my

mx=0 = Z
my=0
mx=0 + Z

my 6=0
mx=0 =

−J0(
ky0w

2
)Gxx(kx0, ky0)

dy

dx
sinc2(kx0δ

2
)

+

−∑
my 6=0

J0(
kymw

2
)Gxx(kx0, kym)

dy

dx
sinc2(kx0δ

2
)

. (4.21)

Finally, the input impedance of the antenna can be represented via three separate com-

ponents, Z
my=0
mx=0 , Z

my 6=0
mx=0 and Z

my

mx 6=0, arranged as in the circuit in Fig. 4.5. Each of these

components has the following physical interpretation:

1. Z
my=0
mx=0 is the portion of the input impedance associated with the fundamental Floquet

mode (mx = 0, my = 0); thus, it accounts for the only field that can propagate away

or toward the array surface.

2. Z
my 6=0
mx=0 is a term that accounts for the reactive energy (inductance) localized in the

surrounding of the dipole, mostly depending on the dipole width (w); this term is in

series with the fundamental-mode impedance.

3. Z
my

mx 6=0 accounts for the reactive energy (capacitance) stored in the feed gap, mostly

depending on the gap width (δ); it is in parallel with the previous two components.

This term has been previously introduced in Sec. 3.3.2.
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Figure 4.5: Circuit representation of the constitutive terms composing the antenna impedance.

Note that the contributions from higher-order Floquet modes are purely imaginary and

sum up as positive reactance (inductive) in the second term and positive susceptance

(capacitive) in the third term.

4.4.1 Equivalent Circuit Representation of the Fundamental Flo-

quet Mode

The fundamental-mode component of the antenna impedance (Z
my=0
mx=0) can be further

expanded to account for the polarization and the direction of propagation of the radi-

ated/received plane wave. Different components arise from the TE-TM decomposition

of Maxwell’s equations [39], as well as from the separation between the upper and lower

half spaces defined by the array plane (z = 0). The spectral GF can be represented as

superposition of TE and TM contributions, as shown in Appendix A (which leads to Eq.

(A.65)):

Gxx(kx, ky, z = 0) = −vTMk2
x + vTEk2

y

k2
x + k2

y

(4.22)

where vTE and vTM are the voltage solutions, for unit shunt current generator, of the TE

and TM transmission lines. These lines are characterized by propagation constant kz0 =

k0 cos θ and characteristic impedances ZTE
0 = ζ0/ cos θ and ZTM

0 = ζ0 cos θ, respectively

(ζ0 is the free-space characteristic impedance). Since the array is radiating in free space,

the voltages vTE, vTM are equal to the impedances seen at the section of the generator.

These are obtained as two impedances in parallel, representing the upper and lower media

for the TE and TM modes, respectively:

ZTi
00 =

Zup,T i
00 Zdown,T i

00

Zup,T i
00 + Zdown,T i

00

(4.23)

where the superscript Ti can refer to TE or TM . Thus, from Eqs. (4.21) and (4.22), the

fundamental component of the input impedance becomes
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Figure 4.6: Circuit interpretation of the term of the antenna impedance associated with the fundamental
Floquet mode (Zmy=0

mx=0).

Z
my=0
mx=0 =

−dxJ0(
ky0w

2
)Gxx(kx0, ky0)

dy sinc2(kx0δ
2

)
= n2(ZTE

00 sin2 ϕ + ZTM
00 cos2 ϕ) (4.24)

with

n =

√
dxJ0(

ky0w

2
)

dy sinc2(kx0δ
2

)
. (4.25)

This component of the input impedance can be represented in circuit form as illustrated

in Fig. 4.6, where the transformer 1 : n has been included, accounting for the geometrical

parameters of the dipole and the cell. A further expanded representation that includes

the transmission lines is also depicted in Fig. 4.6. Two more transformers, 1 : sin ϕ and

1 : cos ϕ, are included to account for the TE and TM portion of the field radiated by an

electric current oriented along x, respectively. When the array is radiating in free space,

Zdown,T i
00 = Zup,T i

00 = ZTi
0 . Different planar stratifications, dielectric or metallic, only alter

the portion of the equivalent circuit following the sections ATE-A′
TE and ATM -A′

TM . For

instance, when a backing reflector at a distance h is included in the antenna geometry,

the transmission line representing the lower half space becomes a short circuit stub, thus

Zdown,T i
00 = jZT i

0 tan(kz0h) (see Fig. 4.7).



4.5. The Equivalent Circuit in Reception 67

Figure 4.7: Transmission-line model for the propagating part of the fundamental-mode component of the
input impedance. The connected array includes a backing reflector at distance h.

4.5 The Equivalent Circuit in Reception

The explicit circuit in Fig. 4.6 has been obtained by expanding the analytical expression of

the antenna impedance, which has a physical meaning only in transmission. In reception

it is just a Thévenin equivalent impedance. However, the same circuit expansion can also

be used in reception as indicated in Fig. 4.8. This is explicitly shown in the Appendix

C, where the admittance matrix characterizing the array as a transition at z = 0 (see

Fig. 4.9) is evaluated analytically and proved to be equivalent to the circuit in Fig. 4.8.

The formulation adopted is the one developed in [63,64]. The analytical expression of the

admittance matrix is given in Eqs. (C.28) and (C.29) of Appendix C:

Y =

[
yTETE yTETM

yTMTE yTMTM

]
=

[
sin2 ϕ sin ϕ cos ϕ

sin ϕ cos ϕ cos2 ϕ

]
· Ỹl. (4.26)

Ỹl is a simple function of the load Yl = 1/Zl and the higher modal (mx 6= 0,my 6= 0)

components of Za:

Ỹl = n2
(Yl + Y

my

mx 6=0)Y
my 6=0
mx=0

(Yl + Y
my

mx 6=0) + Y
my 6=0
mx=0

. (4.27)

Since all plane waves can be expressed as a superposition of TE and TM waves, the circuit

in Fig. 4.8 can be used to evaluate the reflection, the absorbtion, the transmission, as well
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Figure 4.8: Explicit equivalent circuit of the unit cell of a receiving connected array.

Figure 4.9: Multimode equivalent network representing a well-sampled connected array in free space.

as the induced cross polarization of the array under plane wave incidence. Note also that

the load Zl can be expanded as a feed transmission line, as in the inset, if needed.
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4.5.1 Numerical Validation of the Equivalent Circuit in Recep-

tion

We now compare the admittance matrix elements (Fig. 4.9), obtained using our analytical

circuit representation, with results from full-wave simulations performed with Ansoft HFSS

[41]. Figure 4.10(a) shows this comparison for normal incidence, while Fig. 4.10(b) refers to

θ = 45o, ϕ = 45o. The cell dimensions are dx = dy = 0.5 λ0, with λ0 being the wavelength

in free space at 10 GHz. The dipole width w and the gap δ are both 0.1 λ0. The plots show

stable curves over a frequency bandwidth of two decades (1:100), highlighting once again

the very broadband characteristic of a connected array structure. Very good agreement

can be observed between the analytical and simulated results over most of the band. The

discrepancy at the lowest frequencies is due to the lack of convergence of the HFSS solution

when dealing with very small electrical dimensions of both the simulation domain and the

absorbing boundary volume [65]. Our analytical procedure maintains full accuracy also

in the low-frequency regime. To avoid this low-frequency breakdown in HFSS, a larger

periodic domain has to be defined, meshed at lower frequency and including more unit

cells. Eventually, also HFSS converged to our solution (Fig. 4.11).

4.5.2 Power Absorbed and Scattered by Connected Arrays

The equivalent circuit in Fig. 4.8 is particularly convenient if one is interested in estimating

the amount of power that is received or scattered by the array. Figure 4.12(a) shows the

power absorbed and backscattered by a connected array in free space, evaluated using the

present formulation. The cell dimensions are dx = dy = 0.5 λ0, and the dipole width w and

the gap size δ are both 0.1 λ0 large. The load is assumed to be Zl = 188Ω, which would

match the array in transmission over an infinite relative bandwidth [30]. It is apparent that

an array in free space can only receive half of the incident power, as the level of absorption

in the load is about −3 dB. The remaining half of the power is scattered equally to the

lower and upper half spaces, resulting in a reflected power of −6 dB. Even if not reported

in the graph, the transmitted power is equal to the reflected power (Ptransm,FS = Prefl,FS).

When the same array is operating in the presence of a backing reflector at a distance

h = 0.25 λ0, the best matching load in transmission is Zl = 377Ω, as pointed out in

Chapter 3. At the frequencies for which the distance from the ground plane is about a

quarter wavelength, the power absorption is almost total (≈ 0 dB) and a reflection lower

than −10 dB is observed in Fig. 4.12(b).
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(a) (b)

Figure 4.10: Elements of the admittance matrix calculated with the equivalent circuit and HFSS for (a)
broadside and (b) for incidence at ϕ = 45o and θ = 45o.

Figure 4.11: Elements of the admittance matrix for broadside incidence calculated via HFSS, with two
different sizes of the simulation domain and two different meshes.

Main-Planes Incidence

One can further observe that, in some cases, and only for backed connected arrays, the self-

scattering coefficients of the incoming plane wave can be equal to the reflection coefficient

of the array analyzed in transmission. This is easy to verify for observation in the main

planes. In fact, when ϕ = 0o or ϕ = 90o, one of the two transformer sin ϕ and cos ϕ in Fig.

4.8 is equal to zero, so the circuit becomes the 2-port network in Fig. 4.13.
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(a) (b)

Figure 4.12: Absorbed and reflected power in the case of a connected array (a) in free space receiving from
broadside (Zl = 188Ω) and (b) with backing reflector, receiving from broadside (Zl = 377Ω).

Figure 4.13: Equivalent circuit for plane wave incidence (Rx) or transmission (Tx) in the main planes.

In this circuit, the impedances Z
my 6=0
mx=0 and Z

my

mx 6=0 are purely reactive, thus they do not

dissipate power. The impedance Zdown,T i
00 is also a pure reactance only when a backing

structure is included. Thus, in this case, the circuit is a lossless two-port network, for

which |S11| = |S22|.

Oblique Incidence: Polarization

For any other value of ϕ, the power backscattered by the array in Rx is equal to the

reflection coefficient in Tx only if the polarization of the incoming plane wave maximally

couples with the dipoles.

The field radiated by a transmitting connected array of dipoles oriented along x, for generic

oblique direction, is polarized as specified in Fig. 4.14. The radiated electric field is parallel

to the co-polar component, accordingly to the second definition of cross polarization (L2)
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Figure 4.14: Radiation from a transmitting array of dipoles oriented along x: the radiation is polarized as
the co-polar component according to the second definition of Ludwig [9].

from Ludwig [9]. If the same array operates in receive mode, its scattered power equals

the Tx reflection coefficient only if the incident plane wave is also polarized according to

L2.

To understand this aspect, let us consider two incident plane waves perfectly polarized

according to the second and third (L3) definition by Ludwig, respectively, as shown in

Figs. 4.15(a) and (b). Figure 4.16 compares the scattered power in receive mode for these

two cases with the matching of the array operating in transmit mode. The plane wave

impinges from ϕ = 45o and θ = 45o, and the geometrical parameters are the same as in

Fig. 4.12. Let us remind the reader that a dipole produces no cross polarization for any θ,

ϕ according to L2, while it has a cross-polarization level equal to about −15 dB according

to L3, when it is observed at ϕ = 45o and θ = 45o. Accordingly, from Fig. 4.16 it is

apparent that, if the incident plane wave is directed along the co-polar component defined

by L2, the power reflected by the array is equal to the matching in transmission. Instead,

the incident wave directed along the cross-polar component according to L3 gives rise to a

slightly higher reflection.

4.6 Consequence: RCS of Antennas as Measure of

TX Matching

An important finding of this chapter is that, for opportune polarization of an incoming

plane wave, the Radar Cross Section (RCS) of the loaded antenna, that includes a back-

ing reflector, is identically equal to the matching in transmission. This concept has been

rigorously demonstrated for E- or H-plane scan and generalized for general oblique inci-
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(a) (b)

Figure 4.15: Obliquely incident plane wave perfectly polarized according to the (a) second and (b) third
definition of Ludwig [9].

Figure 4.16: Active S11 of a backed connected array in transmit mode when scanning to θ = 45o ϕ = 45o.
Comparison with reflected power in receive mode, for an incident plane wave from the same direction,
polarized according to the second and third definition of Ludwig.

dence. As a consequence, to evaluate the Tx matching properties of the radiating part of a

connected array, one can resort to RCS measurements, which can be interpreted in terms

of self-scattering parameters. The advantage is that a simple and planar representative

prototype can be manufactured without the inclusion of the lossy and expensive feeding

network, but loading the planar array with matched resistors, physically implementing the

analysis configuration of Fig. 4.2 rather than of Fig. 4.1. This will, on the one hand, save

important costs because of the minimum number of elements that constitute a represen-
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tative wideband connected array. On the other hand, this procedure allows isolating the

characterization of the desirably radiating part of the antenna from the spurious radiation

effects due to the feed lines.

Here, the equivalent network presented in Sec. 4.4.1 is used to interpret the results of a

dual-band prototype demonstrator that has been manufactured to validate the design pro-

cedures presented in [62] (Fig. 4.17). The demonstrator represents a receiving connected

array composed of 30 × 32 elements designed to be well matched in Tx on two separate

frequency bands, 8.5-10.5 GHz for radar and 14.40-15.35 GHz for Tactical Common Data

Link (TCDL). The antenna RCS has been measured and normalized to the RCS of a metal

plate with the same physical dimension of the antenna. The performance of the array in

terms of matching and efficiency has been evaluated for two angles: broadside and 45o in

the E-plane. Figure 4.18 shows a comparison between the measurements and the calcu-

lated active reflection coefficient of a connected dipole in infinite array configuration. HFSS

simulations are also reported for comparison. In the GF-based equivalent circuit, the strat-

ification of the backing structure has been modelled using the same procedure used in [62].

The GF is built up from the equivalent transmission line in Fig. 4.19, which also shows an

exploded view of the unit cell. A qualitatively good agreement between the experimental

and theoretical results can be observed. A matching below the threshold value of −10 dB

is achieved in the entire scan range in both the radar and TCDL bands. The discrepancy is

mostly due to neglecting the parasitic capacitance typical of the used resistors (PCF0402)

in the calculations. The inclusion of this capacitance [66] in both the simulation and the

analytical model provides a better agreement with the measurements (see Fig. 4.20). This

agreement between measured RCS and computational results validates the measurement

strategy proposed in this section for the matching of antennas transmitting in the main

planes.

4.7 Conclusions

Connected arrays constitute one of the most effective antenna solutions to implement the

transition between radiated waves and guided waves, over broad frequency bandwidths.

The equivalent circuits presented in this chapter provide an analytical and rigorous rep-

resentation of the electromagnetic fields that enable this transition, in the case of a pe-

riodically excited, infinite array. The circuits are evaluated analytically and provide an

expansion of the standard circuits for receiving antennas that allows their use also to

evaluate the scattered power.
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Matched

loads

Unit cell

Figure 4.17: Picture of the dual-band 30× 32 elements prototype array of connected dipoles.

(a) (b)

Figure 4.18: Reflection coefficients obtained via equivalent-circuit method and HFSS, compared with
measured reflection coefficient in reception: (a) normal incidence and (b) oblique incidence (45o on the
E-plane). Operative bands are highlighted in grey.

For the case where the array is well sampled and only the fundamental Floquet waves are

propagating, the TE and TM field components in the vicinity of the array are described

by means of two transmission lines. These lines also account for the presence of dielectric

stratifications and/or frequency selective surfaces and/or backing reflector.

Both TE and TM waves contribute to the complete magnetic field in the periodic cell.
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Figure 4.19: Stratification of the unit cell and equivalent transmission-line model of the backing structure.

Accordingly, ad hoc transformers weight the TE and TM equivalent transmission line, to

obtain the total (TE + TM) average magnetic field in the entire cell at the plane where

the antenna terminals are located. The projection of this magnetic field into the feed gap

provides the electric currents at the dipole terminals. This projection is represented via

another transformer. The near fields only contribute to the localized reactive energy and

are represented via lumped loads.

This equivalent network provides the same quantitative information of full-wave numerical

simulations, but much more physical insight, as each component is associated with a specific

wave mechanism. Moreover, the results have been applied to the analysis of the scattering

and absorption of a real connected dipole array backed by a frequency selective ground

plane. Since the array is large in terms of wavelength, good agreement was achieved

between measurements and results from the equivalent network. The RCS measurements
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(a) (b)

Figure 4.20: As in Fig. 4.18, but including parasitic capacitance of the resistors.

in the main planes can be used to characterize the active matching of the radiating part

of the antenna in transmission.

The equivalent circuit was used in [67, 68] for the design of a connected array with in-

herent frequency selective properties for radar applications. The method was successfully

validated by full-wave commercial electromagnetic solvers.
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Chapter 5

Finite Connected Arrays

The modelling of connected arrays presented so far in this dissertation was based on infinite-

array theory. However, when finiteness is included, edge effects perturb or even dominate

the array behavior. These effects are more severe for arrays that are designed to operate

over very broad frequency ranges. In fact, the high mutual coupling between the elements

in wideband arrays facilitates the propagation of edge-born waves that can become domi-

nant over large portions of the arrays. For example, strong edge effects characterize finite

wideband arrays of tapered slot antennas [69–71]. The prediction of these behaviors re-

quires finite-array simulations that are computationally unwieldy for currently available

solvers. An enhanced method of moments technique was developed in [17] to analyze large

finite arrays of Vivaldi antennas and confirmed the relevance of edge effects in such arrays.

The wideband performance of connected arrays is due to the fact that the connections

between neighboring elements allow currents to remain nearly constant with frequency [72].

The connections also support the propagation of guided waves from one element to the

other. However, as discussed in [31,73,74], these guided waves can be very strongly excited

at the edges of the array. As a consequence, the overall behavior of the finite array can be

dramatically different with respect to the design based on infinite-array analysis. Even if

not in the context of connected arrays, [75] and [76] also investigated in detail the effects

of strong guided waves associated with the finiteness of wideband dipole arrays.

This chapter presents a Green’s function (GF)-based procedure to assess edge effects in

finite connected arrays. The method is analytical and permits to accurately assess edge

effects, already in the preliminary design phase of connected arrays. This appears to be a

particularly advantageous design tool because it does not require as many computational

resources as finite-array full-wave simulations. Specifically, this chapter will focus only on

finiteness effects in the longitudinal direction, along which the dipoles are connected, to
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present properties that are specific of connected arrays. In fact, the effects of finiteness

associated with the transverse direction, orthogonal to the dipoles, are dominated by space-

wave coupling. These effects have been extensively discussed in the dated literature [77]

(and there cited references), more recently resorting to windowing type of approximations

[78–81], and lately with analytically enhanced full-wave solutions in [71,82–84]. These last

works heavily relied on the ray field representations introduced in [85], and then refined in

a number of more detailed works [86–89].

Here we investigate an infinite number of dipoles along the transverse direction, with each

dipole fed at a finite number of points in the longitudinal direction, as shown in Fig. 5.1.

The starting base for the analysis is the availability of transmission-line GF of infinitely

extended connected arrays. The derivation of these GF was given in Chapter 2 for the

connected slots and dipoles, and generalized for both transmitting and receiving arrays

including loads in Chapter 4.

In the first part of this chapter, the current distribution is rigorously derived resorting

to the transmission-line GF formalism. The global current distribution is obtained via

a MoM-like numerical procedure, which requires only one unknown per elementary cell,

independently from the cell geometrical parameters. This is possible thanks to the use

of an integral equation with kernel characterized by the appropriate connected array GF.

Results obtained using this methodology are compared with full-wave simulations using

commercial software, showing excellent agreement at much lower computational costs. For

practical designs, there is no limit to the longitudinal number of elementary cells that can

be studied with this method. Both the cases of connected dipole arrays with and without

backing reflectors are considered. By using this procedure, important design considerations

regarding the role of the loads in the propagation of edge waves are provided. The method

allows one to estimate the efficiency of connected arrays that are large or small in terms

of the wavelength at very limited computational cost.

In the second part of the chapter, to gain a deeper physical insight into the wave mecha-

nisms occurring in connected arrays, a different approach is proposed. This latter method

is based on the representation of the electric current along each long dipole as the superpo-

sition of an infinite-array contribution plus edge-born waves. While infinite-array current

components are rigorously derived resorting to the full GF formalism, edge-born waves are

approximated as a staircase distribution. It is important to note that this approximation

would be totally inadequate for determining the entire current distribution. However, it

leads to small errors in absolute terms when applied only to the edge-born contributions.

Thanks to this simplification, a single spectrally analytical approximation of the edge cur-

rents is obtained. The singularities of this spectrum can be investigated and the pertaining
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Figure 5.1: Two-dimensional connected array of dipoles with infinite×finite number of feeds.

inverse Fourier integrals can be asymptotically evaluated to provide the analytical expres-

sions for the spatial currents. These analytical steps are performed only in the cases of

arrays in free space and scanning in the E-plane, to maintain the analytical formulation

as simple as possible, while still highlighting the main mechanism. Important potentials

remain for future developments of the theoretical formulation.

5.1 Set Up of the Spectral Equation: The Finite ×
Infinite Array Case

The geometry of the problem under analysis is depicted in Fig. 5.1, for arrays of connected

dipoles operating in transmission (Tx). The reception (Rx) case will be discussed later on in

Sec. 5.2.1, since it does not present particular difficulties, but requires a somewhat different

notation. The dipoles, of width w and separated by distance dy along y, are electrically

connected along the longitudinal direction (x). When the array is transmitting, each dipole

is fed at Nx points (0, Nx − 1), spaced by period dx. The excitations on the zeroth dipole

(y=0) are realized by lumped voltage generators with internal source impedance Zl and

voltages vnx . For all other dipoles along the y direction, a progressing phase is imposed:

e−jky0nydy , where ky0 = k0 sin θ sin ϕ, k0 is the free-space wave number, and (θ, ϕ) indicate

the pointing direction of the main beam. Note that, even if the dipoles are fed at a finite
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Figure 5.2: Equivalent planar problem of a connected array of dipoles with infinite×finite number of feeds.

number of points (Nx), it is assumed that the loads are periodically distributed over the

entire length of the infinitely extended dipoles. The impact of this hypothesis in the actual

solution is minimal, just like the infinite length of the dipoles themselves, and it is only

retained for the sake of a clearer and simpler formulation.

The equivalent planar problem is shown in Fig. 5.2 for an array in free space. The problem

can also be set up with the dipole assumed to be backed by an infinite ground plane at

distance h. In the present model we assume that both the ground plane and the dipoles

are infinitely extended and thus the finiteness of the metallizations is not accounted for.

The derivation of the GF for doubly infinite, periodically excited, connected arrays with

the inclusion of the loads was presented in Chapter 4. In the case of a finite number of

feeds (Nx), a similar integral equation for the unknown current i(x′) along the zeroth dipole

(y = 0) can be used. One should only take care that in the right hand side (RHS) of Eq.

(4.5) the incident field is now defined over a finite number of feeds, with indices from 0 to

Nx− 1. The incident field is assumed to be concentrated in the dipole gaps and uniformly

distributed (δ-gap excitation). Thus, the relevant integral equation is given by:

∞∫

−∞

i(x′)dl(x, x′)dx′ = −
Nx−1∑

n′x=0

vn′x

δ
Πδ,n′x(x) + Zl

∞∑

n′x=−∞

i
n′x
δ

δ
Πδ,n′x(x) (5.1)

• dl is the space domain Green’s function once the dependence from the transverse

dimension (y) is accounted for (see Eq. (4.6));
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• the incident electric field at each feeding gap ei,n′x = vn′x/δ is expressed via vn′x =

v0e
−jkx0n′xdx , with kx0 = k0 sin θ cos ϕ if the array is scanning toward (θ, ϕ);

• inx
δ is the total current flowing in the nx-th gap (see Eq. (5.5));

• Πδ,nx(x) = 1 for x ∈ (nxdx − δ/2, nxdx + δ/2) and 0 elsewhere.

By resorting to the same technique shown in Chapter 4, we can solve Eq. (5.1) in the

Fourier domain, obtaining an expression for the spectral current distribution along the

dipoles. The spectrum of the current can be written as follows:

I(kx) =
sinc(kxδ

2
)

Dl(kx)


−

Nx−1∑

n′x=0

vn′xe
jkxn′xdx + Zl

∞∑

n′x=−∞
i
n′x
δ ejkxn′xdx


 (5.2)

For arrays in free space, the explicit expression of the Green’s function Dl(kx) is given by:

Dl(kx) = −ζ0(k
2
0 − k2

x)

2k0dy

∞∑
my=−∞

J0(
kymw

2
)√

k2
0 − k2

x − k2
ym

(5.3)

while in the case of a backing reflector at a distance h from the array, the following

expression is found:

Dl(kx) = −ζ0(k
2
0 − k2

x)

2k0dy

∞∑
my=−∞

J0(
kymw

2
)(1− e−j2h

√
k2
0−k2

x−k2
ym)√

k2
0 − k2

x − k2
ym

. (5.4)

The expression of the current spectrum in Eq. (5.2) is given only implicitly, since it

depends on the unknown terms i
n′x
δ . In the remainder of this chapter, we propose two

different methods to derive an explicit expression for the spatial current distribution over

the dipoles. In Sec. 5.2, a rigorous numerical solution that involves a matrix inversion

is presented. Instead, in Sec. 5.4, we introduce analytical approximations that allow to

explicitly highlight the finiteness effects.

5.2 Numerical Solution

A simple numerical procedure to solve Eq. (5.2) is provided here. The currents inx
δ can be

expressed in terms of the spectrum at the left hand side (LHS). To this goal, let us recall

the definition of the total currents in the gaps:
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inx
δ =

1

δ

nxdx+δ/2∫

nxdx−δ/2

i(x)dx. (5.5)

Expressing the spatial current distribution i(x) as inverse Fourier transform of (5.2), after

a few simple algebraic manipulations, leads to:

inx
δ =

Nx+1∑
n′x=−2

Ynxn′x

(
vn′x − Zli

n′x
δ

)
(5.6)

where the infinite summation (infinite loads) has been restricted to Nx + 4 elements, in-

cluding two dummy elements at each edge of the array. These are typically sufficient, for

non negligible values of Zl, to truncate the infinite summation in the RHS of Eq. (5.2).

The mutual admittance terms in Eq. (5.6) are defined as

Ynxn′x =
1

2π

∞∫

−∞

− sinc2(kxδ
2

)

Dl(kx)
e−jkx(nx−n′x)dxdkx. (5.7)

Equation (5.6) can be written in matrix form, which leads to a system of linear equations

that can be solved by matrix inversion as

iδ = [I + ZlY ]−1 iZl=0 (5.8)

where iδ = {i−2
δ , i−1

δ , ..., iNx+1
δ } is the vector of the unknowns; iZl=0 = Y v represents the

solution for the current in absence of the load and is known; v = {0, 0, v0, ..., vNx−1, 0, 0} is

the vector of the impressed voltages; I is the identity matrix. The inversion leads to the

exact solution for the total currents on the gaps including the effects of the loads.

The elements of the admittance matrix in Eq. (5.7) can be evaluated numerically by

performing the spectral integral with convenient deformations of the original integration

path on the real kx-axis. Figure 5.3 shows the complex topology and the branch cuts

associated with the first (for my = 0) square root of the GF that appears in Eqs. (5.3)

and (5.4). The branch points are in ±k0 in the case in which the array is scanned only in

the longitudinal direction (ky0 = 0, or ϕ = 0). For highly-coupled elements (small factors

nx − n′x), an integration path deformation as in Fig. 5.3(a) has been used to avoid the

branch cuts. For large distances (nx−n′x)dx, the integrands present faster oscillations on the
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(a) (b)

Figure 5.3: Deformation of the integration path in Eq. (5.7): (a) highly-coupled elements; (b) low-coupled
elements.

real axis. Thus, a path deformation as in Fig. 5.3(b) usually guarantees faster convergence

in the free-space cases and whenever poles of the stratification’s GF are not captured in

the deformation. In the case of the array operating in the presence of a backing reflector,

the height of the array from the reflector is typically such that no poles are expected to

be found on the real kx-axis. Further poles could arise in the case the array is printed

on a grounded dielectric slab. The presence of these poles would correspond to possible

excitation of surface and leaky waves. However, these configurations can be easily avoided

in the design, thus they will not be considered in the present context.

5.2.1 Receive Mode

In the receive mode, the source is assumed to be an incident plane wave from the direction

(θ, ϕ), since the response of the structure to any other source can be represented as the

superposition of responses to a spectrum of plane waves.

For plane-wave incidence and arrays in free space, the incident electric field can be expressed

in the spectral domain as

Ei
x(kx, y = 0, z = 0) = e+

pwδ(kx − kx0) (5.9)

where e+
pw is the amplitude of the incoming plane wave. A more general expression of

the incident field depends on the specific stratification considered. The case of connected

arrays in the presence of backing reflector is of particular interest in this study and would

imply a multiplying factor (1− e−jkz02h) in Eq. (5.9).
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The total currents in the gaps can be expressed as

inx
δ = inx

pw,Zl=0 − Zl

Nx−1∑

n′x=0

Ynxn′xi
n′x
δ (5.10)

where

inx
pw,Zl=0 = e+

pw

sinc(kx0δ
2

)

Dl(kx0)
e−jkx0nxdx . (5.11)

The solution for the spatial current distribution in the receiving mode is obtained by

substituting iZl=0 with ipw,Zl=0 in Eq. (5.8), where the elements of the vector ipw,Zl=0 are

defined in the same way as in Eq. (5.11).

5.2.2 Results of the Numerical Solution

The active currents at the gaps calculated via Eq. (5.8) can be used to evaluate the active

impedances of the finite array, given by Za
nx

= vnx/i
nx
δ − Zl, as clear from Fig. 4.3(a).

Figure 5.4 shows a comparison between the numerical solution presented here and simulated

result obtained via Ansoft HFSS [41]. Figure 5.4(a) refers to an array in free space that is

excited at 15 feed points along x and is infinite along y. The array periods are dx = dy =

0.45 λ0, where λ0 is the wavelength at the calculation frequency f0. The other geometric

parameters of the array are w = 0.2 λ0 and δ = 0.2 λ0. Figure 5.4(b) refers to the same

array where a backing reflector is included at a distance h = 0.25 λ0 from the dipoles.

Curves in Figs. 5.4(a) and (b) are shown for broadside radiation and scanning to 45◦ in

the E-plane, while Fig. 5.4(c) refers to the same array in free space, scanning to 45◦ in

the diagonal plane (ϕ = 45◦). A good agreement can be observed when full-wave HFSS

simulations are compared to the numerical solution presented here. Note that, once the

total currents on the gaps have been obtained, the total current on the array directly

follows from Eq. (5.2), and subsequently all important parameters of the array, including

the radiation patterns, can be obtained.

5.3 Efficiency of Finite Connected Arrays

In the previous section we have derived a reliable and fast solution for the current distribu-

tions at the feeds of a finite connected array. The main advantage of this formalism is that

the efficiency of a scanning connected array can be evaluated much more accurately than
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(a) (b)

(c)

Figure 5.4: Active input impedances of a 15 × infinite array of connected dipoles in (a) free space and
(b) with backing reflector, for θ = 0◦ and θ = 45◦ in the E-plane, and (c) in free space for θ = 45◦ in the
diagonal plane (ϕ = 45◦): comparison between the numerical calculation and Ansoft HFSS.

would be possible with only infinite-array solutions. In the present context, the term array

efficiency refers to the impedance mismatch at each of the Nx feed points of the array.

The array is assumed to be fed by transmission lines with characteristic impedance Zl that

ensures the widest usable bandwidth at broadside. For each feed we can define an active

reflection coefficient Γnx = (Za
nx
− Zl)/(Z

a
nx

+ Zl), in which Za
nx

is the active impedance

at the nx element. We can also associate with the same element a mismatch efficiency
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Figure 5.5: Efficiency of a connected arrays with backing reflector as a function of the scanning angle in
the E-plane: comparison between infinite-array approximation and finite-array analysis (Zl = 400 Ω).

ηnx = 1− |Γnx |2. Clearly, the matching of each element will depend on the frequency and

the scanning angle. As a consequence, the overall efficiency of the array η(f, θ) is defined

as the average efficiency of the array as follows:

η(f, θ) =
1

Nx

Nx−1∑
nx=0

(
1−

∣∣∣∣
Za

nx
(f, θ)− Zc

Za
nx

(f, θ) + Zc

∣∣∣∣
2
)

. (5.12)

Especially for small arrays scanning to wide angles, the current distributions over the finite

arrays can be significantly different from the infinite-array ones. As a consequence, the

active impedances are different from those that would be expected only on the base of

infinite-array designs.

Figure 5.5 presents the overall array efficiency, defined as in Eq. (5.12), as a function of

the scanning angle in the E-plane, for different frequencies. The array under analysis is

composed of 8 elements and is operating in the presence of a backing reflector. The specific

dimensions are taken from the array design discussed in Sec. 3.4 (w = 0.05 λ0, dx = dy =
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Figure 5.6: Efficiency of a connected arrays with backing reflector as a function of the number of elements,
for different scanning angles in the E-plane. Also reported are the asymptotic values of the infinite-array
cases. Geometrical parameters are such that array is well matched to (a) 400 Ω loads and (b) to 100 Ω
loads.

0.45 λ0, h = 0.31 λ0, δ = 0.125 λ0, with λ0 being the wavelength at the frequency f0) and

refer to a load resistance of Zl = 400 Ω. It is apparent that, for larger scan angles, the

finite-array simulations show important differences with respect to the infinite array ones.

In practice, the differences between the exact and approximate modelling of the array are

significant when the arrays are not perfectly matched. The availability of an accurate and

rapid modelling tool for finite arrays is essential for real designs, especially if the threshold

of acceptable functionality is defined for scanning toward θ = 45◦ − 60◦.

Figure 5.6 presents the resulting overall array efficiency, as a function of the number of

elements of the array, for different scan angles. The figure presents results for two different

arrays, both with backing reflector at h = 0.31 λ0 and h = 0.41 λ0, designed in such a

way that the active impedances are well matched to feed lines with 400 Ω and 100 Ω

characteristic impedance, respectively. A first predictable consideration is that, when the

number of elements of the array tends to be large, the simulations assuming infinite or

finite arrays imply similar efficiencies. A second, less obvious design aspect emerges from

these calculations. For arrays designed to operate well when fed by low-impedance feeding

lines, the edge effects are more important than for arrays designed to be fed by high-

impedance lines. Thus, a designer should avoid antenna designs that apparently (with

infinite-array simulations) require low input impedances, since in reality in these cases

edge effects dominate a much larger portion of the array. Thus, the asymptotic behavior

of the infinite array is only achieved with an unrealistically large number of elements. This

can only be explained by digging deeper into the physics of finite connected arrays.
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5.4 Spectral Integral Approximation

Although the numerical solution presented in Sec. 5.2 is efficient (one unknown per array

element) and accurate, it does not provide physical insight into the nature of the edge

waves. To obtain an alternative, more insightful representation it is useful to recall how

the infinite-array auxiliary problem is set up. By simple extension of Eq. (5.1), the current

i∞(x′) can be represented as the solution of the following integral equation:

∞∫

−∞

i∞(x′)dl(x, x′)dx′ =
∞∑

n′x=−∞

Zli
n′x
δ,∞ − vn′x

δ
Πδ,n′x(x). (5.13)

Once the solution for the current i∞(x′) is assumed to be known (Sec. 4.3), the electric

currents in a finite connected array can be expressed in a form that highlights edge effects

as follows:

i(x′) = i∞(x′) + iedge(x
′). (5.14)

The edge term represents the variation induced by finiteness effects. Using Eq. (5.14), the

integral equation (5.1) for the finite array can be re-expressed as

∞∫

−∞

(i∞(x′)+iedge(x
′))dl(x, x′)dx′=

Nx+1∑

n′x=0

−vn′x

δ
Πδ,n′x(x)+Zl

∞∑

n′x=−∞

i
n′x
δ,∞ + i

n′x
δ,edge

δ
Πδ,n′x(x) (5.15)

where the following notation was used

∞∑

n′x=−∞
=

Nx+1∑

n′x=0

+
∑

n′x<0,n′x>Nx+1

. (5.16)

Subtracting Eq. (5.13) from Eq. (5.15) leads to

∞∫

−∞

iedge(x
′)dl(x, x′)dx′ = −

∑

n′x<0,n′x>Nx+1

vn′x

δ
Πδ,n′x(x) + Zl

∞∑

n′x=−∞

i
n′x
δ,edge

δ
Πδ,n′x(x). (5.17)

In this equation the only unknown is iedge(x
′) and in general it cannot be solved with a

simple spectral domain approach. However, a particular geometrical case can be solved

exactly in a spectral analytical form.
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5.4.1 Simple Case: Low Frequency and Generator Distributed

over the Entire Cell

A simple case that can be solved in closed form is obtained under the conditions

{
dx << λ0

dx = δ
. (5.18)

The first hypothesis implies that the edge-born currents can be considered constant over

the cell of dimension dx. This leads to the possible use of a stair-case approximation:

iedge(x
′) ≈

∞∑

n′x=−∞
i
n′x
dx,edgeΠdx,n′x(x

′). (5.19)

The second hypothesis, which implies that the load is distributed over the entire elementary

cell, allows one to identify the same iedge(x) on the LHS and the RHS of Eq. (5.17). This

leads to the following simplified integral equation

∞∫

−∞

iedge(x
′)dl(x, x′)dx′ = −

∑

n′x<0,n′x>Nx+1

vn′x

dx

Πdx,n′x(x) +
Zl

dx

iedge(x). (5.20)

This equation can be simply solved analytically once it is expressed in the spectral domain:

Iedge(kx) =
v0 sinc(kxdx

2
)

Dl(kx)− Zl

dx

∑

n′x<0,n′x>Nx+1

ej(kx−kx0)n′xdx . (5.21)

The spatial current distribution can be then evaluated as a single inverse Fourier integral,

which avoids the necessity to perform the matrix inversion in Eq. (5.8). By integrating the

spatial current distribution on the gaps, assuming v0 = 1 Volt, we can express the currents

at each feed point of the finite array as follows:

inx
δ,edge =

1

2π

∞∫

−∞

sinc2(kxdx

2
)

Dl(kx)− Zl

dx

∑

n′x<0,n′x>Nx+1

ej(kx−kx0)n′xdxe−jkxnxdxdkx. (5.22)

This last spectral integral can be performed numerically along the path defined in Fig.

5.3(a). A validation of the procedure is shown in Figs. 5.7 and 5.8, which show the
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(a) (b)

Figure 5.7: Comparison of the numerical solution in Sec. 5.2 and the spectral analytical integration, for
arrays pointing at broadside: (a) in free space, (b) with backing reflector at distance h = 0.1 λ0.

(a) (b)

Figure 5.8: As in Fig. 5.7, but for arrays pointing toward θ = 60◦ in the E-plane.

magnitude of the total currents in the gaps, normalized to the infinite-array solution. The

results are for connected arrays in free space and in the presence of a backing reflector,

when scanning toward broadside and toward θ = 60◦, respectively. The arrays are fed

at 31 points, spaced by dx = δ = 0.2 λ0. Source impedances of Zl = 188 Ω and Zl =

377 Ω are assumed for the array in free space and the one backed by a reflector (at
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h = 0.1 λ0), respectively. The remaining geometrical parameters of the arrays considered

are dy = 0.2 λ0, w = 0.08 λ0.

An excellent agreement is obtained between the results predicted by the integration proce-

dure and the fully numerical inversion when Eqs. (5.18) are verified. It can be noted that,

in the considered cases, the finiteness of the array can cause variations of the current dis-

tribution, with respect to the infinite-array solution, corresponding to a unit magnitude in

the graphs, of up to 60% for large scan angles. These variations are still well represented by

the integral solution since this solution does not include any important approximations in

the simple cases. The same accuracy is maintained also for much smaller or larger arrays.

Similar curves, describing edge effects in finite arrays have been first observed in [90], [91]

and interpreted with a heuristic Gibbsian model.

5.4.2 Extrapolation of the Simple Case Solution

Equation (5.22) was obtained thanks to the simplifications in Eq. (5.18). Specifically, the

second hypothesis is instrumental for the algebraic operations on the spectrum. If one

assumes that it makes sense to have the load impedance Zl distributed over the entire cell

(dx), while the feeding is only applied to a region (δ), with these two parameters being

different, Eq. (5.22) can be extrapolated as follows:

inx
δ,edge =

1

2π

∞∫

−∞

sinc2(kxδ
2

)

Dload(kx)

∑

n′x<0,n′x>Nx+1

ej(kx−kx0)n′xdxe−jkxnxdxdkx (5.23)

where Dload(kx) = Dl(kx) − Zl/dx and where δ, possibly different from dx, now occurs in

the argument of the sinc function.

Figure 5.9 shows a comparison of the numerical solution and the spectral integral solution

for the currents in the gaps normalized to the infinite-array solution. The connected array

is in free space with 15 feeds along x with 200 Ω load impedance and it is scanning toward

45◦ in the E-plane. The four graphs refer to four different frequencies at which the array pe-

riodicity and the gap dimensions are dx = 0.1, 0.2, 0.4, 0.5 λ0 and δ = 0.04, 0.08, 0.16, 0.2 λ0,

respectively.

The agreement in Fig. 5.9 is excellent at low frequencies and shows only minor deviations at

higher frequencies, where the critical small period approximation that justifies the stair-case

distribution begins to fail. Overall, it appears that while the low frequency approximation

is instrumental to the spectral expression to work, the fact that the second hypothesis in

Eq. (5.18) (δ = dx) does not hold is not important from the point of view of the accuracy
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(a) (b)

(c) (d)

Figure 5.9: Comparison of the numerical solution and the spectral integral solution for a connected array
in free space at four different frequencies: (a) 0.2 f0, (b) 0.4 f0, (c) 0.8 f0, (d) f0; the load impedance is
equal to 200 Ω.

of the results. A possible explanation is that, to the first order, a good approximation

of the reactive energy associated with the cell is already included in the infinite-array

approximation and the gap dimension, and accordingly the parameter δ plays only a minor

role in defining the edge-born currents.
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5.5 Free Space Case: Uniform Asymptotic Evaluation

of the Integral Approximation

Equation (5.23) represents a single integral expression for the edge-born currents in a

connected array excited at a finite number of feed points. The asymptotic evaluation

of this integral can provide the physical insight that is now missing. To maintain the

formulation as simple as possible, only the case of connected arrays operating in free space

will be considered. The first step to the evaluation is recognizing two separate terms, each

associated with one edge of the array.

5.5.1 Contributions from the Two Edges

The summation over the auxiliary contributions from sources external to the array can be

expressed in closed form. This leads to two contributions associated with the left and right

edges of the array:

ext∑
nx

ej(kx−kx0)nxdx =
−1∑

nx=−∞
ej(kx−kx0)nxdx +

∞∑
nx=Nx

ej(kx−kx0)nxdx =

=
e−j(kx−kx0)dx

1− e−j(kx−kx0)dx
+

ej(kx−kx0)Nxdx

1− ej(kx−kx0)dx
.

(5.24)

Note that the first summation converges for Im{kx} < 0, and the second one for Im{kx} >

0. The introduction of Eq. (5.24) in Eq. (5.23) leads to:

inx
δ,edge = inx

δ,edge1 + inx
δ,edge2 = ejkx0dx

1

2π

∞∫

−∞

sinc2(kxδ
2

)

Dload(kx)

e−jkx(nx+1)dx

1− e−j(kx−kx0)dx
dkx+

e−jkx0Nxdx
1

2π

∞∫

−∞

sinc2(kxδ
2

)

Dload(kx)

e−jkx(nx−Nx)dx

1− ej(kx−kx0)dx
dkx.

(5.25)

This representation highlights the presence of a number of poles, which emerge from the

zeros of (1 − ej(kx−kx0)dx) associated with the Floquet Waves (FWs) in kxm = kx0 + 2πmx

dx
.

Indeed, using an identity similar to Eq. (A.71) and exploiting the polar representation of

the cotangent [92], one can prove that

1

1− ej(kx−kx0)dx
=

1

2
+

j

2
cot

(
(kx − kx0)

dx

2

)
=

1

2
+

j

dx

∞∑
mx=−∞

1

kx − kxm

. (5.26)
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Figure 5.10: Real and imaginary part of the pole kxp versus load resistance for an array in free space.

Besides FW poles, the integrand also possesses other types of singularities, specifically the

branch points as in Fig. 5.3 and complex poles associated with the dispersion equation

Dload(kx) = 0. Their location in the complex plane depends on the actual value of the

loads Zl that characterize the feed lines. The approximate solution of this dispersion

equation is reported in Appendix D (Sec. D.1). The real and imaginary part of the

dominant pole are plotted in Fig. 5.10, for a case characterized by dx = dy = 0.45 λ0 and

w = δ = 0.2 λ0. The figure compares the analytical solution provided in Eq. (D.10) with a

numerical solution based on Newton-Raphson method [42], which is a simple descent along

the gradient following an accurate starting point. For a small load impedance, kxp ≈ k0 and

unattenuated waves are supported by the array. However, for large values of the impedance,

the imaginary part of this propagation coefficient is highly negative. It should be noted

that these poles correspond to purely attenuating waves due to losses (feed absorption).

These are not leaky waves.

After the discussion on the singularities, also the approximate analytical evaluation of the

two integrals in Eq. (5.25) is derived in Appendix D. A uniform asymptotic evaluation of

the integral is performed in terms of Fresnel functions to properly describes the transition

between guided waves and radiated waves. The inclusion of these transition functions

enables the description of the currents also for scan-blindness angles.

The analytical expressions for the current contribution born from the left edge of the array

is given by

inx
δ,edge1 ≈

e−jk0X

X
√

X

(
C1

Fs(X(k0 − kxp))

(k0 − kxp)
+ C2

Fs(X(k0 − kx0))

(k0 − kx0)

)
(5.27)
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with X = (nx + 1)dx. In Eq. (5.27) the slope Fresnel function is introduced: Fs(x) =

2jx(1 − F (x)), where F (x) is the Kouyoumjian Fresnel function [93]. This function is

defined in Eq. (D.65) in Appendix D.

Also in Eq. (5.27)

C1 = C ′
(

R(k0)− j

dx(kxp − kx0)

)
, C2 =

jC ′

dx(kxp − kx0)
(5.28)

with C ′ = C
√

2k0(−e−jπ/4π) and R(kx) defined in Eq. (D.17). The current contribution

born at the right edge of the array can be similarly expressed and is reported in the

Appendix D.

5.5.2 Comments on the Analytical Solution

A comparison between the results obtained resorting to the analytical expressions in Eq.

(5.27), or Eqs. (D.21) and (D.23), and the numerical method is shown in Fig. 5.11.

The array is radiating broadside in Fig. 5.11(a) and toward θ = 60◦ in the E-plane in

Fig. 5.11(b). The considered example includes Nx = 100 feed points, and the geometrical

parameters are dx = dy = 0.4 λ0, where λ0 is the calculation frequency, and w = δ = 0.2 λ0.

It is apparent that the proposed analytical solution is extremely accurate also for arrays

that are scanned to very wide angles.

The availability of an analytical expression allows one to give qualitative considerations

on the nature of the electric current distribution. For high values of the loads Zl, and

observation points close to broadside, kx0 ≈ 0 and the arguments of the Fs functions

are large. This means that the current distribution from each edge is dominated by the

spreading factor x−3/2, which is associated with a rapid decay as a function of the distance

from the end points. For lower values of Zl, the load induced pole kxp can be close to

the branch point k0. Also, for observation toward wide scanning angles, kx0 is close to

k0. When either of the two situations occurs, the transition functions argument tends to

zero, and the Fresnel function can be approximated by F (X) ≈ √
πXej(π/4+X) [93]. This

implies that the dominant term to the current distribution is of the type e−jkxpx or e−jkx0x,

which does not present geometrical spreading and only a small exponential attenuation

(Im{kxp}) or no attenuation at all (kx0 ∈ R).

Specifically the e−jkxpx dependence of the current distribution is shown here to emerge from

an analytical GF for the first time. It expresses the idea that the load/source impedances

attenuate the edge waves by consuming their energy. This mechanism is probably occurring

in all arrays, not only in connected arrays, but to our knowledge was never given explicit

evidence or demonstrated for any array.
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(a)

(b)

Figure 5.11: Comparison between the analytical solution and the numerical method for an array of 100
elements in free space:(a) broadside and (b) θ = 60◦.

5.6 Conclusions

This chapter has presented a novel analytical methodology to asses edge effects in connected

arrays, which provides important guidelines for the design of broadband phased arrays.
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Analysis

Starting from the knowledge of the connected array GF, we have first presented the deriva-

tion of a general purpose numerical procedure for the assessment of the finiteness effects

in connected arrays. This procedure is of general applicability in terms of types of array

and scan conditions. In fact, arrays with and without backing reflectors or dielectric strat-

ifications and scanning in the E-, H- or diagonal planes can be analyzed. The numerical

cost of the analysis is only the inversion of a matrix of dimension Nx × Nx, where Nx is

the number of feed points in the array along the longitudinal direction. The availability of

such a numerical procedure provides unique design opportunities. It is particularly conve-

nient when the performance of wideband wide-angle scanning arrays needs to be assessed

in advance of measurements or full-wave, all inclusive, numerical simulations.

In a second step, the representation of the total current in terms of the infinite array

plus edge-born waves has been introduced. Thanks to this representation, simplifications

that would otherwise be unreasonable can be adopted. These lead to a single analytical

expression for the spectrum of the edge-born waves in cases of general applicability.

Finally, for the specific case of a connected array of dipoles operating in free space and

scanning only in the E-plane, an approximation of the pertinent inverse Fourier transforms

leads to an analytical expression of the edge-born waves. The expression is given in terms of

standard Fresnel functions which highlight similarities between the edge-induced currents

in connected arrays and the edge-born currents in the canonical problems of diffraction

from half planes [94,95].

Design

From the design point of view the main findings of this investigation are that:

• Edge effects are fundamental to assess the behavior of connected arrays in wide-

angle scan situations. Especially when the arrays are composed of a small number

of elements (8-16), infinite-array simulations are just not good enough to predict

the performance. The free-space case, treated here analytically, gives good physical

understanding and guidelines.

• The intensity of the edge-born waves is only mitigated by the source/load impedances.

The information of the load impedance is crucial to assess finite-array effects. This

was previously anticipated by Hansen in [25] and Munk [75]. The origin of this

phenomenon is believed to be explained here for the first time.
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• The intensity of the edge waves is more important for low loading or source impedances.

High impedances (400 Ω) can mitigate truncation effects by attenuating the edge-

born waves in connected arrays with a backing reflector.



Chapter 6

Practical Implementation of Feed

Networks in Connected Arrays

The analytical models presented in the previous chapters can be readily exploited for

the design of connected arrays. For example, in Chapter 3, the theoretical formulation

was used for the dimensioning of the array elements, and a connected-dipole design was

presented, with 40% relative bandwidth and wide-scan capability, up to 45◦ for all azimuth

angles (Sec. 3.4). Moreover, a rigorous and analytical equivalent circuit representation of

the array was derived in Chapter 4 and successfully used to predict the performance of

a receiving dual-band connected-array prototype (Sec. 4.6). The closed-form expressions

will be also used in Chapter 7 for the optimization of the radiating elements in a 7 × 7

prototype demonstrator for 3 to 5 GHz operation.

Besides the design of the radiating dipoles, the practical implementation of a feed network

has to be realized, for matching the elements to a 50 Ω coaxial connection. For the design

of the feeding structures, we perform all simulations with Ansoft HFSS [41]. As for all

wideband phased arrays differentially fed, also in connected arrays balanced transmission

lines should be used to feed the elements. However, these lines can support both differential

and common-mode propagation. This phenomenon is unwanted and can be excited when

asymmetry in the excitation is introduced, for example by scanning, or when the length

of the feeding line is such that resonances occur. This specific problem will be the object

of this chapter, that focuses on the implementation of the feed rather than the radiating

aperture.

An analysis of the effects of common-mode resonances on the efficiency of a connected array

was presented in [96]. Resonances of the same type were also observed and investigated for

arrays of differentially-fed tapered slot antennas in [97]. Due to the electrical connection
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between the array elements, and the corresponding high mutual coupling, standard baluns

typically used for resonant dipoles are not effective in connected arrays. In fact, even with

perfect baluns, common-mode resonances may occur. The reason is that, at oblique scan-

ning, either the incident field or the field from the array itself will have a field component

along the feed lines that may readily excite the common mode [26, pp. 278-279].

On the other hand, common-mode rejection circuits based on ferrite are available only at

low frequencies (< 3 GHz) [98–100]. Moreover, other solutions based on active components

or differential low noise amplifiers are not always employable [101,102].

In particular, one of the applications that motivates this work is aircraft-to-satellite com-

munication for in-flight entertainment (see Sec. 1.1.1). For this application, if one wishes

to adopt a unique antenna for both the uplink and the downlink bands, a wide bandwidth

(about 30% from 10.7 to 14.5 GHz) becomes necessary. Polarization purity is also required,

with a specification for the X-pol level of at least −15 dB for every observation point. The

simultaneous operation in transmit and receive in Ku-band does not allow the exploitation

of either differential amplifiers or ferrite based transformers.

This chapter presents two novel low-cost Printed-Circuit-Board (PCB) based solutions to

avoid common-mode resonances, without resorting to active components or Monolithic

Microwave Integrated Circuit (MMIC) technology.

• The first solution presented aims at reducing the length of the resonating lines to

shift the common-mode resonances to higher frequencies, so outside the operational

band of the array. This effect is achieved by applying a denser sampling to the array.

The same numbers of Transmit/Receive (T/R) modules is maintained by resorting

to power dividers. A wide-band transition between Co-planar Strip (CPS) lines has

been designed, based on microstrip-to-slot aperture coupling [103], to further reduce

the length of continuous current paths. The same transition can be used as a balun,

when coupling a CPS line to a microstrip (MS).

One disadvantage of this solution is that the bandwidth of the transformer depends on

the input impedance of the radiating element. In particular, lower input impedances

at the dipole terminals need to be achieved to ensure a wideband behavior of the

transition.

• The second solution is based on a loop-shaped component that constitutes a choke for

the common mode, while representing a small impedance change for the differential

mode. Contrarily to the slot-coupling transformer, the loop bandwidth does not

depend on the input impedance. The use of such a common-mode rejection loop
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Figure 6.1: Two-dimensional array of dipoles fed by CPS lines. The periods along x and y are dx and dy,
respectively. The length of the vertical feed lines is `.

allows the design of linearly and doubly polarized arrays of connected dipoles with

X-pol levels lower than −15 dB over about a 30% relative bandwidth.

Simulation results obtained with the aid of full-wave commercial electromagnetic CAD

tools are presented for both feed structures.

6.1 Resonances Typical of Connected Arrays

Let us consider the simplified case of an infinite two-dimensional array of dipoles with

periods dx and dy, as shown in Fig. 6.1. Backing reflectors reduce the intrinsic bandwidth

of the dipoles, which is theoretically very large [30]. For the sake of generality, the array

without backing reflector is studied to highlight only the frequency dependence introduced

by the feed network. The array elements are fed by CPS lines, whose length is `.

Three types of resonant effects may occur in these, otherwise broadband, connected arrays:

1. grating lobes;

2. phase matching between Floquet waves and guided waves;

3. common-mode resonances.

The first type of resonance is associated with the appearance in the visible region of an

higher order Floquet wave and is typical of all arrays, connected and unconnected. The

appearance of the grating lobes is defined by the condition



104 6. Practical Implementation of Feed Networks in Connected Arrays

kzm =
√

k2
0 − k2

xm − k2
ym = 0 (6.1)

where kxm = k0 sin θ cos ϕ − 2πmx

dx
, kym = k0 sin θ sin ϕ − 2πmy

dy
, k0 is the free-space propa-

gation constant, θ and ϕ are the angles toward which the array scans, and mx and my are

the Floquet-wave indices.

Inverting the condition kzm = 0 for the frequency, when mx = −1 and my = 0, we obtain

f =
c

dx(
√

1− sin2 θ sin2 ϕ + sin θ cos ϕ)
(6.2)

with c indicating the speed of light in vacuum.

The second type of resonance only occurs in connected arrays. In an infinitely extended

dipole structure, guided waves can propagate along the longitudinal direction. As described

in Sec. 3.2.2, when the dipole is assumed to be in free space, these waves are represented

in the spectral Green’s Function (GF) as a pair of poles in kx = ±k0. When the dipoles

are fed at periodic locations along the longitudinal direction, the periodic GF is obtained

by sampling the non-periodic GF in the pertaining Floquet wave numbers.

Thus, the resonance condition is kxm = kpole = ±k0. Accordingly, in terms of frequency,

for mx = −1 and kpole = −k0, we have

f =
c

dx(sin θ cos ϕ + 1)
. (6.3)

The first two types of resonance do not depend on the feed network, thus they can be taken

into account in an ideal model that does not include the feeding transmission lines.

6.1.1 Common-Mode Resonances

If differential lines are included in the model, their length is critical since they may induce

other resonances due to common-mode propagation. The shorter the length of the feed

lines, the higher the associated resonance frequency is. However, typically connected arrays

involve the presence of a backing reflector. Accordingly, the transmission-line lengths are

in the order of a quarter of the free-space wavelength, to reach the ground-plane level,

where loads or source circuits are located. As an example, in the most standard design

situation, the array period is about half a wavelength, and the vertical lines are a quarter

wavelength. Hence, the feed lines and the dipole constitute a continuous electric path that

is one wavelength long (dx + 2` = λ), as illustrated in Fig. 6.3, giving rise to a strongly

cross-polarizing standing wave.
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(a) (b)

Figure 6.2: Active input impedance of an elementary cell in infinite-array environment, when the array is
scanning towards θ = 45◦ and ϕ = 45◦. The periods are dx = dy = 15 mm and the length on the vertical
lines is (a) ` = 0.6 mm and (b) ` = 7.5 mm.

Figure 6.3: Vector surface current distribution on a unit cell of the infinite array at 10 GHz. The array is
the same to which Fig. 6.2(b) refers.

The active input impedances for an array periodicity of dx = dy = 15 mm, and assuming

` = 0.6 mm and ` = 7.5 mm, are shown in Fig. 6.2(a) and 6.2(b), respectively. Simu-

lations have been performed with Ansoft HFSS [41], exploiting the infinite-array-analysis

approximation. The scan angle is considered to be θ = 45◦ and ϕ = 45◦, since this is

the most critical design case. Figure 6.2(a), which refers to the case of very short vertical

lines, shows only two resonances associated with the grating lobe and the guided-wave
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Figure 6.4: X-pol level as a function of the frequency when scanning towards θ = 45◦ and ϕ = 45◦. The
periods are dx = dy = 15 mm and the length of the vertical lines is ` = 7.5 mm.

pole. The two resonances appear at about 14.5 and 13.5 GHz, respectively, as predicted

by Eqs. (6.2) and (6.3). In addition to the grating lobe and the guided pole resonances, a

peak of the input resistance appears at 10 GHz when long vertical lines are considered, as

can be observed in Fig. 6.2(b). From the simulated vector current distribution in Fig. 6.3,

it is evident that the resonance is attributable to common-mode propagation in the CPS

lines.

According to the third definition of cross polarization by Ludwig [9], common-mode cur-

rents along z radiate highly cross-polarized fields when the diagonal plane is scanned

(ϕ = 45◦). In Fig. 6.4, the ratio between co-polarized and cross-polarized fields rapidly

increases in proximity of the resonance at 10 GHz. A possible approach to achieve lower

levels of X-pol is to ensure that the length of the path 2`+dx is significantly shorter than a

wavelength. In that case, the common-mode resonances will appear at higher frequencies,

outside the operational band of the array. Note that the resonance depicted in Fig. 6.3 is

the one associated with common mode only and typically occurs at the lowest frequency.

Other resonances may appear at higher frequencies, which involve combinations of common

and differential modes that results in unbalanced currents.

6.2 Design of PCB Slot-Based Transformers

The path of the common-mode current can be shortened by introducing a series transformer

that only allows the transmission of differential currents and constitutes an open circuit

for the common mode. To realize such a component, one can resort to completely planar
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Figure 6.5: Layout of the CPS/GCPS transformer. The thickness of two dielectric substrates is h and the
permittivity is εr.

slot coupling between microstrip lines as in [104].

6.2.1 CPS/GCPS Transformer

A schematic view of the component is shown in Fig. 6.5, where the ground plane on which

the slot is etched is assumed to be of infinite extent along x. The component is divided

into two parts separated by the ground plane. The part at z = h, hereafter the primary

circuit, comprises a transition from CPS lines to Grounded CPS (GCPS) lines. A power

divider then splits the circuit into two microstrip-like equal halves, which are eventually

re-connected orthogonally to a coupling slot. The secondary circuit is the same as the

primary, but mirrored with respect to the slot (at z = −h).

The initial input from the CPS lines can be associated with differential-mode or common-

mode currents. Regardless of the type of input, the same equivalent circuit of the transition

can be used, as shown in Fig. 6.6. However, it is clear from the right side of Fig. 6.6 that

the common-mode input corresponds to a zero of electric current at the center of the slot.

In turn, this translates in no electric current being excited in the secondary circuit of the

transformer.

The common-mode rejection achieved by these type of components can be highlighted in

Fig. 6.7, where the S12 for the common mode is reported as a function of the frequency.

The common mode transmission is lower than -17 dB over a wide band. While such

rejection is intrinsic in this type of transformer, the achievement of high transmission for

the differential signal depends on the quality of the matching.
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Figure 6.6: Equivalent transmission line model of the transition in Fig. 6.5, for differential and common
inputs.

Figure 6.7: Common-mode rejection of the CPS/GCPS transition in Fig. 6.5. The transition is optimized
for 100Ω impedance of the differential mode.

Figure 6.8 shows the equivalent circuit transformation steps that can be applied to estimate

the input impedance for the differential mode. The maximum power transfer for the

differential mode is obtained when the element load impedance (Zcell) is matched to the

differential line impedance (Z0cell), which is realized by the series of the two microstrip

lines, each of impedance Z0MS. Thus, the condition is Z0cell = 2Z0MS = Zcell. Let us also
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Figure 6.8: Equivalent circuit transformation steps for differential-mode current.

focus on the simplifying and realistic situation in which one wants to realize unitary turn

ratios of the slot-to-microstrip transformers for both the primary and secondary circuits;

that is, n1 = n2 = 1 in Fig. 6.8. In this case, the equivalent impedance at the slot

level (S-S ′) looking upward is Z|| = ZcellZslot/(Zcell + Zslot), where Zslot is the impedance

across the slot in the absence of the microstrip lines. Under the condition Zcell ¿ Zslot,

the presence of the slot is negligible and thus Z|| ≈ Zcell, so that the differential signal is

completely transmitted to the secondary circuit. On the contrary, when the slot loading is

comparable to the connected array loading, a significant part of the power supplied to the

array is re-radiated by the slot before being transferred through the transition. This limits

the useful bandwidth of the transformer. Since the condition for high transmission levels

is Zcell ¿ Zslot, a resonant slot with high impedance, together with a smaller value of Zcell,
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(a) (b)

Figure 6.9: (a) Input impedance of the slot etched on an infinite ground plane, in the absence of the
microstrip circuits. (b) Reflection and transmission coefficient of two transition optimized for Z0cell = 200 Ω
and Z0cell = 100 Ω.

implies larger useful bandwidths for the transformer. To highlight this effect, we considered

two transitions using the same slot, whose impedance is shown in Fig. 6.9(a). The first

transition is optimized for Z0cell = 200 Ω, while the second is optimized for Z0cell = 100 Ω.

Figure 6.9(b) shows the S-parameters associated with these two transitions. It is clear that

the relative bandwidth associated with the lower impedance cell is much larger.

6.2.2 CPS/MS Balun

The design of CPS/GCPS transformers described in the previous section can be easily

adapted to CPS/MS balun designs. The primary circuit and the slot remain the same,

while in the secondary circuit one of the two microstrip lines becomes a quarter-wavelength

open stub and the other constitutes the unbalanced MS input. The geometry of the balun

is shown in Fig. 6.10.

6.3 Performance of the Feed Network: Array Design

The transformer described in Sec. 6.2 can be the key component of a periodic cell of a

two-dimensional connected array. To minimize the number of T/R modules in a realistic
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Figure 6.10: Layout of the CPS/MS balun transformer.

large array, the periods in x and y are maintained at 0.5 λ0 at the highest useful frequency

(10 GHz). As examples, let us consider the following two configurations:

1. In each periodic cell of the array there is only one feed point with the corresponding

transformer (see Fig. 6.11(a)). In this case, the periods are dx = dy = λ0/2 and

the impedance of the unit cell is Zcell = 200 Ω ≈ ζ0/2, where ζ0 is the free-space

characteristic impedance. Accordingly, a transformer optimized for Z0cell = 200 Ω is

considered.

2. Each periodic cell is fed at two points, with a separation distance of λ0/4 (see Fig.

6.11(b)). The impedance at each feed point is then Zcell = 100 Ω and the transformer

is also designed for Z0cell = 100 Ω. The factor 2 in the value of the input impedance

is clear from Eq. (2.36), since the impedance is proportional to the ratio dx/dy. A

Wilkinson power divider is included to maintain the same number of T/R modules.

The two cases differ for the operational bandwidth of the transformers, as was shown

in Fig. 6.9(b). Therefore, the active reflection coefficients for the case 2 when scanning

toward θ = 45◦ and ϕ = 45◦ exhibits a wider −10 dB relative bandwidth, as expected

(Fig. 6.12(a)). However, for the 200 Ω design, even within the frequency band in which a

good matching is achieved, high losses are observed in terms of X-pol levels. Figure 6.12(b)

shows the X-pol levels for the two considered cases. The difference between the two curves

can be associated with the different length p of the dipole and the primary circuit of the

transformer (see Fig. 6.11). In Case 1, the length p becomes longer than one equivalent

wavelength at the highest frequency, allowing common-mode resonances to appear inside

the bandwidth of the array. Case 2 instead permits having a shorter length p, shifting the

resonance at frequencies higher than 10 GHz. As a consequence, a sensibly lower X-pol

level is obtained with the second approach.
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(a) (b)

Figure 6.11: Geometry of a periodic cell a connected dipole array with (a) single feed per cell and with
(b) double feed per cell.

(a) (b)

Figure 6.12: (a) Active reflection coefficient and (b) X-pol level for the two geometries in Fig. 6.11, when
scanning towards θ = 45◦ and ϕ = 45◦.

6.3.1 Finite Ground Planes

Note that the transformer in Sec. 6.2 has been introduced assuming infinite ground planes

surrounding the slots. In practice, when used to feed connected arrays, the ground plane
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(a) (b)

Figure 6.13: (a) Geometry of a periodic cell a backed connected array with 4 feeds per cell and (b) X-pol
level when scanning towards θ = 45◦ and ϕ = 45◦.

will be finite. The effect of this finiteness is not negligible, but was accounted for in the

simulations presented in this section.

6.3.2 Backed Array

It has been shown that the proposed solution to the common mode yields an improved

polarization purity for an array in free space. The transformer is not effective in an array

with half wavelength spacing between the elements, because continuous current paths in

the order of a wavelength are still undergoing common-mode propagation. Moreover, its

bandwidth performance demands for lower values of the load impedance. The solution was

to split the periodic cell into two subcells along the longitudinal direction (x), each com-

prising a transformer but both connected to the same T/R module. The load impedance

is then reduced by a factor 2, from 200 to 100 Ω.

When a backing reflector is included for increased front-to-back ratio, the input impedance

of the array element has a value of about 400 Ω. To reduce this value to 100 Ω, an even

denser sampling (×4) is required. The same transformer could be used by reducing its size

with high permittivity dielectrics. A possible array unit cell would be then the one depicted

in Fig. 6.13(a). The series of two transformers has been used for each feed point. The X-

pol level obtained with this design is lower than −14 dB for frequencies below 10 GHz. The
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Figure 6.14: Losses due to destructive interference of the four contributions in the power combiners of the
structure in Fig. 6.13(a), when scanning in the E-plane.

common-mode resonance still appears at higher frequencies, outside the operational band

of the array, when the length p becomes about one effective wavelength in the dielectric

( λd).

6.3.3 Limitations of Over-Sampling the Unit Cell

One disadvantage of this solution is that the contributions from the 4 feed structures within

the unit cell sum up in-phase only when the array is pointing at broadside or scanning in

the H-plane. E-plane scanning introduces incoherence between the 4 contributions, which

translates into power dissipation inside the resistors of the Wilkinson power dividers. These

losses increase with wider scan angles, as shown in Fig. 6.14.

6.4 Common-Mode Rejection Loop Design

To overcome the disadvantages related to over-sampling the unit cell, a second solution

to reject common-mode propagation on the vertical feed lines is now presented. Let us

consider a loop-shaped component as in Fig. 6.15.

When a common-mode input is applied, at low frequencies the currents flowing in the loop

are equal in phase. Therefore, the loop only behaves as a small series inductance for the

common mode. As the frequency increases, currents with different phases instead flow in

different portions of the loop. This is illustrated in Fig. 6.16, which shows the magnetic

field in a cross section of the loop structure, calculated via Ansoft HFSS [41], at 7 and 15
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Figure 6.15: Geometry of the loop-shaped transformer for common-mode rejection.

(a)

(b)

Figure 6.16: Schematic of the vector current distribution and vector magnetic field on a transverse section
of the loop calculated via Ansoft HFSS at (a) 7 GHz and (b) 15 GHz.

GHz, respectively. The loop radius is 1.06 mm and the loop is printed on a 0.254 mm thin

dielectric substrate with relative permittivity 2.2. The first configuration in Fig. 6.16(a)

corresponds to the case in which most electric currents in the loop are in phase, generating

coherently adding magnetic fields. This, in turn, produces a magnetic field circuitation
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(a) (b)

Figure 6.17: S-parameters of the loop in Fig. 6.18 pertaining to (a) differential and (b) common modes.

(closed-path integral) with high contributions in the center of the selected cross section.

The second configuration in Fig. 6.16(b) corresponds to the case in which the electric

currents in the loop are essentially divided into two parts with opposite phases, generating

cancelling magnetic fields. As a consequence, the magnetic field circuitation has close-to-

zero contributions in the center of the selected cross section. Thus, at frequencies higher

than a certain threshold, the average distributed inductance of the loop becomes lower,

as the magnetic fields no longer add up coherently. Within a frequency range of more

than an octave, the characteristic inductance will tend to very low values, which creates a

strong impedance discontinuity. This effect is quantified in Fig. 6.17, by the S-parameters

pertaining to differential (a) and common mode (b). A 10 dB common-mode rejection is

observed from about 9 to 22 GHz, while no significant mismatch is experienced by the

differential mode up to 18 GHz.

6.4.1 Performance of the Loop-Shaped Feed Structure

A loop-shaped feed network has been designed to be included in a backed array of connected

dipoles operating from 10.7 to 14.5 GHz, for in-flight entertainment application. The

structure is shown in Fig. 6.18. Since the active input impedance of a connected dipole

element typically exhibits high values (about 400 Ω), the loop can be used to implement an

impedance transformation for the differential mode. To this aim, a two-section transformer
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Figure 6.18: Dimensions (in mm) of the loop-shaped transformer.

Figure 6.19: Performance of the loop when included in the connected dipole array unit cell.

from 400 to 200 Ω and a tapered line from 200 to 160 Ω have been implemented. The

total length of the loop corresponds to half a wavelength at 14.9 GHz for a substrate

with h = 0.254 mm and relative permittivity 2.2. Two inverters have been added to

compensate for the slightly different radius of the inner and outer conductors within the

loop, thus reducing the spurious radiation of the loop when a differential input is applied.
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Figure 6.20: Performance of the loop when included in the connected dipole array unit cell.

Figure 6.19 shows the X-pol levels pertaining to an array of connected dipoles with and

without vertical feed lines, compared with an array that includes the loop-shaped feed

structure. It is evident that, when the common-mode rejection loop is used, the degrada-

tion of polarization purity introduced by the vertical lines is strongly mitigated over the

bandwidth of interest. In fact, the X-pol level becomes lower than −17 dB over more than

40 % relative bandwidth.

6.4.2 Single-Polarization Array Design

The results in Fig. 6.19 pertain to a differential excitation located at the ground plane level.

A more realistic coaxial feed requires the inclusion of a transition from CPS to microstrip

(MS). A simple CPS-to-MS transition would introduce a further unbalance of the current

along the differential lines, giving rise to a resonance as shown in Fig. 6.20. To avoid

this problem, a sleeve balun has been designed. The resulting performance of the overall

structure is presented in Fig. 6.21, which shows the geometry of the array unit cell, the

active reflection coefficients for broadside and for θ = 45◦ in the main planes (normalized

to an port impedance of 160 Ω), and the X-pol ratio for θ = 45◦ and ϕ = 45◦. A reflection

coefficient lower than −10 dB is achieved over more than 30% relative bandwidth, and the

X-pol level is at least 14 dB lower than the co-polar component. The array period is 8.2

mm (about 0.4 λ with λ being the wavelength at the highest frequency) and the profile of

the array is 11.7 mm (about 0.57 λ).
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Figure 6.21: Performance of the loop when included in the unit cell of a linearly polarized connected dipole
array.

Figure 6.22: Dimensions (in mm) of the loop-shaped transformer for the dual-pol array.

6.4.3 Dual-Polarization Array Design

For the dual-pol array design, a slightly different loop-shaped feed has been designed, as

shown in Fig. 6.22. The radius of this loop is reduced with respect to the linear polarization
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(a) (b)

Figure 6.23: S-parameters of the loop in Fig. 6.22 pertaining to (a) differential and (b) common modes.

case, from 1.06 mm to 0.8 mm. The loop is composed of two quarter wave sections of CPS

lines to implement an impedance transformation for the differential mode from 400 to

160 Ω. To have two sections approximately equal to a quarter wavelength at the highest

frequency of interest, the point of transition has been rotated by 100◦ with respect to

the corresponding point for the previous configuration. The S-parameters of the loop are

reported in Fig. 6.23, while the array performance is shown in Fig. 6.24. Considering the

points of −10 dB matching, a relative bandwidth of 35% is achieved, while the X-pol level

is below −18.5 dB over the operational bandwidth. Note that a stringent, but frequent

requirement for polarization sensitive arrays is that the cross-polarized field is at least 15

dB lower than the co-polarized one.

6.5 Conclusions

In this chapter, two novel solutions for the practical implementation of the feed networks in

connected arrays have been presented. Both feed structures are based on PCB technology,

to limit the costs and the complexity, without resorting to active component or to MMIC

technology.

First, an aperture-coupling-based transformer has been described, acting as a common-

mode rejection circuit. To guarantee the effectiveness of this component, the periodic cell

has been split into two or more subcells along the longitudinal direction (x). Infinite-
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Figure 6.24: Performance of the loop when included in the unit cell of a dual-pol connected dipole array.

array simulations have shown the capability of the transformer to lower the X-pol levels.

However, the efficiency of this solution decreases when scanning in the E-plane, since the

contributions from the subcells do not sum up with same phase.

Another practical way to design the feed network of a connected array has been proposed

as valid solution to common-mode resonances. It is based on a loop-shaped transformer

that constitutes a strong impedance mismatch for the common mode. The performance

has been characterized via full-wave simulations performed with Ansoft HFSS. Simulated

results show a 10 dB common-mode rejection over a more than one octave bandwidth

(9 to 20 GHz). The inclusion of the loop component into the feed lines of a connected

array of dipoles has also been investigated. The design of a linearly polarized and a doubly

polarized array has been presented. This array has been shown to operate over 35% relative

bandwidth when scanning up to 45◦, and X-pol levels below −18.5 dB within the entire

scan volume.
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Chapter 7

Experimental Validation

7.1 A 3 to 5 GHz Singly-Polarized Connected Array

Based on the analytical formulation developed in the first part of this thesis, a wideband,

wide-scan phased array of connected dipoles has been designed and fabricated for 3 to

5 GHz operation. The dipole element is combined with the loop-shaped transformer de-

scribed in Sec. 6.4 for the realization of the feed network. Measured results from a 7 × 7

prototype demonstrator are presented for experimental validation.

7.1.1 Design Strategy

The first step of the design is to optimize the dimensions of the unit cell of a connected-

dipole array in the presence of a backing reflector (Fig. 7.1). The dipoles are horizontally

placed in the (x-y) plane. The array periods are dx and dy along the longitudinal and

transverse direction of the dipole, respectively. The following parameters can be adjusted

to optimize the performance in the band from 3 to 5 GHz: the dipole width (w), the size

of the feed gap (δ), the distance from the ground plane (h) and the array periods (dx,dy).

A first choice of the parameters is obtained with the aid of a genetic algorithm that mini-

mizes the following fitness function:

maxf (ΓB, ΓEθmax , ΓHθmax) (7.1)

where ΓB, ΓEθmax and ΓHθmax are the active reflection coefficient for broadside, scanning to

θmax in the E-plane and scanning to θmax in the H-plane, respectively. For each frequency

f , these functions are analytically dependent on the parameters that characterize the array,

therefore the procedure is essentially immediate.
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Figure 7.1: Unit cell of a connected array of planar dipoles with delta-gap excitation.

Figure 7.2: Unit cell of a connected array of vertically arranged dipoles excited with balanced co-planar
strip lines.

This preliminary design assumes that the dipoles are horizontally placed, parallel to the

backing reflector and fed by idealized delta-gap sources. An equivalent but more realistic

structure is obtained by considering the dipoles printed on thin vertical PCBs, with relative

permittivity εr and thickness t, and fed by balanced co-planar strip lines, as displayed in

Fig. 7.2. The size of the feed gap (δ) and the width of the inductive lines that connect

the dipole arms to the feed (l) can be fine-tuned with the aid of Ansoft HFSS [41] to

obtain the same active input impedance of the ideal planar element. The following set of

parameters has been found to yield good matching in the frequency range from 3 to 5 GHz

within a 45◦ scan volume: w = 7.56 mm, δ = 7.875 mm, h = 15.12 mm, and l = 0.15

mm. The array periods are dx = dy = 25.2 mm, which corresponds to 0.42 λ at 5 GHz. A

dielectric substrate of Rogers 4003 has been selected, with relative permittivity εr = 3.55
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Figure 7.3: Connected array of dipoles without vertical feeding lines: (a) array unit cell; (b) active reflection
coefficient, assuming a 350Ω feeding line, for broadside and θ = 45◦ in the E- and the H-planes.

and thickness t = 1.118 mm. At this stage, the elements are assumed to be fed at the

dipole level, without the inclusion of vertical transmission lines.

Referring to the coordinate system in Fig. 7.3(a), the active reflection coefficient of the

periodic array unit cell is shown in Fig. 7.3(b), assuming a 350 Ω feeding line. Curves are

shown for scanning at broadside and to θ = 45◦ in the main planes (E- and H-planes).

It can be noted that, when observing only at broadside (continuous line), the considered

connected dipole element can achieve bands in the order of 4:1 in the presence of a backing

reflector. However, the input resistance is lowered by a factor of cos θ when scanning in the

E-plane and increased by a factor of sec θ when scanning in the H-plane. Consequently,

even in this case of ideally fed dipoles, the usable bandwidth within a 45◦ scan volume is

reduced to about an octave (3 to 6 GHz).

Even if not reported for sake of brevity, the X-pol level of this element for observation at

θ = 45◦ in the diagonal plane (D-plane, ϕ = 45◦) is of about −15 dB. As mentioned in Sec.

1.2, such a value of X-pol is typical of perfectly linear radiating currents oriented along the

x- or y-axis, according to the third definition of cross polarization by Ludwig [9].

To highlight the effect of common-mode propagation on the feed lines, Fig. 7.4 shows

the performance of a similar array geometry, in which the same dipole elements are fed

by vertical co-planar strip (CPS) lines, to reach the ground plane level, where the feed is

located (Fig. 7.4(a)). The lines perform an impedance transformation from 350 Ω to 100 Ω.

The active reflection coefficient and the X-pol level are shown in Figs. 7.4(b) and 7.4(c),

respectively, for observation at θ = 45◦ in the D-plane. It is apparent that the inclusion
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Figure 7.4: Connected array of dipoles with vertical feeding lines: (a) array unit cell; (b) active reflec-
tion coefficient, assuming a 100 Ω feeding line, for θ = 45◦ in the D-plane; (c) X-pol level for the same
observation angle.

of long vertical feed lines has only a marginal impact on the matching. However, a catas-

trophic resonance appears in the X-pol level. This degradation is due to the propagation

of common-mode currents on the CPS lines. The values of X-pol are much higher than the

values typically observed for printed linearly polarized dipoles (≈ − 15 dB).

Thus, it is important to note that the effect of common-mode resonances on the array

efficiency should not be analyzed in terms of matching properties only for those applications

in which the polarization purity is crucial. The usable bandwidth defined by the X-pol

levels can be radically different from the bandwidth defined by the matching characteristics.
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Figure 7.5: Dimensions (in mm) of the loop-shaped transformer.

7.2 Prototype Array: Simulations

To reject common-mode propagation on the vertical feeding lines, we consider a loop-

shaped component as in Fig. 7.5. The loop radius is 2 mm and the loop is printed part

on the bottom layer and part on the top layer of a 1.216 mm thick Rogers 4003 dielectric

substrate with relative permittivity of 3.55.

As explained in Sec. 6.4, when a common-mode input is applied, at low frequencies the

currents flowing in the loop are equal in phase and therefore the loop only behaves as a

small series inductance for the common mode. As the frequency increases, different por-

tions of the loops are flown by currents with different phases generating cancelling magnetic

fields, which in turn produce a magnetic field circuitation with close to zero contributions

in the center of a loop’s cross section. Consequently, at frequencies higher than a certain

threshold, the average distributed inductance of the loop becomes lower, creating a strong

impedance discontinuity. This effect is quantified in Fig. 7.6, by the S-parameters per-

taining to differential and common modes. A 10 dB common-mode rejection is observed

for frequencies higher than 4.5 GHz, while no significant mismatch is experienced by the

differential mode from 2 to 6 GHz.

Since the active input impedance of a connected dipole element typically exhibits high

values (350 Ω), the loop can be used to implement an impedance transformation for the

differential mode. To this aim, a two-section transformer from 350 to 100 Ω has been

implemented. The total length of the loop corresponds to a quarter wavelength in the

dielectric at 3.5 GHz. Two inverters have been added to compensate for the slightly

different radius of the inner and outer conductors within the loop, thereby reducing the
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Figure 7.6: S-parameters of the loop transformer pertaining to (a) differential mode and (b) common
mode.

Figure 7.7: (a) Array element with the inclusion of the loop-shaped transformer in the feeding lines and
(b) X-pol performance.

spurious radiation of the loop when a differential input is applied.

Figure 7.7 shows the X-pol levels of an array of connected dipoles including the loop-shaped

feeding structure of Fig. 7.5. By comparing Fig. 7.7(b) with Fig. 7.4(c) it is evident that,

when the common-mode rejection loop is used, the degradation of polarization performance

introduced by the vertical lines is strongly mitigated over the bandwidth of interest. In

fact, the X-pol ratio becomes lower than −17 dB over the band of operation.
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Figure 7.8: X-pol level of the element in Fig. 6.19(a) for θ = 45◦, as a function of the azimuthal angle ϕ

and for different frequencies.

Although the cross polarization maintains low levels for this particular observation angle,

the element in Fig. 7.7(a) is not symmetric with respect to the (z-y) plane, due to the

presence of the loop. For this reason the X-pol can be different in the two diagonal planes

(ϕ = 45◦ and ϕ = 135◦). To highlight this effect, Fig. 7.8 shows the X-pol level for

maximum elevation angle θ = 45◦ as a function of the azimuth ϕ. The maximum value of

X-pol is in the proximity of the diagonal planes ϕ = ±135◦ and it is approximately −13 dB

in the worst case (at 3 GHz) and about −15 dB for all other frequencies in the operational

band.

The previous results pertain to a differential excitation located at the ground plane level.

A more realistic coaxial feed requires the inclusion of a transition from CPS to microstrip

line. To this purpose, a sleeve balun has been designed, and a tapered line to reach 50 Ω

impedance has been included. The geometry of the array unit cell and dimensions of the

balun are shown in Fig. 7.9(a). The resulting performance of the overall structure are

presented in Figs. 7.9(b) and (c), which show the active VSWR for broadside and for

θ = 45◦ in the main planes (normalized to 50 Ω impedance line), and the X-pol ratio for

observation at θ = 45◦ in several azimuthal planes. A VSWR lower than 2.4 is achieved

over 50% relative bandwidth. The polarization bandwidth is limited by the band of the

balun. The cross-pol level achieved by this configuration is at least 13 dB lower than the

co-polar component over a 30% bandwidth.
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Figure 7.9: Performance of the loop when included in the unit cell of a linearly polarized connected dipole
array: (a) array unit cell with dimensions of the balun; (b) active VSWR for for broadside and for θ =
45◦ in the main planes (50Ω impedance); (c) X-pol level for observation at θ = 45◦ and several azimuth
angles.

7.3 Prototype Array: Measurements

Based on the design described in the previous section, a 7 × 7 prototype array has been

manufactured. The array is singly polarized and consists of 7 vertically arranged PCBs

like the one shown in Fig. 7.10. The external arms of the two dipoles at the edges include

8 series resistors with increasing values of resistance (from 10 to 400 Ω). This ensures that

the surface current gradually decreases to zero close to the edges, to limit truncation effects.

Edge effects in arrays of connected dipoles can be remarkably strong, due to the electrical

connection between the element that supports guided waves along the array. However,
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Figure 7.10: Printed boards of the prototype array.

Figure 7.11: 7 × 7 prototype array with dimensions.

Figure 7.12: Discrete ground plane made by a wire grid.

these effects were investigated in detail in Chapter 5 and can be controlled by means of

ad-hoc designs based on high-impedance elements.

The entire array is shown in Fig. 7.11, assembled with a mechanical support structure.
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Figure 7.13: Measured active VSWR of the central element of the array: curves are shown for broadside
radiation and scanning to 45◦ in the E- and H-plane.

7.3.1 Practical Implementation of the Backing Reflector

A particularly complicate manufacturing aspect is associated with the practical imple-

mentation of the backing reflector. In fact, a continuous metallic plane has to be placed

horizontally and intersect the entire set of PCBs. The problem was solved by replacing

the continuous plane with a discrete grid composed by wires. Simulation results showed

only minor changes to the behavior of the array, as long as the distance between wires does

not exceed λ/10 at the highest frequency of operation. Since there is no necessity for the

set of wires along x and the one along y to be in electrical contact, this solution simplify

the assembling of the antenna by avoiding the need for soldering. A close-up of the grid is

shown in Fig. 7.12.

7.3.2 Measured Results

The measured active VSWR is shown in Fig. 7.13 for the central element of the arrays. The

active parameters are evaluated via a post-processing summation of the passive measured

S-parameters with opportune weights for the elements to account for scanning. Curves are

shown for broadside radiation and for scanning to 45◦ in the E- and H-plane. Although

some oscillations around the expected values can be observed, the measured results are in

good agreement with the predictions presented in Fig. 7.9(b). Good matching performance

is achieved for broadside radiation, for which a VSWR better than 2.5 is observed over the

entre bandwidth of operation (3 to 5 GHz). The matching worsens for scanning, for which

edge effects are more important. However, values of VSWR lower than 2.5 are observed
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Figure 7.14: Measured normalized active element patterns in the E-plane for four frequencies: (a) 3.2 GHz,
(b) 3.5 GHz, (c) 3.8 GHz, (d) 4.2 GHz. Active element patterns obtained with infinite-array simulations
are also plotted.

on most of the operational band.

The measured normalized active element patterns in the E-, H- and D-planes are shown

in Figs. 7.14, 7.15 and 7.16. Both co-polar and cross-polar components are presented

for four frequencies within the design band. The active element patterns obtained with

infinite-array simulations are also plotted for observations within a scan volume of ±50◦.

The infinite-array simulations predict lower X-pol levels in the main planes with respect

to measured results. Differences are mainly due to finiteness effects and non-ideality of the
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Figure 7.15: Measured normalized active element patterns in the H-plane for four frequencies: (a) 3.2 GHz,
(b) 3.5 GHz, (c) 3.8 GHz, (d) 4.2 GHz. Active element patterns obtained with infinite-array simulations
are also plotted.

measurements.

The aim of the design was the realization of an array with good polarization purity. Figure

7.17 presents the X-pol levels as a function of theta and for all the frequencies in the band

from 3 to 5 GHz. The scan volume ±45◦ and the frequency range of about 30% (from 3.15

to 4.25 GHz) are highlighted by a white frame. Within these values, the normalized X-pol

patterns are below -12 dB. A comparison between simulated and measured X-pol level for

observation at θ = 45◦ in the diagonal plane is presented in Fig. 7.18. The measured
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Figure 7.16: Measured normalized active element patterns in the D-plane for four frequencies: (a) 3.2 GHz,
(b) 3.5 GHz, (c) 3.8 GHz, (d) 4.2 GHz. Active element patterns obtained with infinite-array simulations
are also plotted.

values oscillate around the expected ones and are lower than −12 dB over about a 30%

bandwidth.

The configuration used for the measurements is schematically presented in Figs. 7.19 and

7.20. The θ̂ and ϕ̂ unit vectors coincide with the co-polar and cross-polar components for

observation in the main planes. Different is the case of the diagonal planes, for which we

first measured the θ and ϕ components of the field, as shown in Fig. 7.20(b). A convenient

rotation of the reference system is considered so that the dipoles are oriented along the
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Figure 7.17: X-pol level as a function of the elevation angle θ and the frequency for (a) E-plane, (b)
H-plane and (c) D-plane.

y′-axis. The measurement data are then used to evaluate the co-polar and cross-polar

components according to the third definition of Ludwig (L3), which is given by

îco = sin ϕ′ θ̂′ + cos ϕ′ ϕ̂′ (7.2)

îcross = cos ϕ′ θ̂′ − sin ϕ′ ϕ̂′. (7.3)
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Figure 7.18: Comparison between simulated and measured X-pol level for scanning to 45◦ in the diagonal
plane.

An equivalent procedure can be adopted to evaluate the L3-components in a direct way by

rotating also the transmitting horn of 45◦, as displayed in Fig. 7.21.

(a) (b)

Figure 7.19: Configuration and coordinate reference system considered for the measurement of the radiation
patterns in (a) the E-plane and (b) the H-plane.
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(a) (b)

Figure 7.20: Configuration and coordinate reference system considered for the measurement of θ and ϕ

components of the radiation patterns in the D-plane: (a) initial and (b) rotated coordinate reference
system.

Figure 7.21: Configuration and coordinate reference system considered for the measurement of co-polar
and cross-polar components of the radiation patterns in the D-plane (according to the third definition of
Ludwig [9]).

7.4 Conclusions

A wideband, wide-scan angle array of connected dipoles has been designed and fabricated.

Measured results from a 7 × 7 prototype demonstrator have been presented for experimen-
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tal validation. To avoid common-mode resonances that typically affect this type of arrays,

loop-shaped transformers are included in the feed network. The common-mode rejection

implemented by these transformers allows to maintain the cross-polarization levels to low

values over about 30% relative bandwidth, for elevation angle up to 45◦ in all azimuth

planes. The measured results are in good agreement with expectation based on infinite

array analysis.

The proposed feed structure is believed to be an efficient practical way to implement the

matching network of a connected array, as valid solution to common-mode resonances.

The loop-shaped feeding structure is based on PCB technology, to limit the costs and the

complexity, without resorting to active component or to Monolithic Microwave Integrated

Circuit (MMIC) technology.

The realization of the ground plane was shown to be a critical aspect of the manufacturing.

The problem was solved by replacing the continuous plane with a discrete grid composed of

wires. The goodness of the results validates this method for ground plane implementation.

The array can keep low polarization levels (<-12 dB) of a volume of 45◦ and a band of

30%. These results are believed to be among the best reported for wideband wide-scanning

applications without penalty in polarization efficiency and with spacing kept at about 0.45 λ

at the higher frequency of operation.
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Chapter 8

Conclusions and Recommendations

This dissertation described the research work carried out over a period of four years (from

September 2007 to August 2011) at TNO Defence, Security and Safety, in The Hague,

Netherlands.

The project dealt with theoretical and practical aspects of connected array antennas, cov-

ering both analysis and design. The topic treated is nowadays of particular interest in the

field of wideband arrays, because this antenna solution is able to simultaneously achieve

broad bandwidth and low cross polarization.

Connected arrays are believed to have an enormous potential for several applications and

future developments, for both their advantageous physical properties and their effective

analytical mathematical representation.

In this chapter, we summarize the conclusions and the most significant results of the

research.

8.1 Analytical Description of Connected Arrays

The thesis extended the theoretical formulation, based on Green’s functions (GF), previ-

ously developed in [32, 36, 37]. These works reported the derivation of the GF of trans-

mitting connected array of unloaded slots. In the present research, the formulation was

generalized to the case of array of connected dipoles, both in transmit and receive mode,

and including the presence of loads.

From the described procedure, analytical expressions were derived for the main antenna

parameters, such as the input impedance, the current distribution over the array and the

radiation patterns. The main benefit is that the description of the properties of the arrays

is fully analytical, and thus involves essentially no computational cost. This constitutes a
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crucial advantage with respect to most other types of antenna arrays, for which numerical

solutions are required for the modelling, with increased computational load. Another

important advantage with respect to numerical solutions is that the analytical expressions

can be expanded in several terms, each with a well-defined physical meaning. This results

in a gain in physical insight on the wave phenomena.

8.2 Connected Dipoles Versus Connected Slots

From the rigorous GF formulation, a comparison was made between the connected arrays

of dipoles and slots. The arrays were assumed to be backed by a ground plane and their

performance was investigated for wide-scan coverage.

Similar bandwidth performance can be achieved for broadside radiation in the two cases.

However, for the array of slots, leaky poles can be excited in the structure when scanning.

Such poles are not present in the dual structure composed of dipoles, for which the disper-

sion equation highlights only the presence of TEM microstrip-like poles. As a consequence,

differences in performance appear when scanning is accounted for.

The study also revealed that the reactive energy localized in the feeding gaps of the con-

nected dipoles can be tuned to achieve broad band matching, independently on the scan

angle. A similar effect is not present in the slot case, where the reactive energy associated

with size of the feed gap is modelled as a series inductance. As such, it does not affect the

real part of the impedance and cannot be used to improve bandwidth performance when

scanning.

Finally, we presented a connected array of dipoles with 40% bandwidth, when scanning

in elevation to 45o. The band is defined has the frequency range within which the array

shows an active S11 lower than -10 dB when pointing at broadside and at 45o in the E-

and H-planes.

8.3 Equivalent Circuit Representation

A convenient circuit representation was derived in Chapter 4. The circuit describes rigor-

ously and analytically the transition between free-space radiation and guiding transmission

line. The equivalent network is valid for periodically excited, infinite connected arrays.

Contrarily to standard Thévenin circuit for receiving antennas, this representation can be

used to evaluate the power scattered by the antenna.

The circuit provides the same quantitative information of full-wave numerical simulations,
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but is ‘computationally free’ and gives much more physical insight. This is because each

component is associated with a specific wave mechanism.

• A set of four transmission lines accounts for the transverse electric (TE) and magnetic

(TM) field components radiated by the array in the upper and lower half spaces.

These transmission lines can also include the presence of dielectric stratifications

and/or frequency selective surfaces and/or backing reflector.

• Two transformers weight the TE and TM equivalent transmission line, to obtain the

total (TE + TM) average magnetic field in the entire cell at the array plane. The

projection of this magnetic field onto the feed gap provides the electric currents at

the dipole terminals. This projection is represented via another transformer.

• The reactive field in the vicinity of the array is described by means of two lumped

reactive loads, associated with the capacitance of the gap and the self-inductance of

the dipole.

Moreover, the results have been applied to the analysis of the scattering and absorption of a

connected dipole array prototype. The array is backed by the combination of a continuous

metallic plane and a frequency selective backing reflector, for dual-band operation. Com-

parisons between measured and equivalent-network based simulations showed outstanding

agreement. The Radar Cross section (RCS) measurements in the main planes were used

to characterize the active matching of the radiating part of the antenna in transmission.

This measurement technique has the advantage to be simple and cost-effective, since the

antenna can be characterized without the inclusion of the complicate and expensive feed

network. The method is useful when one wants to separate the characterization of the

antenna from the spurious radiation from the feed lines.

8.4 Finite Connected Arrays

Finiteness effects in connected arrays were characterized. These effects can be particularly

severe in connected arrays, due to electrical connection and the high mutual coupling

between the elements.

First, we presented an efficient numerical procedure that requires only one unknown per el-

ementary cell, independently from the cell geometrical parameters. This is possible thanks

to the use of an appropriate connected array GF in the integral equation. This procedure

is of general applicability and can be used for arrays with and without backing reflectors
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and for arbitrary scan angles. The numerical cost of the analysis is only the inversion

of a matrix of dimension Nx × Nx, where Nx is the number of feed points in the array

along the longitudinal direction. Such a numerical procedure is particularly convenient

when the performance of the array for wide-angle scanning needs to be assessed in advance

of measurements or full-wave, all inclusive, numerical simulations, or in an optimization

phase.

Moreover, an analytical approximation of the spatial current distribution on the finite array

was derived, for the specific case of a connected array of dipoles operating in free space,

and scanning only in the E-plane. The key step is to represent the total current as sum of

the infinite-array contribution and edge-born waves. Some simplifications can be adopted

for the edge term that would otherwise be unreasonable. The final analytical expression is

given in terms of Fresnel functions. Important potentials remain for the extension of the

analytical formulation to more general cases. In particular, the generalization for arrays

with backing reflector and for general oblique scanning, although more complicate to be

treated analytically, are believed to be of particular interest for future developments.

One important finding of the study for practical array designs is that the edge waves

propagation strongly depends on the load impedance. More specifically, the intensity of

the edge waves is more important for low source/load impedances. High impedances in the

order of 400 Ω imply reduced edge-born effects in connected arrays with a backing reflector.

8.5 Practical Design of a Connected Array

The theoretical formulation was entirely based on idealized delta-gap sources as excitation

of the dipole element. Issues related to the implementation of the more realistic feed

network were also discussed. Two effective solutions were proposed and validated with

full-wave simulations. Both feed structures are based on Printed Circuit Board (PCB)

technology, to limit the costs and the complexity, without resorting to active component

or to Monolithic Microwave Integrated Circuit (MMIC) technology.

First, an aperture-coupling-based transformer was designed, which acts as a common-mode

rejection circuit. To guarantee the effectiveness of this component, the periodic cell was

split into two or more subcells along the longitudinal direction. Infinite-array simulations

showed the capability of the transformer to lower the X-pol levels. However, the efficiency

of this solution decreases when the E-plane is scanned, since the contributions from the

subcells do not sum up with coherent phases.

Another practical way to design the feed network of a connected array involved the inclusion
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of a common-mode rejection loop. Simulated results showed common-mode rejection better

than 10 dB over a bandwidth exceeding one octave. The inclusion of the loop component

into the feed lines of a connected array of dipoles has also been investigated. The design

of a linearly polarized and a doubly polarized array was presented. This latter was shown

to operate over 35% relative bandwidth when scanning up to 45◦, with X-pol levels below

−18.5 dB within the entire scan volume.

Measured results from a 7 × 7 prototype demonstrator were presented for experimental

validation of the loop-shaped transformer. The array exhibits good matching (VSWR<2.5)

over a band 3 to 5 GHz. The array exhibits low polarization levels (<-12 dB) in a volume of

45◦ and a band of 30%. The measured results are in good agreement with expectation based

on infinite array analysis. These results are believed to be remarkable for a wideband wide-

scanning array without penalty in polarization efficiency and with spacing kept at about

0.45 λ at the higher frequency of operation.

8.6 Outlook

Connected arrays are characterized by wideband operation. In particular, a dipole array

in the presence of a backing reflector can be matched over a 50% bandwidth within a

±45◦ scan volume. However, the performance in practical designs is limited by the feed

structure rather than by the radiating elements themselves. The combination of the dipole

element and the balun proposed in this research was shown to achieve good matching and

polarization purity over a bandwidth of about 30%. To improve the performance of the

overall array, feeding structures with wider operational bandwidths need to be developed.

This is the object of an ongoing joint project between TNO and University of Ancona,

Italy.

The prototype connected array described in Chapter 7 is composed by vertically arranged

printed circuit boards (PCBs) that have to be assembled together by means of an additional

mechanical support. The backing reflector was realized by a discrete wire grid to avoid

soldering. A more practical fabrication would result from a fully planar implementation

of the array. In that case, the feeding lines have to be realized by vertical pins or vias

instead of coplanar strip lines. The current limit for the planar realization is the maximum

processable aspect ratio of the pins by the PCB manufacturers. In fact, pins with very high

length-to-diameter ratios are needed to reach the level of the backing reflector. However,

novel technologies are being developed by several companies that allow the realization of

higher length-to-diameter ratios for pins or vias. This would allow a completely planar
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realization with a single multi-layered PCB.

From an analytical point of view, an interesting extension of the theoretical models is the

generalization of the analysis of connected arrays for different types of excitation. In the

present research, we only considered idealized differential sources for the transmission case

and plane-wave incidence for reception. The properties of the array can be characterized

for more general excitations; e.g. a generalized delta-gap source that accounts for both

differential and common mode, or incident Gaussian or Airy beams if the array is placed

in the focal plane of a quasi-optical system.

8.7 Impact of the Research

The work described in this thesis has led to a number of journal and conference publications

(listed on p. 187 of this dissertation). Furthermore, the research developed within this

work has had an important role at TNO, Defense, Security and Safety in the framework

of the following projects.

• Advanced Antenna Concepts for Aircraft in Flight Entertainment (ACTiFE) [105,

106]: this activity is supported by the European Space Agency, contracts no. C19865

and 4000101757.

• Merging Electronics and Micro&nano-PHotonics in Integrated Systems (MEMPHIS)

[107]: this project is supported by the Dutch ministry of Economic Affairs and the

Dutch ministry of Education, Culture and Science through the Smart Mix program.

• TNO Radar Program: this program aims at developing novel radar concepts and

technologies for scalable front ends; it is supported by the Dutch ministry of Defence

[4, 108].

• Integrated Technology Mast Systems (ITMS): this work is supported by TNO and

by the Dutch ministry of Defense [109].

In the framework of these projects, one international patent has been granted and four

prototype antennas have been manufactured. Moreover, the work described in Chapter 3

was awarded with the Best Innovative Paper Prize at the 30th ESA Workshop on Antennas

for Earth Observation, Science, Telecommunication and Navigation Space Missions, in

Noordwijk, Netherlands.



Appendix A

Spectral Green’s Functions of

Plane-Stratified Media

The aim of this appendix is to derive the spectral representation of the dyadic Green’s

function (GF) in planar stratified media, following the formalism described in [39,110]. The

formulation is general and may be applied to any arbitrary region uniform along the planes

transverse to the direction of stratification. The uniformity along the transversal directions

suggests to resort to a spectral representation of the electromagnetic field by means of plane

waves. The representation allows to link the electromagnetic field in the stratified media

to arbitrarily oriented electric or magnetic currents. Moreover, two examples will be given

that are of interest for the analysis of connected arrays: an elementary electric source in

free space and in the presence of a backing reflector.

A.1 Electromagnetic Field in Terms of z-Directed Vec-

tor Potentials

The electromagnetic field can be expressed as function of auxiliary vector potentials A

(magnetic) and F (electric) as follows:

E = −jkζ

(
A +

1

k2
∇∇ ·A

)
−∇× F

H = −j
k

ζ

(
F +

1

k2
∇∇ · F

)
+ ∇×A

(A.1)

where ζ =
√

µ/ε is the impedance of the medium and k2 = ω2µε, with ω being the angular
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frequency. Although omitted for lightness of notation, the fields and the vector potentials

in (A.1) are functions of the position in space r = xx̂ + yŷ + zẑ. A and F satisfy the

equations

∇2A + k2A = −J

∇2F + k2F = −M .
(A.2)

Since the selection of the vector potentials is arbitrary, for structures that exhibit a cylin-

drical symmetry (invariant along ρ = xx̂ + yŷ), also when stratified in z, one convenient

choice to scalarize the problem is taking A and F along z, i.e. A = Azẑ, F = Fzẑ. If we

assume that the sources have no component along z, the potentials satisfy the homogenous

scalar wave equations

∇2Az + k2Az = 0

∇2Fz + k2Fz = 0.
(A.3)

With the above choice of the wave potentials, the fields in (A.1) are given by

E = −jkζ

(
Azẑ +

1

k2
∇∂zAz

)
−∇× Fzẑ

H = −j
k

ζ

(
Fzẑ +

1

k2
∇∂zFz

)
+ ∇× Azẑ.

(A.4)

Representing ∇ as ∇t + ∂zẑ, the fields can be also written as

E = −jkζ

[(
1 +

1

k2
∂2

z

)
Azẑ +

1

k2
∇t∂zAz

]
−∇t × Fzẑ

H = −j
k

ζ

[(
1 +

1

k2
∂2

z

)
Fzẑ +

1

k2
∇t∂zFz

]
+ ∇t × Azẑ.

(A.5)

The above expressions allow us to decompose the fields into transverse electric (TE) and

transverse magnetic (TM) components with respect to z:

E = ETM + ETE

H = HTM + HTE.
(A.6)

The TM fields are the ones due to Az, while the TE fields are the ones associated with Fz:
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ETM = −jkζ

[(
1 +

1

k2
∂2

z

)
Azẑ +

1

k2
∇t∂zAz

]

ETE = −∇t × Fzẑ

HTM = ∇t × Azẑ

HTE = −j
k

ζ

[(
1 +

1

k2
∂2

z

)
Fzẑ +

1

k2
∇t∂zFz

]
.

(A.7)

The boundary conditions to be satisfied by these equations depend on the particular prob-

lem. For stratified regions, the solution is obtained by imposing the continuity of the

tangential fields at the interfaces.

A.2 TE-TM Transmission Lines in Unbounded (x, y)-

Domains

Let us represent the wave potentials in terms of their Fourier transforms with respect to

the variables x and y:

Az
Fz

(x, y, z) =
1

4π2

∞∫

−∞

∞∫

−∞

ITM
VTE

(kx, ky, z)e−j(kxx+kyy)dkxdky (A.8)

or, more synthetically,

Az
Fz

(ρ, z) =
1

4π2

∞∫

−∞

∞∫

−∞

ITM
VTE

(kρ, z)e−jkρ·ρdkρ (A.9)

where kρ = kxx̂ + kyŷ and ρ = xx̂ + yŷ.

Since the potentials Az and Fz satisfy the homogenous wave equations (A.3), it follows

that ITM and VTE satisfy the z-transmission-line equations

(∇2
t + ∂2

z

)
Az + k2Az = 0

Fourier T.−−−−−→ ∂2
zITM + k2

zITM = 0
(∇2

t + ∂2
z

)
Fz + k2Fz = 0

Fourier T.−−−−−→ ∂2
zVTE + k2

zVTE = 0.
(A.10)

In the last equation, we exploited the property ∇t
Fourier T.−−−−−→ −jkρ, which implies that

∇2
t

Fourier T.−−−−−→ −k2
ρ, and we defined kz =

√
k2 − k2

ρ (Im{kz} < 0).
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Introducing the Fourier spectra of the fields

E
H

(ρ, z) =
1

4π2

∞∫

−∞

∞∫

−∞

Ẽ
H̃

(kρ, z)e−jkρ·ρdkρ (A.11)

we can rewrite Eqs. (A.5) and (A.7) in the spectral domain as follows:

Ẽ = −jkζ

[(
1 +

1

k2
∂2

z

)
ITM ẑ − j

kρ

k2
∂zITM

]
+ jkρ × VTEẑ

H̃ = −j
k

ζ

[(
1 +

1

k2
∂2

z

)
VTEẑ − j

kρ

k2
∂zVTE

]
− jkρ × ITM ẑ

(A.12)

with

ẼTM = −jkζ

[(
1 +

1

k2
∂2

z

)
ITM ẑ − j

kρ

k2
∂zITM

]

ẼTE = jkρ × VTEẑ

H̃TM = −jkρ × ITM ẑ

H̃TE = −j
k

ζ

[(
1 +

1

k2
∂2

z

)
VTEẑ − j

kρ

k2
∂zVTE

]
.

(A.13)

The quantities ITM and VTE are solutions of the transmission-line equations (A.10). Thus,

we can write

ẼTM = jζ
kz

k
ITMkρ − jζ

k2
ρ

k
ITM ẑ

ẼTE = jkρ × VTEẑ

H̃TM = −jkρ × ITM ẑ

H̃TE = j
1

ζ

kz

k
VTEkρ − j

1

ζ

k2
ρ

k
VTEẑ

(A.14)

where we used the equalities ∂zITM = −jkzITM and ∂zVTE = −jkzVTE. These arise from

the hypothesis that only one travelling progressive wave exists for both z > 0 and z < 0.

We can define now the following quantities:

VTM = ζ
kz

k
ITM

ITE =
1

ζ

kz

k
VTE

(A.15)
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Figure A.1: Equivalent z-transmission lines pertaining to TE and TM modes for a source placed in the
(x, y)-plane in free space.

so that (VTE, ITE) and (VTM , ITM) are the voltage and current solutions in two equivalent

transmission lines along z (z-tx line) associated with TM and TE modes, respectively.

These transmission lines are depicted in Fig. A.1 and their characteristic impedances are

given by:

ZTM
0 = ζ

kz

k

ZTE
0 = ζ

k

kz

.
(A.16)

The expressions of the spectral fields in Eqs. (A.14) become

ẼTM = jVTMkρ − jζ
k2

ρ

k
ITM ẑ

ẼTE = jkρ × VTEẑ

H̃TM = −jkρ × ITM ẑ

H̃TE = jITEkρ − j
1

ζ

k2
ρ

k
VTEẑ.

(A.17)

Let us now introduce the unit vectors α̂ and k̂ρ, that are the spectral counterpart of the

spatial unit vectors ϕ̂ and ρ̂, respectively, according to the cylindrical coordinate system

in Fig. A.2:



152 A. Spectral Green’s Functions of Plane-Stratified Media

Figure A.2: Cylindrical right-hand coordinate system.

k̂ρ =
kρ

kρ

=
kxx̂ + kyŷ√

k2
x + k2

y

α̂ = ẑ × k̂ρ =
kxŷ − kyx̂√

k2
x + k2

y

.

(A.18)

With the above notation, Eqs. (A.17) can be written as

ẼTM = jkρVTM k̂ρ − jζ
k2

ρ

k
ITM ẑ

ẼTE = −jkρVTEα̂

H̃TM = jkρITMα̂

H̃TE = jkρITEk̂ρ − j
1

ζ

k2
ρ

k
VTEẑ.

(A.19)

A.3 Spectral Green’s Function for Electric Source

A.3.1 (x, y)-Oriented Electric Source

Let us assume that the source is an electric current localized at z = 0:

J(x, y, 0) = δ(x, y)p̂ (A.20)

where p̂ = pxx̂ + pyŷ is a space independent unit vector that defines the orientation of

the elementary dipole in the (x, y)-plane, as shown in Fig. A.3. The continuity of the

tangential fields at the plane where the source is located leads to
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Figure A.3: (x, y)-oriented electric source placed in the origin.

ẑ × (
H(x, y, 0+)−H(x, y, 0−)

)
= δ(x, y)p̂ (A.21)

ẑ × (
E(x, y, 0+)−E(x, y, 0−)

)
= 0. (A.22)

The tangential electric field is continuous everywhere, while the tangential magnetic field

has a space impulsive discontinuity in the origin.

By using the Fourier representation of the δ-function:

δ(x, y) =
1

4π2

∞∫

−∞

∞∫

−∞

e−j(kxx+kyy)dkxdky (A.23)

we can write the continuity conditions for the tangential magnetic field in the spectral

domain, projected onto the unit vectors α̂ and k̂ρ:

ẑ ×
(
H̃TM(kρ, 0

+)− H̃TM(kρ, 0
−)

)
· k̂ρ = p̂ · k̂ρ

ẑ ×
(
H̃TE(kρ, 0

+)− H̃TE(kρ, 0
−)

)
· α̂ = p̂ · α̂.

(A.24)

Using Eqs. (A.19), one can write

−jkρ

(
IJ
TM(kρ, 0

+)− IJ
TM(kρ, 0

−)
)

= p̂ · k̂ρ

jkρ

(
IJ
TE(kρ, 0

+)− IJ
TE(kρ, 0

−)
)

= p̂ · α̂
(A.25)

where the subscript J indicates that the source is an electric current. Equations (A.25)

state that the spectral currents IJ
TE and IJ

TM exhibit a discontinuity in the origin equal to

IJ
TM,g =

p̂ · k̂ρ

−jkρ

IJ
TE,g =

p̂ · α̂
jkρ

.

(A.26)
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(a) (b)

Figure A.4: Equivalent z-transmission lines pertaining to TE and TM modes for a dipole placed in the
(x, y)-plane in free space: (a) not normalized and (b) normalized equivalent generators.

These generators are placed in parallel to the transmission lines as in Fig. A.4(a), due to

the continuity of the voltages V J
TE and V J

TM in the origin (derived from the spectral version

of Eq. (A.22)). The voltage and the current on the transmission line can be normalized

by the amplitude of the generators to obtain equivalent transmission lines fed by unit

generators (Fig. A.4(b)):

vJ
TE =

V J
TE

IJ
TE,g

= jkρ
V J

TE

p̂ · α̂ iJTE =
IJ
TE

IJ
TE,g

= jkρ
IJ
TE

p̂ · α̂

vJ
TM =

V J
TM

IJ
TM,g

= −jkρ
V J

TM

p̂ · k̂ρ

iJTM =
IJ
TM

IJ
TM,g

= −jkρ
IJ
TM

p̂ · k̂ρ

.

(A.27)

By substituting (A.27) in (A.19), we obtain

Ẽ = ẼTE + ẼTM =

(
−k̂ρk̂ρv

J
TM − α̂α̂vJ

TE + ζ
kρ

k
iJTM ẑk̂ρ

)

︸ ︷︷ ︸
GEJ (kx,ky ,z)

·p̂

H̃ = H̃TE + H̃TM =

(
−α̂k̂ρi

J
TM + k̂ρα̂iJTE −

kρ

ζk
vJ

TEẑα̂

)

︸ ︷︷ ︸
GHJ (kx,ky ,z)

·p̂
(A.28)
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Figure A.5: z-oriented electric source placed at z = z′.

where we introduced the spectral domain dyadic Green’s functions (GFs). By performing

the dyadic products, the GFs can be written in explicit matrix from as follows:

GEJ(kx, ky, z) =




GEJ
xx GEJ

xy GEJ
xz

GEJ
yx GEJ

yy GEJ
yz

GEJ
zx GEJ

zy GEJ
zz


 =



−vJ

TMk2
x+vJ

TEk2
y

k2
ρ

(vJ
TE−vJ

TM )kxky

k2
ρ

0
(vJ

TE−vJ
TM )kxky

k2
ρ

−vJ
TEk2

x+vJ
TMk2

y

k2
ρ

0
ζkx

k
iJTM

ζky

k
iJTM 0




GHJ(kx, ky, z) =




GHJ
xx GHJ

xy GHJ
xz

GHJ
yx GHJ

yy GHJ
yz

GHJ
zx GHJ

zy GHJ
zz


 =




(iJTM−iJTE)kxky

k2
ρ

iJTEk2
x+iJTMk2

y

k2
ρ

0

− iJTMk2
x+iJTEk2

y

k2
ρ

(iJTE−iJTM )kxky

k2
ρ

0
ky

ζk
vJ

TE −kx

ζk
vJ

TE 0


 .

(A.29)

The expressions (A.29) are valid only for sources without any vertical component. The

extension to sources oriented along z is given in next section.

A.3.2 z-Oriented Electric Source

When a vertical electric source is placed at z = z′ as shown in Fig. A.5, the potentials Az

and Fz satisfy the following equations:

∇2Az + k2Az = −δ(x, y, z − z′)

∇2Fz + k2Fz = 0
(A.30)

or, in the spectral domain,

∂2
zI

Jz
TM + k2

zI
Jz
TM = −δ(z − z′)

∂2
zV

Jz
TE + k2

zV
Jz
TE = 0.

(A.31)

Using these expressions and and defining V Jz
TM = j ζ

k
∂zI

Jz
TM , IJz

TE = j/ 1
ζk

∂zV
Jz
TE, the spectral

fields in Eqs. (A.12) can be written as:
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Ẽ = −j
ζ

k

(
k2

ρI
Jz
TM − δ(z − z′)

)
ẑ + jkρV

Jz
TM k̂ρ − jkρV

Jz
TEα̂

H̃ = −j
k2

ρ

kζ
V Jz

TEẑ + jkρI
Jz
TEk̂ρ + jkρI

Jz
TMα̂.

(A.32)

Since vertical electric sources radiate only TM components, the spectral fields reduce to

ẼTM = −j
ζ

k

(
k2

ρI
Jz
TM − δ(z − z′)

)
ẑ + jkρV

Jz
TM k̂ρ

H̃TM = jkρI
Jz
TMα̂.

(A.33)

To impose the boundary conditions of the tangential electromagnetic field at the interface

z = z′, we can replace the longitudinal electric source J with an equivalent transverse

magnetic source:

M e =
1

jωε
ẑ ×∇t(J · ẑ). (A.34)

Continuity conditions can be then imposed on the tangential components of the total

electric and magnetic field as follows:

ẑ × (
H(x, y, z = z′+)−H(x, y, z = z′−)

)
= 0 (A.35)

ẑ × (
E(x, y, z = z′+)−E(x, y, z = z′−)

)
= −M e. (A.36)

In the spectral domain, using (ωε)−1 = ζ/k and ∇t
Fourier T.−−−−−→ −jkρ, one obtains the

following expression for the equivalent magnetic source:

M̃ e =
−ζ

jk
jẑ × kρδ(z − z′) =

−ζkρ

k
δ(z − z′)α̂. (A.37)

The continuity is then expressed as follows:

jkρẑ × α̂
(
IJz
TM(kρ, z = z′+)− IJz

TM(kρ, z = z′−)
)

= 0 (A.38)

jkρẑ × k̂ρ

(
V Jz

TM(kρ, z = z′+)− V Jz
TM(kρ, z = z′−)

)
=

ζkρ

k
α̂ ⇒

(
V Jz

TM(kρ, z = z′+)− V Jz
TM(kρ, z = z′−)

)
α̂ = −j

ζ

k
α̂. (A.39)
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(a) (b)

Figure A.6: Equivalent z-transmission lines for a dipole oriented along z in free space: (a) not normalized
and (b) normalized equivalent generators.

Equation (A.39) states that there is a discontinuity of the voltage at z = z′. A voltage

generator V Jz
TM,g = −j ζ

k
represents this discontinuity in the equivalent transmission line

in Fig. A.6(a). The generator is in series with respect to the transmission line, since

the current must be continuous, as clear from Eq. (A.38). Currents and voltages in the

equivalent transmission line can be normalized as in Fig. A.6(b) to obtain a unit voltage

generator: iJz
TM = IJz

TM/V Jz
TM,g, v

Jz
TM = V Jz

TM/V Jz
TM,g.

With this normalization, Eqs. (A.33) become

ẼTM =

(
−ζ

k

(
k2

ρ

ζ

k
iJz
TM − jδ(z − z′)

)
ẑẑ +

ζkρ

k
vJz

TM k̂ρẑ

)

︸ ︷︷ ︸
GEJ (kx,ky ,z)

·ẑ

H̃TM =

(
ζkρ

k
iJz
TMα̂ẑ

)

︸ ︷︷ ︸
GHJ (kx,ky ,z)

·ẑ.

(A.40)

In conclusion, the remaining element of the dyadic spectral Green’s function, due to the

electric sources along z can be written as
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GEJ(kx, ky, z) =




0 0 ζkx

k
vJz

TM

0 0 ζky

k
vJz

TM

0 0 − ζ
k

(
ζk2

ρ

k
iJz
TM − jδ(z − z′)

)




GHJ(kx, ky, z) =




0 0 − ζky

k
iJz
TM

0 0 ζkx

k
iJz
TM

0 0 0


 .

(A.41)

A.3.3 Dyadic Spectral GF of an Arbitrarily Oriented Electric

Source

Equations (A.29) and (A.41) can be combined to have expressions that are valid in the

general case of an arbitrary electric source that can be oriented along x̂, ŷ or ẑ. The

general dyadic GFs are then given by

GEJ(kx, ky, z) =




−vJ
TMk2

x+vJ
TEk2

y

k2
ρ

(vJ
TE−vJ

TM )kxky

k2
ρ

ζkx

k
vJz

TM

(vJ
TE−vJ

TM )kxky

k2
ρ

−vJ
TEk2

x+vJ
TMk2

y

k2
ρ

ζky

k
vJz

TM

ζkx

k
iJTM

ζky

k
iJTM − ζ

k

(
ζk2

ρ

k
iJz
TM − jδ(z − z′)

)


(A.42)

GHJ(kx, ky, z) =




(iJTM−iJTE)kxky

k2
ρ

iJTEk2
x+iJTMk2

y

k2
ρ

− ζky

k
iJz
TM

− iJTMk2
x+iJTEk2

y

k2
ρ

(iJTE−iJTM )kxky

k2
ρ

ζkx

k
iJz
TM

ky

ζk
vJ

TE −kx

ζk
vJ

TE 0


 . (A.43)

A.4 Spectral Green’s Function for Magnetic Source

The expressions for the spectral GFs associated with a generic magnetic source can be

derived following a procedure similar to the one that led to Eqs. (A.42) and (A.43).

A.4.1 (x, y)-Oriented Magnetic Source

Let us assume that the source is an impulsive magnetic current placed at z = 0 and oriented

along the unit vector p̂ = pxx̂ + pyŷ in the (x, y)-plane, as in Fig. A.7:

M(x, y, 0) = δ(x, y)p̂. (A.44)
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Figure A.7: (x, y)-oriented magnetic source placed in the origin.

The tangential magnetic field is continuous at the plane where the source is located, while

the tangential electric field presents a discontinuity in the origin:

ẑ × (
H(x, y, 0+)−H(x, y, 0−)

)
= 0 (A.45)

ẑ × (
E(x, y, 0+)−E(x, y, 0−)

)
= −δ(x, y)p̂. (A.46)

The continuity of the electric field in Eq. (A.46) can be also expressed in the spectral

domain and projected onto the unit vectors α̂ and k̂ρ:

ẑ ×
(
ẼTE(kρ, 0

+)− ẼTE(kρ, 0
−)

)
· k̂ρ = −p̂ · k̂ρ

ẑ ×
(
ẼTM(kρ, 0

+)− ẼTM(kρ, 0
−)

)
· α̂ = −p̂ · α̂.

(A.47)

By substituting the spectral fields with their explicit expression in (A.19), we can write

jkρ

(
V M

TE(kρ, 0
+)− V M

TE(kρ, 0
−)

)
= −p̂ · k̂ρ

jkρ

(
V M

TM(kρ, 0
+)− V M

TM(kρ, 0
−)

)
= −p̂ · α̂.

(A.48)

where the subscript M indicates that the source is a magnetic current. Thus, the spectral

voltages V M
TE and V M

TM exhibit in the origin a discontinuity represented by the following

generators:

V M
TE,g = − p̂ · k̂ρ

jkρ

V M
TM,g = − p̂ · α̂

jkρ

.

(A.49)

The generators are placed in series to the transmission lines as in Fig. A.8(a) to satisfy the

continuity of the currents IM
TE and IM

TM in the origin (derived from the spectral version of



160 A. Spectral Green’s Functions of Plane-Stratified Media

(a) (b)

Figure A.8: Equivalent z-transmission lines pertaining to TE and TM modes for a magnetic dipole placed
in the (x, y)-plane in free space: (a) not normalized and (b) normalized equivalent generators.

Eq. (A.45)). Normalizing the voltages and the currents by the amplitude of the generators,

one obtains equivalent transmission lines fed by unit generators (Fig. A.8(b)):

vM
TM =

V M
TM

V M
TM,g

= −jkρ
V M

TM

p̂ · α̂ iMTM =
IM
TM

V M
TM,g

= −jkρ
IM
TM

p̂ · α̂

vM
TE =

V M
TE

V M
TE,g

= −jkρ
V M

TE

p̂ · k̂ρ

iMTE =
IM
TE

V M
TE,g

= −jkρ
IM
TE

p̂ · k̂ρ

.

(A.50)

By substituting (A.50) in (A.19), we obtain:

Ẽ = ẼTE + ẼTM =

(
−k̂ρα̂vM

TM + α̂k̂ρv
M
TE + ζ

kρ

k
iMTM ẑα̂

)

︸ ︷︷ ︸
GEM (kx,ky,z)

·p̂

H̃ = H̃TE + H̃TM =

(
−α̂α̂iMTM − k̂ρk̂ρi

M
TE +

kρ

ζk
vM

TEẑk̂ρ

)

︸ ︷︷ ︸
GHM (kx,ky,z)

·p̂
(A.51)

By performing the dyadic products, the explicit matrix from of the GF can be written as
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Figure A.9: z-oriented magnetic source placed at z = z′.

GEM(kx, ky, z) =




GEM
xx GEM

xy GEM
xz

GEM
yx GEM

yy GEM
yz

GEM
zx GEM

zy GEM
zz


 =




(vM
TM−vM

TE)kxky

k2
ρ

−vM
TMk2

x+vM
TEk2

y

k2
ρ

0
vM

TEk2
x+vM

TMk2
y

k2
ρ

(vM
TE−vM

TM )kxky

k2
ρ

0

− ζky

k
iMTM

ζkx

k
iMTM 0




GHM(kx, ky, z) =




GHM
xx GHM

xy GHM
xz

GHM
yx GHM

yy GHM
yz

GHM
zx GHM

zy GHM
zz


 =



− iMTEk2

x+iMTMk2
y

k2
ρ

(iMTM−iMTE)kxky

k2
ρ

0
(iMTM−iMTE)kxky

k2
ρ

− iMTMk2
x+iMTEk2

y

k2
ρ

0
kx

ζk
vM

TE
ky

ζk
vM

TE 0


 .

(A.52)

A.4.2 z-Oriented Magnetic Source

When a vertical magnetic source is located at z = z′, as in Fig. A.9, the potentials are

solutions of

∇2Az + k2Az = 0

∇2Fz + k2Fz = −δ(x, y, z − z′).
(A.53)

In the spectral domain Eq. (A.53) can be written as

∂2
zI

Mz
TM + k2

zI
Mz
TM = 0

∂2
zV

Mz
TE + k2

zV
Mz
TE = −δ(z − z′).

(A.54)

Using Eq. (A.54), and noting that vertical magnetic sources radiate only TE components,

the spectral electric and magnetic fields in Eq. (A.12) can be expressed as follows:

Ẽ = −jkρV
Mz
TE α̂

H̃ = − 1

kζ

(
jk2

ρV
Mz
TE − jδ(z − z′)

)
ẑ − kρ

kζ
∂zV

Mz
TE k̂ρ.

(A.55)
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Defining IMz
TE = j 1

kζ
∂zV

Mz
TE , we can write

Ẽ = −jkρV
Mz
TE α̂

H̃ = − 1

kζ

(
jk2

ρV
Mz
TE − jδ(z − z′)

)
ẑ + jkρI

Mz
TE k̂ρ.

(A.56)

To impose boundary conditions on the tangential electromagnetic field at the interface

z = z′, we can replace the longitudinal source with an equivalent transverse electric source

J e = − 1

jωµ
ẑ ×∇t(M · ẑ) (A.57)

or, in the spectral domain,

J̃ e =
kρδ(z − z′)

kζ
α̂. (A.58)

The continuity of the fields can be imposed in the spectral domain as follows:

−jkρẑ × α̂
(
V Mz

TE (kx, ky, z = z′+)− V Mz
TE (kx, ky, z = z′−)

)
= 0 (A.59)

jkρẑ × k̂ρ

(
IMz
TE (kx, ky, z = z′+)− IMz

TE (kx, ky, z = z′−)
)

=
kρ

kζ
α̂ ⇒

(
IMz
TE (kx, ky, z = z′+)− IMz

TE (kx, ky, z = z′−)
)
α̂ = −j

1

kζ
α̂. (A.60)

The discontinuity is represented by a current generator IMz
TE,g = −j

kζ
, which is in parallel with

respect to the transmission line in Fig. A.10(a), to satisfy the continuity of the voltage in

Eq. (A.59). Currents and voltages can be normalized as in Fig. A.10(b) to obtain a unit

current generator: iMz
TE = IMz

TE /IMz
TE,g, v

Mz
TE = V Mz

TE /IMz
TE,g.

With this normalization, Eqs. (A.56) become

ẼTE =

(
− kρ

kζ
vMz

TE α̂ẑ

)

︸ ︷︷ ︸
GEM (kx,ky ,z)

·ẑ

H̃TE =

(
− 1

kζ

(
k2

ρ

kζ
vMz

TE − jδ(z − z′)
)

ẑẑ +
kρ

kζ
iMz
TE k̂ρẑ

)

︸ ︷︷ ︸
GHM (kx,ky ,z)

·ẑ.

(A.61)
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(a) (b)

Figure A.10: Equivalent z-transmission lines pertaining to TE and TM modes for a magnetic source
oriented along z in free space: (a) not normalized and (b) normalized equivalent generators.

In conclusion, the spectral dyadic Green’s function for a magnetic sources along z can be

written as

GEM(kx, ky, z) =




0 0 ky

kζ
vMz

TE

0 0 −kx

kζ
vMz

TE

0 0 0




GHM(kx, ky, z) =




0 0 kx

kζ
iMz
TE

0 0 ky

kζ
iMz
TE

0 0 − 1
kζ

(
k2

ρ

kζ
vMz

TE − jδ(z − z′)
)


 .

(A.62)

A.4.3 Dyadic Spectral GF of an Arbitrarily Oriented Magnetic

Source

Equations (A.52) and (A.62) can be combined to have expressions that are valid in the

general case of an arbitrary magnetic source. The general dyadic GFs are then given by

GEM(kx, ky, z) =




(vM
TM−vM

TE)kxky

k2
ρ

−vM
TMk2

x+vM
TEk2

y

k2
ρ

ky

kζ
vMz

TE

vM
TEk2

x+vM
TMk2

y

k2
ρ

(vM
TE−vM

TM )kxky

k2
ρ

−kx

kζ
vMz

TE

− ζky

k
iMTM

ζkx

k
iMTM 0


 (A.63)
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GHM(kx, ky, z) =




− iMTEk2
x+iMTMk2

y

k2
ρ

(iMTM−iMTE)kxky

k2
ρ

kx

kζ
iMz
TE

(iMTM−iMTE)kxky

k2
ρ

− iMTMk2
x+iMTEk2

y

k2
ρ

ky

kζ
iMz
TE

kx

ζk
vM

TE
ky

ζk
vM

TE − 1
kζ

(
k2

ρ

kζ
vMz

TE − jδ(z − z′)
)


 . (A.64)

A.5 Evaluation of GEJ
xx for a Dipole in Free Space and

with Backing Reflector

For the theoretical formulation of connected array of dipoles, it is useful to evaluate the xx

component of the dyadic electric Green’s function due to an electric source in two particular

cases of interest: delta source in free space and in the presence of a backing reflector.

A.5.1 Free Space

The generic expression of the term Gxx from the dyadic GF in Eq. (A.42) was given by

Gxx(kx, ky, z, z′) = −k2
xv

J
TM(kρ, z) + k2

yv
J
TE(kρ, z)

k2
ρ

. (A.65)

In the case of free space, the voltage and current in the transmission line in Fig. A.11(a)

are given by

vJ
TM(kρ, z) =

ZTM
0 (kρ)

2
e−jkz |z|

vJ
TE(kρ, z) =

ZTE
0 (kρ)

2
e−jkz |z|.

(A.66)

By substituting (A.16) and (A.66) in (A.65) we obtain, after few algebraic steps,

Gfs
xx(kx, ky, z, z′ = 0) = − ζ0

2k0

k2
0 − k2

x√
k2

0 − k2
x − k2

y

e−jkz |z|. (A.67)

A.5.2 Backing Reflector

If the source is located at a distance h from a metallic ground plane, the voltage and

current on the equivalent transmission line change accordingly as in Fig. A.11(b):
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(a)

(b)

Figure A.11: Equivalent z-transmission lines for a dipole orthogonal to z (a) in free space and (b) with a
backing reflector.

vJ
TM(kρ, z) =

ZTM
0 (kρ)Z

TM
sc (kρ)

ZTM
0 (kρ) + ZTM

sc (kρ

e−jkzz =
jZTM

0 (kρ) tan(kzh)

1 + j tan(kzh)
e−jkzz, for z > 0 (A.68)

and analogously

vJ
TE(kρ, z) =

jZTE
0 (kρ) tan(kzh)

1 + j tan(kzh)
e−jkzz, for z > 0. (A.69)

The substitution of (A.16) and (A.69) in the general expression of the scalar GF, after

some algebra, leads to
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Gbr
xx(kx, ky, z, z

′ = 0) = − ζ0

k0

k2
0 − k2

x√
k2

0 − k2
x − k2

y

e−jkzz

1− j cot(kzh)
. (A.70)

Noting that

1− j cot(kzh) = 1− j
cos(kzh)

sin(kzh)
= 1− j

ejkzh+e−jkzh

2
ejkzh−e−jkzh

2j

=

= 1 +
ejkzh + e−jkzh

ejkzh − e−jkzh
=

2ejkzh

ejkzh − e−jkzh
=

2

1− e−j2kzh

(A.71)

we can express the (A.70) also as

Gbr
xx(kx, ky, z, z′ = 0) = − ζ0

2k0

k2
0 − k2

x√
k2

0 − k2
x − k2

y

(1− e−j2kzh)e−jkzz. (A.72)



Appendix B

Radiation Patterns from Connected

Arrays

This appendix presents the derivation of the far-field radiation pattern from a connected

array of dipoles backed by a ground plane. Two approaches will be used: a windowing

approach, which is based on the analysis of a single periodic cell in infinite array environ-

ment; a finite array formulation, which is more accurate because it also holds for small

arrays. The far fields can be easily expressed from the spectral current distribution, which

is known in closed form for the considered geometry, as shown in Chapter 2.

B.1 Plane-Wave Spectrum Approximation of the Far

Field

If one is only interested in the far-field radiation patterns, a simple windowing approach

in both x and y directions can be used to evaluate the patterns analytically. It is known

that the electric and magnetic fields can be obtained from the vector potentials by means

of straightforward derivatives. Hence, the starting point is the derivation of the magnetic

vector potential A, which is oriented along the dipoles depicted in Fig. 2.6 (A = Axx̂).

The field radiated by a connected array of dipoles backed by a ground plane is equivalent to

the one radiated by the dipole array and its image. Thus, from its definition, the potential

in any point r can be expressed as

Ax(r) =
µ

4π

∫

Array+Image

e−jk0|r−r′|

|r − r′| jx(r
′)dr′ (B.1)
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where r′ is any point on the dipoles or their images with respect to the ground plane, and

k0 represents the propagation constant of the free space. From the image theorem, it is

known that the integration in Eq. (B.1) is the sum of the integration associated with two

planar current distributions located in z = 0 and z = −2hd and with opposite signs:

Ax(r) = Adip
x (r) + Aim

x (r) =
µ

4π

∫

Array

e−jk0|r−r′|

|r − r′| jdip
x (r′)dr′ +

µ

4π

∫

Image

e−jk0|r−r′|

|r − r′| jim
x (r′)dr′ (B.2)

with jim
x (x′, y′, z′ = −2hd) = −jdip

x (x′, y′, z′ = 0). Each of the two integrals can be trans-

formed in the spectral domain and evaluated asymptotically. Using the identity

e−jk0|r−r′|

4π|r − r′| =
1

8π2j

−∞∫

−∞

−∞∫

−∞

e−jkxx−jkyy−jkz |z−z′|

kz

dkxdky (B.3)

where kz =
√

k2
0 − k2

x − k2
y, we can write, for z > 0,

Ax(r) =
µ

8π2j

−∞∫

−∞

−∞∫

−∞

e−jkxx−jkyy−jkzz

kz

Jx(kx, ky)dkxdky−

µ

8π2j

−∞∫

−∞

−∞∫

−∞

e−jkxx−jkyy−jkz(z+2hd)

kz

Jx(kx, ky)dkxdky. (B.4)

The function Jx is the Fourier Transform of the electrical current on any of the two current

sheets (plane of the dipoles and image plane). To perform asymptotically the integral in

Eq. (B.4), it is sufficient to observe that the electric current spectra are slowly varying

functions of kx and ky in the surrounding of the saddle point (kxs = k0 sin θ cos ϕ, kys =

k0 sin θ sin ϕ, kzs = k0 cos θ), where θ and ϕ are defined with respect to x, y and |z − z′|.
Accordingly, one can approximate the integral in Eq. (B.4) as:

Ax(r) ≈ Jx(k0sinθcosϕ, k0sinθsinϕ)
µe−jk0r

4πr
(1− e−jk02hdcosθ). (B.5)
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B.2 Radiation Pattern from a Finite Connected Ar-

ray

Considering a finite array of dipoles phased along y, under the hypothesis of spatial func-

tional separability, the electric current can be expressed as

j(x′, y′) =

Ny/2∑

ny=−Ny/2

iny(x
′)jt(y

′ − nydy) (B.6)

where the transverse y-dependence is chosen to satisfy the edge singularity condition as in

Eq. (2.3).

If the different dipole elements are excited with uniform amplitude and progressive phase

shift, and the array is large enough, one can in first approximation assume the all the

dipoles present the same amplitude current distribution; that is, the electric current on

different dipoles are related by iny(x) = iny=0(x)e−jky0nydy , where ky0 = k0sinθsinϕ is the

transverse excitation law when the array is scanning toward (θ, ϕ):

j(x′, y′) ≈
Ny/2∑

ny=−Ny/2

i(x′)e−jky0nydyjt(y
′ − nydy). (B.7)

i(x′) represents the current distribution on the zeroth dipole and can be expressed as

i(x) =
1

2π

∞∫

−∞

Ve(kx)

D∞(kx)
e−jkxxdkx (B.8)

where D∞(kx) was defined in Eq. (2.31) and Eq. (A.72). In the following we will assume

that the length of the dipoles is infinite while the number of feeding points in each dipoles

are finite. The numerator Ve(kx) represents the Fourier Transform of the excitation, which,

when one assumes a finite train of δ-gap generators, becomes

Ve(kx) = V0sinc

(
kxδd

2

) Nx/2∑

nx=−Nx/2

ej(kx−kx0)nxdx (B.9)
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B.2.1 Longitudinal Windowing Approximation

The spatial electric current i(x) and consequently its spectrum I(kx) can be evaluated

according to two different levels of approximation. The strongest approximation is the one

which is routinely considered by commercial simplified software tools as Ansoft HFSS [41]:

the infinite array approximation, followed by the windowing. It consists of assuming, as

for the transverse current, that the amplitude of the excitation of each feed is uniform and

only a phase shift is impressed.

A windowing approximation corresponds to evaluate the currents on a single periodic cell

in infinite array environment and then calculate the pattern radiated by a finite number

of these cells, by multiplication for an array factor. The current distribution on an infinite

array of connected dipoles was given in Eq. (2.34) and is equal to

i(x) =
1

dx

∞∑
mx=−∞

−V0sinc
(

kxmδd

2

)

D∞(kxm)
e−jkxmx. (B.10)

The Fourier transform for a finite (Nx) of cells is then given by

Iw(kx) =

Nx
2

dx+ dx
2∫

−Nx
2

dx− dx
2

i(x)ejkxxdx =

= −V0

dx

Nx/2∑

nx=−Nx/2

nxdx+ dx
2∫

nxdx− dx
2

∞∑
mx=−∞

sinc
(

kxmδd

2

)

D∞(kxm)
e−jkxmxejkxxdx =

= −V0

dx

Nx/2∑

nx=−Nx/2

dx
2∫

− dx
2

∞∑
mx=−∞

sinc
(

kxmδd

2

)

D∞(kxm)
e−jkxm(x+nxdx)ejkx(x+nxdx)dx =

= −V0

dx

Nx/2∑

nx=−Nx/2

∞∑
mx=−∞

sinc
(

kxmδd

2

)

D∞(kxm)
ej(kx−kxm)nxdx

dx
2∫

− dx
2

ej(kx−kxm)xdx =

= −V0

dx

Nx/2∑

nx=−Nx/2

∞∑
mx=−∞

sinc
(

kxmδd

2

)

D∞(kxm)
ej(kx−kxm)nxdxdxsinc

(
(kx − kxm)dx

2

)
.

(B.11)

We can observe that
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ej(kx−kxm)nxdx = ej(kx−(kx0− 2πmx
dx

))nxdx = ej(kx−kx0)nxdxe−j2πmxnx = ej(kx−kx0)nxdx (B.12)

since mx and nx are integers. Therefore, when a windowing approximation is considered,

the current spectrum is given by

Iw(kx) = −V0

Nx/2∑

nx=−Nx/2

ej(kx−k0)nxdx

∞∑
mx=−∞

sinc
(

kxmδd

2

)
sinc

(
(kx−kxm)dx

2

)

D∞(kxm)
. (B.13)

In Eq. (B.5), Jx(ky, ky) can be expressed as the product of two separate variables: i.e.

Jx(ky, ky) = Jy
x(ky)I(kx). The Fourier transform of the transverse current distribution is

expressed in terms of Bessel function as Jy
x(ky) = J0(kywd/2). Exploiting the windowing

approximation I(kx) = Iw(kx), the total current spectrum can be expressed as

Jx(kx, ky) ≈ −V0AF (ky − ky0, Ny, dy)J0

(
kywd

2

)
AF (kx − kx0, Nx, dx)·

∞∑
mx=−∞

sinc
(

kxmδd

2

)
sinc

(
(kx−kxm)dx

2

)

D∞(kxm)

(B.14)

where we introduced the array factor function AF (k − kd, N, d) =
∑N/2

n=−N/2 ej(k−kd)nd.

B.2.2 Longitudinal Green’s Function

Since the elements that compose a connected array support guided waves along the array,

the windowing approximation also along the longitudinal direction can lead to inaccurate

prediction of the radiation patterns. A more accurate representation can be derived directly

from the current spectrum on a finite array. The complication in the analysis is only

apparent since we have actually provided the analytical closed-form expression for the

spectrum of the longitudinal current in the case of a finite number of δ-gap sources in

(B.9). The two-dimensional current spectrum in this case is given by

Jx(kx, ky) ≈ −V0AF (ky − ky0, Ny, dy)AF (kx − kx0, Nx, dx)J0

(
kywd

2

)
sinc

(
kxδd

2

)

D∞(kxm)
(B.15)
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B.2.3 Far-Fields Expressions from the Vector Potential

In the far field region, the electric field can be approximated as purely transverse, with no

radial component [52]. If At = Aθθ̂ + Aϕϕ̂, the electric far field is equal to

Er ' 0

Eθ ' −jωAθ

Eϕ ' −jωAϕ

⇒ E ' −jωAt. (B.16)

If A is only directed along x, we have




Ar

Aθ

Aϕ


 =




sinθcosϕAx

cosθcosϕAx

−sinϕAx


 (B.17)

The final expression of the far field is given by

Eθ ' −jωcosθcosϕAx

Eϕ ' jωsinϕAx

(B.18)

with Ax given in Eq. (B.5) with the current spectra expressed as in Eq. (B.14) or (B.15)

for longitudinal windowing or finite array GF, respectively.



Appendix C

Admittance Matrix Evaluation:

IEMEN Approach

An equivalent circuit representation of connected arrays was presented in Chapter 4. The

circuit was rigorously derived for transmitting arrays, from the expansion of the input

impedance in different terms. The aim of this appendix is to prove that this circuit can be

used also to describe the array in reception, as in Fig. 4.8.

To show the validity of the circuit in reception, we use the approach described in [63,64] for

the analysis of multi-layer frequency selective surfaces. This technique allows to represent

each transition between layers in terms of a generalized impedance or admittance matrix,

obtained directly from the solution of an integral equation with reduced kernel. Similarly,

the connected array represented in Fig. 4.1 can be described as a transition at z = 0

characterized by an admittance matrix, as depicted in Fig. C.1.

This appendix reports the main algebraic steps that lead to the analytical expression for

the elements of the admittance matrix representing the antenna. It is then proved that

the admittance parameters are equivalent to the ones given by the circuit in Fig. 4.8.

C.1 Integral Equation

Referring to the original and equivalent problems in Figs. 4.1 and 4.2, boundary conditions

are imposed as

etot = Zsurfj. (C.1)

We proceed as in [64], by expressing the total electric field as the superposition of two
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Figure C.1: Multimode equivalent network of a well sampled connected array in free space.

terms associated with radiated and localized contributions, respectively. We refer to these

two contributions as accessible and non-accessible modes (etot = ea
tot + ena

tot). Therefore,

Eq. (C.1) becomes

ena
tot = −ea

tot + Zsurfj. (C.2)

The total localized electric field can be expressed in integral form by introducing the non-

accessible portion of the Green’s function (GF). Considering only the x-component of

electric field and current, Eq. (C.2) becomes

∫

Σc
⋃

Σg

jx(ρ
′)gna

xx(ρ,ρ′)dρ′ = −ea
tot,x(ρ) + Zsurfjx(ρ). (C.3)

where ρ = xx̂ + yŷ. The surfaces Σc and Σg were defined in Fig. 4.2. The infinite-array

periodic GF for electric source and electric observation point located at the same height

(z = z′ = 0) is given by

gxx(ρ,ρ′, z = 0) =
1

dxdy

∞∑
m=−∞

Gxx(kρm)e−jkρm·(ρ−ρ′) (C.4)
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where kρm = kxmx̂ + kymŷ and Gxx is the xx component of the dyadic electric Green’s

function in the spectral domain. The accessible and non-accessible portions of the GF are

defined as

gxx(ρ,ρ′) = ga
xx(ρ, ρ′) + gna

xx(ρ,ρ′) =

1

dxdy

Gxx(kρ0)e
−jkρ0·(ρ−ρ′) +

1

dxdy

∞∑

m6=0

Gxx(kρm)e−jkρm·(ρ−ρ′). (C.5)

In last equation, for a periodic well sampled array of connected dipoles, the accessible

modes are the TE and TM components of the radiated or incident plane wave (funda-

mental Floquet mode). The non-accessible contribution is instead associated with all the

other higher-order modes representing the reactive energy localized in the proximity of the

dipoles.

We can then write the accessible field as the sum of two components:

ea
tot,x(ρ) =

∑

Ti∈{TE,TM}
vTiex,T i(ρ). (C.6)

Also the current can be expanded as sum of two components weighted for the same coef-

ficients vTi (as in Eq. (3) of [64]):

jx(ρ) =
∑

Ti∈{TE,TM}
vTijx,T i(ρ). (C.7)

By substituting the last two modal expansions into (C.3), we obtain

∑

Ti∈{TE,TM}
vTi

∫

Σc
⋃

Σg

jx,T i(ρ
′)gna

xx(ρ,ρ′)dρ′ = −
∑

T i∈{TE,TM}
vTi(ex,T i(ρ)− Zsurfjx,T i(ρ)). (C.8)

Since last equation is valid for all possible values of vTi, we can equate the single Ti term

at both sides, leading to two integral equations:

∫

Σc
⋃

Σg

jx,T i(ρ
′)gna

xx(ρ,ρ′)dρ′ = −ex,T i(ρ) + Zsurfjx,T i(ρ) (C.9)
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for Ti referring to TE or TM . As done in [64], from the solutions jx,T i of Eq. (C.9),

resorting to the explicit expressions, the impedance matrix representing the antenna can

be calculated as

yTiT j =

∫

cell

jx,T j(ρ)e∗x,T i(ρ)dρ (C.10)

which relates iTi and vTi via iTi =
∑

Tj∈{TE,TM}
vTjyTiT j.

C.2 Closed-Form Evaluation of the Admittance Ma-

trix

The expression of the vector electric field mode functions are given by [64]:

eTE(ρ) =
1

kρ0

1√
dxdy

(kx0x̂ + ky0ŷ)e−jkρ0·ρ

eTM(ρ) =
1

kρ0

1√
dxdy

(ky0x̂− kx0ŷ)e−jkρ0·ρ. (C.11)

The projection of the field onto the unit vector x̂ leads to:

eT i(ρ) · x̂ = ex,T i(ρ) =
nT i√
dxdy

e−jkρ0·ρ

(C.12)

where nTE = ky0/kρ0 = sin ϕ and nTM = kx0/kρ0 = cos ϕ.

Equation (C.10) can be then written as

yT iTj =

∫

cell

jx,T j(ρ)
nTi√
dxdy

ejkρ0·ρdρ. (C.13)

Noting that the Fourier Transform of the spatial current is given by

∫

cell

jx,T j(ρ)ejkρ0·ρdρ = JTj(kρ) = J0

(
ky0w

2

)
ITj(kx0) (C.14)

the elements of the admittance matrix can be expressed as

yTiT j =
J0

(
ky0w

2

)
nTi

√
dxdy

ITj(kx0). (C.15)
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C.2.1 Analytical Solution for the Current Spectrum

The solution of the integral equation (C.9) can be obtained in the spectral domain following

the same steps described in Secs. 4.2 and 4.3, leading to an expression similar to Eq. (4.11):

ITi(kxm) =
−Ex,T i(kxm) + Zli

tot
0,T i sinc

(
kxmδ

2

)

Dna
l (kxm)

(C.16)

with

Dna
l (kx) =

1

dy

∑

my 6=0

Gxx(kx, kym)J0

(
ky0w

2

)
. (C.17)

The total current flowing in the dipole gap can be evaluated as follows:

itot
0,T i =

1

δ

∫ δ/2

−δ/2

iTidx′ =

=
1

δ

∫ δ/2

−δ/2

1

dx

∞∑
mx=−∞

(
−Ex,T i(kxm) + Zli

tot
0,T i sinc

(
kxmδ

2

)

Dna
l (kxm)

)
e−jkxmx′dx′.

(C.18)

The expression of the incident field in the spectral domain, under plane-wave illumination,

is given by

Ex,T i(kxm) = ex,T idxδmx (C.19)

where ex,T i is the amplitude of the incident electric field and δmx is 1 for mx = 0 and 0

otherwise. From Eq. (C.19) and using the identity 1
δ

δ/2∫
−δ/2

e−jkxmx′dx′ = sinc(kxmδ/2), the

average current in the gap can be algebraically manipulated as follows:

itot
0,T i =

1

dx

∞∑
mx=−∞

(
−ex,T idx sinc(kxmδ

2
)δ(mx) + Zli

tot
0,T i sinc2(kxmδ

2
)

Dna
l (kxm)

)

=
−ex,T i sinc(kx0δ

2
)

Dna
l (kx0)

+
1

dx

∞∑
mx=−∞

Zli
tot
0,T i

sinc2(kxmδ
2

)

Dna
l (kxm)

=
−ex,T i sinc(kx0δ

2
)

Dna
l (kx0)

− ZlYnai
tot
0,T i.

(C.20)
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where we defined Yna = 1
Zna

= − 1
dx

∞∑
mx=−∞

sinc2
(kxmδ/2)

Dna
l (kxm)

. Note that Yna = 1/Zna = Y
my 6=0
mx=0 +

Y
my

mx 6=0, according to the definitions given in Eqs. (4.20) and (4.21).

The explicit expression of itot
0,T i is given by

itot
0,T i =

Zna

Zna + Zl

−ex,T i sinc(kx0δ
2

)

Dna
l (kx0)

. (C.21)

The substitution of Eq. (C.21) in (C.16) leads to

ITi(kxm) =
−ex,T idx

Dna
l (kx0)

(
δ(mx) +

ZlZna

Zl + Zna

1

dx

sinc(kx0δ/2) sinc(kxmδ/2)

Dna
l (kx0)

)
. (C.22)

C.2.2 Analytical Solution for the Admittance Matrix

To evaluate the elements of the admittance matrix with Eq. (C.15), we are only interested

in the value of the current spectrum in kx0:

ITi(kx0) =
−ex,T idx

Dna
l (kx0)

(
1− ZlZna

Zl + Zna

Y
my 6=0
mx=0

)
(C.23)

where Y
my 6=0
mx=0 = − 1

dx

sinc2
(kx0δ/2)

Dna
l (kx0)

was already introduced in Eq. (4.21).

It is convenient to multiply and divide for − 1
dx

sinc2(kx0δ/2):

ITi(kx0) = −ex,T idx

(
1− ZlZna

Zl + Zna

Y
my 6=0
mx=0

) − 1
dx

sinc2(kx0δ/2)

Dna
l (kx0)

1

− 1
dx

sinc2(kx0δ/2)
=

=
ex,T idx

1
dx

sinc2(kx0δ/2)

(
1− ZlZna

Zl + Zna

Y
my 6=0
mx=0

)
Y

my 6=0
mx=0 .

(C.24)

Let us perform a few algebraic manipulations to express the current spectrum in a more

compact form:

ZlZna

Zl + Zna

=
1

Yl + Yna

=
1

Yl + Y
my 6=0
mx=0 + Y

my

mx 6=0

. (C.25)

Thus, we can define an admittance term Ŷl as follow:
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Ŷl =

(
1− ZlZna

Zl + Zna

Y
my 6=0
mx=0

)
Y

my 6=0
mx=0 =

(
1− Y

my 6=0
mx=0

Yl + Y
my 6=0
mx=0 + Y

my

mx 6=0

)
Y

my 6=0
mx=0 =

=
(Yl + Y

my

mx 6=0)Y
my 6=0
mx=0

(Yl + Y
my

mx 6=0) + Y
my 6=0
mx=0

.

(C.26)

Using (C.26), the current spectrum can be expressed as

ITi(kx0) =
ex,T idx

1
dx

sinc2(kx0δ/2)
Ŷl. (C.27)

By substituting Eq. (C.27) in (C.15), we can write

yTiT j = nTinTjỸl. (C.28)

The equivalent admittance Ỹl is a simple function of Zl and higher modal (mx 6= 0,my 6= 0)

components of Za:

Ỹl = n2
(Yl + Y

my

mx 6=0)Y
my 6=0
mx=0

(Yl + Y
my

mx 6=0) + Y
my 6=0
mx=0

(C.29)

with n defined as in Eq. (4.25).

C.2.3 Circuit Steps to Validate the Equivalent Circuit in Recep-

tion

The 2×2 admittance parameters given by Eq. (C.28) are consistent with the equivalent

circuit proposed in Fig. 4.8, hence validating it.

This can be easily verified recognizing in the analytical expressions of Ỹl the terms that

were highlighted in Sec. 4.4. Ŷl and Ỹl can be then represented as in Fig. C.2.

Applying the transformation steps to the equivalent circuit of the connected array in recep-

tion as in Fig. C.3 allows obtaining, from the operative definition, yTE,TM . Analogously,

Fig. C.4 describes the steps to evaluate yTE,TE. The expressions are found to be

yTETM = Ỹl sin ϕ cos ϕ

yTETE = Ỹl sin
2 ϕ.

(C.30)
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Figure C.2: Circuit representation of Ỹl as function of Zl and higher modal components of Za.

Figure C.3: Circuit transformation step for the calculation of the yTE,TM element.

Figure C.4: Circuit transformation step for the calculation of the yTE,TE element.

Therefore, the element of the admittance matrix evaluated from the equivalent circuit are

the same as the analytical ones in Eq. (C.28). Analogous steps for yTM,TM are not reported

for the sake of brevity.



Appendix D

Asymptotic Evaluation of

Edge-Current Integrals

The total currents at each gap of a finite connected array of dipoles were expressed in Sec.

5.5 in terms of two spectral integrals:

inx
δ,edge = inx

δ,edge1 + inx
δ,edge2 = ejkx0dx

1

2π

∞∫

−∞

sinc2(kxδ
2

)

Dload(kx)

e−jkx(nx+1)dx

1− e−j(kx−kx0)dx
dkx+

e−jkx0Nxdx
1

2π

∞∫

−∞

sinc2(kxδ
2

)

Dload(kx)

e−jkx(nx−Nx)dx

1− ej(kx−kx0)dx
dkx.

(D.1)

where Dload(kx) = Dl(kx) − Zl/dx. The integrand shows a number of polar singularities,

which emerge from the zeros of term (1 − ej(kx−kx0)dx) associated with the Floquet Waves

(FWs) in kxm = kx0+
2πm
dx

. Branch singularities are due to the presence of square roots in the

GF Dl(kx). Other complex poles are associated with the dispersion equation Dload(kx) = 0.

The integrals defining inx
δ,edge1 and inx

δ,edge2 in Eq. (D.1) are converging over different integra-

tion paths. The convergence of the integral inx
δ,edge1 requires a counter-clock circling of the

poles (see Fig. D.1). On the contrary, the integration path of inx
δ,edge2 should be deformed in

the half plane Im{kx} > 0. These different complex plane topologies suggest two specular

uniform asymptotic evaluations for the two integrals. In the following the focus will be on

inx
δ,edge1, since the evaluation of inx

δ,edge2 can be performed in essentially the same way, once

the change of variable k′x = −kx is introduced.
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Figure D.1: Original integration path for the evaluation of inx

δ,edge1 in Eq. (D.1).

D.1 Analysis of the Singularities

Before proceeding with the asymptotic evaluation, it is useful to isolate the zeroth order

(my = 0) from the higher order FWs (my 6= 0) in the transverse GF terms pertaining to

the free space case (Eq. (5.3)). This is obtained by representing Dl(kx) as follows:

Dl(kx) = − ζ0

2k0dy




√
k2

0 − k2
x + (k2

0 − k2
x)

∑

my 6=0

J0(
kymw

2
)√

k2
0 − k2

x − k2
ym


 . (D.2)

Using this representation it is simple to express the loaded transverse GF Dload(kx) in

terms of kz =
√

k2
0 − k2

x as follows:

Dload(kx) = − ζ0

2k0dy

(
kz + k2

zjΨ(kx) +
2k0dyZl

ζ0dx

)
(D.3)

where

jΨ(kx) =
∑

my 6=0

J0(
kymw

2
)√

k2
0 − k2

x − k2
ym

. (D.4)

Since for well sampled arrays the function Ψ(kx) is slowly varying with kx, it is legitimate

to approximate Ψ(kx) ≈ Ψ(0) ≡ Ψ. This approximation helps to recognize Eq. (D.3) as a

second degree polynomial function of kz, which can be expressed highlighting its roots:

Dload(kx) = − jΨζ0

2k0dy

(kz − kzp1)(kz − kzp2) (D.5)
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where

kzp1
2

= j
1

2Ψ

(
1±

√
1− j

Ψ8k0dyZl

ζ0dx

)
. (D.6)

Using Eq. (D.5), the contribution due to the first edge in Eq. (D.1) can be then expressed

as follows:

inx
δ,edge1 =

jk0dye
jkx0dx

Ψζ0π

∞∫

−∞

sinc2(kxδ
2

)

(kz − kzp1)(kz − kzp2)

e−jkx(nx+1)dx

1− e−j(kx−kx0)dx
dkx. (D.7)

In Eq. (D.7) the denominator Dload is expressed with explicit roots in kz. These roots

define the branch cuts of the complex plane, in particular the top/bottom Riemann sheet,

i.e. Im{kz}<
>0. The roots are also associated with poles in kx plane, as in will be discussed

in the following.

D.1.1 Load Dependent Pole

It is simple to verify that kzp1 is associated with values of kx far from the the branch points

for any values of Zl. It is then useful to locate in the kx plane the poles associated with

kzp2, as a function of the load impedance Zl. For Zl = 0, from Eq. (D.6), it results kzp2 = 0

and consequently kxp = k0. For small values of Zl a second order approximation of the

square root function in Eq. (D.6) for small argument leads to:

√
1− j

Ψ8k0dyZl

ζ0dx

≈ 1− j
Ψ4k0dyZl

ζ0dx

− 1

8

(
jΨ4k0dyZl

ζ0dx

)2

(D.8)

which implies

kzp2 = −2k0dyZl

ζ0dx

− j4Ψ

(
k0dyZl

ζ0dx

)2

= −k0(nr + jni) (D.9)

where nr and ni are very small real positive functions of the geometrical parameters at

play. Consequently, the approximate expression of kxp is now as follows:

kxp =
√

k2
0 − k2

zp2 =
√

k2
0(1− (nr + jni)2) ≈

k0(1− (nr + jni)
2

2
) = k0(1− n2

r − n2
i

2
)− jk0nrni (D.10)
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Figure D.2: Deformation of the integration path for the evaluation of inx

δ,edge1 in Eq. (D.1): Steepest
Descent Path.

which explicitly shows that, for small values of the load impedance Zl, the dominant poles

are located close to the branch point k0 and show small imaginary parts that tend to

become more negative as Zl increases. The pole kxp has a negative imaginary part. The

corresponding root in kz was chosen with negative imaginary part, implying that the pole

kxp represented in (D.10) is not associated with a leaky-wave, but with a damped wave.

Since the damped wave is located in the top Riemann sheet of the complex kx-plane, kxp is

not captured when deforming the integration path along the Steepest Descent Path (SDP)

to perform an uniform asymptotic evaluation of the integral as in Fig. D.2.

D.2 Asymptotic Evaluation in Terms of Fresnel Func-

tions

Multiplying and dividing the integrand of Eq. (D.7) for the factor (kz + kzp2) we obtain,

after a few algebraic steps, the following expression:

inx
δ,edge1 = −jk0dye

jkx0dx

Ψζ0π

∞∫

−∞

(kz + kzp2)
sinc2(kxδ

2
)

(kz − kzp1)(k2
x − k2

xp)

e−jkx(nx+1)dx

1− e−j(kx−kx0)dx
dkx. (D.11)

This integral can be deformed into the SDP around the saddle point kx = k0 as in Fig.

D.2. Note that in the deformation none of the poles associated with the FWs are captured

since the original integration path shown in Fig. D.1 surrounds all poles counter-clockwise.

The poles defined by kzp1 and kzp2 in Eq. (D.6) are also not captured in the deformation.

From Eq. (D.11) we can then define two contributions as follows:
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inx
δ,edge1 ≈ inx,a

δ,edge1 + inx,b
δ,edge1 (D.12)

where

inx,a
δ,edge1 = C

√
2k0

∫

SDP

√
k0 − kx

kx − kxp

e−jkx(nx+1)dx

1− e−j(kx−kx0)dx
dkx (D.13)

inx,b
δ,edge1 = Ckzp2

∫

SDP

1

kx − kxp

e−jkx(nx+1)dx

1− e−j(kx−kx0)dx
dkx. (D.14)

The term

C =
−jk0dye

jkx0dx sinc2(k0δ/2)

Ψζ0π(kzp1)(k0 + kxp)
(D.15)

includes both the constants and the slower varying portions of the integrand from Eq.

(D.11), approximated in kx = k0. The integrand in Eq. (D.14) presents no square root

type of branches. Accordingly, in the upward and downward path that define the SDP the

integrand is the same, so that the two half paths contributions cancel out.

The integral in Eq. (D.13), instead, requires an uniform asymptotic evaluation since the

poles in kxp and in kx0 can be close to the branch point k0 for particular geometrical, loading

or scanning configurations. Before performing the evaluation, it is convenient to express the

integrand in a form where the mentioned poles in kxp and in kx0 are shown explicitly [111].

This can be achieved by adding and subtracting the quantity (j/dx)/(k0 − kx0) as follows:

1

1− e−j(kx−kx0)dx
= R(kx)− j

dx

1

kx − kx0

(D.16)

where we defined the function

R(kx) =
1

1− e−j(kx−kx0)dx
+

j

dx

1

kx − kx0

. (D.17)

The function R(kx) is a smooth regular function in the vicinity of the SDP and consequently

can be approximated with its value at the saddle point R(kx) ≈ R(k0). The integral in

Eq. (D.13) can be split into two contributions as follows:
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inx
δ,edge1 ≈ C

√
2k0R(kx0)

∞∫

−∞

√
k0 − kx

kx − kxp

e−jkxnxdxdkx−

jC
√

2k0

dx

∞∫

−∞

√
k0 − kx

(kx − kx0)(kx − kxp)
e−jkxnxdxdkx. (D.18)

While the first of the two integrals in Eq. (D.18) is already in a canonical form, the second

one can be brought to the same form by recognizing that

1

(kx−kx0)(kx−kxp)
=

1

kx0−kxp

(
1

kx−kx0

− 1

kx−kxp

)
. (D.19)

After these manipulations, the three terms composing (D.18) can be all expressed analyt-

ically resorting to the following mathematical identity (proof in Sec. D.3):

∞∫

−∞

√
k0 − kx

kx − kp

e−jkxxdkx = −e−jπ/4

√
π

x
e−jk0x Fs(x(k0 − kp))

x(k0 − kp)
(D.20)

where the slope Fresnel function is introduced: Fs(x) = 2jx(1 − F (x)). Here F (x) is the

Kouyoumjian Fresnel function [93], which is defined in Eq. (D.65). Using (D.20), after a

few simple algebraic manipulations, the final expression of the current contribution born

from the left edge of the array is given by

inx
δ,edge1 ≈

e−jk0X

X
√

X

(
C1

Fs(X(k0 − kxp))

(k0 − kxp)
+ C2

Fs(X(k0 − kx0))

(k0 − kx0)

)
(D.21)

with X = (nx + 1)dx. In Eq. (D.21)

C1 = C ′
(

R(k0)− j

dx(kxp − kx0)

)
, C2 =

jC ′

dx(kxp − kx0)
(D.22)

and C ′ = C
√

2k0(−e−jπ/4π). By proceeding in the same way, the expression for the current

born at the right edge of the array can be expressed as

inx
δ,edge2 ≈

e−jk0X

X
√

X

(
C1

Fs(X(k0 − kxp))

(k0 − kxp)
+ C2

Fs(X(k0 + kx0))

(k0 − kx0)

)
(D.23)

where X = (Nx − nx)dx, R(k0), C1 and C2 are defined with the substitution kx0 → −kx0

and in the definition of C in Eq. (D.15) the exponential ejkx0dx is replaced by e−jkx0Nxdx .
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Figure D.3: Mapping of the original integration path in the variable kx into the integration path −Cα in
the variable α.

D.3 On the Evaluation of the Integral
∞∫
−∞

√
k0−kx

kx−kxp
e−jkxxdkx

The aim of this section is to evaluate in closed from the following spectral integral:

I =

∞∫

−∞

√
k0 − kx

kx − kxp

e−jkxxdkx. (D.24)

Let us perform the following variable substitution:

kx = k0 cos α, kxp = k0 cos αp

dkx

dα
=

d(k0 cos α)

dα
=

k0d (cos α)

dα
= −k0 sin α.

(D.25)

The original path of integration is mapped into −Cα, which indicates the path (π+j∞,π+

j0)
⋃

(π + j0,0 + j0)
⋃

(0 + j0, 0− j∞), as shown in Fig. D.3.

The integral I can be then written as

I =
√

k0

∫

Cα

√
1− cos α

cos α− cos αp

e−jk0x cos α sin αdα. (D.26)

Note that the inversion of the integration path from −Cα to Cα introduces a multiplication

for (−1), which cancels out with (−1) deriving from the Jacobean of the transformation.

When performing this variable transformation, it is important to guarantee the conver-

gence, so that the exponential does not explode for Im{α} = αi = ±∞.
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By performing the following algebraic steps

cos(α− θ) = cos(αr + jαi − θ) = cos(αr − θ) cos(jαi)− sin(αr − θ) sin(jαi) =

= cos(αr − θ)
e−αi + eαi

2
− sin(αr − θ)

e−αi + eαi

2j
=

= cos(αr − θ) cosh(αi)− j sin(αr − θ) sinh(αi)

(D.27)

we can write

e−jkr cos(α−θ) = e−jkr cos(αr−θ) cosh(αi)e−kr sin(αr−θ) sinh(αi). (D.28)

The convergence is then guaranteed if

αi > 0 ⇒ sinh(αi) > 0 converges if sin(αr − θ) > 0 ⇒ θ < αr < θ + π

αi < 0 ⇒ sinh(αi) < 0 converges if sin(αr − θ) < 0 ⇒ θ − pi < αr < θ
(D.29)

Using the following trigonometric properties:

√
1− cos α =

√
1−

(
1− 2 sin2 α

2

)
=
√

2 sin
α

2

cos α− cos αp =
(
1− 2 sin2 α

2

)
−

(
1− 2 sin2 αp

2

)
= 2

(
sin2 αp

2
− sin2 α

2

)

sin α = 2 sin
α

2
cos

α

2

(D.30)

Eq. (D.26) becomes

I =
√

2k0

∫

Cα

sin2 α
2

cos α
2

sin2 αp

2
− sin2 α

2

e−jk0x cos αdα. (D.31)

A few algebraic manipulations can be applied to the fraction in the integrand:

sin2 α
2

sin2 αp

2
− sin2 α

2

=
sin2 α

2
− sin2 αp

2
+ sin2 αp

2

sin2 αp

2
− sin2 α

2

= −1 +
sin2 αp

2

sin2 αp

2
− sin2 α

2

. (D.32)

The integral I can be then expressed as the sum of two contributions I = I1 + I2, where

the two terms are given by
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I1 = −
√

2k0

∫

Cα

cos
α

2
e−jk0x cos αdα

I2 =
√

2k0

∫

Cα

sin2 αp

2

sin2 αp

2
− sin2 α

2

cos
α

2
e−jk0x cos αdα

(D.33)

Both these integrals can be deformed into the SDP (0) and the standard procedure is

adopted to integrate from −∞ to ∞ as in Sec. D.3.1. With the variable transformation

τ 2 = −j2 sin2(α−θ
2

),

∫

SDP (θ)

e−jkr cos(α−θ)dα = ejπ/4
√

2e−jkr

∞∫

−∞

e−krτ2

√
1− j τ2

2

dτ (D.34)

The procedure leads for the first integral to

I1 =

∫

SDP (0)

G1(α)e−jk0x cos αdα = ejπ/4
√

2e−jk0x

∞∫

−∞

G1(τ)
e−k0xτ2

√
1− j τ2

2

dτ (D.35)

where G1(α) = −√2k0 cos α
2

and thus

G1(τ) = −
√

2k0 cos
α

2
= −

√
2k0

√
1− sin2(α/2) = −

√
2k0

√
1− j

τ 2

2
. (D.36)

The first integral in Eq. (D.33) can be expressed as

I1 = ejπ/4
√

2e−jk0x

∞∫

−∞

(
−

√
2k0

√
1− j

τ 2

2

)
e−k0xτ2

√
1− j τ2

2

dτ =

= −ejπ/42
√

k0e
−jk0x

∞∫

−∞

e−k0xτ2

dτ =

= −2ejπ/4

√
π

x
e−jk0x

(D.37)

where we used the identity [110]:

∫ ∞

−∞
e−Ωτ2

dτ =

√
π

Ω
. (D.38)
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Let us now concentrate on the integral I2 of Eq. (D.33). We can write

I2 = ejπ/4
√

2e−jk0x

∫ ∞

−∞
G2(τ)

e−k0xτ2

√
1− j τ2

2

dτ (D.39)

with

G2(τ) =
√

2k0 sin2 αp

2

cos α
2

sin2 αp

2
− sin2 α

2

=
√

2k0τ
2
p

√
1− j τ2

2

τ 2
p − τ 2

. (D.40)

The integral can be rewritten as follows:

I2 = −2ejπ/4
√

k0e
−jk0xτ 2

p

∞∫

−∞

e−k0xτ2

τ 2 − τ 2
p

dτ (D.41)

The integral appearing in Eq. (D.41) can be expressed in terms of the Kouyoumjian Fresnel

function F (y) (Sec. D.3.2) using

∞∫

−∞

e−s2x

s2 − s2
0

ds = −
√

π

x

F (jxs2
0)

s2
0

⇒
∫ ∞

−∞

e−k0xτ2

τ 2 − τ 2
p

dτ = −
√

π

k0x

F (jk0xτ 2
p )

τ 2
p

(D.42)

The term F (jk0xτ 2
p ) can be easily algebraically manipulated as follows:

F (jk0xτ 2
p ) = F (−jk0x2j sin2(αp/2)) =

(
cos α = 1− 2 sin2(α/2)

)

= F

(
2k0x

1− cos(αp)

2

)
= (kxp = k0 cos αp)

= F (x(k0 − kxp))

(D.43)

Therefore, the final expression of the second integral I2 is given by

I2 = 2ejπ/4e−jk0x

√
π

x
F (x(k0 − kxp)) (D.44)

Combining Eqs. (D.44) and (D.37) we obtain
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I = I1 + I2 = −2ejπ/4

√
π

x
e−jk0x (1− F (x(k0 − kxp)) . (D.45)

Multiplying and dividing for 2jx(k0 − kxp), and defining the slope Fresnel function as

Fs(z) = 2jz(1− F (z)), we have

I = −e−jπ/4

√
π

x
e−jk0x Fs(x(k0 − kxp)

x(k0 − kxp)
. (D.46)

D.3.1 Steepest Descent Path

We now report a standard procedure to evaluate the following integral

I =

∫

Cα

e−jkr cos(α−θ)dα. (D.47)

We may deform this integration path into any path that verifies the convergence require-

ments. It is rather clear that a path into which the exponential is always decaying and not

oscillating as a function of α is the most convenient for numerical integration in the first

place and also, as we will see in the following, for analytical purposes. Equation (D.28)

shows explicitly that the condition cos(αr−θ) cosh(αi) = 1 is the path that guarantees this.

The locus of points in the α plane that verifies this condition is called Steepest Descent

Path (SDP). αr = θ indicates the saddle point, i.e. the point in which the integrand’s

value is e−jkr. In all the other points along the SDP the exponential decays as rapidly as

possible, thus it is convenient to perform the integration into this path.

Let us now perform the integral (D.47) by means of the most appropriate change of variable.

Since −jkr cos(α − θ) on the SDP is equal to −jkr − kr sin(αr − θ) sinh(αi) and the real

part of this expression is always decaying on the SDP, a substitution of the kind

−jkr cos(α− θ) = −jkr − krτ 2 (D.48)

is well suited. τ going from −∞ to +∞ on the real axis guarantees the same behavior of

the integrand but this time on a simpler domain:

I =

∞∫

−∞

e−jkre−krτ2 dα

dτ
dτ (D.49)
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Let us now calculate dα
dτ

. The condition

−jkr cos(α− θ) = −jkr

(
1− 2 sin2(

α− θ

2
)

)
= −jkr − krτ 2 (D.50)

implies that

−j2 sin2(
α− θ

2
) = τ 2. (D.51)

Taking the square root of both sides, we have

±e−jπ/4
√

2 sin(
α− θ

2
) = τ. (D.52)

It is clear that the ± symbol is anomalous and will be shortly defined. The differential of

the transformation can be calculated as

dα

dτ
=

1
dτ
dα

=
1

±e−jπ/4
√

2
2

cos(α−θ
2

)
=
±ejπ/4

√
2

cos(α−θ
2

)
. (D.53)

This last expression can be more conveniently written as a function of τ , which leads to

±ejπ/4
√

2

cos(α−θ
2

)
=

±ejπ/4
√

2√
1− sin2(α−θ

2
)

=
±ejπ/4

√
2√

1− j τ2

2

. (D.54)

Thus, the integral (D.49) becomes

I = ±ejπ/4
√

2e−jkr

∞∫

−∞

e−krτ2

√
1− j τ2

2

dτ. (D.55)

This integral is undefined by the ± symbol. The uncertainty derives from the presence of

the multivalued function
√· that led to Eq. (D.52). The ambiguity is solved by looking at

the differential dα
dτ

. On the integration path in τ ranging from −∞ to ∞, dτ is positive.

Thus dα
dτ

is a complex function having the same argument of dα. Let us take any point on

the integration path in α for instance α = θ. Since dα
dτ

∣∣
α=θ

= ±ejπ/4
√

2,
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Figure D.4: Argument of dα on the SDP around the saddle point.

“ +′′ implies: arg(
dα

dτ
(α = θ)) = π/4

“−′′ implies: arg(
dα

dτ
(α = θ)) = 5π/4

(D.56)

The dα|α=θ represents an infinitesimal change on the SDP in the proximity of the saddle

point. In this point, the SDP forms an angle of π/4 with the real α-axis (dαr = dαi), as

shown in Fig. D.4. This implies that the right choice for the sign Eq. (D.55) is given by
dα
dτ

(α = θ) = +ejπ/4
√

2.

Eventually the integral on the SDP can be well performed in the τ domain as

I =

∫

SDP (θ)

e−jkr cos(α−θ)dα = ejπ/4
√

2e−jkr

∞∫

−∞

e−krτ2

√
1− j τ2

2

dτ. (D.57)

D.3.2 Fresnel Integral

We now present the solution of the following canonical integral in terms of Fresnel functions:

I0 =

∞∫

−∞

e−s2x

s2 − s2
0

ds (D.58)

where s2
0 = jb2. This starting integral converges for x real, x > 0 or for x complex but with

Re{x} > 0, so that e−s2x tends to 0 for s large (e−s2(xr+jxi) = e−s2xre−js2xi). Let us also
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assume that s2
0 = jb2, where b is real, and that x is real and positive (x > 0). However,

the extension to complex b or x is possible. The integral can be written as

I0 =

∞∫

−∞

e−(s2−jb2+jb2)x

s2 − jb2
ds = e−jb2x

∞∫

−∞

e−(s2−jb2)x

s2 − jb2
ds =

e−jb2x

∞∫

−∞




∞∫

x

e−(s2−jb2)ξdξ


 ds (D.59)

The integral in the parentheses converges only for ejb2∞ = 0; that is, for Im{b2} > 0. This

is equivalent to accept some losses in the medium (in k) to have the convergence of the

entire representation. If one then interchanges the order of the integration, obtains

I0 = e−jb2x

∞∫

x

ejb2ξ




∞∫

−∞

e−s2ξds


 dξ. (D.60)

The integral in ds has a know closed form [110]:

∞∫

−∞

e−s2ξds =

√
π

ξ
. (D.61)

Therefore, we can write

I0 =
√

πe−jb2x

∞∫

x

ejb2ξ

√
ξ

dξ. (D.62)

This form can be further simplified by performing another change of variable in the inte-

gration:

ξ = −θ2

b2
⇒ ξb2 = −θ2, ±j

√
ξb = θ,

dξ

dθ
= −2θ

b2
. (D.63)

The sign ± will have to be better defined. The integral becomes

I0 =
√

πe−jb2x

∞∫

±j
√

xb

∓jb
e−jθ2

θ

2θ

b2
dθ =

∓2j
√

πe−jb2x

b

∫ ∞

±j
√

xb

e−jθ2

dθ. (D.64)



D.3. On the Evaluation of the Integral
∞∫
−∞

√
k0−kx

kx−kxp
e−jkxxdkx 195

We can now express this formula in terms of the Kouyoumjian Fresnel function, which is

defined as follows [93]:

F (y) = 2j
√

yejy

∞∫

√
y

e−jt2dt; −3π

2
< arg(y) ≤ π

2
. (D.65)

By substituting
√−xb2 =

√
y, where the choice of the positive branch is arbitrary for the

moment, we obtain

− F (−xb2)

2
√

xbe−jxb2
=

∞∫

j
√

xb

e−jt2dt; −3π

2
< arg(−xb2) ≤ π

2
(D.66)

This expression can be substituted in Eq. (D.64), which yields

I0 =
∓2j

√
πe−jb2x

b

F (−xb2)

∓2
√

xbe−jxb2
= j

√
π

x

F (−xb2)

b2
. (D.67)

Regarding the choice on the branch, it is clear that in this case the selection of the sign is

irrelevant, provided that the choice in the change of variable (D.63) is coherent with the

choice in the definition of the Fresnel function.
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cuits for a receiving antenna”,” IEEE Antennas Propag. Mag., vol. 45, no.4, pp. 98-99,

Aug. 2003.

[60] J. B. Andersen and R. G. Vaughan, “Transmitting, receiving, and scattering properties

of antennas,” IEEE Antennas Propag. Mag., vol. 45, no.4, pp. 93-98, Aug. 2003.

[61] D.-H. Kwon, D. M. Pozar, “Optimal characteristics of an arbitrary receive antenna,”

IEEE Trans. Antennas Propag., vol. 57, no. 12, pp. 3720-3727, Dec. 2009.

[62] M. Pasian, S. Monni, A. Neto, M. Ettorre, and G. Gerini, “Frequency selective surfaces

for extended bandwidth backing reflector functions,” IEEE Trans. Antennas Propag.,

vol. 58, no. 1, pp. 43-50, Jan. 2010.

[63] S. Monni, “Frequency selective surfaces integrated with phased array antennas: Anal-

ysis and design using Multimode Equivalent Networks,” Ph.D. dissertation, Eindhoven

University of Technology, Eindhoven, Netherlands, 2005.

[64] S. Monni, G. Gerini, A. Neto, and A. G. Tijhuis, “Multimode equivalent networks

for the design and analysis of frequency selective surfaces,” IEEE Trans. Antennas

Propag., vol. 55, no. 10, pp. 2824-2835, Oct. 2007.

[65] N. Appannagarri, I. Bardi, R. Edlinger, J. Manges, M. Vogel, Z. Cendes, and J.

Hadden, “Modeling phased array antennas in Ansoft HFSS,” in Proc. IEEE Int. Conf.

on Phased Array Systems and Technology, Dana Point, CA , USA, May 2000, pp.

323-326.



Bibliography 203

[66] R. S. Johnson, C. Wakeman, and W. Cuviello, “Frequency response of thin film chip

resistor,” in Proc. of the 25th CARTS USA 2005, Palm Springs, CA, USA, Mar. 2005,

pp. 136-141.

[67] D. Cavallo, S. Savoia, G. Gerini, A. Neto, and V. Galdi, “Design of a low profile

printed array of loaded dipoles with inherent frequency selectivity properties,” in Proc.

5th European Conference on Antennas and Propag., (EuCAP 2011), Rome, Italy, Apr.

2011.

[68] S. Savoia, “Design of an array of connected dipoles with inherent frequency selectivity

properties for radar applications,” M.S. thesis, Dept. Engineering, University of Sannio,

Benevento, Italy, 2010.

[69] H. Holter, T.-H. Chio and D. H. Schaubert, “Experimental results of 144-element dual-

polarized endfire tapered-Slot phased arrays,” IEEE Trans. Antennas and Propag., vol.

48, no. 11, pp. 1707-1718, Nov. 2000.

[70] C. Craeye, “On the radiation characteristics of finite dual-polarized arrays of tapered-

slot antennas,” in Proc. IEEE Antennas Propag. Int. Symp., Monterey, CA, USA, Jun.

2004, vol. 3, pp. 2691-2694.

[71] C. Craeye and X. Dardenne, “Element pattern analysis of wide-band arrays with the

help of a finite-by-infinite array approach,” IEEE Trans. Antennas and Propag., vol.

54, no. 2, pp. 519-526, Feb. 2006.

[72] R. C. Hansen, “Connected Arrays,” in Phased Array Antennas, Second Edition, Hobo-

ken: John Wiley & Sons, Inc., 2009, pp. 465-477.

[73] D. Bekers, “Finite Antenna Arrays - An Eigencurrent Approach,” Ph.D. dissertation,

Eindhoven University of Technology, Eindhoven, Netherlands, 2004.

[74] J. L. Volakis, Antenna Engineering Handbook, Fourth Edition. New York: McGraw-

Hill, 2007.

[75] D. S. Janning and B. A. Munk, “Effects of surface waves on the currents of truncated

periodic arrays,” IEEE Trans. Antennas and Propag., vol. 50, no. 9, pp. 1254-1265,

Sep. 2002.

[76] O. A. Civi and P. H. Pathak, “Array guided surface waves on a finite planar array of

dipoles with or without a grounded substrate,” IEEE Trans. Antennas and Propag.,

vol. 54, no. 8, pp. 2244-2252, Aug. 2006.



204 Bibliography

[77] N. Amitay, V. Galindo, and C.P. Wu, Theory and Analysis of Phased Array Antennas.

New York: John Wiley & Sons, Inc., New York, 1972.

[78] A. K. Skrivervik and J. R. Mosig, “Finite phased array of microstrip patch antennas:

the infinite array approach,” IEEE Trans. Antennas and Propag., vol. 40, no. 5, pp.

579-582, May 1992.

[79] A. K. Skrivervik and J. R. Mosig, “Analysis of finite phase arrays of microstrip

patches,” IEEE Trans. Antennas and Propag., vol. 41, no. 8, pp. 1105-1114, Aug.

1993.

[80] A. J. Roscoe and R. A. Perrott, “Large finite array analysis using infinite array data,”

IEEE Trans. Antennas and Propag., vol. 42, no. 7, pp. 983-992, Jul. 1994.

[81] K. A. Shubert and B. A. Munk, “Matching properties of arbitrarily large dielectric

covered phased arrays,” IEEE Trans. Antennas and Propag., vol. 31, no. 1, pp. 54-59,

Jan. 1983.

[82] F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of

thin strips: a discrete Wiener-Hopf formulation,” Radio Sci., vol. 44, no. RS2S91, Apr.

2009, doi:10.1029/2007RS003821.

[83] A. Neto, S. Maci, G. Vecchi, and M. Sabbadini,“A truncated Floquet wave diffraction

method for the full wave analysis of large phased arrays - part I: basic principles and

2-D cases” IEEE Trans. Antennas and Propag., vol. 48, no. 3, pp. 594-600, Mar. 2000.

[84] H.-T. Chou, H.-K. Ho, P. H. Pathak, P. Nepa, and O. A. Civi, “Efficient hybrid discrete

Fourier transform-moment method for fast analysis of large rectangular arrays,” IEE

Proc. Microw. Antennas Propag., vol. 149, no. 1, pp. 1-6, Aug. 2002.

[85] L. Carin and L. B. Felsen, “Time harmonic and transient scattering by finite peri-

odic flat strip arrays: hybrid (ray)-(Floquet mode)-(MoM) algorithm,” IEEE Trans.

Antennas and Propag., vol. 41, no. 4, pp. 412-421, Apr. 1993.

[86] F. Capolino, M. Albani, S. Maci, and R. Tiberio, “High-frequency analysis of an array

of line sources on a truncated ground plane” IEEE Trans. Antennas and Propag., vol.

46, no. 4, pp. 570-578, Apr. 1998.

[87] O. A. Civi, P. H. Pathak, and H.-T. Chou, “On the Poisson sum formula for the anal-

ysis of wave radiation and scattering from large finite arrays,” IEEE Trans. Antennas

and Propag., vol. 47, no. 5, pp. 958-959, May 1999.



Bibliography 205

[88] F. Capolino, M. Albani, S. Maci, and L. B. Felsen, “Frequency domain Greens func-

tion for a planar periodic semi-infinite phased array. Part I: Truncated Floquet wave

formulation,” IEEE Trans. Antennas and Propag., vol. 48, no. 1, pp. 67-74, Jan. 2000.

[89] F. Capolino, M. Albani, S. Maci, and L. B. Felsen, “Frequency domain Greens function

for a planar periodic semi-infinite phased array. Part II: Diffracted wave phenomenol-

ogy,” IEEE Trans. Antennas and Propag., vol. 48, no. 1, pp. 75-85, Jan. 2000.

[90] R. C. Hansen and D. Gammon, “A Gibbsian model for finite scanned arrays,” IEEE

Trans. Antennas and Propag., vol. 44, no. 2, pp. 243-248, Feb 1996.

[91] R. C. Hansen, “Finite array scan impedance Gibbsian models,” Radio Sci., vol. 31,

no. 6, pp. 1631-1637, Mar. 1996, doi:10.1029/96RS01366.

[92] M. Abramowitz and I. A. Stegun, Ed., Handbook of Mathematical Functions, With

Formulas, Graphs, and Mathematical Tables. New York: Dover Publications, Inc.,

1965.

[93] R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for

an edge in a perfectly conducting surface,” Proc. IEEE, vol. 62, no. 11, pp. 1448-1461,

Nov. 1974.

[94] M. Norn and E. Wolf, Principles of Optics, Seventh Edition. Cambridge: Cambridge

University Press, 1999.

[95] P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields.

New York: IEEE Press, 1996.

[96] S. G. Hay and J. D. O’Sullivan, “Analysis of common-mode effects in a dual-polarized

planar connected-array antenna,” Radio Sci., vol. 43, no. RS6S04, Dec. 2008,

doi:10.1029/2007RS003798.

[97] E. de Lera Acedo, E. Garcia, V. Gonzalez-Posadas, J. L. Vazquez-Roy, R. Maaskant,

and D. Segovia, “Study and design of a differentially-fed tapered slot antenna array,”

IEEE Trans. Antennas Propag., vol. 58, no. 1, pp. 68-78, Jan. 2010.

[98] Laird Technologies. (2011) Commone mode chokes. [Online]. Available:

http://www.lairdtech.com/Products/EMI-Solutions/Ferrite-Products/Ferrite-

Common-Mode-Chokes/



206 Bibliography

[99] NIC Components Corporation. (2011) Surface mount common mode chokes. [Online].

Available: http://www.niccomp.com/products/

[100] Murata Manufacturing Company, Ltd. (2011) Selection guide of chip common mode

choke coils. [Online]. Available: http://www.murata.com/products/emc/

[101] J. D. O’Sullivan, F. Cooray, C. Granet, R. Gough, S. Hay, D. Hayman, M. Kesteven,

J. Kot, A. Grancea, and R. Shaw, “Phased array feed development for the Australian

SKA pathfinder,” presented at Int. Union Radio Sci. XXIX Gen. Assembly, Chicago,

IL, USA, Aug. 2008.

[102] J. G. B. de Vaate, L. Bakker, E. E. M. Woestenburg, R. H. Witvers, G. W. Kant, and

W. van Cappellen,“Low cost low noise phased-array feeding systems for SKA pathfind-

ers,” in Proc. 13th Int. Symp. on Antenna Tech. & Applied Electromagnetics (ANTEM).

Toronto, Canada, Feb. 15-18, 2009, pp. 1-4.

[103] J. B. Knorr, “Slot-line transitions,” IEEE Trans. Microw. Theory Tech., vol. MTT-

22, no. 5, pp. 548-554, May 1974.

[104] N. Herscovici and D. M. Pozar, “Full-wave analysis of aperture-coupled microstrip

lines,” IEEE Trans. Microw. Theory Tech., vol. 39, no. 7, pp. 1108-1114, Jul. 1991.

[105] A. Neto, D. Cavallo, R. Grooters, and G. Gerini, “Advanced antenna concepts for

aircraft in-flight entertainment: Preliminary definition of a connected array antenna

demonstrator,” European Spase Agency, Noordwijk, Netherland, Tech. Rep. 6 WP

0600, ESA Contract no. C19865, Jun. 2009.

[106] R. Grooters, G. Gerini, A. Neto, R. Bolt, and D. Cavallo, “ACTiFE phase 2,

System/demonstrator definition of single panel connected array antenna,” European

Spase Agency, Noordwijk, Netherland, Tech. Rep. 21 WP 2100, ESA Contract no.

4000101757, Feb. 2011.

[107] P. de Hek, K. Van Caekenberghe, R. van Dijk, “A 3-14 GHz pseudo-differential dis-

tributed low noise amplifier,” in Proc. European Microwave Integrated Circuits Con-

ference (EuMIC), Paris, France, Sep. 2010, pp. 337-340.

[108] M. P. G. Otten and A. G. Huizing, “Requirements for scalable multifunction RF

systems,” TNO Defence, Security and Safety, The Hague, Netherlands, Tech. Rep.

TNO-DV2009 A553, Jul. 2010.



Bibliography 207

[109] R. Bolt, D. Bekers, R. van Dijk, and G. Gerini, “Communications in future combat-

ant,” TNO Defence, Security and Safety, The Hague, Netherlands, Tech. Rep. 31379,

Jun. 2010.

[110] S. Maci, Z. Sipus, A. Freni, A. Mazzinghi, and S. Skokic, Advanced Mathematics for

Antenna Analysis. Class notes for European School of Antennas Course, Dubrovnik,

Croatia, May 10-18, 2010.

[111] B. L. Van der Waerden, “On the method of saddle points,” Appl. Sci. Res. vol. B2,

pp. 33-45, 1951.



208 Bibliography



List of Publications

Journal Papers

J1. A. Neto, D. Cavallo, G. Gerini, and G. Toso, “Scanning performances of wide band

connected arrays in the presence of a backing reflector,” IEEE Trans. Antennas

Propag., vol. 57, no. 10, pp. 3092-3102, Oct. 2009.

J2. D. Cavallo, A. Neto, and G. Gerini, “PCB slot based transformers to avoid common-

mode resonances in connected arrays of dipoles,” IEEE Trans. Antennas Propag.,

vol. 58, no. 8, pp. 2767-2771, Aug. 2010.

J3. D. Cavallo, A. Neto, and G. Gerini, “Green’s function based equivalent circuits for

connected arrays in transmission and in reception,” IEEE Trans. Antennas Propag.,

vol. 59, no. 5, pp. 1535-1545, May 2011.

J4. A. Neto, D. Cavallo, and G. Gerini, “Edge-born waves in connected arrays: a finite

× infinite analytical representation,” IEEE Trans. Antennas Propag., accepted for

publication.

J5. D. Cavallo, A. Neto, and G. Gerini, “A 3 to 5 GHz prototype connected array of

dipoles for wide-scanning, low X-pol applications,” IEEE Trans. Antennas Propag.,

in preparation.

J6. D. Cavallo, A. Neto, G. Gerini, “Analytical description and design of printed dipole

arrays for wideband wide-scan applications,” IEEE Trans. Antennas Propag., under

review.

Conference Papers

C1. D. Cavallo, A. Neto, and G. Gerini, “Connected array antennas for ultrawide band

radar applications,” IEEE Conference on Microwave, Communication, Antennas and



210 List of Publications

Electronic Systems (COMCAS 2008), Tel Aviv, Israel, May 13-14, 2008.

C2. D. Cavallo, A. Neto, G. Gerini, and G. Toso, “On the potentials of connected slots

and dipoles in the presence of a backing reflector,” 30th ESA Workshop on Antennas

for Earth Observation, Science, Telecommunication and Navigation Space Missions,

Noordwijk, Netherlands, May 27-30, 2008. (Awarded with the Best Innovative

Paper Prize)

C3. D. Cavallo, A. Neto, and G. Gerini, “Toward the design of a wide-scan, wide-band,

low-cross-pol printed array,” URSI Forum 2008, Brussels, Belgium, May 30, 2008.

C4. D. Cavallo, A. Neto, G. Gerini, and G. Toso, “On the potentials of connected array

technology for wide band, wide scanning, dual polarized applications,” IEEE Anten-

nas and Propagation Society International Symposium, San Diego, CA, July 5-12,

2008.

C5. A. Neto, D. Cavallo, G. Gerini, G. Toso, and F. E. van Vliet, “A comparison between

the Green’s functions of connected slots and dipoles in the presence of a backing

reflector,” 38th European Microwave Conference (EuMC), Amsterdam, Netherlands,

October 27-31, 2008, pp. 508-510.

C6. A. Neto, D. Cavallo, and G. Gerini, “UWB, wide angle scanning, planar arrays based

on connected dipoles concept,” Sensors & Electronics Technology Panel Specialist

Meeting (SET-120) on Ultra Wideband Radar Systems, Toulouse, France, October

27-28, 2008.

C7. D. Cavallo, A. Neto, G. Gerini, and G. Toso, “Scanning performances of wide band

connected arrays of slots and dipoles,” 3rd European Conference on Antennas and

Propagation (EUCAP 2009), Berlin, Germany, March 23-27, 2009, pp. 1222-1224.

C8. D. Cavallo, A. Neto, G. Gerini, and G. Toso, “A wide-band dual-polarized array of

connected dipoles,” 5th ESA Workshop on Millimetre Wave Technology and Applica-

tions and 31st ESA Antenna Workshop, Noordwijk, Netherlands, May 18-20, 2009,

pp. 209-216.

C9. A. Neto, D. Cavallo, and G. Gerini, “Common mode, differential mode and baluns:

the secrets,” 5th ESA Workshop on Millimetre Wave Technology and Applications

and 31st ESA Antenna Workshop, Noordwijk, Netherlands, May 18-20, 2009, pp.

718-723.



List of Publications 211

C10. D. Cavallo, A. Neto, G. Gerini, and G. Toso, “A wide-band dual-pol array of

printed dipoles,” IEEE Antennas and Propagation Society International Symposium,

Charleston, SC, June 1-5, 2009, p. IF114.1.

C11. D. Cavallo, A. Neto, and G. Gerini, “Analysis of common-mode resonances in ar-

rays of connected dipoles and possible solutions,” 6th European Radar Conference

(EuRAD), Rome, Italy, September 30 - October 2, 2009, pp. 441-444.

C12. D. Cavallo, A. Neto, and G. Gerini, “Common mode resonances in UWB connected

arrays of dipoles: measurements from the demonstrator and exit strategy,” 11th Edi-

tion of the International Conference on Electromagnetics in Advanced Applications

(ICEAA), Turin, Italy, September 14-18, 2009, pp. 435-438. (invited paper)

C13. G. Gerini, D. Cavallo, A. Neto, and F. van den Bogaart, “Connected arrays of dipoles

for telecom and radar applications: the solution for the common mode problem,”

Wide Band Sparse Element Array Antennas (WiSE) End Symposium, Wassenaar,

Netherlands, Mach 4, 2010. (invited paper)

C14. D. Cavallo, A. Neto, G. Gerini, and A. Micco, “A novel printed-circuit-board feeding

structure for common-mode rejection in wide-scanning connected arrays of dipoles,”

4th European Conference on Antennas and Propagation (EUCAP 2010), Barcelona,

Spain, April 12-16, 2010.

C15. D. Cavallo, A. Neto, G. Gerini, and D. Morello, “A dual-band planar array of

connected dipoles: experimental validation based on bistatic RCS measurements,”

4th European Conference on Antennas and Propagation (EUCAP 2010), Barcelona,

Spain, April 12-16, 2010. (convened paper)

C16. A. Neto, D. Cavallo, and G. Gerini, “Performance of wide band connected arrays in

scanning: the equivalent circuit and its validation through a dual-band prototype

demonstrator,” IEEE Antennas and Propagation Society International Symposium,

Toronto, Ontario, Canada, July 11-17, 2010.

C17. D. Cavallo, A. Neto, and G. Gerini, “A 10.5-14.5 GHz wide-scanning connected ar-

ray of dipoles with common-mode rejection loops to ensure polarization purity,”

IEEE Antennas and Propagation Society International Symposium, Toronto, On-

tario, Canada, July 11-17, 2010.

C18. D. Cavallo, A. Neto, G. Gerini, and F. Smits, “Connected arrays of dipoles for broad

band, wide angle scanning, dual polarized applications: A novel solution to the



212 List of Publications

common mode problem,” IEEE International Symposium on Phased Array Systems

& Technology, Boston, MA, October 12-15, 2010.

C19. D. Cavallo, A. Neto, and G. Gerini, “Rigorous equivalent circuits for connected arrays

and their exploitation in antenna matching characterization,” 32th ESA Antenna

Workshop on Antennas for Space Applications, ESTEC, Noordwijk, Netherlands,

October 5-8, 2010.

C20. A. Neto, D. Cavallo, and G. Gerini, “Finiteness of connected arrays: how to control

guided edge waves with proper loading impedances,” 32th ESA Antenna Workshop

on Antennas for Space Applications, ESTEC, Noordwijk, Netherlands, October 5-8,

2010.

C21. D. Cavallo, S. Savoia, G. Gerini, A. Neto, and V. Galdi, “Design of a low profile

printed array of loaded dipoles with inherent frequency selectivity properties,” 5th

European Conference on Antennas and Propagation (EUCAP 2011), Rome, Italy,

April 11-15, 2011.

C22. A. Neto, D. Cavallo, and G. Gerini, “Finiteness effects in wideband connected arrays:

Analytical models to highlight the effect of the loading impedances,” 5th European

Conference on Antennas and Propagation (EUCAP 2011), Rome, Italy, April 11-15,

2011. (convened paper)

C23. A. Neto, D. Cavallo, and G. Gerini, “Truncation effects in connected arrays: Ana-

lytical models to describe the edge-induced wave phenomena,” IEEE Antennas and

Propagation Society International Symposium, Spokane, Washington, USA, July 3-8,

2011.

C24. D. Cavallo, A. Neto, and G. Gerini, “Theoretical analysis and design of connected ar-

rays of dipoles with inter-element capacitance,” USNC/URSI National Radio Science

Meeting, Spokane, Washington, USA, July 3-8, 2011.

Thesis Co-Supervised

T1. A. Micco, “Feeding network for connected arrays to avoid common-mode resonances,”

M.Sc. thesis, University of Sannio, Benevento, Italy, 2009.

T2. D. Morello, “Characterization of antenna arrays in receive mode: Application to

finite connected arrays,” M.Sc. thesis, University of Sannio, Benevento, Italy, 2009.



List of Publications 213

T3. S. Savoia, “Design of an array of connected dipoles with inherent frequency selectivity

properties for radar applications,” M.Sc. thesis, University of Sannio, Benevento,

Italy, 2010.

Patents

P1. European Patent: Array Antenna, 2009 (Publication No.: EP2110883-A1;

WO2009128716-A1; EP2274796-A1, Inventors: A. Neto, D. Cavallo, G. Gerini, R.

Grooters, G. Toso)

Awards

A1. “Best Innovative Paper Prize” at the 30th ESA Workshop on Antennas for Earth

Observation, Science, Telecommunication and Navigation Space Missions, 27-30 May,

Noordwijk, Netherlands, with the paper “On the potentials of connected slots and

dipoles in the presence of a backing reflector”. Coauthors: Andrea Neto, Giampiero

Gerini and Giovanni Toso.



214 List of Publications



Summary

Connected Array Antennas: Analysis and Design

Many of today’s satellite communication and radar systems necessitate phased array anten-

nas that are capable of wideband/multi-band operation and good polarization purity over

a wide scan volume. However, the antenna solutions typically used for wideband wide-scan

applications trade-off matching performance against polarization purity. For this reason,

in recent years, a new approach has arisen for the design of broadband arrays, aiming at

reducing cross polarization. This antenna solution consists of arrays of long dipoles or slots

periodically fed, and are referred to as connected arrays of slot or dipoles. Connected array

antennas represent one of the most promising concepts in the field of very wideband ar-

rays, for being able to achieve both broad band and low cross polarization. The wideband

performance is due to the fact that the connections between neighboring elements allow

currents to remain nearly constant with frequency. Another attractive feature of connected

arrays is their capability to achieve good polarization purity, in virtue of the planarity of

the radiators.

Besides the advantageous physical properties, connected arrays are based on simple ge-

ometries that lead to the derivation of analytical solutions for the antenna parameters.

Closed-form expressions based on a spectral Green’s function representation are derived

for the input impedance, the current distribution over the array and the radiation patterns.

Important advantages result from this representation with respect to numerical solutions:

above all, the reduction of computational costs and the gain in physical insight on the wave

phenomena.

A convenient circuit representation of the array unit cell is derived. The circuit describes

rigorously and analytically the transition between free-space radiation and guiding trans-

mission line. Contrarily to standard Thévenin circuit for receiving antennas, this represen-

tation can be used to evaluate the power scattered by the antenna. The results have been

applied to the analysis of the scattering and absorption of a real connected-dipole prototype

array backed by a frequency selective ground plane. Good agreement was achieved between
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measurements and results from the equivalent network. A novel measurement technique

based on passive RCS measurements in the main planes was used to characterize the active

matching of the radiating part of the antenna in transmission.

Finiteness effects can be particularly severe in connected arrays, due to electrical connec-

tion and the high mutual coupling between the elements. As a consequence, the overall

behavior of a finite wideband array can be sensibly different with respect to infinite array

analysis. Thus, it is crucial to include edge effects already in the preliminary assessment

of the array performance. An efficient numerical procedure is derived for the character-

ization of the edge effects. The method requires only one unknown per elementary cell,

independently from the cell geometrical parameters. This is possible thanks to the use of

an appropriate connected array Green’s function in the integral equation. This procedure

is of general applicability and can be used for arrays with and without backing reflectors

and for arbitrary scan angle.

An alternative analytical representation is also derived to provide physical insight on the

nature of the edge-waves. The analytical approximation of the spatial current distribution

on the finite array is derived, for the specific case of a connected array of dipoles operating

in free space, and scanning only in the E-plane. The key step is to represent the total

current as sum of the infinite array contribution plus edge-born waves. The final analytical

expression is given in terms of Fresnel functions and allows qualitative considerations on

the nature of the electric current distribution, in terms of spreading and attenuation.

The analytical expressions represent a powerful tool that can be used both for modelling

and design. A connected array of dipoles with 40% bandwidth, when scanning in elevation

to 45o, has been designed. Practical designs require the implementation of ad hoc feed

structures that avoid common-mode currents to propagate on the feed lines. This problem

has been addressed and feed structures that perform common-mode rejection have been

designed. Measurements form a prototype demonstrator were presented for validation and

showed good performance.
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