

On compile time Knuth-Morris-Pratt precomputation

Citation for published version (APA):
Kourie, J., Cleophas, L. G. W. A., & Watson, B. W. (2011). On compile time Knuth-Morris-Pratt precomputation.
In J. Holub, & J. Zdanek (Eds.), Proceedings of the Prague Stringology Conference 2011 (PSC'11, Prague,
Czech Republic, August 29-31, 2011) (pp. 15-29). Czech Technical University in Prague.

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/3e785859-a515-4839-a39a-5bcf1a70f269

On Compile Time Knuth-Morris-Pratt

Precomputation

Justin Kourie1, Bruce Watson2,1, and Loek Cleophas3,1

1 FASTAR Research Group, Department of Computer Science, University of Pretoria, 0002
Pretoria, Republic of South Africa

(justin@fastar.org)
2 FASTAR Research Group, Centre for Knowledge Dynamics and Decision-making, Stellenbosch

University, Private Bag X1, 7602 Matieland, Republic of South Africa
(bruce@fastar.org)

3 Software Engineering & Technology Group, Department of Mathematics and Computer Science,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(loek@fastar.org)

Abstract. Many keyword pattern matching algorithms use precomputation subrou-
tines to produce lookup tables, which in turn are used to improve performance during
the search phase. If the keywords to be matched are known at compile time, the pre-
computation subroutines can be implemented to be evaluated at compile time versus
at run time. This will provide a performance boost to run time operations. We have
started an investigation into the use of metaprogramming techniques to implement
such compile time evaluation, initially for the Knuth-Morris-Pratt (KMP) algorithm.
We present an initial experimental comparison of the performance of the traditional
KMP algorithm to that of an optimised version that uses compile time precomputa-
tion. During implementation and benchmarking, it was discovered that C++ is not well
suited to metaprogramming when dealing with strings, while the related D language is.
We therefore ported our implementation to the latter and performed the benchmarking
with that version. We discuss the design of the benchmarks, the experience in imple-
menting the benchmarks in C++ and D, and the results of the D benchmarks. The
results show that under certain circumstances, the use of compile time precomputation
may significantly improve performance of the KMP algorithm.

Keywords: Knuth-Morris-Pratt algorithm, compile time precomputation, metapro-
gramming, string processing time

1 Introduction

Keyword pattern matching is a mature field in computing science which has produced
a large number of efficient keyword matching algorithms [4,10,7]. Such algorithms play
a central role in a wide range of research domains such as molecular biology, infor-
mation retrieval, pattern recognition, compiling, data compression, program analysis
and security [8].

Taxonomies of keyword pattern matching algorithms as well as the SPARE Parts
and SPARE Time toolkits implementing these taxonomies have been described
in [13,2,3]. One of the benefits provided by these taxonomies is that they reveal
commonalities between the algorithms and group them accordingly in the overall
taxonomy. Of particular interest to this research are the common precomputation
subroutines shared by various pattern matching algorithms.

Generally speaking, such precomputation subroutines take as input the keywords
to be matched by the primary algorithms and produce lookup tables as output. The
lookup tables are then used by the primary matching algorithms when a mismatch

Justin Kourie, Bruce Watson, Loek Cleophas: On Compile Time Knuth-Morris-Pratt Precomputation, pp. 15–29.

Proceedings of PSC 2011, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04870-2 c© Czech Technical University in Prague, Czech Republic

16 Proceedings of the Prague Stringology Conference 2011

between the target keywords and text occurs to proceed more intelligently than pri-
mary algorithms not using such precomputed lookup tables. The precomputation
subroutines which create the lookup tables are evaluated at run time. If however, the
keywords to be matched are known at compile time, the precomputation subroutines
can be implemented to be evaluated at compile time versus at run time. This will
provide a performance boost to run time operations. Such compile time evaluation
can be achieved using techniques such as metaprogramming or partial evaluation,
depending on the implementation language being used.

We have initiated a research endeavour to investigate the application of metapro-
gramming in implementing such precomputation algorithms. In doing this, the mag-
nitude of performance gains as well as the challenges and drawbacks to the metapro-
gramming approach will be explored. As a starting point of a broader investigation,
this paper considers the classical Knuth-Morris-Pratt (KMP) pattern matching algo-
rithm [6,13] as a case study for an experimental initial benchmark. The objective of
our experiments was to investigate whether compile time evaluation of precomputa-
tion KMP subroutines could be profitable to KMP keyword pattern matching.

Experimentation is clearly a suitable approach to employ in pursuing this objec-
tive. As such, we constructed an experimental benchmark based on the KMP algo-
rithm, to provide the data required to analyse both the advantages and disadvantages
of compile time precomputation subroutines. In implementing the two variants of the
algorithm to be benchmarked, we initially chose C++ as an implementation language,
based on its support for metaprogramming as well as our previous experience in de-
veloping SPARE Parts [14] and SPARE Time [2] (both having been implemented
using this language). However, our initial experiments showed that C++ does not
have the compile time string processing capacity required to implement the type of
benchmarks we had in mind for the research.

As a result, we opted to port our implementation to the related language, D.
The resulting benchmark in D compares the performance of the traditional KMP
algorithm with that of an optimised version which performs the precomputation of
its lookup table at compile time.

It should be noted that our primary motivation at this stage is not a desire for
massive performance gains. Rather, we focus on understanding the practical require-
ments involved in optimising a traditional pattern matching algorithm at compile
time. As side effects of this focus, we find some interesting scenarios where such
optimisations can be justified.

Furthermore, we contrast our initial implementation in C++ with our latter D
implementation where appropriate, not as a language debate, but rather to draw
attention to how important it is to use the right tool for the job in implementing the
type of pattern matching optimisation our research is dealing with.

1.1 Overview

We present some basic definitions in Section 2. Thereafter, an overview of the ex-
periment’s design is given in Section 3 before briefly discussing some of the issues
encountered during implementation in Section 4. Section 5 presents some hypothe-
ses, the results of our experiments, and an analysis of both. Finally, Section 6 presents
concluding remarks and ideas for future work.

J.Kourie et al.: On Compile Time Knuth-Morris-Pratt Precomputation 17

2 Basic Definitions

Notational conventions used are as follows. Array subscripts are assumed to be 0-
based. A subarray of array A over the range [i, j) is denoted by A[i..j). Textual input
is taken from some alphabet Σ. The text used is denoted by x ∈ Σ+. A set of
keywords, K ⊆ Σ+ is also used, such that ∀k ∈ K : (|k| ≤ |x|).

2.1 Algorithmic Computations

For any algorithm a, we denote by T (a) the time measured in milliseconds which it
takes a to complete its execution.

In essence, the primary search algorithm of Knuth-Morris-Pratt uses a precom-
puted lookup table when a mismatch between the target keyword and the text oc-
curs. This allows forward shifts of more than one position in the text to occur, hence
leading to more efficient matching than in a naive algorithm. The KMP algorithm’s
precomputation function take as input the keywords to be matched by the primary
algorithms and produce the lookup tables as output. We assume the reader to be
familiar with the details of the primary and precomputation algorithms, and do not
present them in detail here. Rather, we assume the following:

Precomputation KMPpre denotes the precomputation function, mapping a keyword
k ∈ K to a lookup table LTk for keyword k. KMPpre defines the function at the
heart of the benchmark. Not only is it timed individually for analysis, it also
is used by both the run time and compile time variants of the KMP algorithm.
Descriptions of KMPpre and LTk can be found in e.g. [15,6].

Main Search KMPmain(LT, k, x, CB) is the main search procedure implementing
the KMP algorithm; a procedure which searches for keyword k in text x aided
by LTk and, if a match of keyword k occurs at xi, evaluates function CB(i) to
determine how to proceed. In this variant, the procedure yields control flow to
some callback function CB whenever a match occurs—passing the index of the
matched keyword to CB. CB then performs some custom operations specific to
the particular CB received as input. If CB returns true after having completed
its operations, KMPmain resumes its search from where it left off. If however, CB
returns false the search is aborted.1

Traditional KMP Algorithm KMPtrad(k, x, CB) defines a procedure for the tra-
ditional KMP pattern matching algorithm, which constructs LTk at run time and
then executes the main search. This defines the traditional KMP algorithm to be
benchmarked against its optimised counterpart.

Optimised KMP Algorithm For each k ∈ K, procedure KMP k
opt(x, CB) which

can search only for k in x but for which LTk is predefined. This defines the opti-
mised KMP pattern matching algorithm, which precomputes its lookup table for
some k ∈ K at compile time using metaprogramming.

3 Designing the Benchmark

Having defined its constituent terms, the benchmark’s design can now be described.
In doing so a simplified data flow diagram is described to give an overview of the

1 Note that because matches never occur in our benchmarking context (as no k ∈ K occurs
in x), CB is never actually evaluated. As the former is not the case in typical KMP usage,
we nevertheless include the function here. Many practical implementations of pattern matching
algorithms, including the ones in SPARE Parts [14] and SPARE Time [2], use a callback function.

18 Proceedings of the Prague Stringology Conference 2011

benchmark’s process flow. This approach makes the description more concise whilst
distancing itself from implementation specific details. The design does however, as-
sume a programming paradigm which will allow forKMPpre to be evaluated at compile
time—as this is the fundamental optimisation being investigated.

Before describing the data flow diagram, several further definitions are required.
They have been defined here due to their lower-level nature and direct relevance to
the benchmark’s data flow.

This benchmark is unorthodox in that it requires a highly generic approach to its
compilation process. Specifically, in order to analyse a wide range of different output
data, it must be possible to change the values of all k ∈ K arbitrarily at compile
time. The design therefore incorporates a seed string or seed s, not occurring in text
x, to serve as variable input to the compilation process itself.2 The seed acts as a
catalyst in determining the generation of K, as will be discussed shortly.

Definition 1 (Program Code) Let PC be the benchmark’s program code after all
metaprogramming has been evaluated. As such, KMP k

opt for k ∈ K as well as the timed
instructions necessary to construct the output data Ω (see below) are defined in PC.

PC can be seen as an intermediary artefact consisting of the code defined by the
programmer and the code generated by the compiler after all metaprogramming code
has been evaluated.

Definition 2 (Benchmark Binary) B is defined as the fully compiled binary rep-
resentation of PC.

Whereas PC is an intermediary artefact, B on the other hand is a fully compiled
program which is ready to be executed.

The set of output data generated by execution of our benchmark B, called Ω,
consists of three parts:

– Precomputation timing data, pairing a given k ∈ K and the time taken to compute
LTk. We denote the bag (multiset) of such pairs by PΩ.

– Traditional KMP search timing data, pairing the length of a given k ∈ K and the
time taken to compute KMPtrad(k, x, CB) (where x and CB are assumed to be
fixed for the entire benchmark). We denote the multiset of such pairs by TΩ.

– Optimised KMP search timing data, pairing the length of a given k ∈ K and the
time taken to compute KMP k

opt(x, CB) (where x and CB are again assumed to be
fixed). We denote the multiset of such pairs by OΩ.

Note 3 (Shifts by One) It is important to note that in our benchmarks, we are
interested in determining the differences between the running times of the traditional
KMP algorithm and its variant for which precomputation has been performed at com-
pile time. For both variants, the same keyword set K and text x are used, and hence
the same shifts are used in both cases and the KMP search time will not differ among
the two. We are therefore not concerned with whether the particular benchmark key-
word set K and text x guarantee a certain behaviour of the Knuth-Morris-Pratt search
algorithm per se, e.g. worst-case or average case behavior. To have consistent perfor-
mance, we opted to always use a seed string s and text x such that the (sub-)alphabet
whose characters occur in s and that whose characters occur in x are disjoint. As a

2 This can be achieved for example by using a compiler directive.

J.Kourie et al.: On Compile Time Knuth-Morris-Pratt Precomputation 19

consequence of this choice, a mismatch will always occur on the first comparison in
the KMP search algorithm, and the shift applied in the main text will always equal 1.
As noted above, the actual choice of text, keyword set and shifts applied does not mat-
ter, as long as the algorithms are compared on the same combination of text, keyword
set and shifts.

Definition 4 (Benchmark Pipeline) Let BP denote the data flow and state tran-
sitions in the benchmark. This “benchmark pipeline” (depicted in Figure 1) operates
as follows:

– The first compilation state, C1, receives seed string s as input and generates key-
word set K of size n = |s| as output, such that:

k1 = s[0..1), k2 = s[0..2), . . . , kn = s[0..|s|)

– The second compilation state, C2, receives keyword set K as input and then eval-
uates all metaprogramming before generating PC as output.

– The third compilation state, C3, receives PC as input and compiles benchmark
binary B as output.

– The benchmark is then run in the last state, R. After loading x into memory as
input and executing its timing instructions, B yields Ω for analysis.

source

code

C1 C2 C3 R

text file text file

Figure 1: The Benchmark Pipeline

Observe that the text x used in the benchmark may be varied over runs, and
that the benchmark can also be recompiled for different values of seed s. These two
observations essentially provide the desired flexibility required to generate a wide
range of data for analysis.

4 Implementing the Benchmark

The benchmark was initially implemented in C++ in order to extend the SPARE
Parts toolkit [13] to include a compile time optimised KMP search. In this implemen-
tation, Boost’s Meta Programming Library (MPL) [12] was used to support compile
time string operations. Unfortunately, it turned out that even with the use of this
library, C++ metaprogramming proved to be unsuitable. The benchmark was then
ported to D and the resulting implementation was used to perform the benchmarking
instead [5]. As the design and class structure of the D and the C++ implementations
hardly differ, we do not present that of the C++ implementation here, but only dis-
cuss the problems with that implementation, the choice for D over C++, and the
design of the D implementation.

20 Proceedings of the Prague Stringology Conference 2011

4.1 Problems with C++ implementation

Despite being both powerful and flexible, C++ metaprogramming has never sup-
ported compile time string operations out of the box. Though excellent supporting
libraries such as Boost’s MPL enable this ability, its intrinsically constrained nature
is the primary reason for abandoning the C++ effort.

Table 1 below summarises the problems encountered with the C++ implementa-
tion of the benchmark. As can be seen, four out of the five problems relate to compile
time string operations—a feature not provided by and completely unsuited to the
design of C++. Out of all the factors listed, the huge performance issues with large
strings proved to be the turning point in the implementation effort. After precom-
piling headers to save overhead, expanding the system’s virtual memory, increasing
the kernel’s default memory map allocation for processes and one too many heap
exhaustions—it became obvious that another language should be pursued.

Problem Description

Constrained string length
Length restrictions, due to performance limitations of the Boost MPL,
fundamentally constrain |K|, which means that a thorough analysis of
Ω cannot be done.

Intrinsic string overhead
The overhead required just to declare MPL strings is relatively high due
to the complex hackery which enables the feature.

Maximum string overhead

Changing the maximum string length (defaulting to 32) to be above
128 characters results in critical compiler overhead. When setting the
length to be greater than around 228 characters, heap exhaustion was
repeatedly experienced.

Poor string writability
MPL string syntax makes it tedious to change s and recompile the bench-
mark with different input.

Array initialisation

Initialising an array with variant compile time data values is a funda-
mentally tricky problem which either requires potentially exponential
use of the preprocessor, or language features which are not part of the
current C++ standard.

Table 1: Summary of C++ Implementation Issues

4.2 Choice for D implementation

We selected the D language [5] for implementation following our experience with the
C++ implementation. D was designed and originally implemented by Walter Bright
and belongs to the family of C/C++/Objective-C. The main intent behind its design
was to improve on C++ by being a cleaner and smaller language. D offers powerful
language features which address all the issues and challenges we encountered using
C++, while its similarity to C++ made our benchmark easy to port.

As D fully supports both object orientation and templates, just like C++ does, the
design and object model used for the C++ implementation could be reused without
modification. The port of the code itself turned out to be trivial—with any major
differences between the two languages actually making the implementation easier
than before. For example, D’s foreach construct and auto type inferencing remove
the need for a lot of boiler plate code in loops and type declarations.

The most striking justification for using D over C++ however, is the complete
absence of the obstacles encountered with metaprogramming in C++. Firstly, D
provides native support for compile time string operations. This means that no con-
straints on string length are placed outside of the standard system limits, and that

J.Kourie et al.: On Compile Time Knuth-Morris-Pratt Precomputation 21

writability is no longer an issue either. Secondly, and more importantly, D offers two
approaches to metaprogramming:

Template Metaprogramming Template metaprogramming in D employs many
techniques similar to those used in C++ (e.g., repetition and selection can be
affected through template specialisation) but is far more powerful. Templates can
serve as generic namespaces and support a much broader range of template param-
eters than their C++ counterparts. In addition, a compile time selection statement
can be used instead of template specialisation, which avoids considerable overhead.

Compile Time Function Evaluation (CTFE) D’s CTFE feature on the other
hand, embeds an interpreter in the compilation environment and allows the pro-
grammer to direct it to evaluate ordinary functions at compile time. The feature
does require that functions meet certain constraints in order to be evaluated, but
the constraints are liberal enough to allow for KMPpre to be implemented as a
normal, imperative function. No template metaprogramming is required.

4.3 Implementation Overview

The architecture of the benchmark illustrates how the process states defined by BP

(see Definition 4) are realised.
As presented here, the architecture is fairly technology neutral, and only assumes

support for objects and compile time metaprogramming. The object model itself is
straightforward and easy to understand as illustrated in Figure 2. The D bench-
mark uses a slightly simplified design: as indicated before, it uses D’s Compile-Time
Function Evaluation. As a consequence, the use of a specific C++ compile time pre-
computation implementation—CT KMP pre—is replaced by the compile time use of
the traditional run time precomputation implementation—RT KMP pre.

Figure 2: Benchmark Reference Model

The object model essentially consists of three parts, corresponding to control
functionality, functionality for the traditional KMP search, and functionality for the
optimised KMP search.

Control: This is implemented by classes KeywordGenerator and Benchmarker. Class
KeywordGenerator is a template class which wraps the metafunctions3 used to gen-

3 “Metafunctions” here refer simply to the techniques employed to operate on data at compile time.
For a more detailed definition, and an excellent discussion on what this means in the context of
C++, see Chapters 1 and 2 of [1].

22 Proceedings of the Prague Stringology Conference 2011

erate K from the compile time string s. KeywordGenerator thus implements the
process defined in state C1 of BP .

Benchmarker implements the control logic which ties the various aspects of the
benchmark together. It also implements the timing and output code required. Af-
ter obtaining K from KeywordGenerator at compile time, Benchmarker uses it to
generate the code and evaluate the metafunctions required to produce PC (see Defi-
nition 1). Benchmarker thus implements the process defined in state C2 of BP .

Furthermore, Benchmarker loads x from a file at run time and directly con-
trols how Ω is produced (e.g., whether Ω is written to standard output or to file).
Benchmarker therefore also implements the processes defined in state R of BP .

Optimised KMP search: KMP opt is a template class used by Benchmarker to
instantiate KMP k

opt for each k ∈ K. For each given k template parameter the result-
ing template instantiation uses the compile time evaluation of RT KMP pre for that
specific k (in the case of D) or uses CT KMP pre (in the case of C++) to generate
LTk. Benchmarker then times the search functions of objects instantiated for each
generated class and constructs OΩ as a result.

CT KMP pre is a template class which generates LTk from a compile time string k.
In the C++ implementation, the class is used as a delegate by KMP opt in compiling
LTk into each of KMP opt’s generated classes.

Traditional KMP search: KMP trad is an ordinary class implementing the pro-
cedure defined by KMPtrad. Benchmarker instantiates a KMP trad object for each
k ∈ K. In doing so, the creation of each LTk is delegated to RT KMP pre at run time.
Benchmarker times both the delegated request and the ensuing search in order to
create TΩ.

RT KMP pre implements the run time version of the function defined by KMPpre.
Benchmarker instantiates the class for each k ∈ K. Each object has a function which
returns LTk for the k it was constructed with. By timing these operations separately,
Benchmarker creates the remaining dataset PΩ.

5 Results Analysis and Interpretation

In this section, we discuss the results obtained using the benchmarking. First, we
present a number of hypotheses to guide the results analysis, as well as an overview
of the benchmarking platform used. We then present the results together with our
analysis and interpretation of them.

5.1 Hypotheses

The benchmark is designed to output data such that the relationship between the
time, t, taken to search for a keyword k, and the keyword’s length |k| can be examined.
In order to direct the analysis several hypotheses are proposed. Two of the hypotheses
(called S1 and S2 below) act as sanity tests to verify the correct functioning of the
benchmark. The other two (called P1 and P2 below) are postulated in the hope that
more understanding can be gained as to when exactly compile time optimisation can
prove useful to keyword pattern matching. Figure 3 helps conceptualise the hypotheses
which follow in presenting a hypothetical plot of the datasets contained in Ω.

J.Kourie et al.: On Compile Time Knuth-Morris-Pratt Precomputation 23

Figure 3: Hypothetical Results

Hypothesis 5 (S1)

∀(ki, ti) ∈ OΩ :
[(

∀(kj, tj) ∈ OΩ : (ti = tj)
)

∧
(

∀(ki, tp) ∈ TΩ : (ti < tp)
)]

All time values in the pairs belonging to the multiset OΩ are equal. Furthermore, all
such time values are less than all time values in the pairs belonging to TΩ.

Because each KMP k
opt already has LTk defined by definition, and because the same

x and CB are used when measuring all search times; the time taken to perform the
optimised KMP search must be constant. As mentioned before, the alphabet used for
text x and that used for seed s and hence keywords ki are disjoint, hence the main
search time depends on the length of text x, but not on any of the keywords ki. In
other words, the same (arbitrary case) search is repeated by each KMP k

opt—therefore
the times of those searches must be the same.

Furthermore, since KMPtrad always computes some LTk, its total running time for
the same values of x and CB must take longer than any such search for which LTk has
been predefined, i.e. using KMP k

opt. This explains the second part of the hypothesis.

Corollary 6 (S2)

∀(ki, tx) ∈ TΩ, (ki, ty) ∈ PΩ, (ki, tz) ∈ OΩ :
(

tx = ty + tz

)

Each time value in each pair belonging to TΩ is equivalent to the sum of the time
values in the corresponding pairs belonging to PΩ and OΩ respectively.

24 Proceedings of the Prague Stringology Conference 2011

Following from the first hypothesis, KMPtrad always takes longer than KMP k
opt by the

time it takes to compute LTk for any k ∈ K.4

The discussion of S1 and S2 above should make it clear that these predicates
should hold at all points throughout the benchmark. Any marked deviance from
these conditions is a sign that something has gone awry. Of course they cannot be
expected to hold perfectly true in practice, due to systemic factors that affect time
measurement (e.g., OS scheduling, CPU instruction caching etc.). As a result, minor
deviances from these sanity tests will be ignored. However, major deviances flag
potential implementation problems. In our implementation and benchmarking efforts,
such deviances appeared when using the C++ implementations of the traditional
and optimised KMP algorithm. This lead us to investigate the suitability of C++
for our comparison, eventually leading to the causes for its insuitability as listed in
Section 4.1, and to our abandonment of C++ in favour of D as the implementation
language. As the results in the next section will show, no major deviances from the
above ‘sanity check’ predicates were observed with the D implementation.

Hypothesis 7 (P1)

∃(kσ, tσ) ∈ OΩ, (kσ, tn) ∈ TΩ, (kσ, tp) ∈ PΩ :
(

tn − tσ = tσ − tp

)

A kσ ∈ K exists such that T (KMP kσ
opt(x, CB)) is faster than T (KMPtrad(kσ, x, CB))

by the same amount as it is slower than T (KMPpre(kσ)).

Though an optimised search is always faster than a traditional search for the same
keyword in the same text, the question that lingers is “when does the dividend gained
really start to matter?”. A heuristic is introduced here to try and answer that ques-
tion.

The keyword length for which the traditional search is exactly equal to the pre-
computation time plus optimal search time represents an interesting boundary value.
It is shown as P1 in Figure 3. Note that at this point, precomputation time is exactly
half of the optimised search time, so that the traditional search time is equal to 1.5
times the optimised search time. The definition below is one way of expressing the
relationship between these respective search- and precomputation times.

Definition 8 (Beneficial Heuristic (Benheur) Equation)

tσ =
tn + tp

2

Let tσ be a heuristic aid in determining when optimisation may be useful where:

– tσ is the time taken by an optimised search for a given k ∈ K.
– tn is the time taken by a traditional search for k ∈ K.
– tp is the time difference between tn and tσ.

Hypothesis 9 (P2)

∃(kδ, tδ) ∈ OΩ, (kδ, ti) ∈ PΩ : (tδ = ti)

There exists some kδ ∈ K such that T (KMP
kδ
opt(x, CB)) = T (KMPpre(k)).

4 Note that this assumes an implementation language that is as efficient in its compile time code
execution as in its run time code execution, which may not always be the case for a language such
as C++.

J.Kourie et al.: On Compile Time Knuth-Morris-Pratt Precomputation 25

If it is taken as a given that a keyword being searched for is known at compile time, and
it is shown that an optimised search can be completed before the traditional search
even begins; there arises a strong argument against using the traditional search. The
following definition is made for completeness:

Definition 10 (Delta Point)
tδ = ti

Let tδ be the delta point where compile time optimisation becomes preferable to tradi-
tional searching for known keywords where:

– tδ is the time taken by an optimised search for a given k ∈ K.
– ti is the difference between the traditional search and the optimised search.

5.2 Benchmarking Platform

Table 2 summarises the details of the benchmarking platform. All benchmarking was
run in a minimal environment with only essential services running. Furthermore, one
of the CPU cores was allocated to run the benchmark’s system process in isolation,
with the rest of the processes guaranteed to execute only on the other core. This
is easily achieved using the taskset [11] utility. Another utility, schedtool [9] was
used to reassign a FIFO scheduler policy to the benchmark’s process. By disabling
pre-emptive scheduling for the process, much more representative sample data could
be obtained due to minimal extraprocess interference.

Architecture: Intel Core2 6400 @2.13GHz
Operating System: Linux 2.6.34 (Gentoo sources release 6)
RAM: 2GB
C++ Compiler: GCC 4.5.1 (Gentoo patches 1.1)
D Compiler: Digital Mars dmd 2.0

Table 2: Platform Specification

5.3 Results Interpretation

As seen in Figure 4, the C++ benchmark performed substantially faster than the D
benchmark. This may be due (in part) to the decision to reduce the D compiler’s
optimisation level (which was interfering with the sample data’s consistency). The
C++ results however, are not even in the order of the bounds defined by the sanity
check implied by S2. Due to the very small inputs being benchmarked, it is suspected
that language implementation factors (e.g., the time of object construction) were
responsible for disproportionally tainting the output dataset. Due to the limited scope
of the C++ results, further investigation was deemed unnecessary.

Interestingly, the data we analysed contained a point where the heuristic given in
Definition 8 holds precisely. This is shown by the three squares in Figure 5a (page 27).
The delta point mentioned in Definition 10 is seen also to occur in the order of where
it was predicted. Though such relations remained approximately constant throughout
our results, the results are not generalisable due to the arbitrary case analysis of the
benchmark.

It was also noted during our analysis that the ratio between |x| and |k| has some
practical implications. Take for example |x| and |k| in Figure 5a around the point of

26 Proceedings of the Prague Stringology Conference 2011

Figure 4: C++ vs D Results

the heuristic match. Given that KMP k
opt is arguably of practical interest at this point,

we note that |k| ≈ |x|
4
. As no smaller ratios of |k| to |x| showed a favourable case for

KMP k
opt in our analysis, we note that the strong cases for the use of metaprogramming

occurred where |k| ≥ ≈ |x|
4
. Our analysis also noted that where |k| ≤ ≈ |x|

50
, the

difference between the KMP k
opt and KMPtrad becomes so small as to be practically

negligible (as seen in Figure 5b).

6 Concluding Remarks

The benchmarking of the optimised and traditional KMP algorithms, although based
on a particular case analysis in which no keyword matches occur, has lead to inter-
esting results. Firstly, it was seen that performance gains are most significant when
the proportional difference in size between the search text and the keyword is small.

J.Kourie et al.: On Compile Time Knuth-Morris-Pratt Precomputation 27

(a) Heuristic Match

(b) Minimal Gains

Figure 5: Cases For and Against Optimisation

28 Proceedings of the Prague Stringology Conference 2011

This suggests that compile time optimisation may prove practical where this is the
case, such as in intrusion detection systems.

Similarly, it was seen that performance gains become redundant when the propor-
tional difference between search text and keyword size is very large. Therefore compile
time optimisation appears to be less applicable in domains where such relations are
typical, for example DNA pattern matching.

The clear design of the research objectives, implementation structure, and hy-
potheses are seen to form the basis of a good benchmark design. Such definitions also
reinforce the repeatability and correctness of the experiment.

Furthermore, succinct information has been provided on the limitations of C++
regarding its suitability for optimised keyword pattern matching. C++ metaprogram-
ming is shown to be fundamentally unsuited for even moderately demanding compile
time string operations. In retrospect this is not very surprising. Template metapro-
gramming (let alone template string metaprogramming) is simply not a feature C++
was designed for. Indeed, any “feature” that is not explicitly designed from the ground
up, remains—by definition—in the realm of craft.

This contrasts strongly with the solid engineering behind the D programming
language. Though the D benchmarks are of limited use as far as scientific observa-
tion is concerned, they serve as a very good proof of concept. D is seen to provide
highly robust metaprogramming support—exactly what is required for computation-
ally demanding compile time optimisations. Its native support for compile time string
operations as well as its Compile Time Function Execution feature, are only two of
the reasons that made implementing the benchmark in D a suitable decision.

6.1 Further Research

This work presents a base for several areas of further research, including the following
topics:

– The benchmark model described in Section 3 can be refined and extended to
support the analysis of many of the algorithms identified in [13] and [2]. Such an
effort would use the terms and definitions from those works in order to synthesise
more consistently with the taxonomies they describe.

– The metaprogramming features offered by other languages such as LISP and
Haskell can be investigated for possible applications in keyword pattern matching.
Again, by following in the example of [13] and [2], an optimised toolkit could be
constructed to supplement SPARE Parts and SPARE Time.

– Research investigating the performance gains of applying compile time optimisa-
tion to pattern matching in real world systems would prove interesting. In par-
ticular, it would be advisable to consider applications where the proportional
difference between the search text size and keyword size is small.

– When the next C++ standard is published, it would be interesting to evaluate the
language’s overall suitability to metaprogramming. Such a review could make use
of comparisons to other programming languages with an emphasis on qualitative
software engineering “ilities” (e.g., maintainability, modifiability, scalability etc.).

Acknowledgements

We thank the anonymous referees for their feedback, and thank Linda Marshall and
Derrick Kourie for their contributions to this research and its presentation.

J.Kourie et al.: On Compile Time Knuth-Morris-Pratt Precomputation 29

References

1. D. Abrahams: C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost
and Beyond, Addison-Wesley, Boston, 2005.

2. L. Cleophas: Towards SPARE Time: A New Taxonomy and Toolkit of Keyword Pattern
Matching Algorithms, master’s thesis, Eindhoven University of Technology, 2003.

3. L. Cleophas, B. W. Watson, and G. Zwaan: A New Taxonomy of Sublinear Right-To-Left
Scanning Keyword Pattern Matching Algorithms. Sci. Comput. Program., 75 November 2010,
pp. 1095–1112.

4. M. Crochemore, C. Hancart, and T. Lecroq: Algorithms on Strings, Cambridge Univer-
sity Press, 2007.

5. D Programming Language 2.0: http://www.digitalmars.com/d/2.0/index.html.
6. D. E. Knuth, J. Morris, and V. R. Pratt: Fast Pattern Matching in Strings. SIAM

Journal on Computing, 6(2) June 1977, pp. 323–350.
7. G. Navarro and M. Raffinot: Flexible Pattern Matching in Strings: Practical on-line search

algorithms for texts and biological sequences, Cambridge University Press, 2002.
8. Pattern Matching Pointers: http://www.cs.ucr.edu/~stelo/pattern.html.
9. schedtool(8) – Linux man page: http://linux.die.net/man/8/schedtool.
10. W. Smyth: Computing Patterns in Strings, Addison-Wesley, 2003.
11. taskset(1) – Linux man page: http://linux.die.net/man/1/taskset.
12. The Boost MPL Library: version 1.43.0, http://www.boost.org/doc/libs/1_43_0/libs/mpl/

doc/index.html.
13. B. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Eindhoven

University of Technology, 1995.
14. B. W. Watson and L. Cleophas: SPARE Parts: A C++ toolkit for String PAttern REcog-

nition. Software—Practice & Experience, 34(7) June 2004, pp. 697–710.
15. B. W. Watson and G. Zwaan: A Taxonomy of Keyword Pattern Matching Algorithms,

Computing Science Report 92/27, Technische Universiteit Eindhoven, 1992.

http://www.digitalmars.com/d/2.0/index.html
http://www.cs.ucr.edu/~stelo/pattern.html
http://linux.die.net/man/8/schedtool
http://linux.die.net/man/1/taskset
http://www.boost.org/doc/libs/1_43_0/libs/mpl/doc/index.html

