

Modeling and simulation of defect induced faults in CMOS IC's

Citation for published version (APA):
Di, C. (1995). Modeling and simulation of defect induced faults in CMOS IC's. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR434644

DOI:
10.6100/IR434644

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR434644
https://doi.org/10.6100/IR434644
https://research.tue.nl/en/publications/f57f8fdd-487a-4bd5-a30c-bac6c062e362

Modeling and Simulation of

Defect Induced Faults in CMOS IC's

F=a · b + c·d /"""-lii
Fbri = F + ~. c . d ~

Chennian Di

Modeling and Simulation of Defect Induced Faults in CMOS IC's

Modeling and Simulation of
Defect Induced Faults in CMOS IC's

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag
van de Rector Magnificus, prof. dr. J .H. van Lint,
voor een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op

vrijdag 31 maart 1995 om 16.00 uur

door

Chennian Di

geboren te Xi'an, P.R. China

Dit proefschrift is goedgekeurd door de promotoren

prof. Dr. -Ing. J.A.G. Jess
en
prof. ir. M.T.M. Segers

© Copyright 1995 Chennian Di

All rights reserved. No part ofthis publication may he reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanica!, photocopying, recording, or otherwise, without the prior written
permission from the copyright owner.

Druk: Dissertatiedrukkerij Wibro, Helmond

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Di, Chennian

Modeling and simulation of defect induced faults in CMOS
IC's I Chennian Di. - Eindhoven: Eindhoven University of
Technology. Fig., tab.
Thesis Technische Universiteit Eindhoven. With ref.
ISBN 90-386-0040-2
NUGI832
Subject headings: integrated circuits; CAD I integrated circuit testing.

Acknowledgements

I would like to thank all who helped me going through this valuable and
memorable period. Particularly I would like to thank Professor Joehen Jess
who took all the trouble to grant me the chance of conducting and finishing
this thesis work. In bis group, I enjoyed the true academie freedom and yet
got all the supports. His vision, enthusiasm and encouragement have been
always a stimulus to me.

I would like to thank Geertleon Janssen for letting me use bis BDD package
and helping me come up with the algorithm documented in the Appendix of
this thesis.

From the bottorn of my heart, I am very grateful to my wet-grandpareuts and
my parents. It is the early life with them that gives me the strength to carry
on in the last years without fear.

V

vi

Summary

The quality of testing Integrated Circuits (IC) highly depends on the
manufacturing process and on a specific design. This is especially true for
CMOS digital IC's since the generally used single stuck-at fault model cannot
fully describe the behavior of defects induced during the manufacturing
process. This thesis outlines a technology--driven testing flow to study the
behavior of defect-induced faults with the ultimate goal of generating a
reliable and economie test for CMOS digital IC's.

The thesis starts with the introduetion of a layout-circuit fault extractor
system to study what are the possible occurring faults for a design. This
system takes the circuit layout, defect mechanisms and statistics of a process
line as inputs and computes all the possible occurring faults and their
probabilities. The central topic of the thesis is the modeling and simulation
of the two major faults: bridging and open faults.

The main issue addressed in this thesis is how the behavior of each
defect--induced bridge or open fault can be accurately modeled and yet a fast
fault simulation procedure can be obtained for a large circuit. This thesis
employs a simple "divide and conquer" approach. Following this approach,
the whole taskis completed in two steps. In the first step, the circuit extracted
from the layout of a design is further abstracted at logie-level and
simultaneously each defect--induced fault is modeled at logie-level as
Boolean expressions. Such modeling is realized either by approximate
computations or circuit-level simulations. In the second step, the fault
simulation is conducted at logie-level just by manipulating these modeled
Boolean expressions. Consequently, both accuracy and efficiency can be
obtained. The thesis details several systems with a different degree of
accuracy and efficiency.

The first system uses an approximate transistor model to model each bridge
fa ult. This results in a very fast modeling and simulation system but with the
disadvantage that not every undefined state caused by a bridge can be
resolved. With the introduetion of two new concepts, the
"generic-bridge-table" and the "generic-cell-table", the second system
models each bridging fault with a circuit-level simulator. This results in a

Vll

Vlll

reasonable modeling and simulation speed but with the advantage that
almost every undefined state caused by a bridging fault can be resolved. The
system developed for open faults can model both the hazard and
charge-sharing effects of each open fault and yet can perform the fault
simulation for opens almost as fast as for single stuck-at faults.

All the systems are verified by experiments with well established benchmark
circuits. The results are encouraging.

Contents

Acknowledgements . v

Summacy . vii

Contents . ix

1 General Introduetion . 1
1.1 Background . 1
1.2 Schematic of a "technology-driven" test philosophy 3

1.2.1 Inductive fault analysis (IFA) . 3

1.2.2 Input to IFA . 3
1.2.3 Relation between defects, faults and critica} areas 4

1.2.4 Adequate fault modeling fortest vector generation 5

1.3 Outline of the thesis . 5

2 Defects and CMOS Circuit Faults . 7
2.1 Spot defects and critica} areas . 7
2.2 Likelibood ofthe occurrence of a fault . 10
2.3 Fault extraction for CMOS circuits . 12

2.3.1 Circuit and fault classification......................... 12
2.3.2 Analysis of the results of some extraction experiments . . . 13

2.4 Conclusions . 18

3 Bridging Fault Modeling and Simulation with Approximate
Accuracy . 19

3.1 Introduetion .19
3.2 A logic modeling and simulation strategy..................... 21
3.3 An approximate evaluation metbod . 23
3.4 Specification offaulty Boolean functions . 26
3.5 The details of extracting the Faulty Boolean function 30

ix

x

30501 An extraction procedure 0 30

3o5o2 Obtaining conducting circuits 0 31

3o5o3 Boolean function representations issue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31

3o5.4 Reduction of Boolean input space 0 32

3o6 A fault simulator for faulty Boolean functions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34

307 Experimental results 0 37

308 Conclusions 0 40

4 Bridging Fault Modeling and Simulation with Circuit-level
Accuracy . 41

401 Introduetion 0 41

402 Fault simulation using generie-bridge and generie-een tables 0 0 43

40201 Evaluation ofbridged output 0. 0. 0 0 0 44

40202 Propagation of undefined inputs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 45

4o2o3 Fault simulation strategy 0 47

4o3 Dynamic derivation of generie-bridge and generie-een tables 0 0 48

40301 Denvation of generie-bridge-tabie 0 49

4o3o2 Denvation of generie-een-tabie 0 51

4o3o3 Boolean function representations 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 • 0 0 0 53

4.4 Fault simulation 0 • 0 0 0 54

4o5 Experimental results 0 56

4o6 Conclusions 0 o 0 o o o 60

5 Open Fault Modeling and Simulation . 61
5o1 Introduetion 0 o 61

502 Open fault and its testing problems 0 62

5o2o1 Open faults 0 62

5o2o2 The problem of testing opens 0 63

503 General strategy 0 64

5.4 Derivation of detecting conditions 0 65

50401 Non-robust test and robust test under hazard effects 0 0 0 0 65

5.402 Robust test under both hazard and charge-sharing effects 68

5o4o3 Representation of detecting conditions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70

505 Fault simulation for opens 0 71

5o6 Experimental results 0 72

507 Conclusions 0 74

6 Concluding Remarks . 75
601 Remarks 0 75

602 Suggestions for further investigation 0 76

XI

Relerences . . • • . . • . . . • • . • • . 79

Appendix A • • . • • • . • • • • • . • . . . • 83

:x:ii

j

j

j

j

j

j

j

j

j

j

j

j

j

j

J

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

I

j

1
General Introduetion

1.1 Background

Though today's technology, being capable of integrating a few million
transistors on a single chip, provides tremendous functionalities with high
performance, it provides very poor accessibility to the external world because
of the limited pin count. It is very hard for test engineers to check the
correctness of a manufactured Integrated Circuit (IC). Testing of I C's is
becoming a bottleneck for the whole design and manufacturing cycle. This
problem is even more protruding for the dominating CMOS technologies.
This is because the manufacturing defects may cause many more complex
faults than the practically used single stuck-at fault models at logie-level
[24,53]. For example, even with very careful process control and the
elimination of all possible causes, a random spot defect, as one of the major
manufacturing defects, may still occur in the final manufactured I C's. For a
CMOS circuit, various faults that cannot be described by single stuck-at
faults may result. Figure 1.1 illustrates a piece oflayout oftwo CMOS cells
in a design and their corresponding transistor schema tic. If spot defects (d 1
through d 6) occur in the positions as shown in the layout, some network nodes
are erroneously connected or a node is broken into two parts as indicated in
the schematic. The first type offault is called a bridging fault and the second
type is called an open fault. In genera}, any fault that is caused by a spot
defect is referred to as a defect-induced fault. Clearly, except d 6 which
shows the direct stuck-at 0 of the output of one cell, rest of the defects cannot
be mapped into the single stuck-at faults that are assumed at the inputs and
the outputs of the cells. They have more complex behavior than stuck-at
faults. In general, a defect-induced fault cannot be always mapped into a
stuck-at fault. The missing link between the beuristic fault model assumed
at logic level and defect-induced faults was first made public in the late 70s

2

• metall1Z21 metal2fm poly. 0 diff. 0 p-well

Figure 1.1 mustration of defects and their induced faults.
(d1, d 2,d5,d6: extra metall d 4: extra poly. d 3: missing metall)

[24,53]. However little attention has been paid until the IC's manufacturing
feature size was sufficiently scaled down and the demand ofhigh quality and
high performance IC's was increased.

As for testing, the only way to find those defects would be by microscopie
inspection. However this procedure is much too expensive for testing mass
production. From the example shown in figurel.l, it is obvious that the actual
occurrence of a fa uit during manufacturing depends on the actual defects, the
technology, the fabrication process and the actual layout of the circuit. To
study the impact of defects on a design and on the existing testing methods,
it is essential to know:

1) What are the defects and their characteristics ? How can these data be
obtained from a specific process line?

2) With the available defect information, then for a specific design, what
kind of circuit faults can possibly occur and what are their probabilities?

After the above issues to be settled, then the next questions are:

3) How do these defect-induced faults manifest themselves in a design?
What is the electrical behavior? How serious is it that the tests targeted
at single stuck-at faults cannot detect these defect-induced faults?

4) If the single stuck-at fa uit model is not adequate, what kind of fa uit
models should be used and how can test patterns be generated for them?

To answer these questions, a bottorn-up test approach has to be established.
This thesis refers to such an approach as a technology-driven test

3

methodology. The thesis intents to identify and formulate the problem and
further investigate possible solutions.

1.2 Schematic of a "technology-driven" test
philosophy

1.2.1 Inductive fault analysis (IFA)

As mentioned insection 1.1, defect mechanisms in I C's are too complex to he
captured bythe standard "stuck-at" fault model. Consequently the reliability
of the test coverage prediction has to he questioned. In order to obtain more
reliable test eoverage we obviously have to study the defect mechanisms
within the fabrication technology and the way that they translate into faulty
circuit behavior. Such a method is the so-called "inductive fault analysis".
Figure 1.2 is supposed to illustrate this method and the way it leads to an
adequate characterizations of circuit faults, to reliable fault coverage
computations and eventually to improved test vector sets. The following
sections will elaborate each step brie:fly.

process:
defect defect

mechanisms statistics ·

Figure 1.2 A "technology-driven" test flow.

1.2.2 Input to IFA

The analysis starts with two separate sets of input data, namely:

the product in terrus of its chip layout, which is in essence a set of
reetangles and their coordinates;

4

- data characterizing the fabrication process.

The latter needs some explanation. The fabrication process has a long
sequence of lithographical steps interleaved by physical/chemical steps.
Many things can go wrong. However for IFA it is assumed that any systematic
or repetitive defect patterns are eliminated while the process goes through
the set up phase or is in maintenance. We are only interested in those defects
showing up during the stabie processing of valid products. Then the defects
are random in the first place. In the second place, they amount to local
disturbances in the form of extra or missing spots of material. Those defects
are called "random spot defects".

In the sequel, for IFA, a fabrication process can he characterized by

- the layers of the chip structure characterizing the defect mechanisms.

- the geometrical shape of the defect.

- the stochastic size distribution ofthe geometrical shape parameters (such
as diameter or edge length).

the stochastic distribution ofthe frequency of the occurrence of the defect.

De pending on the kind of fabrication process it may he arbitrarily difficult to
characterize it in the above way. IFA therefore often makes simplifying
assumptions [21,34]. For instanee it is assumed that defectsappears only in
a single layer [21], which is obviously not true insome cases. :Some other
example: defects may he assumed to he of circular or square shape (the latter
assumption allows for a particularly effective computation)[21,25]. Size
distributions come in all kinds offorms [20]. The only fact that :seems to he
reasonably safe is that very small and very large defects are very rare. As to
the frequency of occurrence the assumption of an equal spread of occurrence
of defects seems in general to lead to pessimistic analysis. Therefore most
defect frequency models account for the clustering of defects in certain
locations ofsome wafer [48].

The more thoroughly the fabrication process is characterized the higher the
reliability ofiFA.

1.2.3 Relation between defects, faults and critical areas

Assuming that most defects can he characterized by random spots of extra or
missing material the associated circuit faults most likely appear as net
bridges or opensin the interconneet structure ofthe chip under study. A way
to characterize the set of faults actually occurring as, for example, the
consequence of a spot of metal in a metallayer, can he picturedas follows: we
choose a spot of random size d and let it travel over all the locations in the
metal layers. If the spot is centered in a certain location such that it

5

short-circuits two nets say n 1 and n2, together causing a bridge, we attache
a name to this circuit fault and we find all points where the spot causes the
same bridge. The set of all these points establishes the cri ti cal areas for this
particular fault, where the size d is a parameter. Obviously the critica} area
is a nondecreasing function of d. Combining the critic al area analysis with the
statistica! information about defect density and size yields a probability
measure for the respective circuit fault to occur[16,21].

The computational work involved with doing this for all possible faults is
considerable. The results ofusing the system described in [57] indicate a bout
the cost involved and they are hopeful.

1.2.4 Adequate fault modeling fortest vector generation

Of course bridges and opens are physical characterizations of the effect of
fabrication defects. It would be very expensive to find those defects by
microscopie inspection. Therefore for economie reasons testing at the end of
mass production must happen by automatic electrical measurements using
programmabie instrumentation. Moreover the most economie way is to apply
digital test signals at the signal ports and observe the output signals. There
is a whole industry supporting instrumentation optimized for this purpose.
It is important for industry to be able to stay using this equipment because
it represents usually a large investment loan if one considers the total
investment into the line. This leads to the central topic of this thesis, namely
the characterization of defect induced circuit faults by Boolean expressions.
The thesis discusses a number ofways to capture the fault behavior ofbridges
and opens by Boolean expressions. In addition it presents results on the
computational work involved for finding the logic models. Furthermore
efficient fault simulation techniques ofusing those logic mode Is are developed
and eventually the reliable test coverage can be predicted. The results are
encouraging in terms of accuracy and efficiency.

One issue remains unsolved in this thesis, namely the question how to
generate economie test vector sets for the new models. Of course having an
efficient fault simulation technique may be considered as a partial solution
to the problem. Results of further study can be expected in the fut ure.

1.3 Outline of the thesis

In general, it is not an easy task to capture the Boolean behavior of
defect-induced faults accurately such that fast fault simulations and
improved test vector sets can be obtained. This is especially true for
non-regular CMOS Iogic circuits. This thesis focuses on the accurate

6

modeling and efficient simulation of defect-induced faults for static CMOS
combinational circuits. The thesis is organized as follows.

In chapter 2, aftèr the defects and circuit faults are described in detail, the
well developed concept of "critica} area" together with a system to extract
critica! areas is introduced. To obtain the possible faults for a design, a
probabilistic model of combining critica} areas with defect statistics is
developed. The results of extracting the faults by this system fora set of
benchmark circuits are presented. The results are analyzed and a suggestion
for fault modeling is given.

Chapter 3 formulates the problem for one type of the important faults, the
bridging faults. An approximate modeling and simulationl metbod is
developed based on the results of some experimental study. The developed
metbod tries to improve the modeling accuracy as much as possible while the
modeling and simulation efficiency can he maintained. The metbod uses a
simple and yet explicit transistor model to analyze each bridging fa ult. As the
result ofthe analysis, each bridging fault is modeled at the logic level in terms
of Boolean functions, called faulty Boolean functions. The fault simulation
can he performed at logic level by just using the faulty Boolean functions. This
metbod is effective for many bridges and out-performs switch-level
approaches.

In chapter 4, the problem of bridging faults is further studied in order to
achleve the circuit-level accuracy without sacrificing the fault simulation
efficiency. With the exploitation of some design features, two new concepts
are introduced in this chapter. The first one, the "generic-bridge-table", is
applied to characterize the behavior of each bridging fa ult. The second one,
the "generic-cell-table", is used to characterize how each cell interprets an
input. These two sets of tables are derived dynamically fora design by SPI CE
simulations. It is demonstrated that they can he easily used by any logic fault
simulator to determine whether a bridge is detected. Thus both circuit-level
accuracy and logie-level simulation efficiency are obtained.

In chapter 5, a metbod ofmodeling and simulating open faults is proposed.
This metbod follows the same philosophy as for bridging faults. For any open
fault, this metbod performs a local analysis by taking both the hazard and
charge-sharing effects of the open into account. Afterwards, the open is
modeled in terms of a detecting condition at logie-leveL Then, the fault
simulation can he performed at logic level by just manipulating the detecting
conditions. This is efficient and also accurate.

Chapter 6 reviews the whole thesis and evaluates the methods developed in
this thesis. At the end, possible future work is suggested.

2
Defects and CMOS Circuit Faolts

2.1 Spot defects and critical areas

In a mature manufacturing process the essential causes of malfunctions of
IC's are the so-called random spot defects. Those defects are local
contaminations ofthe layer structures establishing electrical elements. They
are mainly induced by dust particles during photolithographic processing.
Typical examples are spots of metal or polycrystalline silicon and pin holes
in the silicon-oxide insulation layers. Figure 2.1 shows two photos taken from
a process line indicating the existence of such spot defects.

Figure 2.1 Examples of spot defects.

Spot defects can be conceptualized as missing or extra material with a
random size. For a specific process line, usually spot defects can be
characterized by a defect size distribution and a defect density, namely the
probability of occurrence of each different defect size and the number of

7

8

defects per unit area. Such information can he captured by process monitors
[11,35]. These process monitors are usually regularly structured patterns
implemented in some layers. They can he placed on the wafer between dies.
Mter processing, the defect data, namely the defect size distribution and
defect density, can he obtained by electrically measuring the monitors. ·

critica! areas

(a) (b)

Figure 2.2 Illustration of critica! areas.

The combination oflayers of an IC, named "structure", corresponds to certain
electrical elements, like a transistor or a via. If a defect is present on some
layer of a structure it may cause a fault affecting the entire structure.
Typically two or more conducting patterns are unintentionally connected or
some conducting patterns are broken. At the circuit level, the defect may
cause bridging fanlts among network nodes or the splitting of some network
nodes. One way of studying the impact of defects on a layout design is by
means of extracting the critica! are as [48]. Roughly speaking, the' set of center
points of all defects causing a fa uit of a defined type relative to jsome layout
structure defines the critica! area for this layout structure. ~igure 2.2(a)
illustrates critical areas bridging two patterns for a specific! defect size.
Figure 2.2(b) shows the critical areasof a defectbreakinga pattern. Clearly
the critica! area is a function ofthe defect size.lt is possible that there are as
many critica! areas for any structure as there are defect mechanisms
affecting each layer. The initia! application of critica! areas is for yield
predictions [25,48,55]. Among various systems developed to extract critica!
areas, one of the efficient methods [25] uses a geometrical computation.
Figure 2.3 illustrates the extraction procedure. lt first scans the layout to
identify the potential parts ofthe layout where a defect may induce a fault
(illustrated in figure 2.3(a)). Then the potential parts are expanded or shrunk
fora given defect size (figure 2.3(b)). Finally the contour of a set of rectangular
regions is computed and the union of all critica! areas is obtained (figure
2.3(c)). The complete concept and the detailed algorithms are described in
[25].

The impact of defects on fa uit modeling and simulation has also been noticed.
Unfortunately, fora long time, there were no accurate and efficient tools to

cnt1cal areas
of A-B

(c)

9

are as
-C

Figure 2.3 Illustration of critica! areas extraction. (a) susceptible site
extraction. (b) expansion of susceptible site. (c) critical areas computation.

modeland simulate the large amount of defect-induced faults fora relatively
large circuit. Instead, most people intend to use the single transistor
stuck-on(oft) as a supplement fault model to the stuck-at fault model. The
arbitrary and beuristic nature of this model caused it to find hardly any
applications. Only a few years ago, attention was drawn towards the fact that
the occurrence of a circuit fault largely depends on the defect conditions and
the circuit layout [21,34]. Such occurrence is technology and design
dependent. The accurate and realistic faults can only he obtained from the
physicallayout of a design by detailed analysis. U nder defect conditions not
only the possible faults but also their probability of occurrence should he
obtained. This procedure as described in chapter 1 is known as IFA [21,55].
Since the appearance of paper [21] many systems capable ofmodelingdefects
as node bridging and line open faults have been developed [25,55]. The
previously mentioned system of extracting critica! areas can he applied to
perform inductive fault analysis as well. That is, instead of computing total

defect

critica! areas
extractor

1 layout-circuit extractor 1

L-----------------------J
Figure 2.4 The overview of the analysis system.

10

critica! area, the intersection of cri ti cal are as related to different faults is also
computed as shown in figure 2.3(c). Very recently the improvement of the
method and its application to inductive fault analysis is described in [57]. The
essential difference orthese two approaches [25,57] from others is that it first
computes the critica! areas for each particwar fault. Then, the final
probability ofthe occurrence of a fault can he obtained by talring into account
the defect statistica. Thus obtaining the probability of a fault is independent
ofthe critica! area extraction. With such a modular feature, further analysis,
for example, to verifY a design for different defect statistica, can he done
without repeating the whole extraction procedure. Consequently, this
strategy is much faster than the full simulation method employed in [21,55].
The whole system of performing the inductive fa uit analysis is illustrated in
figure 2.4.

The following section presentshow the probability ofthe occurrence of a fault
is derived from the extracted critica} areas by combining defect statistica.

2.2 Likelibood of the occurrence of a fault
For every defect mechanism, the critica} areas can he extracted as it is
illustrated in [25]. Usually, more than one different defect mechanism can
induce the same fa uit, or vice versa only one defect mechanism may induce
more than one fa ult. The final probability result should take these situations
into account.

First some notation is introduced. Let M = {m 1,m2 , ••• ,mi he the set
descrihing a total of I possible independent defect mechanisms, such as" extra
metal" and "missing polysilicon". Assume that the defect mechanisms are
mutually stochastically independent processes as in [48]. As defects from
every defect mechanism occur with a random size and the number of defects
is random as welJ, let Dm(x) repreaent the defect size distribution and rm the
defect density, where x denotes the defect size, confined from min to max, and
m E M, the defect mechanism. Let F {{1,{2, •.• ,{} he the set descrihing a
total of J possible distinct fault types, such as, bridge, line open and transistor
stuck-on. Let N = {n 1,n2, •.. ,nKf he the setdefined bytheK electricalnodes
of a design. Since one defect mechanism can induce more than one fault
affecting one or more nodes, a fault can he represented as a pair < f, n >
where f Ç Fand n Ç N.

The sensitivity of a particular fault < f, n > due to a defect of size x from a
defect mechanism m, or the probability that such a fault occurs, is related to
its critica! area by

A <f,n>(x) = s<f,n>(x) A
m m layout (2.1)

or
A <[,n>(x)

S < f,n >(x) = _..:.;me;._ __
m Alayout

11

(2.2)

where A;:.f,n> is the critical area, and s;:.t,n> the sensitivity, due toa defect

mechanism m, both as a function of a defect size x. Alayout is the totallayout

area.

This sensitivity (eq.(2.2)) is in facta measure ofthe design's vulnerability to
different defect mechanisms and to each different defect size. However, in a
manufacturing environment the probability of occurrence of each different
defect size is not the same. Therefore, the average probability of occurrence
of a fault < {, n > due to a defect from a defect mechanism m is computed as

max

<P;:.t.n> = J s;:.t,n>(x) Dm(x)dx (2.3)

min

where Dm(x) is the defect size distribution that can be obtained from a
manufacturing line. Eq.(2.3) represents the likelibood of a fault for all defect
sizes induced by one defect mechanism.

Since more than one defect from a defect mechanism m may occur, we obtain
the average number of times that < {, n > occurs as

À <f,n > = y A <P <f,n > (2.4)
m m layout m

AB mentioned before, more than one defect mechanism can induce the same
fa ult. Therefore, the probability of each fault < {, n > due to defects from all
possible defect mechanisms is expressed as

w<t,n> = I À;:.r.n> (2.5)
mEM

Since the result w<f,n >is not normalized, in the sequel it is referred to as the
relative weight of the fault. This weight represents the likelibood of
occurrence ofthe fault < J, n > due to all possible defects. Mter substitution
of eq.(2.2), eq.(2.3) and eq.(2.4) into eq.(2.5), the final weight is obtained as

ma x

w<f,n> = I Ym J A;:.f,n>(x) Dm(x)dx (2.6)

mEM .
mm

It is straightforward to obtain the relative weight for each fault. First the
critica} areasof all the possible defect mechanisms that cause the same fault
are grouped together, i.e. if defectsof extra roetal and extra contact both cause
the samebridge fault, then the critica! are as for each defect size ofboth defect
mechanisms will be put in one group. This process is repeated for every

12

different mechanism of each fault < {, n >. After such grouping, the total
number of faults for every type of fault is reduced to the total number of
distinct faults. Then the weight for each fault is computed in the same
procedure as executed by deriving eq.(2.2) to eq.(2.5).

2.3 Fault extraction for CMOS circuits

2.3.1 Circuit and fault classification

A full CMOS combinational circuit discussed in this thesis can be viewed as
an interconnection of CMOS cells. A CMOS cell has a network of
serlal-parallel PMOS transistors as pull-up (P) and, its dual part, the
pull-down (N) part. For ease of analysis, the network node which is the drain,
souree or gate of a transistor is classified in terms ofthe followingthree types:

1} input node: all the primary inputs, power supply V dd(V +) and ground
V11s(V_);

2) output node : the outputs of all the cells including primary outputs and
intermediate outputs;

3) internalnode :all the nodes inside cells (exclusive input and output
nodes).

A set of ISCAS85 benchmark circuits [7] is used for analysi~. They are
implemented in a standard cell design approach with double metal and a
single polysilicon fora 2p CMOS technology (source: Mieroe leetronies Center
ofNorth Carolina (MCNC)). The celllibrary consists ofboth simple (such as
NAND and NOR) and complex (such as And-Or-Invert {AOI) and
Or-And-Invert (0Al)) cells.

The bridging and open faults, as two major types of faults, are further
classified as:

single bridge: a bridge caused by a defect connects two distinct nodes.

multiple bridge: a bridge caused by a defect connects more than two
distinct nodes.

single open: one node is disconnected from the network due to a defect.

- multiple open: the network is split into more than two connected
subnetworks due to a defect.

Concerning the type of the network node, the single bridging faults can be
further classified as follows.

- input to input bridge: a bridge caused by a defect connects two input
nodes (e.g. d 4 in figure 1.1).

13

-output to output bridge: a bridge caused by a defect connects two output
nodes(e.g. d 1 in figure 1.1).

- internal to internal bridge: a bridge caused by a defect connects two
internal nodes. It may occur eitherinside one cellor between two different
cells. For ease of analysis, the bridges between VdiVss) to internalnodes
are classified to belong to this type as well(e.g. d 2 in figure 1.1).

- internalto output bridge: a bridge caused by a defect connects together
an internal to an output node. This may also happen inside one cell or
between two different cells (e.g. d 5 in figure 1.1).

-single stuck-at bridge: a bridge caused by a defect connects either V dd

or V88 to an output node (e.g. d6 in figure 1.1). This type of bridge directly
shows typical stuck-at behavior.

Regarding the network topologicallevel, the single bridging fault again can
he divided as feedback bridge and non-feedback bridge. A feedback
bridge is a bridge that causes the output of one bridged cell having at least
one fanout path to the input of another bridged cell. Otherwise the bridge is
called non-feedback bridge. Figure 2.5 illustrates a feedback bridge.

I

___ - _ _ _ ___.- feedback bridge
,.......--.".. -... ~

r---~-/ ',

' ' ' '

Figure 2.5 mustration of a feedback bridge.

The above definitions and classifications are used throughout the whole
thesis.

2.3.2 Analysis of the results of some extraction experiments

Early results of using the metbod described in this chapter to analyze NMOS
circuits were presented in [16]. Assume all possible defect mechanisms may
occur and the size of defectsis in a certain range. The analysis shows that the
most likely faults are bridging and line open faults. Other peculiar faults,
such as new parametrie transistors, have very low probability of occurrence.
The combination of different types of faults, such as a bridge and an open
caused by one defect, are also rare. It is further observed that the probability
of occurrence of a single bridge or an open is much higher than that of a
multiple one although the number of multiple faults can he half of the total

14

of the extracted faults. The dependenee of the extracted faults to possible
variations of the manufacturing line is also considered by taking different
defect statistics into account. The results show that the same fault may have
a different probability of occurrence. Moreover, the weight increase is not
uniform for every fa ult. The experimental results [50] forsome product chips
also indicate the influence ofthe defect statistics. Below the results for CMOS
circuits using the analysis system presented in [57] are presented.

For this set ofbenchmark circuits, we only consider missingor extra metall,
metal2, poly and thin or thick oxide layers since these layers usually occupy
the most part of a layout. The critical areas are extracted for defect sizes
ranging from Op, to 20p, with an increment step of 5p, (after 2p,). The size
distribution, as shown in figure 2.6, is taken as in [20] with 2p, as its peak size.

circuit #PI
c432 36
c499 41

c880 60
c1355 41
c1908 33
c2670 157
c3540 50
c5315 178
c6288 32
c7552 206

P(x)
probability

peak size

defectsize
x

Figure 2.6 A typical defect size distribution.

Table 2.1 Some extraction results

circuit data extracted opens extracted bridges
#PO #trans. #% W% #bridge #% W%

7 728 21.5 42.5 7932 78.5 57.5
32 1396 25.4 44.5
26 1164 236 4227 22.8 43.8
32 1768 366 6858 29.2 46.1
25 2058 411 7195 25.1 45.0
64 2974 604 8757 17.8 38.7
22 4122 791 14718 21.7 46.6
123 6734 1288 20743 16.8 39.9
32 8464 1848 32687 28.6 42.5
107 8854 1795 29962 18.0 44.5

#PI: primary inputs. #%: percentage of each type over total extracted faults.
#PO: primary outputs. W%: percentage of relative weight over total weight.

Because ofthe low probability of occurrence of some peculiar faults, only the

15

bridging and open fault types are extracted. Table 2.1 shows some statistics
of the circuit and the results of the extraction.

For each circuit, both the percentage of each type of the extracted faults and
the respective percentages of the relative weight over the total weight are
listed. As can he expected, the open faults are much less than the bridging
faults. This is because open faults usually involve a single network node and
its fanout trees while bridgescan he as many as the number of combinations
of all network nodes. On average, opens only account for about 22.7% of all
extracted faults. However the relativa weight of the opens is not necessarily
smaller than the ones ofbridges. On average, the relative weight of opensis
about 43.4%. That is, statistically both bridge and open have the same
possibility of occurrence.

Table 2.2 Classification of extracted bridging faults

single bridge
circuit #mul ti. #out-out #ss a #in-in #in-out #other #feedback
c432 4922 1906 376 236 355 137 1073

c499 8312 3677 650 401 835 269 1456

c880 8727 3797 592 392 567 260 818
c1355 9411 4925 814 555 724 194 1877

c1908 12750 5793 888 636 1004 396 2139
c2670 21235 15030 1522 932 1248 514 2089
c3540 29313 17981 1682 1448 1958 807 4365

c5315 50344 43040 2932 2225 2747 1197 4776
c6288 46652 24495 3760 2520 3563 797 12277
c7552 64834 57792 4002 2827 4839 1538 8260

~55.92% 31.85% 3.98% 6.79% 1.45% 8.50%
2.20% 79.77% 14.18% 3.72% 0.134% 21.83%

#multi.: multiple bridge. #out-out: output to output bridge. #ssa: single stuck-at
bridge. #in-in: internal to internal bridges. #in-out: internal to output bridges.

The bridging faults can he further distinguished as single and multiple
bridges. The total number of them is listed in table 2.2. Concerning the node
type, the total number of classified single bridges is also listed in table 2.2.
The input to input type bridges are not included since it is easy to detect them.
Other unclassified bridges are listed under the category of #other. They
include the bridges between primary inputs and internalnodes or bridges
between Vdd and an N-type internal node, etc. The bridges between an
internal node in the P-part and an internal node in the N-part are also

16

classified as belonging to this category. Thus actually the internalto internal
bridges under the category of #in-in only consist of the bridges either in the
P-part or the N-part. The number of feedback bridges is also listed. The
percentage of each type ofbridge and its relative weight is shown in figure 2. 7
and figure 2.8 respectively for each circuit. The last two rows oftable 2.2list
the total percentage of each type of bridge and its relative weight for the
complete set of circuits. This is also illustrated by figure 2.9.

D :multiB :out-outmfJ) :feedback~ :in-in(out) [2J :ssa •

60

50

40

30

Figure 2.7 Relative number of different types ofbridges versus circuits.

100.-------------------------------~··· -------------~
D :multiB :out-outB :feedback~ :in-in(out)IZJ :ssa •

90

80

70

60

50

40

30

20

10

0

Figure 2.8 Relative weight of different types of bridges versus circuits.

17

D :multi. :out-out IWm :in-in(out)IZJ :ssa •:other

total number % total weight %

Figure 2.9 Average relativa number and weight of different bridges.

From the above results, it can he seen that though there is some variation
between different circuits, in general, the multiple bridges are the majority
ofbridges (55.9%). But their relative weight is very low (only 2.2% !). This is
expectable since usually the multiple fanlts occur only when large defects are
present in the layout. Most actually measured defect size distri hu ti ons show
that the probability ofthe occurrence oflarge defectsis relatively small. This
implies that for a normal design, single bridges occur more often than
multiple bridges. lt is interesting to observe that the single stuck-at bridges
only count on average about 3.98% of extracted bridges. The relative weight
is not very high either(about 14.18%). The percentage and the relative weight
of the internal to internal node bridges are less than 10%. As for other
peculiar type ofbridges, both the number and their relative weight are very
low. Obviously they are insignificant for this set ofbenchmarks. As one might
have already expected the majority ofthe single bridges are outputto output
bridges (about 31.89%). Their relative weight is very high (79.77% !). This is
predictabie since in cell-based designs the related wires are much Jonger
than the connecting wires inside a cell or between two adjacent cells.
Consequently their critica} areas are relatively large.

The feedback bridging fanlts are also identified. For some circuits, the
feedback bridges can he 15% of all extracted bridges. On average, there are
about 8.5%. But their relative weight (21.83%) is higher than that of single
stuck-at and internal to internal bridges.

To summarize, it can be concluded that for the layouts of this set of
benchmark circuits, in terms of both the number and its relative weight of
each type of bridge, the output to output node bridges should receive the
highest attention. Then next in order are feedback bridges, single stuck-at
bridges and internalto internalnode bridges. The very last ones are multiple
and other peculiar bridges. lt can he speculated that for other cell-based
design styles, similar statistics regarding the type ofbridges can he obtained.

18

For the same functionality, it is obvious that different implementations may
result in completely different scenarios. This is reflected by the circuits c499
and c1355 since functionally they are the same but the extracted faults are
different. It will be seen in later chapters that their testability for
defect-induced faults is also different.

2.4 Conclusions

With the aid of a flexible analysis tooi using the statistica! relation developed
in this chapter, the analysis of a set of circuits shows that the faults are
dependent on the circuit layout and the defect statistica. The conventional
single stuck-at faults are only a subset of all possible faults under spot defect
conditions. Furthermore single faults have a higher probability of occurrence
than multiple faults. The output to output node bridges have the highest
probability of occurrence. Thus studyingthe impact of these faults for testing
should he given higher priority. This thesis will focus on the single faults only.
In the sequel, the term "fault" is implicitly referring to the notion of a "single
fault". The reason of choosing single faults is not only based on the results of
the statistica! study. From the testing point of view, it can be expected that
the large defects affecting more network nodes (multiple faults) can be easily
screened out in the early phase of processing by conventional testing
methods. Only the defects affecting one or two nodes are hard to detect. As
for feedback bridges, they are not considered in this thesis sineetbey induce
usually unpredictable §equential behavior. They most likely show timing
errors rather than some static fa ult. For bridging faults, the scope of this
thesis is confined to the static analysis.

3 Bridging Fault Modeling and
Simulation with Approximate Accuracy

3.1 Introduetion

The previous chapter viewed some statistica of defect-induced faults. With
this information availahle, this chapter will focus on one particwar type of
fault, namely the single bridging fault. lts behavior will be examined and a
metbod ofmodeling and simulating the bridging faults will he investigated.
lt is difficult to analyze the electrical behavior of a bridging fault accurately.
In this thesis only static analysis is performed by simulations. Furthermore,
the defects considered are fatal defects. That is, the resistance of the defects
is considered to he negligible. Thus hridged nodes are forced to have the same
potential.

Brief analysis shows that with very few exceptions, the basic problem of
modeling is associated with the conducting circuit from power supply to
ground caused hy a bridge. To illustrate, tahle 3.1 shows the SPICE
simwation results for the bridges in figure 3.1 (the numher next to each
transistor indicates the relative size of the transistor and we maintain this
convention in the sequel). It can be seen that for inputs activating these
bridges, there is a conducting circuit from power supply to ground. It may
result in the hridged output ha ving a voltage value ranging from the potential
of power supply (V+) to ground (V_). The actual output voltage value depends
on how the cells are driven. Such an output is different from a normallogic
"1" value driven only by the pull-upor a logic "0" driven only by the pull-down
part of a cell. In this situation the output voltage value cannot be easily
interpreted as a logic value since it depends on how it drives fanout cells.
Figure 3.1 also shows a fanout situation. For the applied input a bede{= 100111
(the quoted 1s(Os) arefaultfreevalues), theoutput hearing a value 2.10V can
drive x to 4.20V which can be readas "1" andy to 1.43V which can be readas
"0". Usually the output is said to be in "unknown state". Clearly the basic
phenomena caused hy a bridging fault is that a digital circuit is changed

19

20

"1"

4.slre
ct
~Ftr

"1"

Figure 3.1 An example bridging fault and its fanout cells.

Table 3.1 Bridged output

bridge inputs output bridged output
a bed ef AB SPICE(V) switch
1001 11 10 2.10 x
0001 10 10 2.87 x

dl 0000 11 10 3.72 x
1101 00 01 3.40 x
1111 01 01 0.96 x
1011 0 3.71 x

ck 0011 0 4.40 x
x: unknown state.

into a circuit with unknown behavior. The exact behavior can only be obtained
by simulating the bridging fault along with its fanout cells up to the primary
outputs by using a circuit level simulator. In view of the large number of
extracted faults, obviously it is very hard to achleve circuit level accuracy for
a large circuit within an acceptable amount of time.

At the time that this research was started, a lot of methods [1,4,12,22,27,
31,39,43,44,46,49] have been developed to solve the above problem. Most of
them intend to use a switch-level model [8, 9] to model and simulate the
bridging faults. Such method models a transistor either as anideal conductor
with a constant conductance (strength) or with zero conductance and only the
strongest path is used for the decision. U sing such a simulator, the results for
the bridge d 1 and d 2 in tigure 3.1 are listed at the last column oftable 3.1. The
unknown state, denoted as "x", is usually obtained at the bridged output and
carried through the rest of the simulation. This may give too pessimistic or
too optimistic solutions and does not solve the problem. Among the various
methods ofimproving the inadequate switch-level model, most intend to use

21

a resistive network model (1] to evaluate a bridging fault and interpret the
output of the bridged cell as a logic level simply by comparing the
conductances of pull-up and pull-down parts of a conducting circuit.
Ho wever these methods have severallimitations. First the model used is not
accurate enough to predict the output voltage for a bridge. The second
limitation is already illustrated in figure 3.1. For input abcdef=100111, the
pull-down conducting strength of B is stronger than the pull-up conducting
strength of A. The output is predicted as "0". But in fact it can he read as "0"
by x and "1" byy as shown in figure 3.1. Furthermore most ofthem are not
fully aware of the results of IFA at the time. As a result, the developed
methods usually target just for one particular type ofbridging fa ult.

Since it is very expensive to resolve all the unknown states, based on some
experimental observations, this chapter presents a new method which tries
to eliminate the unknown states as much as possible at the local celllevel
while maintaining the modeling and simulation efficiency. This method
covers more types ofbridges than other methods. It is effective for most of the
bridging faults. Part of this chapter was previously published in [17].

3.2 A logic modeling and simulation strategy

It is evident that a bridging fault can be accurately modeled if

1) the output behavior of a bridged cell can be accurately evaluated;

2) an unknown input voltage value can be correctly interpreted as a logic
value afterit is propagated through subsequent cells.

Assume when a bridging fault is activated, the output voltage of the bridged
cell is accurately computèd. Now let us examine how the output can be
propagated through subsequent cells. In theory, the interpretation process
seemsnot an easy task since, in the worst case, it may require the simulatîon
of the entire circuit in order to distinguish an unknown state. However the
simulation results in table 3.1 for two bridges shown in figure 3.1 give the
impression that most of the time the outputs of bridged cells have a value
either below 2.0V or above 3.0V. Fora normal design implemented for a
typical5.0V technology, these values can be locally interpreted as logic "0" or
"1" respectively without any propagation along its fanout cells. For a specific
technology, a highest logic "0" voltage VO and alowest logic "1" voltage V1 can
be defined. In this chapter, any voltage value higher than V1 is said to be in
the logic "1" range and any voltage value lower than VO is said to be in the
logic "0" range. Otherwise it is said to be in the undefined range. Inspired
by the above observation, it can be expected that if this is the case for most
of the bridging faults, then a great amount of computations can be avoided.

22

To verify such an observation, an intensive analysis using SPI CE simulations
has been conducted for many designs including the ISCAS85 benchmarks
listed in chapter 2. Table 3.2 summarizes the results for each circuit of the
ISCAS85 benchmarks. The table shows the percentage of all cases that the
output voltage of bridged cells is either in logic "1" or logic "0" ranges. On
average, 96.62% of the output values of bridged cells indeed fall into the
distinguished logic ranges.

circuit c432

logic% 96.4

Table 3.2 SPICE simulation results

c499 c880

97.1 96.0

c1355 c1908 c2670 c3540 c5315

96.6 97.1 96.7

VA(volt}
4

97.2 95.9

3 --------------

2-------------
1

c6288 c7552

97.6 95.6

Figure 3.2 {a) A simple conducting circuit. (b) Output voltagè versus {J • . ,

This probably can he better explained by simulating a simple conducting
circuit shown in figure 3.2(a). Figure 3.2(b) shows the output voltage ofthe
simple circuit as a function of pull-up to pull-down beta ratio

w w
f3 = kp L: /kn L:' where kp and kn are process dependent parameters and

~ is the transistor width-length ratio. It can he observed that the output

voltage ranging between 2.0V and 3.0V results in a rather narrow range of
f3 between 2.7 and 3.1 for this specific technology. This may imply that the
probability of a bridge to cause an equivalent f3 in the undefined range is
small. That is, the probability of ha ving an output voltage in the logic ranges
is large. As for the bridges involving intemal nodes, such a bridge usually
splits some pull-up (pull-down) paths into two parts. In order to detect the
bridge, part of the split paths needs to he activated as shown by the input in
figure 3.l(b) for d 2• The equivalent f3 of a partial pull-up path ver.+sus a partial
or complete pull-down path usually has large chance that the resulting f3
value falls into the logic ranges.

23

This experimental observation, in fact, can help to eliminatea lot of unknown
states and still allows fast simulation since the fault propagation can simply
he realized by using the following principle:

Modeling principle: If the output voltage of a bridged cell is higher
than V1, then a logic "1" is re ad at the output. If the output voltage of a
bridged cellis lower than VO, then a logic "0" is read. Otherwise it is
considered that the fault effect will not appear at the output of the
bridged cell.

bridge
analyzer

Figure 3.3 The modeling and simulation strategy.

With the above principle, the whole fault modeling and simulation can be
done in the way as illustrated in figure 3.3. Assume the transistor netlistand
the extracted bridging faults are available. The logic level representation of
the circuit is extracted from the transistor netlist. Then, for each extracted
bridging fault, alocal circuit analysis is performed only for those inputs that
would cause a conducting circuit. Each evaluated output voltage of a bridged
cell can he read as a logic level by using the above principle. Collecting the
analysis results for all the possible inputs, the behavior of the bridged cells
can he characterized in terros of a Boolean function. Since such a Boolean
function partially (or completely) describes the faulty behavior ofthe bridged
cells caused by this bridge, it is named the Faulty Boolean Function. After
all the bridges are processed, a set of faulty Boolean functions is obtained.
Then the fault simulation can he conducted at the logic level by just
manipulating the faulty Boolean functions. Thus any efficient logic fault
simulation technique can he used.Since there is noneed to perform circuit
level computations any more, the fault simulation can he very fast.

3.3 An approximate evaluation metbod

Now let us examine how to evaluate a bridging fault efficiently. Although the
cells are relatively small, the full analysis of using a circuit simulator can still
he very time-consuming consiclering the large number of possible bridging
faults extracted from the layout. Thus instead of using a circuit level
simulator, it is interesting to know whether there is any other way to evaluate

24

a bridging fault. The principle used bere only tries to eliminate some ofthe
unknown states by confining the voltage range, thus it is su:fficient if the
computed value is accurate enough within the defined logic voltage ranges.
Such a possibility is investigated by using an approximate transistor model.

Using such an approximate transistor model, the dc-characteristic of an
NMOS transistor is characterized as (a PMOS is modeled in the same way}:

{

lds = kn :2" CVgs Vtn i Vds)Vds ' Vds < Vgs-Vtn

Ids 0, otherwise

where Vtn is the zero-bias threshold voltage, kn the process dependent

parameter, and :2" the transistor width-length ratio. In the model, a

transistor works in a linear region if it conducts, otherwise it is off. This is
because in a conducting circuit the voltage level at any drain (source) cannot
be higher than V dd when the gate ofthe transistor is driven by a logic "1".
Thus V d.<~ < Vg8-Vtn is always true. The model also neglects the body-effect
of the MOS transistor. It should be. noted bere that this model is still a
nonlinear model which is different from others, such as the one used in [49].
Thus the model is more accurate than other approximate ones using a
resistive network model [1] or a linear transistor model [49].

Table 3.3 SPICE results versus approximate metbod

c499 c880 c1355 c1908 c2670 c3540 c5315 q6288 c7552
97.1 96.0 96.6 97.1 96.7 97.2 95.9 !97.6 95.6
94.9 92.0 92.2 94.1 93.4 94.4 91.6 j95.6 92.1
0.14 0.15 0.15 0.14 0.16 0.13 0.16 10.11 0.18

The approximate transistor model above bas been used to evaluate the
bridging faults for the benchmarks described in chapter 2. The last row of
table 3.3 shows the absolute average difference between the computéd values
and the SPI CE results for each circuit. For the whole set ofbenchmarks, the
average difference is about ± 0.14V from the SPI CE results. The third row of
table 3.3 shows the percentage of all cases where the outputs are correctly
predicted within logic ranges using the approximate method. On average,
93.41% of all output values are correctly predicted within the logic ranges for
the whole set ofbenchmarks. The actual percentages computed by SPI CE are
shown in second row of table 3.3 as well. As can be expected, the actual
percentages computed by SPICE are higher than the percentages by using
this approximate method.

For the bridges in figure 3.1, the last two columns of table 3.4 show the
estimated voltage value and the predicted logic level usingthis modeland the

25

principle. lt should he noted here that according to the modeling principle, if
an output is in undefined state, the fault free value is assumed at the output.

Table 3.4 Comparison with SPI CE

bridge inputs output bridged output
a bed ef AB SPICE(V) approximate(V) ~~ 1001 11 10 2.10 2.35
10001 10 10 2.87 2.99 1

dl 0000 11 10 3.72 3.53 1
1101 00 01 3.40 3.10 1
1111 01 01 0.96 1.14 0
1011 0 3.71 3.10 1

~ 0011 0 4.40 3.10 1
x*: undefined state.

This method still appears a little bit pessimistic compared with SPICE.
However the model does have the advantage that any conducting circuit can

he transformed into the one shown in tigure 3.2(a) with 'J: and ~=as the

equivalent width-length ratios of the respective pull-up and pull-down
parts. The equivalence can be established according to following rules:

1) two serlal connected transistors with W 1/ L 1 and W 2/ L2 can he replaced
by a transistor with WJL = W1/L1 + W2/L 2•

2) two parallel connected transistors with W 1/ L 1 and W 2jL2 can he replaced
. . W1jL1 x W2jL2

by a trans1storw1th WjL = W
1
/L

1
+ W

2
/L

2
.

These two rules can be derived using the approximate transistor model.

For the equivalent conducting circuit, the output voltage V A can be derived
by solving the following equation,

(/J - 1}V1 + 2(V + - vtn - f3Vtp)V A - /3(V + 2Vtp)V + 0

where /3 = (kp ~:)j(kn ~=). It is not di:fficult to prove that V A is an increasing

function of /3. A value of p1 exists so that V A = V1 and a value of p0 exists so

that VA= VO. Therefore

and

holds which implies that, fora specific technology, it is not even necessary to
solve all equations for the output voltage. Only the equivalent f3 value is
needed. Consequently the evaluation can be very fast. Below this method is
used to construct the faulty Boolean functions.

26

3.4 Specification of faulty Boolean functions

For ease of extraction, each CMOS circuit is represented by a conneetion
graph, G = (V,E). Each vertex v E Vrepresents a network node whichcan
he of the type input node, output node or internal node as defined in chapter
2. An undirected edge e E E represents a transistor and has an associated
Boolean variabie (defined by its gate input function) and a weight
representing its transistor width-length ratio. AB an example, the graph
representation ofthe circuit in figure 3.4(a) is shown in figure 3.4(b).

6.8

e 4.8

4.8
f 4.8

4.s v_
v_

(a) (b)

Figure 3.4 mustration of the conneetion graph representation.

A simple path between a and b is denoted as s ab· P ab is thesetof all distinct
paths between a and b. A term T8 of a path sis the product of all Boolean
variables ins. A path s conducts iff T 8 = 1.

Using the above notations, the fault free Boolean function FA of a cell (with
its output node as A) can be expressed by all its "on" terms or "oft" terms as:

FA I Ts (3.1)
sEPAv+

or FA= I Ts (3.2)
sEPAv_

Obviously, FA is the "on" set of A while FA is the "off" set of A.

In case of a bridging fault, the output of a bridged cell is said having a
faulty-on behavior if the fault free output is "0" but in case of the bridge the
output is "1". Vice versa the output of a bridged cell has a faulty-offbehavior
if the fault free output is "1" but in case of the bridge the output is "0".
Otherwise the cell is said to be fault free.

27

Applying the modeling principle here, a faulty-on is caused if the output
voltage is higher than V1 but fault free output is "0". A faulty-offis caused

ifthe output voltage is lower than VO but fault free output is "1".

Assume a bridge between the cell withoutput A and another cell withoutput
B as it is illustrated in fi.gure 3.5(a).

1 :=liJ-· A (
........

bridge~,-

J92]-B
(a)

ffi=1+J
(b)

Figure 3.5 (a) mustration of an arbitrary bridge. (b) lts new input space.

Let FA be the fault free function of A. Regarding its input space, FA can be
expressed as:

FA= {x E 1 I A is "on")
In the presence of the bridge, A and B become functions of both inputs 1 and
J. Let the new inputspace be denoted as ffi, that is, ffi = I + J. Below we just
specify the faulty Boolean function of A. The faulty Boolean function of B can

be derived in the similar way. The faulty Boolean function FA of A in the
presence of the bridging fault is defi.ned as:

FA = {x E ffi I A is "on" } (3.3)

Then the faulty-on set and the faulty-off set of A are defined as:

1 -fA {x E ffi I FA A FA) (3.4)

~={xEffi I FAAFA) (3.5)

The complement of fl and ~ are obtained as

i ---
fA {x E <2B I FA V FA }

~ = {x E 9\ I FA V FA}

(3.6)

(3.7)

The set 9\ is then split into three parts: faulty-on set fl, faulty--off set ~ and

the rest of the inputs. Obviously ffi can also be viewed as the union of FA and

FA respectively consiclering the inputs in Jas "don't cares". Figure 3.5{b)

illustrates the relation of fl and ~ with respect to FA and FA.

28

With the above definitions, the following theorem holds.

Theorem 3.1: Assume a cell withits fault free function as FA is affected by

a bridge. Let fÁ and ~he the faulty-on set and faulty-off set ofthe cell.
Th en

(3.8)

Proof: Eq.(3.3) can he partitioned into two parts:

F A={x E ::B I FA A (A is "on") } u {x E ffi I FA A (A is "on'D } (3.9)
In the first part, the set containing the original "on" set F A• except the

inputs in~. A is still "on". Thus the first subset in eq.(3.9) should he the

original "on" set FA minus the faulty-off set~ (the shaded part in figure

3.5(b)). The second subset in eq.(3.9) is exactly the faUlty on set tl Thus

FA= FA.~+ fl·
0

Theorem 3.1 shows that if l and f of a cell are obtained, the behavior of a
bridging fault can he characterized.

For the above specified faulty Boolean function, using the modeling principle
in 3.2, the following corollary is true.

Corollary 3.1: Assume a bridge affects the outputsA andB oftwo different
cells and their fa uit free functions are FA and F 8 respectively. Assume

that the faulty-on sets and faulty-off sets are obtained as fl and ~. f1

and fa respectively. Then their faulty Boolean functions

and

FA =FA-~ +fl

FB=FB·fs+f1

have the following property:

(FA E9 FA) . (F B E9 F B) = 0

Proof: The proof is conducted for each type of bridge.

(3.10)

(3.11)

(3.12)

1) For an output to output node bridge, the proof is easy. After
substitution of eq.(3.10), (3.11) into (3.12), the eq.(3.12) can he expanded
and simplified as: -

(FAE9FA) · (F8 E9F8) =(FA·~+ FA· {Á) · (F8 ·fa+ F8 · f1) (3.13)

The first two productsof eq.(3.13) FA · F 8 · ~ ·fa and FA · F 8 · fÁ · f1

obviously cannot he true since FA and F 8 being both a "1" or a "0" imply.

29

that there is no conducting circuit from V+ to V_. Thus 11 · ~ = 0 and

fÁ · f1 = 0. The other two products FA · F B · 11 · f1 and

FA · F 8 · fÁ · ~ cannot be true either since the bridged output voltage
cannot be in the logic "1" and "0" ranges simultaneously. That is,

/1 · f1 = 0 and fÁ · ~ = 0. Thus the corollary is true .

.., v_
Figure 3.6 Illustration of an arbitrary internal-internal node bridge.

2) For an internal to internal node bridge, a bridge between an internal
node in the P-part of a cell and an internal node in the N-part of a cell
is not considered since such kind of bridge can hardly occur. To be
general, assume a bridge occurs in the pull-down parts of two cells as
shown by a bridge between i andj in tigure 3.6. FA and F B are the fault
free function of A and B respectively.

The faulty-on and faulty-off sets of A and B can he derived from any two
path segments sv +i and sjV or sv +j and siV"· Let us analyze a two-path

segment sv +i and sjV_ first. Path sjV_ can be further classified as the one

across node B, denoted as sjBV_• and the one without across node B,

denoted as s ·.Bv .
J "

For any input establishing conducting paths sv,i and sllfV_• obviously

both FA = 1 and F 8 = 1. Since only output A is on the conducting

circuit, thus if VA < VO, only a faulty-offbehavior is caused at A.

For anyinputestablishingconducting paths sv,i and sjBV"• FA = 1 and

F B = 0. BothA andB are on the conducting circuit. Since V 8 < V A• thus

ifVA < VO, V8 < VOisalsotrue.Inthiscaseonlyafaulty-offbehavior

is caused atA whileB behaves as ifitis faultfree. Similarly, ifV8 > V\
only a faulty-on behavior is caused at B.

30

For any paths 8 v +i and s iV~• the analysis is similar. Thus for any possible
situation, A and B cannot have a faulty behavior simultaneously.

Therefore, CF A EB FA) • CF B EB F 8) = 0.0

The proofs for other types of bridges are similar. This corollary can help to
obtain fast fault simulation.

3.5 The details of extracting the Faulty Boolean
function

3.5.1 An extraction procedure

First the fault free functions should he extracted. According to eq.(3.1),(3.2)
each one can he easily obtained by extracting the "on" paths (PAv) or "off"

paths (P AV) using a depth first search routine.

To extract the faulty Boolean functions fora bridge connecting two nodes i and
j, basically it suffices how to obtain the faulty-on set and the faulty-off set for
each bridged cell. Th obtain the faulty-on and faulty-off sets, all the
conducting circuits caused by this bridge have to be analyzed. The conducting
circuits can he obtained by tracing the actual transistors connected to the
bridged nodes. Regarding the graph representation, a conducting circuit can
he established by a path from V+ to one bridged node and a path from another
bridged node to V-· That is, any two path segments 8v .i and s;v_ or sv J and

8 w establish a conducting circuit. Let 8v +i,JV_ and 8 v JiV_ denote such two path

segments respectively. Let P v .;.,v_ and P v JiV he the path sets cÓntaining all
ofthose paths respectively. In addition to an individual path, any non--empty
subset of P v .iJ V~ or P v JiV~ can establish a conducting circuit as well. A set
containing all of the conducting circuits is defined below.

r:f>={O I ((} Ç Pv.;.,v_ V (} Ç Pv JiV_) A (} ;;t: 0} (3.14)

For each (} E r:f>, its corresponding Boolean expression is defined as:

C0 =LTs I Ts (3.15)
sEO sEPv.9v_\O

or Co= LTs I Ts (3.16)
sEO sEPv ;JiV\(J

IfCeis satisfied, then only the paths in (} conduct but no others. A conducting
circuit() is valid if C0 is satisfiable. Consider the set tfJ according to eq.(3.14)
to he established, then the equivalent transistor width-length:ratios ofthe

31

P-part and the N-part of each fJ E tP can he computed. Such a computation
can he realized by iteratively applying the rules in section 3.2 on the graph
representation of fJ. The computation is linear in the number of transistors.
In turn the beta ratio of each (), denoted as {J9, can he computed. Then the {1

and fJ can he obtained by applying Algorithm 3.1.

Algorithm 3.1: extraction offaulty Boolean function

{ 1 .,_ 0; f .,_ 0;
for each () E tP do

construct C 9;

if C 9 satisfiable then
compute fJ 8;

if ({J8 > {J1) then

f1
.,_ l + Ce;

else
if ({J9 < {J0) then

f.,_f + c~

3.5.2 Obtaining conducting circuits

The set tP in eq.(3.14) containing all the conducting circuitscan he obtained
by enumerating either the paths ortheinput space ofthe bridged cells. But
usually such an enumeration process is not efficient. In this thesis, the
problem of obtaining all the conducting circuits is formulated as a general
graph problem and can he solved more efficiently. All the paths in set P v, ijV

or P v +jiV_ can he viewed as a path.,.-connected graph between V+ and V-· Th en

each element of tP is viewed as a path-connected subgraph between V+ and
V_. The detailed definition of path.,.-connected graph and an enumeration
algorithm to obtain all the path.,.-connected subgraphs are presented in
appendix A.

3.5.3 Boolean function representations issue

The idea of modeling bridging fanlts as a set offaulty Boolean functions before
the fault simulation is simple and straightforward. The key issue is obviously
how they can he represented and stored efficiently. If there is no proper way
ofhandling the storage, then the proposed metbod is impractical since it may
require a large amount of memory even for a small circuit in view of the large
number of extracted faults. Fortunately the Reduced Ordered Binary
Decision Diagram (ROBDD) data structure [6] has the feature of compactly

32

representing Boolean functions. During the analysis and simulation, the
representation of a Boolean function and all its manipulations are based on
a ROBDD package [28]. In fact, for a cell affected by a bridge, only its
faulty-on and faulty-off sets are needed. lts faulty Boolean function can be
easily constructed according to eq.(3.8). The compactness of using ROBDD
can be illustrated by the following example. Figure 3.7(a) shows two bridges
among three cells. After fault analysis, for bridge # 1, we have

~(#1) = d ·(a · b + c) and ~(#1) = d ·(a· ë + b · ë)

For bridge #2, we have

~(#2) = ë ·(a · b + c) and ~(#2) = e ·(a· ë + b · ë)

~(#2)

o : negated function.

(b)

Figure 3.7 Illustration of compact representation.

Their ROBDD representations are shown in tigure 3. 7(b). It can heseen that
for this fixed variabie ordering, subexpressions (a · b + c) and (a· ë + b · ë)
are shared by these faulty-off sets. Any other way of representation would
require much more space. The compactness largely depends on the variabie
ordering and the actual bridges within the specific cells. But the bridges
analyzed here only affect the outputs ofnot more than two cells. The number
of their input variables is relatively small. The experimental results shows
that this way is feasible.

3.5.4 Rednetion of Boolean input space

Since it can be expensive to construct ROBDDs for a Boolean function, the
efficiency of extractinga faulty Boolean function is mainly determined by the

number of valid conducting circuits, i.e. the valid elements in the set if> in
eq.(3.14).

33

The fault analysis discussed so far assumes that the inputs of the bridged
cells are independent. This assumption simplifies the implementation. The
true validity of each conducting circuit can be verified later during the
simulation phase. However the inputs usually have some relations among
each other in terms of primary inputs. It can be the case that some of the
conducting circuits do not exist in terms ofprimary inputs rendering their
analysis to be unnecessary. For instance, anaiyzing the bridge in figure 3.1,
if f = a, then any conducting circuit from V+ to V_ consisting of either both
transistors ta and tr or both to; and t1 is not a valid one. Obviously it is

expensive to check the validity by substituting local variables as functions of
the primary inputs in a large circuit. To keep the analysis still at the local cell
level, a reduction technique which makes use of certain implication relations
is proposed below.

This technique requires a preprocessing step. Before fault analysis, such a
preprocessing extracts all the following implications among any set of inputs
of a cell:

1) The inverted variables. That is, if F = a, F =:>a (a =:> F) would be
extracted { =:> denotes implication) ;

2)1mplicatesofafunction.Forexample,for F =a· b,ä=:> F, b =:> F, F =a
and F =:> b would be extracted;

3) Any two input functions to the same cell that satisfy an implication
relation. For example, for inputs F 1 = a · (b+c) and F 2 = a · c toa cell,
F 2 =:> F 1 and F1 =:> F2 would be extracted.

The extracted relations are stored and repeatedly used to derive valid
conducting circuits for each bridging fa uit. Applying the above implications
during the analysis, the input space of the bridged cells is only expanded one
level down from the bridged site to the primary inputs. For each input
variabie f, let l(j) he the product of all the input variables that are implied by

f, i.e., l(j) = n g. The reduction may he achieved through the following
g I f"*g

procedure:

Algorithm 3.2: reducing invalid conducting circuits

for each 8 E lP do
exp -"1";
for each input variabie fin 8 do

exp .,._ exp · l(j) ;
if exp satisfiable then

a valid (J is found;

34

Though not all of the invalid conducting circuits can be avoided, a large
portion of analysis can be bypassed by using this technique. The effectiveness
of this technique varles from circuit to circuit.

3.6 A fault simulator for faulty Boolean functions

The set of faulty Boolean fu.nctions derived above for all the bridging faults
can he easily used by any logic fault simulator. Here the well-known Parallel
Pattern and Single Fault Propagation (PPSFP) [54] technique is adapted to
show the easy exploitation ofparallelism. First the classica! fault simulation
problem for single stuck-at faults is formulated. Then it is shown that a
hridging fault can he simulated within the same framework.

The fault simulation is conducted on the network graph Gn(Vn,En). Each
node v E Vn represents a cell. Each directed edge (v, u) E En represents the
relation that vis an input of u. Figure 3.8(aXb) shows an example of a network
and its network graph representation respectively. The network graph is
levelized first hy using a topological sort procedure. The nodes in V n are
arranged in increasing order according to the network level. Considering the
fanout branches, the network can he decomposed into fanout-free regions by
splitting a fanout node into a number of nodes equal to the number of its
fanout branches. Figure 3.8(c) shows the network graphafter decomposition.
There are a total of four fanout-free regions for the example shown in figure
3.8(a).

x

(b)

x
g

~~hE:>· 2
~ 2 ~

e
(c)

y

Figure 3.8 (a) A network. (h) lts network graph. (c) fanout free regions.

35

In the sequel, for a nodeFin the network, let l/J denote its function. Assume
it has a, b, ... , q as its inputs and let F ljJ(a, b, ... ,q). For an input a, let Fa
denote the Boolean difference of F with respect to a. That is,

Fa l/J(a ,b , ... ,q) EDl/J(a ,b , ... ,q) (3.17)

Fa is also called the local observable lunetion of a. The value of Fa is called
the loeal observability of a. If Fa=l, a is observable at F. Assume P, Q, ... ,
Z are the functions representing the primary outputs, then fora node a, its
global observable lunetion Oa can be derived as

Oa = Pa + Qa + ··· + Za (3.18)

Here Pa denotes the Boolean difference of P with respect to a(so does Q<t• etc).
The value of 0 6 is called the observability ofthe node a. If 0 6 =1, the node
a is observable at at least one of the primary outputs. Th at is, any change of
the logic value of the node aresultsin a change of at least one of the primary
outputs.

As the first step offault simulation, the fault free simulation is conducted in
order to determine the logic value for each node. Since the function of each
cell is represented symbolically, a parallel pattem evaluation can he
performed in a bit-vector manner. Let vec(F) denote the bit-vector value of
F. Then the parallel pattem evaluation of a function F ljJ(a,b, ... ,q) can he
formulated as

vec(F) = ljJ(vec(a),vec(b), ... ,vec(q)) (3.19)

Obviously the number ofthe pattems that can he simulated in parallel is the
number ofbits in the bit--vector, in our case, the lengthof an integer (machine
word).

The next step, which is the major problem offault simulation, is todetermine
a set of nodes {a E Vn I Oa = 1} for each input pattem. In theory, the
observability of a node a can be obtained by evaluating its global observable
function as defined in eq.(3.18). In practice, the observability of each node can
he recursively determined using the following rules:

1) For each primary outputP, Op= 1 is always true (e.g. for x in figure 3.8,

Ûx=1).

2) For each node a in the fanout--free region, assume a is a predecessor of
b, then

(3.20)

ba is the local observability of a. That is, they can he recursively
determined from the top level nodes of each fanout-free region.

3) For each non-reconvergent fanout node a (e.g. the nodegin figure 3.8),
its fanout branches a 1,a2, ... ,am are independent (they do not

36

reconverge). It is observable at the primary outputs if one ofits branches
is observable at the primary output. Thus

Oa = Oa, + Ûa2 +, ... , + Dam (3.21)

4) For each reconvergent fanout node a (e.g. the node h in tigure 3.8), since
two fanout branches from a carrying faulty values may converge at some
point, the faultyvalue may he masked out. Thus Oa should he determined
by explicitly simulating the fault from the fanout node. That is, the value
a(opposite to the fault free value a) should he explicitly propagated to the
primary outputs. Oa is finally determined according to eq.(3.18).

Mter the observability of each node is determined for the current input
pattem, the last step of determining the detectability of each fault can be
carried out. For a single stuck-at fault at a node a, it is straightforward. lt
can he determined by evaluating

or

Da-s-1 = Oa ·a

Da-s-0 = Oa. a

(3.22)

(3.23)

If Da-1-1-l =1, a stuck-at-1 is detected and if Da-H-0 =1, a stuck-at-0 is
detected.

It is not difficult to observe that all the steps can also he performed for
pattems in parallel. The bit-vector operations can be formulated as in
eq.(3.19) for fault free evaluations.

The above two steps can be summarized as two traversals over the network
graph described below:

1) In the forward traversal, 32 (the machine integer length in our case)
patterns are applied to the primary inputs and simulated in increasing
order of circuit level until the primary outputs are reached.

2) In the backward traversal, the observability of each node is evaluated in .
the way as described above for current inputs from primary outputs to
primary inputs in the decreasing order of circuit leveL At the meantime,
the detectability of single stuck-at faults are determined according to
eq.(3.22) and eq.(3.23).

Now let us examine how a bridging fault is simulated. Since each bridging
fault is modeled as a Boolean function, bridging fanlts can be easily simulated
in the same framework. In the \>ackward travers al, after the observability of
each node is obtained, the detectability of each bridging fault can be easily
determined as follows:

1) Fora bridging fault affecting only one cell, assume the fault free and the
· faulty Boolean function are obtained as a and ii respectively. Then its
detectability can be obtained by evaluating

37

Dbri = Oa · (ä a) (3.24)

If Dbri =1, then the bridge is detected.

2) For a bridging fault affecting two different cells, assume their fault free

functions andfaulty Boolean functions are a, band ä, b respectively. From

the corollary 3.1, it is know that ä ED a and h ED h cannot he true at the
same time. That is, for a given input pattern, either a has a faulty
behavior orb has a faulty behavior but both of them cannot have faulty
behavior simultaneously. In other words, the fanout branches from a
carrying a faulty value would never converge with the fanout branches
from b also carryinga faulty value. Thus the fanout branch of a and b are
independent in terros of the faulty value propagation. Therefore the
detectability ofthis bridge can he obtained by evaluating

Dbri = Dbr/a) + Dbr/.b) Oa · (ä ED a) + Oa · (bED b) (3.25)

Again, if Dbri =1, then the bridge is detected.

Obviously, eq.(3.24X3.25) can he evaluated for patterns in parallel as well.
Since the detectability of each bridge is determined locally, the complexity of
simulating a bridge remains the same as for simulating a single stuck-at
fa ult.

3. 7 Experimental results

The above system wasimplementedin Con a HP-9000/755 workstation. The
ISCAS85 benchmark circuits and their bridging faults as described in
chapter 2 are used for the experiments. Table 3.5 summarizes several
extraction results. To have a certain safety margin, the highest logic "0"

voltage VO is set to 1.5V and the lowest logic "1" voltage V1 is set to 3.2V.

Table 3.5 Faulty Boolean function extraction results

circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552
#bridge 1424 3454 3938 4327 5294 15121 17022 43236 18301 57198

#undete. 306 492 507 773 821 2044 2446 4898 4724 9702
time(s) 0.6 3.8 4.3 3.3 6.8 15.6 41.3 80.9 12.0 99.4
#Mbyte 0.06 0.22 0.26 0.22 0.41 1.00 1.45 3.83 1 o.78 5.44

#undete. : num.her of undetectable bndges. #Mbyte: memory reqmrement in Mbyte.

The set ofbridges considered comprises only the outputto output, internal
to internaland internalto output type of single bridges. The CPU times listed

38

include preprocessing time, the times of extracting the fault free expressions
and the times of extracting faulty Boolean functions for all the bridges. The
amount of memory required to store the extracted faulty Boolean functions
is shown in units ofMbytes. Both the CPU time and memory requirements
versus the number of bridges are shown in figure 3.9 and figure 3.10
respectively. It can be observed that forthese benchmarks both entities grow
almost linearly with the number ofbridges.

memory use(Mb)

5

4

3

2 c3540

1

#bridge(xlOOO)

30 40 50

Figure 3.9 Memory requirement versus number of bridges.

100 CPU(sec)

80

60

40

20

#bridge(xlOOO)

30 40 50

Figure 3.10 Analysis time versus the number ofbridges.

In the course of the local analysis, some of the "undetectable bridges" are
identified. The number ofthem is shown in table 3.5 for each circuit. Most
of those "undetectable bridges" are internal to internal node bridges. The
reason that these bridges are undetectable can be that for those bridges there
does not exist any valid conducting circuit. In this case, these bridges are

39

redundant. It might he the case that there are valid conducting circuits but
according to the modeling method in this chapter, the output of the bridged
cell has the same logic value as the fault free value. Note, in this case,
"undetectable" here only indicates that the bridge is not detectable in the
defined Iogic ranges. But the detectability of such a bridge may not he entirely
estimated since the method in this chapter is not able to model the output
voltage in the undefined range.

The PPSFP simulation results for the modeled faulty Boolean function are
shown in table 3.6. All of the faulty Boolean functions (i.e. except the
"undetectable" ones) are simulated forthetest patterns developed at the gate
level for single stuck-at faults in MCNC. The percentage ofthe covered single
stuck-at faults is basedon the ones assumed at the output nodes ofthe actual
CMOS implementation and not on the ones assumed within the gate-level
representations. As already stated, the complexity of simulating a bridging
fault is the same as simulating a single stuck-at fault. The fault simulation
for bridging faults can he done very fast. Within a few dozen ofCPU seconds,
nearly 60000 bridges were simulated on a circuit of a bout 9000 transistors for
more than 300 pattems. The bridging fault coverages are much lower than
the stuck-at fault coverages. Since the modeling approach is approximate,
the detectability of some ofthe undetected bridges cannot he fully determined
for the given test pattem set. But this method gives definitely more
confidence than the switch-level fault simulation does. Yet it has the fulllogic
fault simulation speed. The above results cannot he achieved both at circuit
and switch level.

Table 3.6 PPSFP simulation results

SSA test pattem set 21x32 random pattems
circuit #pattems SSA% bridge% time(s) SSA% bri e(s)
c432 75 99.7 74.2 0.6 99.73 75.2 0.86
c499 7 85.1 1.2 99.5 85.2 1.8
c880 85.2 1.9 98.7 87.2 2.6

c1355 74.2 1.6 99.4 74.2 1.9
8 147 79.1 2.9 94.5 77.7 3.5
0 160 82.4 5.9 87.7 79.9 6.0

242 98.4 78.0 14.8 97.9 79.9 17.2
c5315 211 100 87.3 28.9 99.9 87.4 30.5
c6288 44 99.9 65.1 5.7 99.9 65.5 22.71
c7552 318 99.7 80.7 35.8 92.9 79.7 37.56

40

To verifythe random testability ofthe extracted bridgingfaults, the extracted
faulty Boolean functions are also simulated for 2lx32 randomly generated
patterns. The results are also listed in table 3.6. It can he seen that the
bridging fault coverage is nobetter than for the single stuck-at test pattern
set. Only five of the examples show a little improvement: This may imply that
the random testability of bridging faults is poor.

I
Another interesting observation is that for the ISCAS85 benchmark set,
many untestable single stuck-at faults assumed in the gate-level
representation do not exist in this CMOS implementation. These faults may
require major part ofthe Automatic Test Pattern Generation (ATPG) time.
Therefore for the purpose ofboth the test quality and the test development
time, the test patterns had better be generated from the physical design of a
circuit instead from its gate-level representations.

3.8 Conclusions

The modeling and simulation metbod presented in this chapter is effective for
most of the bridges. This supplies a fast and practical tooi to analyze the
testability of a relatively large CMOS design for bridging

1
faults. The

modeling accuracy is higher than switch-level and other approximation
approaches. The idea of modeling bridging faults as a set of faulty Boolean
functions before fault simulation achieves both the modeling accuracy and
simulation efficiency. This divide and conquer approach can be,used for any
other upcoming technology and for non-structured designs as well. The
limitation of the method, however, is also obvious. If the output of a bridged
cell just remains in the undefined range (between V1 and V0), this metbod
cannot predict the detectability of a bridge. As for the memory requirement,
consideringthe overall gain of accuracy and simulation efficiency, the metbod
is considered feasible.

4 Bridging Fault Modeling and
Simulation with Circuit-level Accuracy

4.1 Introduetion

In the previous chapter, a modeling and simwation method for bridging fa ults
has been developed basedonsome statistica! and experimental observations.
It allows a very fast simwation of bridging fawts for a large design and yet
obtains higher modeling accuracy than switch-level or other approximation
approaches. The limitation ofthis method is that ifthe output of a bridged cell
is in undefined range, the detectability of the bridge cannot he fully
determined. This chapter will tackle this problem and propose an efficient
approach to solve it.

To examine the problem in detail, figure 4.1 shows an outputto output bridge
between a complex cell and a 2-in-NAND. The bridged output voltages
computed by SPICE are listed in table 4.1. The logic levels of the bridged
output predicted by using the modeling method proposed in chapter 3 are also
listed under the column level*.

bridge
I
I
I
I A

B

Figure 4.1 An example of a bridge.

41

42

Table 4.1 Behavior of the bridge and its impact on fanout cells

inputs fault free bridged output x=aA y=a+c+B
a bed ef AB SPICE(V) level* fault free bridge ~ault free bridge
1 1 1 1 0 1 01 0.63 0 1 1- 1 1
1011 10 01 1.42 0 1 1 1 1
0011 1 1 10 2.15 x* 0 0 1 1
1111 00 01 2.47 x* 1 1 1 1
0101 1 1 10 3.35 1 0 0 1 1
0000 1 1 10 4.71 1 1 1 1 1
level*: usmg the method m chapter 3. x*: no faulty value IS modeled.

"O"a
"0" b
"1" c
"1"d

A '{
-~
,...">2.15V
....

"1"e~~O".,..)
"1" f -----l___./B

4V
"1"

Figure 4.2 Impact of an undefined input on fanout cells.

According to our convention, any output higher than V1=3.0V is, interpreted
I

as "1" and any output lower than V0=2.0V is interpreted as "0". 'For outputs
higher than 2.0V but lower than 3.0V, we agreed not to decide. Instead the
outputs are assumed to he fault free. Now consider the bridged output shown
in figure 4.1 to drive two cells x andy as shown in figure 4.2. The outputs of
x and y both in the fault free and in the case of the bridge are shown in the
last two columns of table 4.1. It can he concluded that using the modeling
method in chapter 3, the bridging fault shown in figure 4.2 is not detectable
fortheinputs listed in table 4.1. However, as indicated in figure 4.2 (quoted
1s and Os are fault free values), for inputs abcdef=001111, the SPI CE analysis
shows the output at the bridge to he 2.15V. As aresult the output of x is 3.99V
which can he interpreted as "1". The output of y is 0.64V which can he
interpreted as "0". Bothoutputs contradiet the fault free values. The bridge
is in fa ct detectable! Obviously the condusion that the bridge is not detectable
comes from the inability of the method in chapter 3 to propagate the
undefined voltage value correctly. Thus the exact solution still relies on the
following two issues:

1) how to evaluate the bridged output voltage accurately;

2) how to propagate or interpret an undefined input voltage accurately.

43

It can be seen from the above example, as some few centivolts ditTerenee of
the input voltage can cause different outputs, any kind of approximation can
easily lead to wrong decisions. Thus to guarantee the correct simulation,
circuit-level accuracy must he obtained. Usually as there are many more
bridging faults than single stuck-at faults, both the procedures 1) and 2)
above must he effi.ciently solved.

The problem of resolving the undefined input has been notified by many
researches. Howeverno adequate solutions have been found for large circuits.
Only very recently, some work has been publisbed with the intention to
provide effi.cient solutions. In [14,23], a mixed or multi-level simulation
technique is suggested in which the simulator switches from the normallogic
simulation to a circuit-level simulation whenever a bridging fault is
encountered. The bridge is simulated along its fanout cone until the
undefined inputs can be safely interpreted as logic "1" or "0". Then the
simulation is switched back to logic level. This metbod is very accurate. But
for lengthy test patterns a large circuit may not be effi.ciently simulated. For
instance, in figure 4.2 the inputs abcdef = 100111 and abcdef=110111 cause
the same conducting circuit. In such a case this metbod would invoke the
expensive circuit simulation twice while this is not necessary. It is also not
effi.cient to evaluate all the bridges connecting two cells having the same
combination of cell types, for example, a 2-in-NOR connected to a
3-in-NAND. Somerecent improverneut [41] ofthe mixed-level simulation
approach uses so called precomputed tables derived by a circuit-level
simulator to avoid unnecessary evaluations. The cell(gate) logic threshold
voltages are used to propagate an input voltage. However, the precomputed
tables that are derived by en urnerating all the combinations of a celllibrary
may he too time and memory consuming. It is also not easy to maintain such
a huge database. Furthermore the strategy of propagating an undefined
input in [41] is still inaccurate. Very recent improvements of the "voting
model" [2,38] unfortunately are still approximate in nature and the faulty
value propagation procedure is also not accurate.

In line with [38,41], this chapter presents another alternative metbod for
accurate modeling and fast simulation ofbridging faults [19].

4.2 Fault simulation using generie-bridge and
generie-een tables

The general strategy of the proposed metbod is outlined in this section. The
circuit chosen for the study is still a CMOS combinational one. Each CMOS
circuit is represented by a conneetion graph as described in chapter 3. The
bridging faults are output to output type of bridges. Again defects causing

44

these bridges are fatal defects. That is, the resistance of the bridge is
negligible. Furthermore only static analysis is performed.

4.2.1 Evaluation of bridged output

In order to obtain both high accuracy and efficiency, let us examine the design
procedure first. In modern CMOS design, it is a common practice that most
designs are based on a given celllibrary. In a specific design, the number of
instantiated cells is usually much larger than the size ofthe library. One type
of a cell may be repeatedly used in the design. Thus it is very likely that many
bridges may conneet the same combination of the cell types in the same
manner. These bridges can be represented by one bridge, called the
generic-bridge. A set of generic-bridges can he derived for all the extracted
bridges in a design.

This observation can help to simplify the evaluation task since the evaluation
of all the bridgescan be restricted to the generic-bridges. Usually the number
of generic-bridges is far smaller than the number of all bridges. Each
generie-bridge can be evaluated by using a circuit-level simulator, such as
SPI CE in our case. Then the bridged output is computed with the accuracy
of SPI CE. Yet a large amount of computational tasks is avoideq.

For each generic-bridge, a generie-bridge-tabie is introduced for all the
cell inputs that activa te this bridge. A generie-bridge-tabie corisists of a set
of pairs <b, d> as its entries. Let Tbri be a set denoting all the entries:

Tbri = { < bl,dl >, < b2,d2 >, , < bn,dn >} (4.1)

For each < b,d > E Tbri• bis the bridged output voltage value and dis a
Boolean expression that represents a set of input veetors activating the
bridge and generating a voltage value b at the bridged output. The
generie-bridge-tabie has a property ofmutual exclusiveness. That is, for any
two < b1,d1 > and < b2,d2 > in Tbri if d 1 is true, then d 2 is not true and
vice versa. This is obvious since for one input vector ofthe two bridged cells,
the bridged output cannot have two different voltage values simultaneously.
Thus such a table can be viewed as a function

Fbri = bl ·dl+··· + bn · dn

If di is satisfied, the Fbri takes one voltage value bi.

(4.2)

For the bridge shown in figure 4.1, its generie-bridge-tabie is obtained as:

F bri = 0.00 · (e EB{) · a · b · c · d + 1.42 · (e EB{) · (a EB b) · c · d

+ 2.15 · e · f · a · b · c · d + 2.45 · e · 1· a · b · c · d

+ 2.89 · e · 1· (a EB b) · c · d + 3.35 · e · f · (a+b) · (c EB d)

+ 5.00 · e · f · (a · b · c · d + c · d) (4.3)

45

4.2.2 Propagation of undefined inputs

Let us examine how a CMOS cell transfers an input voltage. First, the logic
(switch) threshold voltage of a cell is defined. For an inverter, the logic
threshold voltage is the input voltage value such that the output is equal to
the input. The logic threshold voltage of a cell ha ving more than one input can
be defined in the similar way. Obviously such a cell may have several different
logic threshold voltages. For instance, a NAND with two inputs a and b has
a logic threshold voltage 1.89V when a changes while b=l. Vice versa, it has
a logic threshold voltage 2.20V when b changes while a=L When both inputs
a and b change simultaneously, it has a logic threshold voltage 2.60V. In the
sequel, a logic threshold voltage when only one input changes is classified as
single-input logic threshold voltage. Otherwise it is classified as
multi-input logic threshold voltage, For the above example NAND, the logic
threshold voltage 1.89Vand 2.20V are single-input logic threshold voltages
but 2.60V is a multi-input logic threshold voltage. A complex cell may have
many logic threshold voltages when certain inputs change simultaneously.

In modern technology, it is known that the CMOS cell has a very high gain
around its logic threshold voltage. A small varlation at the input yields a very
big swing at the output. lt is very likely that an input voltage lower than the
logic threshold voltage would cause an output large enough to he a logic "1"
and vice versa. This implies that most ofthe undefined input voltagescan he
interpreted as logic levels just by propagating them one level up along their
fanout cones. Without any computation, the fault propagation can he done by
comparing the input voltage with the logic threshold voltages of some cell.
Obviously it is possible that an input voltage is equal to or very close to the
logic threshold voltage. Then the output may still be in the undefined range
and cannot be interpreted as a logic value at this stage. This undefined input
has to be propagated further before it can be completely resolved. However,
more computations are needed. In our experiments on the benchmarks
described in chapter 2, such situations hardly occur and add up to only 0.2%
of all the cases during the whole fault simulation procedure. Therefore, to
obtain fast fault simulation, it is sufficient to propagate a bridging faultjust
up to the outputs of its immediate fanout cells. The above discussion is
summarized as a modeling principle described below for inverted cells (for
other types of cell, similar modeling principle can he easily derived).

Modelingprinciple:Assume a cell has an undefinedinput. Ifthe input
voltage is higher than a logic threshold voltage of the cell, a logic "0"
would bereadat the output. Vice versa, ifthe input voltage is lower than
the celllogic threshold voltage, a logic "1" would he read. Otherwise it is
considered that the fault effect will not appear at the output.

46

Now let us examine what this modeling principle impliesfora specific design.
It is usually the case that a specific design use,s only a subset of cells from the
given cell library. Each of them may have many instantiations. To he
consistent with the definition ofthe generic-bridge, each cell in such a subset
of a celllibrary is called a generie-een ofthis design. Such a subset of a cell
library is called the set of generic-cells of this design. The advantage of the
above modeling principle is then obvious. Fora specific design, only the logic
threshold voltages of each generic-cell are required for the fault propagation.
They can he computed accurately by a circuit-level simulator. Again a large
amount of computations can he avoided.

To formulate and keep the derived logic threshold voltages of each
generic-cell, a generie-eell-table is introduced. The generic-cen-table of
a generie-een consistsof a set oflabeled pairs < w, 0 >las its entries. The
labell represents an input terminalor any combination ofthe input terminals
of the generic-cell. For each < w, 0 > l• w is the val ue of a logic threshold
voltage when the inputs l change simultaneously. 0 is a Boolean expression
representing a set of input veetors such that input terminals l are observable
at the output ofthis generic-cell. If 0=1, any change at l also causes a change
at output. Let T c:ell{l) denote all the threshold voltages when terminals l
change simultaneously. The set Tcell(l) has a property of mutual
exclusiveness as well. That is, for any two < w 1, 0 1 >land < w 2, 0 2 > l in
T c:ell(l), if 0 1 is true, then 0 2 is not true and vice versa. This is because for an
input vector such that terminals l are observable, the generie-een cannot
have two different logic threshold voltages simultaneously when inputs at l
change simultaneously.

Let L he a set denoting all the combinations of the input terminals of a
generic-cell.

Then the set containing all the entries in the generic-cell-table can he
expressed as:

Tc:ell = U Tc:ell(l) (4.4)
lEL

It is not difficult to prove that any two entries of a generic-cell-table are also
mutual exclusive.

Thus the generic-cell-table can he viewed as the function Fee// defined by

Fcell = L ((w 1 · 0 1)l + (w 2 · 0 2)l + ... + (wm · Om)l) (4.5)
lEL

For specific terminals l, if Oi is satisfied, Fcell takes the logic threshold
voltage wi.

47

Fora NAND with two inputs a and b, its generic-cell-table is expressedas

Fbri = (1.89 · b)a + (2.20 · a)h + (2.60)ah (4.6)

(1.89 · b)a indicates that the cell has a logic threshold 1.89V when a changes
while bis satisfied. The last one (2.60)ab indicates that the logic threshold
voltage is 2.60V when a and b change simultaneously. Obviously in this case
any transition at a and b simultaneously is always observable.

4.2.3 Fault simulation strategy

With the introduetion of these two concepts, i.e., the generie-bridge-tabie
and the generic-<ell-table, bridging faults can be simulated in the proèedure
described below:

1) For each bridge, find its generic-bridge-table. Evaluate the table
according to the applied input pattern and obtain the respectivè output
voltage value.

2) For each fanout cell ofthe bridged outputs, find its generic-<ell-table. For
the applied input pattern, evaluate the entries labeled with the inputs
that are connected with the bridged outputs. Obtain the respective logic
threshold voltage value.

3) Compare the bridged output voltage with the logic threshold voltage and
interpret it as logic value at the output~

4) After all the fanout cells are processed, start the normal logic fault
simulation from these fanout cells until it can be decided that the bridge
is detected.

Figure 4.3 An overview of the modeling and simulation system.

Since these two sets of tables can he computed in advance, there is no
expensive circuit simulation involved during the fault simulations. Thus the
fault simulations can he done solely at logic level with only some costs
incurred with the above interpretation procedure. Consequently both

48

accuracy and efficiency are obtained. Figure 4.3 illustrates the whole system.
The inputs ofthe bridge Analyzer (figure 4.3) are a flat representation ofthe
transistor netlists and all possible bridging faults. Both are extracted from
the layout of a design using the metbod in chapter 2. The SPI CE simulator
is chosen for the computation of circuit responses. Thus SPI CE parameters
for a specific process are also taken as an input. The metbod actually employs
the same philosophy as the one in the previous chapter. The difference is that
a circuit-level simulator is used to evaluate a bridging fault and the logic
threshold voltage is used for the fault propagation. Below some details of
deriving these two sets of tables are discussed.

4.3 Dynamic derivation of generie-bridge and
generic-cell tables

The denvation of the generie-bridge-tables and the generic-cell-tables is
performed by analyzing the extracted bridging faults fora specific design
insteadof en urnerating the given celllibrary. Thus the denvation is dynamic.
This is because of the following reasons:

1) The number of the generie-celis in a specific design is usually smaller
than the size of a given cell library. Consequently the number of all
possible generic-bridges in the design is small. Thus, • the task of
characterizing both tables for a design is easier.

2) The occurrence ofbridging faults depends highly on the layout topology
of a specific design. It is very likely that a generie-bridge derived by
enumerating the celllibrary may actually never occur in a design. Such
information can only he obtained by analyzing the extracted bridging
faults for a specific design.

3) The number of all possible multi-input logic threshold voltagesfora set
of cells is usually very large. The actual number of multi-input situations
depends on how many bridging faults actually conneet more than one
input of a cell and how a cell is actually connected in a design. Again such
information can only be obtained by analyzing the extracted bridging
faults for a specific design.

Since both speed and memory are crucial for the simulation, the denvation
is performed for each design by analyzing the extracted bridges. In this way,
it is guaranteed that each derived generie-bridge-tabie corresponds to at
least a bridge fault that may actually occur in this design. Each derived
multi-input logic threshold voltage also corresponds to a case of more than
one input being connected together due to possible bridging faults or the
actual conneetion of a cell. Thus the amount of circuit simulations can he

49

greatly reduced compared to flatly enumerating the celllibrary. Such derived
tables can make the use of some efficient techniques, such as parallel pattern
simulation easier as will he shown.

Before the actual computation, the set of generic-cells for a design has to he
identified. Let the conneetion graph corresponding to a cell he called a cell
graph. Then it is relatively easy to check if two cells are the same by just
checking the isomorphism of two cell grap hs. Since at least the power supply
and ground nodes are known as the equivalent nodès between these two
graphs and the output norles are the potential equivalent ones, the checking
can he done by exhaustively comparing the norles and edges starting from the
output node of each cell graph. Usually the cell graph is relatively small. The
comparison of norles and edges can be started by first checking some cell
graph information, such as the number of inputs and the length ofthe longest
path of each cell graph. Eventually such an exhaustive comparison can he
done very fast. Tbe checking is repeated until all the instantiated cells in the
design are processed. Then all the generic-cells in this design are obtained.
After this step, the bridging fault list can be passed to derive the
generie-bridge--tables and generic-cell-tables.

4.3.1 Derivation of generie-bridge-tabie

The denvation procedure of a generie-bridge--tabie is rather
straightforward. For each identified generic-bridge, first all the possible
input combinations of these two generie-celis that create a conducting circuit
from power supply to ground are enumerated. The respective SPI CE format
input of each conducting circuit is accumulated in a file. Then, a SPICE call
is invoked to compute the bridged output voltages. U pon the completion ofthe
SPICE computation, the results are collected to construct the table. The
enumeration of all conducting circuits can he done in the way described in
chapter 3. That is, the problem is formulated as finding all the
path-connected subgraphs and is solved by running the enumeration
algorithm described in Appendix A. The major cost of this procedure is
obviously the execution ofSPICE. To speed up, the following techniques are
used.

The first technique makes use of the fa ct that if the bridged output voltage
is very close to the potential of power supply or ground, it can certainly he
interpreted as a logic value. For example, fora typical5.0V CMOS technology,
an input above 4V, which is usually defined as the lowest "hard" logic "1"
value, or below lV, which is usually defined as the highest "hard" logic "0"
value, can be definitely interpreted as "1" or "0" respectively. Obviously the
approximation method presented in chapter 3 is a good option to analyze
those situations. As has been discussed earlier, the output voltage of a

50

conducting circuit can he predicted by just computing the equivalent beta
ratio {3 of the conducting circuit. Here the difference is that, to set a certain

safety margin, two ratios P?wrd and {3 ~ard corresponding to the highest hard
logic "0" and lowest hard logic "1" voltagesfora technology are used for.the
comparison. Such estimation appears to he accurate ·enough. The entries
O.OOV and 5.00V in eq(4.2) have actually been computed by this technique.

(a)

< 1.42V, (e EB{) · (a $ b) · c · d >

(c)

bridge

"1-=--i

"~

(b)

A

Figure 4.4 Illustration of the structural equivalence.

The second reduction technique is based on equivalent structures. For a
bridge, many conducting circuits activated by a different combination of
input excitations have the same structure. Consequently, the bridged output
for these different excitations is the same. The conducting circuits are then
said to he "structurally equivalent" for these inputs. For instance, with the
bridge in tigure 4.1, the four different input combinations shown in tigure
4.4(a) cause the same conducting circuit as shown in tigure 4.4(b) with the
bridged output being 1.42V. For those structurally equivalen~ conducting
circuits, there is no need to repeat the SPICE simulation. In the course of
analyzing a bridging fault, all the conducting circuits for which the output
voltages are already obtained by simulation, are kept in a temporary set.
During the en urneration of conducting circuits, if a new conducting circuit is
found to he equivalenttoa one already in the temporary set, its SPI CE format
input would not he generated and only its input condition is merged with the
corresponding one in the temporary set. Th compare two conducting circuits,
each conducting circuit can he viewed as a subgraph ofthe cell graphs. Thus
checking whether two conducting circuits are equivalent can he done by
comparing the two subgraphs representing the two conducting circuits. Since
the subgraphof a cell graph is small, such a comparison processcan he done
very fast. The result shown in tigure 4.4(c) for the example in tigure 4.4 will
appear in the tinal generic-bridge-table.

51

It will he shown hy experimental results that ahove two techniques are every
effective.

4.3.2 Derivation of generic-cell-table

A generic-cell-table is constructed in two steps. In the first step, the
single-input logic threshold vQltages of each generic-cell are derived. The
derivation procedure is straightforward. Depending on how it is driven, a
generie-een may have many different logic threshold voltages when one
input changes. For a specïfic input terminal, each cell configuration that
results in a different logic threshold voltage when this input changes
corresponds toa conducting circuit from power supply to ground comprising
of both N-type and P-type transistors driven by this input. For each input
terminal, after all such conducting circuits are enumerated and their
respective SPICE input formats are accumulated in a file, a SPICE call is
invoked to compute the logic threshold voltages. Upon the completion, the
results are collected to construct the table. This procedure is repeated for each
input of every generic-cell. To enumerate all the different conducting circuits
that may lead to different logic threshold voltages, the problem can also be
formulated as finding all the path-connected subgraphs as described in
Appendix A The en urneration algorithm in Appendix A can be used.

It seems that other methods did not pay enough attention to the phenomenon
that a cell may have many different logic threshold voltages when a single
input changes. It is worthwhile to show the effect ofthis phenomenon on the
fault propagation. Fi~e 4.5(a) shows a generie-een which has three
different logic threshold voltages when input a changes. Their values are
listed in table 4.2. Assume the input voltage of a is 2.15V, then it can be
interpreted as an "O"(in case the threshold is 2.08V), undefined (in case the
threshold is 2.15V) or "1" (in case the threshold is 2.17V) at the output
depending on the values of other inputs. Some complex cen may have up to
7 different logic threshold voltages when a single input changes. Thus those
effects cannot he ignored.

In a second step, the multi-input logic threshold voltages of each generie-een
are derived. Before the derivation procedure is described, let us examine in
which situation the multi-input logic threshold voltages are needed. This is
illustrated hy an example shown in figure 4.5. Figure 4.5(b) shows a possible
use ofthe cell in figure 4.5(a) in an actual design. It can beseen that one signal
can drive two inputs (a and b in the original cell) simultaneously. Assume that
a bridge between a and c in figure 4.5(b) occurs. Then one signal can drive
three inputs (a, band c in the original cell) simultaneously. Table 4.2 also lists
the logic threshold voltages for those two situations. The tahle shows clearly
that ignoring the dependendes between various inputscan be very deceptive.

52

Thus it is necessary to know the multi-input threshold voltages in order to
interpret the input correctly.

c

I
I
I

briage

A

Figure 4.5 (a) A complex cell. (b) illustration of multi-input thresholds.

Table 4.2 Multi-threshold values

a&b&c
old(V) d

2.44 0

The denvation is computed while the bridging faults are analyzed. In the
course of the analysis, each multi-input case is individually iUentified. If
more than one input in the fanout cell is bridged or one input signal drives
more than one input terminal, then all the possible cell configurations are
enumerated. Their logic threshold voltages are computed by SPI CE and the
generic-cell-table is updated. The procedure is repeated for every bridge.
Eventually all the necessary multi-input logic threshold voltages are
obtained in the tables.

It should he noted that multi-input logic threshold voltage effects are not
considered by the methods in [38,41]. Instead, the single-input logic
threshold voltage is used for the fault propagation. This can easily lead to a
wrong decision. For instance, fora 2-in-NAND, it has two single-input logic
threshold 1.89V and 2.20V. It has a multi-input threshold 2.60V when both
inputs change simultaneously. Now assume two inputs are bridged together
and the input voltage value is 2.45V. In this situation, using the multi-input
threshold voltage 2.60V, the input is propagated as "1" to the output which is
consistent with the real value 4.99V. But if the single-input logic threshold

53

voltage, either 1.86V or 2.20V, is used, then the input is propagated as a "0"
to the output which is not correct. Thus our metbod is more accurate.

4.3.3 Boolean function representations

During the analysis and the derivation of the two sets of tab les, the Boolean
function of each generic-cell and each table en try involves symbolic Boolean
expressions and manipulations. The results need to he stored for the
simulations. This seemsnot an important issue since it is claimed before that
the number of generic-bridges and generie-celis for a design is small.
However as stated in the previous chapter if this is not properly handled, it
may still cost unnecessary memory. To he efficient, ROBDD datà structures
are used. It is not difficult to observe that the Boolean expression in each
entry of a generie-bridge--tabie is established by a pull-up term of one
generic-cell and a pull-down term of another generic-cell. Let each ofthem
he stored separately. Then the canonical property of the ROBDD can result
in a very compact representation.

1 0

(b) 1 0 1 0

o : negated function.

Figure 4.6 lllustration of compact storage.

To illustrate this, tigure 4.6(a) shows a generic-cell B involved with two
generic-bridges. After analysis, all the pull-down (f1=a · b) and pull-up

terms (f2=a · ïi and f3=a · ïi + a · b) of B are required to construct the tables.
Their ROBDD representations are shown in tigure 4.6(b). The
generie-bridge--tables are obtained as:

Fbril = 1.35 · ë · f 1 + 1.57 · e ·fa + 3.39 · e · f 2
Fbri2 = 1.45 . ga. fl + 2.67 . g2. fl + 1.89. gl. fa+ 3.45 . gl. f2.

Here g 1=c ·dis the pull-down term ofC and g 2=c · d and g 3=c · d + c · d
are the pull-up terms ofC. Their ROBDD representations arealso shown in
tigure 4.6(c).

During the whole process, the generic-cell B is only neerled to he processed
once to create f 1, f 2 and fa· They are shared by both the

54

generic-bridge-tables. The g 1, g2 andg3 are also created once. {1 and g 1 are
also shared inside F bri2• Thus in theory, the upper bound of the memory
requirement for all the tables is the number of the different pull-up and
pull-down terms of all the generie-celis in a design. Consequently. the
memory required grows linearly with the number o(generic-bridges and
generic-cells.

4.4 Fault simulation

This section examines how the generie-bridge-tables and
generic-cell-tables are used to perform the fast fault simulations. It will he
shown that although the evaluation procedure is . different, the fault
simulation worksjust like with any other normallogic fault simulator. Thus
any efficient technique can he applied. To show the advantage of using these
two sets of tables, the PPSFP technique as described in chapter 3 is used.

The fault simulation is conducted on the network graph of a circuit as
described in chapter 3. The first two steps of the fault simulation can he
executed as in chapter 3. That is, in the first step, the forward traversal, the
fault free simulation is carried out for parallel patterns. In the secoud step,
the backward traversal, the observability of each node is 'determined
according to the applied input pattern in parallel as well. Then the
detectability of each bridging fault is determined. This procedure is different
from the one in chapter 3 in which each bridge is simulated implicitly. Here
each bridging fault is explicitly simulated. This is because in most cases, a
voltage value at a bridged output can he propagated as a set of different faulty
valnes to different fanout cells. The fanout branches carrying faulty valnes
may reconverge later at some point. That is, regarding the fault propagation,
a non-reconvergent node may hebave like a reconvergent node. Therefore
each bridging fault should he simulated explicitly from the fanout cells up to
the primary outputs or up to a point where its detectability can he
determined. Below the fault propagation to fanout cells ofthe bridged outputs
is derived symbolically in order to show the parallel techniques.

The basic operation is the denvation ofthe faulty Boolean function for each
fanout cell of the bridged outputs. As it is discussed in chapter 3, the faulty
Boolean function can he constructed by the faulty-on set and the faulty-off
set of each cell. This is also the casefora fanout cell ofthe bridged outputs.
For the ease of discussion, a bridging fault between B and C and one of their
fanoutcellsA as depictedin tigure 4.7 is used forillustration. Let FA, F Band
F c he the fault free functions of these three cells respectively. In the fault free
situation, A can he viewed as a function of inputs in I and K. In the presence

55

ofthe bridge, A becomes a function ofnot only the inputs in I andKbut also

inputs in J. Let the faulty-on and faulty-off set of A are obtained as fÁ and

t;i respectively. Then applying theorem 3.1, the faulty Boolean function of A
is specified as:

iJ' A = FA . t;i + fl
Below it will be shown how the faulty-on and the faulty-off set of a fanout cell
are derived from the generie-bridge and generic-cell tables.

A

Figure 4.7 mustration of a bridging fault propagation procedure.

For the bridge shown in tigure 4. 7, fi.rst its generie-bridge-tabie and the local
cell input ordering of the bridge are found. Let all entries of the table be
represented by a set T bri· For the fanout cell A in figure 4. 7, its
generic-cell-table and local cell input ordering are found. Let all the entries
labeled with a be represented by a set T cell(a).

According to the defi.nition, the generie-bridge-tabie T bri can be partitioned

into two parts ~ri and T!n·

~ri = { < b,d > E Tbri d ~ FB A d ~ F d (4.7)

Ttri = { < b,d >E Tbri d~FB A d=>Fd (4.8)

For each < b,d > E ~ri' ifany input vector satisfi.es d, Fs= 0 and F c = 1.

For each < b,d > E Ttri' if any input vector satisfies d, F s=l and F c=O.

Forany < b,d >E ~ri'itisknownthatthefaultfreevalueofBis"O"(a=O).
In the presence ofthe bridge, if a is observable at the output of A, to have a
faulty value at the output of A, obviously the input voltage at a should be
higher than the logic threshold voltage of A when a changes. Let the Boolean
expression reprasenting all the input veetors that generate the bridged
output higher than a value w be expressed as:

d (4.9)
<b,d>E 1'/,ri(w) I b>w

56

Then for any < w, 0 > E T cell(a), a is observable if 0 is satisfied. Thus a

faulty-offbehavior is caused at A if any input satisfies C0(w) · 0.

By complementary reasoning, let the Boolean expression reprasenting all the
input veetors that generate the bridged output lower than a value w he
expressed as:

d (4.10)
<b,d>E Tiiw) I b<w

Thenforany < w,O >E Tcell(a),ifanyinputsatisfiesC1(w) · O,afaulty-on
behavior is caused at A.

Consider A has more than one logic threshold voltage when a changes, then
the final faulty-on and faulty-off sets of A are obtained as:

(4.11)
<w,O>E T..."(a)

fl = (4.12)
<w,O> E T ..."(a)

That is, if any input satisfies eq.(4.11), then the output A has a faulty value
"0". Vice versa any input satisfying eq.(4.12)introduces.a faulty "1" at the
output A. Therefore, according to theorem 3.1, the faulty behavior of A is
characterized as

(4.13)

The eq.(4.13) can he evaluated according to the applied input patterns. Ifthe

value of FA indeed differs from FA, that is, FA EB FA=l, the output A has a
faulty value. For the case of more than one input of a fanout cell is bridged
together, the propagation procedure is very similar. After all theifanout cells
are processed, the logic fault simulation can he started from theifanout cells
carrying faulty values.

It is not difficult to observe that the above formulas can he evaluated for
patterns in parallel as well via bit-vector operations. Thus the whole
procedure can he done for parallel patterns.

4.5 Experimental results

The whole system is implemented in Con a HP-90001755 workstation. For
experiments, the ISCAS85 benchmark circuits as described in chapter 2
again are used. For the SPI CE simulator [40], the level3 MOS model is used
for the analysis. Only the part of output to output bridges from extrading
results in chapter 2 are used here.

57

In table 4.3 the analysis results are summarized. In general, the number of
generie-celis in each circuit is far less than the size of the actual celllibrary.
The circuit c6288 having 1848 instantiated cells uses only 7 generic-eells.
The actual number of generie-bridges derived from the extracted bridging
faults is also far Ie ss than the number of extraeted bridges. It is even less than
the number of eombinations ofthe generie-eelis in eaeh design. For instanee,
e7552 has 51773 bridges but only 309 generie-bridges are derived. The
number oftwo combinations of31 generie-celis in e7552 is already 465.

Table 4.3 Results ofbridging faults analysis

circuit #total cell #GC #bridge #GB memory(Kb)
c432 152 18 1025 68 34
c499 284 9 2625 36 17
c880 236 20 3254 146 74 26.5

c1355 366 10 3421 44 24 6.4
c1908 411 20 4132 111 51 20.9
c2670 31 13483 238 141 58.0
c3540 29 14499 134 48.4
c5315 36 39412 238
c6288 7 14298 10
c7552 1795 31 51773 197

#GC : number of generic-cells; #GB: number of generic-bridges.

Table 4.4 Reduction of SPI CE calls

#conducting circuits #multi-input thresholds
circuit actuai totai reduce% #actual enumerate reduce%
c432 458 1237 62.9% 31 120 74.0%
c499 128 275 53.0% 18 34 47.0%
c880 1276 3310 61.4% 68 157 56.7%

c1355 317 569 44.3% 28 58 51.7%
c1908 845 1861 84.6% 52 178 70.8%
c2670 2414 6420 62.4% 82 274 70.1%
c3540 2173 6788 68.0% 107 246 56.5%
c5315 3589 12223 70.6% 131 446 70.6%
c6288H39 224 38.0% 4 12 66.7%
c7552 3369 10110 66.7% 155 368 57.9%

Table 4.4 shows the effectiveness of using the techniques described in section
4.4. The table shows the totai number of conducting circuits caused by the set
of generic-bridges in each design. They have to he computed by SPI CE to
characterize generie-bridge-tab les. The actual number of them after using

58

the reduetion teehniques in section 4.1 are also shown. On average 65%
SPI CE computations are bypassed. The dynamic derivation of multi-input
logie threshold voltages also bypasses on average a bout 65% of the SPI CE
simulations eompared to enumerating thesetof generie-celis in each design.
Consequently the generie-bridge-tables and generie-cell-tables are derived
very fast.

The times listed in table 4.3 are the actual CPU times in seconds used for the
derivation. The dynamic derivation for a specific circuit instead of
enumerating the whole celllibrary is not only very fast but also requires a
small amount of memory. In table 4.3 the tot al size ofboth the tables is listed.
Only up to 250 kbytes are required for the largest circuit. Both the CPU time
and the memory requirement have almost a linear relation with !the number

90
80
70
60
50
40
30
20
10
0

240

210

180

150

120

90

60

0

CPU(see)

#table

120 160 200 24Q 280 320 ~60

Figure 4.8 Analysis time versus size of tables.

Memory(Kb)

30j
c628 #table

0'----''--I.C'~------- __________ _J

0 40 80 120 160 200 240 280 320

Figure 4.9 Memory requirement versus size of the tab les.

59

of generic-bridges and generie-celis as shown in figure 4.8 and figure 4.9.

The fault simulation results are shown in table 4.5. The bridges are simulated
for the single stuck-at test pattern sets that are used in chapter 3. The fault
simulation is performed in one run for both stuck-atand bridgingfaults. The
fault coverage for bridging faults is the percentage of detected bridging faults
divided by the number of all simulated bridging faults. In general, the
bridgingfault coverages are slightly lowerthan the respective single stuck-at
fault coverages. However, consideringthat the total number ofbridging faults
is much higher than the number of single stuck-at faults, the number of
undetected bridgesis still quite large. The simulation time, however, is very
short. The column errors% indicates the possible false interpretation
percentages during the whole fault simulation. This is, the percentage of the
situations where the input is the same as or very close to the celllogic

Table 4.5 Results ofPPSFP simulation for SSA test pattern set

circuit #patterns SSA% bridge% time(s) error% bridge%<in chap. 3 l
c432 75 99.7 96.9 0.3 0.14 91.0
c499 71 100.0 98.0 0.3 0.04 97.4
c880 95 100.0 99.3 0.8 0.30 92.0
c1355 101 100.0 99.3 0.6 0.25 82.1
c1908 147 100.0 98.4 1.2 0.11 88.1
c2670 160 98.8 98.6 2.5 0.39 86.2
c3540 242 98.4 99.3 6.0 0.25 86.7
c5315 211 100 98.9 7.7 0.29 90.7
c6288 44 99.9 99.8 8.5 0.18 72.5
c7552 318 99.7 99.4 11.3 0.28 84.0

Table 4.6 Results ofPPSFP simulation for 21x32 random test patterns

circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552

SSA% 99.7 99.5 98.7 99.4 94.5 87.7 98.0 99.9 99.9 92.9

bridge% 97.2 98.9 99.2 99.2 96.4 96.6 99.2 98.9 99.9 98.6

time(s) 0.6 0.6 1.1 0.9 1.8 3.3 7.3 8.8 22.7 12.7

bridge*% 92.3 97.4 92.0 82.1 8~86.8 90.8 73.1 83.2

bridge*% : bridging fault coverage obtained by using the metbod in chapter 3.

threshold voltage. We choose,

I Vin-Vthreshold I s 0.02V
Vin is the input voltage value and Vthreshold is the logic threshold voltage. This
error is nota substantial problem for this set ofbenchmarks.

60

For a comparison, these bridging faults are also modeled and simulated by
usingthe approximate method using equivalent beta ratios (chapter 3). Here
only the bridging fault coverages are shown. lt can he observed that the
bridging fault coverages can he improved up to 20% for some circuits. This
indicates that the modeling accuracy indeed has an significant impact ori the
results of fault simulation.

To verify the random testability for the bridging faults, again 21x32 randomly
generated test patterns are simulated for the bridging faults. The results are
shown in table 4.6. The bridging fault coverage for the same 21x32 patterns
obtained by using the approximate method using equivalent beta ratios
(chapter 3) are also shown in the last row. The fault coverages are also
improved a lot. This once again shows the impact ofthe accurate modeling on
the fault simulation.

4.6 Conclusions

It is hard to compare withother methods since most ofthe documentation of
those methods do not include the preprocessing time and memory
requirement. Further selecting the bridging faults, the test pattern sets, the
design approach and the process parameters (SPI CE parameters) can make
a lot of difference as well. Nevertheless, intuitively this method is much more
accurate than other approximation methods. Compared to the methods of
using precomputed tables by en urnerating the given celllibrary, our method
is also more accurate since the multi-input logic threshold voltages are
considered. The introduetion of the generie-bridge-tabie and the
generic-cell-table greatly facilitates the use of any efficient simulation
technique. In principal they make our fault simulation fast. Furthermore the
dynamic denvation by analyzing the extracted bridges for a specific design
makes the analysis fast and requires much less memory than competing
methods. The technique ofbypassing unnecessary SPI CE simulations proves
to he effective. In addition, this method does not require the cell library
information and the input is a flat representation of extracted transistors.
The generie-celis can he derived for each specific design. Thus the method is
to be used for any design style. Lastly, the idea can he used for bridging faults
involving internal nodes. We believe that it is a good way of simulating
bridging faults.

This method, however, does have a limitation. If the bridged outputs bear
voltage valnes close to the threshold very frequently, many errors may he
induced. The results may not he reliable although our experiments suggest
that it is unlikely.

5
Open Fault Modeling and Simulation

5.1 Introduetion

The previous two chapters outlined two possible alternatives to perform
accurate modeling and fast simulation for bridging faults. In recent years,
another alternative of detecting bridging faults by measuring excess
quiescent power supply current (I ddq) has attracted a lot of attention [32,33].

Ho wever, as one of the disadvantages, I ddq current testing is not effective for

open faults. The importance ofthe open faults should he recognized, however,
by the following facts:

1) As the data shown in chapter 2, although the number of open faults is not
as large as the number ofbridges, the probability ofthe occurrence of an
open fault can he large.

2) The random defects cause opens more likely in one product than in other
[51,56]. It is reported experimentally that IC's passed single stuck-at,
Iddq or even delay test pattern sets still did not operate correctly. One of
the reasons is the presence of opens on the conducting paths [37,50].

On the other hand, most previously proposed methods of modeling and
simulating open faults have the shortcoming that both hazard and
charge-sharing effects are not completely analyzed. Therefore a metbod is
still demanded to perform accurate modeling and efficient simulation for
opens. In following sections, the open fault and its testing problems are first
examined in detail. Then another alternative for modeling and simulating
open faults is proposed which overcomes the shortcomings of the previously
proposed methods. The metbod proposed in this chapter was previously
publisbed in [18].

61

62

5.2 Open fault and its testing problems

5.2.1 Open faolts

The first mentioning of open faults was in the late 70's [55]. Since then, the
single transistor stuck-open fault model is used by most ofresearchers. The
inadequateness ofsuch a model was described in [36]. In this thesis, the open
is analyzed at circuit level. That is, assume the spot defect condition as
described in chapter 2. Then if an open occurs it causes the tree structure of
some node to he split into a number of subtrees. The node can he the gate (e.g.,
open #3 infigure 5.1), thedrain(e.g., open #1infigure 5.1) and the souree (e.g.,
open #2 in figure 5.1) of a transistor, an output node (e.g., open #4, #5 in figure
5.1) or aninputnode (e.g., open #6 in figure 5.1) of a cell. The open considered
hereis assumed to he fatal fault. That is, the capacitive coupling ofthe open
is deemed insignificant.

Figure 5.1 Opensin a CMOS circuit.

The physical mechanism of opens and their electrical behavior have been well
studied [36,4 7] by measuring artificial opens introduced by manufacturing
into real circuits. It appears that the behavior of the open at the gate of a
transistor largely depends on the local topology and is rather sensitive to the
gate capacitive signal coupling[36]. Usually either stuck-at behavior or
increase of cell propagation delays are observed. The open at an input or an
output node of a cell most likely behaves like a stuck-at fault [36,47]. If an
open only occurs at the gate ofthe N-type transistor and shows stuck-at fault
behavior (usually stuck-at 0), the N-type transistor behaves like a real
transistor stuck-open. In this thesis, such an open is considered as being
equivalent toanopen at the drain(source) ofthe respective transistor. If an
open occurs at the gate of the P-type transistor and shows stuck-at fault
behavior (usually stuck-at 0), the transistor behaves like conducting all the

63

time. Thus it can be considered as a bridging fault between drain and souree
of the transistor.

The opens at the drain or souree usually prevent the path from conducting
under normal clock rates and show the well-known memory hehavior [55].
Such kind of opens need a different testing approach. This chapter
concentratea on such memory hehavior opens and assumes a normal voltage
testing environment.

5.2.2 The problem of testing opens

The best method of testing opens is the "two test pattems approach" [55].
Consider an example in figure 5.2 and a two consecutive test patterns (test 1)
as shown in tahle 5.1 for open #1 in figure 5.2.

Table 5.1 Test patterns for open #1

test1
inputs outputs

a bede A faulty output
pat.1 10101 1 1
pat.2 10110 0 1

test2
inputs outputs

a bede A faulty output
pat.1 11100 0 0
pat.2 10001 1 1
pat.3 11001 0 1

P-c
P-e

Figure 5.2 Opens in a complex cell.

The first pattem pat.1 sets a pull-up conducting path charging the output to
V+. The second pattem pat.2 intends to set a pull-down conducting path
across the hroken node. Since the open prevents the pull-down path
conducting, A remains in a high impedance state and intends to keep the
precharged value. This value contradiets the fault free output "0". Thus the
open is considered as detected. The procedure of applying the first pattem
pat.1 is usually called the initialization phase and applying the second
pattem pat.2 is called the test phase.

The problems associated with this approach are known as well. The first is
hazards effects [42]. For the specifically selected two consecutive test
patterns testl in tahle 5.1, during the transition from pat.1 to pat.2, ifsome
delays turn d to be "1" too early or keep e to he "1" too long, a temporalleakage
path fromA to V_ would he created which may set A toa voltage value too low

64

to he "1". This problem usually can he avoided by carefully choosing the two
consecutive test patterns such that tempor.al leakage path cannot exist
during the transition from initialization phase to test phase. The two
consecutive test patterns pat.2 and pat.3 of test2 in table 5.1 form an example
since only one signal b changes during the transition. But a second problem
with this approach may occur [5]. That is, after pat.1, nodes n and m possibly
have the same potential as V_, If Cn and Cm are comparative with C A• then
in test phase (pat.3), charge-sharing between n, m and A may occur which
may still cause the precharged value to he notclose enough to "1". Eventually
the test is still invalid. ·

In this thesis, a two consecutive test patterns is said establishing a robust
test if the test can not he invalidated by any possible delays or charge-sharing
effects. In the analysis, this thesis distinguishes between the following tests:

1) non-robust test.

2) robust test under hazard effects.

3) robust test under both hazard and charge-sha~ng effects.

5.3 General strategy

Most of the previous methods of modeling and simulating opens can he
classified as one of the following two approaches. The first approach uses a
switch-level model [8,9]. Even with parallel techniques [10,26,44,52], this
kind of approach seems to prove inefficient for lengthy test patterns for large
circuits. Another approach [5,15,27,30,42] intends to convert the transistor
level representation of the circuit into an equivalent gate-level circuit such
that each single transistor stuck-open or stuck-short fault can he mapped to
corresponding single stuck-at faults at gate-level. The advantage of the
approach is that the existing gate-level tools can he directly used.
Unfortunately such transformed gate-level circuit is usually rather large.
The assumption of single transistor stuck--open fault makes it also impossible
to model some opens such as #1 in figure 5.2. Furthermore both of the
approaches have the same shortcoming that hazard and charge-sharing
effects are not completely considered (except [5]). Thus they are not very
robust. For example, the commonly used fault equivalent technique such as
in [30] would consider the opens #2 and #3 shown in figure 5.2 as being
equivalent. However, the charge-sharing effects may make the two opens
behave completely different.

The approach proposed in this chapter follows the same philosophy as
developed for bridging faults. Figure 5.3 illustrates the whole strategy. The
transistor netlist and capacitance of each node are extracted from the circuit

65

fault

coverag

Figure 5.3 Modeling and simulation strategy for opens.

layout and the open fault list is also available. First the transistor network
is further abstracted up to gate-level. Then for each open fault, a loc al circuit
analysis is performed by considering both the hazard and charge-sharing
effects for this open. As a result of the analysis, its behavior is modeled in
terms of a detecting condition at logic level. After all the open faults are
processed, a set of detecting conditions are obtained at logic level. Then the
logic fault simulation can be performed by just manipulating these detecting
conditions. Since there is no circuit level computations involved in the course
of fault simulation, both accuracy and efficiency are obtained and yet more
types of opens can be handled. The following sections demonstra te how the
detecting conditions can be derived and stored efficiently for an arbitrary
open. It is also shown how a detecting condition can be used by a logic fault
simulator.

5.4 Derivation of detecting conditions

5.4.1 Non-robust test and robust test under hazard effects

Let the CMOS network be represented by a undirected graph as described in
previous chapters. In the sequel, only opens in the N-part of a cell are
discussed. But the similar procedure can be applied to any open in the P-part
of a cell.

Consider a general open in N-part of a cell as illustrated in figure 5.4. The
fault free function F ofthe cell can be easily constructed by either the pull-up
terms or the pull-down terms as in previous chapters:

(5.1)

If the open occurs, the basic phenomena caused by such an open is that the
noden is split into two parts. Some ofthe paths from output node A to ground

V_ do not exist anymore. Let P AV_ and P AV_ denote all pull-down paths in the

fault free situation and in case ofthe open respectively. Then all the missing

66

V+

P-part

A

f-
f-

-= V-
Figure 5.4 Illustration of an arbitrary open.

paths denoted by M AV_ are given by the difference of P AV_ and i\ v_· That is,

MAV_ = PAv_-FAv_·

If P AV_ 0, then all the pull-down paths are disconnected from the output

to ground. Such an open very likely behaves like a single stuck-at fault at A.
Thus it is referred to as single stuck-at open bere. Open #4 and #5 in figure
5.1 are such examples. There is no need to derive the detecting conditions for
a single stuck-at open. Each s E MAv consistsof a path fromA to one split

part of n and a path from another split part of n to ground. In the presence of
the open, a Boolean expression is defined for all the remaining pull~down
paths as follows:

F= I Ts (5.2)
sEPAv_

Any input vector satisfying eq.(5.2) establishes a pull-down conductingpaths
in spite of the open. Then, for each missing path sE MAv_• a Boolean

expression Qs is defined as

(5.3)

Eq.(5.3) is derived from eq.(5.2). Eq.(5.3) is the Boolean expression of ft under
the constraint T s 1. Then for each s E MA v , following expression can he
obtained

(5.4)

with Qs derived from eq.(5.3}. Obviously if Xs is satisfied, only the missing
path s is supposed to conduct but no other paths. Due to the open preventing
such a conducting path, the output remains in the high impedance state. For
"non-robust test", an open is considered as detected if any two consecutive

67

test patterns are able to initialize A to "1" and set the output into the high
impedance state in case of the open is present. Thus any input satisfying X.~
is a test pattern. The complete test patterns for this open can be expressed as

Since any input satisfying the fault free function F establishes at least a
pull-up conducting pathand thus is an initialization pattern. Consequently
for the "non-robust test", the detecting condition is represented as:

d = I X1· Ft-1 (5.5)
sEMAv_

X 8 is derived in eq.(5.4). The superscript t - l denotes the înitialization
interval and t denotes the testing interval. Any two consecutive test patterns
satisfying eq.(5.5) establish a non-robust test of the open.

Now let us derive the detecting condition under hazard effects. The main
principle ofpreventing hazard effects is that the two consecutive test patterns
should be chosen in such a way that during the transition from the
initialization phase totest phase, there is no possible temporalleakage path.
Assume during the test phase, missing path s E M AV is activated. That is,

X1 = 1. According to eq.(5.4), this implies that T~ = 1 and Q~ 0. Since in

the initialization phase FL-1 = 1, no pull-down path is supposed to conduct.

That is, :Ps-1 = 0. Now assume that the expression Q8 is notstabie during this

transition. That is, Q~-1 = 1 in the initialization phase. If any possible delays
that turn Ts from "0" to be "1" too early or keep Q8 at "1" too long, then

(T8 • Q8)t-1±;; = 1 would hold fora short period f. According to eq.(5.3),

. (FT =1)t-l±c = 1
'

- t-l±E
would be obtained which implies F = 1. That is, some pull-down
conducting paths exist temporally. This temporal path may drain the
precharged nodenothigh enough to be "1" and the test may be invalid. Thus
in order to eliminate such situation, the Q8 should be stabie during the

transition. That is, (Q 8l-1 should be satisfied as well. The same reasoning
applies to other missing paths as well. Finally the detecting condition of
robust test under hazard effects is obtained as:

d= t - t-1 p-1
Xs · Qs · (5.6)

Xs is derived from eq.(5.4) and Qs is from eq.(5.3). Any two consecutive test
patterns satisfying eq.(5.6) establish a robust test under hazard effects for
this open.

68

5.4.2 Robust test under both hazard and charge-sharing
effects

To take both the hazard and charge-sharing effects into account, let us first
look at how to analyze the charge-sharing effects. In genera}, it is difficult
even with a circuit simulator to analyze and model the charge-sharing effects
accurately since they strongly depend on the topology of a design [29]. In this
thesis, a metbod similar to [29] is used to estimate the voltage level after
charge-sharing. It is stated below.

Let V1, V2, ... , Vi and C1, C2, ... , Ci he the voltage levels and capacitances of
some nodes that are connected through conducting transistors respectively.
No V+ or V_ is connected to the souree or drain of any transistor. Then after
charge-sharing all nodes have the same voltage level V as:

clvl + c2v2 + ... + civi
V = ---=-.....,::,---:::--=------::::---=:---=­

Cl+ c2 + ... +ei

Table 5.2 Test patterns for open #1

test2
inputs outputs

a bede A faulty output
pat.1 11100 0 0
pat.2 10001 1 1
pat.3 11001 0 1

(5.7)

P-c
~e

Figure 5.5 Opens in a complex cell.

Before going into detail, for each missing path s E MA v_• the poten ti al

charge-sharing part of s is identified first. It is the part between the output
node A and the split node n and is denoted as s. To illustrate this estimation
method, consider the open# 1 in figure 5.2 and the test patterns test2 in table
5.1. Bothare reproduced in figure 5.5 and table 5.2 respectively. Inthetest
phase, the missing path a · b · e is activated. The potential charge sharing
part of this missing path is identified as a · b. Applying the above method, A
has a voltage level given by

, _CAVA+CnVn+CmVm
V A - -.!.!~:-----:::------:::::---­

CA+ Cn +Cm
(5.8)

69

after charge sharing. From eq.(5.8), it would he expected that if V' A > V1,

where V1 is the lowest logic "1" voltage level as defined in chapter 3, then the
output still has a voltage level high enough to he "1". The test would he valid.
Reasoning in such a way, two conditions implying charge-sharing not to
invalid the test patterns can he derived from eq.(5.8). These two conditions
are:

1) Assume before the test phase the internal nodes n and m are charged to
or very close to the potential V+· That is Vn = Vm = VA = V+.
According to eq.(5.8), inthetest phase the output would have a voltage
value still high enough to he "1" in spite of charge-sharing.

2) Assume that the potential ofn and mare very low (close to V_), But if Cn
and Cm are sufficiently smaller than CA such that after charge-sharing

V' A is still higher than V1 . Here according to eq.(5.8), V' A is estimated
as

CA x V+ + (Cn +Cm) x 0
V'A = ~~~~--=----=------

CA+Cn+Cm
(5.9)

Then the output is still high enough to he "1" even with charge-sharing.

One possible way of satisfying the first condition is to select such an
initialization pattem that not only a pull-up conducting path exist but also
the potential charge-sharing part of the activated missing path should
conduct as well. In such a way, the internal nodes of the potential
charge-sharing part are very possibly charged to the level ofthe output node
before the test phase. For example, the two consecutive inputs

(abcde)t-l = 11000 and (abcde)t = 11001 is such test patterns for the open
#1 in figure 5.5. However, such a restrietion on a potential charge-sharing
path may limit the number of possible initialization patterns to he selected.
For instance, for the open #1 in figure 5.5, there is only one solution.

The method proposed in [20] doesnotmake the distinction between the above
two situations. Only the worst case is considered in the simulation in which
the capacitance of each node is assumed to he of size comparative with the one
of the output node. As it is pointed out, the disadvantage of such a
consideration is very clear. In case the second condition described above is
satisfied, this approach may unnecessarily restriet the number of
initialization patterns that can he selected. Eventually a robust testable open
fault under charge-sharing effects may he considered as untestable.

The method proposed in this thesis uses the principle that the restrietion on
the potential charge-sharing part is only applied when it is necessary such
that there are more choices for selecting initialization patterns. To apply this
principle, an analysis is performed in the course of analyzing each open fa ult

70

so that these two different situations can he distinguished. Such an analysis
is straightforward. For each missing path s E M AV .. ' its potential
charge-sharing part s is analyzed by using the estimation method described
above. That is, presumably A is charged to V+ and all other nodesin s.are
precharged to V_. Then the estimation method is applied to evaluate the
potential charge-sharingpart s. lfit appears that the capacitances ofinternal

nodes are small enough such that even after charge-sharing V' A > V1 is
true, then path sis put in a set MA.v. Otherwise the missing path sis put in

a set M.Av_. After all the missing paths are analyzed, then MA.v contains all

those paths not rendering any extra action. But M.Av contains all the paths

that need the restrietion on the potential charge-sharing part. That is,

M.Av_ = {s E MAV_ V'A > Vl, if X8 = 1} (5.10)

and MAV = {sE MAV_ V'A ::;; V1, if X8 = 1} (5.11)

Obviously MAv_ = M.Av_ u MA.v_·

To set the restrietion on the potential charge-sharing part of each missing

path s E MAv_ during the initialization phase, it simply implies that ~-l

should he satisfied.

From above discussion, the detecting condition of a robust test under both
hazard and charge-sharing effects can he derived as:

I d-l
d=(X!·Q + s s

~ X! . (Q . T-)t-1). p-1 L s s s (5.12)
sEM~v-

Any two consecutive test patterns satisfying eq.(5.12) establish a robust test
under both hazard and charge-sharing effects.

5.4.3 Representation of detecting conditions

The idea of deriving the detecting conditions for all the opens before the fa ult
simulations is simple and straightforward. The key issue ofthis technique is
still the representation of the detecting conditions and storage for a large
circuit. For the open illustrated in the previous sections, it is not difficult to
observe that all the detecting conditions are in fact constructed from three

sets, P AV_• M.Av and MA.v_· Thus only these three setsneed to he stored for
an open. The detecting conditions can he constructed from them in the course
of fault simulation. Again benefiting from the strong canonical feature ofthe
ROBDD, efficient representation of these setscan he obtained. To illustrate,
after analysis, the required path sets for #1 and #2 shown in tigure 5.5 are

71

obtained as

PAv(#l) = { {1,{3 J, M1~_(#1) = { {4 J and MA.v (#1) { {2 J

PAv(#2) = { { 3,{4 }, M1~(#2) = { {1,{2 } and MA.v (#2) 0

respectively. Here {1 = a · b · c, {2 = a · b · e, {3 = e · d and {4 = c · d are
pull-down terros of A. They are created only once and are shared by these
required sets listed above. Their ROBDD representations are shown in figure
5.6. The shaded nodes a and b indicates that they are the potential
charge-sharing part of {2. It can heseen that each required set contains some
ofthe pull-upor pull-down terros ofthe cell, the upper bound ofthe memory
requirement for an open is the number of all the different pull-up and
pull-down terros of the cell. Thus in theory the memory req uirement is linear
to the number of opens.

0

1 0

Figure 5.6 mustration of compact storage.

5.5 Fault simulation for opens

The detecting conditions derived in previous section consiclering both the
hazard and charge-sharing effects for an open can he easily used by any logic
fault simulator. For illustration, here the PPSFP algorithm is adapted to
simulate opens.

The fault simulation is perforroed on the network graph (see chapter 3). The
preprocessing of obtaining the detecting conditions is very simple. For each

open, the missing paths Mand remaining paths P can he easily collected by
using a depth-first search routine. The missing paths M are further
partitioned into a part APc for which no restrietion on the potential
charge-sharing path is required and its complement Me. All the single
stuck-at opens can he also identified in the meantime.

The main operations of the PPSFP are also two traversals as described in
chapter 3. That is, in the forward traversal, the fault free simulations are
perforroed for applied patterns in parallel. In the backward traversal, the

72

observability of each node is evaluated for applied input patterns just as in
chapter 3. In the meantime, the detectability of each open is determined.
Since there is only one cell involved, the detectability of each open can he
determined as follows. For each open, assume the cell a is affected by this
open. The detecting condition d can he constructed· from its respective

remaining path set P and missing path sets Mnc and Me in the same way as
deriving eq.(5.5), (5.6) and (5.12). Then its detectability can he determined by
evaluating

Dopen = Oa · d (5.13)

for applied input pattern. Oa is the global observability of a (see chapter 3).
If Dopen = 1, the open is detected. Obviously the evaluation ofeq.(5.13) can
he performed in parallel for applied patterns via bit-vector operations.

5.6 Experimental results

The above modeling and simulation system was implemented in C on a
HP-9000/700 workstation. The ISCAS85 benchmark circuits are again used
for experiments. Open faults are assumed on all possible paths of each cell.
For the purpose ofjust verifying the effectiveness ofthis technique, each node
is assumed to have the same capacitance.

Table 5.3 Results of extracting detecting conditions

circuits #opens #SSAopens time(sec) memory(Kb) memory overhead
c432 238 36 0.1 17.7 40%
c499 520 104 0.1 31.9 9.4%
c880 516 57 0.17 28.7 60%

c1355 850 3 0.27 37.8 45%
c1908 632 117 0.1 44.8 21%
c2670 1110 103 1.5 71.7 56%
c3540 1453 168 0.4 88.0 5.7%
c5315 2325 272 1.0 149.8 54%
c6288 3792 16 2.3 177.7 53%
c7552 3745 501 1.4 200.0 46%

Table 5.3 summarizes some extraction results. Among the analyzed opens, on
average about 9% opens are single stuck-at (SSA) opens. The analysis and
collection of the missing and remaining paths are both very fast. Compared
to the fault simulation times, they are almost negligible. The amount of
memory required to represent the fault free circuit is also listed in the table

73

(the column of memory). The memory overhead of re presenting the path sets
by ROBDDs are shown inthelast column. They are the percentages ofthe
extra memory over the total memory needed just for fault free
representations. The memory overhead largely depends on the number of
different types of cells and the number of different types of opens. The
maximum memory overhead is up to 60% for the circuit c880. On average,
39% more memory compared to the fault free logic representations is
required. The total memory requirement is nota substantial problem for this
set ofbenchmarks.

Table 5.4 Results ofPPSFP simulation

SSA test pattem set 1000 random pattems
circuit #pat. SSA% NR% Rl% R2% time(ISSA% NR% R1% R2%
c432 75 99.7 71.8 65.9 54.0 0.54 90.6 89.6 87.1
c499 71 100.0 87.5 75.0 75.0 0.78 100.0 94.4 86.8 86.8
c880 95 100.0 89.1 79.1 71.5 1.40 99.2 93.3 88.9 86.3

c1355 101 100.0 81.2 78.9 78.4 1.80 99.7 82.3 80.3 80.3
c1908 147 100.0 88.4 82.3 81.0 <.I. .LV 97.7 87.4 81.2 81.2
c2670 160 98.8 75.6 66.4 60.7 7.50 87.7 69.3 67.1 64.5
c3540 242 98.4 74.1 65.8 60.4 21.30 97.8 79.0 73.6 68.4
c5315 211 100.0 91.3 85.1 81.7 27.40 100.0 94.0 91.4 89.4
c6288 44 99.9 83.1 79.3 67.5 9.30 99.9 86.3 85.8 85.3
c7552 318 99.7 89.9 84.7 82.0 93.6 89.3 86.8 84.5

Table 5.4 shows the fault simulation results. The opens are simulated for both
single stuck-at test pattem sets and 1000 random test pattemsas in chapter
3 and 4. The CPU time ofsimulating opensisalmost the same as simulating
the single stuck-at faults. The fault coverage ofnon-robust test (denoted as
NR%), the robust test under hazard (denoted as RI%) and the robust test
under both hazard and charge-sharing effects (denoted R2%) are evaluated
in one pass.

As already expected, the test pattem sets ha ving very good coverage for single
stuck-at faults, in genera!, have rather poor coverage for open faults. N ot
more than 95% coverage can be achieved even for a non-robust test. The
robustness of the test pattern sets is even more poor. The lowest coverage is
only 54%. It is interesting to notice that though the difference between the
coverage ofnon-robust test and the coverage ofrobust testis rather large, the
difference between the coverage of robust test under hazard effects and the
one of robust test under both hazard and charge-sharing effects is small. This
may indicate that the hazard effects should be considered for test pattern

74

generations but charge-sharing effects is not a severe problem for such type
of design.

For 1000 random test patterns, as listed in Table 5.4, the fault coverages in
general are greatly improved both for non-robust and for robust tests. The
random testability of the benchmark circuits for opens is better than the one
for bridging faults. Figure 5. 7 shows the simulation time versus circuit size.
There is no clear relation observed. It largely depends on the number of opens
and number of different types of cells in a design. It should he noted that no
acealerating techniques such as in [3] are used for the fault simulations. It is
expected that the simulation can he much faster ifthey are applied. Here, for
the purpose of verifying the developed method, it is important to notice that
the difference of the simulation times between single stuck-at faults and
opens is very small and yet the total simulation is done very fast.

113 CPU time(sec)

103
93
83
73
63
53
43
33
23
13

c3540

c6288

c7552

#gates(x100
11.52 16.52

Figure 5.7 Simulation time of 1000 random patterns vs. size ofthe circuit.

5. 7 Conclusions

The electrical behavior of open faults is very complex which makes it difficult
to perform accurate modeling and fast simulation. The method proposed in
this chapter is based on several assumptions as most other approaches are.
But a different strategy is used here. The advantage is obvious; both the
hazard and charge-sharing effects are modeled for any pathopen faults and
yet fast logic fault simulations can he achieved. The use of ROBDDs for the
storage ofthe preprocessed results proves to he feasible. This metbod can he
used together with the method ofmodeling and simulating bridging faults in
the previous chapters. Together they establish a basis for generating test
patterns for both open and bridging faults.

6 Concluding Remarks

The objective of this work was the development of accurate and efficient tools
to study the logic behavior of defect-induced faults for CMOS circuits and
further study their impact on practically used testing methods. Through the
research work conducted in this period, our knowledge over this issue is
definitely increased and the problems are clearly identified. The possible
solutions for modeling and simulating bridging and open faults are
investigated in depth. They can serve as the basis of an ATPG system for
defect-induced faults as well. The experimental results helped us to build a
better vision of shortening the gap between fabrication defects and single
stuck-at faults used at logic leveL This chapter makes a few additional
remarks regarding the methods and results presented in this thesis.
Suggestions for further investigation are discussed.

6.1 Remarks

With the aid of a system to extract critica} areas [57] and the simple
probability relation between critica} areas and defect statistics presented in
chapter 2, we have extracted all possible faults fora set ofbenchmark circuits.
In view ofboth the number offaults and the probability ofthe occurrence of
the faults, the results in chapter 2 clearly show that single bridging and single
open faults are the primary faults for most CMOS circuits. The preferenee of
using single faults for testing is further supported by the following two
considerations.

1) From the testing point of view, a defect affecting a relatively large part
oflayout can be easily detected by conventional testing methods. This is
because if a large portion of the circuit does not function the chance of
recognizing this is large. This is not the case for defects affecting only one
or two nodes.

2) From the point of view oftesting tooi development, the single bridging and
open faults already change a digital combinational circuit into a circuit

75

76

with undefined behavior or even a circuit with sequentia! behavior. In
this thesis, it can he observed that it is no.t an easy procedure to develop
accurate and efficient tools to generate tests for those fawts. More
complex fawt models may even make this procedure too complex to he
practical.

It showd he mentioned here that the probability measure derived for the
extracted fawts is based on the extracted critica} areas combined with a
typical defect statistica} data. The reswts are not biased for a particular
process line. It can he the case that one defect mechanism is more likely in a
particwar process line than another one. But the generality of the method
and tools developed in this thesis remains unaffected.

As for the modeling and simwation methods developed in this thesis, all three
approaches employ a very simple "divide and conquer" philosophy for both
bridging and open fawts. That is, the accurate modeling is performed first
before fawt simwations. Such a "divide and conquer" philosophy not only
leads to a very fast fault simwation procedure but also makes it easy to
develop an ATPG procedure on the same framework.

As for the two bridging fawt modeling and simwation approaches presented
in chapter 3 and chapter 4, the approach in chapter 3 is more suited fora
design where the frequency of repeated use of each generic-cell is not high.
In such a design, probably every bridging fault is a generie-bridge by itself
in the worst case. This approach is also suited for the situation where more
complex faults need to he included. However the approach presented in
chapter 4 is more suited fora design where the frequency ofrepeated use of
each generic-cell is high.

6.2 Suggestions for further investigation

As it is pointed out, defects can cause very complex situations in CMOS
circuits. This thesis only focuses onsome ofthe identified problems, that is,
the undefined behavior caused by bridging fawts and the sequentia} behavior
caused by opens. One ofthe important fawts, feedback bridging fawts, is not
treated here. Further investigation is necessary since both the number and
the probability ofthe occurrence of feedback bridging fawts can he large for
some designs.

The fawt simwation procedure developed can only tell if a bridging or an open
fawt is detected fora given test pattern set. There is no proofif an undetected
bridging or open fawt is testable or not in the entire input space. Thus it is
necessary to develop an efficient ATPG procedure. This ATPG procedure can
he integrated together with the modeling and simwation approach presented

77

in this thesis so that a compact test pattern set achieving maximal fault
coverage for both bridging and open faults can he given.

This thesis only outlined a bottorn-up flow of modeling defects from layout
level to circuit faults and further up to logic level. More ambitiously, a
top-down metbod can he developed so that for given test data, a logic fault can
he diagnosed down to the defect level on the layout or a test pattern set for
fault diagnosis down to defect level can he generated.

78

Heferences

[1]. J. M. Acken, "Driving Accurate Fault Models," Computer System Lab.
Standford Univ., pp. CSL--TR-88-365, October 1985.

[2]. J. M. Acken and S.T. Millman, "Fault Model Evolution for Diagnosis:
Accuracy vs Precision", Proc. of Custom I ntegrted Circuits Conf,
pp.13.4.1-13.4.4, 1992.

[3]. K Antreich, M.H. Schulz, "Accelerated fault simulation and fault
grading in combinational circuits", IEEE Trans. on Computer-Aided
Design, Vol. CAD6, No. 5, pp. 704-712, September 1987.

[4]. P. Banerjee, and J. A. Abraham, "Characterization and Testing of
Physical failures in MOS Logic Circuits," IEEE Design & Test, pp.
76-86, August 1984.

[5]. Z.Barzilai, J.L. Carter, V.S. Iyengar, I. Nair and et al, "Efficient Fault
Simulation of CMOS Circuits with Accurate Models", Proc. Int. Test
Conf, pp.520-529, 1986.

[6]. KS. Bracs, R.L. Rudell and R.E. Bryant, "Efficient Implementation of
a BDD Package", Proc. 27th ACM!IEEE Design Automation Conf,
pp.40-45, 1990.

[7]. F. Brelez, H. Fujiwara, "A neutral netlist of 10 combinational
benchmark circuits and a target translator in fortran", Proc. IEEE Int.
Symp. circuits and Systems, 1985.

[8]. R. E. Bryant and M.D. Schuster. "Fault Simulation of MOS Circuits",
VLSI Design, 4(6):24-30, October 1983.

[9]. R. E. Bryant, "A Switch-level Model and Simulator for MOS Digital
Systems", IEEE Trans. on computers, C-33(2), pp.160-177, Feb. 1984.

[lO].R.E. Bryant, "Data parallel switch-level simulation", Proc. IEEE Int.
Conf Computer--aided Design, pp.354-357, 1988.

[ll]. E. Bruis, F. Camerik, H. Kretschman and J. Jess, "A Generic Method To
Develop a Defect Monitoring System for IC Processes," Proc. Int. Test
Conf.,pp.218-228, 1991.

[12]. B. Chess and T. Larrabee, "Bridg Fault Simulation Strategies for CMOS
Integrated Circuits", Proc. 30nd ACMIIEEE Design Automation Conf,
pp.1503-1507, 1993.

79

80

[13]. K. Cho and R.E. Bryant, "Test Pattern Generation for Sequentia! MOS
Circuits by Symbolic Fault Simulation" Proc. 26nd A CM/IEEE Design
Automation Conf., 1989.

[14]. W. Chuang, I. N. Ha.ü, "Fast Mixed-mode Simulation for Accurate MOS
Bridging Fault Detection", Proc. International Conf on Circuits ctnd
Systems, pp.1503-1507, 1993.

[15].H. Cox and J. Rajski, "Stuck-Open and Transition Fault Testing in
CMOS Complex Gates", Proc. Int. Test Conf, pp.688-694, 1988.

[16]. C. Di and J.P. de Gyvez, "A Spot Defect to Fault Collapsing Technique,"
33rd Midwest Symposium on Circuits and Systems, pp.580-583,
August, 1990.

[17]. C. Di, and J. Jess, "On CMOS Bridge Fault Modeling and Test Pattern
Evaluation" Proc. llth IEEE VLSI Test Symp., pp.ll6-119, 1993.

[18]. C. Di and J.A.G. Jess, "On Accurate Modeling and Efficient Simulation
ofCMOS Open Faults," Proc. of International Test Conf, pp.875-882,
October, 1993.

[19]. C. Di and J.A.G. Jess, "An efficient CMOS Bridging fault Simulator:
with SPICE Accuracy," submitted to the IEEE transactions on on
Computer-Aided Design, 1993.

[20].A A.V. Ferris-Prabhu, "Role of Defect Size Distribution in Yield
Modeling", IEEE Tran. on Electron Devices, Vol.ED-32, no.9,
pp.1727-1736, September 1985.

[21]. F. J. Ferguson, and J. P. Shen, "A CMOS Fault Extractor for Inductive
FaultAnalysis," IEEE Trans. Computer-Aided Design, vol. CAD-7, no.
11, pp. 1181-1194, November 1988.

[22]. F. J. Ferguson, and T. Larrabee, "Test Pattern Generation for Realistic
Bridge Faults in CMOS ICs," Proc. Int. Test Conf, pp. 492-499, 1991.

[23]. G. S. Greenstein, and J. H. Pa tel, "E-PROOFS: A CMOS Bridging Fault
Simulator" Proc. Int. Conf on Computer-Aided Design, pp.268-272,
1992.

[24].J. Galiay, Y. Crouzet, and M. Vergniault, "Physical Versus Logica} Fault
ModelsMOS LSI Circuits:lmpact on Their Testability," IEEE Tran. on
computers, vol.c-29, no.6, pp. 527-531, June 1980.

[25]. J. P. de Gyvez, and C. Di, "IC Defect-Sensitivity for Footprint Type Spot
Defects," IEEE Trans. on Computer-Aided Design, vol.11, no.5, pp.
638-658,May, 1992.

[26]. T-S. Hwang, C-L. Lee and et al, "A Parallel pattern Mixed-level fault
Simulator'', Proc. 27th ACM I IEEE Design Automation Conf,
pp. 716-719, 1990.

[27]. S.K. Jain and V.D. Agrawal, ''Test Generation for MOS Circuits Using
D-Algorithm", Proc. 20th A CM/IEEE Design Automation Conf,
pp.64-70, 1983

81

[28].G. Janssen, "A ROBDD package: user's manual", Internat report,
Department of eletrical engineer, Eindhoven university of technology,
1993.

[29]. K-J. Lee and M. A Breuer, "On the ChargeSharing Problem in CMOS
Stuck-Open Fault Testing'', Proc. Int. Test Conf, pp.417-425, 1990.

[30]. H.l. Lee and D.S. Ha, "SOPRANO: An Efficient Automatic Test Pattem
Generator for Stuck-open Faults in CMOS Combinational Circuits",
Proc. 27th ACM I IEEE Design Automation Conf, pp.660-666, 1990.

[31]. KJ. Lee, C.A. Njinda and M.A Breuer, "Switch Level Test Generation
Sytem for CMOS Combinational circuits", Proc .. 29nd ACM/IEEE
Design Automation Conf, pp.26-29, 1992.

[32]. M.W. Levi, "CMOS is most testable", Proc. Internaltional Test Conf, pp.
316-321, 1981.

[33]. Y.K Malaiya and S.Y.H. Sti, "A New Fault Model and Testing Technique
for CMOS Devices," Proc. of International Test Conference, pp. 25-34,
1982.

[34]. W. Maly, "Realistic Fa uit Modeling for VLSI Testing," Proc. 24th Design
Automatic Conference, pp. 173-180, 1987.

[35]. W. Maly, M. Thomas, J. Chinn and D. Campbell, "Characterization of
Type, Size and Density of Spot Defects in the Metalization Layer", Yield
Modeling and Fault Toleranee in VLSI, edit. by W. Moore, W. Maly and
AJ.Strojwas, pp.71-91, Adam Hilger 1988.

[36]. W. Maly, P.K Nag and P. Nigh, "Testing OrientedAnalysis of CM OS I Cs
With Opens", Proc. IEEE Int. Conf Computer-aided Design,
pp.344-34 7' 1988.

[37]. P.C. Maxwell, R.C. Aitken, V. Johansen, and I. Chiang, "The
Effectiveness of Iddq, Functional and Scan Tests: How Many Fault
Coverage Do WeNeed ?",Proc. Int. Test Conf, pp.168-177, 1992.

[38].P.C. Maxwell and R. Aitken, "Biased Voting: a Method for Simulating
CMOS Bridging Faults in the presence of Variabie Gate Logic
Thresholds", Proc. of International Test Conference, pp.63-72, 1993.

[39].S. D. Millman, and J. P. Garvey, "An Accurate Bridging Fault Test
Pattem Generation," Proc. Int. Test Conf, pp. 411-418, 1991.

[40].L.W. Nagel, "SPICE2: a computer program to simulate semiconductor
circuits", Memo ERLM520, University ofCalifornia- Berkeley, 1975.

[41).J. Reariek and J. H. Patel, "Fast and Accurate CMOS Bridging Fault
Simulation", Proc. of International Test Conference, pp.54-62, 1993.

[42]. S.M. Reddy, M.K Reddy and V.D. Agrawal, "Robust Test for Stuck-Open
Fanlts in CMOS Combinational Logic Circuits", Proc. 14th ISFTC,
pp.44-49, 1984.

82

[43].M. K. Reddy, S. K. Reddy, and P. Agrawal, "Transistor Level Test
Generation for CMOS Circuit," Proc. 22nd ACM/IEEE Design
Automation Conf., pp. 825-828, 1985. ,

[44]. D. Saab and I. Ha.ü, "Parallel and Concurrent Fault Simulation ofMOS
Circuits", Proc. Int. Conf. Computer Design, pp.752-756, 1984.

[45]. M.H. Schulz and F. Brglez, "Accelerated Transition Fault Simulation",
Proc. 24th ACM I IEEE Design Automation Conf., pp.237 -243, 1987.

[46].H-C. Shih,J.T. Rahmeh, andJ.A.Abraham, "AnMOS FaultSimulator
with Timing Information," Proc. Int. Conf. on Computer-Aided Design,
pp. 45-47, 1985.

[47].J.M. Soden and C.F. Hawkins, "Electrical Properties and Detection
Methods for CMOS IC Defcets", Proc. European Test Conference, pp.
159-167, 1989.

[48]. C.H. Stapper, "Modeling oflntegrated Circuit Defect Sensitivities", IBM
J. Res. Deuelop. vol.27, No.6, pp.49-557, November 1983.

[49]. T.M. Storey, and W. Maly, "CMOS Bridging Fault Detection" Proc. Int.
Test Conf., pp. 842-851, 1990.

[50]. T. M. Story, W. Maly, J. Andrews and M. Miske, "Stuck Fault and
Current Testing Comparison Using CMOS Chip Test", Proc. Int. Test
Conf., pp.311-318, 1991.

[51]. C.C. Tomic and W.R. Scott, "Simulation of Stuck-Open Faults in CMOS
Integrated Circuits", Proc. Int. Symp. Test and Faiture analysis Conf.,
pp.53-56, 1981.

[52]. E. Vandris and G. Sobelman, "Algorithms for fast and memory efficient
switch-Level fault simulation", Proc. 28th ACM I IEEE Design
Automation Conf., pp. 138-143, 1991.

[53].R.L. Wadsack, "Fault Modeling and Logic Simulation of CMOS and
MOS Integrated Circuits", The Bell System Technica[Journal, vol.57,
no.5, pp.1449-1474, 1978.

[54]. J.A. Waicukauski, E.B. Eichelberger, D.O. Forlenza, E. Lindbloom and
Th. McCarthy, "Fault Simulation for Structured VLSI", VLSI Systems
Design, pp.20-32, Dec. 1985.

[55]. H. Walker, AS. Director, ''VLASIC: A Catastrophic Yield Simulator for
Integrated Circuits", IEEE Trans. Computer-Aided Design, CAD-5,
No.4, pp.541-556, October 1986.

[56]. B.W.Woodhall, B.D. Newman and A.G. Sammuli, "Empirica} Results on
Undetected CMOS Stuck-open Failures", Proc. Int. Test Conf.,
pp.166-170, 1987.

[57]. H. Xue, C. Di and J.A.G. Jess, "A Net-oriented Method for Realistic
Fault Analysis" IEEE I ACM Proc. of International Conf. On
Computer-aided Design, pp. 78-83, November, 1993.

Appendix A:

On enumerating path-connected subgraphs

Definition A.l: Let G(V,E) be a directed acyclic graphand a,b E V and
a ~ b. G(V,E) is said to be (a-b) path-connected if every edge in the
graph belongs to a simple path from a and b.

Definition A.2: Let G(V,E) be a directed acyclic graphand a,b E V and
a ~ b. Any subgraph G(V',E') that is itself (a-b) path-connected, is
called a (a-b) path-connected subgraphof G(V,E).

There may be exponentially many (a-b) path-connected subgraphs of
G(V,E). Insome applications, such as in this thesis, it is necessary to find all
the (a-b) path-connected subgraphs of G(V,E).

Figure A.l shows an example of (a-b) path-connected graph. It follows from
the definition A.l that for a (a-b) path-connected graph G(V,E), every
v E V\{a} has at least one incoming edge in E and every v E V\{b} has at
least one outgoing edge in E.

Figure A.l An example of (a-b) path-connected graph.

In the sequel, for each node v E V, let E(v) E E denote all the edges from v.
Let E'(v) denotes a specific edge subset of E(v).

Definition A.3: For a (a-b) path-connected graph G(V, E), given a
non-empty node setS C V, if a subgraph G(V' US, E') of G(V,E) has the
property:

83

84

1) every edge ofthe subgraph belongs toa simple path from a toa node
inS;

2) there are no edges between any pair of nodesin S and each node inS
is the end-point of at least one path.

" Then G(V' U S,E') is said to be a (a-8) path-connected subgraph where
A

S is regarded as a supernode denoted as S.

LemmaA.l: Fora (a-b) path-connected graph G(V, E), given a non-empty

node setS CV, a Ca--S)path-connectedsubgraph G(V' uS,E')is a (a-b)

path-connected subgraph if S = {b}.

Proof: follows directly from the definitions Al and A3.0

Observe that in a (a-b) path-connected graph every node has a path to b. This

means that given S, a (a-S) path-connected subgraph can always be
extended to he a (a-b) path-connected subgraph by adding paths starting
from each node of S\{b} to h. A possible extension s~ep is given by algorithm
AL

Algorithm A. 1 subgraph extension step
A

{Invariant: G(V' U S,E') is (a-8) path-connected.}
choose v E S\{b};
V' V' U{v};
choose E'(v) c E(v) 1\ E'(v) c;t; 0
E' E' UE'(v);
S (S\{v)) U {u I e(v, u) E E'(v) 1\ u ft. V'};

" Lemma A.2: In algorithm Al, the extended subgraph is still a (a-8)
path-connected subgraph. By repeating this extension step, eventually
a (a-b) path-connected subgraph can be found.

Proof: For each edge e(v,u) E E'(v), if u E (V' US), the set S is not
A

changed. By adding e(v,u) into E', G(V' uS,E') still has the (a-8)

path-connected property. If u ft. (V' US), that is, u is a new node not
considered before, since u is added into S, by adding e(v,u) into E',

1\

G(V' u S, E') still has the (a-S) path-connected property.

The repeating process converges because each node v E V can only
appear once inS. At each step one node is removed from S\fb} and some
new nodes from V\(V' US) may get added into S. Eventually, no nodes
that can be added into S are left. The nodes can only be deleted from S.
Node b will always appear inS since it is reachable from every node.

85

Because it is neverselectedor removed eventually S={b}. According to
lemma A.l, a (a-b) path-connected subgraph is found.O

With lemma A.2, we can develop an algorithm described in algorithm A.2 that
generates a (a-b) path-connected subgraph when initially S={a}, V' =0, and
E'=0.

" The algorithm is based on successive extensions of a (a-S) path-connected
subgraph by choosing a non-empty edge subset from a node in S. To help
devise an algorithm that enumerates all possible (a-b) path-connected
subgraphs, below a lemma is presented.

Algorithm A.2 generation of a (a-b) path-connected subgraph

" { Invariant: G(V' US, E') is (a-S) path-connected. l
procedure subg(S);

if S = {b} then

else

V'+- V' U{b};
G(V',E') is (a-b) path-connected subgraph;

choose v E S\{b};
V'- V'U{v};
choose E'(v) C E(v) /1. E'(v) :;;= 0;
E'- E' UE'(v);
S-(S\{v})U{u I e(v,u) E E'(v) /1. u f/; V'};
subg(S);

Lemma A.3: By running algorithm A.2 for all combinations of possible
non-empty edge subset from each selected node v, all possible (a-b)
path-connected subgraphs are generated. Furthermore no (a-b)
path-connected subgraph is ever generated more than once.

Proof: 1) Suppose a certain subgraph is missing. This implies that some
edges from a selected node are never selected during the process. This
contradiets the assumption in lemma A.3.

2) There are two runs that genera te the same result. Assume that in both
runs the same deterministic mechanism is used to select a node
v E S\{b}. Then this means that at some point in the execution a
different choice of non-empty edge subset from the same selected node
v must he made. Let these two edge subset he E'(v) and E"{v)

respectively. Obviously a subgraph containing E'(v) and a subgraph
containing E"(v) are not equivalent.O

Algorithm A.3 shows the routine subgs that embodies the iteration over all
non-empty edge subsets from a selected node in its for-loop. After all

86

subgraphs corresponding toa certain selection have been generated (coming
out ofthe recursive call subgs(S')) we must of. courserestore the edge set E'.
The node set V' must be restored after all such selections for a certain node
v have been considered.

Theorem: The enum routine precisely enumerates all (a-b)
path-connected subgraphs of G(V,E).

Proof: Follows directly from lemma A.2 and algorithm A.2.0

Algorithm A.3 enumeration of all (a-b) path-<:onnected subgraphs and initia! call

" I Invariant: G(V' U S,E') is (a-S) path-connected. l
procedure subgs(S);

if S = {b} then
V'.,_ V' u {b};
G(V' ,E') is (a-b) path-connected subgraph;
V'.,_ V'\{b};

else
choose v E S\{b};
V'~V'U{v};

for each E'(v) C E(v) A E'(v) :;;<!: 0
E' ~ E' UE'(v);
S' ~(S\{v})U{u I e(v,u) E E'(v) A u ft V'};
subgs(S');
E' ~ E'\E'(v);

V'.,_ V'\{v};

procedure enum(G,a,b);
V' ~0; E' -0;
subgs({a});

Figure A.2 shows the results of applying algorithm A.3 to the example in
tigure A.I.

Figure A.2 All (a-b) path-connected subgraphs.

Stellingen

behorende bij het proefschrift van Cbennian Di

1. The quality ofiC testing depends on the actual design in silicon and tbe
manufacturing site.

2. For CMOS digital circuits, the complexity oflddq testing is analogous to
tbe complexity of conventional voltage testing with respect to the
extraction of realistic defect-induced faults, the obtaining of an
"optima!" test pattern set and the handling ofresistive bridges, feedback
bridges and open faults.

3. IC testing should impose as few design rules as possible forthe designer.
Tbis is reflected by the recent efforts to minimize tbe scan-patband tbe
increasing interest for sequentia! ATPG.

4. While using the logic threshold voltage to model the logic value of an
undefined state caused by bridging faults, most kind of approximation
leads to incorrect and unreliable results.

5. With the success oftestability preserving techniques in logic synthesis
systems, one may expect that a testability preserving technology
mapping tecbnique will emerge. This may he even more important since
such a tecbnique operates closer to silicon.

6. The criterion for judging a metbod or a tooi is its efficiency in solving the
targeted problem and not the assessment oftbe age or the elegance of the
underlying theory.

[Deng Xiaoping: it does not matterif a cat is white or black as long as it
catcbes mice.]

7. Tbe design process of a large complex system is more a kind of an art
rathertban a piece of science. Tbe "beauty" and tbe degree of automation
of tbe process cannot he enjoyed at tbe same time.

8. A recently found bug in tbe Intel's Pentium double-precision divide
instruction showed once again tbat design verification is crucial for the
quality of a large and complex design.

9. A lot oftecbnical probierus are createdjust by the reluctance of accepting
tbe knowledge from different subjects or fields.

10. The Dao never does, yet through it everything is done.
0!! # JE 'f.J i1ii JE :ïF 79)
[Lao Tzu, "tbe exercise of government'' in Cbapter 37 of" Dao De Jing"]

