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Summary 

The quality of testing Integrated Circuits (IC) highly depends on the 
manufacturing process and on a specific design. This is especially true for 
CMOS digital IC's since the generally used single stuck-at fault model cannot 
fully describe the behavior of defects induced during the manufacturing 
process. This thesis outlines a technology--driven testing flow to study the 
behavior of defect-induced faults with the ultimate goal of generating a 
reliable and economie test for CMOS digital IC's. 

The thesis starts with the introduetion of a layout-circuit fault extractor 
system to study what are the possible occurring faults for a design. This 
system takes the circuit layout, defect mechanisms and statistics of a process 
line as inputs and computes all the possible occurring faults and their 
probabilities. The central topic of the thesis is the modeling and simulation 
of the two major faults: bridging and open faults. 

The main issue addressed in this thesis is how the behavior of each 
defect--induced bridge or open fault can be accurately modeled and yet a fast 
fault simulation procedure can be obtained for a large circuit. This thesis 
employs a simple "divide and conquer" approach. Following this approach, 
the whole taskis completed in two steps. In the first step, the circuit extracted 
from the layout of a design is further abstracted at logie-level and 
simultaneously each defect--induced fault is modeled at logie-level as 
Boolean expressions. Such modeling is realized either by approximate 
computations or circuit-level simulations. In the second step, the fault 
simulation is conducted at logie-level just by manipulating these modeled 
Boolean expressions. Consequently, both accuracy and efficiency can be 
obtained. The thesis details several systems with a different degree of 
accuracy and efficiency. 

The first system uses an approximate transistor model to model each bridge 
fa ult. This results in a very fast modeling and simulation system but with the 
disadvantage that not every undefined state caused by a bridge can be 
resolved. With the introduetion of two new concepts, the 
"generic-bridge-table" and the "generic-cell-table", the second system 
models each bridging fault with a circuit-level simulator. This results in a 
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reasonable modeling and simulation speed but with the advantage that 
almost every undefined state caused by a bridging fault can be resolved. The 
system developed for open faults can model both the hazard and 
charge-sharing effects of each open fault and yet can perform the fault 
simulation for opens almost as fast as for single stuck-at faults. 

All the systems are verified by experiments with well established benchmark 
circuits. The results are encouraging. 
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1 
General Introduetion 

1.1 Background 

Though today's technology, being capable of integrating a few million 
transistors on a single chip, provides tremendous functionalities with high 
performance, it provides very poor accessibility to the external world because 
of the limited pin count. It is very hard for test engineers to check the 
correctness of a manufactured Integrated Circuit (IC). Testing of I C's is 
becoming a bottleneck for the whole design and manufacturing cycle. This 
problem is even more protruding for the dominating CMOS technologies. 
This is because the manufacturing defects may cause many more complex 
faults than the practically used single stuck-at fault models at logie-level 
[24,53]. For example, even with very careful process control and the 
elimination of all possible causes, a random spot defect, as one of the major 
manufacturing defects, may still occur in the final manufactured I C's. For a 
CMOS circuit, various faults that cannot be described by single stuck-at 
faults may result. Figure 1.1 illustrates a piece oflayout oftwo CMOS cells 
in a design and their corresponding transistor schema tic. If spot defects ( d 1 
through d 6) occur in the positions as shown in the layout, some network nodes 
are erroneously connected or a node is broken into two parts as indicated in 
the schematic. The first type offault is called a bridging fault and the second 
type is called an open fault. In genera}, any fault that is caused by a spot 
defect is referred to as a defect-induced fault. Clearly, except d 6 which 
shows the direct stuck-at 0 of the output of one cell, rest of the defects cannot 
be mapped into the single stuck-at faults that are assumed at the inputs and 
the outputs of the cells. They have more complex behavior than stuck-at 
faults. In general, a defect-induced fault cannot be always mapped into a 
stuck-at fault. The missing link between the beuristic fault model assumed 
at logic level and defect-induced faults was first made public in the late 70s 
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• metall1Z21 metal2fm poly. 0 diff. 0 p-well 

Figure 1.1 mustration of defects and their induced faults. 
(d1, d 2,d5,d6: extra metall d 4: extra poly. d 3: missing metall) 

[24,53]. However little attention has been paid until the IC's manufacturing 
feature size was sufficiently scaled down and the demand ofhigh quality and 
high performance IC's was increased. 

As for testing, the only way to find those defects would be by microscopie 
inspection. However this procedure is much too expensive for testing mass 
production. From the example shown in figurel.l, it is obvious that the actual 
occurrence of a fa uit during manufacturing depends on the actual defects, the 
technology, the fabrication process and the actual layout of the circuit. To 
study the impact of defects on a design and on the existing testing methods, 
it is essential to know: 

1) What are the defects and their characteristics ? How can these data be 
obtained from a specific process line? 

2) With the available defect information, then for a specific design, what 
kind of circuit faults can possibly occur and what are their probabilities? 

After the above issues to be settled, then the next questions are: 

3) How do these defect-induced faults manifest themselves in a design? 
What is the electrical behavior? How serious is it that the tests targeted 
at single stuck-at faults cannot detect these defect-induced faults? 

4) If the single stuck-at fa uit model is not adequate, what kind of fa uit 
models should be used and how can test patterns be generated for them? 

To answer these questions, a bottorn-up test approach has to be established. 
This thesis refers to such an approach as a technology-driven test 
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methodology. The thesis intents to identify and formulate the problem and 
further investigate possible solutions. 

1.2 Schematic of a "technology-driven" test 
philosophy 

1.2.1 Inductive fault analysis (IFA) 

As mentioned insection 1.1, defect mechanisms in I C's are too complex to he 
captured bythe standard "stuck-at" fault model. Consequently the reliability 
of the test coverage prediction has to he questioned. In order to obtain more 
reliable test eoverage we obviously have to study the defect mechanisms 
within the fabrication technology and the way that they translate into faulty 
circuit behavior. Such a method is the so-called "inductive fault analysis". 
Figure 1.2 is supposed to illustrate this method and the way it leads to an 
adequate characterizations of circuit faults, to reliable fault coverage 
computations and eventually to improved test vector sets. The following 
sections will elaborate each step brie:fly. 

process: 
defect defect 

mechanisms statistics · 

Figure 1.2 A "technology-driven" test flow. 

1.2.2 Input to IFA 

The analysis starts with two separate sets of input data, namely: 

the product in terrus of its chip layout, which is in essence a set of 
reetangles and their coordinates; 



4 

- data characterizing the fabrication process. 

The latter needs some explanation. The fabrication process has a long 
sequence of lithographical steps interleaved by physical/chemical steps. 
Many things can go wrong. However for IFA it is assumed that any systematic 
or repetitive defect patterns are eliminated while the process goes through 
the set up phase or is in maintenance. We are only interested in those defects 
showing up during the stabie processing of valid products. Then the defects 
are random in the first place. In the second place, they amount to local 
disturbances in the form of extra or missing spots of material. Those defects 
are called "random spot defects". 

In the sequel, for IFA, a fabrication process can he characterized by 

- the layers of the chip structure characterizing the defect mechanisms. 

- the geometrical shape of the defect. 

- the stochastic size distribution ofthe geometrical shape parameters (such 
as diameter or edge length). 

the stochastic distribution ofthe frequency of the occurrence of the defect. 

De pending on the kind of fabrication process it may he arbitrarily difficult to 
characterize it in the above way. IFA therefore often makes simplifying 
assumptions [21,34]. For instanee it is assumed that defectsappears only in 
a single layer [21], which is obviously not true insome cases. :Some other 
example: defects may he assumed to he of circular or square shape (the latter 
assumption allows for a particularly effective computation)[21,25]. Size 
distributions come in all kinds offorms [20]. The only fact that :seems to he 
reasonably safe is that very small and very large defects are very rare. As to 
the frequency of occurrence the assumption of an equal spread of occurrence 
of defects seems in general to lead to pessimistic analysis. Therefore most 
defect frequency models account for the clustering of defects in certain 
locations ofsome wafer [48]. 

The more thoroughly the fabrication process is characterized the higher the 
reliability ofiFA. 

1.2.3 Relation between defects, faults and critical areas 

Assuming that most defects can he characterized by random spots of extra or 
missing material the associated circuit faults most likely appear as net 
bridges or opensin the interconneet structure ofthe chip under study. A way 
to characterize the set of faults actually occurring as, for example, the 
consequence of a spot of metal in a metallayer, can he picturedas follows: we 
choose a spot of random size d and let it travel over all the locations in the 
metal layers. If the spot is centered in a certain location such that it 
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short-circuits two nets say n 1 and n2, together causing a bridge, we attache 
a name to this circuit fault and we find all points where the spot causes the 
same bridge. The set of all these points establishes the cri ti cal areas for this 
particular fault, where the size d is a parameter. Obviously the critica} area 
is a nondecreasing function of d. Combining the critic al area analysis with the 
statistica! information about defect density and size yields a probability 
measure for the respective circuit fault to occur[16,21]. 

The computational work involved with doing this for all possible faults is 
considerable. The results ofusing the system described in [57] indicate a bout 
the cost involved and they are hopeful. 

1.2.4 Adequate fault modeling fortest vector generation 

Of course bridges and opens are physical characterizations of the effect of 
fabrication defects. It would be very expensive to find those defects by 
microscopie inspection. Therefore for economie reasons testing at the end of 
mass production must happen by automatic electrical measurements using 
programmabie instrumentation. Moreover the most economie way is to apply 
digital test signals at the signal ports and observe the output signals. There 
is a whole industry supporting instrumentation optimized for this purpose. 
It is important for industry to be able to stay using this equipment because 
it represents usually a large investment loan if one considers the total 
investment into the line. This leads to the central topic of this thesis, namely 
the characterization of defect induced circuit faults by Boolean expressions. 
The thesis discusses a number ofways to capture the fault behavior ofbridges 
and opens by Boolean expressions. In addition it presents results on the 
computational work involved for finding the logic models. Furthermore 
efficient fault simulation techniques ofusing those logic mode Is are developed 
and eventually the reliable test coverage can be predicted. The results are 
encouraging in terms of accuracy and efficiency. 

One issue remains unsolved in this thesis, namely the question how to 
generate economie test vector sets for the new models. Of course having an 
efficient fault simulation technique may be considered as a partial solution 
to the problem. Results of further study can be expected in the fut ure. 

1.3 Outline of the thesis 

In general, it is not an easy task to capture the Boolean behavior of 
defect-induced faults accurately such that fast fault simulations and 
improved test vector sets can be obtained. This is especially true for 
non-regular CMOS Iogic circuits. This thesis focuses on the accurate 
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modeling and efficient simulation of defect-induced faults for static CMOS 
combinational circuits. The thesis is organized as follows. 

In chapter 2, aftèr the defects and circuit faults are described in detail, the 
well developed concept of "critica} area" together with a system to extract 
critica! areas is introduced. To obtain the possible faults for a design, a 
probabilistic model of combining critica} areas with defect statistics is 
developed. The results of extracting the faults by this system fora set of 
benchmark circuits are presented. The results are analyzed and a suggestion 
for fault modeling is given. 

Chapter 3 formulates the problem for one type of the important faults, the 
bridging faults. An approximate modeling and simulationl metbod is 
developed based on the results of some experimental study. The developed 
metbod tries to improve the modeling accuracy as much as possible while the 
modeling and simulation efficiency can he maintained. The metbod uses a 
simple and yet explicit transistor model to analyze each bridging fa ult. As the 
result ofthe analysis, each bridging fault is modeled at the logic level in terms 
of Boolean functions, called faulty Boolean functions. The fault simulation 
can he performed at logic level by just using the faulty Boolean functions. This 
metbod is effective for many bridges and out-performs switch-level 
approaches. 

In chapter 4, the problem of bridging faults is further studied in order to 
achleve the circuit-level accuracy without sacrificing the fault simulation 
efficiency. With the exploitation of some design features, two new concepts 
are introduced in this chapter. The first one, the "generic-bridge-table", is 
applied to characterize the behavior of each bridging fa ult. The second one, 
the "generic-cell-table", is used to characterize how each cell interprets an 
input. These two sets of tables are derived dynamically fora design by SPI CE 
simulations. It is demonstrated that they can he easily used by any logic fault 
simulator to determine whether a bridge is detected. Thus both circuit-level 
accuracy and logie-level simulation efficiency are obtained. 

In chapter 5, a metbod ofmodeling and simulating open faults is proposed. 
This metbod follows the same philosophy as for bridging faults. For any open 
fault, this metbod performs a local analysis by taking both the hazard and 
charge-sharing effects of the open into account. Afterwards, the open is 
modeled in terms of a detecting condition at logie-leveL Then, the fault 
simulation can he performed at logic level by just manipulating the detecting 
conditions. This is efficient and also accurate. 

Chapter 6 reviews the whole thesis and evaluates the methods developed in 
this thesis. At the end, possible future work is suggested. 



2 
Defects and CMOS Circuit Faolts 

2.1 Spot defects and critical areas 

In a mature manufacturing process the essential causes of malfunctions of 
IC's are the so-called random spot defects. Those defects are local 
contaminations ofthe layer structures establishing electrical elements. They 
are mainly induced by dust particles during photolithographic processing. 
Typical examples are spots of metal or polycrystalline silicon and pin holes 
in the silicon-oxide insulation layers. Figure 2.1 shows two photos taken from 
a process line indicating the existence of such spot defects. 

Figure 2.1 Examples of spot defects. 

Spot defects can be conceptualized as missing or extra material with a 
random size. For a specific process line, usually spot defects can be 
characterized by a defect size distribution and a defect density, namely the 
probability of occurrence of each different defect size and the number of 

7 
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defects per unit area. Such information can he captured by process monitors 
[11,35]. These process monitors are usually regularly structured patterns 
implemented in some layers. They can he placed on the wafer between dies. 
Mter processing, the defect data, namely the defect size distribution and 
defect density, can he obtained by electrically measuring the monitors. · 

critica! areas 

(a) (b) 

Figure 2.2 Illustration of critica! areas. 

The combination oflayers of an IC, named "structure", corresponds to certain 
electrical elements, like a transistor or a via. If a defect is present on some 
layer of a structure it may cause a fault affecting the entire structure. 
Typically two or more conducting patterns are unintentionally connected or 
some conducting patterns are broken. At the circuit level, the defect may 
cause bridging fanlts among network nodes or the splitting of some network 
nodes. One way of studying the impact of defects on a layout design is by 
means of extracting the critica! are as [ 48]. Roughly speaking, the' set of center 
points of all defects causing a fa uit of a defined type relative to jsome layout 
structure defines the critica! area for this layout structure. ~igure 2.2(a) 
illustrates critical areas bridging two patterns for a specific! defect size. 
Figure 2.2(b) shows the critical areasof a defectbreakinga pattern. Clearly 
the critica! area is a function ofthe defect size.lt is possible that there are as 
many critica! areas for any structure as there are defect mechanisms 
affecting each layer. The initia! application of critica! areas is for yield 
predictions [25,48,55]. Among various systems developed to extract critica! 
areas, one of the efficient methods [25] uses a geometrical computation. 
Figure 2.3 illustrates the extraction procedure. lt first scans the layout to 
identify the potential parts ofthe layout where a defect may induce a fault 
(illustrated in figure 2.3(a)). Then the potential parts are expanded or shrunk 
fora given defect size (figure 2.3(b) ). Finally the contour of a set of rectangular 
regions is computed and the union of all critica! areas is obtained (figure 
2.3(c)). The complete concept and the detailed algorithms are described in 
[25]. 

The impact of defects on fa uit modeling and simulation has also been noticed. 
Unfortunately, fora long time, there were no accurate and efficient tools to 
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Figure 2.3 Illustration of critica! areas extraction. (a) susceptible site 
extraction. (b) expansion of susceptible site. (c) critical areas computation. 

modeland simulate the large amount of defect-induced faults fora relatively 
large circuit. Instead, most people intend to use the single transistor 
stuck-on(oft) as a supplement fault model to the stuck-at fault model. The 
arbitrary and beuristic nature of this model caused it to find hardly any 
applications. Only a few years ago, attention was drawn towards the fact that 
the occurrence of a circuit fault largely depends on the defect conditions and 
the circuit layout [21,34]. Such occurrence is technology and design 
dependent. The accurate and realistic faults can only he obtained from the 
physicallayout of a design by detailed analysis. U nder defect conditions not 
only the possible faults but also their probability of occurrence should he 
obtained. This procedure as described in chapter 1 is known as IFA [21,55]. 
Since the appearance of paper [21] many systems capable ofmodelingdefects 
as node bridging and line open faults have been developed [25,55]. The 
previously mentioned system of extracting critica! areas can he applied to 
perform inductive fault analysis as well. That is, instead of computing total 

defect 

critica! areas 
extractor 

1 layout-circuit extractor 1 

L-----------------------J 
Figure 2.4 The overview of the analysis system. 
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critica! area, the intersection of cri ti cal are as related to different faults is also 
computed as shown in figure 2.3(c). Very recently the improvement of the 
method and its application to inductive fault analysis is described in [57]. The 
essential difference orthese two approaches [25,57] from others is that it first 
computes the critica! areas for each particwar fault. Then, the final 
probability ofthe occurrence of a fault can he obtained by talring into account 
the defect statistica. Thus obtaining the probability of a fault is independent 
ofthe critica! area extraction. With such a modular feature, further analysis, 
for example, to verifY a design for different defect statistica, can he done 
without repeating the whole extraction procedure. Consequently, this 
strategy is much faster than the full simulation method employed in [21,55]. 
The whole system of performing the inductive fa uit analysis is illustrated in 
figure 2.4. 

The following section presentshow the probability ofthe occurrence of a fault 
is derived from the extracted critica} areas by combining defect statistica. 

2.2 Likelibood of the occurrence of a fault 
For every defect mechanism, the critica} areas can he extracted as it is 
illustrated in [25]. Usually, more than one different defect mechanism can 
induce the same fa uit, or vice versa only one defect mechanism may induce 
more than one fa ult. The final probability result should take these situations 
into account. 

First some notation is introduced. Let M = {m 1,m2 , ••• ,mi he the set 
descrihing a total of I possible independent defect mechanisms, such as" extra 
metal" and "missing polysilicon". Assume that the defect mechanisms are 
mutually stochastically independent processes as in [ 48]. As defects from 
every defect mechanism occur with a random size and the number of defects 
is random as welJ, let Dm(x) repreaent the defect size distribution and rm the 
defect density, where x denotes the defect size, confined from min to max, and 
m E M, the defect mechanism. Let F {{1,{2, •.• ,{} he the set descrihing a 
total of J possible distinct fault types, such as, bridge, line open and transistor 
stuck-on. Let N = {n 1,n2, •.. ,nKf he the setdefined bytheK electricalnodes 
of a design. Since one defect mechanism can induce more than one fault 
affecting one or more nodes, a fault can he represented as a pair < f, n > 
where f Ç Fand n Ç N. 

The sensitivity of a particular fault < f, n > due to a defect of size x from a 
defect mechanism m, or the probability that such a fault occurs, is related to 
its critica! area by 

A <f,n>(x) = s<f,n>(x) A 
m m layout (2.1) 
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m Alayout 

11 

(2.2) 

where A;:.f,n> is the critical area, and s;:.t,n> the sensitivity, due toa defect 

mechanism m, both as a function of a defect size x. Alayout is the totallayout 

area. 

This sensitivity (eq.(2.2)) is in facta measure ofthe design's vulnerability to 
different defect mechanisms and to each different defect size. However, in a 
manufacturing environment the probability of occurrence of each different 
defect size is not the same. Therefore, the average probability of occurrence 
of a fault < {, n > due to a defect from a defect mechanism m is computed as 

max 

<P;:.t.n> = J s;:.t,n>(x) Dm(x)dx (2.3) 

min 

where Dm(x) is the defect size distribution that can be obtained from a 
manufacturing line. Eq.(2.3) represents the likelibood of a fault for all defect 
sizes induced by one defect mechanism. 

Since more than one defect from a defect mechanism m may occur, we obtain 
the average number of times that < {, n > occurs as 

À <f,n > = y A <P <f,n > (2.4) 
m m layout m 

AB mentioned before, more than one defect mechanism can induce the same 
fa ult. Therefore, the probability of each fault < {, n > due to defects from all 
possible defect mechanisms is expressed as 

w<t,n> = I À;:.r.n> (2.5) 
mEM 

Since the result w<f,n >is not normalized, in the sequel it is referred to as the 
relative weight of the fault. This weight represents the likelibood of 
occurrence ofthe fault < J, n > due to all possible defects. Mter substitution 
of eq.(2.2), eq.(2.3) and eq.(2.4) into eq.(2.5), the final weight is obtained as 

ma x 

w<f,n> = I Ym J A;:.f,n>(x) Dm(x)dx (2.6) 

mEM . 
mm 

It is straightforward to obtain the relative weight for each fault. First the 
critica} areasof all the possible defect mechanisms that cause the same fault 
are grouped together, i.e. if defectsof extra roetal and extra contact both cause 
the samebridge fault, then the critica! are as for each defect size ofboth defect 
mechanisms will be put in one group. This process is repeated for every 
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different mechanism of each fault < {, n >. After such grouping, the total 
number of faults for every type of fault is reduced to the total number of 
distinct faults. Then the weight for each fault is computed in the same 
procedure as executed by deriving eq.(2.2) to eq.(2.5). 

2.3 Fault extraction for CMOS circuits 

2.3.1 Circuit and fault classification 

A full CMOS combinational circuit discussed in this thesis can be viewed as 
an interconnection of CMOS cells. A CMOS cell has a network of 
serlal-parallel PMOS transistors as pull-up (P) and, its dual part, the 
pull-down (N) part. For ease of analysis, the network node which is the drain, 
souree or gate of a transistor is classified in terms ofthe followingthree types: 

1} input node: all the primary inputs, power supply V dd(V +) and ground 
V11s(V_); 

2) output node : the outputs of all the cells including primary outputs and 
intermediate outputs; 

3) internalnode :all the nodes inside cells (exclusive input and output 
nodes). 

A set of ISCAS85 benchmark circuits [7] is used for analysi~. They are 
implemented in a standard cell design approach with double metal and a 
single polysilicon fora 2p CMOS technology (source: Mieroe leetronies Center 
ofNorth Carolina (MCNC)). The celllibrary consists ofboth simple (such as 
NAND and NOR) and complex (such as And-Or-Invert {AOI) and 
Or-And-Invert (0Al)) cells. 

The bridging and open faults, as two major types of faults, are further 
classified as: 

single bridge: a bridge caused by a defect connects two distinct nodes. 

multiple bridge: a bridge caused by a defect connects more than two 
distinct nodes. 

single open: one node is disconnected from the network due to a defect. 

- multiple open: the network is split into more than two connected 
subnetworks due to a defect. 

Concerning the type of the network node, the single bridging faults can be 
further classified as follows. 

- input to input bridge: a bridge caused by a defect connects two input 
nodes (e.g. d 4 in figure 1.1). 
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-output to output bridge: a bridge caused by a defect connects two output 
nodes(e.g. d 1 in figure 1.1). 

- internal to internal bridge: a bridge caused by a defect connects two 
internal nodes. It may occur eitherinside one cellor between two different 
cells. For ease of analysis, the bridges between VdiVss) to internalnodes 
are classified to belong to this type as well(e.g. d 2 in figure 1.1). 

- internalto output bridge: a bridge caused by a defect connects together 
an internal to an output node. This may also happen inside one cell or 
between two different cells (e.g. d 5 in figure 1.1). 

-single stuck-at bridge: a bridge caused by a defect connects either V dd 

or V88 to an output node (e.g. d6 in figure 1.1). This type of bridge directly 
shows typical stuck-at behavior. 

Regarding the network topologicallevel, the single bridging fault again can 
he divided as feedback bridge and non-feedback bridge. A feedback 
bridge is a bridge that causes the output of one bridged cell having at least 
one fanout path to the input of another bridged cell. Otherwise the bridge is 
called non-feedback bridge. Figure 2.5 illustrates a feedback bridge. 

I 

___ - _ _ _ ___.- feedback bridge 
,.......--.".. -... ................. ~ 

r---~-/ ', 

' ' ' ' 

Figure 2.5 mustration of a feedback bridge. 

The above definitions and classifications are used throughout the whole 
thesis. 

2.3.2 Analysis of the results of some extraction experiments 

Early results of using the metbod described in this chapter to analyze NMOS 
circuits were presented in [16]. Assume all possible defect mechanisms may 
occur and the size of defectsis in a certain range. The analysis shows that the 
most likely faults are bridging and line open faults. Other peculiar faults, 
such as new parametrie transistors, have very low probability of occurrence. 
The combination of different types of faults, such as a bridge and an open 
caused by one defect, are also rare. It is further observed that the probability 
of occurrence of a single bridge or an open is much higher than that of a 
multiple one although the number of multiple faults can he half of the total 
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of the extracted faults. The dependenee of the extracted faults to possible 
variations of the manufacturing line is also considered by taking different 
defect statistics into account. The results show that the same fault may have 
a different probability of occurrence. Moreover, the weight increase is not 
uniform for every fa ult. The experimental results [50] forsome product chips 
also indicate the influence ofthe defect statistics. Below the results for CMOS 
circuits using the analysis system presented in [57] are presented. 

For this set ofbenchmark circuits, we only consider missingor extra metall, 
metal2, poly and thin or thick oxide layers since these layers usually occupy 
the most part of a layout. The critical areas are extracted for defect sizes 
ranging from Op, to 20p, with an increment step of 5p, (after 2p,). The size 
distribution, as shown in figure 2.6, is taken as in [20] with 2p, as its peak size. 

circuit #PI 
c432 36 
c499 41 

c880 60 
c1355 41 
c1908 33 
c2670 157 
c3540 50 
c5315 178 
c6288 32 
c7552 206 

P(x) 
probability 

peak size 

defectsize 
x 

Figure 2.6 A typical defect size distribution. 

Table 2.1 Some extraction results 

circuit data extracted opens extracted bridges 
#PO #trans. #% W% #bridge #% W% 

7 728 21.5 42.5 7932 78.5 57.5 
32 1396 25.4 44.5 
26 1164 236 4227 22.8 43.8 
32 1768 366 6858 29.2 46.1 
25 2058 411 7195 25.1 45.0 
64 2974 604 8757 17.8 38.7 
22 4122 791 14718 21.7 46.6 
123 6734 1288 20743 16.8 39.9 
32 8464 1848 32687 28.6 42.5 
107 8854 1795 29962 18.0 44.5 

#PI: primary inputs. #%: percentage of each type over total extracted faults. 
#PO: primary outputs. W%: percentage of relative weight over total weight. 

Because ofthe low probability of occurrence of some peculiar faults, only the 
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bridging and open fault types are extracted. Table 2.1 shows some statistics 
of the circuit and the results of the extraction. 

For each circuit, both the percentage of each type of the extracted faults and 
the respective percentages of the relative weight over the total weight are 
listed. As can he expected, the open faults are much less than the bridging 
faults. This is because open faults usually involve a single network node and 
its fanout trees while bridgescan he as many as the number of combinations 
of all network nodes. On average, opens only account for about 22.7% of all 
extracted faults. However the relativa weight of the opens is not necessarily 
smaller than the ones ofbridges. On average, the relative weight of opensis 
about 43.4%. That is, statistically both bridge and open have the same 
possibility of occurrence. 

Table 2.2 Classification of extracted bridging faults 

single bridge 
circuit #mul ti. #out-out #ss a #in-in #in-out #other #feedback 
c432 4922 1906 376 236 355 137 1073 

c499 8312 3677 650 401 835 269 1456 

c880 8727 3797 592 392 567 260 818 
c1355 9411 4925 814 555 724 194 1877 

c1908 12750 5793 888 636 1004 396 2139 
c2670 21235 15030 1522 932 1248 514 2089 
c3540 29313 17981 1682 1448 1958 807 4365 

c5315 50344 43040 2932 2225 2747 1197 4776 
c6288 46652 24495 3760 2520 3563 797 12277 
c7552 64834 57792 4002 2827 4839 1538 8260 

~55.92% 31.85% 3.98% 6.79% 1.45% 8.50% 
2.20% 79.77% 14.18% 3.72% 0.134% 21.83% 

#multi.: multiple bridge. #out-out: output to output bridge. #ssa: single stuck-at 
bridge. #in-in: internal to internal bridges. #in-out: internal to output bridges. 

The bridging faults can he further distinguished as single and multiple 
bridges. The total number of them is listed in table 2.2. Concerning the node 
type, the total number of classified single bridges is also listed in table 2.2. 
The input to input type bridges are not included since it is easy to detect them. 
Other unclassified bridges are listed under the category of #other. They 
include the bridges between primary inputs and internalnodes or bridges 
between Vdd and an N-type internal node, etc. The bridges between an 
internal node in the P-part and an internal node in the N-part are also 
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classified as belonging to this category. Thus actually the internalto internal 
bridges under the category of #in-in only consist of the bridges either in the 
P-part or the N-part. The number of feedback bridges is also listed. The 
percentage of each type ofbridge and its relative weight is shown in figure 2. 7 
and figure 2.8 respectively for each circuit. The last two rows oftable 2.2list 
the total percentage of each type of bridge and its relative weight for the 
complete set of circuits. This is also illustrated by figure 2.9. 

D :multiB :out-outmfJ) :feedback~ :in-in( out) [2J :ssa • 
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Figure 2.7 Relative number of different types ofbridges versus circuits. 
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Figure 2.8 Relative weight of different types of bridges versus circuits. 
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D :multi. :out-out IWm :in-in(out)IZJ :ssa •:other 

total number % total weight % 

Figure 2.9 Average relativa number and weight of different bridges. 

From the above results, it can he seen that though there is some variation 
between different circuits, in general, the multiple bridges are the majority 
ofbridges (55.9%). But their relative weight is very low (only 2.2% !). This is 
expectable since usually the multiple fanlts occur only when large defects are 
present in the layout. Most actually measured defect size distri hu ti ons show 
that the probability ofthe occurrence oflarge defectsis relatively small. This 
implies that for a normal design, single bridges occur more often than 
multiple bridges. lt is interesting to observe that the single stuck-at bridges 
only count on average about 3.98% of extracted bridges. The relative weight 
is not very high either(about 14.18%). The percentage and the relative weight 
of the internal to internal node bridges are less than 10%. As for other 
peculiar type ofbridges, both the number and their relative weight are very 
low. Obviously they are insignificant for this set ofbenchmarks. As one might 
have already expected the majority ofthe single bridges are outputto output 
bridges (about 31.89%). Their relative weight is very high (79.77% !). This is 
predictabie since in cell-based designs the related wires are much Jonger 
than the connecting wires inside a cell or between two adjacent cells. 
Consequently their critica} areas are relatively large. 

The feedback bridging fanlts are also identified. For some circuits, the 
feedback bridges can he 15% of all extracted bridges. On average, there are 
about 8.5%. But their relative weight (21.83%) is higher than that of single 
stuck-at and internal to internal bridges. 

To summarize, it can be concluded that for the layouts of this set of 
benchmark circuits, in terms of both the number and its relative weight of 
each type of bridge, the output to output node bridges should receive the 
highest attention. Then next in order are feedback bridges, single stuck-at 
bridges and internalto internalnode bridges. The very last ones are multiple 
and other peculiar bridges. lt can he speculated that for other cell-based 
design styles, similar statistics regarding the type ofbridges can he obtained. 
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For the same functionality, it is obvious that different implementations may 
result in completely different scenarios. This is reflected by the circuits c499 
and c1355 since functionally they are the same but the extracted faults are 
different. It will be seen in later chapters that their testability for 
defect-induced faults is also different. 

2.4 Conclusions 

With the aid of a flexible analysis tooi using the statistica! relation developed 
in this chapter, the analysis of a set of circuits shows that the faults are 
dependent on the circuit layout and the defect statistica. The conventional 
single stuck-at faults are only a subset of all possible faults under spot defect 
conditions. Furthermore single faults have a higher probability of occurrence 
than multiple faults. The output to output node bridges have the highest 
probability of occurrence. Thus studyingthe impact of these faults for testing 
should he given higher priority. This thesis will focus on the single faults only. 
In the sequel, the term "fault" is implicitly referring to the notion of a "single 
fault". The reason of choosing single faults is not only based on the results of 
the statistica! study. From the testing point of view, it can be expected that 
the large defects affecting more network nodes (multiple faults) can be easily 
screened out in the early phase of processing by conventional testing 
methods. Only the defects affecting one or two nodes are hard to detect. As 
for feedback bridges, they are not considered in this thesis sineetbey induce 
usually unpredictable §equential behavior. They most likely show timing 
errors rather than some static fa ult. For bridging faults, the scope of this 
thesis is confined to the static analysis. 



3 Bridging Fault Modeling and 
Simulation with Approximate Accuracy 

3.1 Introduetion 

The previous chapter viewed some statistica of defect-induced faults. With 
this information availahle, this chapter will focus on one particwar type of 
fault, namely the single bridging fault. lts behavior will be examined and a 
metbod ofmodeling and simulating the bridging faults will he investigated. 
lt is difficult to analyze the electrical behavior of a bridging fault accurately. 
In this thesis only static analysis is performed by simulations. Furthermore, 
the defects considered are fatal defects. That is, the resistance of the defects 
is considered to he negligible. Thus hridged nodes are forced to have the same 
potential. 

Brief analysis shows that with very few exceptions, the basic problem of 
modeling is associated with the conducting circuit from power supply to 
ground caused hy a bridge. To illustrate, tahle 3.1 shows the SPICE 
simwation results for the bridges in figure 3.1 (the numher next to each 
transistor indicates the relative size of the transistor and we maintain this 
convention in the sequel). It can be seen that for inputs activating these 
bridges, there is a conducting circuit from power supply to ground. It may 
result in the hridged output ha ving a voltage value ranging from the potential 
of power supply (V+) to ground (V_). The actual output voltage value depends 
on how the cells are driven. Such an output is different from a normallogic 
"1" value driven only by the pull-upor a logic "0" driven only by the pull-down 
part of a cell. In this situation the output voltage value cannot be easily 
interpreted as a logic value since it depends on how it drives fanout cells. 
Figure 3.1 also shows a fanout situation. For the applied input a bede{= 100111 
(the quoted 1s(Os) arefaultfreevalues), theoutput hearing a value 2.10V can 
drive x to 4.20V which can be readas "1" andy to 1.43V which can be readas 
"0". Usually the output is said to be in "unknown state". Clearly the basic 
phenomena caused hy a bridging fault is that a digital circuit is changed 
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Figure 3.1 An example bridging fault and its fanout cells. 

Table 3.1 Bridged output 

bridge inputs output bridged output 
a bed ef AB SPICE(V) switch 
1001 11 10 2.10 x 
0001 10 10 2.87 x 

dl 0000 11 10 3.72 x 
1101 00 01 3.40 x 
1111 01 01 0.96 x 
1011 0 3.71 x 

ck 0011 0 4.40 x 
x: unknown state. 

into a circuit with unknown behavior. The exact behavior can only be obtained 
by simulating the bridging fault along with its fanout cells up to the primary 
outputs by using a circuit level simulator. In view of the large number of 
extracted faults, obviously it is very hard to achleve circuit level accuracy for 
a large circuit within an acceptable amount of time. 

At the time that this research was started, a lot of methods [1,4,12,22,27, 
31,39,43,44,46,49] have been developed to solve the above problem. Most of 
them intend to use a switch-level model [8, 9] to model and simulate the 
bridging faults. Such method models a transistor either as anideal conductor 
with a constant conductance (strength) or with zero conductance and only the 
strongest path is used for the decision. U sing such a simulator, the results for 
the bridge d 1 and d 2 in tigure 3.1 are listed at the last column oftable 3.1. The 
unknown state, denoted as "x", is usually obtained at the bridged output and 
carried through the rest of the simulation. This may give too pessimistic or 
too optimistic solutions and does not solve the problem. Among the various 
methods ofimproving the inadequate switch-level model, most intend to use 
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a resistive network model (1] to evaluate a bridging fault and interpret the 
output of the bridged cell as a logic level simply by comparing the 
conductances of pull-up and pull-down parts of a conducting circuit. 
Ho wever these methods have severallimitations. First the model used is not 
accurate enough to predict the output voltage for a bridge. The second 
limitation is already illustrated in figure 3.1. For input abcdef=100111, the 
pull-down conducting strength of B is stronger than the pull-up conducting 
strength of A. The output is predicted as "0". But in fact it can he read as "0" 
by x and "1" byy as shown in figure 3.1. Furthermore most ofthem are not 
fully aware of the results of IFA at the time. As a result, the developed 
methods usually target just for one particular type ofbridging fa ult. 

Since it is very expensive to resolve all the unknown states, based on some 
experimental observations, this chapter presents a new method which tries 
to eliminate the unknown states as much as possible at the local celllevel 
while maintaining the modeling and simulation efficiency. This method 
covers more types ofbridges than other methods. It is effective for most of the 
bridging faults. Part of this chapter was previously published in [17]. 

3.2 A logic modeling and simulation strategy 

It is evident that a bridging fault can be accurately modeled if 

1) the output behavior of a bridged cell can be accurately evaluated; 

2) an unknown input voltage value can be correctly interpreted as a logic 
value afterit is propagated through subsequent cells. 

Assume when a bridging fault is activated, the output voltage of the bridged 
cell is accurately computèd. Now let us examine how the output can be 
propagated through subsequent cells. In theory, the interpretation process 
seemsnot an easy task since, in the worst case, it may require the simulatîon 
of the entire circuit in order to distinguish an unknown state. However the 
simulation results in table 3.1 for two bridges shown in figure 3.1 give the 
impression that most of the time the outputs of bridged cells have a value 
either below 2.0V or above 3.0V. Fora normal design implemented for a 
typical5.0V technology, these values can be locally interpreted as logic "0" or 
"1" respectively without any propagation along its fanout cells. For a specific 
technology, a highest logic "0" voltage VO and alowest logic "1" voltage V1 can 
be defined. In this chapter, any voltage value higher than V1 is said to be in 
the logic "1" range and any voltage value lower than VO is said to be in the 
logic "0" range. Otherwise it is said to be in the undefined range. Inspired 
by the above observation, it can be expected that if this is the case for most 
of the bridging faults, then a great amount of computations can be avoided. 
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To verify such an observation, an intensive analysis using SPI CE simulations 
has been conducted for many designs including the ISCAS85 benchmarks 
listed in chapter 2. Table 3.2 summarizes the results for each circuit of the 
ISCAS85 benchmarks. The table shows the percentage of all cases that the 
output voltage of bridged cells is either in logic "1" or logic "0" ranges. On 
average, 96.62% of the output values of bridged cells indeed fall into the 
distinguished logic ranges. 

circuit c432 

logic% 96.4 

Table 3.2 SPICE simulation results 

c499 c880 

97.1 96.0 

c1355 c1908 c2670 c3540 c5315 

96.6 97.1 96.7 

VA(volt} 
4 

97.2 95.9 

3 --------------

2-------------
1 

c6288 c7552 

97.6 95.6 

Figure 3.2 {a) A simple conducting circuit. (b) Output voltagè versus {J • . , 

This probably can he better explained by simulating a simple conducting 
circuit shown in figure 3.2(a). Figure 3.2(b) shows the output voltage ofthe 
simple circuit as a function of pull-up to pull-down beta ratio 

w w 
f3 = kp L: /kn L:' where kp and kn are process dependent parameters and 

~ is the transistor width-length ratio. It can he observed that the output 

voltage ranging between 2.0V and 3.0V results in a rather narrow range of 
f3 between 2.7 and 3.1 for this specific technology. This may imply that the 
probability of a bridge to cause an equivalent f3 in the undefined range is 
small. That is, the probability of ha ving an output voltage in the logic ranges 
is large. As for the bridges involving intemal nodes, such a bridge usually 
splits some pull-up (pull-down) paths into two parts. In order to detect the 
bridge, part of the split paths needs to he activated as shown by the input in 
figure 3.l(b) for d 2• The equivalent f3 of a partial pull-up path ver.+sus a partial 
or complete pull-down path usually has large chance that the resulting f3 
value falls into the logic ranges. 
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This experimental observation, in fact, can help to eliminatea lot of unknown 
states and still allows fast simulation since the fault propagation can simply 
he realized by using the following principle: 

Modeling principle: If the output voltage of a bridged cell is higher 
than V1, then a logic "1" is re ad at the output. If the output voltage of a 
bridged cellis lower than VO, then a logic "0" is read. Otherwise it is 
considered that the fault effect will not appear at the output of the 
bridged cell. 

bridge 
analyzer 

Figure 3.3 The modeling and simulation strategy. 

With the above principle, the whole fault modeling and simulation can be 
done in the way as illustrated in figure 3.3. Assume the transistor netlistand 
the extracted bridging faults are available. The logic level representation of 
the circuit is extracted from the transistor netlist. Then, for each extracted 
bridging fault, alocal circuit analysis is performed only for those inputs that 
would cause a conducting circuit. Each evaluated output voltage of a bridged 
cell can he read as a logic level by using the above principle. Collecting the 
analysis results for all the possible inputs, the behavior of the bridged cells 
can he characterized in terros of a Boolean function. Since such a Boolean 
function partially (or completely) describes the faulty behavior ofthe bridged 
cells caused by this bridge, it is named the Faulty Boolean Function. After 
all the bridges are processed, a set of faulty Boolean functions is obtained. 
Then the fault simulation can he conducted at the logic level by just 
manipulating the faulty Boolean functions. Thus any efficient logic fault 
simulation technique can he used.Since there is noneed to perform circuit 
level computations any more, the fault simulation can he very fast. 

3.3 An approximate evaluation metbod 

Now let us examine how to evaluate a bridging fault efficiently. Although the 
cells are relatively small, the full analysis of using a circuit simulator can still 
he very time-consuming consiclering the large number of possible bridging 
faults extracted from the layout. Thus instead of using a circuit level 
simulator, it is interesting to know whether there is any other way to evaluate 
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a bridging fault. The principle used bere only tries to eliminate some ofthe 
unknown states by confining the voltage range, thus it is su:fficient if the 
computed value is accurate enough within the defined logic voltage ranges. 
Such a possibility is investigated by using an approximate transistor model. 

Using such an approximate transistor model, the dc-characteristic of an 
NMOS transistor is characterized as (a PMOS is modeled in the same way}: 

{ 

lds = kn :2" CVgs Vtn i Vds)Vds ' Vds < Vgs-Vtn 

Ids 0, otherwise 

where Vtn is the zero-bias threshold voltage, kn the process dependent 

parameter, and :2" the transistor width-length ratio. In the model, a 

transistor works in a linear region if it conducts, otherwise it is off. This is 
because in a conducting circuit the voltage level at any drain (source) cannot 
be higher than V dd when the gate ofthe transistor is driven by a logic "1". 
Thus V d.<~ < Vg8-Vtn is always true. The model also neglects the body-effect 
of the MOS transistor. It should be. noted bere that this model is still a 
nonlinear model which is different from others, such as the one used in [49]. 
Thus the model is more accurate than other approximate ones using a 
resistive network model [1] or a linear transistor model [49]. 

Table 3.3 SPICE results versus approximate metbod 

c499 c880 c1355 c1908 c2670 c3540 c5315 q6288 c7552 
97.1 96.0 96.6 97.1 96.7 97.2 95.9 !97.6 95.6 
94.9 92.0 92.2 94.1 93.4 94.4 91.6 j95.6 92.1 
0.14 0.15 0.15 0.14 0.16 0.13 0.16 10.11 0.18 

The approximate transistor model above bas been used to evaluate the 
bridging faults for the benchmarks described in chapter 2. The last row of 
table 3.3 shows the absolute average difference between the computéd values 
and the SPI CE results for each circuit. For the whole set ofbenchmarks, the 
average difference is about ± 0.14V from the SPI CE results. The third row of 
table 3.3 shows the percentage of all cases where the outputs are correctly 
predicted within logic ranges using the approximate method. On average, 
93.41% of all output values are correctly predicted within the logic ranges for 
the whole set ofbenchmarks. The actual percentages computed by SPI CE are 
shown in second row of table 3.3 as well. As can be expected, the actual 
percentages computed by SPICE are higher than the percentages by using 
this approximate method. 

For the bridges in figure 3.1, the last two columns of table 3.4 show the 
estimated voltage value and the predicted logic level usingthis modeland the 
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principle. lt should he noted here that according to the modeling principle, if 
an output is in undefined state, the fault free value is assumed at the output. 

Table 3.4 Comparison with SPI CE 

bridge inputs output bridged output 
a bed ef AB SPICE(V) approximate(V) ~~ 1001 11 10 2.10 2.35 
10001 10 10 2.87 2.99 1 

dl 0000 11 10 3.72 3.53 1 
1101 00 01 3.40 3.10 1 
1111 01 01 0.96 1.14 0 
1011 0 3.71 3.10 1 

~ 0011 0 4.40 3.10 1 
x*: undefined state. 

This method still appears a little bit pessimistic compared with SPICE. 
However the model does have the advantage that any conducting circuit can 

he transformed into the one shown in tigure 3.2(a) with 'J: and ~=as the 

equivalent width-length ratios of the respective pull-up and pull-down 
parts. The equivalence can be established according to following rules: 

1) two serlal connected transistors with W 1/ L 1 and W 2/ L2 can he replaced 
by a transistor with WJL = W1/L1 + W2/L 2• 

2) two parallel connected transistors with W 1/ L 1 and W 2jL2 can he replaced 
. . W1jL1 x W2jL2 

by a trans1storw1th WjL = W
1
/L

1 
+ W

2
/L

2
. 

These two rules can be derived using the approximate transistor model. 

For the equivalent conducting circuit, the output voltage V A can be derived 
by solving the following equation, 

(/J - 1}V1 + 2(V + - vtn - f3Vtp)V A - /3(V + 2Vtp)V + 0 

where /3 = (kp ~:)j(kn ~=). It is not di:fficult to prove that V A is an increasing 

function of /3. A value of p1 exists so that V A = V1 and a value of p0 exists so 

that VA= VO. Therefore 

and 

holds which implies that, fora specific technology, it is not even necessary to 
solve all equations for the output voltage. Only the equivalent f3 value is 
needed. Consequently the evaluation can be very fast. Below this method is 
used to construct the faulty Boolean functions. 
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3.4 Specification of faulty Boolean functions 

For ease of extraction, each CMOS circuit is represented by a conneetion 
graph, G = (V,E). Each vertex v E Vrepresents a network node whichcan 
he of the type input node, output node or internal node as defined in chapter 
2. An undirected edge e E E represents a transistor and has an associated 
Boolean variabie (defined by its gate input function) and a weight 
representing its transistor width-length ratio. AB an example, the graph 
representation ofthe circuit in figure 3.4(a) is shown in figure 3.4(b). 

6.8 

e 4.8 

4.8 
f 4.8 

4.s v_ 
v_ 

(a) (b) 

Figure 3.4 mustration of the conneetion graph representation. 

A simple path between a and b is denoted as s ab· P ab is thesetof all distinct 
paths between a and b. A term T8 of a path sis the product of all Boolean 
variables ins. A path s conducts iff T 8 = 1. 

Using the above notations, the fault free Boolean function FA of a cell (with 
its output node as A) can be expressed by all its "on" terms or "oft" terms as: 

FA I Ts (3.1) 
sEPAv+ 

or FA= I Ts (3.2) 
sEPAv_ 

Obviously, FA is the "on" set of A while FA is the "off" set of A. 

In case of a bridging fault, the output of a bridged cell is said having a 
faulty-on behavior if the fault free output is "0" but in case of the bridge the 
output is "1". Vice versa the output of a bridged cell has a faulty-offbehavior 
if the fault free output is "1" but in case of the bridge the output is "0". 
Otherwise the cell is said to be fault free. 
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Applying the modeling principle here, a faulty-on is caused if the output 
voltage is higher than V1 but fault free output is "0". A faulty-offis caused 

ifthe output voltage is lower than VO but fault free output is "1". 

Assume a bridge between the cell withoutput A and another cell withoutput 
B as it is illustrated in fi.gure 3.5(a). 

1 :=liJ-· A ( 
........ 

bridge~,-

J92]-B 
(a) 

ffi=1+J 
(b) 

Figure 3.5 (a) mustration of an arbitrary bridge. (b) lts new input space. 

Let FA be the fault free function of A. Regarding its input space, FA can be 
expressed as: 

FA= {x E 1 I A is "on") 
In the presence of the bridge, A and B become functions of both inputs 1 and 
J. Let the new inputspace be denoted as ffi, that is, ffi = I + J. Below we just 
specify the faulty Boolean function of A. The faulty Boolean function of B can 

be derived in the similar way. The faulty Boolean function FA of A in the 
presence of the bridging fault is defi.ned as: 

FA = {x E ffi I A is "on" } (3.3) 

Then the faulty-on set and the faulty-off set of A are defined as: 

1 -fA {x E ffi I FA A FA) (3.4) 

~={xEffi I FAAFA) (3.5) 

The complement of fl and ~ are obtained as 

i ---
fA {x E <2B I FA V FA } 

~ = {x E 9\ I FA V FA} 

(3.6) 

(3.7) 

The set 9\ is then split into three parts: faulty-on set fl, faulty--off set ~ and 

the rest of the inputs. Obviously ffi can also be viewed as the union of FA and 

FA respectively consiclering the inputs in Jas "don't cares". Figure 3.5{b) 

illustrates the relation of fl and ~ with respect to FA and FA. 
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With the above definitions, the following theorem holds. 

Theorem 3.1: Assume a cell withits fault free function as FA is affected by 

a bridge. Let fÁ and ~he the faulty-on set and faulty-off set ofthe cell. 
Th en 

(3.8) 

Proof: Eq.(3.3) can he partitioned into two parts: 

F A={x E ::B I FA A (A is "on") } u {x E ffi I FA A (A is "on'D } (3.9) 
In the first part, the set containing the original "on" set F A• except the 

inputs in~. A is still "on". Thus the first subset in eq.(3.9) should he the 

original "on" set FA minus the faulty-off set~ (the shaded part in figure 

3.5(b)). The second subset in eq.(3.9) is exactly the faUlty on set tl Thus 

FA= FA.~+ fl· 
0 

Theorem 3.1 shows that if l and f of a cell are obtained, the behavior of a 
bridging fault can he characterized. 

For the above specified faulty Boolean function, using the modeling principle 
in 3.2, the following corollary is true. 

Corollary 3.1: Assume a bridge affects the outputsA andB oftwo different 
cells and their fa uit free functions are FA and F 8 respectively. Assume 

that the faulty-on sets and faulty-off sets are obtained as fl and ~. f1 

and fa respectively. Then their faulty Boolean functions 

and 

FA =FA-~ +fl 

FB=FB·fs+f1 

have the following property: 

(FA E9 FA) . (F B E9 F B) = 0 

Proof: The proof is conducted for each type of bridge. 

(3.10) 

(3.11) 

(3.12) 

1) For an output to output node bridge, the proof is easy. After 
substitution of eq.(3.10), (3.11) into (3.12), the eq.(3.12) can he expanded 
and simplified as: -

(FAE9FA) · (F8 E9F8 ) =(FA·~+ FA· {Á) · (F8 ·fa+ F8 · f1) (3.13) 

The first two productsof eq.(3.13) FA · F 8 · ~ ·fa and FA · F 8 · fÁ · f1 

obviously cannot he true since FA and F 8 being both a "1" or a "0" imply. 
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that there is no conducting circuit from V+ to V_. Thus 11 · ~ = 0 and 

fÁ · f1 = 0. The other two products FA · F B · 11 · f1 and 

FA · F 8 · fÁ · ~ cannot be true either since the bridged output voltage 
cannot be in the logic "1" and "0" ranges simultaneously. That is, 

/1 · f1 = 0 and fÁ · ~ = 0. Thus the corollary is true . 

.., v_ 
Figure 3.6 Illustration of an arbitrary internal-internal node bridge. 

2) For an internal to internal node bridge, a bridge between an internal 
node in the P-part of a cell and an internal node in the N-part of a cell 
is not considered since such kind of bridge can hardly occur. To be 
general, assume a bridge occurs in the pull-down parts of two cells as 
shown by a bridge between i andj in tigure 3.6. FA and F B are the fault 
free function of A and B respectively. 

The faulty-on and faulty-off sets of A and B can he derived from any two 
path segments sv +i and sjV or sv +j and siV"· Let us analyze a two-path 

segment sv +i and sjV_ first. Path sjV_ can be further classified as the one 

across node B, denoted as sjBV_• and the one without across node B, 

denoted as s ·.Bv . 
J " 

For any input establishing conducting paths sv,i and sllfV_• obviously 

both FA = 1 and F 8 = 1. Since only output A is on the conducting 

circuit, thus if VA < VO, only a faulty-offbehavior is caused at A. 

For anyinputestablishingconducting paths sv,i and sjBV"• FA = 1 and 

F B = 0. BothA andB are on the conducting circuit. Since V 8 < V A• thus 

ifVA < VO, V8 < VOisalsotrue.Inthiscaseonlyafaulty-offbehavior 

is caused atA whileB behaves as ifitis faultfree. Similarly, ifV8 > V\ 
only a faulty-on behavior is caused at B. 
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For any paths 8 v +i and s iV~• the analysis is similar. Thus for any possible 
situation, A and B cannot have a faulty behavior simultaneously. 

Therefore, CF A EB FA) • CF B EB F 8 ) = 0.0 

The proofs for other types of bridges are similar. This corollary can help to 
obtain fast fault simulation. 

3.5 The details of extracting the Faulty Boolean 
function 

3.5.1 An extraction procedure 

First the fault free functions should he extracted. According to eq.(3.1),(3.2) 
each one can he easily obtained by extracting the "on" paths (PAv) or "off" 

paths ( P AV ) using a depth first search routine. 

To extract the faulty Boolean functions fora bridge connecting two nodes i and 
j, basically it suffices how to obtain the faulty-on set and the faulty-off set for 
each bridged cell. Th obtain the faulty-on and faulty-off sets, all the 
conducting circuits caused by this bridge have to be analyzed. The conducting 
circuits can he obtained by tracing the actual transistors connected to the 
bridged nodes. Regarding the graph representation, a conducting circuit can 
he established by a path from V+ to one bridged node and a path from another 
bridged node to V-· That is, any two path segments 8v .i and s;v_ or sv J and 

8 w establish a conducting circuit. Let 8v +i,JV_ and 8 v JiV_ denote such two path 

segments respectively. Let P v .;.,v_ and P v JiV he the path sets cÓntaining all 
ofthose paths respectively. In addition to an individual path, any non--empty 
subset of P v .iJ V~ or P v JiV~ can establish a conducting circuit as well. A set 
containing all of the conducting circuits is defined below. 

r:f>={O I ((} Ç Pv.;.,v_ V (} Ç Pv JiV_) A (} ;;t: 0} (3.14) 

For each (} E r:f>, its corresponding Boolean expression is defined as: 

C0 =LTs I Ts (3.15) 
sEO sEPv.9v_\O 

or Co= LTs I Ts (3.16) 
sEO sEPv ;JiV\(J 

IfCeis satisfied, then only the paths in (} conduct but no others. A conducting 
circuit() is valid if C0 is satisfiable. Consider the set tfJ according to eq.(3.14) 
to he established, then the equivalent transistor width-length:ratios ofthe 
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P-part and the N-part of each fJ E tP can he computed. Such a computation 
can he realized by iteratively applying the rules in section 3.2 on the graph 
representation of fJ. The computation is linear in the number of transistors. 
In turn the beta ratio of each (), denoted as {J9, can he computed. Then the {1 

and fJ can he obtained by applying Algorithm 3.1. 

Algorithm 3.1: extraction offaulty Boolean function 

{ 1 .,_ 0; f .,_ 0; 
for each () E tP do 

construct C 9; 

if C 9 satisfiable then 
compute fJ 8; 

if ({J8 > {J1) then 

f1 
.,_ l + Ce; 

else 
if ({J9 < {J0 ) then 

f.,_f + c~ 

3.5.2 Obtaining conducting circuits 

The set tP in eq.(3.14) containing all the conducting circuitscan he obtained 
by enumerating either the paths ortheinput space ofthe bridged cells. But 
usually such an enumeration process is not efficient. In this thesis, the 
problem of obtaining all the conducting circuits is formulated as a general 
graph problem and can he solved more efficiently. All the paths in set P v, ijV 

or P v +jiV_ can he viewed as a path.,.-connected graph between V+ and V-· Th en 

each element of tP is viewed as a path-connected subgraph between V+ and 
V_. The detailed definition of path.,.-connected graph and an enumeration 
algorithm to obtain all the path.,.-connected subgraphs are presented in 
appendix A. 

3.5.3 Boolean function representations issue 

The idea of modeling bridging fanlts as a set offaulty Boolean functions before 
the fault simulation is simple and straightforward. The key issue is obviously 
how they can he represented and stored efficiently. If there is no proper way 
ofhandling the storage, then the proposed metbod is impractical since it may 
require a large amount of memory even for a small circuit in view of the large 
number of extracted faults. Fortunately the Reduced Ordered Binary 
Decision Diagram (ROBDD) data structure [6] has the feature of compactly 
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representing Boolean functions. During the analysis and simulation, the 
representation of a Boolean function and all its manipulations are based on 
a ROBDD package [28]. In fact, for a cell affected by a bridge, only its 
faulty-on and faulty-off sets are needed. lts faulty Boolean function can be 
easily constructed according to eq.(3.8). The compactness of using ROBDD 
can be illustrated by the following example. Figure 3.7(a) shows two bridges 
among three cells. After fault analysis, for bridge # 1, we have 

~(#1) = d ·(a · b + c) and ~(#1) = d ·(a· ë + b · ë) 

For bridge #2, we have 

~(#2) = ë ·(a · b + c) and ~(#2) = e ·(a· ë + b · ë) 

~(#2) 

o : negated function. 

(b) 

Figure 3.7 Illustration of compact representation. 

Their ROBDD representations are shown in tigure 3. 7(b). It can heseen that 
for this fixed variabie ordering, subexpressions (a · b + c) and (a· ë + b · ë) 
are shared by these faulty-off sets. Any other way of representation would 
require much more space. The compactness largely depends on the variabie 
ordering and the actual bridges within the specific cells. But the bridges 
analyzed here only affect the outputs ofnot more than two cells. The number 
of their input variables is relatively small. The experimental results shows 
that this way is feasible. 

3.5.4 Rednetion of Boolean input space 

Since it can be expensive to construct ROBDDs for a Boolean function, the 
efficiency of extractinga faulty Boolean function is mainly determined by the 

number of valid conducting circuits, i.e. the valid elements in the set if> in 
eq.(3.14). 
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The fault analysis discussed so far assumes that the inputs of the bridged 
cells are independent. This assumption simplifies the implementation. The 
true validity of each conducting circuit can be verified later during the 
simulation phase. However the inputs usually have some relations among 
each other in terms of primary inputs. It can be the case that some of the 
conducting circuits do not exist in terms ofprimary inputs rendering their 
analysis to be unnecessary. For instance, anaiyzing the bridge in figure 3.1, 
if f = a, then any conducting circuit from V+ to V_ consisting of either both 
transistors ta and tr or both to; and t1 is not a valid one. Obviously it is 

expensive to check the validity by substituting local variables as functions of 
the primary inputs in a large circuit. To keep the analysis still at the local cell 
level, a reduction technique which makes use of certain implication relations 
is proposed below. 

This technique requires a preprocessing step. Before fault analysis, such a 
preprocessing extracts all the following implications among any set of inputs 
of a cell: 

1) The inverted variables. That is, if F = a, F =:>a (a =:> F) would be 
extracted { =:> denotes implication) ; 

2)1mplicatesofafunction.Forexample,for F =a· b,ä=:> F, b =:> F, F =a 
and F =:> b would be extracted; 

3) Any two input functions to the same cell that satisfy an implication 
relation. For example, for inputs F 1 = a · (b+c) and F 2 = a · c toa cell, 
F 2 =:> F 1 and F1 =:> F2 would be extracted. 

The extracted relations are stored and repeatedly used to derive valid 
conducting circuits for each bridging fa uit. Applying the above implications 
during the analysis, the input space of the bridged cells is only expanded one 
level down from the bridged site to the primary inputs. For each input 
variabie f, let l(j) he the product of all the input variables that are implied by 

f, i.e., l(j) = n g. The reduction may he achieved through the following 
g I f"*g 

procedure: 

Algorithm 3.2: reducing invalid conducting circuits 

for each 8 E lP do 
exp -"1"; 
for each input variabie fin 8 do 

exp .,._ exp · l(j) ; 
if exp satisfiable then 

a valid (J is found; 
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Though not all of the invalid conducting circuits can be avoided, a large 
portion of analysis can be bypassed by using this technique. The effectiveness 
of this technique varles from circuit to circuit. 

3.6 A fault simulator for faulty Boolean functions 

The set of faulty Boolean fu.nctions derived above for all the bridging faults 
can he easily used by any logic fault simulator. Here the well-known Parallel 
Pattern and Single Fault Propagation (PPSFP) [54] technique is adapted to 
show the easy exploitation ofparallelism. First the classica! fault simulation 
problem for single stuck-at faults is formulated. Then it is shown that a 
hridging fault can he simulated within the same framework. 

The fault simulation is conducted on the network graph Gn(Vn,En). Each 
node v E Vn represents a cell. Each directed edge (v, u) E En represents the 
relation that vis an input of u. Figure 3.8(aXb) shows an example of a network 
and its network graph representation respectively. The network graph is 
levelized first hy using a topological sort procedure. The nodes in V n are 
arranged in increasing order according to the network level. Considering the 
fanout branches, the network can he decomposed into fanout-free regions by 
splitting a fanout node into a number of nodes equal to the number of its 
fanout branches. Figure 3.8(c) shows the network graphafter decomposition. 
There are a total of four fanout-free regions for the example shown in figure 
3.8(a). 

x 

(b) 

x 
g 

~~hE:>· 2 
~ 2 ~ 

e 
(c) 

y 

Figure 3.8 (a) A network. (h) lts network graph. (c) fanout free regions. 
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In the sequel, for a nodeFin the network, let l/J denote its function. Assume 
it has a, b, ... , q as its inputs and let F ljJ(a, b, ... ,q). For an input a, let Fa 
denote the Boolean difference of F with respect to a. That is, 

Fa l/J( a ,b , ... ,q) EDl/J( a ,b , ... ,q) (3.17) 

Fa is also called the local observable lunetion of a. The value of Fa is called 
the loeal observability of a. If Fa=l, a is observable at F. Assume P, Q, ... , 
Z are the functions representing the primary outputs, then fora node a, its 
global observable lunetion Oa can be derived as 

Oa = Pa + Qa + ··· + Za (3.18) 

Here Pa denotes the Boolean difference of P with respect to a(so does Q<t• etc). 
The value of 0 6 is called the observability ofthe node a. If 0 6 =1, the node 
a is observable at at least one of the primary outputs. Th at is, any change of 
the logic value of the node aresultsin a change of at least one of the primary 
outputs. 

As the first step offault simulation, the fault free simulation is conducted in 
order to determine the logic value for each node. Since the function of each 
cell is represented symbolically, a parallel pattem evaluation can he 
performed in a bit-vector manner. Let vec(F) denote the bit-vector value of 
F. Then the parallel pattem evaluation of a function F ljJ(a,b, ... ,q) can he 
formulated as 

vec(F) = ljJ(vec(a),vec(b), ... ,vec(q)) (3.19) 

Obviously the number ofthe pattems that can he simulated in parallel is the 
number ofbits in the bit--vector, in our case, the lengthof an integer (machine 
word). 

The next step, which is the major problem offault simulation, is todetermine 
a set of nodes {a E Vn I Oa = 1} for each input pattem. In theory, the 
observability of a node a can be obtained by evaluating its global observable 
function as defined in eq.(3.18). In practice, the observability of each node can 
he recursively determined using the following rules: 

1) For each primary outputP, Op= 1 is always true (e.g. for x in figure 3.8, 

Ûx=1). 

2) For each node a in the fanout--free region, assume a is a predecessor of 
b, then 

(3.20) 

ba is the local observability of a. That is, they can he recursively 
determined from the top level nodes of each fanout-free region. 

3) For each non-reconvergent fanout node a (e.g. the nodegin figure 3.8), 
its fanout branches a 1,a2, ... ,am are independent (they do not 
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reconverge). It is observable at the primary outputs if one ofits branches 
is observable at the primary output. Thus 

Oa = Oa, + Ûa2 +, ... , + Dam (3.21) 

4) For each reconvergent fanout node a (e.g. the node h in tigure 3.8), since 
two fanout branches from a carrying faulty values may converge at some 
point, the faultyvalue may he masked out. Thus Oa should he determined 
by explicitly simulating the fault from the fanout node. That is, the value 
a( opposite to the fault free value a) should he explicitly propagated to the 
primary outputs. Oa is finally determined according to eq.(3.18). 

Mter the observability of each node is determined for the current input 
pattem, the last step of determining the detectability of each fault can be 
carried out. For a single stuck-at fault at a node a, it is straightforward. lt 
can he determined by evaluating 

or 

Da-s-1 = Oa ·a 

Da-s-0 = Oa. a 

(3.22) 

(3.23) 

If Da-1-1-l =1, a stuck-at-1 is detected and if Da-H-0 =1, a stuck-at-0 is 
detected. 

It is not difficult to observe that all the steps can also he performed for 
pattems in parallel. The bit-vector operations can be formulated as in 
eq.(3.19) for fault free evaluations. 

The above two steps can be summarized as two traversals over the network 
graph described below: 

1) In the forward traversal, 32 (the machine integer length in our case) 
patterns are applied to the primary inputs and simulated in increasing 
order of circuit level until the primary outputs are reached. 

2) In the backward traversal, the observability of each node is evaluated in . 
the way as described above for current inputs from primary outputs to 
primary inputs in the decreasing order of circuit leveL At the meantime, 
the detectability of single stuck-at faults are determined according to 
eq.(3.22) and eq.(3.23). 

Now let us examine how a bridging fault is simulated. Since each bridging 
fault is modeled as a Boolean function, bridging fanlts can be easily simulated 
in the same framework. In the \>ackward travers al, after the observability of 
each node is obtained, the detectability of each bridging fault can be easily 
determined as follows: 

1) Fora bridging fault affecting only one cell, assume the fault free and the 
· faulty Boolean function are obtained as a and ii respectively. Then its 
detectability can be obtained by evaluating 
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Dbri = Oa · (ä a) (3.24) 

If Dbri =1, then the bridge is detected. 

2) For a bridging fault affecting two different cells, assume their fault free 

functions andfaulty Boolean functions are a, band ä, b respectively. From 

the corollary 3.1, it is know that ä ED a and h ED h cannot he true at the 
same time. That is, for a given input pattern, either a has a faulty 
behavior orb has a faulty behavior but both of them cannot have faulty 
behavior simultaneously. In other words, the fanout branches from a 
carrying a faulty value would never converge with the fanout branches 
from b also carryinga faulty value. Thus the fanout branch of a and b are 
independent in terros of the faulty value propagation. Therefore the 
detectability ofthis bridge can he obtained by evaluating 

Dbri = Dbr/a) + Dbr/.b) Oa · (ä ED a) + Oa · (bED b) (3.25) 

Again, if Dbri =1, then the bridge is detected. 

Obviously, eq.(3.24X3.25) can he evaluated for patterns in parallel as well. 
Since the detectability of each bridge is determined locally, the complexity of 
simulating a bridge remains the same as for simulating a single stuck-at 
fa ult. 

3. 7 Experimental results 

The above system wasimplementedin Con a HP-9000/755 workstation. The 
ISCAS85 benchmark circuits and their bridging faults as described in 
chapter 2 are used for the experiments. Table 3.5 summarizes several 
extraction results. To have a certain safety margin, the highest logic "0" 

voltage VO is set to 1.5V and the lowest logic "1" voltage V1 is set to 3.2V. 

Table 3.5 Faulty Boolean function extraction results 

circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552 
#bridge 1424 3454 3938 4327 5294 15121 17022 43236 18301 57198 

#undete. 306 492 507 773 821 2044 2446 4898 4724 9702 
time(s) 0.6 3.8 4.3 3.3 6.8 15.6 41.3 80.9 12.0 99.4 
#Mbyte 0.06 0.22 0.26 0.22 0.41 1.00 1.45 3.83 1 o.78 5.44 

#undete. : num.her of undetectable bndges. #Mbyte: memory reqmrement in Mbyte. 

The set ofbridges considered comprises only the outputto output, internal 
to internaland internalto output type of single bridges. The CPU times listed 
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include preprocessing time, the times of extracting the fault free expressions 
and the times of extracting faulty Boolean functions for all the bridges. The 
amount of memory required to store the extracted faulty Boolean functions 
is shown in units ofMbytes. Both the CPU time and memory requirements 
versus the number of bridges are shown in figure 3.9 and figure 3.10 
respectively. It can be observed that forthese benchmarks both entities grow 
almost linearly with the number ofbridges. 
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Figure 3.9 Memory requirement versus number of bridges. 
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Figure 3.10 Analysis time versus the number ofbridges. 

In the course of the local analysis, some of the "undetectable bridges" are 
identified. The number ofthem is shown in table 3.5 for each circuit. Most 
of those "undetectable bridges" are internal to internal node bridges. The 
reason that these bridges are undetectable can be that for those bridges there 
does not exist any valid conducting circuit. In this case, these bridges are 
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redundant. It might he the case that there are valid conducting circuits but 
according to the modeling method in this chapter, the output of the bridged 
cell has the same logic value as the fault free value. Note, in this case, 
"undetectable" here only indicates that the bridge is not detectable in the 
defined Iogic ranges. But the detectability of such a bridge may not he entirely 
estimated since the method in this chapter is not able to model the output 
voltage in the undefined range. 

The PPSFP simulation results for the modeled faulty Boolean function are 
shown in table 3.6. All of the faulty Boolean functions (i.e. except the 
"undetectable" ones) are simulated forthetest patterns developed at the gate 
level for single stuck-at faults in MCNC. The percentage ofthe covered single 
stuck-at faults is basedon the ones assumed at the output nodes ofthe actual 
CMOS implementation and not on the ones assumed within the gate-level 
representations. As already stated, the complexity of simulating a bridging 
fault is the same as simulating a single stuck-at fault. The fault simulation 
for bridging faults can he done very fast. Within a few dozen ofCPU seconds, 
nearly 60000 bridges were simulated on a circuit of a bout 9000 transistors for 
more than 300 pattems. The bridging fault coverages are much lower than 
the stuck-at fault coverages. Since the modeling approach is approximate, 
the detectability of some ofthe undetected bridges cannot he fully determined 
for the given test pattem set. But this method gives definitely more 
confidence than the switch-level fault simulation does. Yet it has the fulllogic 
fault simulation speed. The above results cannot he achieved both at circuit 
and switch level. 

Table 3.6 PPSFP simulation results 

SSA test pattem set 21x32 random pattems 
circuit #pattems SSA% bridge% time(s) SSA% bri e(s) 
c432 75 99.7 74.2 0.6 99.73 75.2 0.86 
c499 7 85.1 1.2 99.5 85.2 1.8 
c880 85.2 1.9 98.7 87.2 2.6 

c1355 74.2 1.6 99.4 74.2 1.9 
8 147 79.1 2.9 94.5 77.7 3.5 
0 160 82.4 5.9 87.7 79.9 6.0 

242 98.4 78.0 14.8 97.9 79.9 17.2 
c5315 211 100 87.3 28.9 99.9 87.4 30.5 
c6288 44 99.9 65.1 5.7 99.9 65.5 22.71 
c7552 318 99.7 80.7 35.8 92.9 79.7 37.56 
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To verifythe random testability ofthe extracted bridgingfaults, the extracted 
faulty Boolean functions are also simulated for 2lx32 randomly generated 
patterns. The results are also listed in table 3.6. It can he seen that the 
bridging fault coverage is nobetter than for the single stuck-at test pattern 
set. Only five of the examples show a little improvement: This may imply that 
the random testability of bridging faults is poor. 

I 
Another interesting observation is that for the ISCAS85 benchmark set, 
many untestable single stuck-at faults assumed in the gate-level 
representation do not exist in this CMOS implementation. These faults may 
require major part ofthe Automatic Test Pattern Generation (ATPG) time. 
Therefore for the purpose ofboth the test quality and the test development 
time, the test patterns had better be generated from the physical design of a 
circuit instead from its gate-level representations. 

3.8 Conclusions 

The modeling and simulation metbod presented in this chapter is effective for 
most of the bridges. This supplies a fast and practical tooi to analyze the 
testability of a relatively large CMOS design for bridging 

1 
faults. The 

modeling accuracy is higher than switch-level and other approximation 
approaches. The idea of modeling bridging faults as a set of faulty Boolean 
functions before fault simulation achieves both the modeling accuracy and 
simulation efficiency. This divide and conquer approach can be,used for any 
other upcoming technology and for non-structured designs as well. The 
limitation of the method, however, is also obvious. If the output of a bridged 
cell just remains in the undefined range (between V1 and V0), this metbod 
cannot predict the detectability of a bridge. As for the memory requirement, 
consideringthe overall gain of accuracy and simulation efficiency, the metbod 
is considered feasible. 



4 Bridging Fault Modeling and 
Simulation with Circuit-level Accuracy 

4.1 Introduetion 

In the previous chapter, a modeling and simwation method for bridging fa ults 
has been developed basedonsome statistica! and experimental observations. 
It allows a very fast simwation of bridging fawts for a large design and yet 
obtains higher modeling accuracy than switch-level or other approximation 
approaches. The limitation ofthis method is that ifthe output of a bridged cell 
is in undefined range, the detectability of the bridge cannot he fully 
determined. This chapter will tackle this problem and propose an efficient 
approach to solve it. 

To examine the problem in detail, figure 4.1 shows an outputto output bridge 
between a complex cell and a 2-in-NAND. The bridged output voltages 
computed by SPICE are listed in table 4.1. The logic levels of the bridged 
output predicted by using the modeling method proposed in chapter 3 are also 
listed under the column level*. 

bridge 
I 
I 
I 
I A 

B 

Figure 4.1 An example of a bridge. 
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Table 4.1 Behavior of the bridge and its impact on fanout cells 

inputs fault free bridged output x=aA y=a+c+B 
a bed ef AB SPICE(V) level* fault free bridge ~ault free bridge 
1 1 1 1 0 1 01 0.63 0 1 1- 1 1 
1011 10 01 1.42 0 1 1 1 1 
0011 1 1 10 2.15 x* 0 0 1 1 
1111 00 01 2.47 x* 1 1 1 1 
0101 1 1 10 3.35 1 0 0 1 1 
0000 1 1 10 4.71 1 1 1 1 1 
level*: usmg the method m chapter 3. x*: no faulty value IS modeled. 

"O"a 
"0" b 
"1" c 
"1"d 

A '{ 
-~ 
,...">2.15V 
.... 

"1"e~~O".,..) 
"1" f -----l___./B 

4V 
"1" 

Figure 4.2 Impact of an undefined input on fanout cells. 

According to our convention, any output higher than V1=3.0V is, interpreted 
I 

as "1" and any output lower than V0=2.0V is interpreted as "0". 'For outputs 
higher than 2.0V but lower than 3.0V, we agreed not to decide. Instead the 
outputs are assumed to he fault free. Now consider the bridged output shown 
in figure 4.1 to drive two cells x andy as shown in figure 4.2. The outputs of 
x and y both in the fault free and in the case of the bridge are shown in the 
last two columns of table 4.1. It can he concluded that using the modeling 
method in chapter 3, the bridging fault shown in figure 4.2 is not detectable 
fortheinputs listed in table 4.1. However, as indicated in figure 4.2 (quoted 
1s and Os are fault free values), for inputs abcdef=001111, the SPI CE analysis 
shows the output at the bridge to he 2.15V. As aresult the output of x is 3.99V 
which can he interpreted as "1". The output of y is 0.64V which can he 
interpreted as "0". Bothoutputs contradiet the fault free values. The bridge 
is in fa ct detectable! Obviously the condusion that the bridge is not detectable 
comes from the inability of the method in chapter 3 to propagate the 
undefined voltage value correctly. Thus the exact solution still relies on the 
following two issues: 

1) how to evaluate the bridged output voltage accurately; 

2) how to propagate or interpret an undefined input voltage accurately. 
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It can be seen from the above example, as some few centivolts ditTerenee of 
the input voltage can cause different outputs, any kind of approximation can 
easily lead to wrong decisions. Thus to guarantee the correct simulation, 
circuit-level accuracy must he obtained. Usually as there are many more 
bridging faults than single stuck-at faults, both the procedures 1) and 2) 
above must he effi.ciently solved. 

The problem of resolving the undefined input has been notified by many 
researches. Howeverno adequate solutions have been found for large circuits. 
Only very recently, some work has been publisbed with the intention to 
provide effi.cient solutions. In [14,23], a mixed or multi-level simulation 
technique is suggested in which the simulator switches from the normallogic 
simulation to a circuit-level simulation whenever a bridging fault is 
encountered. The bridge is simulated along its fanout cone until the 
undefined inputs can be safely interpreted as logic "1" or "0". Then the 
simulation is switched back to logic level. This metbod is very accurate. But 
for lengthy test patterns a large circuit may not be effi.ciently simulated. For 
instance, in figure 4.2 the inputs abcdef = 100111 and abcdef=110111 cause 
the same conducting circuit. In such a case this metbod would invoke the 
expensive circuit simulation twice while this is not necessary. It is also not 
effi.cient to evaluate all the bridges connecting two cells having the same 
combination of cell types, for example, a 2-in-NOR connected to a 
3-in-NAND. Somerecent improverneut [41] ofthe mixed-level simulation 
approach uses so called precomputed tables derived by a circuit-level 
simulator to avoid unnecessary evaluations. The cell(gate) logic threshold 
voltages are used to propagate an input voltage. However, the precomputed 
tables that are derived by en urnerating all the combinations of a celllibrary 
may he too time and memory consuming. It is also not easy to maintain such 
a huge database. Furthermore the strategy of propagating an undefined 
input in [ 41] is still inaccurate. Very recent improvements of the "voting 
model" [2,38] unfortunately are still approximate in nature and the faulty 
value propagation procedure is also not accurate. 

In line with [38,41], this chapter presents another alternative metbod for 
accurate modeling and fast simulation ofbridging faults [19]. 

4.2 Fault simulation using generie-bridge and 
generie-een tables 

The general strategy of the proposed metbod is outlined in this section. The 
circuit chosen for the study is still a CMOS combinational one. Each CMOS 
circuit is represented by a conneetion graph as described in chapter 3. The 
bridging faults are output to output type of bridges. Again defects causing 
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these bridges are fatal defects. That is, the resistance of the bridge is 
negligible. Furthermore only static analysis is performed. 

4.2.1 Evaluation of bridged output 

In order to obtain both high accuracy and efficiency, let us examine the design 
procedure first. In modern CMOS design, it is a common practice that most 
designs are based on a given celllibrary. In a specific design, the number of 
instantiated cells is usually much larger than the size ofthe library. One type 
of a cell may be repeatedly used in the design. Thus it is very likely that many 
bridges may conneet the same combination of the cell types in the same 
manner. These bridges can be represented by one bridge, called the 
generic-bridge. A set of generic-bridges can he derived for all the extracted 
bridges in a design. 

This observation can help to simplify the evaluation task since the evaluation 
of all the bridgescan be restricted to the generic-bridges. Usually the number 
of generic-bridges is far smaller than the number of all bridges. Each 
generie-bridge can be evaluated by using a circuit-level simulator, such as 
SPI CE in our case. Then the bridged output is computed with the accuracy 
of SPI CE. Yet a large amount of computational tasks is avoideq. 

For each generic-bridge, a generie-bridge-tabie is introduced for all the 
cell inputs that activa te this bridge. A generie-bridge-tabie corisists of a set 
of pairs <b, d> as its entries. Let Tbri be a set denoting all the entries: 

Tbri = { < bl,dl >, < b2,d2 >, .... , < bn,dn >} (4.1) 

For each < b,d > E Tbri• bis the bridged output voltage value and dis a 
Boolean expression that represents a set of input veetors activating the 
bridge and generating a voltage value b at the bridged output. The 
generie-bridge-tabie has a property ofmutual exclusiveness. That is, for any 
two < b1,d1 > and < b2,d2 > in Tbri if d 1 is true, then d 2 is not true and 
vice versa. This is obvious since for one input vector ofthe two bridged cells, 
the bridged output cannot have two different voltage values simultaneously. 
Thus such a table can be viewed as a function 

Fbri = bl ·dl+··· + bn · dn 

If di is satisfied, the Fbri takes one voltage value bi. 

(4.2) 

For the bridge shown in figure 4.1, its generie-bridge-tabie is obtained as: 

F bri = 0.00 · (e EB{) · a · b · c · d + 1.42 · (e EB{) · (a EB b) · c · d 

+ 2.15 · e · f · a · b · c · d + 2.45 · e · 1· a · b · c · d 

+ 2.89 · e · 1· (a EB b) · c · d + 3.35 · e · f · (a+b) · (c EB d) 

+ 5.00 · e · f · (a · b · c · d + c · d) (4.3) 
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4.2.2 Propagation of undefined inputs 

Let us examine how a CMOS cell transfers an input voltage. First, the logic 
(switch) threshold voltage of a cell is defined. For an inverter, the logic 
threshold voltage is the input voltage value such that the output is equal to 
the input. The logic threshold voltage of a cell ha ving more than one input can 
be defined in the similar way. Obviously such a cell may have several different 
logic threshold voltages. For instance, a NAND with two inputs a and b has 
a logic threshold voltage 1.89V when a changes while b=l. Vice versa, it has 
a logic threshold voltage 2.20V when b changes while a=L When both inputs 
a and b change simultaneously, it has a logic threshold voltage 2.60V. In the 
sequel, a logic threshold voltage when only one input changes is classified as 
single-input logic threshold voltage. Otherwise it is classified as 
multi-input logic threshold voltage, For the above example NAND, the logic 
threshold voltage 1.89Vand 2.20V are single-input logic threshold voltages 
but 2.60V is a multi-input logic threshold voltage. A complex cell may have 
many logic threshold voltages when certain inputs change simultaneously. 

In modern technology, it is known that the CMOS cell has a very high gain 
around its logic threshold voltage. A small varlation at the input yields a very 
big swing at the output. lt is very likely that an input voltage lower than the 
logic threshold voltage would cause an output large enough to he a logic "1" 
and vice versa. This implies that most ofthe undefined input voltagescan he 
interpreted as logic levels just by propagating them one level up along their 
fanout cones. Without any computation, the fault propagation can he done by 
comparing the input voltage with the logic threshold voltages of some cell. 
Obviously it is possible that an input voltage is equal to or very close to the 
logic threshold voltage. Then the output may still be in the undefined range 
and cannot be interpreted as a logic value at this stage. This undefined input 
has to be propagated further before it can be completely resolved. However, 
more computations are needed. In our experiments on the benchmarks 
described in chapter 2, such situations hardly occur and add up to only 0.2% 
of all the cases during the whole fault simulation procedure. Therefore, to 
obtain fast fault simulation, it is sufficient to propagate a bridging faultjust 
up to the outputs of its immediate fanout cells. The above discussion is 
summarized as a modeling principle described below for inverted cells ( for 
other types of cell, similar modeling principle can he easily derived). 

Modelingprinciple:Assume a cell has an undefinedinput. Ifthe input 
voltage is higher than a logic threshold voltage of the cell, a logic "0" 
would bereadat the output. Vice versa, ifthe input voltage is lower than 
the celllogic threshold voltage, a logic "1" would he read. Otherwise it is 
considered that the fault effect will not appear at the output. 
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Now let us examine what this modeling principle impliesfora specific design. 
It is usually the case that a specific design use,s only a subset of cells from the 
given cell library. Each of them may have many instantiations. To he 
consistent with the definition ofthe generic-bridge, each cell in such a subset 
of a celllibrary is called a generie-een ofthis design. Such a subset of a cell 
library is called the set of generic-cells of this design. The advantage of the 
above modeling principle is then obvious. Fora specific design, only the logic 
threshold voltages of each generic-cell are required for the fault propagation. 
They can he computed accurately by a circuit-level simulator. Again a large 
amount of computations can he avoided. 

To formulate and keep the derived logic threshold voltages of each 
generic-cell, a generie-eell-table is introduced. The generic-cen-table of 
a generie-een consistsof a set oflabeled pairs < w, 0 >las its entries. The 
labell represents an input terminalor any combination ofthe input terminals 
of the generic-cell. For each < w, 0 > l• w is the val ue of a logic threshold 
voltage when the inputs l change simultaneously. 0 is a Boolean expression 
representing a set of input veetors such that input terminals l are observable 
at the output ofthis generic-cell. If 0=1, any change at l also causes a change 
at output. Let T c:ell{l) denote all the threshold voltages when terminals l 
change simultaneously. The set Tcell(l) has a property of mutual 
exclusiveness as well. That is, for any two < w 1, 0 1 >land < w 2, 0 2 > l in 
T c:ell(l), if 0 1 is true, then 0 2 is not true and vice versa. This is because for an 
input vector such that terminals l are observable, the generie-een cannot 
have two different logic threshold voltages simultaneously when inputs at l 
change simultaneously. 

Let L he a set denoting all the combinations of the input terminals of a 
generic-cell. 

Then the set containing all the entries in the generic-cell-table can he 
expressed as: 

Tc:ell = U Tc:ell(l) (4.4) 
lEL 

It is not difficult to prove that any two entries of a generic-cell-table are also 
mutual exclusive. 

Thus the generic-cell-table can he viewed as the function Fee// defined by 

Fcell = L ((w 1 · 0 1)l + (w 2 · 0 2 )l + ... + (wm · Om)l) (4.5) 
lEL 

For specific terminals l, if Oi is satisfied, Fcell takes the logic threshold 
voltage wi. 
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Fora NAND with two inputs a and b, its generic-cell-table is expressedas 

Fbri = (1.89 · b)a + (2.20 · a)h + (2.60)ah (4.6) 

( 1.89 · b )a indicates that the cell has a logic threshold 1.89V when a changes 
while bis satisfied. The last one (2.60)ab indicates that the logic threshold 
voltage is 2.60V when a and b change simultaneously. Obviously in this case 
any transition at a and b simultaneously is always observable. 

4.2.3 Fault simulation strategy 

With the introduetion of these two concepts, i.e., the generie-bridge-tabie 
and the generic-<ell-table, bridging faults can be simulated in the proèedure 
described below: 

1) For each bridge, find its generic-bridge-table. Evaluate the table 
according to the applied input pattern and obtain the respectivè output 
voltage value. 

2) For each fanout cell ofthe bridged outputs, find its generic-<ell-table. For 
the applied input pattern, evaluate the entries labeled with the inputs 
that are connected with the bridged outputs. Obtain the respective logic 
threshold voltage value. 

3) Compare the bridged output voltage with the logic threshold voltage and 
interpret it as logic value at the output~ 

4) After all the fanout cells are processed, start the normal logic fault 
simulation from these fanout cells until it can be decided that the bridge 
is detected. 

Figure 4.3 An overview of the modeling and simulation system. 

Since these two sets of tables can he computed in advance, there is no 
expensive circuit simulation involved during the fault simulations. Thus the 
fault simulations can he done solely at logic level with only some costs 
incurred with the above interpretation procedure. Consequently both 
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accuracy and efficiency are obtained. Figure 4.3 illustrates the whole system. 
The inputs ofthe bridge Analyzer (figure 4.3) are a flat representation ofthe 
transistor netlists and all possible bridging faults. Both are extracted from 
the layout of a design using the metbod in chapter 2. The SPI CE simulator 
is chosen for the computation of circuit responses. Thus SPI CE parameters 
for a specific process are also taken as an input. The metbod actually employs 
the same philosophy as the one in the previous chapter. The difference is that 
a circuit-level simulator is used to evaluate a bridging fault and the logic 
threshold voltage is used for the fault propagation. Below some details of 
deriving these two sets of tables are discussed. 

4.3 Dynamic derivation of generie-bridge and 
generic-cell tables 

The denvation of the generie-bridge-tables and the generic-cell-tables is 
performed by analyzing the extracted bridging faults fora specific design 
insteadof en urnerating the given celllibrary. Thus the denvation is dynamic. 
This is because of the following reasons: 

1) The number of the generie-celis in a specific design is usually smaller 
than the size of a given cell library. Consequently the number of all 
possible generic-bridges in the design is small. Thus, • the task of 
characterizing both tables for a design is easier. 

2) The occurrence ofbridging faults depends highly on the layout topology 
of a specific design. It is very likely that a generie-bridge derived by 
enumerating the celllibrary may actually never occur in a design. Such 
information can only he obtained by analyzing the extracted bridging 
faults for a specific design. 

3) The number of all possible multi-input logic threshold voltagesfora set 
of cells is usually very large. The actual number of multi-input situations 
depends on how many bridging faults actually conneet more than one 
input of a cell and how a cell is actually connected in a design. Again such 
information can only be obtained by analyzing the extracted bridging 
faults for a specific design. 

Since both speed and memory are crucial for the simulation, the denvation 
is performed for each design by analyzing the extracted bridges. In this way, 
it is guaranteed that each derived generie-bridge-tabie corresponds to at 
least a bridge fault that may actually occur in this design. Each derived 
multi-input logic threshold voltage also corresponds to a case of more than 
one input being connected together due to possible bridging faults or the 
actual conneetion of a cell. Thus the amount of circuit simulations can he 
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greatly reduced compared to flatly enumerating the celllibrary. Such derived 
tables can make the use of some efficient techniques, such as parallel pattern 
simulation easier as will he shown. 

Before the actual computation, the set of generic-cells for a design has to he 
identified. Let the conneetion graph corresponding to a cell he called a cell 
graph. Then it is relatively easy to check if two cells are the same by just 
checking the isomorphism of two cell grap hs. Since at least the power supply 
and ground nodes are known as the equivalent nodès between these two 
graphs and the output norles are the potential equivalent ones, the checking 
can he done by exhaustively comparing the norles and edges starting from the 
output node of each cell graph. Usually the cell graph is relatively small. The 
comparison of norles and edges can be started by first checking some cell 
graph information, such as the number of inputs and the length ofthe longest 
path of each cell graph. Eventually such an exhaustive comparison can he 
done very fast. Tbe checking is repeated until all the instantiated cells in the 
design are processed. Then all the generic-cells in this design are obtained. 
After this step, the bridging fault list can be passed to derive the 
generie-bridge--tables and generic-cell-tables. 

4.3.1 Derivation of generie-bridge-tabie 

The denvation procedure of a generie-bridge--tabie is rather 
straightforward. For each identified generic-bridge, first all the possible 
input combinations of these two generie-celis that create a conducting circuit 
from power supply to ground are enumerated. The respective SPI CE format 
input of each conducting circuit is accumulated in a file. Then, a SPICE call 
is invoked to compute the bridged output voltages. U pon the completion ofthe 
SPICE computation, the results are collected to construct the table. The 
enumeration of all conducting circuits can he done in the way described in 
chapter 3. That is, the problem is formulated as finding all the 
path-connected subgraphs and is solved by running the enumeration 
algorithm described in Appendix A. The major cost of this procedure is 
obviously the execution ofSPICE. To speed up, the following techniques are 
used. 

The first technique makes use of the fa ct that if the bridged output voltage 
is very close to the potential of power supply or ground, it can certainly he 
interpreted as a logic value. For example, fora typical5.0V CMOS technology, 
an input above 4V, which is usually defined as the lowest "hard" logic "1" 
value, or below lV, which is usually defined as the highest "hard" logic "0" 
value, can be definitely interpreted as "1" or "0" respectively. Obviously the 
approximation method presented in chapter 3 is a good option to analyze 
those situations. As has been discussed earlier, the output voltage of a 
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conducting circuit can he predicted by just computing the equivalent beta 
ratio {3 of the conducting circuit. Here the difference is that, to set a certain 

safety margin, two ratios P?wrd and {3 ~ard corresponding to the highest hard 
logic "0" and lowest hard logic "1" voltagesfora technology are used for.the 
comparison. Such estimation appears to he accurate ·enough. The entries 
O.OOV and 5.00V in eq(4.2) have actually been computed by this technique. 

(a) 

< 1.42V, (e EB{) · (a $ b) · c · d > 

(c) 

bridge 

"1-=--i 

"~ 

(b) 

A 

Figure 4.4 Illustration of the structural equivalence. 

The second reduction technique is based on equivalent structures. For a 
bridge, many conducting circuits activated by a different combination of 
input excitations have the same structure. Consequently, the bridged output 
for these different excitations is the same. The conducting circuits are then 
said to he "structurally equivalent" for these inputs. For instance, with the 
bridge in tigure 4.1, the four different input combinations shown in tigure 
4.4(a) cause the same conducting circuit as shown in tigure 4.4(b) with the 
bridged output being 1.42V. For those structurally equivalen~ conducting 
circuits, there is no need to repeat the SPICE simulation. In the course of 
analyzing a bridging fault, all the conducting circuits for which the output 
voltages are already obtained by simulation, are kept in a temporary set. 
During the en urneration of conducting circuits, if a new conducting circuit is 
found to he equivalenttoa one already in the temporary set, its SPI CE format 
input would not he generated and only its input condition is merged with the 
corresponding one in the temporary set. Th compare two conducting circuits, 
each conducting circuit can he viewed as a subgraph ofthe cell graphs. Thus 
checking whether two conducting circuits are equivalent can he done by 
comparing the two subgraphs representing the two conducting circuits. Since 
the subgraphof a cell graph is small, such a comparison processcan he done 
very fast. The result shown in tigure 4.4(c) for the example in tigure 4.4 will 
appear in the tinal generic-bridge-table. 
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It will he shown hy experimental results that ahove two techniques are every 
effective. 

4.3.2 Derivation of generic-cell-table 

A generic-cell-table is constructed in two steps. In the first step, the 
single-input logic threshold vQltages of each generic-cell are derived. The 
derivation procedure is straightforward. Depending on how it is driven, a 
generie-een may have many different logic threshold voltages when one 
input changes. For a specïfic input terminal, each cell configuration that 
results in a different logic threshold voltage when this input changes 
corresponds toa conducting circuit from power supply to ground comprising 
of both N-type and P-type transistors driven by this input. For each input 
terminal, after all such conducting circuits are enumerated and their 
respective SPICE input formats are accumulated in a file, a SPICE call is 
invoked to compute the logic threshold voltages. Upon the completion, the 
results are collected to construct the table. This procedure is repeated for each 
input of every generic-cell. To enumerate all the different conducting circuits 
that may lead to different logic threshold voltages, the problem can also be 
formulated as finding all the path-connected subgraphs as described in 
Appendix A The en urneration algorithm in Appendix A can be used. 

It seems that other methods did not pay enough attention to the phenomenon 
that a cell may have many different logic threshold voltages when a single 
input changes. It is worthwhile to show the effect ofthis phenomenon on the 
fault propagation. Fi~e 4.5(a) shows a generie-een which has three 
different logic threshold voltages when input a changes. Their values are 
listed in table 4.2. Assume the input voltage of a is 2.15V, then it can be 
interpreted as an "O"(in case the threshold is 2.08V), undefined (in case the 
threshold is 2.15V) or "1" (in case the threshold is 2.17V) at the output 
depending on the values of other inputs. Some complex cen may have up to 
7 different logic threshold voltages when a single input changes. Thus those 
effects cannot he ignored. 

In a second step, the multi-input logic threshold voltages of each generie-een 
are derived. Before the derivation procedure is described, let us examine in 
which situation the multi-input logic threshold voltages are needed. This is 
illustrated hy an example shown in figure 4.5. Figure 4.5(b) shows a possible 
use ofthe cell in figure 4.5(a) in an actual design. It can beseen that one signal 
can drive two inputs (a and b in the original cell) simultaneously. Assume that 
a bridge between a and c in figure 4.5(b) occurs. Then one signal can drive 
three inputs (a, band c in the original cell) simultaneously. Table 4.2 also lists 
the logic threshold voltages for those two situations. The tahle shows clearly 
that ignoring the dependendes between various inputscan be very deceptive. 
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Thus it is necessary to know the multi-input threshold voltages in order to 
interpret the input correctly. 

c 

I 
I 
I 

briage 

A 

Figure 4.5 (a) A complex cell. (b) illustration of multi-input thresholds. 

Table 4.2 Multi-threshold values 

a&b&c 
old(V) d 

2.44 0 

The denvation is computed while the bridging faults are analyzed. In the 
course of the analysis, each multi-input case is individually iUentified. If 
more than one input in the fanout cell is bridged or one input signal drives 
more than one input terminal, then all the possible cell configurations are 
enumerated. Their logic threshold voltages are computed by SPI CE and the 
generic-cell-table is updated. The procedure is repeated for every bridge. 
Eventually all the necessary multi-input logic threshold voltages are 
obtained in the tables. 

It should he noted that multi-input logic threshold voltage effects are not 
considered by the methods in [38,41]. Instead, the single-input logic 
threshold voltage is used for the fault propagation. This can easily lead to a 
wrong decision. For instance, fora 2-in-NAND, it has two single-input logic 
threshold 1.89V and 2.20V. It has a multi-input threshold 2.60V when both 
inputs change simultaneously. Now assume two inputs are bridged together 
and the input voltage value is 2.45V. In this situation, using the multi-input 
threshold voltage 2.60V, the input is propagated as "1" to the output which is 
consistent with the real value 4.99V. But if the single-input logic threshold 
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voltage, either 1.86V or 2.20V, is used, then the input is propagated as a "0" 
to the output which is not correct. Thus our metbod is more accurate. 

4.3.3 Boolean function representations 

During the analysis and the derivation of the two sets of tab les, the Boolean 
function of each generic-cell and each table en try involves symbolic Boolean 
expressions and manipulations. The results need to he stored for the 
simulations. This seemsnot an important issue since it is claimed before that 
the number of generic-bridges and generie-celis for a design is small. 
However as stated in the previous chapter if this is not properly handled, it 
may still cost unnecessary memory. To he efficient, ROBDD datà structures 
are used. It is not difficult to observe that the Boolean expression in each 
entry of a generie-bridge--tabie is established by a pull-up term of one 
generic-cell and a pull-down term of another generic-cell. Let each ofthem 
he stored separately. Then the canonical property of the ROBDD can result 
in a very compact representation. 

1 0 

(b) 1 0 1 0 

o : negated function. 

Figure 4.6 lllustration of compact storage. 

To illustrate this, tigure 4.6(a) shows a generic-cell B involved with two 
generic-bridges. After analysis, all the pull-down (f1=a · b) and pull-up 

terms ( f2=a · ïi and f3=a · ïi + a · b) of B are required to construct the tables. 
Their ROBDD representations are shown in tigure 4.6(b). The 
generie-bridge--tables are obtained as: 

Fbril = 1.35 · ë · f 1 + 1.57 · e ·fa + 3.39 · e · f 2 
Fbri2 = 1.45 . ga. fl + 2.67 . g2. fl + 1.89. gl. fa+ 3.45 . gl. f2. 

Here g 1=c ·dis the pull-down term ofC and g 2=c · d and g 3=c · d + c · d 
are the pull-up terms ofC. Their ROBDD representations arealso shown in 
tigure 4.6(c). 

During the whole process, the generic-cell B is only neerled to he processed 
once to create f 1, f 2 and fa· They are shared by both the 
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generic-bridge-tables. The g 1, g2 andg3 are also created once. {1 and g 1 are 
also shared inside F bri2• Thus in theory, the upper bound of the memory 
requirement for all the tables is the number of the different pull-up and 
pull-down terms of all the generie-celis in a design. Consequently. the 
memory required grows linearly with the number o(generic-bridges and 
generic-cells. 

4.4 Fault simulation 

This section examines how the generie-bridge-tables and 
generic-cell-tables are used to perform the fast fault simulations. It will he 
shown that although the evaluation procedure is . different, the fault 
simulation worksjust like with any other normallogic fault simulator. Thus 
any efficient technique can he applied. To show the advantage of using these 
two sets of tables, the PPSFP technique as described in chapter 3 is used. 

The fault simulation is conducted on the network graph of a circuit as 
described in chapter 3. The first two steps of the fault simulation can he 
executed as in chapter 3. That is, in the first step, the forward traversal, the 
fault free simulation is carried out for parallel patterns. In the secoud step, 
the backward traversal, the observability of each node is 'determined 
according to the applied input pattern in parallel as well. Then the 
detectability of each bridging fault is determined. This procedure is different 
from the one in chapter 3 in which each bridge is simulated implicitly. Here 
each bridging fault is explicitly simulated. This is because in most cases, a 
voltage value at a bridged output can he propagated as a set of different faulty 
valnes to different fanout cells. The fanout branches carrying faulty valnes 
may reconverge later at some point. That is, regarding the fault propagation, 
a non-reconvergent node may hebave like a reconvergent node. Therefore 
each bridging fault should he simulated explicitly from the fanout cells up to 
the primary outputs or up to a point where its detectability can he 
determined. Below the fault propagation to fanout cells ofthe bridged outputs 
is derived symbolically in order to show the parallel techniques. 

The basic operation is the denvation ofthe faulty Boolean function for each 
fanout cell of the bridged outputs. As it is discussed in chapter 3, the faulty 
Boolean function can he constructed by the faulty-on set and the faulty-off 
set of each cell. This is also the casefora fanout cell ofthe bridged outputs. 
For the ease of discussion, a bridging fault between B and C and one of their 
fanoutcellsA as depictedin tigure 4.7 is used forillustration. Let FA, F Band 
F c he the fault free functions of these three cells respectively. In the fault free 
situation, A can he viewed as a function of inputs in I and K. In the presence 
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ofthe bridge, A becomes a function ofnot only the inputs in I andKbut also 

inputs in J. Let the faulty-on and faulty-off set of A are obtained as fÁ and 

t;i respectively. Then applying theorem 3.1, the faulty Boolean function of A 
is specified as: 

iJ' A = FA . t;i + fl 
Below it will be shown how the faulty-on and the faulty-off set of a fanout cell 
are derived from the generie-bridge and generic-cell tables. 

A 

Figure 4.7 mustration of a bridging fault propagation procedure. 

For the bridge shown in tigure 4. 7, fi.rst its generie-bridge-tabie and the local 
cell input ordering of the bridge are found. Let all entries of the table be 
represented by a set T bri· For the fanout cell A in figure 4. 7, its 
generic-cell-table and local cell input ordering are found. Let all the entries 
labeled with a be represented by a set T cell(a). 

According to the defi.nition, the generie-bridge-tabie T bri can be partitioned 

into two parts ~ri and T!n· 

~ri = { < b,d > E Tbri d ~ FB A d ~ F d (4.7) 

Ttri = { < b,d >E Tbri d~FB A d=>Fd (4.8) 

For each < b,d > E ~ri' ifany input vector satisfi.es d, Fs= 0 and F c = 1. 

For each < b,d > E Ttri' if any input vector satisfies d, F s=l and F c=O. 

Forany < b,d >E ~ri'itisknownthatthefaultfreevalueofBis"O"(a=O). 
In the presence ofthe bridge, if a is observable at the output of A, to have a 
faulty value at the output of A, obviously the input voltage at a should be 
higher than the logic threshold voltage of A when a changes. Let the Boolean 
expression reprasenting all the input veetors that generate the bridged 
output higher than a value w be expressed as: 

d (4.9) 
<b,d>E 1'/,ri(w) I b>w 
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Then for any < w, 0 > E T cell(a), a is observable if 0 is satisfied. Thus a 

faulty-offbehavior is caused at A if any input satisfies C0(w) · 0. 

By complementary reasoning, let the Boolean expression reprasenting all the 
input veetors that generate the bridged output lower than a value w he 
expressed as: 

d (4.10) 
<b,d>E Tiiw) I b<w 

Thenforany < w,O >E Tcell(a),ifanyinputsatisfiesC1(w) · O,afaulty-on 
behavior is caused at A. 

Consider A has more than one logic threshold voltage when a changes, then 
the final faulty-on and faulty-off sets of A are obtained as: 

(4.11) 
<w,O>E T..."(a) 

fl = (4.12) 
<w,O> E T ..."(a) 

That is, if any input satisfies eq.( 4.11), then the output A has a faulty value 
"0". Vice versa any input satisfying eq.(4.12)introduces.a faulty "1" at the 
output A. Therefore, according to theorem 3.1, the faulty behavior of A is 
characterized as 

(4.13) 

The eq.( 4.13) can he evaluated according to the applied input patterns. Ifthe 

value of FA indeed differs from FA, that is, FA EB FA=l, the output A has a 
faulty value. For the case of more than one input of a fanout cell is bridged 
together, the propagation procedure is very similar. After all theifanout cells 
are processed, the logic fault simulation can he started from theifanout cells 
carrying faulty values. 

It is not difficult to observe that the above formulas can he evaluated for 
patterns in parallel as well via bit-vector operations. Thus the whole 
procedure can he done for parallel patterns. 

4.5 Experimental results 

The whole system is implemented in Con a HP-90001755 workstation. For 
experiments, the ISCAS85 benchmark circuits as described in chapter 2 
again are used. For the SPI CE simulator [ 40], the level3 MOS model is used 
for the analysis. Only the part of output to output bridges from extrading 
results in chapter 2 are used here. 



57 

In table 4.3 the analysis results are summarized. In general, the number of 
generie-celis in each circuit is far less than the size of the actual celllibrary. 
The circuit c6288 having 1848 instantiated cells uses only 7 generic-eells. 
The actual number of generie-bridges derived from the extracted bridging 
faults is also far Ie ss than the number of extraeted bridges. It is even less than 
the number of eombinations ofthe generie-eelis in eaeh design. For instanee, 
e7552 has 51773 bridges but only 309 generie-bridges are derived. The 
number oftwo combinations of31 generie-celis in e7552 is already 465. 

Table 4.3 Results ofbridging faults analysis 

circuit #total cell #GC #bridge #GB memory(Kb) 
c432 152 18 1025 68 34 
c499 284 9 2625 36 17 
c880 236 20 3254 146 74 26.5 

c1355 366 10 3421 44 24 6.4 
c1908 411 20 4132 111 51 20.9 
c2670 31 13483 238 141 58.0 
c3540 29 14499 134 48.4 
c5315 36 39412 238 
c6288 7 14298 10 
c7552 1795 31 51773 197 

#GC : number of generic-cells; #GB: number of generic-bridges. 

Table 4.4 Reduction of SPI CE calls 

#conducting circuits #multi-input thresholds 
circuit actuai totai reduce% #actual enumerate reduce% 
c432 458 1237 62.9% 31 120 74.0% 
c499 128 275 53.0% 18 34 47.0% 
c880 1276 3310 61.4% 68 157 56.7% 

c1355 317 569 44.3% 28 58 51.7% 
c1908 845 1861 84.6% 52 178 70.8% 
c2670 2414 6420 62.4% 82 274 70.1% 
c3540 2173 6788 68.0% 107 246 56.5% 
c5315 3589 12223 70.6% 131 446 70.6% 
c6288H39 224 38.0% 4 12 66.7% 
c7552 3369 10110 66.7% 155 368 57.9% 

Table 4.4 shows the effectiveness of using the techniques described in section 
4.4. The table shows the totai number of conducting circuits caused by the set 
of generic-bridges in each design. They have to he computed by SPI CE to 
characterize generie-bridge-tab les. The actual number of them after using 
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the reduetion teehniques in section 4.1 are also shown. On average 65% 
SPI CE computations are bypassed. The dynamic derivation of multi-input 
logie threshold voltages also bypasses on average a bout 65% of the SPI CE 
simulations eompared to enumerating thesetof generie-celis in each design. 
Consequently the generie-bridge-tables and generie-cell-tables are derived 
very fast. 

The times listed in table 4.3 are the actual CPU times in seconds used for the 
derivation. The dynamic derivation for a specific circuit instead of 
enumerating the whole celllibrary is not only very fast but also requires a 
small amount of memory. In table 4.3 the tot al size ofboth the tables is listed. 
Only up to 250 kbytes are required for the largest circuit. Both the CPU time 
and the memory requirement have almost a linear relation with !the number 
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of generic-bridges and generie-celis as shown in figure 4.8 and figure 4.9. 

The fault simulation results are shown in table 4.5. The bridges are simulated 
for the single stuck-at test pattern sets that are used in chapter 3. The fault 
simulation is performed in one run for both stuck-atand bridgingfaults. The 
fault coverage for bridging faults is the percentage of detected bridging faults 
divided by the number of all simulated bridging faults. In general, the 
bridgingfault coverages are slightly lowerthan the respective single stuck-at 
fault coverages. However, consideringthat the total number ofbridging faults 
is much higher than the number of single stuck-at faults, the number of 
undetected bridgesis still quite large. The simulation time, however, is very 
short. The column errors% indicates the possible false interpretation 
percentages during the whole fault simulation. This is, the percentage of the 
situations where the input is the same as or very close to the celllogic 

Table 4.5 Results ofPPSFP simulation for SSA test pattern set 

circuit #patterns SSA% bridge% time(s) error% bridge%<in chap. 3 l 
c432 75 99.7 96.9 0.3 0.14 91.0 
c499 71 100.0 98.0 0.3 0.04 97.4 
c880 95 100.0 99.3 0.8 0.30 92.0 
c1355 101 100.0 99.3 0.6 0.25 82.1 
c1908 147 100.0 98.4 1.2 0.11 88.1 
c2670 160 98.8 98.6 2.5 0.39 86.2 
c3540 242 98.4 99.3 6.0 0.25 86.7 
c5315 211 100 98.9 7.7 0.29 90.7 
c6288 44 99.9 99.8 8.5 0.18 72.5 
c7552 318 99.7 99.4 11.3 0.28 84.0 

Table 4.6 Results ofPPSFP simulation for 21x32 random test patterns 

circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552 

SSA% 99.7 99.5 98.7 99.4 94.5 87.7 98.0 99.9 99.9 92.9 

bridge% 97.2 98.9 99.2 99.2 96.4 96.6 99.2 98.9 99.9 98.6 

time(s) 0.6 0.6 1.1 0.9 1.8 3.3 7.3 8.8 22.7 12.7 

bridge*% 92.3 97.4 92.0 82.1 8~86.8 90.8 73.1 83.2 

bridge*% : bridging fault coverage obtained by using the metbod in chapter 3. 

threshold voltage. We choose, 

I Vin-Vthreshold I s 0.02V 
Vin is the input voltage value and Vthreshold is the logic threshold voltage. This 
error is nota substantial problem for this set ofbenchmarks. 
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For a comparison, these bridging faults are also modeled and simulated by 
usingthe approximate method using equivalent beta ratios (chapter 3). Here 
only the bridging fault coverages are shown. lt can he observed that the 
bridging fault coverages can he improved up to 20% for some circuits. This 
indicates that the modeling accuracy indeed has an significant impact ori the 
results of fault simulation. 

To verify the random testability for the bridging faults, again 21x32 randomly 
generated test patterns are simulated for the bridging faults. The results are 
shown in table 4.6. The bridging fault coverage for the same 21x32 patterns 
obtained by using the approximate method using equivalent beta ratios 
(chapter 3) are also shown in the last row. The fault coverages are also 
improved a lot. This once again shows the impact ofthe accurate modeling on 
the fault simulation. 

4.6 Conclusions 

It is hard to compare withother methods since most ofthe documentation of 
those methods do not include the preprocessing time and memory 
requirement. Further selecting the bridging faults, the test pattern sets, the 
design approach and the process parameters (SPI CE parameters) can make 
a lot of difference as well. Nevertheless, intuitively this method is much more 
accurate than other approximation methods. Compared to the methods of 
using precomputed tables by en urnerating the given celllibrary, our method 
is also more accurate since the multi-input logic threshold voltages are 
considered. The introduetion of the generie-bridge-tabie and the 
generic-cell-table greatly facilitates the use of any efficient simulation 
technique. In principal they make our fault simulation fast. Furthermore the 
dynamic denvation by analyzing the extracted bridges for a specific design 
makes the analysis fast and requires much less memory than competing 
methods. The technique ofbypassing unnecessary SPI CE simulations proves 
to he effective. In addition, this method does not require the cell library 
information and the input is a flat representation of extracted transistors. 
The generie-celis can he derived for each specific design. Thus the method is 
to be used for any design style. Lastly, the idea can he used for bridging faults 
involving internal nodes. We believe that it is a good way of simulating 
bridging faults. 

This method, however, does have a limitation. If the bridged outputs bear 
voltage valnes close to the threshold very frequently, many errors may he 
induced. The results may not he reliable although our experiments suggest 
that it is unlikely. 
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Open Fault Modeling and Simulation 

5.1 Introduetion 

The previous two chapters outlined two possible alternatives to perform 
accurate modeling and fast simulation for bridging faults. In recent years, 
another alternative of detecting bridging faults by measuring excess 
quiescent power supply current (I ddq) has attracted a lot of attention [32,33]. 

Ho wever, as one of the disadvantages, I ddq current testing is not effective for 

open faults. The importance ofthe open faults should he recognized, however, 
by the following facts: 

1) As the data shown in chapter 2, although the number of open faults is not 
as large as the number ofbridges, the probability ofthe occurrence of an 
open fault can he large. 

2) The random defects cause opens more likely in one product than in other 
[51,56]. It is reported experimentally that IC's passed single stuck-at, 
Iddq or even delay test pattern sets still did not operate correctly. One of 
the reasons is the presence of opens on the conducting paths [37,50]. 

On the other hand, most previously proposed methods of modeling and 
simulating open faults have the shortcoming that both hazard and 
charge-sharing effects are not completely analyzed. Therefore a metbod is 
still demanded to perform accurate modeling and efficient simulation for 
opens. In following sections, the open fault and its testing problems are first 
examined in detail. Then another alternative for modeling and simulating 
open faults is proposed which overcomes the shortcomings of the previously 
proposed methods. The metbod proposed in this chapter was previously 
publisbed in [18]. 

61 
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5.2 Open fault and its testing problems 

5.2.1 Open faolts 

The first mentioning of open faults was in the late 70's [55]. Since then, the 
single transistor stuck-open fault model is used by most ofresearchers. The 
inadequateness ofsuch a model was described in [36]. In this thesis, the open 
is analyzed at circuit level. That is, assume the spot defect condition as 
described in chapter 2. Then if an open occurs it causes the tree structure of 
some node to he split into a number of subtrees. The node can he the gate (e.g., 
open #3 infigure 5.1), thedrain(e.g., open #1infigure 5.1) and the souree (e.g., 
open #2 in figure 5.1) of a transistor, an output node (e.g., open #4, #5 in figure 
5.1) or aninputnode (e.g., open #6 in figure 5.1) of a cell. The open considered 
hereis assumed to he fatal fault. That is, the capacitive coupling ofthe open 
is deemed insignificant. 

Figure 5.1 Opensin a CMOS circuit. 

The physical mechanism of opens and their electrical behavior have been well 
studied [36,4 7] by measuring artificial opens introduced by manufacturing 
into real circuits. It appears that the behavior of the open at the gate of a 
transistor largely depends on the local topology and is rather sensitive to the 
gate capacitive signal coupling[36]. Usually either stuck-at behavior or 
increase of cell propagation delays are observed. The open at an input or an 
output node of a cell most likely behaves like a stuck-at fault [36,47]. If an 
open only occurs at the gate ofthe N-type transistor and shows stuck-at fault 
behavior (usually stuck-at 0), the N-type transistor behaves like a real 
transistor stuck-open. In this thesis, such an open is considered as being 
equivalent toanopen at the drain(source) ofthe respective transistor. If an 
open occurs at the gate of the P-type transistor and shows stuck-at fault 
behavior (usually stuck-at 0), the transistor behaves like conducting all the 
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time. Thus it can be considered as a bridging fault between drain and souree 
of the transistor. 

The opens at the drain or souree usually prevent the path from conducting 
under normal clock rates and show the well-known memory hehavior [55]. 
Such kind of opens need a different testing approach. This chapter 
concentratea on such memory hehavior opens and assumes a normal voltage 
testing environment. 

5.2.2 The problem of testing opens 

The best method of testing opens is the "two test pattems approach" [55]. 
Consider an example in figure 5.2 and a two consecutive test patterns (test 1) 
as shown in tahle 5.1 for open #1 in figure 5.2. 

Table 5.1 Test patterns for open #1 

test1 
inputs outputs 

a bede A faulty output 
pat.1 10101 1 1 
pat.2 10110 0 1 

test2 
inputs outputs 

a bede A faulty output 
pat.1 11100 0 0 
pat.2 10001 1 1 
pat.3 11001 0 1 

P-c 
P-e 

Figure 5.2 Opens in a complex cell. 

The first pattem pat.1 sets a pull-up conducting path charging the output to 
V+. The second pattem pat.2 intends to set a pull-down conducting path 
across the hroken node. Since the open prevents the pull-down path 
conducting, A remains in a high impedance state and intends to keep the 
precharged value. This value contradiets the fault free output "0". Thus the 
open is considered as detected. The procedure of applying the first pattem 
pat.1 is usually called the initialization phase and applying the second 
pattem pat.2 is called the test phase. 

The problems associated with this approach are known as well. The first is 
hazards effects [42]. For the specifically selected two consecutive test 
patterns testl in tahle 5.1, during the transition from pat.1 to pat.2, ifsome 
delays turn d to be "1" too early or keep e to he "1" too long, a temporalleakage 
path fromA to V_ would he created which may set A toa voltage value too low 
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to he "1". This problem usually can he avoided by carefully choosing the two 
consecutive test patterns such that tempor.al leakage path cannot exist 
during the transition from initialization phase to test phase. The two 
consecutive test patterns pat.2 and pat.3 of test2 in table 5.1 form an example 
since only one signal b changes during the transition. But a second problem 
with this approach may occur [5]. That is, after pat.1, nodes n and m possibly 
have the same potential as V_, If Cn and Cm are comparative with C A• then 
in test phase (pat.3), charge-sharing between n, m and A may occur which 
may still cause the precharged value to he notclose enough to "1". Eventually 
the test is still invalid. · 

In this thesis, a two consecutive test patterns is said establishing a robust 
test if the test can not he invalidated by any possible delays or charge-sharing 
effects. In the analysis, this thesis distinguishes between the following tests: 

1) non-robust test. 

2) robust test under hazard effects. 

3) robust test under both hazard and charge-sha~ng effects. 

5.3 General strategy 

Most of the previous methods of modeling and simulating opens can he 
classified as one of the following two approaches. The first approach uses a 
switch-level model [8,9]. Even with parallel techniques [10,26,44,52], this 
kind of approach seems to prove inefficient for lengthy test patterns for large 
circuits. Another approach [5,15,27,30,42] intends to convert the transistor 
level representation of the circuit into an equivalent gate-level circuit such 
that each single transistor stuck-open or stuck-short fault can he mapped to 
corresponding single stuck-at faults at gate-level. The advantage of the 
approach is that the existing gate-level tools can he directly used. 
Unfortunately such transformed gate-level circuit is usually rather large. 
The assumption of single transistor stuck--open fault makes it also impossible 
to model some opens such as #1 in figure 5.2. Furthermore both of the 
approaches have the same shortcoming that hazard and charge-sharing 
effects are not completely considered (except [5]). Thus they are not very 
robust. For example, the commonly used fault equivalent technique such as 
in [30] would consider the opens #2 and #3 shown in figure 5.2 as being 
equivalent. However, the charge-sharing effects may make the two opens 
behave completely different. 

The approach proposed in this chapter follows the same philosophy as 
developed for bridging faults. Figure 5.3 illustrates the whole strategy. The 
transistor netlist and capacitance of each node are extracted from the circuit 
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fault 

coverag 

Figure 5.3 Modeling and simulation strategy for opens. 

layout and the open fault list is also available. First the transistor network 
is further abstracted up to gate-level. Then for each open fault, a loc al circuit 
analysis is performed by considering both the hazard and charge-sharing 
effects for this open. As a result of the analysis, its behavior is modeled in 
terms of a detecting condition at logic level. After all the open faults are 
processed, a set of detecting conditions are obtained at logic level. Then the 
logic fault simulation can be performed by just manipulating these detecting 
conditions. Since there is no circuit level computations involved in the course 
of fault simulation, both accuracy and efficiency are obtained and yet more 
types of opens can be handled. The following sections demonstra te how the 
detecting conditions can be derived and stored efficiently for an arbitrary 
open. It is also shown how a detecting condition can be used by a logic fault 
simulator. 

5.4 Derivation of detecting conditions 

5.4.1 Non-robust test and robust test under hazard effects 

Let the CMOS network be represented by a undirected graph as described in 
previous chapters. In the sequel, only opens in the N-part of a cell are 
discussed. But the similar procedure can be applied to any open in the P-part 
of a cell. 

Consider a general open in N-part of a cell as illustrated in figure 5.4. The 
fault free function F ofthe cell can be easily constructed by either the pull-up 
terms or the pull-down terms as in previous chapters: 

(5.1) 

If the open occurs, the basic phenomena caused by such an open is that the 
noden is split into two parts. Some ofthe paths from output node A to ground 

V_ do not exist anymore. Let P AV_ and P AV_ denote all pull-down paths in the 

fault free situation and in case ofthe open respectively. Then all the missing 
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f-
f-

-= V-
Figure 5.4 Illustration of an arbitrary open. 

paths denoted by M AV_ are given by the difference of P AV_ and i\ v_· That is, 

MAV_ = PAv_-FAv_· 

If P AV_ 0, then all the pull-down paths are disconnected from the output 

to ground. Such an open very likely behaves like a single stuck-at fault at A. 
Thus it is referred to as single stuck-at open bere. Open #4 and #5 in figure 
5.1 are such examples. There is no need to derive the detecting conditions for 
a single stuck-at open. Each s E MAv consistsof a path fromA to one split 

part of n and a path from another split part of n to ground. In the presence of 
the open, a Boolean expression is defined for all the remaining pull~down 
paths as follows: 

F= I Ts (5.2) 
sEPAv_ 

Any input vector satisfying eq.(5.2) establishes a pull-down conductingpaths 
in spite of the open. Then, for each missing path sE MAv_• a Boolean 

expression Qs is defined as 

(5.3) 

Eq.(5.3) is derived from eq.(5.2). Eq.(5.3) is the Boolean expression of ft under 
the constraint T s 1. Then for each s E MA v , following expression can he 
obtained 

(5.4) 

with Qs derived from eq.(5.3}. Obviously if Xs is satisfied, only the missing 
path s is supposed to conduct but no other paths. Due to the open preventing 
such a conducting path, the output remains in the high impedance state. For 
"non-robust test", an open is considered as detected if any two consecutive 
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test patterns are able to initialize A to "1" and set the output into the high 
impedance state in case of the open is present. Thus any input satisfying X.~ 
is a test pattern. The complete test patterns for this open can be expressed as 

Since any input satisfying the fault free function F establishes at least a 
pull-up conducting pathand thus is an initialization pattern. Consequently 
for the "non-robust test", the detecting condition is represented as: 

d = I X1· Ft-1 (5.5) 
sEMAv_ 

X 8 is derived in eq.(5.4). The superscript t - l denotes the înitialization 
interval and t denotes the testing interval. Any two consecutive test patterns 
satisfying eq.(5.5) establish a non-robust test of the open. 

Now let us derive the detecting condition under hazard effects. The main 
principle ofpreventing hazard effects is that the two consecutive test patterns 
should be chosen in such a way that during the transition from the 
initialization phase totest phase, there is no possible temporalleakage path. 
Assume during the test phase, missing path s E M AV is activated. That is, 

X1 = 1. According to eq.(5.4), this implies that T~ = 1 and Q~ 0. Since in 

the initialization phase FL-1 = 1, no pull-down path is supposed to conduct. 

That is, :Ps-1 = 0. Now assume that the expression Q8 is notstabie during this 

transition. That is, Q~-1 = 1 in the initialization phase. If any possible delays 
that turn Ts from "0" to be "1" too early or keep Q8 at "1" too long, then 

(T8 • Q8 )t-1±;; = 1 would hold fora short period f. According to eq.(5.3), 

. (FT =1)t-l±c = 1 
' 

- t-l±E 
would be obtained which implies F = 1. That is, some pull-down 
conducting paths exist temporally. This temporal path may drain the 
precharged nodenothigh enough to be "1" and the test may be invalid. Thus 
in order to eliminate such situation, the Q8 should be stabie during the 

transition. That is, (Q 8l-1 should be satisfied as well. The same reasoning 
applies to other missing paths as well. Finally the detecting condition of 
robust test under hazard effects is obtained as: 

d= t - t-1 p-1 
Xs · Qs · (5.6) 

Xs is derived from eq.(5.4) and Qs is from eq.(5.3). Any two consecutive test 
patterns satisfying eq.(5.6) establish a robust test under hazard effects for 
this open. 
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5.4.2 Robust test under both hazard and charge-sharing 
effects 

To take both the hazard and charge-sharing effects into account, let us first 
look at how to analyze the charge-sharing effects. In genera}, it is difficult 
even with a circuit simulator to analyze and model the charge-sharing effects 
accurately since they strongly depend on the topology of a design [29]. In this 
thesis, a metbod similar to [29] is used to estimate the voltage level after 
charge-sharing. It is stated below. 

Let V1, V2, ... , Vi and C1, C2, ... , Ci he the voltage levels and capacitances of 
some nodes that are connected through conducting transistors respectively. 
No V+ or V_ is connected to the souree or drain of any transistor. Then after 
charge-sharing all nodes have the same voltage level V as: 

clvl + c2v2 + ... + civi 
V = ---=-.....,::,---:::--=------::::---=:---=­

Cl+ c2 + ... +ei 

Table 5.2 Test patterns for open #1 

test2 
inputs outputs 

a bede A faulty output 
pat.1 11100 0 0 
pat.2 10001 1 1 
pat.3 11001 0 1 

(5.7) 

P-c 
~e 

Figure 5.5 Opens in a complex cell. 

Before going into detail, for each missing path s E MA v_• the poten ti al 

charge-sharing part of s is identified first. It is the part between the output 
node A and the split node n and is denoted as s. To illustrate this estimation 
method, consider the open# 1 in figure 5.2 and the test patterns test2 in table 
5.1. Bothare reproduced in figure 5.5 and table 5.2 respectively. Inthetest 
phase, the missing path a · b · e is activated. The potential charge sharing 
part of this missing path is identified as a · b. Applying the above method, A 
has a voltage level given by 

, _CAVA+CnVn+CmVm 
V A - -.!.!~:-----:::------:::::---­

CA+ Cn +Cm 
(5.8) 
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after charge sharing. From eq.(5.8), it would he expected that if V' A > V1, 

where V1 is the lowest logic "1" voltage level as defined in chapter 3, then the 
output still has a voltage level high enough to he "1". The test would he valid. 
Reasoning in such a way, two conditions implying charge-sharing not to 
invalid the test patterns can he derived from eq.(5.8). These two conditions 
are: 

1) Assume before the test phase the internal nodes n and m are charged to 
or very close to the potential V+· That is Vn = Vm = VA = V+. 
According to eq.(5.8), inthetest phase the output would have a voltage 
value still high enough to he "1" in spite of charge-sharing. 

2) Assume that the potential ofn and mare very low (close to V_), But if Cn 
and Cm are sufficiently smaller than CA such that after charge-sharing 

V' A is still higher than V1 . Here according to eq.(5.8), V' A is estimated 
as 

CA x V+ + (Cn +Cm) x 0 
V'A = ~~~~--=----=------

CA+Cn+Cm 
(5.9) 

Then the output is still high enough to he "1" even with charge-sharing. 

One possible way of satisfying the first condition is to select such an 
initialization pattem that not only a pull-up conducting path exist but also 
the potential charge-sharing part of the activated missing path should 
conduct as well. In such a way, the internal nodes of the potential 
charge-sharing part are very possibly charged to the level ofthe output node 
before the test phase. For example, the two consecutive inputs 

(abcde)t-l = 11000 and (abcde)t = 11001 is such test patterns for the open 
#1 in figure 5.5. However, such a restrietion on a potential charge-sharing 
path may limit the number of possible initialization patterns to he selected. 
For instance, for the open #1 in figure 5.5, there is only one solution. 

The method proposed in [20] doesnotmake the distinction between the above 
two situations. Only the worst case is considered in the simulation in which 
the capacitance of each node is assumed to he of size comparative with the one 
of the output node. As it is pointed out, the disadvantage of such a 
consideration is very clear. In case the second condition described above is 
satisfied, this approach may unnecessarily restriet the number of 
initialization patterns that can he selected. Eventually a robust testable open 
fault under charge-sharing effects may he considered as untestable. 

The method proposed in this thesis uses the principle that the restrietion on 
the potential charge-sharing part is only applied when it is necessary such 
that there are more choices for selecting initialization patterns. To apply this 
principle, an analysis is performed in the course of analyzing each open fa ult 
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so that these two different situations can he distinguished. Such an analysis 
is straightforward. For each missing path s E M AV .. ' its potential 
charge-sharing part s is analyzed by using the estimation method described 
above. That is, presumably A is charged to V+ and all other nodesin s.are 
precharged to V_. Then the estimation method is applied to evaluate the 
potential charge-sharingpart s. lfit appears that the capacitances ofinternal 

nodes are small enough such that even after charge-sharing V' A > V1 is 
true, then path sis put in a set MA.v. Otherwise the missing path sis put in 

a set M.Av_. After all the missing paths are analyzed, then MA.v contains all 

those paths not rendering any extra action. But M.Av contains all the paths 

that need the restrietion on the potential charge-sharing part. That is, 

M.Av_ = {s E MAV_ V'A > Vl, if X8 = 1} (5.10) 

and MAV = {sE MAV_ V'A ::;; V1, if X8 = 1} (5.11) 

Obviously MAv_ = M.Av_ u MA.v_· 

To set the restrietion on the potential charge-sharing part of each missing 

path s E MAv_ during the initialization phase, it simply implies that ~-l 

should he satisfied. 

From above discussion, the detecting condition of a robust test under both 
hazard and charge-sharing effects can he derived as: 

I d-l 
d=( X!·Q + s s 

~ X! . (Q . T-)t-1). p-1 L s s s (5.12) 
sEM~v-

Any two consecutive test patterns satisfying eq.(5.12) establish a robust test 
under both hazard and charge-sharing effects. 

5.4.3 Representation of detecting conditions 

The idea of deriving the detecting conditions for all the opens before the fa ult 
simulations is simple and straightforward. The key issue ofthis technique is 
still the representation of the detecting conditions and storage for a large 
circuit. For the open illustrated in the previous sections, it is not difficult to 
observe that all the detecting conditions are in fact constructed from three 

sets, P AV_• M.Av and MA.v_· Thus only these three setsneed to he stored for 
an open. The detecting conditions can he constructed from them in the course 
of fault simulation. Again benefiting from the strong canonical feature ofthe 
ROBDD, efficient representation of these setscan he obtained. To illustrate, 
after analysis, the required path sets for #1 and #2 shown in tigure 5.5 are 
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obtained as 

PAv(#l) = { {1,{3 J, M1~_(#1) = { {4 J and MA.v (#1) { {2 J 

PAv(#2) = { { 3,{4 }, M1~(#2) = { {1,{2 } and MA.v (#2) 0 

respectively. Here {1 = a · b · c, {2 = a · b · e, {3 = e · d and {4 = c · d are 
pull-down terros of A. They are created only once and are shared by these 
required sets listed above. Their ROBDD representations are shown in figure 
5.6. The shaded nodes a and b indicates that they are the potential 
charge-sharing part of {2. It can heseen that each required set contains some 
ofthe pull-upor pull-down terros ofthe cell, the upper bound ofthe memory 
requirement for an open is the number of all the different pull-up and 
pull-down terros of the cell. Thus in theory the memory req uirement is linear 
to the number of opens. 

0 

1 0 

Figure 5.6 mustration of compact storage. 

5.5 Fault simulation for opens 

The detecting conditions derived in previous section consiclering both the 
hazard and charge-sharing effects for an open can he easily used by any logic 
fault simulator. For illustration, here the PPSFP algorithm is adapted to 
simulate opens. 

The fault simulation is perforroed on the network graph (see chapter 3). The 
preprocessing of obtaining the detecting conditions is very simple. For each 

open, the missing paths Mand remaining paths P can he easily collected by 
using a depth-first search routine. The missing paths M are further 
partitioned into a part APc for which no restrietion on the potential 
charge-sharing path is required and its complement Me. All the single 
stuck-at opens can he also identified in the meantime. 

The main operations of the PPSFP are also two traversals as described in 
chapter 3. That is, in the forward traversal, the fault free simulations are 
perforroed for applied patterns in parallel. In the backward traversal, the 
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observability of each node is evaluated for applied input patterns just as in 
chapter 3. In the meantime, the detectability of each open is determined. 
Since there is only one cell involved, the detectability of each open can he 
determined as follows. For each open, assume the cell a is affected by this 
open. The detecting condition d can he constructed· from its respective 

remaining path set P and missing path sets Mnc and Me in the same way as 
deriving eq.(5.5), (5.6) and (5.12). Then its detectability can he determined by 
evaluating 

Dopen = Oa · d (5.13) 

for applied input pattern. Oa is the global observability of a (see chapter 3). 
If Dopen = 1, the open is detected. Obviously the evaluation ofeq.(5.13) can 
he performed in parallel for applied patterns via bit-vector operations. 

5.6 Experimental results 

The above modeling and simulation system was implemented in C on a 
HP-9000/700 workstation. The ISCAS85 benchmark circuits are again used 
for experiments. Open faults are assumed on all possible paths of each cell. 
For the purpose ofjust verifying the effectiveness ofthis technique, each node 
is assumed to have the same capacitance. 

Table 5.3 Results of extracting detecting conditions 

circuits #opens #SSAopens time( sec) memory(Kb) memory overhead 
c432 238 36 0.1 17.7 40% 
c499 520 104 0.1 31.9 9.4% 
c880 516 57 0.17 28.7 60% 

c1355 850 3 0.27 37.8 45% 
c1908 632 117 0.1 44.8 21% 
c2670 1110 103 1.5 71.7 56% 
c3540 1453 168 0.4 88.0 5.7% 
c5315 2325 272 1.0 149.8 54% 
c6288 3792 16 2.3 177.7 53% 
c7552 3745 501 1.4 200.0 46% 

Table 5.3 summarizes some extraction results. Among the analyzed opens, on 
average about 9% opens are single stuck-at (SSA) opens. The analysis and 
collection of the missing and remaining paths are both very fast. Compared 
to the fault simulation times, they are almost negligible. The amount of 
memory required to represent the fault free circuit is also listed in the table 
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(the column of memory). The memory overhead of re presenting the path sets 
by ROBDDs are shown inthelast column. They are the percentages ofthe 
extra memory over the total memory needed just for fault free 
representations. The memory overhead largely depends on the number of 
different types of cells and the number of different types of opens. The 
maximum memory overhead is up to 60% for the circuit c880. On average, 
39% more memory compared to the fault free logic representations is 
required. The total memory requirement is nota substantial problem for this 
set ofbenchmarks. 

Table 5.4 Results ofPPSFP simulation 

SSA test pattem set 1000 random pattems 
circuit #pat. SSA% NR% Rl% R2% time( ISSA% NR% R1% R2% 
c432 75 99.7 71.8 65.9 54.0 0.54 90.6 89.6 87.1 
c499 71 100.0 87.5 75.0 75.0 0.78 100.0 94.4 86.8 86.8 
c880 95 100.0 89.1 79.1 71.5 1.40 99.2 93.3 88.9 86.3 

c1355 101 100.0 81.2 78.9 78.4 1.80 99.7 82.3 80.3 80.3 
c1908 147 100.0 88.4 82.3 81.0 <.I. .LV 97.7 87.4 81.2 81.2 
c2670 160 98.8 75.6 66.4 60.7 7.50 87.7 69.3 67.1 64.5 
c3540 242 98.4 74.1 65.8 60.4 21.30 97.8 79.0 73.6 68.4 
c5315 211 100.0 91.3 85.1 81.7 27.40 100.0 94.0 91.4 89.4 
c6288 44 99.9 83.1 79.3 67.5 9.30 99.9 86.3 85.8 85.3 
c7552 318 99.7 89.9 84.7 82.0 93.6 89.3 86.8 84.5 

Table 5.4 shows the fault simulation results. The opens are simulated for both 
single stuck-at test pattem sets and 1000 random test pattemsas in chapter 
3 and 4. The CPU time ofsimulating opensisalmost the same as simulating 
the single stuck-at faults. The fault coverage ofnon-robust test (denoted as 
NR%), the robust test under hazard (denoted as RI%) and the robust test 
under both hazard and charge-sharing effects (denoted R2%) are evaluated 
in one pass. 

As already expected, the test pattem sets ha ving very good coverage for single 
stuck-at faults, in genera!, have rather poor coverage for open faults. N ot 
more than 95% coverage can be achieved even for a non-robust test. The 
robustness of the test pattern sets is even more poor. The lowest coverage is 
only 54%. It is interesting to notice that though the difference between the 
coverage ofnon-robust test and the coverage ofrobust testis rather large, the 
difference between the coverage of robust test under hazard effects and the 
one of robust test under both hazard and charge-sharing effects is small. This 
may indicate that the hazard effects should be considered for test pattern 



74 

generations but charge-sharing effects is not a severe problem for such type 
of design. 

For 1000 random test patterns, as listed in Table 5.4, the fault coverages in 
general are greatly improved both for non-robust and for robust tests. The 
random testability of the benchmark circuits for opens is better than the one 
for bridging faults. Figure 5. 7 shows the simulation time versus circuit size. 
There is no clear relation observed. It largely depends on the number of opens 
and number of different types of cells in a design. It should he noted that no 
acealerating techniques such as in [3] are used for the fault simulations. It is 
expected that the simulation can he much faster ifthey are applied. Here, for 
the purpose of verifying the developed method, it is important to notice that 
the difference of the simulation times between single stuck-at faults and 
opens is very small and yet the total simulation is done very fast. 

113 CPU time(sec) 

103 
93 
83 
73 
63 
53 
43 
33 
23 
13 

c3540 

c6288 

c7552 

#gates(x100 
11.52 16.52 

Figure 5.7 Simulation time of 1000 random patterns vs. size ofthe circuit. 

5. 7 Conclusions 

The electrical behavior of open faults is very complex which makes it difficult 
to perform accurate modeling and fast simulation. The method proposed in 
this chapter is based on several assumptions as most other approaches are. 
But a different strategy is used here. The advantage is obvious; both the 
hazard and charge-sharing effects are modeled for any pathopen faults and 
yet fast logic fault simulations can he achieved. The use of ROBDDs for the 
storage ofthe preprocessed results proves to he feasible. This metbod can he 
used together with the method ofmodeling and simulating bridging faults in 
the previous chapters. Together they establish a basis for generating test 
patterns for both open and bridging faults. 



6 Concluding Remarks 

The objective of this work was the development of accurate and efficient tools 
to study the logic behavior of defect-induced faults for CMOS circuits and 
further study their impact on practically used testing methods. Through the 
research work conducted in this period, our knowledge over this issue is 
definitely increased and the problems are clearly identified. The possible 
solutions for modeling and simulating bridging and open faults are 
investigated in depth. They can serve as the basis of an ATPG system for 
defect-induced faults as well. The experimental results helped us to build a 
better vision of shortening the gap between fabrication defects and single 
stuck-at faults used at logic leveL This chapter makes a few additional 
remarks regarding the methods and results presented in this thesis. 
Suggestions for further investigation are discussed. 

6.1 Remarks 

With the aid of a system to extract critica} areas [57] and the simple 
probability relation between critica} areas and defect statistics presented in 
chapter 2, we have extracted all possible faults fora set ofbenchmark circuits. 
In view ofboth the number offaults and the probability ofthe occurrence of 
the faults, the results in chapter 2 clearly show that single bridging and single 
open faults are the primary faults for most CMOS circuits. The preferenee of 
using single faults for testing is further supported by the following two 
considerations. 

1) From the testing point of view, a defect affecting a relatively large part 
oflayout can be easily detected by conventional testing methods. This is 
because if a large portion of the circuit does not function the chance of 
recognizing this is large. This is not the case for defects affecting only one 
or two nodes. 

2) From the point of view oftesting tooi development, the single bridging and 
open faults already change a digital combinational circuit into a circuit 
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with undefined behavior or even a circuit with sequentia! behavior. In 
this thesis, it can he observed that it is no.t an easy procedure to develop 
accurate and efficient tools to generate tests for those fawts. More 
complex fawt models may even make this procedure too complex to he 
practical. 

It showd he mentioned here that the probability measure derived for the 
extracted fawts is based on the extracted critica} areas combined with a 
typical defect statistica} data. The reswts are not biased for a particular 
process line. It can he the case that one defect mechanism is more likely in a 
particwar process line than another one. But the generality of the method 
and tools developed in this thesis remains unaffected. 

As for the modeling and simwation methods developed in this thesis, all three 
approaches employ a very simple "divide and conquer" philosophy for both 
bridging and open fawts. That is, the accurate modeling is performed first 
before fawt simwations. Such a "divide and conquer" philosophy not only 
leads to a very fast fault simwation procedure but also makes it easy to 
develop an ATPG procedure on the same framework. 

As for the two bridging fawt modeling and simwation approaches presented 
in chapter 3 and chapter 4, the approach in chapter 3 is more suited fora 
design where the frequency of repeated use of each generic-cell is not high. 
In such a design, probably every bridging fault is a generie-bridge by itself 
in the worst case. This approach is also suited for the situation where more 
complex faults need to he included. However the approach presented in 
chapter 4 is more suited fora design where the frequency ofrepeated use of 
each generic-cell is high. 

6.2 Suggestions for further investigation 

As it is pointed out, defects can cause very complex situations in CMOS 
circuits. This thesis only focuses onsome ofthe identified problems, that is, 
the undefined behavior caused by bridging fawts and the sequentia} behavior 
caused by opens. One ofthe important fawts, feedback bridging fawts, is not 
treated here. Further investigation is necessary since both the number and 
the probability ofthe occurrence of feedback bridging fawts can he large for 
some designs. 

The fawt simwation procedure developed can only tell if a bridging or an open 
fawt is detected fora given test pattern set. There is no proofif an undetected 
bridging or open fawt is testable or not in the entire input space. Thus it is 
necessary to develop an efficient ATPG procedure. This ATPG procedure can 
he integrated together with the modeling and simwation approach presented 
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in this thesis so that a compact test pattern set achieving maximal fault 
coverage for both bridging and open faults can he given. 

This thesis only outlined a bottorn-up flow of modeling defects from layout 
level to circuit faults and further up to logic level. More ambitiously, a 
top-down metbod can he developed so that for given test data, a logic fault can 
he diagnosed down to the defect level on the layout or a test pattern set for 
fault diagnosis down to defect level can he generated. 
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Appendix A: 

On enumerating path-connected subgraphs 

Definition A.l: Let G(V,E) be a directed acyclic graphand a,b E V and 
a ~ b. G(V,E) is said to be (a-b) path-connected if every edge in the 
graph belongs to a simple path from a and b. 

Definition A.2: Let G(V,E) be a directed acyclic graphand a,b E V and 
a ~ b. Any subgraph G(V',E') that is itself (a-b) path-connected, is 
called a (a-b) path-connected subgraphof G(V,E). 

There may be exponentially many (a-b) path-connected subgraphs of 
G(V,E). Insome applications, such as in this thesis, it is necessary to find all 
the (a-b) path-connected subgraphs of G(V,E). 

Figure A.l shows an example of (a-b) path-connected graph. It follows from 
the definition A.l that for a (a-b) path-connected graph G(V,E), every 
v E V\{a} has at least one incoming edge in E and every v E V\{b} has at 
least one outgoing edge in E. 

Figure A.l An example of (a-b) path-connected graph. 

In the sequel, for each node v E V, let E(v) E E denote all the edges from v. 
Let E'(v) denotes a specific edge subset of E(v). 

Definition A.3: For a (a-b) path-connected graph G(V, E), given a 
non-empty node setS C V, if a subgraph G(V' US, E') of G(V,E) has the 
property: 
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1) every edge ofthe subgraph belongs toa simple path from a toa node 
inS; 

2) there are no edges between any pair of nodesin S and each node inS 
is the end-point of at least one path. 

" Then G(V' U S,E') is said to be a (a-8) path-connected subgraph where 
A 

S is regarded as a supernode denoted as S. 

LemmaA.l: Fora (a-b) path-connected graph G(V, E), given a non-empty 

node setS CV, a Ca--S)path-connectedsubgraph G(V' uS,E')is a (a-b) 

path-connected subgraph if S = {b}. 

Proof: follows directly from the definitions Al and A3.0 

Observe that in a (a-b) path-connected graph every node has a path to b. This 

means that given S, a (a-S) path-connected subgraph can always be 
extended to he a (a-b) path-connected subgraph by adding paths starting 
from each node of S\{b} to h. A possible extension s~ep is given by algorithm 
AL 

Algorithm A. 1 subgraph extension step 
A 

{Invariant: G(V' U S,E') is (a-8) path-connected.} 
choose v E S\{b}; 
V' ...... V' U{v}; 
choose E'(v) c E(v) 1\ E'(v) c;t; 0 
E' ...... E' UE'(v); 
S ...... (S\{v)) U {u I e(v, u) E E'(v) 1\ u ft. V'}; 

" Lemma A.2: In algorithm Al, the extended subgraph is still a (a-8) 
path-connected subgraph. By repeating this extension step, eventually 
a (a-b) path-connected subgraph can be found. 

Proof: For each edge e(v,u) E E'(v), if u E (V' US), the set S is not 
A 

changed. By adding e(v,u) into E', G(V' uS,E') still has the (a-8) 

path-connected property. If u ft. (V' US), that is, u is a new node not 
considered before, since u is added into S, by adding e(v,u) into E', 

1\ 

G(V' u S, E') still has the (a-S) path-connected property. 

The repeating process converges because each node v E V can only 
appear once inS. At each step one node is removed from S\fb} and some 
new nodes from V\(V' US) may get added into S. Eventually, no nodes 
that can be added into S are left. The nodes can only be deleted from S. 
Node b will always appear inS since it is reachable from every node. 



85 

Because it is neverselectedor removed eventually S={b}. According to 
lemma A.l, a (a-b) path-connected subgraph is found.O 

With lemma A.2, we can develop an algorithm described in algorithm A.2 that 
generates a (a-b) path-connected subgraph when initially S={a}, V' =0, and 
E'=0. 

" The algorithm is based on successive extensions of a (a-S) path-connected 
subgraph by choosing a non-empty edge subset from a node in S. To help 
devise an algorithm that enumerates all possible (a-b) path-connected 
subgraphs, below a lemma is presented. 

Algorithm A.2 generation of a (a-b) path-connected subgraph 

" { Invariant: G(V' US, E') is (a-S) path-connected. l 
procedure subg(S); 

if S = {b} then 

else 

V'+- V' U{b}; 
G(V',E') is (a-b) path-connected subgraph; 

choose v E S\{b}; 
V'- V'U{v}; 
choose E'(v) C E(v) /1. E'(v) :;;= 0; 
E'- E' UE'(v); 
S-(S\{v})U{u I e(v,u) E E'(v) /1. u f/; V'}; 
subg(S); 

Lemma A.3: By running algorithm A.2 for all combinations of possible 
non-empty edge subset from each selected node v, all possible (a-b) 
path-connected subgraphs are generated. Furthermore no (a-b) 
path-connected subgraph is ever generated more than once. 

Proof: 1) Suppose a certain subgraph is missing. This implies that some 
edges from a selected node are never selected during the process. This 
contradiets the assumption in lemma A.3. 

2) There are two runs that genera te the same result. Assume that in both 
runs the same deterministic mechanism is used to select a node 
v E S\{b}. Then this means that at some point in the execution a 
different choice of non-empty edge subset from the same selected node 
v must he made. Let these two edge subset he E'(v) and E"{v) 

respectively. Obviously a subgraph containing E'(v) and a subgraph 
containing E"(v) are not equivalent.O 

Algorithm A.3 shows the routine subgs that embodies the iteration over all 
non-empty edge subsets from a selected node in its for-loop. After all 
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subgraphs corresponding toa certain selection have been generated (coming 
out ofthe recursive call subgs(S')) we must of. courserestore the edge set E'. 
The node set V' must be restored after all such selections for a certain node 
v have been considered. 

Theorem: The enum routine precisely enumerates all (a-b) 
path-connected subgraphs of G(V,E). 

Proof: Follows directly from lemma A.2 and algorithm A.2.0 

Algorithm A.3 enumeration of all (a-b) path-<:onnected subgraphs and initia! call 

" I Invariant: G(V' U S,E') is (a-S) path-connected. l 
procedure subgs(S); 

if S = {b} then 
V'.,_ V' u {b}; 
G(V' ,E') is (a-b) path-connected subgraph; 
V'.,_ V'\{b}; 

else 
choose v E S\{b}; 
V'~V'U{v}; 

for each E'(v) C E(v) A E'(v) :;;<!: 0 
E' ~ E' UE'(v); 
S' ~(S\{v})U{u I e(v,u) E E'(v) A u ft V'}; 
subgs(S'); 
E' ~ E'\E'(v); 

V'.,_ V'\{v}; 

procedure enum(G,a,b); 
V' ~0; E' -0; 
subgs( {a}); 

Figure A.2 shows the results of applying algorithm A.3 to the example in 
tigure A.I. 

Figure A.2 All (a-b) path-connected subgraphs. 



Stellingen 

behorende bij het proefschrift van Cbennian Di 

1. The quality ofiC testing depends on the actual design in silicon and tbe 
manufacturing site. 

2. For CMOS digital circuits, the complexity oflddq testing is analogous to 
tbe complexity of conventional voltage testing with respect to the 
extraction of realistic defect-induced faults, the obtaining of an 
"optima!" test pattern set and the handling ofresistive bridges, feedback 
bridges and open faults. 

3. IC testing should impose as few design rules as possible forthe designer. 
Tbis is reflected by the recent efforts to minimize tbe scan-patband tbe 
increasing interest for sequentia! ATPG. 

4. While using the logic threshold voltage to model the logic value of an 
undefined state caused by bridging faults, most kind of approximation 
leads to incorrect and unreliable results. 

5. With the success oftestability preserving techniques in logic synthesis 
systems, one may expect that a testability preserving technology 
mapping tecbnique will emerge. This may he even more important since 
such a tecbnique operates closer to silicon. 

6. The criterion for judging a metbod or a tooi is its efficiency in solving the 
targeted problem and not the assessment oftbe age or the elegance of the 
underlying theory. 

[Deng Xiaoping: it does not matterif a cat is white or black as long as it 
catcbes mice.] 

7. Tbe design process of a large complex system is more a kind of an art 
rathertban a piece of science. Tbe "beauty" and tbe degree of automation 
of tbe process cannot he enjoyed at tbe same time. 

8. A recently found bug in tbe Intel's Pentium double-precision divide 
instruction showed once again tbat design verification is crucial for the 
quality of a large and complex design. 

9. A lot oftecbnical probierus are createdjust by the reluctance of accepting 
tbe knowledge from different subjects or fields. 

10. The Dao never does, yet through it everything is done. 
0!! # JE 'f.J i1ii JE :ïF 79 ) 
[Lao Tzu, "tbe exercise of government'' in Cbapter 37 of" Dao De Jing"] 


