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First passage times to congested states of many-server systems in

the Halfin-Whitt regime

Brian Fralix∗ Charles Knessl† Johan S.H. van Leeuwaarden‡

February 14, 2013

Abstract

We consider the heavy-traffic approximation to the GI/M/s queueing system in the Halfin-
Whitt regime, where both the number of servers s and the arrival rate λ grow large (taking the
service rate as unity), with λ = s − β

√
s and β some constant. In this asymptotic regime, the

queue length process can be approximated by a diffusion process that behaves like a Brownian
motion with drift above zero and like an Ornstein-Uhlenbeck process below zero. We analyze
the first passage times of this hybrid diffusion process to levels in the state space that represent
congested states in the original queueing system.

Keywords: GI/M/s queue; Halfin-Whitt regime; queues in heavy traffic; diffusion process;
asymptotic analysis; first passage times

AMS 2000 Subject Classification: 60K25, 60J60, 60J70, 34E05.

1 Introduction

Halfin and Whitt [8] introduced in their 1981 paper a new heavy-traffic limit theorem for the
GI/M/s system. They demonstrated how under certain conditions a sequence of normalized queue-
length processes converges to a process that behaves like a Brownian motion with drift above zero
and like an Ornstein-Uhlenbeck process below zero. We refer to this hybrid diffusion process as the
Halfin-Whitt diffusion.

In [8] it is established that by setting the traffic intensity ρ = 1−β/
√
s, β ∈ (0,∞), the number

of customers in the M/M/s system can be roughly expressed as s+
√
sX(t) for s sufficiently large

and (X(t))t≥0 the Halfin-Whitt diffusion. The boundary between the Brownian motion and the
Ornstein-Uhlenbeck process can be thought of as the number of servers, and (X(t))t≥0 will keep
fluctuating between these two regions. The process mimics a single server queue above zero, and an
infinite server queue below zero, for which Brownian motion and the Ornstein-Uhlenbeck process
are indeed the respective heavy-traffic limits. As β increases, capacity grows and the Halfin-Whitt
diffusion will spend more time below zero.
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The diffusion process (X(t))t≥0 can thus be employed to obtain simple approximations for the
system behavior. The steady-state characteristics of the diffusion were studied in [8]. It is also of
interest to study time-dependent characteristics like the mixing times, time-dependent distributions
and first passage times to enhance our understanding of how the GI/M/s system behaves over
various time and space scales. The mixing time is closely related to the spectral gap, which for the
Halfin-Whitt diffusion (X(t))t≥0 has been identified by Gamarnik and Goldberg [6] building on the
results of van Doorn [5] on the spectral gap of the M/M/s queue. An alternative derivation of this
spectral gap was presented in [12], along with expressions for the Laplace transform over time, and
the large-time asymptotics for the time-dependent density. In this paper we derive results for first
passage times to large levels. Such large levels typically correspond to highly congested states, in
which users start receiving degraded service. An expression for the mean first passage time was
derived in Maglaras and Zeevi [14]. We shall derive the Laplace transform of the first passage time
density. From this Laplace transform, we can derive not only all moments, but also expressions for
the first passage time density in various asymptotic regimes.

Mathematically, determining the Laplace transform of the first passage or time-dependent dis-
tributions for the present diffusion process involves analyzing a Schrödinger type equation with a
piecewise parabolic potential function, or, equivalently, a Fokker-Planck equation with a piecewise
linear drift. Such problems arise in a variety of other applications, such as linear systems driven
by white noise [4, 3], the Kramers’ problem [15] and escape over potential barriers [11]. Invariably,
the solution involves the parabolic cylinder functions (see also [1, 13, 16] for more background on
the parabolic cylinder function). The main results are presented in Section 2 and the proofs are
given in Sections 3-5.

2 Main results

For the Halfin-Whitt diffusion process, define Tx(b) as the first passage time out of the interval
(−∞, b), starting at x < b with b > 0. Define

ϕx,b(θ) = E[e−θTx(b)], (2.1)

so that if P (x, t)dt = P (Tx(b) ∈ [t, t+ dt])

ϕx,b(θ) =

∫ ∞

0
e−θtP (x, t)dt, ℜ(θ) > 0. (2.2)

The first passage time density P satisfies the backward Kolmogorov equation

Pt = A(x)Px +
1
2B(x)Pxx; x < b, t > 0 (2.3)

with P (b, t) = δ(t) (the Dirac function) and

A(x) =

{

−β, x > 0,
−x− β, x < 0.

(2.4)

We also require P and Px to be continuous at x = 0. Here the diffusion coefficient is B(x) = 1+ c2

where c is the coefficient of variation for the interarrival distribution of the GI/M/s system. For
GI=M we have c = 1, and in general we can rescale x so as to make B(x) = 2, which we henceforth
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assume.
Let Dν(z) denote the parabolic cylinder function with index ν and argument z, which is defined,

for example, by the integrals

Dν(z) =
e−z2/4

Γ(−ν)

∫ ∞

0
e−zue−u2/2u−ν−1du, ℜ(ν) < 0, (2.5)

Dν(z) =
ez

2/4

i
√
2π

∫

C

uνeu
2/2e−uzdu. (2.6)

Here, Γ(·) is the Gamma function, and the contour C in the second integral is a vertical Bromwich
contour in the half-plane ℜ(u) > 0. It is well known that Dν(z) is an entire function of both index ν
and argument z, and various properties of Dν(z) are given in [1, Chapter 19] and [7, p. 1092-1095].

Define

M(θ;β, b) = cosh

(

b

2

√

β2 + 4θ

)

−
2D′

−θ(−β)

D−θ(−β)

sinh
(

b
2

√

β2 + 4θ
)

√

β2 + 4θ
(2.7)

with D′
−θ(−β) = − d

dβD−θ(−β). Below we give expressions for ϕx,b(θ), where we must distinguish
between the cases x > 0 and x < 0.

Theorem 1. Let x < 0. Then, with M(θ;β, b) as defined in (2.7),

ϕx,b(θ) =
1

M(θ;β, b)

D−θ(−β − x)

D−θ(−β)
exp

(

−β(b− x)

2
+

x2

4

)

. (2.8)

Theorem 2. Let x > 0. Then, with M(θ;β, b) as defined in (2.7),

ϕx,b(θ) = exp

(

β(x− b)

2

)





sinh
(

x
2

√

β2 + 4θ
)

sinh
(

b
2

√

β2 + 4θ
) − 1

M(θ;β, b)

sinh
(

(x−b)
2

√

β2 + 4θ
)

sinh
(

b
2

√

β2 + 4θ
)



 . (2.9)

Using

E [Tx(b)] = − d

dθ
ϕx,b(θ)

∣

∣

∣

θ=0
, (2.10)

we obtain after tedious calculations the following result for the mean first passage time, which is
in agreement with the result obtained in a different manner by Maglaras and Zeevi [14].

Proposition 3. [14, Proposition 3] If x > 0 then

E [Tx(b)] =
x− b

β
+

(

eβb − eβx
)

[

1

β2
+

1

β

∫ ∞

0
eβu−u2/2du

]

. (2.11)

If x < 0 then

E [Tx(b)] =
eβb − 1− βb

β2
+

eβb − 1

β

∫ ∞

0
eβu−u2/2du−

∫ ∞

0
eβu−u2/2

(

eux − 1

u

)

du. (2.12)

Though (2.11) and (2.12) are already fairly simple, we give some asymptotic formulas below
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that yields further insight on the magnitude of the mean passage time (the derivation is standard
and therefore omitted).

Proposition 4. (a) For b → ∞ and b− x → ∞,

E [Tx(b)] ∼ eβb
[

1

β2
+

1

β

∫ ∞

0
eβu−u2/2du

]

. (2.13)

If b − x = O(1) the above term should be multiplied by 1 − e−β(b−x). If b, β → ∞ then (2.13)
simplifies further to E [Tx(b)] ∼

√
2πβ−1eβbeβ

2/2.

(b) For β → −∞ and x, b = O(|β|) (possibly o(|β|)),

E [Tx(b)] ∼
{

b−x
−β , x ∈ [0, b),
b

−β + log
(

1 + x
β

)

, x ∈ (−∞, 0].
(2.14)

(c) For β → ∞ with β = O(b−1) and x = O(b),

E [Tx(b)] ∼
{

β−2[eβb − eβx + β(x− b)], x/b ∈ [0, 1),
β−2[eβb − 1− βb], x/b < 0.

(2.15)

We note that in (2.13) the mean first passage time is exponentially large and independent of the
starting point x, in (2.14) it is asymptotically O(1), and (2.15) represents the transition between
these two cases, where E [Tx(b)] = O(b2).

The Laplace transform ϕx,b(θ) is analytic in the entire θ-plane, except for singularities in the
range ℜ(θ) < 0. Hence, the asymptotic behavior of Tx(b) is determined by the singularity θmax

closest to the imaginary axis. In fact, from Theorems 1 and 2 it follows that θmax will be the largest
negative solution to

D−θ(−β)M(θ;β, b) = 0. (2.16)

Note that (2.7) and (2.9) are invariant under the change
√

β2 + 4θ → −
√

β2 + 4θ, so there is
no branch point at θ = −β2/4. It seems impossible to find a closed-form solution to (2.16). We
therefore consider several asymptotic regimes:

(i) Large levels: b → ∞ and β fixed.

(ii) Large levels and over/undercapacity: β → ±∞, b → ∞ at the same rate (|β|/b fixed).

(iii) Small levels and undercapacity: β → −∞ and b → 0.

Regime (i) represents the situation of reaching highly congested states, corresponding to large
levels b. We have the following results:

Proposition 5 (Regime (i)). If β < 0 is fixed, and b → ∞, then

θmax = −1

4
β2 − π2

b2

[

1 +
2

b

Dβ2/4(−β)

D′
β2/4

(−β)
+O(b−2)

]

. (2.17)
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If β = 0, and b → ∞, then

θmax = − π2

4b2

[

1−
√
2π

b
+O(b−2)

]

. (2.18)

If β > 0 is fixed, and b → ∞, then

θmax ∼ − β2e−βb

1 + βeβ2/2
∫ β
−∞

e−u2/2du
. (2.19)

We can generalize (2.18) to the case where b → ∞ and β → 0 with βb = γ fixed, where we have

θmax ∼ − 1

β2

[

γ2

4
+ ω(γ)

]

(2.20)

where ω is the solution of the smallest absolute value to

tan(
√
ω)√

ω
=

tanh(
√
−ω)√−ω

=
2

γ
. (2.21)

It follows that if γ = 0, ω(0) = π2/4 and then the leading term in (2.18) becomes a special case of
(2.20). Also, if γ = 2, ω(2) = 0, with ω > 0 for γ < 2 and ω < 0 for γ > 2.

From (2.19) we see that |θmax| is exponentially small, which implies exponentially large time
scales. While the result (2.19) is established analytically in Section 4, it can also be seen as a
consequence of the following result. Let ⇒ denote convergence in distribution.

Proposition 6 (Exponential limit law). Let V be an exponential random variable with unit mean.

Then,

Ce−βbTx(b) ⇒ V, as b → ∞ (2.22)

with

C =

(

1

β2
+

1

β

∫ ∞

0
eβu−u2/2du

)−1

(2.23)

As mentioned in [14], Proposition 6 can be established using a limit theorem from the theory
of regenerative processes. In Section 5 we give two proofs of Proposition 6. The first proof is
probabilistic and uses the theory of regenerative processes as pointed out in [14], and the second
proof is analytic and uses the exact expressions for the Laplace transform.

We next give some results for the double limits b → ∞ with β → ±∞, and also b → 0 with
β → −∞.

Proposition 7 (Regime (ii)). If β → −∞ and b → ∞, then

θmax ∼ −1

4
β2 − π2

b2

[

1 +
2

b

(

2

−β

)1/3 Ai(0)

Ai′(0)

]

, (2.24)
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where Ai(·) is the Airy function. If β → ∞ and b → +∞, then

θmax ∼ − β√
2π

e−bβe−β2/2. (2.25)

Proposition 8 (Regime (iii)). If b → 0 with β → −∞, we let B∗ = b(−β)1/3 and for B∗ fixed,

θmax ∼ −1

4
β2 −

(

−β

2

)2/3

η, (2.26)

where η = η(B∗) is the minimal solution to

√−η cot
[

B∗2
−1/3√−η

]

=
Ai′(η)

Ai(η)
. (2.27)

We comment that (2.24) remains valid for β → −∞ with b > 0 fixed, (2.25) remains valid for
β → ∞ with b > 0 fixed and can be obtained as a limiting case of (2.19) (for β → ∞).

When B∗ → ∞ it follows from (2.27) that η → 0 with η ∼ −22/3π2B−2
∗ , while if B∗ → 0+ we

have η ∼ r0 = −2.338 . . . where r0 is the least negative root of Ai(z) = 0. If η = r∗ < 0 where r∗ is
the least negative root of Ai′(z) = 0, then B∗ =

1
2π2

1/3(−r∗)
−1/2.

3 Proofs of Theorem 1 and Theorem 2

From (2.3) and (2.2) it follows that the Laplace transform ϕx,b(θ) = Q(x; θ) satisfies the ODE

Qxx +A(x)Qx = θQ, x < b, (3.1)

with the boundary condition Q(b; θ) = 1 and the interface conditions Q(0+; θ) = Q(0−; θ) and
Qx(0

+; θ) = Qx(0
−; θ). For x > 0 we have A(x) = −β and then (3.1) admits solutions of the form

eαx where α = α± = 1
2 [β±

√

β2 + 4θ]. For x < 0, A(x) = −x−β and then (3.1) becomes the Hermite

equation, and the only solution that decays as x → −∞ is proportional to ex
2/4eβx/2D−θ(−x− β).

It follows that

Q(x; θ) = k0 exp

(

x2

4
+

βx

2

)

D−θ(−β − x)

D−θ(−β)
, x < 0, (3.2)

and

Q(x; θ) = k1e
α+(θ)(x−b) + (1− k1)e

α−(θ)(x−b), 0 < x < b, (3.3)

where k0 and k1 are independent of x. Here we wrote the solution in (3.3) in such a way so to
automatically satisfy the boundary condition Q(b; θ) = 1. To determine k0 and k1 we can use the
interface conditions at x = 0, which imply that

k0 = k1e
−α+(θ)b + (1− k1)e

−α−(θ)b (3.4)

6



and

−k0
D′

−θ(−β)

D−θ(−β)
=

1

2

√

β2 + 4θ
[

k1e
−α+(θ)b − (1− k1)e

−α−(θ)b
]

. (3.5)

Solving the algebraic system in (3.4) and (3.5) for k0 and k1 leads to the expressions in Theorems
1 and 2.

4 Brief derivation of Propositions 5, 7 and 8

We discuss the various asymptotic formulas for θmax. The expressions follow from routine manip-
ulations of the parabolic cylinder functions that appear in (2.7) and (2.16). Consider the solution
to D−θ(−β)M(θ;β, b) = 0 which is equivalent to

D−θ(−β) cosh

(

b

2

√

β2 + 4θ

)

=
2

√

β2 + 4θ
D′

−θ(−β) sinh

(

b

2

√

β2 + 4θ

)

. (4.1)

We analyze this transcendental equation in various limits and find the least negative root θmax,
only sketching the main points in the calculations.

For b → ∞ and β > 0 we use the Taylor expansion, for θ → 0,

D′
−θ(−β)

D−θ(−β)
=

β

2
− θeβ

2/2

∫ β

−∞

e−u2/2du+O(θ2) (4.2)

and, for θ → 0 and b → ∞,

coth(
b

2

√

β2 + 4θ) = 1 + 2e−bβ [1 +O(θ, e−bβ)]. (4.3)

Also,
√

β2 + 4θ = (2/β)[1 − 2θ/β2 +O(θ2)], so that (4.1) is equivalent to

[

β

2
− θeβ

2/2

∫ β

−∞

e−u2/2du+O(θ2)

]

2

β

[

1− 2θ

β2
+O(θ2)

]

= 1 + 2e−bβ +O(θ, e−2bβ) (4.4)

and hence

−2θ

[

1

β2
+

1

β
eβ

2/2

∫ β

−∞

e−u2/2du

]

∼ 2e−bβ , (4.5)

which leads to the exponentially small θmax in (2.19). A similar calculation applies for fixed b > 0
and β → ∞, which leads to (2.25) in Proposition 7.

For b → ∞ with β < 0 the solution θmax will be close to the apparent branch point at θ = −β2/4.
From (4.1) if we set θ = −β2/4− Ω/b2 we obtain

D′
−θ(−β)

D−θ(−β)
+O(θ + β2/4) =

b√
Ω

tan(
√
Ω). (4.6)

If b → ∞ with a fixed β < 0,
√
Ω must be close to a zero of the tangent function, so that Ω ∼ π2/4

7



(for the least negative solution θmax). Then estimating the difference
√
Ω − π/2 using (4.6) leads

to (2.17).
If b → ∞ with β → 0 we again obtain (4.6) and for small β we can further approximate

D′
−θ(−β)

D−θ(−β)
∼ 2

β
=

2b

γ
. (4.7)

Then (2.20) follows from (4.6) with Ω replaced by ω = b2θmax − γ2/4. If β = 0 we can express the
parabolic cylinder functions D−θ(0) and D′

−θ(0) in terms of Gamma functions, and (4.1) becomes

tanh(b
√
θ)√

θ
=

−Γ(θ2 )√
2Γ(θ+1

2 )
. (4.8)

Then (2.18) follows by solving (4.8) for θmax with b → ∞, where θmax ∼ −π2/(4b2) = O(b−2).
Then Γ(θ+1

2 ) ∼ √
π and Γ(θ2) ∼ 2

θ .
If β → −∞ and b → ∞ or b = o(1), (2.24) follows by a calculation similar to (4.6), except

now Dβ2/4(−β) becomes proportional to Ai(0) in this limit. Finally, to obtain (2.26) we use the
approximation

− d
dβD

′
−θ(−β)

D−θ(−β)
∼

(−β

2

)1/3 Ai′(η)

Ai(η)
, η =

θ + β2/4

(−β/2)2/3
(4.9)

which applies for −β → ∞ and −θ = β2/4 +O(|β|2/3). With (4.9), (2.27) follows from (4.1). This
concludes the sketched derivation of Propositions 5, 7 and 8.

5 Two proofs of Proposition 6

5.1 Probabilistic proof

The crucial observation is that the one-dimensional Halfin-Whitt diffusion process is an ergodic one-
dimensional diffusion process that has, by the strong Markov property, the origin as a regeneration
point. To make this formal, let y be a fixed positive number, where y < b. This value can be used
to construct a sequence of random times {Tk}k≥1, where

T1 = inf{t ≥ 0 : X(t) = 0, sup
0≤s≤t

X(s) ≥ y} (5.1)

and for each n ≥ 1,

Tn+1 = inf{t ≥ Tn : X(t) = 0, sup
Tn≤s≤t

X(s) ≥ y}. (5.2)

The Halfin-Whitt diffusion is a regenerative process with respect to these regeneration times, which
form a delayed renewal process that, with probability one, has a finite number of points in each
compact interval. To make matters simpler to state, we assume that X(0) = 0, but the procedure
outlined here can be adjusted for any arbitrary initial condition.

Define a(b) to be the probability that our process gets above level b in the random interval
[0, T1]. Due to the Strong Markov property, along with the fact that y < b, we observe that this

8



probability is just the probability that a Brownian motion with drift −β and diffusion coefficient 2
reaches level b before level 0. Hence,

a(b) =
eβy − 1

eβb − 1
. (5.3)

Moreover, the expected length of each regenerative cycle is just the expected amount of time it
takes the Halfin-Whitt diffusion to reach level y, starting from 0, plus the expected amount of time
it takes the diffusion to go from level y back to 0. In other words,

E [T1] = (eβy − 1)

[

1

β2
+

1

β

∫ ∞

0
eβu−u2/2du

]

(5.4)

Therefore, by [2, Theorem 4.2 on p. 181], we see that as b → ∞,

a(b)

E [T1]
Tx(b) ⇒ V (5.5)

where V is an exponential random variable with rate one. Moreover, observe that for each y < b

a(b)

E [T1]
=

1

(eβb − 1)
[

1
β2 + 1

β

∫∞

0 eβu−u2/2du
] (5.6)

which does not depend on y. Hence, as b → ∞, we obtain (2.22). A very similar asymptotic result
carries through as well for E [Tx(b)], due to Asmussen [2, Proposition 4.1 on p. 180]. From (2.22) it
follows that the time it takes to reach a level b is roughly exponential in b, which says that extreme
congestion is not observed on relatively short time scales. For β > 0 the mean first passage time is
E [Tx(b)] ∼ 1/|θmax| for x bounded away from b and b → ∞.

5.2 Analytic proof

Consider the Laplace transforms in (2.8) and (2.9) on the scale θ = O(|θmax|) = O(e−βb) in (2.19),
and then scale time as t = T/|θmax| = O(ebβ). Since D0(−β) = e−β2/4 we have

D′
−θ(−β − x)

D−θ(−β)
∼ exp

(

−xβ

2
− x2

4

)

, θ → 0. (5.7)

Then we write M in (2.7) as

M =
sinh

(

b
2

√

β2 + 4θ
)

√

β2 + 4θ

[

√

β2 + 4θ coth
( b

2

√

β2 + 4θ
)

−
2D′

−θ(−β)

D−θ(−β)

]

. (5.8)

For θ → 0 we use (4.3), and the recurrence relation for the parabolic cylinder function D′
p(z) =

− z
2Dp(z) + pDp−1(z), which for p → 0 yields

D′
p(z)

Dp(z)
= −z

2
+ p

D−1(z)

D0(z)
+O(p2). (5.9)
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Then (5.8) becomes

M =
1

2β
ebβ/2

[

(1 + 2e−bβ +O(θe−bβ, e−2bβ))(β +
2θ

β
+O(θ2))− β + 2θeβ

2/4D−1(−β) +O(θ2)
]

∼ 1

β
ebβ/2

(

θ
[ 1

β
+ eβ

2/4D−1(−β)
]

+ 2βe−bβ
)

= e−bβ/2
(θ + |θmax|

|θmax|
)

, (5.10)

θ = O(|θmax|), as D−1(−β) = eβ
2/4

∫ β
−∞

e−u2/2du = e−β2/4
∫∞

0 eβue−u2/2du. Then inverting the
transform in (2.8), using (5.7) and (5.10), yields (with Br a vertical Bromwich contour in the
half-plane ℜ(ξ) > 0)

P (x, t) ∼ |θmax|
2πi

∫

Br

1

1 + ξ
eξTdξ = |θmax|e−T , (5.11)

since θt = ξT if θ = |θmax|ξ. This yields the exponential limit law for x < 0.
If x > 0 so that both b → ∞ and b − x → ∞, then an analogous calculation using (2.9) again

leads to (5.11). However, if x, b → ∞ in such a way that b−x = O(1), then (2.9) leads to the limit

ϕx,b(θ) → e(x−b)β +
|θmax|

θ + |θmax|
[

1− e(x−b)β
]

(5.12)

and this inverts to, on time scales t = O(ebβ),

P (x, t) ∼ |θmax|
2πi

∫

Br

[

e(x−b)β +
1− e(x−b)β

1 + ξ

]

eTξdξ

= |θmax|
[

e(x−b)βδ(T ) + (1− e(x−b)β)e−T
]

. (5.13)

The term proportional to δ(T ) represents a probability mass on the large time scale, which cor-
responds to sample paths that hit b in a short time (at least t = o(ebβ)). The actual density of
P (x, t) does not have mass at t = 0, and finding the expansion of the density on shorter time ranges
would require a different asymptotic analysis, and a different approximation to M . We refer the
reader to [9, 10], where such problems were analyzed in detail for some simpler models. There both
exponentially large and t = O(1) time scales were considered, and they were related to one another
by asymptotic matching.
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