EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Internal slackening scoring methods

Citation for published version (APA):

Slikker, M., Borm, P. E. M., & Brink, den, J. R. (2012). Internal slackening scoring methods. Theory and decision
:an international journal for philosophy and methodology of the social sciences, 72(4), 445-462.
https://doi.org/10.1007/s11238-011-9281-4

DOI:
10.1007/s11238-011-9281-4

Document status and date:
Published: 01/01/2012

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.1007/s11238-011-9281-4
https://doi.org/10.1007/s11238-011-9281-4
https://research.tue.nl/en/publications/dc716594-fa3c-40fd-a03f-c16f756a660a

Theory Dec. (2012) 72:445-462
DOI 10.1007/s11238-011-9281-4

Internal slackening scoring methods

Marco Slikker - Peter Borm - René van den Brink

Published online: 13 October 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We deal with the ranking problem of the nodes in a directed graph. The
bilateral relationships specified by a directed graph may reflect the outcomes of a
sport competition, the mutual reference structure between websites, or a group prefer-
ence structure over alternatives. We introduce a class of scoring methods for directed
graphs, indexed by a single nonnegative parameter ««. This parameter reflects the inter-
nal slackening of a node within an underlying iterative process. The class of so-called
internal slackening scoring methods, denoted by A%, consists of the limits of these pro-
cesses. It is seen that A9 extends the invariant scoring method, while 1°° extends the
fair bets scoring method. Method A! corresponds with the existing A-scoring method
of Borm et al. (Ann Oper Res 109(1):61-75, 2002) and can be seen as a compromise
between A? and A°. In particular, an explicit proportionality relation between A% and
A1 is derived. Moreover, the internal slackening scoring methods are applied to the
setting of social choice situations where they give rise to a class of social choice cor-
respondences that refine both the Top cycle correspondence and the Uncovered set
correspondence.
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1 Introduction

Recently, by the application of scoring and ranking methods in search engines on the
World Wide Web (such as PageRank in the Google search engine), scoring, and rank-
ing methods for directed graphs regained attention in the literature. For an extensive
survey of various scoring methods we refer to Laslier (1997). Kendall (1955) studied
amethod from Wei (1952), which has come to be called the long path method. Daniels
(1969) and Moon and Pullman (1970) reconsidered this method, where Daniels (1969)
introduced a normalized version with a better interpretation from a consistency point
of view as well. We refer to this method as the normalized long-path method. In addi-
tion, Daniels (1969) proposed a different set of fair scores, based on a procedure that
has come to be called the Markov method. A recent detailed comparison between the
Markov method and the normalized long path method is given by Slutzki and Volij
(2006), who refer to them as the fair bets and invariant scoring method, respectively.
Finally, Borm et al. (2002) introduced an iterative procedure resulting in the A-method.

In this article, we integrate the three scoring methods mentioned above into a sin-
gle iterative framework. The three methods are shown to be limits of specific iterative
procedures. In each of these iterative procedures initially each node in the digraph
has an initial score equal to one, and the iteration involves taking the output scores of
the previous step as input scores for the next step. We argue that the basic difference
between these procedures is by how much in every step of the iteration a node itself
shares in the division of its own input score. In fact, we consider a parameterized
class of scoring methods A“ that are obtained by an iterative procedure where in each
step to get (new) output scores, a node shares with a nonnegative weight o € (0, 0o)
in its own current input score, while each of its predecessors shares equally in this
with weight one. The boundary cases « = 0 and @ = oo are defined by considering
well-defined limits. We refer to these scoring methods A% with o € [0, oo] as internal
slackening scoring methods.

The domain of these scoring methods is formed by the class DV of all irreflexive
and connected digraphs (abbreviated to digraphs from now on) on a fixed node set N,
although we will mainly restrict attention to the subclass D{V of digraphs with exactly
one top cycle. The internal slackening scoring method A! coincides with the A-scoring
method of Borm et al. (2002). The definitions of the invariant scoring method / and
the fair bets scoring method F' as proposed in the literature are restricted to subclass
D% of Df’ of digraphs for which the entire node set N is a top cycle. We show that the
internal slackening scoring methods A° and 2> coincide with / and F on this subclass,
respectively, and thus can be viewed as an extension of these methods to a wide range
of digraphs. Since A! is the A-measure of Borm et al. (2002), this scoring method can
be seen as some kind of compromise between the I and F methods. Moreover, on
the class D{V , an explicit proportional relation is derived between the various internal
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Internal slackening scoring methods 447

slackening scoring methods. In particular, the score A for a certain node i can be
expressed in terms of k} , @, and the number of predecessors of i in the underlying
digraph only.

Social choice situations are explicitly considered as an application. Generalizing
the result of Borm et al. (2004) with respect to the A-scoring method we show that
each social choice correspondence associated to an internal slackening scoring method
refines both the Top cycle correspondence and the Uncovered set correspondence.

Finally, we highlight some computational aspects of internal slackening scoring
methods on arbitrary digraphs in DV, i.e., digraphs with the possibility of multiple
top cycles. It is derived that the relative ordering within a specific top cycle does not
depend on the digraph structure outside this top cycle. Moreover, the fraction of the
score coming from a node not contained in any top cycle to a specific top cycle can be
computed explicitly and, interestingly, does not depend on the slackening parameter .

The article is organized as follows. Section 2 recalls basic concepts regarding
digraphs and existing scoring methods. Section 3 formally introduces the class of
internal slackening scoring methods, discusses relations with the invariant method
and the fair bets method, and derives a proportionality result between the inter-
nal slackening scoring methods for the class of digraphs with a unique top cycle.
Section 4 discusses the application to social choice problems. Section 5 highlights
some specific computational aspects for arbitrary digraphs.

2 Preliminaries: invariant, fair bets, and A-scoring methods

We consider digraphs (N, D) with N a finite set of nodes and D C N x N a binary
relation on N. When there can be no confusion about the node set we will just write
D instead of (N, D). We assume the digraph D to be irreflexive, i.e., (i,i) ¢ D
for all i € N, and to be connected, i.e., the related undirected graph in which each
arc is replaced by an edge is connected. The collection of all such digraphs on N is
denoted by DV . In the sequel, we refer to irreflexive and connected digraphs simply
as digraphs.

Let D € DN. D is asymmetricif (i, j) € D implies that (j, i) ¢ D foralli, j € N.
D is complete if {(i, j), (j,i)}ND # @foralli, j € N, i # j. D isatournament if it
is complete and asymmetric. With i € N, the nodes in Sp(i) = {j € N | (i, j) € D}
are called the successors of i in D, and the nodes in Pp(i) = {j € N | (j,i) € D}
are called the predecessors of i in D. The cardinality of these sets is denoted by
sp(i) and pp(i), respectively. By tr(D) € DV we denote the transitive closure of
D, ie., (i, j) € tr(D) if and only if there exists a sequence of nodes (1, ..., h;)
such that hy = i, (hg, hgy1) € Dforall 1 < k <t — 1, and h; = j. The nodes in
Spi) = Sir(py (i) are called the subordinates of i in D. A subset T C N is a top
cycle in D if

i i,jeT = (@,j)etr(D),and

) i¢T,jeT = (,}J) gtr(D).

We denote the class of all digraphs with a unique top cycle by D{V . The subclass Dx
contains all digraphs for which N is a top cycle. Note that every tournament belongs
to Div .
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448 M. Slikker et al.

Further, the N x N-adjacency matrix AP with entries ailj). associated with D is
defined by:

aD 1 if @, j) € D,
’J 0  otherwise.

A scoring method with domain D € DV is a function f: D — R that assigns
a score vector to every digraph in D. Scoring method f: D — RV is efficient if
>ien fi(D) = |N|forall D € D.

In defining the invariant scoring method / and the fair bets scoring method F on
the domain D]Q,[, we follow Slutzki and Volij (2006). The invariant scoring method
assigns to a digraph D € Dx the unique solution 7 (D) of the system!

(D)=

jen ZkeN Akj

D 1i(D) = IN|.

ieN

<——1;(D) foralli € N;

Similarly, the fair bets scoring method assigns to a digraph D € D% the unique
solution F (D) of the system2

F;(D) = ZZ ” Fj(D) foralli € N;
]EN keN L

> Fi(D)=|N|.
ieN
For an interpretation and motivation of these methods we refer to Slutzki and Volij
(2006, p. 80).
Finally, we recall the definition of the A-scoring method on DV as introduced by

Borm et al. (2002). Let D € DV. Define 8%(D) = ey, where ey € RY is the vector
consisting of all ones. Then, for r € {1, 2, 3, ...} define recursively

B (D)
Bl(D) = Z ’(T foralli € N.
jespautiy PPY

Defining the transition matrix TIP as the N x N-matrix with entries ni? given by

1 e o
Pl =1 pp(H+I if(i,j)eDori=j
Y 0 otherwise,

1 Opposed to most of the literature, we normalize to |N| rather than 1.

2 Again, we normalize to |N| rather than 1.
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Fig.1 The digraph of Example 2.1 1

it readily follows that 8 (D) = (HD)l ey forallt € {0, 1,2, ...}. The scoring method
A: DN — RV is defined by

AMD) = tlinolo(l'ID)’eN.

It turns out that A(D) is a stationary distribution of TIP, i.e., TP A(D) = A(D).
Moreover, if D € D{V then TT? has a unique stationary distribution (upon normaliza-
tion), and thus the stationarity conditions together with the fact that >". .y A; (D) = |N||
completely determine A(D).

Example 2.1 Consider the digraph D € Dllg with N = {1,2,3,4} and D =
{(1,2),(1,3),(2,3),(2,4), (3,4), (4, 1)} as represented in Fig. 1.
With

%%%? 0110
D _ 07—— D__ 10011
In” = Oogi and A” = 0001
%002 1000

it follows that A(D), I (D), and F (D) are uniquely determined by efficiency (allocat-
ing a total score of 4) and the equalities

(P — Iy)A(D) =0,
(M" — Iy)I(D) =0,
(MF — Iy)F(D) =0,

where
01%0 0110
I _ Oojl F_|0011
M= oooi ME=1000} |
1000 1000

and 7y is the identity matrix with ones on the main diagonal and zeros off-diagonal. It is
found that A(D) = 55 (8,6,3,6), (D) = 5£(8,6,4,8), and F(D) = 55(8,6,2,4).
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3 Internal slackening scoring methods

In each step of the iterative process underlying the A-scoring method, the current score
of a node is divided among the node itself and its predecessors. In fact, the node itself
receives exactly the same part of its current score as each of its predecessors. This
equal treatment of a node and its predecessors was motivated by a game-theoretic
perspective in Borm et al. (2002). Here, we generalize this approach and introduce a
parameter o € [0, oo] representing the sharing weight of a node in his own current
score, assuming that all of its predecessors have equal weight, say 1. Obviously, with
respect to the A-scoring method, o = 1.
First, we focus on the case « € (0, 00). Let D € DV. Define ,B“’O(D) = ey and

prly= >

JjeSp(i)

YD) BZ0(D)
- +a -
po(j) +a pp(i) +a

foralli € N. For o = 1, this measure is studied by van den Brink and Borm (2002).3
The following example illustrates the impact of the newly introduced parameter «
on the scores of the nodes.

Example 3.1 Consider the digraph D of Example 2.1. Then, for « € (0, 00),

pel(D) = ( 1 n 1 )+ o ( 1 n 1 )+ o
o l+a 24« l+o 240 24« 1+’

(553) e () o5

24« 240 \1l+4+a«a 2+«

1
=(1+ 1+ « 11— ,1—#).
2+« I+a)2+a) 2+« I+a)2+a)

Taking the scores provided by S% ! as new input scores on the nodes we obtain f%2
etc. By repeating this procedure, we recursively define for ¢ € {1, 2, 3, ...}

B(Dy= >

J€SD ()

gyl (D)
; +a ;
pp(j) +« pp(i) +a

foralli € N.

Definition 3.1 With o € (0, 00) the internal slackening scoring method A* : DN —
RY is determined by

24(D) = lim (D).

forall D € D.

3 We remark that this measure for o = 1 is different from the original B-measure considered in van den
Brink and Gilles (2000), which, in a restricted setting, comes down to a similar definition with @ = 0.
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Along the lines of Borm et al. (2002) it can be shown that A equals the A-scoring
method. For the extreme cases « = 0 and o = oo, A* will be defined separately later
on.

For D € DV it follows that A% is a solution to the following system of equations:

A4 (D o
AY(D) = Z f,( ) o ’\’.(D) foralli € N; (1)
st pp(j) +a pp(i) +a
> A#(D) = IN| )

ieN

For general D € DV, the system determined by (1) and (2) does not necessarily have
a unique solution.

The iterative process underlying the definition of A* can be seen as a Markov chain
with N x N-transition matrix P%(D) (for the exact definition of this matrix we refer
to Section 5). As all diagonal elements of P* (D) are positive, all states are aperiodic.
Forall D e D%, i.e., digraphs with N as its unique top cycle, all states are accessible
from each other, i.e., the chain is irreducible. It is well-known that a Markov chain on
a finite set of states that is aperiodic and irreducible converges to its unique station-
ary distribution. This in turn implies that for all D € D% the solution of the system
determined by (1) and (2) is unique. This result can be extended to D{V by noting that
the relative asymptotic behavior in the top cycle does not change by adding transient
states (states not in a top cycle), and all transient states end up with score zero.

In this iterative setting, our newly introduced parameter o has an appealing inter-
pretation. In each step of the procedure above the current scores of the nodes are
reallocated. In fact only part of the score of a node remains with this node and the
remainder will be distributed (equally) among its predecessors. So, as « increases the
internal slackening increases as well.

The following theorem provides a proportionality result between internal slack-
ening scoring methods A* with & € (0, 0o). It is seen that for D € Div the score
A¥(D) can be expressed in terms of A} (D), the internal slackening parameter «, and
the number pp (i) of predecessors of i. For two vectors x,y € R’ ,, we will write
x ~ yifthereis ak > 0 such that x; = ky; foralli € {1,...,n}.

Theorem 3.1 Let D € D{V and let o € (0, 00). Then

24Dy ~ (k}(D) 2(pp (i) + a) )iEN'

(I +a)(pp@) + 1)

Proof As D € D{V and o € (0, 00), the system determined by (1) and (2) has a

unique solution. Clearly, it suffices to show that the vector (A} (D) %)ie N
is a solution of (1). Take i € N. Then,
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452 M. Slikker et al.

| 2pp(j)+a) | 2pp(i)+e)
> D) Tt |, M P Traen+D
iesot) pp(j) +« pp) +a
224(D) 2:1(D)
- Z 1 )j(') 1)+ (1 Ypp()+1)
jeSD(i)( +a)(pp(j) + +a)(pp(i) +
Al ;D) 2
T lta . 2 1 o o ()
o« L= o) +1 T+ @po@+ D

2 (- MDY 2o AN (D)
IT+al™ pp@)+1) " A+a)pp@)+ 1)
2(pp() + @)

= : 2H(D)
(1 +a)(ppG) + 1)

The third equality follows by (1) for the case « = 1. We conclude that vector
2(pp(i)+a)
(x1(D) (1+ap)l(’ lL)(l;)l+l))teN is a solution of (1).
This completes the proof. O

We apply this theorem in the following example.

Example 3.2 Reconsider the digraph D from Example 2.1 and 3.1. Since A' (D) =
A(D) = 55(8, 6,3, 6) we derive

A“(D)~(8~2+2a 2+ 2a 4+ 2a 4+2a)

242" 2422’ T 343a’ 343«

So, for example, A3(D) ~ (8,6, 21, 5). As the sum of the scores shared equals 4, we
obtain A3(D) = %(16, 12,5, 10).

Now we turn to the extreme cases ¢ = 0 and ¢ = 00. Following the lines set out
by Definition 3.1 for & € (0, co) will be problematic as will be illustrated in Example
3.4. Note however, that the right-hand side expression in Theorem 3.1 has well-defined
limits for a going to O or infinity. This leads to the following definition for A° and A%
on D{V .

Definition 3.2 The internal slackening methods ° : DY — RY and 1> : D) —
RY are determined by

)Ll( )2PD(i)1
N+
1 (D) := N|- WS 3
> jen (D) BB
. M (D)ot
WD) = IN| - o PO )
2 jen 2 (D)ot

for all D ED{V andi € N.
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Fig.2 The digraph of Example 3.4 3
1 2
43 )

Example 3.3 For the digraph D considered in the previous examples Definition 3.2
leads to

2(D) = 4 (8,6,4,8) and .>°(D) = 4 (8,6,2,4)
_26 s Vs ’ - 20 s My ’ M

Note that A°(D) = I(D) and A>°(D) = F(D). In fact, this holds for any D € DY as
will be proven in Theorem 3.2.

The definition above for o equal to 0 and for o equal to infinity can be seen as
taking limits for ¢ as well as «. The following example illustrates that the order of
taking limits is relevant.

Example 3.4 Consider the digraph D € D% with N = {1,2,3,4,5}, and D =
{(1,2),(1,4),(2,3), (3, 1), 4,5), (5, 1)} as represented in Fig. 2.
Straightforward calculations show that

QL5 1LY ifre{l,47..}%
1im0,8°‘”(D) =1@Q. 5. L5 ifte{2,58, ...}
“ (,1,1,1,1)  ifre(3,6,9,...}

So, lim;_ s limg o B¥1(D) does not exist. Using Definition 3.2 one finds that
D) =@G3,2.2.2.4

The following lemma provides equations satisfied by the two extreme internal
slackening scoring method.

Lemma 3.1 Let D € D{V.

(i) Foralli € N,

(D)
po(j)’

Woy= >

Jj€Sp@)

4 Using periodicity arguments one can show that it is not a coincidence that A9(D) = %((2, I, % L, %) +
Qi1 n+a ).
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(ii) If the unique top cycle of D consists of at least two nodes, then for alli € N

A (D)
AX(D) = Z U,
A= pp(i)
J€Sn()
Proof (i) Leti € N.Put§ = ——2Y—— From Definition 3.2 and Eq. (1)
2jen (D) gt
for @ = 1 we obtain
0 1
> ST > L
. o
oo o) A () +
Al(D
=s( 2/ (D) - M@®)
pp(i) +1

=20(D).

(i) Let i € N. Note that the condition in this part of the lemma implies that

. 2jen A}'(D)' 2p?§£1
pp(i) # 0. Puty = S—— 25—
2 jen 4 (D) i

. From Definition 3.2 and part (i) we

obtain
5 Dy 5 A?@)
iesni) pp(i) PD(l)jEsD(l.) pp(J)
Y Lo
= )
pp (i) (D)
= 2.°(D).

]

The following theorem illustrates that the two extreme internal slackening scoring
methods coincide with the invariant and fair bets scoring methods in case all nodes
belong to the top cycle.

Theorem 3.2 Let D € DY. Then A°(D) = I(D) and (D) = F (D).

Proof From Lemma 3.1 (i) it follows for alli € N

1
WD) = Z (_)A?(D)
jespy PPY
D
4ij 0
=) ———5ri(D),
j%:\/z“keNalg !

where the second equality holds by definition of A”. Since DieN A?(D) = |N]| it
follows from the definition of 7 (D) that A.°(D) = I (D).
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It follows from Lemma 3.1 (ii) that,® for alli € N,

AT (D)
pp (i)

UED)
JE€SD (@)
D
4ij %
= > 5D,
D"J
jeN 2 ken i

where the second equality follows from the definition of A”. Since Dien AM°(D) =
|N| it follows from the definition of F (D) that A°°(D) = F(D). O

4 An application to social choice situations

In this section, we apply the internal slackening scoring methods to define a specific
class of social choice correspondences. We first recall the basic framework of social
choice situations. A social choice situation is a triple (A, N, p) where A is a finite
set of agents, N a finite set of alternatives (later on the nodes of a digraph) and the
profile p = {p,}aca a collection of weak orders on N describing the preference rela-
tions of the agents over the set of alternatives. With i, j € N the notation i p, j
means that individual a prefers alternative i to alternative j. Throughout we assume
that individual preference relations are weak orders, i.e., reflexive, weakly complete,
and transitive. Note that a social choice situation (A, N, p) can be identified with the
preference profile p. The class of all social choice situations p with set of agents A
and set of alternatives N is denoted by S4-V.

Although it is straightforward to find the most preferred alternative(s) in a weak
order, this is not the case for a preference profile consisting of a collection of such indi-
vidual preference relations. A social choice correspondence C onasubclassS C S AN
assigns to each p € S a non-empty social choice set C(p) of N. For surveys on such
social choice correspondences we refer to Fishburn (1977) and Laslier (1997).

Given a social choice situation p € SAV the corresponding simple majority win
digraph D) € DY is defined as follows. With i, j € N, (i, j) € D, if and only if
np(, j) > np(j, i), wheren,(i, j) = {a € A|i p, j and =(j py i)}| is the number
of individuals that strictly prefer i to j in the profile p.

A social choice correspondence C on § C SAN i called majoritarian if the
social choice set C(p) only depends on the simple majority win digraph D, for all
p € S. Two widely applied majoritarian social choice correspondences are the Top
cycle correspondence and the Uncovered set correspondence. Schwartz’s Top cycle
correspondence TOP (cf. Schwartz (1990)) assigns to every social choice situation
p € SAV the union of all top cycles in D p- To define the Uncovered set correspon-

5 For [N| = 1, there is nothing to prove. For [N| > 2 obviously the condition in Lemma 3.1 is satisfied
because D € D%.
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dence we introduce the following terminology. Let D € DY and i, j € N. Then we
say that node i is covered by® node j if

i (,i)eD,
(i) (i,k)eD= (j,k)eD forallk € N,and
(iii) (k,j)e D= (k,i)e D forallk e N.

The Uncovered set correspondence UNC assigns to every social choice situation
p € SAN the set of alternatives that are not covered by any other alternative in D,,.

Given an internal slackening scoring method A%, we define the corresponding major-
itarian social choice correspondence C* that assigns to every social choice situation
the set of alternatives that have the highest A%-score. We restrict attention to the
domain S of social choice situations for which the corresponding simple majority
win digraph has a unique top cycle.” Note that this class contains all social choice situ-
ations for which the simple majority win digraph is a tournament: a regular assumption
in the social choice literature. Formally, the social choice correspondence C* on S is
defined by

CY(p) ={i € N | X¥(Dp) = 1%(D,) forall j € N}

forall p € S;.

Borm et al. (2004) showed that the social choice correspondence C!is arefinement
of the Top cycle and Uncovered set correspondences. The main result of this section
shows that this result can be generalized to any C* with « € [0, oo].

Theorem 4.1 Let p € Sy. Then, C*(p) € TOP(p) and C*(p) € UNC(p) for all
o € [0, oo].

Proof For o = 1 the statements in the theorem follow from Theorem 4.3 in Borm
et al. (2004). Moreover, from well-known results on stochastic matrices as discussed
in, e.g., Berger (1993) it follows that A} (Dp) = 0fori ¢ TOP(p) and )»il (Dp) >0
fori € TOP(p).

Consequently, using Theorem 3.1 for @ € (0, co) and Definition 3.2 for « = 0
and o = oo it follows for all o € [0, oo] that AY(D)) = 0 forall i € N \ TOP(p),
and A;?‘(Dp) > 0 for all i € TOP(p). Hence, C*(A, N, p) € TOP(A, N, p) for all
a € [0, ool

Now, let i € C*(p) and suppose that i € UNC(p). Then thereisa j € N \ {i}
with (j, i) € Dy, Sp, (i) < Sp,(j) and Pp,(j) S Pp,(i). Since i € TOP(p), also
j € TOP(p), and thus )L? (Dp) > 0. To shorten notation, abbreviate D, to D and
pp, (k) to p(k) forallk € N.

First, consider the case « € (0, 00).

6 We follow the definition of Borm et al. (2004), which generalizes the definition of Laslier (1997) from
tournaments to arbitrary digraphs. Laslier (1997) uses the covering relation that only requires conditions
(i) and (ii). Clearly, for tournaments both definitions are equivalent.

7 Section 5 will illustrate that this assumption can be dropped easily.
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Then by rearranging terms in (1), forallr € N,

24 (D
(1 - p(,,;xﬂ) so= 3 p(]’;)(—ﬁa
As
p(j) < plD) = (1 _ p(};"ﬁ) - (1 B p(:ﬂ)
and
. o 22(D) 2(D)
Sp(j) 2 Sp() U li} = keszu‘;j) m ] keSZD:(i) m

we conclude, )J}‘ (D) > A (D), contradicting the fact thati € C*(p).
Second, consider « = 0. Using Lemma 3.1 (i) twice we find

MDY= D,

keSp(j)

A)(D)
p(k)

. (D) WD) > M(D)

esoi PO PO Geauan PR
1 A0(D)
BTGRP VR oy
p kesp(N\Sp@utin P
> 2)(D).

Again, this contradicts with the fact that i € C%(p).
Third, consider @ = oo. Since both i and j belong to TOP(p), Lemma 3.1 (ii)
implies

52(D)

(D)= > S

/ ey p(j)
B AZ(D)  AF(D) AX(D)
=2 0t v 2 ()

keSp (i) keSp(H\(Sp)U{i})
H+1 12°(D)
2(—"(), )A;”(D)Jr > -
p(J) p(j)

keSp(H\(Sp)HU{i})
> A°(D).

This contradicts with the fact that i € C%(p).

So, for all @ € [0, co] we may conclude that i € C*(p) implies that i € UNC(p)
and hence, C%(p) € UNC(p) O
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5 Internal slackening scoring methods on DV

This section highlights some computational aspects of the internal slackening scoring
methods A%, o € (0, 00), on the general domain DN of digraphs, i.e., with the possi-
bility of multiple top cycles. Furthermore, the definition of A° and 1> is extended to
DN,

Let D € DN and « € (0, 00). In line with Borm et al. (2002) for the case o = 1
the iterative procedure underlying the definition of A* can be explicitly determined by
an N x N-transition matrix P%(D) which entries p;.’;. (D) are given by

m if (i, j) € D;
pij(D) =\ poiyre =
0 otherwise.

Clearly,
A% (D) = tlim (PY(D)) en.
—> 00

Now let T be atop cycle of D. For j € N define p% () to be the probability of arriving
in T starting from j according to the stochastic process associated with the transition
matrix P%*(D) defined above. Furthermore, define M C N as the set of nodes not
contained in any top cycle of D. Then p7.(j) is uniquely determined by

1 ifjeT;
p7(j) =10 _ifjeN\MUT);
ier Pj; + 2iem PP if j e M.

The following lemma implies that o7 () is independent of the explicit choice of the
slackening parameter . From this lemma on let p7 (j) = o7 (j) for all « € (0, 00).

Lemma 5.1 Let D € DV, T C N atop cycle of D, and a € (0, 00). Then p7(J),J €
M, is uniquely determined by the system

|7 N Pp(j)l n 1 D

(i IljeM.
o) o) pr() forall j e

pr(j) =
ieMNPp(j)

Proof By definition p.(j), j € M, is uniquely determined by

PEG) =D p%+ D plipfG) forall j € M,
ieT ieM
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equivalently by
1
= D ————t D> —————pf)
ieTNPp()) po(j) +a ieMNPp(j) po(j) +a
o
+———p%(j) forallje M,
po()+a’ T /
ie., by
j TN Pp(j 1
pD.—(J)/O%(j) = | .D(J)| - Z p5(@i) forall j € M,
po(j) +a rp(j)+a  pp(j) +a =
equivalently by
TN Pp(j 1
oy = TOPDDL > pfG) forall j e M.

pp(j) pp(Jj) i eMNP()

]

The next theorem shows that the relative ordering within a specific top cycle does
not depend on the digraph structure outside this top cycle. For D € DV and a top
cycle T of D, define the restriction Dt € DIT by (i, j) € Dr ifand onlyif (i, j) € D
foralli, j e T.

Theorem 5.1 Let D € DV, T a top cycle of D and a € (0, 00). Then

2 jen Pr(j)

MDY=

A (Dr)

foralli e T.
Proof By (1), A*(D) is a solution of the system

Xi

X; = Z i + foralli € N. @)
A~ pp(j) +a pp(i) +a
Jje€Sp (i)

As )»‘}‘ (D) = 0 for all nodes j that are not in a top cycle and nodes in a different top
cycle cannot be successor of a node in 7', we find that (A{ (D));cr is a solution of the
system

X Xi .
X; = Z - + - foralli e T. (6)
JeSyNT rp(j) +a pp(i) +a
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Fig.3 The digraph of Example 5.1

As Sp(i)NT = Sp, (i) and pp(i) = pp,; (i) foralli € T, (AY (D));er is a solution
of the system

X = i fo— foralli € T. (7
jeSmn @) por(j) + Ppr (i) + o

Consequently, (% ; (D)) o isasolution to (7) as well, while simultaneously

ZZGTZ ‘T/‘)m) ¢(D) = %ZjeNpT(j)z|T|.As(7)corresp0ndst0(l)

for Dy, we conclude that (L (D)) coincides with the unique solution
2 jen PN I ieT

of (1) and (2) for Dr. This completes the proof. O

On the basis of Lemma 5.1 and Theorem 5.1 we are able to consistently extend the
definition of 1° and A*° to the domain DV

Definition 5.1 Let D € DV. Then

IT|

39Dy = MAO(DT) if i is contained in the top cycle T of D;
' otherwise.

and

A (D) = | WX?O(DT) if i is contained in the top cycle T of D;
0

otherwise.

We conclude by providing two examples.

Example 5.1 Consider the digraph D € DN with N = {1,2,3,4,5,6,7,8} and D
as represented in Fig. 3.
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Fig.4 The digraph of Example 5.2 4 5

Clearly, there are two top cycles, 71 = {1, 2, 3, 4} and T» = {5}. Moreover, solving
the system of Lemma 5.1 one finds that pr, (6) = %, or, (1) = %, and pr, (8) = %
Consequently, using Theorem 5.1 and Definition 5.1,

47 47 4
20Dy = —2%Dr) = ——(8,6,4,8
1, (D) 3 (D7) 3226( )
Mo(D) = ﬂi(s 6,3, 6);
TI - 3223 ) ) £ £

47 4
12X (D) = — —(8,6,2,4);
7, (D) 3220( )

68

AA(D) = A(D) = 23°(D) = L
while X?(D) = k} (D) = A°(D) =0 foralli € {6,7, 8}. Hence, node 5 is ranked
first according to A° and 1!, and second according to A°°.

Example 5.2 Consider the digraph D € DV with N = {1,2, 3,4, 5} and D as repre-
sented in Fig. 4.

Consider an arbitrary a € (0, 00). Node 2 will end up with score 11, consisting of
his own starting score in the iterative process and half of the starting score of node 1.
As node 1 is not in a top cycle he will end up with score 0. Nodes 3, 4, and 5 equally
divide the total score of their top cycle (which includes the other half of the starting
score of node 1) resulting in A% = (O, 1%, 1%, lé, 1%) for all @ € (0, o), which is
straightforwardly extended to hold for all « € [0, oo].

Asfora =2

(x}(D) 2(pp(0) + ) ) :(0,2,11,11,11)74(0,11,11,11,11)
1+ a)(pp@)+ 1)/ieN 6 6 6 2 6 6 6
= 29(D).

we conclude that the proportionality result of Theorem 3.1 cannot be extended to DV .
We stress that the proportionality result does hold per top cycle.

6 Concluding remarks
We dealt with the ranking problem of the nodes in a directed graph and introduced a

class of scoring methods for directed graphs, indexed by a single nonnegative param-
eter «.
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For directed graphs with all nodes in the unique top cycle the scoring methods
for ¢ = 0 and ¢ = oo coincide with the well-known invariant scoring method and
fair bets scoring method (cf. Slutzki and Volij (2006)), respectively. As our scoring
methods are defined on the set of all connected digraphs, these two extreme internal
slackening scoring methods provide natural unique extensions of both fair bets and
invariant scoring methods to directed graphs with several top cycles. For o« = 1 the
scoring method corresponds with the existing A-scoring method of Borm et al. (2002)
and can be seen as a compromise between A? and A%°.

Existing scoring methods generally focus on ranking within a top cycle. Our meth-
ods allow comparisons between top cycles as well. In doing so, the total score of the
nodes in a top cycle is shown to be independent of the specific internal slackening
scoring method selected.

In addition, we provided an explicit proportionality relation between A% and A! for
directed graphs with a unique top cycle. This facilitates comparison between the results
of the different internal slackening scoring methods and the well-known methods they
were shown to coincide with. For general digraphs this proportionality relation does
not hold for the full set of nodes, even though it holds per top cycle.

Finally, we introduced social choice correspondences with respect to the scoring
methods presented. Each of these correspondences is shown to be a refinement of
two correspondences from the literature, namely the Top cycle and Uncovered set
correspondences.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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