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CHAPTER 1 INTRODUCTION AND SUMMARY 

The scattering of protons is an important tool for investigation 

of properties of atomic nuclei. These properties are reflected in the 

values of the parameters of the nuclear model that we adopt. Using 

this model and the general quantum-mechanical scattering theory, the 

observables are calculated and compared with the experimental results. 

The parameters of the model are varied in order to optimize the fit 

to the experimental data. When we use polarized protons as projectiles, 

in addition to the cross sections also analysing powers are obtained, 

which, in some cases are more sensitive to the values of the nuclear 

model parameters. 

The experiments described in this work form a part of a larger 

program of experiments at the EUT, covering a wide range of nuclides. 

The choice of the nuclei has the following reasons. From the 

literature it is known that the analysing powers for the first excited 

state of some nuclides having one closed shell, or a nearly closed 

shell, cannot be described with 'normal' parameters. One example is 

the z+ state of 54Fe (N=28). So all our target nuclides have (nearly) 

one closed shell namely: 60 •64Ni (Z=28); 86sr (N=48); 88sr (N=50); 
110,112,114Cd (Z=4S); 115ln (Z=49 ); 116,118,120,122,124Sn (Z=SO). 

lloreover often a series of isotopes is in itself interesting for the 

investigation of the effect of increasing neutron numbers on the 

experimental data and hence on the parameter values. 

In our experiment, as described in chapter 2, we used polarized 

protons of 20.4 or 24.6 MeV. With the use of a special ion source it 

is possible to polarize the proton spins before they are accelerated 

by the A. V. F. cyclotron of the EUT. The energy range of the eye lot ron 

is 3 to 26 MeV for protons. The accelerated protons are transported 

to a scattering chamber where some of these projectiles are scattered 

by the nuclei in the thin target foil. It is possible that in this 

process a nucleus is left in an excited state. In the detectors the 

energy spectrum of the scattered protons is measured. The different 

peaks in such a spectrum correspond to the energy levels of the target 

nuclide. The normalized number of counts in each peak is the 

differential cross section, da(e)/dn, for that incident proton energy, 



final state and scattering angle. We have developed an automatic 

spectrum analysing program, that fits the peaks and sorts out all 

data. We always measured two spectra, which only differ in the 

direction of the beam polarisation P, namely up (t) and down (+). 

The unpolarized cross section is now 

do(e) = ~ (do(e,t) + do(e,+)) 
dQ 2 dn dn 

and the analysing power is 

A(e) = __ 1 __ (do(e,t) ~ do(e,+))/(do(e,t) + do(e,+)) 
-;r + dQ dQ dQ dO 
l"'•n 

where~ is the unit vector product of the linear momenta of the 

projectile and the ejectile. 

( 1.1) 

( 1 • 2) 

Using an energy of around 20 MeV the direct scattering theory, 

as sketched in chapter 3, is supposed to be appropriate. In the 

application of this theory to our data, we adopt a model for the 

nucleus. We have used two currently available models for the nuclear 

structure part, namely the collective or macroscopic model and the 

microscopic or shell model. In the collective theory the nucleus is 

considered as a whole while in the microscopic model the motion of 

the individual nucleons is taken into account. 

In chapter 4 the analysis of our data with the collective model 

is presented, at first for the elastic scattering and then for the 

inelastic scattering. 

In all our cases the elastic scattering was the dominant process, 

which we analyzed with the optical model. With a chi-squared 

minimalization code the optical model parameters were calculated. The 

parameters found were in good agreement with standard sets parameters 

from the literature. Due to the additional analysing powers the 

parameters were well determined. 

For the description of the inelastic scattering we used the 

distorted wave Born approximation (OWBA) or in some cases the coupled 

channels (CC) method. In the collective model the excited nuclear 

states are considered either as vibration of the nuclear surface or as 

rotations of a permanently deformed nucleus. So the optical model 

potential has non-spherical terms, which give rise to the excitation 
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of the nucleus. The strength of this deformation is introduced as a 

parameter. The deformation parameters found are in good agreement with 

the values from the literature. In general the theoretical curves fit 

the experimental angular distributions well. For the description of 

our analysing powers no exceptional deformation parameters are needed. 

For 60 Ni we performed some calculations with the CC approach, 

since for 60 Ni the coupling between the ground state and the first 

excited state is rather strong and the slope of the cross section of 

the 2+ state could not be described by the DWBA. Only small 

differences, however, between the CC and DWBA curves were found so 

the more elaborate CC analyses was abandoned. 

Some higher excited 2+ and 4+ states of 60 Ni could be described 

rather well as a mixture of one and two phonon contributions in the 

CC approach. By varying the mixing parameter we obtained information 

about the structure of these states. 

ll51n is the only odd-A nucleus, which we investigated. The L­

values found with the collective DWBA analysis are in good agreement 

with the data from the literature. Also the deformation parameters 

agree well with those predicted by calculations with the weak­

coupling model. 

In the microscopic analysis, presented in chapter 5, the shell 

structure of the nucleus is taken into account. In the shell model an 

excitation is a jump of a valence nucleon from one shell-model orbit 

to another. It is assumed that the nucleons in the inner shells, the 

socalled core nucleons, do not partake in the microscopic process. In 

the field of all other nucleons the two body interaction takes place 

between the projectile and a valence nucleon, so an effective nucleon-

nucleon interaction is needed. We used two 

described in the literature. For 116sn and 

different interactions, 
124 Sn we performed 

microscopic calculations for the first 2+, 3- and 5- states. We have 

chosen these Sn isotopes because in the literature already extensive 

microscopic analyses have been described, but at that time analysing 

power data were not yet available. In addition the spectroscopic 

amplitudes needed were available from recent BCS calculations. An 

important feature of this model for the Sn nuclei is that the Z=50 

core is not taken as completely inert, but that a few proton-hole 

excitations are allowed. 
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The resulting microscopic curves, however, describe the structure 

and the height of the cross sections rather badly. The structure is 

too flat and the height too small. In the first place an imaginary 

contribution can be added to the microscopic contribution in order to 

improve the form of the cross sections. Hereto, as usual, the 

collective imaginary contribution is used. The importance of the 

diverse contributions is discussed. 

In addition the height of the cross sections is increased using 

four methods. In all methods the enhancement of the cross section is 

due to the interaction of the projectile with the, up till now 

assumed inert, core. This is the socalled core polarization. We have 

developed a special search routine that could determine very fast the 

strengths of the various contributions. In the first two methods the 

core polarization is accounted for by enhancing the proton and neutron 

charges, so taking effective charges according to two different 

recipes. Either both charge parameters were varied in a fit to all 

observables, or the proton charge was calculated from the transition 

probability and the neutron charge was found from the fit to the cross 

section and analysing power. In the first procedure the fit to the 

analysing power of the z7 states was better then in the second one. 

In the other two methods, which differ only a little, the core 

polarization is accounted for by adding real and imaginary collective 

terms, to the microscopic contributions. Now no effective charges are 

used, but a core coupling parameter appears. In alI cases these 

methods give a good description of the data. Also now the s; state of 
124sn could be described satisfactorily, since a relative large core 

polarization term was added. 

In conclusion we can say that the elastic scattering of polarized 

protons us provides with reliable optical model parameters. The 

inelastic scattering offers a good testground for the collective and 

microscopic nuclear models. In both cases the analysing powers can 

. play an important, if not decisive role. 
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CHAPTER 2 THE EXPERIMENT 

2.1 Introduction 

In this chapter we give an outline of our experimental 

arrangement. The second section deals with the production of the 

polarized protons. In section three the targets used are listed. Next 

the detection of the scattered protons is treated. Some comments on 

the measuring procedure follow in the fifth part of this chapter. The 

extraction of the experimental cross sections and analysing powers 

from the spectra is described in the last part. Additional information 

concerning the experiment can be found in the thesis of Melssen 

(Mel78). 

2.2 Production of the polarized protons 

For the production of the polarized protons we used an ion source 

of the atomic beam type. A description of the physical principles and 

the operation of such a source can be found a.o. in the papers of 

Clausnitzer (Cla56), Glavish (Gla70) and Clegg (Cle75). The ion source 

in our laboratory, that was developed and constructed by Van der Heide 

(Hei72), delivered 2-4 ~A of 5 KeV protons with a degree of 

polarization ranging from 65% to 85%, depending on the vacuum 

cond i t ions . 

The injection of the protons into the A.V.F. cyclotron is done 

radially with a trochoidal injection system which is a copy of the 

Saclay one (Beu67). The electric field produced by appropriately 

shaped electrodes gives a force acting on the injected prptons that 

compensates the Lorentz force due to the magnetic field of the 

cyclotron. We measured the transmission efficiency of the injector 

which was as good as 70% in a stable situation. 

The acceleration and extraction of the polarized beam turned out 

to be rather difficult. As the aperture of the injector structure was 

only eight mm, probably a considerable part of the beam was cut off. 

So the system was very sensitive to any oscillations and instabilities 

during the acceleration process. First of all, an asymmetric 

excitation of the inner correction coils of the cyclotron proved to be 
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necessary to get any accelerated beam. An additional problem arose 

from the fact that the beam did not move exactly in the median plane 

during the first part of the acceleration, but instead moved a bit 

upward (Bot81). Also the position of the dee was very important. To 

optimize the intensity, the injector orifice is adjustable with 

respect to the puller in all directions. During the experiments 

described in this thesis, the intensity of the extracted beam was 

10-25 nA at 20 MeV and 5-15 nA at 24 MeV, with an energy-spread of 

60-90 keV. 

The extracted beam was transported over a distance of about 40 m 

to the scattering chamber. By means of five bending magnets (5, 45, 

45, 30 and 30 degrees in succession), twenty quadrupoles and five 

steering magnets (Hag70), we achieved a spot of less than two mm in 

diameter on the target in the scattering chamber. The beam transport 

system was used in a doubly achromatic mode to get as much intensity 

on the target as possible. So the energy spread was, of course, the 

same as directly after the extraction. The scattering chamber was 

equipped with ten probes (d·iaphragms etc.), for monitoring the beam 

intensity and position. With these probes an accurate tuning of the 

beam was possible. We set as criterion that at most two per cent of 

the intensity should fall on a diaphragm with a three mm diameter 

aperture placed in the position of the target. The beam current 

passing through this aperture had to fall on the inner section of the 

Faraday cup located two meters further. So we were sure that all 

intensity fell on the ten mm diameter target, and that the target 

frame would not be hit by beam particles in order to avoid 

contributions to the background in our energy spectra. 

2.3 Targets 

As target we used self-supporting foils. AI I targets were 

obtained from A.E.R.E. Harwell, except the 115 1n and the thin 116sn 

and 118sn targets which were manufactured at the KVI of the university 

of Groningen. Table 2.1 lists the targets that we used and gives their 

isotopic compositions. 

6 



Table 2.1 Isotopia composition the used targets (in%). 

2.!! I mg/cm 2 

tar9et A 115 116 117 118 119 120 122 124 

116Sn 0.74 84,4 1.56 6.5 0.74 5.2 0.3 0.35 
118Sn 0.02 0.37 0.79 95.75 1.22 1.61 1.15 0.07 
120Sn <0.05 0.20 0.12 0.5 0.39 98.39 0.15 0.26 
122Sn <0.05 0.34 0.17 0.91 0.91 4.72 92.25 1.12 
124Sn <0.05 2.33 1.21 3.99 1.40 5.69 1.40 83.98 

!i 1 mg/cm 2 

tar9et A 108 110 111 112 113 114 116 

110Cd <0.22 92.94 3.27 2.34 0.31 <0.74 <0.05 
112Cd 0.05 0.24 2.01 95.53 1.34 0.71 0.05 
114Cd 0.29 0.18 0.15 1. 75 0.31 96.97 0.34 

.§..!:. 2 mg/cm 2 mylar backing 

tar9et A 84 86 87 88 

86Sr <0.05 97.6 0.68 1.73 
88Sr ;:0.002 0.065 0.184 99.75 

!!!_ 1 mg/cm 2 

tarset A 58 60 61 62 64 

60Ni 0.71 99.85 <0.02 <0.02 <0.02 
64Ni 2.14 0.94 0.05 0.43 99.44 

Gronin9en: (~ 0.5 ~!ai) 
115 1 n 99.99% 
116sn 95.6 % 
118Sn 94.9 % 
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2.4 Detection of the scattering protons 

For the detection of the scattered protons we used two arrays of 

four detectors, indicated in fig. 2.1 as 01-04 and 05-08, respectively. 

One array was mounted on the upper lid, the other on the lower lid of 

the vacuuf!l chamber. The detectors attached to the upper lid were 

placed at a distance of 25 em from the target, and had an angular 

acceptance of l degree. They were used for measurements at scattering 

angles between -20 and +120 degrees. The lower detectors were located 

at 12.5 em from the target and were used for the measurements at 

angles from -60 till -165 degrees. The angular acceptance of the 

detectors in this backward block was two degrees. 

Perpendicular to the scattering plane i.e. parallel to the 

polarization axis of the incident protons, we placed two detectors to 

monitor the beam intensity. This monitoring is then independent of the 

direction of the beam polarization. These monitor detectors were 

placed at scattering angles of 45 degrees above and below the reaction 

plane defined by the target and 01-08. We used the sum of the counts 

from these out-of-plane detectors as a clock signal for the reversing 

of the polarization direction. 

In the scattering chamber eight targets could be installed. Their 

positions were controlled remotely. One of these targets was the 3 mm 

aperture mentioned before. 

8 

detectors ,,,05-08 
position 
out of plane 

, _ -~--().2!.!-e~tors . --· 
target ,---.-----, 

Fig. 2.1 . The main saattering ahambev, ¢ 56 am x 18 am 
and the polarization monitov ¢ 18 am x 13.5 am. 

-



Downstream of the main scattering chamber the beam polarization was 

monitored in a separate smaller scattering chamber. The analysing power 

of the elastic scattering from 12c at a scattering angle of 52.5 degrees 

is nearly independent of the energy from 12 till 16 MeV, and equals 67% 

(±1%), see H.O. Meyer et al., Nucl. Phys. A269 (1976) 269. So we chose 

this angle and energy range for the polarization monitoring. It was then 

necessary to degrade the beam energy to a mean energy of 16 MeV before 

the protons were scattered by a thin polyethylene foil. 

An additional detector was placed above the reaction plane, like 

in the main scattering chamber, to monitor the beam intensity on the 

polyethylene target. Since the reversal of the polarization direction 

is timed by the two monitor detectors in the main scattering chamber, 

it could happen that inhomogeneities (e.g. pinholes) in the targets 

combined with a small drift in the beam position would result in 

unequal integrated intensities on the polyethylene target for the two 

polarization directions. This detector allowed us to correct the beam 

polarization for such effects. Fortunately the measured differences 

were always small, so the beam polarization was measured correctly. 

As an accurate and extra check for the value of the beam 

polarization we always measured the elastic scattering from 12c in 

the main scattering chamber. We compared the angular distribution of 

the analysing power with data from the literature and with our own 

previous measurements. So the absolute value of our analysing powers 

was determined well. 

The eight detectors, 01-08, were two mm thick Si surface barrier 

detectors purchased from ORTEC. They were positioned askew at 45 

degrees, as suggested by fig. 2.1. So the effective thickness of the 

detectors was increased up to about 3 mm. 

During the experiments at 24 MeV on the Sr isotopes we used in 

the forward detector block a stack of two such detectors in telescope 

mode. The four detectors in the backward detector block were three mm 

drifted Si(Li) detectors from Philips, also placed askew. 

As monitor detectors we used 0.5 mm thick Si surface barrier 

detectors. We degraded the energy of the impinging protons to 8 MeV, 

so that they were stopped in these detectors. 
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DETECTOR BIAS 

MAIN AMPLIFIER 

ROUTING UNIT 

Fig. 2.2 The eZeatronia system for one deteator. 

~· ADC l I DETECTORS I I POLARIZED I I MONITOR I r l 1-8 ION SOURCE DETECTORS 
S-
0 

busy dis cr. o.k. reverse +> reset gate .,.. 
spin s:: 

0 
E 

r ROUTING busv 
s:: 

ROUTING cead ti..J CONTROL 1 out of olane 0 
~ 

.,... 
SELECTION 

1 
3 bits +> UNIT •stop UNIT dead time <0 

I 
N 

4 I .,... 
S-
<0 

bits sp1n bit 1 ~ 

0 
c.. 

~ ADC CONTROIJ [ MOS MEMORY and CONTROL 38 k 24 b.l [ SCAL RS I 
I 

camac lines CAMAC SYSTEM r camac lines 
3: 

fPDP 11 I 03 

Fig. 2.3 The aompZete eZeatronia system. 
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The electronics used in our experiments consisted mainly of 

standard HIM and CAMAC modules. A few special purpose devices for 

routing and controlling the analog signals have been designed and 

built in our laboratory. The relevant block diagrams for one detector 

and that of the complete electronic system are shown in figs. 2.2 and 

2.3, respectively. 

The use of fast logic permitted us to incorporate a pile-up 

inspection in the routing unit. This pile-up inspection has a pulse 

resolving time of about 300 nsec. The routing unit enabled the 

processing of one detector signal while inhibiting the signals in the 

other linear gate stretchers. It, moreover, generated the three 

detector identification bits for the routing selection unit. The busy 

signals of the ADC and of the control unit (stop signal) were combined 

in the routing unit to the dead time signal, which was sent to the 

scalers and the control unit. 

The control unit had the following tasks: it reversed the spin 

direction in the ion source when the two out-of-plane detectors had 

together produced a preset number of counts. In addition, it supplied 

a spin bit for the routing selection unit and the scalers. After a 

preset number of reversals of the spin direction, the run was stopped. 

Then the results could be written onto a floppy disk. If the ion 

source accidently did not function correctly the control unit stopped 

the experiment. 

Also the scalers have been developed in our laboratory using the 

Eurobus system (Nij79). Their functions were controlled via the CAMAC 

system. 

Our data acquisition system, developed by De. Raaf, ha.s been 

described in the literature (Raa79), so only a few details are 

mentioned here. The system worked independently of the PDP11 computer 

giving a minimum of computer overhead. Moreover, the data collected in 

the external MOS memory were always preserved. The functions of the 

MOS memory and the ADC controller were set via the CAMAC system by the 

PDP terminal. 
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Also, all data were processed via the CAMAC crate. From the 

terminal of the PDP11 computer we started and stopped the experiments, 

read the scalers, listed maxima in spectra and controlled the MOS 

memory. 

The measured spectra were written onto floppy disks for further 

analysis. A connection with the central university computer (Burroughs 

B7700), running via a second PDP11 enabled us to store the spectra on 

a large disk pack. 

2.5 Experimental procedure 

When the beam had been focussed on the target in the scattering 

chamber, we first determined the energy of the incoming protons 

using the cross over method (Bar64). The beam energy was deduced with 

an accuracy of 0.1 MeV. The preset numbers of counts of the control 

unit were adjusted so that the spin direction reversed about once in 

a minute. This reversion rate was fast enough to avoid false 

asymmetries that could occur due to drifts. Most spectra were measured 

in runs of one hour or less. We divided the total time, needed to 

collect a desired number of counts into peak of interest, in parts of 

about one hour. This method was preferred to making only one long run 

which otherwise would have been more risky because of drift in 

amplifiers, beam quality variations and possible break downs during 

the run. In practice the separate spectra were nearly equal and could 

be added without problems. 

The relative angular acceptances of the detectors, which were 

needed for the calculation of the cross sections, were deduced by 

taking spectra with different detectors at the same angle. Afterwards, 

the deduced cross sections and analysing powers of the various runs 

were compared, which was a good check on the reliability of the 

experimental data. 

Since all targets contained more or less contaminations of H, C 

and 0, we always measured the scattering from a mylar target (contains 

H, C and 0) at each angular setting of the detector blocks. We used 

these spectra in order to correct the peak contents that were a sum of 

the contributions of the scattering from an isotope of interest and 

a contamination. 
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2.6 Spectrum analysis 

As mentioned before, the spectra were sent from the PDP11 to the 

87700 computer and stored on a disk. First of all, these data had to 

be translated from PDP11 words to 87700 words. A program called CHI 

was written for this purpose which, moreover, compared spectra that 

were measured at the same angular settings of the detectors. For each 

combination of two equivalent spectra a normalized chi squared value 

was calculated (Nij78). If this value was near unity, then those 

spectra were added, otherwise e.g. the gain of the amplifiers, the 

scattering angles or the detector quality had been different for the 

two spectra. In this case the spectra were not added, but analysed 

separately. 

In order to analyse the spectra we wrote a peak fitting program 

called PIEK, which is an extended and adapted version of the program 

POESPAS written by 8lok and Schotman (Blo75). With this program 

(sketched below), it was possible to analyse the measured spectra 

nearly automatically. In fig. 2.4 we show an example of our energy 

spectra with the fit found. In the fitting procedure the parameters 

of the shape, height and position of the peaks together with two 

background parameters were varied. The starting values of these 

parameters were partly given as input and partly deduced by PIEK. 

In the first subsection we treat the energy calibration 

calculated from the kinematics. The starting values of the peak 

position parameters are deduced by this calibration. More details 

about the peak shape and the background follow in the next subsections. 

In subsection four, the operation of the program and some options of 

it are noted. The last subsection deals with the sorting out of the 

results and our general plot program. 

2.6.2.1 ~!~~~~is~ 

The kinematics of the reaction were taken into account in PIEK. 

The expected energy spectrum was calculated from the input data such 

as the masses of the incoming and outgoing particles, the laborator~ 

angle of the detectors and the composition of the target. The target 
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composition was a list of names of elements in the target with their 

mass numbers A and proton numbers Z. After every name followed the Q 

values of the states we wanted to analyse and some further 

identification (spin etc.). Since our energy resolution did not enable 

us to look for new excited states in the nuclides under investigation, 

we took the spectroscopic data from the literature, e.g. the Nuclear 

Data Sheets. ~ith these data the energies were calculated of the out­

going particles, leaving the target nuclides in the various excited 

states. By sorting out these energies the sequence of the expected 

peaks was found and possible overlaps were noted. 
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In order to match this calculated sequence to the actual peaks 

in the energy spectrum we applied the following procedure. The 

position of a peak in a spectrum was calculated from an energy 

calibration. A linear dependence was sufficient, so two calibration 

parameters i.e. the offset and the conversion gain were needed. As 

starting values we took, of course, the digital offset of the ADC and 

the conversion gain that followed from the setting of the nominal 

energy at channel number 990. To refine the starting values the 

following procedure was applied. The peak of the elastic scattering 

from the heaviest target nuclide was identified with the last large 

maximum in the spectrum, corresponding with the highest energy. Using 

the starting values of the calibration, the positions of the other 

peaks were calculated and the differences with nearby lying maxima 

were found. These differences were minimized by varying the calibration 

parameters. Only a selected number of large peaks was used in this 

calibration procedure. It was also possible to vary the detector angle 

and the energy of the incoming particles, in order to achieve a closer 

agreement between calculated and experimental peak positions. 

Every maximum in the spectrum that occurred within five channels 

from a calculated position of a peak was identified as being the peak 

in question, and labeled with A, Z, J and the element name. With this 

identification it was possible to take into account the kinematical 

broadening, by multiplying the shape parameters of the peak by a mass 

dependent factor. After completing the spectrum analysis, these 

identification data were used again for sorting out the results and 

for the calculation of the transformation from the laboratory system 

to the centre~of~mass system. 

2.6. 2. 2 E~~L~t!~£:1~ 

In a peak fitting program it is necessary to define a standard 

peak shape. The most convenient way is to choose a continues function 

with a continues derivative. Because a proper choice of this function 

determines the quality of the fit we discuss our peak shape here. We 

started with the peak shape used in the program POESPAS (Blo72, Blo7S), 

which is a asymmetrical gaussian with at the high energy side an 

exponential tail and at the other side a long double exponential tail. 

So the peak shape f(x) consists of four regions, centered aroun p1: 
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X > r f(x) exp (- P(, (x-pl) + cr) 

The shape parameters are p
3
-p6 ; c

0 
is a constant and the values of 

c1, cr, and rare determined by the requirement that at x=l and 

x=r the function f(x) and its derivative are continuous. This shape, 

however, was designed for the analysis of rather narrow peaks (e.g. 

for spectra taken with a spectrograph), while we had rather broad 

peaks, since we used surface barrier detectors. Solid state detectors 

always give peaks with a long tail at the low energy side, which are 

difficult to describe with an analytical function with only a small 

number of shape parameters. 

Ultimately we found that the sum of a large asymmetric peak, 

with at both sides single exponential tails and a lower peak with a 

long double exponential tail at the low energy side, gave the best 

results. The two functions had different width, height and tail 

parameters, but the ratios of these parameters were fixed, and were 

deduced by experience. So the number of shape parameters was the same 

as in POESPAS, but our shape could describe the low energy tail 

better. 

2.6.2.3 ~~~~9r~~n9 
Since a proper choice of the starting values of the background 

parameters turned out to be very important, we have developed the 

following procedure. The two parameters were calculated from a linear 
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least squares fit through a numuer of minima between the peaks. These 

minima were corrected for expected contributions of nearby peaks. The 

correction was calculated with the starting values that were already 

available. In our analysis we took a linear background, since a 

quadratic background did not produce better results. 

2.6.2.4 Qe~r~~len_ef_~lg~ 

The normal operation of the program PIEK was as follows: we 

first fitted the sum spectrum, which is the sum of a spin up and a 

spin down spectrum, with four general peak shape parameters, two 

parameters for the background and for every peak a height parameter. 

We allowed the positions of the peaks to be shifted from the 

calculated value. This shift was restricted to one channel or Jess. 

All peaks in our calculated energy spectrum were fitted simultaneously. 

The different peaks had the four shape parameters in common, namely 

the width parameters of the gaussians and the tail parameters. Only 

their individual heights were fitted. ·So we fitted the complete 

spectrum with basically one peak shape and one continuous background 

function. With this possibility one of the drawbacks of the POESPAS 

program, where every multiplet was fitted separately with its own 

shape and background, was overcome. 

Also peaks that overlapped each other were fitted rei iably since 

the peak shape is determined mainly by the large peaks, and the 

background is determined by the complete spectrum. c~npletely over­

lapping peaks are treated as one peak but not stored on the file of 

results. 

The up and down spectra were fitted using parameters found from 

the fitting of the sum spectrum. Here we fixed the peak shape and the 

position parameters, only the height and background parameters had to 

be refitted. Sometimes the background was also fixed at half of the 

value found in the fitting of the sum spectrum. So the calculation of 

the analysing powers was not obscured by differences in peak 

positions or shape. 

A check of the fitting process was the difference between the 

contents of a peak in the sum spectrum and of the sum of the contents 

of the corresponding peaks in the up and down spectra. In general 

this difference was small. 
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Since the total numbers of parameters must be less then 31, we 

sometimes used the option that instead of all separate peak positions, 

the two calibration parameters were varied. 

After the peak identification was done it was possible to fit a 

smaller part of the spectrum, e.g. only one multiplet. This option was 

especially effective in the case of tiny peaks superimposed on a large 

background. In that case we forced the background to go through the 

minima around the first and last channels that were fitted. 

2.6.2.5 ~~§~!!§_~~g-~!2!!!~9 
The results of all fittings were stored on a disk file, which 

afterwards was sorted out. The normalizations of the various runs and 

of the detector efficiencies were adjusted if needed. Values at equal 

angles were compared and the weighted averages were calculated. The 

resulting data: cross sections transformed to the centre-of-mass 

system and the analysing powers were punched, for use in the program 

that stored all our experimental data on disk pack. This file of 

experimental data was accesible to the optical model codes and the 

general plot program. 

This plot program can be seen as the link between the experimental 

data and the theoretical curves calculated by the optical model and 

DWBA programs. It calculates the scaling factors and deformation 

parameters by normalizing the theoretical curve to the experimental 

cross section in a given angular range. 

In conclusion we can say that the spectrum analysis works 

automatically for a large part, from spectra up to tables and plots 

of experimental data and theoretical curves. 
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CHAPTER 3 SOME ASPECTS OF THE THEORY OF ELASTIC AND INELASTIC 

SCATTERING 

3.1 Introduction 

The scattering of nucleons from an atomic nucleus has to be 

described by quantum-mechanical scattering theory. In our case of a 

not too low energy of the incoming particles we only have to deal 

with the theory of direct reactions (Aus?O). The general scattering 

theory gives us expressions for the differential cross section and 

the analysing power as sums over the products of the transition matrix 

elements Tfi' the amplitudes of the outgoing scattered wave for a 

specific initial channel i and final channel f. 

In order that the scattering theory can be applied to the 

scattering of protons, we have to choose a model for the nucleus. To 

describe the observed phenomena we have two alternatives: the 

collective or macroscopic and the microscopic approach. In collective 

theories the nucleus is treated as a whole with respect to the 

projectile, while in the microscopic model the projectile interacts 

with the individual nucleons. 

The scattering process can be elastic or inelastic. When the 

inelastic scattering is strong compared to the elastic process a 

coupled channels (CC) theory is appropriate, otherwise these processes 

can be treated separately, i.e.: the optical model for the elastic and 

the distorted wave Born approximation (DWBA) for the inelastic 

scattering. 

In section 3.2 we discuss the optical model. Then the calculation 

of the inelastic angular distribution from the transition amplitudes 

is treated. In the next two sections the calculation of these 

transition amplitudes with the collective and microscopic OWBA is 

discussed. Section 3.6 gives us some formulae for the combined 

collective and microscopic approximation. In the last section, 3.7, 

the calculation of the reduced transition probabilities B(EL) is 

given. 
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3.2 Optical model 

The first step in our theoretical analysis consisted of the 

search for a set of optical model parameters in order to fit the 

experimental elastic cross sections and analysing powers as well as 

possible. These optical model potentials were needed in all further 

calculations, of the inelastic scattering. The conventional optical 

model potential has been used, of which we give here the explicit · 

form: 

U ( r) V (r,r ) - V f(r,r ,a ) + c c 0 0 0 

d 
- i {Wv f(r,ri,ai) + 4ai w0 dr f(r,ri,ai)} + 

+ (~) 2 
V ~~ f(r r a ) ;.t 

m c so r d r ' so' so 
7T 

wherein f is the usual Woods-Saxon function: 

f(r,r ,a ) 
X X 

(1 + exp (r -

( 3. 1 ) 

The parameters that can be varied are the strengths V
0

, WV, w0 
and Vso and the geometric parameters rc, r

0
, a

0
, ri, ai, rso and aso 

We have tested the addition of a real central surface term, as 

suggested by Sinha (Sin75) and of an imaginary spin-orbit part to the 

optical model potential. These terms, however, turned out to be 

negligible, see section 4.2.4. 

Since we performed no absolute measurement of the cross section, 

we normalized the experimental elastic cross section to the optical 

model value. In our optical model analysis the normalization was left 

free, in other words: every turn of the search procedure the 

normalization was calculated from the minimalization of the chi 

squared value of the cross section, ax2/3N=O. \Je used the complete 

angular distribution of the cross section (and not only the forward 

part) for the derivation of the normalizations. In this way the 

absolute values of the elastic and inelastic cross sections were 

deduced. 

The standard deviations for the parameters pi were calculated 

from a correlation matrix (Ros53, Vos72): 
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(3. 2a) 

where 

{3. 2b) 

We used these errors as indications for the quality of the 

minimalization process (see section 4.2.1). In order to prevent an 

underestimation of the absolute errors one should multiply them with 
2 1 

a factor (x /Nf)~, where Nf is the number of degrees of freedom, 

defined as the number of experimental points minus the number of 

varied parameters (Ros53, Vri77). 

From the optical model potentials some quantities can be derived, 

which fluctuate less than the various parameter sets in a certain mass 

region. These quantities are the volume integral defined by: 

J = J U(r) dt (3.3) 

and the root mean square (rms) radius: 

We computed these values for the real central, imaginary central and 

the real spin-orbit part of the optical model potential. In section 

4.2 we compare these values with results from folding models (Gre68) 

and other optical model theories (Bri77, Bri78). 

3.3 Collectiv~ description of the inelastic scattering 

In the collective model the excited states of a nucleus are 

supposed to be either rotations of a permanently deformed nucleus or 

vibrations of a spherical nucleus (Boh53, Boh75). For the calculation 

of the cross section and analysing power of the inelastic scattering 

we mostly used the collective, first order, distorted wave Born 

approximation (DWBA). There are two situations for which we cannot 

apply such a DWBA analysis: 

1. The coupling between the ground and excited state is strong. This 

is in particular the case for the permanently deformed nuclei. 

Then a coupled channels (CC) analysis is needed, see section 3.4.3. 
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2. Higher order processes are important, e.g. the first order process 

is forbidden. Here again the CC method should be applied. 

We now give here some basis formulae for the calculation of the 

transition amplitudes for the collective DWBA. From these amplitudes 

the cross sections and analysing powers can be calculated as will be 

described in section 3.5. For an even-even nucleus and a central 

collective interaction that causes the transition, we obtain after a 

multipole expansion the following expression for the transition 

amplitude (Aus70): 

(3.5) 

with indices i for the initial and f for the final state and where 

k =wave number, 

x the distorted wave function, 

+ labels the incon1ing, - the outgoing wave, 

YLM the spherical harmonic, 

Cc =some Clebsch Gordon coefficients, 

s = spin of the particle, 

m projection of the particle spin, the quantization axis is 

chosen according to the Basel convention, 

M projection of the total transferred angular momentum J, 

a scattering angle, 

t J-S the transferred orbital angular momentum, 

S ti-tf the transferred spin, being 0 ot 1, 

J Ji-Jf the transferred total angular momentum, and 

FLSJ the collective form factor. 

For the first order vibrational excitation of the nuclear surface or 

the rotational excitation of a permanently deformed axial symmetric 

even-even nucleus the collective form factor is proportional to the 

derivative of the optical model potential U(r) (Tam65): 

(3.6) 

with 

R the radius of the undeformed nucleus and 

aL = the deformation parameter. 
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In all our calculations the complete optical model potential has 

been deformed so we have three parts contributing to the inelastic 

scattering: the real central plus coulomb part, the imaginary central 

and the real spin-orb~t part. The spin-orbit form factor had the full 

Thomas form. For a good description of the analysing power this form 

is absolutely needed (She68, Ray71, Ver72, Ver74). In principle it is 

possible to give these three collective interactions different 

deformation parameters. 

If the target nucleus is not an even-even nucleus, but can be 

seen as a core plus or minus one nucleon then the weak-coupling model 

may be applied to calculate the inelastic scattering (Sha61, Bla59). 

In this model the extra nucleon or hole is coupled to a collective 

phonon. If the nucleon or hole has a total angular momentum j then 

the parent state with momentum L is split up into a multiplet of 

states with total angular momenta ranging from IL-jl till L+j. In this 

case the transition amplitudes for these multiplet states are given 

by: 

(3. 7) 

Moreover the wei.ghted average excitation energy should be equal 

to the excitation energy of the parent state. We have applied this 

model for the description of the scattering from 115 1n in section 

4.3.4. 

A CC analysis is needed if the coupling between states is strong, 

so that a separation of the channels as done in the OWBA is no longer 

a reliable approximation. A strong coupling between the ground state 

and an excited state is reflected by a large deformation parameter. 

In a CC analysis the optical model parameters should be deduced 

by fitting the ground state and the strongly coupled excited state(s) 

' I I F 60N' h f d h h . s1mu taneous y. or 1 we ave per orme sue a searc , see section 

4.2.8, in order to find the effect on the slope of the cross section 

of the 2+ state. 
1 
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Due to the higher order terms in the CC calculation now also 

non-natural parity states and first-order forbidden states can be 

described. For some higher excited states of 60Ni, see section 4.3.1, 

we have done a second order vibrational CC calculation. We investigated 

the mixing of the first and second order contributions to the angular 

distributions. 

3. 4 She 11 mode 1 

With the collective model it is not possible to describe the 

i ne 1 as tic scattering from a 11 states of a nuc 1 eus. ~le know that some 

excited states have a predominantly single-particle character. For 

such states a microscopic calculation is appropriate. But also states 

that could be described very well with the collective model should be 

described microscopically by the sum of all contributing single­

particle transitions. 

In the microscopic DW theory the shell structure of the nucleus 

is taken into account, so she] 1 model wave functions must be 

calculated. The projectile interacts through an effective nucleon­

nucleon interaction with the valence nucleons of the target nucleus. 

By this interaction a valence nucleon can be excited into a different 

state. 

Apart from the direct contribution it is also possible that the 

valence nucleon interchanges its role with the projectile, which 

gives an exchange contribution to the transition amplitude. So due 

to the antisymmetrization of the wave functions there are exchange 

contributions. 

In the microscopic antisymmetrized DWA the transition amplitude 

can be expressed as the sum of the contributing single-particle 

transition amplitudes (Ger71): 

(3.8) 

The indices 1 and 2 refer to the two single-particle valence states 

involved. The sum over j 1 and j 2 means that all possible combinations 

of the proton and neutron single-particle states giving the right Jn 

value, are included with their spectroscopic amplitudes S. The single 

particle transition amplitudes T are: sp 
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T (JM) = L sp 

The second term describes the exchange contribution, further 

x = again the distorted wave function 

0 labels the projectile and 

1 the valence nucleon, 

~ bound state single-particle wave function depending on j and m, 

Veff the effective nucleon-nucleon interaction. 

Moreover we have introduced the reduced spectroscopic amplitudes S, 

which read in second quantization 

(3.10) 

They weigh the contributions of the various single-particle transitions 

and should be derived from separate shell model calculations. ~(J) is a 

shell model wave function. 

The transformation from the il convention for the spherical 

harmonics used in these theoretical calculations to our convention 

gives the following phase factor for the spectroscopic amplitudes: 

(3.11) 

The quantum numbers of the states involved in above single-particle 

transition are (n1,1 1,j 1) and (n2,1 2,j 2), respectively, while the 

transferred angular momentum equals L. 

One of the difficulties one encounters in microscopic analyses 

lies in finding the proper effective nucleon-nucleon interaction; 

effective because of the influence of all other nucleons of the target 

nucleus on the free nucleon-nucleon interaction. Hamada and Johnston 

(Ham62), among others, have derived a free nucleon-nucleon interaction 

from the phase shift analysis of nucleon-nucleon scattering. This 

interaction is made effective by truncating it, i.e. using only the 

part beyond a certain separation distance for which we used a value of 

1.05 fm. Another possibility is to use a phenomenological effective 

interaction like that of Austin (Aus79). 

25 



Thus far we discussed the central part of the nucleon-nucleon 

Interaction. This interaction has to be completed with non-central 

parts, namely a tensor and a spin-orbit part. We used hereto the 

interactions of Eikemeier and Hackenbroich (Eik71) or those of Sprung 

(Spr72). Though these terms have asmall contribution to the transition 

amplitudes, they could be of importance for the evaluation of the 

analysing powers. 

In above interactions no imaginary part is included. An oftenly 

followed approach is that of Love and Satchler who added the collective 

imaginary transition amplitude to the microscopic one (Lov67). Another 

approach is that of Brieva, Rook and Georgiev (Bri77, Bri78) who have 

developed a method to derive a complex effective nucleon-nucleon 

interaction from a free one. They solved a Bethe-Goldstone type 

integral equation in order to find this complex interaction. In 

addition, using a folding model in nuclear matter, they also could 

derive a microscopic optical model potential. 

3.5 The calculation of the angular distributions from the transition 

amp 1 i tudes 

The angular distributions of the inelastic scattering are 

calculated from the transition amplitudes (Aus70). In the previous 

two sections we sketched the calculation of these transition amplitudes 

by collective and microscopic models. 

The differential cross section is expressed in the transition 

amplitudes as follows: 

with 

do (a) 
~= (3. 12) 

Tfi transition amplitude, see eqs. (3.5) or (3.9) (being in general 

the sum of several transition amplitudes), 

~ reduced mass. 

Also the analysing power is expressed in the transition 

amplitude: 

A (e) = (J ~a) r (-) i-m j I T f I 12 
· m1mfMiMf 
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3.6 Core polarization 

It is not realistic, however, to think that only the valence 

nucleons contribute to the transition amplitude. Also the remaining 

core nucleons do contribute, in a similar way as in the collective 

model (Lov67). In other words the core is 'polarized', so in general 

we need a combination of the collective and microscopic model. 

There are two possibilities to bring the core polarization into 

account. Either the effective charges of the protons and neutrons can 

be enhanced or the core polarization term can be added to the 

microscopic interaction. 

The effective charge method is a.o. followed by Terrien (Ter73). 

In this approach the effective charges e and e are varied in order 
p n 

to fit the observables. So the total transition amplitude (we omit 

now the subscripts f i) is then: 

T = e T + (e +l)T + T1 p p n n 

where T and T are proton and neutron part of the microscopic 
p n 

transition amplitude. T1 is the collective imaginary contribution. 

In the core ploarization approach the prescription of Love and 

Satchler is followed. If the initial and final channel potentials are 

the same then the multipole component of the effective force is given 

by (Lov67, Ger71): 

FL,core(r(O),r(l)) 

where (3. 14) 

Ubs =the shell model potential of the valence nucleon (1) and 

U
0
m the optical model potential of the scattered proton (0). 

Comparing this equation with eq. (3.6) we see that the direct 

core polarization strength yL can be calculated in a similar way as 

the deformation parameter BL' since each valence term will become a 

factor 

<<1>1 (1) IRbs(l) dUbs(r(1))/ddJ)I 4> 2 (1)> 

in the sum (3.9) while, apart from this factor, all transition 

amplitudes 
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<xf- ( 0) I R ( 0) dU { r ( o) ) I d r( 0) I x: ( o) > om om 1 

are equal. In this approach the total transition amplitude is: 

T = T + T + yLT p n core 

The strength yl can be varied in order to fit the observables. 

3.] Reduced transition probabilities B(EL,O+L) 

Analogous to the reaction amplitudes also the reduced electro­

magnetic probabilities can be calculated with a collective or a 

microscopic r.1odel. In the collective model (Boh75) we used the 

deformation parameters found from the scaling of the theoretical to 

the experimental cross section: 

(3. 15) 

Here we introduce an equivalent transition radius R , which equals eq 
the Coulomb radius Rc for a uniform charge distribution. For the more 

realistic Woods-Saxon distribution this radius is (Owe64): 

r f df(r,r ,a )/dr rl+Z dr 
0 0 0 0 

3 f f(r,r ,a ) dr 
0 0 

(3. 16) 

In our calculations we used for this Woods-Saxon distribution the 

parameters of the real central optical model potential. R is L­eq 
dependent but does not differ much from Rc. 

In the microscopic model, using the effective charge approach, 

the transition probability is 

B(EL,O+L) = (e D + e D )2 
p pv n nv (3. 17) 

where ep and en are the effective charges of the protons and the 

neutrons. Dpv and Dnv are the sums of contributions of the electro­

magnetic field interacting directly with the valence protons and 

neutrons, respectively. We give here D to full extent (Bru77): pv 

( (2Jf+l) ]t . . L 
0pv = [{2L+0(ZJ.+1) ). Sp(JlJ2JiJfJ) <4l1JJrpJJ4>2>x e (3.l8) 

I J 1J2 
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(3 .19) 

(3. 20) 

The same spectroscopic amplitudes, S, as for the calculation of 

the transition amplitude are used (eq. (3.10)). For the neutron 

transitions equal formulae hold. 

In the core polarization model the transition probability is the 

sum of the contributions of the electromagnetic field interaction 

directly with the valence (index v) particles and indirectly via the 

core (index c). The valence particles here are protons (p) since the 

effective charge of neutrons is 0. So we get: 

B(EL,O+L) = (D + yLD )2 
pv pc 

(3.21) 

with 

dU ( r) 
<$IIR p,bs 114>> 

1 c dr 2 

(3.22) 

where U b (r) is the bound state potential for a proton single-p, s 
particle state. 

In chapter 5.4 we have applied both approaches. We fitted then the 

angular distributions and the transition probability simultaneously. 

APPENDIX: Fast method to fit angular distributions 

In genera 1 we wi 11 have a sum of' transit ion amplitudes T j, that 

form the total transition amp! itude: 

n 
T = r (a.+ib.) T. ~ 

j=l J J J 
(A. 1) 

with complex weights (a.+ib-;}. These weights could be strengths of the 
J J 

effective interactions, or deformation parameters or effective charges. 
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Often we varied these weights in order to find an optimal fit to the 

experimental inelastic angular distributions. In section 3.6 some 

examples can be found. 

In order to speed up the computation we developed the following 

procedure. Instead of using these n legnthy T matrices, each 

consisting of 6916 complex numbers, it is possible to calculate the 

angular distributions from 192 n2 real numbers, which we shall call 

'partial' cross sections and analysing powers. This made a single 

calculation about a factor of hundred faster. Now a search procedure 

in order to find the optimal values of the complex weights, is more 

feasible, since the 'partial' angular distributions have to be 

calculated only once. Also in case that the separate transition 

amplitudes are not available the method is applicable, if we can 

compute the 'partial' cross sections and analysing powers, as defined 

below, in another way. ~e form the following partial cross sections 

for every pair transition amp I i tudes T. and Tk: 
J 

for j=k: 0 •• = c I IT .1 2 (A.2) 
JJ J 

I 2 (A. 3) for j<k: ojk c ITj+Tkl - 0 .• - 0 kk JJ 

for j>k: ojk = c I ITj+iTkl2 - o .. - 0 kk (A.4) 
JJ 

where we use the same sum and factor Cas in eq. (3. 12). The last 

partial cross section can be omitted if we deal with real weights only 

in eq. (A.1), (b.=O). The cross section can now be expressed as: 
J 

n n 

o = I I gjk ojk 
j=1 k=1 

with weights 

for j:;k: 

for j>k: 

(A. 5) 

(A.6) 

The same formulae hold for the derivation of the analysing power if we 

replace o by Ao, using 

for j=k: A •• o •• 
JJ JJ 

(A. 7) 
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and so on. The same weights are used to calculate A: 

So in the analyses the partial angular distributions had to be 

calculated only once, which saved a lot of computing time. 

(A.8) 
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CHAPTER 4 EXPER lttENTAL RESULTS AND COLLECTIVE MODEL ANALYSIS 

4.1 Introduction 

In this chapter we present the experimental results and the 

collective model analysis of the scattering of polarized protons from 

a series of nuclides. The following nuclides have been investigated: 
60,64N. 86,88S 110,112,114Cd 115 1 d 116,118,120,122,124S 

1, r, , nan n. 

Some of these nuclei have a single closed shell, while the others have 

a closed shell minus one or two nucleons. An aim of our investigation 

was to detect a possible effect of shell-closing on the analysing 

power. Since this investigation is a part of a larger research program 

of scattering of polarized protons around an energy of 20 MeV, we used 

in nearly all cases a bombarding energy of 20.4 MeV (Hal75, Ha177, 

Ha180, Me178, Mel82, Was80). 

For the Sr isotopes we have chosen an energy of 24.6 MeV since 

we wanted to compare our results with the high-resolution experiment 

of scattering of unpolarized protons of Kaptein (Kap78). An additional 
120 measurement on Sn at 24.6 tleV has been performed for comparison 

with the results of Beer. 

The experimental angular distributions of the cross sections and 

analysing powers were analyzed with standard optical model and 

collective DWBA techniques. Some basic formulae, used in these 

calculations have already been discussed in chapter 3. Preliminar 

results have been reported at the Santa Fe conference (Hal80, Was80). 

In the next section of this chapter we discuss the optical model 

analysis, while in the third section we pay attention to the DWBA 

analyses and CC analyses of the inelastic scattering. 

4.2 Optical model analysis 

In order to fit the elastic scattering and to find a good set of 

optical model parameters for use in the DWBA and CC calculations, a 

search procedure was applied, wherein the parameters of the optical 

model potential, as defined in section 3.2, were varied. The sum of 

the chi squared values of the fits to the cross section and analysing 

power was minimized. 
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For all optical model calculations we used the program OPTIMO 

(Vos72). In addition, in the case of 60 Ni we have done a limited 

search with the CC code ECIS (Ray72), since in that nucleus the first 

excited state is rather strongly coupled to the ground state. 

As a consequence of the uncertainties in the normalizations of 

the separate runs and of the diverse detectors we estimate the minimal 

relative errors of the elastic cross sections to be 2% and the minimal 

absolute errors of the analysing powers to be 1%. In general the 

statistical errors were less for the elastic scattering. These errors 

give about equal chi squared values for the cross section and 

analysing power in the minimization procedure. 

Special attention was payed to the standard deviations of the 

parameters, calculated following eqs. (3.2a) and (3.2b). At the bottom 

of tables 4. la and 4.2a we have given the averaged values of the 

standard deviations for all fits, since the separate fits gave nearly 

equal values. If these errors remained too large the fitting process 

was continued with a smaller stepsize. We see that the real central 

radius and strength, r
0 

and V
0

, as well as the imaginary central 

radius, ri, are the best determined parameters, while the volume 

absorption Wv is more uncertain. Sometimes we have fixed Wv in the 

search analysis at the standard value of Becchetti and Greenlees 

(Bec69). In the literature often W is taken 0. 
v 

Due to the inclusion of the analysing power data in the fit, 

the spin-orbit parameters are rather well defined. The absolute 

errors in the optical model parameters are found by taking the product 

~p(x2/Nf)~ 

Since we did not perform an absolute measurement of the cross 

section, we normalized the experimental elastic cross section to the 

optical model value. Our normalization procedure has been described 

in section 3.2. For equivalent sets of optical model parameters, for 

example the best fit, the ultimate normalization for the diverse 

targets did not differ much, less than 5%, when we accounted for the 

specific thicknesses. So these free normalizations are reliable and 
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can be used for the normalization of the cross sections of the 

inelastic scattering. 

For different sets of optical model parameters the resulting 

normalizations can be quite different: e.g. for the experiment on 
120sn at 24.6 MeV, we found with the geometrical parameters of Beer 

(Bee?O) a normalization that was a factor of 1.24 larger than the 

normalization found with our GF parameters of section 4.2.4 (see 

fig. 4.6). This normalization also effects the deformation parameters 

of the inelastic scattering (section 4.3). The normalization of the 

DWBA curve, however, is again influenced by the optical model 

parameters but in opposite way. So the deformation parameters are 

more or less independent from the optical model parameters. For the 

above mentioned experiment on 120 sn we found for both sets of optical 

model parameters the same deformation parameters as listed in 

table 4.7 for 20 MeV. 

As a check we have also varied the normalization of the analysing 

power in some cases. This normalization stayed near the value of 1.0, 

so the value of the experimental beam polarization (see section 2.4.1) 

was deduced correctly. 

Starting with the potential parameters of Becchetti and Greenlees 

(Bec69), BG, we fitted the elastic scattering for each nucleus 

separately. These fits, wherein all parameters were allowed to vary 

are called the best fits and the corresponding parameter sets are 

denoted by BF. The parameters of BG gave already quite good fits, but 

the chi squared values of the best fits are about a factor four 

smaller. We have reanalyzed the data of 58 •62Ni of Melssen {Mel78) in 

the way as outlined above. The different normalization procedure only 

caused some small differences in the parameters. Table 4.1a lists the 

BF parameters for all 20 MeV experiments, table 4.2a the results for 

the 24 MeV experiment on Sr. From the tables 4.1b and 4.2b we learn 

that the chi squared values of the cross sections and analysing 

powers are of the same order of magnitude. So in the minima.Jization 

process the cross section and the analysing power have a comparable 

weight. We also give here the chi squared values per degree of 

freedom. 
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Table 4.1a Best fit optiaal model parameters3 at 20.4 MeV. 

A v r a w WD r. a. v r a 
0 0 0 v I I so so so 

(MeV) (fm) (fm) (MeV) (MeV) (fm) (fm) (MeV) (fm) (fm) 

Ni 
"""58 a) 49.52 1 .200 0.753 1. 70 8.'46 1.363 0.408 4.93 1.062 0.433 

60 53.29 1.173 0.747 1.45 9.41 1.308 0.476 5.74 1.031 0.574 
62a) 50.38 1.205 0.742 1.38 10.18 1 .289 0.486 5.38 1.046 0.510 

64 55.33 1 .148 0.714 0.63 8.26 1.264 0.651 6.17 0.946 0.634 

Cd 

110 52.12 1.213 0.691 0.63b) 9.78 1 .210 0.700 6.26 1.128 0.571 

112 53.21 1.200 0.688 0.63b) 9.36 1.194 0.760 6.11 1 .110 0.582 

114 54.3!l 1.181 0.732 0.63b) 9.70 1.183 0.811 6.09 1.097 0.569 

In 

115 54.33 1.176 0.697 2.21 8.60 1 .278 0.667 6.05 0.854 0.647 

Sn 
116 53.71 1.194 0.713 1.25 8.85 1 .265 0.675 5.59 1 .060 0.566 

118 55.08 1 .180 0.714 1.65 8.40 1.266 0.700 5.63 1.022 0.645 
120 55.63 1.169 0.749 2.02 8.70 1 .278 0.690 5.65 1 .000 0.670 
122 55.74 1.166 0.740 0.43 10.23 1.255 0.739 5.76 0.984 0.700 
124 55.98 1.161 0.755 0.46 10.74 1 .258 0 .]26 5.64 0.921 0.764 

(%)c) (0. 3) (0.2) (0. 5) ( 13) (5) (0. 3) (1. 1) (0.9) ( 1. 0) (2.6) 

The Coulomb radius parameter is fixed at 1 .25 fm. 
a) from ~lelssen (Mello), reanalysed. 
b) fixed value. 

c) (%) are the standard devi~tions of the varied parameters in 
per cent, averaged for all isotopes. 
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TahZ.e 4.1b VoZ.ume integraZ.s, ~s radii and ahi squared vaZ.ues 
for the best optiaaZ. mode~ fits at 20.4 MeV (BF). 

l 
<R2)· <R~): 2 1 b) 2 2 2/N c) A J /A J./A J /A3 <R >~ OR X a XA X f 0 I SO 0 I so 

( MeV fm3 ) 

Ni 
S8a) 451.9 104.1 131.5 4.5609 5.3327 4 .• 3300 1074 624 601 23.56 

60 454.6 116.0 148.7 4.5132 5.3409 4.4203 1113 874 385 24.21 
62a) 457.5 121 • 1 141.4 4.6108 5.3549 4.4398 1159 343 506 16.98 

64 434.5 118.1 146.6 4.3474 5.6116 4.2739 1208 748 202 18.26 

Cd 

11 0 443.7 115.5 177.2 5.1819 6.3973 5.6939 1385 303 280 11.23 

112 438.8 117.0 170.2 5.1583 6.4697 5.6533 1433 342 234 11 .06 
114 !136. I 127.0 167.8 5.2045 6.5581 5.6096 1529 255 175 8.95 

In 

115 424.1 122.0 129.8 5.1310 6.5554 4.2625 1425 602 517 21 .95 

Sn 
116 440.1 114.1 148.8 5.2332 6.6174 5.4669 1417 231 197 9.96 
118 436.0 116.5 144.5 5.2093 6.6568 5.4065 1452 222 178 8.51 
120 434.4 123.7 141 .9 5.2639 6.6940 5.3626 1503 605 184 14.61 

122 430.2 130.4 142.4 5.2575 6.8658 5.3516 1552 349 205 11.81 
124 428.0 134.2 130.5 5.2880 6.8842 5.1792 1571 350 218 12.07 

a) from Melssen (Mel78), reanalyzed. 
b) crR = reaction cross section. 
c) Nf = the number of degrees of freedom. 
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Table 4. 2a Best fit optieal model parametePs foP SP at 24.6 MeV. 

A v r a w WD r. a. v r 
0 0 0 v I I so so 

(MeV) (fm) (fm) (MeV) (MeV) (fm) (fm) (MeV) (fm) 

86 52.54 1.167 0.756 2.65c) 7.15 1.277 0.675 5.73 1 .020 

88 52.54 1 .163 0.761 2.65c) 7.00 1.309 0.654 6.03 0.979 
(%) (0.3) (0. 2) (0. 5) (0.5) (0.2) (0.8) (0.9} (0.6) 
88a) 51.65 1.17 0.725 oc) 8.99 1.266 0.673 6.49 1.01 
88b) 52.51 L 17 0.725 De) 9.52 1 .266 0.673 5.56 1.01 

a) 

b) 

c) 

A 

86 

88 
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Set P2 of Kaptein, unvaried. 

Set P2 of Kaptein, with V
0

, w0 and Vso varied. 

Fixed value. 

Table 4.2b De!'ived and ahi squa:r>ed values foP the 
best model fit of SP at 24.6 MeV. 

l 
<R2>t <R~>t <R2 >t 2 

Jo/A J./A J /AS crR X a I SO 0 I so 
( MeV fm3 ) (fm) (fm) (fm) (mb) 

424.1 120.4 146.8 4.8801 6.0157 4.8840 1427 &23 
419.8 120.2 148.2 4.9033 6.1208 4.8975 1452 543 

Table 4.2a Chi squaPed values 88 foP divePae optieal model fits to SP. 

reference fit remark 

Kaptein (Kap78) start a) 

3V b) 
BG (Bec69) start c) 

3\/_ d) 

Best fit 

a) Set P
2

, 

b) Set P
2

, 

no parameters varied. 

V , w0 and V varied. 
0 so 

c) No parameters varied. 

d) V
0

, w0 and Vso varied. 

2 2 
xo XA 

3601 4469 
1468 1458 
4561 982 

1834 1720 

543 761 

2 
XA 

651 

761 

2 
X /Nf 

144 

52 

99 
64 

26 

a so 
(fm) 

0.604 

0.716 

! 1. 3) 

0.75 

0.75 

2 
X /Nf 

33.47 
26.06 



In table 4.2c we compared the optical model parameters found by 

Kaptein (Kap78) with our results for 88sr at 24.6 MeV. His set P2 

gives chi squared values, both for the cross section and analysing 

power, that are a factor of 7 larger than our BF result. Probably 

this com~s from the fact that Kaptein fitted experimental cross 

sections till an angle of 120 degrees instead of 165 degrees. Also 

no analysing powers were fitted by Kaptein. 

The set optical model parameters deduced by Beer (Bee70), who 

also performed experiments with (unpolarized) protons of 24.5 MeV, 

scattered by the same sequence of Sn isotopes as we have used, gives 

rather bad descriptions of our experiments. The same arguments as 

mentioned above can be applied here. 

In the analysis of the experimental results obtained at 24.6 MeV 

on 120sn we found the same effect: using the geometrical parameters 

of Beer instead of the GF parameters of our 20.4 fit (see section 

4.2.4) we obtained chi squared values that were a factor of 4 larger, 

as can be seen in tables 4.3a and 4.3b. 

Tab'le 4.3a F~xed geometry optiaal model paPameters for 
1 0sn at 24.6 MeV. V0 , Wv and Vso were varied. 

v r a wv WD r. a. v r 
0 0 0 I I 50 so 

(~leV) (fm) (fm) (MeV) (MeV) (fm) (fm) (MeV) (fm) 

GFa) 53.33 1.178 o. 730 2.17 8.63 1 .266 0.695 6.36 0.970 
Beer b) 56.39 1.130 0.744 0.00 10.62 1.330 0.650 6.47 1.130 

(%) (0.09) (0.6) ( 1. 1) 

a) Geometry of the global fit of Sn. 

b) Geometry of Beer (Bee70). 

Table 4.3b Derived and ahi squared values {or the fixed 
geometry optiaal model fit of 1 Osn at 24.6 MeV. 

GFa) 422.0 122.8 154.7 5.2545 6.6390 5.2617 1594 178 156 
Beerb) 400.8 128.5 183.6 5. 1271 7.0675 6.0510 1606 735 392 

a) Geometry of the global fit of Sn. 

b) Geometry of Beer (Bee]O). 

a so 
(fm) 

0.699 

0.750 

8.32 

28.16 
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The aurvea are aalauZated with the optieaZ model, using 
the BF parameter. 



The experimental results and the BF curves are drawn in figs. 

4.1 for Ni, 4.2 for Sr and 4.3 for Cd. The curve of ll51n in fig. 4.4 

resulted from a search wherein the geometrical optical model parameters 

were fixed to the values of the GF set of Sn, which set is described 

in the next section, while the three strength parameters V
0

, Wd and 

V
50 

were varied. 

Reviewing the results we can conc.lude that the optical model 

describes the experimental angular distribution very well. 

Fig. 4.4 DiffePentiaZ aP088 seation and anaLysing poweP foP eZaatia 
saattePing of pPotona by 115rn at 20.4 MeV. 
The auPVes aPe aaZauZated with the optiaaZ model, using 
foP the geometpY the GF paPametePs of Sn, the stPengths 
wePe vaPied. 
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saattering of protons by 116,118~12D~122,124sn at 20.4 MeV. 
The aurves are aa~aulated with the optiaal model, using the 
GF parameters. 



For the Ni, Cd and Sn isotopes we also have performed a global 

optical model search, called GF, which means that we fitted all 

angular distributions of a series of isotopes with one set isospin 

dependent parameters. As starting values we took the averages of the 

BF parameters. In fig. 4.5 we show the results of the GF fits for the 

Sn isotopes. Visual inspection hardly shows any difference between 

the BF and GF curve, so here only the GF curves are displayed. 

In the GF search we tried various isospin, {N-Z)/A, dependences 

of the strength and diffuseness parameters. It turned out that only 

the surface absorption parameter w0 had a noticeable isospin 

dependence. All other parameters were thus equal for each isotope 

in a sequence. 

Table 4.4a lists the GF parameters, which are very well 

determined {smal I standard deviations), since a large amount of data 

points is fitted simultaneously. The best GF set is that of Sn, which 

differs only a little from the average of the individual best fits. 

Compare also the values of x2/Nf in tables 4.1b and 4.5a. In the case 

of Ni we better use the BF parameters in the DWBA calculations, but 

for the Sn and Cd isotopes the BF and GF parameters are nearly equal. 

So here for the analyses of the inelastic scattering the GF set is 

preferable. 

In order to check the fitting procedure we repeated the BF 

searches starting with the GF sets. The same parameters as in table 

4.1a were found. 

Since we have a well defined data-set for Sn we also could 

investigate the influence of the addition of extra optical model 

parameters. Sinha (Sin75) suggested a real central surface term. In 

our analysis this term, however, turned out to be small with a large 

standard·deviation. Also the addition of an imagi.nary spin-orbit term 

did not Improve the fits. So these extra terms are not necessary for 

the optical model analysis of our experimental data. 

It is known that in a certain mass region the volume integrals 

and rms radii show less variation than the Individual optical model 
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Table 4.4a Global fit optical model parameters at 20.4 MeV (GF). 

V r 
0 0 

a 
0 WV WDO WD1 r i a. V r 

I SO SO 
a so 

(MeV) ( fm) (fm) (MeV) (MeV) (t1eV) . ( fm) (fm) (MeV) (fm) (fm) 

Nib) 

52.47 1.176 0.745 1.30a) 7.24 21.8 1.302 0.518 5.64 1.023 0.554 

Cdc) 

52.97 1.201 0.100 0.63a) 5.55 27.7 1.192 0.759 6.12 1.108 0.585 

Snd) 

54.97 
(0. 2) 

1.178 0.730 1.20a) 5.93 21.1 1.266 0.695 5.65 0.970 0.699 

(0.08) (0.2) (l.7) (3.0) (0.3) (0.7) (0.4) (0.5) (0.8) 

a) Fixed value. 
2 b) X /Nf = 30.77. 
2 c) X /Nf = 10.81. 
2 d) X /Nf = 13.53. 

Table 4.4b Theoretical and experimental values of the volume 
integrals and rms radii from literature compared 
with our results; the units are in MeV•jm3 and 
fm, respectively. 
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reference 

Brievaa) (Bri77) 

Greenleesb) (Gre68) 

Agrawell (Agr75) 
BG 

our exp. 
(Bec69) 
120sn BF 
120sn GF 

J 
0 

436 

436 

434 

434 

435 

5.23 

5.25 

5.27 
5.26 

5.25 

73 

115 
122 

124 

123 

2 1 
<R.>,. 

I 

6.2 

6.79 

6.69 

6.73 

J so 

107 

138 

141 

138 

a) Average of the values for 40 ca and 208Pb, at E = 21 MeV. 
b) Averaged values for 120sn, 20 ~1eV. p 

2 1 
<R >2 

so 

5.30 

5.51 

5.36 
5.26 



parameters. We learn from tables 4.1b, 4.2b that those quantities 

indeed have this property. 

First we compare our data with other experimental values from 

the I iterature. For 120sn ai 20 MeV the average value of the real 

volume integral is equal to the average value given by Greenlees, 

Pyle and Tang (Gre68), see table 4.4b. Using the BG optical model 

potential we find a somewhat smaller value. The imaginary volume 

integeal Ji/A is slightly A-dependent for a sequence of isotopes, 

see table 4.1b, but remains in the interval of 115±15 MeV fm3, which 

was quoted by Agrawell and Sood (Agr75) and by Hodgson (Hod76). 

Second we compare our results with theoretical values. Brieva 

and Rook (Bri78) have deduced theoretically the optical model 

potential in a micro·scopic way from the effective nucleon-nucleon 

interaction folded with the nuclear density. The averages of the real 

central volume integrals and rms radii of Cd and Pb, at 21 MeV 

compared with our values of BF and GF for 120sn are in excellent 

agreement, as can be seen in table 4.4b. Also the real spin-orbit 

values agree satisfactorily. Since Brieva and Rook used an imaginary 

spin-orbit term and we not, the imaginary values are not comparable. 

The isospin dependence of the optical model parameters and of 

the corresponding volume integrals is of interest for they give 

information about the difference between proton and neutron inter­

actions (Gre68, Sat69, Fin80). In this section we will discuss the 

isospin dependence of some optical model parameters of the Sn 

isotopes. For our definition of the optical model parameters and 

for proton scattering (T=+l) we can split the real central strength 

as follows: 

V
0 

= V00 + T (N-Z)/A V01 

For neutron scattering we use T=-1. In the same way other terms can 

be split, like w0 , J0 etc. 

Since in the BF calculations geometrical as well as strength 

parameters were varied, these fits are not used for the investigation 

of the isospin dependence. We performed separate searches for the 

five Sn isotopes, wherein the three strength parameters V0 , w0 and 

Vso were varied while the geometry was fixed on the GF values. We 
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Table 4.5a Isospin dependenaes of the 
aentral potential for 116-124sn. 

projecti Je energy reference remark Vol WDI 
(MeV) (MeV) (MeV) 

p 20 FG3 a) -3.9{4.4)e) 21 {l)e) 

p 20 GF5 b) -3.1(1.1) 23(3) 

p 24 {Bee70) d) 26.2(5.1) 15(6) 

p 16 (Mak68) c) 20.2(2.0) 20{8) 

n 11 (Fin80) 15.6(2.3) 12(2) 

p global (Bec69) 24.0 12 

All real central potentials are corrected for the Coulomb potential 
by a factor 0.4 Z/Al/3 , which lowers the value of V01 by 1.5 MeV. 

a) Search with the Fixed Geometry from the global fit, table 4.3, 
and the three strength parameters varied. 

b) Global fit like in section 4.2.4 but now the geometry is fixed 
as for FG3 and the parameters V0 o, Vol• Woo. Wol and Vso are 
varied. The errors here are from the optical model fit, section 
4.2. 1. 

c) Without the values for 112sn, when 112sn is included then 
V01 16 MeV. 

d) From table 2 of Beer with Ws = 0. 

e) Between parentheses the standard deviations of the linear 
regression fit, except for FG3. 

Table 4.5b Isospin de~endence of the volume integrals 
(in MeV jm ) calculated for the global fit 
and best fit potentials 

l 1 
isotope fit JoO/A JollA JiO/A J i ,fA J /A3 

soO J /A3 sol 

Ni GF 454 -66 100 212 145 0 

Cd GF 446 -43 85 231 170 0 

BF 478 -278 232 -426 

Sn GF 443 -46 91 195 138 0 

BF 469 -210 61 377 187 -275 
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also performed a global fit, like in section 4.2.4, with as parameters 

V00 , V01 , W00 , w01 and Vso' but now also with the geometry fixed to 

the previous GF values. 

The resulting isospin dependences, together with values from the 

literature are compiled in table 4.5a. Surprisingly, a small negative 

value of V01 is found in both cases while in the literature a positive 

value of around 20 MeV is given. The values of Beer (Bee70) and those 

of Makofske (Mak68), however, have been deduced by fitting the cross 

section in a smaller angular range as we have used, while Becchetti 

and Greenlees (Bec69) have fitted a very large range of nuclei in a 

general global fit. 

The imaginary isospin dependence, w01 , has a value that is in 

accordance with the results of Beer and those of Makofske but is 

higher than the value of Finlay (Fin80) and Becchetti. Also here the 

differences can be caused by different fitting methods and data 

regions. 

We investigated also the isospin dependences of the volume 

integrals of the Ni, Cd and Sn isotopes. As data for the linear least 

squares fit we used the values listed in table 4.lb. The results are 

listed in table 4.5b. For comparison we also give in the same table 

the isospin dependences using the GF parameters. We see that for the 

BF the isospin contribution J01 is much larger than for the GF. 

Further we observe for all Isotopes similar dependences: decreasing 

for the real central and spin-orbit volume integrals but increasing 

for the imaginary volume integral. 

In conclusion we can say that the inclusion of analysing power 

data does not remove the isospin dependences of the volume integrals, 

but that-those dependencies strongly depend on the used search 

method. 

4.2.8 ~9~el~9_£n~~~~l~_fl!_fQr_~~~l 
For 60 Ni we performed in addition to the optical model fit, a 

search with the coupled channel code ECIS (Ray72). We fitted the 

ground state and the 2~ state simultaneously. Nine optical model 

parameters and the deformation parameter were varied. As can be seen 
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Fig. 4.6 Differential cross section and analysing power for elastic 
scattering of protons by 120sn at 24.6 MeV. 
The aurves are calculated with the optical model, using 
the geometry of the GF parameters of Sn, full line, and of 
Beer, dashed line. 

Table 4.6 Optical model and defoPmation parameters deduced from a CC 
fit to the ground state and the 21 state of 60Ni, with the 
code ECIS. For comparison also the best fit (BF) and DWBA 
data are given. 

fit 

BF 
cc 
(Sd)a) 

fit 

BF 
cc 

V r 
0 0 

(MeV) (fm) 

53.3 1.17 
53.3 1.15 
(7) ( .09) 

0.255 

ao Wv WD 
(fm) (tteV) (MeV) 

0.75 
0.75 
( .03) 

1.45 9.4 
1.45 6.1 

( 1. 7) 

r. 
I 

(fm) 

1. 31 
1.35 
(.03) 

0.48 
0.61 
(. 12) 

vso 
(MeV) 

5.7 
5.4 

(0. 7) 

874 385 26654 3484 
0 .207(0 .007)a) 3282 742 4099 799 

a) These are the standard deviations of the CC fit. 
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r so 
(fm) 

1.03 
0.97 
(.04) 

a so 
(fm) 

0.57 
0.58 
(. 12) 



in fig. 4.6 some differences between the optical model and CC fit 

exist. For the forward angles of the cross section, the CC fit is 

better than the optical model fit, but at backward angles the 

situation is reversed. The analysing rowers differ not so much. In 

table 4.6 we list the parameters found from the CC fit. We see that 

the chi squared values of the CC fit are larger than for the standard 

optical model fit. This is caused by the difficulty to fit the slope 

of the 2~ state which influences here also the fit to the ground 

state. 

In conclusion, we can say that the elastic scattering is 

described very well by the standard optical model. 

4.3 Inelastic scattering and DWBA 

In our experiments only the strongest collective transitions 

produced enough statistics to give reliable angular distributions. 

Sometimes experimental data points are missing from an angular 

distribution because of an overlap of the peak of interest with such 

a large peak, arising from a contamination in the target (1H, 12c, 
16o), that a reliable correction was impossible. 

For the theoretical analysis of the inelastic scattering data 

we used the well known standard collective DWBA method (see section 

3.4). We used a DWBA code, written by Verhaar and Tolsma (Ver72). In 

this program a full Thomas spin-orbit form factor was incorporated. 

The curves of Cd and Sn have been calculated with the GF, all other 

curves with the BF optical model potentials. 

The deformation parameters, listed in table 4.7, are the only 

free parameters in the DWBA calculations. They were deduced from the 

sealing of the first maximum, around 30 deg, to the experimen-tal 

points (!n our program PLOT). In general these deformation parameters 

are quite close to the values from the literature, which are also 

listed in table 4.7. As consequences of the statistical errors in the 

experimental points and the normalization procedure for the ground 

state and the inelastic state, we estimate the errors in the 

deformation parameters to be about 10%. 

We now make some remarks concerning the various nuclides. 
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Table 4.7 DefoPmation parameters.c) 

+ 21 states 3~ states 

A E (MeV) 13 13 1 it E (MeV) 6 61 it reference 
X X 

60N" 1.33 0.255 0.26 4.42 0.209 0.19 (Me178) 
64N: 1.34 0.206 0.200 3.56 0.203 0.181 (Car66) 

86 1.08 0.158 0.130 2.48 0.185 0.153 (Ram72) 88Sr 
Sr 1.84 0.114 o. 110 2.73 0.177 0.166 (Kap78) 

115 1 n 1.13 0 .089a) 2.13 0.092a) 
(L=2 1.29 0.075a) 2.46 0 .106a) 
or 3) 1.48 o.o66a) 

110Cd 0.66 0.168 0.175 2.08 0.146 0.175 (Mak68) 
112Cd 0.62 0.165 0.173 1.97 0.154 0.164 (Mak68) 
114Cd 0.59 0.169 1.96 0.145 o. 160 (Mak68) 

116 1.29 0.151 0.143 2.27 0.164b) o. 188 (Bee70) 118Sn 
1205n 1.23 0.138 0.134 2.33 0.158 0.174 (Bee70) 
122Sn 1.17 0.136 0.128 2.41 0.161 (Bee70) 
124Sn 1.14 0.127 0.122 2.49 0. Ill 1 o. 149 (Bee70) 

Sn 1.14 0.109 o. 119 2.61 0.123 o. 138 (Bee70) 

60 . + + Other states of N1, 2 and 4: 

J (nr) E (MeV) 13 61 it reference 
X 

2 (2) 2.15 0.0303 0.022 (I no68) 
2 (3) 3.12 0.0509 0.06 (I no68) 
4 ( 1) 2.51 0.127 0.085 (I no68) 
4 (3) 3.67 0.0664 0.045 (I no68) 

s; states of Sn: 

A E (MeV) a 13 1 it reference 
X 

122 2.24 0.0844 0.0859 (Bee70) 124Sn 
Sn 2.21 0.0879 0.0886 (Bee70) 

a) Does not include the statistical factor 1(2Ji+1)(2L+1)/(2Jf+1). 

b) After correction for the s; overlap strength. 

c) The estimated errors in our experimental values B are about 10%. 
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state energy( keV} 

3i 4039 

4+ 
3 3670 

2+ 
2 3120 

4+ 
1 2506 

2+ 
2 2159 

2+ 
1 1332 

g.s. 
Fig. 4.7a 60 Analysed states of Ni. 

Analysed states of 60Ni. 

4.3.1 ~l 

The Ni isotopes are nuclides of interest because of their closed 

proton shell, Z=28. The statistics of the measurements on 60 Ni were 

much better than prev~Qus results (Hal77). So we could extract data 
·,·~ 

for some of the two.;;prroffOn states. In fig. 4.7a the level scheme of 

the states of 60 Ni that we have analysed is displayed. First we will 

discuss the one-phonon states and in the next sub-section the two­

phonon results. 

60 64 . 4.3.1.1 Q~~=~~2~2~_!!2!~!_gf ___ ~--~l 
In fig. 4.7 we see that the slope of the theoretical cross 

section of the 2~ state is not as steep as that of the experimental 

cross section. This phenomenon was already encountered in the work of 

Melssen (Mel78) on 58 •60 •62Ni and also in more recent experiments, in 

our group on 64 •66 •68 •70zn (Ha180). Only for 70zn the theoretical and 

experimental cross sections agreed. The agreement becomes Jess when 

going to the lighter Zn isotopes. The same trend holds for the Ni 

isotopes and the Sn isotopes (fig. 4.17). 

Sl'nce for 60 N'1 h 2+ · h l 1 d h t e 1 state 1s rat er strong y coup e to t e 

ground state, which is seen from the deformation parameter having a 
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Fig. 4.7 Differential cross section and analysing power for inelastic 
scattering of protons by B0,64Ni at 20.4 MeV leaving the 
target in the 2j state. 
The full curves are ealcuZated with the DWBA, using the BF 
optical model parameters, the dashed curve for 60Ni with the 
CC method. 
The DWBA curve is sealed on the first maximum while the CC 
curve is sealed on the complete angular distribution. 

value of 0.255, we tried to explain this disagreement by performing a 

CC analysis for 60 Ni, in two ways: 

a. We used the code CHUCK (Kun6Y) in a calculation wherein the two­

phonon multiplet, o+, 2+, 4+, around 2.5 MeV was coupled to the 
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+ 21 state. Indeed the theoretical cross section is now lower at 

the backward angles, but it is not lowered enough to give a 

satisfactory result. See table 4.8a for the various cross sections 

at the backward angle of 126 degrees. 
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Differentiat cross section and analysing power for inetastic 
scattering of protons by 60,64Ni at 20.4 MeV leaving the 
target in the 31 state. 
The curves are oatcutated with the DWBA, using the BF 
optical model parameters. 

b. A 1 imited search with the program ECIS (Ray72) was performed. We 

varied nine optical model parameters together with the deformation 

parameter 62, in order to fit the elastic scattering (see section 

4.2.8), and the inelastic scattering simultaneously. This gives a 

better fit of the analysing power of the 2~ state, but its cross 

section does not change so much, as can be seen in fig. 4.7. The 

resulting parameters are listed in table 4.6. We notify the value 

of 62 , which is considerably lower (20%) as that given in table 
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Table 4.8a CPOss section of the 2; state at 6=12&0 
in mb/sr of 60Ni. 
The theoretiaaZ curves are no~aZized at 
the e:x:perimentaZ maximum around 30°. 

theoretical values: 

DWBA calculation 

CC with coupling of gs to zt 
and fit of OM parameters; ECIS 

CC with couplings between gs, 
2j and 0~, 2~ and 4!, no fit; CHUCK 

experimental value and error 

1.00 

0.86 

0.80 

0.52 (0 .01) 

4.]. This simply comes from the fact that in ECIS the complete 

inelastic angular distribution is used for the scaling of the 

theoretical cross section to the experimental points, while in 

the DWBA calculation we used the angular range around the first 

maximum only. The cross section at 126 degrees calculated with 

ECIS is nearly the same as calculated with CHUCK after a 

renormalization at the first maximum, see also table 4.8a. So 
+ the steepness of the 21 cross section remains a difficulty that 

cannot be explained by the CC theory. 

The 3~ states of 60 Ni and 64Ni are very well described by the DWBA 

theory, as is shown in fig. 4.8 and the deduced deformation parameters 

"'are in agreement with the values from the literature. 

4.3.2.1 !~Q:ebQ~Q~-~!~!~~-Qf_~~~! 
From our spectra we could extract angular distributions with good 

statistics for some states which are believed to have (partly) a two­

phonon character. Theoretically the 0+, 2+ and 4+ states of the 

two-quadrupole phonon multiplet should have energies around 2.6 MeV. 

From the energies and J values of the states of 60Ni, which are given 

in the Nuclear Data Sheets (Aub79), the most probable candidates for 

the two-phonon multiplet are the states at 2.15 (2;), 2.28 (o;) and 

2.51 (47) MeV. In fig. 4.7a we display the states that we have 

analysed. We have found states at 2.15, 2.51, 3.12 and 3.67 MeV, so 
+ the 02 state was not observed in our energy spectra. We could not 
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TabLe 4, Bb Some 2+ and 4+ states of 60Ni fitted with a 
m~ture of one-phonon and two-phonon 
aontributions, aaZaulated with the CC model. 

J11 E (MeV) aDWBA case a) Alph A.2ph 
2 2 

X Xcr XA 

2+ 
2 2.15 0.303 DWBA 1 0 6340 868 

mixed 0.227 0.625 3400 305 

2 ph 0 0.694 3926 441 

2+ 
3 

3.12 0.509 DWBA 0 2983 542 

mixed 1.010 -0.232 2511 350 

2 ph 0 1 • 123 6413 1118 

4+ 
1 2.51 o. 127 DWBA 1 0 40155 1097 

mixed 0.927 0.586 22477 1074 

2 ph 0 1.909 248990 2515 

4+ 
3 3.67 0.066 DWBA 1 0 4354 1218 

mixed 0.516 -0.243 624 1274 

2 ph 0 1.004 3839 1549 

a) Case DWBA is only one-phonon and case 2 ph is a pure two-phonon 

calculation. 

separate the 4; and the 2; in our 

a small deformation parameter for 

this state as a pure 2+ state. 

spectra, but in the literature only 
+ -

the 42 state is given. So we treated 

We analysed these four states with first- and second-order CC 

using the vibrational model. In the second order approach a mixing of 
1direct 1 or one-phonon and of two-phonon distributions was allowed. 

We calculated with the code ECIS these contributions separately and 

also a special mixed case wherein the direct and two-phonon 

contributions had equal weights. 

With these three angular distributions we could not apply the 

approach as outlined in the appendix of chapter 3. We used our program 
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Fig. 4.9 Differential aross seation and analysing power for inelastia 
saattering of protons by 60Ni at 20.4 MeV leaving the target 
in the 22 and 2~ states. 
The curves are aaZculated ~ith the CC model~ ~th the optimum 
mixing of one-phonon and ~o-phonon aontributions. 

CHIMIX to find the best values of the two strengths. This code 

searched for a minimal chi squared value for both the cross section 

and analysing power by varying the strength parameters of the direct 

and two-phonon contributions. 

From the resulting strengths, that are compiled in table 4.8b, 

we can conclude that the two 2+ states have a different character. 

Note in fig. 4.9 especially the differences in the analysing powers. 

The large maxim4m at backward angles of the cross section of the 

sa 
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Fig. 4.10 Differential aross seetion and analysing power for inelast·ia 
saattering of protons by 60Ni at 20.4 MeV leaving the target 
in the 4! and 4z states. 
The aurves are aataulated with the CC model, with the 
optimum mixing of one-phonon and two-phonon aontributions. 

It should be noted that the sealing of the aurve labeled 
CC of the arose seation of the 4! state has been ahosen 
differently from the other seatings. Here the complete 
angular distribution has been used for the normalization, 
while in all other cases the first maximum around 30 degrees 
has been used. · 

2; state cannot be described by the theory. Another difficulty is 

the rather large positive analysing power around 30 degrees (compare 

the 2; state of 54Fe at 20 MeV (Ha177)). So we learn from table 4.8b 
+ that the 22 state has a strong two-phonon contribution, so it belongs 
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to the multiplet. A direct DWBA description gives much larger chi 
+ squared values. For the 23 state the mixed description gives no 

significant lower chi squared values than the direct approach, 

while a pure two-phonon description gives very large chi squared 

values. 

Since the theoretical one-phonon and two-phonon angular 

distributions do not differ much in shape, it is not possible to 

show clearly with our mixing procedure that the 47 state belongs 

to the multiplet and that the 4; state has a one-phonon character. 

In fig. 4.10 we see that these two states have quite different 

angular distributions: the cross section of the 47 is much steeper 

than that of the 4;, while the analysing powers have nearly opposite 

phases. We see that for the 4; state a relatively small two-phonon 

contribution added to the direct contribution gives an excellent fit 

for the cross section. The cross section of the 47 state, however, 

is always fitted badly. 

We checked the mixing procedure in CHIMIX by performing exact 

calculations with ECIS for some combinations of the mixing parameters. 

The differences with the results of CHIMIX were less than 2% for the 

cross sections and Jess than 1% for the analysing powers. The angular 

distributions here are of course not independent, since the various 

states are coupled indirectly, but these higher order couplings are 

only weak. 

So, in conclusion, we have shown 

nearly a pure two-phonon state, while 

a one-phonon state. The excitation of 

a more complex character. 

4.3.2 ~r 

that the 2; state indeed is 

the 2i state is predominantly 

the 4 states seems to have 

The investigation of the nuclide 88sr is of interest because it 

has a closed neutron shell (N=50). For comparison we also measured 

the scattering from 86sr. The quantity of interest here is the, value 

of the enhancement parameter of the spin-orbit deformation ~so' 

defined as: 

where ~c is the deformation parameter of the central terms." 
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From the literature (Gia67, Swi78, Swi79, Me182) we know that other 

isotopes with N around 50 need an extraordinary large value of A to 

describe the analysing power at forward angles of the first 2+ state. 

Also for other nuclei with one closed shell this anomaly appears in 

the scattering of polarized protons in the energy range of 15-25 MeV. 

One example is 54Fe (Hal77). The results of our experiment and those 

from the literature are compiled in table 4.9, where we see that A. 

is energy- and mass-dependent. Also for 92zr, which nuclide has no 
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The curves are calculated ~th the DWBA, using the BF 
optical model. parameters. 
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closed neutron shell but a closed shell plus two neutrons, a large 
86 88 A value is needed at E = 20 MeV. For • Sr, however, at 24.6 MeV 

p 
proton energy we deduced a normal spin-orbit deformation. In fig. 

4.11 we see that the description is quite good. At lower energies, 

e.g. 17 MeV, possibly a larger enhancement parameter will be needed. 

The 3~ states of the Sr isotopes are very well described using 

normal A values (see fig. 4.12). The deformation parameters are in 

agreement with the values from the literature. 
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Table 4.9 Ratio of spin-orbit and central deformations 
of the 21 state for nuclei around N=50. 

E 86Sr 88Sr 89y 90zr 92zr 92Mo 
p 

{MeV) 

20 2.0a) 3.0b) 2.5b) l. 5c) 

25 1. od) 1.0d) 

30 1.5c) 1.5c) 1. sc) 

40 1 • oc> l.Oc) 

a) L=2 states of Melssen {Mel82). 

b) Glashausser (G la67). 

c) de Swiniarski {Swi77, Swi78, Swi79). 

d) this experiment. 

The Cd isotopes have been chosen because they are situated in 

the neighbourhood of the Sn isotopes. They are well known examples 

of vibrational nuclei. In Cd, however, the proton shell is not closed, 

Z=48, and this results in appreciably lower excitation energies for 

the 2~ and 3~ collective states. The experimental cross sections and 

analysing powers are very well fitted by the DWBA calculations, as 

can be seen in figs. 4.13 and 4.14. 

For 114cd the 2+ excitation at forward angles was masked too much 

by contaminations, so we could not find here a reliable deformation 

parameter. Compared with the results of Makofske (Mak68), in table 

4.7, we see that our deformation parameters are systematically a 7% 

lower, which can be caused by a different normalization procedure. 

Makofske, for instance, had only cross sections for angles larger than 

30 degrees. The trends, however, are the same. 

The 3~ states, shown in fig. 4.14 have experimentally more 

structure than the theoretical curve, especially for the heavier 

isotopes. 
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4.3.4 ~~=!!:! 
The nuclide 115 1n has been studied already extensively (Smi76, 

Smi77), but until now no results of scattering of polarized protons 

have been published. In first approximation we can consider 115 1n as 

nuclide with a closed proton shell. It has only one lg 9/2 proton 

hole in the Z=SO shell. So the collective excitations should be 

described by the weak-coupling model. The proton hole is coupled to 

the collective phonons of the parent nuclide 116sn. 

According to the weak-coupling model (see section 3.4.2), we 

expect five L=2 and seven L=3 transitions in 115 1n, with weighted 
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Fig. 4.15 
Scm. 

Differentia~ cross section and ana~using power for 
ine~aatic acatte~ing of p~otons by 115In at 20.4 MeV 
~eaving the t~get in the L=2 states. 
The curves ~e ca~cu~ated with the DWBA~ using the 
fixed geometry optiaa~ mode~ paPamete~s of Sn. 

mean energies equal to the energies of the corresponding parent states 

in 116sn. The experimental deformation parameters should show a 2J+1 

dependence for each final state and their sum should equal the 

deformation parameter of the parent state. 

As a consequence of the ener.gy resolution of SO keV we could see 

only three L=2 and five L=3 transitions in our spectra. Fig. 4.14a 

shows a typical energy spectrum of 115 1n. Only two of the five L=3 

transitions had enough statistics to be analysed. Our experimental 

results and the DWBA curves are plotted in figs. 4.15 and 4.16 for 

the L=2 and L=3 states, respectively. We used here as optical model 

parapeters the GF set of Sn, so only the parameter w0 was different 

from the value for 116sn. The OWBA calculations describe the L=2 and 

L=3 states very well. 
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The ~rves are calcuLated with the DWBA using the fixed 
fixed geometry optical model parameters of Sn. 

First we will discuss the results for the quadrupole multiplet. 

total strength of the analysed transitions amounted to be 79% of 
+ 116 parent 2 strength of Sn, see table 4.10. We see from the peak 

fitting of the energy spectrum in fig. 4.14a that the missing strength 

of the multiplet based on the z+ state is only small. 

Calculations with the weak coupling model for 115 1n have been 

carried out by Dietrich (Die70), Covello (Cov73) and Smits (Smi77). 

Due to the mixing, the wave functions of the ground state and the 

excited states have the form 

N = 0,1,2 ( 4.1) 

Here we use N quadrupole phonons, coupled toR; coupled to the hole 

(lg 9/2)+, giving total angular momentum J. The factors c~R are the 

decomposition factors. Dietrich has given a list of his decomposition 

factors, so we will use his results for the calculation of the overlap 

of the ground state and an excited state wave function. We multiply 

this overlap with 2Jf+1, giving Bf,th' which should be compared with: 
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Tabte 4.10 Experimentat and theoretiaat Bf 
vatues of 115rn, L=2. 

J1f E 8f th 
a) 8f,exp X ' (MeV) 

5/2+ 1.08 4.0 
11/2+ 1.14 8.2 

12.2 17.5 

13/2+ 1.29 9.8 12.4 

7/2+ 1.46 6.1 
9/2+ 1.49 1.5 

7.6 9.6 

29.6 39.5 

I x,th. 1.27 MeV 

exp. 1.27 MeV 

parent = 1.29 MeV 

a) Calculated with the data of Dietrich 

(Die70) for 0 and 1 phonons. 

Table 4.11 Review for the L=J 
states of 115rn. 

E (Mev) 
X 

2.13 

2.46 

2J+1 

6 

12 

18 

14 

8 

10 

18 

50 

8exp 
f 

22.7 

30.2 

52.9 70 

Weighted average energy (MeV): 
'E 116 x,parent Sn 2.27 

exp. = 2.32 
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(4.1) 

Here 0 • th d f t" t f 116sn, 2+1. In table 4.10 ~parent 1s e e orma 1on parame er o 
we present the results. We see that due to the mixing of the two 9/2+ 
states the strength of the 9/2+ state at 1.49 MeV is reduced. Apart 

from a factor of about 1.3 the trend in Sf is very well reproduced. ,exp 
Using the decomposition factors of Smits we find nearly the same 

result. 

The energy controid of the L=2 multiplet is only 2% lower than 

the excitation energy of the parent state. This small shift can be 

caused by the mixing of the states. 

In table 4.11 we give a review of the L=3 data. The total strength 

of the analysed octupole states is 76% of the parent strength. But here 

some small peaks, which are visible in the energy spectrum, have not 

been analysed and so this percentage should be somewhat higher. Since 

for the L=3 states no spin assignments are available we cannot check 

the 2J+1 rule. We only can say that the largest J values of this 

multiplet should be situated around the energies of 2.13 and 2.46 MeV. 

The weighted averaged energy Is only 3% higher than in the parent 

state, which Is a satisfactory result. 

In conclusion we can say that the weak coupling model describes 

the experiment very well. A high resolution experiment with polarized 

protons would be desirable for a further study of 115 1n. Also the low 

energy single-hole excitations, which are very weak but visible in 

our spectra, could be of much interest for a microscopic analysis. 

4.3.5 Sn 

Since tin has a more or less closed proton shell many stable 

isotopes are available. This enables us to investigate the influence 

of the increasing neutron nu~ber on the optical model parameters, 

volume integrals and so on. In accordance with our program of 

scattering of polarized protons we have chosen the energy of 20.4 MeV. 

All curves were calculated with the collective DWBA using our GF 

optical model parameters. In all cases the spin-orbit deformation could 

be taken equal to the deformation of the central well. From the cross 

sections of the 2~ states one can see in fig. 4.17 that the minimum 

around 120 degrees is described better for the heavier isotopes, 

whereas for the 3~ states, see fig. 4.18, the opposite is true. 
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Fig. 4.17 

Snfj5,p'l2i Ep .2Q,4MeV 
GF parameters OM full Thomas s.o. (Jls.o/ llc1l 

o.s 

-0.5 

II I II II I II II I II tl !! II 1 I I j 
30 60 90 120 150 180 

Scm (degl 

Differential al:'oss section and analysing power foP 
inelastic saattering of protons by 116,1lo,l20,122,124sn 
at 20.4 MeV leaving the target in the 2! state. 
The auPVes are calculated ~ith the DWBA, using the FG 
optiaal model parametel:'s. 

+ So the 21 states of the Sn isotopes show a similar trend as the Ni 

isotopes (fig. q,]) and the Zn isotopes (Hal80). 
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Fig. 4.18 
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SnHi.p'l37 Ep=2MMeV 
GF parameters OM full Thomas s.o. (~s.o/Jlc-1) 

05 

A(8) 

-(]5 

Differential cross section and analysing ~ower for 
inelastic scattering of protons by 116~11~~120~122~124sn 
at 20.4 MeV leaving the target in the 3} state. 
The curves are calculated with the DWBA, using the FG 
optical model parameters. 



Fig. 4.19 

0 30 60 90 120 150 180 0 
9,;m 

Ep·20.1.MeV 

fuU Thomas s.o. (IJs.o.l~c •ll 

-0.5 

30 60 90 120 150 180 
ecm 

DifferentiaZ cross section and anaZysing power for 
ineZastic scattering of pro!ons by 122,12~sn at 20.4 MeV 
leaving the target in the 5~ state. 
The curves are caZaulated w~th the DWBA, using the FG 
optical model parameters. 

For 122 •124sn, data for the s; states could be extracted from the 

spectra. Also here the collective DWBA gives a very good description. 

The results are displayed in fig. 4.19. 

In table 4.7 we have compared the 

with the values given by Beer (Bee70). Our 

extracted deformation parameters 
+ 2 parameters are about 6% 

larger while our 3- deformation parameters are 8% smaller than those 

of Beer. The trend of decreasing parameters with increasing mass is 

equal. The difference could be caused by a different normalization 

procedure and also by different optical model potentials. The optical 

model parameters of Beer give, especially for the analyzing powers, 

rather bad fits. 

Also.the results of the experiment at 24.6 MeV on 120sn are very 

well described by the collective theory. The same proton energy has 

been used by Beer (Bee70), so we also performed a calculation with his 

optical model parameters. It appears that the geometrical part of the 

optical model parameter set of Satchler (Sat67), that has been used by 

Beer, gives less satisfactory fits than our geometry does, as can be 
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Table 4.20 

30 60 ro 120 150 

120sncp,p'J 
24.6MeV 
2~ !1.17) 

120sn (p,p'l 
24.6MeV 
3~(2.41) 

120 

~ 

30 60 90 120 150 

~= ~m 
Differential aross section and analysing power for 
inelastic scattering of protons by 120sn at 24.6 MeV 
leaving the target in the 21~31 state. 
The curves are calculated w~th the DWBA~ using the 
FG optieal model parameters (fuZZ. curve) and those 
of Beer (dashed curve). 

A 

0.5 

·0.5 

seen in fig. 4.20. Also the normalization differs rather much, namely 

about 25%. As discussed in section 4.2.2, the deformation parameter 

extracted using this optical potential, is nearly the same as with 

the GF potential. 

We can conclude from this analysis that the collective model is 

very suitable for the description of the cross sections and analysing 

powers. It was not needed to enhance the spin-orbit deformation 

parameters. 
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CHAPTER 5 A MICROSCOPIC ANALYSIS OF INELASTIC SCATTERING FROM 
116Sn AND 124Sn 

5.1 Introduction 

In this microscopic analysis we use the antisymmetrized distorted 

wave formalism as presented in section 3.4. In the previous chapter we 

have seen that the collective model can give a very good description 

of the experiment. In this chapter we will show and discuss the 

results of purely microscopic calculations and of a combination of the 

collective and microscopic approach. 

The following ingredients are required in order to calculate the 

angular distributions (Ger71, Amo78): 

- optical model parameters 

- single-particle binding energies 

- bound state single-particle wave functions 

-spectroscopic amplitudes for all possible allowed single-particle 

transitions 

- effective nucleon-nucleon interaction. 

The optical model parameters are used to calculate the distorted 

waves. We employ the global fit parameter sets (GF), which differ only 

in the strength of the imaginary volume potential for the diverse Sn 

isotopes. These parameters a.re 1 isted in table 5.1. The differences 

in WV are only small, so possible differences in the results between 

Table 5.1 Optical model parameters for 1168 nd 1248 n a n, 
Global- fit. 

v 54.97 MeV r. 1.266 fm 
0 I 

r 1.178 fm a. 0.695 fm 
0 I 

a 0.730 fm v 5.65 MeV 
0 so 

wv 1.20 MeV r 0.970 fm 
(116sn) 

so 
WD 8.84 ~leV a 0.699 fm 

10.01 MeV ( 124sn) so or 
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116sn and 124sn cannot be caused by differences in the optical model 

parameters. 

The single-particle binding energies, as listed in table 5.2, 

were derived from the shell model single-particle energies and the 

separation energy of the proton or neutron. We obtained the single­

particle energies by interpolating the values for the odd Sn isotopes 

as given by Van Gunsteren (Gun74), while the separation energies were 

taken from the Nuclear Data Sheets (Wap71). 

The bound state wave functions were generated in Woods-Saxon 

wells, from which we varied the depths in order to obtain above­

mentioned binding energies. The geometry parameters of these wells 

were chosen equal to the parameters of the real central optical model 

potentia I (GF), 

TahZe 5.2 SingZe-partiaZe binding energies (b.e. 1 and bou.nd state 
Woods-Sa:x:on we Z. Z. depths (VwsJ _, both in MeV, for 116,124sn. 

A 116 116 124 124 

state protons neutrons protons neutrons 

nl j b.e. v b.e. v b.e. v b.e. v ws ws ws ws 

1g 7/2 5.52 70.8 7.70 52.8 8.35 71.8 5.89 47.9 
2d 5/2 5.02 65.2 7.32 48.5 7.&5 66.9 5.03 44.8 

3s 1/2 4.27 67.6 8.34 52.6 7.10 69.4 7.14 50.1 
2d 3/2 3.27 67.4 8.03 53.1 6.10 69. I 7.14 50.1 
1h 11/2 2.75 66.3 7.83 55.2 5.60 67.4 7.16 52.6 

If 5/2 11 • 27 63.5 14.10 97.5 
2p 3/2 11.27 60.2 13.10 62.0 

2p 1/2 9.27 61.4 12.10 63.2 
1g 9/2 9.27 62.7 12. I 0 64. I 

s.e. a) 9.27 9-57 12.10 8.49 

a) s.e. is the separation energy in MeV. 
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Separate shell model calculations are needed for the evaluation 

of the spectroscopic amplitudes. We used the results of BCS quasi­

particle calculations of Allaart (All79) and Gillet (Gil76). Both 

authors used an inert N=50 and Z=2& core, so the Z=50 shell of Sn is 

open in both analyses. Contrary to Gillet, Allaart used a projection 

method that conserves the number of particles. In tables 5.3, 5.4 and 

5.5 the spectroscopic amplitudes of Allaart and Gillet for the 

collective 2~, 3~ and 5~ states are listed, for all possible 

transitions in our model. We derived the spectroscopic amplitudes 

TabLe 5.5 Spectroaa~ie amplitudes for the states 
of 116,12 Sn, in i1 eonvention. 

A 116 116 124 124 

All aart Gi I let Allaart Gi I let 

D~~~r2D-~lD9!~:e~r~l~!~_Sr2D~l!l9D~ 
g] - g7a) 0.0603 0.0689 0.0704 0.1048 

g] - d5 -0.0191 -0.0113 -0.0160 -0.0161 

g] - d3 -0.3330 -0.3806 -0.2122 -0.2292 

d5 - g7 0.0172 0.0153 0.0141 0.0202 

d5 - d5 0.0699 0.0231 0.0595 0.0455 

d5 - s1 -0.2667 -0.2361 -0.1949 -0.1333 

d5 - d3 -0.1447 -0.0898 -0.1102 -0.0948 

s1 - d5 -0.0929 -0.0617 -0.0653 -0.0681 

s1 - d3 0.3340 0.4361 0.1869 0.2417 

d3 - g7 -0.0814 -0.0820 -0.0605 -0.1149 

d3 - d5 0.0394 0.0297 0.0356 0.0380 

d3 - sl -0.2604 -0.1928 -0.1802 -o .1696 

d3 - d3 0.2525 0.1322 0.2047 0.2386 

hll - h11 0.0846 0.0969 0.4587 0.4319 

er9!2D-2lD9l~-e~rsl~!~_sr~n~lslen~ 
g9 - g7 -0.0627 -0.046 -0.0868 -0.074 

g9 - d5 -0.2924 -0.245 -0.2894 -0.239 

a) g7 is the abbreviation of 1g 712 etc. 

77 



of Gillet from hi.s RPA amplitudes X andY (Gil76), using the 

occupation probabilities u and v (Gil67) of the shell model states. 

For different single-particle orbits the spectroscopic amplitude 

from state 1 to 2 is: 

(5. 1) 

wh i I e for· reverse case we have: 

For a transition within the same state, i.e. a recoupling, we get: 

(5.3) 

Tabl.e 5.4 SpeotPosoopia amp~itudes foP the J] states 
of tin in il convention. 

A 116 116 124 124 

Allaart Gi I let Allaart Gillet 

~~~!r2~-~lugl~-e~r!i£!~_!r~~~i!l2~§ 
g7 - h11 0.1337 0.2655 0.0980 0. 1553 

d5 - h11 -0.6501 -0.6429 -0.3904 -0.4052 

hl1 - g7 -0.0142 -0.1063 -0.0446 -o. 1 o46 

h11 - d5 -0.0775 -o .2294 · -0.2015 -0.2200 

er2!2~-~lng!~-e~r!l£!~_!r~u~l!l2D~ 
f5 - g7 0. 1745 0.266 0.1656 . 0.244 

f5 - d5 -0.0630 -o. 131 -0.0629 -o. 1 o 1 

f5 - s1 0.0511 0.125 0.0543 0.098 

f5 - d3 -0.0505 -o. 129 -0.0505 -0.114 

p3 - g7 0.1486 0.144 0.1295 0.130 

p3 - d5 0.1636 0.245 0.1610 0.180 

p3 - d3 -0.1269 -0.24!t -0.1234 -0.204 

p1 - 97 -0.4828 -0.271 -0.4536 -0.255 

p1 - d5 0.2758 0.297 0.2782 0.222 

g9 - h11 0.2103 0.342 0.1950 0.221 
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We Jearn from these tables that the differences between both 

sets are rather small. Because of the number conservation we 

preferred the use of the set of Allaart in our further analyses. 

For the calculation of the single-particle contributions we need 

an effective nucleon-nucleon interaction. In table 5.6 we list some 

currently used interactions. Most of our calculations have been 

performed using the central effective interaction derived from the 

interaction of Hamada and Johnston (Ham62) (denoted by HJ). This 

central effective interaction is an approximation of the long range 

part of the even state HJ interaction, using a separation distance 

of 1.05 fm. (In the program MEPHISTO this long range part is 

approximated by a sum of truncated Yukawa functions). We completed 

this central interaction with the non-central tensor and spin-orbit 

interactions deduced by Eikemeier and Hackenbroich (Eik71) 

(abbreviated as EH). 

In order to get an idea of the influence of the effective 

interaction on the angular distributions we performed an additional 
+ 116 calculation for the 21 state of Sn using the phenomenological 

central interaction of Austin (Aus79) combined with the tensor 

interaction of Sprung {Spr72) and the spin-orbit interaction of 

Eikemeier and Hackenbroich {Eik71). 

Tab'le 5.5 Spectroscopic ampLitudes of the 5f state 
of 124sn in il aonvention from AZ aart. 

neutron transitions proton transitions 

g7 - h11 0.0656 f5 - g? 0.0532 

d5 - hll -0.1330 f5 - d5 -0.0933 

sl - h11 0.3086 p3 - g7. 0. 1450 

d3 - h11 -0.2197 g9 - hll 0.0759 

h11 - g7 -0.299 

h 11 - d5 -0.0687 

hll - s1 0.4752 

hll - d3 0.3509 
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Table 5.6 Some effective nualeon-nuoZeon intePaetiona. 
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(a) ~§ID~9g:42bO~SQO: the long-range part is approximated by a 

sum of truncated Yukawa functions Yt, with 

a separation distance r of 1.05 fm. . s 

(b) 

(c) 

(d) 

v 11. 152 y t (0.7) + 6.62 yt se 
+ 490 yt (2.8) - 1477 yt 

v = -te 33.46 \ (0. 7) + 6.35 yt 

+ 1516 yt (2.8) - 6029 yt 

~!:!~H!:! 

vso 2.7 y (1.0) 
v =- 82.30 y (1.0) se 
vte =- 97.10 Y (1.0} 

vto = 10.3 Y (1;0) 

9l!l~! 

v 32 G (1. 7) 
se 

v = te 8 G (1. 7) 

~!l!!~!:! 

vse = - 32 G (2.02) 
V = 8 G (2.02) te 

( 1 • 4) - 4.81 yt (2.1) + 

(3.5) + 2620 yt (4.2) 

(1.4) - 68.74 yt (2.1) + 

(3.5) + 10611 yt (4.2) 



vte =- 105.3 G (0.960) - 1.95 G (2.034) 
Vto = 17.92 G (1.146) + 2.31 G (1.383) + 0.38 G (2.234) 

(b) ~12r!:!!:!9 

v te - 802.16 G (0.50) - 104.4 G (0.95) - 2.71 G (1.70) + 

0.18 G (2.85) - 0.001 G (5.00) 

v = to 145.24 G (0.50) + 24.28 G (0.95) + 1.13 G (1.70) + 

+ 0.046 G {2.85) + 0.0004 G (5.00) 

3. Spin-orbit = (Vte + Vt
0

) t.s 

(a) §!~~~l~r-~~9-~~~~~~~r~!sb 

v = te 213.9 G (0.747) 

vto = - 282.4 G (0.765) - 5.18 G ( 1 .021) 

(b) ~er!:!~9 

v = te 883.72 G (0. S) - 116.40 G (0.95) + 0.51 G {1.70) + 

+ 0.017 G (2.85) 

v te = - 1412 G (0 .5) + 56.95 G (0.95) - 0.69 G ( 1. 70) -
+ 0.014 G (2.85) 

y is the Yukawa function: Y(x) = exp(-r/x)(r/x) 

yt is the truncated Y Yt(x) = Y(x) for x>r s 
y t (x) = 0 for x<r s 

G is the Gauss function G(x) 2 = exp((r/x) ) 
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Figs. 5.1a and 5.lb Angular distPibutions calculated with the 
central (cen) 3 tensor (ten) 3 spin-orbit (so) 
and total microscopic interaction. 
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5.2 Purely microscopic calculations 

Disposing of the above ingredients we calculated for all allowed 

single-particle transitions (proton and neutron transitions) in our 

model the central, tensor and spin-orbit transition amplitudes. The 

direct and the exchange contributions were calculated separately. So 

for each single-particle transition six transition amplitudes were 

calculated. We used hereto the program MEPHISTO of Von Geramb (Ger73). 

All these transition amplitudes must be summed using the spectroscopic 

amplitudes as weight factors (see chapter 3). Then the cross sections 

and analysing powers can be calculated. There are several combinations 

possible of the various transition amplitudes: 

-First we may sum all central, all tensor and all spin-orbit 

contributions to get three transition amplitudes. 

-Another possibility is to sum all direct (D) and all exchange (E) 

contributions to two transition amplitudes. 

-Finally we can construct a proton (P) and a neutron (N) transition 

amplitude. 

This feature enabled us to investigate the importance of these various 

components. 

First of all we compare the central, tensor and spin-orbit 

contributions to the cross section and analysing power. The sum of 

these three contributions is often called the valence contribution. 

The central contribution is, as expected, much larger than the non­

central contributions, e.g. for a 2+ transition a factor of 400. So 

for the cross section the non-central interactions are of minor 

importance. As can be seen from figs. 5.1a and S.lb the non-central 

parts have about the same magnitude. 

For the analysing power, however, the differences between the 

curves of the central and valence interaction are not unimportant, 

especially for the 3 states. See figs. S.la and 5.1b, where we show 

the various contributions to the valence cross section and analysing 

power. 
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In the program MEPHISTO the exchange distribution was calculated 

to full extent. We find that the importance of the exchange 

contributions increases with increasing L-values. The ratios of the D 

and E cross sections are 3.5, 2 and 1 for L = 2, 3 and S, respectively. 

For the excitation of the 5~ state in 124sn the exchange contribution 

in the proton transitions is even somewhat larger than the direct 

part. 

It turns out that the cross section of the total contribution 

(D+E) is about a factor of two till three larger than the cross 

section of the direct contribution only, while the shapes are nearly 

the same as can be seen in fig. 5.2 for the 27 state of 116sn. This 

effect for the cross section has also been found by Terrien (Ter73). 

Also for the analysing powers the differences between D and (D+E) 

curves are small, except for S~ states which show some differences. 

So the increase of cross section by adding the exchange contributions 

is the most important point here, the shape of the curves is not 

changed essentially. In our calculations in the next sections we 

always use the total microscopic contribution. 

The neutron contribution (N) is always larger than the proton 

contribution (P), as can be expected for nuclei with a closed proton 

shell. For the 27 and 5~ states the neutron contribution is about a 

factor of 100 larger, for the 3~ states a factor of about 4. This 

stems from two facts. In the first place the proton-neutron interaction 

is a factor of 2 stronger than the neutron-neutron interaction. In 

addition less proton than neutron contributions are possible (see 

tables 5.3, 5.4 and S.S). In figs. 5.3a and S.3b we display the proton, 
116 + -neutron and valence contributions for Sn, 21 and 31. We see for the 

3~ state that the shapes of the total and N cross sections are nearly 

equal but that the analysing powers differ. So, though the proton 

contribution is not so large, it influences the analysing power 

substantially. 

The valence microscopic transition amplitudes give cross sections 

that are much smaller than the experimental cross sections. For 

example a factor of 3, 19 and 12 lower for the 2~, 3~ and 5~ states 
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Figs. 5.3a and 5.3b Proton (P) and neutron (N) contributions 
to the totaZ (P+N) angular distributions. 
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The enhancement parameters are ).-p=5. 8 and An=l. 6. 
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f 124s · 1 AI h h f h h . l o n, respect1ve y. so t e s apes o t ese t eoret1ca curves 

do not fit well the experimental angular distributions. The reduced 

transition probabilities B(EL) calculated with the microscopic model, 

are also much smaller, at least a factor of two, than the experimental 

values (see section 5.2.4). 

So we conclude here that the purely microscopic calculation 

cannot describe the inelastic scattering from the collective states, 

though we have used all possible single-particle transitions in our 

model. Oftenly in these cases the effective charges of the protons 

and neutrons, ep and en' are adjusted in order to fit the height of 

the cross section. The enhancement factors for the transition 

amplitudes are namely A 
p ep and ~n = en+1. In this way it is 

possible to fit the height of the cross section as can be seen in 

figs. 5.4a and 5.4b. Here, 116 + for Sn, 21, the values of A and n 
116 - p 

are 1.0 and 2.5, respectively, and for Sn, 31: 5.8 and 1.6. We 

see, however, from the figure that the cross section lacks structure. 

This is originated by the fact that no imaginary interaction has been 

included. It is nowadays well known that the effective nucleon-nucleon 

interaction has such a component. From theoretical calculations 

(Bri78) and from the collective model it is known that the imaginary 

form factor has the effect of giving structure to the cross section. 

Following the somewhat 'frivolous' model of Satchler (Sat67), we have 

simulated this effect, in section 5.3, by adding the collective 

imaginary form factor to the microscopic one. 

Together with the transition amplitudes we calculated the 

microscopic contributions to the reduced transition probabilities 

B(EL), according to the formulae given in section 3.7. In table 5.6b 

we compare the theoretical values with the experimental results from 

Coulomb excitation experiments (Alk65, Ste70). We see that the pure 

microscopic values with effective charges for the protons of and 

of the neutrons of 0, give transition probabilities that are a factor 

of 14 to 90 too low. With effective charges of 1.5 and 0.5, 

respectively, the discrepancy is reduced to a factor of about 4. 

Compared to the Allaart amplitudes, the Gillet set leads to 

somewhat lower B(E2) values, but the B(E3) values are a little larger. 
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When we generate the bound state wave functions in a harmonic 

oscillator well instead of a Woods-Saxon well, the theoretical 

transition probabilities increase. Depending on the harmonic 

oscillator parameters this increase can be considerable. The harmonic 

oscillator shape used by Allaart, combined with effective charges of 

e =1.5 and e =0.5, gives B(E2) values which are only a factor of 1.5 
P n 

too low, while the B(E3) values are nearly equal to the experimental 

values. 

In eq. 3.15 we gave the formula for the calculation of the 

collective transition probability. This approach, where we use our 

experimental deformation parameters from the DWBA, gives too high 

values for the B(E2). The B(E3) values compare rather well with the 

experiments. 

So the low values of the pure microscopic transition 

probabilities show the need for relatively large effective charges 

and/or the inclusion of collective contributions. In our analysis 

in the next section we come back to this point. 

5.3 Calculations including core polarization 

We have seen that the pure microscopic calculations cannot 

describe the experimental data satisfactorily. When the collective 

imaginary interaction is added the structure of the cross section is 

described much better, but the experimental height is not reached yet. 

The core polarization should be taken into account in order to fit 

this height. There are two approaches possible for including core 

polarization effects in the microscopic calculations. In both cases 

the imaginary collective transition amplitude is added to the 

microscopic one. 

In the first approach the proton (P) and neutron (N) 

contributions are enhanced. The total transition amplitude is then: 

T = A T + A T + T
1 p p n n (5.4) 

Here A and A are the proton and neutron enhancement parameters of 
p n 

the microscopic P and N transition amplitudes. In T1, which is the 

collective imaginary transition amplitude, the (DWBA) deformation 

parameter is incorporated. The transition probability is: 
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TahZe 5.7a Redueed transition probabilities B(EL,O+L) 
for 116,124sn. 

state 2+ 1 31 sj 
units (e2fm4) (103 e2fm6) ( 1 o6 e2fm1 0) 

A 116 124 116 124 124 

BSa) sb) e e A B(E2) B(E2) B(E3) B (E3) B(ES) 
p n c 

ws All 1 .o o.o 0 24 26 18 16 2 

ws All 0.0 1.0 0 1069 1332 12 9 58 

ws All 1.5 o.s 0 563 672 66 57 32 

ws Gi 1 1.5 0.5 0 448 635 90 63 

HO All 1.5 0.5 0 777 913 114 104 84 

HOa All 1.5 o.s 0 1246 1431 232 198 273 

ws All l.O 0.0 372 2}3 163 131 14 

ws All A c) A -1c) 0 1659 1069 495 156 73 p n 
A d) ws All 1.0 0.0 181 122 119 95 14 

collect. e) 
c 

4649 2642 260 162 250 

exper. 2160f) 161 of) 220g) 200g) 

a) BS = bound state wave function: 

ws =Woods-Saxon well, 

HO =Harmonic oscillator with energy of 8.3 MeV, 

HOa =HOused by Allaart, energy is 6.62 MeV. 

b) s spectroscopic amplitudes: 

All =set of Allaart, 

Gil =set of Gillet. 

c) Fit EC, see table 5.8. 
d) Fit CP, see table 5.8. 
e) Calculated with the collective model, using the deformation 

parameters from table 4.7. 

f) Experimental values of Stelson (Ste70), relative error 25%. 

g) Experimental values of Alkhazov (Alk65}, relative errors 40%. 
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(5.5) 

where Dpv and Dnv are the proton and neutron microscopic contributions 

(see section 3.7). 

In this approach both the protons and neutrons have an effective 

charge: ep = Ap and en= A
0
-l, The two parameters Ap and An can be 

varied in order to fit the cross section, analysing power and the 

transition probability simultaneously. We call this method the 

"effective charge method", denoted by EC. 

Terrien (Ter73) followed a somewhat different procedure. He took 

e 0 and A = e where e is calculated from: 
n p p p 

e = (B (EL))i/D p exp pv (5.6) 

So in his analysis e followed directly from the experimental 
p 

transitio~ probability. Now An is the only parameter left to fit the 

experimental cross section. We wi 11 call this method the "proton 

charge method" and denote it by PC. 

In the second approach the complete core plays a role. We can say 

say that the whole nuclear core is excited and deexcited during the 

scattering process, so the core will be polarized. Following the 

prescription of Love and Satchler (Lov67, Ger73), a part of the 

complete (real plus imaginary) collective transition amplitudes is 

added to the microscopic one. The relative strength of this addition 

is the core coupling parameter yl. The microscopic part remains fixed 

(A =1 and A =1). In this case the total transition amplitude is: p n 

(5.9) 

In the terms Tc and T
1

, the real and imaginary transitiqn amplitudes, 

the collective deformation parameter is incorporated. Since the 

collective and core form factors are proportional (see section 3.6), 
we can take instead of the transition amplitudes of the core those of 

the collective model. We do this since in the collective DWBA code of 

Verhaar the full Thomas spin-orbit form factor is incorporated, while 

in the program MEPHISTO another type is used. The transition 

probability is now 

B(EL) = (D + A 01 
)
2 

pv c pc {5.8) 
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Table 5.7b A L YL 
Core coupling coefficients yL (lo-3 Mev-1) 
found in the CP fits. 

116 2 1.04 

3 1.03 

124 2 0.70 

3 0.86 

5 0.95 

Since here the effective charge of the protons is 1 and of the 

neutrons 0. Also the transition probabilities calculated with the 

(pure) core and collective model are the same which gives us the 

following equation foro' : pc 

o' pc 
SL (Bcoll(EL;Req=Rc))i 

(5.9) 
D pc + D nc 

We use here eq. 3.15 for the calculation of B 11 (EL) and D is co nc 
defined in a similar way for the neutrons as 0 for the protons pc 
(eq. (3.18)). 

Also here two methods are possible. In the first approach we take 

X1=Xc• so x1 is less than 1. In the second method we take X1=1, like 

in the EC and CP methods, and treat Ac as a parameter. These methods 

we will call the core polarization (CP) and the corrected core 

polarization (CCP) method, respectively. 

Before starting with the fitting procedures we will compare the 

cross sections of the microscopic valence, the imaginary collective 

and real collective interactions. We see from figs. 5.5a and 5.5b that 

for 116sn, 2~ the cross sections are of the same order of magnitude 

but that for the 3~ state of 116sn the imaginary ~ross section is 

about a factor of 5 larger. In both cases the imaginary curve shows 

large oscillations, in other words it will be responsible for the 

structure in the curves. 

The real collective cross section is almost a factor of three 

higher than the imaginary one. So inclusion of a small part of this 

contribution will have a large effect on the angular distributions. 
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Tcible 5.8 Results of the mierosaopia analysis 
~ith four types of aaZauZations: 
EC effective aharge, 
PC = proton aharge, 
CP = eore polarization, 
CCP = corrected aore polarization. 

A L type /.. A AI A 
2 2 B(EL)c) 

p n c xcr XA 

116 2 EC 1.02 2. 11 1.00 o.oo 4533 1058 1659 

PC 9.43 1.00 1.00 0.00 8673 2686 2160a) 

CP 1.00 1.00 0.59 0.59 1583 426 181 

CCP 1.00 1.00 1.00 0.44 2809 387 128 

116 3 EC 4.86 1.50 1.00 0.00 1933 646 495516 

PC 3.52 2.37 1.00 0.00 2351 446 220000b) 

CP 1.00 1.00 0.78 0.78 407 427 119163 

CCP 1.00 1.00 1.00 0.69 490 315 101907 

124 2 EC 1.00 1.76 1.00 0.00 1688 755 1069 

PC 7.85 1.00 1.00 0.00 5945 1795 1610a) 

CP 1.00 1.00 0.59 0.59 570 500 122 

CCP 1.00 1.00 1. 00 0.43 936 380 90 

124 3 EC 1.28 3.41 1.00 0.00 3915 1054 156616 

PC 3.54 1.76 1.00 0.00 2774 2269 200000b) 

CP I .00 1.00 0.77 0.77 549 581 95235 
CCP 1.00 1.00 1.00 0.62 1154 450 73888 

124 5 EC 1.82 1.82 1.00 0.00 27608 813 7.29x107 

CP 1.00 1.00 0.99 0.99 1410 181 1.44x107 

CCP 1.00 1. 00 1.00 1.00 4117 178 1.45x107 

a) Experimental values of Stelson (Ste70). 

b) Experimental values of Alkhazov (Alk65). 

c) Units: e2fm2L. 
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Fig. 5. 6a EC, PC and CP fita to the e;xperimenta~ aroaa sections and 
anaZyaing powera of 116,124sn, 2j. 

+ - 116 124 For the 21 and 31 states of Sn and Sn and for the 51 state 

of 124sn we have fitted the experimental data using above four 

methods. The results are compiled in table 5.8 and plotted in figs. 

5.6a, 5.6b and 5.6c. We know already from the collective analyses of 

these data that the co II ect i ve mode 1 gives good fits. S i nee in the CP 

and CCP methods a rather large part of the collective amplitude is 

admixed also here the results are quite good. The differences between 

the CP and CCP methods are only small and not essential. 

A 

In general the EC and PC fits are also satisfactory, though not 

as good as the CP and CCP fits. For the 2+ states we can see some 

differences between the curves of the EC and PC methods. Here the EC 

approach gives better fits, especially regarding the analysing powers. 
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EC> PC and CP fits in the experlmentaZ ar>oss aeotions and 
anaZyai~ powers of 116,124sn, 51. 

A 

The chi squared values are remarkably lower for the EC method. This 

effect is caused by the fact that the microscopic contribution to the 

transition probability, Dpv' for. the 2~ is very small, so the 

calculated effective chargee is unrealistically high. Due to this 
p 

large value of e , and consequently of l , the fit to the analysing 
p p 

power is spoiled. 

The EC fit for the 5~ state of 124sn is rather bad. The PC 

method was not possible here because of the lack of experimental B(EL) 

values. The core polarisation methods give good results so the real 

collective term is very important at higher L values, while the 

microscopic approach is incapable to describe the experimental data. 
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cross section and 

Using the EC method we have analysed some states with the 

spectroscopic amplitudes of Gillet. We see from table 5.9 that the 

chi squared values of these fits are somewhat larger than those of 

the fits with the set of Allaart. For the eye there is hardly any 

difference between these two of fits. 

We have already seen that the microscopic central interaction 

gives much larger cross sections than the non-central parts. We have 

performed some fits wherein we used the central instead of the valence 

interaction. The imaginary collective interaction was always included, 

using method EC. In nearly all cases the analysing power was fitted 

better with the valence (total) interaction than with the central 

interaction. For the cross sections, however, the opposite is true. 

The same result was found with the interaction of Austin etc. instead 

of the interaction of HJ etc. In general the differences between the 

valence and central fits are small, as can be se~n in fig. 5.7 for 
116

5 2
+ 

n' 1 • 
+ 116 For the 21 state of Sn we also performed calculations with the 

central nucleon-nucleon interaction of Austin, completed with the 

tensor interaction of Sprung and the spin-orbit interaction of 

Eikemeier-Hackenbroich. The results of the variation process with 

different methods are presented in table 5.10, where we see that for 

the analysing power the results with the interactions of Austin etc. 
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Tab~e 5.9 Comparison of the fits with the spectroscopic 
amp~itudes S of A~laart and Gillet, using the 
effective charge method (EC, AI=l, Ac=O). 

A L s ;._ A 
2 2 B(EL) 

p n X a XA 

116 2 Allaart 1.02 2.11 4533 1058 1659 
Gillet 1.00 2.31 4656 790 1883 

116 3 Al Jaart 4.86 1.50 1933 646 495516 
Gi 1 Jet 3.48 1.67 2371 806 419304 

Table 5.10 Fits for 116sn, 2+ using the effective 
charge method (EC, "AI=l, Aa=OJ and various 
nucleon-nucleon interactions. 

N-N interaction 

central A A 
2 2 B(EL) tensor s-o X a XA 

part part part p n 

HJ EH EH 1.02 2. 11 4533 1058 1659 
HJ 0 0 3.25 1.93 3348 1637 2137 

Austin Sprung EH 2.67 1.57 4277 1032 999 
Austin 0 0 3.83 1.51 3290 1320 1253 

Table 5.11 The strengths of the centra~, tensor and spin-orbit 
parts of the microscopic interaction varied. 
The imaginary eo~leative interaction is included. 

N-N interaction· 
A L A A ten A 

2 2 central cen s-o xa XA tensor s-o 
part part part 

116 2 1.64 0.00 0.00 3571 1203 Austin Sprung EH 
2.02 0.00 0.00 3499 1525 HJ EH EH 

116 3 2.95 1.12 0.52 1796 530 HJ EH EH 

124 2 0.47 3.48 1.41 668 354 HJ EH EH 
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better than those with the interactions of Austin etc. In most cases 

also the cross section is fitted better using HJ etc. When we compare 

the central interactions only, the results remain the same. 

We remark further that the strengths of the neutron transition 

amplitude An are smaller for the interaction of Austin. The proton 

contribution for the 27 state in only weak, so it can be neglected 

for the moment. So we see here that the HJ interaction is weaker than 

the Austin interaction, by a factor of about 1.5. The same factor was 

found by Alons (Aio80). In fig. 5.8 we have plotted some curves for 

both types of interactions. 

In our program CHIMIX it is possible to take complex numbers for the 

parameters A , A etc. So we performed some fits without collective 
p n 

contributions compensating this with an extra free parameter, namely 

the phase of A • The resulting cross sections, however, were nearly p 
the same as with a real parameter A : the structure was too flat. So 

p 
in our model it is not possible to construct in a microscopic way 

transition amplitudes that can describe the cross section 

satisfactorily. 

The essential property of the used imaginary term is that the 

form factor is peaked just outside the nuclear surface. This cannot 

be simulated by varying the parameters A and A • 
p n 

The strengths of the nucleon-nucleon interactions used (see 

table 5.1) have been deduced by the various authors (HJ, Austin, etc.) 

by means of fitting procedures. Here we show the results of the 

variation of the strengths of the central, tensor and spin-orbit parts 

of the nucleon-nucleon interactions. As in all previous procedures 

also here the imaginary collective contribution has been added to the 

microscopic transition amplitudes. In this case we have three free 

parameters, i.e. one more than in the EC procedure. So a lower chi 

~quared value can be expected. From the results, listed in table 5.11, 

we see that for 116sn, 27 the tensor and spin-orbit parameters have 

become zero and that the central enhancement is about equal to the 

value of A in table 5.8 (T is small here). The cross sections are 
n p 

fitted better but the analysing powers worse. The similar effect was 

found already when we varied the central parts only. The fit of 116sn, 

3~ is comparable with the fit with the EC method, but for 124sn, 27 
a different result is found, see fig. 5.9. So we can conclude that the 

variation of the individual strengths gives us no new information. No 
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definite trend can be found, except that the non-central interactions 

are important for the fit of the analysing powers. Also when we use 

the interaction of Austin the same result was found. So in this way 

it is not possible to deduce the individual strengths of the various 

parts of the nucleon-nucleon interaction. 

Conclusions 

In this microscopic analysis we have shown that an imaginary 

interaction is needed to get a reasonable fit to the cross sections. 

When the neutrons have no effective charge, then the effective charge 

for the protons is calculated too high for the 2~ states, which 

disturbs the analysing powers. For the high l values, only the core 

polarization methods give a reasonable description. The influence of 

different nucleon-nucleon interactions or spectroscopic amplitudes is 

in general rather small. 
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SAME NVA TI I NG 

Experimenten waarbij gepolariseerde protonen verstrooid worden 

aan atoomkernen zijn een belangrijk middel om de reactietheorie en het 

gebruikte kernmodel te testen. Twee gangbare modellen zijn daarvoor 

genomen, namelijk het collectieve model, waarbij de kern als een 

geheel wordt beschouwd en het microscopische of schillen-model waarbij 

ook rekening gehouden wordt met de nucleonen in de kern. Als de pro­

tonen gepolariseerd zijn, kan naast de differenti!le werkzame door­

snede ook het analyserend vermogen bepaald worden. Deze grootheid is 

in sommige gevallen gevoel iger voor bepaalde parameters van reactie­

theorie en kernmodel. 

We hebben de volgende kernen bestudeerd met een energie Ep = 

20.4 MeV van de opvallende protonen 60 •64Ni (Z=28), 110 •112 •114cd 
(Z=48), 1151n (Z=49), 116,118,120,122,124Sn (Z=SO), en met 24.6 MeV: 
86sr (N=48), 88sr (N=SO) en 120sn (Z=SO). Hierbij hebben we gebruik 

gemaakt van de gepolariseerde protonenbundel van de THE, met de bij­

behorende meetopstelling (hoofdstuk 2). Van de elastische en inelastische 

verstrooiing hebben we de hoekverdelingen gemeten van de doorsnedes en 

de analyserende vermogens van 20-165 graden. De keuze van de energie 

van de protonen had de volgende redenen: 

- Er is dan bijna geen compound-kernverstrooiing zodat de directe-

reactietheorie kan worden toegepast. 

- De beschikbare apparatuur, met name het cyclotron. 

- Vergelijking met gegevens uit de literatuur. 

- De grote positieve waarde van het analyserend vermogen van de eerste 

2+ toestand, gevonden bij kernen met een (bijna) gesloten neutronen­

schil. Dit analyserend vermogen kon slechts 1 beschreven 1 worden door 

de verhouding A van de spin-baan en de centrale deformatieparameters 

te vergroten van l (normaal) naar 2 (bij Ep = 20 MeV) of 3 (bij 

E = 17 MeV). Dit geldt bijvoorbeeld voor 54Fe (N=28). 
p 

Dit laatste punt houdt ook verba.nd met de keuze van de bestudeerde 

kernen, die op de Sr-isotopen na aile een (bijna) gesloten protonen­

schil hebben, om ook hiervoor de waarde van Ate bepalen. Verder zijn 

deze kernen gekozen omdat ze even-even zijn (behalve llSin), middel­

zwaar en verkrijgbaar in de vorm va~ geschikte targets (dunne folies). 
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Vaak hebben we een serie isotopen genomen om het verloop van para­

meters met het massagetal te onderzoeken. 

De elastlsche verstrooiing hebben we geanalyseerd met het stan­

daard optisch model (eerste deel van hoofdstuk 4). De experimentele 

hoekverdelingen worden zeer goed beschreven. Doordat nu doorsnedes en 

analyserende vermogens aangepast moeten worden, zijn de optische 

modelparameters goed bepaald. De overeenstemming met parametersets uit 

de literatuur is zeer bevredigend. Voor de analyse van de inelastische 

verstrooiing volgens het collectieve model hebben we de gebruikelijke 

vervormde-golf Born-benadering (DWBA), of in een enkel geval de 

gekoppelde kanalen (CC) methode toegepast (tweede deel van hoofdstuk 

4). De parameters in dit model zijn de deformatieparameters die ge­

vonden worden door aanpassing van de theoretische curves aan de 

experimentele hoekverdelingen. Ook hier is de beschrijving van de 

experimenten in het algemeen heel goed te noemen. De door ons gevonden 

spin-baan deformatieparameters blijken echter normale waarden (A~1) 

te hebben, Dus voor kernen met een gesloten protonenschil treedt 

bovengenoemd effect niet op. Hetzelfde geldt voor de Sr-isotopen omdat 

daar de energie al vrlj hoog is (Ep • 24.6 MeV). De gevonden deformatie­

parameters zijn in goede overeenstemmlng met gegevens uit de literatuur. 

Enkele gevallen willen we nog nader bespreken. De doorsnede van 

de 2•-toestand van 60Ni kon niet zo goed beschreven worden met de DWBA. 

Het bleek namelijk dat bij normering van de theoretische curve op de 

voorwaartse hoeken deze curve achterwaarts veel hoger lag dan de 

experimentele doorsnedes. Een CC berekening gaf een betere beschrijvlng, 

echter nog niet voldoende om dit verschijnsel te verklaren. Voor het­

zelfde isotoop hebben we ook enige hoger-aangeslagen toestanden met de 

CC-theorie geanalyseerd. Door de verhouding van ~~n- en twee-phonon 

bijdragen te varieren konden we voor enkele van de toestanden de 

structuur bepalen. 115 tn is de enige kern met een oneven massagetal 

die we bestudeerd hebben. Volgens het z.g. weak-coupling model kunnen 
. 116 

.we deze kern beschouwen als een Sn-kern met een gat in de protonen-

schil. De collectieve aangeslagen toestanden zijn dan opgesplitst maar 

moeten nog wei dezelfde structuur vertonen als de 'parent'-toestanden 

in 116sn. We hebben dit inderdaad heel duidelijk gevonden en de 

deformatieparameters van het l=2 multiplet stemmen goed overeen met 

weak-coupling berekeningen. 
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We hebben de inelastische verstrooiing aan de 2~, 3~ en 5~ toe­

standen van 116sn en 124sn ook met behulp van het microscopische model 

geanalyseerd (hoofdstuk 5), In de literatuur zijn al enkele van der­

gelijke analyses gepubliceerd, maar experimentele analyserende vermogens 

waren toen niet beschikbaar. Verder zijn er aan Sn, vanwege de min of 

meer gesloten protonenschil, veel schillenmodelberekeningen (BCS) 

gedaan, zodat de benodigde spectroscopische amplitudes beschikbaar 

waren. De zuiver microscopische berekeningen, met de antisymmetrische 

DWBA, geven echter doorsnedes die veel te laag zijn en te vlak van 

structuur. Bovendien zijn de electromagnetische overgangswaarschijnlijk­

heden B(EL) te laag. Oat de doorsnede te vlak is, wordt veroorzaakt door 

het ontbreken van een imaginaire term in de gebruikte effectieve 

nucleon-nucleon wisselwerking. Toevoeging van zo'n term is dan ook 

noodzakelijk en we hebben daarvoor de collectieve imaginaire interactie 

genomen, volgens het enigszins 'frivole' model van Satchler. De ver­

onderstelling dat de nucleonen in de binnenschillen geen bijdrage 

leveren is niet zo realistisch. Daarom hebben we deze 'core polarisatie' 

(CP) bijdragen in rekening gebracht teneinde het probleem van de te 

lage doorsnedes te kunnen oplossen. De CP kunnen we op twee manieren 

in rekening brengen n.l. door de effectieve ladingen van de protonen 

en neutronen te vergroten of door een reele collectieve term toe te 

voegen aan de microscopis~he en imaginaire wisselwerkingen. Op deze 

manieren konden de experimentele hoekverdelingen vrij goed beschreven 

worden, zij het nog niet zo goed als met het collectieve model mogelijk 

is. Voor de methode van de effectieve ladingen hebben we naast de 

bestaande procedure een variant ontwikkeld, die voor de 2+ toestanden 

een beter resultaat geeft voor de analyserende vermogens. Het toevoegen 

van een deel van de reele collectieve term heeft tot gevolg dat het 

uiteindelijk resultaat veel op de collectieve aanpassing gaat lijken 

vanwege de sterke invloed van deze term. Vooral voor de L=5 toestand 

is dit heel duidelijk. De methode van de effectieve ladingen geeft hier 

een slecht resultaat. Het zou interessant zijn te proberen voor de 

collectieve termen microscopische equivalenten te vinden. 

Concluderend kunnen we zeggen dat deze experimenten een goede test 

van de reactietheorie en de kernmodellen vormen, waarbij de analyserende 

vermogens een belangrijke rol spelen. 
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STELLINGEN 
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1. In het 'core po 1 ari sat le-mode 1' volgt Terri en 1) een procedure 

waarbij aileen de protonen-overgangen bljdragen tot de electro­

magnetische overgangswaarschijnlijkheid B(EL). Oit is niet correct 

daar ook de neutronen-overgangen een bijdrage geven als de effectieve 

Jading van de neutronen groter dan 0 is 2) 

1) Y. Terrien, Nucl. Phys. A199 (1973) 65, Nucl. Phys. A215 (1973) 29. 

2) dit proefschrift, hoofdstuk 5. 

2. In het 'frivole' model van Satchler1) wordt de imaginaire microscopische 

wisselwerking gesimuleerd door de collectieve imaginaire wisselwerking 

toe te voegen aan de microscopische termen. Het belangrijkste aspect 

van deze wisselwerking is niet het imaginair zijn, maar de radiale 

vorm ervan Z) 

1) G.R. Satchler, Phys. Lett. 358 (1971) 279. 

2) dit proefschrift, hoofdstuk 5. 

3. Volgens het 'folding-model' is het mogelijk de middelbare straal (rms) 

van de neutron-distributie van een kern te bepalen, uit de elastische 

verstrooiing van protonen van niet te hoge energie1). 

Het resultaat is echter sterk afhankelijk van de gebruikte effectieve 

nucleon-nucleon wisselwerking. Oe waarden die o.a. Boyd en Lombardi 2) 

bepaald hebben zljn dan ook twijfelachtig. 

1) G.W. Greenlees, G.J. Pyle en Y.C. Tang, Phys. Rev. 171 (1968) 1115. 

2) J.C. Lombardi, R.N. Boyd, R. Arking en A.B. Robbins, 

Nucl. Phys. A188 (1972) 103. 

4. Het verdient aanbeveling om in theoretische berekeningen van differentl~le 

werkzame doorsneden ook de curves van de analyserende vermogens te 

publiceren. Dit geldt uiteraard ook voor andere gebieden waarbij neven­

resultaten van theoretische berekeningen waardevol kunnen zijn voor 

experlmentatoren. 



5. De hoeveelheid werk, gemoeid met het programmeren van een algemeen 

software-pakket voor administratieve doeleinden, wordt meestal sterk 

onderschat. 

6. Door het verschijnen van het rapport over de aard van het Schriftgezag 1) 

is niet het gezag van de Bijbel verminderd, maar wei dat van de Generate 

Synode van de Gereformeerde Kerken in Nederland. 

1) "God met ons", Kerkinformatie, nr. 113, feb. 1981; 

uitgave: Dienstencentrum van de Gereformeerde Kerken in 

Nederland te Leusden. 

7. De terugkeer naar de ambachtelijke werkwi jze van beroemde orgelbouwers 

uit de zeventiende en achttiende eeuw, is het belangrijkste kenmerk 

van de vooruitgang in de huidige orgelbouw in Nederland 1 •2) 

1) W.A. Reil, Organist en Eredienst, maandblad van de gereformeerde 

organistenvereniging, mei 1982, p.93. 

2) Jan Jongepier, Organist en Eredienst, mei 1981, p.68. 

8. De sterke opkomst van het plankzeilen, als ontspanningsbezigheid, 

is mede te verklaren uit het toenemend individualisme in onze 

maatschappij. 

9. De kop in het zand steken, ten aanzien van het milieubeheer, 

is een zeer gevaarlijke bezigheid geworden. 


