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CHAPTER 1 INTRODUCTION AND SUMMARY

The scattering of protons is an important tool for investigation
of properties of atomic nuclei. These properties are reflected in the
values of the parameters of the nuclear model that we adopt. Using
this model and the general quantum~mechanical scattering theory, the
observables are calculated and compared with the experimental results.
The parameters of the model are varied in order to optimize the fit
to the experimental data. When we use polarized protons as projectiles,
in addition to the cross sections also analysing powers are obtained,
-which, in some cases are more sensitive to the values of the nuclear
model parameters.

The experiments described in this work form a part of a larger
program of experiments at the EUT, covering a wide range of nuclides.
The choice of the nuclei has the following reasons. From the
literature it is known that the analysing powers for the first excited

state of some nuclides having one closed shell, or a nearly closed
shell, cannot be described with 'normal' parameters. One example is
the 2% state of shFe (N=28). So all our target nuclides have (nearly)
one closed shell namely: 60’6hNi (z=28); 865r (N=48} ; 883r (N=50);
110,112,114, (z=48); "51n (z=k9); 116,118,120,122, 12k, (2=50) .
Horeover often a series of isotopes is in itself interesting for the
investigation of the effect of increasing neutron numbers on the

experimental data and hence on the parameter values,

In our experiment, as described in chapter 2, we used polarized
protons of 20.4 or 24.6 MeV. With the use of a special ion source it
is possible to polarize the proton spins before they are accelerated
by the A.V,F. cyclotron of the EUT. The energy range of the cyclotron
is 3 to 26 MeV for protons. The accelerated protons are transported
to a scattering chamber where some of these projectiles are scattered
by the nuclei in the thin target foil. It is possible that in this
process a nucleus is left in an excited state. In the detectors the
energy spectrum of the scattered protons is measured. The different
peaks in such a spectrum correspond to the energy levels of the target
nuclide, The normalized number of counts in each peak is the

differential cross section, do{6)/d2, for that incident proton energy,



final state and scattering angle. We have developed an automatic
spectrum analysing program, that fits the peaks and sorts out all
data. We always measured two spectra, which only differ in the

direction of the beam polarisation B, namely up {4) and down (4).

The unpolarized cross section is now

do(e) _ 1 (do(6,4) dc(e,+)) , (1.1)

dQ 2V de dQ

and the analysing power is

_ 1 (do(e,t) _ do(s,¥)
Ale) = 7.2 ( odsz Gdsz )

where n is the unit vector product of the linear momenta of the

/(dcég,ﬂ + dcég,wb)) (1.2)

N

projectile and the ejectile.

Using an energy of around 20 MeV the direct scattering theory,
as sketched in chapter 3, is supposed to be appropriate. In the
application of this theory to our data, we adopt a model for the
nucleus, We have used two currently available models for the nuclear
structure part, namely the collective or macroscopic model and the
microscopic or shell model. In the collective theory the nucleus is
considered as a whole while in the microscopic model the motion of

the individual nucleons is taken into account.

in chapter 4 the analysis of our data with the collective model
is presented, at first for the elastic scattering and then for the
inelastic scattering.

In all our cases the elastic scattering was the dominant process,
which we analyzed with the optical model. With a chi~squared
minimalization code the optical model parameters were calculated. The
parameters found were in good agreement with standard sets parameters
from the literature. Due to the additional analysing powers the
.parameters were well determined.

For the description of the inelastic scattering we used the
distorted wave Born approximation (DWBA) or in some cases the coupled
channels (CC) method. In the collective model the excited nuclear
states are considered either as vibration of the nuclear surface or as
rotations of a permanently deformed nucleus. So the optical model

potential has non-spherical terms, which give rise to the excitation



of the nucleus. The strength of this deformation is introduced as a
parameter. The deformation parameters found are in good agreement with
the values from the literature. In general the theoretical curves fit
the experimental angular distributions well. For the description of
our analysing powers no exceptional deformation parameters are needed.

For 0Ni we performed some calculations with the CC approach,
since for 60Ni the coupling between the ground state and the first
excited state is rather strong and the slope of the cross section of
the 2% state could not be described by the DWBA. Only smaill
differences, however, between the CC and DWBA curves were found so
the more elaborate CC analyses was abandoned.

Some higher excited 2% and 4* states of 60Ni could be described
rather well as a mixture of one and two phonon contributions in the
CC approach. By varying the mixing parameter we obtained information
about the structure of these states.

]15In is the 6nly odd-A nucleus, which we investigated. The L-
values found with the collective DWBA analysis are in good agreement
with the data from the literature. Also the deformation parameters
agree well with those predicted by calculations with the weak-

coupling model.

In the microscopic analysis, presented in chapter 5, the shell
structure of the nucleus is taken into account. In the shell model an
excitation is a jump of a valence nucleon from one shell-model orbit
to another. It is assumed. that the nucleons in the inner shells, the
socalled core nucleons, do not partake in the microscopic process. In
the field of all other nucleons the two body interaction takes place
between the projectile and a valence nucleon, so an effective nucleon-
nucleon interaction is needed. We used two different interactions,
described in the literature. For ]]6Sn and 12I'Sn we performed
microscopic calculations for the first 2+, 3 and 5 states. We have
chosen these Sn isotopes because in the literature already extensive
microscopic analyses have been described, but at that time analysing
power data were not yet available. In addition the spectroscopic
amplitudes needed were available from recent BCS calculations. An
important feature of this model for the Sn nuclei is that the Z=50
core is not taken as completely inert, but that a few proton-hole

excitations are allowed.



The resulting microscopic curves, however, describe the structure
and the height of the cross sections rather badly. The structure is
too flat and the height too small. In the first place an imaginary
contribution can be added to the microscopic contribution in order to
improve the form of the cross sections. Hereto, as usual, the
collective imaginary contribution is used. The importance of the
diverse contributions is discussed.

in addition the height of the cross sections is increased using
four methods. In all methods the enhancement of the cross section is
due to the interaction of the projectile with the, up till now
assumed inert, core, This is the socalled core polarization. We have
developed a special search routine that could determine very fast the
strengths of the various contributions. In the first two methods the
core polarization is accounted for by enhancing the proton and neutron
charges, so taking effective charges according to two different
recipes. Either both charge parameters were varied in a fit to all
observables, or the proton charge was calculated from the transition
probability and the neutron charge was found from the fit to the cross

section and analysing power., In the first procedure the fit to the
+
1
In the other two methods, which differ only a little, the core

analysing power of the 2. states was better then in the second one.
polarization is accounted for by adding real and imaginary collective
terms, to the microscopic contributions. Now no effective charges are
used, but a core coupling parameter appears, In all cases these
methods give a good description of the data. Also now the 5; state of
‘ZQSn could be described satisfactorily, since a relative large core
polarization term was added.

In conclusion we can say that the elastic scattering of polarized
protons us provides with reliable optical model parameters, The
inelastic scattering offers a good testground for the collective and
microscopic nuclear models., In both cases the analysing powers can

.play an important, if not decisive role,



CHAPTER 2 THE EXPERIMENT

2.1 Introduction

In this chapter we give an outline of our experimental
arrangement. The second section deals with the production of the
polarized protons. In section three the targets used are listed. Next
the detection of the scattered protons is treated. Some comments on
the measuring procedure follow in the fifth part of this chapter. The
extraction of the experimental cross sections and analysing powers
from the spectra is described in the last part. Additional information
concerning the experiment can be found in the thesis of Melssen

(Me178).

2.2 Production of the polarized protons

For the production of the polarized protons we used an ion source
of the atomic beam tYpe. A description of the physical principles and
the operation of such a source can be found a.o. in the papers of
Clausnitzer {(Cla56), Glavish (Gla70) and Clegg (Cle75). The ion source
in our laboratory, that was developed and constructed by Van der Heide
(Hei72), delivered 2-4 yA of 5 KeV protons with a degree of
polarization ranging from 65% to 85%, depending on the vacuum
conditions.

The injection of the protons into the A.V.F. cyclotron is done
radially with a trochoeidal injection system which is a copy of the
Saclay one (Beu67). The electric field produced by appropriately
shaped electrodes gives a force acting on the injected protons that
compensates the Lorentz force due to the magnetic field of the
cyclotron. We measured the transmission efficiency of the injector
which was as good as 70% in a stable situation.

The acceleration and extraction of the polarized beam turned out
to be rather difficult. As the aperture of the injector structure was
only eight mm, probably a considerable part of the beam was cut off.
So the system was very sensitive to any oscillations and instabilities
during the acceleration process. First of all, an asymmetric

excitation of the inner correction coils of the cyclotron proved to be



necessary to get any accelerated beam. An additional problem arose
from the fact that the beam did not move exactly in the median plane
during the first part of the acceleration, but instead moved a bit
upward (Bot81). Also the position of the dee was very important. To
optimize the intensity, the injector orifice is adjustable with
respect to the puller in all directions. During the experiments
described in this thesis, the intensity of the extracted beam was
10~25 nA at 20 MeV and 5-15 nA at 24 MeV, with an energy-spread of
60-90 keV. '

The extracted beam was transported over a distance of about 40 m
to the scattering chamber. By means of five bending magnets (5, 45,
45, 30 and 30 degrees in succession), twenty quadrupoles and five
steering magnets {Hag70), we. achieved a spot of less than two mm in
diameter on the target in the scattering chamber. The beam transport
system was used in a doubly achromatic mode to get as much intensity
on the target as possible. So the energy spread was, of course, the
same as directly after the extraction. The scattering chamber was
equipped with ten probes (diaphragms etc.), for monitoring the beam
intensity and position. With these probes an accurate tuning of the
beam was possible. We set as criterion that at most two per cent of
the intensity shouid fall on a diaphragm with a three mm diameter
aperture placed in the position of the target. The beam current
passing through this aperture had to fall on the inner section of the
Faraday cup located two meters further. So we were sure that all
intensity fell on the ten mm diameter target, and that the target
frame would not be hit by beam particles in order to avoid

contributions to the background in our energy spectra,
2.3 Targets

As target we used self-supporting foils. Al] targets were

ilésn

Sn targets which were manufactured at the KVI of the university

obtained from A.E.R.E. Harwell, except the H5In and the thin
118

and

of Groningen. Table 2.1 lists the targets that we used and gives their

isotopic compositions.



Table 2.1 Isotopic composition of the used targets (in %).

Sn 1 mgf"cm2

target A 115 M6 117 118 119 120 122 124
1ég, 0.74 84.h  1.56 6.5  0.74 5.2 0.3  0.35
18, 0.02  0.37 0.79 95.75 1.22  1.61  1.15  0.07
1204 <0.05  0.20 0.12 0.5 0.39 98.39  0.15  0.26
1224 <0.05  0.3%  0.17  0.91  0.91 k.72 92.25  1.12
12k <0.05  2.33  1.21  3.99 1.40 5.6  1.40 83.98
£d 1 mg/cm2

target A 108 110 11 112 113 14 116

Hoc, <0.22  92.94  3.27  2.3%  0.31 <0.7% <0.05

N2y 0.05 0.24  2.01 95.53  1.34  0.71  0.05

ey 0.29 0.18  0.15 1.75  0.31 96.97 0.3

sr2 mg,»’cm2 mylar backing

target A 84 86 87 88

86, <0.05 97.6  0.68  1.73

88§r <0.002 0.065 0.184 99.75

Ni 1t mg,»"(:m2

target A 58 - 60 61 62 64

60y, 0.71 99.85 <0.02 <0.02 <0.02

6l 2.1 0.9%  0.05  0.43 99.44

Groningen: {3 0.5 mg/cmz)

15,0 99.99%
s 95.6 %
IISSn 9.9 %




2.4 Detection of the scattering protons

2.4.1 Scattering_chamber_and polarization monitor

o e o v BB o S i 0 o 0 o o i P e o S Y

For the detection of the scattered protons we used two arrays of
four detectors, indicated in fig. 2.1 as D1-D& and D5-DB, respectively.
One array was mounted on the upper lid, the other on the lower lid of
the vacuum chamber. The detectors attached to the upper lid were
placed at a distance of 25 cm from the target, and had an angular
acceptance of 1 degree. They were used for measurements at scattering
angies between -20 and +120 degrees. The lower detectors were located
at 12.5 cm from the target and were used for the measurements at
angles from =60 till -165 degrees. The angular acceptance of the
detectors in this backward block was two degrees.

Perpendicular to the scattering plane i.e. parallel to the
polarization axis of the incident protons, we placed two detectors to
monitor the beam intensity. This monitoring is then independent of the
direction of the beam polarization. These monitor detectors were
placed at scattering angles of 45 degrees above and below the reaction
plane defined by the target and D1-D8. We used the sum of the counts
from these out-of-plane detectors as a clock signal for the reversing
of the polarization direction.

In the scattering chamber eight targets could be installed. Their
positions were controlled remotely, One of these targets was the 3 mm

aperture mentioned before.

detectors

l'/( D5-D8

position
from cyclotron out of plane
——p . A SR X 23 detectors
. — i e
target
81 82 Di-D4

detectors

Fig. 2.1 . The main scattering chamber, ¢ 56 cm x 18 om
and the polarization monitor § 18 em % 13.5 cm.



Downstream of the main scattering chamber the beam polarization was
monitored in a separate smaller scattering chamber. The analysing power
of the elastic scattering from ‘ZC at a scattering angle of 52.5 degrees
is nearly independent of the energy from 12 till 16 MeV, and equals 67%
(21%), see H.0. Meyer et al., Nucl. Phys. A269 (1976) 269. So we chose
this angle and energy range for the polarization monitoring. It was then
necessary to degrade the beam energy to a mean energy of 16 MeV before
the protons were scattered by a thin polyethylene foil.

An additional detector was placed above the reaction plane, like
in the main scattering chamber, to monitor the beam intensity on the
polyethylene target. Since the reversal of the polarization direction
‘is timed by the two monitor detectors in the main scattering chamber,
it could happen that inhomogeneities (e.g. pinholes) in the targets
combined with a small drift in the beam position would result in
unequal integrated intensities on the polyethyiene target for the two
polarization directions. This detector allowed us to correct the beam
polarization for such effects. Fortunately the measured differences
were always small, so the beam polarization was measured correctly.

As an accurate and extra check for the value of the beam2
V ! € in

the main scattering chamber. We compared the angular distribution of

polarization we always measured the elastic scattering from

the analysing power with data from the literature and with our own
previous measurements. So the absolute value of our analysing powers

was determined well.

"2.4.2 Detectors

o s e B

The eight detectors, D1-D8, were two mm thick $i surface barrier
detectors purchased from ORTEC. They were positioned askew at 45
degrees, as suggested by fig. 2.1. So the effective thickness of the
detectors was increased up to about 3 mm. .

During the experiments at 24 MeV on the Sr isotopes we used in
the forward detector block a stack of two such detectors in telescope
mode. The four detectors in the backward detector block were three mm
drifted §i(Li) detectors from Philips, also placed askew.

As monitor detectors we used 0.5 mm thick Si surface barrier
detectors. We degraded the energy of the impinging protons to 8 MeV,

so that they were stopped in these detectors.
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Fig. 2.2 The electronic system for one detector.

ADC DETECTORS POLARIZED MONITOR

1-8 10N SOURCE , DETECTORS
A A s_
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. reverse ot
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£
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ROUTING |25 fpouting  pead tisfconrpor  ut of plane | 1
SELECTION F-5p7rs ] UNIT Ttop UNIT Toad Time B
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£3.

ADC_CONTRO [ MOS MEMORY and CONTROL 38 k 24 b SCALERS

camac lines 4 CAMAC ?;STEM F camac lines
|POP 11 / 03 |

Fig. 2.3 The complete electronic system.
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2.4.3 Electronic_system

The electronics used in our experiments consisted mainly of
standard NIM and CAMAC modules. A few special purpose devices for
routing and controlling the analog signals have been designed and
built in our laboratory. The relevant block diagrams for one detector
and that of the complete electronic system are shown in figs. 2.2 and
2.3, respectively.

The use of fast logic permitted us to incorporate a pile~up
inspection in the routing unit, This pile-up inspection has a pulse
resolving time of about 300 nsec. The routing unit enabled the
processing of one detector signal while inhibiting the signals in the
other linear gate stretchers. lt, moreover, generated the three
detector identification bits for the routing selection unit. The busy
signals of the ADC and of the control unit {stop signal) were combined
in the routing unit to the dead time signal, which was sent to the
scalers and the control unit.

The control unit had the following tasks: it reversed the spin
direction in the ion source when the two out-of-plane detectors had
together produced a preset number of counts. In addition, it supplied
a spin bit for the routing selection unit and the scalers. After a
preset number of. reversals of the spin direction, the run was stopped.
Then the results could be written onto a floppy disk. If the ion
source accidently did not function correctly the control unit stopped
the experiment.

Also the scalers have been developed in our laboratory using the
Eurobus system (Nij79). Their functions were controlled via the CAMAC

system,

ol o

Our data acquisition system, developed by De Raaf, has been
described in the literature (Raa79), so only a few details are
mentioned here. The system worked independently of the PDP11 computer
giving a minimum of computer overhead. Moreover, the data collected in
the external MOS memory were always preserved. The functions of the
MOS memory and the ADC controller were set via the CAMAC system by the
PDP terminal. ' ‘

11



Also, all data were processed via the CAMAC crate. From the
terminal of the PDP11 computer we started and stopped the experiments,
read the scalers, listed maxima in spectra and controlled the MOS
memory .

The measured spectra were written onto floppy disks for further
analysis. A connection with the central university computer (Burroughs
B7700), running via a second PDP11 enabled us to store the spectra on

a large disk pack.

2.5 Experimental procedure

When the beam had been focussed on the target in the scattering
chamber, we first determined the energy of the incoming protons
using the cross over method (Bar6h). The beam energy was deduced with
an accuracy of 0.1 MeV. The preset numbers of counts of the control
unit were adjusted so that the spin direction reversed about once in
a minute. This reversion rate was fast enough to avoid false
asymmetries that could occur due to drifts. Most spectra were measured
in runs of one hour or less. We divided the total time, needed to
collect a desired number of counts into peak of interest, in parts of
about .one hour. This method was preferred to making only one long run
which otherwise would have been more risky because of drift in
amplifiers, beam quality variations and possible break downs during
the run. In practice the separate spectra were nearly equal and could
be added without problems.

The relative angular acceptances of the detectors, which were
needed for the calculation of the cross sections, were deduced by
taking spectra with different detectors at the same angle. Afterwards,
the deduced cross sections and analysing powers of the various runs
were compared, which was a good check on the reliability of the
experimental data.

Since all targets contained more or less contaminations of H, C
and 0, we always measured the scattering from a mylar target (contains
H, C and 0) at each angular setting of the detector blocks. We used
these spectra in order to correct the peak contents that were a sum of
the contributions of the scattering from an isotope of interest and

a contamination.



2.6 Spectrum analysis

2.6.1 Translation, addition_and_comparison_of spectra

As menticned before, the spectra were sent from the PDPI1 to the
B7700 computer and stored on a disk. First of all, these data had to
be translated from PDP11 words to B7700 words. A program called CHI
was written for this purpose which, moreover, compared spectra that
were measured at the same angular settings of the detectors. For each
combination of two equivalent spectra a normalized chi squared value
was calculated (Nij78). If this value was near unity, then those
spectra were added, otherwise e.g. the gain of the amplifiers, the
scattering angles or the detector quality had been different for the
two spectra. In this case the spectra were not added, but analysed

separately.

e

in order to analyse the spectra we wrote a peak fitting program
called PIEK, which is an extended and adapted version of the program
POESPAS written by Blok and Schotman (Blo75}. With this program
(sketched below), it was possible to analyse the‘measured spectra
nearly automatically. In fig. 2.4 we show an example of our energy
spectra with the fit found, In the fitting procedure the parameters
of the shape, height and position of the peaks together with two
background parameters were varied. The starting values of these
parameters were partly given as input and partly deduced by PIEK.

In the first subsection we treat the energy calibration
calculated from the kinematics. The starting values of the peak
position parameters are deduced by this calibration. More details
about the peak shape and the background follow in the next subsections.
In subsection four, the operation of the program and some options of
it are noted. The last subsection deals with the sorting out of the

results and our general plot program,

$2.6.2.1 Kinematics
The kinematics of the reaction were taken into account in PIEK.
The expected energy spectrum was calculated from the input data such
as the masses of the incoming and outgoing particles, the laboratory

angle of the detectors and the composition of the target. The target

13
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composition was a list of names of elements in the target with their
mass numbers A and proton numbers Z. After every name followed the Q
values of the states we wanted to analyse and some further
identification (spin etc.). Since our energy resolution did not enable
us to look for new excited states in the nuclides under investigation,
we took the spectroscopic data from the literature, e.g. the Nuclear
Data Sheets. With these data the energies were calculated of the out~
going particles, leaving the target nuclides in the various excited
states. By sorting out these energies the sequence of the expected

peaks was found and possible overlaps were noted.
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In order to match this calculated sequence to the actual peaks
in the energy spectrum we applied the following procedure. The
position of a peak in a spectrum was calculated from an energy
calibration. A linear dependence was sufficient, so two calibration
parameters i.e. the offset and the conversion gain were needed. As
starting values we took, of course, the digital offset of the ADC and
the conversion gain that followed from the setting of the nominal
energy at channel number 990. To refine the starting values the
following procedure was applied. The peak of the elastic scattering
from the heaviest térget nuclide was identified with the last large
maximum in the spectrum, corresponding with the highest energy. Using
the starting values of the calibration, the positions of the other
peaks were calculated and the differences with nearby lying maxima
were found. These differences were minimized by varying the calibration
parameters. Only a selected number of large peaks was used in this
calibration procedure, It was also possible to vary the detector angle
and the energy of the incoming particles, in order to achieve a closer
agreement between calculated and experimental peak positions.

Every maximum in the spectrum that occurred within five channels
from a calculated position of a peak was identified as being the peak
in question, and labeled with A, Z, J and the element name. With this
identification it was possible to take into account the kinematical
broadening, by multiplying the shape parameters of the peak by a mass
dependent factor. After completing the spectrum analysis, these
identification data were used again for sorting out the results and
for the calculation of the transformation from the laboratory system

to the centre~of-mass system.

In a peak fitting program it is necessary to define a standard
peak shape. The most convenient way is to choose a continues function
with a continues derivative. Because a proper choice of this function
determines the quality of the fit we discuss our peak shape here. We
started with the peak shape used in the program POESPAS (Blo72, Blo75),
which is a asymmetrical gaussian with at the high energy side an
exponential tail and at the other side a long double exponential tail.

So the peak shape f{x) consists of four regions, centered aroun Pyt
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log f(x)

o Fig. 2.8
X The peak shape.
x <1 : f{x) = exp (c‘ e P5 (p1=x) _ co)
1 sx<py: f(x) = exp (- (p3(p]'X)) )
ppex<r : Flx) =exp (- (p,(x-p,))?)
x >r : f(x) =exp {-p pg{x-py) + ¢ ]

The shape parameters are P37Pgi S, is a constant and the values of
C1r Cps 1 and r are determined by the requirement that at x=1 and
x=r the function f(x) and its derivative are continuous. This shape,
however, was designed for the analysis of rather narrow peaks (e.g.
for spectra taken with a spectrograph), while we had rather broad
peaks, since we used surface barrier detectors. Solid state detectors
always give peaks with a long tail at the low energy side, which are
difficult to describe with an analytical function with only a small
number of shape‘parameters.

Ultimately we found that the sum of a large asymmetric peak,
with at both sides single exponential tails and a lower peak with a
long double exponential tail at the low energy side, gave the best
results. The two functions had different width, height and tail
parameters, but the ratios of these parameters were fixed, and were
deduced by experience. So the number of shape parameters was the same
as in POESPAS, but our shape could describe the low energy tail
better. '

Since a proper choice of the starting values of the background
parameters turned out to be very important, we have developed the

following procedure. The two parameters were calculated from a linear



least squares fit through a number of minima between the peaks. These
minima were corrected for expected contributions of nearby peaks. The
correction was calculated with the starting values that were already
available. In our analysis we took a linear background, since a

quadratic background did not produce better results.

The normal operation of the program PIEK was as follows: we
first fitted the sum spectrum, which is the sum of a spin up and a
spin down spectrum, with four general peak shape parameters, two
parameters for the background and for every peak a height parameter.
‘We allowed the positions of the peaks to be shifted from the
calculated value. This shift was restricted to one channel or less.
All peaks in our calculated energy spectrum were fitted simultaneocusly.
The different peaks had the four shape parameters in common, namely
the width parameters of the gaussians and the tail parameters. Only
their individual heights were fitted. So we fitted the complete
spectrum with basically one peak shape and one continuous background
~ function. With this possibility one of the drawbacks of the POESPAS
program, where every multiplet was fitted separately with its own
shape and background, was overcome.

Also peaks that overlapped each other were fitted reliably since
the peak shape is determined mainly by the large peaks, and the
background is determined by the complete spectrum, Completely over-
lapping peaks are treated as one peak but not stored on the file of
results.

The up and down spectra were fitted using parameters found from
the fitting of the sum spectrum. Here we fixed the peak shape and the
position parametefs, only the height and background parameters had to
be refitted. Sometimes the background was also fixed at half of the
value found in the fitting of the sum spectrum, So the calculation of
the analysing powers was not obscured by differences in peak
/pasitions or shape.

A check of the fitting process was the difference between the
contents of a peak in the sum spectrum and of the sum of the contents
of the corresponding peaks in the up and down spectra. in general
this difference was small,
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Since the total numbers of parameters must be less then 31, we
sometimes used the option that instead of all separate peak positions,
the two calibration parameters were varied.

After the peak identification was done it was possible to fit a
smaller part of the spectrum, e.g. only one multiplet. This option was
especially effective in the case of tiny peaks superimposed on a large
background. In that case we forced the background to go through the

minima around the first and last channels that were fitted.

2.6.2.5 Results and plotting

The results of all fittings were stored on a disk file, which
afterwards was sorted out. The normalizations of the various runs and
of the detector efficiencies were adjusted if needed. Values at equal
angles were compared and the weighted averages were calculated. The
resulting data: cross sections transformed to the centre-of-mass
system and the analysing powers were punched, for use in the program
that stored all our experimental data on disk pack. This file of
experimental data was accesible to the optical model codes and the
general plot program,

This plot program can be seen as the link between the experimental
data and the theoretical curves calculated by the optical model and
DWBA programs. It calculates the scaling factors and deformation
parameters by normatizing the theoretical curve to the experimental
cross section in a given angular range. ‘

in conclusion we can say that the spectrum analysis works
automatically for a large part, from spectra up to tables and plots

of experimental data and theoretical curves.
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CHAPTER 3  SOME ASPECTS OF THE THEORY QOF ELASTIC AND INELASTIC
SCATTERING

3.1 Introduction

The scattering of nucleons from an atomic nucleus has to be
described by quantum-mechanical scattering theory. In our case of a
not too low energy of the incoming particles we only have to deal
with the theory of direct reactions (Aus70). The general scattering
theory gives us expressions for the differential cross section and
the analysing power as sums over the products of the transition matrix
elements Tfi’ the amplitudes of the outgoing scattered wave for a
specific initial channel i and final channel f.

In order that the scattering theory can be applied to the
scattering of protons, we have to choose a model for the nucleus. To
describe the observed phenomena we have two alternatives: the
collective or macroscopic and the microscopic approach. In collective
theories the nucleus is treated as a whole with respect to the
projectile, while in the microscopic model the projectile interacts
with the individual nucleons,

The scattering process can be elastic or inelastic. When the
inelastic scattering is strong compared to the elastic process a
coupled channels (CC) theory is appropriate, otherwise these processes
can be treated separately, i.e.: the optical model for the elastic and
the distorted wave Born approximation (DWBA) for the inelastic
scattering.

In section 3.2 we discuss the optical model. Then the calculation
of the inelastic angular distribution from the transition amplitudes
is treated. In the next two sections the calculation of these
transition amplitudes with the collective and microscopic DWBA is
‘discussed. Section 3.6 gives us some formulae for the combined
collective and microscopic approximation. In the last section, 3.7,
the calculation of the reduced transition probabilities B(EL) is

given.
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3.2 Optical model

The first step in our theoretical analysis consisted of the
search for a set of optical model parameters in order to fit the
experimental elastic cross sections and analysing powers as well as
possible. These optical model potentials were needed in all further
calculations, of the inelastic scattering. The conventional optical
model potential has been used, of which we give here the explicit
form:

u(r) = Vc(r,rc) -V f(r,ro,ao) +

. d
- {wv f(r,ri,ai) + hai W, a?-f(r,ri,ai)} +

Ia

(2 1 >
+ (E;E) Vo T f(r,rso,aso) | (3.1)

[=%

SO r

wherein f is the usual Woods-Saxon function:

r-org A”3 -1
f(r,rx,ax) = |1 + exp (_———E;—————)

The parameters that can be varied are the strengths Vo’ WV, WD
and Vso and the geometric parameters Fer Tor 32 Mo 35 Tog and 3,
We have tested the addition of a real central surface term, as
suggested by Sinha (Sin75) and of an imaginary spin-orbit part to the
optical model potential. These terms, however, turned out to be
negligible, see section 4.2.4,

Since we performed no absolute measurement of the cross section,
we normalized the experimental elastic cross section to the optical
model value. In our optical model analysis the normalization was left
free, in other words: every turn of the search procedure the
normalization was calculated from the minimalization of the chi
squared value of the cross section, 8X2/8N=0. We used the compliete
angular distribution of the cross section {and not only the forward
part) for the derivation of the normalizations. In this way the
absolute values of the elastic and inelastic cross sections were
deduced.

The standard deviations for the parameters p; were calculated

from a correlation matrix (Ros53, Vos72):
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(ap)2 = (€7, (3.2a)

ki %'apkspT X (3.2b)
We used these errors as indications for the quality of the
minimalization process (see section 4.2.1). In order to prevent an
underestimation of the absolute errors one should multiply them with
a factor (XZ/NF)%, where Nf is the number of degrees of freedom,
defined as the number of experimental points minus the number of
varied parameters (Ros53, Vri77}.
From the optical model potentials some quantities can be derived,
which fluctuate less than the various parameter sets ig a certain mass

region. These quantities are the volume integral defined by:

J =7 ulr) df (3.3)
and the root mean square (rms) radius:

w®%E = (7 u(r)rdtra)t

We computed these values for the real central, imaginary central and
the real spin-orbit part of the optical model potential. In section
4.2 we compare these values with results from folding models (Gre68)
and other optical model theories (Bri77, Bri78).

3.3 Collective description of the inelastic scattering

3.3.1 Collective model

- - . " - - >

In the collective model the excited states of a nucleus are
supposed to be either rotations of a permanently deformed nucleus or
vibrations of a spherical nucleus (BohS3, Boh75). For the calculation
of the cross section and analysing power of the ihelastic scattering
‘we mostly used the collective, first order, distorted wave Born
approximation (DWBA). There are two situations for which we cannot
apply such a DWBA analysis:

1. The coupling between the ground and excited state is strong. This
is in particular the case for the permanently deformed nuclei.

Then a coupled channels (CC) analysis is needed, see section 3.4.3.
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2. Higher order processes are important, e.g. the first order process

is forbidden. Here again the (C method should be applied.

We now give here some basis formulae for the calculation of the
transition amplitudes for the collective DWBA. From these amplitudes
the cross sections and analysing powers can be calculated as will be
described in section 3.5, For an even-even nucleus and a central
collective interaction that causes the transition, we obtain after a
multipole expansion the following expression for the transition

amplitude (Aus70):

- > - * e o
Tei (pome Meskiom M) = 1 Co [ xp(F) Py (n) ¥y(0) 5 (7) o

{3.5)
with indices i for the initial and f for the final state and where
[4 = wave number,

X = the distorted wave function,
+ labels the incoming, - the outgoing wave,

YLM = the spherical harmonic,

Cc = gome Clebsch Gordon coefficients,

5 = spin of the particle,

m = projection of the particle spin, the quantization axis is
chosen according to the Basel convention,

M = projection of the total transferred angular momentum J,

0 = scattering angle,

T = J-% the transferred orbital angular momentum,

g = gi-gf the transferred spin, being 0 ot 1,

¥ = 3}-3f the transferred total angular momentum, and

FLSJ = the collective form factor.

For the first order vibrational excitation of the nuclear surface or
the rotational excitation of a permanently deformed axial symmetric
even-even nucleus the collective form factor is proportional to the

derivative of the optical model potential U(r) (Tamé5):

o e dU(r) '
FLSJ(r) = BL R ~ar (3.6)
with
R = the radius of the undeformed nucleus and

B = the deformation parameter.
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In all our calculations the complete optical model potential has
been deformed so we have three parts contributing to the inelastic
scattering: the real central plus coulomb part, the imaginary central
and the real spin-orbit part. The spin-orbit form factor had the full
Thomas form. For a good description of the analysing power this form
is absolutely needed (She68, Ray71, Ver72, Ver74). In principle it is
possible to give these three collective interactions different

deformation parameters.

e oL e e o B s 0 o o

If the target nucleus is not an even-even nucleus, but can be
seen as a core plus or minus one nucleon then the weak-coupling model
may be applied to calculate the inelastic scattering (Shabl, Bla59).
In this model the extra nucleon or hole is coupled to a collective
phonon, If the nucleon or hole has a total angular momentum ] then
the parent state with momentum L is split up into a multiplet of
states with total angular momenta ranging from |L=j} till L+j. In this
case the transition amplitudes for these multiplet states are given
by:

3
2Jf + 1

3
T(Ji»df) = pffj;;TTTEE:TT} Tparent(G*L) (3.7)

Moreover the weighted average excitation energy should be equal
to the excitation energy of the parent state. We have applied this
model for the description of the scattering from ]15!n in section
§.3.4.

3.3.3 Collective_coupled_channels_{CC) model

- o o " " - 1 7o o """ oo o oo W " o o

A CC analysis is needed if the coupling between states is strong,
so that a separation of the channels as done in the DWBA is no longer
a reliable approximation. A strong coupling between the ground state
and an excited state is reflected by a large deformation parameter.

In a CC analysis the optical model parameters should be deduced
~ by fitting the groungostate and the strongly coupled excited state(s)

simultaneously. For ~ Ni we have performed such a search, see section
4,2.8, in order to find the effect on the slope of the cross section

of the ZT state,
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Due to the higher order terms in the CC calculation now also
non-natural parity states and first-order forbidden states can be
described. For some higher excited states of 60Ni, see section 4.3.1,
we have done a second order vibrational CC calculation. We investigated
the mixing of the first and second order contributions to the angular

distributions.
3.4 Shell model

With the collective model it is not possible to describe the
inelastic scattering from all states of a nucleus. We know that some
excited states have a predominantly single-particle character. For
such states a microscopic calculation is appropriate. But also states
that could be described very well with the collective model should be
described microscopically by the sum of all contributing single-
particle transitions.

In the microscopic DW theory the shell structure of the nucleus
is taken into account, so shell model wave functions must be
calculated. The projectile interacts through an effective nucleon-
nucleon interaction with the valence nucleons of the target nucleus.
By this interaction a valence nucleon can be excited into a different
state.

Apart from the direct contribution it is also possible that the
valence nucleon interchanges its role with the projectile, which
gives an exchange contribution to the transition amplitude. So due
to the antisymmetrization of the wave functions there are exchange
contributions.

In the microscopic antisymmetrized DWA the transition amplitude
can be expressed as the sum of the contributing single-particle
transition amplitudes (Ger71):

T, = j%jz S(jpdpd dpd)<d M uM]y M > TSP(JM) (3.8)
The indices 1 and 2 refer to the two single-particle valence states
involved. The sum over j] and j2 means that all possible combinations
of the proton and neutron single-particle states giving the right J"
value, are included with their spectroscopic amplitudes S. The single

particle transition amplitudes Tsp are:
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- - j,'m1 PR -
Tsp(JM) m§m2( ) <iydy m]mzlJn> x

(000, (1) |V [XT(0) 0,(1) = xT(1) 9y00)> ~ (3.9)

The second term describes the exchange contribution, further
X = again the distorted wave function
0 labels the projectile and

1 the valence nucleon,

$

VefF = the effective nucleon-nucieon interaction.

bound state single-particle wave function depending on j and m,

‘Moreover we have introduced the reduced spectroscopic amplitudes S,
which read in second quantization
. 1 t,. s

S(J]JZJiJfJ) = ;ﬁj?f? <®(Jf)§}[a (JZ) a(J1}3J§§®(Ji)> (3.16)
They weigh the contributions of the various single~particle transitions
and should be derived from separate shell mode!l calculations. ¢{J) is a
shell model wave function.

The transformation from the iL convention for the spherical

harmonics used in these theoretical calculations to our convention

gives the following phase factor for the spectroscopic amplitudes:
(1l (3.11)

The quantum numbers of the states involved in above single-particle
transition are (n1,11,j1) and (nz,lz,jz), respectively, while the
transferred angular momentum equals L.

One of the difficulties one encounters in microscopic analyses
lies in finding the proper effective nucleon-nucleon interaction;
effective because of the influence of all other nucleons of the target
nucleus on the free nucleon-nucleon interaction. Hamada and Johnston
{Hamb2) , among others, have derived a free nucleon-nucleon interaction
from the phase shift analysis of nucleon-nucleon scattering. This
interaction is made effective by truncating it, i.e. using only the
part beyond a certain separation distance for which we used a value of
1.05 fm. Another possibility is to use a phenomenological effective
interaction like that of Austin (Aus79).
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Thus far we discussed the central part of the nucleon-nuclieon
interaction. This interaction has to be completed with non-central
parts, namely a tensor and a spin-orbit part. We used hereto the
interactions of Eikemeier and Hackenbroich (Eik71) or those of Sprung
(Spr72). Though these terms have asmall contribution to the transition
amplitudes, they could be of importance for the evaluation of the
analysing powers.

In above interactions no imaginary part is included. An oftenly
followed approach is that of Love and Satchler who added the collective
imaginary transition amplitude to the microscopic one (Lové7). Another
approach is that of Brieva, Rook and Georgiev (Bri77, Bri78) who have
developed a method to derive a complex effective nucleon-nud]eon
interaction from a free one. They solved a Bethe-Goldstone type
integral equation in order to find this complex interaction. in
addition, using a folding model in nuclear matter, they also could

derive a microscopic optical model potential.

3.5 The calculation of the angular distributions from the transition

amplitudes

The angular distributions of the inelastic scattering are
calculated from the transition amplitudes (Aus70). In the previous
two sections we sketched the calculation of these transitioﬁ amplitudes
by collective and microscopic models,

The differential cross section is expressed in the transition

amplitudes as follows:

do(g) 1 1 Hivs 2 2
q@ " Ts AT 20,40 2 Teil™ =€ 1 ITg (3.12)
i i (ZF)“ m.m.M.M
ifif
with
Te; = transition amplitude, see eqgs. (3.5) or {3.9) (being in general
the sum of several transition amplitudes),
i = reduced mass.

Also the analysing power is expressed in the transition

amplitude:

A =ty B (FM )P (3.13)
f .

26



3.6 Core polarization

It is not realistic, however, to think that only the valence-
nucleons contribute to the transition amplitude. Also the remaining
core nucleons do contribute, in a similar way as in the collective
model (Lov67}. In other words the core is 'polarized', so in general
we need a combination of the collective and microscopic model.

There are two possibilities to bring the core polarization into
account. Either the effective charges of the protons and neutrons can
be enhanced or the core polarization term can be added to the
microscopic interaction.

The effective charge method is a.o. followed by Terrien (Ter73).
in this approach the effective charges ep and e, are varied in order
to fit the observables. So the total transition amplitude (we omit

now the subscripts fi) is then:

T = epr + (en+!)Tn + T,

where Tp and Tn are proton and neutron part of the microscopic

transition amplitude. T, is the collective imaginary contribution.

f
In the core ploarization approach the prescription of Love and

Satchler is followed. If the initial and final channel potentials are

the same then the multipole component of the effective force is given

by (Lov67, Ger71):

av . (r(0)) du, (r(1))
Flcore(r(0),r(1) =y R (0) —grrgy— Ry (1) ARy
(3.14)

where
U, = the shell model potential of the valence nucleon (1) and

U,y = the optical model potential of the scattered proton (0).

Comparing this equation with eq. (3.6) we see that the direct
core polarization strength y_ can be calculated in a similar way as
the deformation parameter BL, since each valence term will become a
factor

<, (1) Ry (1) du, (r(1))/dr(1)| 8,(1)>

in the sum (3.9) while, apart from this factor, all transition

amplitudes
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<xp(0) R, (0) du_ (r(0))/dr(0)] X (0)>

are equal. In this approach the total transition amplitude is:

T= Tp + Tn + YLTcore

The strength y_ can be varied in order to fit the observables.

3.7 Reduced transition probabilities B(EL,0~L}

Analogous to the reaction amplitudes also the reduced electro~
magnetic probabilities can be calculated with a collective or a
microscopic model, In the collective model {Boh75) we used the
deformation parameters found from the scaling of the theoretical to

the experimental cross section:

L 2
B(EL,0+L) = ((3/4m) e Z R 8) (3.15)

Here we introduce an equivalent transition radius Req’ which equals
the Coulomb radius Rc for a uniform charge distribution. For the more
realistic Woods-Saxon distribution this radius is (Owebh):

L+2
L o J df(r,ro,ao}fdro r dr

Req = TTF(r,r,,a.) dr (3.16)

In our calculations we used for this Woods-Saxon distribution the
parameters of the real central optical model potential. Req is L~
dependent but does not differ much from Rc'

In the microscopic model, using the effective charge approach,

the transition probability is

_ 2
B(EL,0-L) = (ep pr +e D ) | (3.17)

where ep and e, are the effective charges of the protons and the
neutrons. Dpv and Dnv are the sums of contributions of the electro-
.magnetic field interacting directly with the valence protons and
neutrons, respectively. We give here Dpv to full extent (Bru77):

- { (ZJf+I) ]%

.. L
(e ) SpUndpddpd) <opllrgllep> e (3.18)
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. (25, +1) (2 +1) (2L+1)4%
oy 51y = (1 [

Lo
j1 b
[ ] ZJ .15 (.‘ + (_)|]+]2+LJ <rL> (3.19)
-5 0 3%
<rb> = s ¢](r) rL+2 ¢2(r) dr {3.20)

The same spectroscopic amplitudes, §, as for the calculation of
the transition amplitude are used {eq. (3.10)). For the neutron
transitions equal formulae hold.

In the core pelarization model the transition probability is the
sum of the contributions of the electromaghetic field interaction
directly with the valence (index v) particles and indirectly via the
core (index c). The valence particles here are protons (p) since the

effective charge of neutrons is 0. So we get:

- 2
B(EL,0-L) = (D +y0 ) (3.21)
with
3.t
Dpc "Ly iRy e
(2d.+41) <% du r)
f g . p,bs
{ZZL+15I2JE+15] jzj Splinigdided) <oqlIR, —g—1l¢p>
12 (3.22)
where Up bS(r) is the bound state potential for a proton single-
3

particle state.
in chapter 5.4 we have applied both approaches. We fitted then the

angular distributions and the transition probability simultaneously.

APPENDIX: Fast method to fit angular distributions
F] . _ ‘
In general we will have a sum of transition amplitudes T}, that
form the total transition amplitude:

n
T= 4ib.) T, : Al
e T (a-1)

with complex weights (a}+ibj). These weights could be strengths of the

effective interactions, or deformation parameters or effective charges.



Often we varied these weights in order to find an optimal fit to the
experimental inelastic angular distributions. In section 3.6 some
examples can be found.

In order to speed up the computation we developed the following
procedure. Instead of using these n legnthy T matrices, each
consisting of 6916 complex numbers, it is possible to calculate the
angular distributions from 192 n2 real numbers, which we shall call
‘partial' cross sections and analysing powers. This made a single
calculation about a factor of hundred faster. Now a search procedure
in order to find the optimal values of the complex weights, is more
feasible, since the 'partial' angular distributions have to be
calculated only once. Also in case that the separate transition
amplitudes are not available the method is applicable, if we can
compute the 'partial’ cross sections and analysing powers, as defined
below, in another way. We form the following partial cross sections

for every pair transition amplitudes Tj and T, :

k
2
f j=k: .. =C T. A.2
o joki o =0 1T (8.2
. 2
for jek: oy = C ) |Tj+Tk| TR (A.3)
. . 2
for j>k: i = ) |Tj+|Tk| T 95T Yk (A.4)

where we use the same sum and factor C as in eq. (3.12). The last
partial cross section can be omitted if we deal with real weights only
in eq. (A.1), (bj=0)’ The cross section can now be expressed as:

n

n
g = jZ1 kZ] 95k Ik (A.5)

with weights

for j<k: gjk = aJ.ak + bjbk

(A.86)
for j>k:

gjk ajbk - ak‘bj
The same formulae hold for the derivation of the analysing power if we
replace o by Ao, using
. 3-m; 2
f =k: A.. 0., =2C - HT, A.
or j i % 1 () | J| (A.7)
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and so on. The same weights are used to calculate A:

g g
A= g, 0. A. /o
j=1 k= Jk Tjk Tjk

i

So in the analyses the partial angular distributions had to be

calculated only once, which saved a lot of computing time.

(A.8)
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CHAPTER 4  EXPERIMENTAL RESULTS AND COLLECTIVE MODEL ANALYSIS

k.1 Introduction

In this chapter we present the experimental results and the
collective model analysis of the scattering of polarized protons from
a series of nuclides. The following nuclides have been investigated:
60,64Ni, 86’885r 110,112,11&Cd l151n and 116,118,120,122,1245n.

’ ’
Some of these nuclei have a single closed shell, while the others have
a closed shell minus one or two nucleons. An aim of our investigation
was to detect a possible effect of shell-closing on the analysing
power, Since this investigation is a part of a larger research program
of scattering of polarized protons around an energy of 20 MeV, we used
in nearly all cases a bombarding energy of 20.4 MeV (Hal75, Hal77,
Hal80, Mel78, Mel82, Wasl0).

For the Sr isotopes we have chosen an energy of 24.6 MeV since
we wanted to compare our results with the high=resolution experiment
of scattering of unpolarized protons of Kaptein (Kap78). An additional
measurement on ' 20Sn at 24.6 MeV has been performed for comparison
with the results of Beer.

The experimental angular distributions of the cross sections and
analysing powers were analyzed with standard optical model and
collective DWBA techniques. Some basic formulae, used in these
calculations have already been discussed in chapter 3. Preliminar
results have been reported at the Santa Fé conference (HalB0, Was80).
in the next section of this chapter we discuss the optical model
analysis, while in the third section we pay attention to the DWBA

analyses and CC analyses of the inelastic scattering.

4.2 Optical model analysis

In order to fit the elastic scattering and to find a good set of
optical model parameters for use in the DWBA and CC calculations, a
search procedure was applied, wherein the parameters of the optical
model potential, as defined in section 3.2, were varied. The sum of
the chi squared values of the fits to the cross section and analysing

power was minimized,
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For all optical model calculations we used the program OPTIMO
60

(Vos72). In addition, in the case of ~ Ni we have done a limited
search with the CC code ECIS {Ray72), since in that nucleus the first
excited state is rather strongly coupled to the ground state.

As a consequence of the uncertainties in the normalizations of
the separate runs and of the diverse detectors we estimate the minimal
relative errors of the elastic cross sections to be 2% and the minimal
absolute errors of the analysing powers to be 1%. In general the
statistical errors were less for the elastic scattering. These errors
give about equal chi squared values for the cross section and

analysing power in the minimization procedure.

L4.2,1 Standard_deviations_of_the_parameters

Special attention was payed to the standard deviations of the
parameters, calculated following eqs. (3.2a) and (3.2b). At the bottom
of tables 4.1a and 4.2a we have given the averaged values of the
standard deviations for all fits, since the separate fits gave nearly
equal values. If these errors remained too large the fitting process
was continued with a smaller stepsize. We see that the real central
radius and strength, o and Vo, as well as the imaginary central
radius, ry, are the best determined parameters, while the volume
absorption wv is more uncertain. Sometimes we have fixed Wv in the
search analysis at the standard value of Becchetti and Greenlees
(Becb69). In the literature often W, is taken 0.

Due to the inclusion of the analysing power data in the fit,
the spin-orbit parameters are rather well defined. The absolute
errors in the optical model parameters are found by taking the product
Ap(xz/Nf)%

4,2.2 Normalization

Since we did not perform an absolute measurement of the cross
section, we normalized the experimental elastic cross section to the
optical model value. Our normalization procedure has been described
in section 3.2. For equivalent sets of opfical model parameters, for
example the best fit, the ultimate normalization for the diverse
targets did not differ much, less than 5%, when we accounted for the

specific thicknesses. So these free normalizations are reliable and
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can be used for the normalization of the cross sections of the
inelastic scattering.

For different sets of optical model parameters the resulting
normalizations can be quite different: e.g. for the experiment on
1ZOSn at 24.6 MeV, we found with the geometrical parameters of Beer
(Bee70) a normalization that was a factor of 1.24 larger than the
normalization found with our GF parameters of section h.Z.ﬁl(see
fig. 4.6). This normalization alsc effects the deformation parameters
of the inelastic scattering (section 4.3). The normalization of the
DWBA curve, however, is again influenced by the optical model
parameters but in opposite way. So the deformation parameters are
more or less independent from the optical model parameters. For the
above mentioned experiment on 120Sn we found for both sets of optical
model parameters the same deformation parameters as listed in
table 4.7 for 20 MeV,

As a check we'have also varied the normalization of the analysing
power in some cases. This normalization stayed near the value of 1.0,
so the value of the experimental beam polarization (see section 2.4.1)

was deduced correctly.

4,2.3 Best fits (BF)

Starting with the potential parameters of Becchetti and Greenlees
{Becb9)}, BG, we fitted the elastic scattering for each nucleus
separately. These fits, wherein all parameters were allowed to vary
are called the best fits and the corresponding parameter sets are
denoted by BF. The parameters of BG gave already quite good fits, but
the chi squared values of the best fits are about a factor four
f 58’62Ni of Melssen {(Mel78) in

the way as outlined above. The different normalization procedure only

smaller. We have reanalyzed the data o

caused some small differences in the parameters. Table 4.1a lists the
BF parameters for all 20 MeV experiments, table 4.2a the results for
the 24 MeV experiment on Sr. From the tables 4.1b and 4.2b we learn
that the chi squared values of the cross sections and analysing
powers are of the same order of magnitude. So in the minimalization
process the cross section and the analysing power have a comparable
weight. We also give here the chi squared values per degree of

freedom.
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Table 4.1a Best fit optical model parameters, at 20.4 MeV.

A Vo o % wv wD i 25 Vso "so %so
(MeV) (fm)  (fm)  (MeV) (MeVv) (fm) (fm) (Mev) (fm)  (fm)
Ni
582) 49.52 1.200 0.753 1.70 8.4 1.363 0.408 4.93 1.062 0.433
60 53.29 1.173 0.747 1.4s5 9.41 1,308 0.476 5.74 1.031 0.574
623) 50.38 1.205 0.742 1.38 10.18 1.289 0.486 5.38 1.046 0.510
64 55.33 1.148 0.7t4 0,63 §.26 1.264 0.651 6.17 0.946 0.634
cd
110 52.12 1.213 0.691 0.63b) 9.78 1.210 0.700 6.26 1.128 0.571
12 53.21 1.200 0.688 0.63b) 9.36 1.194 0.760 6.11 1,110 0.582
114 54.38 1.181 0.732 0.63b) 9.70 1.183 0.811 6.09 1.097 0.569
In
115 54.33 1.176 0.697 2.21 8.60 1.278 0.667 6.05 0.854 0.647
sn
116 53.71 1,194 0,713 1,25 8.85 1.265 0.675 5.59 1.060 0.566
118 55.08 1.180 0.714 1.65 8.40 1.266 0.700 5.63 1.022 0.645
120 55.63 1.163 0.749 2.02 8.70 1.278 0.690 5.65 1,000 0.670
122 55.74 1,166 0.740 0.43 10.23 1.255 0.739 5.76 0.984 0.700
124 55.98 1.161 0.755 0.46 10.74 1,258 0.726 5.64 0.921 0.764
(%)C) (0.3) (0.2) (0.5) (13) (5) (0.3} (1.1) (0.9) (1.0) (2.6)

The Coulomb radius parameter is fixed at 1.25 fm.

a) from Melssen (Mel78), reanalysed.

b) fixed value.

c) (%) are the standard deviations of the varied parameters in

per cent, averaged for all isotopes.

36



Table 4.1b Volume integrale, rme radii and chi squared values
for the best optical model fite at 20.4 MeV (BF).

1 2.4 2.5 .2 3 bY 2 2 2, ¢)
. 3 -3
A /A IR d /A <R_> REERC ST ot Xy ' Xp X /Ng

50
{ MeV fm3 )

Ni
580) 4s1.9 1okt 131,
60  454.6 116.0 148,
628) 457.5 121.1 141,
64 4345 118.1 146.

4.5609 5.3327 4.3300 1074 624 601 23.56
L.5132 5.3409 4.4203 1113 874 385 24.21
4.6108 5.3549 4.4398 1159 343 506 16.98
4.3474 5.6116 4,2739 1208 748 202 18.26

Oy B W n

Cd
110 443.7 115.5 177.2 5.1819 6.3973 5.6939 1385 303 280 11.23
112 438.8 117.0 170.2 5.1583 6.4697  5.6533 1433 342 234 11,06

114 L436.1 127.0 167.8 5.2045 6.5581 5.6096 1529 255 175 8.95

115 hk2h.1 122,0 129.8 5.1310 6.555k 4,2625 11425 602 517 21.95

Sn

116 L40.1 114.1 148.8 5.2332 6.6174 5.4669 1417 231 197  9.96
118 436.,0 116.5 144.5 5.2093 6.6568 5.4065 1452 222 178  8.51
120 434 4 123,7 141.9 5.2639 6.6940 5.3626 1503 605 184 14,61
122 430.2 130.4 1L42.% 5,2575 6.8658 5,3516 1552 343 205 11.81
124 428.0 134,2 130.5 5.28B0 6.8842 5,1792 1571 350 218 12,07

a) from Melssen (Mel78), reanalyzed,
b) O = reaction cross section.

¢) Nf = the number of degrees of freedom.
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Table 4.2a Best fit optical model parameters for Sr at 24.6 MeV.

A v r a W W r. a, v r a
o ) e} v D i S0 S0 SO

(MeV)  (fm) (fm) (Mev) (MeV) (fm) (F;) (MeV) (fm) (fm)

86 52.54 1.167 0.756 2.65%) 7.15 1.277 0.675 5.73 1.020 0.60h
88 52.54 1.163 0.761 2.65%) 7.00 1.309 0.654 6.03 0.979 0.716
(%) (0.3} (0.2} (0.5) (6.5) (0.2} (0.8) (0.9) (0.6) (1.3)
888) 51.65 1.17 0.725 0%)  8.99 1.266 0.673 6.h9 1.01 0.75
88P) 52.51 1.17 0.725 0¢)  9.52 1.266 0.673 5.56 1.01 0.75

a) Set P, of Kaptein, unvaried.
b} Set P, of Kaptein, with‘vo, Wy and Voo varied.

c} Fixed value.

Table 4.2b Derived and chi squared values for the
best optical model fit of Sr at 24.6 MeV.

1
3 2 % 2. % 2 % 2 2 2
A JOZA JE/A 3 JSO/A3 <RO> ‘Ri> <Rso> % Xg XA X /Nf
{ MeV fm }  (fm) {fm) {fm) {mb)

86 424.1 120.4 146.8 4,.8801 6.0157 4.8840 1h427 623 651 33.47
88 5419.8 120.2 48,2 4,9033 6.1208 4.8975 1452 543 761 26,06

Table 4.2¢ Chi squared values 88
for diverse optical model fits to " Sr.
. 2 2 2
reference fit remark Xg Xa X /Nf

Kaptein (Kap78) start a) 3601 L46g 144

3V b) 1468 1458 52
BG (Becb9) start c) 4561 982 99
v d) 1834 1720 64
Best fit , 543 761 26

a) Set PZ, no parameters varied.
b) Set Pys v,

¢) No parameters varied,

, WD and vso varied.

d) V., W, and V__ varied.
o D 50
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in table 4.2c we compared the optical model parameters found by
Kaptein (Kap78) with our results for 883r at 24.6 MeV. His set P2
gives chi squared values, both for the cross section and analysing
power, that are a factor of 7 larger than our BF result, Probably
this comes from the fact that Kaptein fitted experimental cross
sections till an angle of 120 degrees instead of 165 degrees. Also
no analysing powers were fitted by Kaptein. .

The set opticai model parameters deduced by Beer (Bee70}, who
also performed experiments with (unpolarized) protons of 2h.5 MeV,
scattered by the same sequence of Sn isotopes as we have used, gives
rather bad descriptions of our experiments. The same arguments as
mentioned above can be applied here,

In the analysis of the experimental results obtained at 24.6 MeV
on 1ZOSn we found the same effect: using the geometrical parameters
of Beer instead of the GF parameters of our 20.4 fit (see section
b.2.4) we obtained chi squared values that were a factor of b larger,

as can be seen in tables 4.,3a and 4.3b.

Table 4.3a Fgmed geometry optical model parameters for
1205y at 24.6 Mev. Vos Wp and Vg, were varied.

v o a wV w& i ai Vso rso %o

(MZV) (m) {fm) (MeV) (Mev) (fm) {(fm) (MeV) (fm) {fm)

GF2) 53,33 1.178 0.730 2.17 8.63 1.266 0.695 6.36 6.970 0.699
b) 56.39 1.130 0.744 0.00 10.62 1.330 0.650 6.4%7 1.130 0,750
(%) (0.09) (0.6) {1.1)

Beer

a) Geometry of the global fit of $n.
b) Geometry of Beer (Bee70).

Table 4.3b Derived and chi squared values for the fixed
geometry optical model fit of 1208n at 24.6 MeV.

GFa) 422.0 122.8 154,7 &5.2545 6.6390 55,2617 1594 178 156 8.32
Beer® 400.8 128.5 183.6 5.1271 7.0675 6.0510 1606 735 392 28.16

a) Geometry of the global fit of Sn,
b) Geometry of Beer (Bee70).
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The experimental results and the BF curves are drawn in figs.
4.1 for Ni, 4.2 for Sr and 4.3 for Cd. The curve of ' 2In in fig. 4.4
resulted from a search wherein the geometrical optical model parameters
were fixed to the values of the GF set of Sn, which set is described
in the next section, while the three strength parameters Vo’ Wd and
V__ were varied.
50
Reviewing the results we can conclude that the optical model

describes the experimental angular distribution very well.
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Fig. 4.4 Differential cross section_and analysing power for elastic
scattering of protons by 119Tn at 20.4 MeV.
The curves are caleulated with the optical model, using
for the geometry the GF parameters of Sn, the strengths
were varied,
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For the Ni, Cd and Sn isotopes we also have performed a global
optical model search, called GF, which means that we fitted all
angular distributions of a series of isotopes with one set isospin
dependent parameters. As starting values we took the averages of the
BF parameters. In fig. 4.5 we show the results of the GF fits for the
Sn isotopes. Visual inspection hardly shows any difference between
the BF and GF curve, so here only the GF curves are displayed.

in the GF search we tried various isospin, (N-Z}/A, dependences
of the strength and diffuseness parameters. |t turned out that only
the surface absorption parameter WD had a noticeable isospin
dependence. All other parameters were thus equal for each Isotope
in a sequence.

Table 4.4a lists the GF parameters, which are very well
determined (small standard deviations), since a large amount of data
points is fitted simultaneously., The best GF set is that of Sn, which
differs only a little from the average of the individual best fits.
Compare also the values of XZ/Nf in tables 4.1b and 4.5a. In the case
of Ni we better use the BF parameters in the DWBA calculations, but
for the Sn and Cd isotopes the BF and GF parameters are nearly equal.
So here for the analyses of the inelastic scattering the GF set is
preferable. )

In order to check the fitting procedure we repeated the BF
searches starting with the GF sets. The same parameters as in table
k.1a were found.

Since we have a well defined data-set for Sn we also could
investigate the influence of the addition of extra optical model
parameters. Sinha (Sin75) suggested a real central surface term. Ip
our analysis this term, however, turned out to be small with a large
standard ‘deviation. Also the addition of an imaginary spin-orbit term
did not improve the fits. So these extra terms are not necessary for

the optical model analysis of our experimental data.

It is known that in a certain mass region the volume integrals

and rms radii show less variation than the individual optical model
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Table 4.4a Global fit optical model parameters.at 20.4 MeV (GF).

Vo "o % wV wDU le i ay Vso "so 1)
(Mev) (fm)  (fm)  (MeV) (MeV) (MeV) -(fm)  (fm) (Mev) (fm)  (fm)
ni?

52.47 1.176 0.745 l.30a) 7.24 21.8 1,302 0.518 5,64 1.023 0.554
ca®

52.97 1.201 0.700 0.63a) 5.55 27.7 1.192 0.759 6.12 1.108 0.585
sn) |

54,97 1.178 0.730 1.203) 5.93 21.1 1,266 0.695 5.65 0.970 0.699
(0.2) (0.08) (0.2) (1.7) (3.0) (0.3) (0.7) (o.4) (0.5) (0.8)
a) Fixed value.

b) x/N = 30.77.

c) x2/Nf = 10.81,

d) xX*/N_ = 13.53.

Table 4.4b Theoretical and experimental values of the volume
integrals and rms radii from literature compared
with our results; the units ave in MeV*fmS and
fm, respectively.

reference J <R2>% J. <R?>% J <R2 >%

o o i i so so

Brievaa) (Briz7) 436 5.23 73 6.2 107  5.30

Greenleesb) (Gre68) 436 5.25 - - - -

Agrawell (Agr75) - - 115 - - -

BG (Bec69) 434 5.27 122 6.79 138 5.51

our exp.  2Osn BF 434 5.26 124 6.69 141 5.36
12050 6F 435  5.25 123 6.73 138 5.26

a) Average of the values for hOCa and 208Pb, at Ep = 21 MeV.

b) Averaged values for 120Sn, 20 MeV.
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parameters. We learn from tables L.1b, 4.2b that those quantities
indeed have this property.

First we compare our data with other experimental values from
the literature. For IZOSn at 20 MeV the average value of the real
volume integral is equal to the average value given by Greenlees,
Pyle and Tang (Gre68), see table L.4b. Using the BG optical model
potential we find a somewhat smaller value. The imaginary volume
integeal Ji/A is slightly A-dependent for a sequence of isotopes,
see table 4.1b, but remains in the interval of 11515 MeV fm3, which
was quoted by Agrawell and Sood (Agr75) and by Hodgson (Hod76).

Second we compare our results with theoretical values. Brieva
and Rook (Bri78) have deduced theoretically the optical model
potential in a microscopic way from the effective nucleon-nucleon
interaction folded with the nuclear density. The averages of the real
central volume integrals and rms radii of Cd and Pb, at 21 MeV

]ZOSn are in excellent

compared with our values of BF and GF for
agreement, as can be seen in table 4.4b. Also the real spin-orbit
values agree satisfactorily. Since Brieva and Rook used an imaginary

spin-orbit term and we not, the imaginary values are not comparable.

4.2.6 1sospin_dependence of optical _model_parameters

The isospin dependence of the optical model parameters and of
the corresponding volume integrals is of interest for they give
information about the difference between proton and neutron inter-
actions (Gre68, Sat69, Fin80). In this section we will discuss the
isospin dependence of some optical model parameters of the Sn
isotopes. For our definition of the optical model parameters and
for proton scattering (t=+1) we can split the real central strength
as follows:

Vo = Voo + T (N-Z)/A'Vo1

For neutron scattering we use t=-1. In the same way other terms can
be split, like wD, Jo etc.,

Since in the BF calculations geometrical as well as strength
parameters were varied, these fits are not used for the investigation
of the isospin dependence. We performed separate searches for the
five Sn isotopes, wherein the three strength parameters Vo’ WD and

Vso were varied while the geometry was fixed on the GF values. We
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Fable 4.5a Isosepin dependences of the

central potential for 116-124gy,
projectile energy reference  remark V01 WDI
(MeV) (MeV) (MeV)
p 20 FG3 a) -390 21N
p 20 GFS b) -3.1(1.1) 23(3)
p 2k (Bee70) d) 26.2(5.1) 15(6)
p 16 (Mak68) c) 20.2(2.0) 20(8)
n (A (Fin80) ‘ 15.6(2.3) 12(2)
p global (Bech9) 24,0 12

All real central potentials are corrected for the Coulomb potential
by a factor 0.4 Z/AI/S, which lowers the value of V01 by 1.5 MeV.

a) Search with the Fixed Geometry from the global fit, table 4.3,
and the three strength parameters varied,

b} Global fit like in section 4.2.% but now the geometry is fixed
as for FG3 and the parameters Vgg, Vo1, Wpg, Wpt and Vo, are
varied. The errors here are from the optical model fit, section
4.2.1.

c) Without the values for 112Sn, when 112sn is included then

Vo1= 16 MeV,

d) From table 2 of Beer with Wg = 0,

e) Between parentheses the standard deviations of the linear
regression fit, except for FG3.

Table 4.5b Isospin degendenee of the volume integrals
(in MeV fm°} caleulated for the global fit
and best fit potentials

1 1
isotope fit JQQ;A oy /A JiO/A Ji1/A JSOU/A3 4501/A3
Ni GF L5k -66 100 212 145 0
cd GF L6 -43 85 231 170 0

BF 478 -278 - - 232 N v13
Sn GF 443 -46 91 195 138 0
BF heg -210 61 377 187 -275
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also performed a global fit, like in section 4.2.4, with as parameters
Voo’ Voi’ woo, WD3 and Vso’ but now also with the geometry fixed to
the previous GF values.

The resulting isospin dependences, together with values from the
literature are compiled in table 4.5a, Surprisingly, a small negative
value of V_, is found in both cases while in the literature a positive
value of around 20 MeV is given. The values of Beer {Bee70) and those
of Makofske (Mak68), however, have been deduced by fitting the cross
section in a smaller angular range as we have used, while Becchetti
and Greenlees {Bec69) have fitted a very large range of nuclei in a
general global fit.

The imaginary isospin dependence, has a value that is in

W
D1’
accordance with the results of Beer and those of Makofske but is
higher than the value of Finlay (FinB0) and Becchetti. Also here the
differences can be caused by different fitting methods and data

regions.

4,2.7 |lsospin_dependence of volume_integrals and rms_radii

o o e B L o 5 o B W b D 0 oo e e T S T A S W e S S

We investigated also the isospin dependences of the volume
integrals of the Ni, Cd and Sn isotopes. As data for the linear least
squares fit we used the values listed in table 4.1b. The results are
listed in table 4.,5b. For comparison we also give in the same table
the isospin dependences using the GF parameters. We see that for the

BF the isospin contribution J0 is much larger than for the GF.

further we observe for all isolopes similar dependences: decreasing
for the real central and spin-orbit volume integrals but increasing
for the imaginary volume integral,

In conclusion we can say that the inclusion of analysing power
data does not remove the isospin dependences of the volume integrals,
but that those dependencies strongly depend on the used search

method.

e B e o o ot i S0 00 ot o o

For 60Ni we performed in addition to the optical model fit, a

search with the coupled channel code ECIS (Ray72). We fitted the
ground state and the 2? state simultaneously. Nine optical model

parameters and the deformation parameter were varied. As can be seen
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Fig. 4.6 Differential crose section and analysing power for elastic
scattering of protons by 1208n at 24.6 Mev.
The curves are calceulated with the optical model, using
the geometry of the GF parameters of Sn, full line, and of
Beer, dashed line.

Table 4.6 Optical model and deformation parameters deduced from a CC
it to the ground state and the 2§ state of 60Ni, with the
code ECIS. For comparison also the best fit (BF) and DWBA
data are given.

fit v r a W W r. a, Vv r a
fo} o [+] v D i i so so SO

(MeV) (fm)  (fm) {MeV) (MeV) (fm) (fm) (Mev) (fm) {fm)

BF 53.3 1.17 6.75 1.45 9.4 1.31 0,48 5.7 1.03 0.57
ce 53.3 1.15 0.75 1,45 6.1 1.35  0.61 5.4 0.97 0.58

s (1) (09) (.03) (1.7) (.03) (.12) (0.7) (.04) (.12)
fit 8, xilgs)  xiles) @D xhED)
BF 0.255 874 385 26654 3484

cc 0.207(0.007)2 3282 742 4099 799

a) These are the standard deviations of the C{ fit,
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in fig. 4.6 some differences between the optical model and CC fit
exist. For the forward angles of the cross section, the CC fit is
better than the optical model fit, but at backward angles the
situation is reversed. The analysing powers differ not so much. In
table 4.6 we 1ist the parameters found from the CC fit. We see that
the chi squared values of the CC fit are larger thén for the standard
optical model fit. This is caused by the difficulty to fit the slope
of the ZT state which influences here also the fit to the ground
state.

In conclusion, we can say that the elastic scattering is

described very well by the standard optical model.

4,3 Inelastic scattering and DWBA

In our experiments only the strongest collective transitions
produced enough statistics to give reliable anguiar distributions.
Sometimes experimental data points are missing from an angular
distribution because of an overlap of the peak of interest with such

a large peak, arising from a contamination in the target (1H, ]ZC,

160), that a reliable correction was impossible.

For the theoretical analysis of the inelastic scattering data
we used the well known standard collective DWBA method (see section
3.4). We used a DWBA code, written by Verhaar and Tolsma (Ver72). In
this program a full Thomas spin-orbit form factor was incorporated.
The curves of Cd and Sn have been calculated with the GF, all other
curves with the BF optical model potentials.

The deformation parameters, listed in table 4.7, are the only
- free parameters in the DWBA calculations. They were deduced from the
scaling of the first maximum, around 30 deg, to the experimental
points (in our program PLOT). in general these deformation parameters
are quite close to the values from the literature, which are also
listed in table 4.7. As consequences of the statistical errors in the
experimental points and the normalization procedure for the ground
state and the inelastic state, we estimate the errors in the

deformation parameters to be about 10%.

We now make some remarks concerning the various nuclides.

51



Table 4.7 Deformation parameters.c)

ZT states 3;«states
A Ex(MeV) B8 Slit Ex(HeV) g Slit reference
ggns 1.33  0.255 0.26 4,42 0,209 0.19 (Me178)
Ni 1.34  0.206 0.200 3.56 0.203 0.181 (Car66)
235r 1.68 0.158 ©8.130 2.48 0.185 0.153 (Ram72)
Sr 1.8% 0.114 p.110 2,73 0.177  0.166 {Kap78)
M50 1.13 0.089:§ 2.13 0.0923§
(L=2 1,29 0.075%) 2.46  0.106%
or 3) 1.48  0.066°
:Ing 0.66 0.168 0.175 2.08  0.14 0.175 (Mak68)
114td 0.62 0.165 0.173 1.97 0.154 0,164 (Mak68)
cd 0.59 0.169 - 1.96 0.145 0.160 (Mak68)
::gSn 1.29  0.151  0.143 2.27 0.16h,, 0.188 (Bee70)
12050 1.23  0.138 0.134 2.33  0.158%/ ¢.174 {(Bee70)
12250 1,17  0.136 0.128 2.41 0.161 (Bee70)
12450 1.14 0,127 ©.122 2.49  0.141  0.149 {Bee70)
Sn 1.14 0,109 0.119 2.61  0.123 0.138 (Bee70)
Other states of SONE, 2% and 4%
J (nr) Ex(HeV) 8 elit reference
2 (2) 2.15  0.0303 0,022 (1no68)
2 (3) 3.12  0.0509 0.06 {1n068)
L (1) 2.51 0.127 0.085 (1no68)
4 (3) 3.67  0.0664 0.045 (1no68)
5; states of Sn:
A EX(MeV) B S]it reference
122 8hk 8
12450 2.2k 0.0 0.0859 (Bee70)
Sn 2.21  0.0879 0.0886 (Bee70)

a) Does not include the statistical factor /(ZJi+I)(2L+1)/(2Jf+1).

b) After correction for the 5; overlap strength.

c) The estimated errors in our experimental values B are about 10%.
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state energy(keV)

31 4039
— 4‘; 3670
——— 2, 3120
POV +
- 0 9. Fig. 4.7a 50
Analysed states of " Nt.
60

Analysed states of ~Ni.

4.3.1 N

[

The Ni isotopes are nuclides of interest because of their closed
proton shell, Z=28., The statistics of the measurements on 60Ni were
much better than previous results {Hal77). So we could extract data
for some of the th‘bﬁﬁgﬁn states. In fig. 4.7a the level scheme of

the states of 60Ni that we have analysed is displayed. First we will
discuss the one-phonon states and in the next sub-section the two-

phonon results,

4,3.1.1 One-phonon_states of "~ ' "Nj

In fig. 4.7 we see that the slope of the theoretical cross
section of the 2? state is not as steep as that of the experimental
cross section. This phenomenon was already encountered in the work of
Melssen (Mel78) on 58,60,62

our group on 6“’66’68’702n (Ha180). only for 7021 the theoretical and

Ni and also in more recent experiments, in

experimental cross sections agreed. The agreement becomes less when
going to the lighter Zn isotopes. The same trend holds for the Ni

isotopes and the Sn isotopes {fig. 4.17), ‘
Since for 60Ni the 2? state is rather strongly coupled to the

ground state, which is seen from the deformation parameter having a
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Fig. 4.7 Differential cross section and analysing power for inelastic
soatterzng of protons by PV W at 20.4 Mev leaving the
target in the 21 state.

The full curves are caloulated with the DWBA, ustng the BF
optical model parameters, the dashed curve for °YNi with the
CC method.

The DWBA curve is scaled on the first maximum while the CC
curve is scaled on the complete angular distribution.

value of 0.255, we tried to explain this disagreement by performing a

CC analysis for 60Ni, in two ways:

a. We used the code CHUCK (Kun6Y) in a calculation wherein the two-
phonon multiplet, 0+, 2+, b+, around 2.5 MeV was coupled to the
ZT state. Indeed the theoretical cross section is now lower at
the backward angles, but it is not lowered enough to give a
satisfactory result. See table 4.8a for the various cross sections

at the backward angle of 126 degrees.
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Fig. 4.8 Differential cross section and analysing power for inelastic
scattering of protons by 80s64N; at 20.4 MeV leaving the
target in the 37 state.

The curves are calculated with the DWBA, using the BF
optical model parameters.

b. A limited search with the program ECIS (Ray72) was performed. We
varied nine optical model parameters together with the deformation
parameter 82, in order to fit the elastic scattering {see section
4.2.8), and the inelastic scattering simultaneously. This gives a
better fit of the analysing power of the ZT state, but its cross
section does not change so much, as can be seen in fig. 4.7. The
resulting parameters are listed in table 4.6. We notify the value

of 82, which is considerably lower (20%) as that given in table
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Table 4.8a Cross section of the 2; state at 6=126°
in mb/sr of 60§1.
The theoretical curves are normalized at
the experimental maximum around 30°.

theoretical values:

DWBA calculation 1.00
CC with coupling of gs to 2?
and fit of OM parameters; ECIS 0.86

CC with couplings between gs,

27 and a;, 2; and 4%, no fit; CHUCK 0.80

experimental value and error 0.52 (0.01)

4.7. This simply comes from the fact that in ECIS the complete
inelastic angular distribution is used for the scaling of the
theoretical cross section to the experimental points, while in
the DWBA calculation we used the angular range around the first
maximum only. The cross section at 126 degrees calculated with
ECIS is nearly the same as calculated with CHUCK after a
renormalization at the first maximum, see also table 4.8a. So
the steepness of the ZT cross section remains a difficulty that
cannot be explained by the CC theory.

60

The 3| states of ~ Ni and bhni are very well described by the DWBA

theory, as is shown in fig. 4.8 and the deduced deformation parameters

3

are in agreement with the values from the literature.

4.3.2.1 Twosphonon states of S'Ni
From our spectra we could extract angular distributions with good
statistics for some states which are believed to have {partly} a two-
phonon character. Theoretically the 0+, 2% and 4% states of the
two-quadrupole phonon multiplet should have energies around 2.6 MeV.
From the energies and .J values of the states of 6ONi, which are given
in the Nuclear Data Sheets (Aub79), the most probable candidates for
the two-phonon multiplet are the states at 2.15 (2;), 2.28 (0;) and
2.51 (QT) MeV. In fig. k.78 we display the states that we have
analysed. We have found states at 2.15, 2.51, 3.12 and 3.67 MeV, so

+ .
the 02 state was not observed in our energy spectra. We could not
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Table 4.8b Some 2 and 4" states of Wi fitted with a
mixture of one-phonon and two-phoron
contributions, caleulated with the CC model.

7 DWBA a) 2z 2
J Ex(MeV) 8 case , Alph Azph Xg Xy
z; 2.15 0.303  DWBA 1 0 6340 868

mixed 0.227 0.625 3400 305
2 ph 0 0.69k 3926 k1
2; 3.12 0.509  DWBA 1 0 2983 542
mixed  1.010  -0.232 2511 350
2 ph 0 1.123 6413 1118
4? 2.51 0.127  DWBA 1 0 40155 1097
mixed  0.927 0.586 22477 1074
2 ph 0 1.909 248990 2515
u; 3.67 0.066  DWBA 1 0 4354 1218
mixed 0,516  -0,243 624 1274
2 ph 0 1.004 3839 1549

a) Case DWBA is only one-phonon and case 2 ph is a pure two-phonon

calculation.

separate the h; and the 2; in our spectra, but in the literature only
a small deformation parameter for the h; state is given. So we treated
this state as a pure 2* state.

We analysed these four states with first~ and second-order CC
using the vibrational model. In the second order approach a mixing of
'direct' or one-phonon and of two-phonon distributions was allowed.

We calculated with the code ECIS these contributions separately and
also a special mixed case wherein the direct and two-phonon
contributions had equal weights.

With these three angular distributions we could not apply the

approach as outlined in the appendix of chapter 3. We used our program
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Fig. 4.9 Differential cross section and analysing power for inelastic
gseattering of protoms by 60pi at 20.4 MeV leaving the target
in the 2% and 2% states.

The curves are caleulated with the CC model, with the optimum
mixing of one-phonon and two-phonon contributions.

CHIMIX to find the best values of the two strengths. This code
. searched for a minimal chi squared value for both the cross section
and analysing power by varying the strength parameters of the direct
and two-phonon contributions. .
From the resulting strengths, that are compiled in table 4.8b,
we can conclude that the two 2% states have a different character,
Note in fig. 4.9 especially the differences in the analysing powers.

The large maximum at backward angles of the cross section of the
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Fig. 4.10 Differential crose section and analysing power for inelastic

scatterzng of protona by 60N at 20.4 MeV leaving the target
in the 47 and 4% states.
The curves are caleulated with the CC model, with the
optimum mixing of one-~phonon and two-phonon contributions.
It should be noted that the seaizng of the curve labeled
CC of the cross section of the 41 state has been chosen
differently from the other scalings. Here the complete
angular distribution has been used for the normalization,
while in all other cases the first maximum around 30 degrees
hae been used.

2; state cannot be described by the theory. Another difficulty is

the rather large positive analysing power around 30 degrees (compare

+
the 21

state of 5I‘Fe at 20 MeV (Hal77)). So we learn from table 4.8b

that the ZZ'State has a strong two-phonon contribution, so it belongs
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to the multiplet. A direct DWBA description gives much larger chi
squared values. For the 2; state the mixed description gives no
significant lower chi squared values than the direct approach,
while a pure two-phonon description gives very large chi squared
values.

Since the theoretical one-phonon and two-phonon angular
distributions do not differ much in shape, it is not possible to
show clearly with our mixing procedure that the QT state belongs
to the multiplet and that the 4; state has a one-phonon character.
In fig. 4.10 we see that these two states have quite different
angular distributions: the cross section of the hT is much steeper
than that of the h;, while the analysing powers have nearly opposite
phases. We see that for the h; state a relatively small two~phonon
contribution added to the direct contribution gives an excellent fit
for the cross section. The cross section of the h? state, however,
is always fitted badly.

We checked the mixing procedure in CHIMIX by performing exact
calculations with ECIS for some combinations of the mixing parameters.
The differences with the results of CHIMIX were less than 2% for the
cross sections and less than 1% for the analysing powers. The angular
distributions here are of course not independent, since the various
states are coupled indirectly, but these higher order couplings are
only weak. V

So, in conclusion, we have shown that the 2; state indeed is
nearly a pure two~phonon state, while the 27 state is predominantly
a one~phonon state. The excitation of the 4" states seems to have

a more complex character.

4.3.2 sr

The investigation of the nuclide 885r is of interest because it
has a closed neutron shell (N=50). For comparison we also measured
86

" the scattering from = Sr. The quantity of interest here is the value

of the enhancement parameter of the spin-orbit deformation Bso’

defined as:
A= 650/3c

where BC is the deformation parameter of the.central terms.
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Fig., 4.11 Differential cross section and anal%sin% power for
inelastic scattering of protons by 86:888r ai 24.6 Mev
leaving the target in the 2% state.

The curves are calculated with the DWBA, using the BF
optical model pdarometers.

From the literature (Glab7, Swi78, Swi79, Mel82) we know that other

isotopes with N around 50 need an extraordinary large value of X to

describe the analysing power at forward angles of the first 2% state.

Also for other nuclei with one closed shell this anomaly appears in

the scattering of polarized protons in the energy range of 15-25 MeV.

One example is 5l}Fe {Ha177}. The results of our experiment and those
from the literature are compiled .in table 4.9, where we see that A

is energy- and mass-dependent. Also for 922r, which nuclide has no
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Pig., 4.12 Differential cross section and anal§si§% power for
inelastic scattering of protons by Sr at 24.6 MeV
leaving the target in the 37 state.

The curves are calcoulated with the DWBA, using the BF
optical model parameters.

closed neutron shell but a closed shell plus two neutrons, a large
A value is needed at Ep = 20 MeV. For 86’88$r, however, at 24.6 MeV
proton energy we deduced a normal spin-orbit deformation. In fig,
h.11 we see that the description is quite good. At lower energies,
e.g. 17 MeV, possibly a larger enhancement parameter will be needed.
The 3; states of the Sr isotopes are very well described using
normal A values (see fig. 4.12). The deformation parameters are in

agreement with the values from the literature,
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Table 4.9 Ratio of spin-orbit and central deformations
of the 2% state for nuclei around N=50.

3 865, 85 8y B0z, 92z, 9,
{MEV)

20 - - 2.0 3.0 258 59
25 .09 109 - - - -
30 - - - 169 159 59
40 - - - .09 1,09 -

a) L=2 states of Melssen (Mel82).

b) Glashausser (Glab7}.

¢) de Swiniarski {Swi77, Swi78, Swi79).
d} this experiment,

4.3.3 cd

The Cd isotopes have been chosen because they are situated in
the neighbourhood of the Sn isotopes. They are well known examples
of vibrational nuclei, In Cd, however, the proton shell is not closed,
Z2=48, and this results in appreciably lower excitation energies for
the ZT
analysing powers are very well fitted by the DWBA calculations, as

and 3; collective states., The experimental cross sections and

can be seen in figs. 4.13 and 4,14,

For 114Cd the 2* excitation at forward angles was masked too much
by contaminations, so we could not find here a reliable deformation
parameter. Compared with the results of Makofske (Mak68}, in table
4.7, we see that our deformation parameters are systematically a 7%
lower, which can be caused by a different normalization procedure.
Makofske, for instance, had only cross sections for angles larger than
30 degrees. The trends, however, are the same.

The 3; states, shown in fig. k.1h have experimentally more
structure than the theoretical curve, especially for the heavier

isotopes.
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inelastic scattering of protons by 110,112,114¢cq gt 20.4
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The curves are calculated with the DWBA, using the GF

optical model parameters.
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The nuclide ' '2In has been studied already extensively (Smi76,

Smi77)}, but until now no results of scattering of polarized protons

have been published. In first approximation we can consider 115In as

nuclide with a closed proton shell. It has only one 1g 9/2 proton

hole in the Z=50 shell. So the coilective excitations should be

described by the weak~coupling model. The proton hole is coupled to

the collective phonons of the parent nuclide

llﬁsn.

According to the weak-coupling model (see section 3.4.2), we

expect five L=2 and seven L=3 transitions in 115|n, with weighted

5
115, > ;
In(p.p') =
_an®
elab'40 14
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Fig. 4.14a Pulse height spectrum for 118In,
for spin up and spin down,
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Fig. 4.15 Differential cross section and anaigsing power for
inelastic scattering of protons by I51n at 20.4 MeV
leaving the target in the L=2 states.

The curves are calculated with the DWBA, using the
Fiwed geometry optical model parameters of Sn.

mean energies equal to the energies of the corresponding parent states
in H6Sn. The experimental deformation parameters should show a 2J+1
dependence for each final state and their sum should equal the
deformation parameter of the parent state.

As a consequence of the energy resolution of 60 keV we could see
only three L=2 and five L=3 transitions in our spectra. Fig. 4.1kha

115|n. Only two of the five L=3

shows a typical energy spectrum of
transitions had enough statistics to be analysed. Our experimental
results and the DWBA curves are plotted in figs. 4.15 and 4.16 for
the L=2 and L=3 states, respectively. We used here as optical model
parapeters the GF set of Sn, so only the parameter wo was different
from the value for 116Sn. The DWBA calculations describe the L=2 and

L=3 states very well.
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Fig. 4.16 Differential cross section and analysing power for
inelastic scattering of protons by 118In at 20.4 MeV
leaving the target in the L[=3 states.

The curves are calculated with the DWBA using the fixed
fized geometry optical model parameters of Sn.

First we will discuss the results for the quadrupole multiplet,
The total strength of the analysed transitions amounted to be 79% of

the parent 2* strength of 116

Sn, see table 4.10. We see from the peak
fitting of the energy spectrum in fig. 4.14a that the missing strength
of the multiplet based on the 2% state is only small.

Calculations with the weak coupling model for 11Sln have been
carried out by Dietrich (Die70), Covello {(Cov73) and Smits (Smi77).
Due to the mixing, the wave functions of the ground state and the

excited states have the form .

5

I cne 1972 N> W= 0,1,2 (4.1)
NR |

Here we use N quadrupole phonons, coupled to R; coupled to the hole
(1g a/2)*, giving total angular momentum J. The factors CﬁR are the
decomposition factors. Dietrich has given a list of his decomposition
factors, so we will use his results for the calculation of the overlap
of the ground state and an excited state wave function. We multiply

this overlap with 2Jf+1, giving Bf th’ which should be compared with:
*
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Table 4.10 Experimental and theoretical By

values of 115In, L=2.

JT E B, 3

X f,th f,exp 20+
{MeV)
5/2% 1.08 4.0 - 6
t172* 1.14 8.2 - 12
12.2 17.5 18
13727 1.29 9.8 12,4 14
7/72% 1.46 6.1 - 8
9/2% 1.49 1.5 - 10
7.6 9.6 18
29.6 39.5 50
Ex,th. = 1.27 MeV
exp. = 1,27 MeV
parent = 1,29 MeV
a} Calculated with the data of Dietrich
(Die70} for U and 1 phonons.
Table 4.11 Review for_the L=3 E, (Mev) foP 20 +1
states of 115y,
2.13 22.7
2.46 30.2
52.9 70
Weighted average energy (MeV):
X ,parent 1163n = 2,27
exp. = 2.32
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= (B¢ aup/Bparent) (29+1) (2L41) (4.1)

8f,exp parent

Here B is the deformation parameter of ‘]GSn; 2+

. In table 4.10

parent 1 +
we present the results. We see that due to the mixing of the two 9/2
states the strength of the 9/’2+ state at 1.49 MeV is reduced. Apart

from a factor of about 1.3 the trend in B is very well reproduced.

Using the decomposition factors of Smits :ée??nd nearly the same
result,

The energy controid of the L=2 multiplet is only 2% lower than
the excitation energy of the parent state. This small shift can be
caused by the mixing of the states.

tn table 4,11 we give a review of the L=3 data. The total strength
of the analysed octupole states is 76% of the parent strength. But here
some small peaks, which are visible in the energy spectrum, have not
been analysed and so this percentage should be somewhat higher. Since
for the L=3 states no spin assignments are available we cannot check
the 2J+1 rule. We only can say that the largest J values of this
multiplet should be situated around the energies of 2.13 and 2.46 MeV.

The weighted averaged energy is only 3% higher than in the parent
state, which is a satisfactory result,

In conclusion we can say that the weak coupling model describes
the experiment very well. A high resolution experiment with polarized

]15|n. Also the low

protons would be desirable for a further study of
energy single-hole excitations, which are very weak but visible in

our spectra, could be of much interest for a microscopic analysis.

4.3.5 $p

Since tin has a more or less closed proton shell many stable
isotopes are available. This enables us to investigate the influence
of the increasing neutron number on the optical model parameters,
volume integrals and so on. In accordance with our program of
scattering of polarized protons we have chosen the energy of 20.4 Mev,

All curves were calculated with the collective DWBA using our GF
optical model parameters. In all cases the spin~orbit deformation could
be taken equal to the deformation of the central well. From the cross
sections of the ZT states one can see in fig. 4.17 that the minimum
around 120 degrees is described better for the heavier isotopes,

whereas for the 3; stétes, see fig. 4.18, the opposite is true.
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The curves are calculated with the DWBA, using the FG
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So the ZT states of the Sn isotopes show a similar trend as the Ni
isotopes (fig. 4.7) and the Zn isotopes (Hal80).
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For 122,124

spectra. Also here the collective DWBA gives a very good description.

Sn, data for the 5; states could be extracted from the

The results are displayed in fig. 4.19.

In table 4.7 we have compared the extracted deformation parameters
with the values given by Beer (Bee70). Our 2" parameters are about 6%
larger while our 3 deformation parameters are 8% smaller than those
of Beér. The trend of decreasing parameters with increasing mass is
equal, The difference could be caused by a different normalization
procedure and also by different optical model potentials., The optical
model parameters of Beer give, especially for the analyzing powers,
rather bad fits. '

Also the results of the experiment at 24.6 MeV on 1ZOSn are very
well described by the collective theory. The same proton energy has
been used by Beer (Bee70), so we alsc performed a calculation with his
optical model parameters. |t appears that the geometrical part of the
optical model parameter set of Satchler (Saté7), that has been used by

Beer, gives less satisfactory fits than our geometry does, as can be
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Sn at 24.6 MeV

05

-05

seen in fig. 4.20. Also the normalization differs rather much, namely

about 25%. As discussed in section 4.2,2, the deformation parameter

. extracted using this optical potential, is nearly the same as with

the GF potential.

We can conclude from this analysis that the collective model is

very suitable for the description of the cross sections and analysing

powers. It was not needed to enhance the spin-orbit deformation

parameters.
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CHAPTER 5 A MICROSCOPIC ANALYSIS OF INELASTIC SCATTERING FROM

1165 anp 2%,

5.1 Introduction

In this microscopic analysis we use the antisymmetrized distorted
wave formalism as presented in section 3.4. In the previous chapter we
have seen that the collective model can give a very good description
of the experiment. In this chapter we will show and discuss the
results of purely microscopic calculations and of a combination of the
collective and microscopic approach.

The following ingredients are required in order to calculate the
angular distributions (Ger71, Amo76}:

- optical model parameters

- single-particle'binding energies

- bound state single-particle wave functions

- spectroscopic amplitudes for all possible allowed single-particle
transitions

- effective nucleon-nucleon interaction.

The optical model parameters are used to calculate the distorted
waves. We employ the global fit parameter sets (GF), which differ only
in the strength of the imaginary volume potential for the diversé $n
isotopes. These parameters are listed in table 5.1. The differences

in UV are only small, so possible differences in the results between

Table 5.1 Optiecal model parameters for 116Sn and 124Sn,
Global fit.
\/o 54.97 MeV r 1.266 fm
o 1.178 fm a,; 0.695 fm
a0 0.730 fm VSO 5.65 MeV
Vv 1.20 MeV ] Tso 0.970 fm
Wy 8.85 Hev (1I&Sn) ) a, 0.699 fm
or 10.01 Mev (12%sp)
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H6Sn and ‘ZASn cannot be caused by differences in the optical model

parameters.

The single-particle binding energies, as listed in table 5.2,
were derived from the shell model single-particle energies and the
separation energy of the proton or neutron. We obtained the single-
particle energies by interpolating the values for the odd Sn isotopes
as given by Van Gunsteren (Gun7k), while the separation energies were
taken from the Nuclear Data Sheets (Wap71).

The bound state wave functions were generated in Woods-Saxon
wells, from which we varied the depths in order to obtain above~
mentioned binding energies. The geometry parameters of these wells
were chosen equal to the parameters of the real central optical modei
potential (GF),

Table 5.2 Single-particle binding energies (b.e.) and bound state
Woods-Sazon well depths (Vg), both in MeV, for 116,124gy,

A 116 116 124 124
state protons neutrons prOtOnS . neutrons
o b.e. V b.e. V b.e. V b.e. V
ws wSs WS wSs

g 7/2 5.52 70.8 7.70 52.8 8,35 71.6 5.89 47.9
2d 5/2 5.02 65.2 7.32 48.5 7.85 66.9 5.83 L44.8
3s 1/2 4.27 67.6 8.34 52.6 7.10 69.4 7.14 50.1
2d  3/2 3.27 67.4 8.03 353.1 6.10 69.1 7.14 501
1Th 1172 2.75 66,3 7.83 55.2 5.60 67.4 7.16 52.6

if 5/2  11.27 63.5 14,10 97.5
2p 3/2  11.27 60.2 13.10 62.0
2 172 9.27 61.h 12,10 63.2
g 9/2 9.27 62.7 12.10 64,1
s.e.?) 9.27 - 9.57 - 12.10 - §.49 -

a) s.e. is the separation energy in MeV,
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Separate shell model calculations are needed for the evaluation

of the spectroscopic amplitudes,
particle calculations of Allaart (A1179) and Gillet {Qi176).

We used the results of BCS quasi-
Both

authors used an inert N=50 and Z=28& core, so the Z=50 shell of Sn is

open in both analyses. (ontrary to Gillet, Allaart used a projection

method that conserves the number of particles. in tables 5.3, 5.4 and

5.5 the spectroscopic amplitudes of Allaart and Gillet for the

collective 2?, 3; and 5; states are listed, for all possible

transitions in our model,

Table 5.3 Specﬁroac4p

ic amplztuées for the 2%

We derived the spectroscopic amplitudes

gtates

Sn, in 1 comvention.
A 116 116 124 124
Allaart Gillet Allaart Gillet
neutron singlecparticle transitions
g7 - g7? 0.0603  0.0689 0.0704  0.1048
g7 -d5 -0.0191  -0.0113 -0.0160 ~-0.0161
g7 - d3 ~0.3330  -0.3806 -0.2122  -0.2292
d5 - g7 0.0172  0.0153 0.0141  0.0202
d5 - d5 0.0699°  0.0231 0.0595  0.0455
ds - sl -0.2667 -0.2361 -0.1949  -0.1333
d5 - d3 -0.1447  -0.0898 -0.1102  -0.0948
s1 - d5 -0.0929 -0.0617 -0.0653  -0.0681
st - d3 0.3340  0.4361 0.1869  0.2417
d3 - g7 -0.0814  ~0.0820 -0.0605 -0.1149
d3 - d5 0.039%  0.0297 0.0356  0.0380
d3 - si -0.2604  -0.1928 -0.1802  -0.1696
d3 - d3 0.2525 0.1322 0.2047 0.2386
hit - htl (.0846 0.0969 0.4587 0.4319
proton single particle transitions
g9 - g7 -0.0627 -0.046 -0,0868 -0.074
gg - d5 -0.2924 -0.245 -0,289 -0.239

a) g7 is the abbreviation of 1g 7/2 etc.
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of Gillet from his RPA amplitudes X and Y (Gil176), using the

occupation probabilities u and v {(Gi167) of the shell model states.

For different single~particle orbits the spectroscopic amplitude

from state 1 to 2 is:

while for reverse case we

For a transition within the

78

1 > 2:

2 1:

SUpigddgd) = Xqupvy + Yyoupv,

S(j2j1JiJfJ)

]

have:

(-yfriz+d (x

12

T+ 1 s{jjddd) = vz Xy #Yq) uyvy

v, +Y

2*Y12u2v1)

Table 5.4 Spectroscopic amplitudes for the 37 states
of tin in 11 convention.
116 116 124 124

Allaart Gillet Allaart Gillet
neutron single particle transitions
g7 = hil 0.1337  0.2655 0.0980  0.1553
ds - hil -0.6501 -0.6429 -0.3904  -0.4052
hil - g7 -0.0142  -0.1083 -0.0446  -0.1046
h11 - d5 -0.0775  -0.2294 ~0.2015 =0.2200
proton_single particle_transitions
f5 - g7 0.1745  0.266 0.1656 - 0.244
£5 - d5 -0.0630 ~0.131 -0.0629 -0.101
£5 - sl 0.0511  0.125 0.0543  0.098
f5 - d3 -0.0505 -0.129 -0.0505 -0.114
p3 - g7 0.1486  0.1h44 0.1295  0.130
p3 - d5 0.1636  0.245 0.1610  0.180
p3 =~ d3 -0.1269  -0.244 -0.123%  -0.204
pl - g7 -0.4828 . -p.271 -0.4536 -0.255
p d5 0.2758  0.297 0.2782  0.222
g9 0.2103  0.342 0.1950  0.221

hit

(5.1)

(5.2)

same state, i.e. a recoupling, we get:

(5.3)



We learn from these tables that the differences between both
sets are rather small. Because of the number conservation we

preferred the use of the set of Allaart in our further analyses.

For the calculation of the single-particle contributions we need

an effective nucleon-nucleon interaction. In table 5.6 we list some
currently used interactions. Most of our calculations have been
performed using the central effective interaction derived from the
interaction of Hamada and Johnston {(Ham62) (denoted by HJ). This
central effective interaction is an approximation of the long range
part of the even state HJ interaction, using a separation distance
of 1.05 fm. (In the program MEPHISTO this long range part is
approximated by a sum of truncated Yukawa functions). We completed
this central interaction with the non-central tensor and spin-orbit
interactions deduced by Eikemeier and Hackenbroich {(Eik71)
(abbreviated as EH).

In order to get an idea of the influence of the effective
interaction on the angular distributions we performed an additional

calculation for the 2? state of 116

Sn using the phenomenological
central interaction of Austin {Aus79) combined with the tensor
interaction of Sprung {Spr72) and the spin-orbit interaction of

Eikemeier and Hackenbroich (Eik71).

Table 5.5 Spectroscopic amplitudes of the 5; state
of 1243y in i1 convention from Allaart.

neutron transitions proton transitions
g7 =~ hit 0.0656 5 - g7 0.0532
d5 - h11  -0.1330 f5 - d5 -0.0933
sl = hli 0.3086 p3 - g7. 0.1450
d3 - hii -0.2197 g9 - hl 0.0759
hil - g7 -0.299

h1t - d§ -0.0687

h11 - si 0.4752

h1t - d3 0.3509
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Table 5.8 Some effective nucleon—rnucleon interactions.

1. Central =

VSO + VSG M Vte *+ VtO

{a) Hamada-Johnston: the long-range part is approximated by a

e S o e K i e

v
se

te

(b) Austin

< = e
[

]

o =

sum of truncated Yukawa functions Yt’ with

a separation distance rs of 1.05 fm.

11.152 Yt {0.7) + 6.62 Y, (1.4) - 4.81 vt (2.1) +
+ 490 Y, (2.8) - 1477 Y, (3.5) + 2620 Y, {4.2)

1]

33.46 Y, (0.7) +6.35 Y, (1.4) - 68,74 Y, (2.1) +
1516 Yt {(2.8) - 6029 Yt {3.5) + 10611 Yt (h.Z)

+

- 2.7 Y (1.0)
- 82.30 Y (1.0)
- 97.10 Y (1.0)

10.3 Y (1:0)

- 326 (1.7)
86 (1.7)

- 32 6 (2.02)
8 ¢ (2.02)
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2
2. Tensor = (Vte + Vto) r S]2

- - " - -7 " - - -

- 105.3 G (0.960)

1.95 G {2.034)

[

te
to = 17.92 G (1.146) + 2.31 G (1.383) + 0.38 G (2.234)
(b) Sprung
'Vte = ~ 802.16 G (0.50) - 104.4 6 (0.95) - 2,71 6 (1.70) +
- 0.18 G (2.85) - 0.001 G (5.00)
Vto = 145,24 G (0.50) + 24,28 G {06.95) + 1.13 6 (1.70}) +

+ 0.046 6 (2.85) + 0.0004 G (5.00)

. . >,
3. Spin=orbit = (vte + Vto) £.g

- - - "

Ve = 21396 (0.747)
to = " 282.4 6 (0.765) - 5.18 & (1.021)
(b) Sprung
e = 883.72 G (0.5) - 116,40 6 (0.95) + 0.51 6 (1.70) +
+  0.017 G (2.85)
Vie =~ 1412 6 {0.5) + 56.95¢G (0.95) - 0.69 G (1.70) -

+  0.01h G (2.85)

Y is the Yukawa function: Y{(x)

exp (-r/x) (r/x)

Yt is the truncated Y : Yt(x) = Y(x) for xr
Yt(x) =0 for x<r
G is the Gauss function : G(x) = exp((r/x)z)
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and total microscopic interaction.
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5.2 Purely microscopic calculations

Disposing of the above ingredients we calculated for all allowed
single-particle transitions {(proton and neutron transitions) in our
model the central, tensor and spin-orbit transition amplitudes. The
direct and the exchange contributions were calculated separately. So
for each single-particle transition six transition amplitudes were
calculated. We used hereto the program MEPHISTO of Von Geramb (Ger73).
All these transition amplitudes must be summed using the spectroscopic
amplitudes as weight factors (see chapter 3). Then the cross sections
and analysing powers can be calculated. There are several combinations
possible of the various transition amplitudes:

- First we may sum all central, all tensor and all spin-orbit
contributions to get three transition amplitudes.

- Ancther possibility is to sum all direct (D) and all exchange (E)
contributions to two transition amplitudes.

- Finally we can construct a proton (P} and a neutron (N} transition
amplitude.

This feature enabled us to investigate the importance of these various

components.

5.2.1 Effects of non-central forces

First of all we compare the cenfra], tensor and spin-orbit
contributions to the cross section and analysing power. The sum of
these three contributions is often called the valence contribution.
The central contribution is, as expected, much larger than the non-
central contributions, e.g. for a 2% transition a factor of 400. So
for the cross section the non-central interactions are of minor
importance. As can be seen from figs. 5.1a and 5.1b the non-central
parts have about the same magnitude.

For the analysing power, however, the differénces between the
curves of the central and valence interaction are not unimportant,
especially for the 3" states. See figs. 5.1a and 5.1b, where we show
the various contributions to the valence cross section and analysing

power .
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In the program MEPHISTO the exchange distribution was calculated
to full extent. We find that the importance of the exchange
contributions increases with increasing L-values. The ratios of the D
and E cross sections are 3.5, 2 and 1 for L = 2, 3 and 5, respectively.
For the excitation of the S; state in 12I*Sn the exchange contribution
in the proton transitions is even somewhat larger than the direct
part.

It turns out that the cross section of the total contribution
(D+E} is about a factor of two till three larger than the cross
section of the direct contribution only, while the shapes are nearly
M6sn. This

effect for the cross section has also been found by Terrien (Ter73).

the same as can be seen in fig. 5.2 for the ZT state of

Also for the analysing powers the differences between D and (D+E)
curves are small, except for 5; states which show some differences.
So the increase of cross section by adding the exchange contributions
is the most important point here, the shape of the curves is not
changed essentially. In our calculations in the next sections we

always use the total microscopic contribution.

5.2.3 Proton and neutron contributions

The neutron contribution (N) is always larger than the proton
contribution (P), as can be expected for nuclei with a closed proton
shell. For the ZT
factor of 100 larger, for the 3; states a factor of about 4. This

and 5; states the neutron contribution is about a

stems from two facts. In the first place the proton-neutron interaction
is a factor of 2 stronger than the neutron-neutron interaction. In
addition less proton than neutron contributions are possible (see
tables 5,3, 5.4 and 5.5). In figs. 5.3a and 5.3b we display the proton,
neutron and valence contributions for ‘16$n, ZT and 3;. We see for the
,3; state that the shapes of the total and N cross sections are nearly
equal but that the analysing powers differ. So, though the proton
contribution is not so large, it influences the analysing power
substantially.

The valence microscopic transition amplitudes give cross sections
that are much smaller than the experimental cross sections, For

example a factor of 3, 19 and 12 lower for the ZT, 3; and 5; states

85



10

do 04
daq

{mb/sr)

0.0

05
A@Q) O

-85

T T TTIiIm

T TTiTT

LN N L S A N N R R

Mbgp, 2* ;
P+N ]
———.P -

NPPPN N

ool

Lol

=\ -E
C \ 3
L N\ N
N ]
/
» \,.\ /
\\M/

TN T OO0 O O O Y T S O )
(T T T T T 7T 1: T T
_.1 MR NN EREEEEY

30 60 90 120 %0
Je.m.

D1

do

daQ
{mb/s

AlB)

f
0.01

0.001

0.5

0

-0.5

ll.|llj!l!l{llllll

M6gn 3-
—P+N

-——-P

..N

T TTH

poetranl

4 l]EIll’

i{\‘-\”"-.
- L
,/; \ e
L. A _
- N\ ]
» \\ .
L \\}/'\Z
- ‘-«
- ‘..
\
L
[N BN O BN U O Y A BT A B 0 |
;I‘.t TVrr 1 roeoyrrTyTg
o
NEEETE NN TR
30 60 90 120 10
Je.m.

Figs. 5.8a and 6.3b Proton (P) and neutron (N} contributions
to the total (P+N) angular distributions.

86



‘0‘_ T ¥ EH ¥ H E ) H ] H H H T 1 1 T ] T T | T T [ T ¥ l ¥ T 1 T T | H Ll
- . 16gn(B.p") 1L ]
F 20.4MeV 1 L i
i . 21 (1.29) 1L 4
i 1-0 1k 05
do ) oy J\ ]
m ta = ok 4 1] A
(mbsr) £ 1IN, \*/ i
E 1k Py 44 ¢ -
: . :- —-05
I Sel T t j
Ol | R N NN R I m [ |v TS T RN YO NN T PO Y ST W A -
: 30 60 90 120 150 30 60 90 120 150

ac.m. &c.m.

Fig. 5.4a Fit to the experimental cross section and analysing power
of 116sn, 2%,
An imaginary contribution is wot included (I=0).
The enhancement parameters are L,~1.0 and A,=3.5,

14
10_‘ Ty T v T TTTTTTT T 1 T b EETTTTTTTTTTTTTTT
r 16505, 10 i
- 20 4MeV 1 ; 1
. 37 227 4L L
= . I=0 - - L) - 0.5
L .
I + o
do P WA A TN
—_—= *
[:1¢] 1 4 0 A
{mb/sn) - ¥ Vi
i byl
L + .
- Yo Jos
04t N K TN 000N SRS UK SN S NS N0 JOOW SN B Y F IR TONNS JUUNE DU TUUN WS TUNY N MUY R SN A T T A c—
: 30 60 S0 120 150 30 80 90 120 150
<.m. Yem.

Fig. 5.4b Fit to the experimental cross section and analysing power
of 116sn, 37.
An imaginary contribution e not ineluded (I=0).
The enhancement parameters are Ap=5.8 and h,=1.6.

87



of 12I‘Sn, respectively. Also the shapes of these theoretical curves

do not fit well the experimental angular distributions. The reduced
transition probabilities B{EL) calculated with the microscopic model,
are also much smaller, at least a factor of two, than the experimental
values {see section 5.2.4).

So we conclude here that the purely microscopic calculation
cannot describe the inelastic scattering from the collective states,
though we have used all possible single~particle transitions in our
model. Oftenly in these cases the effective charges of the protons
and neutrons, ep and e, are adjusted in order to fit the height of
the cross section. The enhancement factors for the transition
amplitudes are namely A = ep and Ay = en+1. In this way it is
possible to fit the height of the cross section as can be seen in
figs. 5.4a and 5.4b. Here, for 1165n’ 27, the values of A_ and
are 1.0 and 2.5, respectively, and for 1‘6$n, 3;: 5.8 and 1.,6. We
see, however, from the figure that the cross section lacks structure.
This is originated by the fact that no imaginary interaction has been
included. It is nowadays well known that the effective nucleon-nucleon
interaction has such a component. From theoretical calculations
{Bri78) and from the collective model it is known that the imaginary
form factor has the effect of giving structure to the cross section.
Following the somewhat 'frivolous' model of Satchler (Saté7), we have
simulated this effect, in section 5.3, by adding the collective

imaginary form factor to the microscopic one.

5.2.4 Reduced transition probabilities

S o o o= - " oo~ -

Together with the transition amplitudes we calculated the
microscopic contributions to the reduced transition probabilities
B(EL), according to the formulae given in section 3.7. In table 5.6b
we compare the theoretical values with the experimental results from
Coulomb excitation experiments (A1k65, Ste70). We see that the pure
‘microscopic values with effective charges for the protons of 1 and
of the neutrons of 0, give transition probabilities that are a factor
of 14 to 90 too low. With effective charges of 1.5 and 0.5,
respectively, the discrepancy is reduced to a factor of about 4.

Compared to the Allaart amplitudes, the Gillet set leads to
somewhat lower B(E2) values, but the B{E3) values are a little larger.
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When we generate the bound state wave functions in a harmonic
oscillator well instead of a Woods-Saxon well, the theoretical
transition probabilities increase. Depending on the harmonic
oscillator parameters this increase can be considerable. The harmonic
oscillator shape used by Allaart, combined with effective charges of
e =1,5 and en=ﬂ.5, gives B(E2) values which are only a factor of 1.5
too low, while the B{E3) values are nearly equal to the experimental
values.

In eq. 3.15 we gave the formula for the calculation of the
collective transition probability. This approach, where we use our
experimental deformation parameters from the DWBA, gives too high
values for the B(E2). The B(E3) values compare rather well with the
experiments.

So the low values of the pure microscopic transition
probabilities show the need for relatively large effective charges
and/or the inclusion of collective contributions. In our analysis

in the next section we come back to this point.

5.3 Calculations including core polarization

We have seen that the pure microscopic calculations cannot
describe the experimental data satisfactorily. When the collective
imaginary interaction is added the structure of the cross section is
described much better, but the experimental height is not reached yet.
The core polarization should be taken into account in order to fit
this height. There are two approaches possible for including core
polarization effects in the microscopic calculations. In both cases
the imaginary collective transition amplitude is added to the
microscopic one,

in the first approach the proton (P) and neutron (N)

contributions are enhanced. The total transition amplitude is then:

T = Apr + AnTn + TI (5.4)
Here Ap and An are the proton and neutron enhancement parameters of
the microscopic P and N transition amplitudes. In T‘, which is the

collective imaginary transition amplitude, the {DWBA) deformation

parameter is incorporated., The transition probability is:
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Table 6.7a Reduced transition probabilities B(EL,(0+L)
for 16,1245,

state ZT 31 51
units (ezfmh) (103 ezfm6) (IO6 ezfm]o)
A 16 124 116 124 124

gs?) sP) e, A B(E2) B(E2)  B(E3) B(E3)  B(E5)
WS Al 1.0 0.0 O 2 26 18 16 2
ws Al 0.0 1.0 0 1069 1332 12 9 58
WS Al 1.5 0.5 O 563 672 66 57 32
WS Gil 1.5 0.5 0 W8 635 90 63 -
HO Al 1.5 0.5 0 777 913 114 184 84
Hoa AIl 1.5 0.5 0 1246 1431 232 198 273
WS AIl 1.0 0.0 1 372 233 163 131 14
Ws Al APC) 2,19 0 1659 1069 495 156 73
WS AIl 1.0 0.0 Acd) 181 122 119 95 14
collect.®) - - - 46k9 2642 260 162 250
exper. - - - 21607 16107 22090 2009 -

a) BS = bound state wave function:

WS = Woods-Saxon well,
HO = Harmonic oscillator with energy of 8.3 Mev,
HOa = HO used by Allaart, energy is 6.62 MeV.
b) S = spectroscopic amplitudes:
All = set of Allaart,
Gil = set of Gillet,

c) Fit EC, see table 5.8.

d) Fit CP, see table 5.8.

e) Calculated with the collective model, using the deformation
parameters from table 4.7,

f) Experimental values of Stelson {Ste70), relative error 25%.

"g) Experimental values of Alkhazov {Alk65), relative errors 40%.
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B(EL) = (epD + enonv)2 \ {5.5)

pv
where Dpv and Dnv are the proton and neutron microscopic contributions
(see section 3.7).

In this approach both the protons and neutrons have an effective
charge: e =2 and e = A -1, The two parameters A_and A_ can be

p p n n p n

varied in order to fit the cross section, analysing power and the
transition probability simultaneously, We call this method the
Yeffective charge method', denoted by EC.

Terrien (Ter73) followed a somewhat different procedure. He took
e =0and A_=e_ where e is calculated from:
n p p P

- 3
e, = (Sexp(EL}) xapv (5.6)

So in his analysis ep followed directly from the experimental
transitiog probability. Now An is the only parameter left to fit the
experimental cross section. We will call this method the ''proton
charge method' and denote it by PC.

In the second approach the complete core plays a role. We can say
say that the whole nuclear core is excited and deexcited during the
scattering process, so the core will be polarized. Following the
prescription of Love and Satchler (Lov67, Ger73), a part of the
complete (real plus imaginary) collective transition amplitudes is
added to the microscopic one, The relative strength of this addition
is the core coupling parameter Y- The microscopic part remains fixed

(Ap=1 and An=1). In this case the total transition amplitude is:

T = Tp + Tn + A‘T‘ + ACTC (5.9)

In the terms TC and TI’ the real and imaginary transition amplitudes,
the collective deformation parameter is incorporated. Since the
collective and core form factors are proportional (see section 3.6),
we can take instead of the transition amplitudes of the core those of
the collective model, We do this since in the collective DWBA code of
Verhaar the full Thomas spin~orbit form factor is incorporated, while
in the program MEPHISTO ancther type is used. The transition
probability Is now

B(EL) = (0, + A0} ) (5.8)
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Table 5.7b A L v
Core coupling coefficients y -3 -1
Ffound in the CP fits. L (1077 Mev™)

116 2 1.04
3 1.03
124 2 0.70
3 0.86
5 0.95

Since here the effective charge of the protons is 1 and of the
neutrons B. Also the transition probabilities calculated with the
{pure) core and collective model are the same which gives us the
following equation for D;c:

. = 3
o B (BcolI(EL’Req'Rc))

D c
P D
pc

(5.9)

+ D
nc

We use here eq. 3.15 for the calculation of Bco]](EL) and D__ is
defined in a similar way for the neutrons as Dpc for the protons
{eq. (3.18)).

' Also here two methods are possible. In the first approach we take
Alec, s0 A! is less than 1. In the second method we take k‘=l, like
in the EC and CP methods, and treat Ac as a parameter. These methods
we will call the core polarization (CP) and the corrected core
polarization {CCP) method, respectively.

Before starting with the fitting procedures we will compare the
cross sections of the microscopic valence, the imaginary collective
and real collective interactions. We see from figs. 5.5a and 5.5b that

for ]163n, ZT the cross sections are of the same order of magnitude

but that for the 3; state of 116Sn the imaginary cross section is
about a factor of 5 larger. In both cases the imaginary curve shows
large oscillations, in other words it will be responsible for the
structure in the curves.

The real collective cross section is almost a factor of three
higher than the imaginary one. So inclusion of a small part of this

contribution will have a large effect on the angular distributions.
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Table 5.8 Results of the microscopic analysis

with four types of calceulations:
EC = effective charge,

PC = proton charge,

CP = core polarization,
CCP = corrected core polarization.

2 2 c)

A L type Ap A, A, A Xg X B(EL)

116 2 EC  1.02 2.11  1.00 0.00 4533 1058 1659
PC  9.43 1.00 1.00 0.00 8673 2686 2160

CP 1.00 1.00 0.59 0.59 1583 426 181

ccP 1.00 1.00 1.00 0.44% 2809 - 387 128

116 3 EC 4.8 1.50 1.00 0.00 1933 646 495516
PC 3.52 2.37 1.00 0.00 2351  Lb6  220000°

CP 1.00 1.00 0.78 0.78 407 k27 119163

CCP 1.00 1.00 1.00 0.69 490 315 101907

126 2 EC 1.00 1.76 1.00 0.00 1688 755 1069
PC  7.85 1.00 1.00 0.00 5945 1795 1610%)

cP 1,00 1.00 0.59 0.59 570 500 122

CCP 1.00  1.00 1.00 0.43 936 380 90

126 3 EC  1.28 3.41 1.00 0.00 3915 1054 156616
PC 3.54 1.76 1.00 0.00 277% 2269  200000°

CP 1.00 1.00 0.77 0.77 549 581 95235

CCP 1.00 1.00 1.00 ©0.62 1154 450 73888
126 5 Ec 1.82 1.82 1.00 0.00 27608 813  7.29x10’
CP 1.00 1.00 0.99 0.99 1410 181 1.hkx107
CCP 1.00 1.00 1.00 1.00 4117 178  1.hsxi0/

a) Experimental values of Stelson (Ste70).

b) Experimental values of Alkhazov (Alk65).

¢) Units: ezfmzL.
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Fig. 5.6a EC, PC and CP fits to_the experimental cross sections and
analysing powers of 116,124y, 2;.

6 124

For the 27

1
of 12!+Sn we have fitted the experimental data using above four

and 3; states of 1 Sn and Sn and for the S; state
methods. The results are compiled in table 5.8 and plotted in figs.
S5.6a, 5.6b and 5.6c. We know already from the collective analyses of
these data that the collective model gives good fits. Since in the CP
and CCP methods a rather large part of the collective amplitude is
admixed also here the results are quite good. The differences between
the CP and CCP methods are only small and not essential.

In general the EC and PC fits are also satisfactory, though not
as good as the CP and CCP fits. For the 2" states we can see some
differences between the curves of the EC and PC methods, Here the EC

approach gives better fits, especially regarding the analysing powers.
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Pig. 5.6b EC, PC and CP fits in_the experimental cross sections and
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The chi squared values are remarkably lower for the EC method. This
effect is caused by the fact that the microscopic contribution to the
transition probability, Dpv’ for the 2? is very small, so the
calculated effective charge ep is unrealistically high., Due to this
large value of ep, and consequently of Ap’ the fit to the analysing
. power is spoiled,

The EC fit for the 5] state of '2'Sn is rather bad. The PC
method was not possible here because of the lack of experimental B{(EL)
values. The core polarisation methods give good results so the real
collective term is very important at higher L values, while the

microscopic approach is incapable to describe the experimental data.
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Fig. 5.8¢ EC and CP fits to the experimental cross section and
analysing power of 1245n, 5}.

Using the EC method we have analysed some states with the
spectroscopic amplitudes of Gillet. We see from table 5.9 that the
chi squared values of these fits are somewhat larger than those of
the fits with the set of Allaart; For the eye there is hardly any
difference between these two of fits.

We have already seen that the microscopic central interaction
gives much larger cross sections than the non-central parts. We have
performed some fits wherein we used the central instead of the valence
interaction. The imaginary collective interaction was always included,
using method EC. In nearly all cases the analysing power was fitted
better with the valence (total) interaction than with the central
interaction. For the cross sections, however, the opposite is true,
The same result was found with the interaction of Austin etc. instead
of the interaction of HJ etc. In general the differences between the
valence and central fits are small, as can be seen in fig. 5.7 for
16, 2.

For the ZT state of ]163n we also performed calculations with the
central nucleon-nucleon interaction of Austin, completed with the
tensor interaction of Sprung and the spin-orbit interaction of
Eikemeier-Hackenbroich. The results of the variation process with
different methods are presented in table 5,10, where we see that for

the analysing power the results with the interactions of Austin etc.
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Table 5.9 Comparison of the fits with the spectroscopic
amplitudes 5 of Allaart and Gillet, using the
effective charge method (EC, hy=1, A\z=0).

A L, S Ap A, Xy Xa 8(EL)
116 2 Allaart 1.02 2.1 4533 1058 1659
Gillet 1.00 2.31 4656 790 1883
116 3 Allaart 4,86 1.50 1933 646 495516
Gillet 3.48 1.67 2371 806 419304
Table 5.10 Fits for 118sn, 2% using the effective
charge method (EC, Ar=l, Ao,=0} and various
nucleon~nucleon interactions.
N-N interaction
central tensor s-o by A xz xz B(EL)
P n 5} A
part part part
HJ EH EH 1.02 2.1 4533 1058 1659
HJ 0 0 3.25 1.93 3348 1637 2137
Austin  Sprung EH 2.67 1.57 4277 1032 999
Austin 0 0 3.83 1.51 3290 1320 1253

Table 5.11 The strengths of the central, tensor and spin-orbit
parte of the microscopic interaction varied.
The imaginary collective interaction 1s tncluded.

N-N interaction’

2
Xa central tensor s-o
part part part

cen ten 5-0

116 2 1.64  0.00  0.00 3571 1203 Austin Sprung EH

2.02 0.00 0.00 3499 1525 HJ EH EH
116 3 2.95 1.12 6.52. 1796 530 HJ EH EH
124 2 0.47 3.48 1.h41 668 354 HJ EH EH
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better than those with the interactions of Austin etc. In most cases
also the cross section is fitted better using HJ etc. When we compare
the central interactions only, the results remain the same.

We remark further that the strengths of the neutron transition
amplitude Xn are smaller for the interaction of Austin, The proton
contribution for the ZT state in only weak, so it'can be neglected
for the moment. S0 we see here that the HJ interaction is weaker than
the Austin interaction, by a factor of about 1.5, The same factor was
found by Alons (Alo80). In fig. 5.8 we have plotted some curves for
both types of interactions.

In our program CHIMIX it is possible to take complex numbers for the
parameters Ap’ Xn etc. So we performed some fits without collective
contributions compensating this with an extra free parameter, namely
the phase of Ap. The resulting cross sections, however, were nearly
the same as with a‘real parameter xp: the structure was too flat. So
in our model it is not possible to construct in a microscopic way
transition amplitudes that can describe the cross section
satisfactorily.

The essential property of the used imaginary term is that the
form factor is peaked just outside the nuclear surface. This cannot
be simulated by varying the parameters Ap and An.

The strengths of the nucleon-nucleon interactions used (see
table 5.1) have been deduced by the various authors (HJ, Austin, etc.)
by means of fitting procedures. Here we show the results of the
variation of the strengths of the central, tensor and spin-orbit parts
of the nucleon~nucleon interactions. As in all previous procedures
also here the imaginary collective contribution has been added to the
microscopic transition amplitudes. In this case we have three free
parameters, i.e. one more than in the EC procedure. So a lower chi
squared value can be expected. From the results, listed in table 5,11,
we see that for Iiésn, 2T the tensor and spin-orbit parameters have
become zero and that the central enhancement is about equal to the
value of Ay in table 5.8 (Tp is small here}. The cross sections are
fitted better but the analysing powers worse. The similar effect was

found already when we varied the central parts only. The fit of 116$n,

3; is comparable with the fit with the EC method, but for 1MSn, ZT
a different result is found, see fig. 5.9. So we can conclude that the

variation of the individual strengths gives us no new information. No
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power of 116sn, 2%, using the mucleon-nucleon interactions

of HJ and Austin. In both cases the collective imaginary
interaction ig included.

100



AT T T T T T T T T T T T T T T T T T T Y
2bgn (8,1 1t 4
20.4MeV 4 F &
+ = .
27(L14) N Jos
e can,tzn,sn_ B |
: e 7 F AN
e 4 Y -
do - 1+ : A
o2 - . v N, 7 \’\* 1"1‘ ;'/ 0 A
(mb/sr) 1 L= \//w ; " | /
o \J ? { ,_*I
L 4 kL i i
B A\ t/]
= v -~ ~05
0.3 - e
C o .
- T ;
PR TR A NS W AN A SO DU WO TR JUU VO SO SO O {1 SRR T S SR N TR NN VO T SN T N RN
30 60 90 120 150 30
Yem e,

Pig. 5.9 EC fit and a fit wherein the separate atrengths of the
central (of HJ}, tensor (of EH} and spin-orbit {of EH)
parts of the microscopic interaction are varied. In
both cases the collective itmaginary interaction 1s
ineluded.

definite trend can be found, except that the non-central interactions
are impertant for the fit of the analysing powers. Also when we use
the interaction of Austin the same result was found. So in this way
it is not possible to deduce the individual strengths of the various

parts of the nucleon-nucleon interaction.
Conclusions

In this microscopic analysis we have shown that an imaginary
interaction is needed to get a reasonable fit to the cross sections.
When the neutrons have no effective charge, then the effective charge
for the protons is calculated too high for the ZT states, which
disturbs the analysing powers. For the high L values, only the core
polarization methods give a reasonable description., The influence of
different nucleon-nucleon interactions or spectroscopic amplitudes is

in general rather small.
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SAMENVATT ING

Experimenten waarbij gepolariseerde protonen verstrooid worden
aan atoomkernen zijn een belangrijk middel om de reactietheorie en het
gebruikte kernmodel te testen. Twee gangbare modellen zijn daarvoor
genomen, namelijk het collectieve model, waarbij de kern als &én
geheel wordt beschouwd en het microscopische of schillen-model waarbij
ook rekening gehouden wordt met de nucleonen in de kern, Als de pro-
tonen gepolariseerd zijn, kan naast de differenti&le werkzame door-
snede ook het analyserend vermogen bepaald worden. Deze grootheid is
in sommige gevallen gevoeliger voor bepaalde parameters van reactie-
theorie en kernmodel,

We hebben de volgende kernen bestudeerd met een energie €, =
20.4 MeV van de opvallende protonen 60’64Ni {2=28), H0’”2’”ECd
(z=48), ""31n (z=hg), 1161118:120,122,928 (5 50y en met 24.6 Mev:
865r (N=48), 885r {(N=50). en 1205, {Z=50). Hierbij hebben we gebruik
gemaakt van de gepolariseerde protonenbundel van de THE, met de bij-
behorende meetopstelling {hoofdstuk 2). Van de elastische en inelastische
verstrooiing hebben we de hoekverdelingen gemeten van de doorsnedes en
de analyserende vermogens van 20-165 graden. De keuze van de energie
van de protonen had de volgende redenen:

- Er is dan bijna geen compound-kernverstrooiing zodat de directe-
reactietheorie kan worden toegepast,

- De beschikbare apparatuur, met name het cyclotron.

- Vergelijking met gegevens uit de literatuur,

- De grote positieve waarde van het analyserend vermogen van de eerste
2*

schil. Dit analyserend vermogen kon slechts ‘beschreven' worden door

toestand, gevonden bij kernen met een (bijna) gesloten neutronen-

de verhouding A van de spin-baan en de centrale deformatieparameters

te vergroten van 1 {normaal)} naar 2 (bij/Ep = 20 MeV) of 3 (bi]

E, = 17 MeV). Dit geldt bijvoorbeeld voor Shre (N=28).
Dit laatste punt houdt ook verband met de keuze van de bestudeerde
kernen, die op de Sr-isotopen na alle een (bijna) gesloten protonen-
schil hebben, om ook hiervoor de waarde van XA te bepalen. Verder zijn
deze kernen gekozen omdat ze even-even zijn (behalve 1151n), middel-

zwaar en verkrijgbaar in de vorm van geschikte targets {(dunne folies).
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Vaak hebben we een serie isotopen genomen om het verlcop van para-
meters met het massagetal te onderzoeken.

De elastische verstrooiing hebben we geanalyseerd met het stan-
daard optisch model (eerste deel van hoofdstuk 4). De experimentele
hoekverdelingen worden zeer goed beschreven. Doordat nu doorsnedes en
analyserende vermogens aangepast moeten worden, zijn de optische
modelparameters goed bepaald. De overeenstemming met parametersets uit
de literatuur is zeer bevredigend. Voor de analyse van de inelastische
verstrooiing volgens het collectieve model hebben we de gebruikeli jke
vervormde-golf Born-benadering (DWBA), of in een enkel geval de
gekoppelde kanalen (CC) methode toegepast {(tweede deel van hoofdstuk
4). De parameters in dit model zijn de deformatieparameters die ge-
vonden worden door aanpassing van de theoretische curves aan de
experimentele hoekverdelingen. Ook hier is de beschrijving van de
experimenten in het algemeen heel goed te noemen. De door ons gevonden
spin-baan deformatieparameters blijken echter normale waarden (An1)
te hebben. Dus voor kernen met een gesloten protonenschil treedt
bovengenoemd effect niet op. Hetzelfde geldt voor de Sr-isotopen omdat
daar de energie al vrij hoog is (Ep = 24,6 MeV). De gevonden deformatie-
parameters zijn in goede overeenstemming met gegevens uit de literatuur.

Enkele gevallen willen we nog nader bespreken. De doorsnede van
de 2*-toestand van 60ﬂi kon niet zo goed beschreven worden met de DWBA,
Het bleek namelijk dat bij normering van de theoretische curve op de
voorwaartse hoeken deze curve achterwaarts veel hoger lag dan de
experimentele doorsnedes. Een CC berekening gaf een betere beschrijving,
echter nog niet voldoende om dit verschijnsel te verklaren, Voor het-
zelfde isotoop hebben we ook enige hoger-aangeslagen toestanden met de
CC-theorie geanalyseerd. Door de verhouding van &&n- en twee-phonon
bijdragen te varieren konden we voor enkele van de toestanden de
structuur bepalen, 115|n is de enige kern met een oneven massagetal
die we bestudeerd hebben. Volgens het z.qg. weak=-coupling model kunnen

_we deze kern beschouwen als een 1163n-kern met een gat in de protonen~
schil. De collectieve aangeslagen toestanden zijn dan opgesplitst maar
moef?g nog wel dezelfde structuur vertonen als de ‘parent’-toestanden

in Sn. We hebben dit inderdaad heel duidelijk gevonden en de
deformatieparameters van het L=2 multiplet stemmen goed overeen met

weak~-coupling berekeningen.
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We hebben de inelastische verstrooiing aan de ZT, 3; en 5; toe~

116 12!*Sn ook met behulp van het microscopische model

standen van Sn en
geanalyseerd (hoofdstuk 5), In de literatuur zijn al enkele van der-
gelijke analyses gepubliceerd, maar experimentele analyserende vermogens
waren toen niet beschikbaar. Verder zijn er aan Sn, vanwege de min of
meer gesloten protonenschil, veel schillenmodelberekeningen (BCS)
gedaan, zodat de benodigde spectroscopische amplitudes beschikbaar
waren. De zuiver microscopische berekeningen, met de antisymmetrische
DWBA, geven echter doorsnedes die veel te laag zijn en te vlak van
structuur. Bovendien zijn de electromagnetische overgangswaarschijnlijk-
heden B(EL) te laag. Dat de doorsnede te vlak is, wordt veroorzaakt door
het ontbreken van een imaginaire term in de gebruikte effectieve
nucleon-nucleon wisselwerking. Toevoeging van zo'n term is dan ook
noodzakelijk en we hebben daarvoor de collectieve imaginaire interactie
genomen, volgens het enigszins 'frivole' model van Satchler. De ver-
onderstelling dat de nucleonen in de binnenschillen geen bijdrage
leveren is niet zo realistisch., Daarom hebben we deze 'core polarisatie’
(CP) bijdragen in rekening gebracht teneinde het probleem van de te
tage doorsnedes te kunnen oplossen. De CP kunnen we op twee manieren
in rekening brengen n.l. door de effectieve ladingen van de protonen
en neutronen te vergroten of door een redle collectieve term toe te
voegen aan de microscopische en imaginaire wisselwerkingen. Op deze
manieren konden de experimentele hoekverdelingen vrij goed beschreven
worden, zij het nog niet zo goed als met het collectieve model mogelijk
is. Voor de methode van de effectieve ladingen hebben we naast de
bestaande procedure een variant ontwikkeld, die voor de 2% toestanden
een beter resultaat geeft voor de analyserende vermogens. Het toevoegen
van een deel van de re&le collectieve term heeft tot gevolg dat het
uiteindelijk resultaat veel op de collectieve aanpassing gaat 1ijken
vanwege de sterke invloed van deze term, Vooral voor de L=5 toestand
is dit heel duidelijk. De methode van de effectieve ladingen geeft hier
een slecht resultaat. Het zou interessant zijn te proberen voor de
collectieve termen microscopische equivalenten te vinden,

Concluderend kunnen we zeggen dat deze experimenten een goede test
van de reactietheorie en de kernmodellen vormen, waarbij de analyserende

vermogens een belangrijke rol spelen.

108



110



NAWOORD

Hierbij wil ik alle mensen, die aan de experimenten en aan de
totstandkoming van dit proefschrift hebben bijgedragen, hartelijk
bedanken.

Binnen de werkgroep 'experimentele kernfysica' van de THE zijn
dit prof. Poppema en Piet van Hall, die het schrijven van het proef-
schrift begeleid hebben. De gehele meetopsteliing is door de groep,
een ieder op zijn vakgebied, opgebouwd, De experimenten werden door
de groep als geheel uitgevoerd, tijdens de zogenaamde meetweken, In
de loop der jaren hebben de volgende personen hun bijdrage geleverd:
de fysici: prof. Poppema, Piet van Hall, Sieb Klein en Gerard Nijgh,
de ‘collega~promovendi': Frank Dautzenberg, Jos Melssen en Jan Polane,
de technici: Jan van den Berg, Leo de Folter, Wim Gudden en Harm
Rozema (die ook targets gemaakt heeft in het KVi te Groningen), de
electronici: Gerard Hamers, Rob Janson en Peter Teunisse en de
computerdeskundige Adri de Raaf. Fred van Nijmweegen heeft ons ge-
holpen o.a. met de scalers en het Eurcbussysteem,

Zonder een goed werkend cyclotron zouden de experimenten uiteraard
niet mogelijk zijn geweest, waarvoor dank aan de bedrijfsgroep, o.a.
Wim van Genderen, Frits van Hirtum, Adri Platje, Marinus Queens,
Carel Soethout en Wim Veréeijden,

Er is, zoals gebruikelijkﬁbij dit soort onderzoek, zeer veel
rekenwerk verricht op de computer. De service verleend op het Reken-
centrum, waar de operators heel wat computeruitvoer voor ons hebben
verwerkt, heeft veel bijgedragen aan het resultaat.

De volgende personen van de Vrije Universiteit te Amsterdam ben
ik erkentelijk voor hun hulp. Klaas Allaart voor de spectroscopische
amplitudes van tin, Peter Alons voor de berekeningen met ECIS,

Henk Blok voor de programmas POESPAS en MEPHISTO en Jan van Hienen
voor de informatie over de B(EL)'s. '

De vele tekeningen zijn door Ruth Gruyters keurig verzorgd.
Verder hebben Marijke Schilstra en Aafje de Wit tabellen getypt.
Rian Teurlings heeft op voortreffelijke wijze het manuscript getypt
en de lay-out verzorgd.

Voor zijn medewerking om het proefschrift af te ronden, ben ik
Michael Rethans, chef van de afdeling SWP van Nixdorf Computer,

erkentelijk.

111



LEVENSLOOP

25 december 1949  geboren te Leeuwarden,

daarna opgegroeid in Berlikum (Fr).

april 1955- Chr, Nat, School te Berlikum,
juli 1961
Juli 1965 nmulodiploma B, aan de Chr. Nat. School,

de 'Slotschool’ te St. Annaparochie.

juli 1967 getuigschrift Hogereburgerschool B,
aan de Chr. H.B.S. en M,M.5. te Leeuwarden.

augustus 1974  doctoraal examen natuurkunde, experimentele

kernfysica, aan de Vrije Universiteit te

Amsterdam,
april 1975~ wetenschappelijk medewerker in dienst van
juli 1980 de stichting F.0.M., in de werkgroep K VIII,

experimentele kernfysica van de Technische

Hogeschool te Eindhoven.

vanaf medewerker in de groep Software Production
november 1980  (SWP) van Nixdorf Computer B.V. te Vianen (Z.H.)

112



STELLINGEN

behorende bij het proefschrift van

SIETSE DIRK WASSENAAR

Eindhoven, 12 november 1982



1)

waarbij alleen de protonen-overgangen bijdragen tot de electro-

In het 'core polarisatie~model' volgt Terrien ' een procedure

magnetische overgangswaarschijnlijkheid B(EL). Dit is niet correct
daar ook de neutronen-overgangen een bijdrage geven als de effectieve

lading van de neutronen groter dan 0 is

1) Y. Terrien, Nucl. Phys. A199 (1973) 65, Nucl. Phys. A215 (1973} 29.
2} dit proefschrift, hoofdstuk 5.

1)

wisselwerking gesimuleerd door de collectieve imaginaire wisselwerking

in het 'frivole' model van Satchler ’ wordt de imaginaire microscopische
toe te voegen aan de micrescdpische termen, Het belangrijkste aspect
van deze wisselwerking is niet het imaginair zijn, maar de radiéle

2)
vorm ervan .

1) G.R. Satchler, Phys. Lett. 358 {(1971) 279.
2} dit proefschrift, hoofdstuk 5.

Volgens het 'folding~model' is het mogelijk de middelbare straal {rms)
van de neutron~distributie van een kern te bepalen, uit de elastische
verstrooiing van protonen van niet te hoge energiez)

Het resultaat is echter sterk afhankelijk van de gebruikte effectieve
nucleon-nucleon wisselwerking. De waarden die o.a. Bovd en Lombardi 2)

bepaald hebben zijn dan ook twijfelachtig.

1) G.W. Greenlees, G.J. Pyle en Y.C. Tang, Phys. Rev. 171 (1968) 1115,
2} J.C. Lombardl, R.N. Boyd, R. Arking en A.B. Robbins,
Nucl. Phys. A188 (1972) 103.

Het verdient aanbeveling om in theoretische berekeningen van differentigle

werkzame doorsneden ook de curves van de analyserende vermogens te
publiceren. Dit geldt uiteraard ook voor andere gebieden waarbij neven-
resultaten van theoretische berekeningen waardevol kunnen zijn voor

experimentatoren.



De hoeveelheid werk, gemoeid met het programmeren van een algemeen
sof tware-pakket voor administratieve doeleinden, wordt meestal sterk

onderschat.

1)

is niet het gezag van de Bijbel verminderd, maar wel dat van de Generale

Door het verschijnen van het rapport over de aard van het Schriftgezag
Synode van de Gereformeerde Kerken in Nederland.

1) "God met ons', Kerkinformatie, nr. 113, feb. 1981;
uitgave: Dienstencentrum van de Gereformeerde Kerken in

Nederiand te Leusden.

De terugkeer naar de ambachtelijke werkwijze van beroemde orgelbouwers
uit de zeventiende en achttiende eeuw, is het belangrijkste kenmerk

van de vooruitgang in de huidige orgelbouw in Nederland 1’2).

1) W.A. Reil, Organist en Eredienst, maandblad van de gereformeerde
" organistenvereniging, mei 1982, p.93.

2) Jan Jongepier, Organist en Eredienst, mei 1981, p.68.

De sterke opkomst van het plankzeilen, als ontspanningsbezigheid,
is mede te verklaren uit het toenemend individualisme in onze

maatschappi j.

De kop in het zand steken, ten aanzien van het milieubeheer,

is een zeer gevaarlijke bezigheid geworden.



