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ABSTRACT

A detailed description is given of the pseudopotential-density-
functional method to accurately calculate from first principles the
electronic and atomic structure of the ground state of crystals.
Density—functional theory necessitates the self-consistent solution of
the one-electron Schriodinger equation, whereas pseudopotentials allow
for the inclusion in the calculation of valence electrons only and for
the expansion of the functions of interest in plane waves. All
necessary formulae are given to obtain the self-consistent density of
valence electrons, screening potential, and energy of the ground
state.

Particular emphasis is placed bn the application of the technique
of "special points in the first Brillouin zone" to perform necessary
integrations over reciprocal space. The exploitation of space-group
symmetry in the solution of the Schrddinger equation is discussed and
illustrated for the case of expansion of the wave function in plane
waves. Furthermore, characteristic features of the calculational
scheme connected with self-consistency and finite cutoffs are pointed
out and utilized to reduce the computational work.
 Results of calculations for silicon, diamond, and two structurally
extreme polytypes of silicon carbide illustrate the method and
techniques described. Finally, the applicability of the method to
surfaces, interfaces, superlattices, and polytypes ié briefly

discussed.
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CHAPTER 1

INTRODUCTION

The study of the condensed state of matter -solids and liquids-
constitutes one of the largest subfields of modern physics. In view of
its link to society (materials science), the importance of this field
is obvious. From a more scientific point of view the purpose of
solid-state physics is, of course, to understand the properties of
solids starting from basic notions; Why is one solid different from
another? An increased understanding of the properties of solids
immediately leads to a more systematic search for materials that have
desirable properties. There is interest, for instance, in (i) solids
that are as ductile and malleable as common metals, but are corrosion-
resistant, {(ii} solids with the hardness and chemical inertness of
diamond, but not as costly, (iii) semiconductors with a band gap that
is direct and corresponds to a desirable frequency {color), for use in
light-emitting diodes, lasers, and photo-detectors, (iv)} semicon-
ductors with high electron mobilities, which have a higher potential
operating speed in electronic devices, to mention a few.

To this end, experiments are needed to determine the properties of
solids. We also need theories that tell us why solids have the
properties they have. These theories should preferably start from
elementary ingredients. Regarding solids, these elementary ingredients
are the properties of the nuclei, the electrons, and their inter-
actions. The latter category of theories are called first-principles
theories or ab-initio theories. Quantum wmechanics and statistical
mechanics are such theories, which should in principle suffice to
determine the properties of solids from first-principles. In practice,
however, these general theories alone almost invariably generate a
calculational scheme that is too complex to actually carry out. By
making approximations that are not too drastic, it is possible to
obtain theories that may still be called first-principles theories,
but lead to practical schemes of calculation. The approximations of
course must be carefully investigated for their appropriateness and
should not violate the basic laws of quantum mechanics and statistical

mechanies. Theories that need experimental data as input, e.g., in



order to determine the values of parameters in the theory, are called
empirical theories. Such theories are in fact less fundamental with
regard to predictive purposes. In what is called the scientific
method, theories, irrespective of whether they are empirical or start
from first principles, are first tested to reproduce the results of
experiments and are subsequently tested to predict the results of
experiments.

Only in the last decade it has become possible to employ first-
principles theories in the computation of solid-state properties and
to reliably predict experiments. This is partly due to the steady
advance made in the development of theories, the most importaht
reason, however, lies in the increase in computing power of the
generations of digital computers that rapidly succeed each other. The
latter development has led some people to discern a third way to study
physics, in-between experimental and theoretical physics, namely that
of computational physics [2]. Although computational physics has
descended from theoretical physics historically, its approach is more
akin to that of experimental physics. A large computer code must be
designed and tested part by part just as careful as an experimental
set-up. Both computer code and experimental set-up can be used to
perform experiments, be it of a different, possibly supplementary,
kind.

In a first-principles theory for solids, it appears to be necessary
to solve the Schriodinger equation of quantum mechanics for electrons
self-consistently (if the electrons may be treated non-relativistical-
ly}. The need for self-consistency is caused by the fact that the
electrons interact with each other. Therefore, in the Schrédinger
equation for the individunl electrons, the effective potential,
describing the interactions the electrons experience, depends on the
solutions of the equation itself. Only if the Schriddinger equation is
solved in this self-consistent way, the electronic structure of the
solid follows in a reliable way. Subsequently the total energy of the
solid can be calculated, as well as first-order derivatives of the
total energy with respect to changes in the atomic positions,
providing forces,stresses and pressure. Assuming that the solid
strives for the situation of minimum energy (and zero force), the
equilibrium positions of the atoms can be found. Many other properties

of the solid may also be found. In this way a microscbpic description



-on the level of atoms— based on quantum mechanics is obtained.

Demanding a solid to be periodic -we call such a solid a crystal~,
simplifies the above task of calculating electronic properties
considerably. The attention can be confined to a unit cell, usually
containing between 1 and 10 atoms, which is representative for the
whole crystal when repeated in three independent directions.

In this work we give a reasonably complete description of a method,
called the pseudopotential-density-functional method, by which the
electronic-structure problem may self~consistently be solved without
parameters determined from experiments. Since the growing ability of
computational physics has made it a discipline in its own right, the
study of its methods is appropriate. In the present method a dis—
tinction is made in the solid between electrons that are so tightly
bound to the nuclei as to be negligibly perturbed from their behaviour
in the atom (core electrons), and electrons that adjust themselves to
the different environment in the solid (valence electrons). The latter
electrons have appeared to be responsible for a majority of solidf
state properties. Pseudopotential theory (see also chapter 2) assumes
that the cores, i.e., nuclei plus core electrons, interact in the same
way with available other electrons in the cases of both large and
small separation of the atoms, as in a gas and a solid, respectively.
In this theory the energy of the interactions within the core is not
taken into account. This implies that the total energy we calculate,
which will nevertheless be called "the total energy” in the remainder
of this work, is really the difference between the actual total energy
of the crystal and the energy of isolated cores. Pseudopotential
theory combined with the periodicity of crystals allows for a
convenient, Fourier analysed version of the calculational scheme. In
this version no assumptions have to be made a priori about the form of
the electron density. The latter fact makes the method particularly
suited for calculations on crystals with couvalent bonds, where the
electron density accumulates in bonds between nearest-neighbour atoms.
This in contrast to the more simple cases of metals, where the
electrons are nearly free and their demsity consequently is fairly
constant over the crystal, and ionic crystals, where the electrons can
all be seen as belonging to one atom, resulting in largely spherical

electron densities centred on the atomic positions.



Crystals with covalent bonds form a highly interesting class of
materials. Nearly all semiconductors belong to this class and also
diamond, which is an insulator. The physics of semiconductors lies at
the basis of modern electronics, computers, and information hahdling
hardware. To this day semiconductor technology is largely based on the
semiconductor silicon. Although silicon has superb chemical and
mechanical properties, it certainly is not an ideal choice regarding
its electronic properties. The electron mobility in silicon is only
average and its indirect band gap limits many optical applications.
Currently, theory, experiment, and technology are joining hands to
find out what materials may be suitable, as well as technologically
feasible, to replace silicon. Candidates are, gallium arsenide,
possibly combined with silicon, and germanium-silicon systems. Very
recently, progress in developing diamond-transistors was reported [3].
Because of the whole of its natural properties, diamond is considered
to be a material superior to silicon for this application. The method
described in this work can prove useful in the undertaking of finding
new materials.

In the following chapters the focus is more on the method itself
than on underlying theories or calculated properties, although both of
these subjects are also addressed. Consequently, some chapters are of
a technical nature. We think this full exposition of the method is
justified because of the gratifying results already attained with this
method. It is furthermore useful in closing a gap between present and
future practitioners of the method.

Chapter 2 starts with a general introduction to the two basic
theories on which the pseudopotential-density-functional method is
based: density~-functional theory describes a system of many inter-
acting electrons in an external potential in terms of the electron
density,‘ vhile pseudopotential theory describes the behaviour of
valence electrons in a solid. The rest of the chapter provides a
self-contained treatment of the calculational scheme that emerges from
the combination of the two theories. Fourier analysis or, equivalent-
ly, expansion of the functions of interest in plane waves exploits the
translational symmetry of the crystal and provides a transparant
calculation scheme in Fourier -or reciprocal- space. Furthermore, a
discussion is given of technical approximations that must be made to

make calculations feasible.



In the method of chapter 2 frequently integrations over reciprocal
space have to be performed. In chapter 3 a technique to this end is
treated that makes explicit use of the symmetry of the crystal, the
technique of special points in the Brillouin zone. This technique is
especially suited for application to semiconductors and insulators.

The method of chapter 2 also results in the necessity of solving
large sets of linear equations. In chapter 4 we show how the symmetry
of the crystal and results from group theory are exploited to
subdivide these large sets into a number of smaller sets of linear
equations. This chapter is not essential to the method, but merely
allows for considerable reduction in computing times. The chapter is
reasonably self-contained and can properly be skipped on a first
reading.

In chapter 5 some characteristic properties of the calculational
scheme are discussed, These properties enable one to make a more
convenient use of the method.

Chapter 6 includes a number of applications of the method to
silicon, diamond, and two -semiconducting- modifications of silicon
carbide. These applications serve as illustrations of the method and
techniques of the preceding chapters, as illustrations of the
potentialities of the method, and serve also as presentation of
results for silicon carbide, for which until recently no such
calculations had been performed.

As an outlook to the future, we end by sketching in chapter 7 the
applicability of the pseudopotential-density-functional method to
interfaces, surfaces, stacking faults, and superlattices of semi-
conductors. Such systems are becoming increasingly important in
technology and the desire to study such systems motivated the present
study.



CHAPTER 2

THE PSEUDOPOTENTIAL-DENSITY-FUNCTIONAL METHOD
IN MOMENTUM SPACE

In this chapter a detailed description is given of a method by which
ground-state properties of a solid may be calculated. This method,
which we call the pseudopotential-density-functional method, finds its
origin in two basic theories: density-functional theory (DFT) and
pseudopotential‘ theory. The method combines both theories. in such a
way that groun'd—statek properties of a large class of solids -among
which the semiconductors to which we will apply the method~ may be
determined. DFT is a theory describing a system of many electrons with
'mutual interactions in an external potentiél and is’ discussed in
section 2.1, Pseudopotential theory, which will be’ d'isdus&;ed in
section 2.2, deals with the behaviour of valence electrons in a solid.
Valence electrons are electrons that originate from not completely
filled shells of the atoms constituting the solid and may be held
responsible for most of the properties of interest of a solid. The
~ other electrons are called core electrons. Recent advances in
especially pseudopotential theory, namely, the construction of
so-called norm—cohserving pseudopotentials, have made possible the
accurate calculation of properties of solids without the need of any
empirical or adjustable parameters. ‘

Whereas sections 2.1 and 2.2 have a global character and may be
regarded as a. general introduction to the basicrtheories, sections 2.3
to 2.5 are more specific and detailed. In section 2.3 it is shown that
when the problem is treated in momentum space, which is just another
way of saying that all functions of interest (wave functions, charge
densities, potentials,...} are expanded in plane waves (or -put
differently- Fourier analysed), the calculational scheme becomes very
transparant. In section 2.4 useful formulae are given that enable one
to make almost direct use of tabulated versions of norm-conserving
pseudopotentials for all elements in the periodic table. Finally, in
section 2.5 the inevitable technical approximations are discussed that
one is forced to make in order to make calculations feasible. In this

connection the relevant cutoff parameters are introduced.



2.1 Density-functional theory

Density-functional theory (DFT) is an approach to describe a system of
many interacting electrons and may as such be considered an alter—
native for the Hartree-~Fock method. When applied to solids, DFT has
definitely shown to be more practical and successful than the
Hartree~Fock method. The theory was formulated first by Hohenberg and
Kohn [4] and Kohn and Sham [5]. Since the density of particles plays a
central role in the theory, DFT can be regarded as the direct
descendant of the more intuitive theory of Thomas and Fermi [6].
Although DFT can be presented in terms of well-defined concepts, its
application to actual solids still suffers from uncertainties. The
most important uncertainties are: (i) Are the one-particle equations
that emerge adequate to approximate the many-body problem?, {ii) What
is the exact form of the exchange-correlation functional {(to be
introduced below)? Since our goal in this section is to only give a
brief discussion of this theory, the reader is referred to the
original papers and more recent reviews [7,8] for more elaborate
discussions.

The theory finds its formal justification in the Hohenberg-Kohn
(HK) theorem, which in its original form is applicable to the ground
state of a system of spinless fermions (i.e., particles that obey
Fermi~Diraec statistics) in an external potential. In this original
form the theorem therefore applies to systems of electrons for which
interactions connected with their spin are absent or may be neglected.
The theorem may be summarized as follows:

(i) The ground-state energy of a system of identical spinless
electrons is a unique functional of the particle density. (The ground
state is assumed to be nondegenerate}.

(ii) Thié functional has its minimum value for the correct ground-
state density, when particle-number-conserving variations of the
density are considered.

The ground-state~energy functional is written as:

Ev[n] = Juexl(r)n(r}dar + F[n]. 2.1)

In {2.1) wext is the external potential, which is also a unique



functional {(neglecting a possible additive constant) of the particle
density n(r). This is in fact the central and remarkable feature of
the theorem: the fact that the external potential determines the
particle density is obvious, the converse, however, is surprising and
initially was greeted with some scepticism. The functional F[n]
includes all kinetic energy and electron-electron interaction terms.
It is convenient to split off from F[n] the energy due to the Coulomb

interaction, also called Hartree energy:

Find = gy [[ 2R atnete + ornn e

Here and everywhere else in this work, e is the charge of the electron
(negative) and e, the electric permittivity of the vacuum. It is
‘important to note that the exact form of G[n] is unknown. The ground
sté.te of the system is formally obtained by minimiziﬁg Ey[n] with

respect to density variations that conserve the number of pai'ticles N:

jn(r)dar = N. (2.3)

This leads to the variational equation:

: 5{ vin] - ‘{ n(r)dsr} = 0, (2.4)

in which a Lagrange multiplier p is introduced due to the constraint
(2.3). Applying (2.1), (2.2), and (2.4) the ground—-state-density-
determining equation is found:

2 '
. © afr . , OG[n] _
“exi(r) + 43,&0‘[ — dvr’ + 5!’1(!‘) = b, (2.5)

where the last term in the left-hand side of (2.5} is the functional
derivative of G[n] with respect to n{r). Even if the functional form
G[n] were known, eq. (2.5) would still not give us a procedure to
actually calculate the correct n{r}. Kohn and Sham [5] however supply
a procedure that results in one-particle equations (the so-called
Kohn-Sham (KS) equations), that we do know how to solve. Their line of
reasoning runs as follows: consider a system of N non-interacting

electrons in some external potential we.xi,s{(r). The ground-state
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density of this system is called n(r). The functional F[n] in (2.2)
reduces to Ts[n], the kinetic-energy functional of non-interacting

electrons, and the equation determing n(r) is given by (cf. (2.5)):

@ex{.s(r) + %E—E-g%l‘l = Us. (2.6)

The general form of T.[n] is again unknown (us is determined by
(2.3)). but now there is an alternative way to obtain n(r): for
non~interacting electrons the meny-particle ground-state wave function
is simply a completely anti-symmetrized product of one-electron wave
functions ¢i(r) (Slater determinant}, each of which obeys the
Schridinger equation:

R
{ - %Vz + p.xf(s(r)} qxi{r) = eiq:i(r). i=1...N. {2.7)

Plancks constant divided by 2% is denoted by h and m is the electron
mass. The prescription is to select those N states «pi(r) that have

lowest energy ¢ The density for this system of electrons is then

i
given by:

N
n(r) =i§1 [cpi{r)lz. ‘ (2.8)

So for this particular system of non-interacting electrons, there is
indeed a way of finding the solution to equation (2.6). Kohn and Sham
now show how this procedure may be used in the case of interacting

electrons as well. The functional G[n] is split up in two terms:
G[n] = Ts[n] + Exc[n]. (2.9)

in which T.[n] is the kinetic energy of a system of non»—ihteracting
electrons with a density n(r)} and in which the remaining term Ex.[n]
by definition is called the exchange and correlation energy bf the
interacting system with density n{r). Equation {2.5) now becomes:

2 .
e ni{r a_, OExc[n 6Ts[n] _
Sext(r) + 4re, J =TT Ty ) en(ry = M (2.10)

10



This equation has the form of (2.6); the only difference is that

Bext,s{T) is replaced by an "effective” potential w.;¢[n]:

2 '
_ e nf{r a 8Ex.[n]
vesi[n] = vaxt{r) + pr—— jT_-(T}d r + on(r) {(2.11)

By analogy with the non-interacting case, the correct ground-state

density of the interacting system is found by the self-consistent

solution of the following set of one-particle equations (the KS-

equations):
{._ﬁz_vz‘..i‘,‘ = f=1...N 2.12
™ cff[n] ‘I‘i(l‘) = ei\lli(r), =1...N, (2.12)
n(r) = 121 l\:fi(r)lz. , : (2.13)

Note that the self-consistency requirement is caused by the functional
dependence of w©er¢ on n(r). The total ground-state energy of the

electron system is then given by:

E.[n] = Ts[n] + Je.,,(r)n(r}d% +

S e s @
Ve have:
Te[n] = § J\p’((r) [— ol vz]q: (r)d°r. (2.15)
i=1 i 2m i

In order to be able to find the self-consistent solution of (2.12)-
{2.13) and to calculate E,[n], it is necessary to adopt some explicit

form for Exc[n]. A very useful approximation has proven to be:

Exe[n)] = Jexc(n(r))n(r)dar, ; {2.186)

where exc{n} is the exchange and correlation energy of an interacting

electron gas with uniform density n. For e..(n) several useful

11



approximate expressions are known {see section 2.3). The approximation
{2.18} is called the local-density-approximation (LDA), since the -
exchange and correlation energy density at position r is assumed to
depend on the density at point r only. This assumption is valid if
n{r) is constant and the approximation can be considered acceptable
for electron systems with almost constant or slowly varying n{r). The
approximation is in fact not justified for systems with large density
gradients such as semiconductors. The apparent success of the
approximation (2.16‘) in such cases is even more remarkable if bne
notes that, because of the definition implied in (2.9). Exc[n] must
also contain some kinetic-energy contribution apart from “real”
exchange and correlation energy contributions as in {2.18); this is
due to the fact that T,[n] represents only part of the kinetic energy
of the interacting system. By "real” exchange and correlation energy
we mean the remaining energy of an electron gas when the kinetic and
Hartree energies {and the energy due to a possible external potential)
have been subtracted from the total energy. In view of the successful
application of {2.16)., the latter feature is either of minor impor-
tance or its effect is washed out by adopting approximate forms for
exc{n). Many more fundamental questions can be asked in connection
with the KS-equations and their interpretation [7,8], but we will not
go into these here.

The calculational scheme presented in section 2.3 is partly based
on . the equations (2.11)-{2.16). From what is put forward above this
requires at least some justification. One can argue that calculations
for real materials so far always have been more or less successful by
employing the idea of an effective potential. Therefore there is a lot
of faith in the resulting one-particle equations and a lot of
experience in solving them. The attractive feature of this new scheme
is that it promises to give the correct ground-state density and from
that other gréund—state properties. Therefore this new scheme is -even
in some approximate fashion- worth exploring. In this connection 1t
seems justified to say that an actual calculational scheme usihg the
IDA has a somewhat less firm foundation in DFT than is usually
suggested., On the other hand, DFT has been a strong motivation for
such calculations and to a large degree these calculations can be
justified by their success [9]. The major step forward with respect to

Hartree-Fock theory is the inclusion -although in an approximate

12



manner— of extra interaction effects (these extra effects are
conventionally denoted by "correlation" effects. This name, however,
is misleading, since essentially other interactions -e.g., exchange-

also result from correlations between the electrons).

2.2 Pseudopotential theory

Pseudopotential theory is a theory that circumvents the need of an
accurate description of the core electrons, i.e., the electrons
occupying the completely filled shells of atoms. In a solid these
electrons remain very localized around the atom, whereas the remaining
electrons called valence electrons determine the majority of the
properties of the solid. This is why pseudopotential theory is useful:
it provides a simpler approach to the properties of solids. The first
pseudopotential theory was formulated by Phillips and Kleinman [10]
based on the orthogonalized-plane-wave (OPW) method of Herring [11].

In this section we briefly discuss the general concepts in
pseudopotential theory. We also present the class of ab initio
pseudopotentials called norm-conserving pseudopotentials that were put
forward by Hamann et al. [12] not very long ago. These have put
pseudopotential theory on a new level of sophisticétion, because
self-consistent calculations with the necessary accuracy became
possible. The discussion here is based on the more extensive reviews
in ref.[13] regarding concepts and refs.[14] and [15] regarding
norm—-conserving pseudopotentials. We refer to these papers if not all
details are given here (see also the review in ref.[16]).

The electrons in a solid move in the Coulomb field of the fixed
nuclei and have their mutual interactions. All these interactions are
assumed to be taken into account by adopting a one—electron picture,
in which the electrons experience an effective potential V. These

electrons now all obey a Schrdodinger equation given by:
H|y> = E|, . (2.17a)
H=T+ V. (2.17b)

Here, T is the kinetic—energy operator —(h%/2m)V?. In (2.17a) we use

13



Dirac notation. In this notation a wave function ¥(r) is denoted by a
ket |y>, its complex conjugate ¥*(r) by a bra (\Ill, and putting them
together face to face implies integration, <¢[¥> = f ¢*(r)¥{r)d®r. so
that the bra-ket combination defines a hermitian inner product (with
the property: <<p[\p>“=<\4:|np>). The matrix element of an operator 0O
between two functions f1 and f2 is written as (f1§0|f2>. meaning
I f’1‘0f2(r)d3r.

Imagine the valence-electron state I\&} to be written as a smooth
pseudo—waveffunction lcp) corrected to be orthogonal to all core-

electron states |c>:

> = Je3 = 3 |ed<e]ed. ‘ (2.18)
C

By smooth we mean expandable in few plane waves. It is reasonable to
expect that |¢> will be smooth, as the effective potential outside the
core regions is expected to be much smoother than inside the core
regions. Note that we have not made any approximation yet, we only
have made explicit the orthogonality of all core and valence s$tates.
If |¢> in {2.18) would be replaced by a single plane wave, eq. ‘(2.18)
represents a so-called OPW. OPW’s appear to form a suitable basis set
for caiculations in solids, implying that the ho) in {2.18) are indeed
smooth. Substitution of (2.18) into (2‘.17a) gives an equation for |¢>:

Tle> + VP% o> = E|o>, (2.19)

where the pseudopotential VP® is defined by combining the true
potential V and the orthogonality terms ({we use that |c) is an
eigenstate of H with eigenvalue Ec):

VPR led = Ve + 3 (E-E_) Je><e|e>. {2.20)
[ 4

We observe from (2.19) that for valence states -which are the ones we
are interested in- the energy eigenvalues of the Hamiltonian H with
the real potential are identical to those of the pseudo-Hamiltonian
HP® = T + V?°, One easily verifies that this remains true if E—Ec in
(2.20) is replaced by a constant 7\0. This demonstrates the so—called
non-uniqueness of the pseudopotential. It can be exploited to make the
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pseudo-problem {2.19) as easy to solve as possible. We also note that
VP® in (2.20) is weaker than V, since the core energies E_ are lower
than the valence energies E and the orthogonality term in (2.20)
therefore is repulsive, partly cancelling the attractive potential V.
This is consistent with the expected smoothness of ‘the solution |¢> of
(2.19). The non—uniqueness of V°*® motivates the operator approach to
pseudopotentials [13]: we may define an operator VP® in many ways as
long as it gives the correct energy levels for valence states.

Another approach to pseudopotentials is possible, which is more
closely related to scattering theory. A pseudopotential is now defined
as one that gives the same scattering amplitudes [17] as the real
potential for an incident plane wave with some reference energy E. The
pseudopotential is allowed to differ from the real potential within a
certain core sphere. It can be shown that a pseudopotential thus
defined will also give the same band energy E for valence states. We
will assume the pseudopotential to be spherically symmetric inside the
core sphere. Therefore, in this scattering approach, the pseudo-
potential will depend on the angular momentum & of the incident wave
only and may generally be written as:

vps = Yps = f g& . 2‘21
SVt = 3 1,(r)9, (2.21)

Here, 98 is a projection operator that picks out a specific angular-
momentum component of the function that VP® operates on. The functions
7 £ e(r) can be constructed such as to give the correct scattering
properties of the core in a certain energy range (since the pseudo-
potential defined in this way is valid for one E only). From (2.21)
{and also from (2.20)) it is clear that V°° in general is a nonlocal
operator, i.e., not a mere multiplication operator. The scattering
approach -just as the former operator approach- allows to describe
valence states by smooth and nodeless wave functions inside the core.
The strong oscillations inside the core are eliminated by letting the
pseudopotential reproduce the reduced phase shifts of the real
potential instead of the complete phase shifts: this makes no
difference for the scattering amplitudes.

'So both approaches make it possible to replace the problem of
finding the energies of the valence electrons via (2.17} by a problem
of the type {2.19). The additional freedom of choice is exploited in
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the operator approach to make the solutions |¢> as smooth as possible
and in the scattering approach, where the solutions |¢> are smooth by
construction, to maximize the energy range for which the pseudo-
potential is valid.

If we would solve eq. (2.19) with V°*® given by (2.20), we have to
realize that this does not immediately give us the true valence states
|y>. Yet these are needed for almost all other properties one would
want to calculate. In view of section 2.1, especially the charge
density is of interest. One could of course use eq. (2.18) to
construct |¢), by using core states obtained from atomic calculations.
Apart from the objection that the states |c> in principle should come
out of the same calculation as the |¢> for use in eq. (2.18), there is
another problem with eq. (2.18): the so-called orthogonality-hole
problem. This is essentially a normalization problem. It occurs
because with eq. (2.18) the true valence state |y> and the pseudo-
wave-function |¢> cannot be normalized simultaneously. This is seen by
multiplying (2.18) by bra’'s <y| and <p|, respectively, and combining

the resulting equations:

Wl = <ole> - 3 [<eple> . (2.22)
C

The (positive) term z(c)|(¢|c>|2 is called the orthogonality hole.

The solution |¢> to our substitute problem (2.19) is determined to
within a constant factor. Suppose that this constant is chosen such
that |¢> is normalized. The normalized true wave function |¢'> with
the same shape as |¢> in (2.18) is then obtained by means of an
additional factor 7y:

o> = aCle> - 3 led<eled). 7= (1-3 [<olod|)™  (2.29)
c c

From (2.23) we see that |¢'> has a larger amplitude than |¢> outside
the core region (where |e> is negligible). Therefore, if we would use
|¢> instead of |[¢'> for the determination of charge densities, too
much of the total charge is put in the core region. So even outside
the core one does not find the correct valence-charge density by using
|¢>. This is a serious problem.in a self-consistent calculation via

KS-equations, where the density is the crucial quantity (see section
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2.1). Of course !*p) could be orthogonalized t\0 all core states, but
this is not easy and bypasses the idea behind and the advantage of
pseudopotentials.

At first this problem blocked the way to the construction of ab
initio pseudopotentials, 1i.e., pseudopotentials that correctly
reproduce the energy eigenvalues and wave functions {outside some core
radius) of valence states that are found in atomic all-electron
calculations. Such pseudopotentials are required for self-consistent
calculations in solids. The problem is caused by the construction of
pseudopotentials implied in (2.20) (Phillips-Kleinman construction),
but this way of constructing is not obligatory. It has been shown that
the scattering approach enables one to overcome the problems with
pseudo-wave—functions.

The most popular scheme to construct ab initio pseudopotentials was
devised in ref.[12] (another scheme is given in ref.[18]}, and starts
with the construction from all-electron atomic calculations in the
density~functional scheme of angular-momentum-dependent pseudo-
potentials, Vz’, vhich by construction have the property that:

(1) Energy elgenvalues for valence states in the all-electron
calculation and in the pseudopotential calculation agree exactly for
some chosen prototype configuration.

{2) The wave Ffunctions of valence electrons in the all-electron
calculation and in the pseudopotential calculation agree exactly
outside a chosen core radius r.. The pseudo-wave-function is chosen
nodeless inside r.. .

Globally speaking, the construction of Vg' is achieved by making
some choice for the wave function within r. (this can be done in
arbitrarily many ways) and inverting the radial Schrédinger equation
(there is no problem here because of the nodeless property of the
adapted wave function)}. When pseudopotentials are constructed in this
way they have two properties that make them tronsferable, i.e., useful
in other situations than the one in which they are generated:

(1) They yield the correct amount of charge inside the core radius r..
so that the electrostatic potential outside r. is the same for real
and pseudo—charge-densities (norm conservation).

{ii) The scattering amplitudes of the real ion cores are reproduced
with minimum error as the energy starts deviating from the energy for
which the pseudopotential was constructed. About the range of energies
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for which this "minimum error” is acceptable nothing can be said a
priori, but in practice these pseudopotentials turn out to be very
satisfactory. In addition to this energy-"independence” of the
pseudopotentials, . it is shown in ref.[15] that there is also a
perturbation-"independence”, i.e., scattering amplitudes are not very
sensitive to small variations in the potential.

To obtain ion-core pseudopotentials Vé°“ for the angular-momentum
components £, which are to be used in solid-state or molecular
calculations, we must unscreen the pseudopotentials VE”. i.e.,
subtract the efffect of the potential caused by all valence electrons
of the atomic configuration. This potential is the sum of the Hartree
and the exchange~correlation (XC) potentials due to the valence-
(pseudo~)charge density (see section 2.1). By the core we always mean
the nucleus plus the core electrons. Since the core is an ion, it is
also called ion-core or ion. Note that both in the original atomic
calculation and in the unscreening calculation the KS-equations of DFT
with the LDA for exchange and correlation are employed. In fact, in
the unscreening act it is furthermore assumed that the core—~ and
valence-charge densities may be decoupled to .calculate the XC-
potential. This is clearly an approximation, since every useful form
for the XC-potential (see section 2.3) is an explicitly nenlinear
functional of the density. If this decoupling is not allowed, e.g..
when core- and valence-charge densities overlap substantially, there
are methods to correct for this [19].

Norm—conserving ion-core pseudopotentials, VE°", can be constructed
for any element in the periodic table and for various & [14].

From now on the assumption will be made -this is called the
pseudopotential approximation- that these Vé°" correctly represent the
complete potential the valence electrons feel from nuclei plus core
electrons and that this complete potential is not affected by using it
in other environments than the one in which it was generated. This
approximation is also called the "frozen-core approximation”, because
the interaction between the core and the valence electrons is assumed
to be frozen (such as to lead to smooth valence states). As noted in
ref.[15], this approximation is not identical to the approximation of
the same name in which the core states are frozen (but the valence
states still have the strong oscillations in the core region). It was

proved that to first order in the error in the core—cﬁarge density the
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total energy is exact in both approximations [20]. The frozen-core-
approximation error may be estimated to be 0.1 eV/atom in the very
worst cases and about 0.02 eV/atom for silicon and carbon (i.e., less
than 0.5 % of the cohesive energies of their crystallized forms) to
which we will apply our method. This implies that, as stated in
chapter 1, the total energy in pseudopotential theory may indeed be
seen as the difference between the actual total energy of the solid
and the sum of energies of isolated cores.

Together with the theory of section 2.1 a scheme can now be put
forward in which a crystal is seen as a many-electron system in which
{valence) electrons move in the external potential formed by a
periodic arrangement of ion-cores. The ground-state density and from
that all ground-state properties are found by self-consistently
solving the KS-equations (2.11)-(2.13), where v x: is the sum of all
ion-core pseudopotentials in the crystal. This scheme as well as its
computational implications will be extensively discussed in the rest
of this chapter. A conceptual difficulty with this scheme is that ®.xt
now is a nonlocal operator of the form (2.21). For general nonlocal
vext the HK theorem no longer holds: the total energy of the ground
state is then a unique functional of the density matrix rather than
just its trace (i.e., the density [21]). To the author no rigorous
justification is known to proceed with the density as crucial quantity
in a self-consistent pseudopotential theory, where one uses nonlocal
ion—core pseudopotentials in combination with the KS-equations of DFT.
In practice, however, the results of such a procedure are very good
and agree with those from all-electron calculations in the local-
density-functional scheme, where the external potential 'is local,
viz., the superposition of the Coulomb potentials of the nuclei.
Perhaps a justification can be derived from the special form of
nonlocality (eq. (2.21)) resulting from the assumed spherical symmetry

of the core potentials.
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2.3 Momentum-space formalism for self-consistent pseudopotential
calculations

In this section we combine the theories of sections 2.1 and 2.2 to
obtain a calculational scheme for the total ground-state energy per
unit cell of an arbitrary periodic solid. This combination implies
that the electrons in DFT will be the valence electrons only, which
move in a (nonlocal) external potential given by the superposition of
norm~conserving ion-core pseudopotentials. We furthermore impose
periodicity upon the solid and call this a crystal. This implies that
the wave functions \pi(r) in (2.12}) and (2.13) are replaced by
pseudo-Bloch~functions \p;fk(r), where n is the band index and k a wave
vector in the first Brillouin zone (1BZ) (reduced wave vector). We
will immediately drop the superscript "ps" for the wave function,
since from now on we will only consider pseudo-wave-functions.

In section 2.3.1 the KS-equations and a total-energy expression in
r-space {direct space) are given, whereas in section 2.3.2 these are
Fourier transformed so that a formalism in momentum space results. In
section 2.3.3 the necessary formulae and steps are discussed to obtain
a self-~consistent solution to the equations of section 2.3.2.

All formulae will be given in MKS-units contrary to popular
practice in the literature. Using MKS-units is the best way to keep
track of the dimension of all quantities appearing in the formulae.
For use on computers a transition to some system of atomic units has
to be made. In these atomic units (a.u.} all quantities in the
computer program have a convenient order of magnitude. For these a.u.
two possibilities are in general use: Rydberg atomic units and Hartree
atomic units, named after the unit of energy resulting from these sets
of units. In all our formulae the transition to these units is easily
made as follows (=" means "replace by"): ’

(i) Rydberg a.u.: e, » /4w, h =1, m = %, e?» 2, - (2.24a)
(ii) Hartree a.u.: €, » /47, h>1, m=1, e > 1. (2.24b)
In both cases all quantities with the dimension [length]® must be
expressed in units of a; {p € R and a, is the Bohr radius: a, =
0.052917715 nm [22]). Then all quantities with the dimension [energy]
will be in units of 1 Rydberg (= 13.605826 eV = 21.799118x107'°J) for
(i) and in units of 1 Hartree (= 2 Rydberg) for (ii). Our motivation
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for using MKS-units in our formulae is that we \feel that most formulae
in the literature are a confusing mixture of formulae that make sense
regarding dimensions and formulae that are expressions directly
programmable on a computer. We will give examples of this below (see
below (2.61a)).

Another clarifying remark regarding dimensions we wish to make
concerns the use of the word "potential”: in the literature it is
invariably used instead of Tpotential energy”, although these
quantities have different dimension. This usually causes no confusion,
" because there is only one type of particles, namely, electrons that
experience potentials V, and having a potential energy eV, on account
of that. In this work, we will also use the word "potential” as a
short hand for "potential energy"” and hence all potentials will have
dimension [energy] (implying that the real potential has already been
multiplied by e, the charge of the electron).

2.3.1 Total energy in direct space

The crystal is defined by giving three basis vectors ti(i=1,2,3)

4 of atoms j within the

spanning the unit cell and the positions t
unit cell. Vectors R = njityinztetnats with integers nji,nz.na are
called Bravais—lattice vectors or just lattice wvectors. The crystal
volume is denoted by Q and the crystal is considered to be composed of
a large number of concatenated unit cells (with volume €.). The unit
cells the crystal is composed of are shifted with respect to each
other over lattice vectors.

Following the prescription given in the beginning of section 2.3,

the KS~equations for a crystal may be written as:

2 PN .
(B Ve - gm0 =0 (2.25)
. . 2 ()
Vers(r) =2 V2 i°"(r-R-t*97) + 4:'5 |I;'T'| d®r' + Vuc(r),
R.j I °
(2.26)
U 73 3 - 2
() = 0 1£z O ) = 3l (P @20
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In (2.25)-(2.26) E (k) is a band energy and \73““(1-) the nonlocal
pseudopotential operator for ion j, which is summed over lattice
vectors R and ions j in the unit cell. The second term in (2.26) -
{Hartree potential) will also be denoted by Vi(r). Vic(r) is called
the exchange~correlation (XC) potential and is defined By (cf.
(2.11)): ‘ ‘

(2.28)

Expressions for exc{n). the exchange and correlation energy of a
homogeneous electron gas, are given in section 2.3.3. In (2.27) the
sum over m is over occupied states. It is understood that states that
are doubly occupied -as all electron states are with our spin-
independent Hamiltonian- must be counted double. We remark that n{r)
is a particle density with dimension [volume] ! and the dimension of
\bm’k(r) consequently is [volume]™*/2.

We will now give the corresponding expression for the total energy
of the crystal, Eista1, which was defined as the difference between
the actual total energy of the crystal and the energy of isolated
cores (see chapter 1). We introduce the short-hand notation:

S f(k) = e J £(k)d%k. (2.29)
(2m)® :

k 182

We then have (cf. (2.14}):
Elniul = Ekin + EH + Exc, + Eec + Ecc: (2.30)

where EU,. is the kinetic energy of the elec‘trons, Ey the Coulomb
electron~electron interaction energy, Ex. the exchange and correlation
energy of electrons, E.. the interaction energy between electrons and
cores, and E.. the Coulomb core-core interaction energy. The addition
of the latter term to expression (2.14), which gives the total energy
of the electronic system, is necessary, because in our definition of

total energy also the interaction between cores is included. We have:



Exia = I zk k() [— % vz] ¥ 1 (1), (2.31a)
n,

Q

Ew =3% JVa(r) n(r)d®r, V (2.31b)
Q

Exe = Iexc(n(r)) n(r)d?®r, | {2.31c)

‘ Q

Eee = | n,k‘,SR,j \p;’]"(r) V;"”“(r—R-t(‘}))\pn‘k(r]dsr. (2.314)

Z.2Z., :
o =g S AN (2.31e)

8"60 R,j,R'aj' lR + t(j) - R' - t(j‘)' ’

The prime in (2.3le) excludes the term R + t(j) =R' + t{j.) and Zj is
the number of valence electrons of atom j. Expression {2.31le} is only
correct for spherically symmetric and non~overlapping cores.

Since we will use norm-conserving ion-core pseudopotentials, the
total pseudopotential operator is decomposed in its £&-dependent
components:

3ovetenereed)y = 305 v e o ree()),
R.j R,j &=0 ™ ,

*

(2.32)

where §g(r,r') is an operator projecting r—dependent functions on
eigenfunctions of the angular-momentum operator with quantum number &
centred around position r'. It is convenient to split off from the

ionic pseudopotential a local (£-independent) part:

Vé?;(r—R—t(j)) = Vloc,j{ ‘I“R—t(j} h + Avé,j( ;r_k_t(j) .
(2.33)

(r) is chosen such as to contain the Coulomb tail -Z_e®/4weor

Vloc.j
for r » o, but no singularity for r = O.
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2.3.2 Total energy in momentum space

In this section the expressions of the preceding section are Fourier
analysed, which will lead to a transformation of a set of differential
equations into a set of linear equations, while volume integrals are
replaced by summations over reciprocal-lattice wvectors [23]. A
function f(r} that is periodic, i.e.., f(r) = f(r + R) with R any
lattice vector, can be expanded in plane waves (FW's) exp(iG-r), where
G is a reciprocal-lattice vector. A reciprocal-lattice vector is given
by G = m1b1+mzb2+m3b3 with integers mi(i=1,2.3) and basis vectors of
the reciprocal lattice bi(i=1,2,3), that are related to the basis
vectors of the Bravais lattice ti(i=1‘2’3) through: bi'tj = 211'51
(i.j = 1,2.3). So we have:

h]

£(r) = 3 £(6)el®T . (2.34)
G
The Fourier components are given by:
£(G) = %J f(r)e 16 Tg2y, (2.35)
Q
Equations {2.34) and (2.35) imply the following identity:
1 i(G-G')er o _ :
) J e d°r = 5G.G' . {2.38)

Q

Because of the periodicity of the integrands in (2.35) and (2.36) Q
may be replaced by Q.. )

The wave functions are not periodic, but can be chosen such as to
obey the Bloch condition:

kR

Yo 1 (PR = e Yo (7)- (2.37)

A convenient expansion of the wave function in PW's therefore is:
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i(k+G)°r.

\bn’k(r) = g on‘k(c)e (2.38)

The functions n(r), Vu(r). V..(r). and ex.(r) are periodic and can be
expanded as in (2.34) with Fourier components n{G)., Vu(G). Vi.(G), and
e€xc(G), respectively. Note that by definitions (2.34)-(2.35) and
{2.38) functions and their Fourier components have the same dimension.

Although one sees that PW’s form a very natural basis set for the
expansion of periodic functions in crystals, other choices can be
made: another popular basis set in combination with pseudopotentials
is the set consisting of Linear Combinations of Atomic Orbitals
{LCAO's) [24]. The latter choice leads to a much more complicated
calculational scheme than the one to be presented in this section, but
has the advantage that fewer basis functions are needed. In all-
electron calculations (i.e., no pseudopotentials are used) the basis
sets used, such as LAPW's (Linearized Augmented Plane Waves [257])} and
IMTO's {Linearized Muffin Tin Orbitals [26]), are usually accompanied
by extra shape constraints on the functions of interest, whereas the
PW~expansion is completely general. However, in an all-electron
calculation PW’s are not suitable basis functions: approximately 106
of them would be needed to describe the strong oscillations in the
core region [13]. The pseudopotential-plane-wave method is considered
to be best suited for calculations on open structures ~i.e., solids
ﬁith regions of negligible electron density- if the condition is
fulfilled that the expansion {2.38} does not need to include so many
PW’s to become unmanageable. The prototypic example is silicon {Si}.

The Fourier analysed version of (2.25) is a set of linear equations
for the Fourier components Cn,k(G):

2
[gm-(mc)z - En(k)]cn’k(c) + g Vers(ktGkeG')C 1 (G') = 0, (2.39)
where

Ver (kG KtG') = Je-i(k‘rG)‘r 5 106" ) T ga

Vess{r)e {2.40)

L
)
Q

Vet ¢ {k+G,k+G') is composed of three terms:



Vers (KHG,k4G') = VP2 1o0(ktG, kG’ ) + Vy(G-G') + Vi (G-G'), (2.41)

with

yPs- ‘on(k-l*G,k‘f‘G')-'-‘Z SJ(G-G‘) [VIOC,,]'(G‘—GI) + % Ave’j(k+G,k+G‘)],

J
(2.42a)
V0, 5(€7) = — f e 1(EC)er Vi, FYET (2.42b)
)
e
5,(66") = ?-f*-e'i(c”c yetl ), (2.42¢)
AV, [(kG.keG') = 91"?_[ o 1(kHG)er &V, (r)%,(r.0) (kG ) Ty,
Q
(2.424)

Q.+ denotes the volume per atom. Since Vloc, {(r} depends only on
T = ]rl vloc,j(%‘) ‘depends only on q = |q1 = |6-G'|. Explicit
expressions for vloc,j(q) and AVe.j(k+G,k+G') for tabulated versions
of norm-conserving ion-core pseudopotentials are given in sectiqn 2.4.

JWe now proceed to the expression for Ei;iat to be obtaihed if
PW-expansions of the various quantities in (2.30) are substituted. In
this comnection it has to be realized that due to the long-range
nature of the Coulomb interaction the terms E,., Eu, and E.. diverge,
i.e., their Fourier terms for G=0 are infinite. These infinite terms,
however, can be summed to give a finite contribution to the energy per
cell as will be shown below. Substituting the PW-expaunsions in {2.31a)
to (2.31d) and using {2.36) we obtain:

2
Bun = 231G, (@17 2 (k:6)2, (2.432)
Ev = 30 3 Vu(G) n*(G}), (2.43b)
G .
Exe = 02 exc(6) n*(G), (2.43c)
G



(G) +

Eee = @ g n*(G) ? Sj(G) vloc,.]

Qn,k,EG,G'C;’k(G)Cn’k(G') stj(@G') % AVe’j(k+Q,k+G'),(2.43d)

where

n(G) = > C:l

2. 1(67)C, 1 (67+6). (2.44)

We will now address the question what contribution to the total
energy remains if the individually divergent G=0O-terms in E..., Eu, and
E:. are summed. Note that the second term in the right-hand side (RHS)
of (2.43d) is not involved in this discussion, since the local part of
the pseudopotential was chosen to contain the Coulomb tail and so the
nonlocal parts are short ranged and cause no divergencies. Our
discussion is based on a similar discussion in ref.[27]. The first
term in the RHS of (2.43d) will be denoted by E;c. We start by
splitting off from E;c the Coulomb tail. so that a finite part FP

remains:

E;c = FP + E:;”', (2.45a)

2 A
gtov! _ _© J —d __ 4%, 2.45b
ec 4meo Q n(r) R?J' |r—R—t(‘])| ’ ( )

The sum E;;“l + Ey + E.c should now be recognized as the electrostatic

energy E.. of a lattice of point ions j with charge -eZ_. in a periodic

J

neutralizing background distribution n(r) of electrons. The neutrality

of this system implies:

J n(r)d® = S Z.. ' (2.46)
. J
Q. J

We further have from electrostatic theory [28] that:

Fos = deo | [ECO) %0, (2.47)
Q
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where E(r) is the electric field at position r in {}. Note that since
the whole system is periodic, E(r) is also periodic and has a
PW-expansion as in (2.34). We split up this system into two systems
that are each periodic as well: system I is a periodic arrangement of
positive point ions in a uniform neutralizing {(therefore negatively
charged) background with density n_ = (1/:2,:}2( j)z 3 and system Il is a
periodic distribution n(r)} of electrons in a uniform neutralizing
(therefore positively charged) background with density n; = n;. The

electrostatic energy of system I can be expressed as:

E;cz—i[é S Z:}ZJ‘ -3 J__ZJHO_.dar
e Up iyt el r-l3) 1 3 |r-R-t(3) |
(n))?
+ 3 JI 2 &°r d“r']. . (2.48)
Q0 |r—r' |

Ec.. is related to the well-known Ewald energy %¥twa1q. which can be
calculated by well-defined and fastly converging procedures [27,29]:

¥Ewald = Ecc Qal- ‘ (2.49)

The Ewald energy thus is the interaction energy of system I per atom.

The electric field E(r) of the original system is the sum of the
electric fields E:{r) and E;:{r) of the two subsystems. We may
substitute a PW-expansion for E; and E;r; to obtain for E.s:

Ees = ELc + %eoﬂg |E11(G) |2 + €0 g E1(G)*+E11(G). (2.50)

We now are allowed to demand that E;(G) and E;;:(G) both equal zero for
G=0, which is equivalent to demanding the cell average of Ei(r) and
E1{r) to equal zero. If this were not so, we would -because of the
periodicity of both systems—~ build up an electric field over the whole
of system I and II. So we conclude that we may replace E;é“’ + Ey +
Ecc by Eg;“" + Ey + E.., where El. is given by (2.48) and the primes
in E;;”‘ * and Ej denote that the G=O-term is put equal to zero.

To complete the discussion of the G=O-term in Eiota1, We now deal
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with the G=O-term in FP in (2.45a). From (2.45) and (2.43d) we have
that this G=O-term equals (substitute Fourier expansions of the
r-dependent functions in (2.45)}}:

’ z

Qay 1 3 e 0w T3 o3

0. 0o J'vloc,‘j(r)d Tt el P (G._O)? j r d-r.
Q Q

2 n"(6=0)2
j

From (2.46) we have n"(G=0) = n(G=0) = (1/Qc)2(j)z ;- So the G=0-term
of FP is given by:

Q .
QE% 223, (2.51)
J J
where
1 7 .e? s
aj = EJ (vloc,,j(r) + —L‘lweor)d r. (2.52)
Y]

Taking all this into account the total energy per unit cell Ei,: is
given by a sum of individually finite terms {note that from now on
Evin. Exe, En, and E.. have their previous value divided by N, the
number of cells in the crystal}:

Eto1 =Ekin+E:§+Exc""E‘ec"'TEwaldQ_c_'*‘Ea-Ezj’ (253)
J J

Uat J

Exin= @ 2 icn k((;)t"- %k«n@)z, (2.54a)
nk,6

Ex = 0. >’ Va(G) n™(G), (2.54b)
G

Exe = Q¢ 2 exc(G) n*(G), , (2.54c)
G

E'ec =

e 3 8(0) 38,(0) Vygo 4(@) ¢

an’gc’c.cn’k(c)cn’k(c') ?sj(c«;') % A\fe’j(k%c,ka-c’},
{2.54d)
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where the prime in the summation over G denotes that the G=O-term is
left out. We remark that our second term in the RHS of (2.544d) differs
slightly from the expressions in refs.[27,30] -note in this connection
that the structure factor Sj(G) is generally complex and obeys S;(G) =
Sj(—G}—, but agrees with the expression in ref.[23] if one notices the
different (unconventional} definition of the structure factor used
there (see (9) of ref.[23]). .

The last term in (2.54d) is the most difficult one to compute,
since it contains a double summation over G vectors and, furthermore,
the Fourier components of the nonlocal part of the pseudopotential,
which -as we will see in section 2.4~ are complicated expressions.
However, using (2.39) we can derive an alternative expressiyon for
Eto1, which does not include the term E... Formula ({2.39) can be

rewritten as:

2
E,()C, 1(€) = %{kﬂ:ﬁcn’k{c) + g: Ver i (kG keG')C, 1 (G'),

(2.55)

where the prime in the summation denotes that Vloc,j((;:G') and
Vu(G=G'} are set equal to zero; for the solutions Cn,k(G) this makes
no difference, only the eigenvalues En(k) are shifted by a constant.
This convention is consistent with our analysis of the G=O-term in

E¢ot. Multiplying by C; 1((G}l and summing over G gives:
2 B? 2
E (k) = glcn’k(c)i 5-(k+G)? +
¥ + + 3
Qe GEg_v,,,(kw,km )C, 1 (67)C] 1 (6). (2.56)

We may now sum over n and k and use (2.41)-(2.42), (2.44), and (2.54)
to obtain:

> E (k) = Exin + 2E4 + Q¢ > Vxe(G) n*(6) + E.c. (2.57)
n,k G

Using this in (2.53) we find:
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Eloi

2 E(k)—Er'{"'AExc""UEwaldgc_"'za-zZ-’ (2'58)
l’l,k n Qal j J j J

where

AE.. = Qc 2 [exc(G) - vxc(c)] n*(G). (2.59)
G

2.3.3 Self-consistent solution of Kohn-Sham equations
in momentum space

If we have self-consistent solutions Cn,k(G) and En(k) of the
KS-equations in momentum space to our disposal, we are in the position
to calculate E;,¢ from (2.58) if we know how to calculate Vu(G),
Vxc(G), and ex.(G) from these self-consistent solutions. We proceed by
(2.44) to calculate n{G); since Vy(r) and V..(r) are all functionals
of the density n(r), it is straightforward in principle to calculate
Vu(G) and V«.(G). Here we will give details of this procedure.

Suppose the n(G) are all known. The Hartree potential Vu(r) is

related to n(r) by Poisson’s equation:

2

AVu(r) = - £2O) (2.60)
Remember that Vu(r) has dimension [energy] and n(r) dimension
[volume]~!. Substituting both PW-expansions the relation between Vy(G)

and n(G) is a simple linear one:

2
vu(e) = &G (2.61a)
€o |G|2

For G=0 Vu(G) is put equal to zero, as was argumented already in
section 2.3.2. In the literature [31,23,32] we may find for Vu(G) :
(1) 4we2p(G)/ |G|, where apparently CGS-units are used and p(G) has
dimension [volume]~!,

(2) 81rp(G)/|G|2, where apparently Rydberg atomic units are used and
p(G) has dimension [volume]™!, and

(3) 4me?p(6)/(9:|G]?), where again CGS-units are used and p(G) of (1)
and (2) is now replaced by p(G)/Q.. Apparently p(G) in this formula is
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dimensionless.
When programming {2.61a) and going over to Rydberg atomic units, we
~like in (3) above- introduce a dimensionless n’'{G), which is related

to the distribution of electrons in a unit cell by:

n'{G) =J n{r) e-iG'rdsr.
Qc

This results in the formula:

Vu(c) = S 0 (6) (2.61b)
< lGlz

where |G| should be expressed in a.u. and V4(C) is in Rydberg.

For the XC-potential and -energy the situation is more complicated.
We first give some commonly used expressions for eyx.{n}. the exchange
and correlation energy of a homogeneous interacting electron gas.

These are given in terms of the Wigner-Seitz radius r,, related to n
by:

u (W

(2.62)

wlF

1_
2=

exc{n) can be seen as sum of an exchange part &x{n) and a correlation
part ec.(n). The Kohn-Sham form for e.{n) is given by [5]:

32 (951 e? 0.4582
() =~ Tore, {;;} E T (2.63)

The Wigner interpolation form for e.(n} interpoiates between known

high— and low-density limits [33,34] for the correlation energy:

ce(n) = - == 0.44
¢ 4re, 7.8a, + re

(2.64)

Since wvalence-charge densities. generally have r. around 2a,, it is
clear from {2.63)-(2.64) that the correlation contribution to ex.{(n)
is very small. )

“ Another expression ~less popular nowadays— is given by the Slater

Xo~approximation to exc(n):
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1 _ _ _ae” 0.6872 (2.65)

Here, a is an adjustable parameter to be chosen between 2/; (no
carrelation) and 1 in order to add some correlation to (2.63). For
instance, for the r, belonging to the average valence-charge density
in S8i, ro = 2a,, the sum of (2.63) and (2.64} intersects (2.65) for
a = 0.8,

The wmost popular form for e.{n) is the one parametrized by Perdew
and Zunger [35] from the quantummechanical Monte Carlo simulations of
the homogeneous interacting electron gas by Ceperley and Alder [36].
This parametrized form also gives the correct high—- and low-density
limits and is given by:

2
- wa
e.(n) = ] 1+ 1.0529 vRy + 0.3334 R, (2.66)
©

~ Tme.a, [0.0480 - 0.0311 In{Rs) + 0.0116 R, ~

0.0020 Rsln(Rs)] (Rs< 1)

Here Ry= rg/a,. This is the spin-unpolarized form; a spin-polarized
form also exists [35]. Note that this ec.(n) intersects the Wigner form
for R = 2.1, i.e., again for about the average valence-charge density
in silicon.

We have used (2.63)-(2.64) in all our calculations. In that case
the XC-potential is found via:

Vee(n) = §—n[n exc(n)] = exe - 5% gi—;“—. (2.67)

We find for (2.63)~(2.64):

SIEREE! 0.44 .
VxC(n) o gao[[g} r—s"'l' 7.83,9 o [l “+ 3(7.8;0 ry rs) ]]-(268)

Using the LDA we have: V,.{(r) = Vi{n{r)) and exc{r) = exc(n(r)).
So exchange and correlation energy and potential are now expressed as
local functionals of n(r). The problem is that we do not have a

functional relai:ionship between their Fourier components like in



{2.61) for the Hartree potential. Although it is a diversion, the most
efficient way has proven to be to calculate n{r} on a fine mesh of
points r in the unit cell from the known n{G), calculate V. {r} and
exc{r) via (2.68) and (2.63)-(2.64)., and subsequently make a Fourier
inversion to obtain V..(G) and ex (G} : this is discussed in a little
more detail in section 2.5.

Now we can calculate Eio+ from the self-consistent Cn,k(c) and
En(k} of (2.39), but to arrive at this self-consistent solution some
steps still have to be discussed. The first item is the potential
V,”(M.k-l-C') with which one starts. One possibility is to do a
calculation with the form factors from the Empirical-Pseudopotential
Method (EPM) first [37] and to use the density n{G) from this
calculation to calculate a first guess for the screening potential
Vace(G):

Vaer(G) = Vie(G) + Vu(G). (2.69)

In the EPM -which is not self-consistent— a set of equations of the
form {2.39) is solved with a local potential of the form:

V(G-C') = > $,(6-6") vg‘(lc—c"l), (2.70)

which replaces the complete V.s:(k+G k+G') in (2.38). In (2.70) the
Vss(q} are called form factors and these are chosen unequal to zero
for just a few values of q lower than some Qmax. These form factors
are then considered as adjustable to obtain a band structure En(k) in
agreement with experiment. In such a calculation moderate numbers of
PW's are usually sufficient. Other possibilities are to use a
superposition of atomic charge densities, from which a Vs.r may be
calculated, or to screen a {local or nonlocal) ion-pseudopotential by
a model dielectric function [38].

So far we bhave not discussed one of the main problems of this
calculational scheme: it seems that (2.39) will have to be solved for
very many k points in order to approximate the integrations over 1BZ
occurring frequently, e.g., in the calculation {2.44) of n{(G). In
practice one can -~especially for semiconductors and insulators~
suffice with calculations for just a few special points in 1BZ. This
is explained in chapter 3, where a modified form for {2.44) is derived
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to be used in connection with special points.

Now we have all the equipment to determine self-consistent
solutions of the KS-equations and to calculate the total energy: with
some screening potential to start with (V;Z;(G—G’)), which is added to
the ion~core pseudopotentials, we must solve the set of equations
{(2.39) for a few k points. By the formula to be derived in chapter 3
we calculate the n{G) from which a new screening potential V;::;(G—G‘)
is calculated as described above. V;é;(G—G') is used as input for the
next cycle and all steps are repeated. This whole procedure is
repeated until self-consistency is achieved, i.e., V;:n)' and V;;;” are
equal to within some prescribed accuracy. In practical ealculations
the input and output screening potentials are mixed to accelerate

convergence:

v;;;“ =a v;;; + (1 - vyt (2.71)

The mixing coefficient a is usually chosen between 3 and 1 and may

depend on the iteration number n. A more sophisticated convergence—
acceleration scheme is the Broyden scheme introduced in solid-state
calculations by Bendt and Zunger [39].

The whole calculational scheme is applicable, in principle, to any
crystal. In practice, the applicability is limited to those crystals
for which certain assumptions that were made hold, e.g., we should not
construct a crystal in which cores overlap: this would make the
pseudopotential approximation (see section 2.2) unreliable and
contradicts the assumption made in connection with (2.3le). One is
also limited by the question whether sensible results can be obtained
with technical approximations that must be made to make calculations

feasible; these technical approximations are discussed in section 2.5.



2.4 Matrix elements of normconserving pseudopotentials

In this section explicit matrix elements between PW’s of tabulated
versions of norm-conserving ion-core pseudopotentials are given. These
are of almost direct use in (2.41)-(2.42). Two such tables exist: in
ref.[40] and in ref.[14]. The first gives parameterized potentials in
r-space for the elements Si, C, Ga, and P, whereas the second covers
the whole periodic table from H to Pu.

In ref.[40] one of the &-components (&,) of the pseudopotential is
considered as the local part. In the notation of (2.33), the pseudo-
potentials are given by (we drop the subscript j because all formulae

refer to only one -arbitrary- element):

2 5 -a,(8,)r?
loc(r) Ve.,(r) =T 4:eo [%— erf(v/Zr) - iglci(&,)e ’ ]’
(2.72a)
~a, (&)r?
AVy(r) = o= (1 = 5, ) 2 c;(2)e . i (2.72b)

The matrix elements of the local part between PW’s exp(i(k+G)-r) and
exp(i(k+G')+r), according to (2.42b), are easily shown to equal:

-q /4a°
V1o (661 =V, (66') = e.,n.t [—- e -
/5 i -q%/4a(8,)
2 > ci(e.,)aimz(eo)e ., (2.73)
i=1
where q = |q| = |G-G'|. The quantity defined by (2.52), giving the

finite part of the average of the local part of the pseudopotential,
is for the form (2.72a) given by:

31
hﬂ@

c; (Lo )a‘°’2(e 3. (2.74)

i=1

To obtain the matrix elements of the nonlocal part one expands the
P¥W’s in Legendre polynomials PE and spherical Bessel functions of the
first kind iy [41]:

36



L]
JKr_ s 1%5,(kr) (26+1)P(cosp). (2.75)
é=0

where § is the angle between K and r and X = le Using the addition
theorem and the orthonormality of spherical harmonics on the unit
sphere [42], we obtain from {2.42d}:

o0
AV, (G, k4G ) = 3%(28+1}P8(c051)Jje(Kr)jg(K'r)AVe(r)rzdr,(2.76)
0

where K = |K| = |[k+G|,K' = |K'| = |kG'| and cosy = (K-K')/KK' and
cosy = 1 if K or K' equals zero. For functions AVe(r) of the form
r?" exp(-ar?) (a > 0. n = 0,1,2,...), the integral can be performed
analytically [43], and for the form (2.72b) we obtain (We note that a
factor of (2£+1) is missing in eq. (19) of ref.[44]):

2 5

L] — & - *
AV, (ktG,IevG') = —2—(1 (Se’eo)(28+1)Pe(cos~g)i§1c:i(£)l“e'ai(g)(K,K )
(2.77a)

with
2,012
, N g _K7K

Fe’a(K,K ) = ;;;/—;he [g] e 4 , (2.7713}

where he(z) is a modified spherical Bessel function of the first kind,
which for 2 = 0,%1,%2,... only involves the calculation of functions
not more complicated than one hyperbolic sine and/or cosine. In the
pseudopotential approach only values € = 0,1,2,... occur. We note that
the values of the parameters a,, ai{é}, ci(e) (1;';0,1,2, i=1...5) as
given in table I and II in ref.[40] may only be used when Hartree a.u.
are used. In the formulae (2.72}~(2.74) and (2.77) -where MKS units

are used- the occurring parameters %o, and ¢, are those from the

i
tables divided by the MKS-value of ag . ai, and a , respectively.
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In ref.[14] the pseudopotentials are parametrized as follows:

{r) = Veore(r) = Z c“’" erf{Va °°'"°r) (2.78a)

Ioc 4#&,

--ati(e)r2
AV,(r) = 2 (A, (&)+r2A 143(8))e ; (2.78b)

Parameters are such that ci""e + cg"e = 1, so that vloc has the

Coulomb tail. The corresponding matrix elements between PW’s are:

) 2 _q2/4a;ore
(GG ) =--28_ S ceoree (2.79)

€ollat i=1 1 qz

loc

AV, (k+G.KG") = “’—1&—2?‘}19— P,(cosy) x
o

3
ié [A (2) A,+3(e)da (e)] . ai(e){K'K')' (2.80)

where all quantities are defined as before and

d . 3 K24K'2 e+l . KK'
Llry o) = [ 3o E2 L 8, oy - Bp

qaz
(2.81)

In practice, it is better to use V.ore(r) + AVé(r) for one selected
value of £ as local potential Vloc(r}' In this way both the local and
the remaining nonlocal part of the pseudopotential are weaker [30].
From the above formulae one straightforwardly finds new expressions
for local and nonlocal parts (2.79)-(2.80). Parameters c;“",
q;°”(i=1,2), aj{é) {(i=1...6, £ = 0,1,2,(3)) are given in table IV
in ref.[14], whereas the AJ.(L’) (j=1...6, £=0,1,2,(3)) must be obtained
from tabulated parameters cj(e) by a numerically rather umstable but
straightforward procedure. This instability, however, has not much
consequénce for the accuracy of AVe(r) in (2.78b) [45]. Again we note
that the values of all parameters in the table are to be used in
connection with Hartreee a.u. only and must be rescaled for use in

other unit systems.
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Fig. 2.1 Norm—-conserving ion-core pseudopotentials:
(a} silicon, ref.[40]. (b) carbon, ref.[80],
{c) silicon, ref.[14], (d) carbon, ref.[14].
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In fig. 2.1 we show examples of both sets of pseudopotentials for

8i and C as a function of r.
remark below (2.33), that the pseudopotentials

It is observed,

tail for large r and are finite for r =

in accordance with the
vie" have the Coulomb
0. The £&=1-component for C is

39



very deep, because the core of carbon does not contain p electrons, so
there is practically no cancellation of the strong Coulomb potential
(see (2.20)). As Vé“‘ for £=1 deviates strongly from the £=0 and £=2
components, it is not preferable to take the &=1 component as the
local potential, since this would lead to large (strong) AVe(r) for
2=0,2.

Figure 2.1 also suggests that the potentials from ref.[40] are
probably more suited to be used with a PW-basis than those of
ref.[14], because the deeper potentials require larger G-G' to
describe the well for small r. This suggestion is confirmed by Nielsen
and Martin [30]. We have used the pseudopotentials of ref.[40] in all
our calculations reported in this work with £,=0 (see (2.73) and
(2.74)). As a final remark we note that fig. 2.1(a) deviates from the
picture in ref.[40] for £=2. We speculate that the latter was obtained
from the not yet parametrized (numerical) potential or with the
parametrized form with non-rounded parameters, whereas we used the

parameters from table I in ref.[40].

2.5 Cutoff parameters

The formalism in section 2.3 was derived assuming an expansion in an
infinite number of PW’s of all functions in r-space and consequently
infinite summations over reciprocal-lattice vectors G in all formulae.
In actual calculations these infinities of course are replaced by
finite expansions and summations. This introduces what may be called
technical or numerical approximations, in contrast to conceptual
approximations like the one-electron picture or the LDA. These
technical approximations are represented by so-called cutoffs. As was
mentioned in section 2.3 also the integrations over 1BZ, occurring
frequently, must be approximated, and so must the inverse Fourier
transform to calculate eyx.(r) and Vi (r).

In this section we will discuss the various cutoffs of our
calculational scheme and their importance. The two most crucial
cutoffs are the number of PW’s into which the wave function is
expanded in (2.38) and a cutoff related to the number of k points used

to integrate over 1BZ. We will discuss two.other cutoffs as well.
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{(A) The number of P¥’'s Npy in the expansion {2.38) is determined by
a kinetic-energy cutoff Epy ! PW’'s are included in the expansion only
if their kinetic energy (h%/2m)(k+G)® does not exceed Epy. Put
differently: a sphere of radius Gmax = (2mEry)'’2/h and centre k is
constructed in reciprocal space and all reciprocal-lattice vectors G
within or on the sphere are included in the expansion. Clearly Npy
depends on k, though not very heavily, since k is a reduced wave
vector; so in changing k the sphere is never shifted over a distance
klarger than a reciprocal-lattice vector. By this construction wave
functions “{’n,k(r} are described with the same resolution in r-space
for every k: variations of \bn’k(r) on a length scale larger than
27/Gpax are correctly described. One could avoid the k-dependence of
New by including all G's with (h%/2m)G® ¢ Epy. but in that case
\#n'k(r) may loose its symmetry properties. A reasonable estimate for
Npy is obtained by dividing the volume of a sphere of radius Guax by
the volume of 1BZ of a Bravais lattice with unit-cell volume Q.
(volume of 1BZ then is (27)°/Q.):

pr <d . (2. 82)
6r°h°

This shows that Npy scales linearly with {}; if the same resolution in
r-space (same Epy) is desired. ,

(B) As a consequence of (2.44}, n{r) will be expanded in many more
P¥W’s than the wave functions are, namely PW’'s exp(iG'+r), where G' is
any difference vector of wave vectors k+G included in the expansion
{2.38). This implies that n(G) will come out zero for very large G
(I6] > 2Gmax). whereas n(G) for |G| closely below 2Gmax will be
relatively less accurate, since a too little number of k+G-pairs have
this large difference. This is however not a problem, since for smooth
wave functions the cn'k(c} fall off with increasing |6]. Therefore
these relatively less accurate n{G) are small anyway and unimportant
in the caleulation of n{r) or in the summations in E:.:. The large and
therefore important n(G) with small |G| are more accurate because many
k+G-pairs (especially the ones with small |k+G|, which have large
Cn’k(G)) have this small difference. We may include in all summations
over G only those with |G| < aGmax, with 1.5<a<2. It is only for these
G then that n{G}, Vu{G}, Vx(G), and &x.{G) need be calculated. This

41



may be done by introducing another cutoff N,:, being the number of
stars of G vectors taken into account. A star is a set of G vectors
transforming into each other under the operations of the point group
of the crystal under consideration. Ns¢ is a less important cutoff,
since convergence of the summations in Ei,: can be obtained to within
sufficient accuracy without substantial increase in computational
effort. To be on the safe side, one may choose Ny, such that a=2. Note
that this choice increases the number of terms in a summation over G
in Ei{,:+ with roughly a factor of 8 compared to the number of terms in
the expansion (2.38) (Ney ~ G%nax).

{(C) The approximation of the integral over 1BZ by a weighted sum
over special points in the irreducible part of 1BZ can be represented
by a cutoff limiting the number of special points used. This cutoff is
discussed in chapter 3, where the theory of special points is
presented together with examples and applications. Here, we suffice
with the remark that with one or two special points already very
accurate energy differences can be obtained, e.g., in the situation
where the lattice parameters are varied, but Epy is kept constant. If
we retain the same crystal structure, this simulates putting a crystal
under pressure, while describing the wave functions with constant
resolution (see chapter §).

{D) As final cutoff parameter, we discuss the number of grid points
in the unit cell of the crystél for which n(r) and consequently V.c(r)
and exc(r) (see section 2.3) must be calculated before Fourier
inverting to obtain Vx.{G) and e..(G). Both the calculation of n(r)
and the two Fourier inversions are performed by standard 3-dimensional
discrete complex Fast Fourier Transform (FFT) [46]. To obtain Fourier
components for reciprocal-lattice vectors G, n{r) must be calculated
for r = ftynta+{ts, where {ti}1=1,2.3 is the set of basis vectors
spanning the unit cell in r-space and §F=i/N; (i=1...N;), m=j/Nz
{j=1...N2), (=k/Na (k=1...N3). The number of grid points is Ni{NzN;.
The numbers Nn {n=1,2,3) must be chosen at least so large that
N > max{mn}, where max{mn} is the maximum component along basis
vector i,’n of the reciprocal lattice that occurs in the set of G for
which the Fourier component is desired. This is an absolute minimal
requirement in order not to get complete nonsense; for instance, if
N =max{m } (n=1,2,3), the Fourier component for G=2'3' N b would be

{n=1}y n n
equal to the G=0 Fourier component in a FFT, whereas the former should



in fact be orders of magnitude smaller for the smooth functions
concerned. A very safe rule of thumb is to choose Nn equal to 2mx{mn}
and to disregard all Fourier components for G with components along
basis vector bn between max{mn} and 2max{mn}. The determination of
satisfactory Nn can also be done by checking in how far symmetry
properties of the Fourier components are satisfied: the crystal
symmetry of functions in r-space causes some Fourier components to be
equal to zero and some of the (generally complex) Fourier components
to be real. The Nn can be adjusted to satisfy the requirements for
these Fourier components to within some desired accuracy. We remark
that this is a much more direct way of determining suitable Nn than
the one that was used in ref.[47], where the effect of enlarging Nn on
Eioy was studied.

Just as Nsy the Nn are relatively unimportant cutoffs because FFT
is such an efficient technique that convergence with respect to
increasing Nn to within sufficient accuracy can be achieved with very
modest computational effort.
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CHAPTER 3

SPECTAL POINTS IN THE FIRST BRILLOUIN ZONE

In the calculational scheme described in the preceding chapter, there
is a need, among others, to accurately determine the valence-electron
charge density p(r) (see (2.27) and (2.29}):

pr) =enr) =e 3 3 Iy, (017, 3.1)

m,ocec

and the band-structure energy E(H’k)En(k) (see (2.58)). In these
expressions the sum over k represents in fact an average over 1BZ of
the k-dependent function. Note that in both cases the k-dependent
function is periodic in reciprocal space, i.e., g(k)} = g{k+G) for any
reciprocal~lattice vector G. If we were to evaluate the necessary
3~dimensional integrals by calculating the integrand at a fine mesh of
k points in 1BZ, we would have to solve the set of equations (2.39)
for a very large number of k points. From a computational point of
view this should be considered as undesirable. It was an important
discovery by Baldereschi around 1973 that the average is already very
reasonably approximated by calculating the integrand at just a single
k point, the so-called mean-value point [48]. Based on this idea Chadi
and Cohen gave a systematic way of choosing successively larger sets
of so-called special points, resulting in successively better
approximations for the average [49]. Other systematic approaches were
later proposed by Monkhorst and Pack as well as Evarestov and Smirnov
{50,51,52]. A review of the use of special points in solid state
physics can be found in ref.[52].

The use of special points has proven to be essential to make the
scheme of chapter 2 manageable for calculations on solids. Especially .
for semiconductors and insulators special-point approximations are
very suitable. For these solids we deal with completely filled energy
bands, implying that for every k point the same number of states is
occupied in the ground state. Therefore, the summation over occupied
states in {2.58) and (3.1} can be performed before the average is
evaluated. In the case of metals, for instance, not all bands are
completely filled and we have to determine the Fermi level first to
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find cout how many bands are occupied for an arbitrary k point. The
values of En(k) for just a few k points do not suffice to determine
the Fermi level. So the application to metals is not impossible, but
less practical, since it requires sets with a large number of special
points.

In section 3.1 we present the general theory of special points and
derive a formula showing how to calculate for general crystal symmetry
the Fourier components of the valence-charge density, p(G)., from the
solutions Qn'k(G') of (2.39) for just a few k points only. This
formila replaces (2.44) in actual calculations. In section 3.2 the
Monkhorst—Pack (MP) scheme for the generation of special-point sets is
described; this scheme is formulated in a way suited for automatic
generation. We will give very efficient automatic integration schemes
for a subset of the MP-sets applicable in the respective cases of
face-centred cubic (fcc) crystals with point group On, Ts4 or O and
hexagonal crystals with point group Dsn, Cev. De or Dsn. For the
notion of crystallographic point groups, for which we employ the
Schionfliess notation [53], ‘we refer to chapter 4. We note here that in
most of the pioneering work on special points the fact that the
application of special point sets not only depends on the Bravais
lattice, but also on the point group of the specific crystal, was not
mentioned (see section 3.1)}. In section 3.3 the degree of accuracy of
successively larger MP-sets is discussed in the application to the
integration of energy bands. In section 3.4 we present prescriptions
to select special-point sets for structurally different crystals the
total energies of which one wishes to compare. A good procedure for an
equivalent choice in both cases 1is essential for the accurate

determination of energy differences between such crystals.

3.1 General theory and application to charge-density calculations

Any function g(k) that is periodic in reciprocal space can be

expressed as a Fourier series {cf. (2.34)):

w kR \
gk) = 2 ge . (3.2)

n=0
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where the Rn are lattice vectors (R, = 0). We introduce the function:
1
£(k) = <g(k)>y = §— 2 g(ok). (3.3)
a o

where the sum runs over all operations ¢ in the lattice point group %
and where Na is the number of elements in % . By definition, % is the
largest crystallographic point group that leaves the Bravais lattice
under consideration invariant; it therefore contains at least the
identity E and the inversion I. The function f(k) is clearly invariant
under all operations in %, . f.e., f(k) = f{ok), and is said to possess
the complete symmetry of the lattice. The construction defined by
{3.3) and leading to f(k) is called “symmetrisation of g(k)} with
respect to the point group 4.”.
The function f{k)} can be expanded as follows:

f(k) = £, + 21 £ A (K), (3.4)
m=
where
ik-R
AK = 3 e n (m=1,2,...). (3.5)
lnm;scm

and where f, = go. The sum in {3.5) is over stars of lattice vectors,
i.e., lattice vectors that transform into each other under operations
of the lattice point group. The stars are ordered in such a way that
o< Cm < le. The Am(k) are called symmetrised plane waves, since
they are sums of plane waves exp(ik*Rm} having the complete symmetry
of the lattice. From (3.5) it is clear that the Am(k) are periodic.
Another important property is that their average over 1BZ vanishes:

Q 3
< A (K)d’k = O (m=1,2,...). (3.6)
(2r)® mfz " "

Equation (3.6) implies that the average of f(k) over 1BZ is just f,.
Suppose a point k, would exist such that:
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A (ko) = 0 (m=1,2,...M), (3.7)

for M » ©, In that case it is clear from (3.4) that the average f,
equals f(k,). There is no lattice for which such a point exists, but
we may attempt to find the point that satisfies (3.7) for as large an
M as possible. For a smooth function of k the coefficients fm in (3.4)
fall off with increasing m and we find a reasonable approximation to
f, with one point only. Chadi and Cohen have generalised this idea to
obtain sets of Nsp, special points kS with weighting factors W
(s = 1...Ns,) that satisfy:

> wA (k) =0 (m=1,2...%-1), (3.8)
S
> w, =1, _ (3.9)
S

where the sum is over special points (s = 1...N.,). In their scheme,
it is possible to make M in (3.8) as large as one desires by carefully
selecting more and more special points. The special points can always
be chosen to lie in the irreducible wedge of 1BZ (IBZ), because the
Am(k) have the complete symmetry of the lattice. The average over 1BZ,
f,. according to (3.4), (3.8), and (3.9) can now be written as:

f, =2 w.i(k) - > > w i A (k). (3.10)
s m=M s

The first coefficient fm appearing in (3.10) is fM. Therefore, for

smooth functions f(k) the approximation:
fo = gwsf(ks), (3.11)

improves, if the value of M is increased. This can be achieved by
increasing the number of special points Ns,. The task is to find sets
that lead to large values of M with N;, values as small as poésible.
The efficiency of a special-point set is often denoted by the ratio
(M-1)/N.p.

A function Am(k) for which (3.8) holds is called: a symmetrised

plane wave that is integrated exactly by the special-point set. We
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introduce RM as the length of the lattice vector RM associated with
the first symmetrised plane wave that is not integrated exactly by a
special-point set. In general, many Am(k) with m > M are also
integrated exactly by such a special-point set. RM is a slightly
better quantity than M to characterize a special-point set, since in
case of more stars with the same Cm the ordering is not unique. In the
sense of section 2.5, RM can be called: the cutoff parameter that is
associated with the special-points approximation (3.11)}. At first
gight, it might seem that RM is a cutoff similar to Epy {or Gnax ® see
section 2.5). There is, however, an important difference: plane waves
with kinetic energy larger than Epy are really excluded from the
expansion of the wave function, whereas an infinite number of Am(k)
with m > M may still be included in the expansion of the function to
be averaged, because they are integrated exacfly anyhow.

If we let all operations a of the lattice point group operate on
the ks in IBZ, we find a set of k points in 1BZ. The number of
actually different points in the latter set we call Naz. This number
is connected to the symmetry and thereby to the weights LA of the
special points: a special point of high symmetry is mapped onto fewer
points in 1BZ and because of that has lower weight. Put differently:
the weight of a special point ks is proportional to the number of
different k points obtained (note that two k points both situated at a
BZ face and separated by a reciprocal-lattice vector are considered to
be equal).

In order to characterize a given special-point set, each of the
three above introduced parameters, Ni,. RM’ and Ngz, has its own
relevance. Though these parameters are strongly related, each of them
emphasizes a specific aspect of the special-point set under con-
sideration. Generally speaking, the integral or average of a function
over 1BZ is better approximated the larger these quantities are.

We now come to the question of how to apply the special-point sets
defined above to the determination of the average over 1BZ of periodic
functions g(k) in crystals. As is easily deduced from (3.2), this
average equals g, and can be approximated by (use (3.3) and (3.11)}:

go=3w i I slok). (3.12)
s



If no direct relation exists between g(k) and g{ck) for any o € %,
one has to calculate g(aks) for all Ng; different k points a:ks. The
k-dependent functions En(k) and pk(r), to which we wish to apply the
special-point set procedure, however, are clearly different in this
respect: ,
(1) The function En(k) is invariant under operations of the crys—
tallographic point group %c. In general, % is a subgroup of %_..
Furthermore, because of invariance under time-reversal, the relation
En(k) = En(—-k) holds, even if the inversion I is not contained in %c.
{(2) The function ’pk{r) also has inversion symmetry because of
time-reversal symmetry. Furthermore, pk{r} and pﬁk(r) are related if
B € ¥¢ {This relation will be derived below). )
It is helpful to define the point group %c, which coincides with %¢ if
% contains I and is the direct-product group %cxI if %¢ does not
contain I {We define %4cxI as follows: B € %¢xI only if B = ajaz with
a1 € 9c and an is either E or I). From the above it is clear that,
because of the above quoted symmetry properties (1) and (2}, En(k) and
pk(r)“only have to be evaluated at points ks’ that are inequivalent
with respect te %;. The weighting factor W belonging to ks' is
proportional to the number of different k points in 1BZ obtained if
the operations of %¢ act on ks" The LA again sum to unity. If %¢ is
jdentical to 4. the special-point set {ks;ws} is recovered.

From now on we will consider only cases in which $({ is identical to
%_ as these cases are most common {and apply in all our examples).
From the above discussion it is clear that special-point sets for
other cases can straightforwardly be constructed as well. We note that
the restriction to cases for which %¢ equals ¥ still allows that the
same special-point set {ks-:ws}, derived using %., may be applied to
crystal structures with different crystallographic point.groups. More
precisely, the same special-point set may be used for all crystallo~
graphic point groups $¢ which are either equal to %, or which fulfill
the relation ¥;xI = % . For example, special-point sets for the fcc
Bravais lattice (%, = Oy) may be applied to the diamond structure,
with %c = On, the zincblende structure, with %: = T4, and structures
with %c = 0, since Op = TyxI and Oy = OxI. Similarly, special-point
sets for hexagonal Bravais lattices (%, = Dgn) may be applied to
crystal structures with 9; = Dgn,Csev.Ds or Dan. For both lattices the
reason is the invariance of En(k) and pk{r) with respect to the
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inversion k - k.

Since, for the cases to be considered from now on, En{k) has the
complete symmetry of the lattice, the average involved in (2.58) is,
according to (3.11), approximated by:

n’Ek E (k) = §“’s n?occE"(kS)' (3.13)
Equation (3.13) shows that, much to our advantage, eqs. {2.39) have to
be solved for the special points kS only. The situation is a bit more
complicated for the calculation of p{r), since pk(r) is generally not
invariant under operatmns of the crystal point group . However, pk(‘r)
and PeKc {(r) are related for all B €Y and we furthermore have,
pk(r) = p__k(r) This leads to the possibllity to calculate Fourier
components of p(r) directly from the solutions C (G) of egs. {2.39)
for the special points k=ks only. We will now derive ‘the formula that
makes this explicit and that will replace the so far only formally
useful formula (2.44). ‘

The function pk(r) is periodic in r-space ahd may therefore be
expanded in a Fourier series:

Py (r) = g Py (€)' E'T. ~ (3.14a)
f’rom egs. (2.27) and (2.44) v}e infer:
€ =e I 3 C(E)C, (C+6). (3.14b)
“n,occ G’ ! '

Equation {3.12} applied to g(k) = pk(r} leads to:
1
p(r) =2w 5 2 Py (7). (3.152)
8 o a€% s :
Because of time-reversal symmetry, we may always write:
. :
plr) =2 w, = 2 ppg (7). (3.15b)
8 B pesc ] «

where the second summation is over N33 operations B in %c. Realizing
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that %c is a group. so that a sum over B is also a sum over B!, and

substituting Fourier series for p(r) and pB'ik (r), we obtain via
S5

(3.15b):

1 ‘
p(G) = gws ﬁg g pB-iks(G). (3.150)

We now proceed as follows to express pB-1k(G) in terms of pk(G')=
Let %ﬁ be a operation of the space group with point-group part B,
associated nonprimitive translation T(B), and no primitive translation
(these notions are defined in chapter 4 together with a discussion of
the effect of an operation of the space group on general r-dependent

functions). Its effect on a pseudo-Bloch-function ¥ k(r) is:

E‘RB‘IIn,k(r) = \Pn'k(Br + 1(B)). . (3.16)

Since BR is a lattice vector if R is one, the Bloch character of

%B\pm k(r) implies:

eik-BR

¥, K (B(XR) + 7(8)) ¥, (BT + T(B))

- eip—ik*wn’k(pr + 7(B)). (3.17)

Equation (3.17) shows that \pn k(Br + 1(B)) is a Bloch function with
reduced wave vector B~ 'k or:

%B\"n,k(r) = \pl:l,B_ik(r). (3'18)
Substituting Fourier expansions for Vln‘k(l') and \I/I'quk(r) and using

the fact that a sum over reciprocal-lattice vectors G is also a sum

over B~'G for any B~' in %c. we obtain from (3.18):

Cn,k(c)ei(k"i'c) ‘T(B) = Cn,B_ik(ﬁ-lc)' (3-19)

Using this, we have from (3.14b):
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Ppr1y(G) =e 3 3 C o1, (BTI6)C 51y (BTIGI4G)

n,oce G' n,p

es &P TR g‘c;,k{c‘}cn,k(c'wc)

n,occ

py(Pe) P4 TR, (3.20)

Using {3.20) in (3.15¢). we obtain:

s

1 ipGe
p(€) = 3w, x=3PETE), (pc). (3.21)
BB . s
With (3.14b) we finally obtain the desired expression:

P@) = F- 3w, 3 TR 5 s ok, (€126, (6490). (3.22)

{)’ n,occ G'

An expression like (3.22) was given before [47]., but it contained at
least one (printing} error and no derivation was given; this combined
with the importance of (3.22) in actual calculations motivated the
detailed derivation given above. Equation (3.21) shows that for space
groups with all 7(B) = O (symmorphic space groups) the symmetrisation
with respect to the point group %: reduces to taking the arithmetical

mean over a star of reciprocal-lattice vectors.

3.2 Description and computerization of the Monkhorst—Pack scheme

A few schemes to generate special points as defined in section 3.1
have been proposed. Of these the most popular have been the scheme of
Chadi and Cohen [49] and the scheme of Monkhorst and Pack [50] with
extensions and generalisations [50-52,54]. The MP-scheme is more
systematic and therefore easier to computerize. In this section we
will describe this scheme.

The general procedure is to start with a set of k points:

k= upb1 -+ urbz + usbs, (3.23}
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where by ,bz, and bs are the basis vectors of the reciprocal lattice
and the components up,ur, and u, along these basis vectors have the

form (q is a positive integer):
u = {2j~q-1}/2q {j=1.2...q9). (3.24)

¥We define Rn to be the lattice vector with integer components ni,.ngz,
and nz along the basis vectors tj,tz, and tz of the direct lattice,
respectively. It can be shown that a sum over all q° points defined by
(3.23) and (3.24) of the plane wave exp(ik'Rn) equals zero for all Rn
for which holds:

Ini[ <q for i = 1,2 or 3. (3.25)

The set of q° points may be reduced to points lying in IBZ using
operations of the lattice point group. The resulting set is called a
set of N., special points ks with weighting factors L proportional to
the number of points in 1BZ they are equivalent with. The special-
point set {ks;ws} also sums exp(ik*Rn) to zero for all Rn given above.

This completes the description of the MP-scheme applicable to any
Bravais lattice. However, it appears to be possible for special cases
to generate more efficient special-point sets, i.e., with larger RM
and/or smaller N,,, by modifying or generalising the scheme described
above. In the following subsections we give such generation schemes
for the special cases of fcc and hexagonal Bravais lattices. We do not
employ the generalisation proposed in ref.[Bl], that implies the
addition of an arbitrary wave vector k, to (3.23), which may be varied
to optimize the efficiency.

3.2.1 MP-sets for face-centred cubic lattices

We start by choosing basis vectors for the reciprocal lattice of a fce
lattice : by = (2n/ac)}{(— ex + ey + €.}, bz = (2n/a.}(ex - e, + e.)},
and bz = {(2n/a.}{(ex + e, ~ e;), where a. is the lattice parameter of a
cubic lattice {see fig. 3.1(a)) and e..e,, and e, are unit vectors in

three Cartesian directions. With respect to these unit vectors we



ac \\ y tz \\
!
~o —t
~a. ’I f
3 ¥t x
[U— ] -—»’/

Fig. 3.1 {(a) The primitive unit cell of a fcc Bravais lattice is
spanned by three basis vectors: ty = %a.(e,+e.), ta = ¥a.{exte;),
ta = ¥a.(ex+e, )}, where a. is the lattice parameter of a cubic lattice.
(b} First Brillouin zone of a fcc Bravais lattice with symmetry points
in the irreducible port of the =zone, following the notation of
Bouckaert et al. [58].

write a k point as:

k= 2 (keeu + kye, + kie:) (3.26)
=4

The modified MP-scheme for fcc lattices is based on the observation
that half of the g° points defined by (3.24) for a simple cubic (sc)
lattice with lattice parameter 3a. lie in 1BZ of a fcc lattice with
lattice parameter a.. For this particular sc lattice the basis vectors
of the reciprocal lattice are: d: = (4n/a.)ex, dz = (4w/a.)e,, and
ds = (4n/a.)e;. The MP-points (3.24) are then given by (cofr. (3.26)):

k«.ky,k, = (2j-q-1)/q {(i=1.2...49). (3.27)

In the appendix of ref.[50], it is shown that the points given by
{3.27) that moreover lie in 1BZ of a fcc lattice with lattice
parameter a. form suitable points to integrate k-dependent functions
in fec lattices. The form of the MP-points given by (3.27) is
convenient to immediately select the points lying in IBZ of the fcec
lattice, since IBZ is determined by the conditions (see fig. 3.1(b)):



0<k: {ky ke 1. (3.28a)

ke + ky + k, € 372, (3.28b)

The equations (3.27)-(3.28) generate MP-sets of special points ks for
fee lattices. The accompanying weighting factors w, are simply
determined by the conditions that they (i) are inversely proportional
to the number of operations in % that leave ks invariant and (ii) sum
up to one.

As noted in ref.[50], it is advantageous to restrict q in (3.27) to
even values. If now q/2 is odd, the scheme may generate different
points in IBZ that are nevertheless equivalent, i.e., they transform
into each other under operations of the point group accompanied by
translations over reciprocal-lattice wvectors. This can occur for
points on that face of IBZ for which the equality in (3.28b) holds
(LKUW-face; see fig. 3.1(b}). For instance, for =10 both the points
(27/a.){0.9,0.3,0.3) and (27/2.)(0.7,0.7,0.1) are generated in IBZ,
satisfying (3.27)-(3.28), but closer analysis teaches that these
points are equivalent. Of these equivalent points only one is to be
included in the special-point set, with Wy determined as explained
before. The generation of inequivalent points in IBZ is completely
unambiguous if the additional condition k>,‘ { % is imposed on points on
the LUKW-face.

If 9/2 is even (or: g is 4-fold), no points are generated on the
LUKW~-face as may be checked from (3.27)~(3.28). Furthermore, kx.k,.
and k. do not take on values 0, % or 1. This results in the occurrence
of only three possible weighting factors w:

(1) w = 12/N if k« # ky and k, # k,,
(2) w= 6/N if ke =k, or k, = ks,
(3) w= 2/N if ke =k, and k, = k,.

Here N = (%q)°. So if q is taken to be 4-fold, egs. {3.27}-(3.28)
generate sets of special points the weighting factors of which are
immediately obtained by checking whether the point belongs to class
{1}, (2) or (3). All this leads to a very efficient computerization of
special-point approximations to Brillouin-zone integrations. The
scheme for q/2 odd can of course also be computerized, but in a more

cumbersome fashion. We will use the computerization scheme for q



4-fold to study the convergence of special-points approximations with
respect to increasing q (see section 3.3).

The important properties of MP-sets for fcc lattices can also be
expressed in terms of the parameter q. It can be shown that:

é—s- q{q+2)(q+4) q/2 even
Nup(@) = (3.2%)

é‘g (q+2) (g% +4q+12) a/2 0dd

Since half of the points given by (3.27) are situated in 1BZ of the
fece lattice, we obtain:

Naz(q) = %q°. - (3.29b)

One may prove for the cutoff an
Ry(q) = %qa.. (3.29¢)

From (3.29) we observe that for larger ¢q more }&m(k) are integrated
exactly (larger RM) and reciprocal space is sampled better (larger
Ngz) at the cost, however, of calculating the integrand at more k

points (larger N.,).

3.2.2 MP-sets for hexagonal lattices

In this section the MP-scheme modified to treat hexagonal lattices is
described [54]. For hexagonal lattices, we choose as basis vectors for
the reciprocal lattice: by = (2n/2){2/3v3e.), bz = (2n/a){1/3V3e.te, ).
by = {2r/c)e;, with a and ¢ the lattice parameters of a hexagonal
lattice (see fig. 3.2(a))}. Since in general a and ¢ will be such that
the length of bs differs from the length of bi and bz, it is advisable
to introduce two parameters . and q. that determine the mesh in

reciprocal space. The mesh of points in 1BZ is determined by:
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Fig. 3.2 ({a) The primitive unit cell of a hexagonal Bravais
lattice is spanned by three basis vectors: t{ = ¥%av3ex—ce,, t3 = ce,,
t5 = ce;, where a and ¢ are the lattice parameters of the hexagonal
lattice and § = 2u/3. (b) First Brillouin zone of a hexagonal Bravais
lattice with symmetry points in the irreducible part of the zone,
following the notation of Herring [56]. Basis vectors b; (i=1,2,3) are

given in the text.

=
=
]

(r-1)/qa (p=1,2...q.). (3.30a)

=]
I

{28~q~1)/2q. {(5=1,2...q.)- (3.30b)

The special points, lying in IBZ (see fig. 3.2(b)})}. follow from the

restrictions {apply point group Den):

0¢2u +u <1 | (3.31a)

0<u_ <u <% . {3.31b)
r p

0 < u, ¢ 4. {3.31c)

Regarding the dependence of the important properties on g, and q.,

it can be shown that:
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Nsp(qavqc) = Pa(Qa) Pc(Qc)f (3.323)

where

Pa(qa) = (a+1)(3ath) + 55 . (3.32b)

_ a = %(qa'ﬁ): B = qa mod 6, {3.32¢)
3q. qc even

Pe(qc) = $(ae+1) qe odd (3.32d)

In table 3.1 we give some values for P, and P.. From table 3.1 it is

clear that it is advantageous to choose . even. From {3.30) we have:

Noz(da.qc) = a2ae. (3.32e)

The dependence of RH on ¢. and q. is for these sets given by:

Ry(da.qc) = a(min(qa.qcc/a)). (3.32¢)

With min(x,y) we denote the minimum of x and y.

Palqa) P.(gc)

£
w
o2
a

© W NPT A W N e

W 0T AW N e
© O N O G W N e
G b W W N N =

12

Table 3.1. Dependence of the functions P, and P. determining the
number of specicl points (see (3.30a)) on the parameters g, and g..
respectively.



We have not attempted to prove (3.32f), but it holds in all cases
considered.

‘The sets determined by (3.30)-(3.31) do not have ambiquities like
in the fec case. Taking q. to be even, u, never assumes the value
zero. With this restriction there are always exactly 12 Dgp~operations
that leave the third component of a point k = [up.ur,us] invariant
(numbers between square brackets are always components with respect to
our choice of basis vectors). Therefore. the weighting factor, which
is inversely proportional to the number of Dsr~operations that leave
the complete k invariant, depends on the pair of components (up,uﬂr)

only. For q. and q. even we have 7 distinct possibilities:

{1) w = 2/Ngz if (up,ur) = (0,0),

(2) w = 6/Ngz if (up,ur) = {%,0),

(3) w = 12/Naz if (up,ur) = {p.p)and p # 1/3, 0 {p < %,

(4) w= Nz if (u.u) = (1/3,1/3),

(8} w = 12/Np; if (up,ur} = (p,0) and 0 < p <( %,

{(6) w = 12/Ngz if (up,ur) = (p.p') and p = ~¥p'+4, 0 { p,p’ < %,

(7) w = 24/Ng;z if (w,.u ) = (p.p’) and p # p', p # Yp'+4, 0 <p.p'< %

Npz is given by (3.32¢). Equations (3.30)-(3.31) together with the
easily determinable weights can be considered as an efficient
approximation scheme for integrals over 1BZ . We will use this scheme
in section 3.3.

3.3 Convergence of energy-band integrations using special points

In general, the accuracy of averaging over 1BZ using special-point
sets is hard to determine, since in most applications the evaluation
of the integrand at one k point already is a hard problem (In our
application the set of equations (2.39) must be solved). Furthermore,
we do not know how smooth the function of k is that we wish to average
or, equivalently, how rapidly the coefficients fm in expansion (3.4)
fall off. Based on global arguments and assuming smoothness of the
function to be averaged, it was argued in refs.[49] and [50] that the
error made by using a special-point set falls off propértional to R;ls.
In terms of the parameter g defined for MP-sets for fcc lattices, this

implies (see (3.29¢)) that this error falls off proportional to q~%.
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In this section, we study as an illustrative example the average
over 1BZ of the function f(k)=|k|?. This function has three nice
features for our purpose of studying the convergence of energy-band
integrations using special points: (i) it can be integrated exactly,
(ii) its average can with low computational effort be calculated with
very large numbers of special points, and (iii) it is an example of an
energy band, viz., the lowest energy band in a lattice where the
potential equals zero (the so-called empty lattice). We will study the
average of f(k) over 1BZ both for fcc and hexagonal lattices.

We start by evaluating the average Iecc of |k|® over 1BZ of a fce
lattice:

Irce =W J k|2 a®k. (3.33)
(@M 1pz(fce)

Substituting Qc{fcc) = iaz and realizing that the integrand has the
complete symmetry of the lattice point group On, so that the in-
tegration can be limited to IBZ (defined by (3.28)), we may write:

z
Irce = 12 [a&] T, {3.34a)
where
1 min(x, 3/2—x) min(y,3/2-y-x)
T= J dx | dy dz (xZ+y2+27). (3.34b)
0 0 0 :

After a straightforward but tedious calculation we find:

2 2
Ircc = ég-[g] = 0.593?5{53-}] : (3.35)

We also approximated Irc¢ by Ircc{q) using the MP-sets defined in
section 3.2.1 for q = 2,4,....16. The results are given in table 3.2,
vhere the last column gives the relative difference with the exact
result (3.35).
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q Nsp(q) Ircc(q) (in(2r/a:)?) &6 (in %)
2 1 3/4=0.75 +26.32
4 2 9/16=0.5625 - 5.26
6 6 23/36=0.6388 + 7.60
8 10 75/128=0. 58593775 -1.32
10 19 1491/2500=0. 5964 + 0.45
12 28 85/144=0.500277 - 0.58
14 44 5715/9604=0 . 59506456 + 0,22
16 60 © 303/512=0.59179769 - 0.33

Table 3.2. Approximations Ircc{g) of the average of |k|? over 1BZ
of a fcc lattice using progressively larger sets of special points
characterized by q. Ns,{q) is the number of special points in a set
with parameter g ond & is the relative difference with the exact
result Irce=0.59375. (A string of barred figures is recuwrring).

For 4-fold q, we used the computerization procedure described in
section 3.2.1 to calculate Ircc(gq} for very large values of g. The
surprising results is that all results of calculations with q 4-fold

are exactly given by:

Irco(a) = [ﬁ—j]z[%— iz-]. | (3.36)

Note that for q = = Ircc(q) converges to the exact result (3.35) as it
should. More interesting is that we seem to have an analytical result
for the approximation. Strictly speaking,kwe have not proven that
{3.38) holds for all q that are 4-fold, but in our calculations we
have found no exception in about 30 values of g the largest being
q=400. Presently, there seems little use in trying to prove (3.36),
since the formula has only illustrative purposes. It would however be
the first result of this kind as far as we know. As an illustration of
the efficiency of our computerization procedure, we mention that the
calculation of Ircc(q) for q=200 (N,,=85850) took only 1.6 seconds and
for q=400 (N,,=676700) only 12.0 seconds of processing time on a
Burroughs 7900 computer.
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Another important thing to notice concerning (3.38) is that the
error falls off proportional to q %, which is much moré unfavourable
than q”2 as suggested earlier for smooth functions. Of course our form
of an energy band is not very realistic: it is much sharper at the
edges of 1BZ than a real band structure is. A more realistic example
is given in chapter 5 (section 5.3): the example there also shows that
special-point approximation schemes converge much slower when
integrating energy bands En(k) than in the case of integrating pk(r).

We have also evaluated the average of |k|? over 1BZ of a hexagonal

lattice:
Tnex = ‘l—(—he’a‘l J k|2 a%k, (3.37)
(2m) 1BZ(hex)

where (.(hex)=%v3a®c. The integration in the z-direction (see fig.
3.2(b)) can be performed first so that an integral over a hexagon
remains. We eventually arrive at:

- 2 )

We denote the approximation to Ipex using a MP-set with parameters
g. and q. (see section 3.2.2) by Iyex{qga.qc). Again the integration in
‘the z~direction may be performed separately and we may write:

o) 2
Inex(ga.qc) = [—5{1 [Ia(Qa) + Ic(Qc)]- (3.39)
We calculated I,(qa.) and I.{q.) for a large number of values q, and q.
(béth chosen even) with the computerization scheme given in section
3.2.2. For I.{q:) we find numerically and analytically that again an
exact relation holds: v

2
Io(qe) = %[%] [1 - -%] (3.40)
@ ,

For Ia(qa) such a relation summarizing all calculations was not found.
In table 3.3 we give results for I.(q.)} for several values of qa.. The

results converge to the exact result Iugex = 5/27 (= 0.18_5).



qa Ia(qa)

4 0.1875
6 0.1882716
‘8 0.1875
10 0.1860
20 0.1855
100 0.185196
200 0.185188
400 0.1851858
1000 0.1851853

Table 3.3. Results of calculations of I.{q.) (defined in the text)
for various values of g,. Results are rounded to 7 figures behind the

decimal point.

Table 3.3 and eq. (3.40) show that, just as in the fcc case, a
reasonable approximation {(i.e., at the percentage level) is obtained
with small values of the g-parameter(s), but that the convergence to
the exact result is rather slow. We finally mention that the cal-
culation for q,=400 took 0.4 seconds and for q.=1000 took 1.6 seconds
of processing time on a Burroughs 7900 computer. This means that our
computerization procedure takes practically no time at all to
integrate a simple analytic function approximately, even if a very

dense set of points is used.

3.4 Equivalent special-point sets for structurally different crystals

In the preceding sections we have seen that a reasonable approximation
to an integral over 1BZ may be obtained by calculating the integrand
for just a few carefully selected points in IBZ., As was explained in
section 2.5, it usually is not possible to obtain a fully converged
value for the total energy Eio: —due to finite cutoffs that must be
used-, but what can be obtained are accurate total-energy differences
AEi,+. To this end one has to assure that all technical approximations

are made in an equivalent way in the calculations of Ei and Eg; Here,
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E; and E» are the total energies of crystals C; and Cz, respectively,
while E{~Ez=AE:,¢+. If approximations are made in an equivalent way,
the systematic part of the error will cancel when calculating a
total-energy difference. One may hope that this systematic part is the
larger part. In this section we discuss how approximations using
special points can be made in an equivalent way. We restrict ourselves
to cases in which C; and Cz contain the same type(s)} of atom{s). but
their crystal structure or lattice parameters are different.

In case the crystal structures of Cs; and C» are equal, but with
different lattice parameters, the symmetry of the crystals C; and C»
is clearly the same. Equivalent special-point approximations are then
obtained by using special points for crystal Cz which have the same
coordinates with respect to the basis vectors of the reciprocal
lattice of C; as the special points for crystal C, have with respect
to the basis vectors of the reciprocal lattice of Cy. This procedure
is in fact a scaling of special points with the basis vectors. That
such a prescription for equal crystal structures works well will be
shown in chapter 6 {section 6.2).

If the crystal structures of C; and Cz are different but the unit
cell of Cz can be obtained by small distortions of the unit cell of
Ci, a prescription similar to the one above is possible. Now the set
of undistorted k points in 1BZ of C; must be distorted by the
"reciprocal distortion” associated with the distortion in r-space. The
set of resulting points can be reduced with the point group of the
distorted crystal Ca. If C; has higher symmetry than Cp, the set of
special points for C; will be larger than the one for Ci. Obtaining
equivalence regarding special-point approximations in this way has
been successful in the calculation of phonon frequencies and elastic
properties of semiconductors [30]. Proceeding in the way described
above, energy differences have been determined with an accuracy of 1
in 10% using typically numbers of special points between 1 and 10.

This accuracy appears to be much harder to obtain if C; and C» are
not related by a small distortion of the unit cell. Such crystals will
be called structurally distinct.

In sections 3.1 and 3.2 we introduced three important parameters,
two of which determine the accuracy with which a special-point formula
like (3.11) approximates an average over 1BZ. These two parameters, RM
and Ngz, are of course closely related to the third parameter, the



number of special points Ny,. The parameter RM is especially relevant
in the case of smooth functions: expansion coefficients fm in (3.4)
then fall off rapidly with increasing m. so the accuracy is not
seriously affected if their associated symmetrised plane wave Am(k)
{m 2 M) is not integrated exactly. For functions the smoothness of
which is questionable, the relevance of RM is less clear: one does not
know a priori whether or not there are fm for m 2 M that are large and
whose Am(k) is not integrated exactly. In such cases the parameter Np;z
seems to be the more relevant one; it measures the number of sampling
points in ‘1BZ. In fact, this number does not guarantee a good
sampling, since to that end the Ng; points should furthermore be
distributed evenly over 1BZ. The evenness of the distribution is
related to the parameter RM as we will now illustrate. Consider the
MP-sets for hexagonal lattices from section 3.2.2. The parameters Ngz
and RH are then given by (3.32e) and (3.32f), respectively. Let for
some choice of q. and . the numbers q. and g.c/a be almost equal, and
let us enlarge Nz by enlarging q. but keeping q. constant. It is then
obvious that the distribution of points gets less even, while the
parameter RM soon will not increase anymore. To obtain a more even
distribution one should also increase q. and this in turn causes RM to
increase. As a general rule one should improve the sampling of 1BZ by
enlarging Ngz in such a way that also RM gets larger. This is a
natural way to obtain an even distribution. Note that for the fcc
lattice an even distribution is already assured by construction: all
directions are treated on an equal footing by using only one parameter
q (see (3.27)). As a result we have that if Ngz increases, RH
increases automatically (see (3.29}).

We will now propose a systematic way of choosing special-point sets
for structurally distinct crystals Cy and C2 so that the special-point
approximations are as equivalent as possible in the two cases. We call
such a pair of special-point sets equivalent special-point sets
(ESPS). From the discussion in the preceding paragraph the following
prescription follows naturally: special-point sets for C; and Cp
should be chosen such that RM{CI) and RM(Cz) as well as NEZ(CQ and
N;z(cz) are as close as possible. Here, N];Z is the number of k points
in a unit wolume in reciprocal space. By attempting to establish
equivalence of the parameter NEZ. we obtain a more or less equivalent

treatment of crystals with different volumes of 1BZ. More explicitly
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we express this as follows: suppose a special-point set for Cy is
chosen. We select a set for Cz, out of sets available, by minimizing

the following quantity:

[Ry(C2)-Ry(Ce)| N3, (C2)-Np,(C1) |
ReC) T N (Co)

(3.41)

If we improve the approximation of the average for C;, the above
prescription gives us a systematic way of improving the approximation
for Cz in an equivalent way. In this way we may hope ~there is no
guarantee— that the energy difference between C; and Cz converges
faster than the difference in individual total energies. If more is
known about the smoothness of the function to be averaged, the
expression (3.41) could be generalised to give more weight to one of

the two terms.

fce hexagonal

q Nap NEZ Ry(in a) Qa Qe Ns»n N});Z Ry(in a)
2 1 4 1.4 1 2 1 4 1.0

4 32 2.8 3 2 3 36 3.0

6 6 108 4.2 4 4 8 128 4.0
8 10 256 5.7 6 4 14 288 6.0
10 19 500 7.1 8 4 20 512 6.5

12 28 864 8.5 8 6 30 768 8.0
14 44 1372 9.9 10 6 42 1200 9.8
16 60 2048 11.3 12 8 76 2304 12.0

Table 3.4. Properties of eguivalent special-point sets (ESPS) for
fcc and hexagonal latiices. Nsp is the number of special points in
IBZ, NEZ the number of sampling points in a unit polwwe in reciprocal
space, which was chosen to be the vo}ume of 1BZ of a fcc lattice. RH
indicates the first symmetrised plane wmwave, in an expansion of a
periodic function in symmetrised p?ane waves, that is not integrated
exactly by the special—-point set. The parometers ¢, ga, oand g.
choracterize the sets completely (see section 3.2). RH is always

expressed in units of a, the hexagonal lattice parameter (a. = av2).
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In table 3.4 we give examples of ESPS for fee lattices and
hexagonal lattices selected from the large class of MP-sets described
in section 3.2. For the hexagonal lattice a c/a-ratioc of (2/3)v6 was
chosen. With this c/a-ratio the sets can be applied to the deter-
mination of energy differences between crystals with zincblende
structure and wurtzite structure {such applications are found in
chapter 6).

The zincblende structure consists of two fcc-sublattices with
different types of atoms on each sublattice and one sublattice shifted
over [%,%.%j with respect to the other (see fig. 3.1(a)). If the atoms
on the sublattices are the same, we have the diamond structure. In
both the zincblende and diamond structure, there are two atoms in a
primitive unit cell. The wurtzite structure has a hexagonal lattice
{see fig. 3.2(a)) with two types of atoms in the unit cell at
positions [0,0,0] and [2/3,1/3,1/2] for one type and at positions
[0.0.u] and [2/3,1/3,u+1/2] for the other. Usually u is around 3/8 and
the c/a-ratio is always close to (2/3)¥5=1.633. If c/a and u have
exactly these values, we speak -of an "ideal” wurtzite structure. In
that case, all atoms are at the centre of regular tetrahedra just as
in the zincblende structure (If the cubic lattice parameter a. equals
av2, these regular tetrahedra have the same size in both structures).
If all 4 atoms in the primitive unit cell are of the same type., we
have the hexagonal-diamond structure.

Sometimes an alternative exists to obtain equivalence in the
treatment of structurally distinct crystals; this alternative requires
the use of supercells for at least one of the crystals. Here we mean
by a supercell a unit cell containing more atoms than the primitive
unit cell but describing the same crystal. By using supercells, both
crystals can be described with a unit cell of similar symmetry. We
will illustrate this for the comparison of zincblende and wurtzite
structures in which all atoms are at the centre of regular tetrahedra
of the same size. We further assume that all bond lengths from atoms
at the centre to atoms at the corners of the regular tetrahedra are
equal. This implies: a. =av2, c/a=(2/3}¥6 and u = 3/8. The
zincblende structure can be described with a hexagonal unit cell
containing 6 atoms. This is schematically depicted in fig. 3.3, where

a plane is shown containing the z-axis and the atoms in a hexagonal
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Fig. 3.3 Schematic representation of atomic positions and bonds in
an equivalent plane for the zincblende and the wurtzite structure. The
z-direction is along the [I,I,I]directioh of the zincblende structure
{(cf. fig. 3.1(a)) and the usual z-direction of the wurtzite structure
{cf. fig. 3.2{a}). If For both structures a unit cell with hexagonal
symmetry is chosen, the little arrows dencote the atoms in such a unit
cell. The characters A, B, and C denote the type of position the atoms
occupy in a plane perpendicular to the z-direction (see fig. 3.4).

Fig. 3.4 Schemotic representation of atomic positions in planes
perpendicular to the z-direction in fig. 3.3. The vectors ti and tz
are as in fig. 3.2(a). The atoms in one plane all occupy either A- or

B~ or C-type positions and are arranged in equilateral triangles.

69



unit cell (denoted by little arrows)}. The c'~axis points in the
[1.1,1]direction of the zincblende structure (see fig. 3.1{a)). In
fig. 3.3 an equivalent plane is also shown for the wurtzite structure.
In planes perpendicular to the z-axis that go through the atomic
positions shown in fig. 3.3 the atoms are all of the same type and are
arranged in equilateral triangles with side a. The atoms in such a
plane all occupy either A- or B~ or C-type positions {fig. 3.4). From
fig. 3.3 we see that ¢' = 3c¢/2, therefore the height of 1BZ for the
"hexagonal-zincblende" structure will be 2/3 times the height of 1BZ
for the wurtzite structure (cf. fig. 3.2(b)). By choosing q. equal for
both structures and q.'s with a ratio of 2/3 {e.g., q. = 4 for
"hexagonal-zincblende” and q. = 6 for wurtzite), RM is exactly equal
for both sets (see (3.32f}). Even more important for the equivalence
of such sets is that not only NEZ is also exactly equal, but that the
sample k points in all of reciprocal space (to be found by repeating
the k points in 1BZ along the basis vectors of the reciprocal lattice)
are identical for both sets. Recently, this procedure was followed in
ref.[57]. The disadvantage of this scheme is clear from eq. (2.82): by
enlarging the unit cell with a factor of three, Npy is multiplied by
three (when keeping the resolution with which the wave functions are
described constant, i.e., constant Epy). Compared to using a primitive
unit cell this approach increases the computational effort in solving
the set of equations (2.39) by a factor of 3% = 27 and the compu~
tational effort in calculating the (complicated) matrix elements of
the nonlocal potential by a factor of 32 = 9.
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CHAPTER 4

EXPLOITATION OF CRYSTAL SYMMETRY
FOR ELECTRONIC ENERGY BANDS AND STATES

In this chapter we present concepts and examples of how group theory
may be used to reduce the size of secular equations of the type (2.39)
if the reduced wave vector k occupies a symmetric pesition in the
first Brillouin zone (1BZ). If there were no limits on the capacity of
computers and the access users have to them, this chapfer would be
superfluous, but since these limits exist the material presented here
can be of great help to reduce the computational effort.

We will not give a complete description of group theory as applied
to the study of crystals - it can be found in a number of textbooks
[58,59,60]~, but limit ourselves to the problem of simplifying the
diagonalization of a Hamiltonian matrix expressed with respect to a
basis of plane waves (PW's). We also pay attention to how the
eigenvectors of this métrix should be handled in order to evaluate the
valence~charge density (see chapter 2). Only concepts and results of
group theory needed for this purpose will be presented, but no
detailed discussions or proofs of these will be given,

The structure of a crystal is completely defined by specifying :
{i} 3 linearly independent basis vectors t,,tz, and t3 and (ii) the
positions and types of atoms in a unit cell spanned by these vectors.
The crystal structure can alternatively be classified by giving its
space group %. The symmetry operations of % consist of primitive
translations —-i.e., translations over vectors R = njti4nztaingts with
n;,nz, and na integers-, rotations around symmetry axes, reflections
through planes, an inversion in the origin or combinations thereof.
Some rotations, reflections or the inversion in the origin have a
nonprimitive translation T associated with them. Space groups
containing these last type of operations are called non-symmorphic
space groups, in contrast to symmorphic space groups, where none of
the symmetry operations has a nonprimitive translation.

Following the notation of ref.[58], we denote an operation of the
space group by {%[R}, where R is the primitive translation and #%

denotes an orthogonal, i.e., length-preserving operation, possibly
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accompanied by a nonprimitive translation. The group of primitive
translations J consisting of operations {E|R}, where E denotes the
identity, is an invariant subgroup of ¥. The group consisting of
operations {%|0}, neglecting possible nonprimitive translations, is
called the crystallographic point group %,. In case of symmorphic
space groups, there is a neat division of a symmetry operation {ERIR}
into a purely orthogonal transfomation {%|0} and a pure translation
{E|R}. For a non-symmorphic space group this is not possible, since
with some orthogonal transformations a (nonprimitive) translation is
associated. In that case 4, is not a subgroup of 4.
In this work we will use the notation of Schinfliess [53] to denote
space groups and point groups. In this notation the zincblende
structure has (symmorphic) space group T(z1 and point group T d° whereas
thg wurtzite and graphite structure have (non-symmorphic) space group
Cév and point group Cg . ‘

4.1 Construction of symmetrised plane waves: theory

In accordance with the Bloch theorem, the wave function \bn k(r) of an
electron with reduced wave vector k and bandindex n is expanded in

plane waves as follows (see (2.38)):

i(k+G)'r‘

IOEPLRNCE (4.1)

The effect of a generé.l operation of the space group {ﬁj R} on a
single plane wave, ¢ = exp(i(k+G)-r), is:

{%;[R}o = A(HG) g r 1(IG) R i(keG) T,

- eig}‘(l&@}'r JikR ei(k+G)'Tj. (4.2)
In (4.2} the vector T, is the nonprimitive translation associated with
the operation {ﬁj IR}, while 23’ is the 3x3-matrix representing the
orthogonal transformation {% 5 |0}. The operation {ﬁjQO} will be denoted
by ﬂij from now on. The factor exp(ik.R} in the right-hand side (RHS)
of (4.2) reflects that the basis functions ¢ are chosen to be Bloch
functions. By this choice we have fully exploited the translational
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symmetry of the crystal. In order to investigate the exploitation of
the remaining symmetry we may safely put R equal to O. Equation (4.2)
reveals that the result of an operation of the space group %J. on a
plane wave, apart from a possible phase factor, is again a plane wave,
with a reduced wave vector that generally will be different from k. If
apart from the identity operatorv {E|0} none of the ij operations
result in a plane wave with the same reduced wave vector k, we speak
of a general k point, and we cannot expect help from group theory. If
on the other hand operations %j exist, such that:

g}‘(k:fc) = k+G', (4.3)

thus producing a plane wave with the same reduced wave vector Kk, group
theory may be of help as will be shown below. Note that there is no

need for g}i

to leave k invariant: changing by a reciprocal-lattice
vector G-G' is also allowed. From now on we will call an g31 satis—
fying (4.3): an operation that leaves k invariant. The operations in %
for which (4.3) holds form the group of the wave wvector k : (k). The
operations g; leaving k invariant form the point group of the wave
vector k ' 9,(k). This point group is isomorphic with one of the 32
possible crystallographic point groups.

At given reduced wave vector k, the operations gs.l for which (4.3)
holds subdivide the set of G vectors into shells; G and G' belong to
the same shell if some c=131 exists for which (4.3) is valid. Note that
for a general k point each shell contains precisely one G vector. The
associated set of PW’s ¢g=exp(i(k+G)er) are similarly said to be
subdivided in shells. The shells are denoted by the symbol 5"5(1{)
(s=1,2...), where the index s orders the shells by means of the
non-decreasing magnitude of the vector k+G: G € S"S(k) and G' € 9’s+1(k)
implies |k+G|<|k+G'|. Since the g}i are length preserving, the length
of k+tG for G's within one shell is equal. It need, however, not be
true that k+G vectors with equal length are included in the same
shell. In practical cases the number of shells is limited and will be
denoted by the capital number S. We define N(s) to be the number of
members in shell s. The limited expansion of the wave function in

(4.1) then consists of N terms:
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s
N=y N(s) . (4.4)
8=1

We note that N(s) can never be larger then g.: the number of elements
in the point group %.(k) also called the order of %,(k).

By way of the so-called projection-operator method [61], it is
possible to linearly combine PW's in one shell to form symmetrised
plane waves {SPW's), i.e., functions that transform according to the
irreducible representations (irreps} of the group of the wave vector.
These SPW’'s are given by:

(p) _ *
fj‘l’ = % Tp(ﬁi)jlﬁi(p . (4.5)

where the Qi denote the operations of %(k}, ¢ is one of the PW’'s in
the shell {since the sum is over all operations in ¥(k) the choice is
arbitrary), and the rp(ﬁi)jl are matrix elements of irreducible
representation p belonging to operation Qi. The star in (4.5) denotes
complex conjugation. The indices j and 1 range from 1 to n_, where n
is the dimension of irreducible representation p. We call f;i’ the
j~-th partner in a set of np basis functions for the p-th irreducible
representation. From the range of indices j and 1 we see that we may
find np sets of symmetrised functions each consisting of np partners.
From the examples in the next section we will see that not always so
: é‘i’ with the

same j and p but different 1 are also called: functions that transform

many suitable symmetrised functions are found. Functions f
according to the same row of the same irrep. A function transforms

according to row j of irrep p if the following formula holds for all
&i in $(k):

Dp
(p) __ (p)
eﬁifj‘i = mgl rp(%i)m jfml . (4.6)

If p is a one-dimensional irrep, eq. (4.6) reduces to (we may omit

indices j.l,m and the sum over m):
tp) _ ()
ﬁif = Fp‘&i)f . (4.7)
The proof that functions constructed according to (4.5} indeed
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satisfy (4.6) is given in ref.[61] and rests upon the fact that the
I''s are unitary matrix representations of ¥(k). The representations
are unitary, since the unsymmetrised functions ~the PW’'s ¢, are

orthonormal with respect to the hermitian inner product <f [g):

Slg> = J £ (r)g({r)d®r, (4.8)

where the integration is over all space. ‘ ‘

We postpone the discussion of how to obtain the l"p(?ﬁi}jl needed to
construct the SPW’s until the next section and first mention the
advantage of these newly formed functions. The advantage is that the
Hamiltonian matrix calculated with respect to the basis of SPW's (to
be called H') has matrix elements equal to zero between SPW's
belonging to different irreps of 4(k). In case of higher~dimensional
irreps, there are also no matrix elements unequal to zero between
different partners in the same set of basis functions. This is
expressed in the following formula, which is a slight extension of a

formula in ref.[61] and equivalent to one in ref.[62]:

<f3'1”(s) §H0p|g3'31’.(s‘)> = H}i(s.s')8

B L. 4.
p.p %33 (4.9)

In (4.8) 6 is the usual Kronecker delta and the extra indices s and s’
are added to denote the shell the symmetrised function is constructed
for (s,s' = 1...8). Note that there may be matrix elements unequal to
zero between SPW’'s with the same index j but different index 1. In
words one may express (4.9) as: the only non-zero matrix elements of
g' occur between SPW's that transform according to the same row of the
same irrep. In the practice of our plane-wave expansion, eq. (4.9)
implies, that for every (s.,s')-combination of shells one obtains a
matrix Hll' independent of j for every irrep p. The indices 1 and 1’

can take on values from 1 to np, depending on the number of PW's in
(pl

il
each other or equal to zero and therefore they do not all represent

shell s and s'. For some shells some of the f {s) may be equal to
suitable basis functions {see, e.g., example 2(A) below).

From formula (4.9) we infer that we can rearrange rows and columns
of H' such that a block form results. First one puts all rows and

colums togethe'r that correspond to the same irrep p. Because of the

(¢t



factor & ‘e
P.p

y

g' is now in block form with one block for every irrep
p. The factor &, .. enables us to further break up blocks belonging to

irreps with np .]2,.; into np blocks. Since in (4.9) the matrix element
is independent of j, these np blocks are all identical. To obtain the
energy levels or, equivalently, the band structure at the k point
under consideration, we may diagonalize all blocks separately. Because
for an irrep with dimension n_ we have n_ identical blocks, we find an
np—fold degenerate energy level for such an irrep of ¥(k). This is
called a degeneracy caused by symmetry in contrast to a so-called
accidental degeneracy, which occurs if at a certain k point bands
happen to cross. _

The gain of calculating the Hamiltonian with respect to a basis of
SPW’s instead of with respect to a basis of PW's is obvious if one
realizes that the computing time of solving an eigenvalue problem
numerically is proportional to N®, where N is the dimension of the
matrix to be diagonalized. In our problem N is the number of PW’s into
which \l'n,k is expanded (see (4.1) and (4.4)). Therefore, breaking up
an eigenvalue problem into two eigenvalue problems of half the size of
the original problem reduces computing time with a factor of 4. This
example already applies if the k point is invariant under one extra
operation of the point group g“‘

J
identity operation). The gain is usually a little less than a factor

only (apart from the (trivial}

of 4, since in general the eigenvalue problem is not split up into two
equoal parts.

After having demonstrated the superiority of the basis of SPW’s
over the basis of PW’s regarding computing time (in certain appli-
cations the symmetry analysis of eigenstates, that is allied with the
procedures above, may also be of help. For our type of problem this is
not the most important advantage), we discuss the basis transformation
in a little more detail. The SPW's f;.i’ constructed by (4.5) are mnot
normalized with respect to the inner product {4.8), but since the PW’'s
are normalized, we straightforwardly obtain the normalized SPW’'s F;”
(i = 1...N(s), s = 1...5). We introduce the unitary matrix U, which
connects the two orthonormal bases. It is composed of matrices ut®?

along the diagonal, that are defined through:

Fis? = Nﬁf)u‘5’¢‘3’ (i=1...N(s). s=1f..S). {4.10)
i o 1Y
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In (4.10) «p;’) is the j-th member PW of shell s.

For a derivation of the connection between the Hamiltonian on a
basis of P¥'s { H ) and on a basis of SPW's ( H'), we may condense the
sub~ and supersc_ripts of F and ¢ into one ind_ex, such that Fa = F;”

with = i+2€§11)N(j}. Formula (4.10) can now be written as:

N
F, = > Uup®s (a=1...8), (4.11)
B=1
where UaB is the complete NxN-matrix with matrices u's’ along the
diagonal. From the orthonormality of the ¢ we infer:
< Fo>= . .
oplF> = Upg (4.12)

If I—ch3 is the matrix element of the Hamiltonian between PW's Py and

‘?ﬁ.

Haﬁ = (:pai»Hopfsoﬁ}. (4.13)
then the matrix element Ht;{? betwéen normalized SPW's Fa and Fﬁ is:
H(‘zﬁ = <Fa|H°p§Fﬁ>
= «,,25 <‘p1|U;F‘H0pUI35§q>5>
= *35 U;,!H,raUgB : (4.14)

Formula (4.14) has the usual form of a unitary basis transformation.
It suggests that two matrix multiplications with NxN-matrices have to
be performed. For readers concerned about the computational demands of
the present basis transformation, we remark that, because of the
simple form U has, only matrix multiplications with N(s)xN(s'})-
matrices -with N(s) typically ranging between 1 and 12- have to be
performed. These matrix multiplications are combined with the
separation of g‘ into blocks, as described above. The computational
effort involved in the matrix transformation is negligible compared to

the diagonalization of the blocks of H'. The only input required is
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the set of matrices g;‘ (i=1...g,) that leave the k point invariant,

the associated nonprimitive translations 7,, and the matrix elements

I’p(%i}jl.

i

4.2 Construction of symmetrised plane waves: illustrative examples

In this section the theory of section 4.1 is illustrated with some
examples (For these we will choose some of the special k points from
chapter 3)'. We will not give well=-specified procedures to construct
what we will call Slatgf tables of matrix elements rp(gﬁi)jl' One
reason is that it is not easy to give a completely general procedure.
Moreover, these Slater tables may be found for the most symmetric k
points in the Brillouin zones of the most commonly found crystal
structures in Appendix 3 of ref.[58].

For symmorphic space groups Slater tables can easily be con~
structed; because of the possibility of a neat division of %¥(k)} into
an orthogonal and translational part, one only needs to deal with
$o(k). This 4,(k) is always isomorphic to one of the 32 possible point
groups, the irreducible matrix representations of which may be found
for instance in Appendix 1 of ref.[60]. With these matrix represen-
tations at hand the Slater table can immediately be assembled. We note
that the character tables for point groups given in most books on
group theory are not sufficient to write down the Slater tables,
unless %,(k) has one-dimensional irreps only (For one-~dimensional
irreps the character, which is the trace of the matrix representation,
is equal to the (1x1) matrix representation}. For non-symmorphic space
groups the situation is less clear and the Slater tables are usually
arrived at more or less by trial and error. Especially for symmetric
points lying on the boundaries of IBZ the matrix elements of the
irreps of %(k) {even the dimensionalities of the irreps) can be quite
different from what would be expected from the irreps of ‘Qo(k}.
However, also in these cases well-defined procedures can be carried
through to find irreps of ¥(k) with the translational part factored
out {60].

Of course the correctness of Slater tables can always be checked by
verifying whether SPW’s constructed using the presumed Slater table
and (4.5) indeed satisfy (4.6). With some experience in checking
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Slater tables the procedure termed "trial and error” above usually

converges rapidly to the correct table.

Exomple 1: One of the special points out of the two-point set of Chadi
and Cohen [or: Monkhorst and Pack: see chapter 3} applicable to
fce~lattices is the one with codrdinates ks = [%,%,%] with respect to
the basis- {bi},.1_2_3 in reciprocal space (see section 3.2.1).
Coordinates between square brackets always denote codrdinates with
respect to the basis at hand. Suppose we want to calculate the band
energies at this k point for a compound with zincblende structure
{space group T2, point group T d)’ The space group T‘z1 is symmorphic, so
there are no nonprimitive translations. The point group ’I‘d consists of
24 symmetry operations %:...%24. (For the numbering and notation of
the operations we use the convention of ref.[58]). Of these only %
{the identity) and %9 leave k; invariant. The matrices representing

the operation of %; and %5 in 3-dimensional reciprocal space with

0
1
0

The point group of k¢, %.(ki), is Cs; containing a reflection
through a plane (o) besides the identity (E}. The character table of
C. is given in table 4.1(a). C; has two one-dimensional irreps; a

respect to basis {bi}i=1.2.3 are:

) 100 [
a, " =E= 1010 and a, = |0
=1 001 =19 " o

-0

result from group theory is that the sum of squared dimensionalities
of irreps of a group must equal the order of the group; so this is the
only possibility.

E o R Fio
1 1 1 1 1 1
2 1 -1 2 1 -1
(a) (v)

Table 4.1. {a) Character table for point group Cs.
(b} Slater toble for ki=[%,%.4] for space group 'I‘(zi.
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The Slater table for ki is given in table 4.1{(b) and is identical
to table 4.1(a). We will now illustrate the construction of SP¥'s from
P¥’s for a typical shell of PW’s. Since in this example and the
following examples we will be talking about one typical shell at a
time, we will omit the superscript s denoting the shell from now on.
The 9%" shell $o(ks) consists of 2 PW's, ¢1 and ¢z, where zpj =
exp(i(ki-!-Gj)'r). which have associated reciprocal-lattice vectors
Gy = [0,1,0] and €2 = [0,0,1]. From the matrices gi‘ and gié
checked that‘ this is indeed a shell for k;. Using table 4.1(b) and
(4.5) we have (take ¢ = ¢1}: £''7= p+p2 and £2) 2 992, The :’Ri(p

introduce no additional phase factors since T(zi is symmorphic, Formula

it can be

(4.7) is easily verified and so £!’ and £'®’ are suitable SPH’s. The
normalized SPW's are: Fy; = %2(gi+¢2) and Fz = %2(gi1~¢2). The
u-matrix for this shell as defined by (4.10) is:

e’

[%\2 M]
e e

Exomple 2: As an example for the same space group, but with higher
symmetry, we treat the k point with A-symmetry: ks = [p.p.p] with
0 < p ¢ %. The second special point in the two-point set of Chadi and
Cohen [49] is an example of such a point (p=4). We note that the
following symmetry analysis is also applicable for special values of
p. where ks has higher symmetry, i.e., the I'— and L-points {p=0 and
p=%, respectively); there is no obligation to use the full symmetry
group of the k point at hand. The point group %.(kz) consists of 6
symmetry operations ®i,%s.%q.%19.%21.%23 and is isomorphic to the

point group CBV’ which is a subgroup of T FE The g"i—matrices are:

001 . 01 0]
. {100 1 -1001
= 010 %o 100
. 001 ) ¢ 10)
.t = 1010 al=1100
=l " l1oo =23 " loo 1)

(gii and gié were already given with example 1).

In order to understand the character table (table 4.2(a)) for CBV’

we recall from standard group theory that the elements of a group can



€ G € % %s %o %19 %21 %23
1 1 1 1 1 1 1 1 1 1 1
2 1 1 -1 2 1 1 1 -1 -1 -1
3|2 -1 o (3)11| 1 % 4 1 -4 4
(3210 ®wWB -HwB 0 BB w3
(3)12| 0 %3 w3 0 43 %A
(3)22|1 % % -1 % %
(a) (b)
Table 4.2. (a) Character table for point group CGv'
(b) Slater table for point with A-symmetry for space group T2.

d

be subdivided into so-called classes and that the number of irreps of
a group equals the number of classes. The characters for elements in
one class are equal. For C3v there are 3 classes. In terms of the
elements of %,(kz) these are: € = {%1}, € = {%.%} and € =
{%19.%21.%23}. Since there are 6 elements in $,(kz), it must have
-because of the rule quoted with example 1- 2 one-dimensional and 1
two-dimensional irreps.

In table 4.2(b) the Slater table for a point with A-symmetry for
space group Tfl is given. One may check that the characters of the
symmetry operations coincide with the ones for the corresponding class
in table 4.2(a). '

We now construct SPW's for two typical shells of PW's when p=l:

(A) The 5" shell for kz consists of 3 PW's, ¢1,92, and ¢z, with

associated reciprocal-lattice vectors: Gy = [1,0,0], Gz = [0,1,0],
Gz = [0,0,1]. The SPW's constructed with table 4.2(b) and (4.5) are
(¢ = ¢1):

£0= g1+patea, £2= 0,

£17) = 2p1-92-v3.  £5]7 = V3(pz-¢a).

£15’ =0, : f55° = 0.

As was stated before, 3 PW’s result in 3 SPW’s. We may again check
(4.6). For instance, Qisfizl”=2<pz—<p3—‘p1, vwhich indeed equals:

B2 = H AL = ~prsramre
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The normalized SPW’s are:

F1=(1/¥3)(p1+p2+ea), Fa=(1/¥6)(2p1-92-¢3), Fa=(1/v2)(¢2-¢3).
The u-matrix for this shell follows immediately:

173 1/43 173
= | 2/ -1/ ~INB
0 12 142

ne

(B) The 9'" shell for kz consists of 6 PW’'s ¢i...ps with associated
reciprocal-lattice vectors : Gy=[~1,0,1], G2=[1,-1,0], Gs3=[0,1,-1],
G4=[-1,1,0], Gs=[1,0,-1], Ge=[0.~1,1]. The SP¥’s are:

£9 = @i+patpatestestee, £27 = pi+patpa~pa—vs—ve.,
£17 = e1-¥hpo-thoatestostive. £5]° = 4V3(p2—v-vstee),
£51 = %B3(ez-votes—ve).  f55’ = e1-Yepathpa—pathpsttive.

In contrast to example 2(A), we now find for irrep p=3 two sets of
SPW’'s each consisting of two partners, namely {f;:{’,féi”} and

{fig),fég)}. We need both sets since the shell consisted of 6 PW’'s. An

important thing to note is that H' (see section 4.1) will contain
non-zero matrix elements between f ;i” and f ;;’, because they transform
according to the same row of the same irrep (cf. (4.9)). The same
holds for £5]” and £52°. So this shell leads to 2 SPW's that transform
according to the same row j=1 of the same irrep p=3. Therefore, the
dimension of the block associated with this combination of p and j is
enlarged by two. The same holds for the combination j=2 and p=3. For
the shell of example 2(A) the dimension of both these blocks 'is only
enlarged by one. This observation will be relevant for the treatment
of eigenvectors resulting from the different blocks (section 4.3).

The normalized SPW’s Fi(i=1...6) are again easily obtained and the
u-matrix can be written down immediately from these. The dimension 6
for the u-matrix is the- largest one can obtain for a general point

with A-symmetry, since such a point has only 6 symmetry operations.

Example 3. As final example, we will treat a symmetric k point in 1BZ
of a structure with the non-symmorphic space group Cév. This space
group applies to. e.g., the wurtzite and graphite structures. The
point group C6v has 12 symmetry operations, the effect of which on a
plane wave is given in table A3-1 of ref.[58]. The operations X, and
Y; {(in the notation of ref.[58]) leave the k point ks=[p.p.ps]’

invariant. Codrdinates are given with respect to the basis {bi}”‘ 2.3
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{see section 3.2.2). Points with the type of symmetry of ks occur
frequently when generating special points with the Monkhorst/Pack-~
scheme for hexagonal lattices {see chapter 3). The matrices with
respect to basis {bi};.:_.z,a, which represent the effect of the
operations of the space group on the wave vector, are the identity

matrix for X,, and for Yy:

010
a"*(Yy) = |1 0 O].
- 001

The nonprimitive translation associated with Y; is 7 = [0,0,%]'
(coordlnates with respect to basis {t }s=1.2.3, which is connected to
basis {b }i=1.2.2 throug,h bi tj.-21r6 j) So the effect of Yy on a PW is
the transformation of the wave vector through g’i(Yi) and multi-
plication by a phase factor exp(i(k+c) *T}. A

The point group %.(ks) is Cs, the character table of which was
given in table 4.1(a). In this case, however, the Slater table is not

identical to the character table. Table 4.3 shows this Slater table.

Xe Yy
1 1 «
2 1 L

Table 4.3. Slater table for point [p,p,p3]’
for space group Cgu. a stands for exp(wipa).

A typical shell of reciprocal-lattice vectors for ks is the one
consisting of Gy = [1,0,1]" and G2 = [0,1,1]" with P¥’s ¢( and ¢a3.
With {4.5) the SPW’s are: £ pi-pa, £927= pi49a. In the calculatiﬁn
of £'1? and £'2’ the phase factors &® resulting from the Slater table
are partly compensated by the phase factors fesulting from the
nonprimitive translation. Using Yig1 = -apz and Yi¢s = ~apy, one
easily verifies that f' ’and ‘2’ indeed satisfy {4.7). So only by
including the phase factors a in the Slater table, eq. {4.5) leads to
SPW’s that transform correctly.The u-matrix for this shell is given
by:
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- [o2 ).

e

Apparently, the effect of nonprimitive translations on the con-
struction of the Slater table is that the column of the character
table of %,(ka) associated with an operation with accompanying T must
be multiplied by exp(iks*T) = a«. This rule of thumb is not always
applicable for k points with higher symmetry; as was mentioned before
Slater tables for.points on the boundaries of 1BZ can be completely
different from the Slater tables of their point group. The general
observation, however, that nonmprimitive translations introduce phase
factors in the Slater table remains true.

From the above examples one might gain the impression that the
matrices u are always real, so that the basis tranformation is simply
orthogonal (instead of unitary). Although this is true in a great deal
of situations, there are some exceptions. An example of such an
exéeption is point W ([1/4,1/2,3/4]) in 1BZ of a zincblende structure:
here the Slater table contains some purely imaginary characters,
vhereas there are no nonprimitive translations. Hence, the matrix 1=I
contains purely imaginary elements.

We conclude this section with a number of practical remarks of
general character:

(i) Besides the verification of Slater tables through (4.5) and (4.6)
this verification can also be achieved by performing two calculations
of the band structure at the k point at hand; one using the presumed
Slater table and one using no symmetry (i.e., a Slater table con-
sisting of one element equal to unity for the identity operation).
Using no symmetry, U equals the unity matrix and the Hamiltonian
matrix has to be d—iagonalized completely. The results should be
identical to those obtained using the presumed Slater table. This can
be done for small N, although N should be so large that at least one
shell with the maximum number of members is included in the basis set
of PW's. '

(ii) The possibility of not using the complete symmetry of a highly
symmetric k point has the advantage that Slater tables are more easily
constructed. Furthermore, the extra saving of conlputiﬁg time when
using full symmetry is not always substantial. As an example, we
discuss the I'point (k=0) in the zincblende structure. %.(I") contains

24 symmetry operations and has 2 one-dimensional, 1 two-dimensional
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and 2 three-dimensional irreps. This implies (see section 4.1) that H’
is split into 10 blocks of which only 5 need be diagonalized (one for
every irrep). If we suppose all blocks to be of equal dimension -for
the ease of this argumentation-, use of symmetry reduces computing
time by a factor of 1/5x(10)°=200 or, equivalently, by 99.5% compared
to the case when no symmetry is used. If, however, we employ only
A-symmetry (see example 2}, we have 2 one-dimensional and 1 two-
dimensional irreps, resulting in a break-up of Ii into 4 blocks of
which only 3 need be diagonalized. Supposing all blocks to be of equal
size, computing time now is reduced by a factor of 1/3x(4)’~ 21 or,
equivalently, by 95.3%. The extra saving of 4.2% by using full
symmetry instead of A-symmetry usually is not considered to balance
the extra troﬁble and error-prone usage of a’ 24x24 Slater table
instead of a 6x6 Slater table. The interplay between the advantage of
the full power of group theory and practical considerations leads us
to the following policy: we use such a éubgroup of the group of the
wave vector that no irreps with dimension higher than 2 occur.
Connected with this is that we never use wmore than 12 symmetry
operations. k

4.3 Unfolding of symmetrised electron states

The block matrices that l;[ consists of after rearranging rows and
columns as explained in section 4.1 are diagonalized separately. The
resulting eigenﬁralues constitute the band structure En(k) at point k
in 1BZ, with n the band index. We find as many bands as the dimension
N of the matrix Izi'. but only the lowest few of these are usually of
interest. It is also only this set of lowest energy levels that may be
considered accuréte, since for the highest levels the interactions
with states \1: (r) (m>N) will be important and these were not taken
into account because of the truncation of the expansion {(4.1). The
resulting eigenvectors for each block are the expansion coefficients
of the wave function ‘;; k(r} in SPW’s that transform according to the
same row of the same irrep. With the help of (part of) the matrix U we
can determine the expansion cogfficients Cn.k(c) of the wave function
in PW's exp(i(k+G)+r)}. These Cn.k(c) for occupied states n are the
ingredients for the calculation of the Fourier components p(G) of the
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valence-charge density (see chapter 3, equation (3.22)}. Formally this
is achieved as follows: the eigenvectors resulting from a MxM-block
with associated SPW’'s Fj{j--l, .-.M) are denoted by Cr.l,k(Fj)' The
Cn.k(ci) {i=1,...,N) are found by:

M
Cn,k(ci) :j;?‘l(u"‘)ijc;hk(ﬁ“j), (4.15)

where gw is the NxM-matrix formed by omitting all columms from the
NxN-matrix gT that do not correspond to the M functions Fj‘ For
instance, in case of example 2(B) we have the following situation:
both F3 and Fs belong to the same block, whereas PW’'s ¢z,93.¢95 and ¢g
are contained in both Fs and Fs. So by the construction (4.15) the
expansion coefficients connected with ¢2,93,.95 and ¢ will have
contributions from F3 and Fs. Since we have excluded 3- and higher-
dimensional irreps, we can never have more than two contributions to
one Cn,k(G)‘

¥We further note that although a np-—dimensional irrep results in n
identical blocks, and thus in np sets of identical eigenvalues and
eigenvectors, the electron states that. belong to these np-*fold
degenerate energy levels will not be identical. This is true since,
the identical expansion coefficients one finds relate to different
SPW’s. A way of explaining this is by observing that the matrices
resulting by omitting columns from I__{T are different for the two blocks
giving the same eigenvalue. Of course both states should be different
because of the Pauli exclusion principle.

We conclude this chapter by mentioning situations in which
incorporating the exploitation of symmetry in computer codes may be
less profitable. When very large numbers of special points Ny, are
required (e.g., N,,> 60), the fraction of general k points gets larger
and starts dominating the computational effort of diagonalization.
Another example is when the method of chapter 2 is used when the unit
cell already is of low symmetry. In that case the symmetry of the
special points is in general even lower, which may mean: no symmetry
at all. This occurs, for instance, when slight distortions of a unit
cell are invoked in order to determine phonon frequencies from the
change in total energy upon distortion {frozen-phonon method [63]).

But even in these situations the exploitation of crystal symmetry can

86



be of help. There will always be problems just past the limit of
computational capacity available that can be handled with the use of
symmetry but camnot be handled without its use.
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CHAPTER 5

SECRETS DE CUISINE : CAPITA SELECTA

The present chapter is devoted to a discussion of some characteristic
properties of the calculational scheme described in the previous
chapters. Although these properties are of a somewhat technical
nature, they certainly deserve attention, since they make possible a
more convenient application of the method. A good understanding of
these technical points is of great help, not only in reducing the
computational work, but also in choosing reliable self—consistency
criteria and cutoff parameters.

Here, we discuss three of such technical points:
(i) In section 5.1 we show how the total energy is to be calculated in
intermediate stages of the self-consistent (s.c.) calculation in order
to obtain rapid convergence of E{u. )
{ii} Section 5.2 is devoted to numerical noise on the total-energy-
versus-volume curve, which is due to the finiteness of the cutoff
parameter Epy (see section 2.5) and the finite number of special
points N., (see section 3.1}.
(iii) In section 5.3 we present support for the conjecture that
special points are much more suited to integrate charge densities
pk(r) over 1BZ than they are to integrate energy bands ,En{k) over 1BZ.
This leads to an important computational reduction in the procedure to
obtain the total energy.

The title of this chapter we owe to several of the lecturers at the
Corsendonck Advanced Study Institute [1,16,67]. who used the phrase in

their lectures in connection with questions of the kind treated here.

5.1 HNon—self-consistency correction

If eq. (2.58} is used to calculate the total energy per unit cell,
Etot, after each cyclé in the self-consistency process -for instance,
in order to judge to what accuracy Ei.i+ has converged-, it should be
realized that in the obtained E(,: the energy eigenvalues En(k) are
calculated by solving the set of equations {2.39) in which an input
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screening potential is used, with Fourier components v;gr(c) {see

{2.69})). This input potential has been calculated by using a density
n'", which is different from the density n°“! following from the
solutions Cn,k(c) of (2.39), with the aid of which the energy terms Eg
and AE.. in (2.58) are calculated. Only when self-consistency has been
reached n'" and n°“! are the same. In spite of this fact, it is
possible to correct the "wrong" sum over band-structure energies
E(n,k)En(k) -to be abbreviated by E(i)Ei in the following- for the
fact that self-consistency has not been reached yet. After this
correction, Eio¢ only dependes on output quantities of one self-
consistency cycle. ‘ - ' )

From eqs. (2.39) in chapter 2 the expression (2.57) was derived for
. 2{1) e From this expression we infer that within each cycle of the
self~consistent calculation the following 1dentity holds (We use
(2.54b} and {2.69)):

Z(5)E; = Exin + § Vio (&) (0°UH(6)) + Eec. - (5.1)

In {5.1) Exin and E.. are to be expressed, by means of (2.54a) and
(2.54d), in terms of the solutions cn‘k(c) of egs. (2.39) (output
quantities). These Cn,k(c) are also used to calculate n°"!(G) using
(3.22). So the RHS of (5.1) depends on n'" only through the Fourier
components V'" (G). This dependence on n'” is explicitly removed by

‘ scr
adding to z(i)Ei the non-self-consistency correction 84.°

=03 s @ - V@]t o, (5.2)
G

sCr sCr

where V;:;(G) are Fourier components of the screening potential

t

calculated from n°"!. Since n°“!

may be expected to approximate the
self-consistent density better than n'", we expect 2( ) s * 5. to
approximate the s.c. E }E better than expression (5.1).

From {5.1) and (5. 2) we see that if V°”; by chance would be the
fully converged s.c. screening potential, in the sense that all terms
in the total energy have converged to within some prescribed accuracy,
the correction results in the s.c. value for 2( )E , whereas if V;;r
is already s.c., the correction (by the definition of self-con-

sistency) vanishes. These observations illustrate that &6, may be
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regarded as a measure for the degree of self-consistency. Note that
8sc in (5.2) includes the G=O-term. We remind the reader that Vu(G=0)
was chosen to equal zero (see chapter 2}, so only V..{(G=0) contributes
to Vscr(G::O). From eqs. (2.58), (2.58). and (5.1} one infers that the
G=0-term in (5.2) can be omitted if the energies En(k) and the energy
term AE,. are calculated with V. (G=0) put equal to zero. This may
also be expressed by saying that Ei,: given by (2.58) and corrected by
adding (5.2) does not depend on the value of V..{G=0) or by saying
that self-consistency is only determined to within an additive
constant in the potential.

As an illustration of the usefulness of &s., we present in table
5.1 results of a s.c. calculation for cubic silicon carbide (with
zincblende structure and denoted by 3C SiC} for the experimental value
[64] of the lattice constant: a. = 4.3596 X. A kinetic-energy cutoff
Epw of 10.3 Ry and 2 special points {q=4 in section 3.2.1; Chadi-~Cohen
points) are used. Norm-conserving pseudopotentials from ref.[40] and
the Kohn-Sham-Wigner (local) density functional for exchange and
correlation are used (see chapter 2). The input screening potential
for the first cycle is calculated from. the valence-charge density
obtained from an EPM-calculation using the form factors of ref.[65].
In table 5.1, for each of the presented eight cycles of the s.c.
calculation the respective terms constituting the total energy per
unit cell, Eioi, are given (cf. (2.58)), as well as .. and a’qﬁantity
8V defined as: ,

out - yin
&V = max ivscr(c) Vo (O | (5.3)

In (5.3) the maximum is takeﬁ over the set of all reciprocal-lattice
vectors. In table 5.1, Eiot,corr equals E}“ plus the correction ...
The two last terms in the RHS of (2.58) are constants during the s.c.
calculation and in this case are equal to -20.923537 Ry for the Ewald
term and 4.416820 Ry for the constant split off from the ionic
pseudopotentials. ‘ )

The conclusion from table 5.1 is that the corrected total energy
Etot.corr converges much faster than the uncorrected Ei(,i: after 3
cycles Eigt.corr bhas converged to within an accuracy of 107 4 Ry,

whereas E{,: takes 8 cycles to reach this accuracy.
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cycle 1 cycle 2 cycle 3 cycle 4
2(1}31 - 1.581819 - 1.984517 - 1.995020 - 2.001523
AE,. 1.698853 1.735050 1.734583 1.734244
E 1.286403 1.706164 1.703295 1.700233
Etod - 17.676086 - 18.462348 - 18.470449 - 18.474229
Bse - 0.709153 - 0.020797 - 0.012979 - 0.009237
Etot.corr |- 18.385230 - 18.483145 -~ 18.483428 - 18.483466
8v 5.3x10"2 5.0x107° 2.7x107° 1.5x1073
; cycle 5 cycle 6 cycle 7 cycle 8
E(i}Ei - 2.008456 - 2.011289 - 2.012023 -~ 2.012206
AEx. 1.734066 -1.734064 1.734065 1.734065
Ex 1.698580 1.698554 1.698555 1.698557
‘Eiot - 18.479696 - 18.482496 - 18.483230 - 18.483415
bsec - 0.003778 - 0.000978 - 0.000244 - 0.000060
Etot.corr |- 18.483474 -~ 18.483474 -~ 18.483474 - 18.483475
5V 4.3x107* 1.1x107* 2.6x107% 6.4x107®
Table 5.1. For each cycle of the self-consistency process, the
quantities constituting the total energy per unit cell E;.¢ are given,
as well as the non-self-consistency correction 6.. {see eq. (5.2}]},

the corrected total energy per cell E¢ot.,corr, and the quontity 0oV,
defined by eq. (5.3) (all entries are in Rydberg).

Table 5.1 is also helpful in clarifying a point of confusion in the
literature (see footnote 12 in ref.[47]). In ref.[66] it was claimed
that the total energy per atom was stable to within 10°% Ry if 8V was
10™* Ry, whereas ref.[47] stated that with 8V equal to 10°* Ry the
total energy per atom was only stable to within 1072 Ry and that the
remarks about stability in ref.[66] were not understood. This
discro:pancy of two orders of magnitude for the accuracy of Eisi is of
course very relevant for the choice of a suitable self-consistency
criterion for 6V. Although the calculations. in refs.[47] and [66] were
performed for silicon and other details of the calculation are also
table b.1

ref.[667] were performed with the correction 8,., whereas in ref.[47]

different, strongly suggests that the calculations in
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this correction was ignored. We have found, kalso in other cases, that
it is safe to assume that the total energy per atom calculated by
(2.58) and corrected by adding 6s;. differs from the s.c. result by
less than 107" ! Ry if &V =10"P Ry (p=2,3.4,...). This is true
irrespective of the pseudopotentials and cutoffs used and we believe
it to be characteristic for the calculational scheme.

We conclude by noting that the corrections discussed in refs.[67]
and [68] are essentially the same as the correction introduced in this

section.

5.2 Numerical noise on total-energy-versus-volume curves

The method presented in this work enables one to study the behaviour
of the total energy as a function of the lattice parameters. In this
way one may find for a given crystal structure and given types of
atoms in the unit cell the set of equilibrium values of the lattice
parameters, i.e., those values for which Ei(;+ has a minimum. In case
of one lattice parameter only, the unit-cell volume Q. is uniquely
determined by this parameter, and by variation of this parameter a
total-energy-versus—volume curve E:o:{{}c) may be obtained. From this
curve, various properties of the ground state of the crystal may be
deduced (see chapter 6). If there are more lattice parameters, Eiot
may be minimized with respect to variation of these parameters at some
fixed value of Q:. An E;,¢(Q:)-curve is found by repeating this
procedure for several .. If a unit cell contains more than one atom,
we also have to consider additional internal parameters, that
determine the positions of atoms in the unit cell. For instance, in
the wurtzite structure described in section 3.4, c and a are lattice
parameters and u is such an internal parameter. Concerning these
internal parameters, a procedure similar to the one for lattice
parameters can be followed to obtain Eio¢(Qc).

In the above procedure to obtain Ei.+(Q:), unfortunately, the
finite cutoff Epy (see section 2.5) and the finite (and usually very
small) number of special points N,, (see section 3.1) result in
discontinuities in the Eio:(Q:)-curves. These discontinuities cause
difficulties in the interpretation of actually obtained values for

Etot. This problem was already given some attention in refs.[69],
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[70]. and [71}. To simplify the discussion of these discontinuities,
we restrict ourselves to the case of only one lattice parameter and no
internal parameters. In this case discontinuities are most pronounced.
An example is the zincblende structure with lattice parameter a, {cell
volume Q. = %az; see section 3.4).

All values of the lattice parameter a for which discontinuities
occur (denoted by ag) are for given Epw and given special-point set
{ks} (s=1...N.;) found to be values for which the equality,

N |z
%lks"*cl = Epw , (5.4)

holds. In (5.4) G is any reciprocal-lattice vector. Note in this
respect that the expression in the left-hand side (LHS) of (5.4) is
simply proportional to a"2. Equation (5.4) follows from the criterion
introduced in section 2.5, that selects PW's that are to be included
in the expansion of the wave function. When increasingvthe lattice
parameter, PW’s with wave wvector ks-rG are abruptly added to the
expansion of the wave function if the involved G vectors are such that
eq. {5.4) is satisfied. Such a discrete change in the basis set for
special point ks results in a discontinuity in Ei,t. One expects Eio4
to drop at such values ag due to the increased degree of freedom
offered to the wave functions. It is furthermore expected that the
discontinuity is larger if ks has a larger weighting factor W and
also in cases in which the pumber of abruptly added PW's is larger. We
define an effective change in the basis-set size AN:

Nep
AN = > w_ AN(k), (5.5)
s=1 <] 5

where &N(ks) is the change in basis-set size for special point ks‘
Of course the absolute magnitude of the discontinuity will also depend
on vhether AN is significant compared to the number of PW's already
included in the basis set.

In table 5.2, we give values ag in the neighbourhood of 5.43 & (the
experimental lattice constant for silicon [64]) using Epu=11.2 Ry and
two special points (gq=4 in section 3.2.1). The corresponding AN are

also given.
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aq (in £) AN a4 {in ) AN
4.7297 3.25 5.2250 3.00
4,7816 6.00 5.2719 4.50
4.8328 2.25 5.3185 6.00
4.8836 3.75 5.3646 5.25
4.9338 6.00 5.4104 3.75
4.9835 1.50 5.4558 3.00
5.0327 4.50 5.5008 6.75
5.0815 6.00 5.5454 2.25
5.1297 1.50 5.5897 3.25
5.1776 3.00 5.6336 4.50

Table 5.2. Values ag of the lattice parameter of a fcc lattice for
which discontinuities in the Eio.+(flc)-curve occur, when using Epv =
11.2 Ry and 2 special points, (Only values between k.70 K and 5.65 &
are given). The corresponding effective change in basis-set stze (see
eq. (5.5)) is denoted by AN. ‘

In fig. 5.1, we show part of the total’energy—versus—lattice—
constant curve for silicon in the diamond structure, calculated with
the cutoffs as given above, clearly exhibiting the discontinuities.
The numbers between brackets are the numbers of PW’'s in the basis set
for the two k points {weighting factors: wi=3/4, w2=1/4).

There are two independent ways of reducing the discontinuities:

{1} Increasing N., will increase the number of ays-values in a certain
interval, but will reduce AN for a single ayg-value, since with
increasing N., the average v decreases.

{ii) Increasing Epy will also put consecutive ag-values closer
together (since the LHS in (5.4) is proportional to a”%), but
increases Npy and therefore makes the effect on Ei,: of the change AN
less significant.

A way to completely get rid of the discontinuities is to keep Npy
constant for every k point (instead of Epy). This can be achieved by
letting Epy scale as a”? (see eq. (5.4)). However, in such a procedure
the wave functions are not described with the same resolution for each

value of the lattice parameter (see section 2.5}. In practice, the
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Fig. 5.1 Total energy Ei.+ (in Ry per atom) versus lattice
constant a (in A) for silicon in the diomond structure around the
experimental value of a (5.43 X) using Epy = 11.2 Ry and 2 special
points. Discontinuities occur at values of the lattice constant from
table 5.2 becouse of on effective change in basis-set size AN. The
numbers between brackets give the numbers of plane waves in the basis
set for the two k points (weighting factors: wi=3/k, we=1/k}. Dots

represent actually calculated values.

requirement of constant resolution appears to be more important to
obtain converged values of total-energy differences [66.71]. We
further remark that an exact procedure to keep Npy constant in case of
more than one lattice parameter generally cannot be given.

The magnitudes of the above described discontinuities not only
depend on Epy and N,,. but also on the types of atoms in the unit
cell, i.e., on the pseudopotentials. To illustrate this point, results
are shown in fig. 5.2 of total-energy calculations for cubic silicon
carbide (3C SiC} with Epy=20.6 Ry and the same set of two special
points as in the earlier example. The ag-values and corresponding AN
are given in table 5.3 (eof. fig. 5.2). The point to note is that
although many more PW’s are used in the expansion of the wave function
(the numbers between brackets in fig. 5.2}, the largest discontinuity
is about a factor of 5 larger than in fig. 5.1 for Si. The reason for
this is that the pseudopotential of the carbon atom is much deeper
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Fig. 5.2 Total energy Eio,t (in Ry per cell) versus lattice
constant a (in R) for cubic silicon carbide around the experimental
value of a (4.3596 R) using Epy = 20.6 Ry and 2 special points.
Discontinuities occur at values of the lattice constant from table 5.3
because of an effective change in basis-set size AN. The numbers
between brackets give the numbers of plane waves in the basis set for
the two k points (weighting factors: w1=3/k, wz=1/4). Dots represent

actually calculated values.

than the one for the silicon atom (see fig. 2.1). This asks in fact
for the inclusion in the basis set of a still larger number of PW’s.
From fig. 5.2 one may also deduce an approximate proportionality of AN
and the magnitude of the discontinuity (compare table 5.3 and
fig. 5.2).

To reduce the effect of discontinuities on calculated total
energies, we adopt the following strategy: we choose Epy and N;, such

that the discontinuity for the largest AN occuring is smaller than
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aq (in &) AN aqg {in R) AN
4.1594 4.50 4.3489 6.75
4.1915 3.75 4.3797 3.75
4.2235 6.75 4.4102 6.00
4.2552 6.75 4.4405 5.25
4.2866 2.25 4.4708 3.00
4.3179 3.00 4.5007 3.75

Table 5.3. Values a4 (between 4.15 X and 4.52 &) of the lattice
parameter of a fcc lattice for which discontinuities in the Eiot{Sc)-
curve occur, when using Epy = 20.6 Ry and 2 special points. The
corresponding effective change in basis-set size (see eq. (5.8)) is
denoted by AN. ‘

some prescribed tolerance. It is furthermore advantageous to choose
the lattice parameters for which Eis: is calculated not too close to
each other nor to the ag-values. In this way a sensible choice for Epy
and Ny, can be made, while circumventing the computationally much more
demanding task of studying the convergence of properties derived from
Eiot{Qc)-curves as a function of Epy and N.,.

Finally, we remark that in case there are more lattice parameters
the picture gets more complicated, since there will be points for
which discontinuities occur distributed all over lattice-—parameter
space. On the Eiq¢(Qc)-curve this will have the effect that the
saw-tooth picture seen in figs. 5.1 and 5.2 turns into a curve with

some noise on it.

5.3 Accuracy of energy-band integrations using special points

In this section we will show that in a total-energy calculation
special points are much more suited to integrate the k-dependent
charge density pk(r) over 1BZ than they are to integrate sums of
energy bands z(n)En(k). In this connection we refer to section 3.3,
where the convergence of the special-points approximation was studied
when applied to a model energy band.
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Nup E(i)E. A(E(i)Ei) Nep Eiot AE{ o4

i

2 ~ 2.0123. 0 2 - 18.4835 o

6 - 2.0506 - 0.0383 6 - 18.5218 - 0.0383

10 -~ 2.0400 - 0.0277 10 ~ 18.5111 - 0.0276

19 - 2.0474 - 0.0351 19 - 18.5185 - 0.0350

28 - 2.0449 - 0.0326 28 ~ 18.5160 - 0.0325

44 - 2.0423 -.0.0300 44 - 18.5135 - 0.0300
(a) (b)

Table 5.4. Sum of one-electron energies and total energy per unit
cell (in Rydberg) of cubic SiC with kirieticwnergy cutoff Eew =
10.3 Ry.

{a} Contribution E(i)Ei of one-electron energies to the to;al energy
by summing over different numbers of special points Ngp,. All one-
electron energies are calculated with the potential that was self-
consistently obtained with Nep = 2. A{E(i)gi) is the difference with
z{!’,)gi for Nsp = 2.

(b} Total energy Eio.: obtained self-consistently with various Nep.
AEioy is the difference with Eiot For Ny = 2. |

We étart from the s.c. calculation described in section 5.1, using
two special points. The resulting s.c. values {after 8 cycles and
including the correction 8sc (see table 5.1)}) are E{,:=—18.4835 Ry and
E(i)Eirz.mzs Ry. The s.c. potential resulting from this calculation
with N.,=2 was now used to improve the approximation to i Ei by
calculating 2(1)}31 using successively larger sets of 6,10,19,28 and 44
special points {q=6,8,10,12,14 in section 3.2.1). From these improved
values of 2(1)"’31 we calculate the difference A(z(i)Ei) with the value
calculated for N,,=2. The results are given in table 5.4(a}. Next, we
iterate to self-consistency (i.e., Ei(,+ stable to within 10°* Ry)
using the same larger sets of special points also in the density
caleculation. The results are given in table 5.4(b) together with the
difference AE:;,y with the Ei,:-value calculated using N;p,=2. The fact
to be noted is that AE:,: equals A(z(i)Ei) to within an accuracy of
10"* Ry. This shows that the improvement in the total-energy cal-

culation by using 1arger sets of special points is entirely due to
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a better determination of the band structure term and is not due to a
better determination of the charge density p. Equivalently, regarding
the calculation of Ei.,i, p is already sufficiently accurate using
Nsp=2, whereas E(i)Ei is not. So in order to obtain the s.c. value of
Eior at a given Epy and at a large value of N.,, it is equally
effective to iterate to self-consistency with a small value of N,, and
to supplement this by an improved calculation of E{i)Ei using the
large value of N.,. We have observed this in other calculations as
well.

We have to emphasize that although the same value for E;.,: is
obtained in this way, this is not the case for the individual terms
into which Ei(,+ is decomposed. For instance, the fully s.c. value of
E{i)Ei using Nsp=6 is -2.0605 Ry, which significantly differs from the
value -2.0506 Ry in table 5.4(a}.

The procedure suggested in this section may prove to be useful in
calculations where, due to computational limitations, only a very
small No, can be allowed in the s.c. calculation. As an example, we
mention calculations for surfaces -these must be performed in a
supercell geometry to establish periodicity-, where often only one
special point is used. Our procedure now allows for an estimate of the
accuracy of using one special point only, by calculating En(k) for a
larger set of special points k only once, using the one-point self-

consistent screening potential.
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CHAPTER 6

APPLICATION TO SILICON, DIAMOND, AND SILICON CARBIDE k

In the preceding chapters 2 to 5, the pseudopotential-density-
functional method in momentum space has been described along with
calculational details. These details involve the exploitation of the
symmetry of laftice and crystal as well as characteristic properties
of the calculational scheme. In the present chapter, we apply the
method and techniques described to the prototypical semiconductor
silicon (Si), the insulator diamond, and the cubic and wurtzite
modifications of the semiconducting polytypes of silicon carbide
{denoted by 3C SiC and 2H SiC, respectively).

Polytypism is the occurrence of different modifications of one
compound, consisting of identical layers of structure whose stacking
sequence differs [72,73]. The origin of polytypisrﬁ is until now
unexplained, although several theories exist, e.g., those based on
screw-dislocations [74] or thermodynamic considerations [75].
Polytypism in the silicon carbides (SiC} -where it is studied most
frequently- is interesting for a number of other reasons. vThe
polytypes of SiC are semiconductors with a varying band gap, which may
make them technologically important. Currently, they are most
interesting, from a mtefials-—science point of view, because of the
strong fibres (so-called whiskers) that can be made from them [76].
From a fundamental point of view 8iC is interesting -besides the above
mentioned occurrence of polytypism- because its cubic modification,
3C 8iC, is the only IV-IV compound with zincblende structure (e.g.,
GeC (germanium carbide} does not exist and GeSi (germanium silicide)
occurs only in disordered structures). It therefore is an intermediate
type of solid between III-V semiconductors (GaAs, AlAs, GaP, etc.) and
crystals with the diamond structure (C., 8i, Ge, a-Sn)}. Finally. the
polytypes of SiC constitute a playground for the method described in
this work, because they are natural superlattices, they pose problems
similar to those found in artificially grown superstructures (e.g.,
large unit cells) and much can be learned from an application to SiC
of how this method may be of use in connection with superlattices.

Furthermore, the presence of the carbon atom requires large numbers of
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plane waves in the basis set {see chapters 2 and 5) and makes
application of the method computationally demanding. Therefore the
limitations of the method can be explored as well as means to cope
with these limitations.

Section 6.1 presents self-consistent valence-charge densities and
screening potentials for silicon and diamond. Charge densities are
given in the form of both contour plots, to get a view of the covalent
bonding, and tables of Fourier components, to serve as reference and
means of comparison with other calculations, as well as with experi-
mental values. We also give the band structure at the high-symmetry
points I", X, and L. Ground-state properties of Si and 3C SiC are
obtained in section 6.2 by fitting results of total-energy calcu-
lations to equations of state for solids proposed in the literature.
In section 6.3 the valence-charge density in 3C SiC is presented as
well as the band structure resulting from the pseudopotential~density-
functional method. We compare the band structure to other calculations
and to experiment. The method of equivalent special-point sets
—introduced in section 3.4~ is used in section 6.4 to accurately
determine the (small) energy differences between the structurally
distinct crystals of (i) cubic~-diamond and hexagonal-diamond Si and
(ii) zincblende (3C) and wurtzite (2H} S8iC. In section 6.5 we study
the valence~charge density of 2H SiC, as well as the effect of

variation of the lattice parameters in 2H SiC.

Fig. 6.1 The total valence-charge density of Si in the (110)
plone. Units are numbers of electrons per unit-cell wvolume. The
contourstep is 1 in (a) and (b), and 2 in (c}. The black dots
represent atomic positions and the straight lines connect bonded
atoms. The bond-charge moaxima are also given. (a) Result of EPM-
calculation. (b} Self-consistent result of a calculation with
norm-conserving pseudopotentials. {c) As (b), but showing a larger
part of the same plane.
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6.1 Self-consistent valence-charge density of silicon and diamond

We have calculated the self-consistent (s.c.) valence-charge density p
of silicon in the diamond structure and carbon in the diamond
structure (i.e., diamond}. The diamond structure is the common
structure for crystalline silicon, whereas carbon also crystallizes in
the graphite structure (and is called graphite in that case)}. For both
silicon and diamond we performed the calculations in this section for
their experimental lattice constants: a($i) = 5.43 & and a(C) = 3.57 &
[64]. ’

As start potential, we use the screening potential calculated from
the valence-charge density obtained with an empirical pseudopotential
(see section 2.3.3). In the latter calculation, we use the following
form factors (in Rydberg): for Si: «(3)= -0.2241, «{8)= +0.0551,
©(11)= +0.0724 [77], whereas for C: »(3)= ~-0.696, s(8)= +0.337,
v(11)= +0.132 [65]. where ©{q) is the form factor for a reciprocal-
lattice vector with length q (in units (2w/a)?; a is the lattice
constant}. With these form factors a band structure in agreement with
experiment is found. The number of plane waves in the calculation with
the empirical pseudopotentials (EPM) is about 90. We note that the
s.c. p in our scheme should of coursé be independent of the start
potential, although this cannot be proved rigorously. We did check,
however, that in the calculation for silicon by starting with the s.c.
screening potential obtained for diamond {scaled to the silicon
crystal) the same s.c. p is obtained as by starting with the EPM-
potential. As a matter of course, a good starting guess for the
potential decreases the number of self-consistency cycles enormously.

Both in the EPM-calculation and in the s.c. calculation with
norm~conserving pseudopotentials (SCNCP) we used two special points
(g=4 in section 3.2.1} to integrate pk(r} over 1BZ. As kinetic-energy
cutoff Epv (see section 2.5} we used 11.2 Ry for Si, resulting in
about 170 plane waves in the basis set for each k point, and 30.5 Ry
for diamond, resulting in about 220 plane waves for each k point. More

computational details are given in ref.[44].

Fig. 6.2 Analogous to fig. 6.1, but for diamond.
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In figs. 6.1 and 6.2 we show équi-densicy contour plots of the
valence-charge density in the (110) plane. This plane contains a
zigzag chain of bonded atoms and therefore a contour plot of this
plane gives a qualitative idea of the bonding. Figure 6.1 gives
results for silicon: fig. 6.1{a) shows the result from the EPM-
calculation, fig. 6.1(b) from the SCNCP-calculétion, whereas figure
6.1(c) represents the SCNCP-density in a larger part of the (110)
plane. In all figures we see the feature characteristic of covalent
bonding; the electrons are captured in bonds between the atoms. In
fig. 6.1(0) we see that there are also regions with negligible
density, which is the reason why crystals in the diamond structure are
sometimes called open structures. The main difference between the
results of the EPM- and SCNCP-calculation is the value of the bond
anisotropy ratio, which is defined in ref.[78] as the ratio Li/Ly of
the lengths of the outermost density contour surrounding the bond
parallel {L:) and perpendicular (Lz) to the bond axis, respectively.
For figs. 6.1(a) and (b). Li/Lz equals 0.82 and 1.16, respectively.
The experimentally observed ratio is 1.4, but the interprefation of
the X-ray measurements is not completely rigorous [78,79]. Experi-
mental results are always for the totél electronic charge density and
therefore include the core-electron charge density, which is not
included in the (valence-)charge density calculated by us. Usually the
core—electron density is subtracted from the experimental electron
density by making some choice for the core contribution.

For diamond, plots are given in figs. 6.2(a)-{c}. The most
remarkable feature is that the EPM-density (fig. 6.2(a)) does not have
the double hump in the bond charge found in the SCNCP~-calculation.
This double hump is a well established feature in the covalent carbon
bond [24,80,81];: other groups [30.82] also find a very small double-
hump structure in silicon by using a larger cutoff Epy and more
special points than we did. The fact that it is not found in the
EPM-calculation for diamond illustrates the inadequacy of a local
potential such as used in the EPM to describe the carbon core
pseudopotential. Aside from the different bonding topology, fig.
6.2(c) for diamond is much like fig. 6.1(c) for silicon.

In tables 6.1 and 6.2 we compare the Fourier components of n(r) as
found in various calculations and those obtained from experiment. The

experimental values are taken from tables in ref.[83], where they were
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EPM SCNCP SCNCP _exp.

G (Nsp=2) {Ngp=28)
000 8.000 8.000 8.000 8.000
111 -1.658 -1.762 -1.747 -1.780
211 0.313 6.076 0.071 0.084
221 0.459 0.346 0.340 0.338
. 222 0.509 0.346 0.335 0.380
220 0.238 0.373 0.370 0.364
322 0.025 -0.087 ~0,089 -0.052
332 -0.002 -0.138 -0.138 -0.126
333 -0.004 -0.112 -0.110 -0.097
320 -0.002 -0.076 ~0.075 ~0.076
422 0.021 -0.034 ~-0.034 -0.080

Table 6.1. Fourier components n{G} (in numbers of electrons per
cell volume) of the valence-charge density for silicon in the diamond
structure, colculated with an empirical pseudopotential (EPM}, self-
consistently using a norm-conserving pseudopotential (SCNCP; with 2
and 28 special peints), and "experimental” results from ref.[83] (see
text}. G vectors are given as sets of components with respect to basis
vectors {bi,bz,ba} (see section 3.2.1).

obtained from X-ray scattering data from which a core-electron density
was subtracted (Therefore they cannot be taken too literally (see the
discussion above)). From table 6.1 for Si, we see that n is a smooth
function of r, since the Fourier components n{G)} drop rapidly with
increasing |G|. Furthermore, nk(r) is a smooth function of k, since
the results obtained by using 28 special points (gq=12 in section
3.2.1) do not differ by more than a few percent from those obtained
with 2 special points. The agreement of the SCNCP-calculation with
experiment is much better than that of the EPM-calculation. To
illustrate the independence of the present results of the choice of
norm-conserving pseudopotential, the choice of (local) XC-potential,
and of kinetic-energy cutoff, we quote results from ref.[47]. where
values of n(l11) are given using the pseudopotential from ref.[14],
the Ceperley-Alder functional for correlation, {(2.66), and twice the

number of plane waves we used. These values are: ~1.7691 (electrons

107



000 8.000 8.000 8.000
111 -1.648 ~-1.911 -1.846
211 0.518 -0.322 -0.295
221 0.533 0.072 0.124
222 0.553 0.227 0.298
220 0.178 0.172 0.310
322 0.005 -0.047 0.009
332 0.020 ~0.142 -0.060
333 -0.031 -0.129 -0.002
320 -0.025 -0.100 -0.002
422 0.027 ~-0.112 ~-0.097

Table 6.2. Analogous to table 6.1, but for diamond. SCNCP tis
calculated with 2 special points.

per cell) using N.,=2 and -1.7539 (electrons per cell) using N,,=28.

Similar general remarks can be made concerning table 6.2 for
diamond.

Table 6.3 contains Fourier components of the exchange—corfelation
potential V,. and of the Hartree potential Vy calculated from the n(G)
of tables 6.1 and 6.2 according to the description given in section
2.3.3. The Fourier components Vx.{G) and Vy(G) are generally larger
{absolute valued) in diamond than in silicon. This can almost
completely be attributed to the fact that these components scale with
the reciprocal lattice parameter a”!: the components for diamond are
generally a factor of about 1.5 larger than those for silicen, while
a(8i)/a(C) = 1.52. Put differently, the screening potential, which is
the sum of Vi, and V4, is -apart from the above scaling factor 1.52-
nearly the same in diamond and silicon. So the main difference hetween
silicon and diamond, concerning the effective potential the valence
eléctrons experience, is constituted by the difference in ion-core
pseudopotentials. One difference is that nonlocal contributions to the
effective potential in diamond are much more important than in the

case of silicon.

108



SILICON DIAMOND

EPM SCNCP EPM SCNCP
G vxc vl’l v:c vﬁ ch VH ch \"ﬂ
000 -0.6664 0 -0.6873 0 -0.9572 0 ~-0.9715 0

111 0.0601 -0.1372 0.0512 -0.1458 0.0799 -0.2073 0.0794 -0.2404
211 ~0.0314 0.0097 -0.0076 0.0024 -0.0320 0.0244 0.0014 -0.0152
221 -0.0084 0.0104 -0.0068 0.0078 '~0.0134¢ 0.0183 -0.0028 0.0025
222 -0.0046 0.0105 -0.0021 0.0072 -0.0077 0.0174 -0.0014 0.0071
220 -0.0013 0.0037 ~0.0062 0.0058 ~-0.0005 0.0042 =~0.0042 0.0041
322 -0.0007 0.0003 0.0023 -0.0011 -0.0011 0.0001 0.0018 ~-0.0009
332 -0.0002 -0.0000 0.0026 ~0.0014 -0.0002 0.0003 0.0036 -0.0022
333 0.0001 0.0000 0.0018 -0.0010 0.0002 0.0004 0.0030 -0.0018
320 0.0002 0.0000 0.0013 -0.0007 0.0004 0.0004 0.0025 -0.0014
422 0.0004 0.0002 0.0011 -0.0003 0.0010  0.0003 ©.,0031 ~0.0013

Table 6.3. Fouriler components Vx'c(G) and Vu{G) of the screening
potentials for silicon and diamond {in Rydberg}, colculated with an
empirical pseudopotential {(EPM) and self-consistently with a norm-
conserving pseudopaténtial (SCKRCP). G vectors are given as sets of

components with respect to basis wvectors {bi.bz,bs} (see section
3.2.1).

The lowest few energy eigenvalues calculated with our s.c.
potential at the high-symmetry points I, X, and L are given in table
6.4 and compared to previous calculations using the same method and to
experimental values. The same EPW as in the s.c. calculations are
used. There is a good agreement between both calculations using the
pseudopotential-density-functional method, although computational
details differ slightly. The agreement with experiment is good for the
valence bands, but large differences occur for the conduction bands.
The latter discrepancy also holds for the indirect band gap., which for
silicon we found to be 0.47 eV (with a conduction-band minimum at
0.85X), whereas the experimental value is 1.17 eV ({conduction-band
miminum at 0.82X). The bad agreement with experiments is a common
feature of all calculations wusing the pseudopotential-density—

functional method, but is not surprising in view of the fact that DFT
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SILICON DIAMOND

This work Yin/Cohen exp. This work Yin/Cohen exp.f
I, ~11.74 -11.95 -12.5° -21.55 -21.45 -21.0
Tas o] 0 0 0 0 0
Iis 2.53 2.54 3.4° ‘ 5.30 5.40 6.0
rs 3.50 3.39 4,2° 13.15 13.38 15.3
X1 -7.65 -7.80 —_— -12.85  ~12.65 e
X4 ~2.84 -2.92 -2.5% -6.36 -6.22 e
X1 0.54 0.62 1.3¢ 434 4.63 —_
X 10.08 9.99 — 16.61 16.73 —_
Lz -9.42 -9.57 -9,3% -15.73  ~15.57T -15.2
Ly -6.92 ~7.01 ~6.7% -13.63  ~13.35 -12.8
La ~-1.18 -1,23 -1.2° -2.87 -2.81 —
Ly 1.50 1.52 2.14 8.60 8.92 —_—
La 3.29 3.37 4.2¢ 8.16 8.31 —

Table 6.4. Energy eigenvalues (in eV} at symmetry points I', X, and
L, calculated with the self-consistently determined potential. The
Yin/Cohen values are taken from ref.[t0]. The experimental values
originate from: (*) ref.[64], (®) ref.[66], (%) estimated from
conduction-band minimum and longitudinal effective mass, (¢) ref.[86],
(®) ref.[87], (') ref.[88].

is a theory for the ground state. The discrepancy is caused by an
inadequate inclusion of many-body effects [84]. Only recently the
accurate calculation of excitation energies from first-principles has
become possible [85].

6.2 Ground-state properties of silicon and cubic SiC

Some ground-state properties of a solid may be derived by calculating
the total energy for different values of the lattice parameter(s}. By
varying the lattice constant of the diamond or zincblende structure,
we simulate the effect of applying isotropic pressure to the crystal.

In our method we are, contrary to experiments, not restricted to
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Fig. 6.3 Total energy Eio.+ of silicon (in Ry per atom) as a
function of lattice constant a (in &), keeping the rumber of plane
waves constont {solid curve) and keeping the Rinetic-energy cutoff Epy
constant (marked points). Arrows denote values of the lattice constant
for which the curve through the marked points would exhibit dis-

continuities.

positive values of the pressure. The position of the minimum of the
total-energy-versus—volume curve, E;.:{{l.), determines the equilibrium
lattice constant a.,. the value of the mimimum is related to the
cohesive energy of the crystal, whereas second and higher order
derivatives of Ei.t at a.q determine the compressibility and its
pressure dependence {this is made more explicit below). A preliminary
report of the results in this section was given in ref.[70].

In fig. 6.3 we collect total-energy calculations for S8i. In all
calculations of this section, the same two special points as before,
ki and kz, were used. The marked points indicate values obtained by
keeping Epy constant at 11.2 Ry. The curve through these points {(not

drawn) has discontinuities for values of the lattice constant denoted
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by arrows on the horizontal axis (see also section 5.2 and table 5.2).
The full curve in fig. 6.3 was calculated using fixed numbers of plane
vaves; 149 for ki and 150 for k». This curve does not have dis-—
continuities and coincides with the former curve for lattice constants
in the interval between the two larger arrows in fig. 6.3. To the left
of this interval the marked points are calculated using less plane
waves than in the calculation of the full curve, whereas to the right
more plane waves are used for the marked points. Because of the
smaller and larger variational freedom offered to the wave functions,
respectively, the marked points are situated above the full curve for
a < 5.18 & and below the full curve for a > 5.23 &.

We combine the results for the total energy with Murnaghan’s
equation of state for solids [89], which for the volume-dependent
energy E(V)} takes the form:

¥
_ BgV [ (V. /)P

E{V} = + 1| + E,, {6.1a)
B, By ~ 1

where E, is a constant equal to:

BV,
B; -1

E, = E(Vo) e (6.1b)

In (6.1) V, is the equilibrium volume, B, the (equilibrium) bulk
modulus defined by:

2
B, =v4E , (6.2)

and B, the derivative at zero pressure of the pressure-dependent bulk

modulus B{P). The pressure at constant temperature is defined as:

P(V) = - %‘?{E(V}), (6.3)

and the pressure-dependent bulk modulus as:

2
B(P) = V g—;{E(V)) (6.4)
av

v=V(P)
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a.q (A) B, (Mbar) B, Efot.min (Ry/atom)

) 5.334 1.20 3.3 -7.896
2) . 5.452 1.00 2.6 ~7.902
3) 5.449 0.95 3.3 -7.903
exp. 5.429 0.99 4.2 -7.925

Table 6.5. Ground-state oproperties of Si, calculatéd in three
different ways (see text) and compared to experiment. a., is the
equilibrium lattice constant, B, the equilibrium bulk modulus, Be the
pressure—derivative of the bulk modulus, and Etot.min the minimum

total energy.

Equation (6.1) is easily derived (for constant temperature)} from the

assumption that B(P) varies linearly with pressure:
B(P) = B, + B,P. (6.5)

This assumption is certainly wvalid in the neighbourhood of P=0. The
bulk modulus B, is the reciprocal of the isothermal compressibility, a
quantity more commonly dealt with in thermodynamics.

We have made least squares fits of three sets of calculated points
to Murnaghan’s equation of state {6.1):
{1) Points on the solid curve of fig. 6.3, which were calculated with
constant Npy. .
{2) Six points calculated with constant Epwy=11.2 Ry for lattice
constants lying closest to the equilibrium value of the lattice
constant, but not too close to values for which discontinuities occur
{see the discussion in section 5.2).
{3) Eight points calculated with constant Epy=11.2 Ry, selected as
under {2). ‘
The results of these fits are c;onmared to experimental values [64] in
table 6.5.

The quantity Eiot.min is not directly accessible to experiment,
since in the total enefgy Eiot calculated by us, the interaction

energy within the cores is not accounted for., neither are zero~
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temperature vibrations of the atoms. An expression for Ei,: in terms
of quantities that are accessible to experiment is obtained as
follows: if we call Ec,re.; the energy of an isolated core of atom j,
and E,ip the energy due to zero-temperature vibrations of the atoms,
we have for the actual total energy per unit cell of the crystal,

Etot.crystal (in the frozen-core approximation (see section 2.2)):

Elol.crys{al'=Eto{ +2Ecore,j +Evlb- (6-6)
J

where the sum over j is over atoms in the unit cell. The energy of

atom j, Eatom.j, may then be written as:

Z

i)
Eatom.j = "21 ¢1(J) + Ecore.j: (67)
1=

where ¢i(j) is the ionization potential of the it"

out of Z; valence
electrons of atom j. Since the cohesive energy per unit cell, Ecqon, is
the difference between the sum of E,iom.j; over atoms in the unit cell

and E{o{,crys{al, we obtain:

Z _
Elot = - 2 z ¢i(j) + Ecoh + Evlb]- (6'8)
j i=1 '

The experimental values of ¢i(j) are found in ref.[90] for all atoms,
vhile Econ is also accessible to experiment. An experimental value for

E,i» may be obtained from the formula [91]:

©

Evib = g ko, (6.9)
vhere kg is Boltzmann’s constant and ©p the Debye temperature, which
can be obtained from experiment. Usually E,;, is small, but not
negligible. This can be seen in table 6.6; we note in this respect
that E¢o,+ is of the order of 10 Ry per atom, but Ec.n is of the order
0.5 Ry per atom.

In ref.[30] more than three times the number of plane waves (Npy)
were used than we did, resulting in a.q = 5.40 X and B, = 0.93. From a
comparison of  the latter results with table 6.5, we conclude that
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©p (in K) Evis {in Ry/atom)

Si 645 0.0046
C 2220 0.0158
3C sic 1430 0.0102

Table 6.6. Debye temperature ond associcted zero-temperature
vibration energy (see text) for silicon, diamond, and cubic silicon
carbide. Values for ©p are extrapolated to T = 0 K [92].

keeping Epw constant {results denoted by (2) and {3) in table 6.5}
gives better convergence of ground-state properties than keeping Nev
constant {denoted by (1) in table 6.5). We also conclude that with a
cutoff of Epv=11.2 Ry a.q and B, have converged to within 1% and 7%,
respectively., Taking into account the numerical uncertainty due to
discontinuities, the value of B, cannot be determined very well, since
energies resulting from the equation of state (6.1) are not very
sensitive to the value of B;. ‘

From the E:iot.min~value in table 6.5, we obtain a theoretical
(calculated) value for the cohesive energy by subtracting the sum of
Etot.min and Ey p (=7.898 Ry per atom) from the energy of an isolated
pseudo-atom Eps atom {=7.497 Ry): to E,.s . atom we first add in a
rather ad hoc fashion a correction for the spin-polarisation energy
Esp (=-0.058 Ry per atom [66,93]). A pseudo-atom is an atom without
interaction within the core; for the calculation of Eps,atom the same
pseudopotential is used as in the calculation for the solid [94]. We
have:

Ecoh = (Eps.aiem + Esp) - (Eiot.min + Evlh}~ ) (6-10)

This results in a theoretical value of Econ = 0.343 Ry/atom =
4.67 eV/atom, whereas the experimental value is 4.63 eV/atom [95]. The
excellent agreement is in fact slightly misleading, since Eict.min
drops by an amount of about 0.3 eV/atom when va approaches infinity
[30,66]. '

Similar calculations have been performed for 3C SiC. As for Si,
2 special points are used and Epy is chosen such that the largest
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Fig. 6.4 Total energy Ei,+ of 3C SiC (in Rydberg per cell) as a
function of the ratio of volumes /Qexp (flexp, denotes the experimental

volume). The solid curve is the Fit to Murnaghan's equation of state
(see text).

discontinuities in the E;,{(Q:)-curve are about as large as these are
for Si with Epy=11.2 Ry and 2 special points. We find Epy=29.7 Ry,
leading to about 380 plane waves in the basis set if the lattice
constant is around the experimental value. In that case the dis-
continuities are always smaller than 2 mRy/atom. By choosing lattice
constants for which Ei,¢ is calculated midway between ag-values (see
section 5.2), we estimate the uncertainty‘ of calculated total-energy
differences due to finite Epy and N;, to be 1 mRy/atom. The Eio¢(Qc)—
curve is given in figure 6.4, together with the fit to Murnaghan’s
equation of state.

In table 6.7 we compare results of various total—ehergy calcu~
lations and various fits with each other and with experiment:
(1) Fit to Murnaghan’s equation of state of total energies calculated
using the lower cutoff Epy=20.6 Ry for values of the lattice constant

selected as in the case of silicon (see also fig. 5.2).
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aeq (A)  Bo (Mbar) B; Etot.min (Ry/cell)

(1) 4.411 3.08 2.1 -19.140
(2) 4.351 2.00 7.3 -19.308
29 4.351 2.09 7.4 ~19.308
(3) 4.365 2.20 3.4 -19.309

. (3") 4.364 2.17 3.8 -19.309
exp. 4.360 2.24% — ~19.410 -

 Table 6.7. Gfound—state properties {as in table 6.5) of 3C SiC;
calculated in 5 different ways (see text) and compared to experiment.
The star denotes that the experimental B, is only an estimote [97].

(2) Fit of the 6 points from fig. 6.4 (Epv=29.7 Ry) closest to agq to
Murnaghan’s equation of state. ' '

(2') Same points as (2), but fitted to the energy-volume relation
which follows from Birch’s equation of state for solids [96]:

E(V) = 93“'"" [(Bo 4)[ ] +(14- 330)[V°] +(3B.-16) [%ﬁ]m]mc,
(6.11a)
where
= E(V.) - Lole (8 - 6). ' (6.11b)

and B,,V, and B, have the same meaning as in (6.1).
(3) Fit of all 8 calculated points from fig. 6.4 to eq. (6.1}.
{3') Same points as (3}, but fitted to (6.11).

Concerning table 6.7 we make the following remarks:
{i) Fits to {6.1) and to (6.11} give practically the same results
{compare (2) with (2') and {3) with (3')).
{ii) The uncertainty due to the fitting and the choice of equation of
state, which does not follow from fikrst‘principles. is estimated by
comparing (2} and (3). For this type of uncertainty we have: 0.3% for
Beq, 10% for B,, less than 10™® Ry/cell for Eiot.min. Whereas B, can
vary by a factor of 2. o
{iii) The uncertainty due to the cutoff Epy=29.7 Ry is estimated to be
the same as in silicon with Epy=11.2 Ry: less than 1% for a.q and
about 10% for B,. This estimate follows from the fact that energy
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differences are all that is needed to calculate a.q, B,, and B;, while
these differences have the same uncertainty in SiC for Epv=29.7 Ry as
in 8i for Epw=11.2 Ry.

{(iv) From the results for Epw=20.6 Ry, we infer that a., converges
faster than the other quantities.

(v) In view of (ii) and (iii), the agreement with experiment of the
results for Epy=29.7 Ry is excellent for a.q, although we expect a.q
to drop when more plane waves are used, but not by more than 1% (just
as in silic_on). The experimental value of B, is only an estimate [97];
Bs is hard to measure, because the relatively large crystals of 3C SiC
that are needed are hard to fabricate. Both the calculated and
experimental value of B, are intermediate between the bulk moduli of
'silicon and diamond (0.99 Mbar and 4.42 Mbar, respectively). They
furthermore agree with the result of a semi-empirical calculation [98]
of the elastic constants C;; and Ciz. These are related to B, by the
equality, B, = {Ci1 + 2C12)/3 {cubic crystals [99]). From ref. [98] we
then infer: B, = 2.11 Mbar. An experimental value of B, has never been
reported, but since silicon and diamond both have By close to 4, the
same 1is expected to be true for 3C SiC. The experimental value of
Etot.min is calculated as explained above (eq. (6.8)): we obtain the
experimental cohesive energy of 3C SiC needed in this calculation from
the cohesive energies of Si and C [95] and the heat of formation of
3C 8iC [92], following ref.[100]: E.on{3C) = 6.33 eV/aton.

Recently, other calculations applying the pseudopotential-density-
functional method to 3C SiC have been reported; these calculations use
a larger Epy. The results are in general agreement with table 6.7 and
the above remarks about the accuracy of the calculated properties:
Aeq = 4.323 R, B, = 2.50 Mbar, B, = 3.2 in ref.[101] and a., = 4.318
X, B, = 2.34 Mbar in ref.[102].

To complete the discussion of ground-state properties of 3C SiC
obtainable from our calculations, we show in table 6.8 the dependence
of Eitot on Epy and Npy. All these calculations use 2 special points
and the experimental lattice constant. ‘The experimental value of Ei,:
is calculated as explained with table 6.7. From fig. 1 in ref.[102] we
estimate Eiot to be ~19.40 Ry/cell for Epv=50 Ry. We conclude that by
increasing Epy Eiot converges to a value very close to our experi-
mental estimate. From the lowest Ei,¢~value in table 6.8 (for
Epv=36 Ry)., we calculate the cohesive energy for 3C SiC in precisely
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Npy Eev (Ry) Eio: (Ry)

(77.74) 10.3 -18.48
(143,150) 15.2 -18.93
(223,217) 20.6 -19.14
(262,274) 23.3 -19.21
(382,374) 29.7 -19.31
(508,516) 36.0 -19.35

exp. -19.41

Table 6.8. Calculated total energy Ei.¢ (in Ry per cell) of 3C SiC
as a function of Rinetic—energy cutoff Epy Ffor the experimental value
of the lattice constant adexp, = #.3596 X [64]. Under Npy the numbers of
plane waves for the two k points used are listed. The experimental
value of Eioir was deduced from the experimental values of the cohesive
energy Econ, the Debye temperature 8p, and the tonizoation potentials
¢, of the atoms St and C {see eq. {6.8)}).

the same way as we did for silicon. Besides quantities for the silicon
pseudo-atom given before, we need: E;s, atom(C) (=—-10.676 Ry/atom [94])
and E.,{C) (=0.103 Ry/atom [24])}. We thus find a cohesive energy for
3C SiC of 6.75 eV/atom; in reasonable agreement with the experimental
value of 6.33 eV/atom. The agreement becomes less if the more
converged value for Eioir of ref.[102] is used: E.on = 7.09 eV/atom.
This general feature of overestimating the cohesive energy is mainly
due to the. inadequacy of the use of pseudopotentials (and/or the
local-density approximation) to calculate the energy of the pseudo-
atom. This can be inferred from the fact that the calculated Eio:
converges, with increasing Epy, to a wvalue close to the experimental
Etot. whereas the converged., calculated E..n  overestimates the
experimental E.o,n. The additional ingredient to the calculation of
Econ is basically the calculated pseudo-atom energy.

Since all results in this section are obtained using only 2 special
points to perform integrations over 1BZ, we may conclude that energy
differences can be determined quite accurately with this small number
of special points. This is due to the fact that technical approxi-

mations are made in an equivalent way (see sections 2.5 and 3.4}.
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6.3 Valence-charge density and band structure of cubic SiC

In fig. 6.5 we compare valence-charge densities in 3C 8iC, calculated
for the experimental lattice constant. Figure 6.5(a) is the result of
an EPM-calculation using the form factors of ref.[65] and about 90
plane waves (PW's) for the expansion of the wave functions. Figure
6.5(b) results from a self-consistent calculation with norm-conserving
pseudopotentials (NCPSP) using about 380 PW’'s.  Apparently the
empirical pseudopotential for ‘Si is too weak compared to the one used
for C. This is less an effect of the locality of the atomic carbon
pseudopotential -as was the case for the discrepancy between EPM- and
SCNCP~densities for diamond (section 6.1}- than of the fact that the
empirical pseudopotentials were not submitted to transferability
criteria {see section 2.2).

. In fig. 6.5(b) we see that p displays features typical of both
ionic bonding (superposed spherical charge distributions centred on
the atomic positions) and covalent bonding {charge accumulated in
bonds between the atoms), illustrating that 3C SiC is partially ionic.
The charge density resembles the one for III-V compounds (e.g., Gads
[100]). However, in SiC the ionicity of the bond is not the result of
a difference in charge of the two cores, but of a difference in size
of the two cores.

The band structure of 3C 8iC is shown in fig. 6.6, calculated with
the EPM-potential (dashed lines} as well as with a self-consistent
screening potential and norm-conserving ionic potentials {SCNCP; full
lines}).. In the latter calculation Epy=23.3 Ry 1is used; employing
Epwv=29.7 Ry changes individual energy levels by less than 0.2 eV. The
three highest valence~band levels from both calculations agree very
well, but the valence-band width differs significantly: 15.4 eV for
SCNCP and 19.4 eV for EPM. The form factors of  the EPM-calculation
were adjusted to reproduce -among other optical transitions- the
experimental indirect I' to X band gap of 2.40 eV. The SCNCP-result for
the gap is almost 60X off (just as for silicon; see the discussion of
table 6.4).
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Fig. 6.5 Total valence-charge density of 3C SiC in the (110)
plane. Units are numbers of electrons per unit-cell wvolume. The

contour step is 2. Black dots represent atomic positions and straight
lines connect bonded atoms. (a) Result of EPM~calculation. (b) Self-

consistent result using norm-conserving pseudopotentials.

121



energy {eV]

A r A X K . i r
reduced wave vector k

Fig. 6.6 Band structure of 3C SiC, calculated with on empirical
pseudopotential (EPM) and self-consistently with norm~conserving
pseudopotentials (SCNCP). Labels at high-symmetry points denote the
irreducible representation of the band concerning.

In table 6.9 we compare the S(ZI\TCP~bandfstructufe at high-symmetry
points for Epy=29.7 Ry with an all-electron density-functional
caleulation using the Augmented—Sphérical—Wave (ASW) method modified
to treat open structures [103,104]. We also compare with experimental
results, which are deduced from tables in refs.[64,65,105]. There is
reasonable agreement between pseudopotential and all-electron
calculations, SCNCP and ASW agree with experiment for the valence
bands, but disagree for the conduction bands. The dispersion of the
conduction bands also disagrees between SCNCP and experiment, i.e.,
the discrepancy varies with the reduced wave vector k;
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SCNCP ASW exp.

Ty -15.2 -15.2 B
Tis 0 0 0.

Ty , 6.4 5.8 6.0°°¢
Tis 7.1 7.1 7.8%
X4 -10.3 ~10.4

Xa -7.8 -7.8 -7.3°
Xs ~3.1 -3.2 -2.8%"
X4 1.1 . 1.4 2.4%:0 ¢
Xa 4.0 4.2 5.5°
Ls -11.7 -11.8 —
Li -8.5 - -8.5

La ~1.0 -1.1 -1.2¢
Ly 5.3 5.1 4.2°
La 7.0 7.2 8.5%°

Table 6.9. Energy eigenvalues for 3C SiC at high-symmetry points T,
X, and L. SCNCP denotes results from the present method and ASY
denotes results from all-electron calculations with the Augmented-
vSpherical-—Wave method [104]. The experimental values originate from
tables in: () ref.[105], (®) ref.[68], (%) ref.[64].
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6.4 Accurate energy differences and equivalent special-point sets

In section 6.2 we showed that accurate energy differences between
crystals with the same crystal structure, but with different lattice
constants can be obtained if technical approximations are made in an
equivalent way, meaning constant Epy and special points chosen as
explained in section 3.4. In the latter section we already argued that
it is more difficult to obtain such accuracy if the crystals are
structurally different. We developed a systematic way to proceed in
the latter case and introduced equivalent special-point sets (ESPS).
In this section we give an application of this approach by calculating
total-energy differences 6E;,; between cubic~diamond {(CD) silicon and
hexagonal-diamond (HD) silicon as well as between zincblende SiC {3C)
and wurtzite SiC (2H). These structures are describéd in section 3.4.
The energy differences between the structures mentioned are expected
to be very small, since each atom has 4 nearest and 12 second-nearest
neighbours at the same distances in both structures.

Some of the results in this section were published in ref.[106].

In table 6.10 we present results of total-energy calculations for
CD and HD silicon using the ESPS of table 3.4. For CD the experimental
lattice constant a.=5.43 & is used, whereas for HD the corresponding
lattice parameters a = ¥a.v2 and ¢ = (22/3)¥8 are used (see section
3.4). We remark that HD silicon is a hypothetical solid, since it is
not found in nature. This, however, does not prevent us from a
calculation with our method. It is gratifying to see in table 6.10
that by employing successively larger special-point sets, the change
in total energy has the same sign for both structures, when applying
ESPS. However, the fact that SEist converges not faster than the
individual total energies is disappointing. The latter fact merely
indicates that the special-point sets for both structures are not
equivalent enough.

We remark that the difference in Ewald energy (see section 2.3) of
0.0124 Ry/atom [107] is apparently canceled almost completely by the
other terms in the total energy.
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(Nap(fcc) Nop(hex))  (2.3) (6.8)  (10,14) (19,20) (28.30)

Eyo+(CD) ~7.9029 ~7.9079 ~7.9085 -7.9087 -7.9086
Eyo«(HD) -7.8944 -7.9040 -7.9072 -7.9077 -7.9077
OEtot 0.0085 0.0039 0.0013 0.0010 0.0009

Table 6.10. Total energies (in Ry per atom) for cubic-diamond {CD}
ond hexagonal~-dicmond (HD) silicon using equivalent special-point
sets. SEio1=Ero1(HD)~E:o+{CD} (in Ry per atom). N.,(fcc) and Ns.(hex)
are the numbers of special points used for CD and HD, respectively.
A kinetic-energy cutoff Epy=11.2 Ry was used.

In table 6.11{(a) and (b) we show results of total-energy calcu-
lations {in Ry per pair Si-C) for 3C SiC and 2H SiC, respectively,
using the ESPS of table 3.4 and various values of the cutoff Epy.
Table 6.11(c) gives the difference in total energies in mRy per pair
Si-C calculated with the same Epy and equivalent special-point sets.
For 3C the experimental lattice constant is used, whereas for 2H the
corresponding ¢ and a are used (see above). In the table crosses
denote values that could not be obtained in less than 6 hours of
processing time on'a Burroughs 7900 computer; values marked by a star
have been calculated on a CYBER 205 vector computer.

It is clear from table 6.11(a) and (b) that just as in section 6.2
energy differences are to be calculated by subtracting total energies
calculated at the same Epy, implying the same resolution for wave
functions in r-~space. Since the unit-cell volume of 2H is exactly
twice the unit-cell volume of 3C, according to {2.82), the number of
plane waves Npy then is approximately twice as large in the 2H-
calculation. Since computing time goes up with a power of Npy between
2 and 3, calculations are more time consuming for 2H by a factor
between 4 and 8 (Therefore table 6.11(b) contains more crosses than
table 6.11(a)). We also infer from table 6.11(a) and 6.11(b} that the
convergence with respect to increasing N., is slightly better the
higher Epvw is. However, certainly for Epw=10.3 Ry and Epy=15.2 Ry the
convergence is considerably less than for silicon with Epy=11.2 Ry
{cf. table 6.10). We speculate that in order to obtain 8E{,: with an
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accuracy of 10~* Ry/pair Si-C a cutoff Epy=29.7 Ry and the (28,30)
ESPS are required (cf. section 6.2).

The bad convergence with respect to increasing Ng,, combined with
the fact that our ESPS are probably not equivalent enough, results in
the situation that we are not able to accurately determine the energy
difference between 3C and 2H (see table 6.11(c)). The feature of
"non-equivalence” is also reflected in the fact that the sign of 8Ei.:
is consistently negative for the (10,14) ESPS. Computational limi-
tations restrict us to a best estimate from the Epy=15.2 Ry results:
SEtot = 1.1 # 0.9 mRy/pair Si-C. This energy difference is of the same
order of magnitude as 6Ei,:+ of CD and HD silicon. Very recently 8Ei.
of 3C and 2H was calculated using the supercell approach described in
section 3.4 [57], in which better equivalence of the two special-point
sets is achieved at the cost of larger computing times. In the latter
calculation, plane waves with kinetic energy below 10 Ry are treated
exactly as we did, whereas those with kinetic energy between 10 and
20 Ry are included by means of a perturbation technique. This results
in 8Eio¢ = 0.73 £ 0.02 mRy/pair 8i-C, in agreement with our result
above. In the latter error estimate only the error of the special-
points approximation is included and not the error due to the
finiteness of Epw.

Just as for CD and HD silicon, the difference in Ewald energy
between 3C and 2H, 30.7 mRy/pair S$i-C, is canceled almost completely
by the other terms in the total energy. ’

Table 6.11. Total energies (in Ry per pdir Si-C} for (o)} 3C SiC and
{b)} 2H SiC, using various kinetic-energy cutoffs Epy and various
rambers of special points Ny,. {c) gives energy differences 8sic =
Evot{2H)-E1o+{(3C) {in mRy per pair Si-C) found from total energies at
the same Epy and with (equivalent) special-point sets as indicated.
Crosses denote values not obtainable within 6 hours of processing time
on a Burroughs 7900 computer and stars denote values obtained on a
CYBER 205 wector computer.
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Nap(fec) 2 6 10 19 28 44
Erv (Ry)
10.3 ~-18.4835 ~18.5218 -18.5111 -18.5185 -18.5160 -18.5135
15.2 -18.9298 ~18.9257 -~18.9249 -18.9270 -18.9264 -18.9258
20.6 -19.1379 —_— —— e R e
23.3 ~19.2118 -19.2226 -19.2221 B  — X
28.7 -19. 3065 B — —— X X X
36.0 -19.3473 e X X X ‘ X

(a)
Nep(hex) 3 8 14 20 30 42
Eev (Ry)
10.3  -18.4727 -18.5038 -18.5131 -18.5137 -18.5127 -18.5151*
15.2  -18.8988 -18.9173 -18.9250 ~-18.9220 -18.9244 -18.9247"
20.6 -19.1224  — — X X X
23.3 ~19.1086 -19.2176 -19.2229% X X X
29.]7 -19,2951 X X X X X
36.0 X X X b X X

(v}

(Nap(foc),Nyp(hex)) (2,3) (6.8) (10,14) (19,20} (28.30) (44,42)

Eev {Ry)

10.3 10.8 18.0 -2.0 4.8 3.3 -1.6"
15.2 31.0 8.4 -0.1 4.1 2.0 1.1%
20.6 5.5  — X X X
23.3 13.2 5.0 -0.8* X X X
29.7 11.4 X X X X X
36.0 X X X X X X

()
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6.5 Wurtzite SiC: mapping and relaxation

In this last section of this chapter we compare the valence-charge
dehsity p in wurtzite SiC {2H SiC) with p in 3C 8iC. Furthermore, we
briefly discuss the relaxation of the lattice parameters c¢ and a,
i.e., we search for the minimum of E(,+ when these parameters are
allowed to vary.

In fig. 6.7 we show the valence-charge density in the equivalent
planes of 2H SiC and 3C 8iC that were described with fig. 3.3. Both
were calculated using Epw=15.2 Ry, and the usual 2 special points for
3C and 3 special points for 2H (qa.=3. q.=2 in section 3.2.2). The
similarity of figs. 6.7(a) and (b) is in accordance with the fact that
polytypes only differ in the way of stacking layers identical in
structure. A suitable choice for such a layer is indicated in frig.
6.7(b): the height of a layer is %c, half the height of the unit cell
of 2H, and it contains one plane in which silicon atoms are ai‘ranged
in equilateral triangles and one plane in which carbon atoms are
arranged in equilateral triangles (see also fig. 3.4). A fairly good
picture of the electron density in 2H SiC can be obtained from the
density in 3C S8iC by keeping the central layer (between dashed lines)
fixed and rotating the layers just above and below over 180° around
. the bond axes protruding into these layers.

More preciéely, a transformation equivalent to the transformation
described above is formulated as follows (density mapping): suppose we
have calculated the density in 3C, psc, at positions r = Fti+nta+{ta,
where ti,t3, and ty are basis vector of the hexagonal Bravais lattice
of 2H SiC. We choose the origin in a C-type position, i.e., the type
of position not occupied by atoms in fig. 6.7(a) {see also fig. 3.4).
The density for 3C is transformed into a density pau for 2H by:

pac{.n.{) 0<En<1, 0L <K%

p2u(E.n.L) = (6.12)
pac(E-n.E.{%) 0<CEn<1, 8L <1.

Equation (6.12) shows that the density in the complete unit cell of
24 SiC is obtained from the density in one layer of 3C SiC. The
transformation defined by (6.12) rotates the density in the "building-
block”™ layer over 60° around the z-axis through a C-type position and
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Fig. 6.7 Total valence-charge density {a) .of 2H SiC in the (110)
plane, compared to (b) the one of 3C SiC in the (110) plane. Both
densities are calculated with Epy = 15.2 Ry. The region between dashed
lines in fig. 6.7(b) belongs to the "building-block” layer (see text).
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G |B2n] lp2nl

000 8.000 8.000
100 1.400 1.420
002 1.997 1.990
101 1.226 : 1.234
102 . 0.421 0.399
110 0.193 0.170
103 0.119 0.110
200  0.174 0.189 -
12 0.201 0.201

201 ' 0.161 0.149

Table 6.12. Fourier components of the valence-churge dehsfty {in
numbers of electronic charges per unit-cell volume of 3C SiC},
obtained by mapping a self-consistent density of 3C 8iC according to
(6.12) (pz2n) and by a self-consistent calculation for 2H SiC (pzu).
C vectors are given with respect to the basis vectors bi,bz and bz of
the reciprocal lattice of 2H SiC (see section 3.2.2}.

places the resulting layer on top of the "building-block"” layer. There
are 5 other possibilities to define this density mapping, viz., using
all other operations of the space group of wurtzite (Cgv) that are
accompanied by a nonprimitive translation. In fig. 6.8 we show an
original density of 3C SiC and its mapped equivalent, which may be
compared with the density for 2H SiC in fig. 6.7(a). In table 6.12 we
make the comparison more quantitiative by giving Fourier components of
the mapped valence-charge density (fig. 6.8(b)) and of the actual
valence-charge density calculated directly (fig. 6.7{a}}. The
agreement is reasonable.

By transformations similar to the one described above, the
valence~charge density in all polytypes may be approximated from
knowledge of the density in one layer of the simplest polytype,
3C SiC, only. Unfortunately, this does not give us a. means of
comparing the polytypes energetically, since the total energy as
functional of the density is not known. For instance, in (2.58) the

term E(n,k)En(k) is only determined by p through the solution of the
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Fig. 6.8 ‘ Total uwvalence-charge density of 3C SiC in the (110)
plane, (o) before and (b) after the density-mapping transformation,
eq. (6.12). The contour step is U electrons per unit-cell volume of
3C SiC. The density after mapping approximates the self-consistent
density of 2H SiC (Fig. 6.7(a)) very well.

set of equations (2.39), in which the effective potential V.¢¢ 1is
determined by p. For polytypes with 1argé unit cells. however, this
solution is computationally prohibitive,

In fig. 6.9 results are shown of total-energy calculations for
2H SiC with varying lattice parameters ¢ and a. The internal parameter
u is eliminated as independent parameter by the restriction that all
Si~C bond lengths are equal or, equivalently, that all atoms ($i and
C) are situated exactly in the centre of regular tetrahedra with atoms
of the other type {C and Si) at the corners. In the theoretical
calculation this restriction is merely for our convenience -one

independent variable is eliminated-, in experiments this condition
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seems to be satisfied [73]. With this restriction u depends on c and a

as follows:

u = g[i}z + 4. (6.13)

In fig. 6.9(a} the c¢/a-ratio is kept constant at the ideal value
(273)¥8 (=1.633). In fig. 6.9(b)} we keep the lattice parameter a
constant at %a.;wé, with a. the experimental lattice constant of
3C SiC, implying a = 3.0827 A. Finally, in fig. 6.9(c) the parameter ¢
. is kept constant at {2a./3)v3 = 5.0340 K. We note that these ideal
(3C SiC derived) values of a and ¢ differ only very slightly from the
experimental 2H SiC values: a = 3.0763 &, ¢ = 5.0480 & and c/a = 1.641
[64]. ‘ e

The error bars in fig. 6.9 have been determined as follows; the
calculations have been performed with Epy=23.3 Ry and 3 special
points. With these cutoffs the maximél effective change in basis-set
size, ANpax {see section 5.2), is 1.33. From calculations for 3C SiC
we know that at Epy=23.3 Ry discontinuities can be as large as 10 mRy
per cell of 3C when AN = 7.5, Because the unit cell of 2H SiC is twice
as large, discontinuities can be as large as 20 mRy per cell when
AN = 7.5. Since AN,h.x = 1.33, we obtain an error estimate of: 3.5 mRy
per cell of 2H SiC.

Because of the error bars in fig. 6.9, the minima of the 3 curves
are only roughly determined. From the results in fig. 6.9, we deduce
the equilibrium lattice parameters as follows; each of the figures
6.9(a}, (b}. and (c)} yields a set of equilibrium lattice parameters c,
a, and c/a (the minimum is determined from the parabola through the
data points in figs. 6.9{(a) and (c) é.nd the third order polynomial
through the data points in fig. 6.9(b)). The three results are
averaged and the error is estimated to be the largest deviation from
the average. We then find: a =3.11 £ 0.03 %, ¢ =5.10 £ 0.08 &,
c/a = 1.64 £ 0.04. All calculated values are within 1Z of the
experimental values.

It is clear that a discrimination between experimental 2H SiC
lattice parameters {a = 3.0763 &, ¢ = 5.0480 &) and ideal (3C SiC
derived) lattice parameters (a = 3.0827 &, ¢ = 5.0340 1) is out of the
reach of the present calculation and probably even out of the reach of
the whole method. »
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Fig. 6.9 Total energy of 2H SiC as a function of the lattice
parameters ¢ and a; (a) variation of a with constant c/a~-ratio,
(b} wvariation of c/a with constant a, and {c) variation of a with

constant c. The arrows indicate estimated error bars (see text).
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CHAPTER 7

OUTLOCK :
TOWARDS A FUNDAMENTAL DESCRIPTION
OF CRYSTALS WITH LIMITED PERIODICITY

So far we have focused on bulk crystals, i.e., crystals that are
periodic in three linearly independent directions with a period of the
order of the lattice constant. We have found that an accurate
description of the atomic and electronic structure of such crystals is
possible by starting from properties of the constituting atoms and
without the need to include parameters obtained from experiment. It
should be noted that within the same theoretical {ramework also
lattice dynamical properties such as phonon frequencies and elastic
properties may be, and actually have been, calculated in agreement
with and in prediction of experiments [30]. Furthermore, transition
pressures for solid-solid phase transformations under the application‘
of pressure have been calculated and predicted (see, e.g., ref.[108]).

In this chapter we briefly review the achievements so far and the
possibilities in the future of the pseudopotential-density-functional
method when applied to crystals with limited periodicity. Such
crystals we will understand to be crystals for which the periodicity
in one of the three directions is non-existent or greatly modified

{enlarged) with respect to the bulk crystal. We here restrict crystals

with limited periodicity to the following 4 categories:

(i} interfaces: two different crystals grown on top of each other. A
technologically important class of interfaces are the semi-
conductor-semiconductor interfaces called heterojunctions.

{ii} surfaces: these can be seen as interfaces in which one of the
"crystals” is the vacuum. .

(iii) crystals with stacking faults: bulk erystals. with structural
irregularities in the stacking of layers.

{iv) superlattices: periodically repeated interfaces, thereby
restoring the periodicity in the third direction, with
periodicity lengths, however, which may be significantly larger
than those in the directions parallel to the interfaces. Since
around 1980 techniques such as Molecular Beam Epitaxy (MBE} and
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Metal-Organic Chemical Vapour Deposition (MOCVD)} have come
available to artificially grow superlattices, which are becoming
increasingly important in technology. Polytypes (see chapter 6)
can be seen as a natural class of superlattices. The number of
layers in a unit cell and their stacking sequence differs

between different polytypes.

To apply the pseudopotential-density-functional (PDF) method using
plane waves, it is absolutely necessary to restore the periodicity in
the third direction if it is non—existent {categories (i), (ii}, and
{(iii)). This is done by periodically repeating the interface, surface
or stacking fault using such a large unit cell (called supercell) that
neighbouring interfaces, surfaces or stacking faults do not influence
each other. Such an influence can be investigated and controlled by
calculations with supercells of different size.

What has been achieved until now in the mentioned categories using
the PDF-method with norm-conserving pseudopotentials and plané waves?
In answering this question we do not intend to be exhaustive, but we
want to give a general idea of the applicability in practice of the
method.

{i} Van de Walle and Martin [109] calculated band discontinuities of
semiconductor heterojunctions, which are of the order of 0.5 eV,
to within an accuracy of 0.05-0.1 eV. In their calculations it
has éppeared to be possible to use low cutoffs - Epy = 6 Ry
{leading to about 35 plane waves per atom) and typically 4
special points - combined with small supercells containing
typically 8 atoms. In this way an actual heterojunction could be
described, i.e., charge densities and potentials were found to
be bulk-like already one layer away from the interface.
Heterojunctions of semiconductors in which both bulk solids have
equal c¢rystal structure and approximately equal lattice

"~ constants (e.g.., GaAs and AlAs), as well as lattice strained
heterojunctions (e.g.., Si/Ge) were treated.

{ii) Surfaces are more difficult to handle since the effect of the
vacuum penetrates deeper into the crystal, leading to the
necessity‘of large supercells. Pandey [110]. Northrup [111] .and
the MIT-group of Joannopoulos [112,113] have performed surface-

reconstruction calculations for various surfaces of Si and Gals.
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In the calculations of ref.[113] about 1700 plane waves are
treated exactljr ~determining the size of the matrices to be
diagonalized-, whereas an additional 3500 plane waves are
included via perturbation theory. The energy gain of surface
reconstruction is typically of the order of 0.5 eV per surface
atom.

{iii) Chou et al. [114] calculated stacking-fault energies in silicon,
‘which are of the order of 0.02 eV, with an accuracy of 20%,
using cutoffs, Epv = 10 Ry {( ~70 plane waves per atom), N.p =
16, and supercells of 16 and 14 atoms.

{(iv) Polytypic energy differences were discussed in section 6.4. So
far calculations for polytypes of SiC with up to 8 atoms were
performed [57]. Energy differences here are of the order of
0.005 eV per atom. Very recently, Martin reported preliminary
calculations of structural phase-transformations under pressure
in superlattices of GaAs and AlAs [115].

The calculations mentioned above are generally performed at the
limits of computational power (locally) available. If it appears to be
necessary to include more atoms in the supercell, or if one wishes to
lay a smaller claim on computing facilities, one has to replace the
plane waves in the basis set by functions of which a smaller number
per atom are needed. An example, employed in comnection with norm—
conserving pseudopotentials, are LCAO’s [24]. where the atomic
orbitals are combinations of Gaussians. This approach was applied to
the surface of diamond by Vanderbilt and Louie [116]. Gaussians were
also used in the description of twin boundaries in silicon by
DiVincenzo et al. [117] (supercells of 36-40 atoms). The calculational
scheme connected with LCAO’s is, however, significantly more com-
plicated than the oné associated with plane waves.

¥e now briefly discuss an approach that is sometimes followed to
circumvent the need for calculations with large unit cells. In this
so-called parameter approach, calculations for a few geometries with
small unit cells provide the parameters with which the systems with
large unit cells are described. We mention two examples:

(1) Polytypes differ in the way layers of equal structure are stacked
(see section 6.5 for the definition of such a layer in S8iC).
Inspired by a resemblance between the phase diagram of the Axial
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(2)

Next Nearest Neighbour Ising (ANNNI) model and polytypism [118],
the following expression for the energy of an arbitrary polytype
was proposed:

E=Jo + aJi + BJa. (7.1)

In (7.1) a and B are constants (with absolute value between O
and 1) which are simply related to the specific stacking sequence.
The parameters J,,Ji, and Jz are interaction energies in the
layer, ‘between nearest-neighbour layers, and between next-nearest
neighbour layers, respectively. Total-energy calculations for 3
polytypes suffice to determine the 3 parameters {J,.J:.J2} [B7].
For these 3 polytypes one is free to choose those with the
smallest unit cells, i.e., 3C, 2H, and 4H SiC (2,4, and 8 atoms
per cell, respectively)}. From the calculated parameters the total
energy for an arbitrary polytype, also one with a very large unit
cell, is now easily calculated. However, we must emphasize that it
remains to be investigated whether the expression (7.1) is
adequate, i.e., vwhether interaction energies between layers
further apart (Js,Js4,...) mway indeed be neglected. This can be
done by calculations for additional polytypes.

The (7x7) reconstruction of the Si (111) surface has a much too
large unit cell to be directly accessible to the type of calcu-
lation described. By means of the recently proposed Takyanagi-
model for this reconstruction [119], the energy gain of this
reconstruction may be expressed in terms of 3 parameters. These
parameters were determined by Northrup [120] from surface
calculations with smaller unit cells ((v3x/3) and (2x2) recon—

structions}.

The approach, as sketched in the two examples, does not fully

replace the need for calculations with large unit cells. It is,

however, an acceptable alternative within the present computational

potentialities.

From the above sketch of the state of the art and with the

ever—increasing computing power in mind, we may conclude that the

method described in this work will be used extensively in the near

future to study ground-state properties of crystals with limited
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periodicity. Experimentalists, however, are usually more interested in
excited—-state properties of surfaces and interfaces. The theoretical
study from first principles of such properties has not come to its
full growth yet. Only recently the first first-principles calculations
for bulk solids of excited-state properties in agreement with
experiment have been reported [85]. These calculations turn out to be
much more demanding computationally than those for the ground state,
which makes it uncertain in how far the method is of practical value
to the determination of excited-state properties of surfaces and
interfaces.
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DE PSEUDOPOTENTIAAL~DICHTHEIDSFUNCTIONAAL METHODE
TOEGEPAST OP HALFGELEIDER-KRISTALLEN

Samenvatting

In dit proefschrift wordt een methode beschreven ter berekening van de
eigenschappen van vaste stoffen die voortvloeien uit het gedrag van de
elektronen in die stoffen. Deze methode leidt tot quantitatieve
resultaten zonder de noodzask om gegevens uit experimenten te kennen
en kan dieﬁtengevolge, na succesvolle vergelijking met experimentele
resultaten, voorspellende waarde hebben. De methode combineert de
pseudopotentiaal—theorie, die het mogelijk maakt alleen de valentie-
elektronen in de berekening op te nemen, en de diéhtheidsfunctionaal-
theorie, die een beschrijving geeft“van de grondtoestand van veel—
elektron-systemen in een externe potentiaal. Dit leidt tot de noodzaak
van het zelf-consistent oplossen van de Schrodinger-vergelijking voor
elektronen, waarin de potentiaal bepaald wordt door de eléktronen~
dichtheid, die 61) zijn beurt bepaald wordt door de golffuncties die
oplossing zijn van de Schrodinger-vergelijking.

Pseudopotentialen, die gegenereerd worden vanuit de eigenschappen
van geisoleerde atomen plus zekere overdraagbaarheidscriteria, maken
het mogelijk de functies van belang (dichtheden, potentialen,...) te
ontwikkelen in hanteerbare aantallen vlakke golven die de translatie-
symmetrie wvan het kristal weerspiegelen. Aangezien geen aannames
worden gedaan over de vorm van de van belang zijnde functies, is de
methode in principe geschikt voor elk kristal en meer dan andere
methoden geschikt voor kristallen met sterk inhomogene elektronen—
dichtheden. Voorbeelden hiervan zijn praktisch alle halfgeleiders en
ook isolatoren zoals diamant.

Deze laatste klassen van vaste stoffen hebben voor de beschreven
methode het bijkomende voordeel, dat de integraties over de Brillouin
zone bijzonder efficiént kunnen worden uitgevoerd met de techniek der
Yspeciale punten in de eerste Brillouin zone", wasraan een hoofdstuk
is gewijd.

Verder wordt ingegaan op het benutten van de kristal-symmetrie bij
het oplossen van de Schr'cidinger;vergelijking en op karakteristieke
eigenschappen van het rekenschema, die benut kunnen worden om de

hoeveelheid rekenwerk in te perken.
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Er is een hoofdstuk gewijd aan de uitvoerige illustratie van de
methode aan de hand van rekenresultaten die bereikt zijn met behulp
van een computer-programna dat bovenbeschreven theorieén en technieken
incorporeert. Er worden resultaten gepresenteerd voor silicium,
diamant en de twee structureel extreme polytypen van silicium carbide.

Tot slot wordt een indruk gegeven van de toepasbaarheid van de
methode op kristallen waarin de periodiciteit in één richting
duidelijk afwijkt van die in andere richtingen of zelfs geheel
ontbreekt. Dit verschijnsel treedt op bij oppervlakken, grensvlakken,

superroosters en polytypen.
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STELLINGEN

behorende bij het proefschrift van
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1. Het storingsrekening-schema genoemd naar Feenberg is ongeschikt
voor toepassing op het Anderson-model voor sterk wanordelijke
ketens, waarin de interatomaire overlap-energie klein is ten
opzichte van de breedfe van de uniforme verdeling van locale

atomaire energie niveaus.

P.M. Morse, H. Feshbach, Methods of Theoretical Physics,

hoofdstuk 9 (McGraw-Hill, New York, 1953).

J. Ziman, Models of Disorder, hoofdstuk 9 (Cambridge University
Press, Cambridge, 1979).

2. In de literatuur over diffusie in wanordelijke ketens is ten
onrechte geconcludeerd, dat de effectieve medium benadering een
uitdrukking voor de frequentie-afhankelijke diffusie-coéfficient
D(z) oplevert die, in de systematische ontwikkeling voor kleine z
in machten van vz, exact is tot en met orde z. Een gevolg hiervan
is, dat de algemene schaalhypothese voor dit type problemen
beperktere geldigheid heeft dan mede op grond van numerieke

berekeningen wordt aangenomen.

I. Webman, J. Klafter, Phys. Rev. B 26, 5950 (1982).
J.W. Haus, K. Kehr, K. Kitahara, Phys. Reuv. B 25, 4918 (1982).
P.J.H. Denteneer, M.H. Ernst, J. Phys. C 16, L961 (1983).

3. Zijn &4 en 62 de verschillen in bindingsenergie (per eenheidscel in
een laag) van de polytypen met stapeling ABAB.. en ABCBABCB.... met
het polytype met stapeling ABCABC..., respectievelijk, dan is in
zeer goede benadering de energie van de intrinsieke stapelfout
5142562 en de energie van de extrinsieke stapelfout 462. De door
Chang en Cohen gegeven schatting van de stapelfout—energie voor

germanium mist dan ook elke grond.

K.J. Chang, M.L. Cohen, Phys. Rev. B 3k, 8581 (1986).



4.

Bestudering van de systematische uitdovingen in het diffraktie-
patroon van het organische kristal triterpane E reduceert het
aantal mogelijke ruimtegroepen voor dit kristal tot drie. De
argumentatie van Smith om tot de uiteindelijke vaststelling van de
ruimtegroep te komen kan aanmerkelijk versneld worden door op te
merken, dat het samenstellende molecule een chirale verbinding van

natuurlijke oorsprong is.

G.¥. Smith, Acta Cryst. B 26, 1746 (1970).

De voorfactoren in de uitdrukking voor de n® cumulant van een
waarschijnli jkheidsverdeling in termen van produkten van de eerste
n centrale momenten van die verdeling kunnen met behulp van een

eenvoudig combinatorisch argument worden bepaald.

. De methode van Vanderbilt om "gladdere" norm-behoudende pseudo-

potentialen te genereren garandeert niet, dat feitelijk met minder
vlakke golven in de verzameling- van basisfuncties kan worden
volstaan. Hierdoor kan over het nut van deze methode geen uitspraak
worden gedaan. ‘

D. Vanderbilt, Phys. Rev. B 32, 8412 (1985).

. De huidige publicatie-woede in de fysica maakt het uitgeven van de

handelingen van een conferentie tot een nutteloze activiteit.

. Een instelling die wetenschappelijk onderzoek tot een van haar

doelstellingen rekent dient de faciliteiten die zij hiertoe bezit
168 uur per week aan haar wetenschappelijke medewerkers ter
beschikking te stellen.



9. De uitspraak: "Het boek was beter dan de film”, is in de regel

10.

11.

12.

gebaseerd op een vergelijking van de literaire kwaliteiten van
boek en film-scenario en is dan nietszeggend met betrekking tot

het geheel van cinematografische kwaliteiten van de film.

In de gangbare definitie van de efficiEntie van een verzameling
speciale punten ter integratie over de reciproke ruimte wordt ten
onrechte geen rekening gehouden met de symmetrie van individuele
punten. Een betere definitie wordt verkregen door in de gangbare
definitie het aantal speciale punten te vervangen door het aantal

ermee geassociderde punten in de eerste Brillouin zone.

R.A. BEvarestov, V.P. Smirnov, Phys. Status Sol.(b) 119, 9 (1983).
Dit proefschrift, hoofdstuk 3 en &4.

Aan de in de literatuur aanvaarde experimentele waarde voor de
compressibiliteit van silicium carbide moet op grond van ab initio
berekeningen getwijfeld worden.

Landolt-Bornstein: Numerical Data and Functional Relationships in
Science and Technology, Group 3, Vol.17, Part a, 0. Modelung ed.
(Springer, Berlin, 1982).

Dit proefschri.ft, hoofdstuk 6.

De door Chelikowsky en Cohen gegeven tabel van Fourier-componenten
van de valentie~ladingsdichtheid in silicium is met de door hen
gebruikte methode en de door hen gegeven parameters niet te

reproduceren.

J.R. Chelikowsky, M.L. Cohen, Phys. Rev. B 10, 5095 (1974).
Dit proefschrift, hoofdstuk 6, tabel 6.1.

Eindhoven, 5 juni 1987.



