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ABSTRA Cf 

A detailed description is given of the pseudopotential-density

functional metbod to accurately calculate from first principles the 

electronic and atomie structure of the ground state of crystals. 

Density-functional theory necessitates the self-consistent solution of 

the one-electron Schrödinger equation, wbereas pseudopotentials allow 

for tbe inclusion in the calculation of valenee electrans only and for 

the expansion of tbe functions of interest in plane waves. All 

necessary formulae are given to obtain tbe self-consistent density of 

valenee electrons, screening potential, and energy of tbe ground 

state. 

P.articular emphasis is placed on tbe application of tbe technique 

of "special points in tbe first Brillouin zone" to perform necessary 

integrations over reelprocal space. The exploi tation of space-group 

symmetry in tbe solution of tbe Scbrödinger equation is discussed and 

illustrated for tbe case of expansion of tbe wave function in plane 

waves. Furtbermore, characteristic features of tbe calculational 

scbeme connected witb self-consistency and finite cutoffs are pointed 

out and utilized to reduce the computational work. 

Results of calculations for silicon. diamond, and two structurally 

extreme polytypes of silicon carbide illustrate tbe metbod and 

techniques described. Finally, tbe applicability of tbe metbod to 

surfaces, interfaces, superlattices, and polytypes is briefly 

discussed. 
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CRAPTER 1 

INTRODUCfiON 

The study of the condensed state of matter -solids and liquids

constitutes one of the largest subfields of modern physics. In view of 

its link to society (materials science), the importance of this field 

is obvious. From a more scientific point of view the purpose of 

solicl-state physics is. of course, to understand the properties of 

solids starting from basic notions; Why is one solid different from 

another? An increased understanding of the properties of solids 

immediately leads to a more systematic search for materials that have 

desirabie properties. There is interest, for instance, in (i) solids 

that are as ductile and malleable as common metals, but are corrosion

resistant, (ii) solids with the hardness and chemica! inertness of 

diamond, but not as costly, (iii} semiconductors with a band gap that 

is direct and corresponds toa desirabie frequency (color). for use in 

light-emitting diodes, lasers, and photo-detectors, (iv) semicon

ductors with high electron mobilities, which have a higher potential 

eperating speed in electronic devices, to mention a few. 

To this end, experiments are needed to determine the properties of 

solids. We also need theories that tell us why solids have the 

properties they have. These theories should preferably start from 

elementary ingredients. Regarding solids, these elementary ingredients 

are the properties of the nuclei, the electrans, and their inter

actions. The latter category of theories are called first-principLes 

theories or ab-initia theories. Quanturn mechanics and statistica! 

mechanics are such theories, which should in principle suffice to 

determine the properties of solids from first-principles. In practice, 

however. these general theories alone almost invariably genera te a 

calculational scheme that is too complex to actually carry out. By 

making approximations that are not too drastic, it is possible to 

obtain theories that may still be called first-principles theories, 

but lead to practical schemes of calculation. The approximations of 

course must be carefully investigated for their appropriateness and 

should not vialate the basic laws of quanturn mechanics and statistica! 

mechanics. Theories that need experimental data as input. e.g., in 
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order to determine the values of parameters in the theory, are called 

empirica! theories. Such theories are in fact less fundamental wi th 

regard to predictive purposes. In what is called the scientific 

method, theories, irrespective of whether they are empirica! or start 

from first principles, are first tested to reproduce the results of 

experiments and are subsequently tested to pred.iet the resul ts of 

experiments. 

Only in the last decade i t bas become possible to employ first

principles theories in the computation of solid-state properties and 

to reliably predict experiments. This is partly due to the steady 

advance made in the development of' theories, the most important 

reason, however, lies in the increase in computing power of the 

generations of digital computers that rapidly sneeeed each other. The 

latter development bas led some people to discern a third way to study 

physics, in-between expertmental and theoretica! physics, namely that 

of computational ph.ysics [2]. Al though computational physics bas 

descended from theoretica! physics historically, its approach is more 

akin to that of expertmental physics. A large computer code must be 

designed and tested part by part just as careful as an experimental 

set-up. Both computer code and expertmental set-up can be used to 

perform experiments, be it of a different, possibly supplementary, 

kind. 

In a first-principles theory for solids, it appears to be necessary 

to solve the Schrödinger equation of quanturn mechanics for electrons 

self-conststently (if the electrons may be treated non-relativistical

ly). The need for self-consistency is caused by the fact that the 

electrans interact with each other. Therefore, in the Schrödinger 

equation for the individual electrons, the effective potential, 

descrihing the interactions the electrons experience, depends on the 

solutions of the equation itself. Only if the Schrödinger equation is 

solved in this self-consistent way, the electronic structure of the 

solid follows in a reliable way. Subsequently the total energy of the 

solid can be calculated, as well as first-order derivatives of the 

total energy with respect to changes in the atomie positions, 

providing forces,stresses and pressure. Assuming that the solid 

strives for the situation of minimum energy {and zero force), the 

equilibrium positions of the atoms can be found. Many other properties 

of the solid may also be found. In this way a microscopie description 
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-on the level of atoms- based on quanturn mechanics is obtained. 

Demanding a solid to be periodtc -we call such a solid a crystal-, 

simplifies the above task of calculating electronic properties 

considerably. The attention can be confined to a unit cell. usually 

containing between 1 and 10 atoms, which is representative for the 

whole crystal when repeated in three independent directions. 

In this work we give a reasonably complete description of a method, 

called the pseudopotential-density-functional method, by which the 

electronic-structure problem may self-consistently be solved without 

parameters determined from experiments. Since the growing ability of 

computational physics bas made it a discipline in its own right, the 

study of its methods is appropriate. In the present metbod a dis

tinetion is made in the solid between electrons that are so tightly 

bound to the nuclei as to be negligibly perturbed from their behaviour 

in the atom (core electrons), and electroos that adjust themselves to 

the different environment in the solid (vaLence electrons). The latter 

electrons have appeared to be responsible for a major i ty of solicl

state properties. PseudopotenttaL theory {see also chapter 2) assumes 

that the cores, i.e., nuclei pluscore electrons, interact in the same 

way wi th available other electroos in the cases of both large and 

small separation of the atoms, as in a gas and a solid, respectively. 

In this theory the energy of the interactions within the core is not 

taken into account. This implies that the total energy we calculate, 

which will nevertheless be called "the total energy" in the remalnder 

of this work, is really the difference between the actual total energy 

of the crystal and the energy of isolated cores. Pseudopotentlal 

theory combined wi th the periodici ty of crystals allows for . a 

convenient, Fourier analysed version of the calculational scheme. In 

this version no assumptions have to be made a priori about the form of 

the electron density. The latter fact makes the metbod particularly 

suited for calculations on crystals with covaLent honds, where the 

electron density accumulates in bonds between nearest-neighbour atoms. 

This in contrast to the more simple cases of metals, where the 

electroos are nearly free and their density consequently is fairly 

constant over the crystal, and ionic crystals, where the electronscan 

all be seen as halonging to one atom, resulting in largely spherical 

electron densities centred on the atomie positions. 
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Crystals wi th covalent boncis form a highly interesting class of 

materials. Nearly all semiconductors belong to this class and also 

diamond, which is an insulator. The physics of semiconductors lies at 

the basis of modern electronics, computers, and information handling 

hardware. To this day semiconductor technology is largely based on the 

semiconductor silicon. Although silicon bas superb chemie~! and 

mechanica! properties, it certainly is not an ideal choice regarding 

its electronic properties. The electron mobility in silicon is only 

average and its indirect band gap limi ts many optica! applications. 

Currently, theory, experiment, and technology are joining hands to 

find out what materials may be suitable, as well as technologically 

feasible, to replace silicon. Candidates are, gallium arsenide, 

possibly combined wi th si 1 icon, and germanium-silicon systems. Very 

recently, progress in developing diamond-transistors was reported [3]. 

Because of the whole of its natura! properties, diamond is considered 

to be a material superior to silicon for this application. The metbod 

described in this work can prove useful in the undertaking of finding 

new materials. 

In the following chapters the focus is more on the metbod itself 

than on underlying theories or calculated properties, although both of 

these subjects are also addressed. Consequently, some chapters are of 

a technica! nature. We think this full exposition of the metbod is 

justified because of the gratifying results already attained with this 

method. It is furthermore useful in closing a gap between present and 

future practitioners of the method. 

Chapter 2 starts with a general introduetion to the two basic 

theories on which the pseudopotential-density-functional metbod is 

based: denstty-functional theo.ry describes a system of many inter

acting electrens in an external potential in terms of the electron 

densi ty, while pseudopotenHal theory describes the behaviour of 

valenee electrens in a solid. The rest of the chapter provides a 

self-contained treatment of the calculational scheme that emerges from 

the combination of the two theories. Fourier analysis or, equivalent

ly, expansion of the functions of interest in plane waves exploits the 

translational symmetry of the crystal and provides a transparant 

calculation scheme in Fourier -or reciprocal- space. Furthermore. a 

discussion is given of technica! approximations that must be made to 

make calculations feasible. 
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In the metbod of chapter 2 frequently integrations over reefprocal 

space have to be performed. In chapter 3 a technique to this end is 

treated that makes explicit use of the symmetry of the crystal, the 

technique of special points in the Brillouin zone. This technique is 

especially suited for application to semiconductors and insulators. 

The metbod of chapter 2 also resul ts in the necessi ty of solving 

large sets of linear equations. In chapter 4 we show how the symmetry 

of the crystal and resul ts from group theory are · exploi ted to 

subdivide these large sets into a number of smaller sets of linear 

equations. This chapter is not essential to the method, but merely 

allows for considerable reduction in computing times. The chapter is 

reasonably self-contained and can properly be skipped on a first 

reading. 

In chapter 5 some characteristic properties of the calculational 

scheme are discussed. These properties enable one to make a more 

convenient use of the method. 

Chapter 6 includes a number of applications of the metbod to 

silicon, diamond, and two -semiconducting- modifications of silicon 

carbide. These applications serve as illustrations of the metbod and 

techniques of the preceding chapters, as illustrations of the 

potentialities of the method, and serve also as presentation of 

results for silicon carbide, for which until recently no such 

calculations had been performed. 

As an outlook to the future, we end by sketching in chapter 7 the 

applicability of the pseudopotential-density-functional metbod to 

interfaces, surfaces. stacking faults, and superlattices of semi

conductors. Such systems are becoming increasingly important in 

technology and the desire to study such systems motivated the present 

study. 
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CHAPTER 2 

THE PSEUDOPOTENTIAL-DENSITY-FUNCTIONAL METHOD 
IN M:OMENTUM SPACE 

In this chapter a detailed description is given of a metbod by which 

ground-state properties of a solid may be calculated. This method, 

which we call the pseudopotential-density-functional method, finds its 

origin in two basic theories: densi ty-functional theory (DFT} and 

pseudopotential theory. The metbod combines both theories in such a 

way that ground-state properties of a large class of solids ~among 

which the semiconductors to which we will apply the method- may be 

determined. DFT is a theory descrihing a system of many electrans with 

mutual interactions in an external potential and is d.iscussed in 

section 2.1. Pseudopotential theory. which will be discussed in 

section 2.2, deals with the behaviour of valenee electrons in a solid. 

Valenee electrans are electrans that originate from not completely 

filled shells of the àtoms constituting the solid and may be held 

responsible for most of the properties of interest of a solid. The 

other electrans are called core electrons. Recent advances in 

especially pseudopotential theory, namely, the construction of 

so-called norm-conserving pseudopotentials, have made possible the 

accurate calculation of properties of solids without the need of any 

empirica! or adjustable parameters. 

Whereas sections 2.1 and 2.2 have a global character and may be 

regarded as a general introduetion to the basic theories. sections 2.3 

to 2.5 are more specific and detailed. In section 2.3 it is shown that 

when the problem is treated in momenturn space, which is just another 

way of saying that all functions of interest (wave functions, charge 

densities, potentials, ... ) are expanded in plane waves (or -put 

differently- Fourier analysed), the calculational scheme becomes very 

transparant. In section 2.4 useful formulae are given that enable one 

to make almost direct use of tabulated versions of norm-conserving 

pseudopotentials for all elements in the periodic table .. Finally, in 

section 2.5 the inevitable technica! approximations are discussed that 

one is toreed to make in order to make calculations feasible. In this 

conneetion the relevant cutoff parameters are introduced. 
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2.1 Densi ty-functional theory 

Density-functional theory (DFT) is an approach to describe a system of 

many interacting electrans and may as such be considered an al ter

native for the Hartree-Fock method. When applied to solids, DFT bas 

definitely shown to be more practical and successful thán the 

Hartree-Fock method. The theory was formulated first by Hohenberg and 

Kohn [4] and Kohn and Sham [5]. Since the density of particles plays a 

central role in the theory, DFT can he regarded as the direct 

descendant of the more in tui tive theory of Thomas and Fermi [6]. 

Although DFT can be presented in terros of well-defined concepts, its 

application to actual solids still suffers from uncertainties. The 

most important uncertainties are: (i) Are the one-particle equations 

that emerge adequate to approximate the many-body problem?, (ii} What 

is the exact form of the exchange-correlation functional (to he 

introduced below)? Since our goal in this section is to only give a 

brief discussion of this theory. the reader is referred to the 

original papers and more recent reviews [7 ,8] for more elaborate 

discussions. 

The theory finds i ts forma! justification in the Hohenberg-Kohn 

(HK) theorem, which in its original farm is applicable to the ground 

state of a system of spinless fermions (i.e., particles that obey 

Fermi-Dirac statistics} in an external potential. In this original 

form the theorem therefore applies to systems of electrans for which 

interactions connected with their spin are absent or may be neglected. 

The theorem may be summarized as follows: 

(i) The ground-state energy of a system of identical spinless 

electrans is a unique functional of the partiele density. (The ground 

state is assumed to be nondegenerate}. 

(ii) This functional bas its minimum value for the correct ground

state density, when particle-number-conserving variations of the 

density are considered. 

The ground-state-energy functional is written as: 

Ev[n] =I ~ext(r)n(r}d3r + F[n]. (2.1) 

In (2.1) ~ext is the external potential, which is also a unique 
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functional (neglecting a possible additive constant) of the partiele 

density n(r). This is in fact the central and remarkable feature of 

the theorem: the fact that the external potential determines the 

partiele density is obvious, the converse, however, is surprising and 

initially was greeted with some scepticism. Tne functional F[n] 

includes all kinetic energy and electron-electron interaction terms. 

It is convenient to split off from F[n] the energy due to the Coulomb 

interaction, also called Hartree energy: 

(2.2) 

Here and everywhere else in this work, eis the charge of the.electron 

(negative) and êo the electric permittivity of the vacuum. It is 

important to note that the exact form of G[n] is unknown. The ground 

state of the system is formally obtained by minimfzing Ev[nJ with 

respect to density. variations that conserve the number of particles N: 

(2.3) 

This leads to the variational equation: 

(2.4) 

in which a Lagrange multiplier ~ is introduced due to the constraint 

(2.3). Applying (2.1), (2.2), and (2.4) the ground-state-density

determining equation is found: 

(2.5) 

where the last term in the left-hand side of (2.5) is the functional 

derivative of G[n] with respect to n(r). Even if the functional form 

G[n] were known, eq. (2.5) would still not give us a procedure to 

actually calculate the correct n(r). Kohn and Sham [5] however supply 

a procedure that resul ts in one-particle equations ( the so-called 

Kohn-Sham {KS) equations), that we do knowhow to solve. Their line of 

reasoning runs as follows: consider a system of N non-interacting 

electrons in some external potential i!),e><t. s(r). The ground-state 
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density of this system is called n(r). The functional F[n] in (2.2) 
reduces to T s[n], the kinetic-energy functional of non-interacting 

electrons, and the equation determing n(r) is given by (cf. (2.5)): 

( óTs[n] ( ) ~ext.s r} + ón(r) = ~.. 2.6 

The general form of T s[n] is again unknown (~s is determined by 

(2.3)). but now there is an alternative way to obtain n(r): for 

non-interacting electrous the many-particle ground-state wave function 

is simply a completely anti-symmetrized product of one-electron wave 

functions ~1 (r) (Slater determinant), each of which obeys the 

Schrödinger equation: 

i = 1. .. N. (2.7) 

Plancks constant divided by 2lr is denoted by n and m is the electron 

mass. The prescription is to select those N states '*'i (r} that have 

lowest energy éi. The density for this system of electrans is then 

given by: 

(~.8) 

So for this particular system of non-interacting electrons, there is 

indeed a way of finding the solution to equation (2.6). Kohn and Sham 

now show how this procedure may be used in the case of interacting 

electrans as well. The functional G[n] is split up in two terms: 

G[n] = Ts[n] + Exc[n], (2.9) 

in which T s[n] is the kinetic energy of a system of non-interacting 

electrous with a density n(r) and in which the remaining term Exc[n] 

by definition is called the exchange and correlation energy of the 

interacting system with density n(r}. Equation (2.5} now becomes: 

{ ) e2 I *-Hr' d3 , öEx{[n] ÖTs[n5 ~ext r + 4-- • r + ö } + Ö ( = ~-7Téo r-r n r n r 
(2.10} 
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This equation bas the form of {2.6): the only difference is tha.t 

tl-ext.s{r) is replaced by an ''effective" potential tl-eff[n]: 

e
2 
I~r' 3 óE tl-eff[n] = tl-ext{r) + -4 - , d r + =M,;;;;·r'+)-. 

1fE.o r-r 
{2.11) 

By analogy with the non-interacting case, the correct ground-state 

density of the interacting system is found by the sel.f-consistent 

solution of the following set of one-particle equations ( the KS

equations): 

N 
n(r) = ~ l~i{r)l 2 . 

i=l 

i = 1. .. N , (2.12) 

(2.13) 

Note tha.t the self-consistency requirement is caused by the functional 

dependenee of V-e f f on n( r) . The total ground-s ta te energy of the 

electron system is then given by: 

Ev[n] = Ts[n] + I tl-ext(r)n(r)d3 r + 

_LIJ n~r)n(r' )d3rd3r' E [ ] 
81fE.o r-r'l + xe n . (2.14) 

We have: 

(2.15) 

In order to be able to find the self-consistent solution of (2.12)

(2.13} and to calculate Ev[n], it is necessary toadopt some explicit 

form for Exc[n]. A very useful approximation has proven to be: 

Exe[n] = I E.xe(n(r)}n{r)d3r, (2.16) 

where E.xe(n) is the exchange and correlation energy of an interacting 

electron gas with uniform density n. For E.xe(n) several useful 
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approximate expresslons are known (see section 2.3}. The approximation 

(2.16} is called the local-density-approximation (LDA}, since the 

exchange and correlation energy densi ty at pos i tion r is assmned to 

depend on the density at point r only. This assumption is va lid if 

n(r) is constant and the approximation can be considered acceptable 

for electron systems with almost constant or slowly varying n(r). The 

approximation is in fact not justified for systems with large density 

gradients such as semiconductors. The apparent success of the 

approximation (2.16} in such cases is even more remarkable if one 

notes that, because of the definition implied in (2.9). Exc[n] must 

also contain some kinetic-energy contribution apart from "real" 

exchange and correlation energy contributtons as in {2.16); this is 

due to the fact that Ts[n] represents only part of the kinetic energy 

of the tnteracttng system. By "real" exchange and correlation energy 

we mean the remaining energy of an electron gas when the kinetic and 

Hartree energies (and the energy due to a possible external potential) 

have been subtracted from the total energy. In view of the successful 

application of (2.16). the latter feature is ei ther of minor impar

tanee or its effect is wasbed out by adopting approximate forms for 

éxc(n). Many more fundamental questions can be asked in conneetion 

with the KS-equations and their interpretation [7,8], but we will not 

go into these bere. 

The calculational scheme presented in section 2.3 is partly based 

on the equations (2.11)-(2.16}. From what is put forward above this 

requires at least some justification. One can argue that calculations 

for real materfals so far always have been more or less successful by 

employing the idea of an effective potential. Therefore there is a lot 

of faith in the resulting one-particle equations and a lot of 

experience in solving them. The attractive feature of this new scheme 

is that it promises to give the correct ground-state density and from 

that other ground-state properties. Therefore this new scheme is -even 

in some approximate fashion- worth exploring. In this conneetion i t 

seems justified to say that an actual calculational scheme using the 

LDA has a somewhat less firm foundation in DFT than is usually 

suggested. On the other hand, DFT has been a strong motivation for 

such calculations and to a large degree these calculations can be 

justified by their success [9]. The major step forward with respect to 

Hartree-Fock theory is the inclusion -although in an approximate 
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marmer- of extra interaction effects {these extra effects are 

conventionally denoted by "correlation" effects. This name, however, 

is misleading, since essentially other interactions -e.g., exchange

also result from correlations between the electrons). 

2.2 Pseudopotential theory 

Pseudopotential theory is a theory that circumvents the need of an 

accurate description of the core electrons, i.e., the electrans 

occupying the completely filled shells of atoms. In a solid these 

electrans remain very localized around the atom, whereas the remaining 

electrans called valenee electrans determine the majority of the 

properties of the solid. This is why pseudopotential theory is useful: 

it provides a simpler approach to the properties of solids. The first 

pseudopotential theory was formulated by Phillips and Kleinman [10] 

basedon the orthogonalized-plane-wave {OPW} method of Herring [11]. 

In this section we 

pseudopotential theory. 

briefly discuss 

We also present 

the 

the 

general concepts in 

class of ab initio 

pseudopotentials called norm-conserving pseudopotentials that were put 

forward by Hamann et al. [12] not very long ago. These have put 

pseudopotential theory on a new level of sophistication, because 

self-consistent calculations with the necessary accuracy became 

possible. The discussion here is based on the more extensive reviews 

in ref.[13] regarding concepts and refs.[14] and [15] regarding 

norm-conserving pseudopotentials. We refer to these papers if not all 

details are given here {see also the review in ref.[16]}. 

The electrans in a solid move in the Coulomb field of the fixed 

nuclei and have their mutual interactions. All these interactions are 

assumed to be taken into account by adopting a one-electron picture, 

in which the electrans experience an effective potential V. These 

electrans now all obey a Schrödinger equation given by: 

{2.17a} 

H = T + V. {2.17b} 

Here, T is the kinetic-energy operator -{h2/2m}V2
. In {2.17a} we use 
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Dirac notation. In this notation a wave function ~(r) is denoted by a 

k.et 1~>. its complex conjugate ~w(r) by a bra <~1. and putting them 

together face to face implies integration, <~I~> = f ~*(r)~(r)d3r. so 

that the bra-ket combination defines a hermitian inner product (with 

the property: <~I~>~'=<~ I~>). The matrix element of an operator 0 

between two functions f 1 and f2 is written as <f 1 10if2>. meaning 

f fiOf2(r}d3 r. 

Imagine the valenee-electron state I~> to be wri tten as a smooth 

pseudo-wave-function I~> corrected to be orthogonal to all care

electron states Ie>: 

I~>= I~>- 2 lc><cl~>. (2.18) 
c 

By smooth we mean expandable in few plane waves. It is reasonable to 

expect tha.t I~> will be smooth, as the effective potentlal outside the 

core regions is expected to be much smoother than inside the core 

regions. Note that we have not made any approximation yet, we only 

have made explicit the orthogonality of all core and valenee $tates. 

If I~> in (2.18) would be replaced by a single plane wave, eq. (2.18) 

represents a so-called OPW. OPW's appear to forma suitable basis set 

for calculations in solids, implying that the I~> in {2.18) are indeed 

smooth. Substitution of {2.18) into (2.17a) gives an equation for 1~>: 

{2.19) 

where the pseudopotentlal vps is defined by combining the true 

potential V and the orthogonality terms (we use that Ie> is an 

eigenstate of H with eigenvalue E ): c 

{2.20) 

We observe from (2.19} that for valenee states -which are the ones we 

are interested in- the energy eigenvalues of the Hamil tonian H with 

the real potenttal are ident i cal to those of the p~eudo-Hami 1 tonian 

Hps = T + yPs. One easily verifies that this remains true if E-Ec in 

(2.20} is replaced by a constant Àc. This demonstrates the so-called 

non-uniqueness of the pseudopotential. It can be exploited to make the 
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pseudo-problem (2.19) as easy to solve as possible. We also note that 

yps in (2.20) is weaker than V, since the core energies E are lower 
c 

than the valenee energies E and the orthogonality term in {2.20) 

therefore is repulsive, partly cancelling the attractive potential V. 

This is consistent with the expected smoothness of'the solution I~> of 

(2.19). The non-uniqueness of vps motivates the operator approach to 

pseudopotentials [13]: we may define an operator yps in many ways as 

long as it gives the correct energy levels for valenee states. 

Another approach to pseudopotentials is possible, which is more 

closely related to scattering theory. A pseudopotential is now defined 

as one that gives the same scattering amplitudes [17] as the real 

potenttal for an incident plane wave with some reference energy E. The 

pseudopotentlal is allowed to differ from the real potential within a 

certain core sphere. It can be shown that a pseudopotential thus 

defined will also give the same band energy E for valenee states. We 

will assume the pseudopotential to be spherically symmetrie inside the 

core sphere. Therefore, in this scattering approach, the pseudo

potential will depend on the angular momenturn e of the incident wave 

only and may generally be written as: 

(2.21} 

Here, ~/. is a projection operator that picks out a specHic angular

momentum component of the function that yps operates on. The functions 

f e(r} can be constructed such as to give the correct scattering 

properties of the core in a certain energy range (since the pseudo

potential defined in this way is valid for one E only). From (2.21) 

(and also from (2.20)) it is clear that yps in general is a nonlocal 

operator, i.e.. not a mere mul tipHeation operator. The scattering 

approach -just as the former operator approach- allows to describe 

valenee states by smooth and nodeless wave functions inside the core. 

The strong oscillations inside the core are eliminated by letting the 

pseudopotential reproduce the reduced phase shifts of the real 

potential instead of the complete phase shifts: this makes no 

difference for the scattering amplitudes. 

So both approaches make i t possible to replace the problem of 

finding the energies of the valenee electrans via (2.17} by a problem 

of the type (2.19). The additional freedom of choice is exploited in 
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the operator approach to make the solutions I~> as smooth as possible 

and in the scattering approach, where the solutions I~> are smooth by 

construction, to maximize the energy range for which the pseudo

potential is valid. 

If we would solve eq. (2.19} with yps given by (2.20), we have to 

realize that this does not immediately give us the true valenee states 

1~>. Yet these are needed for almost all other properties one would 

want to calculate. In view of section 2.1, especially the charge 

density is of interest. One could of course use eq. (2.18} to 

construct 1~>. by using core states obtained from atomie calculations. 

Apart from the objection that the states Ie> in principle should come 

out of the same calculation as the I~> for use in eq. (2.18), there is 

another problem with eq. (2.18}: the so-called orthogonality-hole 

problem. This is essentially a normalization problem. It occurs 

because wi th eq. (2.18} the true valenee state I~> and the pseudo

wave-function I~> cannot be normalized simultaneously. This is seen by 

multiplying (2.18} by bra's <~I and <~1. respectively, and combining 

the resulting equations: 

<~I~>= <~I~>-~ l<~lc>l 2 • (2.22} 
c 

The (positive} term ~(c)l<~lc>l 2 is called the orthogonality hole. 

The solution I~> to our substitute problem (2.19} is determined to 

within a constant factor. Suppose that this constant is chosen such 

that I~> is normalized. The normalized true wave function I~') with 

the same shape as I~> in (2.18} is then obtained by means of an 

additional factor ~= 

I~')= ~(I~>-~ lc><cl~>}. ~ = (1- ~ l<~lc>l 2 }-~ (2.23} 
c c 

From (2.23} we see that I~'> has a larger amplitude than I~> outside 

the core region (where Ie> is negligible}. Therefore, if we would use 

I~> instead of I~'> for the determination of charge densi ties, too 

much of the total charge is put in the core region. So even outside 

the core one does not find the correct valenee-charge density by using 

1~>. This is a serious problem in a self-consistent calculation via 

KS-equations, where the density is the crucial quantity (see section 
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2.1). Of course I~> could be orthogonalized to all core states, but 

tbis is not easy and bypasses tbe idea bebind and the advantage of 

pseudopotentials. 

At first tbis problem blocked the way to tbe construction of ab 

initia pseudopotentiaLs, i.e., pseudopotentiafs that correctly 

reproduce tbe energy eigenvalues and wave functions (outside some core 

radius) of valenee states that are found in atomie all-electron 

calculations. Sucb pseudopotentials are required for self-consistent 

calculations in solids. The problem is caused by tbe construction of 

pseudopotentials implied in {2. 20} (Ph i 11 ips-Kleinman construction), 

but tbis way of constructing is not obligatory. It bas been shown that 

tbe scattering approach enables one to overcome tbe problems with 

pseudo-wave-functions. 

The most popular scbeme to construct ab initio pseudopotentials was 

devised in ref.[12] (another scbeme is given in ref.[lS]). and starts 

wi tb the construction from all-electron atomie calculations in the 

densi ty-functional scbeme of angular-momentum-dependent pseudo

potentials, v;s. wbicb by construction have tbe property that: 

(1) Energy eigenvaLues for valenee states in tbe all-electron 

calculation and in tbe pseudopotential calculation agree exactly for 

some cbosen prototype configuration. 

(2) The wave functions of valenee electrous in the all-electron 

calculation and in tbe pseudopotential calculation agree exactly 

outside a chosen core radius re. The pseudo-wave-function is chosen 

nodeless inside re. 

Globally speaking, the construction of vr is acbieved by making 

some cboice for tbe wave function within re (this can be done in 

arbitrarily many ways) and inverting the radial Scbrödinger equation 

( there is no problem bere because of tbe nodeless property of tbe 

adapted wave function). When pseudopotentials are constructed in this 

way they have two properties that make them transferabte, i.e., useful 

in otber situations than the one in which they are generated: 

(i) They yield the correct amount of charge inside the core radius re. 

so that tbe electrostatic potential outside re is the same for real 

and pseudo-charge-densities (norm conservation). 

(ii) The scattering amplitudes of the real ion cores are reproduced 

witb minimum error as the energy starts deviating from tbe energy for 

wbich the pseudopotential was constructed. About tbe range of energies 
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for which this "minimum error" is acceptable nothing can be said a 

priori, but in practice these pseudopotentials turn out to be very 

satisfactory. In addition to this energy-"independence" of the 

pseudopotentials, it is shown in ref. [15] that there is also a 

perturbation-"independenee", i.e., scattering amplitudes are not very 

sensitive to smal! variations in the potential. 

To obtain ton-core pseudopotentials y~on for the angular-momentum 

eomponents ~, which are to be used in solid-state or molecular 

caleulations, we must unscreen the pseudopotentials V2 5
, i.e., 

subtract the efffeet of the potentlal caused by all valenee eleetrons 

of the atomie eonfiguration. This potentlal is the sum of the Hartree 

and the exchange-eorrelation (XC) potentials due to the valenee

(pseudo-)charge density (see section 2.1). By the core we always mean 

the nucleus plus the core electrons. Since the core is an ion, it is 

also called ion-core or ion. Note that both in the original atomie 

calculation and in the unscreening caleulation the KS-equations of DFT 

with the LDA for exchange and correlation are employed. In fact, in 

the unsereening act i t is furthermore assumed that the core- and 

valenee-charge densities may be decoupled to caleulate the xc
potential. This is clearly an approximation, since every useful form 

for the XC-potential (see section 2.3) is an explicitly nonlinear 

functional of the densi ty. If this decoupling is not allowed, e.g .. 

when core- and valenee-charge densities overlap substantially, there 

are methods to correct for this [19]. 

Norm-conserving ion-core pseudopotentials, V~on, can be construeted 

for any element in the periodic table and for various ~ [14]. 

From now on the assumption will be made -this is called the 

pseudopotenttal approximation- that these yton correctly repreaent the 

complete potenttal the valenee electrans feel from nuclei plus eore 

electrans and that this complete potentlal is not affected by using it 

in other environments than the one in whieh it was generated. This 

approximation is also called the "frozen-core approximation", because 

the interactton between the eore and the valenee electrons is assumed 

to be frozen (such as to lead to smooth valenee states). As noted in 

ref.[15]. this approximation is not identical to the approximation of 

the same name in which the core states are frozen (but the valenee 

states still have the strong oscillations in the eore region). It was 

proved that to first order in the error in the eore-charge density the 
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total energy is exact in both approximations [20]. The frozen-core

approximation error may be estimated to be 0.1 eV/atom in the very 

worst cases and about 0.02 eV/atom for silicon and carbon (i.e .• less 

than 0.5 % of the cohesive energies of their crystallized forms) to 

which we will apply our method. This implies that, as stated in 

chapter 1, the total energy in pseudopotential theory may indeed be 

seen as the difference between the actual total energy of the solid 

and the sum of energies of isolated cores. 

Together with the theory of section 2.1 a scheme can now be put 

forward in which a crystal is seen as a many-electron system in which 

(valence) electrons move in the external potenttal formed by a 

periodic arrangement of ion-cores. The ground-state density and from 

that all ground-state properties are found by self-consistently 

solving the KS-equations {2.11}-{2.13), where ~ext is the sum of all 

ion-core pseudopotentials in the crystal. This scheme as well as its 

computational implications will be extensively discussed in the rest 

of this chapter. A conceptual difficulty with this scheme is that ~ext 

now is a nonlocal operator of the form (2.21). For general nonlocal 

~ext the HK theorem no longer holds: the total energy of the ground 

state is then a unique functional of the density matrix rather than 

just its trace (i.e., the density [21]). To the author no rigorous 

justification is known to proceed with the density as crucial quantity 

in a self-consistent pseudopotential theory, where one uses nonlocal 

ion-core pseudopotentials in combination with the KS-equations of DFT. 

In practice, however, the results of such a procedure are very good 

and agree with those from all-electron calculations in the local

densi ty-functional scheme, where the external potential ·is local, 

viz.. the superpos i ti on of the Coulomb potentials of the nuclei. 

Perhaps a justification can be derived from the special form of 

nonlocality {eq. (2.21)} resulting from the assumed spherical symmetry 

of the core potentials. 
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2.3 Momentom-space formalism for self-consistent pseudopotenttal 

calculations 

In this section we combine the theories of sections 2.1 and 2.2 to 

obtain a calculational scheme for the total ground-state energy per 

unit cell of an arbitrary periodic solid. This combination implies 

that the electrons in DFT will be the valenee electrons only, which 

move in a (nonlocal) external potential given by the superposition of 

norm-conserving ion-core pseudopotentials. We furthermore impose 

periodicity upon the solid and call this a crystal. This implies that 

the wave functions +
1
(r) in (2.12) and (2.13) are replaced by 

pseudo-Bloch-functions ~psk(r). where n is the band index and ka wave n, 
vector in the first Brillouin zone {1BZ) (reduced wave vector). We 

will immediately drop the superscript "ps" for the wave function, 

since from now on we wil! only consider pseudo-wave-functions. 

Insection 2.3.1 the. KS-equations and a total-energy expression in 

r-space (direct space) are given, whereas in section 2.3.2 these are 

Fourier transformed so that a formalism in momenturn space results. In 

section 2.3.3 the necessary formulae and steps are discussed to obtain 

a self-consistent solution to the equations of section 2.3.2. 

All formulae will be given in MKS-units contrary to popular 

practice in the literature. Using MKS-units is the best way to keep 

track of the dimension of all quantities appearing in the formulae. 

For use on computers a transition to some system of atomie units bas 

to be made. In these atomie units {a.u.) all quantities in the 

computer program have a conventent order of magnitude. For these a.u. 

two possibilities are in general use: Rydberg atomie units and Hartree 

atomie units, named after the unit of energy resulting from these sets 

of units. In all our formulae the transition to these units is easily 

made as follows ("-.'' means "replace by"): 

(i) Rydberg a. u.: ~o -+ 1/4v, n-+ 1. m-+ i. e2 -+ 2, 

(ii) Hartree a.u.: ~0 -+ 1 /411', n-+ 1. m-+ 1. e-+ 1. 

(2.24a) 

(2.24b) 

In both cases all quant i ties wi th the dimension [length]P must be 

expreseed in units of aP (p € IR and a is the Bohr radius: a
0 

= 
0 0 

0.052917715 nm [22]). Then all quantities with the dimension [energy] 

will be in units of 1 Rydberg (= 13.605826 eV = 21.79911Sx10- 19J) for 

{i) and in units of 1 Hartree (= 2 Rydberg) for (ii). Our motivation 
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for using MKS-units in our formulae is that we fee! that most formulae 

in the literature are a confusing mixture of formulae that make sense 

regarding dimensions and formulae that are expresslons directly 

programmabie on a computer. We will give examples of this below (see 

below (2.61a)). 

Another clarifying remark regarding dimensions we wish to make 

concerns the use of the word "potent ia!": in the li terature i t is 

invariably used instead of "potential energy", al though these 

quantities have different dimension. This usually causes no confusion, 

because there is only one type of particles, namely, electrons that 

experience potentials Vo and having a potenttal energy eVo on account 

of that. In this work, we will also use the word "potential" as a 

short hand for "potential energy" ahd hence all potentials will have 

dimension [energy] (implying that the real potenttal bas already been 

multiplied bye, the charge of the electron}. 

2.3.1 Total energy in direct space 

The crystal is defined by giving three basis veetors t. (1=1,2,3) 
l 

spanning the unit cell and the positions ttJ> of atoms j within the 

unit cell. Veetors R = n1tt+n2t2+n3t3 with integers n1.n2,n3 are 

called Bravais-lattice veetors or just Lnttice vectors. The crystal 

volume is denoted by 0 and the crystal is considered to be composed of 

a large number of concatenated unit cells (with volume Oe}· The unit 

cells the crystal is composed of are shifted wi th respect to each 

other over lattice vectors. 

Following the prescription given in the beginning of section 2.3. 

the KS-equations for a crystal may be written as: 

A A e2 J *-A V.ff(r} = ">: Vp.s,ton(r-R-ttJ>) + -- n r d3r• +V (r) 
.C. 4 r-r' xe ' 

R J 11'fco 
,j n 

(2.26) 

n(r) ~(r) (2.27) 
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In (2.25)-(2.26) En(k) is a band energy and Vjs,lon(r) the nonlocal 

pseudopotenttal operator for ion j, which is sununed over lattice 

veetors R and ions j in the unit cell. The second term in (2.26) 

(Hartree potential) will also be denoted by VH(r). Vxc(r} is called 

the exchange-correlation (XC) potenttal and is defined py (cf. 

(2.11)): 

Vxc(r} == öExc[n] 
ön(r) (2.28) 

Expressions for éxc (n}, the exchange and correlation energy of a 

homogeneaus electron gas, are given in section 2.3.3. In (2.27) the 

sum over m is over occupied states. It is understood that states that 

are doubly occupied -as all electron states are wi th our spin

independent Hamiltonian- must be counted double. We remark that n(r) 

is a partiele density with dimension [volume]- 1 and the dimension of 

~ k(r) consequently is [volume]- 112
• m, 

We will now give the corresponding expression for the total energy 

of the crystal, Etotat. which was defined as the difference between 

the actual total energy of the crystal and the energy of isolated 

cores (see chapter 1). We introduce the short-hand notation: 

(2.29) 

We then have { cf. (2. 14)): 

(2.30} 

where Ek 1 n is the kinetic energy of the electrans, EH the Coulomb 

electron-electron interaction energy, Exc the exchange and correlation 

energy of electrons, Eec the interaction energy between electrons and 

cores, and Ecc the Coulomb core-core interaction energy. The addition 

of the latter term to expression (2.14), which gives the total energy 

of the electronic system, is necessary, because in our definition of 

total energy also the interaction between cores is included. We have: 
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EH = i I VH(r) n(r}d3 r, 

0 

Exc = I ~xc(n(r)) n(r)d3 r, 

0 

2 zizJ. - _e_ 2' --.....,..-:~-'---------:""'!"':"':--
- S'JI'~o R,j,R' ,j' IR+ t(j - R' - t{j') I • 

(2.31a) 

(2.3lb) 

(2.31c) 

(2.31e) 

The prime in (2.31e) excludes the term R + t(j) = R' + t(j') and Zj is 

the number of valenee electrons of atom j. Expression {2.31e) is only 

correct for spherically symmetrie and non-overlapping cores. 

Since we wi 11 use norm-conserving ion-co re pseudopotentials. the 

total pseudopotential operator is decomposed in its 2-dependent 

components: 

where ~2(r,r') is an operator projecting r-dependent functions on 

eigenfunctions of the angular-momentum operator with quanturn number 2 

centred around position r'. It is conventent to split off from the 

ionic pseudopotenttal a local (2-independent) part: 

v1 .(r} is chosen such as to contain the Coulomb tail -Zje2/411'~or 
OC,J 

for r ~ro. but no singularity for r = 0. 
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2.3.2 Total energy in 1110111entum spa.ce 

In this section the expresslons of the preceding section are Fourier 

analysed, which will lead to a transformation of a set of differentlal 

equations into a set of linear equations, while volume integrals are 

replaced by summations over rectprocal-latttce veetors (23]. A 

function f(r) that is periodic, i.e., f{r) = f(r + R) with R any 

lattice vector, cari be expanded in plane waves (PW's) exp(iG•r), where 

G is a reciprocal-lattlce vector. A reciprocal-lattice vector is given 

by G = m1bt+m2b2+m3bo with integers m
1
(i=l,2,3) and basis veetors of 

the reciprocal lattice b
1 

(1=1,2,3), that are related to the basis 

veetors of the Bravals lattice t
1 

{1=1.2,3) through: b1•tj = 21rö1j 

(i,j = 1,2,3). So we have: 

f{r) = 2 f{G}eiG•r 
G 

The Fourier components are given by: 

1 I -iG•r 3 f{G) = Ö f(r)e d r. 

n 

Equations {2.34) and (2.35) imply the following identity: 

1 I i{~')•r d3 = Ö e r 
n 

(2.34) 

(2.35) 

(2.36) 

Because of the periooicity of the integrands in (2.35) and (2.36) Q 

may be replaced by Oe • 

The wave functions are not periodic, but can he chosen such as to 

obey the Bloch condition: 

ik•R + k(r+R) = e + k(r). n. n, (2.37) 

A conventent expansion of the wave function in PW's therefore is: 
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~ (r) = 2 C {G}ei{k+G}·r. 
n,k G n,k {2.38) 

The functions n{r), VH{r), Yxc(r), and êxc{r) are periodic and can be 

expanded as in (2.34) with Fourier components n(G), VH(G}, Yxc(G), and 

êxc(G), respectively. Note that by definitions {2.14}-(2.35) and 

(2.38) functions and their Fourier components have the same dimension. 

Although one sees that PW's form a very natura! basis set for the 

expansion of periodic functions in crystals, other choices can be 

made: another popular basis set in combination with pseudopotentials 

is the set consisting of Linear Combinations of Atomie Orbi tals 

(LCAO's) [24]. The latter choice leads to a much more complicated 

calculational scheme than the one to be presented in this section, but 

has the advantage that fewer basis functions are needed. In all

electron calculations (i.e., no pseudopotentials are used} the basis 

sets used, such as LAPW's (Linearized Augmented Plane Waves [25]) and 

LMTO's (Linearized Muffin Tin Orbitals [26]), are usually accompanied 

by extra shape constraints on the functions of interest, whereas the 

PW-expansion is completely genera!. However. in an all-electron 

calculation PW's are not suitable basis functions: approximately 106 

of them would be needed to describe the strong oscillations in the 

core region [13]. The pseudopotential-plane-wave metbod is considered 

to be best suited for calculations on open structures -i.e., solids 

with regions of negligible electron density- if the condition is 

fulfilled that the expansion (2.38) does not need to include so many 

PW' s to become unmanageable. The prototypic example is silicon (Si). 

The Fourier analysed version of (2.25) is a set of linear equations 

for the Fourier components C k(G): n, 

[~2m
2 

k+G) 2 
- E {k)]c k(G) + 2 Yeff(k+G,k+G')C k(G') = 0, (2.39) n n, G' n, 

where 

V {k+G k+G') _ l J -i{k+G)•r y" { ) i{k+G'}•r d:~ eff • -oe effre r. (2.40} 

0 

Veff(k+G,k+G') is composed of three terms: 
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Veff(k+G,k+G') = Vps.lon(k+G,k+G'} + VH(G-G'} + Vxc{G-G'), (2.41} 

with 

Vps. I on(k+G,k+G' )=2 S .(G-G') [v .(G-G'} + 2 AV .(k+G,k+G' >]' 
j J loc,J t t,J 

(2.42a) 

V ("'-"'') __ 1_ I -i(G-G') •r V ( )d3 
loc,j u-u - n .. \ e loc,j r r, (2.42b) 

n 

(2.42c} 

, 1 I -i(k+G)•r AV 8 .(k+G,k+G) = ~ e AVn .{r)~8(r,o} 
~.J ••at ~.J ~ 

i{k+G') •rd3 e r. 

n 
(2.42d) 

Oat denotes the volume per atom. Since v1 i(r) depends only on oe, 
r = lrl. v1 .{G-G') depends only on q = lq = IG-G'I. Explicit 

OC,J 
expressions for Vloc,j(q) and AVt,j(k+G,k+G') for tabulated versions 

of norm-conserving ion-core pseudopotentials are given in section 2.4. 

We now proceed to the expression f or Eto ta 1 to be obtained if 

PW-expansions of the various quantities in (2.30) are substituted. In 

this conneetion it bas to be realized that due to the long-range 

nature of the Coulomb interaction the terms E.c. EH. and Ecc diverge, 

i.e., their Fourier terms for G=O are infinite. These infinite terms, 

however, can be summed to give a finite contributton to the energy per 

cell as will be shown below. Substituting the PW-expansions in (2.31a) 

to (2.3ld) and using (2.36) we obtain: 

Exc 
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= !n 2 VH(G) n~(G}, 
G 

= 0 2 E;xc(G) n~(G). 
G 

(2.43a) 

(2.43b) 

(2.43c) 



Eec = 0 L n"(G) L S .{G) V1 .{G) + 
G j J OC,J 

0 L C" k{G)C k{G') L S.{G-G') L AV2 .{k+G,k+G'),{2.43d) 
n,k,G,G' n, n, j J 2 ,J 

where 

n{G) = L: 
n,k,G" 

C" {G")C {G"+G). n,k n,k {2.44) 

We will now address the question what contribution to the total 

energy remains if the individually divergent G=Q-terms in Eec• EH. and 

Ecc are summed. Note that the second term in the right-hand side {RHS) 

of {2.43d) is not involved in this discussion, since the local part of 

the pseudopotential was chosen to contain the Coulomb tail and so the 

nonlocal parts are short ranged and cause no divergencies. Our 

discussion is based on a sim i lar discussion in ref. [27]. The first 

term in the RHS of {2.43d) will be denoted by El . We start by ec 
spli tting off from El the Coulomb tail, so that a fini te part FP ec 
remains: 

El = FP + ECoul 
ec ec ' {2.45a) 

ECoul = L I n{r) L 
ec 4ve 0 R n ,J 

{2.45b) 

The sum Ecoul +EH+ Eec should now be recognized as the electrostatic ec 
energy Ees of a lattice of point ions j with charge -ezj in a periodic 

neutralizing background distribution n{r) of electrons. The neutrality 

of this system implies: 

I n{r)d3 r = L: Z.. {2.46) 
. J 

Oe J 

We further have from electrostatic theory [28] that: 

Ees = ieo I IE{r)l 2d3 r, 

n 
{2.47) 
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where E(r) is the electric field at position r in 0. Note that since 

the whole system is periodic, E{r) is also periadie and has a 

PW-expansion as in (2.34). We split up this system into two systems 

that are each periadie as well: system I is a periadie arrangement of 

pos i tive point i ons in a u.niform neutralizing { therefore negatively 

charged) background with density n~ = (l/Oc)2(j)Zj and system II is a 

periadie distribution n(r) of electrans in a uniform neutralizing 

(therefore positively charged) background with density n• n-. The 
0 0 

electrastatic energy of system I can be expressed as: 

(2.48) 

E~c is related to the well-known Ewald energy êEwa 1 d, which can be 

calculated by well-defined and fastly converging procedures [27,29]: 

E' Oat 
oEwald = cc -o-· (2.49) 

The Ewald energy thus is the interaction energy of system I per atom. 

The electric field E{r) of the original system is the sum of the 

electric fields Er(r) and EII(r} of the two subsystems. We may 

substitute a PW-expansion for Er and Erx to obtain for Ees: 

Ees = E~c + !éoO 2 IExi{G}j 2 + éoO 2 EI(G)K•Err{G). (2.50} 
G G 

We now are allowed to demand that Er(G) and Ezz(G) both equal zero for 

G--o, which is equivalent to demanding the cell average of Er(r) and 

EII{r) to equal zero. If this were not so. we would -because of the 

periodicity of both systems- build up an electric field over the whole 

of system I and II. So we conclude that we may replace Ecout + EH + ec 
Ec c by Ec 0 u 1 

' + E~ + E~ c, where E~ c is given by (2.48) and the primes ec 
in Ecout• and E~ denote that the c=D-term is put equal to zero. ec 

To complete the discussion of the G=O-term in Etotat. we now deal 
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with the G=o-term in FP in {2.45a}. From (2.45} and (2.43d) we have 

that this G=o-terrn equals (substitute Fourier expansions of the 

r-dependent functions in (2.45}): 

"( )~ Oat 1 I ( ) 3 e
2 

0 "( )~I 3 0 n G::O L. ~ n- V1 ·j r d r + -... - ;:;- n C..c::O L. d r. 
j ••c ><at Oe, ~Véo ><c j r 

o o 

Frorn (2.46) we have n"(G::O) = n(G--o) = (1/0c)2(j)Zj. So the G=o-terrn 

of FP is given by: 

g 2 aJ 2 zj. 
e j j 

(2.51) 

where 

(2.52) 

Taking all this into account the total energy per unit cell Etot is 

given by a sum of individually fini te terms (note that from now on 

Ek 1 ", Exc, EH, and E~c have their previous value divided by N, the 

number of cells in the erystal): 

Ekin 

E~ 

Exc 

E~c 

+ lEwald ~c + 2 a. 2 z.. (2.53} 
><at j J j J 

= Oe 2 lcn,k(G)I
2 ~k+G)2 • (2.54a) 

n,k,G 

=!Oe 2' VH(G) n"(G), {2.54b} 
G 

Oe 2 1'-xc{G} n"(G), (2.54e} 
G 

Oe 2' n*(G) 2 Sj(G) V1 j(G) + 
G j oe, 

Oe 2 c* k(G)C k(G') 2Sj{G-G') 2AVe /k+G,k+G'), 
n,k,G,G' n, n, j e ' 

{2.54d) 
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where the prime in the summation over G denotes that the G=O-term is 

left out. We remark that our second term in the RHS of (2.54d) differs 

slightly from the expressions in refs.[27,30] -note in this conneetion 

that the structure factor Sj(G) is generally complex and obeys Sj(G) = 
S j ( -G)-, but agrees wi tb the expression in ref. [23] if one notices the 

different (unconventional) defini ti on of the structure factor used 

there (see (9) of ref.[23]). 

The last term in {2.54d} is the most difficult one to compute, 

since it contains a double summatien over G veetors and, furthermore, 

the Fourier components of the nonlocal part of the pseudopotential, 

which -as we will see in section 2.4- are complicated expressions. 

However, using (2.39) we can derive an al ternative expression for 

Et o t, which does not include the term 

rewritten as: 

c. Formula (2.39) can be 

En(k)Cn,k(G) = ~k+G)2C (G) + 2' Veff(k+G,k+G')C k(G'), 2m n,k G' n, 

(2.55) 

where the prime in the summation denotes that v
1 

.{G=G') and 
OC,J 

VH(G=G') are set equal to zero; for the solutions C k(G) this makes n, 
no difference, only the eigenvalues E {k) are shifted by a constant. 

n 
This convention is consistent wi th our analysis of the G=Q-term in 

Etol· Multiplying by c* k(G) and summing over G gives: n, 

En{k) =Oe 21c k{G)I 2 ~2
2 

k+G) 2 + G n. m 

Oe 2' Veff(k+G,k+G')C k{G'}C" k(G). 
G,G' n, n, 

(2.56) 

We may now sumover n and k and use (2.41)-(2.42), {2.44), and {2.54) 

to obtain: 

2 En{k) = Ek1n + 2EH +Oe 2 Yxc(G} n"{G) + E!c. 
n,k G 

(2.57) 

Using this in {2.53) we find: 
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Etot = L E {k) -EH + AExc + oEwald ge +La. L z.. {2.58) 
n,k n at j J j J 

where 

2.3.3 Self-consistent solution of Kohn-sbam equations 

in momentum space 

(2.59) 

If we have self-consistent solutions C k{G) and E {k) of the n, n 
KS-equations in momenturn space to our disposal, we are in the position 

to calculate Etot from {2.58) if we know how to calculate VH(G), 

Yxc{G), and exc{G) from these self-consistent solutions. We proceed by 

(2.44) to calculate n{G); since VH(r) and Yxc(r) are all functionals 

of the density n(r), it is straightforward in principle to calculate 

VH(G) and Yxc(G). Here we will give details of this procedure. 

Suppose the n(G) are all known. The Hartree potential VH(r) is 

related to n(r) by Poisson's equation: 

(2.60) 

Remember that VH(r) bas dimension [energy] and n(r) dimension 

[volume]- 1
• Substituting both PW-expansions the relation between VH(G) 

and n(G) is a simple linear one: 

VH(G) = e2n(G) 
eo IGI 2 

(2.61a) 

For G--o VH(G) is put equal to zero, as was argumented already in 

section 2.3.2. In the literature [31,23,32] we may find for VH(G) : 

( 1) 4'll"e2p(G)/ IG 12 , where apparently cx;s-uni ts are used and p(G) bas 

dimension [volume]- 1
, 

(2) 811"p(G)/IGI 2 . where apparently Rydberg atomie units are used and 

p(G) bas dimension [volume]- 1
, and 

(3) 4'll"e2p(G)/(OciGI 2), where again cx;s-units are used and p(G) of (1} 

and (2) is now replaced by p(G)/Oc. Apparently p(G) in this formula is 
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dimensionless. 

When programming (2.61a) and going over to Rydberg atomie units, we 

-like in (3) above- introduce a dimensionless n'(G), which is related 

to the'distribution of electronsin a unit cell by: 

n'(G} -iG•r 3 n(r} e d r. 

This results in the formula: 

(2.6lb) 

where IGI should be expressed in a.u. and VH(G) is in Rydberg. 

For the XC-potential and -energy the situation is more complicated. 

We first give some commonly used expresslons for éxc(n). the exchange 

and correlation energy of a homogeneaus interacting electron gas. 

These are given in terms of the Wigner-Seitz radius r 5 , related to n 

by: 

1 411" 3 n = 3 rs. (2.62) 

éxc(n) can be seen as sum of an exchange part éx(n) and a correlation 

part éc(n). The Kohn-Sham form for éx(n) is given by (5]: 

(2.63) 

The Wigner interpolation form for e.c{n) interpolates between known 

high- and low-density limits [33,34] for the correlation energy: 

éc(n) 
e2 0.44 

41fE.o 7.8ao + rs (2.64) 

Since valenee-charge densities. generally have rs around 2ao. it is 

clear from (2.63)-(2.64) that the correlation contributton to éxc(n} 

is very small. 

Another expression -less popular nowadays- is given by the Slater 

Xa-approximation to éxc(n): 
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ae2 0.6872 
- 4ve. o --r-.-. (2.65) 

Here, a is an adjustable parameter to be chosen between 2 /a (no 

correlation) and 1 in order to add some correlation to {2.63). For 

instance, for the rs belonging to the average valenee-charge density 

in Si, rs = 2ao, the sum of {2.63) and {2.64) intersects {2.65) for 

a = 0.8. 

The most popular form for e.c(n) is the one parametrized by Perdew 

and Zunger [35] from the quantummechanical Monte Carlo simulations of 

the homogeneaus interacting electron gas by Ceperley and Alder [36]. 

This parametrized form also gives the correct high- and low-density 

limits and is given by: 

éc{n) 

e 2 0.1423 

! 
--4-- (Rs~ 1) 

'lréoao 1 + 1.0529 vR 5 + 0.3334 Rs 
= 

-~ [o.04so- 0.0311 ln(R.) + 0.0116 R. 
-x'lréoao 

0.0020 Rsln{R.)] {Rs< 1) 

(2.66) 

Here R5 = r 5 /ao. This is the spin-unpolarized form; a spin-polarized 

formalso exists [35]. Note that this e.c(n) intersects the Wigner form 

for R. = 2.1, i.e., again forabout the average valenee-charge density 

in silicon. 

We have used (2.63}-(2.64) in all our calculations. In that case 

the XC-potential is found via: 

Yxc(n) = ddn[n éxc{n)] = éxc - r3s ddéxc . rs 

We find for (2.63)-{2.64): 

(2.67) 

V {n) -- L[r~J! !_ + 
0

·
44 

[1 + 3(7.~: + rs} J]. (2.68) xc - 4'1re. 0 l4.".z J rs 7 .Sao + rs 

Using the LDA we have: Yxc{r) = Yxc(n(r)) and éxc(r) = éxc(n(r}}. 

So exchange and correlation energy and potential are now expressed as 

local functionals of n{r}. The problem is that we do not have a 

functional relationship between their Fourier components like in 
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(2.61) for the Hartree potential. Although it is a diversion, the most 

efficient way bas proven to be to calculate n(r) on a fine mesh of 

points r in the unit cell from the known n(G), calculate Yxc(r) and 

éxc(r) via (2.68) and (2.63)-(2.64), and subsequently make a Fourier 

inversion to obtain Yxc(G) and éxc(G) ; this is discussed in a little 

more detail in section 2.5. 

Now we can calculate Et o t from the self-consistent C k(G) and n. 
E (k} of {2.39), but to arrive at this self-consistent solution some 

n 
steps still have to be discussed. The first i tem is the potentlal 

Veff{k+G.k+G') with which one starts. One possibility is to do a 

calculation with the form factors from the Empirical-Pseudopotential 

Metbod (EPM) first [37] and to use the density n{G) from this 

calculation to calculate a first guess for the screening potenttal 

Yscr {G): 

Yscr{G) = Yxc{G) + VH(G). (2.69) 

In the EPM -which is not self-consistent- a set of equations of the 

form (2.39) is solved with a local potential of the form: 

V(G-G') = 2 Sj(G-G') Yj"( IG-G'I). 
j 

(2.70) 

which replaces the complete Veff(k+G,k+G') in (2.39). In (2.70) the 

Vj 5 (q) are called form factors and these are chosen unequal to zero 

for just a few values of q lower than some qmax· These form factors 

are then considered as adjustable to obtain a band structure En(k) in 

agreement with experiment. In such a calculation moderate numbers of 

PW's are usually sufficient. Other possibilities are to use a 

superpos i ti on of atomie charge densi ties, from which a V s c r may be 

calculated, or to screen a {local or nonlocal} ion-pseudopotential by 

a model dielectric function [38]. 

So far we have not discussed one of the main problems of this 

calculational scheme: it seems that (2.39) will have to be solved for 

very many k points in order to approximate the integrations over lBZ 

occurring frequently. e.g., in the calculation (2.44) of n(G). In 

practice one can -especially for semiconductors and insulators

suffice with calculations for just a few special potnts in lBZ. This 

is explained in chapter 3, where a modified form for (2.44} is derived 
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to be used in conneetion with special points. 

Now we have all the equipment to determine self-consistent 

solutions of the KS-equations and to calculate the total energy: with 

some screening potenttal to start with (V 101 (G-G')). which is added to scr 
the ion-core pseudopotentials. we must solve the set of equations 

(2.39) for a few k points. By the formula to be derived in chapter 3 

we calculate the n(G) from which a new screening potential V' 1 l(G-G') scr 
is càlculated as described above. V111 (G-G') is used as input for the scr 
next cycle and all steps are repeated. This whole procedure is 

repeated until self-consistency is achieved, i.e., ycnl and ycn-tl are 
scr scr 

equal to wi thin some prescribed accuracy. In practical calculations 

the input and output screening potentials are mixed to accelerate 

convergence: 

(2.71) 

The mixing coefficient a is usually chosen between ~ and 1 and may 

depend on the i teration number n. A more sophisticated convergence

acceleration scheme is the Broyden scheme introduced in solid-state 

calculations by Bendt and Zunger [39]. 

The whole calculational scheme is applicable, in principle, to any 

crystal. In practice, the applicability is limited to those crystals 

for which certain assumptions that were made hold, e.g., we should not 

construct a crystal in which cores overlap: this would make the 

pseudopotentlal approximation (see section 2.2) Ullreliable and 

contradiets the assumption made in conneetion with (2.3le}. One is 

also limited by the question whether sensible results can be obtained 

with technica! approximations that must be made to make calculations 

feasible; these technica! approximations are discussed in section 2.5. 
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2.4 Matrix elements of norm-conserving pseudopotentials 

In this section explicit matrix elements between PW's of tabulated 

versions of norm-conserving ion-core pseudopotentials are given. These 

are of almost direct use in (2.41)-(2.42). Two such tables exist: in 

ref.[40] and in ref.[14]. The first gives parameterized potentials in 

r-space for the elements Si, C, Ga, and P, whereas the second covers 

the whole periodic table from H to Pu. 

In ref.[40] one of the i-components (io) of the pseudopotential is 

considered as the local part. In the notation of (2.33), the pseudo

potentials are given by (we drop the subscript j because all formulae 

refer to only one -arbitrary- element): 

V1 (r) = Yn (r) =- 4e
2 

[~r erf(,ra:-r) -oe ~0 ~éo 

5 -a.(io)r
2

] 
2 c.(io)e 

1 
, 

i=1 
1 

(2.72a) 

(2.72b) 

The matrix elements of the local part between PW's exp(i(k+G)•r) and 

exp(i(k+G')•r), according to (2.42b), are easily shown to equal: 

v
1 

(c-c·) oe 

2 [ Z -q2/4ao 
=V (G-G') =- _e__ - e -

io éoOat 2 
q 2 

JV 5 -q /4a.(io)] 
: 2 c.(io)a~312 (io)e 1 

, 
i=1 1 1 

(2.73) 

where q = lql = IG-G' 1. The quantity defined by (2.52), giving the 

finite part of the average of the local part of the pseudopotential, 

is for the form (2.72a) given by: 

[ z JV ~ ( ) -3/2( )] 4a + 4 L.c. io a. io . 
0 i=1 1 1 

(2.74) 

To obtain the matrix elements of the nonlocal part one expands the 

PW's in Legendre polynomials P
2 

and spherical Bessel functions of the 

first kind ji [41]: 
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«> 

eiK•r = 2 i 1j1(Kr) (2t+l)P2(cos~). t=o 
(2.75) 

where ~ is the angle between K and rand K = IKI. Using the addition 

theorem and the orthonormali ty of spherical harmonies on the unit 

sphere [42], we obtain from (2.42d): 

«> 

AV1(k+G,k+G') = ~:,(2t+l)P1{cos0)Jj2 (Kr)j1(K'r)AV2(r)r2dr,(2.76) 
0 

where K = IKI = lk+GI,K' = IK' I = lk+G' I and cos7 = (K•K' )/KK' and 

cos0 = 1 if K or K' equals zero. For functions AV1(r} of the form 

r 20 exp(-ar2 ) (a> 0, n = 0.1.2 .... }. the integral can be performed 

analytically [43], and for the form (2.72b} we obtain (We note that a 

factor of (21+1) is missing in eq. (19) of ref.[44]}: 

2 5 
= ~1-Ön n )(22+1)P 0 (cos0 } 2 c.(t)Fn (n)(K,K'}, 

éouat ~.~o ç i=1 l ~.ai ~ 

(2.77a) 

with 

(2.77b) 

where h2(z} is a modified spherical Bessel function of the first kind, 

which for e = 0,±1,±2, ... only involves the calculation of functions 

not more complicated than one hyperbalie sine and/or eosine. In the 

pseudopotenttal approach only values 2 = 0,1,2, ... occur. We note that 

the values of the parameters ao. a 1(t), c1(t) (l!=0,1,2, i=l. .. 5) as 

given in table I and II in ref.[40] may only be used when Hartree a.u. 

are used. In the formulae (2. 72}-(2. 74} and (2. 77} -where MKS units 

are used- the occurring parameters ao ,ai and ei are those from the 

tables divided by the MKS-value of a~. a~. and a
0

, respectively. 
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In ref.[14] the pseudopotentials are parametrized as follows: 

erf{Jaiorer). (2.78a) 

2 3 -a1{l}r2 

AV .. (r} = _e ___ 2 (A
1
.{l}+r2 A

1
.+3{l}}e 

., 41Tëo i=l 
(2.7Sb} 

Parameters are such tbat ccore + ccore = 1 so tbat V bas the 
1 2 ' loc 

Coulomb tail. The corresponding matrix elements between PW's are: 

_ _ Ze2 ~ 
Vloc(GHG'} - n ~ êouat . l 

1= 

AV 
4
{k+G,k+G') = e

2
{
2l+l} P (cos"') x 

., êoOa t I! 0 

where all quantities are defined as before and 

(2.79) 

: [FI! (K.K' >] = [- 32a + K
2
+K'

2 
+ l+l]F., {K.K') - KK' F n 1 (K,K') 

a ,a 4a2 a .,,a 2a2 .,- ,a 

(2.81) 

In practice, it is better to use Vcore{r) + AV1 (r} for one selected 

value of e as local potential v1 (r). In this way both the local and oe 
the remaining nonlocal part of the pseudopotent ia! are weaker [30]. 

From the above formulae one straightforwardly finds new expressions 

for local and nonlocal parts {2.79}-(2.80}. Parameters ctore, 

a~ore(i=l,2), a.(t} (j = 1 ... 6, e = 0,1,2,(3)) are ~iven in table IV 
l J 

in ref.[14], whereas the A.(l!) (j=l ... 6, 1!=0,1,2,(3)} must be obtained 
J 

from tabulated parameters Cj(l!) by a numerically rather unstable but 

straightforward procedure. This instability, however, bas not much 

consequence for the accuracy of AV2(r) in (2.7Sb} [45]. Again we note 

tbat the values of all parameters in the table are to be used in 

conneetion with Hartreee a.u. only and must be rescaled for use in 

other unit systems. 
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Fig. 2.1 Norm-conserving ton-core pseudopotentiats: 

(a) stttcon, ref.[40], (b) carbon, ref.[40], 

(c} siLicon, ref.[14], (d} carbon, ref.[14]. 

r 

2 

_2Zv 
r 

2 

(b) 

3 

3 

In fig. 2.1 we show examples of both sets of pseudopotentials for 

Si and C as a function of r. It is observed, in accordance with the 

remark below (2.33), that the pseudopotentials Vi 0
" have the Coulomb 

tail for large r and are finite for r = 0. The ~=1-component for C is 
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very deep, because the core of carbon does not contain p electrons, so 

there is practically no cancellation of the strong Coulomb potential 

(see (2.20)). As y~on for 2=1 deviates strongly from the 2=0 and 2=2 

components, it is not preferabie to take the 2=1 component as the 

local potential, since this would lead to large (strong) AV2(r) for 

2=0.2. 

Figure 2.1 also suggests that the potentials from ref. [ 40] are 

probably more suited to be used with a PW-basis than those of 

ref.[14], because the deeper potentials require larger G-G' to 

describe the well for small r. This suggestion is confirmed by Nielsen 

and Martin [30]. We have used the pseudopotentials of ref.[40] in all 

our calculations reported in this work wi th 2o=Ü (see (2. 73) and 

{2.74)). As a final remark we note that fig. 2.1(a) deviates from the 

picture in ref.[40] for 2=2. Wespeculate that the latter was obtained 

from the not yet parametrized ( numerical) potential or wi th the 

parametrized form wi th non-rounded parameters, whereas we used the 

parameters from tableI in ref.[40]. 

2.5 Cutoff parameters 

The formalism in section 2.3 was derived assuming an expansion in an 

infinite number of PW's of all functions in r-space and consequently 

infinite summations over reciprocal-lattice veetors Gin all formulae. 

In actual calculations these infini ties of course are replaced by 

finite expansions and summations. This introduces what may be called 

technica! or numerical approximations, in contrast to conceptual 

approximations like the one-electron picture or the LDA. These 

technica! approximations are represented by so-called cutoffs. As was 

mentioned in section 2.3 also the integrations over 1BZ, occurring 

frequently, must be approximated, and so must the inverse Fourier 

transform to calculate éxc(r) and Yxc(r). 

In this section we will discuss the various cutoffs of our 

calculational scheme and their importance. The two most crucial 

cutoffs are the number of PW's into which the wave function is 

expanded in (2.38) and a cutoff related to the number of k points used 

to integrate over 1BZ. We will discuss two other cutoffs as well. 
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{A) The number of PW's Npv in the expansion (2.38) is determined by 

a kinetic-energy cutoff Epv : PW's are included in the expansion only 

if their kinetic energy (n2/2m)(k+G) 2 does not exceed Epv. Put 

differently: a sphere of radius Gmax = {2mEpv) 112/n and centre k is 

constructed in reefprocal space and all reciprocal-lattice veetors e 

wi thin or on the sphere are included in the expansion. Clear ly Np 11 

depends on k, though not very heavily. since k is a reduced wave 

vector; so in changing k the sphere is never shifted over a distance 

larger than a reciprocal-lattice vector. By this construction wave 

functions ,P k(r} are described with the same resolution in r-space n, 
for every k: variations of ,P k(r) on a length scale larger than n, 
2u/emax are correctly described. One could avoid the k-dependence of 

Npv by including all e· s wi th (n2 /2m)e2 ~ Epv. but in that case 

,P k(r) may loose its symmetry properties. A reasonable estimate for n, 
Npv is obtained by dividing the volume of a sphere of radius emax by 

the volume of lBZ of a Bravais lattice with unit-cel! volume ïlc 

(volume of lBZ then is (2T} 31nc): 

(2.82} 

This shows that Npv scales linearly with Oe if the same resolution in 

r-space (same Epv) is desired. 

(B) As a consequence of (2.44), n(r) wil! be expanded in many more 

PW's than the wave functions are, namely PW's exp(ie'•r). where e· is 

any difference vector of wave veetors k+G included in the expansion 

(2.38). This implies that n(e) will come out zero for very large e 

(lel >2Gmu). whereas n{e) for lel closely below 2Gmax will be 

relatively less accurate, since a too little number of k+Grpairs have 

this large difference. This is however not a problem, since for smooth 

wave functions the cn,k(e) fall off wi th increasing lel. Therefore 

these relatively less accurate n(e) are small anyway and unimportant 

in the calculation of n(r) or in the summations in Etot· The large and 

therefore important n(e) with small lel are more accurate because many 

k+G-pairs (especially the ones with smal! lk+el. which have large 

C k(e)) have this smal! difference. We may include in all summations n. 
over e only those with lel < aGmax. with 1.5<a<2. It is only for these 

G then that n(e), VH(G), Vxc(e), and exc(e) need be calculated. This 
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may be done by introducing another cutoff N.t, being the number of 

stars of G veetors taken into account. A star is a set of G veetors 

transforming into each other under the operations of the point group 

of the crystal under consideration. Nst is a less important cutoff, 

since convergence of the summations in Etot can be obtained to within 

sufficient accuracy without substantial increase in computational 

effort. Tobeon the safe side. one may choose Nst such that a=2. Note 

that this choice increases the number of terros in a summation over G 

in Etot with roughly a factor of 8 compared to the number of terms in 

the expansion (2.38) (Npv ~ G3max). 

(C) The approximation of the integral over lBZ by a weighted sum 

over special points in the irreducible part of lBZ can be represented 

by a cutoff limiting the number of special points used. This cutoff is 

discussed in chapter 3, where the theory of special points is 

presented tagether with examples and applications. Here, we sÛffice 

with the remark that with one or two special points already very 

accurate energy differences can be obtained, e.g., in the situation 

where the lattice parameters are varied, but Epv is kept constant. lf 

we retain the same crystal structure, this simulates putting a crystal 

under pressure, while descrihing the wave functions with constant 

resolution (see chapter 6). 

(D) As final cutoff parameter. we discuss the number of grid points 

in the unit cell of the cryst~l for which n(r) and consequently Vxc{r) 

and E~c{r) (see section 2.3) must be calculated befare Fourier 

inverting to obtain Vxc(G) and Exc(G). Both the calculation of n(r) 

and the two Fourier inversions are performed by standard 3-dimensional 

discrete complex Fast Fourier Transfarm (FFT) [46]. To obtain Fourier 

components for reciprocal-lattice veetors G, n{r) must be calculated 

for r = ft 1+1;t2+(t3, where {t
1
}t=t.2.3 is the set of basis veetors 

spanning the unit cell in r-space and f=iiNt (i=l ... Nt). ~j/N2 

{j=L .. N2), C=kiN3 {k=l. .. N3). The number of grid points is N1N2N3. 

The numbers N (n=1.2.3) must be chosen at least so large that 
n 

Nn > max{mn}. where max{mn} is the maximum component along basis 

vector b of the reefprocal lattice that occurs in the set of G for 
.n 

which the Fourier component is desired. This is an absolute minimal 

requirement in order not to get complete nonsense: for instance, if 

Nn=max{mn} (n=l,2,3), the Fourier component for G=2(~!1 )Nnbn would be 

equal to the G--Q Fourier component in a FFT. whereas the former should 

42 



in fa.ct be orders of magnitude smaller for the smooth functions 

concerned. A very safe rule of thumb is to choose Nn equa.l to 2ma.x{mn} 

a.nd to disrega.rd all Fourier components for G wi th components a.long 

basis vector b between max{m } and 2ma.x{m } . The determina.tion of n n n 
sa.tisfa.ctory Nn can a.lso be done by checking in how fa.r symmetry 

properties of the Fourier components are sa.tisfied: the crysta.l 

symmetry of functions in r-spa.ce ca.uses some Fourier components to be 

equa.l to zero and some of the (genera.lly complex) Fourier components 

to be rea.l. The Nn can be a.djusted to sa.tisfy the requirements for 

these Fourier components to wi thin some des i red a.ccura.cy. We remark 

tha.t this is a. much more direct wa.y of determining suita.ble N than 
n 

the one tha.t was used in ref.[47], where the effect of enla.rging Nn on 

Etot was studied. 

Just a.s Nst the N are rela.tively unimportant cutoffs beca.use FFT 
n 

is such an efficient technique tha.t convergence wi th respect to 

increa.sing Nn to within sufficient a.ccura.cy can be a.chieved with very 

modest computa.tiona.l effort. 
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CHAPTER 3 

SPECIAL POINTS IN THE FIRST BRILLOUIN ZONE 

In the calculational scheme described in the preceding chapter, there 

is a need, among others, to accurately determine the valenee-electron 

charge density p(r) (see (2.27) and (2.29)): 

p(r) e n(r) = e ~ ~ l~m k(r)l 2
• 

k m,occ • 
(3.1) 

and the band-structure energy ~(n,k)En(k) (see (2.58)). In these 

expressions the sum over k represents in fact an average over lBZ of 

the k-dependent function. Note that in both cases the k-dependent 

function is periadie in reciprocal space, i.e., g(k) = g(k+G) for any 

reciprocal-lattice vector G. If we were to evaluate the necessary 

3-dimensional integrals by calculating the integrand at a fine mesh of 

k points in lBZ, we would have to solve the set of equations (2.39) 

for a very large number of k points. From a computational point of 

view this should be considered as undesirable. It was an important 

discovery by Baldereschi around 1973 that the average is already very 

reasonably approximated by calculating the integrand at just a single 

k point, the so-called mean-value point [4B]. Basedon this idea Chadi 

and Cohen gave a systematic way of choosing successively larger sets 

of so-called spectat points, resulting in successively better 

approximations for the average [49]. Other systematic approaches were 

later proposed by Monkhorst and Pack as well as Evarestov and Smirnov 

[50,51.52]. A review of the use of special points in solid state 

physics can be found in ref.[52]. 

The use of special points bas proven to be essential to make the 

scheme of chapter 2 manageable for calculations on solids. Especially 

for semiconductors and insuiators special-point approximations are 

very suitable. For these solids we deal with completely filled energy 

bands, implying that for every k point the same number of states is 

occupied in the ground state. Therefore, the summation over occupied 

states in (2.58) and (3.1) can be performed before the average is 

evaluated. In the case of metals, for instance, not all bands are 

completely filled and we have to determine the Fermi level first to 
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find out how many bands are occupied for an arbitrary k point. The 

values of En(k) for just a few k points do not suffice to determine 

the Fermi level. So the application to metals is not impossible, but 

less practical. since it requires sets with a large number of special 

points. 

Insection 3.1 we present the general theory of special points and 

derive a formula showing how to calculate for general crystal symmetry 

the Fourier components of the valenee-charge density, p(G). from the 

solutions C k(G') of (2.39) for just a few k points only. This n, 
formula replaces (2.44) in actual calculations. In section 3.2 the 

Monkhorst-Pack (MP) scheme for the generation of special-point sets is 

descri bed; this scheme is formulated in a way sui ted for automatic 

generation. We wil! give very efficient automatic integration schemes 

for a subset of the MP-sets applicable in the respective cases of 

face-centred cubic (fee) crystals with point group Oh, Td or 0 and 

hexagonal crystals wi th point group Dóh. Cóv, Dó or D3n. For the 

notion of crystallographic point groups, for which we employ the 

Schönfliess notation [53]. we refer to chapter 4. We note bere that in 

most of the pioneering work on special points the fact that the 

applica.tion of special point sets not only depends on the Bravais 

lattice, but also on the point group of the specific crystal, was not 

mentioned (see section 3.1). Insection 3.3 the degree of accuracy of 

succe.ssively larger MP-sets is discussed in the application to the 

integration of energy bands. In section 3.4 we present prescriptions 

to select special-point sets for structurally different crystals the 

total energies of which one wishes to compare. A good procedure for an 

equivalent choice in both cases is essential for the accurate 

determination of energy differences between such crystals. 

3.1 General tbeory and application to charge-densi ty calculations 

Any function g(k) that is periodic in reetprocal space can be 

expressedas a Fourier series (cf. (2.34)): 

ro ik•R 
g(k) 2 Kue n 

n::O 
(3.2} 
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where the R are lattice veetors (Ro = 0). We introduce the function: 
n 

f(k) <g(k)>'8 !!! ~ 2 g(ak}, 
L a a 

(3.3) 

where the sum runs over all operations a in the lattice point group '8L 

and where Na is the number of elements in '8L. By definition, '8L is the 

largest crystallographic point group that leaves the Bravais lattice 

under consideration invariant; i t therefore contains at least the 

identity E and the inversion I. The function f(k) is clearly invariant 

under all operations in '8L. i.e., f(k) = f(ak), and is said to possess 

the complete symmetry of the lattice. The construction defined by 

(3.3) and leading to f(k) is called "symmetrisation of g(k} wi th 

respect to the point group '8L"· 

The function f(k) can be expanded as follows: 

where 

ro 

f(k) = fo + 2 fmAm(k), 
m=l 

ik•R 
A (k) = 2 e m 

m IR I=C 
m m 

(m=1.2 •... ). 

{3.4} 

{3.5} 

and where fo = g 0 • The sum in (3.5) is over stars of lattice vectors, 

i.e., lattice veetors that transfarm into each other under operations 

of the lattice point group. The stars are ordered in such a way that 

0 < Cm ~ Cm+l" The Am(k} are called symmetrised plane waves. since 

they are sums of plane waves exp{ ik• Rm) having the complete symmetry 

of the lattice. From (3.5} it is clear that the A (k) are periodic. m 
Another important property is that their average over lBZ vanishes: 

(m=1,2, ..• ). (3.6) 

Equation (3.6} implies that the average of f(k) over lBZ is just fo. 

Suppose a point k 0 would exist such that: 
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(m=1.2 •... M). (3.7) 

for M ~ m. In that case it is clear from (3.4) that the average fo 

equals f(ko)· There is no lattice for which such a point exists, but 

we may attempt to find the point that satisfies (3.7) for as large an 

M as possible. For a smooth function of k the coefficients fm in (3.4) 

fall off with increasing m and we find a reasonable approximation to 

fo with one point only. Chadi and Cohen have generalised this idea to 

obtain sets of Nsp special points ks with weighting factors ws 

(s = 1 ... N5 p) that satisfy: 

2 w A (k ) s m s 
s 

2w s 
s 

1. 

0 (m = 1.2 ... M-1). (3.8) 

(3.9) 

where the sum is over special points (s = 1 ... N5 p). Intheir scheme, 

it is possible to make M in (3.8) as large as one desires by carefully 

selecting more and more special points. The special points can always 

be chosen to lie in the irreducible wedge of 1BZ (IBZ). because the 

Am(k) have the complete symmetry of the lattice. The average over 1BZ, 

fo. according to (3.4), (3.8), and (3.9) can now be written as: 

ro 

f 0 = ~ wsf(ks) - m~M ~ wsfmAm(ks). (3.10) 

The first coefficient fm appearing in (3.10) is fM" Therefore, for 

smooth functions f(k) the approximation: 

fo = 2 W f(k ) , s s s 
(3.11) 

improves, if the value of M is increased. This can be achieved by 

increasing the number of special points Nsp· The task is to find sets 

that lead to large values of M with Nsp values as smal! as possible. 

The efficiency of a special-point set is often denoted by the ratio 

(M-1)/Nsp· 

A function A (k) for which (3.8) holds is called: a symmetrised 
m 

plane wave that is integrated exactly by the special-point set. We 
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introduce ~ as the length of the lattice vector ~ associated with 

the first symmetrised plane wave that is not integrated exactly by a 

special-point set. In genera!, many Am(k) with m > M are also 

integrated exactly by such a special-point set. ~ is a slightly 

better quantity than M to characterize a special-point set, since in 

case of more stars with the same C the ordering is not unique. In the m 
sense of section 2.5. ~ can be called: the cutoff parameter that is 

associated with the special-points approximation (3.11). At first 

sight, it might seem that ~ is a cutoff similar to Epv (or Gmax : see 

section 2.5). There is, however, an important difference: plane waves 

wi th kinetic energy larger . than Epv are really excluded from the 

expansion of the wave function, whereas an infini te number of Am(k} 

with m > M may still be includ~d in the expansion of the function to 

be averaged, because they are integrated exactly anyhow. 

If we let all operations a of the lattice point group operate on 

the ks in IBZ, we find a set of k points in lBZ. The number of 

actually different points in the latter set we call Naz. This number 

is connected to the symmetry and thereby to the weights w
8 

of the 

special points: a special point of high symmetry is mapped onto fewer 

points in lBZ and because of that has lower weight. Put differently: 

the weight of a special point ks is proportional to the number of 

different k points obtained (note that two k points both situated at a 

BZ face and separated by a reciprocal-lattice vector are considered to 

be equal). 

In order to characterize a given special-point set, each of the 

three above introduced parameters, Nsp. ~· and NBZ. has its own 

relevance. Though these parameters are strongly related, each of them 

emphasizes a specHic aspect of the special-point set under con

sideration. Generally speaking, the integral or average of a function 

over lBZ is better approximated the larger these quantities are. 

We now come to the question of how to apply the special-point sets 

defined above to the determination of. the average over lBZ of periadie 

functions g(k) in crystals. As is easily deduced from (3.2}. this 

average equals g 0 and can be approximated by {use (3.3) and (3.11}): 

(3.12) 
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If no direct relation exists between g(k} and g(ak} for any a € '9L. 

one bas to calculate g(ak ) for all NBZ different k points ak . The s s 
k-dependent functions En(k) and pk(r), to wbicb we wish to apply the 

special-point set procedure, however. are clearly different in this 

respect: 

(1) The function E (k} is invariant under operations of the crys-
n 

tallographic point group '9c. In genera!, '9c is a subgroup of '9L. 

Furthermore, because of fnvarianee under time-reversal, the relation 

E (k} = E (-k) holds, even if the inversion I is not contained in '9c. 
n n 

(2) The function pk(r) also bas inversion symmetry because of 

time-reversal symmetry. Furthermore, pk(r} and p~{r) are related if 

~ € '9c {This relation will be derived below). 

It is helpful to define the point group '9~. which coincides with '9c if 

'9c contains I and is the dtrect-product group '9cxi if '9c does not 

contain I (We define '9cxi as follows: ~ € '9cxi only if ~ = a1a2 with 

a1 € '9c and aa is either E or I). From the above it is clear that. 

because of the above quoted symmetry properties (1) and (2), E {k) and 
n 

pk(r} only have to be evaluated at points ks' that are inequivalent 

wi th respect to '9i:. The weighting factor w , belonging to k , is s s 
proportional to the number of different k points in lBZ obtained if 

the operations of '9c act on k .. The w, again sum to unity. If '9è is s s 
identical to '9L the special-point set {k :w } is recovered. s s 

From now on we will consider only cases in which '9~ is identical to 

'9L as these cases are most common ( and apply in all our examples). 

From the above discussion it is clear that special-point sets for 

other cases can straightforwardly be constructed as well. We note that 

the restrietion to cases for which '9è equals '9L still allows that the 

same special-point set {k ;w } , derived using '9L, may be applied to 
s s 

crystal structures with different crystallographic point groups. More 

precisely, the same special-point set may be used for all crystallo

graphic point groups '9c which are either equal to '9L or which fulfill 

the :relation '9cxl = '9L. For example, special-point sets for the fee 

Bravais lattice ('9L =On) may be applied to the diamond structure, 

with '9c =On. the zinebiende structure, with '9c =Td. and structures 

with '9c = 0, since Oh = Tdxl and Oh = Oxl. Similarly, special-point 

sets for hexagonal Bravais lattices {'9L = DEoh) may be applied to 

crystal structures with '9c = D6n.C6v.D6 or D3n· For both lattices the 

reason is the fnvarianee of En(k} and pk(r} with respect to the 
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inversion k ~ -k. 

Since, for the cases to be considered fr.om now on, E (k) bas the 
n 

complete symmetry of the lattice, the average involved in (2.58) is, 

according to (3.11), approximated by: 

:l E (k} = :l w :l E (k ) . 
n,k n s 8 n,occ n 8 

(3.13) 

Equation (3.13) shows that, much to our advantage, eqs. (2.39} have to 

be solved for the special points ks only. The situation is a bit more 

complicated for the calculation of p(r}, since pk(r) is generally not 

invariant under operatio~s of the crystal point group . However, pk(r) 

and p/Jk(r} are related for all 13 € 'ilc and we furthermore have, 

pk(r) = p_k(r). This leads to the possibility to calculate Fourier 

components of p(r) directly from the solutions C k{G) of eqs. (2.39} n, 
for the special points k=k only. We will now derive the formula that s 
makes this explicit and that will replace the so far only formally 

useful formula {2.44}. 

The function pk(r} is periadie in r-space and may therefore be 

expanded in a Fourier series: 

From eqs. (2.27) and (2.44} we infer: 

pk(G} = e :l :l C" (G'}C (G'+G). 
G• n,k n,k . n,occ 

Equation (3.12) applied to g(k} = pk(r) leads to: 

p(r} = :l ws ~ :l pak (r). 
s a at'ilt s 

Because of time-reversal symmetry, we may always write: 

p(r} = ~ ws ~ ~ pi'Jk {r), 
s 13 I'J€'ilc s 

(3.14a) 

{3.14b) 

(3.15a} 

(3.15b} 

where the second summation is over N/3 operations 13 in 'ilc. Realizing 
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that ~c is a group, so that a sumover ~is also a sumover ~- 1 , and 

substituting Fourier series for p{r) and p~-1k5 {r), we obtain 

{3.15b): 

via 

1 
p(G) = L: w - L: PR-ik {G). 

s s N~ ~ P s 
{;3.15c) 

We now proceed as follows to express P~-1k{G) in terms of pk{G'): 

Let ~~ be a operation of the space group wi th point-group part ~. 

associated nonprimitive translation T{~). and no primitive translation 

{these notions are defined in chapter 4 together wi th a discussion of 

the effect of an operation of the space group on general r-dependent 

functions). lts effect on a pseudo-Bloch-function ~ k{r) is: n, 

~R~ k{r) = ~ k{~r + T{~)). {3.16) ,.., n, n, 

Since ~R is a lattice vector if R is one, the Bloch character of 

~~~n.k{r) implies: 

~n.k{~{r+R) + T{~)) 

{3.17) 

Equation {3.17) shows that ~ k{~r + T{~)) is a Bloch function with n, 
reduced wave vector ~- 1k or: 

{3.18) 

Substituting Fourier expansions for ~ k{r) and ~· R-1k{r) and using n, n,,.., 
the fact that a sum over reciprocal-lattice veetors G is also a sum 

over ~- 1G for any ~- 1 in ~c. we obtain from {3.18}: 

{3.19) 

Using this, we have from {3.14b}: 
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= e 2 eiPG•T(P} 2c* (G'}C (G'+PG) 
n,occ G' n,k n,k 

(3.20} 

Using {3.20) in (3.15c), we obtain: 

{3.21) 

With (3.14b) we finally obtain the desired expression: 

p{G) = ~ L ws L eiPG•T(P) 2 2 c~ k (G')Cn k (G'+PG).{3.22) 
P s P n,occ G' ' s ' s 

An expression like (3.22} was given before [47], but it contained at 

least one (printing) error and no derfvation was given; this combined 

with the importance of (3.22} in actual calculations motivated the 

detailed derfvation given above. Equation (3.21) shows that for space 

groups with all T(P) = 0 (symmorphic space groups) the symmetrisation 

with respect to the point group ~c reduces to taking the arithmetical 

mean over a star of reciprocal-lattice vectors. 

3.2· Description and computerization of the Monkhorst-Pack scheme 

A few schemes to generate special points as defined in section 3.1 

have been proposed. Of these the most popular have been the scheme of 

Chadi and Cohen [49] and the scheme of Monkhorst and Pack [50] with 

extensions and generalisations [50-52,54]. The MP-scheme is more 

systematic and therefore easier to computerize. In this section we 

will describe this scheme. 

The general procedure is to start with a set of k points: 

k = u ht + u b:i! + u b3. 
p r s {3.23) 
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where bt, b2, and b3 are the basis veetors of the ree i procal lattice 

and the components u ,u , and u along these basis veetors have the 
p r s 

form (q is a positive integer): 

u = (2j-q-1)/2q (j=l,2 ... q). (3.24) 

Wedefine Rn to be the lattice vector with integer components n1.n2. 

and n3 along the basis veetors t1, t2. and t3 of the direct lattice. 

respectively. lt can be shown that a sum over all q3 points defined by 

(3.23) and (3.24} of the plane wave exp(ik•R ) equals zero for all R 
, n n 

for which holds: 

In. I < q 
1 

for i = 1,2 or 3. (3.25) 

The set of q3 points may be reduced to points lying in IBZ using 

operations of the lattice point group. The resulting set is called a 

set of Nap special points k with weighting factors w proportional to s s 
the number of points in lBZ they are equivalent wi th. The special-

point set {k ;w } also sums exp(ik•R ) to zero for all R given above. s s n n 
This completes the description of the MP-scheme applicable to any 

Bravais lattice. However. it appears to be possible for special cases 

to generate more efficient special-point sets, i.e., with larger l1t 
andlor smaller Nsp. by modifying or generalising the scheme described 

above. In the following subsections we give such generation schemes 

for the special cases of fee and hexagonal Bravais lattices. We do not 

employ the generalisation proposed in ref. [51], that implies the 

addition of an arbitrary wave vector ko to (3.23). which may be varied 

to optimize the efficiency. 

3.2.1 KP-sets for face-centred cubic lattices 

We start by choosing basis veetors for the reefprocal lattiee of a fee 

lattice : b1 = (21r/ac)(- ex + ev + ez), b2 = (2'11"/ac)(ex - ey + ez), 

and b3 = (21r/ac)(ex + ey - ez), where ac is the lattice parameter of a 

cubic lattice (see fig. 3.l(a)) and ex.ey. and ez are unit veetors in 

three Cartesfan directions. With respect to these unit veetors we 
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lal lb) 

Fig. 3.1 (a) The primitive unit eelt of a fee Bravais lattiee is 

spanned by three basis veetors: t1 = ~c(ey+ez), t2 = ~c(ex+ez), 
t3 = ~c(ex+ey). where ac is the tattice parameter of a cubic tattice. 

(b} Ftrst Brittoutn zone of a fee Bravais tattice with symmetry points 

in the irreductbte part of the zone, foLlowing the notatton of 

Bouckaert et aL. [55]. 

write a k point as: 

(3.26) 

The modified MP-seheme for fee lattiees is based on the observation 

that half of the q3 points defined by (3.24) for a simple eubie (se) 

lattiee with lattice parameter ~ac lie in lBZ of a fee lattice with 

lattice parameter ac. For this particular se lattice the basis veetors 

of the reetprocal lattice are: d 1 = ( 411"/ac}ex. d2 = ( 411"/ac}ey, and 

d3 (411"/ac)ez. The MP-points (3.24) are then given by (cfr. (3.26)): 

kx,ky,kz = (2j-q-1)/q (j = 1,2 ... q). (3.27) 

In the appendix of ref. [50]. i t is shown that the points given by 

(3.27) that moreover lie in lBZ of a fee lattice with lattiee 

parameter ac form suitable points to integrate ~dependent funetions 

in fee lattiees. The form of the MP-points given by {3.27) is 

convenient to immediately select the points lying in IBZ of the fee 

lattice, sinee IBZ is determined by the conditions (see fig. 3.1(b)): 
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(3.2Sa} 

kx + ky + kz ~ 3/2. (3.28b) 

The equations (3.27)-(3.28} generate MP-sets of special points k for 
s 

fee lattices. The accompanying weighting factors ws are simply 

determined by the conditions that they (i) are inversely proportional 

to the number of operations in ~L that leave k invariant and (ii) sum s 
up to one. 

As noted in ref.[50], it is advantageous torestriet q in (3.27) to 

even values. If now q/2 is odd, the scheme may generate different 

points in IBZ that are nevertheless equivalent, i.e .• they transform 

into each other under operations of the point group accompanied by 

translations over reciprocal-lattice vectors. This can occur for 

points on that face of IBZ for which the equality in (3.28b} holds 

(LKUW-face: see fig. 3.l(b)). For instance, for q=lO both the points 

(21r/ac)(0.9,0.3,0.3} and (21r/ac)(O. 7 ,0. 7 ,0.1) are generated in IBZ, 

satisfying (3.27)-(3.28), but closer analysis teaches that these 

points are equivalent. Of these equivalent points only one is to be 

included in the special-point set, with w
8 

determined as explained 

before. The generation of inequivalent points in IBZ is completely 

unambiguous if the additional condition k, ~ ~ is imposed on points on 

the LUKW-face. 

If q/2 is even (or: q is 4-fold), no points are generated on the 

LUKW-face as may be checked from (3.27)-(3.28). Furthermore. kx.ky. 

and kz do not take on values 0, ~ or 1. This results in the occurrence 

of only three possible weighting factors w: 

(1) w = 12/N if kx # ky and ky # kz, 

{2) W = 6/N if kx = ky or ky = kz, 

(3) w = 2/N if kx = ky and ky = kz. 

Here N = (~)3 • So 1f q is taken to be 4-fold, eqs. (3.27)-(3.28) 

generate sets of special points the weighting factors of which are 

immediately obtained by checking whether the point belongs to class 

{1), (2) or (3). All this leads toa very efficient computertzation of 

special-point approximations to Brillauin-zone integrations. The 

scheme for q/2 odd can of course also be computerized, but in a more 

cumhersome fashion. We will use the computertzation scheme for q 
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4-fold to study the convergence of special-points approximations with 

respect to increasing q (see section 3.3). 

The important properties of MP-sets for fee lattices can also be 

expressed in terms of the parameter q. It can be shown that: 

N.,(q) = { 

1 
96 q( q+2)( q+4) q/2 even 

(3.29a) 

~· (q+2)(q2 +4q+l2} q/2 odd 

Since half of the points given by (3.27) are situated in lBZ of the 

fee lattice, we obtain: 

Naz(q} = 14Q3
• (3.29b} 

One may prove for the cutoff Rx: 

(3.29c} 

From (3.29) we abserve that for larger q more A (k) are integrated m 
exactly (larger Rx> and reelprocal space is sampled better (larger 

NBZ) at the cast, however, of calculating the integrand at more k 

points (larger Nsp). 

3.2.2 MP-sets for hexagonal lattices 

In this section the MP-scheme modified to treat hexagonal lattices is 

described [54]. For hexagonal lattices, we choose as basis veetors for 

the reciprocal lattice: bi = (2u/a)(213v3ex). b; = {2u/a}(l/3v3ex+ey}. 

b~ = (2u/c )e.,, wi th a and c the lattice parameters of a hexagonal 

lattice (see fig. 3.2{a)). Since in general a and c will be such that 

the length of b~ differs from the lengthof bi and ~. it is advisable 

to introduce two parameters Qa and q~ that determine the mesh in 

reciprocal space. The mesh of points in lBZ is determined by: 
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z 

l 
c 

j 
x 

(a) (b) 

Fig. 3.2 (a) The primittve unit ceU of a hexagonat Bravais 

lattice is spanned by three basis vectors: t~ = ~v3ex-aev, t2 = aev• 

tb = cez, where a and c are the Latt ice parameters of the he:xagonaL 

latttce and 0 = 27r/3. (b) First Bri.Uouin zone of a he:xagonat Bravais 

lattice with symmetry points in the irreducible p:trt of the zone, 

following the notation of Herring [56]. Basis veetors b: (i=1,2,3) are 

given in the text. 

u 
s 

(p=l,2 ... qa), 

(s=l,2 ... qc). 

(3.30a) 

(3.30b) 

The special points, lying in IBZ (see fig. 3.2(b)), follow from the 

restrictions (apply point group D&h): 

(3.31a) 

(3.3lb) 

(3.31c) 

Regarding the dependenee of the important properties on qa and qc, 

it can be shown that: 
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{3.32a} 

where 

Pa(qa} = (a+1}(3a+f3} + Ö/3 , 
,0 

(3.32b) 

1 
a = -g<qc/3), f3 = q. mod 6, (3.32c) 

(3.32d} 

In table 3.1 we give somevalues for Pa and Pc. From table 3.1 it is 

clear that it is advantageous to choose qc even. From (3.30} we have: 

(3.32e) 

The dependenee of ~ on q. and Qc is for these sets given by: 

(3.32f} 

With min(x,y) we denote the minimum of x and y. 

qa P .. (qa) Qc Pc{qc} 

1 1 1 1 

2 2 2 1 

3 3 3 2 

4 4 4 2 

5 5 5 3 

6 7 6 3 

7 s 7 4 

s 10 s 4 

9 12 9 5 

Table 3.1. Dependenee of the functions Pa and Pc determining the 

llUlllber of speciaL points {see (3.30a)) on the parameters qa and qc, 

respectiueLy. 
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We have not attempted to prove (3.32f), but it holds in all cases 

considered. 

The sets determined by (3.30)-(3.31} do not have ambiquities like 

in the fee case. Taking qc to be even, us never assumes the value 

zero. With this restrietion there are always exactly 12 Dóh-operations 

that leave the third component of a point k = [u ,u ,u ] invariant p r s 
(numbers between square brackets are always components with respect to 

our choice of basis vectors). Therefore. the weighting factor, which 

is inversely proportional to the number of Dóh-operations that leave 

the complete k invariant. depends on the pair of components (u ,u ) 

only. For qa and q 0 even we have 7 distinct possibilities: 
P r 

(1) w= 2/Naz if (up.ur) = (0,0), 

(2} w = 6/Naz if (u ,u ) (~.0}. p r 
(3) w = 12/Naz if {up,ur) ::: (p,p} and p ~ 1/3, 0 < p < ~. 

(4) w::: 4/Naz if (u ,u ) = (1/3,1/3), 
P r 

(5) w= 12/Naz if (u ,u ) = (p,O) and 0 < p < ~. 
P r 

(6) w= 12/Naz if (u ,u } = (p,p'} and p -~p'+~. 0 < p,p' < ~. p r 
(7) w = 24/Naz if (u ,u ) = (p,p'} and p ~ p', p ~ -~p'+~. 0 (p,p'< ~. 

P r 
Naz is given by (3.32e). Equations (3.30)-(3.31} together wi th the 

easily determinable weights can be considered as an efficient 

approximation scheme for integrals over lBZ • We will use this scheme 

in section 3.3. 

3.3 Convergence of energy-band integrations using special points 

In genera!, the accuracy of averaging over lBZ using special-point 

sets is hard to determine, since in most applications the evaluation 

of the integrand at one k point already is a hard problem {In our 

application the set of equations (2.39) must be solved}. Furthermore, 

we do not know how smooth the function of k is that we wish to average 

or, equivalently, how rapidly the coefficients f in expansion (3.4) m 
fall off. Based on global arguments and assuming smoothness of the 

function to be averaged, it was argued in refs.[49] and [50] that the 

error made by using a special-point set falls off proportional to RM3
• 

In terms of the parameter q defined for MP-sets for fee lattices, this 

implies {see (3.29c}) that this error falls off proportional to q- 3
• 
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In this section, we study as an illustrative example the average 

over lBZ of the function f(k)= lkl 2
• This function has three nice 

features for our purpose of studying the converganee of energy-band 

integrations using special points: {i} it can be integrated exactly, 

(ii) its average can with low computational effort be calculated with 

very large numbers of special points. and {iii) it is an example of an 

energy band, viz.. the lowest energy band in a lattiee where the 

potential equals zero {the so-called empty lattice). We will study the 

average of f(k) over lBZ both for fee and hexagonal lattices. 

We start by evaluating the average Ircc of lkl 2 over 1BZ of a fee 

lattice: 

{3.33) 

Substituting Oc(fcc) = ta3 and realizing that the integrand has the 
c 

complete symmetry of the lattiee point group Oh, so that the in-

tegration can be limited to IBZ (defined by (3.28)), we may write: 

Ircc = 12 [trr. (3.34a) 

where 

1 min(x,3/2-x) 

T=Jdx Jdy 
min(y,312-y-x) J dz (x2 +y2 +z2

). (3.34b) 

0 0 0 

After a straightforward but tedious calculation we find: 

19[21r]
2 (2v] 2 

!ree = 32 lac = 0.59375Lä; . (3.35) 

We also approximated IFcc by Ircc(q) using the MP-sets defined in 

section 3.2.1 for q = 2,4, ... ,16. The results are given in table 3.2. 

where the last column gives the relative difference wi th the exact 

resul t (3.35). 
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q Nsp(q) Ircc(q) (in(2v/ac)2
) 6 (in %) 

2 1 3/4::0.75 +26.32 

4 2 9/16::0.5625 - 5.26 

6 6 23/36::0. 6388 + 7.60 

8 10 75/128::0.58593775 - 1.32 

10 19 1491/2500::0.5964 + 0.45 

12 28 85/144::0.590277 - 0.58 

14 44 5715/9604=0.59506456 + 0.22 

16 60 303/512--0.59179769 - 0.33 

Table 3.2. Approxtmations Ircc{q) of the average of lkl 2 over lBZ 

of a fee Latttee ustng progressiuel.y Larger sets of speciaL points 

characterized by q. Nsp(q) is the number of spectat points in a set 

wtth parameter q and 6 is the retattve difference with the exact 

resul.t Ircc=0.59375. (A string of barred figures is reeurring). 

For 4-fold q, we used the computertzation procedure described in 

section 3.2.1 to calculate Ircc{q) for very large values of q. The 

surprising results is that all results of calculations with q 4-fold 

are exactl.y given by: 

Ircc(q) = - ---. [2v]
2 

[19 1 ] 
ac 32 2q2 

(3.36) 

Note that for q ~oo Ircc(q) converges to the exact result (3.35) as it 

should. More interesting is that we seem to have an anatyticat result 

for the approximation. Strictly speaking, we have not proven that 

{3.36) holds for all q that are 4-fold, but in our calculations we 

have found no exception in about 30 values of q the largest being 

q=400. Presently, there seems little use in trying to prove (3.36), 

since the formula has only illustrative purposes. It would however be 

the first result of this kind as far as we know. As an illustration of 

the efficiency of our computertzation procedure, we mention that the 

calculation of Ircc(q) for q=200 (Nsp=85850) took only 1.6 seconds and 

for q=400 {Nsp=676700) only 12.0 seconds of processing time on a 

Burroughs 7900 computer. 
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Another important thing to notice concerning (3.36) is that the 

error falls off proportional to q-2
, which is much more unfavourable 

than q-3 as suggested earlier for smooth functions. Of course our form 

of an energy band is not very realistic: i t is much sharper at the 

edges of lBZ than a real band structure is. A more realistic example 

is given in chapter 5 (section 5.3): the example there also shows that 

special-point approximation schemes converge much slower when 

integrating energy bands En{k) than in the case of integrating pk(r). 

We have also evaluated the average of lkl 2 over lBZ of a hexagonal 

lattice: 

(3.37) 

where Oç{hex)='h.J3a2 c. The integration in the z-direction (see fig. 

3.2{b}) can be performed first so that an integral over a hexagon 

remains. We eventually arrive at: 

(3.38} 

We denote the approximation to lHEX using a MP-set with parameters 

Qa and Qc {see section 3.2.2} by lHEx(Qa,Qc)· Again the integration in 

the z-direction may be performed separately and we may write: 

{3.39) 

We calculated Ia{Qa) and Ic(Qc) for a large number of values Qa and Qc 

{both chosen even) wi tb the computerization scheme given in section 

3.2.2. For lç(Qc) we find numerically and analytically that again an 

exact relation holds: 

(3.40) 

For Ia(Qa} such a relation summarizing all calculations was not found. 

In table 3.3 we give results for Ia(Qa) for several values of Qa· The 

results converge to the exact result lHEX = 5/27 {= 0.185). 
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qa Ia(qa) 

4 0.1875 

6 0.1882716 

8 0.1875 

10 0.1860 

20 0.1855 

100 0.185196 

200 0.185188 

400 0.1851859 

1000 0.1851853 

Table 3.3. Results of calculations of Ia(qa) (defined in the text) 

for uarious values of q •. Results are rounded to 7 figures behind the 

decimal point . 

Table 3.3 and eq. (3.40) show that, just as in the fee case. a 

reasonable approximation (i.e., at the percentage level) is obtained 

with small values of the q-parameter(s), but that the convergence to 

the exact result is rather slow. We finally mention that the cal

culation for qa=400 took 0.4 seconds and for qa=lOOO took 1.6 seconds 

of processing time on a Burroughs 7900 computer. This means that our 

computerization procedure takes practically no time at all to 

integrate a simple analytic function approximately, even if a very 

dense set of points is used. 

3.4 Equivalent special-point sets for structurally different crystals 

In the preceding sections we have seen that a reasonable approximation 

to an integral over lBZ may be obtained by calculating the integrand 

for just a few carefully selected points in IBZ. As was explained in 

section 2.5, it usually is not possible to obtain a fully converged 

value for tbe total energy Etot -due to finite cutoffs that must be 

used-. but what can be obtained are accurate total-energy differences 

AEtot· To this end one has to assure that all technica! approximations 

are made in an equivalent way in the calculations of Et and E2. Here, 
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Et and Ez are the total energies of crystals C1 and Cz, respectively, 

while Ei-Ez=AEtot· If approximations are made in an equivalent way, 

the systematic part of the error will cancel when calculating a 

total-energy difference. One may hope that this systematic part is the 

larger part. In this section we discuss how approximations using 

special points can be made in an equivalent way. We restriet ourselves 

to cases in which Ct and C2 contain the same type(s) of atom(s). but 

their crystal structure or lattice parameters are.different. 

In case the crystal structures of Ct and Cz are equal, but wi th 

different lattice parameters, the symmetry of the crystals Ct and C2 

is clearly the same. Equivalent special-point approximations are then 

obtained by using special points for crystal Cz which have the same 

coördinates with respect to the basis veetors of the reciprocal 

lattice of C2 as the special points for crystal Ct have with respect 

to the basis veetors of the reetprocal lattice of C1. This procedure 

is in fact a sealing of special points with the basis vectors. That 

such a prescription for equal crystal structures works well will be 

shown in chapter 6 (section 6.2). 

If the crystal structures of C1 and C2 are different but the unit 

cell of C2 can be obtained by small distortions of the unit cell of 

Ct. a prescription similar to the one above is possible. Now the set 

of undistorted k points in lBZ of Ct must be distorted by the 

"reciprocal distortion" associated with the distartion in r-space. The 

set of resul ting points can be reduced wi th the point group of the 

distorted crystal Cz. If C1 has higher symmetry than C2. the set of 

special points for C2 will be larger than the one for Ct. Obtaining 

equivalence regarding special-point approximations in this way has 

been successful in the calculation of pbonon frequencies and elastic 

properties of semiconductors [30]. Proceeding in the way described 

above. energy differences have been determined with an accuracy of 1 

in 105 using typically numbers of special points between 1 and 10. 

This accuracy appears to be much harder to obtain if Ct and C2 are 

not related by a smal! distartion of the unit cell. Such crystals will 

be called structuratty distinct. 

In sections 3.1 and 3.2 we introduced three important parameters, 

two of which determine the accuracy with which a special-point Iormula 

like (3.11) approximates an average over lBZ. These two parameters, ~ 

and Na z, are of course closely related to the third parameter, the 
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number of special points Nsp• The parameter ~ is especially relevant 

in the case of smooth functions: expansion coefficients fm in (3.4) 

then fall off rapidly wi tb increasing m. so the accuracy is not 

seriously affected if their associated symmetrised plane wave Am(k} 

(m L M) is not integrated exactly. For functions the smoothness of 

which is questionable, the relevanee of ~ is less clear: one does not 

know a priori whether or not there are fm for m L M that are large and 

whose A (k) is not integrated exactly. In such cases the parameter Noz 
m 

seems to be the more relevant one; it measures the number of sampling 

points in lBZ. In fact, this number does not guarantee a good 

sampling, since to that "end the Nsz points should furthermore be 

distributed evenly over lBZ. The evenness of the distribution is 

related to the parameter ~ as we will now illustrate. Consider the 

MP-sets for hexagonal lattices from section 3.2.2. The parameters Nsz 

and ~ are then given by (3.32e) and (3.32f). respectively. Let for 

some choice of Qa and Qc the numbers Qa and qcc/a be almast equal. and 

let us enlarge Nsz by enlarging Qa but keeping Qc constant. It is then 

obvious that the distributton of points gets .less even, while tbe 

parameter ~ soon will not increase anymore. To obtain a more even 

distribution one should also increase Qc and this in turn causes ~ to 

increase. As a general rule one should improve the sampling of lBZ by 

enlarging Nsz in such a way that also ~ gets larger. This is a 

natura! way to obtain an even distribution. Note that for the fee 

lattice an even distributton is already assured by construction: all 

directions are treated on an equal footing by using only one parameter 

q (see (3.27)). As a result we have that if Nsz increases, ~ 

increases automatically (see (3.29)). 

We will now propose a systematic way of choosing special-point sets 

for structurally distinct crystals c1 and c2 so that the special-point 

approximations are as equivalent as possible in the two cases. We call 

such a pair of special-point sets equivaLent speciaL-point sets 

(ESPS). From the discussion in the preceding paragraph the following 

prescription follows naturally: special-point sets for Ct and C2 

should be chosen such that ~(C1 } and ~(C2) as well as Niz(Ci) and 

Niz{C2 ) are as close as possible. Here, Niz is the number of k points 

in a unit voltune in reciprocal space. By attempting to establish 

equivalence of the parameter Niz· we obtain a more or less equivalent 

treatment of crystals wi th different volumes of lBZ. More explicitly 
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we express this as follows: suppose a special-point set for C1 is 

chosen. We select a set for C2, out of sets available. by minimizing 

the following quantity: 

I~(C2)-RM(C1} I 
~(Ct) + 

INBz(C2)-NËz(Ct)l 
NBz(Ct) 

(3.41) 

If we improve the approximation of the average for Ct. the above 

prescription gives us a systematic way of improving the approximation 

for C2 in an equivalent way. In this way we may hope -there is no 

guarantee- that the energy difference between Ct and C2 converges 

faster than the difference in individual total energies. If more is 

known about the smoothness of the function to be averaged, the 

expression {3.41) could be generalised to give more weight to one of 

.the two terms. 

q 

2 

4 

6 

8 

10 

12 

14 

16 

fee 

1 4 

2 32 

6 108 

10 256 

19 500 

28 864 

44 1372 

60 2048 

~{in a) 

1.4 

2.8 

4.2 

5.7 

7.1 

8.5 

9.9 

11.3 

Qa 

1 

3 

4 

6 

s 
s 

10 

12 

Qc 

2 

2 

4 

4 

4 

6 

6 

8 

hexagonal 

1 4 

3 

8 

14 

20 

30 

42 

76 

36 

128 

288 

512 

768 

1200 

2304 

~(in a} 

1.0 

3.0 

4.0 

6.0 

6.5 

8.0 

9.8 

12.0 

Table 3.4. Properties of equivalent speetal-point sets (ESPS) for 

fee a.nd hexa.gonat lattices. Nsp is the number of special points in 

IBZ, Niz the number of sampling points in a unit volume in reetprocal 

space, whtch was chosen to be the volume of 1BZ of a fee latttce. RM 

indicates the first symmetrised plane wave, in an expansion of a 

periadie function in symmetrised plane waves, that is not integrated 

exa.ctly by the special-point set. The parameters q, Qa, a.nd Qc 

characterize the sets comptetely (see sectien 3.2). RM is ahnys 

expressed in units of a, the hexa.gonal lattice parameter (ae = av2). 

67 



In table 3.4 we give examples of ESPS for fee lattices and 

hexagonal lattices selected from the large class of MP-sets described 

in section 3.2. For the hexagonal lattice a c/a-ratio of (2/3)YB was 

chosen. Wi th this c/a-ratio the sets can be applied to the deter

mination of energy differences between crystals with zinebiende 

structure and wurtzite structure (such applications are found in 

chapter 6). 

The zinebiende structure consists of two fcc-sublattices with 

different types of atoms on each sublattice and one sublattice shifted 

over [t.t.t] with respect to the other (see fig. 3.1(a)). If the atoms 

on the sublattices are thé same, we have the diamond structure. In 

both the zinebiende and diamond structure. there are two atoms in a 

primitive unit cell. The wurtzite structure has a hexagonal lattice 

{see fig. 3.2(a)) with two types of atoms in the unit cell at 

pos i tions [0,0,0] and [2/3,1/3,1/2] for one type and at pos i ti ons 

[O,O,u] and [2/3,1/3,u+l/2] for the other. Usually u is around 3/8 and 

the c/a-ratio is always close to {2/3}YB=L633. If c/a and u have 

exactly these values. we speak ~of an "ideal" wurtzite structure. In 

that case, all atoms are at the centre of regular tetrahedra just as 

in the zinebiende structure {If the cubic lattice parameter ac equals 

av2, these regular tetrahedra have the same size in both structures). 

If all 4 atoms in the primitive unit cell are of the same type, we 

have the hexagonal-diamond structure. 

Sometimes an alternative exists to obtain equivalence in the 

treatment of structurally distinct crystals; this alternative requires 

the use of supercetts for at least one of the crystals. Here we mean 

by a supercell a unit cell containing more atoms than the primitive 

unit cell but descrihing the same crystal. By using supercells, both 

crystals can be described wi th a unit cell of similar symmetry. We 

will illustrate this for the comparison of zinebiende and wurtzite 

structures in which all atoms are at the centre of regular tet.rahedra 

of the same size. We further assume that all bond lengtbs from atoms 

at the centre to atoms at the corners of the regular tetrahedra are 

equal. This implies: ac = av2, c/a = (2/3)YB and u = 3/8. The 

zinebiende structure can be described wi th a hexagonal unit cell 

containing 6 atoms. This is schematically depicted in fig. 3.3, where 

a plane is shown containing the z-axis and the atoms in a hexagonal 
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zinebtende 

r 
z 

wurtzite 

~tr c' 

1 ~ 
A B ( A ( A 

Fig. 3.3 Schematic representation of atomie positions and honds in 

an equivalent pl.ane for the zinebtende and the wurtzite structure. The 

z-direetion is al.ong the [1,1,1]-dtrection of the zinebtende structure 

(ef. fig. 3.1{a)) and the usual z-direction of the wurtzite strueture 

{cf. fig. 3.2(a)). IF for bath structures a unit eeLt with hexagonal. 

symmetry is chosen, the ltttle arrows denote the atoms in such a unit 

eelt. The characters A, B. and C denote the type of position the atoms 

oceupy in a plane perpendicular to the z-direction (see fig. 3.4). 

o: A 
CJ: B 
A: ( 

Fig. 3.4 Schematic representation of atomie positions tn pl.anes 

perpendieutar to the z-dtreetion in fig. 3.3. The veetors tl and t2 
are as in fig. 3.2(a). The atoms in one plane att oecupy either A- or 

B- or C-type posttions and are arranged in equilateral triangl.es. 
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unit eell ( denoted by 1 i ttle arrows}. The e' -axis points in the 

[1,1,1]-direetion of the zinebiende strueture (see fig. 3.l(a)). In 

fig. 3.3 an equivalent plane is also shown for the wurtzite structure. 

In planes perpendicular to the z-axis that go through the atomie 

positions shown in fig. 3.3 the atoms are all of the same type and are 

arranged in equilateral triangles wi th side a. The atoms in such a 

plane all occupy either A- or B- or C-type positions {fig. 3.4). From 

fig. 3.3 we see that c' = 3c/2, therefore the height of lBZ for the 

"hexagonal-zincblende" structure will he 2/3 times the height of lBZ 

for the wurtzite structure (cf. fig. 3.2{b)). By choosing qa equal for 

both struetures and qc's with a ratio of 2/3 (e.g., qc = 4 for 

"hexagonal-zincblende" and qc = 6 for wurtzi te), ~ is exaetly equal 

for both sets {see (3.32f)). Even more important for the equivalence 

of such sets is that not only NBZ is also exaetly equal, but that the 

sample k points in all of reetprocal space (to he found by repeating 

the k points in lBZ along the basis veetors of the reefprocal lattice) 

are tdentical for both sets. Recently, this procedure was foliowed in 

ref.[57]. The disadvantage of this scheme is elear from eq. (2.82): by 

enlarging the unit cell with a factor of three, Npv is multiplied by 

three (when keeping the resolution with which the wave functions are 

described constant, i.e., constant Epv). Compared to using a primitive 

unit cell this approach increases the computational effort in solving 

the set of equations (2.39} by a factor of 33 = 27 and the compu

tational effort in calculating the ( complicated) matrix elements of 

the nonlocal potential by a factor of 32 = 9. 
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CHAPTER 4 

EXPLOITATION OF CRYSTAL SYMMETRY 

FOR ELECI'RONIC ENERGY BANDS AND STATES 

In this chapter we present concepts and examples of how group theory 

may be used to reduce the size of secular equations of the type {2.39) 

1f the reduced wave vector k occupies a symmetrie pos i ti on in the 

first Brillouin zone {lBZ}. If there were no limits on the capacity of 

computers and the access users have to them, this chapter would be 

superfluous, but since these limits exist the material presented bere 

can be of great help to reduce the computational effort. 

We will not give a complete description of group theory as applied 

to the study of crystals - it can be found in a number of textbooks 

[58,59,60]-, but limit ourselves to the problem of simplifying the 

diagonalization of a Hamil tonian matrix expressed with respect to a 

basis of plane waves {PW's). We also pay attention to how the 

eigenveetors of this matrix should be handled in order to evaluate the 

valenee-charge density {see chapter 2}. Only concepts and results of 

group theory needed for this purpose will be presented, but no 

detailed discussions or proofs of these will be given. 

The structure of a crystal is completely defined by specifying : 

{i} 3 linearly independent basis veetors t 1 , t2. and t3 and (ii} the 

positions and types of atoms in a unit cell spanned by these vectors. 

The crystal structure can al ternatively be classified by giving i ts 

sp:tce group 'f. The symmetry operations of 'f consist of primitive 

transl.attons -i.e., translations over veetors R = n1 t 1+n2t2+n3t3 with 

n1.n2. and n3 integers-, rotations around symmetry axes, reflections 

through planes, an inversion in the origin or combinations thereof. 

Some rotations, reflections or the inversion in the origin have a 

nonprimitive translation T associated with them. Space groups 

containing these last type of operations are called non-symmorphic 

Sp:tCe groups, in contrast to symmorphic sp:tee groups, where none of 

the symmetry operations bas a nonprimitive translation. 

Following the notation of ref. [58]. we denote an operation of the 

space group by {!I IR}, where R is the primi tive translation and !I 

denotes an orthogonal, i.e., length-preserving operation, possibly 
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accompanied by a nonprimi tive translation. The group of primi tive 

translations ~ consisting of operations {E IR}, where E denotes the 

identity, is an invariant subgroup of 'IJ. The group consisting of 

operations {~ IO}. neglecting possible nonprimi tive trans la ti ons, is 

called the crystaHographtc potnt group '/Jo. In case of symmorphic 

space groups, there is a neat division of a symmetry operation {~IR} 

into a purely orthogonal transfomation {!IlO} and a pure translation 

{EIR}. For a non-symmorphic space group this is not possible. since 

with some orthogonal transformations a (nonprimitive) translation is 

associated. In that case '/J 0 is not a subgroup of 'IJ. 

In this work we will use the notation of Schönfliess [53] to denote 

space groups and point groups. In this notation the zinebiende 

structure has (symmorphic) space group T~ and point group Td. whereas 

the wurtzite and graphite structure have (non-symmorphic} space group 

c~v and point group c6v" 

4.1 Construction of symmetrised plane waves: theory 

In accordance with the Bloch theorem, the wave function ~ k(r) of an n. 
electron wi th reduced wave vector k and bandindex n is expanded in 

plane waves as follows (see (2.38}}: 

~ (r) = L C (C)ei(k+G}•r. 
n,k C n,k (4.1) 

The effect of a general operatien of the space group {!ij IR} on a 

single plane wave, ~ = exp(i(k+G)•r), is: 

{!i IR} _ i{k+G)·~jr i{k+G}•R i(k+G}•T. 
j ~ - e - e e J 

iaj- 1 {k+G)•r ik•R i(k+G)•T. = e = e e J. {4.2) 

In (4.2) the vector T. is the nonprimitive translation associated with 
J 

the opera ti on {!ij IR}, while ~:t is the 3x3-matrix representing the 

orthogonal transformation {~jiO}. The eperation {~jiO} will be denoted 

by !ij from now on. The factor exp{ik.R) in the right-hand side {RHS) 

of (4.2} reflects that the basis functions ~ are chosen to be Bloch 

functions. By this choice we have fully exploited the translational 
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symmetry of the crystal. In order to investigate the exploitation of 

the remaining symmetry we may safely put R equal to 0. Equation (4.2) 

reveals that the resul t of an operation of the space group iJk. on a 
J 

plane wave, apart from a possihle phase factor, is again a plane wave, 

with a reduced wave vector that generally will he different from k. If 

apart from the identi ty operator {E IO} none of the iJk. operations 
J 

result in a plane wave with the same reduced wave vector k, we speak 

of a generaL k point, and we cannot expect help from group theory. If 

on the other hand operations iJk. exist, such that: 
J 

(4.3) 

thus producing a plane wave with the same reduced wave vector k, group 

theory may he of help as will he shown helow. Note that there is no 

need for a~ 1 to leave k invariant: changing hy a reciprocal-lattice 
=J 

vector G-G' is also allowed. From now on we will call an a~ 1 satis-
=J 

fying (4.3): an operation that leaves k invariant. The operations in~ 

for which (4.3) holds form the group of the wave vector k : ~(k). The 

operations a~ 1 leaving k invariant form the point group of the wave 
=J 

vector k : ~o(k). This point group is isomorphic with one of the 32 

possihle crystallographic point groups. 

At given reduced wave vector k, the operations ~j 1 for which {4.3) 

holds subdivide the set of G veetors into sheLLs; G and G' helong to 

the same shell if some a~ 1 exists for which (4.3) is valid. Note that 
=J 

for a general k point each shell contains precisely one G vector. The 

associated set of PW's ~=exp{i{k+G)•r) are similarly said to he 

suhdivided in shells. The shells are denoted hy the symhol ~s{k) 

(s=1,2 ... ), where the index s orders the shells hy means of the 

non-decreasing magnitude of the vector k+G: G € ~s{k) and G' € ~s+l(k) 

implies lk+GI~Ik+G' 1. Since the ~j 1 are length preserving, the length 

of k+G for G's within one shell is equal. It need, however, not he 

true that k+G veetors wi th equal length are included in the same 

shell. In practical cases the numher of shells is limited and will be 

denoted hy the capita! numher S. We define N(s) to he the numher of 

memhers in shell s. The 1 i mi ted expansion of the wave function in 

{4.1) then consistsof N terms: 
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s 
N = 2 N(s) . (4.4) 

s=l 

We note that N{s} can never be larger then go: the number of elements 

in the point group ~o(k) also called the order of ~o{k). 

By way of the so-called projection-operator metbod [61]. i t is 

possible to linearly combine PW's in one sbell to form symmetrised 

plane waves (SPW's), i.e., functions that transfarm according to the 

irreducible representations (irreps) of the group of the wave vector. 

These SPW's are given by: 

(4.5) 

where the ~. denote the operations of ~(k), ~ is one of the PW's in 
l 

the shell {since the sum is over all operations in ~(k) the choice is 

arbitrary), and the r (~.) .
1 

are matrix elements of irreducible 
p 1 J 

representation p belonging to operation ~1 . The star in (4.5) denotes 

complex conjugation. The indices j and 1 range from 1 to n , where n 
p p 

is the dimension of irreducible representation p. We call fji 1 the 

j-th partner in a set of n basis functions for the p-th irreducible 
p 

representation. From the range of indices j and 1 we see that we may 

find n sets of symmetrised functions each consisting of n partners. 
p p 

From the examples in the next section we will see that not always so 

many suitable symmetrised functions are found. Functions fji 1 with the 

same j and p but different 1 are also called: functions that transform 

according to the same row of the same irrep. A function transfarms 

according to row j of irrep p if the following formula holds for all 

~i in ~(k): 

""f(p) ~p () 
~1· J·1 = ~ r <~i) jf PI m=l p m m 

(4.6) 

If p is a one-dimensional irrep, eq. (4.6) reduces to (we may omit 

indices j,l,m and the sumover m): 

(4.7) 

The proof that functions constructed according to (4.5} indeed 
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satisfy (4.6) is given in ref.[61] and rests upon the fact that the 

r's are uni tary matrix representations of 'fJ(k). The representations 

are unitary, since the unsymmetrised functions -the PW's cp1- are 

orthonorma.l with respect to the hermitian inner product <flg>: 

(4.8) 

where the integration is over all space. 

We postpone the discussion of how to obtain the r (~.). 1 needed to 
p l J 

construct the SPW's until the next section and first mention the 

advantage of these newly formed functions. The advantage is that the 

Hamiltonian matrix calculated with respect to the basis of SPW's (to 

be called M') bas matrix elements equal to zero between SPW's 

belonging to different irreps of 'fJ{k}. In case of higher-dimensional 

irreps, there are also no matrix elements unequal to zero between 

different partners in the same set of basis functions. This is 

expressed in the following formula, which is a slight extension of a 

formula in ref.[61J and equivalent to one in ref.[62]: 

{4.9) 

In (4.9) ó is the usual Kronecker delta and the extra indices s and s' 

are added to denote the shell the symmetrised function is constructed 

for (s,s' l ... S}. Note that there may be matrix elements unequal to 

zero between SPW' s wi th the same index j but different index 1. In 

words one may express (4.9) as: the only non-zero matrix elements of 

M' occur between SPW's that transfarm according to the same row of the 

same irrep. In the practice of our plane-wave expansion, eq. (4.9) 

implies, that for every (s,s'}-combination of shells one obtains a 

matrix H11 , independent of j for every irrep p. The indices I and 1' 

can take on values from 1 to n , depending on the number of PW's in p . 
shell s and s'. Forsome shells some of the fji)(s) may be equal to 

each other or equal to zero and therefore they do not all represent 

suitable basis functions (see, e.g., example 2(A} below). 

From formula (4.9) we infer that we can rearrange rows and columns 

of H' such that a block form results. First one puts all rows and 

columns tagether that correspond to the same irrep p. Because of the 
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factor öp,p'' ~· is now in block form with one block for every irrep 

p. The factor ö ..• enables us to further break up blocks belonging to 
J,J 

irreps with n ~ 2 into n blocks. Since in (4.9) the matrix element p p 
is independent of j, thesen blocks are all identical. To obtain the 

p 
energy levels or, equivalently, the band structure at the k point 

under consideration, we may diagonalize all blocks separately. Because 

for an irrep with dimension n we have n identical blocks, we findan 
p p 

n -fold degeneratè energy level for such an irrep of 'il(k). This is 
p 

called a degeneracy caused by symmetry in contrast to a so-called 

accidental degeneracy, which occurs if at a certain k point bands 

happen to cross. 

The gain of calculating the Hamiltonian with respect to a basis of 

SPW's instead of with respect to a basis of PW's is obvious if one 

realizes that the computing time of solving an eigenvalue problem 

numerically is proportional to N3
, where N is the dimension of the 

matrix to be diagonalized. In our problem N is the number of PW's into 

which ~ k is expanded (see (4.1) and (4.4)). Therefore, breaking up n, 
an eigenvalue problem into two eigenvalue problems of half the size of 

the original problem reduces computing time with a factor of 4. This 

example already applies if the k point is invariant under one extra 

operation of the point group gj 1 only (apart from the (trivial} 

identity operation). The gain is usually a little less than a factor 

of 4, since in general the eigenvalue problem is not split up into two 

equa'L parts. 

After having demonstrated the superiority of the basis of SPW's 

over the basis of PW's regarding computing time (in certain appli

cations the symmetry analysis of eigenstates, that is allied with the 

procedures above, mayalso be of help. For our type of problem this is 

not the most important advantage), we discuss the basis transformation 

in a little more detail. The SPW's fjr constructed by {4.5) are not 

normalized with respect to the inner product (4.8), but since the PW's 

are normalized, we straightforwardly obtain the normatized SPW's F~sl 
l 

(i = 1. .. N(s), s = 1. .. S). We introduce the unitary matrix R· which 

connects the two orthonormal bases. It is composed of matrices ucsJ 

along the diagonal, that are defined through: 

(i=l ... N(s), s=l ... S). {4.10) 
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In {4.10) ~jsJ is the j-th memher PW of shell s. 

For a derivation of the conneetion between the Hamil tonian on a 

basis of PW's ( ~) and on a basis of SPW's ( ~'), we may condense the 

sub- and superscripts of F and ~ into one index, such that Fa= F~sJ 

with a= i+2(j:11N(j}. Formula {4.10) can now be written as: 

N 
F = 2 u R<{JR 

a (3=1 a,., ,., 
{a=l. .. N), (4.11) 

where Ua(j is the complete NxN-matrix with matrices u(sJ along the 

diagonal. From the orthonormality of the <fJ we infer: 

(4.12} 

If Ha(j is the matrix element of the Hamiltonian between PW's <Pa and 

<{J(j. 

(4.13} 

then the matrix element H~ between normalized SPW's Fa and F(j is: 

= 2 U" H .,U~R ., a1 ')'u u,., 
')',u 

{4.14) 

Formula (4.14} has the usual form of a unitary basis transformation. 

It suggests that two matrix multiplications with NxN-matrices have to 

be performed. For readers concerned about the computational demands of 

the present basis transformation, we remark that, because of the 

simple form ~ has, only matrix multiplications with N(s}xN(s')

matrices -with N{s) typically ranging between 1 and 12- have to be 

performed. These matrix multiplications are combined with the 

separation of ~· into blocks, as described above. The computational 

effort involved in the matrix transformation is negligible compared to 

the diagonalization of the blocks of ~·. The only input required is 
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the set of matrices g1 1 (1=1. .. g 0 } that leave the k point invariant, 

the associated nonprimi tive translations Ti. and the matrix elements 

rP(l'lii)ji" 

4.2 Construction of symmetrised plane waves: illustrative examples 

In this section the theory of section 4.1 is illustrated with some 

examples (For these we will choose some of the special k points from 

chapter 3). We will not give well-specified procedures to construct 

what we will call Slater tables of matrix elements r (l'li.) .1 . One 
p 1 J 

reason is that it is not easy to give a completely general procedure. 

Moreover, these Slater tables may be found for the most symmetrie k 

points in the Brillouin zones of the most commonly found crystal 

structures in Appendix 3 of ref.[58]. 

For symmorphic space groups Slater tables can easily be con

structed; because of the possibility of a neat division of ~(k} into 

an orthogonal and translational part, one only needs to deal with 

~o{k). This ~o{k} is always isomorphic to one of the 32 possible point 

groups, the irreducible matrix representations of which may be found 

f or ins tance in Appendix 1 of ref. [60]. Wi tb these matrix represen

tations at hand the Slater table can immediately be assembled. We note 

that the character tables for point groups given in most hooks on 

group theory are not sufHeient to write down the Slater tables, 

unless ~o (k) bas one-dimensional irreps only {For one-dimensional 

irreps the character, which is the trace of the matrix representation, 

is equal to the (lxl) matrix representation). For non-symmorphic space 

groups the situation is less clear and the Slater tables are usually 

arrived at more or less by trial and error. Especially for symmetrie 

points lying on the boundaries of lBZ the matrix elements of the 

irreps of ~(k) (even the dimensionalities of the irreps) can be quite 

different from what would be expected from the irreps of ~o(k). 

However, also in these cases well-defined procedures can be carried 

through to find irreps of ~(k) with the translational part factored 

out [60]. 

Of course the correctness of Slater tables can always be checked by 

verifying whether SPW's constructed using the presumed Slater table 

and (4.5} indeed satisfy (4.6). With some experience in checking 
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Slater tables the procedure termed "trial and error" above usually 

converges rapidly to the correct table. 

Exampte 1: One of the special points out of the two-point set of Chadi 

and Cohen (or: Monkhorst and Pack; see chapter 3) applicable to 

fcc-lattices is the one with coördinates k1 = [~.~.~] with respect to 

the basis {b1}ta1.2.3 in reciprocal space (see section 3.2.1). 

Coördinates between square brackets always denote coördinates wi th 

respect to the basis at hand. Suppose we want to calculate the band 

energies at this k point for a compound wi th zinebiende structure 

(space group T~. point group Td). The space group T~ is symmorphic, so 

there are no nonprimitive translations. The point group Td consists of 

24 symmetry opera ti ons ~1 .. -~24. (For the numbering' and nota ti on of 

the operations we use the convention of ref. [58]). Of these only !lk1 

(the identity) and ~19 leave k1 invariant. The matrices representing 

the operation of !lk1 and ~19 in 3-dimensional reciprocal space with 

respect to basis {bi}t=1.2.3 are: 

[1 0 0] 
~-1

1 = E = 0 1 0 
- 0 0 1 

and r1 o o] 
~ï~ = lg ~ ~ . 

The point group of k1. 'll0 (ki). is c. containing a reflection 

through a plane (a) besides the identity (E). The character table of 

c. is given in table 4.1{a). Cs has two one-dimensional irreps; a 

result from group theory is that the sum of squared dimensionalities 

of irreps of a group must equal the order of the group; so this is the 

only possibility. 

E 
(a) 

1 

2 

1 1 

1 -1 

{b) 

Table 4.1. (a} Character tabte far potnt group c •. 
(b) Stater table For k1=[~.~.~] for space group T~. 
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The Slater table for k 1 is given in table 4.1(b) and is identical 

to table 4.1(a). We will now illustrate the construction of SPW's from 

PW's for a typical shell of PW's. Since in this exarnple and the 

following exarnples we will be talking about one typical shell at a 

time, we will omit the superscript s denoting the shell from now on. 

The gt h shell ~g(kl} consists of 2 PW' s, <Pt and <P2, where <P. 
J 

exp(i(kt+G.)•r). which have associated reciprocal-lattice veetors 
J 

G1 = [0,1,0] and G2 = [0,0,1]. From thematrices g} 1 and gï~ it can be 

checked that this is indeed a shell for kt. Using table 4.1(b) and 

(4.5) we have (take <P =.pi): f 111 = <P1+<P2 and f 121 = <P1-<P2· The ~.<P 
l 

introduce no additional phase factors since T~ is symmorphic. Formula 

(4.7) is easily verified and so f 111 and f 121 are suitable SPW's. The 

normalized SPW's are: Ft = ~v2{<Pt+<P2) and F2 = ~(<Pt-<P2)· The 

u-matrix for this shell as defined by (4.10) is: 

u 

Excunpte 2: As an exarnple for the same space group, but wi th higher 

symmetry, we treat the k point with A-symmetry: k2 = [p,p,p] with 

0 ~ p ~ ~- The second special point in the two-point set of Chadi and 

Cohen [ 49] is an exarnple of such a point (p=*). We note that the 

following symmetry analysis is also applicable for special values of 

p, where k2 bas higher symmetry, i.e., the r-and L-points (p:O and 

pdh, respectively); there is no obligation to use the full symmetry 

group of the k point at hand. The point group 'Do(~) consists of 6 

symmetry operations ~t.~.~9.~t9.~21 .~23 and is isomorphic to the 

point group c
3
v' which is a subgroup of Td. The g- 1-matrices are: 

-1 gg = rg ~ ~] 
[1 0 0 

~0 1 0] 
~ = 10 0 

0 0 1 

(gï 1 and g}~ were already given with example 1). 

In order to understand the character table (table 4.2(a)) for c3v' 

we reeall from standard group theory that the elements of a group can 
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'€1 '€2 '€3 ~1 ~5 ~9 ~19 ~21 ~23 

1 1 1 1 1 1 1 1 1 1 1 

2 1 1 -1 2 1 1 1 -1 -1 -1 

3 2 -1 0 {3)11 1 ~ --').! 1 --').! -14 

{3)21 0 ~v3 -14v3 0 --'Av3 ~v3 

{3)12 0 --'Av3 ~v3 0 -~v3 14v3 

{3)22 1 -~ -~ -1 ~ ~ 

{a) {b) 

Table 4.2. (a) Character tabLe for point group c3u" 

{b) SLater tabLe for point with A-symmetry for space group T~. 

be subdivided into so-called cLasses and that the number of irreps of 

a group equals the number of classes. The characters for elements in 

one class are equal. For c3v there are 3 classes. In terros of the 

elements of 'Do{k2) these are: '€1 = {~i}. '€2 = {~5.~9} and '€3 = 

{~19.~21.~23}. Since there are 6 elements in 'Do{k2). it must have 

-because of the rule quoted with example 1- 2 one-dimensional and 1 

two-dimensional irreps. 

In table 4.2(b) the Slater table for a point wi th A-symmetry for 

space group T~ is given. One may check that the characters of the 

symmetry operations coincide with the ones for the corresponding class 

in table 4.2{a). 

We now construct SPW's for two typical shells of PW's when p~Á: 

{A) The 5th shell for k2 consists of 3 PW's, '/11.'/12. and '/13. with 

associated reciprocal-lattice vectors: G1 = [1,0,0], G2 = [0,1,0], 

G3 = [0,0,1]. The SPW's constructed with table 4.2{b) and {4.5} ar.e 

('P =<pi): 

f 111 = '/11+'/)2+'/13. f 121 = o. 
f~~) = 2<p1-<p2-'P3o f~~) = v3{<p2-'P3}, 

f 131 0 f 131 0 12 = . 22 = . 
As was stated before, 3 PW's result in 3 SPW's. We may again check 

{4.6). For instanee, ~5f~~ 1 =2'P2-'P3-'/11. which indeed equals: 

~(2) r (~ )f(3)f(3) = ~f1(31>+~v3f2(31> = -<p1+2'P2-'P3· 
~{m=1) 3 5 m1 m1 
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The normalized SPW's are: 

Ft=(l/v3)(~1+~z+~3). Fz=(l/vS){~1~2-~3}. F3=(1/v2){~2~3)· 

The u-matrix for this shell follows immediately: 

[ 
llv3 

~ = 2/vS 
- 0 

1/v3 
-1/vS 

1/v2 

1/v3] -1/vS 
-llv2 

(B) The 9H shell for kz consists of 6 PW's ~1· .. ~r; with associated 

reciprocal-lattice veetors : Gi=[-1,0,1], G2=[1,-l,O], G3=[0,1,-l], 

G4=[-1,1,0], Gs=[l,0,-1], G&=[0,-1,1]. The SPW's are: 

f' 11 = ~1+~2+~3+~4+~5+~r;. fc 21 = ~1+~2+~3-~4~5~r;. 

f~~> = ~1~~2-~3+~4~~5~r;. f~~ 1 = ~v3(~2-~3~5+~r;), 

f~~> = ~v3{~z-~3+~s-~r;), f~1 = ~1-~2~3~4~~5~1'>· 
In contrast to example 2{A), we now find for irrep p:3 two sets of 

SPW's each consisting of two partners. namely {f~~ 1 .f~~ 1 } and 

{f~~ 1 ,f~~ 1 }. Weneed both sets since the shell consistedof 6 PW's. An 

important thing to note is that !;!' {see section 4.1} will contain 

non-zero matrix elements hetween f~~l and f~~ 1 • because they transform 

according to the same row of the same irrep (cf. {4.9)). The same 

holds for f~~J and f~1 • So this shell leads to 2 SPW's that transform 

according to the same row j=l of the same irrep p=3. Therefore, the 

dimension of the block associated with this combination of p and j is 

enlarged by two. The same holds for the combination j=2 and p=3. For 

the shell of example 2(A} the dimension of both these blocks is only 

enlarged by one. This observation wil! be relevant for the treatment 

of eigenveetors resulting from the different blocks (section 4.3). 

The normalized SPW's F1(i=l ... 6) are again easily obtained and the 

u-matrix can be wri tten down immediately from these. The dimension 6 

for the u-matrix is the· largest one can obtain for a general point 

with A-symmetry, since such a point has only 6 symmetry operations. 

Exnmpte 3. As final example, we will treat a symmetrie k point in 1BZ 

of a structure wi th the non-symmorphic space group C~v· This space 

group applies to, e.g., the wurtzite and graphite structures. The 

point group c6v has 12 symmetry operations, the effect of which on a 

plane wave is given in table A3-l of ref.[5S]. The operations Xo and 

Y1 (in the notation of ref.[5S]) leave the k point k3=[p,p,p3]' 

invariant. Coördinates are given with respect to the basis {bi}1•1.2.3 
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(see section 3.2.2). Points with the type of symmetry of k:J occur 

frequently when generating special points wi th the Monkhorst/Pack

scheme for hexagonal lattices (see chapter 3}. The matrices wi th 

respect to basis {bi }i .t. 2. 3, which represent the effect of the 

operations of the space group on the wave vector, are the identity 

matrix for Xo. and for Yt: 

~0 1 0] 
~- 1 (Yt) = 1 0 0 . 
- 0 0 1 

The nonprimitive translation associated with Y1 is T = [0,0,~]' 
(coördinates with respect to basis {tj}J=1.2.3· which is connected to 

basis {bi}l=1.2.3 through hi•tj=2vo1j}. So the effect of Y1 on a PW is 

the transformation of the wave vector through g- 1 (Yt} and multi

plication by a phase factor exp(i{k+G)•T). 

The point group '8.,(k:J) is Cs, the character table of which was 

given in table 4.1{a). In this case, however, the Slater table is not 

identical to the character table. Table 4.3 shows this Slater table. 

X., Yt 

1 1 a. 
2 1 -a. 

Table 4.3. Sta.ter ta.bte for point [p,p,p3]' 

for spa.ce group C6v· a. stands for exp(vip3). 

A typical shell of reciprocal-lattice veetors for k:J is the one 

consisting of G1 = [1,0,1]' and G2 = [0,1,1]' with PW's <111 and '1'2· 

With (4.5) the SPW's are: f' 1,= <Pt-'112· f( 2l= <Pt+<P2· In the calculation 

of f(tl and f( 2 ) the phase factors a.* resulting from the Slater table 

are partly compensated by the phase factors resulting from the 

nonprimitive translation. Using Yt<Pt = -ct.<Pz and Y1<112 = -ct.<Pt. one 

easily verifies that f( 1 )and f 121 indeed satisfy (4.7). So only by 

including the phase factors a. in the Slater table, eq. (4.5) leads to 

SPW's that transform correctly.The u-matrix for this shell is given 

by: 
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Apparently, the effect of nonprimi tive translations on the con

struction of the Slater table is that the column of the character 

table of ~o{~) associated with an operation with accompanying T must 

be multiplied by exp{i~·T) =a. This rule of thumb is not always 

applicable for k points with higher symmetry; as was mentioned before 

Slater tables for points on the boundaries of lBZ can be completely 

different from the Slater tables of their point group. The general 

observation, however, that nonprimi tive trans la ti ons introduce phase 

factors in the Slater table remains true. 

From the above examples one might gain the impression that the 

matrices u are always real, so that the basis tranformation is simply 

orthogonal {instead of unitary). Although this is true in a great deal 

of si tuations, there are some exceptions. An example of such an 

exception is point W {[1/4,1/2,3/4]) in 1BZ of a zinebiende structure: 

here the Slater table contains some purely imaginary characters, 

whereas there are no nonprimitive translations. Hence, the matrix U 

contains purely imaginary elements. 

We conclude this section wi th a number of practical remarks of 

general character: 

{i} Besides the verification of Slater tables through {4.5} and {4.6} 

this verification can also be achieved by performing two calculations 

of the band structure at the k point at hand; one using the presumed 

Slater table and one using no symmetry {i.e. , a Slater table con

sisting of one element equal to uni ty for the identi ty operation). 

Using no symmetry, R equals the uni ty matrix and the Ham i 1 tonian 

matrix has to be diagonalized completely. The results should be 

identical to those obtained using the presumed Slater table. This can 

be done for smal! N, although N should be so large that at least one 

shell with the maximum number of members is included in the basis set 

of PW's. 

{ii} The possibility of not using the complete symmetry of a highly 

symmetrie k point has the advantage that Slater tables are more easily 

constructed. Furthermore, the extra saving of computing time when 

using full symmetry is not always substantial. As an example, we 

discuss the r-point (k=O} in the zinebiende structure. ~o{r) contains 

24 symmetry opera ti ons and has 2 one-dimensional, 1 two-dimensional 
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and 2 three-dimensional irreps. This implies (see section 4.1) that ~· 

is split into 10 blocks of which only 5 need be diagonalized (one for 

every irrep). If we suppose all blocks to be of equal dimension -for 

the ease of this argumentation-, use of symmetry reduces computing 

time by a factor of l/5x(10)3 =200 or, equivalently, by 99.5% compared 

to the case when no symmetry is used. If, however, we employ only 

A-symmetry (see example 2), we have 2 one-dimensional and 1 two

dimensional irreps, resul ting in a break-up of !! ' into 4 blocks of 

which only 3 need be diagonalized. Supposing all blocks to be of equal 

size, computing time now is reduced by a factor of l/3x(4)3~ 21 or, 

equivalently, by 95.3%. The extra saving of 4.2% by using full 

symmetry instead of A-symmetry usually is not considered to balance 

the extra trouble and error-prone usage of a 24x24 Slater table 

instead of a 6x6 Slater table. The interplay between the advantage of 

the full power of group theory and practical considerations leads us 

to the following policy: we use such a subgroup of the group of the 

wave vector that no irreps with dimension higher than 2 occur. 

Connected wi th this is that we never use more than 12 symmetry 

opera ti ons. 

4.3 Unfolding of symmetrised electron states 

The block matrices that !!' consists of after rearranging rows and 

columns as explained in section 4.1 are diagonalized separately. The 

resulting eigenvalues constitute the band structure E (k) at point k 
n 

in lBZ, with n the band index. We find as many bands as the dimension 

N of the matrix H', but only the lowest few of these are usually of = 
interest. It is also only this set of lowest energy levels that may he 

considered accurate, since for the highest levels the interactions 

with states ~m.k(r) (m>N) will he important and these were not taken 

into account because of the truncation of the expansion (4.1). The 

resulting eigenveetors for each block are the expansion coefficients 

of the wave function + k(r) in SPW's that transform according to the n, 
same row of the same irrep. With the help of (part of) the matrix ~we 

can determine the expansion coefficients C k{G) of the wave function n. 
in PW's exp(i(k+G)•r). These C k(G) for occupied states n are the n, 
ingredients for the calculation of the Fourier components p(G) of the 
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valenee-charge density (see chapter 3, equation (3.22)}. Formally this 

is achieved as follows: the eigenveetors resul ting from a MxM-block 

with associated SPW's F.(j=l, ... M} are denoted by C' k(F.}. The 
J n, J 

Cn,k(Gi) (i=l •...• N) are found by: 

(4.15) 

where yr is the NxM-matrix formed by omi tting all columns from the 

NxN-matrix Rr that do not correspond to the M functions F j. For 

instance, in case of example 2(B) we have the following situation: 

both F3 and Fs belong to the same block. whereas PW's ~2.~3.~5 and ~6 

are contained in both F3 and Fs. So by the construction (4.15) the 

expansion coefficients connected with ~2.~3.~5 and ~6 will have 

contributions from F3 and. Fs. Since we have excluded 3- and higher

dimensional irreps, we can never have more than two contributions to 

one C k(G). n, 
We further note that although a n -dimensional irrep results in n p p 

identical blocks, and thus in n sets of identical eigenvalues and 
p 

eigenvectors. the electron states that. belang to these np-fold 

degenerate energy levels will not be identical. This is true since. 

the identical expansion coefficients one finds relate to different 

SPW's. A way of explaining this is by observing that the matrices 

resulting by omitting columns from Rr are different for the two blocks 

giving the same eigenvalue. Of course both states shoul.d be different 

because of the Pauli exclusion principle. 

We conclude this chapter by mentioning situations in which 

incorporating the exploi tation of symmetry in computer codes may be 

less profi table. When very large numbers of special points Nsp are 

required (e.g., Nap> 60), the fraction of general k points gets larger 

and starts dominating the computational effort of diagonalization. 

Another example is when the metbod of chapter 2 is used when the unit 

cell al ready is of low symmetry. In that case the symmetry of the 

special points is in general even lower, which may mean: no symmetry 

at all. This occurs, for instance, when slight distortions of a unit 

cell are invoked in order to determine pbonon frequencies from the 

change in total energy upon di stortion {frozen-phonon metbod [63]). 

But even in these situations the exploitation of crystal symmetry can 
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be of help. There will always be problems just past the limit of 

computational capacity available that can be handled with the use of 

symmetry but cannot be handled without its use. 
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CHAPTER 5 

SECRETS DE UJISINE CAPITA SELECfA 

The present cbapter is devoted to a discussion of some characteristic 

properties of the calculational scheme described in the previous 

chapters. Although these properties are of a somewhat technica! 

nature, they certainly deserve attention, since they make possible a 

more conventent application of the method. A good understanding of 

these technica! points is of great help, not only in reducing the 

computational work, but also in choosing reliable self-consistency 

criteria and cutoff parameters. 

Here, we discuss three of such technica! points: 

(i) Insection 5.1 we show how the total energy is to be calculated in 

intermediate stages of the self-consistent (s.c.) calculation in order 

to obtain rapid convergence of Etot• 

(ii) Section 5.2 is devoted to numerical noise on the total-energy

versus-volume curve, which is due to the fini teness of the cutoff 

parameter Epv (see section 2.5) and the fini te number of special 

points Nsp (see section 3.1). 

(iii) In section 5.3 we present support for the conjecture tbat 

special points are much more :;ui ted to integrate charge densi ties 

~(r) over lBZ than they are to integrate energy bands En(k) over 1BZ. 

This leads to an important computational reduction in the procedure to 

obtain the total energy. 

The title of this cbapter we owe to several of the lecturers at the 

Corsendonck Advanced Study Institute [1,16,67]. who used the phrase in 

their lectures in conneetion with questions of the kind treated here. 

5.1 Non-self-consistency correction 

If eq. (2.58) is used to calculate the total energy per unit cell, 

Etot• aftereach cycle in the self-consistency process -for instance, 

in order to judge to what accuracy Etot bas converged-, it should he 

realized that in the obtained Et o t the energy eigenvalues E (k) are 
n 

calculated by solving the set of equations (2.39) in which an input 
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screening potential is used, wi th Fourier components V1
" (C) (see 

scr 
{2.69)). This input potential bas been calculated by using a density 

n 1
". which is different from the density noul following from the 

solutions C k(G) of (2.39), with the aid of which the energy terms EH n, 
and AExc in (2.58) are calculated. Only when self-consistency bas been 

reached n 1
" and nout are the same. In spite of this fact, it is 

possible to correct the "wrong" sum over band-structure energies 

L(n,k)En{k) -to be abbreviated by L(i)Ei in the following- for the 

fact tbat self-consistency bas not been reached yet. After this 

correction, Etot only dependes on output quantities of one self

consistency eycle. 

From eqs. {2.39) in chapter 2 the expression (2.57) was derived for 

2( 1 )Ei. From this expression we infer that wi thin each cycle of the 

self-consistent calculation the following identi ty holds (We use 

(2.54b) and (2.69}): 

(5.1) 

In (5.1) Ek 1 n and E!c are to be expressed, by means of (2.54a) and 

(2.54d), in terms of the solutions C k(C) of eqs. (2.39) (output n, 
quant i ties). These C k(C) are also n, 

used to calculate nout(G) using 

(3.22}. So the RHS of (5.1) depends on n 1
" only through the Fourier 

components V1
" (G}. This dependenee on n 1

" is explici tly removed by scr 
adding to 2(i}Ei the non-seLf-conststency correction Öac= 

Ösc =Oe 2 [vout (C}- V1
" (C)](n""t(C))", 

G scr scr 
(5.2} 

where V""t(C) are Fourier components of the screening potenttal 
scr 

calculated from n""t. Since n""t may be expected to approximate the 

self-consistent density better than n 1 
n, we expect 2( i) Ei + Ös c to 

approximate the s.c. 2(i}Ei better than expression (5.1). 

From (5.1) and (5.2) we see tbat if yout by chance would be the 
scr 

fully converged s.c. screening potential, in the sense tbat all terms 

in the total energy have converged to within some prescribed accuracy, 

the correction results in the s.c. value for L(·)E., whereas if V1
" 

1 1 scr 
is already s.c., the correction (by the definition of self-con-

sistency) vanishes. These observations illustrate tbat Ösc may be 

90 



regarcled as a measure for the degree of self-consistency. Note that 

6sc in (5.2) includes the G--o-term. We remind the reader that VH{G=O) 

was chosen to equal zero (see chapter 2), so only Vxe{G=O) contributes 

to V (G=O). From eqs. (2.58), (2.59), and (5.1) one infers that the scr 
G=Q-term in (5.2} can be omitted if the energies En{k) and the energy 

term AExc are calculated with Vxc(G=O) put equal to zero. This may 

also be expressed by saying that Etot given by (2.58) and corrected by 

adding (5.2) does not depend on the value of Vxc(G=O) or by saying 

that self-consistency is only determined to within an addttive 

constant in the potential. 

As an illustration of the usefulness of Ösc• we present in table 

5.1 results of a s.c. calculation for cubic silicon carbide (with 

zinebiende structure and denoted by 3C SiC) for the experimental value 

[64] of the lattice constant: ac = 4.3596 Á. A kinetic-energy cutoff 

Ep~ of 10.3 Ry and 2 special points (q=4 insection 3.2.1; Chadi-Cohen 

points) are used. Norm-conserving pseudopotentials from ref.[40] and 

the Kohn-Sham-Wigner (local) density functional for exchange and 

correlation are used (see chapter 2). The input screening potentlal 

for the first cycle is calculated from the valenee-charge densi ty 

obtained from an EPM-calculation using the form factors of ref.[65]. 

In table 5.1, for each of the presented eight cycles of the s.c. 

calculation the respective terms consti tuting the total energy per 

unit cell, Etot. are given (cf. (2.58)), as wellas Ösc and a quantity 

6V defined as: 

6V = maxlvout(G)- yln (G)I. 
G scr scr (5.3) 

In (5.3) the maximum is taken over the set of all reciprocal-lattice 

vectors. In table 5.1, Etot,corr equals Etot plus the correction Osc• 

The two last terros in the RHS of (2.58) are constants during the s.c. 

calculation and in this case are equal to -20.923537 Ry for the Ewald 

term and 4.416820 Ry for the constant split off from the ionic 

pseudopotentials. 

The conclusion from table 5.1 is that the corrected total energy 

Etot. corr converges much faster than the uncorrected Etot: after 3 

cycles Et o t. c orr has converged to wi thin an accuracy of 10- 4 Ry. 

whereas Etot takes 8 cycles to reach this accuracy. 
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cycle 1 cycle 2 cycle 3 cycle 4 

2(i)Ei - 1.581819 - 1.984517 - 1.995020 - 2.001523 

AExe 1.698853 1.735050 1.734583 1.734244 

E~ 1.286403 1.706164 1.703295 1.700233 

Et o t - 17.676086 - 18.462348 - 18.470449 - 18.474229 

Óse - 0.709153 0.020797 - 0.012979 - 0.009237 

Etot, corr - 18.385239 - 18.483145 - 18.483428 - 18.483466 

öV 5.3><10-2 5.0x10-3 2.7><10- 3 1.5><10-3 

cycle 5 cycle 6 cycle 7 cycle 8 

2(i)Ei - 2.008456 - 2.011289 -2.012023 - 2.012206 

AExc 1.734066 1.734064 1.734065 1.734065 

E~ 1.698589 1.698554 1.698555 1 .. 698557 

Et o t - 18.479696 - 18.482496 - 18.483230 - 18.483415 

Óse - 0.003778 - 0.000978 - 0.000244 - 0.000060 

Etot.corr - 18.483474 - 18.483474 - 18.483474 - 18.483475 

ov 4.3><10- 4 1.1><10-4 2.6x10-5 6.4><10-6 

Table 5.1. For each cycle of the setf-consistency process, the 

quantities constituting the total. energy per unit.cel.l. Etot are given, 

as weLt as the non-sel.f-consistency correction Ósc (see eq. (5.2)), 

the corrected total. energy per eetl. Etot,corr. and the quantity öV, 

defined by eq. (5.3) (alt entries are in Rydberg). 

Table 5.1 is also helpful in clarifying a point of confusion in the 

literature (see footnote 12 in ref.[47]). In ref.[66] it was claimed 

that the total energy per atom was stabie to within 10-5 Ry if óV was 

10- 4 Ry, whereas ref. [ 47] stated that wi th óV equal to 10-4 Ry the 

total energy per atom was only stable to within 10-3 Ry and that the 

remarks about stability in ref.[66] were not understood. This 

discrepancy of two orders of magnitude for the accuracy of Etot is of 

course very relevant for the choice of a sui table self-consistency 

criterion for oV. Although the calculations in refs.[47] and [66] were 

performed for silicon and other details of the calculation are also 

different, table 5.1 strongly suggests that the calculations in 

ref.[66] were performed with the correction Óse. whereas in ref.[47] 
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this correction was ignored. We have found, also in other cases, that 

i t is safe to assume that the total energy per atom calculated by 

(2.58} and corrected by adding Öse differs from the s.c. result by 

less than 10-p-i Ry if óV = 10-p Ry (p=2,3,4, ... ). This is true 

irrespective of the pseudopotentials and cutoffs used and we believe 

it to be characteristic for the calculational scheme. 

We conclude by noting that the corrections discussed in refs.[67] 

and [68] are essentially the same as the correction introduced in this 

section. 

5.2 Numerical noise on total-energy-versus-volume curves 

The method presented in this work enables one to study the behaviour 

of the total energy as a function of the lattice parameters. In this 

way one may find for a given crystal structure and given types of 

atoms in the unit cell the set of equilibrium values of the lattice 

parameters, i.e., those values for which Etot has a minimum. In case 

of one lattice parameter only, the uni t-cell volume Oe is uniquely 

determined by this parameter, and by variation of this parameter a 

total-energy-versus-volume curve Etot{Oe) may be obtained. From this 

curve, various properties of the ground state of the crystal may be 

deduced (see chapter 6}. If there are more lattice parameters, Etot 

may be minimized with respect to variation of these parameters at some 

fixed value of Oe. An Et o t (Oc)-curve is found by repeating this 

procedure for several Oe. If a unit cell contains more than one atom, 

we also have to consider additional internat parameters, that 

determine the positions of atoms in the unit cell. For instance, in 

the wurtzite structure described in section 3.4, c and a are lattice 

parameters and u is such an internal parameter. Concerning these 

internal parameters, a procedure similar to the one for lattice 

parameters can be foliowed to obtain Etot(Oe)· 

In the above procedure to obtain Etot(Oe). unfortunately, the 

finite cutoff Epv (see section 2.5) and the finite (and usually very 

small} number of special points Nsp (see section 3.1) result in 

discontinuities in the Et o t (Oc}-curves. These discontinui ties cause 

difficul ties in the interpretation of actually obtained values for 

Etot· This problem was already given some attention in refs.[69], 
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[70], and [71]. To simplify the discussion of these discontinuities, 

we restriet ourselves to the case of only one lattice parameter and no 

internal parameters. In this case discontinuities are most pronounced. 

An example is the zinebiende structure with lattice parameter ac (cell 

volume Oe = îa3
; see section 3.4). c 

All values of the lattice parameter a for which discontinu i ties 

occur {denoted by ad) are for given Epv and given special-point set 

{ks} (s=l ... Nsp) found tobevalues for which the equality, 

(5.4) 

holds. In (5.4) G is any reciprocal-lattice vector. Note in this 

respect that the expression in the left-hand side (LHS) of (5.4) is 

simply proportional to a-2
. Equation (5.4) follows from the criterion 

introduced in section 2.5, that selects PW's that are to be included 

in the expansion of the wave function. When increasing the lattice 

parameter. PW' s wi tb wave vector ks +G are abruptly added to the 

expansion of the wave function if the involved G veetors are such that 

eq. (5.4) is satisfied. Such a discrete change in the basis set for 

special point ks results in a discontinuity in Etot· One expects Etot 

to drop at such values ad due to the increased degree of freedom 

offered to the wave functions. It is furthermore expected that the 

discontinuity is larger if ks bas a larger weighting factor ws and 

also in cases in which the number of abruptly added PW's is larger. We 

define an effective change in the basis-set size AN: 

(5.5) 

where AN(ks) is the change in basis-set size for special point k
8

• 

Of course the absolute magnitude of the discontinuity will also depend 

on whether AN is significant compared to the number of PW's already 

included in the basis set. 

In table 5.2, we give values ad in the neighbourhood of 5.43 A (the 

expertmental lattice constant for silicon [64]) using Epv=l1.2 Ry and 

two special points {q=4 in section 3.2.1). The corresponding AN are 

also given. 
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ad (in A) AN ad (in A} AN 

4.7297 3.25 5.2250 3.00 

4.7816 6.00 5.2719 4.50 

4.8328 2.25 5.3185 6.00 

4.SS36 3.75 5.3646 5.25 

4.9338 6.00 5.4104 3.75 

4.9835 1.50 5.4558 3.00 

5.0327 4.50 5.5008 6.75 

5.0815 6.00 5.5454 2.25 

5.1297 1.50 5.5897 3.25 

5.1776 3.00 5.6336 4.50 

Table 5.2. Vatues ad of the lattice parameter of a fee lattice for 

which dtscont tnut t tes tn the Et o t (Oe )-curve occur, when using Epv = 
11.2 Ry and 2 spèctat points. (Only vatues between 4.70 A and 5.65 À 

are gi.ven). The correspondi.ng effecttve change in basts-set si.ze (see 

eq. (5.5)) is denoted by AN. 

In fig. 5.1. we show part of the total-energy-versus-lattice

constant curve for silicon in the diamond structure, calculated with 

the cutoffs as given above, clearly exhibiting the discontinul ties. 

The numbers between brackets are the numbers of PW's in the basis set 

for the two k points (weighting factors: w1=3/4, w2 =1/4). 

There are two independent ways of reducing the discontinuities: 

{i} Increasing Nsp will increase the number of ad-values in a certain 

interval, but will reduce AN for a single ad-valtie, since with 

increasing Nap the average ws decreases. 

{ii) Increasing Epv will also put consecutive ad-values closer 

tagether (since the LHS in {5.4) is proportional to a- 2 ), but 

increases Npv and therefore makes the effect on Etot of the change AN 

less significant. 

A way to completely get rid of the discontinuities is to keep Npv 

constant for every k point (instead of Epv). This can be achieved by 

letting Epv scale as a- 2 (see eq. (5.4)). However, in such a procedure 

thè wave functions are not described wi th the same resolution for each 

value of the lattice parameter (see section 2.5). In practice, the 
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Fig. 5.1 Tota:Z. energy Etot {in Ry per a.tom) versus lattice 

constant a {in Ä) for silicon in the diamond structure around the 

expertmental value of a (5. 43 Ä) using Epv = 11.2 Ry a.nd 2 special 

points. Discontinuities occur at va.lues of the la.ttice constant from 

ta.ble 5.2 beca.use of an effecti.ve change in basis-set size AN. The 

numbers between brackets give the numbers of plane waves in the basis 

set for the two k points (weighting factors: mt=3/4, 1D2=114). Dots 

represent actua.lly ca.lcula.ted va.lues. 

requirement of constant resolution appears to he more important to 

ohtain converged values of total-energy differences [66,71]. We 

further remark that an exact procedure to keep Npv constant in case of 

more than one lattice parameter generally cannot he given. 

The magnitudes of the above described discontinu! ties not only 

depend on Epv and N"p. but also on the types of atoms in the unit 

cell, i.e., on the pseudopotentials. To illustrate this point, results 

are shown in fig. 5.2 of total-energy calculations for cubic silicon 

carbide (3C SiC} with Epv=20.6 Ry and the same set of two special 

points as in the earlier example. The ad-values and corresponding AN 

are given in table 5.3 (cf. fig. 5.2). The point to note is that 

although many more PW's are used in the expansion of the wave function 

(the numbers between brackets in fig. 5.2). the largest discontinuity 

is about a factor of 5 larger than in fig. 5.1 for Si. The reason for 

this is that the pseudopotential of the carbon atom is much deeper 
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Fig. 5.2 Total. energy Etot (in Ry per cel.l.) versus l.attice 

constant a (in Ä) for cubic sil.icon carbide around the experimental. 

val.ue of a {4.3596 Ä) using Ep11 = 20.6 Ry and 2 special. points. 

Discontinuities occur at val.ues of the l.attice constant from tabl.e 5.3 

because of an effective change in basis-set size !J.N. The numbers 

between brackets give the numbers of pl.ane waves in the basis set for 

the two k points (weighting factors: Wi=3/4, W2=1/4). Dots represent 

actual.l.y cal.cul.ated val.ues. 

than the one for the silicon atom {see fig. 2.1). This asks in fact 

for the inclusion in the basis set of a still larger number of PW's. 

From fig. 5.2 one mayalso deduce an approximate proportionality of AN 

and the magnitude of the discontinuity {compare table 5.3 and 

fig. 5.2). 

To reduce the effect of discontinuities on calculated total 

energies, we adopt the following strategy: we choose Ep11 and Nsp such 

that the discontinui ty for the largest AN occuring is smaller than 
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ad (in Á) AN ad (in Á) AN 

4.1594 4.50 4.3489 6.75 

4.1915 3.75 4.3797 3.75 

4.2235 6.75 4.4102 6.00 

4.2552 6.75 4.4405 5.25 

4.2866 2.25 4.4708 3.00 

4.3179 3.00 4.5007 3.75 

Table 5.3. Val.ues ad (between 4.15 Á and 4.52 Á) of the l.attiee 

parameter of a fee lattice for whieh diseontinuities in the Etot(Oc)

curue occur, when using Epv = 20.6 Ry and 2 special points. The 

correspond.ing effective change in basts-set size (see eq. (5.5)) is 

denoted by AN. 

some prescribed tolerance. It is furthermore advantageous to choose 

the lattice parameters for which Etot is calculated not too close to 

each other nor to the ad-values. In this way a sensible choice for Epv 

and Nsp can be made, while circumventing the computationally much more 

demanding task of studying the convergence of properties derived from 

Etot(Oc)-curves as a function of Epv and Nsp· 
Finally, we remark that in case there are more lattice parameters 

the picture gets more complicated, since there will be points for 

which discontinut ties occur distributed all over lattice-parameter 

space. On the Etot(Oc)-curve this will have the effect that the 

saw-tooth picture seen in figs. 5.1 and 5.2 turns into a curve with 

some noise on it. 

5.3 Accuracy of energy-band integrations using special points 

In this section we will show that in a total-energy calculation 

special points are much more sui ted to integrate the k-dependent 

charge density pk(r) over lBZ than they are to integrate sums of 

energy bands L(n)En(k). In this conneetion we refer to section 3.3, 

where the convergence of the special-points approximation was stuclied 

when applied to a model energy band. 
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Nap L(i)Ei A(Lci)Ei} Nsp Et o t AEt o t 

2 - 2.0123 0 2 - 18.4835 0 

6 - 2.0506 - 0.0383 6 - 18.5218 - 0.0383 

10 2.0400 - 0.0277 10 - 18.5111 - 0.0276 

19 - 2.0474 - 0.0351 19 - 18.5185 0.0350 

2S - 2.0449 - 0.0326 28 - 18.5160 - 0.0325 

44 2.0423 - 0.0300 44 - 18.5135 - 0.0300 

(a) (b) 

Table 5.4. Sum of one-electron energies and total energy per wtit 

een (in Rydbe.rg) of cubic SiC with kinetic-energy cutoff Epv ::: 

10.3 Ry. 

(a) Contributton 2(i)Ei of one-electron energies to the total energy 

by slJIIUII.ing over different IUilllbers of special points Ns P. AU one

electron energies are calculated with the potenttal that was sel.f

consistentty obtained with Nsp = 2. A(L(t)Ei) is the difference with 

L(i}Ei for Nsp = 2. 
(b} Total energy Etot obtained sel.f-consistentl.y with various Nsp. 

AEtot is the difference with Etot for Nsp = 2. 

We start from tbe s.c. calculation described in section 5.1, using 

two special points. The resulting s.c. values (after 8 cycles and 

including the correction Ösc (see table 5.1)) are Etot=-18.4835 Ry and 

L(i)Ei=-2.0123 Ry. The s.c. potential resulting from this calculation 

with Nsp=2 was now used to imprave the approximation to L(i}Ei by 

calculating L(i}Ei using successively largersets of 6,10,19,28 and 44 

special points (q=6,8,10,12,14 in section 3.2.1). From these improved 

values of 2(i)Ei we calculate the difference A{L(i)Ei) with the value 

calculated for N.,p=2. The results are given in table 5.4(a}. Next, we 

iterate to self-consistency (i.e., Etot stable to within 10-4 Ry} 

using the same larger sets of special points also in the densi ty 

calculation. The results are given in table 5.4(b} tagether with the 

difference AEtot with the Etot-value calculated using Nsp=2. The fact 

to be noted is that AEtot equals A{L(i}E1) to within an accuracy of 

10- 4 Ry. This shows that the impravement in the total-energy cal

culation by using larger sets of special points is entirely due to 
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a better determination of the band structure term and is not due to a 

better determination of the charge density p. Equivalently, regarding 

the calculation of Et 0 1, p is al ready sufficiently accurate using 

Nsp=2, whereas L(i)Ei is not. So in order to obtain the s.c. value of 

Etot at a given EPII and at a large value of Nsp• it is equally 

effective to iterate to self-consistency with a small value of Nap and 

to supplement this by an improved calculation of L(i)Ei using the 

large value of Nap· We have observed this in other calculations as 

wel!. 

We have to emphasize that although the same value for Etot is 

obtained in this way, this is not the case for the individual terms 

into which Etot is decomposed. For instance, the fully s.c. value of 

L(i}Ei using Nsp=6 is -2.0605 Ry. which significantly differs from the 

value -2.0506 Ry in table 5.4(a). 

The procedure suggested in this section may prove to be useful in 

calculations where, due to computational limitations, only a very 

small Nsp can be allowed in the s.c. calculation. As an example, we 

mention calculations for surfaces -these must be performed in a 

supercell geometry to establish periodici ty-. where of ten only one 

special point is used. Our procedure now allows for an estimate of tbe 

accuracy of using one special point only, by calculating En(k} for a 

larger set of special points k only once, using the one-point self

consistent screening potential. 
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aJAPTER 6 

APPLICATION TO SILICON, DIAMOND, AND SILICON CARBIDE 

In the preceding chapters 2 to 5, the pseudopotential-density

functional metbod in momenturn space bas been described along wi th 

calculational details. These details involve the exploitation of the 

symmetry of lattice and crystal as well as characteristic properties 

of the calculational scheme. In the present chapter, we apply the 

metbod and techniques described to the prototypical semiconductor 

silicon (Si}, the insuiator diamond, and the cubic and wurtzite 

modifications of the semiconducting potytypes of silicon carbide 

{denoted by 3C SiC and 2H SiC, respectively). 

Polytypism is the occurrence of different modifications of one 

compound, consisting of identical layers of structure whose stacking 

sequence differs [72, 73]. The origin of polytypism is until now 

unexplained, although several theories exist, e.g., those based on 

screw-dislocations [74] or thermadynamie considerations [75]. 

Polytypism in the silicon carbides (SiC) -where i t is studied most 

frequently- is interesting for a number of other reasons. The 

polytypes of SiC are semiconductors with a varying band gap, which may 

make them technologically important. Currently, they are most 

interesting, from a materials-science point of view. because of the 

strong fibres (so-called whiskers} that can be made from them [76]. 

From a fundamental point of view SiC is interesting -besides the above 

mentioned occurrence of polytypism- because its cubic modification, 

3C SiC, is the only IV-IV compound with zinebiende structure (e.g .• 

GeC (germanium carbide) does not exist and GeSi (germanium silicide) 

occurs only in disordered structures). It therefore is an intermediate 

type of solid between III-V semiconductors (GaAs, AlAs. GaP, etc.} and 

crystals wi th the diamond structure (C, Si, Ge, a-Sn). Finally, the 

polytypes of SiC constitute a playground for the metbod described in 

this work, because they are natura! superlattices, they pose problems 

simtlar to those found in artificially grown superstructures (e.g., 

large unit cells) and much can be learned from an application to SiC 

of how this metbod may be of use in conneetion with superlattices. 

Furthermore, the presence of the carbon atom requires large numbers of 
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plane waves in tbe basis set (see chapters 2 and 5) and makes 

application of tbe metbod computationally demanding. Therefore tbe 

limi tations of tbe metbod can be explored as well as means to cope 

with these limitations. 

Sec ti on 6.1 presents self-consistent valenee-charge densi ties and 

screening potentials for silicon and diamond. Charge densi ties are 

given in tbe form of both contour plots, to get a view of the covalent 

bonding. and tables of Fourier components, to serve as reference and 

means of comparison witb otber calculations, as well as witb expert

mental values. We also give tbe band structure at tbe bigb-symmetry 

points r, X, and L. Ground-state properties of Si and 3C SiC are 

obtained in section 6.2 by fitting resul ts of total-energy calcu

lations to equations of state for solids proposed in tbe literature. 

In sectien 6.3 the valenee-charge density in 3C SiC is presented as 

well as tbe band structure resulting from tbe pseudopotential-density

functional metbod. We cornpare tbe band structure to otber calculations 

and to experiment. The metbod of equivalent special-point sets 

-introduced in section 3.4- is used in section 6.4 to accurately 

deterrnine the (srnall} energy diff'erences between tbe structurally 

distinct crystals of (i) cubic-diamond and hexagonal-diamond Si and 

(ii) zinebiende (3C) and wurtzite (2H) SiC. In section 6.5 we study 

the valenee-charge densi ty of 2H SiC, as well as tbe effect of 

variatien of tbe lattice parameters in 2H SiC. 

Fig. 6.1 Th.e totat valenee-charge density of Si in the (110) 

ptane. Units are ru.unbers of etectrons per untt-ceU votl..lllle. Th.e 

contourstep is 1 in (a) and {b), and 2 in (c). Th.e btack dots 

represent atomie positf.ons and the straight Lines conneet bonded 

atoms. Th.e bond-charge maxima are atso given. (a) Resutt of EPJf

catcutation. {b) Setf-consistent resutt of a catculation wtth 

norm-conserving pseudopotenHals. ( c} As (b), but showing a targer 

part of the same ptane. 
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6.1 SeH-consistent valenee-charge density of silicon and diamond 

We have calculated the self-consistent (s.c.) valenee-charge density p 

of silicon in the diamond structure and carbon in the diamond 

structure (i.e., diamond). The diamond structure is the common 

structure for crystalline silicon, whereas carbon also crystallizes in 

the graphite structure (and is called graphite in that case). For both 

silicon and diamond we performed the calculations in this section for 

their expertmental lattice constants: a(Si) = 5.43 Ä and a(C) = 3.57 Ä 
[64]. 

As start potential, we use the screening potenttal calculated from 

the valenee-charge density obtained with an empirica! pseudopotenttal 

(see section 2.3.3). In the latter calculation, we use the following 

form factors (in Rydberg): for Si: ~(3)= -0.2241, ~(8)= +0.0551, 

~(11)= ~0.0724 [77], whereas for C: ~{3)= -0.696. ~(8)= +0.337, 

~< 11 )= +0.132 [65]. where ~( q) is the form factor for a reciprocal

lattice vector with length q (in units (2lr/a) 2
: a is the lattice 

constant}. With these form factors a band structure in agreement with 

experiment is found. The number of plane waves in the calculation with 

the empirica! pseudopotentials (EPM} is about 90. We note that the 

s.c. p in our scheme should of course be independent of the start 

potential, although this cannot be proved rigorously. We did check, 

however, that in the calculation for silicon by starting with the s.c. 

screening potenttal obtained for diamond {scaled to the silicon 

crystal) the same s.c. p is obtained as by starting with the EPM

potential. As a matter of course, a good starting guess for the 

potenttal decreases the number of self-consistency cycles enormously. 

Both in the EPM-calculation and in the s.c. calculation with 

norm-conserving pseudopotentials (SCNCP) we used two special points 

(q=4 in section 3.2.1) to integrate pk(r} over lBZ. As kinetic-energy 

cutoff Epv (see section 2.5) we used 11.2 Ry for Si. resulting in 

about 170 plane waves in the basis set for each k point, and 30.5 Ry 

for diamond, resulting in about 220 plane waves for each k point. More 

computational details are given in ref.[44]. 

Fig. 6.2 AnaLogous to fig. 6.1, but for diamond. 
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In figs. 6.1 and 6.2 we show equi-density contour plots of the 

valenee-charge density in the {110) plane. This plane contains a 

zigzag chain of bonded atoms and therefore a contour plot of this 

plane gives a qualitative idea of the bonding. Figure 6.1 gives 

results for silicon: fig. 6.1(a) shows the result from the EPM

calculation, fig. 6.l(b) from the S<liCP-calculation, whereas figure 

6.1(c) represents the S<liCP-densi ty in a larger part of the {110) 

plane. In all figures we see the feature characteristic of covalent 

bonding; the electrons are captured in honds between the atoms. In 

fig. 6.1(c) we see that there are also regions with negligible 

density. which is the reason why crystals in the diamond structure are 

sometimes called open structures. The main difference between the 

resul ts of the EPM- and S<liCP-calculation is the value of the bond 

anisotropy ratio, which is defined in ref.[78] as the ratio LtiL2 of 

the lengtbs of the outermost densi ty contour surrounding the bond 

parallel (Lt) and perpendicular {L2) to the bond axis, respectively. 

For figs. 6.1(a) and (b). L1IL2 equals 0.82 and 1.16, respectively. 

The experimentally observed ratio is 1.4, but the interpretation of 

the X-ray measurements is not completely rigorous [78, 79]. Expert

mental results are always for the total electronic charge density and 

therefore include the core-electron charge density, which is not 

included in the (valence-)charge density calculated by us. Usually the 

core-electron densi ty is subtracted from the expertmental electron 

density by making some choice for the core contribution. 

For diamond, plots are given in figs. 6.2(a)-(c). The most 

remarkable feature is that the EPM-density {fig. 6.2{a}} does not have 

the double hump in the bond charge found in the S<liCP-calculation. 

This double hump is a well established feature in the covalent carbon 

bond [24,80,81]: other groups [30,82] also find a very smal! double

hump structure in silicon by using a larger cutoff Epv and more 

special points than we did. The fact that it is not found in the 

EPM-calculation for diamond illustrates the inadequacy of a local 

potentlal such as used in the EPM to describe the carbon core 

pseudopotential. Aside from the different bonding topology, fig. 

6.2(c) for diamond is much like fig. 6.1{c) for silicon. 

In tables 6.1 and 6.2 we compare the Fourier components of n(r) as 

found in various calculations and those obtained from experiment. The 

experimental values are taken from tables in ref.[S3], where they were 
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EPM SCNCP SCNCP exp. 
G (Nsp=2) (Nsp=28) 

000 8.000 8.000 8.000 8.000 

111 -1.658 -1.762 -1.747 -1.780 

211 0.313 0.076 0.071 0.084 

221 0.459 0.346 0.340 0.338 

222 0.509 0.346 0.335 0.380 

220 0.238 0.373 0.370 0.364 

322 0.025 -0.087 -0.089 -0.052 

332 -0.002 -0.138 -0.138 -0.126 

333 -0.004 -0.112 -0.110 -0.097 

320 -0.002 -0.076 -0.075 -0.076 

422 0.021 -0.034 -0.034 -o.08o 

Table 6.1. Fourier companents n(G) (in nwnbers of el.ectrons per 

ceii voLume) of the ual.ence-charge density for silicon in the diamond 

structure, catculated with an empiricaL pseudopotenttal (EPM), setf

consis tentty using a norm-conserving pseudopotenttaL (SCNCP; with 2 

and 28 special points), and "experimentat" resutts from ref.[83J (see 

text). G veetors are gtven as sets of components with respect to basis 

veetors {bt,b2,b3} (see sectton 3.2.1). 

obtained from X-ray scattering data from which a core-electron density 

was subtracted (Therefore they cannot be taken too literally (see the 

discussion above)). From table 6.1 for Si, we see that n is a smooth 

function of r, si nee the Fourier components n(G) drop rapidly wi th 

increasing IGI. Furthermore, ~(r} is a smooth function of k, since 

the resul ts obtained by using 28 special points ( q=12 in sec ti on 

3.2.1) do not differ by more than a few percent from those obtained 

with 2 special points. The agreement of the SCNCP-calculation with 

experiment is much better than that of the EPM-calculation. To 

illustrate the independenee of the present results of the choice of 

norm-conserving pseudopotential, the choice of (local} XC-potential, 

and of kinetic-energy cutoff, we quote resul ts from ref. [47], where 

va lues of n( 111) are given using the pseudopotent ia! from ref. [14], 

the Ceperley-Alder functional for correlation, {2.66), and twice the 

number of plane waves we used. These values are: -1.7691 {electrons 
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G EPM SCNCP exp. 

000 8.000 8.000 8.000 

111 -1.648 -1.911 -1.946 

211 0.518 -0.322 -Q.295 

221 0.533 0.072 0.124 

222 0.553 0.227 0.298 

220 0.178 0.172 0.310 

322 0.005 -0.047 0.009 

332 0.020 -0.142 -0.060 

333 -0.031 -Q.129 -0.002 

320 -o.025 -0.100 -0.002 

422 0.027 -0.112 -0.097 

Table 6.2. Analogous to tabte 6.1, but for diamond. SCNCP is 

calculated with 2 special points. 

per cell} using Nsp=2 and -1.7539 (electrons per cell} using Nsp=2S. 

Similar general remarks can be made concerning table 6.2 for 

diamond. 

Table 6.3 contains Fourier components of the exchange-correlation 

potential Yxc and of the Hartree potential VH calculated from the n(G) 

of tables 6.1 and 6.2 according to the description given in section 

2.3.3. The Fourier components Yxc(G) and VH(G) are generally larger 

(absolute valued} in diamond than in silicon. This can almast 

completely be attributed to the fact that these components scale with 

the reciprocal lattice parameter a- 1 ; the components for diamond are 

generally a factor of about 1.5 larger than those for silicon, while 

a(Si}/a(C} = 1.52. Put differently, the screening potential, which is 

the sum of Yxc and VH. is -apart from the above sealing factor 1.52-

nearly the same in diamond and silicon. So the main difference between 

silicon and diamond. concerning the effective potential the valenee 

electrons experience, is consti tuted by the difference in ion-core 

pseudopotentials. One difference is that nonlocal contributions to the 

effective potential in diamond are much more important than in the 

case of silicon. 
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SILICON DIAMOND 

EPM SOlCP EPM SQlCP 

G Yxc V11 Yxc VH Yxc VH Yxc VH 

000 -o.6664 0 -o.6673 0 -o.9572 0 -o.9715 0 
111 0.0501 -o.1372 0.0512 -o.t458 0.0799 -o.2073 0.0794 -o.2404 

211 -o.0314 0.0097 -0.0075 0.0024 -o.0320 0.0244 0.0014 -0.0152 
221 -o.0084 0.0104 -o.006S 0.0078 ·-o.0134 0.0183 -o.0029 0.0025 
222 -0.0046 0.0105 -o.0021 0.0072 -0.0077 0.0174 -o.0014 0.0071 
220 -o.0013 0.0037 -o.0002 0.0058 -o.ooos 0.0042 -o.0042 0.0041 
322 -o.0007 0.0003 0.0023 -0.0011 -o.oou 0.0001 0.0018 -o.oooo 
332 -0.0002 -o.oooo 0.0026 -o.0014 -o.0002 0.0003 0.0036 -o.0022 
333 0.0001 0.0000 0.0019 -o.OOlO 0.0002 0.0004 0.0030 -o.0018 
320 0.0002 0.0000 0.0013 -0.0007 0.0004 0.0004 0.0025 -o.0014 
422 0.0004 0.0002 0.0011 -o.0003 0.0010 0.0003 0.0031 -o.0013 

Table 6.3. Fourter components Vxc(G) and VH{G) of the screening 

potenHaLs for si !.icon and diamond (in Rydberg), calculated with an 

empiri.cal pseudopotenttal {EPlf) and sel.f-conststently with a norm

conserving pseudopotenttaL {SCNCP). G veetors are given as sets of 

components wtth respect to basis veetors {b1.b2,b3} (see section 

3.2.1). 

The lowest few energy eigenvalues calculated witb our s.c. 

potential at tbe bigh-symmetry points r. X, and L are given in table 

6.4 and compared to previous calculations using tbe same metbod and to 

experimental values. The same EPW as in tbe s.c. calculations are 

used. There is a good agreement between hotb calculations using tbe 

pseudopotential-density-functional metbod. al though compu ta t ional 

details differ slightly. The agreement witb experiment is good for tbe 

valenee bands, but large differences occur for the conduction bands. 

The latter discrepancy also bolds for the indirect band gap, which for 

silicon we found to he 0.47 eV (wi th a conduction-band minimum at 

0.85X), whereas the experimental value is 1.17 eV ( conduction-band 

rniminum at 0.82X). The bad agreement witb experiments is a common 

feature of all calculations using tbe pseudopotential-density

functional method, but is not surprising in view of the fact that DFT 
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SILICON DIAMOND 

This work Yin/Cohen exp. This work Yin/Cohen exp. f 

r1 -11.74 -11.95 -12.5b -21.55 -21.45 -21.0 

r2s 0 0 0 0 0 0 

r~s 2.53 2.54 3.4" 5.30 5.40 6.0 

r2 3.50 3.39 4.2" 13.15 13.38 15.3 

x1 -7.65 -7.80 -12.85 -12.65 

x4 -2.84 -2.92 -2.5b -6.36 -6.22 

x1 0.54 0.62 1.3c 4.34 4.63 

x4 10.08 9.99 16.61 16.73 

L2 -9.42 -9.57 -9.3b -15.73 -15.57 -15.2 

L1 -6.92 -7.01 -6.7· -13.63 -13.35 -12.8 

L3 -1.18 -1.23 -1.2" -2.87 -2.81 

L1 1.50 1.52 2.1d 8.60 8.92 

L3 3.29 3.37 4.2~ 8.16 8.31 

Table 6.4. Energy eigenvalues (in eV) at symmetry points r, X, and 

L, calculated with the self-conststently determined potenttaL The 

Yin/Cohen val.ues are taken from ref .[40]. The expertmental val.ues 

ortginate from: (") ref.[64J, (b) ref.[óó], (c) estimated from 

conductton-band mintmum and longttudtnal effective mass, (d) ref.[Bó], 

(e) ref.[87], (f) ref.[BB]. 

is a theory for the ground state. The discrepancy is caused by an 

inadequate inclusion of many-body effects [84]. Only recently the 

accurate calculation of exci tation energies from first-principles bas 

become possible [85]. 

6.2 Ground-state properties of silicon and cubic SiC 

Some ground-state properties of a solid may be derived by calculating 

the total energy for different values of the lattice parameter(s). By 

varying the lattice constant of the diamond or zinebiende structure, 

we simulate the effect of applying isotropie pressure to the crystal. 

In our metbod we are, contrary to experiments. not restricted to 
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Fig. 6.3 Totat energy Etot of silicon (in Ry per atom) as a 

functton of Latt ice constant a (in Á), keeping the number of ptane 

waves constant (sotid curve) and keeping the kinetic-energy cutoff EPv 

constant (marked points). Arrows denote values of the lattice constant 

for which the curve through the marked points would e:xhibit dts

continuittes. 

positive values of the pressure. The position of the minimum of the 

total-energy-versus-volume curve, Etot(Oc). determines the equilibrium 

lattice constant aeq, the value 'Of the mimimum is related to the 

cohesive energy of the crystal, whereas second and higher order 

derivatives of Etot at aeq determine the compressibility and its 

pressure dependenee {this is made more explicit below). A preliminary 

report of the results in this section was given in ref.[70]. 

In fig. 6.3 we collect total-energy calculations for Si. In all 

calculations of this section, the same two special points as before, 

k 1 and k2 , were used. The marked points indicate values obtained by 

keeping Epv constant at 11.2 Ry. The curve through these points (not 

drawn) has discontinuities for values of the lattice constant denoted 
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by arrows on the horizontal axis (see also section 5.2 and table 5.2). 

The full curve in fig. 6.3 was calculated using fixed numbers of plane 

waves; 149 for k1 and 150 for k2. This curve does not have dis

continuities and coincides with the former curve for lattice constants 

in the interval between the two larger arrows in fig. 6.3. To the left 

of this interval the marked points are calculated using less plane 

waves than in the calculation of the full curve, whereas to the right 

more plane waves are used for the marked points. Because of the 

smaller and larger variational freedom offered to the wave functions, 

respectively, the marked points are situated above the full curve for 

a< 5.18 À and below the full curvefora > 5.23 À. 

We combine the results for the total energy with Murnaghan's 

equation of state for solids [S9], which for the volume-dependent 

energy E(V) takes the form: 

B' 
E(V) =BoY [ (VoiV) o + 1] + Eo. 

B! B~ 1 
(6.la) 

where Eo is a constant equal to: 

BoYo . (6.1b} 
B~ - 1 

In (6.1) Vo is the equilibrium volume, Bo the (equilibrium) bulk 

modulus defined by: 

(6.2) 

and B~ the derivative at zero pressure of the pressure-dependent bulk 

modulus B(P}. The pressure at constant temperature is defined as: 

P(V} = d äv<E(V}}, 

and the pressure-dependent bulk modulus as: 

B(P} =V ~E(V))I . 
dV2 V=V(P) 
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aeq (A) Bo (Mbar) B~ Etol,m!n (Ry/atom) 

(1) 5.334 1.20 3.3 -7.896 

(2) 5.452 1.00 2.6 -7.902 

(3) 5.449 0.95 3.3 -7.903 

exp. 5.429 0.99 4.2 -7.925 

Table 6.5. Grourui-sta.te properties of St, ca.lcula.ted in three 

different liXl!JS (see text} a.nd compa.red to experiment. a.eq is the 

equilibrium !a.ttice constant, Bo the equilibrium bulk modulus, B~ the 

pressure-d.eriva.tive of the bulk modulus, a.nd Etot .min the minimum. 

tota.l energy. 

Equation (6.1) is easily derived (for constant temperature) from the 

assumption that B(P) varies linearly with pressure: 

B(P) = Bo + B!P. (6.5) 

This assumption is certainly valid in the neighbourhood of P=O. The 

bulk modulus Bo is the reciprocal of the isothermal compressibility, a 

quantity more commonly dealt with in thermodynarn.ics. 

We have made least squares fits of three sets of calculated points 

to Murnaghan's equation of state (6.1): 

{1} Points on the solid curve of fig. 6.3, which were calculated with 

constant NPII· 

(2) Six points calculated with constant Ep\1=11.2 Ry for lattice 

constants lying ciosest to the equilibrium value of the lattice 

constant, but not too close to values for which discontinuities occur 

(see the discussion insection 5.2). 

(3) Eight points calculated with constant Ep11=ll.2 Ry, selected as 

under (2). 

The results of these fits are compared to expertmental values [64] in 

table 6.5. 

The quantity Etol,m!n is not directly accessible to experiment, 

since in the total energy Etol calculated by us, the interaction 

energy within the cores is not accounted for, neither are zero-
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temperature vibrations of the atoms. An expression for Etot in terms 

of quantities that are accessible to experiment is obtained as 

follows: if we call Ecore.J the energy of an isolated core of atom j, 

and Evib the energy due to zero-temperature vibrations of the atoms, 

we have for the actual total energy per unit cell of the crystal, 

Etot.crystal (in the frozen-core approximation (see section 2.2}}: 

Et ot. crysta r Etot + 2 Ecore,j + Evlbo (6.6) 
j 

where the sum over j is over atoms in the unit cell. The energy of 

atom j, Eatom,J• may then be written as: 

zj 
Eatom.j =- 2 ~i(j} + Ecore,J• 

i=1 
(6.7} 

where ~i(j) is the ionization potential of the ith out of zj valenee 

electronsof atom j. Since the cohesive energy per unit cell, Ecoh• is 

the difference between the sum of Eatom.J over atoms in the unit cell 

and Etot.crysta!. we obtain: 

Etot =- [ ~ ~J ~i(j} + Ecoh + Evlb]· 
J i=1 

(6.8} 

The experimental values of ~i(j) are found in ref.[90] for all atoms, 

while Ecoh is also accessible to experiment. An experimental value for 

Evlb may be obtained from the formula [91]: 

Evlb 
9 

= 8 ks9o, (6.9) 

where ks is Boltzmann's constant and 9o the Debye temperature, which 

can be obtained from experiment. Usually Ev 1 b is small, but not 

negligible. This can be seen in table 6.6; we note in this respect 

that Etot is of the order of 10 Ry per atom, but Ecoh is of the order 

0.5 Ry per atom. 

In ref.[30] more than three times the number of plane waves (Npw) 

were used than we did, resulting in aeq = 5.40 Ä and Bo = 0.93. From a 

comparison of the latter resul ts wi th table 6.5, we conclude that 
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Si 

c 
3C SiC 

eo (in K} 

645 

2220 

1430 

Evlb (in Ry/atom} 

0.0046 

0.0158 

0.0102 

Table 6.6. Debye temperature and associated zero-temperature 

vibration energy (see textJ for siLicon, diamond, and cubf.c silicon 

carbtde. Vatues for 9o are extrapotated to T = 0 K [92]. 

keeping Epv constant (resul ts denoted by {2) and (3} in table 6.5) 

gives better convergence of ground-state properties than keeping Npv 

constant (denoted by {1} in table 6.5). We also conclude that with a 

cutoff of Epv=l1.2 Ry aeq and Bo have converged to within 1% and 7%, 

respectively. Taking into account the numerical uncertainty due to 

discontinuities, the value of B! cannot be determined very well, since 

energies resulting from the equation of state (6.1) are not very 

sensitive to the value of B!. 

From the Etot .mi n-value in table 6.5, we obtain a theoretica! 

(calculated) value for the cohesive energy by subtracting the sum of 

Etot.mln and Evlb {=-7.898 Ry per atom) from the energy of an isolated 

pseudo-a.tom Eps.atom {=-7.497 Ry); to Eps.atom we first add in a 

rather ad hoc fashion a correction for the spin-polarisation energy 

Esp (=-0.058 Ry per atom [66,93]). A pseudo-atom is an atom without 

interaction within the core; for the calculation of Eps.atom the same 

pseudopotenttal is used as in the calculation for the solid [94]. We 

have: 

Ecoh (Eps.atom +Esp)- (Etot.mln + Evib)· (6.10} 

This results in a theoretica! value of Ecoh = 0.343 Ry/atom = 
4.67 eV/atom, whereas the expertmental value is 4.63 eV/atom [95]. The 

excellent agreement is in fact slightly misleading, si nee Eto t. m 1 n 

drops by an amount of about 0.3 eV/atom when EPv approaches infinity 

[30,66]. 

Similar calculations have been performed for 3C SiC. As for Si, 

2 special points are used and Epv is ohosen such that the largest 
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Fig. 6.4 Total energy Etot of 3C SiC (in Rydberg per eelt) as a 

function of the ratio of volumes n!Oexp (Oexp denotes the experimental 

volume). The solid curve is the fit to Murnaghan's equation of state 

(see text). 

discontinuities in the Etot(Oc)-curve are about as large as these are 

for Si with Epv=11.2 Ry and 2 special points. We find Epv=29.7 Ry, 

leading to about 380 plane waves in the basis set if the lattice 

constant is around the experimental value. In that case the dis

continuities are always smaller than 2 mRy/atom. By choosing lattice 

constants for which Etot is calculated midway between ad-values (see 

section 5.2), we estimate the uncertainty of calculated total-energy 

differences due to finite Epv and Nsp to be 1 mRy/atom. The Etot(Oc)

curve is given in figure 6.4, together with the fit to Murnaghan's 

equation of .state. 

In table 6. 7 we compare resul ts of various total-energy calcu

lations and various fits with each other and with experiment: 

(1) Fit to Murnaghan's equation of state of total energies calculated 

using the lower cutoff Epv=20.6 Ry for values of the lattice constant 

selectedas in the case of silicon (see also fig. 5.2). 
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aeq {Ä) Bo (Mbar) B~ Et ot, rnl n (Ry/cell) 

(1) 4.411 3.08 2.1 -19.140 

{2} 4.351 2.00 7.3 -19.308 

{2') 4.351 2.09 7.4 -19.308 

(3) 4.365 2.20 3.4 -19.309 

(3') 4.364 2.17 3.8 -19.309 

exp. 4.360 2.24* -19.410 

Table 6.7. Ground-state properties (as in tabie 6.5) of 3C SiC, 

catcutated. in 5 different ways (see text) and compared to experiment. 

The star denotes that the expertmental Bo is onLy an esttm.ate [97]. 

(2) Fit of the 6 points from fig. 6.4 (Epv=29.7 Ry) ciosest to aeq to 

Murnaghan's equation of state. 

(2') Same points as (2}, but fi tted to the energy-volume re lation 

which follows from Birch's equation of state for solids [96]: 

E(V) = g~SVo [ (B~-4) [~ "r +{14-3B~) [~"r 13 

+(3B~-16) [~ "r13

]+Eo, 
(6.11a} 

where 

Eo = E{Vo) ~ 98i~" (B! - 6), (6.11b) 

and B" , V o and B! have the same meaning as in { 6. 1) . 

(3) Fit of all 8 calculated points from fig. 6.4 to eq. (6.1). 

(3') Same points as (3), but fitted to {6.11). 

Concerning table 6. 7 we make the following remarks: 

(i} Fits to (6.1} and to (6.11} give practically the same results 

(compare (2) with (2') and (3) with (3'}). 

(ii} The uncertainty due to the fitting and the choice of equation of 

state, which does not follow from first principles, is estimated by 

comparing {2) and (3). For this type of uncertainty we have: 0.3% for 

aeq• 10% for Bo. less than 10-3 Ry/cell for Etot.mln• whereas B~ can 

vary by a factor of 2. 

(iii) The uncertainty due to the cutoff Epv=29.7 Ry is estimated to be 

the same as in silicon with Epv=l1.2 Ry: less than 1% for aeq and 

about 10% for Bo. This estimate follows from the fact that energy 
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dtfferences are all that is needed to calculate aeq• B0 , and B!. while 

these differences have the same uncertainty in SiC for Ep~=29.7 Ry as 

in Si for Ep~=11.2 Ry. 

(iv) From the results for Epv=20.6 Ry, we infer that aeq converges 

faster than the other quantities. 

(v) In view of {ii) and {iii), the agreement with experiment of the 

results for Epv=29.7 Ry is excellent for a 8 q, although we expect aeq 

to drop when more plane waves are used, but not by more than 1% {just 

as in silicon). The experimental value of Bo is only an estimate [97]; 

Bo is hard to measure, because the relatively large crystals of 3C SiC 

that are needed are hard to fabricate. Both the calculated and 

experimental value of Bo are intermediate between the bulk moduli of 

silicon and diamond (0.99 Mbar and 4.42 Mbar, respectively). They 

furthermore agree with the result of a semi-empirica! calculation [98] 

of the elastic constants C11 and C12· These are related to Bo by the 

equality, Ba= (C11 + 2C12)/3 {cubic crystals [99]). From ref. [98] we 

then infer:.Bo = 2.11 Mbar. An expertmental value of B! has never been 

reported, but since silicon and diamond both have B~ close to 4, the 

same is expected to he true for 3C SiC. The experimental value of 

Etot.min is calculated as explained above (eq. (6.8)): we obtain the 

expertmental cohesive energy of 3C SiC needed in this calculation from 

the cohesive energies of Si and C [95] and the heat of formation of 

3C SiC [92], following ref.[100]: Ecoh(3C) = 6.33 eV/atom. 

Recently, other calculations applying the pseudopotential-density

functional metbod to 3C SiC have been reported; these calculations use 

a larger Epv. The results are in general agreement with table 6.7 and 

the above remarks about the accuracy of the calculated properties: 

aeq = 4.323 Ä, Bo = 2.50 Mbar, B~ = 3.2 in ref.[101] and aeq = 4.318 

Ä, Bo = 2.34 Mbar in ref.[102]. 

To complete the discussion of ground-state properties of 3C SiC 

obtainable from our calculations. we show in table 6.8 the dependenee 

of Etot on Epv and Npv. All these calculations use 2 special points 

and the expertmental lattice constant. The expertmental value of Et o 1 

is calculated as explained with table 6.7. From fig. 1 in ref.[102] we 

estimate Etot to be -19.40 Ry/cell for Epv=50 Ry. We conclude that by 

increasing Epv E101 converges to a value very close to our expert

mental estimate. From the lowest Et 0 t-value in table 6.8 (for 

Epv=36 Ry), we calculate the cohesive energy for 3C SiC in precisely 
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Npv Epv (Ry) Etot (Ry) 

(77.74) 10.3 -18.48 

(143,150) 15.2 -18.93 

(223,217) 20.6 -19.14 

(262,274) 23.3 -19.21 

(382,374} 29.7 -19.31 

(508,516} 36.0 -19.35 

exp. -19.41 

Table 6.8. Catcutated totat energy Etot (in Ry per eeLt) of 3C SiC 

as a function of kinetic-energy cutoff Epv for the expertmentaL value 

of the latttce constant aexp = 4.3596 À [64). Under Npv the numbers of 

plane wcwes for the two k points used are l.isted. The expertmental 

val.ue of Et o t was deduced from the expertmental va lues of the cohesive 

energy Ec oh , the Debye temperature eo , nnd the tonizat ion potent ials 

+1 of the atoms Si nnd C (see eq. (6.8)). 

the same way as we. did for silicon. Besides quantities for the silicon 

pseudo-atom given before, we need: Eps.atom(C) (=-10.676 Ry/atom [94]) 

and Esp(C) (=-0.103 Ry/atom [24]). We thus find a cohesive energy for 

3C SiC of 6.75 eV/atom; in reasonable agreement with the experimental 

value of 6.33 eV/atom. The agreement beoomes less if the more 

converged value for Etot of ref.[102] is used: Ecoh = 7.09 eV/atom. 

This general feature of overestimating the cohesive energy is mainly 

due to the inadequacy of the use of pseudopotentials (and/or the 

local-density approximation) to calculate the energy of the pseudo

atom. This can be inferred from the fact that the calculated Etot 

converges, with increasing Epv. to a value close to the experimental 

Etot. whereas the converged, calculated Ecoh overestimates the 

experimental Ecoh· The additional ingredient to the calculation of 

Ecoh is basically the calculated pseudo-atom energy. 

Since all results in this sectionare obtained using only 2 special 

points to perform integrations over lBZ, we may conclude that energy 

differences can be determined quite accurately with this small number 

of special points. This is due to the fact that technica! approxi

mations are made in an equivalent way ( see sec ti ons 2.5 and 3.4). 
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6.3 Valenee-charge density and band structure of cubic SiC 

In fig. 6.5 we compare valenee-charge densities in 3C SiC, calculated 

for the expertmental lattice constant. Figure 6.5(a) is the result of 

an EPM-calculation using the form factors of ref. [65] and about 90 

plane waves (PW's) for the expansion of' the wave functions. Figure 

6.5(b) results from a self-consistent calculation with norm-conserving 

pseudopotentials (NCPSP) using about 380 PW's. Apparently the 

empirica! pseudopotenttal for Si is too weak compared to the one used 

f'or C. This is less an effect of the locali ty of the atomie carbon 

pseudopotenttal -as was the case for the discrepancy between EPM- and 

SCNCP-densities for diamond (section 6.1}- than of the fact that the 

empirica! pseudopotentials were not submitted to transferability 

criteria (see section 2.2). 

In fig. ~.5(b) we see that p displays features typical of both 

ionic bonding (superposed spherical charge distributions centred on 

the atomie posi tions) and covalent bonding (charge accumulated in 

bonds between the atoms), illustrating that 3C SiC is partially ionic. 

The charge density resembles the one for III-V compounds (e.g .. GaAs 

[100]). However, in SiC the ionicity of the bond is not the result of 

a difference in charge of the two cores, but of' a difference in size 

of the two cores. 

The band structure of 3C SiC is shown in fig. 6.6, calculated with 

the EPM-potential (dashed lines) as well as with a self'-consistent 

screening potenttal and norm-conserving ionic potentials (SCNCP; full 

lines). In the latter calculation Epv=23.3 Ry is used; employing 

Epv=29.7 Ry changes individual energy levels by less than 0.2 eV. The 

three highest valenee-band levels from both calculations agree very 

well, but the valenee-band width differs significantly: 15.4 eV f'or 

SCNCP and 19.4 eV for EPM. The form factors of the EPM-calculation 

were adjusted to reproduce -among other 9Ptical transitions- the 

experimental indirect r to X band gap of 2.40 eV. The SCNCP-result for 

the gap is almost 60% off (just as for silicon; see the discussion of 

table 6.4). 
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Fig. 6.5 Tota.l. ua.l.ence-charge density of 3C SiC f.n the (110) 

pl.ane. Units are ru..unbers of etectrons per unf.t-ceH vol.ume. The 

contour step f.s 2. Bl.a.ck dots represent a.tomf.c posttf.ons and straight 

l.tnes conneet bonded atoms. (a} Resul.t of EPM-ca.l.cul.a.tton. (b) Sel.f

consf.stent resul.t ustng norm-conserving pseudopotentta.l.s. 
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" 1::. x K r r 
reduced wave vector k 

Fig. 6.6 Band structure of 3C StC, cal.cul.ated wt th an empf.rtcal. 

pseudopotenHal (EPM) and sel.f-consf.stentty with norm-conserving 

pseudopotenHals (&::NeP). Labets at high-symmetry pof.nts denote the 

irreductbl.e representatf.on of the band concerntng. 

In table 6.9 we compare the SCNCP-band-structure at high-symmetry 

points for Epv=29.7 Ry with an all-electron density-functional 

calculation using the Augmehted-Spherical-Wave (ASW) metbod modified 

to treat open structures [103,104]. We also compare with experimental 

results, which are deduced from tables in refs.[64,65,105]. There is 

reasonable agreement between pseudopotentlal and all-electron 

calculations. SCNCP and ASW agree with experiment for the valenee 

bands, but disagree for the conduction bands. The dispersion of the 

conduction bands also disagrees between SCNCP and experiment, i.e., 

the discrepancy varies with the reduced wave vector k. 

122 



SCNCP 

r1 -15.2 

rts 0 

r1 6.4 

ris 7.1 

X1 -10.3 

x3 -7.8 

Xs -3.1 

Xt 1.1 

~ 4.0 

Lt -11.7 

Ll -8.5 

L3 -1.0 

Lt 5.3 

L3 7.0 

ASW 

-15.2 

0 

5.8 

7.1 

-10.4 

-7.8 

-3.2 

1.4 

4.2 

-11.8 

-8.5 

-1.1 

5.1 

7.2 

exp. 

-7.38 

-2.8a.b 

2.4a.b.c 

5.5b 

-1.2c 

4.2° 
8.5·. c 

Table 6.9. Energy eigenvalues for 3C SiC at high-symmetry points r, 
X, and L. ErNCP denotes results from the present method and ASW 

denotes results from aU-electron calculations wi.th the Augmented

Spherical-'fave method [104]. The expertmental values originate from 

tableS in: (a) ref.f105J, (b) ref,f65J, ( 0
) ref,[64J. 
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6.4 Accurate energy differences and equivalent special-point sets 

In section 6.2 we showed that accurate energy differences between 

crystals with the same crystal structure, but with different lattice 

constante can be obtained if technica! approximations are made in an 

equivalent way, meaning constant EP11 and special points chosen as 

eXPlained in section 3.4. In the latter section we already argued that 

i t is more diffieul t to obtain such accuracy if the crystals are 

structurally different. We developed a systematic way to proceed in 

the latter case and introduced equiuatent speetat-point sets (ESPS). 

In this section we give an application of this approach by calculating 

total-energy differences öEtot between cubic-diamond (CD) silicon and 

hexagonal-diamond (HD) silicon as well as between zinebiende SiC (3C} 

and wurtzite SiC (2H). These structures are described in section 3.4. 

The energy differences between the structures mentioned are ~cted 

to be very small, since each atom bas 4 nearest and 12 second-nearest 

neighbours at the same distances in both structures. 

Some of the results in this section were publisbed in ref.[106]. 

In table 6.10 we present results of total-energy calculations for 

CD and HD silicon using the ESPS of table 3.4. For CD the eXPertmental 

lattice constant ac=5.43 À is used, whereas for HD the corresponding 

lattice parameters a = Y..acv2 and c = (2a/3)vi'> are used (see section 

3.4). We remark that HD silicon is a hypothetical solid, since it is 

not found in nature. This, however, does not prevent us from a 

calculation with our method. It is gratifying to see in table 6.10 

that by employing successively larger special-point sets, the change 

in total energy bas the same sign for both structures, when applying 

ESPS. However, the fact that öEtot converges not faster than the 

individual total energies is disappointing. The latter fact merely 

indicates that the special-point sets for both structures are not 

equivalent enough. 

We remark that the difference in Ewald energy (see section 2.3) of 

0.0124 Ry/atom [107] is apparently canceled almost completely by the 

other terms in the total energy. 
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{Nsp{fcc),Nsp(hex}} (2,3} (6,8) (10,14} (19,20) (28,30} 

Etot(CD} -7.9029 -7.9079 -7.9085 -7.9087 -7.9086 

Etot (HD) -7.8944 -7.9040 -7.9072 -7.9077 -7.9077 

óEt o t 0.0085 0.0039 0.0013 0.0010 0.0009 

Table 6.10. TotaL energies (in Ry per atom) for cubic-diamond (CD) 

and he:xngona.t-dtamon.d (HD) silicon uslng equivalent speetaL-point 

sets. 6Etot=Etot(HD)-Etot(CD) {in Ry per atom}. Nsp(fcc) and Nsp(hex} 

are the numbers of special points used for CD and HD, respectivel.y. 

A kinetic-energy cutoff Epv=11.2 Ry was used. 

In table 6.ll(a) and (b} we show results of total-energy calcu

lations {in Ry per pair Si-c) for 3C SiC and 2H SiC, respectively, 

using the ESPS of table 3.4 and various values of the cutoff EPII· 

Table 6.11(c) gives the difference in total energies in mRy per pair 

Si-c calculated with the same Ep11 and equivalent special-point sets. 

For 3C the expertmental lattice constant is used, whereas for 2H the 

corresponding c and a are used {see above). In the table crosses 

denote values that could not be obtained in less than 6 hours of 

processing time on a Burroughs 7900 computer; values marked by a star 

have been calculated on a CYBER 205 vector computer. 

It is clear from table 6.11(a) and (b) that justas insection 6.2 

energy differences are to be calculated by subtracting total energies 

calculated at the same EPII• implying the same resolution for wave 

functions in r-space. Since the unit-cell volume of 2H is ex.actly 

twice the unit-cel! volume of 3C, according to (2.82), the number of 

plane waves Npv then is approximatel.y twice as large in the 2H

calculation. Since computing time goes up with a power of Npv between 

2 and 3, calculations are more time consuming for 2H by a factor 

between 4 and 8 (Therefore table 6.1l(b} contains more crosses than 

table 6.11(a)). We also infer from table 6.11(a) and 6.11(b} that the 

convergence wi tb respect to increasing Nsp is slightly better the 

higher Epv is. However, certainly for Epv=10.3 Ry and Epv=15.2 Ry the 

convergence is considerably less than for silicon with Epv=11.2 Ry 

(cf. table 6.10). We speculate that in order to obtain óEtot with an 
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accuracy of 10- 4 Ry/pair Si-c a cutoff Epv=29. 7 Ry and the (28,30} 

ESPS are required (cf. section 6.2}. 

The bad convergence with respect to increasing Nsp• combined with 

the fact that our ESPS are probably notequivalent enough, results in 

the situatton that we are not able to accurately determine the energy 

diEferenee between 3C and 2H (see table 6.11(c)). The feature of 

"non-equivalence" is also reflected in the fact that the sign of öEtot 

is consistently negative for the (10, 14) ESPS. Computational limi

tations restriet us to a best estimate from the EPv=15.2 Ry results: 

öEtot = 1.1 ± 0.9 mRy/pair Si-c. This energy difference is of the same 

order of magnitude as liEtot of CD and HD silicon. Very recently öEtot 

of 3C and 2H was calculated using the supercell approach described in 

section 3.4 [57], in which better equivalence of the two special-point 

sets is achieved at the cost of larger computing times. In the latter 

calculation, plane waves wi th kinetic energy below 10 Ry are treated 

exactly as we did, whereas those with kinetic energy between 10 and 

20 Ry are included by means of a perturbation technique. This results 

in liEtot == 0. 73 ± 0.02 mRy/pair Si-c, in agreement with our resul t 

above. In the latter error estimate only the error of the special

points approximation is included and not the error due to the 

finiteness of Epv. 

Just as for CD and HD silicon, the diEferenee in Ewald energy 

between 3C and 2H, 30.7 mRy/pair Si-c, is canceled almost completely 

by the other terros in the total energy. 

Table 6.11. Total. energtes {tn Ry per JXlir Si.-C) for (a) 3C StC and 

(b) 2H SiC, using uarious ki.nettc-energy cutoffs Epv and uarious 

nwnbers of speci.al. points Nsp· (c) gives energy dtfferences Ös1c 

Etot(2H)-Etot(3C) (i.n mRy per JXlir St-C) found from totaL energtes at 

the same Epv and wi.th (equf.oo.Lent) speciaL-point sets as tndicated. 

Crosses denote uatues not obtainabLe wf.thf.n 6 hours of processing ti.me 

on a Burroughs 7900 computer and stars denote ualues obtained on a 

CYBER 205 vector computer. 
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Nsp(fcc) 2 6 10 19 28 44 

EP\1 (Ry) 

10.3 -18.4835 -18.5218 -18.5111 -18.5185 .-18.5160 -18.5135 

15.2 -18.9298 -18.9257 -18.9249 -18.9270 -18.9264 -18.9258 

20.6 -19.1379 

23.3 -19.2118 -19.2226 -19.2221 x 
29.7 -19.3065 x x x 
36.0 -19.3473 x x x x 

(a) 

Nsp{hex) 3 8 14 20 30 42 

EP\1 (Ry) 

10.3 -18.4727 -18.5038 -18.5131 -18.5137 -18.5127 -18.5151l< 

15.2 -18.8988 -18.9173 -18.9250 -18.9229 -18.9244 -18.9247" 

20.6 -19.1224 x x x 
23.3 -19.1986 -19.2175 -19.2229" x x x 
29.7 -19.2951 x x x x x 
36.0 x x x x x x 

(b) 

(Nsp(fcc),Nsp(hex)) (2,3) (6,8) (10, 14) (19,20) (28,30) (44,42) 

Ep11 (Ry) 

10.3 10.8 18.0 -2.0 4.8 3.3 -1.6" 

15.2 31.0 8.4 -0.1 4.1 2.0 1.1" 

20.6 15.5 x x x 
23.3 13.2 5.0 -o.s" x x x 
29.7 11.4 x x x x x 
36.0 x x x x x x 

(c} 
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6.5 l'urtzi te SiC: ~m.pping and relaxaÜinn 

In this last section of this chapter we compare the valenee-charge 

density p in·wurtzite SiC (2H SiC) with pin 3C SiC. Furthermore, we 

briefly discuss the relaxation of the lattice parameters c and a, 

i.e., we search for the minimum of Etot when these parameters are 

allowed to vary. 

In fig. 6. 7 we show the valenee-charge densi ty in the equivalent 

planes of 2H SiC and 3C SiC that were described with fig. 3.3. Both 

were calculated using Epv=15.2 Ry, and the usual 2 special points for 

3C and 3 special points for 2H (q.,=3, Qc=2 in section 3.2.2}. The 

similarity of figs. 6.7(a) and {b) is in accordance with the fact that 

polytypes only differ in the way of stacking layers identical in 

structure. A suitable choice for such a layer is indicated in fig. 

6.7(b); the height of a layer is~. half the height of the unit cell 

of 2H, and .it contains one plane in which silicon atoms are arranged 

in, equilateral triangles and one plane in which carbon atoms are 

arranged in equilateral triangles (see also fig. 3.4). A fairly good 

picture of the electron densi ty in 2H SiC can be obtained from the 

density in 3C SiC by keeping the central layer {between dasbed lines) 

fixed and rotating the layers just above and below over 180° around 

the bond axes protruding into these layers. 

More precisely, a transfor~m.tion equivalent to the transformation 

described above is formulated as follows (density mapping}: suppose we 

have calculated the density in 3C, Pac. at positions r = ft~~t2+Ct3, 
where ti.t2. and t3 are basis vector of the hexagonal Bravais lattice 

of 2H SiC. We choose the origin in aC-type position, i.e., the type 

of position not occupied by atoms in fig. 6.7(a) (see also fig. 3.4). 

The density for 3C is transformed into a density P2H for 2H by: 

0 ~ f,~ < 1, 0 ~ Ç < K, 

(6.12) 

0 ~ f.~ < 1, K ~ C < 1. 

Equation (6.12) shows that the density in the complete unit cell of 

2H SiC is obtained from the densi ty in one layer of 3C SiC. The 

transformation defined by (6.12) rotates the densi.ty in the "building

block" layer over 60° around the z-axis through a C-type pos i tion and 
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Fig. 6. 7 Totat valenee-charge density (a) of 2H SiC in the (110) 

ptane, compared to (b) the one of 3C StC in the (110) ptane. Both 

densities are catculated wtth Epv = 15.2 Ry. The regton between dashed 

Unes in fig. 6,7(b) betongs to the "buUding-block" Layer (see text). 
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G IP2H I IP2H I 

000 8.000 8.000 

100 1.400 1.420 

002 1.997 1.990 

101 1.226 1.234 

102 0.421 0.399 

110 0.193 0.170 

103 0.119 0.110 

200 0.174 0.189 

112 0.201 0.201 

201 0.161 0.149 

Table 6.12. Fourier components of the valenee-charge denstty (in 

numbers of el.ectronic charges per unit-eetl. volume of 3C SiC), 

obtained by mapping a setf-consistent denstty of 3C SiC according to 

(6.12) (P2H) and by a sel.f-consistent cal.cutation for 2H SW (PzH). 

G veetors are given with respect to the basis veetors b~,b~ and b~ of 

the reciprocat l.attice of 2H SiC (see section 3.2.2). 

places the resulting layer on top of the "building-block" layer. There 

are 5 other possibilities to define this density mapping, viz., using 

all other operations of the space group of wurtzi te (C~v) that are 

accompanied by a nonprimi tive translat ion. In fig. 6.8 we show an 

original density of 3C SiC and its mapped equivalent, which may be 

compared with the density for 2H SiC in fig. 6.7(a). In table 6.12 we 

make the comparison more quantitiative by giving Fourier components of 

the mapped valenee-charge density {fig. 6.8(b)) and of the actual 

valenee-charge density calculated directly (fig. 6. 7(a)). The 

agreement is reasonable. 

By transformations similar to the one described above, the 

valenee-charge densi ty in all polytypes may be approximated from 

knowledge of the density in one layer of the simplest polytype, 

3C SiC, only. Unfortunately, this does not give us a means of 

camparing the polytypes energetically, since the total energy as 

functional of the density is not known. For instance, in (2.58) the 

term 2(n,k)En(k) is only determined by p through the salution of the 
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(b) 

Fig. 6.8 Totat valenee-charge denstty of 3C StC tn the (110) 

ptane, (a) before and (b) af ter the density-mapptng transformatton, 

eq. (6.12). The contour step ts 4 etectrons per unf.t-ceU votume of 

3C StC. The densf.ty after mapping approxtmates the sel,f-conststent 

denstty of 2H StC (Ftg. 6.7(a}) uery wetL. 

set of equations (2.39), in which the effective potential Yeff is 

determined by p. For polytypes with large unit cells, however, this 

solution is computationally prohibitive. 

In fig. 6.9 results are shown of total-energy calculations for 

2H SiC wi th varying lattice parameters c and a. The internal parameter 

u is eliminated as independent parameter by the restrietion that all 

Si-C bond lengtbs are equal or, equivalently, that all atoms (Si and 

C) are situated exactly in the centre of regular tetrahedra with atoms 

of the other type {C and Si) at the corners. In the theoretica! 

calculation this restrietion is merely for our convenience -one 

independent variabie is eliminated-, in experiments this condition 
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seems to be satisfied [73]. With this restrietion u depends on c and a 

as follows: 

(6.13} 

In fig. 6.9(a) the c/a-ratio is kept constant at the ideal value 

(2/3)vt3 (=1.633). In fig. 6.9(b) we keep the lattice parameter a 

constant at ~cv2. wi tb ac the expertmental lattice constant of 

3C SiC, implying a = 3.0827 A. Finally, in fig. 6.9(c) the parameter c 

is kept constant at {2ac/3)~ = 5.0340 A. We note that these ideal 

{3C SiC derived) valnes of a and c differ only very slightly from the 

expertmental 2H SiC values: a = 3.0763 A, c = 5,0480 A and c/a = 1.641 

[64]. 

The error bars in fig. 6.9 have been determined as follows; the 

calculations have been performed with Epv=23.3 Ry and 3 special 

points. With these cutoffs the maximal effective change in basis-set 

size, ÀNmax (see section 5.2), is 1.33. From ca.lculations for 3C SiC 

we know that at Epv=23.3 Ry discontinuities can he as large as 10 mRy 

percellof 3Cwhen AN = 7.5. Because the unitcellof 2H SiC is twice 

as large, discontinuities can he as large as 20 mRy per cell when 

AN = 7 .5. Since ÀNmax = 1.33, we obtain an error estimate of: 3.5 mRy 

per cell of 2H SiC. 

Because of the error bars in fig. 6.9, the minima of the 3 curves 

are only roughly determined. From the results in fig. 6.9, we deduce 

the equilibrium lattice parameters as follows; each of the iigures 

6.9(a), (b), and (c) yields a set of equilibrium lattice parameters c, 

a, and c/a ( the minimum is determined from the parabola through the 

data points in figs. 6.9(a} and (c} and the third order polynomial 

through the data points in fig. 6.9(b)). The three results are 

averaged and the error is estimated to he the largest deviation from 

the average. We then find: a = 3.11 ± 0.03 A. c = 5.10 ± 0.08 A, 
c/a = 1.64 ± 0.04. All calculated values are within 1% of the 

experimental values. 

It is clear that a discrimination between expertmental 2H SiC 

lattice parameters (a = 3.0763 A, c = 5.0480 A) and ideal (3C SiC 

derived) lattice parameters (a = 3.0827 A, c = 5.0340 A) is out of the 

reach of the present calculation and probably even out of the reach of 

the whole method. 
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CHAPfER 7 

OOfLOOK: 

TOWAIIDS A FUNDAMEtffAL DFSCRIPfiON 

OF CRYSfAI.S WITH LIMITED PERIODICITY 

So far we have focused on buLk. crystals, i.e., crystals that are 

periodic in three linearly independent directions with a period of the 

order of the lattice constant. We have found that an accurate 

description of the atomie and electronic structure of such crystals is 

possible by starting from properties of the consti tuting atoms and 

without the need to include parameters obtained from experiment. I t 

should be noted that within the same theoretica! framework also 

lattice dynamica! properties such as pbonon frequencies and elastic 

properties may be, and actually have been, calculated in agreement 

wi tb and in prediction of experiments [30]. Furthermore, trans i ti on 

pressures for solid-solid phase transformations under the application 

of pressure have been calculated and predicted (see, e.g., ref.[lOS]). 

In this chapter we briefly review the achievements so far and the 

possibilities in the future of the pseudopotential-density-functional 

metbod when applied to crystals with Lîmîted perîodîcity. Such 

crystals we will understand to be crystals for which the periodici ty 

in one of the three directions is non-existent or greatly modified 

(enlarged} with respect to the bulk crystal. We bere restriet crystals 

with limited periodicity to the following 4 categories: 

(i) interfaces: two different crystals grown on top of each other. A 

technologically important class of interfaces are the semi

conductor-semiconductor interfaces called heterojunctions. 

(ii) surfaces: these can be seen as interfaces in which one of the 

"crystals" is the vacuum. 

(iii) crystals wi.th stack.ing fru.ttts: bulk crystals with structural 

irregularities in the stacking of layers. 

(iv} superlattices: periodically repeated interfaces, thereby 

restoring the periodici ty in the third direction, wi th 

periodicity lengths, however, which may be significantly larger 

than those in the directions parallel to the interfaces. Since 

around 1980 techniques such as Molecular Beam Epitaxy {MBE) and 
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Metal-QTganic Chemica! Vapour Deposition (MOCVD) have come 

available to artificially grow superlattices, which are becoming 

increasingly important in technology. Polytypes (see chapter 6} 

can be seen as a natura! class of superlattices. The number of 

layers in a unit cell and their stacking sequence differs 

between different polytypes. 

To apply the pseudopotential-density-functional (PDF) metbod using 

plane waves, it is absolutely necessary to restore the periodicity in 

the third direction if it is non-existent (categories (i), (ii), and 

(iii)). This is done by periodically repeating the interface, surface 

or stacking fault using such a large unit cell (called supercell) that 

neighbouring interfaces, surfaces or stacking faults do not influence 

each other. Such an influence can be investigated and controlled by 

calculations with supercells of different size. 

What bas been achieved until now in the mentioned categories using 

the PDF-mèthod with norm-conserving pseudopotentials and plane waves? 

In answering this question we do not intend to be exhaustive, but we 

want to give a general idea of the applicability in practice of the 

method. 

{i) Van de Walle and Martin [109] calculated band discontinuities of 

semiconductor heterojunctions, which are of the order of 0.5 eV. 

to within an accuracy of 0.05-0.1 eV.Intheir calculations it 

pas appeared to be possible to use low cutoffs - Epv = 6 Ry 

{leading to about 35 plane waves per atom) and typically 4 

special points - combined with small supercells containing 

typically 8 atoms. In this way an actual heterojunction could be 

described, i.e., charge densities and potentials were found to 

be bulk-like already one layer away from the interface. 

Heterojunctions of semiconductors in which both bulk solids have 

equal crystal structure and approximately equal lattice 

constants (e.g., GaAs and AlAs), as well as lattice strained 

heterojunctions (e.g., Si/Ge) were treated. 

(ii} Surfaces are more difficult to handle since the effect of the 

vacuum penetrates deeper into the crystal, leading to the 

necessity of large supercells. Pandey [110], Northrup [111] and 

the MIT-group of Joannopoulos [112,113] have performed surface

reconstruction calculations for various surfaces of Si and GaAs. 
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In the calculations of ref. [113] about 1700 plane waves are 

treated exactly -determining the size of the matrices to be 

diagonalized-, whereas an additional 3500 plane waves are 

included via perturbation theory. The energy gain of surface 

reconstruction is typically of the order of '0.5 eV per surface 

atom. 

(iii) Chou et al. [114] calculated stacking-fault energies in silicon, 

which are of the order of 0.02 eV. with an accuracy of 20%, 

using cutoffs, Epv = 10 Ry ( ~70 plane waves per atom). Nsp = 

16, and supercells of 16 and 14 atoms. 

(iv) Polytypic energy differences were discussed in section 6.4. So 

far calculations for polytypes of SiC wi th up to 8 atoms were 

performed [57]. Energy differences bere are of the order of 

0.005 eV per atom. Very recently. Martin reported preliminary 

calculations of structural phase-transformations under pressure 

in superlattices of GaAs and AlAs [115]. 

The calculations mentioned above are generally performed at the 

limits of computational power (locally) available. If it appears to be 

necessary to include more atoms in the supercell, or if one wishes to 

lay a smaller claim on computing facilities. one has to replace the 

plane waves in the basis set by functions of which a smaller number 

per atom are needed. An example, employed in conneetion with norm

conserving pseudopotentials. are LeAO's [24]. where the atomie 

orbitals are combinations of Gaussians. This approach was applied to 

the surface of diamond by Vanderbilt and Louie [116]. Gausslans were 

also used in the description of twin boundaries in silicon by 

DiVincenzo et al. [117] (supercells of 36-40 atoms). The calculational 

scheme connected with LeAO's is. however, significantly more com

plicated than the one associated with plane waves. 

We now briefly discuss an approach that is sometimes foliowed to 

circumvent the need for calculations. with large unit cells. In this 

so-called parameter approach, calculations for a few geometries with 

small unit cells provide the parameters wi th which the systems wi tb 

large unit cells are described. We mention two examples: 

{1} Polytypes differ in the way layers of equal structure are stacked 

(see section 6.5 for the defini tion of such a layer in SiC). 

Inspired by a resemblance between the phase diagram of the Axial 
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Next Nearest Neighbour Ising (ANNNI) model and polytypism [118], 

the following expression for the energy of an arhitrary polytype 

was proposed: 

(7 .1) 

In (7.1) a and f3 are constants (with absolute value between 0 

and 1) which are simply related to the specific stacking sequence. 

The parameters Jo.J1. and J2 are interaction energies in the 

layer, between nearest-neighbour layers, and between next-nearest 

neighbour layers, respectively. Total-energy calculations for 3 

polytypes suffice to determine the 3 parameters {Jo.Jt.J2} [57]. 

For these 3 polytypes one is free to choose those wi th the 

smallest unit cells, i.e., 3C, 2H, and 4H SiC (2,4, and 8 atoms 

per cell, respectively). From the calculated parameters the total 

energy for an arbitrary polytype, also one with a very large unit 

cell, is now easily calculated. However, we must emphasize that it 

remains to be investigated whether the expression (7.1) is 

adequate, i.e., whether interaction energies between layers 

further apart (J3 ,J4 , ••• ) may indeed he neglected. This can he 

done by calculations for additional polytypes. 

{2) The (7x7) reconstruction of the Si (111) surface has a much too 

large unit cell to be directly accessible to the type of calcu

lation described. By means of the recently proposed Takyanagi

model for this reconstruction [119], the energy gain of this 

reconstruction may he expressed in terms of 3 parameters. These 

parameters were determined by Northrup [120] from surface 

calculations with smaller unit cells ((...IJx-1.3} and (2x2) recon

structions). 

The approach, as sketched in the two examples, does not fully 

replace the need for calculations with large unit cells. It is, 

however, an acceptable al ternative wi thin the present computational 

potentiali ties. 

From the above sketch of the state of the art and with the 

ever-increasing computing power in mind, we may conclude that the 

metbod described in this work will he used extensively in the near 

future to study ground-state properties of crystals with limited 
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periodicity. Experimentalists, however, are usually more interested in 

excited-state properties of surfaces and interfaces. The theoretica! 

study from first principles of such properties bas not come to its 

full growth yet. Only recently the first first-principles calculations 

for bulk solids of excited-state properties in agreement with 

experiment have been reported [85]. These calculations turn out to be 

much more demanding computationally than those for the ground state, 

which makes it uncertain in how far the metbod is of practical value 

to the determination of excited-state properties of surfaces and 

interfaces. 

1~ 
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DE PSEUOOPOTENTIAAL-DiarrHEillSFUNCfiONAAL METHODE 

TOEGEPAST OP HALFGELEIDER-KRISTALLEN 

Samenvatting 

In dit proefschrift wordt een methode beschreven ter berekening van de 

eigenschappen van vaste stoffen die voortvloeien uit het gedrag van de 

elektronen in die stoffen. Deze methode leidt tot quantitatieve 

resultaten zonder de noodzaak om gegevens uit experimenten te kennen 

en kan dientengevolge, na succesvolle vergelijking met experimentele 

resultaten, voorspellende waarde hebben. De methode combineert de 

pseudopotentiaal-theorie, die het mogelijk maakt alleen de valentie

elektronen in de berekening op te nemen, en de dichtheidsfunctionaal

theorie, die een beschrijving geeft van de grondtoestand van veel

elektron-systemen in een externe potentiaal. Dit leidt tot de noodzaak 

van het zelf-consistent oplossen van de Schrödinger-vergelijking voor 

elektronen, waarin de potentiaal bepaald wordt door de elektronen

dichtheid, die op zijn beurt bepaald wordt door de golffuncties die 

oplossing zijn van de Schrödinger-vergelijking. 

Pseudopotentialen, die gegenereerd worden vanuit de eigenschappen 

van geïsoleerde atomen plus zekere overdraagbaarheidscri ter ia. maken 

het mogelijk de functies van belang (dichtheden, potentialen, ... } te 

ontwikkelen in hanteerbare aantallen vlakke golven die de translatie

symmetrie van het kristal weerspiegelen. Aangezien geen aannames 

worden gedaan over de vorm van de van belang zijnde functies, is de 

methode in principe geschikt voor elk kristal en meer dan andere 

methoden geschikt voor kristallen met sterk inhomogene elektronen

dichtheden. Voorbeelden hiervan zijn praktisch alle halfgeleiders en 

ook isolatoren zoals diamant. 

Deze laatste klassen van vaste stoffen hebben voor de beschreven 

methode het bijkomende voordeel, dat de integraties over de Brillouin 

zone bijzonder efficiënt kunnen worden uitgevoerd met de techniek der 

"speciale punten in de eerste Brillouin zone", waaraan een hoofdstuk 

is gewijd. 

Verder wordt ingegaan op het benutten van de kristal-symmetrie bij 

het oplossen van de Schrödinger-vergelijking en op karakteristieke 

eigenschappen van het rekenschema, die benut kunnen worden om de 

hoeveelheid rekenwerk in te perken. 
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Er is een hoofdstuk gewijd aan de uitvoerige illustratie van de 

methode aan de hand van rekenresultaten die bereikt zijn met behulp 

van een computer-programma dat bovenbeschreven theorieën en technieken 

incorporeert. Er worden resultaten gepresenteerd voor silicium, 

diamant en de twee structureel extreme polytypen van silicium carbide. 

Tot slot wordt een indruk gegeven van de toepasbaarheid van de 

methode op kristallen waarin de periodiciteit in één richting 

duidelijk afwijkt van die in andere richtingen of zelfs geheel 

ontbreekt. Dit verschijnsel treedt op bij oppervlakken, grensvlakken, 

superroosters en polytypen. 
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STEU..INGEN 

behorende bij het proefschrift van 

P.J.H. Denteneer 



1. Het storingsrekening-schema genoemd naar Feenberg is ongeschikt 

voor toepassing op het Anderson-model voor sterk Wanordelijke 

ketens, waarin de interatomaire overlap-energie klein is ten 

opzichte van de breedte van de uniforme verdeling .van locale 

atomaire energie niveaus. 

P.M. Morse, H. Feshbach, Methods of Theoretica! Physics, 

hoofdstuk 9 (McGraw-Hitt, New York, 1953). 

]. Ziman, Modets of Disorder, hoofdstuk 9 (Cambridge Uniuersity 

Press, cambridge, 1979). 

2. In de literatuur over diffusie in wanordelijke ketens is ten 

onrechte geconcludeerd, dat de effectieve medium benadering een 

uitdrukking voor de frequentie-afhankelijke diffusie-coëfficiënt 

D(z) oplevert die, in de systematische ontwikkeling voor kleine z 

in machten van ~z. exact is tot en met orde z. Een gevolg hiervan 

is, dat de algemene schaalhypothese voor dit type problemen 

beperktere geldigheid heeft dan mede op . grond van numerieke 

berekeningen wordt aangenomen. 

I. Webman, ]. K!after, Phys. Reu. B 26, 5950 (1982). 

].W. Haus, K. Kehr, K. Kitahara, Phys. Reu. B 25, 4918 (1982). 

P.].H. Denteneer, M.H. Ernst, ]. Phys. C 16, L961 (1983). 

3. Zijn ó1 en Óz de verschillen in bindingsenergie (per eenheidscel in 

een laag) van de polytypen met stapeling ABAB .. en ABCBABCB .... met 

het polytype met stapeling ABCABC ... , respectievelijk, dan is in 

zeer goede benadering de energie van de intrinsieke stapelfout 

ó 1 +2óz en de energie van de extrinsieke stapelfout 4óz. De door 

Chang en Cohen gegeven schatting van de stapelfout-energie voor 

germanium mist dan ook elke grond. 

K.]. Chang, M.L. Cohen, Phys. Reu. B 34, 8581 (1986). 



4. Bestudering van de systematische ui tdovingen in het diffraktie

patroon van het organische kristal triterpane E reduceert het 

aantal mogelijke ruimtegroepen voor dit kristal tot drie. De 

argumentatie van Smith om tot de uiteindelijke vaststelling van de 

ruimtegroep te komen kan aanmerkelijk versneld worden door op te 

merken, dat het samenstellende molecule een chirale verbinding van 

natuurlijke oorsprong is. 

G.W. Smtth, Acta Cryst. B 26, 1746 (1970). 

5. De voorfactoren in de uitdrukking voor de ne cumulant van een 

waarschijnlijkheidsverdeling in termen van produkten van de eerste 

n centrale momenten van die verdeling kunnen met behulp van een 

eenvoudig combinatorisch argument worden bepaald. 

6. De methode van Vanderbilt om "gladdere" ·norm-behoudende pseudo

potentialen te genereren garandeert niet, dat feitelijk met minder 

vlakke golven in de verzameling, van basisfuncties kan worden 

volstaan. Hierdoor kan over het nut van deze methode geen uitspraak 

worden·gedaan. 

D. Vanderbilt, Phys. Rev. B 32, 8412 {1985). 

7. De huidige publicatie-woede in de fysica maakt het uitgeven van de 

handelingen van een conferentie tot een nutteloze activiteit. 

8. Een instelling die wetenschappelijk onderzoek tot een van haar 

doelstellingen rekent dient de faciliteiten die zij hiertoe bezit 

168 uur per week aan baar wetenschappelijke medewerkers ter 

beschikking te stellen. 



9. De uitspraak: "Het boek was beter dan de film", is in de regel 

gebaseerd op een vergelijking van de literaire kwaliteiten van 

boek en film-scenario en is dan nietszeggend met betrekking tot 

het geheel van cinematografische kwaliteiten van de film. 

10. In de gangbare definitie van de efficiëntie van een. verzameling 

speciale punten ter integratie over de reciproke ruimte wordt ten 

onrechte geen rekening gehouden met de symmetrie van individuele 

punten. Een betere definitie wordt verkregen door in de gangbare 

definitie het aantal speciale punten te vervangen door het aantal 

ermee geassociëerde punten in de eerste Brillouin zone. 

R.A. Evarestov, V.P. 8mirnou, Phys. Status Sol.{b} 119, 9 (1983). 

Dit proefschrift, hoofdstuk 3 en 4. 

11. Aan de in de literatuur aanvaarde experimentele waarde voor de 

compressibiliteit van silicium carbide moet op grond van ah initia 

berekeningen getwijfeld worden. 

Landolt-Börnstein: Numerical Dnta and Functional Relationships in 

Science and Technology, Group 3, VoL.l7, Part a, 0. Madelung ed. 

(Springer, Berlin, 1982). 

Dit proefschrift, hoofdstuk 6. 

12. De door Chelikowsky en Cohen gegeven tabel van Fourier-componenten 

van de valentie-ladingsdichtheid in silicium is met de door hen 

gebruikte methode en de door hen gegeven parameters niet te 

reproduceren. 

].R. Chelikowsky, M.L. Cohen, Phys. Rev. B 10, 5095 {1974). 

Dit proefschrift, hoofdstuk 6, tabel 6.1. 

Eindhoven, 5 juni 1987. 


