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ABSTRACT 
  

In the present paper we address the problem of optimal wall-shape design of a 
single phase laminar thermosyphon loop. The model takes the buoyancy forces into 
account via the Boussinesq approximation. We focus our study on showing the effects of 
wall shape on the flow and on the temperature inside the thermosyphon. To this extend 
we determine the dependency of the flow rate and the increase in temperature, on the 
geometrical characteristics of the loop. The geometry considered is a set of axially 
symmetric corrugated pipes described by a set of parameters; namely the pipe inner 
radius, the period of the corrugation, the amplitude of the corrugation, and the ratio of 
expansion and contraction regions of a period of the pipe. The governing equations are 
solved using the Finite Element Method, in combination with an adaptive mesh 
refinement technique in order to capture the effects of wall shape. We characterize the 
effects of the amplitude and of the ratio of expansion and contraction. In particular we 
show that for a given fixed amplitude it is possible to find an optimal ratio of expansion 
and contraction that minimizes the temperature inside the thermosyphon. The results 
show that by adequately choosing the design parameters, the performance of the 
thermosyphon loop can be improved. 
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INTRODUCTION 
 

Thermosyphon loops, also known as natural convection loops, are commonly 
employed devices in many kind of applications, ranging from solar energy utilization [1,2]  
to industrial applications in nuclear reactor cooling [3]. One of the main advantages of a 



thermosyphon, is that the flow within the loop is driven by the buoyancy forces generated 
by the density gradients induced by the temperature differences in the heating and cooling 
sections of the loop, and therefore, it does not require a pump or another device to maintain 
the flow. In the cryogenic industry, thermosyphons are also commonly used, for instance, 
to convect a liquid from a storage vessel to a production vessel such as a pump vessel (see 
FIGURE 1). When such a facility is on operation, the cryogen flows out of the storage 
vessel towards the pump vessel, where the liquid cryogen is pumped to its final destination, 
a truck for instance. When the facility is not on operation, the thermosyphon return line 
takes the heat from the interconnecting lines to the storage vessel, thus preventing 
undesirable boil-off gas in the pump vessel, which would not let the pump to function 
properly [4]. In FIGURE 1 we have sketched the design of the thermosyphon loop, dark 
and light tones denote "cold" and "hot" regions respectively. The loop works as follows, 
cold liquid comes out of the bottom of the tank and as it flows along the pipe line towards 
the pump vessel, the liquid absorbs heat from the environment. The temperature 
differences induce buoyancy forces which drive the fluid upwards until the fluid returns to 
the main vessel where it cools down again. 

We are concerned with the operation of such a thermosyphon loop, when the return 
line is composed of a so-called corrugated pipe. Corrugated pipes provide very convenient 
installation and maintenance possibilities in an application as an LNG delivery system. We 
will analyze such a system in the rest of this publication and more specifically, we will 
concentrate on characterizing the influence off wall-shape on the performance of the 
thermosyphon and we will show that the shape can be optimized for reducing the 
temperature inside the thermosyphon. 
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FIGURE 1. Diagram of an LNG cryogenic storage tank featuring a thermosyphon. The return line consists of 
a pipe (possibly corrugated) which center line is aligned with the direction of gravity. 

 
MATERIAL PROPERTIES 
 

Liquefied natural gas (LNG) is natural gas that has been converted temporarily to 
liquid form for ease of storage and transport. As a liquid, natural gas occupies only 1/600th 
the volume of its gaseous state, and therefore it is stored more effectively in a limited space 
and it is more easily transported [5]. The typical temperature at which LNG is stored is 



106.95(K). Depending on the application, the storage pressure might vary from 50 (kPa), to 
1700(kPa) [6]. In our case we consider LNG close to at a storage pressure of 900 (kPa). 
The composition of LNG is predominantly Methane, and for practical purposes, we take 
the properties of Methane as those of LNG. The dependency of density on temperature for 
Methane ( 4CH ) at a constant pressure of 900 (kPa), can be observed in FIGURE 2a) [7]. 
The density varies almost linearly for temperatures below the saturation temperature 
146(K). Provided that the temperature of the LNG is below saturation, the density ρ  of the 
LNG can be approximated by 

 
( )0 01 ,T Tρ ρ β= − −⎡ ⎤⎣ ⎦                                                 (1) 

 
where 0ρ  is the density of the fluid at the reference temperature 0 ,T  and T  is the local 
temperature. More specifically, we have 0 106.95T = (K), 33.7 10β −= × (K-1), and 

3
0 430.15 (kg m )ρ −= ⋅ . In FIGURE 2b), we can see how this simple linear model captures 

very well the variations in density. All the other properties of the fluid are taken as 
constant. The values which we consider are those of Methane at temperature 

0 106.95T = (K), and pressure 900P = (kPa). The respective values are 

( )1 10.1915 W m Kk − −= ⋅ ⋅  for the thermal conductivity, ( )41.3247 10 Pa sμ −= × ⋅  for the 

dynamic viscosity, and ( )1 13.4395 J g KC − −= ⋅ ⋅  for the specific heat capacity.  
In addition to the properties of Methane, we need to prescribe the thermal properties of 

the wall. Depending on the kind of insulation, the heat transfer coefficient of transfer pipes 
for liquefied gases might vary from ( )2 1

1 0.01 W m Kh − −= ⋅ ⋅ , for heavily insulated pipes 

up to ( )2 1
2 2 kW m Kh − −= ⋅ ⋅  for non-insulated pipes [8]. In our case, we consider two well 

insulated pipes, one with ( )2 10.01 W m Kh − −= ⋅ ⋅ , and another with ( )2 10.1 W m Kh − −⋅ ⋅= ,  

the temperature of the environment is taken to be 0 290T = (K) . 
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a)                                                           b) 

FIGURE 2. Density of Methane as function of temperature, for a constant pressure 900P =  (kPa). The 
data was taken from [7]. 

 
 

MODELING EQUATIONS AND GEOMETRY 
 
The flow in a thermosyphon is driven by buoyancy forces which are a result of the 

density differences along the pipe. However, even though the density is not constant, the 



density variations can be neglected in the momentum equation, except when they appear 
multiplied by the gravitational acceleration g . In other words, the flow is regarded as 
incompressible with respect to a reference density 0ρ , and the buoyancy effects are taken 
into account via a volume force term, which is directed in the opposite direction of the 
gravitational force g . The equations describing such a fluid are know as the Bousinnesq 
approximation of the Navier-Stokes equations [9-10]. The incompressibility assumption 
applies because the high storage pressure allows the temperature to be well bellow 
saturation. Since the cryogenic storage tank has very heavy insulation, most of the motion 
takes place along the thermosyphon return line. This line consists of two bends and a 
vertical section. The bends are much shorter than the vertical section, and therefore, we 
simply model the vertical section of the thermosyphon, denoted by Ω  in FIGURE 1. The 
geometry is axially symmetric and periodic, with period L . Each period consists of two 
sections, an expansion region of length E , and a contraction region of length C . The 
shape of the expansion region is half a period of a sinusoidal shape with period 2E  and 
amplitude a . The contraction region is half a period of a sinusoidal shape with period 2C  
and amplitude a . D  denotes the inner diameter of the corrugated pipe and pL  the total 
length of the pipe. In the rest of this paper, we consider a geometry with 0.02D = (m), 

5L = (mm), and 0.75pL = (m). We also define the dimensionless parameter : /eL E L= , 
which measures the proportion of expansion. Our main goal is to characterize the effects 
on the flow, of the amplitude a , and of the proportion of expansion eL . In addition, we 
want to determine whether it is possible to find an optimal value for these parameters. 

Since the geometry is axially symmetric and the center-line is aligned with the 
direction of gravity (see FIGURE 1), we can assume the flow to be axially symmetric as 
well. Assuming that the flow is steady, the modeling equations in the domain Ω  are. 

 

( )0
0

1 1 ,x R XX RR R XUU VU v U U U g T T P
R

β
ρ

⎛ ⎞+ = + + + − −⎜ ⎟
⎝ ⎠

                  (2a) 

2
0

1 1 1 ,x R XX RR R RUV VV v V V V V P
R R ρ

⎛ ⎞+ = + + − −⎜ ⎟
⎝ ⎠

                            (2b) 

1 0,x RU V V
R

+ + =                                                      (2c) 

( )0
1 ,P X R RR R XXC UT VT k T T T
R

ρ ⎛ ⎞+ = + +⎜ ⎟
⎝ ⎠

                                (2d) 

 
where the corresponding variables are the axial coordinate X , the radial coordinate R , the 
axial velocity U , the radial velocity V , the pressure P , and the temperature T . The 
pressure P  in the equations is the deviation from the hydrostatic pressure of a fluid with 
density 0ρ . The constant 0/ν μ ρ=  is the kinematic viscosity of Methane and 

-29.806 (m s )g = ⋅  is the acceleration of gravity. The boundary conditions which we 
consider are the following. 

1. The distribution of the flow and temperature are axially symmetric. 
 

0,  =0, 0R RV U T= =  at 0.R =                                (3) 
2. The inflow and outflow are normal at the inlet inΓ  and at the outlet outΓ . In 

addition, since the system forms a closed loop, the pressure change around the 



loop adds up to zero. Since we already subtracted the hydrostatic pressure 
field within the tank, we have 

,  0,XU P =  at inΓ  and outΓ .                                      (4) 
3. The temperature at the inlet is uniform and equal to the temperature inside the 

tank, and at the exit, the heat is carried out mostly due to convection. 
0XT =  at outΓ .                                                (5) 

4. At the wall of the pipe, a no-slip condition holds for the velocity field, and the 
normal heat flux is proportional to the difference of the ambient temperature 
and the local temperature of the fluid. 

( ) ( )0,  V=0,  n - eU kT h T T= ⋅∇ = − , at Γ ,                  (6) 
      here n  denotes the outer unitary normal vector to the surface Γ . 
 

 
NUMERICAL METHODOLOGY 

 
The equations introduced in the previous section are solved with a mixed finite 

element model, with Lagrange 2 1P P−  elements for the Navier-Stokes equations, and 
Lagrange 2P  elements for the temperature. The order of approximation of the pressure is 
chosen to be one order less than the velocity, in order to avoid an overdetermined discrete 
system of equations [11]. The discrete nonlinear system of equations is solved using 
Newton iteration. The implementation was done using the code COMSOL Multyphysics 
[12]. After solving numerically the discrete equations, we compute the volumetric flow 
rate Q , the maximum temperature attained inside the thermosyphon maxT , the average 
velocity U , and the Reynolds number Re   according to 

in

Q UdA
Γ

= ∫ ,  max max ( )
X

T T X
∈Ω

= , 2

4QU
Dπ

=  ,  0Re UDρ
μ

= .                               (7) 
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a)                                                                      b) 

FIGURE 3. a) Maximum increment in temperature and Reynolds number as function of the amplitude, for a 
heat transfer 2 10.1 (W m K )h − −= ⋅ ⋅  b) Maximum increment in temperature as function of the parameter 

eL . 

The maximum temperature ( maxT ) should be kept below saturation, in order to keep the 
liquid phase throughout the pipeline and prevent malfunctioning [13]. In order to guaranty 
grid independent solutions for each of the geometries considered here, we implemented a 



routine which recursively refined the mesh, until the relative change in the computed 
volumetric flow rate Q  was less than 0.1%. The adaptive refinement technique allows us 
to capture the effect of wall-shape on the flow. A solution with an error smaller than 0.1% 
was typically obtained for a mesh with 44 10×  mesh points.  

 
 

RESULTS AND DISCUSSION 
 
We start by studying the effects of the amplitude a  on the flow. In FIGURE 3a), we 

have plotted the maximum increase in temperature max 0T T−  and the Reynolds number for a 
geometry as in FIGURE 1, with 5L = (mm), 0.5eL = , and wall heat transfer  

2 10.1 (W m K )h − −= ⋅ ⋅ , and various values for the amplitude a . When. 0a = (m), the 
increment in temperature is about max 0 0.049T T− ≈ (K) and the Reynolds number 
Re 638≈ . When we increase the amplitude of the corrugation, we obtain an increase in 
temperature and in the Reynolds number. For instance, when 2.8a = (mm) the Reynolds 
number reaches a value of  Re 862≈ , and the increase in temperature is max 0 0.1T T− ≈ ( 
K). From FIGURE 3a), we can also notice that while the Reynolds number increases 
almost linearly, while the temperature does not. In fact, the slope of the temperature curve 
increases continuously with a  for values below 0.6a ≤ (mm). Then the slope stabilizes 
and the temperature starts to grow almost in a linear manner around 1.4a ≈ (mm). As we 
go further, we can still appreciate a change in the slope of the curve at 2.8a = (mm). To 
show this more clearly, we have added auxiliary dotted and dashed lines for reference. 

This behavior of the increase in temperature can be explained by looking at the flow 
streamlines. For instance, when 0.6a = (mm) (see FIGURE 4 a)) the flow follows the wall 
and the increase in temperature is just caused by the increase in the surface area (and 
therefore, also the heat transfer) with the parameter a . When we reach 1a = (mm) the 
curve shows a linear behavior, this is associated with the appearance of a vortex inside the 
corrugations. For instance, when 1.4a = (mm), we can observe a vortex inside the 
corrugations, FIGURE 4 b). The temperature continues to increase linearly, until at 

2.7a ≈ (mm) we can observe another change in the slope of the curve. This change takes 
place due to the appearance of a second vortex inside the corrugation. In FIGURE 4 c), 
where for 2.8a = (mm) we can distinguish the second vortex inside the corrugation. 

In practical terms, this means that there is no amplitude which minimizes the 
temperature inside the thermosyphon. However, in order to have a flexible pipe line, it is 
necessary to have a minimum amplitude size for the corrugation. Therefore in practice, one 
should balance the increase in temperature and the desired flexibility of the pipe line in 
order to choose an optimal design value for the amplitude a . 

Luckily, there is another possibility to reduce the temperature inside the 
thermosyphon without having to compromise the flexibility of the line. The alternative 
which we consider is to modify the lengths of expansion and contraction of the pipe via the 
parameter eL . In Figure FIGURE 5 a) and b), we have plotted the distribution of max 0T T−  
near the corrugations for 0.55eL =  and 0.7eL = , respectively. The wall heat transfer 
coefficient was 2 10.1 (W m K )h − −= ⋅ ⋅ . When 0.7eL = , the heat transfer due to convection 
is reduced by the sharp contraction region, and this causes the temperature to raise by up to 
0.47 (K). On the other hand, when 0.55eL = , the flow inside the cavity is able to exchange 
heat with the main cold stream in a more efficient way thereby reducing the maximum 
increase in temperature. 



 
a)     b)     c) 

FIGURE 4. Flow streamlines for three different amplitudes, for a heat transfer coefficient of 
2 10.1 (W m K )h − −= ⋅ ⋅  

 
The role of the parameter eL  becomes clearer when looking at FIGURE 3 b). In this 

figure we have plotted the maximum increment in temperature, max 0T T− , for a set of 
corrugated pipes with period 5L = (mm) and amplitude 2a = (mm), and values of eL  
between 0.25 and 0.75. The solid line and left hand y-axis show the case for 

2 10.01 (W m K )h − −= ⋅ , and the dashed line and right hand y-axis correspond to the 
case 2 10.1(W m K )h − −= ⋅ . Already when 2 10.01 (W m K )h − −= ⋅ , it is possible to notice 
some asymmetry in the curve, even the minimum increment in temperature appears to be 
attained for an asymmetric geometry, i.e. for  0.5eL > . When we increase the heat transfer 
coefficient to 2 10.1 (W m K )h − −= ⋅ ⋅ , the increment in temperature max 0T T− , becomes more 
sensitive to eL , and there is a value of eL , of about 0.57eL ≈ , that minimizes the increase 
in temperature max 0T T− . Therefore, it is possible to reduce the temperature inside the 
thermosyphon without having to reduce the flexibility of the pipe line. 

 
 

                  
a)         b) 

FIGURE 5. Increase in temperature for two different values of eL , for a wall heat transfer coefficient of 
2 10.1 (W m K )h − −= ⋅ ⋅ . 

 



 
CONCLUSIONS 

 
In the present paper we have presented a model for a single phase thermosyphon loop 
featuring corrugated pipes. By means of using an adaptive meshing technique we were able 
to capture the effects of wall-shape. We considered a set of asymmetric sinusoidal pipes 
and showed that an increase in the amplitude implies an increase in flow rate and in 
temperature. The appearance of vortices inside the corrugation, induce a change in the 
slope of the temperature as function of the amplitude a . In practical terms, this means that 
one should take into account this extra increment in temperature when considering 
changing a straight thermosyphon line by a corrugated one. In addition, we showed that 
when we keep the amplitude of the pipe fixed, it is possible to reduce the maximum 
temperature inside the thermosyphon by tuning the lengths of expansion and contraction. 
In fact, we showed that there is an optimal value for the parameter eL  which minimizes the 
increase in temperature without having to reduce the amplitude of the corrugation. The 
importance of the design parameter eL  is expected to increase for larger heat transfer 
coefficients at the wall as well as with the period of the corrugation L . Altogether, shape 
optimization it is very promising for improving the performance of thermosyphon. The 
possibility of doing shape optimization for turbulent flow is currently under research. 
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