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Samenvatting

De in de jaren zestig opgestelde zogeheten GW-theorie geeft een kwantummechanische
beschrijving van geéxciteerde elektron toestanden in een systeem met wisselwerkende elek-
tronen. Sinds het einde van de jaren tachtig is duidelijk geworden dat de GW-theorie
een verrassend goed raamwerk biedt voor het berekenen van bandenstructuren. In het
bijzonder blijken de in dit kader berekende elektron energiebanden rondom de bandgap, de
energiekloof tussen de elektron energieén van de bezette elektron toestanden in de grond-
toestand van het bekeken systeem en de geéxciteerde elektron toestanden, tot uitstekende
overeenstemming te leiden met experimentele gegevens voor een grote groep halfgelei-
ders. Eerdere schema’s zoals het Hartree en het Hartree-Fock schema geven deze overeen-
stemming duidelijk niet. Ook de dichtheidsfunctionaaltheorie, ondanks haar succesvolle
beschrijving van de grondtoestandseigenschappen van halfgeleiders, leidt niet tot bevredi-
gende resultaten in het geval van halfgeleiders als het gaat om de bandenstructuur rondom
de bandgap. In dit proefschrift wordt in de eerste plaats nagegaan of de GW-theorie
eveneens tot goede resultaten leidt als deze wordt toegepast op drie polytypen van silicium-
carbide, te weten 2H, 4H en 6H silicium-carbide, halfgeleiders met respectievelijk 4, 8 en
12 atomen in de primitieve eenheidscel. We laten zien dat ook voor deze relatief gecom-
pliceerde halfgeleiders de GW -theorie tot uitstekende overeenstemming met het experiment
leidt. Hierbij dient te worden opgemerkt dat in het door ons gehanteerde algoritme gebruik
is gemaakt van een plasmon-pool model, dat in een analytische benadering voorziet voor
de energie-afhankelijkheid van de dynamisch afgeschermde elektron-elektron wisselwerking
W. Er kan dus worden geconcludeerd dat de GW-theorie, in samenhang met dit plasmon-
pool model, tot uitstekende overeenstemming leidt met het experiment, zelfs als het om
deze gecompliceerde halfgeleiders gaat.

In de tweede plaats richt het proefschrift zich op de vraag waarom de GW-theorie
klaarblijkelijk zo succesvol is. De leidende gedachte daarbij is dat de essentiéle bijdrage
tot de elektron energieén in deze theorie wordt verkregen door een storingsreeks in termen
van W na laagste orde af te kappen. Deze storingsreeks volgt uit een theorie waarin het
totale effect van de-elektron-elektron wisselwerking op de elektron energieén voorgesteld
kan worden als een oneindige som van zogeheten Feynman diagrammen. In de GW -theorie
worden dus de hogere orde diagrammen verwaarloosd. Het is echter niet a priori duidelijk
hoe het met de convergentie van de storingsreeks is gesteld. Echter, recente berekeningen
voor het geval van het homogene elektron gas door Shirley, alsmede voor het geval van een
één-dimensionale modelhalfgeleider leverden een geringe bijdrage op van de eerstvolgende
diagrammen in de storingsreeks. Iets nauwkeuriger: voor de één-dimensionale modelhalf-
geleider werden de laagste orde diagrammen berekend, die zogenoemde ” zelfconsistentie” en
”vertex correctie” bijdragen bevatten, en er werd gevonden dat die elkaar in hoge mate com-
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penseren. Voor het homogene elektron gas werd door Shirley ook een dergelijke berekening
uitgevoerd, waarin zelfconsistentie in feite werd meegenomen tot in een hogere orde dan in
het geval van de één-dimensionale modelhalfgeleider, en ook in dat geval werd een goede
compensatie gevonden. In dit proefschrift hebben we op grond van deze aanwijzingen voor
de prototypische halfgeleider silicium en isolator diamant precies berekend wat de bijdrage
tot de bandgap is van de laagste orde diagrammen verwaarloosd in de GW-theorie. Ook
hiervoor hebben we het bovengenoemde plasmon-pool model gebruikt voor de energie-
afhankelijkheid van W. Het resultaat is dat er, tegen onze verwachting in, wel degelijk een
niet verwaarloosbare bijdrage is tot de bandgap. Daarmee ligt de verklaring van het suc-
ces van de GW-theorie voor deze materialen nog open. Op grond van de bovengenoemde
berekening aan het homogene elektron gas door Shirley (waarin zelfconsistentie dus wordt
meegenomen tot in een hogere orde dan in onze berekeningen voor silicium en diamant), is
de volgende stap wellicht in dit recept van Shirley te zoeken. Ons resultaat maakt in ieder
geval duidelijk dat er absoluut geen sprake is van een eenvoudige convergentie.



Summary

The so-called GW theory, which was formulated in the sixties, gives a quantum-
mechanical description of excited electron states in a system with interacting electrons.
Since the end of the eighties it has become clear that the GW theory provides a surpris-
ingly good framework for calculating band structures. In particular, the electron energy
bands around the band gap, i.e., the gap between the electron energies of the occupied elec-
tron states in the ground state of the system under consideration and the excited electron
states, calculated within this framework, lead to excellent agreement with experimental
data for a large group of semiconductors. Earlier schemes, such as the Hartree and the
Hartree-Fock scheme, do not lead to agreement at all. Also the density-functional theory,
despite its successful description of the ground-state properties of semiconductors, does
not lead to satisfying results for the band structure around the band gap in the case of
semiconductors.

In this thesis it is firstly investigated whether the GW theory also leads to good results
if it is applied to three polytypes of silicon carbide, namely 2H, 4H, and 6H silicon carbide,
semiconductors with 4, 8, and 12 atoms in the primitive unit cell, respectively. We show
that the GW theory leads to excellent agreement with experiment also for these relatively
complex semiconductors. It has to be remarked that in the employed algorithm we used a
plasmon pole model that provides an analytical approximation for the energy dependence
of the dynamically screened interaction W. So, it can be concluded that the GW theory,
in connection with this plasmon pole model, leads to excellent agreement with experiment
even for these complex semiconductors.

Secondly, this thesis focuses on the question why the GW theory apparently is so suc-
cessful. In this connection, the leading idea is that in this theory the essential contribution
to the electron energies is obtained by cutting off a perturbation series in terms of W to the
lowest order. This perturbation series follows from a theory in which the total effect of the
electron-electron interaction on the electron energies can be represented as an infinite sum
of so-called Feynman diagrams. Hence, in the GW theory the higher-order diagrams are
neglected. However, the convergence properties of the perturbation series are not known
a priori. Nevertheless, recent calculations for the case of the homogeneous electron gas
by Shirley as well as for the case of a one-dimensional model semiconductor yielded only
a minor contribution of the next diagrams in the perturbation series. More precisely: for
the one-dimensional model semiconductor the lowest order diagrams were calculated which
contain so-called “self-consistency” and “vertex correction” contributions, and it was found
that they compensate each other to a high degree. For the homogeneous electron gas a
similar calculation was performed by Shirley, in which self-consistency in fact was carried
through to higher order than in the case of the one-dimensional model semiconductor,
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and also in that case a good compensation was found. On the basis of these indications,
we have accurately calculated in this thesis the size of the contribution to the band gap
from the lowest order diagrams that are neglected in the GW theory, for the prototypic
semiconductor silicon and insulator diamond. Again we have used the above-mentioned
plasmon pole model for the energy dependence of W. The result is that, contrary to our
expectation, there is a relatively large contribution to the band gap of silicon and diamond.
With that the success of the GW theory for these materials is still unexplained. On the
basis of the above-mentioned calculation in the case of the homogeneous electron gas by
Shirley (in which self-consistency has been carried through to higher order than in our
calculations for silicon and diamond), the next step may be found in this recipe of Shirley.
Anyway, our results make clear that it is not a matter of a simple convergence.
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GW and LDA gaps (eV)

Figure 1.1: GW and LDA gaps versus the experimental gaps (in eV) for the
set of semiconductors listed in Table 1.1.
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Chapter 1:
Introduction

This thesis is devoted to the theory of excited states in semiconductors. More specifically, it
focuses on the so-called GW theory, which has been proved to be successful in, among other
things, predicting the energy-gap values of a large group of semiconductors. The energy
gap, or (band) gap, being one of the most important characteristics of a semiconductor,
is defined as the minimum energy required to remove an electron from the ground state
of the semiconducting crystal and to promote it into an excited state. Metals can be
said to have an energy gap equal to zero; they are good conductors of electrical current.
Insulators, such as diamond, have large energy gaps, such that their conductivity is bad.
The conductivity of a semiconductor lies in between that of metals and insulators, which
explains the name semiconductor. Its energy gap is such that the (temperature-dependent)
conductivity is generally much smaller than that of a metal. Semiconductors are of utmost
technological importance. Applications range from single-circuit elements such as switches,
diodes, transistors, and photo-detectors to modern electronic devices such as lasers (used
in, for instance, optical communication) and computers.

In discussing semiconductors we restrict ourselves to crystalline materials in which the
atoms are ordered periodically. The structure of the constituting individual atoms is well
described by quantum mechanics in terms of negatively charged electrons moving in orbitals
around a positively charged nucleus. When these atoms are brought together in a crystal,
the outer orbitals of the atoms overlap and transform into energy bands. In semiconductors
the energy gap separates occupied and unoccupied energy levels. In conventional theory
one distinguishes valence and conduction bands for individual electrons. In this connection
the energy gap is defined by the energy difference between the highest valence band and
the lowest conduction band. If these two extrema are located at the same wave vector
(characterizing the corresponding one-electron wave function) the gap is called a direct
gap. If the corresponding wave vectors are different, the gap is called indirect. The so-
called fundamental gap is defined as the minimum gap, which may be indirect.
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Introduction

From a fundamental point of view, the electronic system formed by a semiconductor
is a many-body system with mutual Coulomb interaction between the electrons. It is
therefore not at all obvious that a picture in which independent electrons move in a one-
electron potential field leads to a valid description. One is in fact faced with the problem
of solving Schrodinger’s equation for many particles. Due to the mutual interaction it is
not allowed to separate Schrédinger’s equation into one-particle equations for independent
electrons. In spite of this, one-particle schemes have been developed in the past in which
it is attempted to construct effective potentials simulating, among other things, the mu-
tual Coulomb interaction. Important historical steps in this connection are the proposals
of Hartree, Slater, and Fock. In 1928 Hartree[43] suggested to introduce an effective po-
tential felt by individual electrons due to the average charge distribution of all the other
electrons plus the nuclei. Since the electrons are fermions and therefore obey the Pauli
exclusion principle, the total wave function of the system must be antisymmetric under the
interchange of two coordinates. This condition is not fulfilled by the Hartree wave func-
tion. In 1930 Slater[77] and Fock[30] proposed to take also the antisymmetry requirement
for electrons into account, leading to the well-known Hartree-Fock (HF) scheme. In both
the Hartree and the HF scheme the one-electron Schrédinger equations have to be solved
iteratively.

In 1964 Hohenberg and Kohn developed the density-functional theory (DFT), which
in principle gives an exact description of the ground-state properties by including the so-
called exchange and correlation effects through an effective potential that is a functional
of the ground-state electron density[46]. Practical application of DFT usually relies on the
local-density approximation (LDA). Unfortunately, the DFT-LDA predicts energy gaps for
semiconductors that are too small compared with experiment. It should be said that this
is not in conflict with the exact character of DF'T applicable to the ground state.

In 1965 Hedin developed a general quantum-mechanical scheme which describes excited-
state properties through a so-called electron self-energy X..[44] From it, the so-called GW
theory is derived, which is based on an approximation of ¥. The Hedin scheme and the
GW approximation are given in Chapter 2.

1.1 The success of the GW theory

In recent years it has become clear that the GW approach gives excellent predictions
of energy-gap values for semiconductors[44]. GW calculations appear to lead to energy
gaps that are in excellent agreement with experiment for a large group of semiconductors.
It has to be remarked that these GW calculations are based on two approximations to
the extensive theory, called Hedin’s scheme which exists of a set of of coupled integral
equations: The first approximation is that the so-called vertex corrections are omitted.
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1.1. The success of the GW theory

Table 1.1: Fundamental GW gaps as well as the LDA and experimental values
(in eV) for a set of semiconductors ordered according to increasing experi-
mental fundamental energy-gap value. The listed semiconductors have cubic
symmetry, with the exception of the ones indicated with o: which have wurtzite

symmetry.
Material LDA GW Expt. Material LDA GW Expt.
InSb -0.51 0.18 0.23 GaP 1.82 2.55 2.39
InAs —0.39 0.40 0.41 SiC 1.22  2.34,2.37 241
Ge =0 0.75, 0.65 0.744 AlP 1.52 2.59 2.50
GaSb —0.10 0.62 0.80 ZnTe 1.33  2.57 2.71
Si 0.52 1.29,1.24 1.17 ZnSe o 143 275 2.87
InP 057 1.44 1.42 ZnSe 1.45 2.84 2.96
GaAs 0.67 1.22,1.63 1.52, 1.63 | GaN 2.1 3.1 3.2, 3.3
CdTea 0.85 1.80 1.60 GaNa 23 35 3.5
AlSb 099 1.64 1.68 ZnS 2.37 3.98 3.80
CdSe 076  2.01 1.90 ZnS o 245 4.03 3.92
CdTe 0.80 1.76 1.92 diamond 3.90 5.6,5.33 5.48
CdSea 075 1.91 1.97 AIN 39 58 6.2
AlAs 1.37  2.18,2.09 2.32,2.24 | LiCl 6.0 9.1 9.4

The second approximation is that only a first iteration GW result is being used instead of
a so-called self-consistent one. The apparent success of this GW approach is demonstrated
in Fig. 1.1 and Table 1.1. Here we have confronted the GW-obtained energy-gap values
of 26 semiconductors with the experimental values[8, 61, 62]. The former values have
been collected from Refs. [1],(5],[34],[35],[48], [49], (73], [74], and [85]. It is observed both
from Table 1.1 and Fig. 1.1 that the difference between experimentally obtained and GW -
obtained energy-gap values is at most a few tenth of an eV. This extremely good result is
apparently independent of the absolute energy-gap values of the involved semiconductors.
We have included in Table 1.1 and Fig. 1.1 the DFT-LDA-obtained values as well. It is
clearly seen that the latter energy-gap values are systematically too small when compared
with the experimental values. There seems to be no doubt whatsoever that GW theory
is capable of predicting energy-gap values of a large group of semiconductors. However,
the question is whether this also holds true if we apply this theory to more complicated
semiconductors (i.e., with larger primitive unit cells), such as the various polytypes of
silicon carbide (SiC). This is one of the questions addressed in this thesis. In one of the
following chapters (Chapter 3) it will be shown that also in these cases the GW approach
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Introduction

is successful.

1.2 Why is the GW theory so successful?

The remaining question now is why the GW approach is successful. In Chapter 4 we
describe an attempt to deal with this question by focusing on those contributions to the
energy gap that have been intentionally left out in the GW approach: the so-called higher-
order corrections. Investigation of these corrections is computationally very costly for
semiconductors, implying that we have to restrict ourselves to the first-order corrections.
It is, however, by no means clear a priori that the sum of this restricted group of corrections
will lead to a vanishing contribution to the energy gap. The reason that we nevertheless
put effort in the calculation of these first-order contributions, which we will perform for the
prototypical semiconductor Si and insulator diamond, lies in the circumstance that such
calculations have already been performed for simpler systems such as (1) the homogeneous
electron gas[76] and (2) the case of a quasi-one-dimensional semiconducting wire[37]. It
was shown in both cases that the so-called lowest-order vertex (V) and self-consistency
(SC) corrections, i.e., the corrections to GW under consideration, have the tendency to
compensate each other to a high degree. In a recent study, Shirley[76] reported on a
calculation for the homogeneous electron gas case in which GW was considered together
with its lowest-order V correction, the difference with earlier calculations being that both
were brought very close to self-consistency. The resulting bandwidth, i.e., the width of the
occupied energy levels, was found to be very close to the GW value. For the case of the
quasi-one-dimensional semiconducting wire de Groot et al.[37] reported that the resulting
energy gap of a calculation in which all first-order corrections to GW have been included
is very close to the GW energy gap. In view of all these results it is of interest to know
how good the compensation of the respective additional contributions will be in the case
of real systems such as Si and diamond. As mentioned above, this question is addressed
in Chapter 4. It is an extension to real systems of the work reported on in Ref. [37].

In order to facilitate the reading of Chapters 3 and 4, both of which have been published
in the open literature, we first give an introductory sketch of the general theory, in Chapter
2. We start by giving the many-electron Hamiltonian, after which follows a short descrip-
tion of DF'T, DFT-LDA, Green’s function theory and quasiparticle theory, Hedin’s scheme
expressed both in formulae and in terms of Feynman diagrams, and, finally, of the GW
approach and its higher-order corrections. In the introductions of Chapters 3 and 4 we will
also pay attention to extensive historical reviews. As mentioned before, the GW approach
will be shown to be successful for three polytypes of SiC; this is described in Chapter 3.
The higher-order corrections, as calculated in Chapter 4, leave us with the puzzling result
that the compensation between the higher-order corrections, if any, is clearly insufficient
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1.2. Why is the GW theory so successful?

in order to “explain” the success of the celebrated GW theory. It is suggested in Chapter
4 that possibly Shirley’s recipe could give the answer. However, such a “full” calculation
of the required terms seems to be beyond present reach for real semiconductors. It will
have to wait for either more computing power or more refined calculational schemes.
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Chapter 2:
Theory

2.1 Introduction

This Chapter is devoted to the introduction of the key elements in the theory describing
the electronic behaviour of semiconductors, especially the treatment of the excited electron
states. To this end we start in Section 2.2 by giving the Hamiltonian of the many-electron
system as valid for a semiconductor. In Section 2.3 the density-functional theory (DFT)
is briefly introduced; the well-known Kohn-Sham equations will be given. DFT in the
local-density approximation (LDA) has made it possible to introduce a special effective
potential v°% felt by every electron. It has been shown in a large number of cases that DFT-
LDA is very successful in describing ground-state properties; see, for instance, Ref. [52].
It is, however, incapable of correctly treating excited states and leads to, e.g., incorrect
predictions for energy gaps in semiconductors. A correct treatment is given by the so-called
GW theory, in which the above effective potential v*(7) is replaced by a nonlocal, time-
dependent self-energy operator. GW theory has been applied with success to a number
of semiconductors. The time-dependent self-energy leads to a picture in which excitations
have finite lifetimes: the so-called quasiparticles, which are introduced in Section 2.4.
Subsections 2.4.1 — 2.4.3 deal with the general characteristics of the Green’s function
‘theory in which both the self-energy operator and the quasiparticle concept play dominant
roles. Subsection 2.4.4 focuses on the GW approach. Its description can be viewed upon
as introductory to Chapter 3 in which the method is applied to some polytypes of SiC.
Subsection 2.4.5 is a short introduction to Chapter 4 in which an attempt is made to
contribute to the understanding of the apparent success of the GW approach.
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Chapter 2: Theory

2.2 The Hamiltonian of the many-electron system

In describing the properties of a many-electron system with mutual interactions between
the electrons, it is helpful to make use of the second-quantization formalism or, rather,
occupation number formalism.|[21, 29, 66] This is a formulation of quantum mechanics
that explicitly accounts for, in the case of electrons, the antisymmetry requirement of
wave functions. We make use of electron creation and annihilation operators, denoted by
Yi(7,t) and 9(7,t), respectively. These operators create or annihilate an electron at a
given space-time point 7,¢. They obey the relations (spin indices are omitted)

[Il/)T(F11t)7wT(F27t)]+ = [¢(F17t)a¢(F27t)]+:07 (21)
[w(Flat)awf(FZ;t)]+ = 6(7—"1“772)5 (22)

in which [4, B], = AB + BA is the anti-commutation operation. The complete Hamilto-
nian H of a many-electron system is given by

H=T+U+V, (2.3)
T = —-2%% / Cryf AV, (2.4)
= [ &gt @u@u), (2.5)
= L[ [drdrut oty - 7wy, (2.6)
where
Y(7) = eTHhy(7, t)e UM, 2.7)

T is the kinetic energy operator. m, is the electron mass. U is the external potential
operator: u(7) = u(F+ R) is the periodic external potential felt by each electron (R is a
lattice vector). In u(7) we include the potential caused by the periodically arranged nuclei
plus the innermost unaffected electrons, also called core electrons. In this approximation
the outer electrons, which are subdivided into valence and conduction electrons, feel the
combined field of the ion cores, defined as the nuclei plus the core electrons. Throughout
this thesis it is assumed that the effect of the ion cores in the theory can be described
by means of pseudopotentials felt by the outer electrons. This circumvents the need for
an all-electron description. In combination with the periodicity of the crystal the ion
pseudopotential approach allows efficient use of a plane wave basis set, reducing the size
of the Hamiltonian matrix. Furthermore, a plane wave formalism is one of the simplest
formalisms to implement numerically. In Eq. (2.3), V is the interaction operator between
the electrons, interacting through the Coulomb interaction v:

v(i, §) = v(F — 7)8(t; — t;) ¢ 8(t; — t;). (2.8)

- 4meo|T; — 75
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2.3. Density-functional theory

Here we have introduced a short-hand notation j for the space-time point 7,%;. e is the
electron charge and ¢ is the vacuum permittivity. The treatment of V' is the central issue in
the many-electron problem. One may, e.g., try to simulate the effects of V by constructing
an effective potential v () and rewriting H as follows:

H = Hy+Hi, (2.9)
with
Hy = T+U+ Ve, (2.10)
H = V-V (2.11)
vl = [ @yt @ (7). (2.12)

The usefulness of introducing such a v°F lies in the possibility to reduce the relative im-
portance of the perturbing part H; in H. In Subsection 2.3 we describe a choice for veff
made within DFT.

2.3 Density-functional theory

In this Section we give a very brief description of an effective potential v*f which turns
out to give an excellent description of the ground-state properties of a solid. The density-
functional theory (DFT) in which this potential has its origin, has been developed by
Hohenberg and Kohn.[46] In 1964 Hohenberg and Kohn[46] proved that (1) the ground
state of a many-electron system is a unique functional of its ground-state electron density
p(7) and that (2) the ground-state energy has its minimum value for the exact p(7). In the
theory of Kohn and Sham, see Ref. [59], the interacting many-electron system is replaced
by a fictitious noninteracting system having the same density and the proper p(7) can be
obtained by solving the equations
52
(~om v+ 0l + o160 ) = it

2me

p(T)

; CAGI (2.13)

where {¢;} are orthonormal eigenfunctions and {e;} the associated eigenvalues. The sum
in Eq. (2.13) extends over the N occupied eigenstates. These states are each at least doubly
degenerate, since spin-up and spin-down electrons are assumed to have the same energy.
In the noninteracting system, the electrons move in an effective potential

v (7) = vH(7) + XC(7). (2.14)
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Here the Hartree potential v (7) reads:

() = / Erio(F — 7)p(F"), (2.15)
while the exchange-correlation potential v is given by
XC
V() = —5E6 L (2.16)
P p=p(F)

where EXC is the exchange-correlation-energy functional and the square brackets indicate
functional dependence. In Eq. (2.16), 6EXC/6p means that we must take the functional
derivative of EXC with respect to p.

Within the local-density approximation (LDA) of DFT, EXC is given by

EXlp] = [ d®rp(@)e*(p(), (2.17)

where £X© is the exchange-correlation energy per electron of the homogeneous electron gas.
A variety of approximations exists for the correlation part of eXC. A practical approxi-
mation is the Wigner interpolation formula[83] which leads to the following expression for

eXC:
2 1/3
XC(p) = __¢ §(_9_') 1, oM
0 = e [4 ) 7 Tea+ry|’ (218)

where 3773 = p~! and qy is the Bohr radius of 0.529177 A.

Formally, the eigenvalues ¢; in the Kohn-Sham Egs. (2.13) have no physical interpreta-
tion. Nevertheless, they are often interpreted as excitation energies. However, the Kohn-
Sham eigenvalues belonging to unoccupied electron states are generally quite different from
experimentally obtained energy levels of unoccupied states. The LDA substantially under-
estimates, e.g., the fundamental gap E, for a large number of semiconductors; see Table
1.1.

2.4 Quasiparticle theory

According to common practice, elementary excitations of a many-electron system are clas-
sified into two categories: particle-like and collective excitations.[66] One can imagine in-
jecting a particle with a particular momentum and energy into (or removing one from) the
system and observing how the system reacts in space and time. We speak of a quasiparticle
if the particle plus its cloud of disturbance is sufficiently long-lived. An excitation that
involves a collective, wavelike motion of the electrons in the system is called a plasmon.
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2.4. Quasiparticle theory

2.4.1 Green’s function theory

The quantum-mechanical treatment of many-electron systems with mutual interaction be-
tween the electrons is very conveniently expressed in terms of Green’s functions. The
(zero-temperature) one-electron Green’s function is defined as the expectation value in the
many-electron ground state of a time-ordered product of a creation and an annihilation
operator (multiplied by —:)[29]:

G(1,2) = —iN|T{p1)p'2)}IN). (2.19)

The normalized time-independent ground state of the system of N interacting electrons is
denoted by |N). The Wick time-ordering operator 7 is defined as

P()YH(2) if ) >ty
—pt@)(1) if tp > 8.

The one-electron Green’s function G(1,2) describes for t; > t, the motion of an added
electron from 7, ¢, to 71,t;, whereas for t, > t; it describes the motion of an added hole
from 7, to 73, t2, in an N-electron system.

Starting from the Heisenberg equation of motion,

TP (R) = { (2.20)

m%yﬂﬂ(ﬁ 1) = WO, H], (2.21)

where [A,B]. = AB — BA is the commutation operation, it can been shown that the
Green’s function G(1,2) of Eq. (2.19) satisfies the following basic equation of the Green
type:

[in-(,% + ;nevf —u(f) — W1 (7)| G(1,2)
—h / d(3)S(1,3)G(3,2) = hé(1,2). (2.22)

Eq. (2.22) is a formal defining equation for the so-called electron self-energy operator .
¥ contains all the exchange-correlation effects of the electrons. If we approximate these
effects by means of the local function v*(7) of DFT-LDA, the function AX(1,3) reduces
to v*C(71)6(1, 3), and the Green’s function G reduces to the LDA Green’s function G:

2
[ih;;—l + %Vf —uf7y) — v (Fl)] G°(1,2) = hé(1,2). (2.23)

Combining Egs. (2.22) and (2.23) one can derive the Dyson equation
G(L2) = G°(1,2)+ [d(3,496°(1,3) [S(3,4) - b (7)5(3,4)] G(4,2). (224)

How the quasiparticle band structure can be related to the self-energy ¥ is treated in
Subsection 2.4.3.
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2.4.2 Hedin’s scheme

Hedin developed a scheme to calculate the self-energy X, based on linear response theory.[44]
He derived a set of five coupled integral equations, namely the Dyson equation for the elec-
tron Green’s function G [Eq. (2.24)] together with four additional equations, reading:

$(1,2) = -;; [ d6,96(,3W 1+, 91,2 4), (2.25)
W(1,2) = (1,2)+ / d(3, 4)u(1*, 3)P(3, )W (4, 2), (2.26)
PA,2) = —% [ 463,961,364, 197,42, (2.27)
T(1,2;3) = 6(1,2)5(1,3)+

/ d(4,5,6, 7)%0(4, 6)G(7,5)I'(6,7; 3). (2.28)

The superscript + in 17 means that we must increment the time variable ¢; by an in-
finitesimally small amount 7. The factor of 2 in Eq. (2.27) is due to spin summation.
Three additional functions occurring in these equations are the dynamically screened in-
teraction W, the polarizability P, and the so-called vertex function I'. As can be seen from
Eq. (2.25), the self-energy ¥ depends both explicitly and implicitly on G.

The Dyson equation and the Hedin equations can be represented in diagrammatic
language. In the diagrammatic equations, see Eqs. (2.29) — (2.33), the solid directed line
denotes the LDA Green’s function G°, the solid directed double line denotes the Green’s
function G, the dotted line denotes the bare Coulomb interaction v, the wiggly line denotes
the dynamically screened interaction W, and the cross denotes minus the LDA exchange-
correlation potential. The resulting diagrams obey well-defined calculational rules[66] by
means of which their contributions can in principle be determined.
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G(1,2) = 1=—2

2(1,2) =

W(1,2) =i~z =

N
+
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N
NV
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I'(1,2;3) =

21
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2.4.3 Quasiparticle band structure

In band structure theory wave functions are labeled with a band index ! and a wave vector
k. To each wave function or state |/, k) corresponds an energy E;(k). The whole of curves
Ey(k) is called the band structure of the solid under consideration.

In order to relate the Green’s function G to wave functions and energies we first define
the Fourier transform of G with respect to time by

G, 7ie) = [ dlts — )G (1,2, (2:34)

It has generally been proved that the Green’s function G of Eq. (2.22) can be written as
[26]

(2.35)

N R GHIL )
GrLre) = B Flice) + in senlRel Bl 2)] — Al

where g is the chemical potential which in the case of a semiconductor is situated in the
energy gap and where the wave functions v, (7} ¢) fulfill the equation

hZ
Ei(k;e) + %VZ — u(F) - vH(f')] Yik(7ie) — R / Er'E (7,7 e)ik(7';€) = 0. (2.36)
Expanding the wave functions 9, x (7€) into plane waves:
- 1 i 7
Yx(Fre) = ﬁ Zdt,k(G; g)e (k+G) , (2.37)
G

where G is a reciprocal lattice vector and 2 is the crystal volume, and Fourier transforming
Eq. (2.35) with respect to the space variables,

1 ) . . "o
CGoolke) = 5 [ & [ dre®rORG(, 7y )ikt 67, (2.38)

one obtains

A (G;e)d} (G
Goa(ke) = hY (G 2)dip (G €)

7 € — Ei(k;e) + in sgn[Re{Ey(k; €)} — ]’ (2.39)

Thusfar no approximations for the Green’s function G have been made. The so-called
quasiparticle approximation follows if it is assumed that the function G of Eq. (2.39) has
simple poles at the quasiparticle energies E;(k) = E(k; E;(k)). The (possible) singularities
due to the non-analyticity of d;x(G;¢) or Ey(k;e) will be disregarded. The corresponding
quasiparticle approximation of G is then obtained by putting

dix(G)d;y (G)
€ — Ey(k) + in sgn[Re{E;(k)} — 4]’

Gga(kie) ~ hY gk (2.40)
1
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with

_ 8El(k, 6)
=

-1
) ; (2.41)
e = Ey(k)

where g, is the wave-function renormalization factor. The corresponding quasiparticle
band structure equation, with which d; x(G) and E;(k) can be obtained, reads:

[:—m(k +G)? - Ez(k)] dx(G) +

Y [ree + o) +hSea(k EK)] dr(G) = o (2.42)
%

where the Fourier transform with respect to the space variables has been applied; g g (k; €),
for instance, is the Fourier transform of the self-energy. Generally, ¥ is non-Hermitian and
therefore the resulting eigenvalues E;(k) of Eq. (2.42) can be complex.

2.4.4 The GW approach

By approximating the vertex function I'(1, 2; 3) of Eq. (2.28) by 6(1, 2)6(1, 3), the first-order
expansion of 2 and zeroth-order expansion of P in terms of W are obtained, to which we
will refer as (Hedin’s) GW approach. This leads to the following space-time expression of
P, which is the so-called “random-phase approximation” (RPA) polarizability:

PRPA(R 7 4) = —2iG(F, 7', t)G(7', 7, —t), (2.43)
while the space-time expression for the GW self-energy ¥ reads:
N7, 75 1) = iG(F, 7' )W (7, 7'; t). (2.44)

The name “GW? is clear from Eq. (2.44). In most actual practice of GW calculations the
Green’s function G of Eq. (2.40) is further approximated by the noninteracting Green’s
function G° (i.e., the GW approach is applied non-self-consistently):

o lie) =Y — (DAl

€~ €l(k) +1n Sgn{gl(k) _ N], (2.45)

where £, and df are the energies and plane-wave coefficients, respectively, of the starting
point wave functions obtained within the LDA. Concerning W, often a plasmon pole model
(PPM) is employed that provides an analytical approximation for its energy dependence
in order to facilitate the calculations; see, for instance, Refs. [50, 64, 73, 84]. The GW
approach has already been proved to be of great practical importance for quite a number
of substances. Moreover, by calculating an exchange-correlation potential from the GW
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self-energy, it was shown in Ref. [35] that the interpretation of the one-electron DFT-LDA
band structure as quasiparticle energies is not only invalid for the LDA, but is in fact
inherent to DFT. More details on the GW approach can be found in a recent review article
by Aryasetiawan and Gunnarsson(1].

In Chapter 3 we will apply the GW approach to three hexagonal polytypes of SiC,
i.e. 2H, 4H, and 6H SiC, semiconductors with 4, 8, and 12 atoms in the primitive unit
cell, respectively, in order to check whether the GW method also works for these rather
complicated semiconductors. In this connection, we will make use of the PPM of Engel
and Farid[25] in order to model the energy dependence of W. We will find that the GW
method yields very good results for these SiC polytypes.

2.4.5 Higher-order corrections

In view of the apparent success of the GW theory in the case of semiconductors, also
when applied to polytypes of SiC, the question arises where this success originates from.
Obviously, the higher-order contributions to ¥ and P not considered within GW will
either have to cancel each other or will have to be small individually. Summation and
actual calculation of the remaining diagrams has been out of the question thusfar; the
convergence properties of the series of higher-order contributions, arranged in the order in
W, are not clear. In the more simple system of the homogeneous electron gas[76] there
are, however, indications that so-called self-consistency corrections and vertex corrections
show the tendency of cancelling each other to a high degree. In the case of a quasi-one-
dimensional model semiconductor[37] the cancellation effects are, in a way, more subtle.
It was reported in Ref. [37] that the inclusion of the first-order corrections to both ¥
and P leads only to a small change in the calculated quasiparticle gap of the quasi-one-
dimensional model semiconductor, compared to its GW gap. Furthermore, it was shown
that a relatively large change occurs if the first-order corrections are not added to P but
only to X. In view of these results it is worthwhile to investigate whether such cancellations
also occur in realistic systems such as the semiconductor Si and insulator diamond. Both
a positive as well as a negative answer to the question whether such cancellations occur
can be considered to be extremely helpful in the search for a better understanding of the
success of GW.

In Chapter 4 we calculate the contributions to X due to all diagrams which are of second
order in W. We also investigate the contributions to P which are of first order in W; this
“improved” P is furthermore used to calculate an “improved” W. Again we will use the
PPM of Engel and Farid[25] for the energy dependence of W. For completeness it should
be noted that, when considering ¥ to second order in W, it is consistent to consider the
second-order Hartree correction diagrams as well. This will be carried through in Chapter
4. However, the total contribution from the additional diagrams is very small due to the
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fact that the LDA ground-state density is extremely close to the exact one. The result of
our calculation in Chapter 4 for the semiconductor Si and insulator diamond is that the
additional diagrams to P largely cancel each other, while the additional diagrams to X do
not cancel each other to a sufficient degree. The latter is an intriguing and unexpected
result.
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Chapter 3:
Ab initio quasiparticle energies in 2H,
4H, and 6H SiC

Published in R.T.M. Ummels, P.A. Bobbert, and W. van Haeringen, Phys. Rev. B 58,
6795 (1998).[79]

Abstract

Ab initio quasiparticle energies are calculated for the 2H, 4H, and 6H polytypes of SiC within
the GW approximation for the self-energy. The starting point is a calculation within the
pseudopotential local-density approximation framework. The calculated fundamental gaps
of 3.15, 3.35, and 3.24 eV for 2H, 4H, and 6H SiC, respectively, show very good agreement
with experimental data. The energy dependence of the screened interaction is modeled by a
plasmon pole model from which the plasmon band structures are obtained.

3.1 Introduction

SiC polytypes are wide-band-gap indirect semiconductors with a relatively large variation
in electronic band-gap magnitude, compared to other wide-band-gap materials such as the
II-VI compounds ZnS and CdS. In 1964 Choyke et al.[17] found, covering seven polytypes
of SiC excluding the 2H polytype, that the experimental fundamental band gap varies
roughly linearly with the degree of hexagonal nature (k) for polytypes up to h = 50%. It
was recently shown[4, 7, 41] that this variation can be very well reproduced in a model
that treats the polytypes as different stackings of mutually twisted cubic SiC layers with
appropriate boundary conditions at the layer interfaces. The electronic structure of cubic
(3C, or ) SiC is then taken as the starting point. The essential mechanism of the band-gap
formation can be described within an even more simple Kronig-Penney-like model.[6, 7, 41]
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Of course, a more fundamental treatment of the electronic structure should display the
same band-gap variation. Indeed, calculations based on the local-density approximation
(LDA) of density-functional theory (DFT) show such a variation; see Ref. [53] and ref-
erences therein. However, the size of the LDA gaps is much too low due to a nowadays
well-known deficiency of DFT[34], which is not in conflict, however, with the exact char-
acter of DFT applicable to the ground state. This deficiency can be cured by replacing
the local and energy-independent exchange-correlation potential within DFT by a nonlocal
energy-dependent self-energy obtained within the GW approximation.[1, 34, 35, 44, 49, 64]
Such an approach was followed for the cubic polytype of SiC leading to excellent agreement
with experiment.[5, 7, 73] Wenzien, Kackell, Bechstedt, and Cappellini[81] (WKBC) have -
performed simplified GW calculations for 3C, 2H, 4H, and 6H SiC. The simplifications in-
volve the use of a model dielectric function and an approximate treatment of the so-called
local-field effects. The resulting fundamental gaps, calculated at the theoretical lattice
constants, show good agreement with experiment for 3C and 6H SiC, while the agreement
is reasonable for 4H and 2H SiC: 3.68, 3.56, 3.25, and 2.59 eV for 2H, 4H, 6H, and 3C SiC,
while experimental values are 3.33, 3.28, 3.10, and 2.42 eV, respectively. The latter values
are absorption gaps[17, 68] that are, except for 2H SiC, corrected for measured exciton
binding energies.[23, 75]

The aim of the present paper is to perform GW calculations for the 2H, 4H, and 6H SiC
polytypes without the approximations made in Ref. [81] and to investigate whether possibly
better agreement with experiment can be obtained. Since the fundamental band gaps of
the crystals under consideration are accurately known experimentally, such an investigation
can shed more light on the reliability of the GW method. For the energy dependence of the
screened interaction appearing in the GW method we utilize a plasmon pole model (PPM),
yielding as an interesting by-product the plasmon band structure, which can be subjected
to experimental verification.[25] A previous application of this plasmon pole model to 3C
SiC yielded quasiparticle energies and a lowest plasmon energy in excellent agreement with
experiment. [5]

In Sec. 3.2 we will give a description of some theoretical and calculational details. In
Sec. 3.3 we will give the results of the plasmon band structures and GW quasiparticle
energies. For the latter results we have concentrated on energy levels around the band
gap, at specific points in the first Brillouin zone (1BZ) of 2H, 4H, and 6H SiC; see Fig. 3.2.
We conclude briefly in Sec. 3.4.

3.2 Theory

As input to our GW calculations we use wave functions and energies |/, k) and ¢;(k),
respectively, obtained within the framework of the LDA. Here k is a wave vector in the 1BZ
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and [ is an electron-band index. The closeness of the quasiparticle (QP) wave functions in
the GW approximation and the LDA wave functions was demonstrated in various cases|35,
49] and we assume that the same is true in the present case, so that we can replace QP
by LDA wave functions. Using a first-order expansion of the self-energy operator £(k;¢),
where ¢ is the energy, around the LDA energies one finds for the QP energies

EXP (k) = gi(k) + Zypll, k | —v*C + hZX (k) + h2C(k; (k) | 1, k), (3.1)

where Z; i is the so-called wave-function renormalization factor, given by

-1
| L, k)) . (3.2)
e = gi(k)

In Eq. (3.1) Z*(k) is the exchange, or Fock, part of the self-energy operator and ¢ (k;¢)
the energy-dependent correlation part. The exchange-correlation potential v*C can be
interpreted as the self-energy in the LDA and hence has to be subtracted in Eq. (3.1).
Within the GW approximation the self-energy is approximated by the product of the
electron Green’s function G and the screened interaction W (multiplied by ¢). In line
with common practice, we approximate the electron Green’s function by the LDA Green’s
function and evaluate the screened interaction W in the random-phase approximation
(RPA). For the energy dependence (w dependence) of the screened interaction we use
the PPM of Engel and Farid.[25] This PPM yields in the limit w — 0 the correct static
expression for the screened interaction and ensures in the limit w — oo satisfaction of the
Johnson f-sum rule.[51] With these approximations, we find for the correlation part in
Eq. (3.1)

C(1.
l,k| 62 (;{76)

Zix = (1 -

@kmwwmu¢>=/"m PIRDS

18z (27)3 I'cEB mePB
« , 2
|26 g(G) Tar diiye_o(G' — G)dly (G)
e —er(k — q) + [wm(q) — inlsgn[p — ex(k — q)]

(3.3)

In this expression, EB denotes the electron bands, PB denotes the plasmon bands, 7 is
an infinitesimally small positive energy, and p is the chemical potential, which in the
case of a semiconductor is situated in the energy gap. The d}}(G) (G is a reciprocal
lattice vector) denotes a plane-wave coefficient of the LDA wave functions. The plasmon
coefficients wm, q(G) and energies wy,(q) follow from a generalized eigenvalue problem.[25]
A theoretical exposition of this particular PPM is being postponed till Chapter 4. Contrary
to other plasmon pole models, which merely serve to give an analytic approximation of
the energy dependence of the screened interaction, the plasmon energies of the used PPM
can be interpreted physically, at least for the lowest-lying plasmon bands.[25] If nonlocal
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pseudopotentials are used, as we have done, it can be shown that the f-sum rule is not
exactly obeyed.[24] However, in Ref. [78] it has been concluded that this violation has only
a minor effect on QP energies.

In the numerical implementation, wave-vector integrations such as in Eq. (3.3) are
replaced by discrete sums. These summations will be performed over the grid

q= (n1b1 =+ ’I’L2b2 -+ n3b3)/2Ng, (ni = —Ngr + 1, A ,Ngr), (34)

with q reduced to the 1BZ if necessary. The b; are the primitive vectors of the recip-
rocal lattice. The integrands of the contributions from ¥* and € [see Eq. (3.3) for the
expectation value of the latter] have a singularity if the wave vector in the Brillouin zone
integration vanishes (q — 0). This singularity is integrable and is handled analytically in a
way similar to that described in Appendix B of Ref. [18]. The only difference is that in the
calculation of the contribution of the singular part of the integrand instead of a spherical
region an ellipsoidal region is used, which is better adapted to the hexagonal unit cells of
the crystals under consideration.

The static dielectric constant e, is defined by € = 1/limg—o {¢ ™ (q;w = 0)}g_g q'—0>
where € is the dielectric matrix and is anisotropic in the case of hexagonal symmetry: The
transversal (i.e., perpendicular to the ¢ or k, axis of the hexagonal Brillouin zone) static
dielectric constant €, is generally not equal to the longitudinal (i.e., parallel to the ¢ or
k. axis) static dielectric constant €. For instance, for 6H SiC the experimental values are
6.52 and 6.70, respectively, while for 3C SiC the isotropic value of 6.52 applies.[61] In the
simplified GW scheme of WKBC some anisotropic effects of the static dielectric constants
were incorporated: The available transversal and longitudinal static dielectric constants
of 6H and 3C SiC were used to obtain the ones for 2H and 4H SiC by extrapolation as
a function of h. However, it is not evident that the dielectric constants of hexagonal
polytypes should vary linearly with h. We use ab initio LDA-RPA dielectric matrices as
input. In principle, the anisotropy in the limit q — O in the integrand of Eq. (3.3) could
be dealt with. However, because of the fact that the anisotropy is small (for 6H SiC, for
instance, it is about 3%) we ignore it altogether and calculate the dielectric matrix and the
screened interaction for q — 0 in one particular direction. In order to check the validity
of this procedure we have investigated the dependence of the calculated QP energies upon
this direction and concluded that it is negligible for the materials under consideration.

3.3 Results

In our calculations we used energies and wave functions obtained from well-converged
pseudopotential LDA calculations carried through in a plane-wave basis set with a cutoff
of 50 Ry, corresponding to the number of plane waves Npw of 1689, 3355, and 5057 for
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2H, 4H, and 6H SiC, respectively. To calculate the charge density from the wave functions
eight special points in the full irreducible wedge of the 1BZ were used, generated according
to Pack and Monkhorst.[67] We used the experimental hexagonal lattice constants[61]
a=3.0763 A and ¢ = 5.0480 A for 2H SiC, a = 3.073 A and ¢ = 10.053 A for 4H SiC, and
a = 3.0806 A and ¢ = 15.1173 A for 6H SiC. The distance between the Si and C atom in
each Si-C pair was taken equal to the ideal value 3¢/4p for the polytype pH. The deviations
from this ideal value are less than 0.3%.[11, 53] The implemented parametrization of the
ab initio nonlocal ionic norm-conserving pseudopotentials was that of Bachelet, Greenside,
Baraff, and Schliiter.[3] The exchange-correlation potential v*C was represented with the
Wigner interpolation formula.[83]

In the calculation of the expectation values and their energy derivatives of the corre-
lation part and the expectation values of the exchange part of the GW self-energy [see
Egs. (3.1) — (3.3)] the number of q points in the wave-vector summations [see Eq. (3.4)]
was taken to be 216 (Ng = 3) for 2H and 64 (N = 2) for 4H and 6H SiC. In the
calculation of the RPA dielectric matrices the same numbers were used, except for the
zero-wave-vector limit in the case of 2H SiC for which the number of q points was taken
to be 512 (Ng = 4). In the calculation of the RPA dielectric matrices and the expectation
values and their energy derivatives of the correlation part of the self-energy, both Npw and
the numbers of electron bands (and plasmon bands in the latter case) taken into account
were 287, 563, and 851 for 2H, 4H, and 6H SiC, respectively. In the calculation of the
expectation values of the exchange part of the self-energy and the exchange-correlation
potential in Eq. (3.1) we took Npw = 391, 813, and 1211 for 2H, 4H, and 6H SiC, respec-
tively. With these cutoffs our calculated QP and plasmon energies are converged to within
0.05 eV for 2H SiC and 0.1 eV for 4H and 6H SiC. The g — 0 limit of the dielectric matrix
and screened interaction was taken along the I' — A axis (see Fig. 3.2). For 2H SiC we
have investigated the influence of the anisotropy of the dielectric function on our calcu-
lated GW quasiparticle energies by taking q — 0 along other directions than I' — A. The
resulting deviations in the GW quasiparticle energies were only about 0.02 eV. The effects
of anisotropy in 4H and 6H SiC are expected to be even smaller. As a test of our computer
code we recalculated the QP and plasmon energies of 3C (cubic) SiC in the hexagonal 6H
unit cell and checked our results against those of Ref. [5].

In Fig. 3.1 we have plotted for 2H, 4H, and 6H SiC the two lowest-lying plasmon bands
(obtained from the generalized eigenvalue problem of Ref. [25]) as a function of the wave
vector at the high symmetry axes A-L-M-T-A in the 2H, 4H, and 6H 1BZ, respectively.
The lowest plasmon energy, which occurs at T', is shown to vary barely with the polytype:
22.40, 22.42, and 22.30 eV for 2H, 4H, and 6H SiC, respectively. Only one experimental
value of the lowest plasmon energy for both 3C SiC and noncubic polytypes of SiC is
known to us, namely, 22.1 eV.[71] The calculated values agree well with this experimental
value. It would be interesting to compare our plasmon dispersions with experimental data.
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However, as far as we know, measurements of plasmon dispersions for the SiC polytypes
have not yet been reported on in the literature.

27.0

26.0

25.0

Plasmon energy (eV)

A L M r A

Figure 3.1: Calculated dispersion of the two lowest-lying plasmon bands along
some symmetry axes of the hexagonal 1BZ (see Fig. 3.2). The filled circles
indicate the actually calculated values. The plotted plasmon energies at T
were obtained by taking the zero-wave-vector limit along the I' — A axis.
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Our LDA and QP energies for 2H, 4H, and 6H SiC for the highest valence band and the
lowest conduction band at some high symmetry points in the 1BZ are listed in Table 3.1,
together with the corresponding results of WKBC and the experimental data. It is known
that in 6H SiC a camel’s back structure for the lowest conduction band along the L— M axis
exists, but, based on the results of Ref. [60], we assume that taking the lowest conduction
band at the M point leads only to a minor error in the calculated GW fundamental gap
for 6H SiC. Our calculated GW fundamental band gaps are 3.15, 3.35, and 3.24 eV for
2H, 4H, and 6H SiC, respectively. In comparing these gaps with the absorption gaps of
3.330 eV for 2H SiC[68] and 3.263 and 3.023 eV for 4H and 6H SiC, respectively,[17] we
have to account for the exciton binding energies. For 4H and 6H SiC these binding energies
are experimentally found to be 0.020 and 0.078 eV[23, 75], respectively, i.e., smaller than
the accuracy of our GW calculations. For 2H SiC no value for the exciton binding energy
is known to us, but it is hard to believe that the value for this binding energy would
be larger than the above-mentioned values. The agreement between our results and the
experimental results is very good. The largest difference is found for 2H SiC: 0.18 eV.
In Fig. 3.3 we have collected fundamental gap values of the present work, of WKBC, of
Rohlfing et al.,[73] and of Backes et al.,[5] and the experimental fundamental gaps in a
plot of gap versus h. It is clearly seen that the results of the simplified GW calculations
of WKBC are in general not as good as those of the more rigorous calculations of the
present work and Refs. [5] and [73]. For 6H SiC (one of the polytypes for which WKBC
applied the model dielectric function using the available experimental dielectric constants)
the result with regard to the fundamental gap is of comparable quality. Concerning the
GW values of indirect gaps other than the fundamental gaps, the differences between the
results of WKBC and the present work are larger than for the fundamental gaps. It would
be interesting to compare the calculated values with experimental values for these other
indirect gaps, but we are not aware of such measurements. As far as dielectric constants
are concerned, we can only report a reliable value for the longitudinal dielectric constant
€0 Of 2H SiC: 7.23. This value agrees very well with the theoretical value 7.32 reported
in Ref. [16], in which a more systematic study of the dielectric properties of SiC polytypes
was performed, and the theoretical value 7.28 reported in Ref. [54].

3.4 Conclusion

Summarizing, ab initio plasmon band structures and GW quasiparticle energies have
been presented for the 2H, 4H, and 6H polytypes of SiC. Our calculated GW fundamental
band gaps are 3.15, 3.35, and 3.24 eV for 2H, 4H, and 6H SiC, respectively; see Table 3.1.
Our GW quasiparticle energies improve those of previous simplified GW calculations and
are in very good agreement with experimental values. It has been demonstrated that the
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GW approximation yields reliable predictions of quasiparticle energies also for this class

of materials.
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Figure 3.2: Hexagonal Brillouin zone, with a and ¢ the hexagonal lattice con-
stants. Some hexagonal high symmetry points are indicated.

Table 3.1: Quasiparticle energies (in eV) at some high symmetry points of
the hexagonal Brillouin zone for 4H and 6H SiC. Results of the present study
(also the LDA results are given) as well as those of WKBC are included. The
included experimental energies are corrected for exciton binding energies. All
energies refer to the valence-band top (T's,), which is set at 0 eV.

6H ‘ 4H
Lk LDA Present WKBC Expt. | LDA Present WKBC Expt.
Cew 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I 5.10 6.57 6.95 5.15 6.44 6.92
As 6 -0.08 -0.09 -0.09 -0.20 -0.22 -0.20
Ay e 5.17 6.64 7.02 5.36 6.65 7.14
My, -1.04 -1.11 -1.40 -1.06 -1.15 ~-1.23
My, 1.82 3.24 3.25 3.10 2.08 3.35 3.56 3.28
Ligsaw | —1.23 -1.33 —1.63 -1.50 -1.61 —1.68
Ly e 1.85 3.29 3.36 2.49 3.80 4.06
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Table 3.1: continued; for 2H SiC. The included experimental energies are not
corrected for exciton binding energies (see the main text).

2H
Lk LDA Present WKBC Expt.
Cey 0.00 0.00 0.00 0.00
T 4.81 5.83 6.66
K,, —-3.84 —4.07 —4.12
Ky, 2.01 3.15 3.68 3.33
H, -167 -1.83 -—1.83
H,, 4.99 6.13 6.86
As go -0.70  —0.78 —0.75
A 3e 5.90 6.96 7.81
My, —-1.14 —-1.25 —-1.13
M. 2.57 3.67 4.28
Ligsaw | —2.29 -248 -2.30
L3 3.16 423 4.85
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Figure 3.3: Fundamental gap versus percentage hexagonality (h). The results
of the present study and the result of Ref. [5] for 3C SiC are indicated by filled
circles. The result of Ref. [73] for 3C SiC is indicated by a diamond. Results
reported by WKBC are indicated by open circles. The experimental values,
corrected for the exciton binding energies (except for 2H SiC; see the main
text), are plotted as squares. LDA values are indicated by triangles, in order
to show the effect of GW.
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Chapter 4:
First-order corrections to RPA-GW
calculations in silicon and diamond.

Published in R.T.M. Ummels, P.A. Bobbert, and W. van Haeringen, Phys. Rev. B 57,
11962 (1998).[78]

Abstract

We report on ab initio calculations of the first-order corrections in the screened interaction
W to the random-phase approximation polarizability and to the GW self-energy, using a
noninteracting Green’s function, for silicon and diamond. It is found that the first-order
vertex and self-consistency corrections to the polarizability largely compensate each other.
This does not hold, however, for the first-order corrections to the GW gap. For silicon the
compensation between the first-order vertex and self-consistency correction contributions to
the gap is only about 35%, while for diamond it is even absent. The resulting gap values
are significantly and systematically too large, the direct gaps for silicon and diamond being
0.4 eV and 0.7 eV larger than their GW values, respectively. The success of GW in predicting
electronic properties of, e.g., silicon and diamond can therefore apparently not be understood
in terms of “small” corrections to GW to first order in W using a noninteracting Green’s
function.

4.1 Introduction

One of the most successful methods of describing exchange-correlation effects in ab initio
calculations is the random-phase approximation (RPA) GW approach, where the (irre-
ducible) polarizability P is calculated in the RPA and the self-energy ¥ is calculated to
first order in the dynamically screened interaction W.[44, 45] It is remarkable in this con-
nection that non-self-consistent RPA-GW calculations lead to quasiparticle (QP) band
gaps that are in excellent agreement with experiment in the case of a large group of semi-
conductors if the starting point is chosen to be the density-functional theory (DFT) in the
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local-density approximation (LDA). Henceforth we will call this non-self-consistent RPA-
GW approach “standard GW”. The inherent assumption that higher-order corrections
can be neglected is, however, far from obvious.

The inclusion of vertex (V) and so-called self-consistency (SC) corrections to ¥ and P
has been studied by a number of researchers, mainly for the homogeneous electron gas.
Hubbard[47] introduced the corrections to the RPA by means of a local-field factor (not
to be confused with the so-called local-field effects to be introduced later on). In the
electron gas case much effort has gone into obtaining expressions for local-field factors in
the dielectric function; see, for instance, Refs. [14] and [45]. DuBois[22], whose work can
be considered as an extension to the work of Gell-Mann and Brueckner[32, 33], stresses
the importance of taking into account all polarizability diagrams of the same order in
the Wigner-Seitz radius r;. He noticed the significant cancellation between V and SC
corrections in the high density limit. Geldart and Taylor[31] found a similar compensation
for the static polarizability. They attempted to construct a local-field factor that includes
SC corrections. Mahan and Sernelius[65], using the local-field factor approach, concluded
that the effects of V corrections to the bandwidth of the homogeneous electron gas nearly
cancel when added to both the self-energy and the polarizability, as was already predicted
by Rice[72].

In a recent paper of Shirley[76] a self-consistent GW (SCGW) calculation is reported
on for the homogeneous electron gas, in which, however, a fixed screened interaction is
employed. The resulting bandwidth is found to be appreciably larger than the (assumed)
more correct standard GW value. A similar result is obtained by von Barth and Holm[9)],
who performed a full SCGW calculation by including the screened interaction in the self-
consistency procedure. Shirley[76] furthermore reports on a nearly self-consistent calcula-
tion to second order in the screened interaction W, i.e., by incorporating, apart from the
GW diagram, also the first-order vertex correction diagram to GW. The employed Green’s
function G in this calculation is the one obtained from his SCGW calculation, however.
The resulting bandwidth in this latter calculation is found to be very close to the standard
GW value. This is indicative for a strong compensation between V and SC corrections,
fully in line with arguments put forward in Refs. [10] and [80].

Calculations for inhomogeneous systems are much more difficult to perform, which
explains that the situation concerning corrections to standard GW is much less settled for
such systems. In Ref. [36] a full SCGW calculation was presented for the relatively simple
case of a quasi-one-dimensional semiconducting wire. It resulted in a value for the band gap
that is large compared to the standard GW band-gap value. The obtained result appears
to be completely at variance with the much smaller band gap obtained in the quantum
Monte Carlo (QMC) calculation for this system presented in Refs. [56] and [57]. The QMC
value should for reasons of principle lie close to the “exact” band-gap value; it appears
to be close to the standard GW value. The apparent difference between the SCGW and
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QMC results strongly points to the need of including vertex corrections in the former type
of calculation, like the SCGW result for the electron gas in Refs. [9] and [76]. Indeed, in
Ref. [37] it was found that the band gap is much closer to the standard GW band gap and
the QMC band gap, if all first-order corrections to both the RPA polarizability and the
GW self-energy are systematically included.

As far as calculations on real semiconductors are concerned, we note that Hanke and
Sham [42] included V corrections to the RPA polarizability for a covalent crystal (diamond),
using the bare Coulomb interaction instead of the dynamically screened interaction. Con-
cerning the importance of vertex corrections to the self-energy, Daling and van Haeringen
(18], Daling et al.[19], and Bobbert and van Haeringen [13] conclude that the effect of the
first-order vertex correction to the standard GW self-energy on the direct band gap at the
I' point of silicon is relatively small. The former results[18, 19] were obtained by using
the bare Coulomb interaction, the latter [13] by using the dynamically screened interac-
tion. Del Sole, Reining, and Godby[20] have arrived at a similar conclusion for silicon
on the basis of a so-called GWT calculation, which incorporates in an approximate way
vertex corrections to the self-energy as well as to the polarizability, by means of the func-
tional derivative of the exchange-correlation potential in DFT with respect to the density.
Bechstedt et al.[11] have shown that dynamical effects due to vertex corrections and self-
consistency corrections to the strength of the optical absorption (and correspondingly P)
largely cancel for silicon and diamond.

The present work can be seen as an extension of Ref. [37] and also of Ref. [13]. The aim
is to contribute further to the understanding of the success of standard GW. In considering
possible improvements to standard GW, Hedin[44] argues that one should preferably take
¥ to nth order in W if P is taken to order n—1 in W, provided both ¥ and P are taken self-
consistently. In view of the complexity of dealing with self-consistency and higher-order
corrections, we will restrict ourselves to the investigation of the effect of including the first-
order corrections in W to standard GW as well as to the RPA P. Not a self-consistent
Green’s function, but the LDA Green’s function will be employed in this investigation.
Two aspects concerning the screened interaction W are essential in an accurate evaluation
of QP energies for semiconductors: first, its energy dependence, and, second, the off-
diagonal matrix elements of P in the employed plane-wave basis set, giving rise to the
so-called local-field effects (LFE). Both dynamical screening and LFE will be included in
our calculations. The energy dependence of the dynamically screened interaction will be
modeled by means of the plasmon pole model (PPM) of Engel and Farid [25]. We will
consider three kinds of calculations: (i) calculation of the first-order V+SC correction to
the RPA polarizability using the RPA screening, (ii) calculation of the first-order V4+SC
correction to the GW self-energy using the RPA screening, and (iii) calculation of the
GW self-energy and its first-order corrections using the corrected screening from (i). The
calculation of these corrections to standard GW is done for both silicon and diamond, with
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emphasis on the energy levels around the band gap.

The paper is organized as follows. In Section 4.2 we will discuss the diagrams that
have to be taken into account for P and ¥ and we will give a short description of some
calculational details. In Section 4.3 we will give the results. In Section 4.3.1 we will focus
on the polarizability. In Section 4.3.2 results for the self-energy are given, concentrating on
energy levels around the band gap. A few checks are carried through in Section 4.4. Section
4.5 contains a further discussion concerning the SC self-energy correction. In Section 4.6 we
report on a remarkable cancellation between a particular group of second-order corrections
to the LDA energy gap. Section 4.7 is devoted to the discussion of our results.

4.2 Theory

The RPA polarizability diagram as well as its first-order correction Feynman diagrams
are depicted in Fig. 4.1. The GW self-energy diagram as well as its first-order correction
Feynman diagrams are depicted in Fig. 4.2. Diagrams SC1 — SC4 are the first-order
self-consistency diagrams since they have self-energy insertions in the Green’s functions,
taking into account self-consistency effects to first order. The cross in diagrams SC2 and
SC4 denotes minus the LDA exchange-correlation potential, —v*C. These latter diagrams
should be included when the LDA is the starting point because v*C can be considered
as the self-energy in the LDA, which should be canceled out. Diagrams SC3 and SC4 of
Fig. 4.2 are self-energy corrections due to the first-order corrections to the valence charge
density. We will henceforth call these latter diagrams SC Hartree diagrams. Diagram V is
the first-order vertex correction diagram.

In the evaluation of the corrections to the wave-vector-dependent and energy-dependent
polarizability Pg g (k;w) and self-energy X g/ (k;w) in a plane-wave basis (G and G’ are
reciprocal lattice vectors, k is the wave vector, and w is the energy) one wave-vector
integration can be reduced to an integration over the k-dependent irreducible wedge Zj.
The second wave-vector integration, if present, cannot be reduced and has to be performed
over the whole first Brillouin zone (1BZ). Furthermore, in our calculations, wave-vector
integrations have been replaced by a discrete sum over the wave vectors of the grid

q= (nlbl + noby + ’71131)3)/21\%r (TLZ = _Ngr +1,..., Ngr)’ (41)

with q reduced to the 1BZ if necessary, where b; are the primitive vectors of the reciprocal
lattice. A specific g-point set will be identified by giving the number N,,. The integrand
pertaining to a particular correction may have a singularity if the wave vector in an inter-
action line goes to zero. Such singularities are all integrable and are handled analytically
in a way described in Appendix B of Ref. [18].
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Figure 4.1: RPA polarizability plus the first-order corrections to it. SC1 —
SC4 denote the first-order self-consistency corrections. V denotes the first-
order vertex correction. The solid directed line denotes the LDA Green’s func-
tion. The cross denotes —v*C. The wiggly line denotes the RPA dynamically
screened interaction.
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Figure 4.2: GW self-energy plus the first-order corrections £Y+5C. The dot-
ted line denotes the bare Coulomb interaction. The wiggly line now denotes
the dynamically screened interaction obtained with either the RPA or the
RPA+V+SC polarizability; see Fig. 4.1.
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The energy-dependent screened interaction Wg ¢/(q;w) can be written as (shorthand

notation)
W =v+oyxv =v+ W, (4.2)

where x is the full polarizability matrix and v is the bare Coulomb interaction, vg g/(q) =
€’8g g'/(€la + G|?). We use SI units: e is the electron charge and € is the vacuum
permittivity. The full polarizability x is related to the (irreducible) polarizability P by

x =P —vP)7}, (4.3)

where I denotes the unit matrix. We will use a representation for the screening part of
W, W*, that is analogous to the Lehmann representation for the noninteracting (LDA)
Green’s function GO

0 (Q)dF(C)
0 (k- =} Lk L.k
Goa (kiw) =R o senler () — A

(4.4)

where the infinitesimally small positive energy 7 ensures the correct causal behaviour,
 is the chemical potential, which in the case of a semiconductor is situated in the en-
ergy gap, and ¢; and df are the energies and plane-wave coefficients, respectively, of the
starting point wave functions, for instance, obtained within the LDA. Engel and Farid[25]
developed a plasmon-pole model (PPM) that provides an analytical approximation for the
energy dependence of the dynamically screened interaction W*, such that energy inte-
grals occurring in expressions for the self-energy and the polarizability can be carried out
analytically. The wave-vector-dependent plasmon energies wy,, in this PPM are obtained
from the generalized eigenvalue problem[25] (in matrix notation)

(65 = 0) X = =5 5 M(2) X (45)

If the eigenvectors X, q of Eq. (4.5), with components ., 4(G), are normalized according

to xf, oM(q)Xpnq = 6mn and satisfy the completeness relation 3, XmaqXhq = M (q),

then the following plasmon pole description for W5 can be derived[25]:

, 1 1
Wee (aw Zwm,q (G){w_wm(q)m—wwm(q)_in}, (4.6)
where W, q = 2(qQ)M(Q)Xm,q/\/2wm(q). Within this particular PPM y is approximated
by X,
Maw) = (M (@ +x (Gw=0)}". (4.7)
For w = 0 the model full polarizability ¥ obviously coincides with x. Further, the correct
w — oo limit can be obtained by inserting a properly chosen matrix M. In connection
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with the application of plasmon pole models it is desirable [49, 64] to satisfy the Johnson
f-sum rule[51]. When using a local one-electron Hamiltonian, this leads to

Moe (@) = (a+C)a+ G s o (4.9

where pg are Fourier components of the valence charge density. The Johnson f-sum rule
and, accordingly, Eq. (4.8) are not exact, however, if the Hamiltonian contains a nonlocal
ion pseudopotential. This is pointed out in Refs. [24] and [49]. The resulting violation of
the Johnson f-sum rule may very well be of importance in the evaluation of corrections
to the GW self-energy.[27] The correct matrix M can easily be obtained by combining
Egs. (4.3) and (4.7) for w — oo:

Mg g (q) = lim w*Pg g (g;w) (4.9)

and extracting the w — oo behaviour of the polarizability P. In this limit the leading term
of P is proportional to 1/w?. In Section 4.3.2 we will investigate the effects of the violation
of the Johnson f-sum rule. The standard GW band gap of semiconductors calculated
with the PPM based on Eq. (4.8) is in excellent agreement with experiment for silicon and
diamond [see Section 4.3.2], 3C SiC [5, 73], and 2H, 4H, and 6H SiC [see Chapter 3 of this
thesis].

When splitting the screened interaction W into its static part v and dynamic part W5
and by taking into account each possible time order of the internal and external points of a
diagram, specific subdiagrams of ¥ and P can be identified. For the polarizability diagram
V of Fig. 4.1 we get a total of 30 subdiagrams. This can be seen as follows: There are 3!
possible time orders if the bare Coulomb interaction v is taken and 4! possible time orders
if W is taken. For diagrams SC1 plus SC3 of Fig. 4.1 there are 2 x 30 subdiagrams,
while diagrams SC2 plus SC4 lead to 2 x 3! subdiagrams. For the self-energy diagram
V of Fig. 4.2 there are 38 subdiagrams (for more details see Ref. [13]). For diagram SC1
of Fig. 4.2 there are also 38 subdiagrams, for diagram SC2 2!4-3! subdiagrams, and for
diagrams SC3 and SC4 2!4+3! and 2! subdiagrams, respectively.

In Appendix A the contribution pertaining to one specific subdiagram of the first-order
vertex correction polarizability diagram, diagram V in Fig. 4.1, is given as an example. We
want to emphasize that the head element (HE) (G = 0 and G’ = 0) and the wing elements
(WE) (G =0 or G’ = 0) of the polarizability matrix Pg @' (k;w) have to be treated in a
special way for k — 0 in the case of semiconductors. In the case of the RPA polarizability
the HE has a |k|? proportionality and the WE have a linear k proportionality for k — 0,
leading to the correct screening behaviour of a semiconductor. Individually, none of the
diagrams V and SC in Fig. 4.1 has the property that the HE is proportional to |k|? for
k — 0. Only the sum of these diagrams fulfills this property. Kohn[58] has proved this
for the case that the interaction line represents the bare Coulomb interaction, but it can
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also rather easily be proved for the screened interaction W. We have chosen to tackle the
evaluation of the V+SC polarizability correction in the k — O limit numerically in the
following way: The HE of the V+SC correction is evaluated for three small k vectors and
then fitted according to

APoo(k — 0) := po -+ pilk| + pafk/|*. (4.10)

The WE of the V+SC correction are evaluated for four small k vectors and then fitted
according to
AP())G#()(k — 0) =Py + pzkz + pyky + pzkz. (4.11)

Here pg, p1, p2, P°, PY, and p* are fitting parameters. In Eq. (4.11) the fitting parameters
are G dependent.

Having obtained the polarizability P, the calculation of the dielectric matrix e can
easily be accomplished by evaluating ¢ = I —vP. In the calculation of the dielectric matrix
for k — 0 the 1/|k|? singularity of the HE of the bare Coulomb interaction is canceled by
the |k|?> behaviour of the HE of the polarizability. Likewise the singularity of the WE of
the bare Coulomb interaction is canceled. The macroscopic response to an applied field is
determined by €' rather than e. In accordance with Ref. [50], we define a macroscopic
dielectric function (MDF) by

1
el gw=0)}gq’

The effects of the off-diagonal matrix elements of the dielectric function are often referred
to as the local-field effects (LFE). The macroscopic or static dielectric constant e, is given
by €x = limg_.0 €a(q). For cubic crystals the static dielectric constant is independent of
the direction in which the wave vector goes to zero. In the LDA-RPA the static dielec-
tric constant is generally overestimated in the case of semiconductors; see, for instance,
Refs. [24] and [50].

Since the GW wave functions in silicon and diamond are practically undistinguishable
from the LDA wave functions, it is sufficient to calculate diagonal matrix elements of the
GW self-energy in the LDA basis when evaluating QP energies.[35, 49] In order to account
for the fact that the expectation values should be evaluated at the QP energies, the self-
energy is expanded to first order in the difference between the QP and the LDA energies
to obtain the desired QP energies E" (k), leading to

em(@+G):

(4.12)

EX (k) = (k) + Zuch(lk | £(k; (k) | 1,k), (4.13)
where Z;y is the so-called wave-function renormalization factor, given by
-1
2(k;
Zie = (1 - 11| Z2Ew) LK) ] (4.14)
0wy = a9
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and | [, k) indicates a LDA state with band index [ and wave vector k. In the procedure
of obtaining QP energies we will therefore evaluate both the expectation values A(l,k |
Z(k;e(k)) | I, k) and their derivatives &,

2 (k; w)

5,(k) = ALk | 2 o | ,k). (4.15)

w = e(k)

Here Y will equal either —vXC+AXCW or —pXC 4+ RECGW 4 AEVHSC depending on whether
we are calculating GW or GW+V+SC (GW plus its first order in W corrections) quasi-
particle energies. We will refer to the above method of calculating QP energies as the
“expectation value method”. This method turns out to work well for the GW self-energy
and in Section 4.3.2 we will check its validity for the V+SC self-energy correction. To this
end, the result obtained with the expectation value method will be compared with the
result of an exact diagonalization of the nonlocal, energy-dependent Hamiltonian Hy + /Y.

4.3 Results

In the calculations to be reported on below we used energies and wave functions ob-
tained from a well-converged self-consistent LDA calculation carried through in a plane-
wave basis set with a cutoff of 17 and 45 Ry for silicon and diamond, respectively. We
used the experimental lattice constants[6l] a = 5.43 A and o = 3.57 A for silicon
and diamond, respectively. The implemented parametrization of the ab initio nonlo-
cal ionic norm-conserving pseudopotentials is that of Bachelet, Greenside, Baraff, and
Schliiter.[3] The exchange-correlation potential v*€ is represented with the Wigner inter-
polation formula.[83] Unless indicated otherwise, the matrix M of Eq. (4.8) is used to
obtain Wser. :

Three cutoffs are to be distinguished in the calculations of P and ¥: (i) the number of
plane waves taken into account in reciprocal lattice vector summations and used for the size
of dielectric (and polarizability) matrices Npw, (ii) the number of electron and plasmon
bands taken into account in band summations N, and (iii) the fineness of the k-space
grid in the Brillouin zone integrations Ng; see Section 4.2. For the polarizability as well
as the self-energy Npw = 137 is taken for silicon and Npw = 229 is taken for diamond.
For the RPA polarizability and the GW self-energy, N, is taken equal to Npw. For the
V+SC polarizability correction this number is N, = 29 for silicon and N, = 30 for diamond
(the choice of N, is restricted to specific values due to the degeneracy of bands, which has
to be properly dealt with for k — 0). The contributions to the expectation values and
their energy derivatives § (evaluated at the LDA energies; see Section 4.2) of the V+SC
self-energy correction diagrams have been obtained by using IV, = 65. In the calculation
of the RPA polarizability for k — 0, Ny = 6 for silicon and N, = 4 for diamond is used.
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For other k vectors we use Ny = 3 for silicon and N, = 2 for diamond. Also, the V+SC
polarizability correction is calculated with these latter Ny values for all k vectors. This
holds also for the GW self-energy and its corrections. An exception to this choice of Ng
is made for the V+SC correction in the case of the X and L points of silicon, where we
assumed that N, = 2 would also be sufficient, as it turned out to be sufficient to use
Ng: = 2 for the V+SC correction in the case of the I' point of silicon.

Convergence tests have been performed in order to assess the accuracy of calculated QP
gaps: For silicon, the V4SC correction to the RPA polarizability has also been calculated
by taking Npw = 89 and N, = 50 (Ng = 2). This led to the conclusion that the matrix
elements of the polarizability corrections were nicely converged, while the effect on the band
gap was minor. The V+4SC correction to the GW self-energy for the I point of silicon and
diamond, using RPA screening, has also been calculated by taking N, = 2, together with
taking a smaller Npw (Npw = 89 and 169 for silicon and diamond, respectively) or with
more plasmon and electron bands (N, = 89). For diamond the calculations with RPA
screening were also done for Ny = 3. We claim on the basis of the above-mentioned
convergence tests that the accuracy of reported QP gaps is 0.05 eV for silicon and 0.1 eV
for diamond. In Tables 4.2 and 4.3 we nevertheless express numbers with three decimal
places in order to clarify possible cancellation effects.

4.3.1 First-order corrections to the RPA polarizability

Unless stated otherwise (see Section 4.3.2), we use the PPM described in Section 4.2
based on the matrix M of Eq. (4.8) in which case we can restrict ourselves to the calculation
of the static polarizability Pg g (k;w = 0).

In Fig. 4.3 the RPA, V, and SC contributions to the diagonal elements of the static
polarizability are shown as a function of the absolute wave vector [k + G|. The scatter-
ing of the points in this figure reflects the anisotropy. One observes that the V and SC
contributions compensate each other to a very large degree. The V contribution has the
same sign as the RPA polarizability, while the SC contribution has the opposite sign. In
absolute value both corrections are roughly 75% of the RPA. The compensation between
V and SC is such that the diagonal matrix elements of the RPA+V+SC polarizability are
in absolute value a little bit larger than the RPA ones (about 15%). Also in Ref. [37] this
compensation was seen for the quasi-one-dimensional semiconducting wire, although the
compensation was less complete there. In Fig. 4.3 the constant terms for k — 0 (G = 0)
for the V and the SC contributions are also given. They are clearly seen to cancel. This
is in agreement with Ref. [58], where it has been shown that, for semiconducting crystals,
Po,o(k;w) is proportional to |k|* for small |k|.

In Fig. 4 we have plotted the difference between the RPA+V+SC and the RPA MDF
as a function of the absolute wave vector |k + G|. For the definition of the MDF, see
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Figure 4.3: Compensation between V and SC corrections to the diagonal el-
ements of the static polarizability (in Rydberg atomic units) for silicon and
diamond. The constant contributions to the HE of the polarizability matrix
for k — 0 are also given (the [k + G| = 0 axis).
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Figure 4.4: RPA+V+SC macroscopic dielectric function (MDF) as well as
the difference between the RPA+V+SC and the RPA MDF for silicon and
diamond. The definition of the MDF is given in Eq. (4.12). By €,, we mean
exTATVISC . The value of €, — e for |k + G| — 0 is —2.4 for silicon and

—0.3 for diamond (see main text).
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Eq. (4.12). The correction is negative for small |k + G| and positive for larger |k + G|.
Our obtained RPA+V+SC static dielectric constant is €, = 10.4 and 5.3 in our best
calculation for silicon and diamond, respectively, to be compared with our RPA values
of 12.8 and 5.6 and with experimental values 11.4[28, 63], 11.7[55] and 5.5[55], 5.7[70].
So by incorporating the V+SC polarizability correction, we find a decrease in the static
dielectric constant. This is contrary to previous results in cases in which the local-density-
functional formalism is used to go beyond RPA, which generally show an increase in the
static dielectric constant; see, for instance, Ref. [50]. In Refs. [15] and [50], the MDF in the
local-density-functional formalism was compared to the RPA MDF. In Ref. [50] the QMC
exchange-correlation potential as parametrized by Perdew and Zunger[69] was used, while
the Slater exchange-correlation potential was used in Ref. [15]. Comparing our results for
the MDF for silicon with Refs. [15] and [50], we observe that our V4SC correction to the
RPA MDF is about five times smaller.

To conclude the discussion of the polarizability we can say that the sum of the first-
order vertex and self-consistency corrections to the static polarizability is relatively small,
with the LDA as the starting point. Our results confirm our previous results for the
quasi-one-dimensional semiconducting wire and results of other authors that the V and SC
corrections to the polarizability compensate each other to a large degree. Our results can
be considered to be complementary to the work of Bechstedt et al.{11], who observed such
a compensation at finite frequencies, also for silicon and diamond, but without taking LFE
into account.

4.3.2 First-order corrections to the GW self-energy

Our standard GW results, obtained by applying the expectation value method, are
shown in Table 4.1. The gap values for the I', X, and L points of silicon of 3.31, 4.20,
and 3.38 eV are observed to compare reasonably with the values 3.35, 4.43, and 3.54 eV of
Ref. [49] and excellently with the experimental values|2, 61] of 3.40, 4.25, and 3.45 eV. The
result for the I" point of diamond of 7.63 eV compares well with the 7.5 eV value reported in
Ref. [49] and the 7.63 eV value of Ref. [73] and reasonably with the experimental value[61]
of 7.3 eV. We remark in this connection that if we take Ny, = 3 instead of Ng =2, our
standard GW result for diamond changes from 7.63 eV to 7.54 eV. In Table 4.1 also the
GW gap values with RPA+V+SC screening are given. It is observed that the differences
between the standard GW and GW /RPA+V+SC gap values are relatively minor, as could
be expected from the closeness of the RPA and RPA+V+SC screening (see Section 4.3.1).

We now turn to the first-order vertex and self-consistency self-energy corrections to the
GW self-energy. We recall Hedin’s argument[44] to take ¥ to mth order in W when P
is taken to order n — 1 in W and our restriction of using the LDA Green’s function. In
following this line of reasoning when calculating the GW+V-+SC self-energy, the resulting
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gap values obtained with RPA+V+SC screening should obviously be preferred. From Table
4.1 it is observed that both the GW+V+SC/RPA and the GW+V+SC/RPA+V+SC gap
values, obtained by applying the expectation value method, differ considerably from the
standard GW values. The differences with the standard GW values appear to be largest if
we take the screening to be RPA+V+SC. For this type of screening the differences amount
to 0.36, 0.44, and 0.39 eV for the I'; X, and L points of silicon, while the difference for
the I' point of diamond is even 0.73 eV. All corrections apparently have the same sign. If
RPA screening is used instead (see also Table 4.1), the differences from the standard GW
values reduce to roughly 0.3 eV in the case of silicon and to roughly 0.4 eV for diamond.
The obvious conclusion is that, if vertex and self-consistency corrections are included to
first order, the compensation between them (see also further on) is clearly incomplete.

Table 4.1: GW and GW +V+SC direct gaps (in eV) for RPA screening and
RPA+V+SC screening for silicon (T', X, and L points) and diamond (T" point).
The LDA direct gaps and experimental data are also given.

Method/Source r X L
silicon

GW /RPA (standard GW) | 3.31 4.20 3.38

GW /RPA+V+SC 3.38 4.26 3.44

GW+V+SC/RPA 3.58 4.53 3.65

GW+V+SC/RPA+V+SC | 3.67 4.64 3.77

LDA 2.53 - 3.35 2.61

Expt.[2, 61] 3.40 425 345

standard GW literature 3.35[49) 4.43[49] 3.54[49]
diamond

GW /RPA (standard GW) | 7.63

GW JRPA+V-+SC 7.83

GW+V+SC/RPA 8.08

GW+V+SC/RPA+V+SC | 8.36

LDA 5.51

Expt.[61] 7.3

standard GW literature 7.5[49]; 7.63[73]; 7.26[35]

In Table 4.2 details of our calculational results are presented. It is seen that we have
concentrated on QP energies of the highest valence band (HVB) and the lowest conduction
band (LCB). The highest valence state and lowest conduction state at the I' point are
denoted by I'i. and T'js., respectively. At the X and L points these states are denoted
by X4, Xic, Lb,, and Ly, respectively. We have given for the GW self-energy diagram,
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minus vXC, as well as for the respective SC1, SC2, SC3, SC4, and V self-energy diagrams
the expectation values together with the related energy derivatives 6. Results are given
for both RPA and RPA+V+SC screening, both for silicon and diamond. The calculation
of the contribution of the V self-energy correction to the difference in expectation value
for LCB and HVB at the I" point for silicon had already been done in Ref. [13]. However,
due to an error in the program code, the result given in Ref. [13] of 0.12 eV is incorrect.
The correct value is —0.26 eV; see Table 4.2. Concerning the SC self-energy corrections,
one can argue that a GW insertion and a v*C insertion have much in common, such that
SC1 and SC2 are likely to compensate partially. It is observed that the SC1 and SC2 self-
energy diagrams individually lead to relatively large corrections to the absolute energies
of the HVB and LCB and have indeed the tendency to compensate each other, though
not completely. The SC3 and SC4 self-energy diagrams are self-energy corrections to the
Hartree diagram, in which the valence charge density is corrected to first order in W. As
the valence charge density in DFT is equal to the exact density, the first-order corrections
to the LDA valence charge density are expected to be minor.[35] It is observed that the
contribution to the difference in expectation value for the LCB and HVB due to the SC
Hartree diagrams (SC3+SC4) is very small indeed as compared to the contribution due to
the SC14-SC2 self-energy diagrams. The difference in expectation value for the LCB and
HVB of the V and of the total SC correction can also easily be obtained from the entries in
Table 4.2. By doing so, the V correction appears to compensate the SC correction to about
45% in the case of RPA screening and to about 35% in the case of RPA+V+SC screening
for silicon. For diamond these percentages are about 15% and —10%, respectively, so that
the term compensation is not even appropriate.

The above-mentioned GW+V+SC/RPA+V+SC result is puzzling in a certain sense:
If the sum of all first-order corrections to the standard GW gap does not appear to be
negligibly small, the question arises which group of diagrams then have to be considered
in order to “justify” the standard GW result. Before trying to answer this question it
is necessary, however, to be as certain as possible that our calculations do not contain
weaknesses of whatever kind. This has led us to the performance of a few checks, which
are outlined in the next Section.

4.4 Checks

In this Section we report on a few checks that we have performed concerning the
V+SC self-energy corrections. First, for RPA screening, we improved upon the PPM
concerning the matrix M in accordance with a proposal of Farid[27], in which he points
to the violation of Johnson’s f-sum rule if one sticks to the matrix M of Eq. (4.8). Apart
from Pg g (k;w = 0) we now also have to calculate the leading term of Pg g (k;w — 00);
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see Eq. (4.9). In agreement with Ref. [24], we find that the diagonal elements of the matrix
M of Eq. (4.9) are smaller than those given by the Johnson f-sum rule and that the off-
diagonal elements deviate even more. When applying the correct matrix M, the standard
GW direct band gap of silicon at the I' point becomes only 0.015 eV smaller, however. In
fact, this is not unexpected, as the use of Johnson’s f-sum rule (see, for instance, Re_fs. [49]
and [64]) generally leads to excellent agreement between standard GW and experimental
gap values. Furthermore, it is also found that the GW+V+SC/RPA direct band gap of
silicon at I', when calculated with the correct matrix M, stays practically the same: The
value becomes only 0.011 eV smaller. It can therefore safely be concluded that the violation
of the Johnson f-sum rule yields only insignificant deviations in corrected gap values.

A second point of possible concern is the assumed closeness of LDA wave functions and
GW+V+SC wave functions. Though it is demonstrated in Refs. [35] and [49] that the LDA
wave functions and the GW wave functions are close, it is not a priori certain that this also
holds in the presence of the V+SC self-energy corrections. This, however, has to be fulfilled
in order to safely apply the expectation value method. We therefore carried through an
exact diagonalization procedure for the HVB and LCB at the I' point of silicon, using RPA
screening. In this procedure only coupling between states of equal symmetry needs to be
considered, leading, among 65 electron bands, to a 6x6 matrix in the LDA basis to be
diagonalized only. In doing so, both the standard GW and the GW+V+SC/RPA direct
band gap become larger by an amount of only 0.001 eV compared to the values obtained
within the expectation value method. It can therefore also safely be concluded that the
LDA wave functions and the GW+V+SC wave functions are sufficiently similar.

A third check concerns the LDA starting point. Though the LDA wave functions are to
a large extent similar to the GW wave functions (and to the GW +V+SC wave functions
as shown above), the conduction-band energy levels in the LDA are significantly lower
than those in GW (and GW+V+SC). Though this is generally not thought to be an
important issue, we nevertheless would like to investigate whether a LDA input in which
the quasiparticle shift is included could improve the results. In a sense such an altered
input could be considered to be closer to a “GW set of wave functions with accompanying
energy levels” than the usual LDA input. We therefore applied the so-called scissors
operator to the LDA by changing the LDA exchange-correlation potential v*¢(k) into
v*C(k) + A ¥, |c, k){c, k|, where c is meant to indicate conduction bands and A = 0.8 eV
(for silicon) being about the standard GW conduction-band shift. Leaving the LDA wave
functions unaltered, we can now construct another Green’s function and insert it into the
RPA polarizability, the GW self-energy, and the V+SC self-energy correction. In doing
so, the (RPA) dielectric constant changes and becomes equal to 10.9 (N, = 6). The new
standard GW direct gap at I (of silicon) appears to be about 0.2 eV larger than the value
obtained with the LDA as the starting point, while the new GW+V+SC/RPA direct gap
is about 0.1 eV larger than before. It therefore shows that this kind of change in the LDA

52



4.5. Discussion on the self-consistency self-energy diagrams

starting point in the GW type of calculations does not improve things. Incidentally, the
dependence on starting point Hamiltonians for GW or related types of calculations and,
more specifically, the apparent preference for the LDA starting point are interesting in
themselves and not sufficiently settled in our opinion.

4.5 Discussion on the self-consistency self-energy
diagrams

diagonal:

¢ v
¢ DSC v

non-diagonal:

¢ v
c#c v
¢ vi#y v ¢

NDSCA NDSCB

—@— =Eq.(4.16)

Figure 4.5: SC1+SC2 self-energy correction subdiagrams with diagonal and
nondiagonal GW self-energy insertions in the LDA basis. The former sub-
diagrams are indicated with DSC and the latter subdiagrams are indicated
with NDSCA and NDSCB. Time increases from bottom to top. v stands for a
valence-band index and c stands for a conduction-band index (which have to
be summed over). In the case of DSC the band indices on both sides of the
ellipse are identical.

If we, in spite of the latter discussion, nevertheless pursue the issue of LDA wave
functions and GW wave functions being highly similar, it is tempting to subdivide the
SC1+SC2 self-energy subdiagrams. To this end we give the expression for the insertion,
in the LDA basis, occurring in the SC14+SC2 self-energy correction to the LDA energy
€i(k) (the electron bands I’ and I” are summation variables and the energy w and the wave
vector q are integration variables):

(', a +Kr2 (a + kw + & (k) = v*(a +K)I", g + k). (4.16)
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The SC1+SC2 self-energy subdiagrams can be subdivided into the “diagonal SC” (DSC)
and “nondiagonal SC” (NDSC) groups of subdiagrams of Fig. 4.5. The reason for doing
this is that the DSC group of subdiagrams consists of subdiagrams in which the insertion,
given by Eq. (4.16), is taken between the same conduction (c) or valence (v) states only.
The NDSC group of subdiagrams can further be subdivided into the NDSCA and NDSCB
groups of subdiagrams; see Fig. 4.5. The NDSCA and NDSCB groups of subdiagrams are
initially expected to be small, the reason being that in these latter subdiagrams the inser-
tion, given by Eq. (4.16), is taken between different states. If we simply ignore the NDSC
contribution and calculate the difference between the GW+DSC/RPA and the standard
GW gap value, applying the expectation value method using standard GW energy deriva-
tives 6, we obtain the values 0.32, 0.49, and 0.40, and 0.34 eV, for the I, X, and L points of
silicon and the I" point of diamond, respectively. Considering the fact that the vertex cor-
rection V to the self-energy yields a gap correction of about —0.3 eV for silicon and about
—0.1 eV for diamond (see Table 4.2), we would then find that the totality of the V plus
DSC correction appears to be minor for silicon, while the compensation is less pronounced
for diamond. Unfortunately, however, our actual results on the group of NDSC subdia-
grams do not confirm the above reasoning at all. It is true that we find the contribution to
the gap due to the NDSCA group of Fig. 4.5 to be very small, but, unfortunately, this does
not hold for the remaining group of subdiagrams, NDSCB. The discrepancy between the
actual contribution of the NDSC subdiagrams and our above reasoning (expecting them to
be insignificant), however, can be understood as follows. Taking the square of the matrix
elements (1, k|AX6"Y (k; &,(k)) — v*€(k)|/', k), the nondiagonal (I # I') values are found to
be about two orders of magnitude smaller than the diagonal (I = I') ones. This is one of
the reasons for the correction[35]

5 (L, kAZCY (k; (k) — v*O(K) |V, k)|?
(k) — ev(k)

I'#l

(4.17)

to the QP energies to be very small, which is related to the high similarity of the GW and
LDA wave functions. On the other hand, in order to calculate the SC1+SC2 self-energy
contribution the matrix element itself is required, instead of its square. Furthermore, the
energy denominators pertaining to the NDSCB subdiagrams contain one energy difference
consisting only of electron energies, while in the case of the DSC (and NDSCA) subdiagrams
each energy difference contains a plasmon energy (which is relatively large).

4.6 A remarkable cancellation

We note that it is possible to view upon the orders in W in a different way by expanding
the wave-function renormalization factor Z;x occurring in Eq. (4.13). Z can formally be
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written as

ow

such that, in fact, an infinite number of higher-order terms in W are involved via the energy
derivative of ¥. In doing so, we observe a remarkable cancellation between corrections to
the band gap due to the V and SC corrections to the self-energy ¥ on the one hand and
corrections to the band gap due to the energy dependence of ¢ on the other hand. A
cancellation of this particular kind has been reported by van Haeringen for both the Bloch-
Nordsieck model describing electron-photon coupling [12, 39] and the Fréhlich polaron
model describing electron-phonon coupling [40]. A cancellation between self-consistency
corrections to ¥ and the energy dependence of ¥ was indicated by DuBois[22] and also
mentioned by Rice[72].

In order to be able to present the cancellation effect, it is necessary to return to the
expectation value method that was introduced in Section 4.2. We expand the right-hand
side (RHS) of Eq. (4.13) to second order in the screened interaction W by making a Taylor
expansion of the denominator containing the energy derivative and the resulting expression
for the quasiparticle energy EF (k) is

Z,,k:1+z{h<z,k| 0% (k;w)

| 1, k) } . (4.18)
w = e(k)

n=1

EF (k) ~ ak)+ (k|2 (ke(k) — vXCk) | 1, k) +
(Lk | RZY (k; e1(k)) — v*C(k) | I, k) x 65V (k) +
Bl k | ZVH5C(k; (k) | 1, k). (4.19)

We have regrouped our calculational results in accordance with Eq. (4.19), taking care of
correction terms in the “appropriate order” for both RPA and RPA+V+SC screening. In
doing so, note that the convention of viewing upon orders in W is now different from before:
The GW expectation value is of “first order” in W, the V+SC self-energy expectation value
is of “second order” in W, and the GW expectation value times its energy derivative is also
of “second order” in W. The above-mentioned cancellation effect concerns the last two
terms on the RHS of Eq. (4.19). In Table 4.3 we present the values of these terms for the
HVB and LCB of the I, X, and L points of silicon and for the I" point of diamond, which
can be produced with the data given in Table 4.2. It is observed that no cancellation occurs
for the LCB and HVB separately. A remarkable cancellation is seen to occur, however, -
for the band-gap values, in all cases leading to a gap contribution smaller than 0.1 eV. It
should be noted in this connection that a similar result has already been obtained in the
case of the quasi-one-dimensional semiconducting wire; see Ref. [38].

It will be clear that this result does not as yet contribute to a deeper understanding of
the celebrated standard GW result. This particular cancellation causes the GW+V+SC
energies to be equal to the LDA energies plus the GW self-energy expectation values
calculated at the LDA energy. This is puzzling since in the case of the GW gap, calculating
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the GW self-energy expectation value at the LDA energy instead of at the GW energy,
the energy derivative was absolutely required to obtain agreement with experiment. The
cancellation rather points to the existence of an apparent “sum rule”, which unfortunately
is unexplained as yet. There is a possible connection to Ward identities[80], but no reference
to a specific Ward identity has been discussed in the literature. If, in our case, an identity
of the above kind indeed exists, the above results could presumably be considered as
an internal check on the correctness of our calculations rather than contributing to the
identification of the relevant group of diagrams that leads to the same gap results as
standard GW.

4.7 Discussion and conclusions

The present work was motivated by the idea that the apparent success of standard GW
in predicting electronic properties could possibly be supported by a compensation between
first-order vertex and self-consistency corrections to the band gap of silicon and diamond.
Compensations of this type are occasionally reported on in the literature, mainly in the
case of the homogeneous electron gas, but also in the case of a quasi-one-dimensional semi-
conducting wire. It seemed of interest to investigate to what extent such a compensation
can also be found for a completely realistic case. The starting point has been a fully con-
verged LDA calculation for both silicon and diamond. Our effort has been to calculate
the contribution of complete sets of subdiagrams contributing to both the polarizability
P (to first order in W) and the self-energy ¥ (to second order in W). We found large
compensations between the first-order vertex and self-consistency corrections to P, but
the result concerning ¥ and the related gap value is disappointing in the sense that there
appears to be only a 35% compensation between the V and SC self-energy corrections (to
the difference in their expectation value for the LCB and HVB) in the case of silicon, while
such a compensation is in fact absent in the case of diamond. The resulting corrected
gap values appear to be about 0.4 eV and 0.7 eV larger than the standard GW values for
silicon and diamond, respectively. This result does therefore not give the expected help
in understanding the success of the standard GW approach. In view of this more or less
unexpected result, much effort has been put in checking the correctness of a large number
of computational steps, such that we are convinced of the correctness of our final results.
Furthermore, by expanding the wave-function renormalization function, we have found a
cancellation of particular correction terms occurring for the GW+V+SC gap. It is there-
fore worthwhile to speculate on other more refined compensating mechanisms that possibly
could explain the “correctness” of standard GW. In this connection we recall the work
of Shirley[76], briefly discussed in earlier Sections, from which it could be deduced that a
possibly more complete compensation could be obtained if we would be able to evaluate
self-consistently the sum of the GW self-energy diagram and the vertex correction diagram.
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In 1965 Hedin[44] already put forward that corrections to standard GW should preferably
be included by using a self-consistent G. Unfortunately, this is a tremendous task, even for
the homogeneous electron gas, but in our opinion its performance for silicon and diamond
is considered to be crucial as it could very well contribute to a better understanding of the
success of the standard GW approach for these latter materials.
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Table 4.2: Expectation values of the first-order self-consistency and vertex self-
energy corrections, with RPA and RPA+V+SC screening, for the HVB and
LCB of the T, X, and L points of silicon (in eV). Their energy derivatives 6
are given in parentheses (— means zero energy derivative). The expectation
values and energy derivatives of the GW self-energy minus v*C are also given;
see column 2.

Lk | GW — X SC1 SC2 SC3 SC4  Total SC \% Total V+SC
silicon: RPA screening
o -1.211 —3.652 3.513 1.287 -1.152 -0.004 0.076 0.072
(—0.288) (0.231) (-0.147) (—) (—) (0.084)  (—0.088) (—0.004)
Tise | —0.203  —2.180 2734 0441 -0.396 0599  —0.181 0.418
(—0.286) (—0.130) (0.197) (—) (—) (0.067)  (—0.079) (-0.012)
Xy —1.283 —3.744 3.424 0.792 -0.706 —0.234 0.158 -0.075
(—0.315) (0.338) (-0.237) (—) (—) (0.101) (-0.079) (0.021)
X1c —0.159 —1.688 2.174 —0.077  0.068 0.477 —0.162 0.314
(-0.261) (-0.101) (0.161) (—) (—) (0.060) (—0.070) {—0.010)
. —1.254 —3.675 3.468 1.074 -0.957 —0.090 0.130 0.040
(—0.299) (0.284) (-0.194) (—) (=) (0.091)  (—0.089) (0.002)
Ly, —0.246 -2.211 2.720 0.587 —0.524 0.572 —0.193 0.378

(-0.273) (—0.123) (0.187) (—)  (—)  (0.064) (—0.076)  (—0.011)

silicon: RPA+V+4SC screening

s | —1.310 —3.654 3526  1.292 —1.152  0.012 0.017 0.030
(—-0.290)  (0.226) (—0.140) (—)  (—)  (0.086) (—0.092)  (—0.006)
Tise | —0217  —2209  2.755 0444 -0.396 0594  —0.181 0.413
(—0.288)  (-0.125) (0.193) (—)  (—)  (0.068) (—0.084)  (—0.016)
X4 | —1365  —3.710 3407  0.805 —0.706 —0.204  0.073 —0.131
(-0.317)  (0.325) (-0.222) (—)  (—)  (0.103) (=0.082)  (0.020)
X | -0161  —1.692 2163  —0.078 0.068 0461  —0.130 0.331
(-0.263)  (=0.090) (0.150) (—)  (—)  (0.060) (—0.072)  (—0.012)
| —1.347  —3643 3455  1.091 —0.957 -0.054  0.036 —0.019
(=0.301)  (0.271) (=0.179) (—) (=)  (0.093) (—0.091)  (0.001)
L. | -0257  —-2215 2708 0597 —0524 0566  —0.168 0.398

(-0.275) (-0.111) (0.176) (—)  (—)  (0.065) (-0.078)  (—0.013)
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4.7. Discussion and conclusions

Table 4.2: continued; for the HVB and LCB of the I' point of diamond.

Lk | GW —»*¢  8C1 SC2 SC3  SC4  Total SC \% Total V+SC
diamond: RPA screening
Ths, —2.083 —3.666 3.524 1.725 —1.543 0.040 0.109 0.149
(—0.191) (0.128)  (-0.085) (—) (—) (0.043)  (—0.036) (0.007)
Tise 0.445 —2.305 2.853 1.055 —0.956 0.647 0.019 0.666

(=0.187)  (-0.062) (0.099) (—) (=)  (0.036) (-0.032)  (0.005)

diamond: RPA+V+SC screening

e | 2321 —3.696  3.567 1.776 —1.543  0.104  —0.013 0.091
(=0.194)  (0.125) (—0.081) (—) (—)  (0.044) (—0.041)  (0.003)
T'ise | 0.459 ~2.356  2.889  1.091 -0.956  0.668 0.041 0.709

(=0.191)  (-0.058) (0.096) (—) (—)  (0.039) (—0.037)  (0.002)

Table 4.3: Correction contributions due to the last two terms on the RHS of
Eq. (4.19) for the HVB and LCB of silicon and diamond (in €V), in the case
of RPA screening and RPA+V+SC screening (for the latter case the values
are given in parentheses). With (GW —v*°) we mean (I, k | AZW (k; £,(k)) —
v*C(k) | I,k) and with (V + SC) we mean h{l, k | 2V*+5C(k; g;(k)) | I, k).

Lk | (GW —vXC) x 6£% (k) ( V+SC) Total Gap contribution
silicon

T, 0.349 (0.380) 0.072 (0.030)  0.421 (0.410)

Tise 0.058 (0.062) 0.418 (0.413)  0.476 (0.475)  0.055 (0.065)

Xoo 0.404 (0.433) ~0.075 (—0.131) 0.329 (0.302)

Xio 0.041 (0.042) 0.314 (0.331)  0.355 (0.373)  0.026 (0.071)
N 0.375 (0.405) 0.040 (—0.019) _ 0.415 (0.386)

L 0.067 (0.071) 0.378 (0.398)  0.445 (0.469)  0.030 (0.083)

diamond
I, 0.398 (0.450) 0.149 (0.091)  0.547 (0.541)
Tise | —0.083 (~0.088) 0.666 (0.709)  0.583 (0.621)  0.036 (0.080)
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Chapter 4: First-order corrections to RPA-GW calculations in silicon and diamond.
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Appendix A:
The expression for a polarizability cor-
rection subdiagram

Figure A.1: Vertex correction subdiagram included in the correction to the
polarizability Pg g:(k;w). A directed line denotes the LDA Green’s function
G°, and the dashed line stands for W [see Eq. (4.2)]. The two dotted,
arrowed lines with k + G and k + G’ indicate the two crystal momenta for
which the correction AP is taken. The meaning of the labels is explained in
the main text.

In this appendix we give the worked-out algebraic expression for a vertex correction
subdiagram of the polarizability in the momentum representation; see Fig. A.1. The mo-
mentum flow through the subdiagram can be deduced using momentum conservation at
the interaction vertices. The evaluation of this particular correction entails summations
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Appendix A: The expression for a polarizability correction subdiagram

over conduction bands ({; and l,), valence bands (I3 and l4), plasmon bands {m), and re-
ciprocal lattice vectors Q; — Qg. The presence of reciprocal lattice vectors is due to the
interaction of an electron or hole with the ion lattice. Furthermore, the evaluation of this
correction involves an integration over the reduced wave vectors q; and q;. As mentioned
in section 4.2, one integration can be performed over Zy. The expression is:

s t) =2 [ 6k [ G DL T ST

li€cla€clzcvilycy m

(Z d?l,f-h-i"k(Ql + G’)d?;,ql (Q1 ) (Z dl4 q1-+q2 Q2)dla;Q1+‘l2+k(Q2 + G))
Q
(Z dlx Q1+k(Q5) Z d?a,‘h-i—‘lz—‘]-k(QS + Q5)wm,—qz(“Q3)>
Qs

(Z 7, 4, (Qs) Z &y ot (Qa + Qﬁ)w:n,—qg(_Q‘i))

x ([wm(—az2) + e, (q1 +k) — e, (a1 + Q2 + k)] [wm(—a2) + e, (1) — er,(qn + q2)]
x W= wn(~a2) ~en (@ +0) +em+a@)]) . (A

Here ¢; are LDA energies and dj are LDA plane-wave coefficients; w,, are PPM energies
and wy, are PPM coefficients. ¢ and v denote the conduction bands and valence bands,
respectively. The factor 2 originates from summation over spins. In this particular example
given by Eq. (A.1), the head element (G = 0, G’ = 0) for k — 0 has a constant contribu-
tion if ; =, and I3 = I, because then we have twice an inner product of a wavefunction
with itself, which is unity. The head element also has linear contributions in k for k — 0 if
ly # 1y or I3 # ly. Also the wing elements (G =0 or G' = 0) have a constant contribution.
The energy denominator contains products of energy differences. For this particular cor-
rection to the polarizability given by Eq. (A.1) the energy denominator consists of three
such energy differences.

For w = 0 there are no vanishing energy denominators for any subdiagram contributing
to the polarizability P.
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[

De experimentele waarden voor de bandgap van hexagonale polytypen van de halfgelei-

der silicium-carbide worden uitstekend gereproduceerd in het kader van de GW-theorie.
[1} Dit proefschrift, Hoofdstuk 3.

II.
In het geval van de halfgeleider silicium en isolator diamant compenseren de laagste orde
correcties op de statische RPA polarizeerbaarheid elkaar voor een zeer groot gedeelte.
Daarentegen compenseren de laagste orde correcties op de GW zelfenergie elkaar niet
in voldoende mate voor deze materialen, wat zich uit in relatief grote bijdragen tot hun
berekende bandgaps.

[1] Dit proefschrift, Hoofdstuk 4.

[I1.

De door Pack en Monkhorst gegeven definitie voor de irreducibele zone van de hexa-
gonale Brillouin zone is niet helemaal juist. Deze moet luiden:

0<2u,+u <1, OSUTSUPS%, OSU5<%-

[1] J.D. Pack en H.J. Monkhorst, Phys. Rev. B 16, 1748 (1977).

IV.

Aan de in de literatuur aanvaarde experimentele waarde voor de energie van de laagste
geleidingsband in het L punt van kubisch silicium-carbide moet op grond van verschil-
lende ab-initio GW berekeningen getwijfeld worden.

[1] W.H. Backes, proefschrift TUE 1996; M. Rohlfing, P. Kriiger en J. Pollmann, Phys. Rev. B
48, 17791 (1993); B. Wenzien, P. Kickell, F. Bechstedt en G. Cappellini, Phys. Rev. B 52, 10897
(1995).

[2] Landolt-Bérnstein, Semiconductors: Physics of Group IV Elements and III-V Compounds,
bewerkt door K.-H. Hellwege en O. Madelung, New Series, Group III, Vols. 17 en 22, Pt. a (Springer-
Verlag, Berlin, 1982 en 1987).

V.

In tegenstelling tot DFT-LDA en Hartree-Fock berekeningen, maakt het bij GW be-
rekeningen van de bandgap van polymeren veel uit of er een enkele keten dan wel
een drie-dimensionaal kristal wordt beschouwd; in het eerste geval resulteert een veel
grotere bandgap.

VL

De door Enderlein et al. gesuggereerde analogie tussen de theorie van gatengassen
in III-V halfgeleiders, waarbij men lichte en zware gaten kan onderscheiden, en de
thermodynamica van gemengde gassen, is misleidend.
[1] R. Enderlein, G.M. Sipahi, L.M.R. Scolfaro en J.R. Leite, Phys. Rev. Lett. 79, 3712 (1997).
[2] P.A. Bobbert, M. Kemerink en P.M. Koenraad, Phys. Rev. Lett. 80, 3159 (1998).



VIIL

De geluidskwaliteit van een klarinetrietje wordt niet bepaald door de grootte en de
getalsmatige dichtheid van de vaatbundels in de rietplant, die gebruikt wordt voor de
fabricage van het klarinetrietje, maar door de specifieke samenstelling van de vaatbun-
dels.

{1] P. Kolesik, A. Mills en M. Sedgley, Anatomical Characteristics Affecting the Musical Perfor-
mance of Clarinet Reeds made from Arundo donax L. (Gramineae), Annals of Botany 81, 151 (1998).

VIIL

Gezien het feit dat de kinetische energie van een bewegend lichaam evenredig is met
het kwadraat van de snelheid verdient het aanbeveling de boetes voor snelheidsover-
tredingen daarmee gelijke tred te laten houden.

IX.

Het stemmen van zwevende kiezers bij verkiezingen lijkt op het resultaat van een
kwantummechanische meting. Het is wellicht beter de kiezer de mogelijkheid te geven
om op een superpositie van partijen te stemmen.

X.
De invoering van een tweede scheidsrechter bij een voetbalwedstrijd, die zich wellicht
buiten het voetbalveld zou bevinden en die de mogelijkheid zou krijgen om gebruik te
maken van moderne waarnemingstechnieken, zou een gunstiger uitslag voor de minder
favoriete ploegen tot gevolg hebben.

(1] WK '98 voetbalwedstrijd Italié — Chili (2 — 2), 11 juni 1998.

XL

De recente uitspraak van computergigant Hewlett Packard, dat het tijdperk van kwan-
tumcomputers aanbreekt omdat in het jaar 2010 de limiet van schaalverkleining in
de conventionele silicium computertechnologie zal worden behaald, is nogal voorbarig:
als het al mogelijk is deze praktisch te realiseren, dan zal het minstens nog meerdere
decennia duren voordat de eerste serieuze kwantumcomputer wordt gebouwd.

[1] Persbericht Hewlett Packard.

XIL

De invoering van de euro en het concept van “klantvriendelijke” (psychologische) prij-
zen gaan slecht samen.

XIIL

De benaming van de laatste Mondriaan geeft goed weer hoe de vorige eigenaar van dit
doek zich momenteel wellicht zal voelen.
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