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Chapter 1 

Introduction and problem statement 

1.1 Introduction 

Manufacturing systems have become increasingly dependent on the adequate supply of information 

that is related to their control. Information technology is employed to provide this information. 

Initially, information technology was introduced on an ad-hoc basis. Individual problems were 

solved by individual solutions based on information technology. Rapid changes in both technology 

and requirements for manufacturing systems necessitated a structured approach to the use of 

information technology, that addresses issues such as modularity and flexibility of information 

systems. 

More systematic solutions have been proposed in order to avoid the ad-hoc approach that 

resulted in 'islands of automation'. These solutions included life-cycle models for information 

system development, starting with information strategy planning. Information strategy planning 

prescribes the formulation of goals, starting-points and conditions for information services 

[Greveling 90]. The realisation of one single 'integrated' information system for an organisation 

is however not feasible [Melkanoff 84] [Scheer 92]. A single integrated information system will 

exhibit the characteristics of a monolith, i.e., the system will be increasingly difficult to enhance 

or modify, and the systems learning curve will approach its asymptote. A more promising method 

seems to be the development of information system in an evolutionary way as federations of 

autonomous modules. According to this method, an information system is extended by adding 

modules, and modified through step by step changes in the individual modules. 

1.2 Modular design 

An ideal information system for manufacturing systems would be based on a single global database, 

which is the heart of the information system. This global database system would allow the 

definition, updating, retrieval, consistency and communication of data among all functions in the 

manufacturing system. A complete and detailed conceptual model of the manufacturing system is 

necessary to be able to specify the complete and precise knowledge of all the necessary information. 

Numerous problems stand in the way for the design and implementation of this ideal system. 
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In [Melkanoff 84] the following non-exhaustive list of problems is given: 

• heterogeneous hardware 

• heterogeneous software 

• heterogeneous models 

• complexity of data conversion 

• size of the database 

• heterogeneity of data 

• heterogeneity of users 

• update difficulties: 

- integrity constraints 

- temporary violations of constraints e.g. by CAD applications 

- update propagation because of engineering changes 

• performance requirements 

• graphic I/0 requirements 

• requirements for heavy numerical computation 

• ease and rapidity of launching the database 

• control of security, integrity and privacy 

• distributed data 

• integration of text and graphic information. 

The aim of this thesis is to provide a contribution to solving or avoiding these problems by 

describing a method for the modular design of information systems. The method to be formulated 

will use conceptual schemas of the module information base as the basis for modular design. The 

method to be formulated in this thesis originates from [Pels 88]. Pels recognised the problem of an 

all-embracing conceptual schema, of which every user has to know only a small part. Although it 

would be possible to defme subschemas that present only the relevant information to the user, this 

would still require an overall conceptual schema, since the subschemas would be derived from it 

Moreover, the overall conceptual schema has to change in case a user wants to change its 

subschema. The method described in [Pels 88] provides guidelines for the decomposition of a 

conceptual schema into modules that can be changed without being confronted with the complexity 

of the overall conceptual schema. 
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1.3 Problem statement 

The research question of this thesis is to describe a method for the modular design of information 

systems for Computer Integrated Manufacturing (CIM). The characteristics of this method should 

differ in a number of ways from traditional methods for information systems design for CIM. The 

global scenarios of both methods are now portrayed to characterise these differences. 

1.3.1 Traditional scenario 

Traditional methods of information system design are often based on the waterfall model. The first 

phase concerns the definition of requirements of the system to be built. Once these requirements 

are known, they are considered to be fixed for the following phases in the design process. Changes 

in the requirements in later phases can be made according to certain procedures, but should be 

avoided since it is well-known in software engineering that these requirement changes increase the 

costs of system development drastically. The second phase concerns the global conceptual design. 

A global conceptual schema is developed in this phase which is successively decomposed in the 

third phase (detailed design) into modules that can be used and modified autonomously. The 

decomposition of the global conceptual schema will take place according to the organisational 

structure of the manufacturing system, probably based on a CIM reference model as described in 

for example [Biemans 90] [CFT 87] or [Jones et al. 86]. Detailed functional specifications are made 

in this phase for the applications that need to be developed for each module. It is usually assumed 

that in this conceptual design phase it is sufficient to consider only the design of the conceptual 

schema to obtain independent modules. According this assumption it should be possible in this 

phase to disregard the implementation issues of user interface, applications processing, data 

management and communication. The fourth phase then concerns the implementation of the 

detailed conceptual design. The following phases, which will not be discussed here, include the 

introduction of the information system and the usage and management of the information system. 

1.3.2 Proposed scenario 

The scenario of the method proposed in this thesis will be based on an evolutionary development 

process. To begin with, it is assumed that there is an existing information system that needs to be 
changed, i.e., updated or extended. These changes occur relatively frequently, and sometimes more 

than one development team is making changes to different modules of the same CIM system. The 

boundaries and interfaces of these modules are known, and are based on the particularities of the 

specific primary process and control system. An update of the information system in this scenario 
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usually involves only one module. The extent to which the module can be changed without 

affecting other modules is defmed by rules. Should other modules be affected, it would only 

concern the neighbouring modules. These neighbouring modules are identified through the interface 

defmitions. Extending the system concerns the design and implementation of a new module. 

Emphasis will then lie on the specification of the interfaces to other modules, the architecture of 

modules at the conceptual level and the location of the module in the implementation architectures. 

Both updating and extending the system usually concern software packages that are bought from 

software suppliers. Only very occasionally new software will be developed in this scenario. If that 

is the case, it will usually concern a modification or enhancement of these software packages. 

1.3.3 Design from scratch scenario 

Occasionally, it will occur that there is no system yet available, and the complete manufacturing 

system has to be designed from scratch, which was the situation in the model factory example that 

will be described in this thesis. The first step in the design of the information system will then be 

the definition of the boundaries of the modules. This defmition will be based on thif characteristics 

of the primary process and the control system, which have to be designed before the information 

system can be designed. The result of this definition will be a federation of autonomous modules 

without a global conceptual schema. Then, each module in isolation will be designed in detail and 

implemented. However, there will be a joint initiative to implement an infrastructure of hardware 

and software that is shared between modules. Thus, the proposed method abandons the necessity 

of having a global conceptual schema, and emphasizes the design, re-design and implementation 

of information systems that consist of federations of autonomous modules without a global 

conceptual schema. 

1.3.4 Layered models scenario 

If levels have been defmed in the control system, which will often be the case, then the architecture 

of modules at the conceptual level will be based on it The interfaces between modules will reflect 

the different levels, and aggregation of objects can be used to specify these interfaees. Consider for 

example the situation where there is a distinction between an Aggregate Production Planning level 

( APP), Goods Flow Controllevel (GFC), and a Production Unit Controllevel (PUC) ( cf. [Bertrand 

et al. 90]). At each level one or more modules will be defined. Consider for example the role of the 

customer order in customer-order driven manufacturing. When a customer order is defmed as an 

object class in an APP module, then this class could be decomposed in the GFC module into 

customer-order specific workorders, and again in a PUC module into actual operations. However, 
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each of the three modules can be designed and implemented independently once these interfaces 

are defined. This is not constrained by the fact that the PUC module uses data from the GFC module 

(viz. workorder data), and that the GFC module uses data from the APP module (viz. customer 

order data). Because these interfaces are of crucial importance for the structure of the control 

system itself, they are not likely to change frequently. The interfaces between the information 

system modules will therefore not change frequently either. However, if the company intends to 

implement a new production planning system for Goods Flow Control, it is possible to do so 

without changing the APP and PUC modules. 

1.3.5 Further research goals 

Furthermore, the method should be validated, and extended where appropriate. Two areas of 

extension are the design of ClM architectures and the reuse of software. The research question 

concerning the extension towards CIM architectures is: what is the relation between modular design 

of information systems at the conceptual level and the modular implementation of information 

systems in different ClM architectures. The research question concerning the extension towards the 

reuse of software is: how can the method of modular design contribute to the reuse of software. 

1.3.6 Research area 

Industrial companies have to provide greater flexibility and responsiveness, better use of resources, 

a reduction in inventory levels and faster delivery of customer orders in order to be competitive. 

Adequate shop floor control systems contribute considerably to these goals. In the research area of 

manufacturing however, relatively little attention is paid to shop floor control systems. Bauer et al. 

mention that conventional commercially available computer based systems are very weak on shop 

floor control [Bauer et al. 91 ]. This thesis is dedicated to the design of shop floor control systems 

to decrease this deficit. The examples in this thesis are taken from a shop floor control system as 

well. The method described in this thesis has however a wider application area, as is indicated by 

a project for the re-design of a production planning system that is not reported in this thesis 

[Timmermans 92]. 

1.3.7 Starting-point: data modelling 

The main assumption of the method presented in this thesis is that data modelling is a valid starting­

point for the modelling of information systems for shop floor control. This assumption is based on 
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two arguments. First, it is argued by various authors that conceptual data models constitute the 

skeleton of the information system [Bertrand et al. 90] [Melkanoff 84] [Scheer 92]. Any 

organisation is subject to continuous change. These changes hold in particular for the operating 

procedures of the organisation, which are described as the functionality of the organisation. The 

conceptual data model describes the objects that are recognised to exist in the manufacturing 

system. Although these are also subject to changes, they are generally more stable than the 

operating procedures. Moreover, most manufacturing systems are ba..<ied on a ~Uanufacturing 

databa..<;e, which is the implementation of the conceptual data model, and many different 

applications use this database. 

The second argument is put forward in [Pels 88]. He makes a distinction between the 

technological, syntactical, semantical and pragmatical aspects of an information system. Integration 

of information systems can be considered from each of these aspects. However, the integration of 

information systems on technological and syntactical level requires a consideration of the semantics 

of both systems. These semantics are described in the conceptual data model. Pels argues that 

conceptual data models are appropriate instruments for the analysis of composition and 

decomposition of information systems. 

It is however recognised that conceptual data models are not universally applicable. The 

possibility of modelling dynamics in data models is limited. It would therefore be more appropriate 

to use process oriented modelling languages to model highly reactive real-time ~ystems such as 

programmable logic controllers. However, it is argued here that data modelling is 11 valid starting­

point for the modelling of information systems in database oriented systems such as in shop floor 

control systems and even more in information systems for production planning and control. The 

application domain of data models in manufacturing is illustrated by figure 1.1. 

scope of application 

factory 

shop 

cell 

station 

automation 
module 

figure 1.1 application domain of data models 
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1.4 History of the research 

The research project was started in 1989 in the section Information & Technology of the school of 

Industrial Engineering & Management Science at Eindhoven University of Technology (TUE). 

After an initial literature survey, a modular CIM system was designed in the CIM laboratory of the 

school to get acquainted with the method of modular design. 

' In 1990, a second experiment was carried out. A design of a shop floor management system for 

components design and manufacturing was made for a consortium consisting of 7 system 

integrators and suppliers of CIM components. The goal of this project was to make a design of a 

manufactudng cell that consisted of existing CIM components. It would not be possible to 

implement components from scratch because of limited time and resources. The method for 

modular design was used to specify and integrate existing components, such as CAD/CAM systems, 

a production planning system, a shop floor management system and a Flexible Manufacturing 

System. 

Almost simultaneously, the CIM laboratory of the Digital Cooperative Engineering Centre 

(CEC) was set up. The laboratory involves 'the research and development of new tools and 

techniques for shop floor management and device connection, and the integration of these tools and 

techniques into one shop floor management system' [Kearns 90]. The results are applied to a scale 

model factory of a Printed Circuit Board (PCB) assembly and test plant. From early 1990, research 

was carried out in co-operation between TUE and the CEC. During the period from 1990 until early 

1993, one TUE researcher, successively two Digital program managers, and in total6 TUE students 

and one other student have participated in the research in the CIM laboratory that is directly related 

to this thesis. 

During 1991, an additional project was carried out for the redesign and implementation of a 

production planning system. 

Finally, the second half of 1992 and the beginning of 1993 were spent in the preparation of this 

thesis. 
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1.5 Structure of the thesis 

The main structure of the thesis is depicted in figure 1.2. 

method 
(chapter 2) 

experiment 
(chapter 3) 

information systems 
for manufacturing 

(chapter 4) 

modular design 
(chapter 5) 

implementation architectures 
(chapter 6) 

generic modules 
(chapter 7} 

scope of the chapter 

figure 1.2 structure of the thesis 

Chapters 2, 3 and 4 present the backgrounds of the research and the research area. The method 

for modular design of information systems, including concepts and terminology, ris introduced in 

chapter 2. The experiment carried out in the CIM laboratory of the CEC is then presented as an 

example in chapter 3. Chapter 4 presents an overview of current methods fdr the design of 

information systems for manufacturing. 

Chapter 5 is the centre of the thesis. This chapter provides principles for the design, redesign 

and implementation of a modular information system for manufacturing, based oil the findings of 

previous chapters. Emphasis is placed on the design, redesign and implementation of application 

software for shop floor control. 

Chapters 6 and 7 elaborate on two main subjects of chapter 5. In chapter 6 this is the 

implementation of modular information systems. Different architectures for the implementation of 

information systems are discussed. Here, an important conclusion will .be that distributed 

implementation architectures provide more adequate conditions for the implemen~tion of modular 

information systems than for example hierarchical architectures. Chapter 7 concentrates on the 

reuse of software based on module specifications. 

Finally, in chapter 8 the knowledge gained sofar in the application of modular design is 

discussed, which leads to a few suggestions for further research. 
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Chapter 2 

Modular design of the conceptual schema 

2.1 Introduction 

This chapter introduces a method for the modular design of information systems. This method plays 

a central role in this thesis, since one of the research goals has been to validate and extend this 

method for the application area of manufacturing. The essence of the method is described in [Pels 

88] as the method of modular decomposition of the conceptual schema. The main difference 

between [Pels 88] and this thesis is that the emphasis in the latter is put on design and re-design 

while the emphasis in [Pels 88] is put on the analysis of a design. Furthermore, the method is 

described in terms of object modelling instead of the relational model. It is emphasized that one of 

the strong points of the method for modular design is its independence of a schema specification 

language. 

The basic concepts of the method of modular design are described in this chapter. First, criteria 

for modularity are discussed in section 2.2. The concepts and terminology of the conceptual schema 

are described in section 2.3. An appropriate language for the conceptual schema is introduced in 

section 2.4. Section 2.5 discusses conceptual modelling of information systems. Section 2.6 

discusses the difference between a semantic data model and an object-oriented data model. The 

definition of a module is then presented in section 2.7. 

2.2 Criteria for modularity 

Modularity of an information system has, like quality of an information system, more than one 

perspective. [Meyer 88] specifies five independent criteria for design methods with respect to 

modularity. These criteria will be applied throughout the thesis. They are designated as: 

• modular decomposability 

• modular composability 

• modular understandability 

• modular continuity 

• modular protection 
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According to Meyer, the modular decomposability criterium is met by a design method if the 

method helps in the decomposition of a new problem into several sub-problems, whose solution 

may be pursued separately. In addition to Meyer, the method should also help the re-design process 

by the decomposition of an existing system into separate components. 

A method satisfies the criterium of modular composability if it favours the production of 

software elements that may freely be combined with each other to produce new systems, possibly 

in an environment different from the one in which they were initially developed. 

A method favours modular understandability if it helps to produce modules that can be 

separately understood by a human reader. At worst, the reader will have to look at a few 

neighbouring modules. 

A design method satisfies modular continuity if a small change in a problem specification 

results in a change of just one module. Such changes should not affect the architecture of the 

system. An architecture is defined as a description of components and their interfaces. 

A method satisfies the modular protection criterium if it yields architectures in which the effect 

of an abnormal condition occurring at run-time in a module will remain confined to this module, 

or at least will propagate to a few neighbouring modules only. 

2.3 Concepts and terminology of the conceptual schema 

Concepts and terminology of the conceptual schema can be found in [Griethuysen 82]. Some 

concepts that are of interest for further discussion in this thesis will be introduced in this section. 

Specifying an information system involves the modelling of a part of the real world or 

postulated world, called the universe of discourse. The concrete physical repreSentation of the 

information will be called a database. The term database system refers to a data prpcessing system 

dealing with a database. 

When designing a database system the primary interests lies in the meaning ofithe information. 

This meaning is specified in the conceptual schema. A conceptual schemil comprises a unique 

central description of the various informiltion contents that may be in a databaSe. This includes 

classifications, rules, laws, etcetera, of the universe of discourse. The database itself may be 

implemented in any of a number of possible ways. For this purpose, the ANSVSPARC three­

schema architecture has been defmed (figure 2.1) [Tsichritzis et al. 77]. This architecture provides 

data independence. A distinction is made between physical and logical data independence. Physical 

data independence means that users (application programs or end-users) do not need to have 

knowledge of changes in storage structure and access strategy of the data. Logical data 

independence means that it should be possible to introduce changes on a logical level without 

having repercussions on the usage of the data. 

While the meaning of the information is specified in the conceptual schema, the physical 
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storage structure is described by an internal schema. External schemas describe the way users and 

application programs may view the data in the database system. Every external schema is therefore 

derived from the common conceptual schema. 

external 
schemas 

/ 

conceptual 
schema 

internal 
schema 

figure 2.1 ANSI/SPARC three-schema architecture 

The actual objects that are perceived to exist in the universe of discourse in a specific instant or 

period of time and their relevant actual states of affairs are described in the information base. Both 

the conceptual schema and the information base are considered to be at the conceptual level. 

2.4 The Modelling Language 

2.4.1 Introduction 

The modelling language in this thesis is based on semantic data models. Semantic models are 

oriented towards the representation of the meaning of data and attempt to provide a structural 

abstraction. An example of one of the earliest semantic models is the Entity-Relationship model of 

Chen [Chen 76]. The choice of semantic data models is based on the assertion that semantic data 

models are more powerful in representing integrity constraints and various relationships than other 

current data models [Bouzeghoub et al. 91]. Behavioural aspects of the conceptual design are 

introduced by dynamic integrity constraints. 

Another class of data models are object-oriented models. The power of object-oriented data 

models is highlighted by their ability to describe the dynamic behaviour of the objects by means 

of methods. A discussion on semantic models and object-oriented models can be found in section 

2.6. 
The following sections will provide a linguistic description of the language for the conceptual 

schema. 
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2.4.2 Basic concepts 

Basic bnilding blocks 

The basic building blocks of the modelling language are SCHEMA and CLASS. A schema i':l the 

means of specifying objects, integrity constraints and domain rules. The schema is used as the 

syntactic unit to specify a module, which is addressed in section 2.7 .2. 

A CLASS is a group of objects with similar properties, common behaviour, common 

relationships and common semantics. Integrity constraints in a schema specify the static and 

dynamic constraints on or between object classes. Domain rules in a schema specify the interfaces 

of a module. Other concepts that will be used and explained in this section are generalisation and 

specialisation. 

Classes 

A class describes the structure of a set of objects in terms of their attributes. All objects will be 

called instances of the class. An object is described by its attributes. There are no other objects than 

class instances; any object is an instance of at least one class. This class is said to be the type of the 

object. It is important to notice that each object has its own identity. Thus, two objects are distinct, 

even if all their attribute values are identical. The following notational convention is used: 

• if i is an information base state and b is a class then i.b refers to the set of ob~ects of 

i belonging to class b. 

• if o is an object then o.a refers to attribute a of that object. Attributes of an object are 

other objects or sets of objects. Objects can be simple or complex. Simple iobjects 

are, for example, integers and strings. They are not specified explicitly in a schema. 

An example of a class definition could be: 

class batch 

attributes 
batch_id : integer; 

creator : station; 

item_type : item_type; 

size : { 1..3 } ; 

end; -- class batch 
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Subclasses 

A class can have subclasses. Instances of a subclass inherit all attributes of their superclasses in 

addition to the attributes of their own class. A subclass is a specialisation of its superclass. 
The design process also can go the other way. A superclass is created from some existing 

classes. The superclass contains (a part of) the common attributes of the subclasses. Thus, the 
generalisation of a number of subclasses into a superclass can be obtained. Both specialisation and 

generalisation can be specified, if this is required. A simple specialisation defmition could be: 

class consumer 
attributes 

station_name : string; 
produced_requests : set of request; 

end; -- class consumer 

class station 
subclass of consumer 

attributes 
received_requests : set of request; 

batch_in_process : batch; 
batch_available : {available, non-available}; 

end; -- class station 

2.4.3 Integrity constraints 

Static constraints 
A conceptual schema should describe all relevant static and dynamic aspects of the universe of 
discourse [Griethuysen 82]. Static and dynamic constraints describe the permissible information 
base states and sequences of information base states. 

Static constraints are concerned with the consistency and permissibility of a single state of the 
information base. A static constraint is specified as a fmt order formula on the set of all information 
base states. A constraint can refer to attribute domains, the relation between attribute values, the 

relation between objects, or the relation between classes. The requirement that the batch size of a 

batch is minimally 1 and maximally 3 is an example of a static constraint. The notation will then 

be: 

C(i) = (V b: b e i.batch : 1 S b.size :s; 3), 

where i e S (the set of all information base states). 
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The constraint C is a boolean function on the set of all information base states. i.batch refers to the 

set of objects of the type batch in information base state i, and b.size refers to the value of the 

attribute size of batch b. 

Dynamic constraints 
Dynamic constraints are concerned with the allowed transitions from one information base state to 

the next They specify the possible sequences of information base states. Therefore, these 

constraints are also called transition constraints. A dynamic constraint is essentially a boolean 

function on a pair {old,new) of information base states. A change from a state old to a state new 

is permissible if and only if the function, when applied to pair (old,new), is true. Dynamic 

constraints are specified in this thesis as first order formulas on the Cartesian product S x S of the 

setS of all information base states. Examples of dynamic constraints can be found in appendix B. 

A distinction can be made between permissive rules and prescriptive rules [Griethuysen 82]. 

Permissive rules describe the possibilities of an action: p can occur only if g is true. Prescriptive 

rules describe the necessity of an action: if p is true then g must occur. Both propositions 

correspond to the logical implication [Bracchi et al. 79]: 

The way to distinguish between them is to add time i and j (i precedes j). This results in: 

a. j.p ~ i.g 

b. i.p ~ j.g 

which mean: 

a. p is allowed if g was true before (permissive) 

b. g must occur if pis true (prescriptive) 

It is noted that all static constraints are permissive rules since they are not time dependent. Other 

examples of static and dynamic constraints can be found in appendix B. 

Temporal Modelling 
Sofar a distinction has been made between static and dynamic constraints. Static constraints apply 

to each of the individual states of the information base. Dynamic constraints apply to a pair 

(old,new) of consecutive states, thus describing the allowed transitions. When describing a 

dynamic constraint by a pair of consecutive states one assumes that the history of states can affect 

permissibility only in as much as the history is reflected in the most recent state. It is therefore 
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sufficient to consider the most recent state only. [Put 88] however argues that a distinction has to 

be made between dynamic constraints and temporal constraints. Temporal constraints refer to 

information base states other than the current or new state. Checking a temporal constraint requires 

information about one or more states in the past or future. 

For reasons of simplicity it will be assumed in this thesis that the history of states is reflected 

in the most recent state. There will be no further distinction between dynamic and temporal 

constraints. 

2.4.4 DiagrammaticaJ Notation 

The object model defined in the previous section can be represented by a data structure diagram. 

In this thesis, the diagrammatic technique described in [Martin et al. 92] is adopted. A class is 

represented by a rectangle. An attribute type is an association between one class and another class, 

indicated by a line. The cardinalities of the association are indicated by cardinality symbols. An 
example of a data structure diagram is given in figure 2.2. Further explanation of the diagrammatic 

technique is given in Appendix AI. 

figure 2.2 example of a data structure diagram 

2.5 Conceptual modelling of information systems 

2.5.1 Information systems 

An information system can be considered as an information base plus a number of information base 

applications. Information base applications, shorthanded as applications, are formalised procedures 

for manipulating the information base. This may either be a computer program or a manual 

operation. 

Modular design aims at the elimination of errors that can occur in applications when changing 

the conceptual schema. 1\vo types of errors can occur: errors in update operations and errors in 
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retrieval operations. Errors in update operations occur when an intended transition is not allowed 

in combination with the current information base state. Errors in retrieval operations can occur 

when the occurrence of an information base state is not foreseen. 

An application on a conceptual schema is defined as a combination of retrieval and update 

operations which are defined for that conceptual schema. The execution of an operation should 

never violate the integrity constraints that are defined on the information base, or cause errors 

elsewhere. 

2.5.2 Thansferability of Applications 

Applications can be transferred, in case of re-design, from an old module to a modified module, or, 

for example in the case of re-use, from one module to another. An application is transferable to a 

modified module if it satisfies all constraints of the modified module after the module has been 

changed. An application is transferable to another module if it satisfies all constraints of that 

module. Transferability of an application is therefore an important property concerning modular 

continuity. 

2.6 Semantic data models versus object-oriented models 

A short characterisation of semantic models and object-oriented models is given in [Hull 87]: 

semantic models encapsulate structural aspects of objects, whereas object-oriented languages 

encapsulate behavioural a-;pects of objects. Semantic models are oriented towards tht representation 

of data, whereas object-oriented languages are concerned with the manipulation of data [King 89]. 

Essentially, semantic models provide constructors for creating complex types, w~le behavioural 

issues are often left undefined. In contrast, object-oriented models take an abstract data type 

approach. However, class hierarchies and inheritance are generally defined likewise in semantic 

models and object-oriented models. Behaviour of an object in semantic data models can be 

described by dynamic integrity constraints. Some researchers refer to semantic models as being 

'object-oriented' in order to stress the fact that they provide mechanisms for structuring complex 

objects. Thus, the distinction between the two kinds of modelling is not always well defined. In fact, 

in [Bouzeghoub et al. 91] a procedure is described to generate an object-oriented model from a 

semantic model. 

The most important difference between both models which is of interest for this thesis is the 

way integrity constraints are specified. In semantic data models, integrity constraints can be 

specified in first order predicate calculus (see section 2.4.3). Object-oriented data models do not, 

except through methods, easily permit specification of integrity constraints on the objects 
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[Bouzeghoub et al. 91 ]. I.e., mostintegrity constraints have to be specified in terms of the behaviour 

of the objects, and are described as dynamic constraints on the operations of an object. Dynamic 

constraints can be formulated in pre- and postconditions, which are expressed as predicates. 
However, pre- and postconditions should be considered as specifications of an operation or method, 
rather than a property of the object structure. Moreover, there are a number of drawbacks to the use 

of pre- and postconditions [Put 88]. It is for example not possible to define prescriptive rules, which 
are based on the arrival of a particular state. Also, when reusing dependent actions (methods) in 
different action calling patterns, one must be very carefully [Put 88]. 

2.7 Modular design of the information system 

2.7.1 Introduction 

With respect to modularity, five evaluation criteria for design methods are given in section 2.2. 
Certain design principles follow from this set of criteria which must be observed to ensure proper 

modularity. [Meyer 88] mentions five principles: 

1. linguistic modular units 

2. few interfaces 
3. small interfaces 

4. explicit interfaces 
5. information hiding 

The principle of linguistic modular units need a little explanation. This principle refers to the 

requirement that the language used to specify the design must support the notion of modularity. I.e., 
the grammar of the language should support the notion of modularity. 

Furthermore, the principle of independence of a module is added as the sixth principle. In this 
section, language features will be introduced for the realisation of the first, the fourth, the ftfth and 

the sixth principle by means of the conceptual schema. In chapters 5 and 6, guidelines will be given 

for quantifying the second and third principle. 

2.7.2 Linguistic modular units 

A module refers to a part of an information base that can be used separately [Pels 88]. It is therefore 
a concept at the conceptual level. A module presents itself to its user as an isolated information 
base. A module is therefore specified by an isolated conceptual schema, and should be considered 
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as an instance of that schema. In contrast with the distributed database approach, there is no global 

conceptual schema which is composed of various 'local' module schemas. A more detailed 

discussion on the relation between modules and distributed and federalised databases can be found 

in chapter 6. 

The basic building block SCHEMA is the syntactic unit to specify a conceptual schema. The 

classes and constraints related to a module can be specified in a schema. A schema dyfinition could 

look like1
: 

SCHEMA screenprinter 

CLASSES 

class station 

attributes 
station_name : string; 

end; -- class station 

class batch 

attributes 
batch_id : integer; 

end; -- class batch 

class request 

attributes 
consumer : station; 

batch: batch; 

end; -- class request 

INTEGRITY CONSTRAINTS 

-- for every information base state i must hold that the maximum number of requests created 

by the second-side for one batch is I. 

C(i) = Cv b: b e i.batch: 

(# r: r e i.request: r.consumer.station_name = 'screenprinter' A r.batch=b)::;; l) 

END; -- schema screenprinter 

1 a complete specification of the example is given in appendix B. 
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2.7.3 Explicit interfaces and information hiding 

The specification of a module includes also the interfaces of the module. These interfaces concern 

the update and retrieval authorisation of the module with respect to the information base. The 

interfaces will be called domains, and are defmed as functions on the information base state. 

Domains specify the update and retrieval authorisation of a module in terms of the retrieval 

operation 'read' and the three primitive update operations' create', 'delete' and 'modify'. Thus, the 

concept of domains satisfies the principle of explicit interfaces and information hiding. 

It should be noticed that in [Griethuysen 82] 'modify' is not considered as a separate operation. 

In stead it is considered as a combination of' delete' and 'create'. However, in terms of objects this 

would mean that one object is deleted and another is created. Although these two objects may have 

the same representation, they have different identities. The operation 'modify' has for this reason 

to be considered as a separate operation. 

view domain 

own domain foreign domain 

Module B 

Module A 

foreign domain own domain 

view domain 

figure 2.3 domains of a module 

Own domain 

The own domain of a module contains the objects for which the module has retrieval and update 

authorization (create, delete and modify). A further refinement can be made by distinguishing a 

private domain and a public domain, where the private domain contains the objects of the own 

domain that are not visible to other modules, and where the public domain contains the objects of 

the own domain that are visible to one or more other modules. 
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Foreign domain 
The foreign domain of a module contains the objects for which the module has retrieval 

authorization but no update authorization. The foreign domain refers to the objects a module 

retrieves from other modules. The union of the own and foreign domains is called the view domain. 

The view domain of a module contains the objects that are visible for the module. Being visible 

means that the objects are included in the information base of the module, and that these objects can 

be retrieved from this information base by the 'read' operation. 

Interfaces between modules are explicitly defined by their domains, which is illustrated by 

figure 2.3. The foreign domain refers to the objects a module retrieves from other modules, whereas 

the public domain refers to the objects created by the module itself and retrievable by other 

modules. 

The domains are specified by means of domain rules. A specification of domain rules could 

look like2
: 

SCHEMA screenprinter 

CLASSES 
class station 

end; -- class station 

class batch 

end; -- class batch 

class request 

end; -- class request 

class item_type 

end; -- class item_type 

DOMAIN RULES 

-- the own domain of this module consists of the objects of the object types request and station 
I 

that have 'screenprinter' as the name of the station. 

own domain (i) = { t e i.request I tconsumer.station_name = 'screenprinter'} u 
{ t e i.station I tstation_name='screenprinter'} 

-- the foreign domain of this module consists of all objects of the object typeS item_type and 

batch, the objects of the object type request with 'screenprinter' as the producer station name, 

and the objects of the object type station with 'second-side' as the station name. 

2 a complete specification of tbe example is given in appendix B. 
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foreign domain(i) = { t e Litem_ type} u { t e i. batch} u 
{ t e i.request I tproducer.station_name = 'screen printer'} u 
{ t e i.station I tstation_name ='second-side'} 

END; -- schema screenprinter 

Further refinement of the own domain 

21 

The distinction between own and foreign domain as defined above is usually sufficient Sometimes 

however, a refinement of the own domain is necessary. As defined earlier, the own domain contains 

the object.<;; for which the module has update authorization. Update authorization includes the three 

primitive update operations create, delete and modify. In some cases one module may have the 

authorization to create objects, while another module has the authorization to delete and modify 

objects. This leads to a refinement of the own domain in three non-disjunct domains: insert domain, 

delete domain and modify domain. 

The update domains will be specified in the conceptual schema by the terms 'insert domain', 

'delete domain' and 'modify domain'. The objects specified in the own domain are included in all 

three update domains. 

2. 7.4 Horizontal and vertical module fragmentation 

When defining the domains of a module, one will often find that not all objects of a particular class 

can be allotted to a single module. It will often occur that some objects in a class will be allotted 

to one module, while others will be allotted to another module. Furthermore, it may occur that some 

attributes of an object are own to a module and other attributes foreign. In analogy with Distributed 

Database terminology [Elmasri et al. 89], this allotting will be called horizontal module 

fragmentation respectively vertical module fragmentation respectively. It is remarked here that 

vertical module fragmentation often indicates a non-optimal definition of classes. Introducing 

specialisation avoids the necessity of using vertical module fragmentation. A fragmentation 

example could be: 

horizontal module fragmentation 

own domain (i) = {s e i.station I s.station_name = 'test&repair'} 

only stations with the name 'test&repair' are in the own domain 

vertical module fragmentation 

foreign domain (i) = { (s.station_name, s.batch_available) I s e i.station} 

--only the attributes 'station_name' and 'batch_available' are included in the foreign domain 
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2. 7.5 The relation between modules 

Independence 

Modular understandability is determined by the independence of a module. A module is 

independent if the user (application program or end-user) of that module can inspect the validity 

of an intended transition in every situation. A sufficient condition for independence is: a module 

is independent if all applicable constraints are visible3
• Visibility of an integrity constraint means 

that the user of a module can determine the logic value of the constraint. which requires that the 

view domain of the module includes all objects and attributes a constraint refers to. However, for 

the analysis of independence only those constraints are of interest that might be violated by an 

update operation in an update domain of the module. These constraints are called applicable 

constraints. For the analysis of the applicable constraints knowledge is needed of: 

I. the objects involved in the constraint specification 

2. for each involved object, the update operations that might violate the constraint. 

A method for performing this analysis is indicated in [Bouzeghoub et al. 91]. The result of the 

analysis is the applicability of each constraint for each pair (class, update operation). Whether the 

constraint is applicable to a module can easily be checked by comparing the pairs with the update 

domains of the module. 

Applications on scbemas 

Modular understandability requires also that an application can be developed as an application on 

a schema without considering other schemas. The discussion on independence shows that if a 

module is dependent, operations could be initiated that are not allowed, without being able to check 

the applicable constraints. This resulted in the condition for independence that all applicable 

constraints have to be visible. This condition holds of course also for the development of an 

application. Moreover, the following general design rule must be obeyed in order to avoid the 

situation where it is not possible to check the validity of constraints: 

when developing an application for a module, specifications of that module only 
shall be used. 

3 this condition is proven in [Pels 88] where an applicable constraint is defined as a constraint that is 
involved with either an INSERT, DELETE or MODIFY operation. 



modular design of the conceptual schema 23 

Derived attributes 
Derived attributes are attributes of which the value is calculated from the value of one or more other 

attributes. Special attention is here required for the definition of constraints. For example, attribute 

A is defined as the sum of B and C. Changing B or C would change the value of A as well. 

However, if B and C are owned by two different modules: who owns A? Besides, what happens if 

the value of A is changed: how does this affect B and C? These situations require a careful 

definition of constraint.<> and ownership. Prescriptive rules have to be specified to solve this 

problem. 

Continuity and Composability 
Independence of a module is of high importance for the design criteria of modular decomposability, 

modular understandability and modular protection. The method proposed here contributes also to 

modular composability and modular continuity. Modular continuity is satisfied if a small change 

in the. problem specification results in a change of just one module, or a few modules [Meyer 88]. 

Modular continuity is enhanced by the design principles of small interfaces, few interfaces, explicit 

interfaces and information hiding. While the former two principles concern a specific design and 

the latter two concerning the general properties of a module, each principle can be applied through 

the use of domain specifications. More particularly, any changes in the private domain of a module 

will affect only that module, and changes in the public domain of a module only affect the modules 

that interface that module through their foreign domain. Hence, these changes will be limited to a 

few modules. 

The criterium of composability is satisfied by the concept ofintegration. Integration of modules 

involves the combination of specifications of two or more modules into one schema. Both object 

structure and constraints have to be combined. Generalisation of object classes has to be applied 

in case of differences between classes in different modules. In [Pels 88] is argued that no further 

conditions have to be met in order to maintain independence when integrating two modules. 

The combination of the constraints of two or more schemas will however likely incur changes 

in what transitions are allowed on the information base. Consequently, the validity of the current 

transitions may be changed. This may have important consequences in case of update operations, 

since it will affect the requirement that applications on a conceptual schema should be based on the 

specifications of that schema. It might be required that applications have to be redesigned as well. 

Transferability of an application to an integrated schema is however guaranteed if the following 

conditions are satisfied [Pels 88]: 

I. the original module of the application is independent 

2. no applicable constraints may be introduced for the integrated module. 
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2.7.6 Other Approaches 

The problem of handling large complex schemas is recognized by many researchers and 

practitioners. A number of proposals have been presented for solving this problem. A few 

representative solutions will be discussed in this section. Other solutions that are related to 

distributed databases wilJ be discussed in chapter 6. 

A general solution to capture complexity in schemas is to define views on the global schema. 

In [Rumbaugh et al. 91] for example a 'module' is used for enhancing understandability and 

capturing a view of a situation. It is defined as a logical construction for grouping classes, 

associations, and generalisations. The global object model consists of one or more modules, 

whereas the modules enable the partitioning of an object model into manageable pie;ces. The same 

class can be referenced in different modules, which is the mechanism for binding modules. There 

is however no special notation given for a module, and a module is defined only in the external 

schema. This approach does not mention a modular conceptual schema, and no guidelines are given 

for the creation of independent modules in the meaning defined in this chapter. It is therefore 

concluded that this approach is not sufficient for the development of modular information systems. 

Another starting-point for the introduction of modules is to manage schema development. 

Several approaches from the area of Computer Aided Design address this issue in particular. [Kim 

et al. 88] for example present a model for version management of schemas for Object-oriented 

databases. [Andany et al. 91] present a version model that handles database schema changes, and 

that takes evaluation into account. It allows the development of partial schema versions in the form 

of external views of a schema. There are rules described for authorised modifications on a schema 

and for guaranteeing coherence. The main goal of these approaches is to secure modular 

understandability and continuity. The modularity criteria of composability and decomposability are 

however largely neglected. 

In object-oriented design a module is defined as an abstract data type including the attribute 

definitions, operations and integrity constraints [Meyer 88] [King 89]. In section 2.6, it is pointed 

out that a weakness of current object-oriented data models is that, except through the specification 

of methods, they do not easily permit the specification of integrity constraints. The specification 

of integrity constraints is however essential for analysing the independence and transferability of 

applications. Yet another risk of object-orientation is the complexity involve~ with reusing 

dependent actions in different calling patterns. For these reasons it is not clear whether current 

approaches based on object-orientation satisfy the composability and decomposability criteria for 

programming-in-the-large. 

Finally, there are efforts in various standardisation committees to create languages that allow 

the design of modules. The data modelling language Express for example, proposed by ISO 

TC184/SC4/WG5 [Spiby et al. 91], introduces the possibility of multiple schemas. The terms 

'reference' and 'use' are introduced for interfacing different schemas. These terms are used for 
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including the specification of one schema into another schema. However, they cannot be used 

directly for the specification of the domains of a module since the domains are specified in terms 

of the information base, not in terms of the conceptual schema [Baats 92). Moreover, Express 

allows implicit references through chains of relations. This violates the principle of explicit 

interfaces, which is essential for the definition of module independence. 

2.8 Concluding remarks 

Five criteria were specified in section 2.2 for the evaluation of a design method with respect to 

modularity. From these criteria it is possible to derive design principles. Six design principles are 

mentioned in section 2. 7 .I: linguistic modular units, few interfaces, small interfaces, explicit 

interfaces, information hiding, and independence. 

An evaluation of the method of modular design according to the five criteria will now complete 

this chapter. First, the method was initially developed to decompose complex information systems 

by the definition of modules and assigning domains to these modules [Pels 88]. Thus it satisfies the 

decomposition criterium. Second, the composition criterium is satisfied since it is possible to 

combine different modules by combining the domains. Third, the method aims at modules that can 

be understood separately. This is reflected in the visibility requirement of integrity constraints. 

Hence, the understandability criterium is also satisfied. Fourth, the continuity criterium is satisfied 

by the definition of own and foreign domains. These domains specify what part of the module can 

be changed without implications for other modules. Moreover, these domains provide the means 

for extending the information system. Fifth, modular protection is guaranteed when applications 

are specified and implemented as applications on one module. This will prevent unexpected errors 

to occur in an application due to errors in neighbouring modules. 
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Chapter3 

The model factory 

3.1 Aim and content 

This chapter provides an overview of an experiment that includes the modular design of an 

information system for shop floor controL This experiment will serve as an example in following 

chapters, and more details will be revealed. The experiment was carried out in the CIM laboratory 

of the Cooperative Engineering Centre of Digital Equipment Corporation in Amsterdam. The 

laboratory consists of a scale model factory of a PCB production line. This scale model factory was 

designed and implemented as a vehicle for applied research and advanced development in the area 

of shop floor control. In the laboratory it is possible to use commercially available hardware and 

software, to test new software, and to design and implement experimental tools and techniques. 

Research issues of the laboratory are the modular design and implementation of information 

systems for shop floor control, and the design of generic and reusable modules. 

This chapter includes a description of the products of the model factory, the physical hardware, 

the primary process, the control system, and the information system. The design of the information 

system will be discussed in more detail in chapter 5. A more complete description of the modular 

design of the information system of the model factory can be found in appendix B. 

figure 3.1 layout of a PCB 
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3.2 The primary process 

3.2.1 The Product 

The model factory produces printed circuit boards fPCBs). Each PCB consists of a board and a 

maximum of six components. Currently, two diferent types of boards and three types of 

components are used in the model factory. The layoht of a PCB is depicted in figure 3.1. 

3.2.2 Operations 

The model factory is a miniaturised model of a PCB production line. It emulates operations that are 

performed on real PCBs during their manufacturing process. The operations have been derived from 

case studies of real PCB manufacturing facilities [Rozendal91]. The operations are: 

• screen printing: the bare PCB is positioned in the workstation, a PCB-specific screen is 

selected and moved into position, and a "squeegee" is reciprocated horizontally over the 

screen to attach imaginary solder paste. 

• component placement: the pasted PCB is positioned in the workstation, and qomponents 

are placed on the positions with the imaginary solder paste according to the component­

placement recipes for that product. 

• reflow & cleaning: populated PCBs are passed through an oven and cleaning 1station. For 

environmental reasons, no actual reflow or cleaning is performed. 

• test & repair: the PCB is inspected to see if it contains the components in th9 designated 

position (according to the recipe), and component and functional tests are performed. 

If the PCB fails, it must be routed to an off-line diagnosis and repair workst1ttion. Upon 

successful repair, the PCB is routed back to the test station. 

In addition to these basic operations, the model factory contains other features. EriJ.pty boards and 

components are automatically supplied from a centralised raw material store or cdmponent store. 

The model factory can support mixed model flow production, where different types of products can 

be manufactured nearly simultaneously. The model factory is designed for batch production, but 

the batch size can vary from batch to batch, as well as product to product. The maximum batch size 

in the model factory is three. 
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3.2.3 Process layout 

The process layout is depicted in figure 3.2. The operations are indicated by square boxes, while 

stocks and buffers are indicated by triangles. The first stock in line contains the two types of empty 

boards. The following station is the screenprinter. Mter the screen printer, alternative routings are 

possible between two component placement stations. The next station is reflow and cleaning. The 

in-process-store consists of three first-in-first-out (FIFO) locations for three products each. The 

repair buffer in the test & repair cycle can contain one batch. The final-product-store is randomly 

accessible and can contain nine individual products. 

An additional feature is a loop from the in-process-store to the screenprinter. This loop is 

necessary to manufacture PCBs that have components on both sides. These products have to pass 

the process twice, since only one side can be finished in one pass. The FIFO buffer in this second­

side loop can contain nine products. 

component 
store 

3.2.4 Hardware 

figure 3.2 process layout of the model factory 

All workstations in the model factory are fully automated, with the exception of the repair station, 

where a human operator is required. Besides the actual operation, each workstation has to manage 

temporary storage and retrieval of PCBs, indexing of PCBs through the process, inventory of raw 

materials, etcetera. This necessitates many sensors in the factory, in addition to solenoid stops, 

motors, lights, conveyers, pneumatics, etcetera. 

Obviously, all the logical ilo signals to and from these sensors and actuators are controlled by 

a Programmable Logic Controller (PLC) and its associated programs. To get an impression of the 

size of the system: there are 170 inputs and 150 outputs to the PLC, with a program size of 4 K 

(700 rungs). There is also a higher level supervisory system to manage the overall production 

process. Thus, the computer hardware and software are implemented in two levels, a PLC level and 

a VAX level. In summary, a considerable amount of equipment was needed to realise the ilo control 

and the supervisory computer system. 
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3.3 The control system 

Two different architectures for the control system of the model factory have been specified and 

implemented: a hierarchical control architecture and a distributed control architecture. 

The hierarchical architecture is based on the COSIMA architecture [Duggan 90] [Duggan et 

al. 91], and is characterised by a two-level scheduling and dispatching. At the highest level a work 

order is received and planned in a static schedule. The second level provides dispatching and 

detailed dynan1ic scheduling. Feedback is obtained by monitoring the status of the model factory. 

Monitoring is performed on lead-times and transport times. 

The distributed architecture is characterised by autonomous controllers for each self-contained 

unit of the model factory. This results in a pull oriented control of the model factory. The last 

controller in the line receives a work order which is consecutively passed to the other controllers 

as requests for production. Each request is related to an individual batch. 

figure 3.3 decentralised control model 

Both architectures have been implemented in the model factory, using the same computer 

hardware, system software and model factory layout. The example in this thesis is limited to the 

distributed architecture. A discussion of both architectures and their implementations can be found 

in [Timmermans et al. 93]. The distributed control architecture is depicted in figure 3.3. This figure 

shows the flow of products through the model factory, as well as the flow of requests between the 

controllers. 

The principal functionality of the implemented control architecture is as follows. The last 

controller in the line, the final product store controller, receives a work order. This controller creates 

a batch and a request for that batch based on Statistical Inventory Control. The controller specifies 
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in the batch definition what type of products have to be produced and how many (the batch size). 

The request for this batch is then sent to the preceding controller in line, the test & repair controller. 

This controller in its tum creates its own request for the same batch and forwards it to its preceding 

controller. This process of receiving and forwarding requests continues until the beginning of the 

production line is reached. Here, the physical batch is created by releasing empty boards from the 

raw material store. This physical batch is sent to the requesting station, thereby eliminating the 

request for that batch. Hence, all requests for the batch will be eliminated when the physical batch 

arrives at the final product store. Here, the batch definition itself may also be removed from the 

information base. 

The modules in the decentralised control architecture are characterised as follows: 

Material handler 
The material handler controls the replenishment of components from the component store to both 

component placement stations and the repair station. It gets requests for components from the repair 

controller and both component placement controllers. The material handler must then schedule, and 

dispatch the replenishment of components. 

Second side controller 
The second side controller controls the loop in product flow caused by double sided PCBs. The 

controller receives requests from the screenprinter controller. When the request concerns the second 

side of a double sided PCB, the controller forwards the request to the reflow and cleaning 

controller. If the request concerns an empty board, the second side controller drives the raw material 

store to satisfy the request. When the screenprinter is available the second side controller moves 

a batch to this machine. 

Screenprinter controller, component placement 1 controller, and component placement 2 controller 
Each of these controllers translates a request coming from the succeeding controller into a request 

to be sent to the preceding controller. These requests are stored in a queue, and processed when the 

station becomes available. Once work is received by the station, it is processed immediately. 

Reflow & cleaning controller 
This controller handles the requests that come from the in-process-store controller or from the 

second side controller. It converts the incoming requests into outgoing requests, which are sent to 

placement controller 2. Once work is received by the station, it is processed immediately. Mter the 

reflow and cleaning operation, the batch is moved to the second side buffer or to the in-process­

store, depending on the station which requests the batch. 
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In-process-store controller 
The in-process-store controller controls the in-process-store. It gets requests from the test & repair 

controller. The requested products are delivered from stock, if they are available, to the Test & 

Repair station. The stock is controlled by Statistical Inventory Control (SIC). A request for a 

replenishing batch is made to the reflow & cleaning controller when the inventory becomes below 

a minimum stocklevel. The stock of the in-process-store is refilled upon arrival of the batch. Thus, 

the in-process-store acts as a decoupling point, to allow for fluctuations in the demand for the 

factory. 

Test & repair controller 
This controller controls the testing operation and the repair operation. The controller receives its 

requests from the Finished Product Store controller. It converts the incoming request to an outgoing 

request and sends it to the in-process-store controller. The controller coordinates the flow of batches 

from the in-process-store and the repair buffer to the test station. A batch from the repair buffer has 

priority over batches from the in-process-store in order to avoid a deadlock in the material flow. 

This deadlock can occur when a batch is rejected by the test station, and at the same time there is 

a batch in the repair buffer. 

Finished product store controller 
This controller controls the finished product store. The controller receives production orders. They 

can be provided by another planning system. This planning system is however outside the scope 

of the experiment. On the due date of the production order, the finished product store controller 

starts delivering the order from stock. Replenishing takes place similar to the procedure of the in­

process-store. A request for a batch is created and sent to the test & repair controller based on SIC. 

When all items for a production order have been delivered, the production order is closed. 

3.4 The information system 

The information system for the distributed control architecture is designed and implemented 

according to the method of modular design [Koopmans 92]. An information system module is 

specified for each of the controllers in the control architecture. The specification consists of a 

functional description of the module, a conceptual schema, and the domain defmitions. The modular 

design enabled the one-by-one design and implementation of the controllers in the model factory. 

It is also possible to enhance the system by adding new modules without effecting the existing ones, 

or to modify one of the modules without effecting the other modules. 

A specification of the screenprinter module is given in this section. The specifications of the 

other modules can be found in appendix B. 
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3.4.1 Functional description 

The screenprinter station has the most straightforward controller. The controller receives a request 

from the component placement I controller. This request is converted to a request for the second­

side controller. In due time, the screenprinter station receives a batch from the raw material store 

or the second side buffer. The type of the products of the batch is then identified. Dependent of the 

type of product a screen-printing mask is selected, and a "squeegee" operation is performed. The 

batch is forwarded to component placement station 1 after all operations have been performed on 

all products in a batch. 

The control of the physical operations is performed by a PLC program. It is the task of the 

controller to give orders to the PLC program. 

3.4.2 Conceptual schema, constraints and domain definitions 

The conceptual schema, the constraints and the domains are defined as follows. A data structure 

diagram of the conceptual schema is given in figure 3.4. The central object classes in this diagram 

are request and batch. A request refers to the batch that is requested. Additionaly, a request refers 

to the station that will consume the batch of the request and to the station that will produce the batch 

of the request. The batch refers to the item_ type it contains, and to the station that created the batch. 

From the station, there is an optional relation to the batch to indicate the batch-in-process. The 

buffer, which belongs to a certain station, has also an optional relation to batch to indicate the batch 

it contains. 

figure 3.4 data structure diagram of screenprinter controller 
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SCHEMA screenprinter 

CLASSES 

class station 

attributes 
station_name : string; 

produced_requests : SET OF request; 

received_requests : SET OF request; 

batch_available : {available, non-available}; 

ready_to_receive: {Yes, No}; 

batch_in_process : batch; 

end; -- class station 

class batch 

attributes 
batch_id : integer; 

creator : station; 

item_type: item_type; 

size : { 1..3 } ; 

end;-- class batch 

class request 

attributes 
producer : station; 

consumer : station; 

batch : batch; 

item_type : item_type; 

end; -- class request 

class item_type 

attributes 
item_type : string; 

second_side : {yes, no}; 

end; -- class item 

-- the station that will produce the batch, 

-- i.e. receive the request 

the station that will consume the batch, 

--i.e. create the request 
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INTEGRITY CONSTRAINTS1 

--for every outgoing request there must be an incoming request with the same item type and batch 

size: for every information base state i must hold that for every request that this station produces 

there must exist a request that it receives, and the item type and batch size of both requests should 

be identical. 

Cl(i) = ('i/ r: r e i.request A r.consumer = 'screenprinter': 

) 

(3 r': r' e i.request: r' .producer= 'screenprinter' A r' .batch.item_type = 

r.batch.item_type A r' .batch.size = r.batch.size) 

--for every information base state i must hold that the maximum number of requests created by the 

screen printer for one batch is I. 
Cll(i) = ('i/ b: be i.batch: 

(# r: r e i.request: r.consumer.station_name = 'screenprinter' A r.batch=b)::;; 1 

-- for every information base state i must hold that once a batch is in process in 'screen printer', 

there may be no outstanding requests for that batch by 'screenprinter' 

Cl2(i) ('i/ s, b: s e i.station Abe i.batch A s.batch_in_process=b A 

s.station_name = 'screenprinter': 

.., (3 r: r e i.request: r.batch=b A r.consumer=s) 

-- for every information base state i must hold that the set of produced_requests of a station is 

identical to the set of requests with that station as consumer 

C20(i) = ('i/ s: s e i.station: s.produced_requests {r e i.request I r.consumer s}) 

DOMAIN RULES 

-- the own domain of the screen printer module consists of the objects of the object types request 

and station that have 'screenprinter' as the name of the (associated) station. 

own domain (i) { t e i.request I t.consumer.station_name = 'screenprinter'} u 
{ t e i.station I t.station_name='screenprinter'} 

1 not all constraints have been included here. 
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-- the foreign domain of the screenprinter module consists of all objects of the object types item 

type and batch, the objects of the object type request with 'screenprinter' as the station name, and 

the objects of the object type station with 'second-side' or 'component-placement# 1' as the station 

name. 

foreign domain(i) = { t e i.item_type} v { t e i.batch} v 
{ t e i.request I t.producer.station_name = 'screen printer'} v 
{te i.station I t.station_name ='second-side' v 

t.station_name ='component-placement# I'} 

END; -- schema screenprinter 

3.5 Complexity and limitations of the model factory 

Many elements of the model factory are encountered in real production environments. Such as: 

• problems such as rework with their subsequent effect on test & repair equipment 

utilisation 

• alternative routings for particular products where duplicate equipment is available 

• loops of products through the same equipment 

• complexity brought about by the mix model flow production, as well as the necessity of 

controlling many independent, cooperating workstations. 

There are different types of devices present in the factory, all of which are found in a real industrial 

environment. The control hardware, i.e., PLCs and supervisory computers, are state-of-the-art for 

industrial control. Also the commercial software tools and the integration platform corresponds to 

modem industrial environments. 

A number of unexpected events can and do occur because of the complexity of the model 

factory, which have to be anticipated for in the management of the factory. This reveals some 

limitations of the model factory and the current implementation. The produced products are 

simplistic and non-functional, and the amount of different products capable of being manufactured 

is limited. Some of the operations are only simulated, which means that problems related to 

operation control will not be encountered. Until now, the emphasis of the model factory 

implementation has been on the logistics management of the factory. There are many other issues 

to be considered when managing a real factory, such as quality management, maintenance, work-in­

process tracking, product development, process planning, work preparation, cost control, etcetera. 

Of course, human interaction with shop floor management systems is vitally important in real 
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situations. All of these aspects have more of less been outside the scope of the project. 

Many other systems are required to run a real factory in addition to the facilities and systems 

to control the shop floor. Examples of these are purchasing systems and invoice systems, MRP 

systems, shipping and distribution systems. Neither these systems nor their interfaces are considered 

in this project. 

The consistency of the information system in case of exceptions, in particular concerning error 

detection and error recovery, is another limitation in the present implementation. In the current 

implementation there are many situations that cannot be dealt with. Examples of these are the 

manual removal of batches while they are in process, adding products or batches in the production 

process, or the restart of a single station after breakdown. Inconsistencies of the information base 

will occur in all these situations. Only a restart of the complete factory is possible now. Extra 

equipment such as bar code readers and other sensors are necessary to solve this problem. 

Moreover, it would require a considerable amount of control software to check and recover 

impermissible or undesired states. For example, the stations in the model factory are equipped with 

optical sensors to detect the arrival of a product. When a batch arrives however, only the ftrst 

product is detected. Consequently, it must be assumed that the whole batch has arrived. An error 

occurs if this is not the case, for example in the situation where the transport system does not handle 

batches but individual products. The other products of a batch may be delayed, and therefore not 

yet be present when the station starts an operation. The installation of additional sensors and control 

software to detect the arrival of all products in a batch would solve this problem. However, it would 

not solve the situation where products do not arrive at all. Including robustness and error detection 

and recovery in the conceptual design would therefore increase the complexity drastically, and the 

necessity for modular information systems would even be greater. 
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Chapter4 

Information systems in manufacturing 

4.1 Introduction 

4.1.1 Outline of this chapter 

This chapter presents an overview of current methods for information systems design in 

manufacturing. The goal is not to make a complete overview, but to provide a background for 

following chapters. 

The outline of this chapter is as follows. Section 4.2 introduces a common method for the 

design and implementation of control systems, namely the definition oflayered architectures. Two 

architectures are discussed in more detail, the hierarchical control architecture and the layered 

implementation architecture. It will be concluded that neither architecture suffices for solving the 

design and implementation problems of modular information systems. 

Hierarchical architectures for production control are discussed in section 4.3. It will be 

explained why hierarchy is introduced and what the consequences of hierarchy are for the design 

of modular information systems. Section 4.4 will then discuss layered implementation architectures. 

It will be argued that most implementation architectures are hierarchical in nature, due to historical 

technical reasons. However, alternatives are now available. The relation between implementation 

architectures and modular design of information systems is discussed. In section 4.5, a comparison 

is made between the hierarchical control architecture and the hierarchical implementation 

architecture, based on the model factory. Section 4.6 then discusses the limitations of both 

architectures concerning the redesign of systems. Section 4.7 completes this chapter with a short 

discussion of software packages for shop floor control. The conclusions of this chapter are 

presented in section 4.8. The most important conclusion will be that both architectures can be useful 

for the reduction of complexity, but are not sufficient for the design of modular information 

systems. 



40 chapter 4 

4.1.2 Problem statement 

The design of manufacturing systems includes product design, process design, and the design of 

the control system. All three aspects are found in the literature on CIM, both in isolation as well as 

combined. The starting-point in this thesis will be the control system. Later on, it will become clear 

how the other aspects of manufacturing system design have to be taken into account Moreover, it 

will be emphasized that all three aspects have to be considered concurrently in the redesigning of 

manufacturing systems. 

Currently, many design methods for manufacturing and information systems consider mainly, 

if not solely, the design of these systems from scratch. It is assumed that there is no system 

available yet, or that it is possible to adjust existing systems according to new requirements. The 

notion that systems are available refers not only to the existing manufacturing system that has to 

be replaced, but also to ready-to-buy systems, as for example commercial software packages. In this 

respect, the starting-point in this thesis is that the design of a manufacturing system involves in 

most cases a redesign process. The more ideal situation of design from scratch will occur only 

seldom. Moreover, in most cases only a part of the manufacturing system has to be redesigned. 

A discussion of a design method of manufacturing systems involves issues as complexity, 

uncertainty and flexibility. A method has to deal with complexity in terms of the size of the 

manufacturing and information system, and the integration of different views into the design of 

these systems. Uncertainty is faced externally in the relation between the manufacturll1g system and 

its environment, and internally in the relation between the tasks of the system. Flexibility in 

manufacturing is defined as the ability to adjust the primary process according to new 

understandings of the environment [Geraerds et al. 89]. It should be noticed that there is a trade-off 

between flexibility and complexity: an increase of flexibility will usually also increase the 

complexity. 

input 
variables 

figure 4.1 the control paradigm 

output 
variables 
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p___... .. c 
figure 4.2 the PCI paradigm 

4.1.3 Process, control and information 

The control paradigm of systems science makes a distinction between three subsystems: the 

controlled system, the control system and the environment (figure 4.1). In manufacturing the 

controlled system is also called the primary process, and the control system is called the production 

control system. The combination of the primary process and the control system is called the 

manufacturing system. The information system is not explicitly mentioned in systems science since 

it is considered to be part of the control system. Consequently, the design of information systems 

is often implicitly included when discussing the design of control systems. In this thesis however 

it will be stated explicitly when the design of the information system is included. 

This thesis is based on the Process-Control-Information (PCI) paradigm for the design and 

implementation of information systems (figure 4.2) [Bemelmans 84]. The PCI paradigm is derived 

from the control paradigm and states that the characteristics of a process (and product) 

determine the suitability of a control system for that process. The selection of a control system is 

a matter of matching process characteristics with characteristics of the possible control systems. In 

a similar way, the characteristics of the process and the control system determine the structure of 

the appropriate information system. 

control 
levels 

ceiVIine 

workstation 

aut. modules 

equipment 

implementation 
levels 

VAX 

PC 

PLC 

devices 

figure 4.3 an example of levels in manufacturing 
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4.2 Levels in manufacturing 

A typical way to decrease the complexity of manufacturing systems is to define levels [Bauer et al. 
91]. An example is presented in figure 4.3. At each level two aspects are considered: control and 
(technical) implementation. The lowest control level consists of manufacturing equipment that is 
controlled by automation modules. The automation modules are then controlled by workstations, 
and a number of workstations are controlled by a celVline controller. If necessary, it is possible to 
add more levels. 

The lowest implementation level consists of devices such as sensors, optical readers, barcode 
readers, motors etcetera. These devices are controlled by real-time PLCs and PLC software. The 
PLCs are connected to an industrial PC for downloading programs and to provide supervisory 
control. The PCs receive their commands from information systems on larger central systems such 
as VAX stations. 

Figure 4.4 shows schematically the design of an information system for production control 
according the waterfall model. A traditional way to design is to start with the specification of the 
'business problems' and to develop a business model with Yourdon-like techniques for structured 
design [Yourdon et al. 79]. The goal of the design phase is then to structure the processes, data 
flows and data stores of the business model in a (hierarchical) control model. Thus, the levels in the 
control model reduce the complexity that was met in the business model. Then, the control model 
is implemented in a layered implementation model. 

Besides the fact that the waterfall model does not focus on re-design in particular, and that there 
are no natural rules for the mapping of business model to control model and implementation model, 
it will be argued in the following sections that the definition of levels does not naturally result in 
a modular information system. In particular, criteria such as modular decomposability, modular 
continuity and modular protection could be neglected. These criteria concern the coordination 
between different levels. In this respect, problems may arise when integrity constraints apply to 

VAX 

PC 

PLC 

Devices 

Business mo e Hierarchical control architecture lamentation architecture 

figure 4.4 example of mapping of models 



information systems in manufacturing 43 

more than one level, and there are no design principles for describing the interfaces between levels. 

In addition, different views or aspects may result in different level defmitions. Two views or 

aspects have been given as an example: a production control view and an implementation view. It 

will be argued that the mapping of these two views is not as trivial as figure 4.3 suggests. This is 
especially true since different designers of information systems in manufacturing tend to favour one 

of these views over the other, and consider the other view as derived. An information analyst for 

example will prefer the control view. A hardware oriented designer however will prefer the 

implementation view. 

4.3 Control models 

4.3.1 Approaches to production control 

In chronological order, three approaches to the design of production control systems appear 

according to [Meal 84]: decentral control, central control, and hierarchical control. The first type 

of control was very much based on the primary process and without much supervisory control. It 

is therefore decentralistic in nature. Improved information technology initiated then a centralised 

approach. In this approach there is the tendency to create central decision functions that are given 

the power to control in detail the operational processes in all parts of the organisation. This 

approach results typically in large monolithic applications. Third, there is the hierarchical approach 

which gives the management at the various organisational positions insight into the whole situation. 

The hierarchical approach will be discussed in further detail since it is most commonly applied 

as a starting-point for the design of flexible control systems. The other approaches will return in 

chapter 5 when the modularity of information systems in manufacturing is discussed. It will then 

be argued that it is no longer necessary nor desirable to apply hierarchical control. It is now possible 

to design 'distributed control systems' corresponding the principles of lean manufacturing 

[Womack et al. 91] and modular information systems. 

4.3.2 The hierarchical approach 

The hierarchical approach is based on a system science perspective [Mesarovic et al. 70]. It reveals 

the relation of a control system as a whole and its components in terms of their tasks, functional 

behaviour, and performance. The hierarchical approach is exhibited in manufacturing through the 

definition of hierarchical control architectures. Examples of hierarchical control architectures are 

presented in [Jones et al. 86], [CFT 87], and [Biemans 90]. The starting-pointforthe design of these 

architectures is the inherent complexity of monolithical control systems. To avoid these large 
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monolithical systems, various levels of abstraction are introduced, reducing at each level the span 

of control, the time horizon and the time period of decision making. Generic components can be 

defined that can be used at each level by specifying the specific requirements for that level. At each 

level goals or tasks are decomposed into sequences of subtasks which are passed down to the next 

(lower) level in the hierarchy. This procedure is repeated at each level until a sequence of primitive 

tasks is generated that can be executed by simple actions. An architecture that includes this 

principle is presented in figure 4.5. Such architectures are implemented in pilots and demonstration 

projects as for instance the CIMphony project at Philips Research [Sol89]. 

figure 4.5 The NBS hierarchical control architecture [Jones et al. 87]1 

4.3.3 Modularity and flexibility in hierarchical control architectures 

A hierarchical decomposition provides a structured method for the reduction of complexity in 

control systems. There are however a number of important drawbacks to this approach. Five 

drawbacks are mentioned here. 

First, the approach does not provide adequate criteria for the decomposition of the tasks or 

levels. This is reflected in the fact that different hierarchical models propose a different number of 
levels [Jones et al. 86], [CFf 87], [Biemans 90]. 

Second, the hierarchical approaches rely heavily on the rationalisation of the control system. 

It is assumed that the primary process is fully understood and that its behaviour canibe modelled 

as far it is of relevance to the control system. The validity of this assumption will be questioned in 
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the next chapter. 

A third drawback results from an information system view on organisational control. Galbraith 

mentions in [Galbraith 73] that 'the weakness of hierarchical communication systems is that each 

link has a finite capacity for handling information. As the organisation's subtasks increase in 

uncertainty, more exceptions arise which must be referred upward. As more exceptions are referred 

upward, the hierarchy becomes overloaded. Serious delays develop between the upward 

transmission of information about new situations and a response to that information downward. In 

this situation, the organisation must develop new processes to supplement rules and hierarchy.' 

Fourth, the applicability of generic components that can be used at each level is rather limited 

since the behaviour and content of a component is often very specific for certain applications and 

depends on the position of a component in the hierarchy. In particular when performance 

requirements play an important role, it is difficult to develop standard software for isolated 

components. 

Fifth, a controller in a hierarchical control architecture must have substantial knowledge of the 

lower levels to be able to control these levels [Dilts et al. 91]. This is in particular of interest for 

exception handling, such as start-up, shut down, error detection and error recovery. ln these 

situations, the controller has to know the states of the lower levels. Indeed, it would require a large 

and complex conceptual model to describe the possible states, which is in direct conflict with the 

aim of a hierarchical architecture, which is to reduce the complexity. 

4.4 Implementation architectures 

While an information analyst type of designer may prefer the control oriented design of an 

information system for manufacturing, a hardware oriented designer may focus on the 

implementation architecture and use a bottom-up approach. Thi'l bottom-up approach entails a 

distinction between levels of hardware and its associated software. Functionality is added to the 

manufacturing system bottom-up and level by level by means of building blocks consisting of 

hardware and software. The number of levels in this implementation oriented architecture is not 

definitely determined, as was also the case with hierarchical control architectures discussed in the 

previous section. An example of an implementation oriented architecture is presented in figure 4.6. 

At the lowest level one finds the physical hardware of the manufacturing system that specifies the 

possible transformation processes. The second level consists of a PLC and PLC software. The third 

level includes workstations and station controller applications. The fourth level is defined by mini­

computers for shop floor planning and control, and the fifth level contains mainframe computers 

for MRP and MPS tasks. 

Such a layered implementation architecture provides an adequate method for modular 

composability and understandability. The functionality of each level can be defmed clearly. All 
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real-time software for example can be implemented at PLC level, and non-time-critical software 

at higher levels. Workstations are used for hour-to-hour machine control, etc. Thus, 

understandability between levels is improved to a large extent. The commercial availability of 

hardware and software is an important advantage of this approach: CIM component manufacturers 

tend to offer the functionality in a combination of hardware and software. It is therefore possible 

to select the appropriate components to fill in a level. Furthermore, tools are available to create 

bridges between different levels. Hence, the modular composability criterion is met by this method. 

The disadvantage of implementation oriented architectures is that is tends to result in systems 

that are difficult to decompose. There are two reasons for this. First, a level by level implementation 

of modules emphasizes on the one hand the simplification of interfaces between components on one 

level. On the other hand it often assumes the interfaces between levels to be simple by the nature 

of the layered architecture itself, which is not necessarily true. This could likely result in many-to­

many relations between components at different levels which is a burden for decomposability. 

Second, there is the danger that each level uses the lower levels as their foundation. Any change 

in this foundation could immediately affect all the components that rely on it. This issue will be 

discussed in more detail in section 5.2.3. 

mainframe 

mini 

workstations 

PLC 

devices 
(sensors & actuators) 

figure 4.6 example of implementation levels 

4.5 Hierarchical control versus layered implementation architecture 

Erroneously, hierarchical control architectures are often confused with layered implementation 

architectures. Especially at the lowest levels, it might seem promising to make a one-to-one 

mapping of control levels into implementation levels, as was illustrated in figure 4.3. Some of the 

problems this could lead to can be illustrated by the design and implementation process of the 
model factory. 
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Initially, the control system and the model factory hardware plus the PLC programs were 

developed concurrently. The functional specifications of the model factory were sent to a 

manufacturer in California, USA, for the design and implementation of the model factory hardware 

and the PLC programs. Simultaneously, these specifications were used for the design and 

implementation of the control system in the Netherlands. The goal of the control system developers 

was to create a modular information system for the control of the model factory. That is, the 

information system should be developed according to the principles of modular design as presented 

in chapter 2. 

The distance and time difference between both groups made it difficult to communicate 

intensively on details. As it appeared, both groups had different perceptions of the mapping of 

control levels onto implementation levels. Apart from flaws in the design of the model factory 

hardware and PLC software, differences appeared when the following questions had to be 

answered: 

l. which functionality belongs to which implementation level 

2. how are modules defined. 

An example of different answers to the first question appears at the implementation of product 

routings. While the hardware/PLC designers implemented these in the PLC software, the control 

system designers would probably implement them in the control software. Yet, another example 

is already given in chapter 3: only the first product in a batch is registered by an optical reader upon 

arrival at a station. A time delay was built in the PLC software to be sure of the arrival of the 

complete batch. These delays are highly undesired according to the control system designers. They 

would have preferred the installation of additional optical readers. This would however make the 

model factory hardware and the PLC software more complex. 

A different answer to the second question is given, for example, concerning the definition and 

implementation of conveyor belts that serve multiple stations. The hardware designers reduced the 

complexity of the model factory by implementing relatively large conveyor belts that serve multiple 

stations. For the control system designers, however, this resulted in the sharing of resources by 

different independent modules. The synchronisation of modules that share conveyor belts made an 

increase of the interfaces of the modules necessary. 

The conclusion is therefore that the introduction of control levels and implementation levels 

are two different approaches for relieving the complexity problem. Often, it is not possible to make 

a one-to-one mapping between both models, as is demonstrated by the model factory example. The 

problem of mapping is illustrated in figure 4.7 where a hierarchical control model has to be mapped 

to an implementation model using a local area network. 
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Hierarchical control architecture lm lamentation architecture 

figure 4.7 mapping of control levels to implementation levels 

4.6 Redesigning the process 

Another limitation to both architectures is that they mainly focus on design hom scratch and 

disregard the (physical) limitations of the primary process. When redesigning a manufacturing 

system, it will often be impossible to change certain parts of the present primary process due to 

limitations concerning: 

• shop floor layout aspects 

• social aspects 

• technological aspects 

• economical aspects 

First, shop floor layout aspects refer to the layout of the primary process. There may be constraints 

in the shop floor layout that prohibita certain control architecture. A line layout fQr example cannot 

provide many features for rerouting, while the flow of products in a system with a Job shop oriented 

layout can be defined freely. 

Second, there are the social aspects. These aspects together with the layout aspects are 

discussed by for example Group Technology (GT) and Production Flow Analysis (PFA) [Burbidge 

89]. The consequences of social aspects for control architectures are illustrated by the argument of 

Burbidge that the correct application of GT and PFA would substitute the use of more complex 

control systems, most notably MRP. Social aspects may for example also limit the creation of 

'virtual cells'. Vtrtual cells are manufacturing cells that exist only in the production control 

software for planning reasons. The reason is that virtual cells tend to neglect the human role in 

manufacturing. 

Third, there are technological aspects that influence the possibilities of control systems, such 
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as communication protocols, differences in data formats and the capacity of a network. These 

aspects are of particular importance in highly automated shop floor control. The aim of this thesis 

is not to extend on how to include these aspects as such. However, it is important to aim at a method 

that allows the consideration of the limitations of the primary process and to address problems 

related to redesign. In this respect, this thesis will contribute to these issues in the following 

chapters. 

Fourth, there are economical aspects that require that parts of the primary process cannot or will 

not be changed. The high costs involved with implementing new machines is an example of an 

economic aspect that might prevent changes in the primary process. 

4. 7 Software packages for shop floor control 

A short list of software packages for shop floor and cell control will be discussed in the section to 

complete the overview of this chapter on information systems in manufacturing. The goal of this 

section is to provide the reader with some characteristics of the present software that can readily 

be bought Each of the software packages will be discussed in terms of their main functionality and 

their architectural principles. 

Since it was not the main goal of this research to provide a detailed overview of available 

software, it is not possible to present here the data models underlying the software packages. 

However, this would have provided a more in-depth knowledge of the functionality of the software 

package, as is indicated in [Bertrand et al. 90] and [Heij 91]. 

COSIMA 
COSIMA (Control System for Integrated Manufacturing) is a system for Production Activity 

Control, developed as part of Esprit project 477 [Duggan 90] [Duggan et al. 9l]. The system is 

based on the production management system hierarchy described in [Bauer et al. 91 ], and is broken 

down into five distinct building blocks; namely a scheduler, a dispatcher, a monitor, producers and 

movers. The COSIMA architecture is presented in figure 4.8. 

PLATO-Z 
PLATO-Z (Production Logistics and Tunings OrganiZer) is a framework for production planning 

and control containing an 'intelligent cell control system' (ICCS) [O'Grady et al. 88]. PLATO-Z 

is based on a combination of the hierarchical control systems proposed by CAM-I and NBS ([CAM­

I 84] and [Jones et al. 86] respectively). The goal of PLATO-Z is to make decisions as low as 

possible in the hierarchy, where the cell takes over much of the responsibility concerning 

scheduling, dispatching, error recovery, cell initialisation and termination, communication and 

networking, as well as the user interface. The ICCS is implemented using a multi-blackboard/actor-
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based framework containing several blackboard subsystems each of which performs major cell 

functions. This model aims to provide an architecture in control is achieved by passing appropriate 

messages between blackboard subsystems. 

I 
scheduler 

I 
/ " dispatcher 1-1 monitor 

t t 

figure 4.8 COSIMA architecture 

MADEMA 
MADEMA (MAnufacturing DEcision MAking) is a system for process planning and scheduling 

based on the CAM-I hierarchical control architecture [Bunce 88]. It aims at manufacturing decision 

making at the work centre level which involves the assignment of resources to production tasks. 

MADEMA involves a database that describes jobs, work centres and resources tbat make up the 

factory. In addition, the system consists of a simulator and a decision making module containing 

different scheduling techniques. 

INFINET 
INFINET comprises a set of products based on the CAM reference model [CFf 87]. This product 

set makes a first distinction between: product process development, production process control, and 

support layer. One of the products in production process control is the worl<:cell controller, 

consisting of three major components, the workcell kernel, workcell support and the workcell user 

interface. The workcell kernel is responsible for making dispatch decisions and providing line setup 

control. The workcell support is responsible for maintaining the database an1 performing all 

automated transactions. The workcell user interface interacts with the operator to allow scheduling, 

data entry, monitoring and reporting transactions. 
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VAXplant 
V AXplant is a shop floor information system for tracking, analysis and on-line monitoring of 

production data, with capability to manage work order and resource data. It interfaces between the 

production resources at shop floor level and the Plant Information System (PIS). VAX plant is based 

on a relational database. The system is provided with orders from an MRP(-like) system which are 

then released to the shop floor. The orders are tracked and information about the order status is 

returned to the PIS. 

Workstream 

Workstream is a shop floor control system that offers a data repository specifically designed to 

support plant floor management, execution, and improvement [Consilium 92]. It is built on a central 

data ba.<;;e system that includes data on workorders, work-in-process, bills of material, inventory, 

etc. The system performs data-intensive functions such as scheduling, dispatching, tool 

management, and work-in-process tracking. As such, the shop floor controller consists of 

configurable application packages around a standard database package. On the one hand, the system 

can be integrated with a system for production and inventory control. On the other hand, it can be 

integrated with a work cell controller that provides equipment interfaces for monitoring and control, 

operator status and work instructions, real-time quality control, and coordination of manufacturing 

devices and operators [Pelusi 90]. 

In addition to these shop floor and cell controllers, numerous systems are available to specific tasks 

such as production planning and monitoring. FACTOR, CIMPICS, AHP Leitstand, to name a few, 

are examples of systems for the specific task of production planning. 

4.8 Concluding remarks 

An important aim when designing manufacturing systems is to obtain modularity in such a way that 

modifications according to environmental changes or internal requirements can easily be 

implemented. According to the PCI model, this modularity should be reflected in the information 

system, which is the subject of this thesis. This chapter presented an introduction into two 

commonly used architectures for the design of manufacturing systems. The goal of this introduction 

is to provide a background for the modular design of information systems in manufacturing. 

This introduction shows that there can be different aims when designing modular systems. 

Hierarchical control architectures for example focus strongly on the rationalisation of the 

manufacturing system. However, company specific systems with a low degree of modularity in 

terms of modular continuity and modular protection may be the result. 

Implementation architectures on the other hand tend to result in systems that are difficult to 
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decompose. The relations between components within a level will be clear and relatively simple. 

Many interfaces could however be created between levels. These interfaces are difficult to maintain 

from both a conceptual and a technological view. The result of this is a layered architecture of 

dependent components. Moreover, there is the danger that each level uses the lower levels as their 

foundation. Any change in this foundation could immediately affect all the components that rely 

on it. In addition, both architectures focus mainly on design from scratch and disregard the 

(physical) limitations of an existing primary process. 

The main conclusion of this chapter is therefore that introducing levels is not sufficient to 

obtain modular manufacturing systems. Other design and redesign principles have to be applied as 

welL The following chapters will concentrate on principles for the design and redesign of 

information systems. 
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Chapter 5 

Modular design in manufacturing 

5.1 Introduction 

5.1.1 Contents of the chapter 

The aim of this chapter is to provide principles for the design, re-design and implementation of a 

modular information system for manufacturing, based on the findings of the previous chapters, and 

with an emphasis on shop floor control systems. 

The following two subsections (5.1.2 and 5.1.3) will provide a retrospect in the realisation of 

this chapter, and the concept 'flexibility' will be explained into more detail, since the meaning of 

this concept often differs according to different authors. The question to be answered in section 5.2 

will then be: "what should be the starting-points for information system design?" lt is argued that 

there is no one-best-way method for the design and implementation of information systems for 

manufacturing. Every method has its merits and its limitations. It is however worthwhile to consider 

what the main assumptions of a method are. A variety of assumptions and their validity concerning 

modern manufacturing systems and technology will be discussed in section 5.2. 

The question to be answered in section 5.3 will then be: "what has to be considered when 

designing a module?" In the previous chapter, some approaches to the design of manufacturing 

systems and information systems for manufacturing were discussed. It was illustrated that these 

approaches do not necessarily satisfy all the criteria for modular design as specified in [Meyer 88] 

and as discussed in chapter 2. Section 5.3 will discuss criteria for determining a module. 

Section 5.4 will discuss implementation issues that affect the modularity of an information 

system. In [Pels 88] it is argued that in the conceptual design phase it is sufficient to consider only 

the design of the conceptual schema to obtain independent modules. In this phase it should be 

possible to disregard the implementation issues of user interface, processing, data management and 

communication. According to Pels, communication between modules is merely considered as the 

sharing of data between two modules [Pels 88]. When moving to the technical design and 

implementation however, choices have to be made between different communication protocols, 

operating systems, database management systems, etcetera. The definition of implementation 

architectures appears to be critical for the implementation of modular information systems. 

The subject of section 5.5 will then be the relation between implementation architectures and 
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control architectures. Distributed control architectures are considered as an alternative for the more 

commonly used hierarchical control architectures. 

The reuse of software is an issue that should be considered when discussing design and re­

design of information systems. In this respect, reuse of software is more than the reuse of 

programming code only. To allow fast modifications of an information system, one has to consider 

a method for the reuse at different levels, comprising both design and implementation. Section 5.6 

will provide an introduction to this method. 

5.1.2 Retrospect 

The previous three chapters have set the stage for a discussion of principles of modular design and 

the consequences of these principles for the implementation of information systems. 

A method for the modular design of information systems is presented in chapter 2. This method 

originated in the method described in [Pels 88]. At that time however, there was no experience in 

the application of the method in the area of CIM yet The first research goal leading to this thesis 

was therefore the application and validation of the method in this particular area. An experiment 

was set up in the area of shop floor control. This experiment has been presented in chapter 3 and 

appendix B, and results are presented in a range of papers and research reports: [Frissen 91] 

[Rozendal 91] [Baats 92] [Koopmans 92] [Hakkesteegt 93] [Timmermans et al. 92] [Timmermans 

et al. 93] [Timmermans 93]. These results indicate that the method provides good gu1delines for the 

modular design of information systems. Among the advantages are: 

• the method provides a formal approach to the identification, design, : analysis and 

implementation of modules. It creates much structure in the discussions between project 

members. Without the method these discussions would likely have resulted in discussions about 

common-sense design principles. Because of different backgrounds and opinions of project 

members, these common-sense design principles might not be as common as required. 

• the developer does not need to have a total view of the model factory. This made it possible to 

design and implement the modules one-by-one, only considering the interfaces to the 

neighbouring modules. 

• 
• 

• 

• 

it is easy to modify one module or to enhance the model factory with new modules . 

it allows the structuring of the information system according to the primary process and the 

control system, as is prescribed by the PCI paradigm. 

there are possibilities for quantifying modularity in terms of complexity, coupling, and 

cohesion. 

there are possibilities for defining generic modules, an issue that is elaborated on in chapter 7 

of this thesis. 
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The research also indicated that the modularity of a shop floor control system is not solely 

determined by the modularity of the conceptual schema. Other aspects that have to be considered 

are the product, process and control structure. Moreover, modularity of a shop floor control system 

is also determined by the implementation architecture of the system. 

In addition to the experimental research, a survey was carried out of methods for the design and 

implementation of complex information systems in manufacturing. This survey highlights a widely 

used solution to the reduction of complexity and the increase of flexibility, namely the definition 

of layered architectures. It was however concluded in chapter 4 that these architectures are not 

sufficient for the design of modular information systems. 

5.1.3 Concepts and Umitations 

Flexibility 

Flexibility is a key concept in manufacturing system design [Geraerds et al. 89]. Flexibility in 

manufacturing is defined as the ability to adjust the primary process according to new requirements 

of the environment Examples of flexibility in manufacturing are: flexibility in production volume, 

in product design, in machine change-over times, in shop floor lay-out, in production planning, in 

batch sizes, in the availability of personnel, etcetera. 

Flexibility in this thesis is restricted to the flexibility of the structure of information systems 

for shop floor control. This flexibility is defined as the ability to change the structure of the 

information system. Such a change may be of any size or type. Examples of this type of flexibility 

are: flexibility to add a station in the control architecture, to introduce new computer hardware for 

production control, to change the database management system for production control, to change 

the error recovery procedures of a particular module, etcetera. 

Flexibility is strongly related to the concept of 'architecture'. An architecture is defined as a 

description of components and their interfaces. Architectures determines the future flexibility of 

a system. For example, if the architecture of a building is being changed, then the building can 

crash. If changes are made only within a room, for example a room redecoration, then no vital thing 

is affected, but if a new window is being made then the architecture is affected again. 

Conceptual modelling 

Flexibility of the structure of the information system will be realized through the modular design 

of the conceptual schema. The five modularity criteria introduced in chapter 2 will provide 

guidelines for realising this flexibility. The conceptual schema is a description of the universe of 

discourse, modelling the meaning of the information in the information system [Griethuysen 82]. 

The conceptual schema plays a key role in systems analysis and database design. The conceptual 

schema should both be an enterprise model and serve as a step between user views and the physical 
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database design [Griethuysen 82] [Scheer 92]. The main principles of conceptual modelling will 

be discussed in this chapter. 

The main conclusion of this chapter will be that there are good principles for the modular 

design of information systems for manufacturing. The application of the principles of modular 

design is sometimes hindered due to (technical) limitations in the implementation of the information 

system. Architectures play a key role in the implementation of modular information systems. Three 

types of architectures are distinguished and will be introduced in this chapter: database 

architectures, system architectures and organisational control architectures. 

5.2 Methodology of information system development 

There is no one-best-way method for the design and implementation of information systems, as 

there is no one-best-way method for the design and implementation of manufacturing systems. 

Moreover, every method involves <;ertain assumptions. A few of these assumptions are discussed 

in this section. 

The limits of conceptual modelling in information systems for manufacturing is a controversial 

issue that is dealt with in subsection 5.2.1. Data modelling is then discussed in subsection 5.2.2. The 

problem of modelling information systems for artefacts such as manufacturing systems is discussed 

in subsection 5.2.3. Assumptions that often appear in other methods are discussed in subsection 

5.2.4. Finally, the close relation between functional and non-functional requirements is discussed 

in subsection 5.2.5. 

5.2.1 Conceptual modelling 

The ANSI/SPARC three schema architecture prescribes the following two general principles for 

the conceptual schema [Griethuysen 82]: 

1. Conceptualisation principle: a conceptual schema should only include conceptually 

relevant aspects, both static and dynamic, of the universe of discourse, thus 

excluding all aspects of (external or internal) data representation, physical data 

organisation and access as well as all aspects of particular external user 

representation such as message formats, data structures, etc. 

2. 100 percent principle: all relevant general static and dynamic aspects, i.e., all rules, 

laws, etc., of the universe of discourse should be described in the conceptual 

schema. The information system cannot be responsible for not meeting those 

described elsewhere, including those in application programs. 
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It is however not always possible to meet these principles. Consider for example a shop floor 

control module. The I 00 percent principle requires that all relevant general static and dynamic 

aspects of the physical hardware, the PLC, the communication software and the application 

software should be included in the conceptual schema of the module, as well as the functionality 

of sensors, devices, automation modules and stations. It is doubtful whether all relevant information 

can be specified in advance. In many situations this will not be possible, nor desirable. 

That it is not desirable is the result from the first principle, the conceptualisation principle. This 

principle says that a conceptual schema should only include conceptually relevant aspects of the 

universe of discourse. Over a longer period of time however, it is impossible to include all relevant 

information and only relevant information, due to uncertainty and complexity of the manufacturing 

system and its changing environment. It is very probable that information would be included in the 

conceptual schema that would never be relevant. The 100 percent principle on the other hand 

requires a full description of all relevant aspects. 

The principles of Van Griethuysen should therefore be considered as guidelines, rather than as 

strict principles. It should not be the question whether it is possible to included all and only relevant 

aspects in the conceptual schema. The question should be: are there possibilities for updating the 

conceptual schema by means of gradual changes. These possibilities are provided by a modular 

design of information systems, where each module is autonomous. In a modular information system 

it is not necessary that the conceptual schema of a module is stable over a long period of time. It 

will be possible to design and implement modules that can easily be changed, if the technology 

allows. The latter precondition will be discussed later in this chapter. 

5.2.2 Data modelling 

Data modelling can be considered as a starting-point for information system development. The 

reason for this is that a data model is a sound basis for the design of application software and for 

management decisions which improve business processes [Scheer et al. 92]. Also in [Pels et al. 90] 

and [Bertrand et al. 90] it is argued that the conceptual data model constitutes the skeleton of the 

information system. There is however a drawback to the modelling of the control flow in an 

information system by data models. Although (prescriptive and descriptive) dynamic constraints 

allow the specification of dynamics, the understandability of specifications may be insufficient in 

case of complex transactions. Process modelling techniques, as for example ExSpect [Aalst 92), 

may be used as a supplementary technique for the specification of the control flow. In [Stut 92] the 

integration of data modelling and process modelling is discussed in more detail. It is argued here 

that in a modular design of an information system that involves a complex control flow, it is 

necessary to extend the data models with process models in order to enhance modular 

understandability. 
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5.2.3 Sciences of the artificial 

Layered models have been introduced in the previous chapter to reduce the complexity of a 

manufacturing system. It was however argued that although this method may result in a modular 

structure within a level, it will often also imply many dependencies between levels. This section 

analyses this problem in relation to conceptual modelling. 

Concepts and principles for the design of information systems with the conceptual schema as 

a basis are described in the widely accepted report of Van Griethuysen [Griethuysen 82]. The 

approach to information system design in this report is illustrated in figure 5.1. 

Universe of 
Discourse 
Description 

figure 5.1 approach to the design of information systems 

(adapted from [Griethuysen 82]) 

Database 
Sy~tem 

The universe of discourse is described in the conceptual schema and the information base. 

Thereupon, the information base is implemented in a database system. Van Griethuysen mentions 

that it is possible for the database system itself to be one of the subjects that are being modelled, 

in which case the database system would be included in the universe of discourse. To simplify the 

discussion, he further assumes that the database system is disjoint from the universe of discourse. 

When designing manufacturing systems however, the universe of discourse itself is largely 

designed as well. This statement requires further enquiry. Consider the case where three levels are 

defined in the manufacturing system: the physical transformation processes, the PLC and its 

associated software, and the shop floor control system (including hardware and software). The steps 

indicated in figure 5.1 can be applied to each of the three levels. Succeedingly, the transformation 

processes, the PLC level and the shop floor control system are developed and implemented. 
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This situation corresponds to the situation initially described by Van Griethuysen, but excluded 
in his further discussion: the universe of discourse of the shop floor control system includes the 
PLC, the PLC program, the product structure, the machines, etcetera. The universe of discourse of 
the PLC level includes the machines and the devices, but also the components of the present shop 
floor control system are included in the universe of discourse of the PLC level. The same holds for 
the physical transformation level. 

The conclusion of this section is that the design of information systems for artefacts, such as 
manufacturing systems, needs a careful consideration about how the universe of discourse is 
affected by the design itself. Although this problem is mentioned by van Griethuysen, there is no 
answer given concerning the manner in which this dilemma should be approached when designing 
information systems. 

The way it was solved in the design of the model factory is to model ftrst those parts that are 
most stable over a period of time; then to enhance the design in an iterative mode, and to ftnish with 
those parts that are most sensitive to future changes. For example, once the primary process of the 
model factory was implemented, it would be difficult to make any changes in it. A model of the 
primary process is therefore not likely to change. The specific features of the production planning 
& control system however can easily be changed, and these features were therefore modeled last 
Until publication of this thesis, the primary process of the model factory has indeed not changed, 
while numerous changes have taken place in the production planning & control software, including 
the implementation of completely different control architectures. 

5.2.4 Assumptions 

All methods for information system design involve certain assumptions. The validity of these 
assumptions is questionable in particular situations. Three common assumptions that may inhibit 
the design, re-design and implementation of modular information systems are: 

• information system design is a one-off activity 
• information systems are designed from scratch 
• information system requirements are fixed 

First, most projects for information system design nowadays involve either the redesign or the 
extension of an existing information system. Hence, the applied method should focus on these 
situations, and the information system architecture should therefore allow redesign and extension. 
It is a fact that in most situations parts of the existing system cannot or will not be changed for 
financial or technical reasons. It is therefore a misconception that information system design is a 
one-off activity. Modular design of the conceptual schema avoids this assumption by emphasizing 
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a technique for decomposition and composition of modules. 

Second, it is a misconception that information systems are designed from scratch. This way of 

system development is too expensive for most companies. It is more pragmatic to base a solution 

on the existing system, and to make use of widely available commercial software. An important 

activity in future information system design will therefore be the selection of commercial software 

packages. Data modelling provides a good starting-point in the selection of software packages, as 

is indicated in [Bertrand et al. 90], [Scheer et al. 92] and [Heij 91]. Furthermore, the design of 

infrastructures requires attention. In chapter 6 the consequences for a modular information system 

will be discussed. 

Third, the general applicability of the waterfall model for information system development has 

to be discussed. Its key features are a predefined list of deliverables in each phase and the 

introduction of milestones, usually at the end of each phase. This model however is not applicable 

to all information development activities [Genuchten 91]. Van Genuchten points out that the 

conditions for the appropriate use of the waterfall model are relative stability and clearness of 

specifications. Taking the uncertainty and complexity of a manufacturing system and its changing 

environment into consideration, it is a false assumption to consider the information requirements 

as being stable. It is therefore necessary to reconsider the waterfall model, and to include flexible, 

generic modules based on existing components in the life cycle of an information system. 

Biggerstaff et al. mention that the following four steps have to be included in the life cycle: finding 

components, understanding components, modifying components and composing components 

[Biggerstaff et al. 87]. This approach will be discussed in more detail in chapter 7. Furthermore, 

when considering the trade-off between quality and costs, it might be wise to sacrifice some specific 

requirements in exchange for a standard solution [Genuchten 91]. 

As argued above, these three assumptions are no longer applicable in the design of information 

systems in manufacturing. Therefore, the method of modular design avoids these assumptions. 

5.2.5 Functional and non-functional requirements 

Conceptual design aims at the specification of both functional and non-functional requirements. The 

functional requirements are described in the conceptual. schema. However, the border between 

functional ahd non-functional requirements will not always be clear. Examples of requirements that 

lie on the border are: fault-tolerance of a module, error recoverability, and the possibility of adding 

a module at run-time. Whether these requirements are considered as functional or non-functional 

requirements will often depend on the application area. In case of doubt, a requirement should be 

considered as a functional requirement and should be taken into account in the conceptual schema. 

This will avoid ad-hoc adjustments of the information system when it is being implemented. 

Consider for example the updating of the work-in-process database. In many manufacturing 
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systems it is sufficient to update the database once a day or even once a week. However, a 

continuous update procedure is required when 'real-time' rescheduling of the on-hand production 

orders is desired. Assumptions on the work in process have to be made in case it should not be 

possible to have this continuous update. These assumptions have to be included in the conceptual 

schema to avoid impermissible states. 

The procedure described above is however not realistic for two reasons. First, it necessitates 

appropriate methods and tools for modelling these requirements in the conceptual design. Powerful 

tools are needed to model for example an error recovery procedure for an application of significant 

size. Most commercially available tools are still insufficient for this purpose. Second, the 

technology to implement a requirement has to be available. Limitations in the technology or the 

involved costs may prohibit the readily implementation of these requirements. 

It is therefore concluded that not all non-functional requirements can always be included in the 

conceptual design of a system. It is not the aim of this thesis to solve this problem. However, the 

relation between the conceptual design of information system modules and the implementation of 

these modules will be discussed extensively in chapter 6. The choice of an implementation 

architectures contributes considerably to solving this problem. The following two sections will 

respectively discuss the conceptual design of a module and the implementation of a module. 

5.3 Determining a module 

The PCI paradigm was introduced in chapter 2 as a paradigm for information systems design. 

According to this paradigm the information system should reflect the characteristics of the product, 

the primary process and the control system. The first step in the design of a manufacturing system 

is therefore the design of the primary process, the product and the control system. This design can 

include a number of activities in the factory; among those are product design, process design, 

production planning & control, manufacturing, assembly, physical distribution, quality control, 

marketing, sales, etcetera. 

5.3.1 Modularity criteria 

When designing modular systems, the ftrSt question is: what are the units that can or will operate 

autonomously. The reason to identify these units is that they will be considered as the modules for 

which a modular information system will be developed. A unit can for example be an individual 

machine, a manufacturing cell, a FMS or a planning system. The factors influencing size and 

contents of an autonomous unit may include technological, organisational and historical elements. 

The following criteria were introduced in chapter 2 for the demarcation of a module in terms of 
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modularity of the information system: understandability, continuity and protection. It has to be clear 

what a unit does on its own, changes to a unit should remain local, and run-time error recovery 

should be handled locally. 

Two additional criteria were introduced for the specification of the interfaces of a module. 

These comprised composability and, often neglected, decomposability. Once the units have been 

identified, the aim is to create simple interfaces between the units. These interfaces have to be 

designed in such a way that it is easy to compose an information system from components. 

Moreover, it should also be easy to decompose an information system again into its components. 

Simplicity of interfaces is an important design criterion in the design of the information system, the 

control system, as well as the primary process. A distinction should be made between the volume 

of communication between modules and the complexity of communication between modules when 

designing the interfaces. A design guideline is to keep any form of communication as much as 

possible local. Considering current technologies, the problem is often not so much the volume of 

communication, but rather the complexity of the communication. Reducing communication in terms 

of modular information system design involves the reduction of interface specifications (objects, 

attributes, constraints) in both the foreign and public domains ofthe modules (see section 2.7). 

5.3.2 Complexity, coupling and cohesion 

Three more criteria for the demarcation of a module and the definition of the interfaces of a module 

were introduced in [Yourdon et al. 79] and given a specific meaning in [Pels 88] regarding a 

module: complexity, coupling and coherence. 

The size of the module should be determined by the complexity of the module. The complexity 

should neither be too small nor too large. Pels defines a measure for the complexity of a module 

as the sum of the number of object classes, the number of attributes and the number of constraints. 

Although useful to begin with, it should be noticed that this measure is not very accurate, since it 

does not distinguish between attributes with many or few allowed values and between simple static 

constraints and complex dynamic constraints, and it does not include a measure for applications that 

operate on the module. 

Coupling of a module is a measure for the knowledge that other modules have about that 

module. If the specifications of a module are widely used by other modules (in their foreign 

domain) then it would be difficult for that module to change these specifications. Coupling should 

therefore be minimized to allow changes in a module to take place without affecting other modules. 

Pels defines a measure for coupling of a module A as the average of the number of other modules 

for which each own specification (object class, attribute or constraint) of A is visible. 

Cohesion is characterised as the insensitivity of a module for structural changes in its 

environment. Cohesion should therefore be maximized to create more autonomous units. A measure 
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for cohesion is defined by Pels as the ratio between the number of specifications in the own domain 

of a module and the number of visible specification of that module. These measures can be used 

for the evaluation of alternative designs, as for example in [Baats 92], where altemati ve designs for 

modules in the model factory are compared. 

These criteria determine the contents of a module at the conceptual level. The implementation 

of the module determines whether the modularity defmed at the conceptual level is actually 

realised. The following section will therefore discuss the relation between design and 

implementation in further detail. 

5.4 Implementation of a module 

5.4.1 Introduction 

The method for modular design in chapter 2 concentrates on the conceptual design of a module. In 

[Pels 88] it is argued that in the conceptual design phase it is sufficient to consider only the design 

of the conceptual schema to obtain independent modules. In this phase it should be possible to 

disregard the implementation issues of user interfaces, application processing, data management 

and communication. Although this proposition might be right from a theoretical viewpoint, practical 

experience, including the model factory experiment, sometimes seems to contradict it. The 

independence of a module often relies on the technologies used for the implementation of that 

module. These are often expressed as non-functional requirements which behave as constraints for 

the conceptual design. It is therefore of interest to consider the relation between conceptual design 

and implementation. 

5.4.2 The problem 

Consider for example the communication protocol between modules. Different commercial 

software packages may require different protocols. Although it is technically possible to combine 

these protocols into one network, this does not improve exchangeability of software. Furthermore, 

functional and non-functional requirements may need the replication and fragmentation of data 

across the network. The possibilities of this replication and fragmentation depend largely on the 

availability of a distributed database system. Although it is possible to specify the requirements for 

this system, it is often difficult to realise them. Commercially available database management 

systems for example do not always fully support the ANSI/SPARC three schema architecture. This 

creates problems concerning logical and physical data independence. The alternative of developing 

a database management system for one specific organisation is in most situations too expensive. 
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Furthermore, organisations are usually limited by existing systems. They cannot or will not update 

the existing systems during one giant operation. Therefore, one has to consider the existing systems 

and technology when designing new systems. Existing systems in this respect involve not only the 

automated information systems, but include also the organisational control structure. 

5.4.3 Implementation architectures 

The conclusion from the research underlying this thesis is that the definition of the implementation 

architecture of a manufacturing system is a critical design choice. It determines the conditions for 

modular (re-)design of information systems at the conceptual level. Three types of implementation 

architectures are of particular interest concerning the implementation of modular information 

systems. These are: database architectures, (networking) system architectures and organisational 

control architectures. 

Database architectures describe the dispersion of data across the different sites of an 

information system. Many different database architectures exist as extensions of the ANSJISPARC 

three-schema architecture. However, not all database architectures provide optimal conditions for 

the implementation of a modular information system. 

The (networking) system architecture provides communication facilities between the modules 

and distribution of processing across the network. This architecture is of great importance for the 

technological realisation of modular composability and modular decomposability. 

Finally, the organisational control architecture may create conditions or opportunities for the 

implementation of a distributed database system and a distributed networking system. The relation 

between these architectures and the implementation of modular information systems will be 

discussed in further detail in chapter 6. It will be illustrated that distributed architectures in 

particular provide best conditions for the implementation of modular information systems. 

To anticipate to chapter 6, a short discussion of the design of distributed control architectures 

is appropriate here, since hierarchical control architectures were discussed in chapter 4 as the most 

common control architecture. 

5.4.4 Distributed control architectures 

Most control systems are based on hierarchical control architectures as was discussed in chapter 4 

[Bauer et al. 91] [Biemans 90] [Duggan 90] [Jacques 90] [Tiemersma 92]. Although these control 

systems are currently used to control real manufacturing systems, they have certain disadvantages 

[Bakker 89] [Timmermans et al. 93]. Among the disadvantages of these 'conventional' control 

systems mentioned by Bakker are: 
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• both the scheduler and the dispatcher are complicated components. ( ... ) For the human 

operators it is frequently not clear why the system behaves as it does, 

• the traditional control systems cannot easily be extended(. .. ), and 

• the high costs of the traditional control systems( ... ). 

The distributed control architecture is an alternative to the hierarchical control architecture that does 

not have the disadvantages discussed above [Bakker 89]. Further advantages of a distributed control 

architecture that are of interest for modular design of information systems are [Dilts et al. 91]: 

• reduced complexity and simplified development 

• implicit fault-tolerance 

• reconfigurability and adaptability 

There are still some restrictions associated with the implementation of distributed control 

architectures. Dilts et al. point out that these restrictions arise from inherent deficiencies and current 

limitations in the technology. They mention differences in internal formatting, differences in 

communication protocols, and incompatibilities in operating systems, file servers and database 

systems to cause limitations. Also network capacity and response requirements pose a problem. Sol 

argues however that these limitations will soon disappear with the availability of current computer 

power and local area networks in combination with the trend towards 'open systems' (=standard 

interfaces) in industrial automation [Sol 92]. In addition, Weber et al. present a CIM architecture 

that can be applied to both a hierarchical and a distributed control architecture [Weber et al. 89]. 

An example of a distributed control architecture is presented by the model factory in chapter 

3. A more complete specification of the information system design of the model factory can be 

found in appendix B. 

S.S Development of generic modules 

Another issue in the modular design of information systems is the development of components. A 

key issue here is the reuse of software. Reuse of software is necessary to increasing the productivity 

of information system development. Simple approaches, like source code reusability, reusability 

of personnel, reusability of designs and subroutine libraries have experienced some degree of 

success in specific contexts. They fall short, however, in providing a basis for a systematic attack 

on the reusability problem [Meyer 88]. 

Data models will be used in chapter 7 to discuss the following requirements for increasing the 

reusability of software: 
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• reusable components at a sufficient high conceptual level 
• a policy for reusability that ultimately produces reusable programs 
• a technique to describe a complex hierarchy of reusable modules, with different levels of 

parametrisation. 

Ensuing, a method is presented for the definition of generic modules based on data m4dels, integrity 

constraints and domain rules. 
1 

5.6 Concluding remarks 

The conclusions of the previous chapters have been condensed in this chapter into a number of 
general principles for the design, re-design and implementation of a modular information system. 

An important conclusion is that the design, re-design and implementation of a modular information 
system cannot be considered independent from the design and re-design of the product, primary 

process and the control of the primary process. Then, one has to consider what type of flexibility 
is needed, taking into account the trade-off between the increase of flexibility and the reduction of 

complexity. This thesis focuses on the flexibility of the structure of information system for shop 

floor control. 
Modular design aims at both the increase of flexibility and the decrease of complexity. The 

principles described in chapter 2 and this chapter should result in the design of modulitr information 

systems. There are however a few important new learnings. 
The first learning is that the modularity of an information system may be limited by the 

technology that is used for the implementation. Database architectures, system architectures and 
organisational control architectures play an important role in providing the conditions for the 
implementation of modular information systems. These architectures will be the subject of chapter 
6. It is expected that appropriate implementation architectures will make it more easy to include the 
modelling of non-functional requirements at the conceptual level in such a way that these 
requirements can also be realised in an efficient and effective way. 

Second, there is a need for a method and for tools that allow fast modifications of an 

information system. This requirement is characterized as the need for reusable components, and will 
be discussed in chapter 7. 

Finally, assumptions that may inhibit the implementation of modular information systems 
should be avoided. A design method should therefore at least address the following concerns: 

• information system design is an evolutionary process 
• information systems have to be built from components 
• information system requirements are continuously changing. 
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Chapter 6 

Architectures for distributed systems 

6.1 Aim and content 

The focus of this chapter is on architectures for the implementation of information systems. 

Previous chapters, in particular chapter 2, concentrated on the conceptual design of independent 

modules. It was assumed that the implementation of these independent modules would not face 

many problems. This assumption will be weakened in this chapter. It is argued here that design and 

implementation are not entirely distinctive phases of information system development. 

The rationale of this chapter is as follows. In the conceptual design it is sufficient to consider 

only the design of the conceptual schema to obtain independent modules, provided that the 

implementation architecture fully supports the implementation of these modules. This condition 

will often not be met, as shown in chapter 5. There are many reasons for this, such as the costs 

involved in implementing these architectures, the (lack of) availability of proper technology, and 

the presence of a system that can not readily be updated. In those situations one has to reconsider 

the conceptual design, or one has to take for granted that (temporarily) the implementation does not 

fully support all modularity principles. It will be indicated in this chapter what implementation 

architectures provide the best conditions for the implementation of independent modules. 

Three types of architectures are described in this chapter: database architectures, (networking) 

system architectures and organisational control architectures. An architecture describes the 

component'> and the relation between components of an information system. The importance of an 

architecture lies in the fact that it establishes the structure of the information system for a long 

period of time. The emphasis in this thesis lies on distributed architectures. The trend to distributed 

architectures is also described in literature [Bell et al. 92] [Dilts et al. 91]. It is demonstrated that 

distributed architectures provide better conditions for satisfying modularity criteria than for 

example centralistic architectures or hierarchical architectures. 

Database architectures are discussed first Section 6.2 describes different database architectures 

as extensions of the ANSIISPARC three-schema architecture. Emphasis lies on the design of 

federated database architectures. The term 'federated database system' was introduced in 

[Heimbigner et al. 85] to indicate a database system with multiple conceptual schemas with local 

users. An extensive survey of federated database systems is given in [Sheth et al. 90]. Section 6.2 

concludes with an architecture of modules as an extension of the ANSIISPARC three-schema 
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architecture. 

The second type of architectures, system architectures, will be discussed in section 6.3. These 

architectures involve the distribution of data and applications across a network. Most database 

researchers take for granted the existence of a reliable data communications facility in much the 

same way as most software assumes the existence of an operating system which provides certain 

standard services [Bell et al. 92]. However, when implementing a modular information system, the 

architecture of the distributed system is of great importance to the technological realisation of 

modular composability and modular decomposability. The system architecture will to a great extent 

also determine the non-functional requirements as for example performance and costs. Section 6.3 

explains some basic understanding of the issues involved in the definition of these architectures. 

The client-server architecture (CSA) will be presented after an introduction in computer networks 

and standardisation in the area of manufacturing. The CSA can be used to implement distributed 

information systems. A distributed information system is characterised as a modular information 

system where data and applications are no longer bound to one specific site, but rely on a common 

infrastructure. This will be summarised by a schematic presentation of a modular CSA. 

A key design issue of the system architecture is the infrastructure. Infrastructure is defmed here 

as hardware and software (computers, networks, operating systems, applications, etc.) that is shared 

between different autonomous units. Benefits and disadvantages of the definition of an 

infrastructure are discussed in section 6.3. 

The organisational control architecture may create conditions or opportunities for the 

implementation of a distributed database system and a distributed networking system. Section 6.4. 

therefore discusses the relation between information design principles and the organisational design 

principles of Galbraith. 

Finally, the conclusions in this chapter are summarized in section 6.5. It is emphasized that 

distributed architectures in particular, although not necessary or sufficient, provide good conditions 

for the implementation of modular information systems. 

6.2 Database architectures 

The question that needs to be answered in this section is how modules can be implemented in a 

database architecture. The starting-point for the conceptual design of information systems was the 

ANSI/SPARC three-schema architecture [Tsichritzis et al. 77]. The definition of a module is based 

on this architecture. It was implicitly assumed that this architecture can be extended for distributed 

environments. Although this may be true, there are several ways to do this. Many investigations 

have taken place to extend the ANSI/SPARC three-schema architecture for distributed 

environments. These extensions take place in three directions characterised by [Ozsu et al. 91] 

[Sheth et al. 90]: 
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• the distribution of data 

• the heterogeneity of the database 

• the autonomy of local databases. 

Distribution of data refers to the dispersion of data over multiple sites. Heterogeneity refers to the 

integration of different types of database systems. More important for this thesis is the third type 

of extension, the autonomy of the local database. When considering autonomy, a distinction can 

be made between distributed database systems and multidatabase systems. Two types of 

multidatabase systems are of interest here, namely tightly coupled federated database systems and 

loosely coupled federated database systems1
• The following sections discuss distributed databases, 

loosely coupled and tightly coupled federated databases in more detail. [Sheth et al. 90] is 

recommended for further reading on this subject Neither of the presented architectures however 

is satisfying for the implementation of a modular information system. Therefore, this section 

finishes with the defmition of an architecture for modules, in the meaning specified in chapter 2. 

6.2.1 Transparency 

Data independence provided by the ANSJJSPARC three-schema architecture allows the user, 

whether it be the human end user, a programmer or a program, to consider only the data structure 

specified in the conceptual schema. The physical storage or the logical access of the data is 

transparent to the user. That is, the user does not have to know how the physical storage or the 

logical access is realised. The extension of the three-schema architecture requires also the 

replication and fragmentation of data over the sites to be transparent. These concepts are therefore 

discussed in this subsection. 

Replication of data is often necessary in a distributed environment for performance reasons. 

The possibility for replication is especially important in environments with high volume data 

manipulation, as for example in CAD/CAM applications. These applications may require that the 

data is located on the node of the network where the processing application resides. Replication of 

data will then often be inevitable when foreign data are concerned. This replication of data however 

should be transparent to the user. 

Transparency of fragmentation is usually discussed in terms of the relational model. It means 

that a database relation is divided into smaller fragments. Each fragment is treated as a separate 

database object In terms of object modelling, it would mean that various objects of one class are 

distributed over different sites. The problem that has to be dealt with in this situation is the handling 

of queries and updates that were specified on entire classes but now have to be performed on 

1 the reader should be aware that there is no standard agreement on terminology in this field yet. 
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subdivisions. Notice that this fragmentation has a slightly different meaning than the horizontal and 
vertical fragmentation of classes as discussed in section 2. 7 .4. In the latter, fragmentation refers to 
the distribution of data over multiple modules where the user has the access to one module only 
(module fragmentation). Fragmentation in the former meaning refers to the distribution of data over 
different local schemas where the user has the access to multiple schemas (database fragmentation). 

Fragmentation was introduced in section 2.7.4 to assign different objects of one class to 
different modules. Only the objects in the view domain of a module can be accessed by a user of 
that module. Consequently, queries and update operations on a module have to be performed solely 
on those objects that are specified for that module. The query and update operations will therefore 
be limited to the horizontal and vertical module fragments. However, objects in the view domain 
of a module may be distributed (fragmented) over different local schemas in a distributed database. 
Then, query and update operations must extend over all these database fragments. 

6.2.2 Distributed databases 

A distributed database is defined as a database that is distributed over multiple sites, while a single 
global conceptual schema is provided to the users [Bell et al. 92]. A standard distributed database 
based on the ANSJ/SPARC three-schema architecture could include local conceptual schemas and 
local internal schemas (figure 6.1). However, these local schemas do not have to be explicitly 
present in any particular implementation. In practice, most of the homogeneous syste~s do not have 
local schemas and have limited data management software at the local level [Bell ~tal. 92]. 

The global conceptual schema is defmed as the union of the local conceptual ~chemas. This 
schema is global because it describes the conceptual structure of the data at all the sites. 
Fragmentation and replication are handled in the mapping between the global conceptual schema 
and the local conceptual schemas. External schemas define the access of users to the database. The 
external schemas are defined on the global conceptual schema. 

figure 6.1 a distributed database system architecture 
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6.2.3 Tightly coupled federated databases 

The architecture of a tightly coupled federated database is shown in figure 6.2. Each local database 

system in this architecture defmes an export schema, which describes the data it is willing to share 

with others. A 'global' conceptual schema is defined as the union of all export schemas. External 

schemas can be defmed on either the global conceptual schema or one of the local conceptual 

schemas. 

\ 

~~ ~----~ r-----~ 

( 
Export } 

schema 1 

figure 6.2 tightly coupled federated database system architecture 

figure 6.3 loosely coupled federated database 
system architecture [Litwin et al. 90] 
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6.2.4 Loosely coupled federated databases 

The existence of a global conceptual schema is a controversial issue [Litwin et al. 90]. A global 

conceptual schema presumes an organisational unit that is responsible for the central data 

management. In an organisation with highly autonomous units however, it may be desirable that 

this responsibility is delegated to these units. This is effectuated by a local responsibility for local 

conceptual schemas and content of the information base. The merits of a global conceptual schema 

as the union of the local conceptual schemas would be eliminated since there is no task left for 

central data management [Ozsu et al. 91]. Each unit defmes its own internal schema and conceptual 

schema (figure 6.3), which may be based on heterogeneous databases. External views are 

constructed on one or more conceptual schemas. Thus the responsibility of provH:Iing access to 

multiple databases is delegated to the mapping between the external schemas and the local 

conceptual schemas. This is fundamentally different from architectures that use a global conceptual 

schema. The responsibility in the latter architectures is taken over by the mapping between the 

global conceptual schema and the local conceptual schema(s). 

6.2.5 A module architecture 

Neither of the three database architectures satisfies the following requirements for the 

implementation of a modular information system: 

• there should be no global conceptual schema 

• the intelfaces between modules should be defined at the conceptual schema level 

In this section, an architecture of modules, based on the ANSYSPARC three-schenia architecture, 

is described to resolve this deficit. Furthermore, a comparison is made with the three database 

architectures described earlier. 

figure 6.4 a module architecture 
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No global conceptual schema exists in an architecture of modules (figure 6.4). The 

responsibility and authority for updating a module are entirely in hands of that module. The 

interfaces between modules are defined by the public and foreign domains in the conceptual schema 

of the module. This is illustrated in figure 6.4 by the dotted line between the conceptual schemas. 

An external schema. is limited to one conceptual schema only, but may have access to other 

modules via the foreign domain. However, it would be allowed to design one DBMS to implement 

the internal schemas of multiple modules. 

The characteristics of this module architecture match with a loosely coupled federated database 

system in the sense that there is no global conceptual schema, and that each site is autonomous in 

its operation. A major difference is the interfacing between the sites. The interfaces between 

modules in the module architecture are defmed at the conceptual schema level, while the interfaces 

in the loosely coupled federated database system are defined by allowing an external schema to 

access multiple conceptual schemas. 

The module architecture corresponds in particular with the loosely coupled federated database 

system described in [Heimbigner et al. 85]. Heimbigner et al. describe an architecture where each 

site has its own private schema. Derived from the private schema, each site has an export schema 

that specifies the information the site is willing to share with other sites. Finally, each site has an 

import schema that specifies the information a site desires to use from other sites. The import 

schema is derived from the export schemas of other components. Thus, this architecture implements 

interfaces between modules at the conceptual schema level, and matches closely to the module 

architecture, provided that an external schema is associated to one conceptual schema only. The 

difference with [Heimbigner et al. 85] is that they do not provide criteria for the modularity of the 

architecture. The definition of export and import schemas may still result in a complex and rigid 

system, while the presented method provides modularity criteria by means of the domain 

definitions. 

The design of external schemas for only one conceptual schema is related to the tightly coupled 

federated database architecture. The distinction is that the export schemas in a tightly coupled 

federated database are combined in a single global conceptual schema upon which an external 

schema may be defmed. As mentioned before, there exists no global conceptual schema in the 

module architecture. Interfaces are provided by the domain defmitions in the conceptual schemas 

of each module. 

The conclusion of this section is that the proposed module architecture is an extension of the 

current developments in distributed database architectures. The module architecture should serve 

as a guideline when designing a modular information system. In many cases however it will not be 

possible to implement the architecture exactly as it is specified in this section in the near future, due 

to lack of appropriate commercial database management systems. 
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6.2.6 Current alternatives for the implementation of a module architecture 

There are two alternatives to implement an intermediate solution: either to define a distributed 

database system architecture according figure 6.1, or to define a loosely coupled federated database 

system architecture according to figure 6.2. In the former alternative, a global conceptual schema 

has to be created artificially by integrating the conceptual schemas of each module. If one of the 

modules will be changed or if a module will be added, then the global schema has to be updated. 

The advantage of this alternative is the simplicity of the solution and the broad range of commercial 

database systems available for it, which was also the reason to use it in the model factory. The 

disadvantage of this alternative is the amount of effort that it incurs in case changes have to be made 

to one module schema. This will essentially require a change in the global conceptual schema. 

In the second alternative, the loosely coupled federated database system architecture, a local 

conceptual schema is defmed for each individual own domain. The external schemas need to have 

knowledge of the local conceptual schemas they are related to. Each external schema is then related 

to one primary local conceptual schema and zero or more secondary local conceptual schemas. The 

primary local conceptual schema represents the own domain of the module where the external 

schema belongs to, and the secondary local conceptual schemas represent the foreign domains of 

the module where the external schema belongs to. The advantages of this solution have been 

discussed in section 6.2.4. The disadvantage however is that it requires complex data management 

tasks in each external schema. 

6.3 Distributed system architectures 

The previous section focused on database architectures. In this section the implementation of 

distributed system architectures is addressed. Mter an introduction to the principles of a distributed 

system, a short introduction will be provided into the standardisation of computernetworks and into 

distributed operating systems. An important development in the area of distributed system 

architectures is the appearance of client-server architectures {CSA). The principles of a CSA are 

introduced in this section, and an example is given of an implementation of a modular information 
system using a CSA. 

6.3.1 From integrated to distributed information systems 

The approach to the design of complex information systems described sofar is probably best 

characterised as the design of integrated information systems. An integrated information system can 

be characterised as an information system consisting of a number of independent modules that 
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exchange information through a dedicated network of interconnections. The emphasis lies on the 

design of the individual sites that are related to autonomous organisational units, rather than the 

design of an infrastructure of common facilities. 

The goal of this section is to show that this approach to the design of complex information 

systems may not necessarily result in the best solution in the long term concerning the costs and 

non-functional requirements such as performance. It will therefore be argued that one has to 

consider the infrastructure when implementing complex information systems. 

New technologies such as distributed operating systems, local and wide area networks, 

advanced communication protocols, powerful software development tools, and standardisation 

make it possible to reconsider the design strategy for complex information systems. Essentially, it 

is possible to make a shift from integrated information systems to distributed information systems. 

Four phases describing this shift are outlined in [Pels et al. 86]. 

If the implementation does not put any constraints on the conceptual design, then there will be 

no distinction between the conceptual design of an integrated information system and the 

conceptual design of a distributed information system. Both systems would provide the same user 

functionality. The difference between an integrated information system and a distributed 

information system appears in the implementation. An integrated information system will be 

implemented on one or more sites per module. Except for mainframe oriented systems, no two 

modules will share one site. On the other hand, the data and applications in a distributed 

information system are no longer bound to one specific site, which is the major advantage of this 

approach. Different applications of different modules can freely be combined on various sites. Thus, 

the system architecture of the information system will change considerably. The hardware 

components, the system software components and the relations between these components will be 

different in a distributed information system. Various projects and standards bodies are now 

involved with the defmition of distributed systems, as for example OSF, X/Open, ISO/SC18, and 

ISA/ANSA. 

The functional and non-functional requirements of an integrated information system are 

specified and implemented per site. The interconnections between different sites will receive special 

attention in case of high integration, i.e., a high degree of data exchange. These interconnections 

will be implemented based on the specific characteristics of the sites to be interconnected. 

The emphasis in the implementation of distributed information systems will be on the 

infrastructure. Infrastructure is defined as hardware and software (computers, networks, operating 

systems, applications, etc.) that is shared between different autonomous modules. The combination 

of functional and non-functional requirements of different modules into requirements for system 

components will be possible by emphasizing the infrastructure. A system configuration will be 

specified taking into account the requirements of a number of modules, instead of optimizing a 

configuration for each individual module. This will result in a configuration that is partially shared 

and partially owned by the module. Capacity on shared computers will be assigned to the individual 
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modules. Computer networks and distributed operating systems will play an important role in the 
design of distributed information systems. They will implement the user requirement that there 
should be no difference whether they use their own local computer or capacity of shared computers 
(location transparency). 

The following sections discuss the main concepts of a distributed information system: computer 
networks, distributed operating systems, and client-server architectures. The goal of these sections 
is to provide a short introduction into standards and developments of technologies for the 
implementation of distributed information systems in manufacturing. The client-server architecture 
is discussed in more depth because of the important consequences for the reusability of software 
and the design of generic modules. 

6.3.2 Computer networks 

For a user there should be no difference between applications that run on a singl1 machine and 
those that run on a network. This means that the operational details of the network should be 
transparent for the user. It is desirable to hide even the existence of the network, if possible. This 
section gives an introduction in the facilities and standards in manufacturing that provide this 
network transparency. Technological details are omitted. [Tanenbaum 88] is recommended for 
further reading on this subject. 

Node A Node B 

I applications 1--1 applications I - ~ - -
MMS--- 7 application layer 7 application layer 

6 presentation layer 6 presentation layer 

5 session layer 5 session layer 

4 transportation layer 4 transportation layer 

3 network layer 3 network layer 

2 data link layer 2 data link layer 

1 physical layer 

figure 6.5 ISO/OSI 7 layer architecture 
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ISO/OSI architecture 

To deal with the heterogeneity of equipment in a network:, the International Standards Organization 

has developed the Open Systems Interconnection architecture, referred to as the ISO/OSI 7-layer 

architecture. The ISO/OSI architecture specifies seven layers of interfaces and protocols for the 

exchange of data between two sites in a network: (figure 6.5). The application layer is of interest 

when discussing how applications communicate through a network. The application software is 

developed on top of this layer. Applications access the OSI environment by using the 

communication services of the application layer. Notice that the ISO/OSI architecture can be used 

for the realisation of integrated information systems, but is insufficient when one wants to realise 

fully distributed information systems [Pels et al. 86]. 

MAP/MSS 

The Manufacturing Automation Protocol (MAP) is based on the seven-layer OSI standard, and is 
designed to meet the requirements of manufacturers dealing with multi-vendor equipment on the 

shop floor [Jones 88]. MAP has chosen the broadband, token bus topology as the physical carrier 

(layer I). An important component of MAP V3.0 is the MMS (Manufacturing Messaging Service), 

which is a message based protocol for communications between computers and shop floor devices 

also available in other OSI implementations using Ethernet, Baseband, etcetera. Currently, vendors 

and users of robots, PLCs, Numerical Control (NC) machines, and process controllers are writing 

companion standards for MMS. The companion standards state what subset of the MMS messages 

is to be used and which objects are predefmed for each type of device. When these companion 

standards have been completed, the task of integrating applications with devices from multiple 

vendors should be simplified. This has important consequences for the costs of implementation. 

MMS provides a set of services for application software, and allows the implementation of 

client-server relations between controllers at different or the same level of control. In case of shop 

floor control, it would enable production control systems to communicate with shop floor devices. 

MMS allows the designer to define objects that can be identified in shop floor equipment MMS 

provides a set of convenient services for the application software to create interfaces to device 

controllers. MMS creates an additional level of portability across different device vendors, thus 

increasing the user's flexibility in procuring shop floor equipment [Bauer et al. 91]. 
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6.3.3 Distributed operating systems 

It is customary to run a DBMS as an application on top of a host operating system. However, there 
is significant evidence that such a mode of operation may not yield the best results in terms of 
functionality and performance of these systems [Ozsu et al. 91]. A distributed DBMS requires 
additional support from the distributed operating system. Tanenbaum defmes a distributed system 
as one that runs on a collection of machines that do not have shared memory, yet looks to its users 
like a single computer [Tanenbaum 92]. It should be reconsidered which features are to be provided 
by the DBMSs and which ones by the distributed operating system. This is especially of great 
importance for federated database systems that consist of heterogeneous systems. Each of the 
systems in a heterogeneous environment can provide different features or different 
implementations. Nowadays, these systems are often based on a network operating system, where 
each machine has a high degree of autonomy and there are few system-wide requirements. The 
operating system manages as a minimum the format and meaning of the messages that may 
potentially be exchanged [Tanenbaum 92]. However, no further research on this subject has been 
carried out in relation to this thesis, and for further reading on this subject is referred to [Tanenbaum 
92]. 

6.3.4 Data servers 

The previous chapters suggest the availability of general purpose computers that execute both 
application programs and data management functions. A reconsideration of the distribution of these 
functions is however required when taking into account the powerful workstations that are now 
available. The integration of workstations into a distributed environment makes a more efficient 
distribution of functions possible. Applications can run on workstations, called application clients, 

while database functions are dealt with by dedicated computers, called data servers. The same holds 
for other servers like mail servers, gateway servers, etc. A data server provides a complete database 
functionality, including persistence, recovery, and concurrency, and should therefore not be 
compared with the traditional file-server. Furthermore, a server can act as a client as well by calling 
other services. This leads to a distributed system architecture where sites are organised as 
specialised client/servers rather than general-purpose computers. 

The need to integrate various types of workstations into a local network .has resulted in a system 
architecture referred to as a client-server architecture. The client-server architecture dates from 
about twenty years ago when a host machine executed the main applications and called dedicated 
machines, called backend computers, to perform specific operations. The client-server architecture 
applies to both computer hardware and software. Client software can run on any machine and use 
server software on the same or another machine. The client manages for example the user interface 
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and submits service requests to the servers through the communication facilities of the distributed 

operating system. For example, the client-server architecture of the model factory applications is 
presented in figure 6.6. Each module in this architecture is designed as a client that can call the 

other modules, the database server and the factory devices where appropriate. 

~b 
server factory devices 

(various servers) 
Physical network connections 

~ 
1l4FJ 
Qb 

server factory devices 
(various servers) 

Client-server calls (by messages) 

figure 6.6 a client-server architecture 

6.3.5 Client-server architecture for a modnle 

The client-server architecture of the model factory is reflected in figure 6.6. The right part of the 

figure illustrates that each module behaves as both a client and a server by calling each others 

applications. Furthermore, each module calls the factory devices. Also, various modules use the 

same database server. The principles of modular design however would allow the implementation 

of a module itself in a client-server architecture (figure 6.7). Each of the applications in this 

example of a module architecture is defmed as a client operating on data of the module. The access 

to the data is provided by a module data server. The module data comprise own data and foreign 

data. Two dedicated servers are responsible for providing these data to the module data server. The 

own data server provides the own data according to the own domain specifications in the module, 

and a foreign data server provides the foreign data by calling the public data servers of other 

modules according to the foreign domain specification of the module. Finally, a public data server 

of the module can be called by other modules. 
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~~ ~-r-

client/server calls 

Physical network connections 

figure 6. 7 a module CSA 

6.4 Organisational control architectures 

6.4.1 Introduction 

chapter 6 

The complexity, coupling and cohesion criteria can also be applied to the design of organisational 

control architectures, although these criteria originally refer to information system design. It is 

however more appropriate to start with organisation design principles when discussi~g the relation 
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between information design and the design of control architectures from an organisational 

viewpoint Therefore, the four organisation design strategies of Galbraith (figure 6.8) are discussed 

for the organisational design of control systems. A comparison is made with the modular design of 

information systems. Two conclusions result from this section. The fll'St conclusion is that the 

organisational control architecture provides conditions and opportunities for the modular design of 

information systems. The second conclusion is that the method of modular design provides a 

technique for analysing the modularity of an organisational control architecture. 

Galbraith bases his arguments for the four design strategies on general information processing 

principles which are elaborated below. He presents them as alternatives for organisation (re-)design 

when an overloading of the hierarchy occurs. Although Galbraith does not mention it explicitly, an 

important distinction should be made between the volume of data that is exchanged between 

different units and the complexity of these data in terms of data structures. The emphasis in this 

section lies on complexity of the data rather than volume. The reason for this is that complexity is 

of more importance in most situations when the integration of complex information systems is 

discussed, especially when emphasizing the design of automated information systems. 

creation 
of slack 
resources 

creation of 
self-contained 
tasks 

reduce the need for 
information processing 

investment in 
vertical 
information 

creation of 
lateral 
relations 

l systems 

~------~v~--------J 
increase the capacity 
to process information 

figure 6.8 organisation design strategies [Galbraith 73] 

6.4.2 Creation of slack resources 

The fll'St strategy to reduce the need for information processing is the creation of slack resources. 

From an organisational viewpoint this entails the reduction of the number of exceptions that occur 

by reducing the required level of performance. The creation of slack resources will usually result 

in the weakening of integrity constraints and often also in the reduction of the number of integrity 

constraints. It was concluded in the previous chapter that the fonnal description and implementation 

of all relevant situations of an organisation over a longer period of time by means of conceptual 

modelling is very difficult, if not impossible. This holds especially for the description and 

implementation of integrity constraints, which is caused by the inherent complexity of these 

constraints. The introduction of slack may therefore facilitate the development of independent 

modules, especially in real-time software where the design and implementation of applications is 

drastically simplified by the weakening of elimination of time-related integrity constraints. In the 

model factory for example, physical i/o buffers are introduced between stations to reduce the need 
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for coordination between two modules. It would cause a complex adjustment procedure between 
the modules if these buffers were to be removed. 

6.4.3 Creation of self-contained units 

The second strategy to reduce the need for information processing is the creation of self-contained 
units. From an organisational viewpoint this means a change from a functional task design to one 
in which each group has all resources necessary to execute its task. This was the reason in the 
model factory for the grouping of the test station and the repair station into one self -pontained unit 

' called 'test & repair'. If both stations were to operate independently, they would need a lot of 
mutual adjustment. In fact, their own domains should be completely public to each other. The 
combination of the modules resulted in a single module with a relatively high cohesion and low 
coupling. Hence, from a modular information system design viewpoint, the creation of self­
contained units means a reduction of the coupling between modules and an increase of the cohesion 
of a module. 

6.4.4 Investment in vertical information systems 

The first strategy to increase the capacity to process information is to invest in vertical information 
systems in order to bring the information to a central point of decision maldng. From an 
organisational viewpoint this means to collect information at all points of origin and direct it, at 
appropriate times, to the appropriate places in the control hierarchy. Thus, the organisation can react 
on unanticipated exceptions by generating adjustments to the original plans or target setting. This 
strategy has two negative consequences from the viewpoint of modular information system design. 
These consequences involve the complexity of the data referred upwards in the orgaqisation, rather 
than the volume of data. First, this strategy increases the number and strength of integrity 
constraints between two modules at different levels in the control hierarchy. A stronger coupling 
between both modules will be the result. Second, this strategy requires a broadening of the view 
domain of the decision making module since it has to know more details of the operation of 
subordinate levels. This will increase the complexity of the communicated data. Alsp the coupling 
of the lower module increases, the cohesion of the higher module decrease~, and the !complexity of 
the decision making module increases as well. : 

Notably, this strategy is sometimes chosen to increase rationalism in decision making processes 
in organisations and to avoid behavioural control problems. Although these aims may be reached, 
this strategy does generally not contribute to more modular information systems. 
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6.4.5 Creation of lateral relations 

The second strategy to increase the capacity to process information is to create lateral relations. This 

strategy decentralises decisions by moving the level of decision making down to where the 

information exists rather than bringing it up to the points of decision. The consequence of this 

strategy from the viewpoint of modular information system design is the (partial) elimination of a 

supervising module. Information is exchanged laterally between two lower modules instead of 

sending information to a supervising module that forwards the information to the other lower 

module. As a result, the two modules can exchange information more effectively. 

Lateral relations can be implemented through so called liaison officers. These liaison officers 

have two tasks. The ftrst task is to 'filter' information from one module and pass it to the other. The 

second task is to provide cooperative activities. Examples of cooperative activities are the initiation 

of potentially complex series of actions involving the cooperation between modules, or the 

negotiation of shared data. Electronic Data Interchange (EDI) is an interesting research area in this 

respect. In EDI two autonomous organisations have to cooperate. The flexibility ofEDI connections 

depends largely upon the possibility to negotiate the data to be exchanged. The question is how this 

negotiation can take place. This problem is addressed in literature, for example in [Heimbigner et 

al. 85], but not yet solved. Apart from simple cooperative activities and information filtering, it is 

expected that these 'automated liaison officers' will not be available soon. 

Also other lateral relations than liaison officers are known in control architectures and 

information system design. Client-server or related principles as for example consumer-producer 

can also be used for the communication between autonomous modules. It should be noted that one 

has to consider whether the serving module is obliged to provide the service or not. The obligation 

to provide the service can result in dependencies between perceived autonomous modules. Further 

research is needed however for evaluating different types of these heterarchical relations and their 

impact on control and information system architectures. 

6.5 Concluding remarks 

This chapter has considered the influence of implementation architectures on the conceptual design. 

In particular it has been investigated which implementation architectures avoid such influences, and 

therefore provide best conditions for the implementation of independent modules. 

Three types of architectures for the implementation of modules were discussed in this chapter: 

database architectures, system architectures and organisational control architectures. This 

exposition illustrates that there is no straightforward way to implement modules in software and 

hardware. It is however illustrated that architectures of a distributed nature are more appropriate 

for the satisfaction of the modularity criteria defmed in chapter 2. 
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In the area of database architectures, the requirement for decentralisation was identified about 

two decades ago. The first solution here was the creation of 'composite databases' that may be 

heterogeneous. These architectures are now known as distributed databases, and are1 characterised 

by a single global conceptual schema. The difficulty of integrating multiple existin$ databases in 

one distributed database resulted in the definition of federated database architectures [Heimbigner 

et al. 85]. A federated database architecture allows a collection of database systems to unite in a 

federation in order to share and exchange information. This federation may either be tightly or 

loosely coupled. It is illustrated in this chapter that a module architecture may be considered as a 

special case of a loosely coupled database architecture, and matches in particflar with the 

architecture described in [Heimbigner et al. 85]. The latter however does not pro~ide tools for 

realising the modularity criteria defined in chapter 2. 
New technologies in the area of system architectures allow the implementation of distributed 

information systems. In these systems it is not obligatory that applications and data of a particular 

module actually reside in computer systems related to this module. Thus, independent modules can 

be implemented in a distributed information system with a common infrastructure. Infrastructure 

is defmed as hardware and software (computers, networks, operating systems, applications, etc.) 

that is shared between different autonomous units. It is expected that infrastructures will play an 

important role in the future of modular design of information systems in manufacturing [Truijens 

et al. 90]. 

An important concept introduced in this chapter is the client-server architecture. The 

applications and the information base of a module can be implemented as client/servers on a 

computer network that communicate through standard messages. The access of multiple clients to 

the same servers can enhance reuse of software, since the servers do not have to be replicated and 

maintenance of the servers can be coordinated. 

Finally, the correspondence between organisation design and information system design is 

indicated by the four organisation design strategies of Galbraith. It is argued that there is a strong 

relation between the organisational design of control architectures and the modular design of 

information systems. However, the organisational control architecture will not always provide best 

opportunities to design independent modules in the information system. In that case, information 

system designers could indicate opportunities for improvement, although it is not their 

responsibility to actually change the organisational control architecture. However, the method of 

modular design provides a technique for analysing the modularity of an organisational control 

architecture. The application of the method will therefore likely result i~ recommendations for 

improvements in the organisational control structure. 
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Chapter7 

Generic modules 

7.1 Introduction 

Reuse of software is necessary to increase the productivity of information system development. Van 

Genuchten argues that a change in the management of software development is necessary to bridge 

the gap between software demand and supply [Genuchten 91]. The present chapter aims at a 

contribution to the reuse of software from a complementary perspective. by describing a method 

for designing 'generic' modules. Generic modules should include properties of specific modules, 

and it should be relatively simple to specialise a generic module to a specific module. A generic 

module should include both a conceptual design and the implementation of this design in database 

systems and software applications. 

Four steps can be identified in the reuse of components: finding components. understanding 

components, modifying components and composing components [Biggerstaff et al. 87]. The major 

benefit of generic modules will be that they can contribute to each step. The flrst step however 

depends largely on the availability of repositories and libraries. Data models can be used as a 

starting-point for the defmition of these repositories and libraries. This thesis will however not 

discuss this issue of repositories and libraries in further detail. 

This chapter includes a discussion of the contents of a generic module, the language for 

specifying a generic module, and the techniques to create generic or specific modules. Section 7.2 

discusses reusability of software. The use of reference models to enhance reusability will then be 

discussed in section 7.3. Sections 7.4 and 7.5 describe how generic and specific modules are to be 

specified, and section 7.6 describes how to defme and implement software for generic modules. 

7.2 Reusability of software 

The classical approach to reusability is to develop libraries of routines that implement well-defmed 

operations. This approach however has a number of limitations [Meyer 88]: 

• each operation should allow for a simple specification 

• the individual operation should be clearly distinct from each other 

• no complex data structures should be involved. 
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Meyer argues that these limitations are essentially the consequence of the classical top-down 

functional approach to information system development. This approach is useful for insuring that 

the design will meet the initial specifications, but it does not promote reusability [Meyer 88]. 

Components tend to be narrowly adapted to the subproblems that led to their development; they are 

not naturally general. It is for example fairly simple to develop a library of string manipulation 

routines. Each of these routines is relatively simple, and uses simple data structures. The advantage 

of this library for development time and cost savings is however small. 

The development of software libraries for more complex software as for instance production 

scheduling software is much more difficult. It requires essentially the definition of a complex data 

model. For this specific data model it will then be possible to develop a software library. A 

commercial software company will therefore base its software libraries on one or a limited number 

of data models. A major problem would arise if the data model has to change. It would often imply 

the change of the entire software library as well. 

Top-down design does not in itself force the components to be specific and non-reusable. 

Designers may always write elements that transcend particular needs. In fact, the structure obtained 

in a top-down design is not constrained to be a pure tree: it can be a more general directed graph 

with some elements shared by several refinements. However, such reusable components are not a 

natural result of the method [Meyer 88]. 

The very notion of top-down design is essentially the contrary of reusability; reusable software 

implies that systems are developed by combining existing components. This is the definition of 

bottom-up design. Furthermore, an organisation has to face the following three reuse dilemmas 

[Biggerstaff et al. 89]: 

• generality versus payoff 

• component size versus potential 

• setup and costs of a components library 

First, the more general the component is, the less payoff for a specific application will be. On the 

other hand, the more a software product is specified towards one particular application, the less 

applicable it will be for reuse. Second, the bigger the component, the higher the payoff will be if 

the component is reused. The probability that the component can be reused will however be reduced 

because it will become increasingly specific as it gets bigger. Third, considerable efforts and 

investments have to be put into a software library before it starts to pay off. 

The conclusion of this section is therefore that reusable components should be developed at a 

sufficient high conceptual level, avoiding solutions for specific problems. A hint is given to the use 

of data models as the starting-point for the definition of reusable components. Also other sources 

propagate the use of data models as starting-point for software development [Scheer 92] [Bertrand 

et al. 91]. Reference models establish the first initiative in software reuse based on data models. 
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7.3 Reference models 

Reference models established the ftrst initiative in software reuse based on data models. It will be 
argued however that this approach does not provide an answer to all problems related to the reuse 
of software. 

A distinction can be made between two types of reference models, normative models and non­
normative models. Normative models describe the data model of a certain type of organisations or 
functions. Bertrand et al. describe for example reference models for make-to-stock, assemble-to­
order, make-to-order, and engineer-to-order type production organisations [Bertrand et al. 90]. The 
reference model for MRP packages is depicted in ftgure 7.1. The type of organisation is analysed 
before these models are applied. Then the corresponding reference model is chosen. If necessary, 
the reference model is adapted to the specific requirements of the organisation. Based on the 
reference model, either a commercially available software package is selected, or an information 
system is built from scratch. 

The non-normative reference model tries to encompass as many solutions as possible. The 
operation of this type of reference model means to select those parts of the model that are reflected 
in the specific situation. In contrast to the normative reference model, a non-normative reference 
model will be developed independently of the context in which it will be used. 

The major beneftts of both types of reference models are that they create a set of models that 
summarise the experience in a specific area. They also provide a technique for evaluating software 
packages, which improves the selection of software packages for specific situations considerably 
[Heij 91]. 

A drawback to both approaches is that they do not appear to bring much beyond the reuse of 
know-how and experience in the conceptual design and analysis phase since a reference model 
exists independently of corresponding implementations. There is a need to bridge this gap between 
design and implementation. The following requirements for increasing the reusability of software 
can be specified: 

• reusable components at a sufficient high conceptual level 
• a policy for reusability that ultimately produces reusable programs 
• a technique to describe a complex hierarchy of reusable modules, with different levels of 

parametrisation. 
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figure 7 .I reference model for MRP packages [Bertrand et al. 90] 

7.4 Generic modelling 

7.4.1 Requirements 

The requirements for increasing the reusability of software, summarized in the previous section, 

imply a method that supports both the implementation and the modelling of an information system. 

Moreover, it should be possible to model the information system at various levels of abstraction. 

Modelling of information systems at various levels of abstraction is imperative to avoid the 

dilemma that specific solutions might not be reusable in other situations. A pragmatic solution to 

this problem is provided by object-orientation. One has to generalise the specifications of specific 

modules into a generalised (generic) module. Generalisation allows abstractions in terms of data 
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models. Application software can be associated to these generic modules. In this thesis, the 

abstraction of specific modules is referred to as generic modelling. 

In the next subsection it will be discussed how object-orientation can contribute to the 

definition of generic modules. This will then be used in section 7.5 to describe a method for the 

definition of generic modules according to the method of modular design. 

7.4.2 Object-oriented modelling 

Classes describing groups of objects are the basic building blocks in object -oriented modelling. The 

technique of inheritance is used as the constructor for specifying generalisation and specialisation. 

This is expressed in an object-oriented model by the supertypelsubtype constructor. The 

generalisation operation is therefore restricted to a single object class. 

For example, each class definition in the screenprinter module of the model factory is eligible 

for generalisation. The generalisation of the module would then consist of generalisations of the 

individual classes. It would also be possible to consider the whole screenprinter as one object to be 

generalised. In that case, the screenprinter would be a complex composed object where the 

attributes are the object class definitions in the screenprinter. It is then possible to generalise this 

complex screenprinter object into, for example, a generic station control object. Thus, it would be 

possible to describe a complex hierarchy of objects, with different levels of parametrisation. This 

was specified as one of the requirements for increasing the reusability of software. This approach 

will also be applied in the defmition of a generic module. A generic module comprises a 

generalisation of the conceptual schema. Generalisation/specialisation has to be applied to both the 

structure of objects and their attributes, and the domain defmitions in the module, which differs 

from object-orientation. 

An important discussion pertains to the difficulties with defming generalised methods. 

Problems can occur concerning the independence of a module if one does not take care of the 

constraints involved with the generalised methods. In chapter 2 it is explained that applications 

should be developed as applications on a module. This means that the applications should comply 

with the domain rules and integrity constraints. This rule could be violated when methods are 

generalised or applied to generalised objects. In object-orientation it is difficult to validate this rule 

since most integrity constraints in object-orientation are described by the behaviour of the objects 

(by means of pre- and postconditions of the methods), rather than by the structure of the objects. 

Another means for generalisation of a module is to weaken the domain rules and/or the integrity 

constraints. The weakening of integrity constraints does not have a meaning in object-orientation 

since pre- and postconditions should be considered as specifications ofa method, rather than a 

property of the object structure. 

However, the weakening of integrity constraints on objects can cause errors in applications due 
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to unexpected values of retrieved data, as was illustrated in chapter 2. Furthermore, adding integrity 

constraints in specialised modules can cause errors when an intended transition is not allowed in 

combination with the current information base state, due to the added integrity constraint. A 

solution to this dilemma will be suggested in the following section. 

7.5 Generic modules 

This thesis proposes a data modelling oriented approach to generic modelling based on principles 

such as generalisation, specialisation, and inheritance. Generalisation in this approach is principally 

encapsulated in the structural aspects of the module, including integrity constraints and domain 

definitions. This differs from the object-oriented approach in the sense that generalisation in object­

orientation is both applied to structure and behaviour. 

generic module 

lest & repair module 

figure 7.2 abstraction of data structures 

7.5.1 Schema abstraction 

If two modules have similarities in their conceptual schema it is possible to abstral:t the modules 

into one generalised module specification. An example of such an abstraction is schematically given 
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in figute 7 .2, where the data structure diagrams of the test & repair module and the in-process-store 

module are abstracted into one generic module. 

The abstraction of a module concerns in general the removal of details. These details concern 

class specifications, attribute specifications, integrity constraints, or domain defmitions. 

Generalisation of classes is implemented by supertyping. The classes in specialised modules inherit 

the specifications of classes in the generic module, as in object-oriented design. It is however also 

possible to reduce the number of class defmitions or to weaken integrity constraints to obtain a 

generic module. Such a reduction of specifications will also affect the scope of the domain 

definitions of the module. These have to be adapted as well when the conceptual schema is 

generalised. Conversely, the conceptual schema will be extended when the generic module is 

applied in a specific situation. The domain definitions must be adapted after the conceptual schema 

is specialised. 

7 .5.2 Domain abstraction 

The abstraction of domains is another method for abstracting modules. A manufacturing company 

with multiple sites might for example have the same conceptual schema at each site. Each site 

however will have different own and foreign domains. The abstraction of both modules will result 

in a generic module in which the conceptual schema is identical to the conceptual schema of each 

module. However, the domain definitions will be generalised. 

Domain abstraction can be specified in either two ways. One way is to reduce the domain rules. 

Specialisation is then realised by adding domain specifications. Consider for example the following 

domain specifications, taken from section 2.7.3. This example expresses a generic module based 

on the screen printer module for the handling of requests. 

own domain (i) = 

foreign domain(i) = 

{ t e i.request I tconsumer.station_name = 'screenprinter'} v 
{ t e i.station I tstation_name='screenprinter'} 

{ t e i.item_type} u { t e i.batch} u 
{ t e i.request I tproducer.station_name = 'screenprinter'} u 
{t e i.station I tstation_name ='second-side' v 

t.station_name = 'component-placement#!'} 

These specifications can be generalised into: 

own domain (i) 
foreign domain (i) = 

{ t e i.request I tconsumer.station_name = 'screenprinter'} 

{ t e i.request I tproducer.station_name='screenprinter'} 
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The second alternative is to parametrise the domain rules. A specific module can be derived from 

the generic module by filling in the parameters. An abstraction of the example above could be: 

public domain (i,x) = { t e i.request I tconsumer.station_name = x } u 
{ t e i.station I tstation_name = x } 

foreigu domain (i,x,y,z) = { t e i.item_type} u { t e i.batch} u 
{ t e i.request I tproducer.station_name = x }u 

{ t e i.station I tstation_name = y v t.station_name = z} 

This generalisation can be used in each module that wants to implement request handling according 
the principles set out in the model factory. The generic module would consist of not only the 
schema specifications and the domain specifications, but also the associated applications. Both 
ways of parametrisation will be used in the following section for the definition of the concept of 

generic software. 

7.6 Generic software 

Generic modules provide the facility for specifying complex hierarchies of modules at different 
levels of parametrisation. They provide reusable components at a sufficient high conceptual level 

and genericness, not just solutions for a specific problem. However, the method s~ould also specify 
reusable applications. 

There are three conventional ways to develop applications from generic modules. These are: 

ready-made applications, parametrised applications, and the generation of applications by software 
generators. Ready-made applications can be used directly without modifications, but can only be 
developed for that part of a generic module that is less probable to change when the module is 

specialised into a particular module. The dilemmas here are the generality versus application payoff 
and application size versus reuse potential. The same dilemmas hold for parametrised applications. 
Parametrised applications are for instance software packages that are to be installed by setting a 
number of parameters. The third alternative for developing applications is to apply software 
generators. The disadvantage of software generators is that they are often geared towards a specific 
application area. 

A modem, more promising way of application development for generic modules is based on 

the client-server principle. A generic module plus associated applications can be regarded as 
building blocks. These building blocks will be implemented as a number of clients/servers for 
applications and data management, based on the module definition. The size of each of these 
clients/servers can vary, and they can be layered according basic services and application clients 

(figure 7 .3). For example, an embedded SQL call to a foreign database for a specific object class 
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could be a service. Thus, the client/servers for the generic module comprise a subset of the module 
CSA discussed in section 6.3.5. The completion of this subset into a specific module requires the 
following activities: 

• specialisation of the schema and domain abstractions 
• setting of the parameters of parametrised clients/servers 
• configuration of client applications by calling the appropriate servers 
• design and implementation of clients and servers that are specific for the module 

7.3 CSA of the building blocks 

Not all services specified for the generic module need to be included in the specialised module. 
This is an important in view of the problem described in the previous section that inheritance of 
applications may cause problems concerning the independence of a module. To ensure the 
independence of a module, applications must respect the integrity constraints and domain rules of 
the module. When specialising a module however, integrity constraints may be added or 
strengthened. These integrity constraints can cause errors when they do not allow certain transitions 
upon the information base that used to be valid in the generic module. Removing the services that 
could violate the independence rule will solve this problem.-

The following guidelines are given for the inheritance of services from a generic module. 
Services involving retrieval operations only can be always be inherited unless the view domain has 
been restricted concerning objects pertaining to the retrieval operations. Services involving update 
operations can be inherited if no applicable constraints to objects pertaining to the update operations 
are introduced, and if the update domains have not changed concerning the objects pertaining to the 
update operations. 

Furthermore, new services can be designed and implemented for the specialised module using 
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new schema specifications. These services can be developed specifically for the particular module. 

Reusability of software is increased because of the possibility of redesigning o~Jly the required 
services. 

The importance of generic software becomes even more appareRt when it is combined with the 
technological possibilities discussed in the previous chapter. The combination of an infrastructure 

and generic software enables the extensive reuse of services. The infrastructure would create a 
software bus that allows the plug-and-play of services, and services would not be restricted to the 

hardware of one module in the 'integrated information system' discussed in section 6.3 .1. Sharing 

services between two or more modules will be possible, provided that the services adhere to the 

domain rules of both modules. 

7.7 Concluding remarks 

The presented approach to generic modules differs considerably from the traditional view. Data 
models are used as the starting-point for reuse instead of focusing on libraries of routines. In this 
chapter it is indicated how a module definition, including the conceptual schema and domain 
definitions, can be used for the specification of generic modules. Successively, applications can be 
specified on these generic modules. Except for conventional techniques such as ready-made 

software, parametrised software and software generators, the modem, more promising approach 
based on the client-server principle is discussed. In this approach, a generic module plus 
applications are regarded as building blocks, consisting of a module and a numb~r of services. The 
specialisation of this generic module to a specific module includes the implemen~ation of the client 

applications. The complexity of the clients will be low. 
The benefits of generic modules are summarised as: 

• the reuse of modules at the conceptual level 
• hierarchies of modules, at different levels of parametrisation 
• reuse of implemented programs 

An important point of attention when designing generic modules and implementing specialised 
modules is the validity of integrity constraints and domain rules. It may be difficult to maintain the 
consistency of parametrised specifications. Moreover, it may require a considerable effort to 

evaluate whether an application on a generic module does not violate the constraints of a specialised 
module. Therefore, further research is recommended in the specification and implementation of 
tools to ensure consistency. 
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Chapter 8 

Discussion and conclusions 

8.1 Summary and conclusions 

8.1.1 Modular conceptual design 

The subject of this thesis is the modular design of infonnation systems for shop floor control. 

The aim of modular design is to specify modules that can be designed, redesigned and 

implemented autonomously. I.e., it should be possible to design, redesign and implement a 

module by considering exclusively the interfaces to other modules. These interfaces should be 

clear, simple and easy to change. 

A method for the conceptual design of a module has been introduced in chapter 2. The 

starting-point of this method is the conceptual schema. The interfaces between modules are 

defined by the public and foreign domains of a module, and it is described how the 

independence of a module can be detennined by evaluating these domain specifications and the 

applicable integrity constraints. 

The validity of the method has been demonstrated by means of a number of applications. 

The most important application is the design of a shop floor control system for a model factory. 

This design has been included in this thesis. 

The most important learning from the model factory experiment is that the concepts of 

modular design provide adequate tools for reducing the complexity of the shop floor control 

system. The shop floor control system was split up into modules. Each of the modules was 

successively designed and implemented independently. There has been no need for an overall 

conceptual design. 

It is however not possible to design and implement the infonnation system of the model 

factory independently from the product structure, the primary process and the control 

architecture. For example, the absence of a buffer between the reflow and cleaning station and 

the in-process-store required that the station would only start an operation on a batch when the 

store was ready to receive this batch. This constraint increased the complexity of the interfaces 

of both modules considerably. 

Succeedingly, other methods for the reduction of complexity in infonnation system for 

manufacturing have been discussed. A common method is to define levels. It is argued that this 
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method does not provide sufficient criteria for a modular information system. In particular the 

criteria of modular protection, modular continuity and modular decomposability could be 

neglected. 

8.1.2 Modular implementation 

Modular design is a necessary condition for a flexible information system. This condition, 

however, is not sufficient. Technology and organisation often either facilitate or inhibit the 

realisation of flexible information systems. Also complex organisational control structures require 

complex information system architectures, and conversely, simplified organisational control 

structures ease the relations between information system modules. 

Three types of architectures concerning the implementation of modular information systems 

have been discussed: database architectures, system architectures and organisational control 

architectures. The importance of these architectures lies in the fact that they provide conditions 
for the implementation of modular information systems, as well as the fact that they determine 

the structure of the information system for a long period of time, which includes the future 

flexibility. Special attention has been given to distributed architectures since they provide more 

adequate conditions to satisfy the modularity criteria than for example centralistic architectures 

or hierarchical architectures. 

8.1.3 Reuse of software 

There are a number of limitations to the use of routine libraries for the realisati:on of reusability. 

Reusability of software based on data models provides a good alternative. The module definition 

was proposed as a starting-point for the definition of reusable components. A module both 

allows the conceptual specification of a component and the implementation of this component. 

Furthermore, the method described in this thesis fulfils modularity criteria such as 

decomposability, composability, understandability, continuity and protection. 

There are three conventional ways to develop applications for generic modules: ready-made 
applications, parametrised applications, and the generation of applications by software generators. 

A modem way of application development for generic modules is based on the client-server 

principle. A generic module plus applications can be regarded as building blocks. These building 

blocks consist of a module and a number of applications in the form of servers. The 

specialisation of this generic module into a specific module involves the implementation of the 

client applications, which is merely be the configuration of appropriate server calls. 

An advantage of this approach is the possibility of sharing services between two or more 



discussion and conclusions 97 

modules. A client application can call multiple services that are physically located at other 

modules. Furthermore, an application can both be a client and a server, thus allowing different 

levels of abstraction in application software. Reusability of software is increased because of the 
possibility of redesigning only those services needed. 

8.1.4 Generalisation of the results 

An interesting discussion item is the possibility of generalising the research results. In general, 

it is not allowed to claim the general applicability of a method based on a limited number of 

experiments. It should be noticed however that in the model factory as described in this thesis 

nine different modules were implemented. The interfaces between these modules are all distinct. 

The method provided independence for each of the modules. The same holds for the other 

experiments as well. 

The main contribution of the research is however not to prove the generalisation of the 
results. The contribution from a scientific point of view is the description and argumentation of 

a method application in a complex manufacturing system. The goal of this design-oriented 

research is to illustrate how modular information systems are to be designed so that the main 

findin~s can be of use in other designs. 

8.2 Recommendations for further research 

Typology of control architectures versus modular information systems 
The emphasis of this thesis lies on the modular design of information systems. It is indicated 

that there is a strong relationship between the modular design of information systems and the 

definition of control architectures. In particular distributed control architectures provide good 

conditions for the implementation of modular information systems. This thesis is however not 

exhaustive in describing the relation between different control architectures and the modularity 

of information systems. It is therefore recommended to develop a typology for control 

architectures, and to specify for each type its relation to modular information systems. 

Heterarchical cooperation 
The method presented in this thesis allows the specification and implementation of federations 

of autonomous modules. Modules can be designed, redesigned and implemented only considering 

the interfaces with other modules. It will be more difficult when the interfaces themselves have 

to change. This requires the negotiation between different autonomous modules. Examples where 

these negotiations may take place can be found in Electronic Data Interchange (EDI), where two 
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autonomous organisations have to cooperate. An interesting research subject would be whether 
the negotiation in these heterarchical systems could be formalised. A particular important issue 

in this research would be the specification and negotiation of the pragmatics of the data. This 

issue is also indicated by the terms 'information resource integration' or 'schema trading' 

[Eliassen et al. 88]. 

Reusable modules 
Reuse of software is discussed in chapter 7. An interesting possibility for the reuse of software 

is the definition of reusable modules. A reusable module is defined by its conceptual schema and 

the applications associated to that schema. It would be an interesting research issue to implement 

software packages based on this principle. 

Infrastructure and reuse 
The definition of reusable applications as services on a module is of great interest for the 

improvement of software reusability. A condition for the definition of these services is the 
availability of an appropriate infrastructure in terms of hardware and system software. The study 

of the infrastructural requirements for the implementation of reusable services would be a valid 
research subject. 
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Appendix Al 

Notational conventions 

The notational conventions for diagrams in this thesis are based on [Martinet al. 92]. Notations 

will be used for classes, relationships, cardinalities, generalisation/specialisation, and 

composition. 

Class 

A class is drawn as a rectangle: 

D 
Cardinality constraints 

The term cardinality constraint refers to the restriction of how many of one item can be 

associated with another. A line represents an association between two classes. This line should 

always have cardinality symbols on both ends. The cardinality symbols express a maximum and 
minimum constraint. The following figure summarizes the representation of minimum and 

maximum cardinality constraints: 

.___A_ ..... H .... _s_ ..... 

Each instance of A is associated 
with how many instances of B 

Minimum Maximum 

0 1 

1 1 

0 More 
than 1 

1 More 
than 1 
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The following figure presents an example of a data structure diagram with cardinality 

constraints: 

an order is for one 
and only one customer 

Generalisation/specialisation 

an order has from 
one to many line Items 

Classes can have more specialised types called subtypes and more general types called 

supertypes. Large filled arrows are sometimes used to indicate the direction pf generalisation. 

The following figure can be read as 'Mammal is a subtype of Animal' or' Animal is a supertype 

of Mammal': 



Appendix A2 

Modelling language 

Notation 

Logical symbols: 

'\/ for all (universal quantifier symbol) 

3 exists at least one (existential quantifier 

symbol) 

3! exist~ exactly one (existential quantifier 

symbol) 

A and (conjunction) 

v or (disjunction) 

..., no (negation) 

-7 implies (implication) 

is equal (identify predicate) /equivalence 

Symbols for arithmetic operations: 

+, -, x, /, etc. 

Symbols for predicates: 

<, ~. >, 2 

Propositions 

Propositions can take the following form: 

l. ('\/ x: A(x): P(x)) 

2. (3 x : A(x): P(x) ) 

Extensions: 

e is member (membership predicate) 

c is included ( inclusion predicate) 

~ is included or equal 

::::> is subset 

:J is subset or equal 

u union 

(') intersection 

0 empty set 

L summation 

# cardinality 

{ xla} set of x satisfying a 
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where: 

• A(x) is a condition on x 

• P(x) is a proposition on x 

• C'i/ x : A(x): P(x) ) is true if and only if for all x's that satisfy condition A. proposition P is 

true. 

• (3 x : A(x): P(x) ) is true if there is at least one x that satisfies condition A for which 

proposition P is true. 

• (3! x : A(x): P(x) ) is true if there is exactly one x that satisfies condition A for which 

proposition P is true. 

Other notations 

Other notations used are: 

1. (I. x : A(x): P(x) ) 

2. (# x : A(x): R(x) ) 

where: 

• A(x) is a condition on x 

• P(x) is a numerical function on x 

• R(x) is a proposition on x 

• S is a set 

• (I. x : A(x): P(x) ) is the sum of all P(x) that satisfy condition A. 

• (# x : A(x): P(x) ) is the number of x's that satisfy condition A and for which proposition 

Pis true. 

Examples 

• ('<:/ X : X E { l, 2, 3 }; X<2.5 ) = 1<2.5 A 2<2.5 A 3<2.5 =false 

• (3 X : X E { l, 2, 3 }: X<2.5 ) = 1<2.5 V 2<2.5 V 3<2.5 =true 

• (3! X: X E {2, 3}: x<2.5) = (2<2.5 A.., (3<2.5)) V (.., (2<2.5) A 3<2.5) =true 

• (I. x:xe {1,2,3}:x2 )=12 +22+32 

• (# x:xe {l,2,3}:x<2.5)=1{x<2.51xe {1,2,3} }1=2 
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Appendix B 

Example: the model factory 

8.1 Introduction 

The infotmation system for the distributed control 

architecture is designed and implemented according 

to the method of modular design. An infonnation 

system module is specified for each of the controllers 

in the control architecture (figure 3.3, section 3.3). 

The specification consists of a functional description 

of the module, a conceptual schema, and the domain 

definitions, and is based on the specifications in 

[Koopmans 92]. 

8.2 Second-side controller 

8.2.1 Functiona1 description 

The second-side controller receives requests from the 

screenprinter controller. The second-side controller 

distinguishes two types of requests: requests for 

batches of new empty boards and requests for batches 

of boards that need components on the second-side. 

In the latter case, the second-side controller places a 

request for a newly defmed batch of half products at 

the reflow & cleaning controller. 

The incoming and outgoing batches are dealt 

with as follows. If the second-side buffer contains a 

batch, then this batch is forwarded to the 

screenprinter station and the corresponding batch 

definition and request to the reflow & cleaning 

controller are removed from the database. If the 

second-side buffer does not contain a batch then the 

second-side controller considers the requests for a 

batch of empty boards. The eldest request will be 

fulfilled frrst. Fulfilment of a request involves the 

forwarding of a batch of empty boards from the raw 

material store to the screenprinter station. The reason 

why batches in the second-side buffer have a higher 

priority than batches from the raw material store is to 

avoid a dead-lock in the material flow of the loop 

that is caused by products that need a second side. A 

dead-lock can occur when all buffers and stations in 

the loop contain a batch and none of the batches can 

be moved to the next station or buffer. Furthermore, 

it should be noted that the maximum contents of lhe 

second-side buffer in the current implementation is 

one batCh only, although physically it would be 

possible to contain more batches. 
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B.2.2 Conceptual schema 

A data structure diagram of the conceptual schema is 
given in figure B.l. The conceptual schema, the 

constraints and the domains of the second-side 

controller are defmed as follows. The central object 

classes in the diagram are request and batch. A 

request refers to the batch that is requested. 

Furthermore, a request refers to the station that will 

consume the batch related to the request and to the 

station that will produce the batch related to the 
request. The batch refers to the item_type it contains, 

and to the station that created the batch. From the 

station, there is an optional relation to the batch to 

indicate the batch-in-process. The buffer has an 
optional relation to batch to indicate the batch it 

contains. 

figure 8.1 data structure diagram of the second-side 

controller 

SCHEMA second-side 

CLASSES 

class station 

attributes 

station_name : string; 

produced_requests : SET OF request; 

received_requests : SET OF request; 

batch_available: { available,non-available); 
ready_to_receive: {Yes, No); 

batch_in_process : batch; 

end; -- class station 

class buffer 

attributes 

buffer_name : string; 
status : {full, empty} ; 

batch_in_buffer : batch; 

end; -- class buffer 

class batch 

attributes 

batch_id : integer; 

creator : station; 
item_type: item_type; 

size : { 1..3 }; 

end; -- class batch 

class request 

attributes 

producer : station; 
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-- the station that will proouce the batch, 

i.e. receive the request 

consumer : station; 

-- the station that will COJ1sume the batch, 

i.e. create the request 
batch : batch; 

item_type: item_type; 

end; -- class request 

class item_type 

attributes 

item_type : string; 

second_side : {yes, no); 
end; -- class item_type 

INTEGRITY CONSTRAINTS 

-- for every information base state i must hold that 

for each request r produced by thd controller there 

exists a request r' received by the controller for a 
batch of the same item type and si~e. for a second­

sided board. Moreover, r' require~ a second side 

(second_side = 'Yes'), and r is not double sided 
(second_side = 'No'). 



C2(i) = 

(\;/ r: r E i.request A r.consumer.station_name = 

'second-side': 

(3 r': r' E i.request: r'.producer.station_name = 

'second-side' A r'.batch.item_type.item_type = 
r.batch.item_type.item_type A r' .batch.size = 

r.batcb.size A r' .batch.item_type.second_side = 

'yes' "r.batcb.item_type.second_side ='no' )) 

for every pair (iJ) of information base states 

must hold that if in state i the second-side buffer is 

full and the screenprinter station does not contain a 

batch, it is not allowed that in state j the second-side 

buffer is still full and the screenprinter does contain 

a batch (which was received from the raw material 

stock). This constraint expresses the priority of the 

second-side buffer over the raw material store. 

C9((i,j)) = 

(\;/ b, b', s, s': bE i.buffer" b' E j.buffer" 

s E i.station As' E j.station A b b' A s = s' 

"b.buffer_name ='second-side' A 

s.station_name='screenprinter': 

b.status = 'full' " s.batch_in_process = nil 

~ .., (b'.status = 'full' A s' .batch_in_process 

*nil)) 

-- for every information base state i must hold that 

the second-side controller may not produce more than 

one request per batch. 

Cll(i)"" 

(V b: b E i.batch: (# r: r E i.request: 

r.cousumer.station_name='second-side' " 
r.batch=b) s; I) 

-- for every infonnation base state i must hold that 

once a batch is in process in 'second-side', there may 

be no outstanding requests for that batch by 'second­

side' 

Cl2(i) = 
(\;/ S, b; S E i.StatiOn A b E i.batcb A 

s.batch_in_process=b A 

s.station_name='second-side': 

.., (3 r: r E i.request: r.batch=b A 

r.consumer=s) ) 
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-- for every information base state i must hold that 

the set of produced_requests of a station is identical 

to the set of requests with that station as consumer 

C20(i) = (V s: s e i.station: s.produced_requests 

= { r E i.request I r.consumer = s)) 

-- for every information base state i must bold that 

the set of received_requests of a station is identical to 

the set of requests with that station as producer 

C21(i) = (V s: s E i.station: s.received_requests = 

{ r e i.request I r.producer = s)) 

-- for every infonnation base state i must bold that 

for each request there is one producer station 

C37(i) = (\;/ I: I E i.request: 

(3! p: p E i.station: p = !.producer)) 

-- for every information base state i must bold that 

for each request there is one consumer station 

C38(i) = (\;/ 1: I E i.request: 

(3! p: p E i.station: p =!.consumer)) 

-- for every information base state i must hold that 

for each request there is one batch 

C39(i) = (\;/ I: 1 E i.request: 

(3! p; p E i.batch: p =!.batch)) 

-- for every information base state i must hold that 

for each batch there is one creator station 

C4l(i) = (V 1: IE i.batch: 

(3! p: p E i.station: p = !.creator)) 

for every infonnation base state i must hold that 

for each batch there is one item_type 

C42(i) = (\;/ 1: I E i.batch: 

(3! p: p e i.item_type: p = l.item_type)) 

DOMAIN RULES 

-- the own domain of the module consists of the 

objects of the object types request that bave 'second­

side' as the name of the associated station, and the 
objects of the object types station and buffer with the 

name 'second-side'. 
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own domain (i) = 

{t e i.request I t.consumer.station_name ='second­

side') u {t e i.buffer I t.buffer_name = 'second­

side') u {t e i.station I t.station_name = 'second­

side') 

-- the foreign domain of the module consists of all 
objects of the object types item_type and batch, the 

objects of the object type request with 'second-side' 

as the station name, and the objects of the object type 

station with 'screenprinter' or 'retlow&cleaning' as 

the station name. 

foreign domain (i) = 
{ t e i.item_type) u { t e i.batch} u { t e i.request I 

t.producer.station_name ='second-side'} u {t e 

i.station I t.station_name = 'screenprinter' v 

t.station_name = 'retlow&cleaning') 

--note: formally spoken is 'i.item_type' identical to 

' { t e i.item_type }'. However, for reasons of 

uniformity and understandability, the latter notation is 

used (end of note). 

END; -- schema second-side 
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8.3 Screenprinter controller 

B.3.1 Functional description 

The screenprinter station has the most straightforward 

controller. The controller receives a request from the 

component placement l controller. This request is 

converted to a request for the second-side controller. 

In due time, the screenprinter station receives a batch 

from the raw material store or the second side buffer. 

The type of the products of the ' batch is then 

identified. A screen-printing mask is then selected 

dependent on the type of product, and a 'squeegee' 

operation is performed. The batch is forwarded to 

component placement station l when all operations 

bave been performed on all products' in a batch. 

B.3.2 Conceptual scbema 

The conceptual schema, the constraints aud the 

domains are defmed as follows. A data structure 

diagram of the conceptual schema is given in figure 

B.2. The central object classes in the diagram are 

request and batcb. A request refers i:o the batch that 

is requested. Furthermore, a request refers to the 
station that will consume the batcb related to the 

request and to the station that will .K-oonce the batch 

related to the request. The batch refers to the 
I 

item_type it contains, and to the station that created 

the batch. From the station, there is an optional 

relation to the batch to indicate the batch-in-process. 

figure B.2 data structure diagram of the 

screenprinter controDer 
I 
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SCHEMA screenprinter 

CLASSES 

class station 

attributes 
station_name : string; 

produced_requests : SET OF request; 

received_requests : SET OF request; 

batch_available: { available.non-available}; 

ready_to_receive: {Yes, No}; 

batcb_in_process :batch; 

end; class station 

class batch 

attributes 
hatch_id : integer; 

creator : station; 

item_type: item_type; 

size: {1..3}; 

end; class batch 

class request 

attributes 
producer : station; 

consumer : station; 

hatch· batch; 

item_type: item_type; 

end; -- class request 

class item_type 

attributes 
item_type : string; 

second_side: {yes, no}; 

end; -- class item_type 

INTEGRITY CONSTRAINTS 

-- for every outgoing request there must be an 

incoming request with the same item type and batch 

size: for every information base state i must hold that 

for every request that this station produces there must 

exist a request that it receives, and the item type and 

batch size of both requests should be identical. 

Cl(i) = 
('t;! r: r e i.request " r.consumer.station_name = 

'screenprinter': 
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(3 r': r' e i.request: r'.producer.station_name = 
'screenprinter' " r' .batch.item_type = 

r.batch.item_type " r' .hatcb.size = r.batch.size)) 

-- for every information base state i must bold thai 

the screenprinter may not produce more than one 

request per hatch. 

Cll(i) = 
('if b: b e i.batcb: (# r: r e i.requesc 

r.consumer.station_name = 'screenprinter' " 

r.batch=b) ~ l) 

-- for every information base state i must bold that 

once a batch is in process in 'screenprinter', there 

may be no outstanding requests for that hatch by 

'screenprinter' 

Cl2(i) = 

('t;/ S, b: S E i.station 1\ b E i.batch 1\ 

s.batch_in_process=b " s.station_name = 
'screenprinter': 

-. (3 r: r e i.request: r.batch=b " 

r.cousumer=s)) 

-- for every information base state i must bold that 

the set of produced_requests of a station is identical 

to the set of requests with that station as consumer 

C20(i) = ('if s: s e i.station: s.produced_requests 

= { r e i.request I r.consumer = s}) 

-- for every information base state i must bold that 

the set of received_requests of a station is identical to 

the set of requests with that station as producer 

C21(i) = ('t;! s: s e i.station: s.received_requests = 
{r e i.request I r.producer = s}) 

-- for every information base state i must bold that 

for each request there is one producer station 

C37(i) = ('t;/ I: 1 e i.request: 

(3! p: p e i.station: p = !.producer)) 

-- for every information base state i must hold that 

for each request there is one consumer station 
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C38(i) = (';/ 1: 1 e i.request: 

(3! p: p e i.station: p =!.consumer)) 

-- for every information base state i must bold that 

for eacb request there is one batch 

C39(i) = (';/ 1: l e i.request: 

(3! p: p e i.batcb: p = l.batcb)) 

-- for every information base state i must hold that 

for each batch there is one creator station 

C41(i) = (';/ 1: I e i.batcb: 

(3! p: p e i.station: p = !.creator)) 

-- for every information base state i must bold that 

for each batch there is one item_type 

C42(i) = (';/ 1: I e i.batch: 

(3! p: p e i.item_type: p = l.item_type)) 

-- for every information base state i must hold that 

for eacb batch there is at least one request 

C47(i) = (';/ b: b e i.batcb: 

(3 r: r e i.request: r.batcb = b )) 

DOMAIN RULES 

-- the own domain of the modole consists of the 

o~ects of the object types request and station that 

bave 'screenprinter' as the name of the (associated) 

statiOJL 

own domain (i) = 
{ t e i.request I t.cousumer.station_name = 
'screen printer' } v { t e i.station I 

t.station_name='screenprinter') 

-- the foreign domain of the screenprinter module 

cousists of all objects of the object types item_type 

and batch, the objects of the object type request with 

'screenprinter' as the associated station name, and the 

objects of the object type station with 'second-side' 

or 'component-placement#l' as the station name. 
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foreign domain(l) = 
{t e i.item_type} v {t e i.batcb} v {t e i.request I 

t.producer.station_name = 'screenprinter'} v 
{t e i.station I t.station_name = 'second-side' v 

t.station_name = 'component-placement# I' } 

END; - schema screenprinter 
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B.4 Component placement #1 
controller 

8.4.1 Functional description 

The component placement #1 controller receives a 
request from the component placement #2 controller. 
This request is converted to a request for the 
screenprinter controller. When a batch is received 
from the screen printer the appropriate components are 
placed upon the boards. The batch is forwarded to 
component placement station #2 when all operations 
have been performed on all products in a batch. If the 
component placement #I controller has a shortage of 
components the status of the component buffer is set 
to empty in order to trigger the material handler for 
replenishment. 

8.4.2 Conceptual schema 

The conceptual schema, the constraints and the 
domains are defmed as follows. A data structure 
diagram of the conceptual schema is given in figure 
B.3. The central object classes in the diagram are 
request and batch. A request refers to the batch that 
is requested. Furthermore, a request refers to the 
station that will consume the batch related to the 
request and to the station that will produce the batch 
related to the request. The batch refers to the 
item_type it contains, and to the station that created 
the batch. From the station, there is an optional 
relation to the batch to indicate the batch-in-process. 
Finally, there is a component buffer which refers to 

the station and the item_type it contains. 
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figure B.3 data structure diagram of the component 
placement #1 controller 

SCHEMA component-placement# I 

CLASSES 

class station 
attributes 

station_name : string; 
produced_reqnests : SET OF request; 
received_requests : SET OF request; 
batch_available: { available,non-available}; 
ready_to_receive: (Yes, No}; 
batch_in_process : batch; 

end; -- class station 

class component_buffer 
attributes 

buffer_name : string; 
buffer_station : station; 
status: {full, empty}; 

item_type: item_type; 

end; ·· class buffer 

class batch 
attributes 

batch_id : integer; 
creator : station; 
item_type: item_type; 
size: {1..3}; 

end; •• class batch 
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class request 

attributes 

producer : station; 
consumer : station; 

batch : batch; 
item_type : item_type; 

end; -- class request 

class item_type 

attributes 
item_type : string; 
second_side: {yes, no}; 

end; -- class item_type 

INTEGRITY CONSTRAINTS 

for every outgoing request there must be an 
incoming request with the same item type and batch 

size: for every information base state i must hold that 
for every request that this station produces there must 
exist a request that it receives, and the item type and 
batch size of both requests should be identical. 
Cl(i) = 
("t r: r E i.request A r.consumer.station_name = 

'component-placement# I': 
(3 r': r' e i.request: r'.producer.station_name = 
'component-placement# I' A 

r' .batch.item_type = r.batch.item_type A 

r' .batch.size =: r.batch.size)) 

-- for every information base state i must hold that 
the component placement #I may not produce more 
than one request per batch. 
Cll(i) = 
("t b: b E i.batch: (# r: r e i.request: 

r.consumer.station_name=: 'component­
placement# I' A r.batch=b) ~ I) 

-- for every information base state i must hold that 

once a batch is in process in 'component­
placement#l', there may be no outstanding requests 
for that batch by 'component-placement#l' 
CI2(i) = 
('rf S, b: S E i.stafion A b E i.batch A 

s.batch_in...:process=b A s.station_name = 
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'component-placement#l': -. (3 r: r e 

i.request: r.batch=b A r.consnmer=s)) 

-- for every information base state i must hold that 
the set of produced_requests of a station is identical 
to the set of requests with that station as consumer 

C20(i) = ("t s: s e i.station: s.produced_requests 
= { r e i.request I r.consumer = s}) 

-- for every information base state i must hold that 
the set of received_requests of a station is identical to 
the set of requests with that station as producer 

C2l(i) = ("t s: s e i.station: s.received_requests = 
{r e i.request l r.producer = s)) 

-- for every information base state i must hold that 
for each component_buffer there is one item_type 

C35(i) = ("t I: I e i.component_buffer: 
(3! p: p e i.item_type: p = l.item_type)) 

-- for every information base state i must hold that 

for each component_buffer there is one station 
C36(i) : ("t I: I e i.component_buffer: 

(3! p: p e i.station: p = 
l.buffer_station)) 

-- for every information base state i must hold that 
for each request there is one producer station 
C37(i) = ("t 1: I E i.request: 

(3! p: p e i.station: p = l.producer)) 

-- for every information base state i must hold that 

for each request there is one consumer station 
C38(i) = ("t 1: I e i.request: 

(3! p: p e i.station: p = l.consnmer)) 

for every information base state i must hold that 

for each request there is one batch 
C39(i) = ("t I: I e i.request: 

(3! p: p e i.batch: p = l.batch)) 

-- for every information base state i must hold that 
for each batch there is one creator station 
C41 (i) = ("t I: I E i.batch: 

(3! p: p e i.station: p = I. creator)) 
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-- for every information base state i must hold that 

for each batch there is one item_type 
C42(i) = (\;f 1: 1 E i.batch: 

(3! p: p E i.item_type: p = l.item_type)) 

-- for every information base state i must bold that 
for each batch there is at least one request 
C47(i) = (l;f b: b e i.batch: 

(3 r: r e i.request: r.batch = b )) 

DOMAIN RULES 

-- the own domain of the module consists of the 

objects of the object types request, station and 
component_buffer that have 'component­

placemenl#l' as the name of the (associated) station. 

own domain (i) = 
{ t e i.request I t.conswner.station_name = 
'component-placemenl#l'} v {t e i.station I 

t.station_name = 'component-placemenl#l'} v (t E 

i.component_buffer I t.buffer_station.station_name = 
'component-placemenl# l' } 

-- the foreign domain of the module consists of all 
objects of the object types item_ type and batch, the 
objects of the object type request with 'component­
placemenl# I' as the producer station name, and the 
objects of the object type station with 'component­

placemenl#2' or 'screenprinter' as the station name. 

foreign domain(i) = 
{ t E i.item_type} u { t E i.batch} u { t E i.request I 
t.producer.station_name ='component-
placemenl# I' ) u { t e i.station I tstation_name = 
• component-placemenl#2' v t.station_name = 
'screen printer' } 

END;-- schema component-placemenl#l 
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B.5 Component placement #2 

controller 

This module is identical to component placement #l. 
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8.6 Reftow & cleaning controller 

8.6.1 Functional description 

The reflow & cleaning controller receives a request 

from the in-process store or from the second-side 

controller. In either case, the request is converted to 

a request for the component placement #2 controller. 

When a batch is received from component placement 

#2, the type of products in the batch is detected. In 

case the products need a second-side to be processed, 

the retlow & cleaning operation is performed, and the 

batch is forwarded to the second-side buffer. In case 

the products do not need a second-side, a slightly 

different series of actions have to be taken. This is a 

consequence of the fact that the in-process store does 

not have a physical input-buffer to store batches 

temporarily, and the fact that a batch should not stay 

in the reflow & cleaning operation area after the 

operation is performed. Therefore, the availability of 

a batch is broadcasted before an operation is 

performed upon the batch. The operations are delayed 

until the in-process store is ready to receive the 

batch. Then the operations are performed and the 

batch is forwarded. 

B.6.2 Conceptual schema 

The conceptual schema, the constraints and the 

domains are defmed as follows. A data structure 

diagram of the conceptual schema is given in figure 

B.4. The central object classes in the diagram are 

request and batch. A request refers to the batch that 

is requested. Furthermore, a request refers to the 

station that will consume the batch related to the 

request and to the station that will produce the batch 

related to the request. The batch refers to the 

item_type it contains, and to the station that created 

the batch. From the station, there is an optional 

relation to the batch to indicate the batch-in-process. 
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figure B.4 data structure diagram of the reflow & 

cleaning controller 

SCHEMA reflow&cleaning 

CLASSES 

class station 

attributes 

station_name : string; 

produced_requests : SET OF request; 

received_requests : SET OF request; 

batch_available: { available,non-available); 

ready_to_receive: {Yes, No); 

batch_in_process : batch; 

end; -- class station 

class batch 

attributes 

batch_id : integer; 

creator : station; 

item_type: item_type; 

size: { 1 .. 3); 

end; class batch 

class request 

attributes 

producer : station; 

consumer : station; 

batch: batch; 

item_type : item_type; 

end; -- class request 
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class item_type 

attributes 
item_type : string; 

second_side : {yes, no}; 

end; -- class item_type 

INTEGRITY CONSTRAINTS 

-- for every outgoing request there must be an 

incoming request with the same item type and batch 
size: for every information base state i must hold that 

for every request that this station produces there must 
exist a request that it receives, and the item type and 

batch size of both requests should be identical. 

CHi)= 

('It r: r e i.request " r.consumer.station_name = 
• reflow&cleaning': 

(3 r': r' E i.request r' .producer.station_name = 
'reflow&cleaning' "r' .batch.item_type = 

r.batch.item....type " r' .batch.size = r.batch.size)) 

-- to avoid a deadlock in the flow of second-side 
products the following constraint is defined: for every 

information base state i must bold that if there are 
two or more requests produced by the reflow & 
cleaning controller for a batch that needs a 
second_side then there may be no more then 4 

requests produced in total. 
C8(i) = 
(# r: r e i.request" r.consumer='reflow&cleaning': 

r.batch.item_type.second_side = 'yes') ;c: 2 --+ (# 

r: r E i.request A r.consumer.station_name = 

'reflow&cleaning': r) :s; 4 

-- for every information base state i must bold that 
the reflow & cleaning controller may not produce 
more than one request per batch. 
Cll(i) = 
('It b: b e i.batch: (# r: r e i.request 

r.consumer.station_name= • reflow&cleaning'" 
r.batch=b) :s; 1) 

.. for every information base state i must bold that 
once a batch is in process in 'reflow&cleaning', there 
may be no outstanding requests for that batch by 

'reflow&cleaning' 

Cl2(i) = 
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('It s, b: s e i.station " b e i. batch A 

s.batch_in__process=b " s.station_name = 
'second-side': ..., (3 r: r e i.request: r.batch=b 

"r.consumer=s)) 

-- for every information base state i must bold that 
the set of produced_requests of a station is identical 

to the set of requests with that station as consumer 
C20(i) = ('It s: s e i.station: s.produced_requests 

= {r e i.request I r.consumer = s}) 

-- for every information base state i must hold that 
the set of received_requests of a station is identical to 

the set of requests with that station as producer 
C2l(i) = ('It s: s e i.station: s.received_requests = 

{ r e i.request I r.producer = s}) 

-- for every information base state i must hold that 

for each request there is one producer station 
C37(i) = ('It 1: I e i.request 

(3! p: p e i.station: p = l.producer)) 

-- for every information base state i must hold that 
for each request there is one consumer station 
C38(i) = ('It 1: l e i.request: 

(3! p: p e i.station: p = lconsumer)) 

-- for every information base state i must bold that 

for each request there is one batch 
C39(i) = ('It 1: 1 e i.request: 

(3! p: p e i.batch: p = !.batch)) 

-- for every information base state i must bold that 
for each batch there is one creator station 
C41(i) = ('It 1: I e i.batch: 

(3! p: p e i.station: p = !.creator)) 

for every information base state i must hold that 
for each batch there is one item_type 
C42(i) = ('It 1: I E i.batcb: 

(3! p: p E i.item_type; p = l.item_type)) 



122 

-- for every infonnation base state i must hold that 

for each batch there is at least one request 

C47(i) = ('</ b: b E i.batch: 

(3 r: r e i.request: r.batch = b )) 

DOMAIN RULES 

-- the own domain of the module consists of the 

objects of the object typeS request and station that 

have 'reflow&cleaning' as the name of the 

(associated) station. 

own domain (i) = 
{ t e i.request I tcousmner.station_name = 
'reflow&cleaning'} v {t E i.station I 

t.station_name= 'reflow&cleaning' } 

-- the foreign domain of the module consists of all 

objects of the object typeS item_type and batch, the 

objects of the object type request with 

'reflow&cleaning' as the producer station name, and 

the objects of the object type station with 'in-process­

store', 'second-side' or 'component-placement#2' as 

the station name. 

foreign domain(i) = 
( t e i.item_type) v { t e i.batch J v { t e i.request I 

t.producer.station_name = 'reflow&cleaning'} v { t 
e i.station I t.station_name = 'in-process-store' v 

t.station_name = 'second-side' v t.station_name = 
'component-placement#2'} 

END; -- schema reflow&cleaning 
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B. 7 In-process store controller 

B.7.1 Functional description 

The in-process store controller receives a request 

from the test & repair controller. The request will 

decrease the economic stock level of the in-process 

store. If possible, the in-process store controller will 

fulfil the request by taking the products from the 

stock and forwarding them to test & repair. A new 

batch is defined and a request is generated when the 

minimmn stock level is reached. This request is then 

sent to the reflow & cleaning controller. The in­

process store controller monitors Continuously the 

availability of a batch in the reflow & cleaning 

controller. A batch received from the reflow & 

cleaning controller will be stored in the stocks and 

the stock level will be increased. 

B. 7.2 Conceptual schema 

The conceptual schema, the constraints and the 

domains are defmed as follows .. A data structure 

diagram of the conceptual schema lis given in figure 

B.S. Tbe central object classes in the diagram are 

request and batch. A request ref~ to the batch that 

is requested. Furthermore, a request refers to the 

station that will consmne the batch related to the 

request and to the station that will produce the batch 

related to the request Tbe batch refers to the 

item_type it contains, and to the station that created 

the batch. From the station, there is an optional 

relation to the batch to indicate the batch-in-process. 

Finally, the in-process store schema contains objects 

of the object type stock. Stocks refer to the item_type 

they contain and the station they belong to. 
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figure 8.5 data structure diagram of tbe in-process­

store controller 

SCHEMA in-process-store 

CLASSES 

class station 

attributes 
station_name : string; 

produced_requests : SET OF request; 

received_requests : SET OF request; 

batch_ available: { available,noo-available}; 

ready_to_receive: {Yes, No}; 

batcb_in_process : batch; 

end; -- class station 

class stock 

attributes 
station : station 

item_type : item_type; 

actual_stock_level : integer; 

economic_stock_level : integer; 

maximum_stock_level : integer; 

minimum_stock_level : integer; 

end; -- class stock 

class batch 

attributes 
batch_id : integer; 

creator : station; 

item_type: item_type; 

size : { 1..3 }; 

end; -- class batch 

class request 

attributes 
producer : station; 

consumer: station; 

batch: batch; 

item_type : item_type; 

end; -- class request 

class item_type 

attributes 
item_type : string; 

secood_side : {yes, no}; 

end; -- class item_type 

INTEGRITY CONSTRAINTS 
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-- batches can only be received by the in-process 

store if tbe stock for that item type has sufficient 

space: for every information base state i must bold 

tbat if tbere is a batch available in reflow and 

cleaning, but the maximum stock level for that item 

type would be exceeded, then the in-process store is 

not ready to receive that batch. 

C3(i) = 
('v s, t, st: s,t e i.station A st e i.stock: 

t.station_name = 'in-process-store' A 

s.statioo_name = 'reflow&cleaning' A 

s.batch_available = 'available' A 

slstation = t A 

stitem_type = s.batcbjn_process.item_type A 

slactual_stock_level + s.batcb_in_process.size 

> slmaximmn_stock_level -7 

t.ready_to_receive = 'No') 

-- for every information base state i mnst bold tbat 

the economic stock equals the actual stock plus 

outstanding requests minns incoming requests. 

ClO(i) = 
CV s: s e i.stock: s.econornic_stock:_level = 

s.actual_stock_level + (l: r: r e i.request A 

r.consumer.station_name = 'in-process-store': 

r.batch.size) - (l: r: r e i.request A 

r.producer.station_name = 'in-process-store': 

r.batcb.size) ) 
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-- for every information base state i must hold that 

the in-process-store may not produce more than one 

request per batch. 

Cll(i) = 
0i b: b e i.batch: (# r: r e i.request: 

r.consumer.station_:name= 'in-process-store' " 

r.batch=b) ~ l) 

-- for every information base state i must hold that 

once a batch is in process in 'in-process-store', there 

may be no outstanding requests for that batch by 'in­

process-store'. 

Cl2(i) = 
('V s, b: s e i.station "be i.batch " 

s.batch_in_process=b " s.station_name = 'in­

process-store': .., (3 r: r e i.request: r.batch=b 

"r.consumer=s)) 

-- for every information base state i must hold tbat 

the set of produced_requests of a station is identical 

to the set of requests with that station as consumer 

C20(i) = 0i s: s e i.station: s.produced_requests 

= {r e i.request I r.consumer = s}) 

-- for every information base state i must bold that 

the set of received_requests of a station is identical to 

the set of requests with that station as producer 

C2l(i) = 0i s: s e i.station: s.received_requests 

{ r e i.request I r.producer = s}) 

-- for every information base state i must bold tbat 
for each stock. there is one item_type 

C33 (i) = ('V 1: 1 e i.stock: 

(3! p: p e i.item_type: p = l.item_type)) 

-- for every information base state i must hold that 

for each stock there is one station 

C34(i) = 0i I: I E i.stock: 

(31 p: p e i.station: p = !.station)) 

-- for every information base state i must hold that 

for each request there is one producer station 

C37(i) = 0i I: I e i.request: 

(3! p: p e i.station: p = !.producer)) 
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-- for every information base state i must hold that 

for each request there is one consumer station 

C38(i) = 0i 1: l e i.request: 
(3! p: p e i.station: p =!.consumer)) 

-- for every information base state i must hold that 

for each request there is one batch 

C39(i) = ('V 1: I e i.request: 

(3! p: p e i.batch: p = !.batch)) 

-- for every information base state ~ must hold that 

for each batch there is one creator station 

C41(i) = 0i 1: IE i.batch: 

(3! p: p e i.station: p = !.creator)) 

-- for every information base state i must hold that 

for each batch there is one item_type 

C42(i) = ('V 1: I e i.batch: 

(3! p: p e i.item_type: p = J.item_type)) 

DOMAIN RULES 

-- the own domain of the module consists of the 

objects of the object types request, 'station and stock 

that have 'in-process-store' as ~ name of the 

(associated) station. 

own domain (i) = 
{ t e i.request I t.consumer.station_name = 'in­

process-store' } u { t e i.station I t.station_name= 

'in-process-store' } u { t e i.stock I 

t.station.station_name 'in-process-store'} 

-- the foreign domain of the mod~le consists of all 
objects of the object types item_type and batch, the 

objects of the object type request with 'in-process­

store' as the producer station natrle, and the objects 

of the object type station witll 'test&repair' or 

'reflow&cleaning' as the station name. 

foreign domain(i) = , 
{ t E i.item_type} u { t e i.batch }, u { t e i.request I 

t.producer.station_name = 'in-process-store') u { t 

e i.station I t.station_name = 'test&repair' v 

t.station_name = 'reflow&cleaning' l 

END; -- schema in-process-store, 
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8.8 Test & repair controller 

8.8.1 Functional description 

Test & repair contains two stations, a test station and 

a repair station. A buffer is located between the 

repair station and the test station to store repaired 

batches. The test & repair controller receives a 

request from the fmal product store controller. This 

request is converted to a request for the in-process 

store controller. 

The test station can accept batches from both the 

in-process store and the repair buffer. The batches in 

the repair buffer have priority to the batches coming 

from the in-process store. This constraint is created in 

order to avoid hardware deadlocks in the test-and­

repair cycle. 

When a batch is received from in-process store 

the corresponding request is deleted by the test-and­

repair controller. Then the product type is determined, 

so the test operation can be performed. Depending on 

the result of the test, the batch is either forwarded to 

the finished product store, or sent to the repair 

station. Rejected batches are repaired manually at the 

repair station, and then put into the repair buffer. The 

operator of the repair station can request a tray of 

components at the material handler system by 

pushing the appropriate button. 

8.8.2 Conceptual schema 

The conceptual schema, the constraints and the 

domains are defmed as follows. A data structure 

diagram of the conceptual schema is given in figure 

B.6. The central object classes in the diagram are 

request and batch. A request refers to the batch that 

is requested. Furthermore, a request refers to the 

station that will consume the batch related to the 

request and to the station that will produce the batch 

related tO the request. The batch refers to the 

item_type it contains, and to the station that created 

the batch. From the station, there is an optional 

relation to the batch to indicate the batch-in-process. 

The buffer bas an optional relation to batch to 
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indicate the batch it contains. Furthermore, the 

component buffer refers to the station and the 

item_type it contains, and the component request 

concerns one specific item type and one component 

buffer. 

figure B.6 data structure diagram of the test & 
repair controller 

SCHEMA test&repair 

CLASSES 

class station 

attributes 
station_name : string; 

produced_requests : SET OF request; 

received_requests : SET OF request; 

batcb_available: { available,non-available l; 
ready_to_receive: (Yes, No); 

batch_in_process : batch; 

end; -- class station 

class buffer 

attributes 
buffer_name : string; 

status : {full, empty}; 

batchjn_buffer : batch; 

end; -- class buffer 



126 

class component_buffer 

attributes 
buffer_name : string; 
buffer_station : station; 
status : {full, empty}; 
item_type: item_type; 

end; •• class component_buffer 

class batch 
attributes 

batch_id : integer; 
creator : sla.tion; 
item_type: item_type; 

size: I 1..3); 

end; -- class batch 

class request 
attributes 

producer : sla.tion; 
consumer : sla.tion; 

batch : batch; 
item_type : item_type; 

end; •• class request 

class component_request 
attributes 

item_type : item_type; 

buffer : component_buffer; 

end; -- class request 

class item_type 
attributes 

item_type : string; 

second_side: {yes, no}; 

end; -- class item_type 

INTEGRITY CONSTRAINTS 

-- for every outgoing request there must be an 
incoming request with the same item type and batch 

size: for every information base state i must bold that 
for every request that this sla.tion produces there must 
exist a request that it receives, and the item type and 
batch size of both requests should be identical. 
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CI(i) = 
('V r: r e i.request A r.consumer.station_name = 

'test&repair': 
(3 r': r' e i.request: r' .producer.station_name = 
'fmal-product-store' A r' .batcb.item_type = 

r.batch.itenLtype A r' .batcb.size = r.batcb.size)) 

for every pair (i,j) of information base states 
must hold that if in state i the repair buffer is full and 
there is a batch available in the in-process-store then 
the repair buffer bas priority (in other words, it is not 
allowed to remove the batch from the in-process-store 
first) 
C7((i,j)) = 

('V b, s: b e i.buffer A b e j.buffer A s e i.station 
As e j.station A b.buffer_name = 
'repair_buffer' A s.station_name ='in-process­

store': 
b.status = 'full' A s.batcb_ayailable = 
'available' ~ .., (b.status =,'full' A 

s.batch_available = 'non-available' ) ) 

-- for every information base state, i must hold that 
the test & repair controller may not produce more 

than one request per batch. 
Cll(i) = 
{'V b: b e i.batch: (# r: r e i.request: 

r.consumer.station_name= 'test&repair' A 
r.batch=b)::; 1) 

-- for every information base state i must hold that 

once a batch is in process in 'test&repair', there may 

be no outstanding requests for that batch by 
'test&repair' 

Cl2(i) = 
("i/ S, b: S E i.statiOn AbE i.batch A 

s.batch_in_process=b A s.statibn_name 

'test&repair':-. {3 r: r e i.request r.batch=b A 
r.consumer=s) ) 

-- for every information base state i must hold that 
the set of produced_requests of a' station is identical 
to the set of requests with that station as consumer 
C20(i) = ('V s: s e i.station: s.produced_requests 

= { r e i.request I r.consumer = s}) 
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-- for every information base state i must bold tbat 
the set of received_requests of a station is identical to 

the set of requests with tbat station as producer 

C21 (i) = ("V s: s e i.station: s.received_requests = 
{r e i.request I r.producer = s}) 

-- for every information base state i must bold tbat 
for each component_buffer there is one item_type 

C35(i) = ('<:! 1: I e i.component_buffer: 

(3! p: p E i.item_type: p = l.item_type)) 

-- for every information base state i must bold that 

for each component_ buffer there is one station 

C36(i) = ("V 1: I e i.component_buffer: 

(3! p: p e i.station: p = Lbuffer_station)) 

-- for every information base state i must bold tbat 

for each request there is one producer station 

C37(i) = ('<:/ 1: I e i.request: 

(3! p: p E i.station: p = !.producer)) 

-- for every information base state i must bold tbat 

for each request there is one consumer station 

C38(i) = ("V 1: I E i.request: 

(3! p: p E i.station: p = l.cousumer)) 

for every information base state i must bold that 

for each request there is one batch 

C39(i) = ('<:! 1: I e i.request: 

(3! p: p E i.batch: p = !.batch)) 

-· for every information base state i must hold that 

for each batch there is one creator station 

C4l(i) ("V 1: I E i.batch: 

(3! p: p e i.station: p = !.creator)) 

for every information base state i must hold that 

for each batch there is one item_type 

C42(i) = ("V 1: I e i.batch: 

(3! p: p e i.ltem_type: p = l.item_type)) 

-- for every information base state i must hold that 

for each component_request there is one item_type 

C45(i) ("V 1: I e i.component_request: 

(3! p: p E i.item_type: p = l.item_type)) 
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-- for every information base state i must hold that 

for each component_request there is one 

component_ buffer 

C46(i) = ("V 1: I E i.component_request: 

(3! p: p e i.component_buffer: 

p = !.buffer)) 

-- for every information base state i must hold that 

for each batch there is at least one request 

C47(i) = ('<:/ b: b E i.batch: 

(3 r: r e i.request: r.batch = b )) 

DOMAIN RULES 

-- the own domain of the module consists of the 

objects of the object types request, 

component_request, and component_ buffer that have 

'test&repair' as the name of the associated station, 

and the objects of the object types buffer and station 

with 'test&repair' as the name. 

own domain (i) = 
{ t e i.request I t.consumer.station_name = 
'test&repair'} v ( t E i.station I t.station_name= 

'test&repair' I v { t e i.component_request I 

t.buffer.buffer_station.station_name = 'test&repair'} 

v { t e i.buffer I t.buffer_name = 'test&repair'} v 

{ t e i.component_buffer I 

t.buffer_station.station_name = 'test&repair'} 

-- the foreign domain of the module consists of all 

objects of the object types item_type and batch, the 

objects of the object type request with 'test&repair' 

as the producer station name, and the objects of the 

object type station with 'final-product-store' or 'in­

process-store' as the station name. 

foreign domain(i) = 
{t e i.item_type} v {t e i.batchl v {t E i.request I 

t.producer.station_name = 'test&repair' I v { t e 

i.station I tstation_name = 'final-product-store' v 

t.station_name = 'in-process-store' } 

END; -- schema test&repair 
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B.9 Final product store controller 

8.9.1 Functional description 

The fmal product store controller receives production 

orders and related production order lines from an 

external source. On due date, the production orders 

are opened and decrease the economic stock level of 

the fmal product store. If possible, the final product 

store controller will fulfil the production orders by 

taking the products from the stock and forwarding 

them to the shipment area in the model factory. A 
new batch is defined and a request is generated wben 

the minimum stock level is reached. This request is 

then sent to the test & repair controller. The final 

product store controller waits upon the arrival of a 

batch. A batch received from the test & repair 

controller will be stored in the stocks and the stock 

level will be increased. 

8.9.2 Conceptual schema 

The conceptual schema, the constraints and the 

domains are defmed as follows. A data structure 

diagram of the conceptual schema is given in figure 

B.7. The central object classes in the diagram are 

request and batch. A request refers to the batch that 

is requested Furthermore, a request refers to the 

station that consumes the batch related to the request 

and to the station that produces the batch related to 

the request. The batch refers to the item_type it 

contains, and to the station that created the batch. 

From the station, there is an optional relation to the 

batch to indicate the batch-in-process. Finally, the 

final product store schema contains objects of the 

object type stock. Stocks refer to the item_type they 

contain and the station they belong to. 
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figure B.7 data structure diagram, of the final 

product store controller 

SCHEMA final-product-store 

CLASSES 

class station 

attributes 
station_name : string; , 

produced_requests : SET OF request; 

received_requests: SET' OF request; 

batch_available: { available,non-available); 

ready_to_receive : {Yes, No}; 

batch_in_process : batch; 

end; -- class station 

class location 

attributes 
location_id : { 1..9 J; 
current_amount : { 0, I}; 
maximum amount : integer; 

itell'Ltype : item_type; . 

end; -- class location 

class stock 

attributes 
station : station 

item_type : item_type; 
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actual_stock_Ievel : integer; 

economic_stock_level : integer; 

maximum_stock_level : integer; 

minimum_stock_level : integer; 

end; -- class stock 

class batch 

attributes 
batcb_id : integer; 

creator : station; 

item_type: item_type; 

size: { 1..3}; 
end; -- class batch 

class request 

attributes 
producer : station; 

consumer : station; 

batch : batch; 

item_type : item_type; 

end; -- class request 

class item_type 

attributes 
item_type : string; 

second_side: {yes, no}; 

end; -- class item_type 

class production_order 

attributes 
order_id : integer; 

order_lines: set of production_order_line; 

due_date : date; 

status : {bold, open, closed} ; 

end; -- class production_order 

class production_order_line 

attributes 
order: production_order; 

line_id : integer; 

item_type : item_type; 

status : (hold, open, closed} ; 

qty _requested : integer; 

qty _delivered : integer; 

end; -- class production_order_Iine 

129 

INTEGRITY CONSTRAINTS 

-- for every information base state i must bold that if 

the status of a production order is hold, then the 

status of all its order lines must be hold. 

C4(i) = 
Cv o: o e i.production_order: o.status = 'bold' ~ 

(V I: I e o.order_lines: !.status = 'hold')) 

-- for every pair (i,j} of information base states 

must hold that if in state i the status of all order lines 

of a production order is closed, then the status of the 

production order must be closed in state j. 

C5((iJ)) = 
(V o: o e i.production_order A o e 

j.production_order: ('if 1: I e i.o.order_lines: 

l.status ='closed')~ i.o.status = 'closed')) 

-- for every information base state i must hold that if 

the status of one of the order lines of a production 

order is open, then the status of the production order 

must be open. 

C6(i) = 
('if o: o e i.production_order: (3 I: I e 

o.order_lines: !.status= 'open')~ o.status = 
'open')) 

-- for every information base state i must hold that 

the economic stock equals the actual stock plus 

outstanding requests minus incoming requests. 

ClO(i) = 
(V s: s e i.stock: s.economic_stock_level = 

s.actual_stock_level + a: r: r e i.request A 

r.consumer.station_name = 'final-product-store': 

r.batch.size) - a: r: r e i.request A 

r.producer.station_name = 'final-product-store': 

r.batch.size) ) 

-· for every information base state i must hold that 

the final-product-store may not produce more than 

one request per batch. 

Cll(i) = 

('il b: b e i.batch: (# r: r e i.request: 

r.consumer.station_name='fmal-product-store' 

A r.batch=b) :;;; 1) 
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-- for every information base state i must hold that 

once a batch is in process in 'final-product-store', 

there may be no outstanding requests for that batch 

by 'fmal-product-store'. 

Cl2(i) = 
(rl S, b: S E i.station A b E i.batch A 

s.batcb_in_process=b A s.station_name = 'final­

product-store': ..., (3 r: r e i.request: r.batcb=b 

A r.consumer=s)) 

-- for every information base state i must hold that 

the set of produced_requests of a station is identical 

to the set of requests with that station as consumer 

C20(i) = Crt s: s e i.station: s.produced_requests 

= { r e i.request I r.consumer = s}) 

-- for every information base state i must hold that 

the set of received_requests of a station is identical to 

the set of requests with that station as producer 

C2l(i) = ('v s: s e i.station: s.received_requests = 

{ r e i.request I r.producer = s}) 

-- for every information base state i must bold that 

the order_lines of a production_order is identical to 

the set of orderJines with that production_order as 

the order 

C22(i) = ('<I s: s E i.production_order: 

s.order_lines = (r E i.order_line I r.order 

=s)) 

-- for every information base state i must hold that 

for each production order there is at least one 

production orderline. 

C30{i) = Crt p: p e i.production_order: 

(# 1: I e p.order_lines: I) <:: I) 

-- for every information base state i must bold that 

for each production orderline there is one production 

order. 

C3l(i) = ('<I 1: I e i.production_order_line: 

(3! p: p e i.production_order: p = 
!.production_ order)) 

-- for every information base state i must hold that 

for eacb production orderline there is one item_type. 

appendix B 

C32(i) = ('<I 1: I e i.production_order_line: 

G! p: p e i.item_type: p = l.item_type)) 

-- for every information base state i must bold that 

for each stock there is one item_type 

C33(i) = ('<I 1: I E i.stock: 

G! p: p e i.item_type: p = l.item_type)) 

-- for every information base state i must hold that 

for each stock there is one station 

C34(i) = Crt l: I e i.stock: 

(3! p: p e i.station: p = l.station)) 

-- for every information base state i, must bold that 

for each request there is one produCGr station 

C37(i) = ('<I 1: I e i.request: 

G! p: p e i.station: p = !;producer)) 

-- for every information base state i must bold that 

for each request there is one consumer station 

C38(i) = ('<I I: I e i.request 

(3! p: p i.station: p = !.consumer)) 

-- for every information base state ,i must hold that 

for each request there is one batch , 

C39(i) = ('<I 1: I e i.request 

(3! p: p e i.batcb: p = 1;batcb)) 

-- for every information base state' i must bold that 

for each batch there is one creator station 

C4l(i) = ('<I 1: I e i.batcb: 

(3! p: p e i.station: p = !.creator)) 

-- for every information base sta~ i must hold that 

for each batch there is one item_type 

C42(i) = Crt l: I E i.batcb: 

(3! p: p e i.item_type: ,P = Utem_type)) 

-- for every information base stare i must bold that 

for each location there is one item_type 

C44(i) = ('<I 1: I e i.location: 

(3! p: p E i.item_type:' p = !.item_ type)) 



example: the model factory 

DOMAIN RULES 

-- tbe own domain of tbe module consists of tbe 

objects of tbe object types production_order, 

production_order_line and location, and all objects of 

tbe object types request and station !bat llave 'fmal­

product-store' as tbe name of tbe (associated) station. 

own domain (I) = 
{ t e i.production_order I v 
(t e i.production_order_line) v {t E Llocation} v 
{ t e i.request I tconsumer.station_name = 'fmal­

product-store') v ( t e i.station I t.station_name= 

'final-product-store'} 

-- tbe foreign domain of the module consists of all 

objects of tbe object types item_type and batch, and 

tbe objects of tbe object type station witb 

'test&repair' as tbe station name. 

foreign domain(i) { t e i.item_type) v { t e 

i.batch} v (t e i.station I t.station_name= 

'test&repair'} 

END; -- schema final-product-store 
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B.lO Material handler controller 

B.IO.l Functional description 

The material handler controller monitors continuously 

tbe component buffers of tbe component placement 

stations. Simultaneously, tbe controller can receive 

component requests from tbe test & repair controller. 

A move order for a component tray is created if 

eitber a component buffer is empty or if a component 

request is placed. Each move order receives a priority 

number, and orders are executed according their 

priority. 

B.10.2 Conceptual schema 

The conceptual schema. tbe constraints and tbe 

domains are defmed as follows. A data structure 

diagram of tbe conceptual schema is given in figure 

B.8. A move order refers to one component buffer 

which contains one item type. Furthermore, 

component requests are made for one item type and 

one component buffer. 

figure B.8 data struCture diagram of tbe material 

handler controller 

SCHEMA material-handler 

CLASSES 

class component_buffer 

attributes 

buffer_name : string; 

status : {full, empty}; 

item_type: item_type; 

end; -- class component_buffer 
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class move_order 

attributes 
order_id: integer; 

buffer : component_buffer; 

priority : integer; 

end; -- class move_order 

class component_request 

attributes 
item_type : item_type; 

buffer : component_buffer; 

end; -- class request 

class item_type 

attributes 
item_type : string; 

second_side : {yes, no l; 
end; -- class item_type 

INTEGRITY CONSTRAINTS 

-- for every information base state i must hold that 

for each component_buffer there is one item_type 

C35(i) = ('V 1: I e i.componenLbuffer: 

(3! p: p e i.item_type: p = l.item_type)) 

-- for every information base state i must hold that 

for each move_order there is one component_ buffer 

C40(i) ('<;/ 1: I e i.move_order: 

(3! p: p e i.component_buffer: p = 
I. buffer)) 

-- for every information base state i must hold that 

for each component_request there is one item_type 

C45(i) = ('V 1: I e i.component_request: 

(3! p: p e i.item_type: p = l.item_type)) 

-- for every information base state i must hold that 

for each component_request there is one 

componenLbuffer 

C46(i) = ('V 1: I e i.componenLrequest: 

(3! p: p e i.component_buffer: p = 

!.buffer)) 

DOMAIN RULES 

-- the own domain of the module consists of the 

objects of the object types move_ order 

own domain (I)= {t e i.move_order) 

-- the foreign domain of the module consists of all 
objects of the object types item_type and 

component_ buffer 

foreign domain(i) = 

{t e i.item_type) v {t e i.component_request) v 
{t e i.componenLbuffer) 

END; --schema material-handler 
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Appendix C 

Glossary 

Aggregation: a special form of association, 

between a whole and its parts, in which the 

whole is composed of the parts [Rumbaugh et al. 

91]. 

Applicable constraint: a constraint is applicable 

e is a possibility that the constraint may be 
violated by an update operation that is defined 

for that module. 

Association: a relationship among instances of 

two or more classes describing a group of links 

with common structure and common semantics 

[Rumbaugh et al. 91]. 

Cartesian product: given the collection of (not 

necessarily distinct) sets D1, 0 2, ••• , o., the 

Cartesian product 0 1 x 0 2 x ... x o., is the set 

of all possible n-tuples <d1,~, ••• ,d.>, such that 

d1e 0 1, ~E 0 2, ••• d.e o. [Put 88]. 

Class: a description of a group of objects with 

similar properties, common behaviour, common 

relationships, and common semantics 

[Rumbaugh et al. 91]. 

Classification: a form of abstraction in which a 

collection of things is considered as a higher 

level construct called type, class or set [Put 88] 

Client: a system component that calls upon the 

services provided by another component The 

component providing the service is the supplier 

[Rumbaugh eta!. 91]. 

Cohesion: the insensitivity of a module for 

structural changes in its environment. Cohesion 

should be maximized to create more autonomous 

units. A measure for cohesion is defined as the 

ratio between the number of own specifications 

and the number of visible specification of a 

module [Pels 88]. 

Conceptual schema: a definition of the total 
information contents of the information system, 

both structure and semantics [Put 88]. 

Conceptualisation principle: a conceptual 

schema should only include conceptually 

relevant aspects, both static and dynamic, of the 

universe of discourse, thus excluding all aspects 

of (internal and external) data representation, 

physical data organisation and access as well as 

all aspects of particular external user 

representations such as message formats, data 

structures, etcetera [Griethuysen 82]. 

Constraint: a boolean function about some 

condition or relationship that must be maintained 

as true. 
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Coupling: a measure for the knowledge other 

modules have about that module. Coupling 

should be minimized to allow changes in a 

module to take place without interfering other 

modules. A measure for coupling of a module A 

is defined as the average of the number of other 

modules for which each own specification 

(object class, attribute or constraint) of A is 

visible. 

Database: the concrete physical representation of 

the information contained in the data processing 

system to describe the universe of discourse. 

Data independence: the capacity to change the 

schema at one level of a database system 

without having to change the schema at the next 

higher level. 

Derived attribute: an attribute that is computed 

from other attributes [Rumbaugh et a1. 91]. 

Distributed database: a database which is 

distributed over multiple sites, while a single 

global conceptual schema is provided to the 

users [Bell et al. 92]. 

Dynamic constraint: a boolean function on the 

transition from the current information base state 

to a new information base state. 

External schema: a description of the database 

view of one group of database users. Each view 

typically describes the part of the database that 

a particular user group is interested in and hides 

the rest of the database from that user group 

[Elmasri et al. 89]. 

Federated database system: a collection of 

cooperating but autonomous component database 

systems [Sheth et al. 90]. 

Flexibility: the ability to adjust the primary 

process according to new requirements of the 

environment. 

Foreign domain: the set of objects (in a specific 

instant or period of time) for which a module 

has retrieval authorization but no update 

authorization. 

Generalisation: the relationship between a class 

and one or more refined or specialised versions 

of it [Rumbaugh et al. 91]. 

Horizontal fragmentation: (1) horizontal module 

fragmentation. Allotting different objects of one 

class to different domains or modules, (2) 

horizontal database fragmentation. distribution of 

different objects of one class over different local 

schemas. 

Information base: a description of the actual 

objects consistent with the conceptual schema 

that are perceived to exist in the universe of 

discourse in a specific instant or period of time 

and their actual states of affairs. 

Information hiding: all information about a 

module should be private to the module unless 

it is specifica11y declared public [Meyer 88]. 

Infrastructure: hardware and 

(computers, networks, opetating 

applications, etc.) that is shared 

different autonomous units. 

software 

systems, 

between 



Inheritance: an object oriented mechanism that 

permits classes to share attributes and operations 

based on a relationship, usually generalisation 

[Rumbaugh et al. 91]. 

Instance: an object described by a class 

[Rumbaugh et al. 91]. 

Integrity constraint: see Constraint. 

lntemal schema: a description of the physical 

storage structure of the database. An internal 

schema uses a physical data model and describes 

the complete details of data storage and access 

paths for the database [Elmasri et al. 89]. 

Linguistic modular units: this principle refers to 

the requirement that the language used to specify 

the design must support the view of modularity. 
I.e., the grammar of the language should support 

the notion of modularity. 

Logical data independence: the capacity to 

change the conceptual schema without having to 

change external schemas or application 
programs. 

Memory independence: corresponds to the 

possibility of recalling the past without being 

involved in its actual representation in the 

current state of the system [Put 88]. 

Method: the implementation of an operation for 
a specific class [Rumbaugh et al. 91]. 

Modular composability: a method should favour 

the production of software elements that may 

freely be combined with each other to produce 

new systems, possibly in an environment 
different from the one in which they were 

initially developed. 
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Modular continuity: a method should make it 

possible that a small change in a problem 

specification results in a change of just one 

module. Such changes should not affect the 

architecture of the system, that is to say the 

relations between modules. 

Modular decomposability: a method should help 

in the decomposition of a new problem into 

several subproblems, whose solution may be 

pursued separately. In addition, the method 

should also help the decomposition of an 

existing system into separate components. 

Modular protection: a method should yield 
architectures in which the effect of an abnormal 

condition occurring at run-time in a module will 

remain confined to this module, or at least will 

propagate to a few neighbouring modules only. 

Modular understandability: a method should 

help to produce modules that can be separately 

understood by a human reader. At worst, the 

reader will have to look at a few neighbouring 

modules. 

Module: a part of an information base that can 

be used separately [Pels 88]. Sometimes a 

weaker definition is used: a coherent subset of a 

system containing a tightly bound group of 

classes and their relationships [Rumbaugh et at. 
91]. 

Object: a concept, abstraction, or thing with 

crisp boundaries and meanings for the problem 

at hand; an instance of a class [Rumbaugh et al. 

91]. 
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Object-orientation: a software development 

strategy that organises software as a collection of 

objects that contain both data structure and 

behaviour [Rumbangh et al. 91]. 

Own domain: the set of objects (in a specific 

instant or period of time) for which a module 

has update authorization. 

Physical data independence: the capacity to 

change the internal schema without having to 

change the conceptual (or external) schemas. 

Private domain: the set of objects (in a specific 

instant or period of time) from the own domain 

that are not included in the view domain of any 

other module. 

Public domain: the set of objects (in a specific 

instant or period of time) from the own domain 

of a module that are visible for one or more 

other modules. 

Specialisation: the creation of subclasses from a 

superclass by refining the superclass [Rumbaugh 

et al. 91]. 

Static constraint: a boolean function that must 

be satisfied in every information base state. 

Temporal constraint: generalisation of a dynamic 

constraint referring to information base states 

different from the current (or new) state; 

checking a temporal constraint requires 

information about one or more states in the past 
(or future). 

Transferability: the property of an application 

that the application can be relocated to another 

module or a modified module. An application is 

transferable to a modified module if it satisfies 

all constraints of the modified module. An 
application is transferable to another module if 

it satisfies all constraints of that module. 

Universe of discourse: that portion of the real 

world or postulated world that is being modelled 

[Griethuysen 82]. 

User (in a strict sense): anybody or anything that 

issues commands and messages to the 

information system and receives messages from 

the information system [Griethuysen 82]. 

Vertical fragmentation: (I) vertical module 

fragmentation. Allotting different attributes of 

one object to different domains or modules. 

Vertical module fragmentation can be avoided 

by the definition of subtypes. (2) vertical 

database fragmentation. distribution of different 

attributes of one object over different local 

schemas. 

View domain: the set of objects (in a specific 

instant or period of time) that are visible for a 

module. 

Visible constraint: a constraint is visible in a 

module if and only if a user of that module can 

determine the logic value of the constraint. 

100% principle: all relevant general static and 

dynamic aspects, i.e. all rules, laws. etc., of the 

universe of discourse should be described in the 

conceptual schema; the information system 

cannot be held responsible for not meeting those 

described elsewhere, including those in 

application programs [Griethuysen 82]. 
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Summary 

In the past, many information systems were built as complex integrated systems on centrally located 

computers. These systems were often built with old technologies that exhibit the characteristics of 

a monolith, i.e., a system that is increasingly difficult to enhance or modify. 

New Information Technologies make it possible to design information systems as federations 

of more or less autonomous modules. According to this approach, an information system is 

extended by adding modules, and modified through step by step changes in the individual modules. 

The research question of this thesis is to describe a method for the modular design of 

information systems for Computer Integrated Manufacturing (CIM). The focus of the research has 

been on the modular design and implementation of shop floor control systems. These systems 

contribute considerably to goals of industrial companies, such as greater flexibility and 

responsiveness, better use of resources, a reduction in inventory levels and faster delivery of 

customer orders in order to be competitive. However, in the research area of manufacturing 

relatively little attention is being paid to shop floor control systems. 

Furthermore, the proposed method is validated, and extended where appropriate. Two areas of 

extension are the design of CIM architectures and the reuse of software. The research question 

concerning the extension towards CIM architectures is: what is the relation between modular design 

of information systems at the conceptual level and the modular implementation of information 

systems in different CIM architectures. The research question concerning the extension towards the 

reuse of software is: how can the method of modular design contribute to the reuse of software. 

The characteristics of the proposed method differ in a number of ways from traditional methods 

for information systems design for CIM. Most notably, the method is based on the following 

starting-points, which are often lacking in traditional, waterfall based methods: 

• information system design is an evolutionary process 

• information systems have to be built from components 

• information system requirements are continuously changing 

The method described in this thesis is based on the design of the conceptual schema of the 

information base. An information system is defined as a collection of interfaced modules. Each 

module refers to a part of the information base that can be used separately, and is therefore specified 

by its own conceptual schema. Interfaces between modules are defined in terms of domains, which 

describe the update and retrieval authorisation of a module with respect to the information base. 

These concepts make it possible to validate the modularity of a design in terms of criteria such as 
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decomposability, composability, understandability, continuity, and protection. 

In this thesis, it is shown that it is not sufficient to consider only the modular design of the 

information system if one wants to implement a modular information system. Therefore, three types 

of implementation architectures are discussed, viz. database architectures, system architectures, and 

organisational control architectures. It is indicated that distributed architectures provide best 

conditions for the implementation of independent modules in such a way that the modularity criteria 

are satisfied. 

The proposed method has been validated in a laboratory that consists of a scale model factory 

of a Printed Circuit Board production line. In this laboratory it was possible to implement a modular 

information systems in a realistic environment. This experiment has been used as a vehicle for 

research, and is described extensively in this thesis. 

Finally, further research is recommended in the following areas. First, it is worthwhile to study 

the relation between control architectures and modular information systems in further detail. This 

is likely to result in a more adequate application of Information Technology in manufacturing. 

Second, the formalisation of negotiation procedures between autonomous modules and the 

pragmatics of data are important research issues. Third, the reuse of modules and the design of 

standard software requires additional study. Fourth, more research is needed of the infrastructural 

requirements for the implementation of reusable software. 
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Samenvatting 

Tot voor kort werden infonnatiesystemen vaak ontworpen en geimplementeerd als complexe, 
ge'integreerde systemen op centrale computersystemen. Deze systemen zijn vaak gebouwd met 
behulp van oude tecbnologieen en hebben de karakteristieken van een monoliet. Dat wil zeggen, 
een systeem dat in toenemende mate moeilljk te onderhouden of uit te breiden is. 

Nieuwe infonnatietechnologieen maken het mogelijk om infonnatiesystemen te ontwerpen als 
federaties van min of meer autonome modulen. Een infonnatiesysteem wordt dan uitgebreid door 
nieuwe modulen toe te voegen en aangepast door middel van stapsgewijze wijzigingen in de 
individuele modulen. 

De onderzoeksvraag van dit proefschrift bestaat uit het beschrijven van een methode voor bet 
modulair ontwerpen van infonnatiesystemen voor Computer Integrated Manufacturing (CIM). Het 
accent van bet onderzoek heeft daarbij gelegen op bet ontwerpen en implementeren van 
informatiesystemen voor shop floor control. Deze systemen vonnen een belangrijke bijdrage voor 
het realiseren van doelstellingen als het vergroten van flexibiliteit, het beter benutten van 
produktiemiddelen, het reduceren van voorraden en bet verkorten van levertijden. Tot nu toe heeft 
er echter relatief weinig onderzoek plaatsgevonden naar bet ontwerpen van informatiesystemen 
voor shop floor control. 

Vervolgens is de methode gevalideerd en op een aantal punten uitgebreid. Twee gebieden van 
uitbreiding zijn het ontwerpen van CIM architecturen en het hergebruik van software. De 
vraagstelling met betrekking tot CIM architecturen luidt: wat is de relatie tussen bet conceptueel 
modulair ontwerpen van informatiesystemen en bet implementeren van deze systemen in CIM 
architecturen. De onderzoeksvraag met betrekking tot bet hergebruik van software luidt: hoe kan 
de methode van modulair ontwerpen bijdragen aan bet hergebruik van software. 

De karakteristieken van de voorgestelde methode verschillen op een aantal pun ten van de meer 
traditionele methoden. In tegenstelling tot de traditionele methoden, die vaak gebaseerd zijn op bet 
waterval-model, heeft de voorgestelde methode de volgende uitgangspunten: 

• het ontwerpen van informatiesystemen is een evolutionair proces 
• informatiesystemen dienen, indien mogelijk, opgebouwd te worden uit bestaande 

componenten 
• informatiesysteemeisen zijn onderhevig aan continue veranderingen 
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De methode beschreven in dit proefschrift is gebaseerd op het ontwerpen van het conceptuele 

schema van de gegevensbank. Een informatiesysteem wordt daarbij gekarakteriseerd als een 

verzameling van modulen die gekoppeld zijn door middel van hun interfaces. Iedere module wordt 

beschreven door middel van zijn eigen conceptuele schema. De interfaces tussen modulen worden 

beschreven door middel van de raadpleeg- en wijzigingsbevoegdheden van de module met 

betrekking tot de gegevensbank. Deze bevoegdheden worden beschreven in zogenaamde 

'domeinen'. Het eigen domein beschrijft welke gegevens de module mag wijzigen en het vreemde 

domein beschrijft welke gegevens de module mag raadplegen, maar niet wijzigen. Deze concepten 

maken het mogelijk om een on twerp te valideren met be trekking tot de modulariteit ervan. Criteria 

voor modulariteit zijn onder andere, decomponeerbaarheid, componeerbaarheid, inzichtelijkheid 

van een module, continu1teit van een module, en bescherming van een module. 

Een modulair ontwerp van een informatiesysteem is echter niet voldoende om een modulaire 

implementatie van een informatiesysteem te verkrijgen. In vele gevallen zullen impleinentatiezaken 

een beperking vormen van de wijze waarop een conceptueel on twerp ge1mplementeerd kan worden. 

Hiertoe zijn in dit proefschrift drie typen implementatiearchitecturen besproken, namelijk 

databasearchitecturen, systeemarchitecturen en besturingsarchitecturen. Hierbij wordt aangegeven 

dat gedistribueerde architecturen dusdanige condities kunnen creeren voor het implementeren van 

modulen dat zij voldoen aan de hierboven gestelde criteria voor modulariteit. 

De voorgestelde methode is vervolgens gevalideerd in een laboratorium bestaande uit een 

schaalmodel van een produktielijn voor printplaat-assemblage. Dit laboratorium biedt een 

realistische omgeving voor het implementeren van een modulair informatiesysteem voor shop floor 

control. Dit experiment is gebruikt voor een belangrijk deel van het onderzoe~ en is daarom 

uitvoerig beschreven in dit proefschrift. 

Tenslotte worden de volgende aanbevelingen voor verder onderzoek gedaan. :Ten eerste zou 

er verder onderzoek plaats moeten vinden naar de relatie tussen besturingsarchitecturen en 

modulaire informatiesystemen. Dit onderzoek zal waarschijnlijk leiden tot een effectiever gebruik 

van informatietechnologie. Ten tweede vormen het formaliseren van procedures tussen autonome 

modulen en de pragmatiek van gegevens belangrijke onderwerpen voor het' realiseren van 

gedistribueerde systemen. Ten derde zal er meer onderzoek plaats moeten yinden naar de 

mogelijkheid van hergebruik van modulen en hetontwerpen van standaardsoftware ten behoeve van 

deze herbruikbaarheid. Ten vierde zal er meer onderzoek plaats moeten ~inden naar de 

infrastructuur die nodig is voor bet ontwerpen, implementeren en beheren van herbruikbare 
software. 
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Gedistribueerde architecturen, zowel op conceptueel als op implementatieniveau, creeren 
betere condities voor modulaire informatiesystemen dan bijvoorbeeld hierarchische 
architecturen. 
(Bron: dit proefschrift, hoofdstuk 6) 

II 

Top-down functionele decompositie als methode voor het decomponeren van 
informatiesystemen is vaak ontoereikend vanwege het ontbreken van een top in zulke 
systemen. 
(Bronnen: dit proefschrift, hoofdstuk 4. 

Bertrand Meyer, Object-oriented software construction, Prentice Hall, 1988) 

III 

Hergebruik van software wordt pas gemeengoed indien (tevens) gebruik gemaakt wordt 
van bottom-up ontwerpen in de levenscyclus van een informatiesysteem. Bovendien 
moeten herbruikbare componenten als zodanig ontworpen worden. 
(Bron: Bertrand Meyer, Object-oriented software construction, Prentice Hall, 1988) 

IV 

Een omvangrijke klasse van informatiesystemen voor de fabricage wordt beschreven door 
middel van de volgende karakteristieken: evolutionair ontwikkeld, continu veranderende 
systeemeisen, opgebouwd uit standaardcomponenten. Een methode voor 
systeemontwikkeling dient hier dan ook op gebaseerd te zijn. 
(Bron: dit proefschrift, hoofdstuk 5) 

v 

Bertrand et al. stellen: "Alhoewel computer-simulatiemodellen in vele gevallen voldoen, 
zal de realiteit van een produktiebesturing in vele gevallen niet volledig beschreven 
kunnen worden door middel van een computer-simulatiemodel." 
Het gebruik van een werkend schaalmodel als representatie van een produktiesysteem biedt 
een realistischer beeld. 
(Bronnen: dit proefschrift, hoofdstuk 3. 

J.W.M. Bertrand, J. Wijngaard, J.C. Wortmann, Production control systems: a 
structural and design-oriented approach, Elsevier, Amsterdam, 1990) 



VI 

Geen enkele modelleertaal is in staat louter neutrale en objectieve feiten weer te geven. 
(Bron: R.C. Kwant, Fenomenologie van de taal, Aula, 1963) 

VII 

Gezien Kuhn's wetenschappelijk-filosofisch theorie valt er in de Bedrijfskunde een 
revolutie te verwachten die de overgang van pre-paradigmatisch naar 'norrnale' 
wetenschap aangeeft, waarna er een stroomversnelling in de vooruitgang van de 
wetenschap Bedrijfskunde zal plaatsvinden. 
(Bron: Thomas S. Kuhn, De structuur van wetenschappelljke revoluties, Boom, 

MeppeUAmsterdarn, 4e druk, 1987 (oorspronkelijke editie 1962)) 

VIII 

Gezien stelling 7 heeft falsificerend onderzoek in de Bedrijfskunde (nog) nauwelijks enige 
betekenis. 
(Bronnen: Thomas S. Kuhn, De structuur van wetenschappelljke revoluties, Boom, 

Meppei/Amsterdarn, 4e druk, 1987 (oorspronkelijke editie 1962)) 

IX 

De doorlooptijd van een bedrijfskundig promotieonderzoek dient ten minste 4 jaar te 
bedragen a) om zich in te werken in de wetenschappelijke arena, b) om voldoende 
diepgang te bereiken, en c) om voldoende terugkoppeling uit de wetenschappelijke wereld 
te garanderen. 

X 

Internationalisering van onderzoekers is de hoofdvoorwaarde voor internationalisering van 
onderzoek. De meest serieuze methode hiertoe is langdurige uitwisseling van deze 
onderzoekers. 



XI 

Europese onderzoeksprogramma's in Basic Research dienen niet zozeer beoordeeld te 
worden op hun directe output in de vorrn van rapporten, artikelen, software, etc., als wei 
op de groei van kennis bij en uitwisseling van kennis tussen de deelnemende bedrijven, 
instituten, universiteiten en individuen in deze organisaties. 

XII 

Het huidige imperialisme, in de vorrn van het transponeren van culturele waarden en 
norrnen, gaat psychologisch verder en is niet minder verwerpelijk dan het imperialisme in 
strikte zin. 

XIII 

Stijldansen is een sport en dient als zodanig erkend te worden, ook in Nederland. 
(Bron: Grote Winkler Prins Encyclopedie, Amsterdam, 1990) 

XIV 

Het begrip dat men kan opbrengen voor het feit dat iemand weinig televisie kijkt, staat 
niet in verhouding met de verbazing bij het niet aantreffen van een televisietoestel in diens 
woonkarner. 

XV 

Promoveren is 10% inspiratie en 90% transpiratie. Een verblijf in een ver warm land 
verandert deze verhouding niet, echter wei de intensiteit. 


