

Modular design of information systems for shop floor control

Citation for published version (APA):
Timmermans, P. J. M. (1993). Modular design of information systems for shop floor control. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Industrial Engineering and Innovation Sciences]. Technische Universiteit
Eindhoven. https://doi.org/10.6100/IR398985

DOI:
10.6100/IR398985

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR398985
https://doi.org/10.6100/IR398985
https://research.tue.nl/en/publications/7e3ec65c-afc2-4cd7-b33e-795355541ba2

Modular Design of Information Systems
for Shop Floor Control

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de Rector Magnificos,
prof. dr. J .H. van Lint, voor een commissie aangewezen door
bet College van Dekanen in het openbaar te verdedigen op
vrijdag 9 juli 1993 om 16.00 uur

door

PETRUS JACOBUS MARIA TIMMERMANS

geboren te Gilze

Dit proefschrift is goedgekeurd door

de promotoren:

de co-promotor:

prof. dr. ir J.C. Wortmann
prof. dr. ir. E.J. Sol

dr. ir. H.J. Pels

CIP-DATA KONINKLIJKE BffiLIOTHEEK, DEN HAAG

Timmermans, Patrie

Modular design of information systems for shop floor controV
Patrie Timmermans.

Eindhoven: Eindhoven University of Technology. -Ill.
Thesis Eindhoven. With ref. - With summary in Dutch.
ISBN 90-386-0301-0
NUGI 689
Subject headings: modular design I distributed systems I data modelling

Omslagontwerp: Selma Boumans
Druk: Febo Enschede

© 1993, P.J.M. Timmermans, Eindhoven

Aile rechten voorbehouden. Uit deze uitgave mag niet worden gereproduceerd door middel van boekdruk, fotokopie,
microfilm of welk ander medium dan ook, zonder schriftelijke toestemming van de auteur.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form by any means, mechanical, photocopying, recording or otherwise, without the written permission of the
author.

111

Contents

Chapter 1

Introduction and problem statement

1.1 Introduction

1.2 Modular design .. .

1.3 Problem statement . 3

1.4 History of the research . 7

1.5 Structure of the thesis . 8

Chapter 2

Modular design of the conceptual schema . 9

2.1 Introduction . 9

2.2 Criteria for modularity . 9

2.3 Concepts and terminology of the conceptual schema 10

2.4 The Modelling Language . 11

2.5

2.6
2.7

2.8

Chapter 3

Conceptual modelling of information systems

Semantic data models versus object-oriented models

Modular design of the information system

Concluding remarks

15

16

17

25

The model factory . 27

3.1 Aim and content . 27

3.2 The primary process . 28

3.3 The control system . 30

3.4 The information system . 32

3.5 Complexity and limitations of the model factory . 36

iv contents

Chapter 4

Information systems in manufacturing . 39
4.1 Introduction . 39
4.2 Levels in manufacturing . 42

4.3 Control models . 43

4.4
4.5

4.6
4.7

4.8

Chapter 5

Implementation architectures
Hierarchical control versus layered implementation architecture
Redesigning the process .
Software packages for shop floor control

Concluding remarks

45

46
48
49

51

Modular design in manufacturing . 53
5.1 Introduction . 53
5.2 Methodology of information system development . 56
5.3 Determining a module . 61

5.4 Implementation of a module . 63

5.5 Development of generic modules . 65

5.6 Concluding remarks 66

Chapter 6
Architectures for distributed systems . 67

6.1 Aim and content . 67
6.2 Database architectures . 68
6.3 Distributed system architectures . 74
6.4 Organisational control architectures . 80

6.5 Concluding remarks . 83

Chapter 7

Generic modules . 85
7.1 Introduction . ,, 85
7.2 Reusability of software . 85
7.3 Reference models . 87

7.4 Generic modelling . 88

7.5 Generic modules . 90
7.6 Generic software . 92

7.7 Concluding remarks . 94

v

Chapter 8

Discussion and conclusions . 95
8.1 Summary and conclusions . 95
8.2 Recommendations for further research . 97

References . 99

Appendix AI: Notational conventions . 107

Appendix A2: Modelling language . 109

Appendix B: Example: the model factory . 111
B.l Introduction . Ill

B.2 Second-side controller . Ill

B.3 Screenprinter controller . 114
B.4 Component placement #I controller . ll7

B.5 Component placement #2 controller . 119

B.6 Reflow & cleaning controller. 120
B.7 In-process store controller . 122

B.8 Test & repair controller . 125

B.9 Final product store controller . 128

B.lO Material handler controller . 131

Appendix C: Glossary 133

Summary . 137

Samenvatting (summary in Dutch) 139

Curriculum Vitae . 141

Chapter 1

Introduction and problem statement

1.1 Introduction

Manufacturing systems have become increasingly dependent on the adequate supply of information

that is related to their control. Information technology is employed to provide this information.

Initially, information technology was introduced on an ad-hoc basis. Individual problems were

solved by individual solutions based on information technology. Rapid changes in both technology

and requirements for manufacturing systems necessitated a structured approach to the use of

information technology, that addresses issues such as modularity and flexibility of information

systems.

More systematic solutions have been proposed in order to avoid the ad-hoc approach that

resulted in 'islands of automation'. These solutions included life-cycle models for information

system development, starting with information strategy planning. Information strategy planning

prescribes the formulation of goals, starting-points and conditions for information services

[Greveling 90]. The realisation of one single 'integrated' information system for an organisation

is however not feasible [Melkanoff 84] [Scheer 92]. A single integrated information system will

exhibit the characteristics of a monolith, i.e., the system will be increasingly difficult to enhance

or modify, and the systems learning curve will approach its asymptote. A more promising method

seems to be the development of information system in an evolutionary way as federations of

autonomous modules. According to this method, an information system is extended by adding

modules, and modified through step by step changes in the individual modules.

1.2 Modular design

An ideal information system for manufacturing systems would be based on a single global database,

which is the heart of the information system. This global database system would allow the

definition, updating, retrieval, consistency and communication of data among all functions in the

manufacturing system. A complete and detailed conceptual model of the manufacturing system is

necessary to be able to specify the complete and precise knowledge of all the necessary information.

Numerous problems stand in the way for the design and implementation of this ideal system.

2 chapter 1

In [Melkanoff 84] the following non-exhaustive list of problems is given:

• heterogeneous hardware

• heterogeneous software

• heterogeneous models

• complexity of data conversion

• size of the database

• heterogeneity of data

• heterogeneity of users

• update difficulties:

- integrity constraints

- temporary violations of constraints e.g. by CAD applications

- update propagation because of engineering changes

• performance requirements

• graphic I/0 requirements

• requirements for heavy numerical computation

• ease and rapidity of launching the database

• control of security, integrity and privacy

• distributed data

• integration of text and graphic information.

The aim of this thesis is to provide a contribution to solving or avoiding these problems by

describing a method for the modular design of information systems. The method to be formulated

will use conceptual schemas of the module information base as the basis for modular design. The

method to be formulated in this thesis originates from [Pels 88]. Pels recognised the problem of an

all-embracing conceptual schema, of which every user has to know only a small part. Although it

would be possible to defme subschemas that present only the relevant information to the user, this

would still require an overall conceptual schema, since the subschemas would be derived from it

Moreover, the overall conceptual schema has to change in case a user wants to change its

subschema. The method described in [Pels 88] provides guidelines for the decomposition of a

conceptual schema into modules that can be changed without being confronted with the complexity

of the overall conceptual schema.

introduction and problem statement 3

1.3 Problem statement

The research question of this thesis is to describe a method for the modular design of information

systems for Computer Integrated Manufacturing (CIM). The characteristics of this method should

differ in a number of ways from traditional methods for information systems design for CIM. The

global scenarios of both methods are now portrayed to characterise these differences.

1.3.1 Traditional scenario

Traditional methods of information system design are often based on the waterfall model. The first

phase concerns the definition of requirements of the system to be built. Once these requirements

are known, they are considered to be fixed for the following phases in the design process. Changes

in the requirements in later phases can be made according to certain procedures, but should be

avoided since it is well-known in software engineering that these requirement changes increase the

costs of system development drastically. The second phase concerns the global conceptual design.

A global conceptual schema is developed in this phase which is successively decomposed in the

third phase (detailed design) into modules that can be used and modified autonomously. The

decomposition of the global conceptual schema will take place according to the organisational

structure of the manufacturing system, probably based on a CIM reference model as described in

for example [Biemans 90] [CFT 87] or [Jones et al. 86]. Detailed functional specifications are made

in this phase for the applications that need to be developed for each module. It is usually assumed

that in this conceptual design phase it is sufficient to consider only the design of the conceptual

schema to obtain independent modules. According this assumption it should be possible in this

phase to disregard the implementation issues of user interface, applications processing, data

management and communication. The fourth phase then concerns the implementation of the

detailed conceptual design. The following phases, which will not be discussed here, include the

introduction of the information system and the usage and management of the information system.

1.3.2 Proposed scenario

The scenario of the method proposed in this thesis will be based on an evolutionary development

process. To begin with, it is assumed that there is an existing information system that needs to be
changed, i.e., updated or extended. These changes occur relatively frequently, and sometimes more

than one development team is making changes to different modules of the same CIM system. The

boundaries and interfaces of these modules are known, and are based on the particularities of the

specific primary process and control system. An update of the information system in this scenario

4 chapter 1

usually involves only one module. The extent to which the module can be changed without

affecting other modules is defmed by rules. Should other modules be affected, it would only

concern the neighbouring modules. These neighbouring modules are identified through the interface

defmitions. Extending the system concerns the design and implementation of a new module.

Emphasis will then lie on the specification of the interfaces to other modules, the architecture of

modules at the conceptual level and the location of the module in the implementation architectures.

Both updating and extending the system usually concern software packages that are bought from

software suppliers. Only very occasionally new software will be developed in this scenario. If that

is the case, it will usually concern a modification or enhancement of these software packages.

1.3.3 Design from scratch scenario

Occasionally, it will occur that there is no system yet available, and the complete manufacturing

system has to be designed from scratch, which was the situation in the model factory example that

will be described in this thesis. The first step in the design of the information system will then be

the definition of the boundaries of the modules. This defmition will be based on thif characteristics

of the primary process and the control system, which have to be designed before the information

system can be designed. The result of this definition will be a federation of autonomous modules

without a global conceptual schema. Then, each module in isolation will be designed in detail and

implemented. However, there will be a joint initiative to implement an infrastructure of hardware

and software that is shared between modules. Thus, the proposed method abandons the necessity

of having a global conceptual schema, and emphasizes the design, re-design and implementation

of information systems that consist of federations of autonomous modules without a global

conceptual schema.

1.3.4 Layered models scenario

If levels have been defmed in the control system, which will often be the case, then the architecture

of modules at the conceptual level will be based on it The interfaces between modules will reflect

the different levels, and aggregation of objects can be used to specify these interfaees. Consider for

example the situation where there is a distinction between an Aggregate Production Planning level

(APP), Goods Flow Controllevel (GFC), and a Production Unit Controllevel (PUC) (cf. [Bertrand

et al. 90]). At each level one or more modules will be defined. Consider for example the role of the

customer order in customer-order driven manufacturing. When a customer order is defmed as an

object class in an APP module, then this class could be decomposed in the GFC module into

customer-order specific workorders, and again in a PUC module into actual operations. However,

introduction and problem statement 5

each of the three modules can be designed and implemented independently once these interfaces

are defined. This is not constrained by the fact that the PUC module uses data from the GFC module

(viz. workorder data), and that the GFC module uses data from the APP module (viz. customer

order data). Because these interfaces are of crucial importance for the structure of the control

system itself, they are not likely to change frequently. The interfaces between the information

system modules will therefore not change frequently either. However, if the company intends to

implement a new production planning system for Goods Flow Control, it is possible to do so

without changing the APP and PUC modules.

1.3.5 Further research goals

Furthermore, the method should be validated, and extended where appropriate. Two areas of

extension are the design of ClM architectures and the reuse of software. The research question

concerning the extension towards CIM architectures is: what is the relation between modular design

of information systems at the conceptual level and the modular implementation of information

systems in different ClM architectures. The research question concerning the extension towards the

reuse of software is: how can the method of modular design contribute to the reuse of software.

1.3.6 Research area

Industrial companies have to provide greater flexibility and responsiveness, better use of resources,

a reduction in inventory levels and faster delivery of customer orders in order to be competitive.

Adequate shop floor control systems contribute considerably to these goals. In the research area of

manufacturing however, relatively little attention is paid to shop floor control systems. Bauer et al.

mention that conventional commercially available computer based systems are very weak on shop

floor control [Bauer et al. 91]. This thesis is dedicated to the design of shop floor control systems

to decrease this deficit. The examples in this thesis are taken from a shop floor control system as

well. The method described in this thesis has however a wider application area, as is indicated by

a project for the re-design of a production planning system that is not reported in this thesis

[Timmermans 92].

1.3.7 Starting-point: data modelling

The main assumption of the method presented in this thesis is that data modelling is a valid starting­

point for the modelling of information systems for shop floor control. This assumption is based on

6 chapter 1

two arguments. First, it is argued by various authors that conceptual data models constitute the

skeleton of the information system [Bertrand et al. 90] [Melkanoff 84] [Scheer 92]. Any

organisation is subject to continuous change. These changes hold in particular for the operating

procedures of the organisation, which are described as the functionality of the organisation. The

conceptual data model describes the objects that are recognised to exist in the manufacturing

system. Although these are also subject to changes, they are generally more stable than the

operating procedures. Moreover, most manufacturing systems are ba..<ied on a ~Uanufacturing

databa..<;e, which is the implementation of the conceptual data model, and many different

applications use this database.

The second argument is put forward in [Pels 88]. He makes a distinction between the

technological, syntactical, semantical and pragmatical aspects of an information system. Integration

of information systems can be considered from each of these aspects. However, the integration of

information systems on technological and syntactical level requires a consideration of the semantics

of both systems. These semantics are described in the conceptual data model. Pels argues that

conceptual data models are appropriate instruments for the analysis of composition and

decomposition of information systems.

It is however recognised that conceptual data models are not universally applicable. The

possibility of modelling dynamics in data models is limited. It would therefore be more appropriate

to use process oriented modelling languages to model highly reactive real-time ~ystems such as

programmable logic controllers. However, it is argued here that data modelling is 11 valid starting­

point for the modelling of information systems in database oriented systems such as in shop floor

control systems and even more in information systems for production planning and control. The

application domain of data models in manufacturing is illustrated by figure 1.1.

scope of application

factory

shop

cell

station

automation
module

figure 1.1 application domain of data models

introduction and problem statement 7

1.4 History of the research

The research project was started in 1989 in the section Information & Technology of the school of

Industrial Engineering & Management Science at Eindhoven University of Technology (TUE).

After an initial literature survey, a modular CIM system was designed in the CIM laboratory of the

school to get acquainted with the method of modular design.

' In 1990, a second experiment was carried out. A design of a shop floor management system for

components design and manufacturing was made for a consortium consisting of 7 system

integrators and suppliers of CIM components. The goal of this project was to make a design of a

manufactudng cell that consisted of existing CIM components. It would not be possible to

implement components from scratch because of limited time and resources. The method for

modular design was used to specify and integrate existing components, such as CAD/CAM systems,

a production planning system, a shop floor management system and a Flexible Manufacturing

System.

Almost simultaneously, the CIM laboratory of the Digital Cooperative Engineering Centre

(CEC) was set up. The laboratory involves 'the research and development of new tools and

techniques for shop floor management and device connection, and the integration of these tools and

techniques into one shop floor management system' [Kearns 90]. The results are applied to a scale

model factory of a Printed Circuit Board (PCB) assembly and test plant. From early 1990, research

was carried out in co-operation between TUE and the CEC. During the period from 1990 until early

1993, one TUE researcher, successively two Digital program managers, and in total6 TUE students

and one other student have participated in the research in the CIM laboratory that is directly related

to this thesis.

During 1991, an additional project was carried out for the redesign and implementation of a

production planning system.

Finally, the second half of 1992 and the beginning of 1993 were spent in the preparation of this

thesis.

8

1.5 Structure of the thesis

The main structure of the thesis is depicted in figure 1.2.

method
(chapter 2)

experiment
(chapter 3)

information systems
for manufacturing

(chapter 4)

modular design
(chapter 5)

implementation architectures
(chapter 6)

generic modules
(chapter 7}

scope of the chapter

figure 1.2 structure of the thesis

Chapters 2, 3 and 4 present the backgrounds of the research and the research area. The method

for modular design of information systems, including concepts and terminology, ris introduced in

chapter 2. The experiment carried out in the CIM laboratory of the CEC is then presented as an

example in chapter 3. Chapter 4 presents an overview of current methods fdr the design of

information systems for manufacturing.

Chapter 5 is the centre of the thesis. This chapter provides principles for the design, redesign

and implementation of a modular information system for manufacturing, based oil the findings of

previous chapters. Emphasis is placed on the design, redesign and implementation of application

software for shop floor control.

Chapters 6 and 7 elaborate on two main subjects of chapter 5. In chapter 6 this is the

implementation of modular information systems. Different architectures for the implementation of

information systems are discussed. Here, an important conclusion will .be that distributed

implementation architectures provide more adequate conditions for the implemen~tion of modular

information systems than for example hierarchical architectures. Chapter 7 concentrates on the

reuse of software based on module specifications.

Finally, in chapter 8 the knowledge gained sofar in the application of modular design is

discussed, which leads to a few suggestions for further research.

9

Chapter 2

Modular design of the conceptual schema

2.1 Introduction

This chapter introduces a method for the modular design of information systems. This method plays

a central role in this thesis, since one of the research goals has been to validate and extend this

method for the application area of manufacturing. The essence of the method is described in [Pels

88] as the method of modular decomposition of the conceptual schema. The main difference

between [Pels 88] and this thesis is that the emphasis in the latter is put on design and re-design

while the emphasis in [Pels 88] is put on the analysis of a design. Furthermore, the method is

described in terms of object modelling instead of the relational model. It is emphasized that one of

the strong points of the method for modular design is its independence of a schema specification

language.

The basic concepts of the method of modular design are described in this chapter. First, criteria

for modularity are discussed in section 2.2. The concepts and terminology of the conceptual schema

are described in section 2.3. An appropriate language for the conceptual schema is introduced in

section 2.4. Section 2.5 discusses conceptual modelling of information systems. Section 2.6

discusses the difference between a semantic data model and an object-oriented data model. The

definition of a module is then presented in section 2.7.

2.2 Criteria for modularity

Modularity of an information system has, like quality of an information system, more than one

perspective. [Meyer 88] specifies five independent criteria for design methods with respect to

modularity. These criteria will be applied throughout the thesis. They are designated as:

• modular decomposability

• modular composability

• modular understandability

• modular continuity

• modular protection

10 chapter 2

According to Meyer, the modular decomposability criterium is met by a design method if the

method helps in the decomposition of a new problem into several sub-problems, whose solution

may be pursued separately. In addition to Meyer, the method should also help the re-design process

by the decomposition of an existing system into separate components.

A method satisfies the criterium of modular composability if it favours the production of

software elements that may freely be combined with each other to produce new systems, possibly

in an environment different from the one in which they were initially developed.

A method favours modular understandability if it helps to produce modules that can be

separately understood by a human reader. At worst, the reader will have to look at a few

neighbouring modules.

A design method satisfies modular continuity if a small change in a problem specification

results in a change of just one module. Such changes should not affect the architecture of the

system. An architecture is defined as a description of components and their interfaces.

A method satisfies the modular protection criterium if it yields architectures in which the effect

of an abnormal condition occurring at run-time in a module will remain confined to this module,

or at least will propagate to a few neighbouring modules only.

2.3 Concepts and terminology of the conceptual schema

Concepts and terminology of the conceptual schema can be found in [Griethuysen 82]. Some

concepts that are of interest for further discussion in this thesis will be introduced in this section.

Specifying an information system involves the modelling of a part of the real world or

postulated world, called the universe of discourse. The concrete physical repreSentation of the

information will be called a database. The term database system refers to a data prpcessing system

dealing with a database.

When designing a database system the primary interests lies in the meaning ofithe information.

This meaning is specified in the conceptual schema. A conceptual schemil comprises a unique

central description of the various informiltion contents that may be in a databaSe. This includes

classifications, rules, laws, etcetera, of the universe of discourse. The database itself may be

implemented in any of a number of possible ways. For this purpose, the ANSVSPARC three­

schema architecture has been defmed (figure 2.1) [Tsichritzis et al. 77]. This architecture provides

data independence. A distinction is made between physical and logical data independence. Physical

data independence means that users (application programs or end-users) do not need to have

knowledge of changes in storage structure and access strategy of the data. Logical data

independence means that it should be possible to introduce changes on a logical level without

having repercussions on the usage of the data.

While the meaning of the information is specified in the conceptual schema, the physical

modular design of the conceptual schema ll

storage structure is described by an internal schema. External schemas describe the way users and

application programs may view the data in the database system. Every external schema is therefore

derived from the common conceptual schema.

external
schemas

/

conceptual
schema

internal
schema

figure 2.1 ANSI/SPARC three-schema architecture

The actual objects that are perceived to exist in the universe of discourse in a specific instant or

period of time and their relevant actual states of affairs are described in the information base. Both

the conceptual schema and the information base are considered to be at the conceptual level.

2.4 The Modelling Language

2.4.1 Introduction

The modelling language in this thesis is based on semantic data models. Semantic models are

oriented towards the representation of the meaning of data and attempt to provide a structural

abstraction. An example of one of the earliest semantic models is the Entity-Relationship model of

Chen [Chen 76]. The choice of semantic data models is based on the assertion that semantic data

models are more powerful in representing integrity constraints and various relationships than other

current data models [Bouzeghoub et al. 91]. Behavioural aspects of the conceptual design are

introduced by dynamic integrity constraints.

Another class of data models are object-oriented models. The power of object-oriented data

models is highlighted by their ability to describe the dynamic behaviour of the objects by means

of methods. A discussion on semantic models and object-oriented models can be found in section

2.6.
The following sections will provide a linguistic description of the language for the conceptual

schema.

12 chapter 2

2.4.2 Basic concepts

Basic bnilding blocks

The basic building blocks of the modelling language are SCHEMA and CLASS. A schema i':l the

means of specifying objects, integrity constraints and domain rules. The schema is used as the

syntactic unit to specify a module, which is addressed in section 2.7 .2.

A CLASS is a group of objects with similar properties, common behaviour, common

relationships and common semantics. Integrity constraints in a schema specify the static and

dynamic constraints on or between object classes. Domain rules in a schema specify the interfaces

of a module. Other concepts that will be used and explained in this section are generalisation and

specialisation.

Classes

A class describes the structure of a set of objects in terms of their attributes. All objects will be

called instances of the class. An object is described by its attributes. There are no other objects than

class instances; any object is an instance of at least one class. This class is said to be the type of the

object. It is important to notice that each object has its own identity. Thus, two objects are distinct,

even if all their attribute values are identical. The following notational convention is used:

• if i is an information base state and b is a class then i.b refers to the set of ob~ects of

i belonging to class b.

• if o is an object then o.a refers to attribute a of that object. Attributes of an object are

other objects or sets of objects. Objects can be simple or complex. Simple iobjects

are, for example, integers and strings. They are not specified explicitly in a schema.

An example of a class definition could be:

class batch

attributes
batch_id : integer;

creator : station;

item_type : item_type;

size : { 1..3 } ;

end; -- class batch

modular design of the conceptual schema 13

Subclasses

A class can have subclasses. Instances of a subclass inherit all attributes of their superclasses in

addition to the attributes of their own class. A subclass is a specialisation of its superclass.
The design process also can go the other way. A superclass is created from some existing

classes. The superclass contains (a part of) the common attributes of the subclasses. Thus, the
generalisation of a number of subclasses into a superclass can be obtained. Both specialisation and

generalisation can be specified, if this is required. A simple specialisation defmition could be:

class consumer
attributes

station_name : string;
produced_requests : set of request;

end; -- class consumer

class station
subclass of consumer

attributes
received_requests : set of request;

batch_in_process : batch;
batch_available : {available, non-available};

end; -- class station

2.4.3 Integrity constraints

Static constraints
A conceptual schema should describe all relevant static and dynamic aspects of the universe of
discourse [Griethuysen 82]. Static and dynamic constraints describe the permissible information
base states and sequences of information base states.

Static constraints are concerned with the consistency and permissibility of a single state of the
information base. A static constraint is specified as a fmt order formula on the set of all information
base states. A constraint can refer to attribute domains, the relation between attribute values, the

relation between objects, or the relation between classes. The requirement that the batch size of a

batch is minimally 1 and maximally 3 is an example of a static constraint. The notation will then

be:

C(i) = (V b: b e i.batch : 1 S b.size :s; 3),

where i e S (the set of all information base states).

14 chapter 2

The constraint C is a boolean function on the set of all information base states. i.batch refers to the

set of objects of the type batch in information base state i, and b.size refers to the value of the

attribute size of batch b.

Dynamic constraints
Dynamic constraints are concerned with the allowed transitions from one information base state to

the next They specify the possible sequences of information base states. Therefore, these

constraints are also called transition constraints. A dynamic constraint is essentially a boolean

function on a pair {old,new) of information base states. A change from a state old to a state new

is permissible if and only if the function, when applied to pair (old,new), is true. Dynamic

constraints are specified in this thesis as first order formulas on the Cartesian product S x S of the

setS of all information base states. Examples of dynamic constraints can be found in appendix B.

A distinction can be made between permissive rules and prescriptive rules [Griethuysen 82].

Permissive rules describe the possibilities of an action: p can occur only if g is true. Prescriptive

rules describe the necessity of an action: if p is true then g must occur. Both propositions

correspond to the logical implication [Bracchi et al. 79]:

The way to distinguish between them is to add time i and j (i precedes j). This results in:

a. j.p ~ i.g

b. i.p ~ j.g

which mean:

a. p is allowed if g was true before (permissive)

b. g must occur if pis true (prescriptive)

It is noted that all static constraints are permissive rules since they are not time dependent. Other

examples of static and dynamic constraints can be found in appendix B.

Temporal Modelling
Sofar a distinction has been made between static and dynamic constraints. Static constraints apply

to each of the individual states of the information base. Dynamic constraints apply to a pair

(old,new) of consecutive states, thus describing the allowed transitions. When describing a

dynamic constraint by a pair of consecutive states one assumes that the history of states can affect

permissibility only in as much as the history is reflected in the most recent state. It is therefore

nwdular design of the conceptual schema 15

sufficient to consider the most recent state only. [Put 88] however argues that a distinction has to

be made between dynamic constraints and temporal constraints. Temporal constraints refer to

information base states other than the current or new state. Checking a temporal constraint requires

information about one or more states in the past or future.

For reasons of simplicity it will be assumed in this thesis that the history of states is reflected

in the most recent state. There will be no further distinction between dynamic and temporal

constraints.

2.4.4 DiagrammaticaJ Notation

The object model defined in the previous section can be represented by a data structure diagram.

In this thesis, the diagrammatic technique described in [Martin et al. 92] is adopted. A class is

represented by a rectangle. An attribute type is an association between one class and another class,

indicated by a line. The cardinalities of the association are indicated by cardinality symbols. An
example of a data structure diagram is given in figure 2.2. Further explanation of the diagrammatic

technique is given in Appendix AI.

figure 2.2 example of a data structure diagram

2.5 Conceptual modelling of information systems

2.5.1 Information systems

An information system can be considered as an information base plus a number of information base

applications. Information base applications, shorthanded as applications, are formalised procedures

for manipulating the information base. This may either be a computer program or a manual

operation.

Modular design aims at the elimination of errors that can occur in applications when changing

the conceptual schema. 1\vo types of errors can occur: errors in update operations and errors in

16 chapter 2
--

retrieval operations. Errors in update operations occur when an intended transition is not allowed

in combination with the current information base state. Errors in retrieval operations can occur

when the occurrence of an information base state is not foreseen.

An application on a conceptual schema is defined as a combination of retrieval and update

operations which are defined for that conceptual schema. The execution of an operation should

never violate the integrity constraints that are defined on the information base, or cause errors

elsewhere.

2.5.2 Thansferability of Applications

Applications can be transferred, in case of re-design, from an old module to a modified module, or,

for example in the case of re-use, from one module to another. An application is transferable to a

modified module if it satisfies all constraints of the modified module after the module has been

changed. An application is transferable to another module if it satisfies all constraints of that

module. Transferability of an application is therefore an important property concerning modular

continuity.

2.6 Semantic data models versus object-oriented models

A short characterisation of semantic models and object-oriented models is given in [Hull 87]:

semantic models encapsulate structural aspects of objects, whereas object-oriented languages

encapsulate behavioural a-;pects of objects. Semantic models are oriented towards tht representation

of data, whereas object-oriented languages are concerned with the manipulation of data [King 89].

Essentially, semantic models provide constructors for creating complex types, w~le behavioural

issues are often left undefined. In contrast, object-oriented models take an abstract data type

approach. However, class hierarchies and inheritance are generally defined likewise in semantic

models and object-oriented models. Behaviour of an object in semantic data models can be

described by dynamic integrity constraints. Some researchers refer to semantic models as being

'object-oriented' in order to stress the fact that they provide mechanisms for structuring complex

objects. Thus, the distinction between the two kinds of modelling is not always well defined. In fact,

in [Bouzeghoub et al. 91] a procedure is described to generate an object-oriented model from a

semantic model.

The most important difference between both models which is of interest for this thesis is the

way integrity constraints are specified. In semantic data models, integrity constraints can be

specified in first order predicate calculus (see section 2.4.3). Object-oriented data models do not,

except through methods, easily permit specification of integrity constraints on the objects

modular design of the conceptual schema 17

[Bouzeghoub et al. 91]. I.e., mostintegrity constraints have to be specified in terms of the behaviour

of the objects, and are described as dynamic constraints on the operations of an object. Dynamic

constraints can be formulated in pre- and postconditions, which are expressed as predicates.
However, pre- and postconditions should be considered as specifications of an operation or method,
rather than a property of the object structure. Moreover, there are a number of drawbacks to the use

of pre- and postconditions [Put 88]. It is for example not possible to define prescriptive rules, which
are based on the arrival of a particular state. Also, when reusing dependent actions (methods) in
different action calling patterns, one must be very carefully [Put 88].

2.7 Modular design of the information system

2.7.1 Introduction

With respect to modularity, five evaluation criteria for design methods are given in section 2.2.
Certain design principles follow from this set of criteria which must be observed to ensure proper

modularity. [Meyer 88] mentions five principles:

1. linguistic modular units

2. few interfaces
3. small interfaces

4. explicit interfaces
5. information hiding

The principle of linguistic modular units need a little explanation. This principle refers to the

requirement that the language used to specify the design must support the notion of modularity. I.e.,
the grammar of the language should support the notion of modularity.

Furthermore, the principle of independence of a module is added as the sixth principle. In this
section, language features will be introduced for the realisation of the first, the fourth, the ftfth and

the sixth principle by means of the conceptual schema. In chapters 5 and 6, guidelines will be given

for quantifying the second and third principle.

2.7.2 Linguistic modular units

A module refers to a part of an information base that can be used separately [Pels 88]. It is therefore
a concept at the conceptual level. A module presents itself to its user as an isolated information
base. A module is therefore specified by an isolated conceptual schema, and should be considered

18 chapter 2

as an instance of that schema. In contrast with the distributed database approach, there is no global

conceptual schema which is composed of various 'local' module schemas. A more detailed

discussion on the relation between modules and distributed and federalised databases can be found

in chapter 6.

The basic building block SCHEMA is the syntactic unit to specify a conceptual schema. The

classes and constraints related to a module can be specified in a schema. A schema dyfinition could

look like1
:

SCHEMA screenprinter

CLASSES

class station

attributes
station_name : string;

end; -- class station

class batch

attributes
batch_id : integer;

end; -- class batch

class request

attributes
consumer : station;

batch: batch;

end; -- class request

INTEGRITY CONSTRAINTS

-- for every information base state i must hold that the maximum number of requests created

by the second-side for one batch is I.

C(i) = Cv b: b e i.batch:

(# r: r e i.request: r.consumer.station_name = 'screenprinter' A r.batch=b)::;; l)

END; -- schema screenprinter

1 a complete specification of the example is given in appendix B.

modular design of the conceptual schema 19

2.7.3 Explicit interfaces and information hiding

The specification of a module includes also the interfaces of the module. These interfaces concern

the update and retrieval authorisation of the module with respect to the information base. The

interfaces will be called domains, and are defmed as functions on the information base state.

Domains specify the update and retrieval authorisation of a module in terms of the retrieval

operation 'read' and the three primitive update operations' create', 'delete' and 'modify'. Thus, the

concept of domains satisfies the principle of explicit interfaces and information hiding.

It should be noticed that in [Griethuysen 82] 'modify' is not considered as a separate operation.

In stead it is considered as a combination of' delete' and 'create'. However, in terms of objects this

would mean that one object is deleted and another is created. Although these two objects may have

the same representation, they have different identities. The operation 'modify' has for this reason

to be considered as a separate operation.

view domain

own domain foreign domain

Module B

Module A

foreign domain own domain

view domain

figure 2.3 domains of a module

Own domain

The own domain of a module contains the objects for which the module has retrieval and update

authorization (create, delete and modify). A further refinement can be made by distinguishing a

private domain and a public domain, where the private domain contains the objects of the own

domain that are not visible to other modules, and where the public domain contains the objects of

the own domain that are visible to one or more other modules.

20 chapter 2

Foreign domain
The foreign domain of a module contains the objects for which the module has retrieval

authorization but no update authorization. The foreign domain refers to the objects a module

retrieves from other modules. The union of the own and foreign domains is called the view domain.

The view domain of a module contains the objects that are visible for the module. Being visible

means that the objects are included in the information base of the module, and that these objects can

be retrieved from this information base by the 'read' operation.

Interfaces between modules are explicitly defined by their domains, which is illustrated by

figure 2.3. The foreign domain refers to the objects a module retrieves from other modules, whereas

the public domain refers to the objects created by the module itself and retrievable by other

modules.

The domains are specified by means of domain rules. A specification of domain rules could

look like2
:

SCHEMA screenprinter

CLASSES
class station

end; -- class station

class batch

end; -- class batch

class request

end; -- class request

class item_type

end; -- class item_type

DOMAIN RULES

-- the own domain of this module consists of the objects of the object types request and station
I

that have 'screenprinter' as the name of the station.

own domain (i) = { t e i.request I tconsumer.station_name = 'screenprinter'} u
{ t e i.station I tstation_name='screenprinter'}

-- the foreign domain of this module consists of all objects of the object typeS item_type and

batch, the objects of the object type request with 'screenprinter' as the producer station name,

and the objects of the object type station with 'second-side' as the station name.

2 a complete specification of tbe example is given in appendix B.

modular design of the conceptual schema

foreign domain(i) = { t e Litem_ type} u { t e i. batch} u
{ t e i.request I tproducer.station_name = 'screen printer'} u
{ t e i.station I tstation_name ='second-side'}

END; -- schema screenprinter

Further refinement of the own domain

21

The distinction between own and foreign domain as defined above is usually sufficient Sometimes

however, a refinement of the own domain is necessary. As defined earlier, the own domain contains

the object.<;; for which the module has update authorization. Update authorization includes the three

primitive update operations create, delete and modify. In some cases one module may have the

authorization to create objects, while another module has the authorization to delete and modify

objects. This leads to a refinement of the own domain in three non-disjunct domains: insert domain,

delete domain and modify domain.

The update domains will be specified in the conceptual schema by the terms 'insert domain',

'delete domain' and 'modify domain'. The objects specified in the own domain are included in all

three update domains.

2. 7.4 Horizontal and vertical module fragmentation

When defining the domains of a module, one will often find that not all objects of a particular class

can be allotted to a single module. It will often occur that some objects in a class will be allotted

to one module, while others will be allotted to another module. Furthermore, it may occur that some

attributes of an object are own to a module and other attributes foreign. In analogy with Distributed

Database terminology [Elmasri et al. 89], this allotting will be called horizontal module

fragmentation respectively vertical module fragmentation respectively. It is remarked here that

vertical module fragmentation often indicates a non-optimal definition of classes. Introducing

specialisation avoids the necessity of using vertical module fragmentation. A fragmentation

example could be:

horizontal module fragmentation

own domain (i) = {s e i.station I s.station_name = 'test&repair'}

only stations with the name 'test&repair' are in the own domain

vertical module fragmentation

foreign domain (i) = { (s.station_name, s.batch_available) I s e i.station}

--only the attributes 'station_name' and 'batch_available' are included in the foreign domain

22 chapter 2

2. 7.5 The relation between modules

Independence

Modular understandability is determined by the independence of a module. A module is

independent if the user (application program or end-user) of that module can inspect the validity

of an intended transition in every situation. A sufficient condition for independence is: a module

is independent if all applicable constraints are visible3
• Visibility of an integrity constraint means

that the user of a module can determine the logic value of the constraint. which requires that the

view domain of the module includes all objects and attributes a constraint refers to. However, for

the analysis of independence only those constraints are of interest that might be violated by an

update operation in an update domain of the module. These constraints are called applicable

constraints. For the analysis of the applicable constraints knowledge is needed of:

I. the objects involved in the constraint specification

2. for each involved object, the update operations that might violate the constraint.

A method for performing this analysis is indicated in [Bouzeghoub et al. 91]. The result of the

analysis is the applicability of each constraint for each pair (class, update operation). Whether the

constraint is applicable to a module can easily be checked by comparing the pairs with the update

domains of the module.

Applications on scbemas

Modular understandability requires also that an application can be developed as an application on

a schema without considering other schemas. The discussion on independence shows that if a

module is dependent, operations could be initiated that are not allowed, without being able to check

the applicable constraints. This resulted in the condition for independence that all applicable

constraints have to be visible. This condition holds of course also for the development of an

application. Moreover, the following general design rule must be obeyed in order to avoid the

situation where it is not possible to check the validity of constraints:

when developing an application for a module, specifications of that module only
shall be used.

3 this condition is proven in [Pels 88] where an applicable constraint is defined as a constraint that is
involved with either an INSERT, DELETE or MODIFY operation.

modular design of the conceptual schema 23

Derived attributes
Derived attributes are attributes of which the value is calculated from the value of one or more other

attributes. Special attention is here required for the definition of constraints. For example, attribute

A is defined as the sum of B and C. Changing B or C would change the value of A as well.

However, if B and C are owned by two different modules: who owns A? Besides, what happens if

the value of A is changed: how does this affect B and C? These situations require a careful

definition of constraint.<> and ownership. Prescriptive rules have to be specified to solve this

problem.

Continuity and Composability
Independence of a module is of high importance for the design criteria of modular decomposability,

modular understandability and modular protection. The method proposed here contributes also to

modular composability and modular continuity. Modular continuity is satisfied if a small change

in the. problem specification results in a change of just one module, or a few modules [Meyer 88].

Modular continuity is enhanced by the design principles of small interfaces, few interfaces, explicit

interfaces and information hiding. While the former two principles concern a specific design and

the latter two concerning the general properties of a module, each principle can be applied through

the use of domain specifications. More particularly, any changes in the private domain of a module

will affect only that module, and changes in the public domain of a module only affect the modules

that interface that module through their foreign domain. Hence, these changes will be limited to a

few modules.

The criterium of composability is satisfied by the concept ofintegration. Integration of modules

involves the combination of specifications of two or more modules into one schema. Both object

structure and constraints have to be combined. Generalisation of object classes has to be applied

in case of differences between classes in different modules. In [Pels 88] is argued that no further

conditions have to be met in order to maintain independence when integrating two modules.

The combination of the constraints of two or more schemas will however likely incur changes

in what transitions are allowed on the information base. Consequently, the validity of the current

transitions may be changed. This may have important consequences in case of update operations,

since it will affect the requirement that applications on a conceptual schema should be based on the

specifications of that schema. It might be required that applications have to be redesigned as well.

Transferability of an application to an integrated schema is however guaranteed if the following

conditions are satisfied [Pels 88]:

I. the original module of the application is independent

2. no applicable constraints may be introduced for the integrated module.

24 chapter 2
---------------- ·····--~~-···· -------------

2.7.6 Other Approaches

The problem of handling large complex schemas is recognized by many researchers and

practitioners. A number of proposals have been presented for solving this problem. A few

representative solutions will be discussed in this section. Other solutions that are related to

distributed databases wilJ be discussed in chapter 6.

A general solution to capture complexity in schemas is to define views on the global schema.

In [Rumbaugh et al. 91] for example a 'module' is used for enhancing understandability and

capturing a view of a situation. It is defined as a logical construction for grouping classes,

associations, and generalisations. The global object model consists of one or more modules,

whereas the modules enable the partitioning of an object model into manageable pie;ces. The same

class can be referenced in different modules, which is the mechanism for binding modules. There

is however no special notation given for a module, and a module is defined only in the external

schema. This approach does not mention a modular conceptual schema, and no guidelines are given

for the creation of independent modules in the meaning defined in this chapter. It is therefore

concluded that this approach is not sufficient for the development of modular information systems.

Another starting-point for the introduction of modules is to manage schema development.

Several approaches from the area of Computer Aided Design address this issue in particular. [Kim

et al. 88] for example present a model for version management of schemas for Object-oriented

databases. [Andany et al. 91] present a version model that handles database schema changes, and

that takes evaluation into account. It allows the development of partial schema versions in the form

of external views of a schema. There are rules described for authorised modifications on a schema

and for guaranteeing coherence. The main goal of these approaches is to secure modular

understandability and continuity. The modularity criteria of composability and decomposability are

however largely neglected.

In object-oriented design a module is defined as an abstract data type including the attribute

definitions, operations and integrity constraints [Meyer 88] [King 89]. In section 2.6, it is pointed

out that a weakness of current object-oriented data models is that, except through the specification

of methods, they do not easily permit the specification of integrity constraints. The specification

of integrity constraints is however essential for analysing the independence and transferability of

applications. Yet another risk of object-orientation is the complexity involve~ with reusing

dependent actions in different calling patterns. For these reasons it is not clear whether current

approaches based on object-orientation satisfy the composability and decomposability criteria for

programming-in-the-large.

Finally, there are efforts in various standardisation committees to create languages that allow

the design of modules. The data modelling language Express for example, proposed by ISO

TC184/SC4/WG5 [Spiby et al. 91], introduces the possibility of multiple schemas. The terms

'reference' and 'use' are introduced for interfacing different schemas. These terms are used for

nwdular design of the conceptual schema 25

including the specification of one schema into another schema. However, they cannot be used

directly for the specification of the domains of a module since the domains are specified in terms

of the information base, not in terms of the conceptual schema [Baats 92). Moreover, Express

allows implicit references through chains of relations. This violates the principle of explicit

interfaces, which is essential for the definition of module independence.

2.8 Concluding remarks

Five criteria were specified in section 2.2 for the evaluation of a design method with respect to

modularity. From these criteria it is possible to derive design principles. Six design principles are

mentioned in section 2. 7 .I: linguistic modular units, few interfaces, small interfaces, explicit

interfaces, information hiding, and independence.

An evaluation of the method of modular design according to the five criteria will now complete

this chapter. First, the method was initially developed to decompose complex information systems

by the definition of modules and assigning domains to these modules [Pels 88]. Thus it satisfies the

decomposition criterium. Second, the composition criterium is satisfied since it is possible to

combine different modules by combining the domains. Third, the method aims at modules that can

be understood separately. This is reflected in the visibility requirement of integrity constraints.

Hence, the understandability criterium is also satisfied. Fourth, the continuity criterium is satisfied

by the definition of own and foreign domains. These domains specify what part of the module can

be changed without implications for other modules. Moreover, these domains provide the means

for extending the information system. Fifth, modular protection is guaranteed when applications

are specified and implemented as applications on one module. This will prevent unexpected errors

to occur in an application due to errors in neighbouring modules.

26

27

Chapter3

The model factory

3.1 Aim and content

This chapter provides an overview of an experiment that includes the modular design of an

information system for shop floor controL This experiment will serve as an example in following

chapters, and more details will be revealed. The experiment was carried out in the CIM laboratory

of the Cooperative Engineering Centre of Digital Equipment Corporation in Amsterdam. The

laboratory consists of a scale model factory of a PCB production line. This scale model factory was

designed and implemented as a vehicle for applied research and advanced development in the area

of shop floor control. In the laboratory it is possible to use commercially available hardware and

software, to test new software, and to design and implement experimental tools and techniques.

Research issues of the laboratory are the modular design and implementation of information

systems for shop floor control, and the design of generic and reusable modules.

This chapter includes a description of the products of the model factory, the physical hardware,

the primary process, the control system, and the information system. The design of the information

system will be discussed in more detail in chapter 5. A more complete description of the modular

design of the information system of the model factory can be found in appendix B.

figure 3.1 layout of a PCB

28 chapter 3

3.2 The primary process

3.2.1 The Product

The model factory produces printed circuit boards fPCBs). Each PCB consists of a board and a

maximum of six components. Currently, two diferent types of boards and three types of

components are used in the model factory. The layoht of a PCB is depicted in figure 3.1.

3.2.2 Operations

The model factory is a miniaturised model of a PCB production line. It emulates operations that are

performed on real PCBs during their manufacturing process. The operations have been derived from

case studies of real PCB manufacturing facilities [Rozendal91]. The operations are:

• screen printing: the bare PCB is positioned in the workstation, a PCB-specific screen is

selected and moved into position, and a "squeegee" is reciprocated horizontally over the

screen to attach imaginary solder paste.

• component placement: the pasted PCB is positioned in the workstation, and qomponents

are placed on the positions with the imaginary solder paste according to the component­

placement recipes for that product.

• reflow & cleaning: populated PCBs are passed through an oven and cleaning 1station. For

environmental reasons, no actual reflow or cleaning is performed.

• test & repair: the PCB is inspected to see if it contains the components in th9 designated

position (according to the recipe), and component and functional tests are performed.

If the PCB fails, it must be routed to an off-line diagnosis and repair workst1ttion. Upon

successful repair, the PCB is routed back to the test station.

In addition to these basic operations, the model factory contains other features. EriJ.pty boards and

components are automatically supplied from a centralised raw material store or cdmponent store.

The model factory can support mixed model flow production, where different types of products can

be manufactured nearly simultaneously. The model factory is designed for batch production, but

the batch size can vary from batch to batch, as well as product to product. The maximum batch size

in the model factory is three.

the model factory 29

3.2.3 Process layout

The process layout is depicted in figure 3.2. The operations are indicated by square boxes, while

stocks and buffers are indicated by triangles. The first stock in line contains the two types of empty

boards. The following station is the screenprinter. Mter the screen printer, alternative routings are

possible between two component placement stations. The next station is reflow and cleaning. The

in-process-store consists of three first-in-first-out (FIFO) locations for three products each. The

repair buffer in the test & repair cycle can contain one batch. The final-product-store is randomly

accessible and can contain nine individual products.

An additional feature is a loop from the in-process-store to the screenprinter. This loop is

necessary to manufacture PCBs that have components on both sides. These products have to pass

the process twice, since only one side can be finished in one pass. The FIFO buffer in this second­

side loop can contain nine products.

component
store

3.2.4 Hardware

figure 3.2 process layout of the model factory

All workstations in the model factory are fully automated, with the exception of the repair station,

where a human operator is required. Besides the actual operation, each workstation has to manage

temporary storage and retrieval of PCBs, indexing of PCBs through the process, inventory of raw

materials, etcetera. This necessitates many sensors in the factory, in addition to solenoid stops,

motors, lights, conveyers, pneumatics, etcetera.

Obviously, all the logical ilo signals to and from these sensors and actuators are controlled by

a Programmable Logic Controller (PLC) and its associated programs. To get an impression of the

size of the system: there are 170 inputs and 150 outputs to the PLC, with a program size of 4 K

(700 rungs). There is also a higher level supervisory system to manage the overall production

process. Thus, the computer hardware and software are implemented in two levels, a PLC level and

a VAX level. In summary, a considerable amount of equipment was needed to realise the ilo control

and the supervisory computer system.

30 chapter 3

3.3 The control system

Two different architectures for the control system of the model factory have been specified and

implemented: a hierarchical control architecture and a distributed control architecture.

The hierarchical architecture is based on the COSIMA architecture [Duggan 90] [Duggan et

al. 91], and is characterised by a two-level scheduling and dispatching. At the highest level a work

order is received and planned in a static schedule. The second level provides dispatching and

detailed dynan1ic scheduling. Feedback is obtained by monitoring the status of the model factory.

Monitoring is performed on lead-times and transport times.

The distributed architecture is characterised by autonomous controllers for each self-contained

unit of the model factory. This results in a pull oriented control of the model factory. The last

controller in the line receives a work order which is consecutively passed to the other controllers

as requests for production. Each request is related to an individual batch.

figure 3.3 decentralised control model

Both architectures have been implemented in the model factory, using the same computer

hardware, system software and model factory layout. The example in this thesis is limited to the

distributed architecture. A discussion of both architectures and their implementations can be found

in [Timmermans et al. 93]. The distributed control architecture is depicted in figure 3.3. This figure

shows the flow of products through the model factory, as well as the flow of requests between the

controllers.

The principal functionality of the implemented control architecture is as follows. The last

controller in the line, the final product store controller, receives a work order. This controller creates

a batch and a request for that batch based on Statistical Inventory Control. The controller specifies

the 31

in the batch definition what type of products have to be produced and how many (the batch size).

The request for this batch is then sent to the preceding controller in line, the test & repair controller.

This controller in its tum creates its own request for the same batch and forwards it to its preceding

controller. This process of receiving and forwarding requests continues until the beginning of the

production line is reached. Here, the physical batch is created by releasing empty boards from the

raw material store. This physical batch is sent to the requesting station, thereby eliminating the

request for that batch. Hence, all requests for the batch will be eliminated when the physical batch

arrives at the final product store. Here, the batch definition itself may also be removed from the

information base.

The modules in the decentralised control architecture are characterised as follows:

Material handler
The material handler controls the replenishment of components from the component store to both

component placement stations and the repair station. It gets requests for components from the repair

controller and both component placement controllers. The material handler must then schedule, and

dispatch the replenishment of components.

Second side controller
The second side controller controls the loop in product flow caused by double sided PCBs. The

controller receives requests from the screenprinter controller. When the request concerns the second

side of a double sided PCB, the controller forwards the request to the reflow and cleaning

controller. If the request concerns an empty board, the second side controller drives the raw material

store to satisfy the request. When the screenprinter is available the second side controller moves

a batch to this machine.

Screenprinter controller, component placement 1 controller, and component placement 2 controller
Each of these controllers translates a request coming from the succeeding controller into a request

to be sent to the preceding controller. These requests are stored in a queue, and processed when the

station becomes available. Once work is received by the station, it is processed immediately.

Reflow & cleaning controller
This controller handles the requests that come from the in-process-store controller or from the

second side controller. It converts the incoming requests into outgoing requests, which are sent to

placement controller 2. Once work is received by the station, it is processed immediately. Mter the

reflow and cleaning operation, the batch is moved to the second side buffer or to the in-process­

store, depending on the station which requests the batch.

32 chapter 3

In-process-store controller
The in-process-store controller controls the in-process-store. It gets requests from the test & repair

controller. The requested products are delivered from stock, if they are available, to the Test &

Repair station. The stock is controlled by Statistical Inventory Control (SIC). A request for a

replenishing batch is made to the reflow & cleaning controller when the inventory becomes below

a minimum stocklevel. The stock of the in-process-store is refilled upon arrival of the batch. Thus,

the in-process-store acts as a decoupling point, to allow for fluctuations in the demand for the

factory.

Test & repair controller
This controller controls the testing operation and the repair operation. The controller receives its

requests from the Finished Product Store controller. It converts the incoming request to an outgoing

request and sends it to the in-process-store controller. The controller coordinates the flow of batches

from the in-process-store and the repair buffer to the test station. A batch from the repair buffer has

priority over batches from the in-process-store in order to avoid a deadlock in the material flow.

This deadlock can occur when a batch is rejected by the test station, and at the same time there is

a batch in the repair buffer.

Finished product store controller
This controller controls the finished product store. The controller receives production orders. They

can be provided by another planning system. This planning system is however outside the scope

of the experiment. On the due date of the production order, the finished product store controller

starts delivering the order from stock. Replenishing takes place similar to the procedure of the in­

process-store. A request for a batch is created and sent to the test & repair controller based on SIC.

When all items for a production order have been delivered, the production order is closed.

3.4 The information system

The information system for the distributed control architecture is designed and implemented

according to the method of modular design [Koopmans 92]. An information system module is

specified for each of the controllers in the control architecture. The specification consists of a

functional description of the module, a conceptual schema, and the domain defmitions. The modular

design enabled the one-by-one design and implementation of the controllers in the model factory.

It is also possible to enhance the system by adding new modules without effecting the existing ones,

or to modify one of the modules without effecting the other modules.

A specification of the screenprinter module is given in this section. The specifications of the

other modules can be found in appendix B.

the 33

3.4.1 Functional description

The screenprinter station has the most straightforward controller. The controller receives a request

from the component placement I controller. This request is converted to a request for the second­

side controller. In due time, the screenprinter station receives a batch from the raw material store

or the second side buffer. The type of the products of the batch is then identified. Dependent of the

type of product a screen-printing mask is selected, and a "squeegee" operation is performed. The

batch is forwarded to component placement station 1 after all operations have been performed on

all products in a batch.

The control of the physical operations is performed by a PLC program. It is the task of the

controller to give orders to the PLC program.

3.4.2 Conceptual schema, constraints and domain definitions

The conceptual schema, the constraints and the domains are defined as follows. A data structure

diagram of the conceptual schema is given in figure 3.4. The central object classes in this diagram

are request and batch. A request refers to the batch that is requested. Additionaly, a request refers

to the station that will consume the batch of the request and to the station that will produce the batch

of the request. The batch refers to the item_ type it contains, and to the station that created the batch.

From the station, there is an optional relation to the batch to indicate the batch-in-process. The

buffer, which belongs to a certain station, has also an optional relation to batch to indicate the batch

it contains.

figure 3.4 data structure diagram of screenprinter controller

34

SCHEMA screenprinter

CLASSES

class station

attributes
station_name : string;

produced_requests : SET OF request;

received_requests : SET OF request;

batch_available : {available, non-available};

ready_to_receive: {Yes, No};

batch_in_process : batch;

end; -- class station

class batch

attributes
batch_id : integer;

creator : station;

item_type: item_type;

size : { 1..3 } ;

end;-- class batch

class request

attributes
producer : station;

consumer : station;

batch : batch;

item_type : item_type;

end; -- class request

class item_type

attributes
item_type : string;

second_side : {yes, no};

end; -- class item

-- the station that will produce the batch,

-- i.e. receive the request

the station that will consume the batch,

--i.e. create the request

the model factory 35

INTEGRITY CONSTRAINTS1

--for every outgoing request there must be an incoming request with the same item type and batch

size: for every information base state i must hold that for every request that this station produces

there must exist a request that it receives, and the item type and batch size of both requests should

be identical.

Cl(i) = ('i/ r: r e i.request A r.consumer = 'screenprinter':

)

(3 r': r' e i.request: r' .producer= 'screenprinter' A r' .batch.item_type =

r.batch.item_type A r' .batch.size = r.batch.size)

--for every information base state i must hold that the maximum number of requests created by the

screen printer for one batch is I.
Cll(i) = ('i/ b: be i.batch:

(# r: r e i.request: r.consumer.station_name = 'screenprinter' A r.batch=b)::;; 1

-- for every information base state i must hold that once a batch is in process in 'screen printer',

there may be no outstanding requests for that batch by 'screenprinter'

Cl2(i) ('i/ s, b: s e i.station Abe i.batch A s.batch_in_process=b A

s.station_name = 'screenprinter':

.., (3 r: r e i.request: r.batch=b A r.consumer=s)

-- for every information base state i must hold that the set of produced_requests of a station is

identical to the set of requests with that station as consumer

C20(i) = ('i/ s: s e i.station: s.produced_requests {r e i.request I r.consumer s})

DOMAIN RULES

-- the own domain of the screen printer module consists of the objects of the object types request

and station that have 'screenprinter' as the name of the (associated) station.

own domain (i) { t e i.request I t.consumer.station_name = 'screenprinter'} u
{ t e i.station I t.station_name='screenprinter'}

1 not all constraints have been included here.

36

-- the foreign domain of the screenprinter module consists of all objects of the object types item

type and batch, the objects of the object type request with 'screenprinter' as the station name, and

the objects of the object type station with 'second-side' or 'component-placement# 1' as the station

name.

foreign domain(i) = { t e i.item_type} v { t e i.batch} v
{ t e i.request I t.producer.station_name = 'screen printer'} v
{te i.station I t.station_name ='second-side' v

t.station_name ='component-placement# I'}

END; -- schema screenprinter

3.5 Complexity and limitations of the model factory

Many elements of the model factory are encountered in real production environments. Such as:

• problems such as rework with their subsequent effect on test & repair equipment

utilisation

• alternative routings for particular products where duplicate equipment is available

• loops of products through the same equipment

• complexity brought about by the mix model flow production, as well as the necessity of

controlling many independent, cooperating workstations.

There are different types of devices present in the factory, all of which are found in a real industrial

environment. The control hardware, i.e., PLCs and supervisory computers, are state-of-the-art for

industrial control. Also the commercial software tools and the integration platform corresponds to

modem industrial environments.

A number of unexpected events can and do occur because of the complexity of the model

factory, which have to be anticipated for in the management of the factory. This reveals some

limitations of the model factory and the current implementation. The produced products are

simplistic and non-functional, and the amount of different products capable of being manufactured

is limited. Some of the operations are only simulated, which means that problems related to

operation control will not be encountered. Until now, the emphasis of the model factory

implementation has been on the logistics management of the factory. There are many other issues

to be considered when managing a real factory, such as quality management, maintenance, work-in­

process tracking, product development, process planning, work preparation, cost control, etcetera.

Of course, human interaction with shop floor management systems is vitally important in real

the model factory 37

situations. All of these aspects have more of less been outside the scope of the project.

Many other systems are required to run a real factory in addition to the facilities and systems

to control the shop floor. Examples of these are purchasing systems and invoice systems, MRP

systems, shipping and distribution systems. Neither these systems nor their interfaces are considered

in this project.

The consistency of the information system in case of exceptions, in particular concerning error

detection and error recovery, is another limitation in the present implementation. In the current

implementation there are many situations that cannot be dealt with. Examples of these are the

manual removal of batches while they are in process, adding products or batches in the production

process, or the restart of a single station after breakdown. Inconsistencies of the information base

will occur in all these situations. Only a restart of the complete factory is possible now. Extra

equipment such as bar code readers and other sensors are necessary to solve this problem.

Moreover, it would require a considerable amount of control software to check and recover

impermissible or undesired states. For example, the stations in the model factory are equipped with

optical sensors to detect the arrival of a product. When a batch arrives however, only the ftrst

product is detected. Consequently, it must be assumed that the whole batch has arrived. An error

occurs if this is not the case, for example in the situation where the transport system does not handle

batches but individual products. The other products of a batch may be delayed, and therefore not

yet be present when the station starts an operation. The installation of additional sensors and control

software to detect the arrival of all products in a batch would solve this problem. However, it would

not solve the situation where products do not arrive at all. Including robustness and error detection

and recovery in the conceptual design would therefore increase the complexity drastically, and the

necessity for modular information systems would even be greater.

38

39

Chapter4

Information systems in manufacturing

4.1 Introduction

4.1.1 Outline of this chapter

This chapter presents an overview of current methods for information systems design in

manufacturing. The goal is not to make a complete overview, but to provide a background for

following chapters.

The outline of this chapter is as follows. Section 4.2 introduces a common method for the

design and implementation of control systems, namely the definition oflayered architectures. Two

architectures are discussed in more detail, the hierarchical control architecture and the layered

implementation architecture. It will be concluded that neither architecture suffices for solving the

design and implementation problems of modular information systems.

Hierarchical architectures for production control are discussed in section 4.3. It will be

explained why hierarchy is introduced and what the consequences of hierarchy are for the design

of modular information systems. Section 4.4 will then discuss layered implementation architectures.

It will be argued that most implementation architectures are hierarchical in nature, due to historical

technical reasons. However, alternatives are now available. The relation between implementation

architectures and modular design of information systems is discussed. In section 4.5, a comparison

is made between the hierarchical control architecture and the hierarchical implementation

architecture, based on the model factory. Section 4.6 then discusses the limitations of both

architectures concerning the redesign of systems. Section 4.7 completes this chapter with a short

discussion of software packages for shop floor control. The conclusions of this chapter are

presented in section 4.8. The most important conclusion will be that both architectures can be useful

for the reduction of complexity, but are not sufficient for the design of modular information

systems.

40 chapter 4

4.1.2 Problem statement

The design of manufacturing systems includes product design, process design, and the design of

the control system. All three aspects are found in the literature on CIM, both in isolation as well as

combined. The starting-point in this thesis will be the control system. Later on, it will become clear

how the other aspects of manufacturing system design have to be taken into account Moreover, it

will be emphasized that all three aspects have to be considered concurrently in the redesigning of

manufacturing systems.

Currently, many design methods for manufacturing and information systems consider mainly,

if not solely, the design of these systems from scratch. It is assumed that there is no system

available yet, or that it is possible to adjust existing systems according to new requirements. The

notion that systems are available refers not only to the existing manufacturing system that has to

be replaced, but also to ready-to-buy systems, as for example commercial software packages. In this

respect, the starting-point in this thesis is that the design of a manufacturing system involves in

most cases a redesign process. The more ideal situation of design from scratch will occur only

seldom. Moreover, in most cases only a part of the manufacturing system has to be redesigned.

A discussion of a design method of manufacturing systems involves issues as complexity,

uncertainty and flexibility. A method has to deal with complexity in terms of the size of the

manufacturing and information system, and the integration of different views into the design of

these systems. Uncertainty is faced externally in the relation between the manufacturll1g system and

its environment, and internally in the relation between the tasks of the system. Flexibility in

manufacturing is defined as the ability to adjust the primary process according to new

understandings of the environment [Geraerds et al. 89]. It should be noticed that there is a trade-off

between flexibility and complexity: an increase of flexibility will usually also increase the

complexity.

input
variables

figure 4.1 the control paradigm

output
variables

information systems in manufacturing 41

p___... .. c
figure 4.2 the PCI paradigm

4.1.3 Process, control and information

The control paradigm of systems science makes a distinction between three subsystems: the

controlled system, the control system and the environment (figure 4.1). In manufacturing the

controlled system is also called the primary process, and the control system is called the production

control system. The combination of the primary process and the control system is called the

manufacturing system. The information system is not explicitly mentioned in systems science since

it is considered to be part of the control system. Consequently, the design of information systems

is often implicitly included when discussing the design of control systems. In this thesis however

it will be stated explicitly when the design of the information system is included.

This thesis is based on the Process-Control-Information (PCI) paradigm for the design and

implementation of information systems (figure 4.2) [Bemelmans 84]. The PCI paradigm is derived

from the control paradigm and states that the characteristics of a process (and product)

determine the suitability of a control system for that process. The selection of a control system is

a matter of matching process characteristics with characteristics of the possible control systems. In

a similar way, the characteristics of the process and the control system determine the structure of

the appropriate information system.

control
levels

ceiVIine

workstation

aut. modules

equipment

implementation
levels

VAX

PC

PLC

devices

figure 4.3 an example of levels in manufacturing

42 chapter 4

4.2 Levels in manufacturing

A typical way to decrease the complexity of manufacturing systems is to define levels [Bauer et al.
91]. An example is presented in figure 4.3. At each level two aspects are considered: control and
(technical) implementation. The lowest control level consists of manufacturing equipment that is
controlled by automation modules. The automation modules are then controlled by workstations,
and a number of workstations are controlled by a celVline controller. If necessary, it is possible to
add more levels.

The lowest implementation level consists of devices such as sensors, optical readers, barcode
readers, motors etcetera. These devices are controlled by real-time PLCs and PLC software. The
PLCs are connected to an industrial PC for downloading programs and to provide supervisory
control. The PCs receive their commands from information systems on larger central systems such
as VAX stations.

Figure 4.4 shows schematically the design of an information system for production control
according the waterfall model. A traditional way to design is to start with the specification of the
'business problems' and to develop a business model with Yourdon-like techniques for structured
design [Yourdon et al. 79]. The goal of the design phase is then to structure the processes, data
flows and data stores of the business model in a (hierarchical) control model. Thus, the levels in the
control model reduce the complexity that was met in the business model. Then, the control model
is implemented in a layered implementation model.

Besides the fact that the waterfall model does not focus on re-design in particular, and that there
are no natural rules for the mapping of business model to control model and implementation model,
it will be argued in the following sections that the definition of levels does not naturally result in
a modular information system. In particular, criteria such as modular decomposability, modular
continuity and modular protection could be neglected. These criteria concern the coordination
between different levels. In this respect, problems may arise when integrity constraints apply to

VAX

PC

PLC

Devices

Business mo e Hierarchical control architecture lamentation architecture

figure 4.4 example of mapping of models

information systems in manufacturing 43

more than one level, and there are no design principles for describing the interfaces between levels.

In addition, different views or aspects may result in different level defmitions. Two views or

aspects have been given as an example: a production control view and an implementation view. It

will be argued that the mapping of these two views is not as trivial as figure 4.3 suggests. This is
especially true since different designers of information systems in manufacturing tend to favour one

of these views over the other, and consider the other view as derived. An information analyst for

example will prefer the control view. A hardware oriented designer however will prefer the

implementation view.

4.3 Control models

4.3.1 Approaches to production control

In chronological order, three approaches to the design of production control systems appear

according to [Meal 84]: decentral control, central control, and hierarchical control. The first type

of control was very much based on the primary process and without much supervisory control. It

is therefore decentralistic in nature. Improved information technology initiated then a centralised

approach. In this approach there is the tendency to create central decision functions that are given

the power to control in detail the operational processes in all parts of the organisation. This

approach results typically in large monolithic applications. Third, there is the hierarchical approach

which gives the management at the various organisational positions insight into the whole situation.

The hierarchical approach will be discussed in further detail since it is most commonly applied

as a starting-point for the design of flexible control systems. The other approaches will return in

chapter 5 when the modularity of information systems in manufacturing is discussed. It will then

be argued that it is no longer necessary nor desirable to apply hierarchical control. It is now possible

to design 'distributed control systems' corresponding the principles of lean manufacturing

[Womack et al. 91] and modular information systems.

4.3.2 The hierarchical approach

The hierarchical approach is based on a system science perspective [Mesarovic et al. 70]. It reveals

the relation of a control system as a whole and its components in terms of their tasks, functional

behaviour, and performance. The hierarchical approach is exhibited in manufacturing through the

definition of hierarchical control architectures. Examples of hierarchical control architectures are

presented in [Jones et al. 86], [CFT 87], and [Biemans 90]. The starting-pointforthe design of these

architectures is the inherent complexity of monolithical control systems. To avoid these large

44 chapter 4

monolithical systems, various levels of abstraction are introduced, reducing at each level the span

of control, the time horizon and the time period of decision making. Generic components can be

defined that can be used at each level by specifying the specific requirements for that level. At each

level goals or tasks are decomposed into sequences of subtasks which are passed down to the next

(lower) level in the hierarchy. This procedure is repeated at each level until a sequence of primitive

tasks is generated that can be executed by simple actions. An architecture that includes this

principle is presented in figure 4.5. Such architectures are implemented in pilots and demonstration

projects as for instance the CIMphony project at Philips Research [Sol89].

figure 4.5 The NBS hierarchical control architecture [Jones et al. 87]1

4.3.3 Modularity and flexibility in hierarchical control architectures

A hierarchical decomposition provides a structured method for the reduction of complexity in

control systems. There are however a number of important drawbacks to this approach. Five

drawbacks are mentioned here.

First, the approach does not provide adequate criteria for the decomposition of the tasks or

levels. This is reflected in the fact that different hierarchical models propose a different number of
levels [Jones et al. 86], [CFf 87], [Biemans 90].

Second, the hierarchical approaches rely heavily on the rationalisation of the control system.

It is assumed that the primary process is fully understood and that its behaviour canibe modelled

as far it is of relevance to the control system. The validity of this assumption will be questioned in

information systems in manufacturing 45

the next chapter.

A third drawback results from an information system view on organisational control. Galbraith

mentions in [Galbraith 73] that 'the weakness of hierarchical communication systems is that each

link has a finite capacity for handling information. As the organisation's subtasks increase in

uncertainty, more exceptions arise which must be referred upward. As more exceptions are referred

upward, the hierarchy becomes overloaded. Serious delays develop between the upward

transmission of information about new situations and a response to that information downward. In

this situation, the organisation must develop new processes to supplement rules and hierarchy.'

Fourth, the applicability of generic components that can be used at each level is rather limited

since the behaviour and content of a component is often very specific for certain applications and

depends on the position of a component in the hierarchy. In particular when performance

requirements play an important role, it is difficult to develop standard software for isolated

components.

Fifth, a controller in a hierarchical control architecture must have substantial knowledge of the

lower levels to be able to control these levels [Dilts et al. 91]. This is in particular of interest for

exception handling, such as start-up, shut down, error detection and error recovery. ln these

situations, the controller has to know the states of the lower levels. Indeed, it would require a large

and complex conceptual model to describe the possible states, which is in direct conflict with the

aim of a hierarchical architecture, which is to reduce the complexity.

4.4 Implementation architectures

While an information analyst type of designer may prefer the control oriented design of an

information system for manufacturing, a hardware oriented designer may focus on the

implementation architecture and use a bottom-up approach. Thi'l bottom-up approach entails a

distinction between levels of hardware and its associated software. Functionality is added to the

manufacturing system bottom-up and level by level by means of building blocks consisting of

hardware and software. The number of levels in this implementation oriented architecture is not

definitely determined, as was also the case with hierarchical control architectures discussed in the

previous section. An example of an implementation oriented architecture is presented in figure 4.6.

At the lowest level one finds the physical hardware of the manufacturing system that specifies the

possible transformation processes. The second level consists of a PLC and PLC software. The third

level includes workstations and station controller applications. The fourth level is defined by mini­

computers for shop floor planning and control, and the fifth level contains mainframe computers

for MRP and MPS tasks.

Such a layered implementation architecture provides an adequate method for modular

composability and understandability. The functionality of each level can be defmed clearly. All

46 chapter 4

real-time software for example can be implemented at PLC level, and non-time-critical software

at higher levels. Workstations are used for hour-to-hour machine control, etc. Thus,

understandability between levels is improved to a large extent. The commercial availability of

hardware and software is an important advantage of this approach: CIM component manufacturers

tend to offer the functionality in a combination of hardware and software. It is therefore possible

to select the appropriate components to fill in a level. Furthermore, tools are available to create

bridges between different levels. Hence, the modular composability criterion is met by this method.

The disadvantage of implementation oriented architectures is that is tends to result in systems

that are difficult to decompose. There are two reasons for this. First, a level by level implementation

of modules emphasizes on the one hand the simplification of interfaces between components on one

level. On the other hand it often assumes the interfaces between levels to be simple by the nature

of the layered architecture itself, which is not necessarily true. This could likely result in many-to­

many relations between components at different levels which is a burden for decomposability.

Second, there is the danger that each level uses the lower levels as their foundation. Any change

in this foundation could immediately affect all the components that rely on it. This issue will be

discussed in more detail in section 5.2.3.

mainframe

mini

workstations

PLC

devices
(sensors & actuators)

figure 4.6 example of implementation levels

4.5 Hierarchical control versus layered implementation architecture

Erroneously, hierarchical control architectures are often confused with layered implementation

architectures. Especially at the lowest levels, it might seem promising to make a one-to-one

mapping of control levels into implementation levels, as was illustrated in figure 4.3. Some of the

problems this could lead to can be illustrated by the design and implementation process of the
model factory.

information systems in manufacturing 47

Initially, the control system and the model factory hardware plus the PLC programs were

developed concurrently. The functional specifications of the model factory were sent to a

manufacturer in California, USA, for the design and implementation of the model factory hardware

and the PLC programs. Simultaneously, these specifications were used for the design and

implementation of the control system in the Netherlands. The goal of the control system developers

was to create a modular information system for the control of the model factory. That is, the

information system should be developed according to the principles of modular design as presented

in chapter 2.

The distance and time difference between both groups made it difficult to communicate

intensively on details. As it appeared, both groups had different perceptions of the mapping of

control levels onto implementation levels. Apart from flaws in the design of the model factory

hardware and PLC software, differences appeared when the following questions had to be

answered:

l. which functionality belongs to which implementation level

2. how are modules defined.

An example of different answers to the first question appears at the implementation of product

routings. While the hardware/PLC designers implemented these in the PLC software, the control

system designers would probably implement them in the control software. Yet, another example

is already given in chapter 3: only the first product in a batch is registered by an optical reader upon

arrival at a station. A time delay was built in the PLC software to be sure of the arrival of the

complete batch. These delays are highly undesired according to the control system designers. They

would have preferred the installation of additional optical readers. This would however make the

model factory hardware and the PLC software more complex.

A different answer to the second question is given, for example, concerning the definition and

implementation of conveyor belts that serve multiple stations. The hardware designers reduced the

complexity of the model factory by implementing relatively large conveyor belts that serve multiple

stations. For the control system designers, however, this resulted in the sharing of resources by

different independent modules. The synchronisation of modules that share conveyor belts made an

increase of the interfaces of the modules necessary.

The conclusion is therefore that the introduction of control levels and implementation levels

are two different approaches for relieving the complexity problem. Often, it is not possible to make

a one-to-one mapping between both models, as is demonstrated by the model factory example. The

problem of mapping is illustrated in figure 4.7 where a hierarchical control model has to be mapped

to an implementation model using a local area network.

48 chapter 4

ethernet

ito

Hierarchical control architecture lm lamentation architecture

figure 4.7 mapping of control levels to implementation levels

4.6 Redesigning the process

Another limitation to both architectures is that they mainly focus on design hom scratch and

disregard the (physical) limitations of the primary process. When redesigning a manufacturing

system, it will often be impossible to change certain parts of the present primary process due to

limitations concerning:

• shop floor layout aspects

• social aspects

• technological aspects

• economical aspects

First, shop floor layout aspects refer to the layout of the primary process. There may be constraints

in the shop floor layout that prohibita certain control architecture. A line layout fQr example cannot

provide many features for rerouting, while the flow of products in a system with a Job shop oriented

layout can be defined freely.

Second, there are the social aspects. These aspects together with the layout aspects are

discussed by for example Group Technology (GT) and Production Flow Analysis (PFA) [Burbidge

89]. The consequences of social aspects for control architectures are illustrated by the argument of

Burbidge that the correct application of GT and PFA would substitute the use of more complex

control systems, most notably MRP. Social aspects may for example also limit the creation of

'virtual cells'. Vtrtual cells are manufacturing cells that exist only in the production control

software for planning reasons. The reason is that virtual cells tend to neglect the human role in

manufacturing.

Third, there are technological aspects that influence the possibilities of control systems, such

information systems in manufacturing 49

as communication protocols, differences in data formats and the capacity of a network. These

aspects are of particular importance in highly automated shop floor control. The aim of this thesis

is not to extend on how to include these aspects as such. However, it is important to aim at a method

that allows the consideration of the limitations of the primary process and to address problems

related to redesign. In this respect, this thesis will contribute to these issues in the following

chapters.

Fourth, there are economical aspects that require that parts of the primary process cannot or will

not be changed. The high costs involved with implementing new machines is an example of an

economic aspect that might prevent changes in the primary process.

4. 7 Software packages for shop floor control

A short list of software packages for shop floor and cell control will be discussed in the section to

complete the overview of this chapter on information systems in manufacturing. The goal of this

section is to provide the reader with some characteristics of the present software that can readily

be bought Each of the software packages will be discussed in terms of their main functionality and

their architectural principles.

Since it was not the main goal of this research to provide a detailed overview of available

software, it is not possible to present here the data models underlying the software packages.

However, this would have provided a more in-depth knowledge of the functionality of the software

package, as is indicated in [Bertrand et al. 90] and [Heij 91].

COSIMA
COSIMA (Control System for Integrated Manufacturing) is a system for Production Activity

Control, developed as part of Esprit project 477 [Duggan 90] [Duggan et al. 9l]. The system is

based on the production management system hierarchy described in [Bauer et al. 91], and is broken

down into five distinct building blocks; namely a scheduler, a dispatcher, a monitor, producers and

movers. The COSIMA architecture is presented in figure 4.8.

PLATO-Z
PLATO-Z (Production Logistics and Tunings OrganiZer) is a framework for production planning

and control containing an 'intelligent cell control system' (ICCS) [O'Grady et al. 88]. PLATO-Z

is based on a combination of the hierarchical control systems proposed by CAM-I and NBS ([CAM­

I 84] and [Jones et al. 86] respectively). The goal of PLATO-Z is to make decisions as low as

possible in the hierarchy, where the cell takes over much of the responsibility concerning

scheduling, dispatching, error recovery, cell initialisation and termination, communication and

networking, as well as the user interface. The ICCS is implemented using a multi-blackboard/actor-

50 chapter 4

based framework containing several blackboard subsystems each of which performs major cell

functions. This model aims to provide an architecture in control is achieved by passing appropriate

messages between blackboard subsystems.

I
scheduler

I
/ " dispatcher 1-1 monitor

t t

figure 4.8 COSIMA architecture

MADEMA
MADEMA (MAnufacturing DEcision MAking) is a system for process planning and scheduling

based on the CAM-I hierarchical control architecture [Bunce 88]. It aims at manufacturing decision

making at the work centre level which involves the assignment of resources to production tasks.

MADEMA involves a database that describes jobs, work centres and resources tbat make up the

factory. In addition, the system consists of a simulator and a decision making module containing

different scheduling techniques.

INFINET
INFINET comprises a set of products based on the CAM reference model [CFf 87]. This product

set makes a first distinction between: product process development, production process control, and

support layer. One of the products in production process control is the worl<:cell controller,

consisting of three major components, the workcell kernel, workcell support and the workcell user

interface. The workcell kernel is responsible for making dispatch decisions and providing line setup

control. The workcell support is responsible for maintaining the database an1 performing all

automated transactions. The workcell user interface interacts with the operator to allow scheduling,

data entry, monitoring and reporting transactions.

information systems in manufacturing 51

VAXplant
V AXplant is a shop floor information system for tracking, analysis and on-line monitoring of

production data, with capability to manage work order and resource data. It interfaces between the

production resources at shop floor level and the Plant Information System (PIS). VAX plant is based

on a relational database. The system is provided with orders from an MRP(-like) system which are

then released to the shop floor. The orders are tracked and information about the order status is

returned to the PIS.

Workstream

Workstream is a shop floor control system that offers a data repository specifically designed to

support plant floor management, execution, and improvement [Consilium 92]. It is built on a central

data ba.<;;e system that includes data on workorders, work-in-process, bills of material, inventory,

etc. The system performs data-intensive functions such as scheduling, dispatching, tool

management, and work-in-process tracking. As such, the shop floor controller consists of

configurable application packages around a standard database package. On the one hand, the system

can be integrated with a system for production and inventory control. On the other hand, it can be

integrated with a work cell controller that provides equipment interfaces for monitoring and control,

operator status and work instructions, real-time quality control, and coordination of manufacturing

devices and operators [Pelusi 90].

In addition to these shop floor and cell controllers, numerous systems are available to specific tasks

such as production planning and monitoring. FACTOR, CIMPICS, AHP Leitstand, to name a few,

are examples of systems for the specific task of production planning.

4.8 Concluding remarks

An important aim when designing manufacturing systems is to obtain modularity in such a way that

modifications according to environmental changes or internal requirements can easily be

implemented. According to the PCI model, this modularity should be reflected in the information

system, which is the subject of this thesis. This chapter presented an introduction into two

commonly used architectures for the design of manufacturing systems. The goal of this introduction

is to provide a background for the modular design of information systems in manufacturing.

This introduction shows that there can be different aims when designing modular systems.

Hierarchical control architectures for example focus strongly on the rationalisation of the

manufacturing system. However, company specific systems with a low degree of modularity in

terms of modular continuity and modular protection may be the result.

Implementation architectures on the other hand tend to result in systems that are difficult to

52

decompose. The relations between components within a level will be clear and relatively simple.

Many interfaces could however be created between levels. These interfaces are difficult to maintain

from both a conceptual and a technological view. The result of this is a layered architecture of

dependent components. Moreover, there is the danger that each level uses the lower levels as their

foundation. Any change in this foundation could immediately affect all the components that rely

on it. In addition, both architectures focus mainly on design from scratch and disregard the

(physical) limitations of an existing primary process.

The main conclusion of this chapter is therefore that introducing levels is not sufficient to

obtain modular manufacturing systems. Other design and redesign principles have to be applied as

welL The following chapters will concentrate on principles for the design and redesign of

information systems.

53

Chapter 5

Modular design in manufacturing

5.1 Introduction

5.1.1 Contents of the chapter

The aim of this chapter is to provide principles for the design, re-design and implementation of a

modular information system for manufacturing, based on the findings of the previous chapters, and

with an emphasis on shop floor control systems.

The following two subsections (5.1.2 and 5.1.3) will provide a retrospect in the realisation of

this chapter, and the concept 'flexibility' will be explained into more detail, since the meaning of

this concept often differs according to different authors. The question to be answered in section 5.2

will then be: "what should be the starting-points for information system design?" lt is argued that

there is no one-best-way method for the design and implementation of information systems for

manufacturing. Every method has its merits and its limitations. It is however worthwhile to consider

what the main assumptions of a method are. A variety of assumptions and their validity concerning

modern manufacturing systems and technology will be discussed in section 5.2.

The question to be answered in section 5.3 will then be: "what has to be considered when

designing a module?" In the previous chapter, some approaches to the design of manufacturing

systems and information systems for manufacturing were discussed. It was illustrated that these

approaches do not necessarily satisfy all the criteria for modular design as specified in [Meyer 88]

and as discussed in chapter 2. Section 5.3 will discuss criteria for determining a module.

Section 5.4 will discuss implementation issues that affect the modularity of an information

system. In [Pels 88] it is argued that in the conceptual design phase it is sufficient to consider only

the design of the conceptual schema to obtain independent modules. In this phase it should be

possible to disregard the implementation issues of user interface, processing, data management and

communication. According to Pels, communication between modules is merely considered as the

sharing of data between two modules [Pels 88]. When moving to the technical design and

implementation however, choices have to be made between different communication protocols,

operating systems, database management systems, etcetera. The definition of implementation

architectures appears to be critical for the implementation of modular information systems.

The subject of section 5.5 will then be the relation between implementation architectures and

54 chapter 5

control architectures. Distributed control architectures are considered as an alternative for the more

commonly used hierarchical control architectures.

The reuse of software is an issue that should be considered when discussing design and re­

design of information systems. In this respect, reuse of software is more than the reuse of

programming code only. To allow fast modifications of an information system, one has to consider

a method for the reuse at different levels, comprising both design and implementation. Section 5.6

will provide an introduction to this method.

5.1.2 Retrospect

The previous three chapters have set the stage for a discussion of principles of modular design and

the consequences of these principles for the implementation of information systems.

A method for the modular design of information systems is presented in chapter 2. This method

originated in the method described in [Pels 88]. At that time however, there was no experience in

the application of the method in the area of CIM yet The first research goal leading to this thesis

was therefore the application and validation of the method in this particular area. An experiment

was set up in the area of shop floor control. This experiment has been presented in chapter 3 and

appendix B, and results are presented in a range of papers and research reports: [Frissen 91]

[Rozendal 91] [Baats 92] [Koopmans 92] [Hakkesteegt 93] [Timmermans et al. 92] [Timmermans

et al. 93] [Timmermans 93]. These results indicate that the method provides good gu1delines for the

modular design of information systems. Among the advantages are:

• the method provides a formal approach to the identification, design, : analysis and

implementation of modules. It creates much structure in the discussions between project

members. Without the method these discussions would likely have resulted in discussions about

common-sense design principles. Because of different backgrounds and opinions of project

members, these common-sense design principles might not be as common as required.

• the developer does not need to have a total view of the model factory. This made it possible to

design and implement the modules one-by-one, only considering the interfaces to the

neighbouring modules.

•
•

•

•

it is easy to modify one module or to enhance the model factory with new modules .

it allows the structuring of the information system according to the primary process and the

control system, as is prescribed by the PCI paradigm.

there are possibilities for quantifying modularity in terms of complexity, coupling, and

cohesion.

there are possibilities for defining generic modules, an issue that is elaborated on in chapter 7

of this thesis.

modular design in manufacturing 55

The research also indicated that the modularity of a shop floor control system is not solely

determined by the modularity of the conceptual schema. Other aspects that have to be considered

are the product, process and control structure. Moreover, modularity of a shop floor control system

is also determined by the implementation architecture of the system.

In addition to the experimental research, a survey was carried out of methods for the design and

implementation of complex information systems in manufacturing. This survey highlights a widely

used solution to the reduction of complexity and the increase of flexibility, namely the definition

of layered architectures. It was however concluded in chapter 4 that these architectures are not

sufficient for the design of modular information systems.

5.1.3 Concepts and Umitations

Flexibility

Flexibility is a key concept in manufacturing system design [Geraerds et al. 89]. Flexibility in

manufacturing is defined as the ability to adjust the primary process according to new requirements

of the environment Examples of flexibility in manufacturing are: flexibility in production volume,

in product design, in machine change-over times, in shop floor lay-out, in production planning, in

batch sizes, in the availability of personnel, etcetera.

Flexibility in this thesis is restricted to the flexibility of the structure of information systems

for shop floor control. This flexibility is defined as the ability to change the structure of the

information system. Such a change may be of any size or type. Examples of this type of flexibility

are: flexibility to add a station in the control architecture, to introduce new computer hardware for

production control, to change the database management system for production control, to change

the error recovery procedures of a particular module, etcetera.

Flexibility is strongly related to the concept of 'architecture'. An architecture is defined as a

description of components and their interfaces. Architectures determines the future flexibility of

a system. For example, if the architecture of a building is being changed, then the building can

crash. If changes are made only within a room, for example a room redecoration, then no vital thing

is affected, but if a new window is being made then the architecture is affected again.

Conceptual modelling

Flexibility of the structure of the information system will be realized through the modular design

of the conceptual schema. The five modularity criteria introduced in chapter 2 will provide

guidelines for realising this flexibility. The conceptual schema is a description of the universe of

discourse, modelling the meaning of the information in the information system [Griethuysen 82].

The conceptual schema plays a key role in systems analysis and database design. The conceptual

schema should both be an enterprise model and serve as a step between user views and the physical

56 chapter 5

database design [Griethuysen 82] [Scheer 92]. The main principles of conceptual modelling will

be discussed in this chapter.

The main conclusion of this chapter will be that there are good principles for the modular

design of information systems for manufacturing. The application of the principles of modular

design is sometimes hindered due to (technical) limitations in the implementation of the information

system. Architectures play a key role in the implementation of modular information systems. Three

types of architectures are distinguished and will be introduced in this chapter: database

architectures, system architectures and organisational control architectures.

5.2 Methodology of information system development

There is no one-best-way method for the design and implementation of information systems, as

there is no one-best-way method for the design and implementation of manufacturing systems.

Moreover, every method involves <;ertain assumptions. A few of these assumptions are discussed

in this section.

The limits of conceptual modelling in information systems for manufacturing is a controversial

issue that is dealt with in subsection 5.2.1. Data modelling is then discussed in subsection 5.2.2. The

problem of modelling information systems for artefacts such as manufacturing systems is discussed

in subsection 5.2.3. Assumptions that often appear in other methods are discussed in subsection

5.2.4. Finally, the close relation between functional and non-functional requirements is discussed

in subsection 5.2.5.

5.2.1 Conceptual modelling

The ANSI/SPARC three schema architecture prescribes the following two general principles for

the conceptual schema [Griethuysen 82]:

1. Conceptualisation principle: a conceptual schema should only include conceptually

relevant aspects, both static and dynamic, of the universe of discourse, thus

excluding all aspects of (external or internal) data representation, physical data

organisation and access as well as all aspects of particular external user

representation such as message formats, data structures, etc.

2. 100 percent principle: all relevant general static and dynamic aspects, i.e., all rules,

laws, etc., of the universe of discourse should be described in the conceptual

schema. The information system cannot be responsible for not meeting those

described elsewhere, including those in application programs.

modular design in manufacturing 57

It is however not always possible to meet these principles. Consider for example a shop floor

control module. The I 00 percent principle requires that all relevant general static and dynamic

aspects of the physical hardware, the PLC, the communication software and the application

software should be included in the conceptual schema of the module, as well as the functionality

of sensors, devices, automation modules and stations. It is doubtful whether all relevant information

can be specified in advance. In many situations this will not be possible, nor desirable.

That it is not desirable is the result from the first principle, the conceptualisation principle. This

principle says that a conceptual schema should only include conceptually relevant aspects of the

universe of discourse. Over a longer period of time however, it is impossible to include all relevant

information and only relevant information, due to uncertainty and complexity of the manufacturing

system and its changing environment. It is very probable that information would be included in the

conceptual schema that would never be relevant. The 100 percent principle on the other hand

requires a full description of all relevant aspects.

The principles of Van Griethuysen should therefore be considered as guidelines, rather than as

strict principles. It should not be the question whether it is possible to included all and only relevant

aspects in the conceptual schema. The question should be: are there possibilities for updating the

conceptual schema by means of gradual changes. These possibilities are provided by a modular

design of information systems, where each module is autonomous. In a modular information system

it is not necessary that the conceptual schema of a module is stable over a long period of time. It

will be possible to design and implement modules that can easily be changed, if the technology

allows. The latter precondition will be discussed later in this chapter.

5.2.2 Data modelling

Data modelling can be considered as a starting-point for information system development. The

reason for this is that a data model is a sound basis for the design of application software and for

management decisions which improve business processes [Scheer et al. 92]. Also in [Pels et al. 90]

and [Bertrand et al. 90] it is argued that the conceptual data model constitutes the skeleton of the

information system. There is however a drawback to the modelling of the control flow in an

information system by data models. Although (prescriptive and descriptive) dynamic constraints

allow the specification of dynamics, the understandability of specifications may be insufficient in

case of complex transactions. Process modelling techniques, as for example ExSpect [Aalst 92),

may be used as a supplementary technique for the specification of the control flow. In [Stut 92] the

integration of data modelling and process modelling is discussed in more detail. It is argued here

that in a modular design of an information system that involves a complex control flow, it is

necessary to extend the data models with process models in order to enhance modular

understandability.

58 chapter 5

5.2.3 Sciences of the artificial

Layered models have been introduced in the previous chapter to reduce the complexity of a

manufacturing system. It was however argued that although this method may result in a modular

structure within a level, it will often also imply many dependencies between levels. This section

analyses this problem in relation to conceptual modelling.

Concepts and principles for the design of information systems with the conceptual schema as

a basis are described in the widely accepted report of Van Griethuysen [Griethuysen 82]. The

approach to information system design in this report is illustrated in figure 5.1.

Universe of
Discourse
Description

figure 5.1 approach to the design of information systems

(adapted from [Griethuysen 82])

Database
Sy~tem

The universe of discourse is described in the conceptual schema and the information base.

Thereupon, the information base is implemented in a database system. Van Griethuysen mentions

that it is possible for the database system itself to be one of the subjects that are being modelled,

in which case the database system would be included in the universe of discourse. To simplify the

discussion, he further assumes that the database system is disjoint from the universe of discourse.

When designing manufacturing systems however, the universe of discourse itself is largely

designed as well. This statement requires further enquiry. Consider the case where three levels are

defined in the manufacturing system: the physical transformation processes, the PLC and its

associated software, and the shop floor control system (including hardware and software). The steps

indicated in figure 5.1 can be applied to each of the three levels. Succeedingly, the transformation

processes, the PLC level and the shop floor control system are developed and implemented.

modular design in manufacturing 59

This situation corresponds to the situation initially described by Van Griethuysen, but excluded
in his further discussion: the universe of discourse of the shop floor control system includes the
PLC, the PLC program, the product structure, the machines, etcetera. The universe of discourse of
the PLC level includes the machines and the devices, but also the components of the present shop
floor control system are included in the universe of discourse of the PLC level. The same holds for
the physical transformation level.

The conclusion of this section is that the design of information systems for artefacts, such as
manufacturing systems, needs a careful consideration about how the universe of discourse is
affected by the design itself. Although this problem is mentioned by van Griethuysen, there is no
answer given concerning the manner in which this dilemma should be approached when designing
information systems.

The way it was solved in the design of the model factory is to model ftrst those parts that are
most stable over a period of time; then to enhance the design in an iterative mode, and to ftnish with
those parts that are most sensitive to future changes. For example, once the primary process of the
model factory was implemented, it would be difficult to make any changes in it. A model of the
primary process is therefore not likely to change. The specific features of the production planning
& control system however can easily be changed, and these features were therefore modeled last
Until publication of this thesis, the primary process of the model factory has indeed not changed,
while numerous changes have taken place in the production planning & control software, including
the implementation of completely different control architectures.

5.2.4 Assumptions

All methods for information system design involve certain assumptions. The validity of these
assumptions is questionable in particular situations. Three common assumptions that may inhibit
the design, re-design and implementation of modular information systems are:

• information system design is a one-off activity
• information systems are designed from scratch
• information system requirements are fixed

First, most projects for information system design nowadays involve either the redesign or the
extension of an existing information system. Hence, the applied method should focus on these
situations, and the information system architecture should therefore allow redesign and extension.
It is a fact that in most situations parts of the existing system cannot or will not be changed for
financial or technical reasons. It is therefore a misconception that information system design is a
one-off activity. Modular design of the conceptual schema avoids this assumption by emphasizing

60 chapter 5

a technique for decomposition and composition of modules.

Second, it is a misconception that information systems are designed from scratch. This way of

system development is too expensive for most companies. It is more pragmatic to base a solution

on the existing system, and to make use of widely available commercial software. An important

activity in future information system design will therefore be the selection of commercial software

packages. Data modelling provides a good starting-point in the selection of software packages, as

is indicated in [Bertrand et al. 90], [Scheer et al. 92] and [Heij 91]. Furthermore, the design of

infrastructures requires attention. In chapter 6 the consequences for a modular information system

will be discussed.

Third, the general applicability of the waterfall model for information system development has

to be discussed. Its key features are a predefined list of deliverables in each phase and the

introduction of milestones, usually at the end of each phase. This model however is not applicable

to all information development activities [Genuchten 91]. Van Genuchten points out that the

conditions for the appropriate use of the waterfall model are relative stability and clearness of

specifications. Taking the uncertainty and complexity of a manufacturing system and its changing

environment into consideration, it is a false assumption to consider the information requirements

as being stable. It is therefore necessary to reconsider the waterfall model, and to include flexible,

generic modules based on existing components in the life cycle of an information system.

Biggerstaff et al. mention that the following four steps have to be included in the life cycle: finding

components, understanding components, modifying components and composing components

[Biggerstaff et al. 87]. This approach will be discussed in more detail in chapter 7. Furthermore,

when considering the trade-off between quality and costs, it might be wise to sacrifice some specific

requirements in exchange for a standard solution [Genuchten 91].

As argued above, these three assumptions are no longer applicable in the design of information

systems in manufacturing. Therefore, the method of modular design avoids these assumptions.

5.2.5 Functional and non-functional requirements

Conceptual design aims at the specification of both functional and non-functional requirements. The

functional requirements are described in the conceptual. schema. However, the border between

functional ahd non-functional requirements will not always be clear. Examples of requirements that

lie on the border are: fault-tolerance of a module, error recoverability, and the possibility of adding

a module at run-time. Whether these requirements are considered as functional or non-functional

requirements will often depend on the application area. In case of doubt, a requirement should be

considered as a functional requirement and should be taken into account in the conceptual schema.

This will avoid ad-hoc adjustments of the information system when it is being implemented.

Consider for example the updating of the work-in-process database. In many manufacturing

modular design in manufacturing 61

systems it is sufficient to update the database once a day or even once a week. However, a

continuous update procedure is required when 'real-time' rescheduling of the on-hand production

orders is desired. Assumptions on the work in process have to be made in case it should not be

possible to have this continuous update. These assumptions have to be included in the conceptual

schema to avoid impermissible states.

The procedure described above is however not realistic for two reasons. First, it necessitates

appropriate methods and tools for modelling these requirements in the conceptual design. Powerful

tools are needed to model for example an error recovery procedure for an application of significant

size. Most commercially available tools are still insufficient for this purpose. Second, the

technology to implement a requirement has to be available. Limitations in the technology or the

involved costs may prohibit the readily implementation of these requirements.

It is therefore concluded that not all non-functional requirements can always be included in the

conceptual design of a system. It is not the aim of this thesis to solve this problem. However, the

relation between the conceptual design of information system modules and the implementation of

these modules will be discussed extensively in chapter 6. The choice of an implementation

architectures contributes considerably to solving this problem. The following two sections will

respectively discuss the conceptual design of a module and the implementation of a module.

5.3 Determining a module

The PCI paradigm was introduced in chapter 2 as a paradigm for information systems design.

According to this paradigm the information system should reflect the characteristics of the product,

the primary process and the control system. The first step in the design of a manufacturing system

is therefore the design of the primary process, the product and the control system. This design can

include a number of activities in the factory; among those are product design, process design,

production planning & control, manufacturing, assembly, physical distribution, quality control,

marketing, sales, etcetera.

5.3.1 Modularity criteria

When designing modular systems, the ftrSt question is: what are the units that can or will operate

autonomously. The reason to identify these units is that they will be considered as the modules for

which a modular information system will be developed. A unit can for example be an individual

machine, a manufacturing cell, a FMS or a planning system. The factors influencing size and

contents of an autonomous unit may include technological, organisational and historical elements.

The following criteria were introduced in chapter 2 for the demarcation of a module in terms of

62 chapter 5

modularity of the information system: understandability, continuity and protection. It has to be clear

what a unit does on its own, changes to a unit should remain local, and run-time error recovery

should be handled locally.

Two additional criteria were introduced for the specification of the interfaces of a module.

These comprised composability and, often neglected, decomposability. Once the units have been

identified, the aim is to create simple interfaces between the units. These interfaces have to be

designed in such a way that it is easy to compose an information system from components.

Moreover, it should also be easy to decompose an information system again into its components.

Simplicity of interfaces is an important design criterion in the design of the information system, the

control system, as well as the primary process. A distinction should be made between the volume

of communication between modules and the complexity of communication between modules when

designing the interfaces. A design guideline is to keep any form of communication as much as

possible local. Considering current technologies, the problem is often not so much the volume of

communication, but rather the complexity of the communication. Reducing communication in terms

of modular information system design involves the reduction of interface specifications (objects,

attributes, constraints) in both the foreign and public domains ofthe modules (see section 2.7).

5.3.2 Complexity, coupling and cohesion

Three more criteria for the demarcation of a module and the definition of the interfaces of a module

were introduced in [Yourdon et al. 79] and given a specific meaning in [Pels 88] regarding a

module: complexity, coupling and coherence.

The size of the module should be determined by the complexity of the module. The complexity

should neither be too small nor too large. Pels defines a measure for the complexity of a module

as the sum of the number of object classes, the number of attributes and the number of constraints.

Although useful to begin with, it should be noticed that this measure is not very accurate, since it

does not distinguish between attributes with many or few allowed values and between simple static

constraints and complex dynamic constraints, and it does not include a measure for applications that

operate on the module.

Coupling of a module is a measure for the knowledge that other modules have about that

module. If the specifications of a module are widely used by other modules (in their foreign

domain) then it would be difficult for that module to change these specifications. Coupling should

therefore be minimized to allow changes in a module to take place without affecting other modules.

Pels defines a measure for coupling of a module A as the average of the number of other modules

for which each own specification (object class, attribute or constraint) of A is visible.

Cohesion is characterised as the insensitivity of a module for structural changes in its

environment. Cohesion should therefore be maximized to create more autonomous units. A measure

modular design in manufacturing 63

for cohesion is defined by Pels as the ratio between the number of specifications in the own domain

of a module and the number of visible specification of that module. These measures can be used

for the evaluation of alternative designs, as for example in [Baats 92], where altemati ve designs for

modules in the model factory are compared.

These criteria determine the contents of a module at the conceptual level. The implementation

of the module determines whether the modularity defmed at the conceptual level is actually

realised. The following section will therefore discuss the relation between design and

implementation in further detail.

5.4 Implementation of a module

5.4.1 Introduction

The method for modular design in chapter 2 concentrates on the conceptual design of a module. In

[Pels 88] it is argued that in the conceptual design phase it is sufficient to consider only the design

of the conceptual schema to obtain independent modules. In this phase it should be possible to

disregard the implementation issues of user interfaces, application processing, data management

and communication. Although this proposition might be right from a theoretical viewpoint, practical

experience, including the model factory experiment, sometimes seems to contradict it. The

independence of a module often relies on the technologies used for the implementation of that

module. These are often expressed as non-functional requirements which behave as constraints for

the conceptual design. It is therefore of interest to consider the relation between conceptual design

and implementation.

5.4.2 The problem

Consider for example the communication protocol between modules. Different commercial

software packages may require different protocols. Although it is technically possible to combine

these protocols into one network, this does not improve exchangeability of software. Furthermore,

functional and non-functional requirements may need the replication and fragmentation of data

across the network. The possibilities of this replication and fragmentation depend largely on the

availability of a distributed database system. Although it is possible to specify the requirements for

this system, it is often difficult to realise them. Commercially available database management

systems for example do not always fully support the ANSI/SPARC three schema architecture. This

creates problems concerning logical and physical data independence. The alternative of developing

a database management system for one specific organisation is in most situations too expensive.

64 chapter 5

Furthermore, organisations are usually limited by existing systems. They cannot or will not update

the existing systems during one giant operation. Therefore, one has to consider the existing systems

and technology when designing new systems. Existing systems in this respect involve not only the

automated information systems, but include also the organisational control structure.

5.4.3 Implementation architectures

The conclusion from the research underlying this thesis is that the definition of the implementation

architecture of a manufacturing system is a critical design choice. It determines the conditions for

modular (re-)design of information systems at the conceptual level. Three types of implementation

architectures are of particular interest concerning the implementation of modular information

systems. These are: database architectures, (networking) system architectures and organisational

control architectures.

Database architectures describe the dispersion of data across the different sites of an

information system. Many different database architectures exist as extensions of the ANSJISPARC

three-schema architecture. However, not all database architectures provide optimal conditions for

the implementation of a modular information system.

The (networking) system architecture provides communication facilities between the modules

and distribution of processing across the network. This architecture is of great importance for the

technological realisation of modular composability and modular decomposability.

Finally, the organisational control architecture may create conditions or opportunities for the

implementation of a distributed database system and a distributed networking system. The relation

between these architectures and the implementation of modular information systems will be

discussed in further detail in chapter 6. It will be illustrated that distributed architectures in

particular provide best conditions for the implementation of modular information systems.

To anticipate to chapter 6, a short discussion of the design of distributed control architectures

is appropriate here, since hierarchical control architectures were discussed in chapter 4 as the most

common control architecture.

5.4.4 Distributed control architectures

Most control systems are based on hierarchical control architectures as was discussed in chapter 4

[Bauer et al. 91] [Biemans 90] [Duggan 90] [Jacques 90] [Tiemersma 92]. Although these control

systems are currently used to control real manufacturing systems, they have certain disadvantages

[Bakker 89] [Timmermans et al. 93]. Among the disadvantages of these 'conventional' control

systems mentioned by Bakker are:

modular design in manufacturing 65

• both the scheduler and the dispatcher are complicated components. (...) For the human

operators it is frequently not clear why the system behaves as it does,

• the traditional control systems cannot easily be extended(. ..), and

• the high costs of the traditional control systems(...).

The distributed control architecture is an alternative to the hierarchical control architecture that does

not have the disadvantages discussed above [Bakker 89]. Further advantages of a distributed control

architecture that are of interest for modular design of information systems are [Dilts et al. 91]:

• reduced complexity and simplified development

• implicit fault-tolerance

• reconfigurability and adaptability

There are still some restrictions associated with the implementation of distributed control

architectures. Dilts et al. point out that these restrictions arise from inherent deficiencies and current

limitations in the technology. They mention differences in internal formatting, differences in

communication protocols, and incompatibilities in operating systems, file servers and database

systems to cause limitations. Also network capacity and response requirements pose a problem. Sol

argues however that these limitations will soon disappear with the availability of current computer

power and local area networks in combination with the trend towards 'open systems' (=standard

interfaces) in industrial automation [Sol 92]. In addition, Weber et al. present a CIM architecture

that can be applied to both a hierarchical and a distributed control architecture [Weber et al. 89].

An example of a distributed control architecture is presented by the model factory in chapter

3. A more complete specification of the information system design of the model factory can be

found in appendix B.

S.S Development of generic modules

Another issue in the modular design of information systems is the development of components. A

key issue here is the reuse of software. Reuse of software is necessary to increasing the productivity

of information system development. Simple approaches, like source code reusability, reusability

of personnel, reusability of designs and subroutine libraries have experienced some degree of

success in specific contexts. They fall short, however, in providing a basis for a systematic attack

on the reusability problem [Meyer 88].

Data models will be used in chapter 7 to discuss the following requirements for increasing the

reusability of software:

66

• reusable components at a sufficient high conceptual level
• a policy for reusability that ultimately produces reusable programs
• a technique to describe a complex hierarchy of reusable modules, with different levels of

parametrisation.

Ensuing, a method is presented for the definition of generic modules based on data m4dels, integrity

constraints and domain rules.
1

5.6 Concluding remarks

The conclusions of the previous chapters have been condensed in this chapter into a number of
general principles for the design, re-design and implementation of a modular information system.

An important conclusion is that the design, re-design and implementation of a modular information
system cannot be considered independent from the design and re-design of the product, primary

process and the control of the primary process. Then, one has to consider what type of flexibility
is needed, taking into account the trade-off between the increase of flexibility and the reduction of

complexity. This thesis focuses on the flexibility of the structure of information system for shop

floor control.
Modular design aims at both the increase of flexibility and the decrease of complexity. The

principles described in chapter 2 and this chapter should result in the design of modulitr information

systems. There are however a few important new learnings.
The first learning is that the modularity of an information system may be limited by the

technology that is used for the implementation. Database architectures, system architectures and
organisational control architectures play an important role in providing the conditions for the
implementation of modular information systems. These architectures will be the subject of chapter
6. It is expected that appropriate implementation architectures will make it more easy to include the
modelling of non-functional requirements at the conceptual level in such a way that these
requirements can also be realised in an efficient and effective way.

Second, there is a need for a method and for tools that allow fast modifications of an

information system. This requirement is characterized as the need for reusable components, and will
be discussed in chapter 7.

Finally, assumptions that may inhibit the implementation of modular information systems
should be avoided. A design method should therefore at least address the following concerns:

• information system design is an evolutionary process
• information systems have to be built from components
• information system requirements are continuously changing.

67

Chapter 6

Architectures for distributed systems

6.1 Aim and content

The focus of this chapter is on architectures for the implementation of information systems.

Previous chapters, in particular chapter 2, concentrated on the conceptual design of independent

modules. It was assumed that the implementation of these independent modules would not face

many problems. This assumption will be weakened in this chapter. It is argued here that design and

implementation are not entirely distinctive phases of information system development.

The rationale of this chapter is as follows. In the conceptual design it is sufficient to consider

only the design of the conceptual schema to obtain independent modules, provided that the

implementation architecture fully supports the implementation of these modules. This condition

will often not be met, as shown in chapter 5. There are many reasons for this, such as the costs

involved in implementing these architectures, the (lack of) availability of proper technology, and

the presence of a system that can not readily be updated. In those situations one has to reconsider

the conceptual design, or one has to take for granted that (temporarily) the implementation does not

fully support all modularity principles. It will be indicated in this chapter what implementation

architectures provide the best conditions for the implementation of independent modules.

Three types of architectures are described in this chapter: database architectures, (networking)

system architectures and organisational control architectures. An architecture describes the

component'> and the relation between components of an information system. The importance of an

architecture lies in the fact that it establishes the structure of the information system for a long

period of time. The emphasis in this thesis lies on distributed architectures. The trend to distributed

architectures is also described in literature [Bell et al. 92] [Dilts et al. 91]. It is demonstrated that

distributed architectures provide better conditions for satisfying modularity criteria than for

example centralistic architectures or hierarchical architectures.

Database architectures are discussed first Section 6.2 describes different database architectures

as extensions of the ANSIISPARC three-schema architecture. Emphasis lies on the design of

federated database architectures. The term 'federated database system' was introduced in

[Heimbigner et al. 85] to indicate a database system with multiple conceptual schemas with local

users. An extensive survey of federated database systems is given in [Sheth et al. 90]. Section 6.2

concludes with an architecture of modules as an extension of the ANSIISPARC three-schema

68 chapter 6

architecture.

The second type of architectures, system architectures, will be discussed in section 6.3. These

architectures involve the distribution of data and applications across a network. Most database

researchers take for granted the existence of a reliable data communications facility in much the

same way as most software assumes the existence of an operating system which provides certain

standard services [Bell et al. 92]. However, when implementing a modular information system, the

architecture of the distributed system is of great importance to the technological realisation of

modular composability and modular decomposability. The system architecture will to a great extent

also determine the non-functional requirements as for example performance and costs. Section 6.3

explains some basic understanding of the issues involved in the definition of these architectures.

The client-server architecture (CSA) will be presented after an introduction in computer networks

and standardisation in the area of manufacturing. The CSA can be used to implement distributed

information systems. A distributed information system is characterised as a modular information

system where data and applications are no longer bound to one specific site, but rely on a common

infrastructure. This will be summarised by a schematic presentation of a modular CSA.

A key design issue of the system architecture is the infrastructure. Infrastructure is defmed here

as hardware and software (computers, networks, operating systems, applications, etc.) that is shared

between different autonomous units. Benefits and disadvantages of the definition of an

infrastructure are discussed in section 6.3.

The organisational control architecture may create conditions or opportunities for the

implementation of a distributed database system and a distributed networking system. Section 6.4.

therefore discusses the relation between information design principles and the organisational design

principles of Galbraith.

Finally, the conclusions in this chapter are summarized in section 6.5. It is emphasized that

distributed architectures in particular, although not necessary or sufficient, provide good conditions

for the implementation of modular information systems.

6.2 Database architectures

The question that needs to be answered in this section is how modules can be implemented in a

database architecture. The starting-point for the conceptual design of information systems was the

ANSI/SPARC three-schema architecture [Tsichritzis et al. 77]. The definition of a module is based

on this architecture. It was implicitly assumed that this architecture can be extended for distributed

environments. Although this may be true, there are several ways to do this. Many investigations

have taken place to extend the ANSI/SPARC three-schema architecture for distributed

environments. These extensions take place in three directions characterised by [Ozsu et al. 91]

[Sheth et al. 90]:

architectures for distributed systems 69

• the distribution of data

• the heterogeneity of the database

• the autonomy of local databases.

Distribution of data refers to the dispersion of data over multiple sites. Heterogeneity refers to the

integration of different types of database systems. More important for this thesis is the third type

of extension, the autonomy of the local database. When considering autonomy, a distinction can

be made between distributed database systems and multidatabase systems. Two types of

multidatabase systems are of interest here, namely tightly coupled federated database systems and

loosely coupled federated database systems1
• The following sections discuss distributed databases,

loosely coupled and tightly coupled federated databases in more detail. [Sheth et al. 90] is

recommended for further reading on this subject Neither of the presented architectures however

is satisfying for the implementation of a modular information system. Therefore, this section

finishes with the defmition of an architecture for modules, in the meaning specified in chapter 2.

6.2.1 Transparency

Data independence provided by the ANSJJSPARC three-schema architecture allows the user,

whether it be the human end user, a programmer or a program, to consider only the data structure

specified in the conceptual schema. The physical storage or the logical access of the data is

transparent to the user. That is, the user does not have to know how the physical storage or the

logical access is realised. The extension of the three-schema architecture requires also the

replication and fragmentation of data over the sites to be transparent. These concepts are therefore

discussed in this subsection.

Replication of data is often necessary in a distributed environment for performance reasons.

The possibility for replication is especially important in environments with high volume data

manipulation, as for example in CAD/CAM applications. These applications may require that the

data is located on the node of the network where the processing application resides. Replication of

data will then often be inevitable when foreign data are concerned. This replication of data however

should be transparent to the user.

Transparency of fragmentation is usually discussed in terms of the relational model. It means

that a database relation is divided into smaller fragments. Each fragment is treated as a separate

database object In terms of object modelling, it would mean that various objects of one class are

distributed over different sites. The problem that has to be dealt with in this situation is the handling

of queries and updates that were specified on entire classes but now have to be performed on

1 the reader should be aware that there is no standard agreement on terminology in this field yet.

70 chapter 6

subdivisions. Notice that this fragmentation has a slightly different meaning than the horizontal and
vertical fragmentation of classes as discussed in section 2. 7 .4. In the latter, fragmentation refers to
the distribution of data over multiple modules where the user has the access to one module only
(module fragmentation). Fragmentation in the former meaning refers to the distribution of data over
different local schemas where the user has the access to multiple schemas (database fragmentation).

Fragmentation was introduced in section 2.7.4 to assign different objects of one class to
different modules. Only the objects in the view domain of a module can be accessed by a user of
that module. Consequently, queries and update operations on a module have to be performed solely
on those objects that are specified for that module. The query and update operations will therefore
be limited to the horizontal and vertical module fragments. However, objects in the view domain
of a module may be distributed (fragmented) over different local schemas in a distributed database.
Then, query and update operations must extend over all these database fragments.

6.2.2 Distributed databases

A distributed database is defined as a database that is distributed over multiple sites, while a single
global conceptual schema is provided to the users [Bell et al. 92]. A standard distributed database
based on the ANSJ/SPARC three-schema architecture could include local conceptual schemas and
local internal schemas (figure 6.1). However, these local schemas do not have to be explicitly
present in any particular implementation. In practice, most of the homogeneous syste~s do not have
local schemas and have limited data management software at the local level [Bell ~tal. 92].

The global conceptual schema is defmed as the union of the local conceptual ~chemas. This
schema is global because it describes the conceptual structure of the data at all the sites.
Fragmentation and replication are handled in the mapping between the global conceptual schema
and the local conceptual schemas. External schemas define the access of users to the database. The
external schemas are defined on the global conceptual schema.

figure 6.1 a distributed database system architecture

architectures for distributed systems 71

6.2.3 Tightly coupled federated databases

The architecture of a tightly coupled federated database is shown in figure 6.2. Each local database

system in this architecture defmes an export schema, which describes the data it is willing to share

with others. A 'global' conceptual schema is defined as the union of all export schemas. External

schemas can be defmed on either the global conceptual schema or one of the local conceptual

schemas.

\

~~ ~----~ r-----~

(
Export }

schema 1

figure 6.2 tightly coupled federated database system architecture

figure 6.3 loosely coupled federated database
system architecture [Litwin et al. 90]

72 chapter 6

6.2.4 Loosely coupled federated databases

The existence of a global conceptual schema is a controversial issue [Litwin et al. 90]. A global

conceptual schema presumes an organisational unit that is responsible for the central data

management. In an organisation with highly autonomous units however, it may be desirable that

this responsibility is delegated to these units. This is effectuated by a local responsibility for local

conceptual schemas and content of the information base. The merits of a global conceptual schema

as the union of the local conceptual schemas would be eliminated since there is no task left for

central data management [Ozsu et al. 91]. Each unit defmes its own internal schema and conceptual

schema (figure 6.3), which may be based on heterogeneous databases. External views are

constructed on one or more conceptual schemas. Thus the responsibility of provH:Iing access to

multiple databases is delegated to the mapping between the external schemas and the local

conceptual schemas. This is fundamentally different from architectures that use a global conceptual

schema. The responsibility in the latter architectures is taken over by the mapping between the

global conceptual schema and the local conceptual schema(s).

6.2.5 A module architecture

Neither of the three database architectures satisfies the following requirements for the

implementation of a modular information system:

• there should be no global conceptual schema

• the intelfaces between modules should be defined at the conceptual schema level

In this section, an architecture of modules, based on the ANSYSPARC three-schenia architecture,

is described to resolve this deficit. Furthermore, a comparison is made with the three database

architectures described earlier.

figure 6.4 a module architecture

architectures for distributed systems 73

No global conceptual schema exists in an architecture of modules (figure 6.4). The

responsibility and authority for updating a module are entirely in hands of that module. The

interfaces between modules are defined by the public and foreign domains in the conceptual schema

of the module. This is illustrated in figure 6.4 by the dotted line between the conceptual schemas.

An external schema. is limited to one conceptual schema only, but may have access to other

modules via the foreign domain. However, it would be allowed to design one DBMS to implement

the internal schemas of multiple modules.

The characteristics of this module architecture match with a loosely coupled federated database

system in the sense that there is no global conceptual schema, and that each site is autonomous in

its operation. A major difference is the interfacing between the sites. The interfaces between

modules in the module architecture are defmed at the conceptual schema level, while the interfaces

in the loosely coupled federated database system are defined by allowing an external schema to

access multiple conceptual schemas.

The module architecture corresponds in particular with the loosely coupled federated database

system described in [Heimbigner et al. 85]. Heimbigner et al. describe an architecture where each

site has its own private schema. Derived from the private schema, each site has an export schema

that specifies the information the site is willing to share with other sites. Finally, each site has an

import schema that specifies the information a site desires to use from other sites. The import

schema is derived from the export schemas of other components. Thus, this architecture implements

interfaces between modules at the conceptual schema level, and matches closely to the module

architecture, provided that an external schema is associated to one conceptual schema only. The

difference with [Heimbigner et al. 85] is that they do not provide criteria for the modularity of the

architecture. The definition of export and import schemas may still result in a complex and rigid

system, while the presented method provides modularity criteria by means of the domain

definitions.

The design of external schemas for only one conceptual schema is related to the tightly coupled

federated database architecture. The distinction is that the export schemas in a tightly coupled

federated database are combined in a single global conceptual schema upon which an external

schema may be defmed. As mentioned before, there exists no global conceptual schema in the

module architecture. Interfaces are provided by the domain defmitions in the conceptual schemas

of each module.

The conclusion of this section is that the proposed module architecture is an extension of the

current developments in distributed database architectures. The module architecture should serve

as a guideline when designing a modular information system. In many cases however it will not be

possible to implement the architecture exactly as it is specified in this section in the near future, due

to lack of appropriate commercial database management systems.

74 chapter 6

6.2.6 Current alternatives for the implementation of a module architecture

There are two alternatives to implement an intermediate solution: either to define a distributed

database system architecture according figure 6.1, or to define a loosely coupled federated database

system architecture according to figure 6.2. In the former alternative, a global conceptual schema

has to be created artificially by integrating the conceptual schemas of each module. If one of the

modules will be changed or if a module will be added, then the global schema has to be updated.

The advantage of this alternative is the simplicity of the solution and the broad range of commercial

database systems available for it, which was also the reason to use it in the model factory. The

disadvantage of this alternative is the amount of effort that it incurs in case changes have to be made

to one module schema. This will essentially require a change in the global conceptual schema.

In the second alternative, the loosely coupled federated database system architecture, a local

conceptual schema is defmed for each individual own domain. The external schemas need to have

knowledge of the local conceptual schemas they are related to. Each external schema is then related

to one primary local conceptual schema and zero or more secondary local conceptual schemas. The

primary local conceptual schema represents the own domain of the module where the external

schema belongs to, and the secondary local conceptual schemas represent the foreign domains of

the module where the external schema belongs to. The advantages of this solution have been

discussed in section 6.2.4. The disadvantage however is that it requires complex data management

tasks in each external schema.

6.3 Distributed system architectures

The previous section focused on database architectures. In this section the implementation of

distributed system architectures is addressed. Mter an introduction to the principles of a distributed

system, a short introduction will be provided into the standardisation of computernetworks and into

distributed operating systems. An important development in the area of distributed system

architectures is the appearance of client-server architectures {CSA). The principles of a CSA are

introduced in this section, and an example is given of an implementation of a modular information
system using a CSA.

6.3.1 From integrated to distributed information systems

The approach to the design of complex information systems described sofar is probably best

characterised as the design of integrated information systems. An integrated information system can

be characterised as an information system consisting of a number of independent modules that

architectures for distributed systems 75

exchange information through a dedicated network of interconnections. The emphasis lies on the

design of the individual sites that are related to autonomous organisational units, rather than the

design of an infrastructure of common facilities.

The goal of this section is to show that this approach to the design of complex information

systems may not necessarily result in the best solution in the long term concerning the costs and

non-functional requirements such as performance. It will therefore be argued that one has to

consider the infrastructure when implementing complex information systems.

New technologies such as distributed operating systems, local and wide area networks,

advanced communication protocols, powerful software development tools, and standardisation

make it possible to reconsider the design strategy for complex information systems. Essentially, it

is possible to make a shift from integrated information systems to distributed information systems.

Four phases describing this shift are outlined in [Pels et al. 86].

If the implementation does not put any constraints on the conceptual design, then there will be

no distinction between the conceptual design of an integrated information system and the

conceptual design of a distributed information system. Both systems would provide the same user

functionality. The difference between an integrated information system and a distributed

information system appears in the implementation. An integrated information system will be

implemented on one or more sites per module. Except for mainframe oriented systems, no two

modules will share one site. On the other hand, the data and applications in a distributed

information system are no longer bound to one specific site, which is the major advantage of this

approach. Different applications of different modules can freely be combined on various sites. Thus,

the system architecture of the information system will change considerably. The hardware

components, the system software components and the relations between these components will be

different in a distributed information system. Various projects and standards bodies are now

involved with the defmition of distributed systems, as for example OSF, X/Open, ISO/SC18, and

ISA/ANSA.

The functional and non-functional requirements of an integrated information system are

specified and implemented per site. The interconnections between different sites will receive special

attention in case of high integration, i.e., a high degree of data exchange. These interconnections

will be implemented based on the specific characteristics of the sites to be interconnected.

The emphasis in the implementation of distributed information systems will be on the

infrastructure. Infrastructure is defined as hardware and software (computers, networks, operating

systems, applications, etc.) that is shared between different autonomous modules. The combination

of functional and non-functional requirements of different modules into requirements for system

components will be possible by emphasizing the infrastructure. A system configuration will be

specified taking into account the requirements of a number of modules, instead of optimizing a

configuration for each individual module. This will result in a configuration that is partially shared

and partially owned by the module. Capacity on shared computers will be assigned to the individual

76 chapter 6

modules. Computer networks and distributed operating systems will play an important role in the
design of distributed information systems. They will implement the user requirement that there
should be no difference whether they use their own local computer or capacity of shared computers
(location transparency).

The following sections discuss the main concepts of a distributed information system: computer
networks, distributed operating systems, and client-server architectures. The goal of these sections
is to provide a short introduction into standards and developments of technologies for the
implementation of distributed information systems in manufacturing. The client-server architecture
is discussed in more depth because of the important consequences for the reusability of software
and the design of generic modules.

6.3.2 Computer networks

For a user there should be no difference between applications that run on a singl1 machine and
those that run on a network. This means that the operational details of the network should be
transparent for the user. It is desirable to hide even the existence of the network, if possible. This
section gives an introduction in the facilities and standards in manufacturing that provide this
network transparency. Technological details are omitted. [Tanenbaum 88] is recommended for
further reading on this subject.

Node A Node B

I applications 1--1 applications I - ~ - -
MMS--- 7 application layer 7 application layer

6 presentation layer 6 presentation layer

5 session layer 5 session layer

4 transportation layer 4 transportation layer

3 network layer 3 network layer

2 data link layer 2 data link layer

1 physical layer

figure 6.5 ISO/OSI 7 layer architecture

architectures for distributed systems 77

ISO/OSI architecture

To deal with the heterogeneity of equipment in a network:, the International Standards Organization

has developed the Open Systems Interconnection architecture, referred to as the ISO/OSI 7-layer

architecture. The ISO/OSI architecture specifies seven layers of interfaces and protocols for the

exchange of data between two sites in a network: (figure 6.5). The application layer is of interest

when discussing how applications communicate through a network. The application software is

developed on top of this layer. Applications access the OSI environment by using the

communication services of the application layer. Notice that the ISO/OSI architecture can be used

for the realisation of integrated information systems, but is insufficient when one wants to realise

fully distributed information systems [Pels et al. 86].

MAP/MSS

The Manufacturing Automation Protocol (MAP) is based on the seven-layer OSI standard, and is
designed to meet the requirements of manufacturers dealing with multi-vendor equipment on the

shop floor [Jones 88]. MAP has chosen the broadband, token bus topology as the physical carrier

(layer I). An important component of MAP V3.0 is the MMS (Manufacturing Messaging Service),

which is a message based protocol for communications between computers and shop floor devices

also available in other OSI implementations using Ethernet, Baseband, etcetera. Currently, vendors

and users of robots, PLCs, Numerical Control (NC) machines, and process controllers are writing

companion standards for MMS. The companion standards state what subset of the MMS messages

is to be used and which objects are predefmed for each type of device. When these companion

standards have been completed, the task of integrating applications with devices from multiple

vendors should be simplified. This has important consequences for the costs of implementation.

MMS provides a set of services for application software, and allows the implementation of

client-server relations between controllers at different or the same level of control. In case of shop

floor control, it would enable production control systems to communicate with shop floor devices.

MMS allows the designer to define objects that can be identified in shop floor equipment MMS

provides a set of convenient services for the application software to create interfaces to device

controllers. MMS creates an additional level of portability across different device vendors, thus

increasing the user's flexibility in procuring shop floor equipment [Bauer et al. 91].

78 chapter 6

6.3.3 Distributed operating systems

It is customary to run a DBMS as an application on top of a host operating system. However, there
is significant evidence that such a mode of operation may not yield the best results in terms of
functionality and performance of these systems [Ozsu et al. 91]. A distributed DBMS requires
additional support from the distributed operating system. Tanenbaum defmes a distributed system
as one that runs on a collection of machines that do not have shared memory, yet looks to its users
like a single computer [Tanenbaum 92]. It should be reconsidered which features are to be provided
by the DBMSs and which ones by the distributed operating system. This is especially of great
importance for federated database systems that consist of heterogeneous systems. Each of the
systems in a heterogeneous environment can provide different features or different
implementations. Nowadays, these systems are often based on a network operating system, where
each machine has a high degree of autonomy and there are few system-wide requirements. The
operating system manages as a minimum the format and meaning of the messages that may
potentially be exchanged [Tanenbaum 92]. However, no further research on this subject has been
carried out in relation to this thesis, and for further reading on this subject is referred to [Tanenbaum
92].

6.3.4 Data servers

The previous chapters suggest the availability of general purpose computers that execute both
application programs and data management functions. A reconsideration of the distribution of these
functions is however required when taking into account the powerful workstations that are now
available. The integration of workstations into a distributed environment makes a more efficient
distribution of functions possible. Applications can run on workstations, called application clients,

while database functions are dealt with by dedicated computers, called data servers. The same holds
for other servers like mail servers, gateway servers, etc. A data server provides a complete database
functionality, including persistence, recovery, and concurrency, and should therefore not be
compared with the traditional file-server. Furthermore, a server can act as a client as well by calling
other services. This leads to a distributed system architecture where sites are organised as
specialised client/servers rather than general-purpose computers.

The need to integrate various types of workstations into a local network .has resulted in a system
architecture referred to as a client-server architecture. The client-server architecture dates from
about twenty years ago when a host machine executed the main applications and called dedicated
machines, called backend computers, to perform specific operations. The client-server architecture
applies to both computer hardware and software. Client software can run on any machine and use
server software on the same or another machine. The client manages for example the user interface

architectures for distributed systems 79

and submits service requests to the servers through the communication facilities of the distributed

operating system. For example, the client-server architecture of the model factory applications is
presented in figure 6.6. Each module in this architecture is designed as a client that can call the

other modules, the database server and the factory devices where appropriate.

~b
server factory devices

(various servers)
Physical network connections

~
1l4FJ
Qb

server factory devices
(various servers)

Client-server calls (by messages)

figure 6.6 a client-server architecture

6.3.5 Client-server architecture for a modnle

The client-server architecture of the model factory is reflected in figure 6.6. The right part of the

figure illustrates that each module behaves as both a client and a server by calling each others

applications. Furthermore, each module calls the factory devices. Also, various modules use the

same database server. The principles of modular design however would allow the implementation

of a module itself in a client-server architecture (figure 6.7). Each of the applications in this

example of a module architecture is defmed as a client operating on data of the module. The access

to the data is provided by a module data server. The module data comprise own data and foreign

data. Two dedicated servers are responsible for providing these data to the module data server. The

own data server provides the own data according to the own domain specifications in the module,

and a foreign data server provides the foreign data by calling the public data servers of other

modules according to the foreign domain specification of the module. Finally, a public data server

of the module can be called by other modules.

80

~~ ~-r-

client/server calls

Physical network connections

figure 6. 7 a module CSA

6.4 Organisational control architectures

6.4.1 Introduction

chapter 6

The complexity, coupling and cohesion criteria can also be applied to the design of organisational

control architectures, although these criteria originally refer to information system design. It is

however more appropriate to start with organisation design principles when discussi~g the relation

architectures for distributed systems 81

between information design and the design of control architectures from an organisational

viewpoint Therefore, the four organisation design strategies of Galbraith (figure 6.8) are discussed

for the organisational design of control systems. A comparison is made with the modular design of

information systems. Two conclusions result from this section. The fll'St conclusion is that the

organisational control architecture provides conditions and opportunities for the modular design of

information systems. The second conclusion is that the method of modular design provides a

technique for analysing the modularity of an organisational control architecture.

Galbraith bases his arguments for the four design strategies on general information processing

principles which are elaborated below. He presents them as alternatives for organisation (re-)design

when an overloading of the hierarchy occurs. Although Galbraith does not mention it explicitly, an

important distinction should be made between the volume of data that is exchanged between

different units and the complexity of these data in terms of data structures. The emphasis in this

section lies on complexity of the data rather than volume. The reason for this is that complexity is

of more importance in most situations when the integration of complex information systems is

discussed, especially when emphasizing the design of automated information systems.

creation
of slack
resources

creation of
self-contained
tasks

reduce the need for
information processing

investment in
vertical
information

creation of
lateral
relations

l systems

~------~v~--------J
increase the capacity
to process information

figure 6.8 organisation design strategies [Galbraith 73]

6.4.2 Creation of slack resources

The fll'St strategy to reduce the need for information processing is the creation of slack resources.

From an organisational viewpoint this entails the reduction of the number of exceptions that occur

by reducing the required level of performance. The creation of slack resources will usually result

in the weakening of integrity constraints and often also in the reduction of the number of integrity

constraints. It was concluded in the previous chapter that the fonnal description and implementation

of all relevant situations of an organisation over a longer period of time by means of conceptual

modelling is very difficult, if not impossible. This holds especially for the description and

implementation of integrity constraints, which is caused by the inherent complexity of these

constraints. The introduction of slack may therefore facilitate the development of independent

modules, especially in real-time software where the design and implementation of applications is

drastically simplified by the weakening of elimination of time-related integrity constraints. In the

model factory for example, physical i/o buffers are introduced between stations to reduce the need

82 chapter 6

for coordination between two modules. It would cause a complex adjustment procedure between
the modules if these buffers were to be removed.

6.4.3 Creation of self-contained units

The second strategy to reduce the need for information processing is the creation of self-contained
units. From an organisational viewpoint this means a change from a functional task design to one
in which each group has all resources necessary to execute its task. This was the reason in the
model factory for the grouping of the test station and the repair station into one self -pontained unit

' called 'test & repair'. If both stations were to operate independently, they would need a lot of
mutual adjustment. In fact, their own domains should be completely public to each other. The
combination of the modules resulted in a single module with a relatively high cohesion and low
coupling. Hence, from a modular information system design viewpoint, the creation of self­
contained units means a reduction of the coupling between modules and an increase of the cohesion
of a module.

6.4.4 Investment in vertical information systems

The first strategy to increase the capacity to process information is to invest in vertical information
systems in order to bring the information to a central point of decision maldng. From an
organisational viewpoint this means to collect information at all points of origin and direct it, at
appropriate times, to the appropriate places in the control hierarchy. Thus, the organisation can react
on unanticipated exceptions by generating adjustments to the original plans or target setting. This
strategy has two negative consequences from the viewpoint of modular information system design.
These consequences involve the complexity of the data referred upwards in the orgaqisation, rather
than the volume of data. First, this strategy increases the number and strength of integrity
constraints between two modules at different levels in the control hierarchy. A stronger coupling
between both modules will be the result. Second, this strategy requires a broadening of the view
domain of the decision making module since it has to know more details of the operation of
subordinate levels. This will increase the complexity of the communicated data. Alsp the coupling
of the lower module increases, the cohesion of the higher module decrease~, and the !complexity of
the decision making module increases as well. :

Notably, this strategy is sometimes chosen to increase rationalism in decision making processes
in organisations and to avoid behavioural control problems. Although these aims may be reached,
this strategy does generally not contribute to more modular information systems.

architectures for distributed systems 83

6.4.5 Creation of lateral relations

The second strategy to increase the capacity to process information is to create lateral relations. This

strategy decentralises decisions by moving the level of decision making down to where the

information exists rather than bringing it up to the points of decision. The consequence of this

strategy from the viewpoint of modular information system design is the (partial) elimination of a

supervising module. Information is exchanged laterally between two lower modules instead of

sending information to a supervising module that forwards the information to the other lower

module. As a result, the two modules can exchange information more effectively.

Lateral relations can be implemented through so called liaison officers. These liaison officers

have two tasks. The ftrst task is to 'filter' information from one module and pass it to the other. The

second task is to provide cooperative activities. Examples of cooperative activities are the initiation

of potentially complex series of actions involving the cooperation between modules, or the

negotiation of shared data. Electronic Data Interchange (EDI) is an interesting research area in this

respect. In EDI two autonomous organisations have to cooperate. The flexibility ofEDI connections

depends largely upon the possibility to negotiate the data to be exchanged. The question is how this

negotiation can take place. This problem is addressed in literature, for example in [Heimbigner et

al. 85], but not yet solved. Apart from simple cooperative activities and information filtering, it is

expected that these 'automated liaison officers' will not be available soon.

Also other lateral relations than liaison officers are known in control architectures and

information system design. Client-server or related principles as for example consumer-producer

can also be used for the communication between autonomous modules. It should be noted that one

has to consider whether the serving module is obliged to provide the service or not. The obligation

to provide the service can result in dependencies between perceived autonomous modules. Further

research is needed however for evaluating different types of these heterarchical relations and their

impact on control and information system architectures.

6.5 Concluding remarks

This chapter has considered the influence of implementation architectures on the conceptual design.

In particular it has been investigated which implementation architectures avoid such influences, and

therefore provide best conditions for the implementation of independent modules.

Three types of architectures for the implementation of modules were discussed in this chapter:

database architectures, system architectures and organisational control architectures. This

exposition illustrates that there is no straightforward way to implement modules in software and

hardware. It is however illustrated that architectures of a distributed nature are more appropriate

for the satisfaction of the modularity criteria defmed in chapter 2.

84

In the area of database architectures, the requirement for decentralisation was identified about

two decades ago. The first solution here was the creation of 'composite databases' that may be

heterogeneous. These architectures are now known as distributed databases, and are1 characterised

by a single global conceptual schema. The difficulty of integrating multiple existin$ databases in

one distributed database resulted in the definition of federated database architectures [Heimbigner

et al. 85]. A federated database architecture allows a collection of database systems to unite in a

federation in order to share and exchange information. This federation may either be tightly or

loosely coupled. It is illustrated in this chapter that a module architecture may be considered as a

special case of a loosely coupled database architecture, and matches in particflar with the

architecture described in [Heimbigner et al. 85]. The latter however does not pro~ide tools for

realising the modularity criteria defined in chapter 2.
New technologies in the area of system architectures allow the implementation of distributed

information systems. In these systems it is not obligatory that applications and data of a particular

module actually reside in computer systems related to this module. Thus, independent modules can

be implemented in a distributed information system with a common infrastructure. Infrastructure

is defmed as hardware and software (computers, networks, operating systems, applications, etc.)

that is shared between different autonomous units. It is expected that infrastructures will play an

important role in the future of modular design of information systems in manufacturing [Truijens

et al. 90].

An important concept introduced in this chapter is the client-server architecture. The

applications and the information base of a module can be implemented as client/servers on a

computer network that communicate through standard messages. The access of multiple clients to

the same servers can enhance reuse of software, since the servers do not have to be replicated and

maintenance of the servers can be coordinated.

Finally, the correspondence between organisation design and information system design is

indicated by the four organisation design strategies of Galbraith. It is argued that there is a strong

relation between the organisational design of control architectures and the modular design of

information systems. However, the organisational control architecture will not always provide best

opportunities to design independent modules in the information system. In that case, information

system designers could indicate opportunities for improvement, although it is not their

responsibility to actually change the organisational control architecture. However, the method of

modular design provides a technique for analysing the modularity of an organisational control

architecture. The application of the method will therefore likely result i~ recommendations for

improvements in the organisational control structure.

85

Chapter7

Generic modules

7.1 Introduction

Reuse of software is necessary to increase the productivity of information system development. Van

Genuchten argues that a change in the management of software development is necessary to bridge

the gap between software demand and supply [Genuchten 91]. The present chapter aims at a

contribution to the reuse of software from a complementary perspective. by describing a method

for designing 'generic' modules. Generic modules should include properties of specific modules,

and it should be relatively simple to specialise a generic module to a specific module. A generic

module should include both a conceptual design and the implementation of this design in database

systems and software applications.

Four steps can be identified in the reuse of components: finding components. understanding

components, modifying components and composing components [Biggerstaff et al. 87]. The major

benefit of generic modules will be that they can contribute to each step. The flrst step however

depends largely on the availability of repositories and libraries. Data models can be used as a

starting-point for the defmition of these repositories and libraries. This thesis will however not

discuss this issue of repositories and libraries in further detail.

This chapter includes a discussion of the contents of a generic module, the language for

specifying a generic module, and the techniques to create generic or specific modules. Section 7.2

discusses reusability of software. The use of reference models to enhance reusability will then be

discussed in section 7.3. Sections 7.4 and 7.5 describe how generic and specific modules are to be

specified, and section 7.6 describes how to defme and implement software for generic modules.

7.2 Reusability of software

The classical approach to reusability is to develop libraries of routines that implement well-defmed

operations. This approach however has a number of limitations [Meyer 88]:

• each operation should allow for a simple specification

• the individual operation should be clearly distinct from each other

• no complex data structures should be involved.

86 chapter 7

Meyer argues that these limitations are essentially the consequence of the classical top-down

functional approach to information system development. This approach is useful for insuring that

the design will meet the initial specifications, but it does not promote reusability [Meyer 88].

Components tend to be narrowly adapted to the subproblems that led to their development; they are

not naturally general. It is for example fairly simple to develop a library of string manipulation

routines. Each of these routines is relatively simple, and uses simple data structures. The advantage

of this library for development time and cost savings is however small.

The development of software libraries for more complex software as for instance production

scheduling software is much more difficult. It requires essentially the definition of a complex data

model. For this specific data model it will then be possible to develop a software library. A

commercial software company will therefore base its software libraries on one or a limited number

of data models. A major problem would arise if the data model has to change. It would often imply

the change of the entire software library as well.

Top-down design does not in itself force the components to be specific and non-reusable.

Designers may always write elements that transcend particular needs. In fact, the structure obtained

in a top-down design is not constrained to be a pure tree: it can be a more general directed graph

with some elements shared by several refinements. However, such reusable components are not a

natural result of the method [Meyer 88].

The very notion of top-down design is essentially the contrary of reusability; reusable software

implies that systems are developed by combining existing components. This is the definition of

bottom-up design. Furthermore, an organisation has to face the following three reuse dilemmas

[Biggerstaff et al. 89]:

• generality versus payoff

• component size versus potential

• setup and costs of a components library

First, the more general the component is, the less payoff for a specific application will be. On the

other hand, the more a software product is specified towards one particular application, the less

applicable it will be for reuse. Second, the bigger the component, the higher the payoff will be if

the component is reused. The probability that the component can be reused will however be reduced

because it will become increasingly specific as it gets bigger. Third, considerable efforts and

investments have to be put into a software library before it starts to pay off.

The conclusion of this section is therefore that reusable components should be developed at a

sufficient high conceptual level, avoiding solutions for specific problems. A hint is given to the use

of data models as the starting-point for the definition of reusable components. Also other sources

propagate the use of data models as starting-point for software development [Scheer 92] [Bertrand

et al. 91]. Reference models establish the first initiative in software reuse based on data models.

generic modules 87

7.3 Reference models

Reference models established the ftrst initiative in software reuse based on data models. It will be
argued however that this approach does not provide an answer to all problems related to the reuse
of software.

A distinction can be made between two types of reference models, normative models and non­
normative models. Normative models describe the data model of a certain type of organisations or
functions. Bertrand et al. describe for example reference models for make-to-stock, assemble-to­
order, make-to-order, and engineer-to-order type production organisations [Bertrand et al. 90]. The
reference model for MRP packages is depicted in ftgure 7.1. The type of organisation is analysed
before these models are applied. Then the corresponding reference model is chosen. If necessary,
the reference model is adapted to the specific requirements of the organisation. Based on the
reference model, either a commercially available software package is selected, or an information
system is built from scratch.

The non-normative reference model tries to encompass as many solutions as possible. The
operation of this type of reference model means to select those parts of the model that are reflected
in the specific situation. In contrast to the normative reference model, a non-normative reference
model will be developed independently of the context in which it will be used.

The major beneftts of both types of reference models are that they create a set of models that
summarise the experience in a specific area. They also provide a technique for evaluating software
packages, which improves the selection of software packages for specific situations considerably
[Heij 91].

A drawback to both approaches is that they do not appear to bring much beyond the reuse of
know-how and experience in the conceptual design and analysis phase since a reference model
exists independently of corresponding implementations. There is a need to bridge this gap between
design and implementation. The following requirements for increasing the reusability of software
can be specified:

• reusable components at a sufficient high conceptual level
• a policy for reusability that ultimately produces reusable programs
• a technique to describe a complex hierarchy of reusable modules, with different levels of

parametrisation.

88 chapter 7

allllmative MPS order forecast independent
plan ~ demand

(

~

load MPS item fie customer
order

~ ~ work order [10--
critical rough-cut ! Item planned order

capaclty ~

labour - firm pl. order ~ r+-- sched. rec.

~ l <{ ")

~
actual capacity unit

...... normative ''"'
,.., parent ~ gross req. & oparetion component L()E allocation operation

~
9 q

l......oE engineering I+-change

J

figure 7 .I reference model for MRP packages [Bertrand et al. 90]

7.4 Generic modelling

7.4.1 Requirements

The requirements for increasing the reusability of software, summarized in the previous section,

imply a method that supports both the implementation and the modelling of an information system.

Moreover, it should be possible to model the information system at various levels of abstraction.

Modelling of information systems at various levels of abstraction is imperative to avoid the

dilemma that specific solutions might not be reusable in other situations. A pragmatic solution to

this problem is provided by object-orientation. One has to generalise the specifications of specific

modules into a generalised (generic) module. Generalisation allows abstractions in terms of data

generic modules 89

models. Application software can be associated to these generic modules. In this thesis, the

abstraction of specific modules is referred to as generic modelling.

In the next subsection it will be discussed how object-orientation can contribute to the

definition of generic modules. This will then be used in section 7.5 to describe a method for the

definition of generic modules according to the method of modular design.

7.4.2 Object-oriented modelling

Classes describing groups of objects are the basic building blocks in object -oriented modelling. The

technique of inheritance is used as the constructor for specifying generalisation and specialisation.

This is expressed in an object-oriented model by the supertypelsubtype constructor. The

generalisation operation is therefore restricted to a single object class.

For example, each class definition in the screenprinter module of the model factory is eligible

for generalisation. The generalisation of the module would then consist of generalisations of the

individual classes. It would also be possible to consider the whole screenprinter as one object to be

generalised. In that case, the screenprinter would be a complex composed object where the

attributes are the object class definitions in the screenprinter. It is then possible to generalise this

complex screenprinter object into, for example, a generic station control object. Thus, it would be

possible to describe a complex hierarchy of objects, with different levels of parametrisation. This

was specified as one of the requirements for increasing the reusability of software. This approach

will also be applied in the defmition of a generic module. A generic module comprises a

generalisation of the conceptual schema. Generalisation/specialisation has to be applied to both the

structure of objects and their attributes, and the domain defmitions in the module, which differs

from object-orientation.

An important discussion pertains to the difficulties with defming generalised methods.

Problems can occur concerning the independence of a module if one does not take care of the

constraints involved with the generalised methods. In chapter 2 it is explained that applications

should be developed as applications on a module. This means that the applications should comply

with the domain rules and integrity constraints. This rule could be violated when methods are

generalised or applied to generalised objects. In object-orientation it is difficult to validate this rule

since most integrity constraints in object-orientation are described by the behaviour of the objects

(by means of pre- and postconditions of the methods), rather than by the structure of the objects.

Another means for generalisation of a module is to weaken the domain rules and/or the integrity

constraints. The weakening of integrity constraints does not have a meaning in object-orientation

since pre- and postconditions should be considered as specifications ofa method, rather than a

property of the object structure.

However, the weakening of integrity constraints on objects can cause errors in applications due

90 chapter 7

to unexpected values of retrieved data, as was illustrated in chapter 2. Furthermore, adding integrity

constraints in specialised modules can cause errors when an intended transition is not allowed in

combination with the current information base state, due to the added integrity constraint. A

solution to this dilemma will be suggested in the following section.

7.5 Generic modules

This thesis proposes a data modelling oriented approach to generic modelling based on principles

such as generalisation, specialisation, and inheritance. Generalisation in this approach is principally

encapsulated in the structural aspects of the module, including integrity constraints and domain

definitions. This differs from the object-oriented approach in the sense that generalisation in object­

orientation is both applied to structure and behaviour.

generic module

lest & repair module

figure 7.2 abstraction of data structures

7.5.1 Schema abstraction

If two modules have similarities in their conceptual schema it is possible to abstral:t the modules

into one generalised module specification. An example of such an abstraction is schematically given

generic modules 91

in figute 7 .2, where the data structure diagrams of the test & repair module and the in-process-store

module are abstracted into one generic module.

The abstraction of a module concerns in general the removal of details. These details concern

class specifications, attribute specifications, integrity constraints, or domain defmitions.

Generalisation of classes is implemented by supertyping. The classes in specialised modules inherit

the specifications of classes in the generic module, as in object-oriented design. It is however also

possible to reduce the number of class defmitions or to weaken integrity constraints to obtain a

generic module. Such a reduction of specifications will also affect the scope of the domain

definitions of the module. These have to be adapted as well when the conceptual schema is

generalised. Conversely, the conceptual schema will be extended when the generic module is

applied in a specific situation. The domain definitions must be adapted after the conceptual schema

is specialised.

7 .5.2 Domain abstraction

The abstraction of domains is another method for abstracting modules. A manufacturing company

with multiple sites might for example have the same conceptual schema at each site. Each site

however will have different own and foreign domains. The abstraction of both modules will result

in a generic module in which the conceptual schema is identical to the conceptual schema of each

module. However, the domain definitions will be generalised.

Domain abstraction can be specified in either two ways. One way is to reduce the domain rules.

Specialisation is then realised by adding domain specifications. Consider for example the following

domain specifications, taken from section 2.7.3. This example expresses a generic module based

on the screen printer module for the handling of requests.

own domain (i) =

foreign domain(i) =

{ t e i.request I tconsumer.station_name = 'screenprinter'} v
{ t e i.station I tstation_name='screenprinter'}

{ t e i.item_type} u { t e i.batch} u
{ t e i.request I tproducer.station_name = 'screenprinter'} u
{t e i.station I tstation_name ='second-side' v

t.station_name = 'component-placement#!'}

These specifications can be generalised into:

own domain (i)
foreign domain (i) =

{ t e i.request I tconsumer.station_name = 'screenprinter'}

{ t e i.request I tproducer.station_name='screenprinter'}

92

The second alternative is to parametrise the domain rules. A specific module can be derived from

the generic module by filling in the parameters. An abstraction of the example above could be:

public domain (i,x) = { t e i.request I tconsumer.station_name = x } u
{ t e i.station I tstation_name = x }

foreigu domain (i,x,y,z) = { t e i.item_type} u { t e i.batch} u
{ t e i.request I tproducer.station_name = x }u

{ t e i.station I tstation_name = y v t.station_name = z}

This generalisation can be used in each module that wants to implement request handling according
the principles set out in the model factory. The generic module would consist of not only the
schema specifications and the domain specifications, but also the associated applications. Both
ways of parametrisation will be used in the following section for the definition of the concept of

generic software.

7.6 Generic software

Generic modules provide the facility for specifying complex hierarchies of modules at different
levels of parametrisation. They provide reusable components at a sufficient high conceptual level

and genericness, not just solutions for a specific problem. However, the method s~ould also specify
reusable applications.

There are three conventional ways to develop applications from generic modules. These are:

ready-made applications, parametrised applications, and the generation of applications by software
generators. Ready-made applications can be used directly without modifications, but can only be
developed for that part of a generic module that is less probable to change when the module is

specialised into a particular module. The dilemmas here are the generality versus application payoff
and application size versus reuse potential. The same dilemmas hold for parametrised applications.
Parametrised applications are for instance software packages that are to be installed by setting a
number of parameters. The third alternative for developing applications is to apply software
generators. The disadvantage of software generators is that they are often geared towards a specific
application area.

A modem, more promising way of application development for generic modules is based on

the client-server principle. A generic module plus associated applications can be regarded as
building blocks. These building blocks will be implemented as a number of clients/servers for
applications and data management, based on the module definition. The size of each of these
clients/servers can vary, and they can be layered according basic services and application clients

(figure 7 .3). For example, an embedded SQL call to a foreign database for a specific object class

generic modules 93

could be a service. Thus, the client/servers for the generic module comprise a subset of the module
CSA discussed in section 6.3.5. The completion of this subset into a specific module requires the
following activities:

• specialisation of the schema and domain abstractions
• setting of the parameters of parametrised clients/servers
• configuration of client applications by calling the appropriate servers
• design and implementation of clients and servers that are specific for the module

7.3 CSA of the building blocks

Not all services specified for the generic module need to be included in the specialised module.
This is an important in view of the problem described in the previous section that inheritance of
applications may cause problems concerning the independence of a module. To ensure the
independence of a module, applications must respect the integrity constraints and domain rules of
the module. When specialising a module however, integrity constraints may be added or
strengthened. These integrity constraints can cause errors when they do not allow certain transitions
upon the information base that used to be valid in the generic module. Removing the services that
could violate the independence rule will solve this problem.-

The following guidelines are given for the inheritance of services from a generic module.
Services involving retrieval operations only can be always be inherited unless the view domain has
been restricted concerning objects pertaining to the retrieval operations. Services involving update
operations can be inherited if no applicable constraints to objects pertaining to the update operations
are introduced, and if the update domains have not changed concerning the objects pertaining to the
update operations.

Furthermore, new services can be designed and implemented for the specialised module using

94

new schema specifications. These services can be developed specifically for the particular module.

Reusability of software is increased because of the possibility of redesigning o~Jly the required
services.

The importance of generic software becomes even more appareRt when it is combined with the
technological possibilities discussed in the previous chapter. The combination of an infrastructure

and generic software enables the extensive reuse of services. The infrastructure would create a
software bus that allows the plug-and-play of services, and services would not be restricted to the

hardware of one module in the 'integrated information system' discussed in section 6.3 .1. Sharing

services between two or more modules will be possible, provided that the services adhere to the

domain rules of both modules.

7.7 Concluding remarks

The presented approach to generic modules differs considerably from the traditional view. Data
models are used as the starting-point for reuse instead of focusing on libraries of routines. In this
chapter it is indicated how a module definition, including the conceptual schema and domain
definitions, can be used for the specification of generic modules. Successively, applications can be
specified on these generic modules. Except for conventional techniques such as ready-made

software, parametrised software and software generators, the modem, more promising approach
based on the client-server principle is discussed. In this approach, a generic module plus
applications are regarded as building blocks, consisting of a module and a numb~r of services. The
specialisation of this generic module to a specific module includes the implemen~ation of the client

applications. The complexity of the clients will be low.
The benefits of generic modules are summarised as:

• the reuse of modules at the conceptual level
• hierarchies of modules, at different levels of parametrisation
• reuse of implemented programs

An important point of attention when designing generic modules and implementing specialised
modules is the validity of integrity constraints and domain rules. It may be difficult to maintain the
consistency of parametrised specifications. Moreover, it may require a considerable effort to

evaluate whether an application on a generic module does not violate the constraints of a specialised
module. Therefore, further research is recommended in the specification and implementation of
tools to ensure consistency.

95

Chapter 8

Discussion and conclusions

8.1 Summary and conclusions

8.1.1 Modular conceptual design

The subject of this thesis is the modular design of infonnation systems for shop floor control.

The aim of modular design is to specify modules that can be designed, redesigned and

implemented autonomously. I.e., it should be possible to design, redesign and implement a

module by considering exclusively the interfaces to other modules. These interfaces should be

clear, simple and easy to change.

A method for the conceptual design of a module has been introduced in chapter 2. The

starting-point of this method is the conceptual schema. The interfaces between modules are

defined by the public and foreign domains of a module, and it is described how the

independence of a module can be detennined by evaluating these domain specifications and the

applicable integrity constraints.

The validity of the method has been demonstrated by means of a number of applications.

The most important application is the design of a shop floor control system for a model factory.

This design has been included in this thesis.

The most important learning from the model factory experiment is that the concepts of

modular design provide adequate tools for reducing the complexity of the shop floor control

system. The shop floor control system was split up into modules. Each of the modules was

successively designed and implemented independently. There has been no need for an overall

conceptual design.

It is however not possible to design and implement the infonnation system of the model

factory independently from the product structure, the primary process and the control

architecture. For example, the absence of a buffer between the reflow and cleaning station and

the in-process-store required that the station would only start an operation on a batch when the

store was ready to receive this batch. This constraint increased the complexity of the interfaces

of both modules considerably.

Succeedingly, other methods for the reduction of complexity in infonnation system for

manufacturing have been discussed. A common method is to define levels. It is argued that this

96 chapter 8

method does not provide sufficient criteria for a modular information system. In particular the

criteria of modular protection, modular continuity and modular decomposability could be

neglected.

8.1.2 Modular implementation

Modular design is a necessary condition for a flexible information system. This condition,

however, is not sufficient. Technology and organisation often either facilitate or inhibit the

realisation of flexible information systems. Also complex organisational control structures require

complex information system architectures, and conversely, simplified organisational control

structures ease the relations between information system modules.

Three types of architectures concerning the implementation of modular information systems

have been discussed: database architectures, system architectures and organisational control

architectures. The importance of these architectures lies in the fact that they provide conditions
for the implementation of modular information systems, as well as the fact that they determine

the structure of the information system for a long period of time, which includes the future

flexibility. Special attention has been given to distributed architectures since they provide more

adequate conditions to satisfy the modularity criteria than for example centralistic architectures

or hierarchical architectures.

8.1.3 Reuse of software

There are a number of limitations to the use of routine libraries for the realisati:on of reusability.

Reusability of software based on data models provides a good alternative. The module definition

was proposed as a starting-point for the definition of reusable components. A module both

allows the conceptual specification of a component and the implementation of this component.

Furthermore, the method described in this thesis fulfils modularity criteria such as

decomposability, composability, understandability, continuity and protection.

There are three conventional ways to develop applications for generic modules: ready-made
applications, parametrised applications, and the generation of applications by software generators.

A modem way of application development for generic modules is based on the client-server

principle. A generic module plus applications can be regarded as building blocks. These building

blocks consist of a module and a number of applications in the form of servers. The

specialisation of this generic module into a specific module involves the implementation of the

client applications, which is merely be the configuration of appropriate server calls.

An advantage of this approach is the possibility of sharing services between two or more

discussion and conclusions 97

modules. A client application can call multiple services that are physically located at other

modules. Furthermore, an application can both be a client and a server, thus allowing different

levels of abstraction in application software. Reusability of software is increased because of the
possibility of redesigning only those services needed.

8.1.4 Generalisation of the results

An interesting discussion item is the possibility of generalising the research results. In general,

it is not allowed to claim the general applicability of a method based on a limited number of

experiments. It should be noticed however that in the model factory as described in this thesis

nine different modules were implemented. The interfaces between these modules are all distinct.

The method provided independence for each of the modules. The same holds for the other

experiments as well.

The main contribution of the research is however not to prove the generalisation of the
results. The contribution from a scientific point of view is the description and argumentation of

a method application in a complex manufacturing system. The goal of this design-oriented

research is to illustrate how modular information systems are to be designed so that the main

findin~s can be of use in other designs.

8.2 Recommendations for further research

Typology of control architectures versus modular information systems
The emphasis of this thesis lies on the modular design of information systems. It is indicated

that there is a strong relationship between the modular design of information systems and the

definition of control architectures. In particular distributed control architectures provide good

conditions for the implementation of modular information systems. This thesis is however not

exhaustive in describing the relation between different control architectures and the modularity

of information systems. It is therefore recommended to develop a typology for control

architectures, and to specify for each type its relation to modular information systems.

Heterarchical cooperation
The method presented in this thesis allows the specification and implementation of federations

of autonomous modules. Modules can be designed, redesigned and implemented only considering

the interfaces with other modules. It will be more difficult when the interfaces themselves have

to change. This requires the negotiation between different autonomous modules. Examples where

these negotiations may take place can be found in Electronic Data Interchange (EDI), where two

98

autonomous organisations have to cooperate. An interesting research subject would be whether
the negotiation in these heterarchical systems could be formalised. A particular important issue

in this research would be the specification and negotiation of the pragmatics of the data. This

issue is also indicated by the terms 'information resource integration' or 'schema trading'

[Eliassen et al. 88].

Reusable modules
Reuse of software is discussed in chapter 7. An interesting possibility for the reuse of software

is the definition of reusable modules. A reusable module is defined by its conceptual schema and

the applications associated to that schema. It would be an interesting research issue to implement

software packages based on this principle.

Infrastructure and reuse
The definition of reusable applications as services on a module is of great interest for the

improvement of software reusability. A condition for the definition of these services is the
availability of an appropriate infrastructure in terms of hardware and system software. The study

of the infrastructural requirements for the implementation of reusable services would be a valid
research subject.

99

References

[Aalst 92) Aalst, W.P.M. van de, Timed coloured petri nets and their application to logistics,

Ph.D. dissertation, Eindhoven University of Technology, The Netherlands, 1992.

[Amice 89] Open System Architecture for CIM, ESPRIT Consortium AMICE (eds.), Research

Report Project 688, Volume 1, Springer-Verlag, Berlin, 1989.

[Andany et al. 91] Andany, Jose, Michel Leonard, Carole Palisser, "Management of schema

evolution in databases", Proceedings of the 17th international conference on very large

data bases, Barcelona, September, 1991.

[Baats 92] Baats, Erik, Modular decomposition of the conceptual schema: applied in

computer integrated manufacturing, M.Sc. thesis, Eindhoven University of Technology,

Digital Cooperative Engineering Centre, Amsterdam, June 1992.

[Bakker 89] Bakker, J.J.A., DFMS: architecture and implementation of a distributed control

system for FMS, Ph.D. dissertation, Delft University of Technology, 1989.

[Bauer et al. 91] Bauer, A., R. Bowden, J. Browne, J. Duggan, G. Lyons, Shop floor control

systems: from design to implementation, Chapman & Hall, London, 1991.

[Bell et al. 92] Bell, David, Jane Grimson, Distributed database SYStems, Addison-Wesley

Publishing Company, Wokingham, England, 1992.

[Bemelmans 84] Bemelmans, T.M.A., Bestuurlijke informatieSYstemen en automatisering (in

Dutch), second revised edition, Stenfert Kroese bv, Leiden/Antwerpen, 1984.

[Bertrand et al. 90] Bertrand, J.W.M., J. Wijngaard, J.C. Wortmann, Production control

SYStems: a structural and design-oriented approach, Elsevier, Amsterdam, 1990.

[Biemans 90] Biemans, Frank P.M., Manufacturing planning and control, Elsevier,

Amsterdam, 1990.

[Biggerstaff et al. 87] Biggerstaff, T.J., C. Richter, "Reusability framework, assessment and

directions", IEEE transaction on software, March 1987.

[Biggerstaff et al. 89] Biggerstaff, T.J., Perlis, A.J., "Introduction", Software reusability,

Volume 1, concepts and models, ACM press, New York, 1989.

100

[Bouzeghoub et al. 91] Bouzeghoub, Mokrane, Elisabeth Metais, "Semantic modelling of

object oriented databases", Proceedings of the 17th international conference on very

large data bases, Barcelona, September, 1991.

[Bracchi et al. 79] Bracchi, G., A. Furtado, G. Pelagatti, "Constraint specification in

evolutionary data base design", in [Schneider 79].

[Brodie et al. 82] Brodie, M.L., E. Silva, "Active and passive component modelling:

ACM/PCM", in [Olle et al. 82].

[Bunce 88] Bunce, Peter, 'CAM-I intelligent manufacturing program: accomplishments and

plans', Proceedings of the production planning and control information exchange

between CAM-I and ESPRIT projects, Munich, Germany, May 1988.

[Burbidge 89] Burbidge, Productionflow analysis, Oxford, 1989.

[CAM-I 84] CAM-I, Inc., Conceptual information modelfor an advanced factory

management system, Factory & Jobshop level final report R-84-FM-03, August 1984.

[Chen 76] Chen, P.P.S., "The entity-relationship model: towards a unified view of data",

ACM trans. database syst., March 1976, pp. 9-36.

[CFf 87] Reference for production systems, version 1.0, also CAM reference model, Digital

Equipment Corporation I Philips, CFf report 13/87.

[Consilium 92] Workstream overview, Consilium, Inc., 1992.

[Dilts et al. 91] Dilts, D.M., N.P. Boyd, H.H. Whorms, "The evolution of control

architectures for automated manufacturing systems", Journal of manufacturing systems,

vol.lO, no.l, 1991.

[Duggan 90] Duggan, James, A design tool for production activity control, Ph.D. thesis,

University College Galway, Ireland, 1990.

[Duggan et al. 91] Duggan, James, Jim Browne, "Production activity control: a practical

approach to scheduling", The international journal of flexible manufacturing systems, no.

4, 1991.

[Eliassen et al. 88] Eliassen, Frank, Jari Veijalainen, "A functional approach to information

system interoperability", Research into networks and distributed applications, R. Speth

(ed.), Elsevier, 1988.

references

[Elmasri et al. 89] Elmasri, Ramez and Shamkant B. Navathe, Fundamentals of database

systems, The Benjamin/Cummings Publishing Company, 1989.

101

[Frissen 91] Frissen, Paul, Flexibility in Shop Floor Management: Implementation of a

Production Activity Control System, M.Sc. thesis, Eindhoven University of Technology,

Digital Cooperative Engineering Centre, Amsterdam, July 1991.

[Galbraith 73] Galbraith, Jay, Designing complex organizations, Addison-Wesley, Reading

Massachusetts, USA, 1973.

[Genuchten 91] Genuchten, Michiel van, Towards a software factory, Ph.D. dissertation,

Eindhoven University of Technology, 1991.

[Geraerds et al. 89] Geraerds, Prof.ir. W.M.J. Geraerds, M. Igel (eds.), Flexibiliteit in

logistiek (in Dutch), Eindhoven University of Technology, Samson/Nive, 1989.

[Greveling 90] Greveling, N.J.W., Informatieplanstudie: model voor strategie (in Dutch),

Ph.D. dissertation, Eindhoven University of Technology, Academic Service, 1990.

[Griethuysen 82] Griethuysen, J.J. van, Concepts and terminology for the conceptual schema

and the information base, ISOffC97/SC5 N695, 1982.

[Hakkesteegt 93] Hakkesteegt, Ruud, Client-server computing in shop floor management,

M.Sc. thesis, Eindhoven University of Technology, Digital Cooperative Engineering

Centre, Amsterdam, March 1993.

[Heij 91] Heij, J.C.J. de, Gegevensmodellen voor produktiebesturing en voorraadbeheersing,

M.Sc. thesis, Eindhoven University of Technology, The Netherlands, 1991.

[Heimbigner et al. 85] Heimbigner, D., D. McLeod, "A federated architecture for information

management", ACM trans. office inf. syst., July 1985, pp 253-278.

[Hull 87] Hull, Richard, Roger King, "Semantic Database Modelling: Survey, Applications,

and Research Issues", ACM Computing Surveys, Vol. 19, No.3, September 1987.

[Jackson 83] Jackson, Michael, System development, Prentice-Hall, 1983.

[Jacques 90] Jacques, Elliott, "In praise of hierarchy", Harvard business review, jan-feb 1990.

[Jones et al. 86] Jones, A.T., C.R. McLean, "A proposed hierarchical control model for

automated manufacturing systems", Journal of manufacturing systems, vol.5, no.1, 1986.

[Jones 88] Jones, Vincent C., MAP/TOP networking, McGraw-Hill, New York, 1988.

l02

[Kearns 90] Kearns, Chris, Shop floor management project plan, Digital Cooperative

Engineering Centre, 1990.

[Kent 89] Kent, William, "The leading edge of database technology", Information systems

concepts: an in-depth analysis, E.D. Falkenberg and P. Lindgreen (eds.), Elsevier Science

Publishers B.V. (North-Holland), IFIP, 1989.

[Kim et al. 88] Kim, W., H.T. Chou, "Versions of schema for object-oriented databases",

Proceedings of the 14th international conference on very large data bases, Los Angeles,

August 1988.

[Kim et al. 89] Kim, Won, Frederick H. Lochovsky (eds.), Object-oriented concepts,

databases, and applications, ACM press, Addison-Wesley Publishing Company, 1989.

[King 89] King, Roger, "My cat is object-oriented", in [Kim et al. 89].

[Koopmans 92] Koopmans, Carlo, Exchangeability of CIM components: implementation of an

information system, M.Sc. thesis, Eindhoven University of Technology, Digital

Cooperative Engineering Centre, Amsterdam, June 1992.

[Litwin et al. 90] Litwin, W., L. Mark, N. Roussopoulos, "Interoperability of multiple

autonomous databases", ACM computing surveys, vol.22, no.3, 1990.

[Martin et al. 92] Martin, James, James J. Odell, Object-oriented analysis & 1design, Prentice­
Hall, Englewood Cliffs, 1992.

[Meal 84] Meal, H.C., "Putting production decisions where they belong", Harvard business

review, 1984.

[Melkanoff 84] Melkanoff, Michel A., "The CIMS Database: Goals, Problems. Case Studies

And Proposed Approaches Outlined", Information Engineering, nov. 1984.

[Mesarovic et al. 70] Mesarovic, M.D., D. Macko, and Y. Takahara, Theory of hierarchical,

multilevel, systems, Academic Press, New York, 1970.

[Meyer 88] Meyer, Bertrand, Object-oriented software construction, Prentice Hall, 1988.

[O'Grady et al. 88] O'Grady, Peter, Kwan H. Lee, 'An intelligent cell control system for

automated manufacturing', International journal of production research, vol.26, no.5,
1988.

[Oile et al. 82] Olle, T.E., H.G. Sol, C.J. Tully (eds.), Information systems design

methodologies: improving the practice, North-Holland, Amsterdam, 1982.

references

[Ozsu et al. 91] Ozsu, M. Tamer, Patrick Valduriez, Principles of distributed database

systems, Prentice-Hall International, 1991.

[Pels et al. 86] Pels, H.-J., G.J. Wegter, "Integration of databases for computer integrated

manufacturing", Proceedings of the 2nd international conference on computer

applications in production and engineering, K. B!11, L. Estensen, E.A. Warman (eds.),

Copenhagen, 1986.

103

[Pels 88] Pels, Henk-Jan, Gei"ntegreerde informatiebanken (in Dutch), EindhovenUniversity

of Technology, The Netherlands, 1988.

[Pels et al. 90] Pels, H.-J., J.C. Wortmann, "Modular design of integrated databases in

production management systems", Journal of Production Planning and Control, 1990.

[Pelusi 90] Pelusi, James A., 'RAMP: flexible workcell control', IDSystems, June, 1990.

[Put 88] Put, Ferdi, Introducing dynamic and temporal aspects in a conceptual (database)

schema, Ph.D. dissertation, Katholieke Universiteit Leuven, Belgium, 1988.

[Rozendal 91] Rozendal, Rob, liT control on the shop floor: implementation of an

information system, M.Sc. thesis, Eindhoven University of Technology, Digital

Cooperative Engineering Centre, Amsterdam, July 1991.

[Rumbaugh et al. 91] Rumbaugh, James, Michael Blaha, William Premerlani, Frederick

Eddy, William Lorensen, Object-oriented modelling and design, Prentice Hall, 1991.

[Scheer et al. 92] Scheer, August-Wilhelm, Alexander Hars, "Extending data modelling to

cover the whole enterprise", Communications of the ACM, vol.35, no.9, 1992.

[Scheer 92] Scheer A.-W., Architecture for integrated information systems, Springer-Verlag,

Berlin, 1992.

[Schneider 79] Schneider, H.-J. (ed.), Formal models and practical tools for information

systems design, North-Holland, Amsterdam, 1979.

[Sheth et al. 90] Sheth, Arnit P., James A. Larson, "Federated database systems for managing

distributed, heterogeneous, and autonomous databases", ACM computing surveys, vol.22,
no.3, 1990.

[Sol 89] Sol, E.J., "CIMphony pilot assemblagelijn", PT industriele automatisering, no.l, Jan.

1989.

104

[Sol 90] Sol, E.J., "Cell control on the VMEbus", VITA congress proceedings VMEbus in

factory automation, Mainz, Germany, 1990.

[Sol 92] Sol, E.J., "CIM: communication and information in manufacturing", Integration in

production management, H.J. Pels and J.C. Wortmann (eds.), Elsevier, Amsterdam, 1992.

[Spiby et al. 91] Spiby, Philip, Douglas A. Schenck, EXPRESS language reference model,

ISO TC184/SC4/WG5 Nl4, 1991.

[Stut 92] Stut jr., W.J.J., Constructing large conceptual models with MOVIE, Ph.D.

dissertation, Leiden University, The Netherlands, 1992.

[Tanenbaum 88] Tanenbaum, Andrew S., Computer networks, Prentice Hall, Englewood

Cliffs, 1988.

[Tanenbaum 92] Tanenbaum, Andrew S., Modem operating systems, Prentice Hall,

Englewood Cliffs, 1992.

[Tiemersma 92] Tiemersma, J.J., Shop floor control in small batch part manufacturing, Ph.D.

dissertation, 1\vente University, The Netherlands, 1992.

[Timmermans et al. 92] Timmermans, Patrie, Chris Kearns, "Modular design of a shop floor

control system", Integration in production management, H.J. Pels and J.C. Wortmann

(eds.), Elsevier, Amsterdam, 1992.

[Tirnrnermans 92] Timmermans, Patrie, FAST - MPS, note, Digital Cooperative Engineering

Centre, Jan. 1992.

[Timmermans et al. 93] Timmermans, Patrie, Laszlo Szakal, Ronald van Riessen, "On the

modular design of control systems", Computer integrated manufacturing proceedings

of the ninth C/M-Europe annual conference, Amsterdam, May 1993.

[Timmermans 93] Timmermans, Patrie, "Control architectures and modular information

systems: a comparative experiment", Proceedings of the international conference on

advances in production management, Athens, September 1993.

[Truijens et al. 90] Truijens, J., A. Oosterhaven, R. Maes, H. Jagers, F. van lersel,

Informatieinfrastructuur, een instrument voor het management, Kluwer, 1990

[Tsichritzis et al. 77] Tsichritzis, D., A. Klug (eds.), The ANSIIX3/SPARC DBMS framework.

report of study group on data base management systems, AFIPS Press, Montvale NJ,
1977.

references

[Veen 91] Veen, Eelco van, Modelling product structures by generic bills-of-material,

Elsevier, Amsterdam, 1992.

105

[Weber et al. 89] Weber, Detlef M., Colin L. Moodie, "From database systems to information

management systems: a requirement for computer integmted manufacturing and

assembly", Proceedings of the international conference on advances in production

management, Barcelona, 1989.

[Womack et al. 91] Womack, James P., Daniel T. Jones, Daniel Roos, The machine that

changed the world, Harper Perennial, New York, 1991.

[Wortmann 92] Wortmann, J.C., "Typology for one-of-a-kind production", Conference

proceedings advanced technologies in production management systems, IFIP WG5.7

working conference, Beijing, China, 4-8 May 1992.

[Yourdon et al. 79] Yourdon, E., L.L. Constantine, Structured design: fundamentals of a

discipline of computer program and systems design, Prentice-Hall, Englewood Cliffs,

1979.

106

107

Appendix Al

Notational conventions

The notational conventions for diagrams in this thesis are based on [Martinet al. 92]. Notations

will be used for classes, relationships, cardinalities, generalisation/specialisation, and

composition.

Class

A class is drawn as a rectangle:

D
Cardinality constraints

The term cardinality constraint refers to the restriction of how many of one item can be

associated with another. A line represents an association between two classes. This line should

always have cardinality symbols on both ends. The cardinality symbols express a maximum and
minimum constraint. The following figure summarizes the representation of minimum and

maximum cardinality constraints:

.___A_ H _s_

Each instance of A is associated
with how many instances of B

Minimum Maximum

0 1

1 1

0 More
than 1

1 More
than 1

108

The following figure presents an example of a data structure diagram with cardinality

constraints:

an order is for one
and only one customer

Generalisation/specialisation

an order has from
one to many line Items

Classes can have more specialised types called subtypes and more general types called

supertypes. Large filled arrows are sometimes used to indicate the direction pf generalisation.

The following figure can be read as 'Mammal is a subtype of Animal' or' Animal is a supertype

of Mammal':

Appendix A2

Modelling language

Notation

Logical symbols:

'\/ for all (universal quantifier symbol)

3 exists at least one (existential quantifier

symbol)

3! exist~ exactly one (existential quantifier

symbol)

A and (conjunction)

v or (disjunction)

..., no (negation)

-7 implies (implication)

is equal (identify predicate) /equivalence

Symbols for arithmetic operations:

+, -, x, /, etc.

Symbols for predicates:

<, ~. >, 2

Propositions

Propositions can take the following form:

l. ('\/ x: A(x): P(x))

2. (3 x : A(x): P(x))

Extensions:

e is member (membership predicate)

c is included (inclusion predicate)

~ is included or equal

::::> is subset

:J is subset or equal

u union

(') intersection

0 empty set

L summation

cardinality

{ xla} set of x satisfying a

109

110

where:

• A(x) is a condition on x

• P(x) is a proposition on x

• C'i/ x : A(x): P(x)) is true if and only if for all x's that satisfy condition A. proposition P is

true.

• (3 x : A(x): P(x)) is true if there is at least one x that satisfies condition A for which

proposition P is true.

• (3! x : A(x): P(x)) is true if there is exactly one x that satisfies condition A for which

proposition P is true.

Other notations

Other notations used are:

1. (I. x : A(x): P(x))

2. (# x : A(x): R(x))

where:

• A(x) is a condition on x

• P(x) is a numerical function on x

• R(x) is a proposition on x

• S is a set

• (I. x : A(x): P(x)) is the sum of all P(x) that satisfy condition A.

• (# x : A(x): P(x)) is the number of x's that satisfy condition A and for which proposition

Pis true.

Examples

• ('<:/ X : X E { l, 2, 3 }; X<2.5) = 1<2.5 A 2<2.5 A 3<2.5 =false

• (3 X : X E { l, 2, 3 }: X<2.5) = 1<2.5 V 2<2.5 V 3<2.5 =true

• (3! X: X E {2, 3}: x<2.5) = (2<2.5 A.., (3<2.5)) V (.., (2<2.5) A 3<2.5) =true

• (I. x:xe {1,2,3}:x2)=12 +22+32

• (# x:xe {l,2,3}:x<2.5)=1{x<2.51xe {1,2,3} }1=2

Ill

Appendix B

Example: the model factory

8.1 Introduction

The infotmation system for the distributed control

architecture is designed and implemented according

to the method of modular design. An infonnation

system module is specified for each of the controllers

in the control architecture (figure 3.3, section 3.3).

The specification consists of a functional description

of the module, a conceptual schema, and the domain

definitions, and is based on the specifications in

[Koopmans 92].

8.2 Second-side controller

8.2.1 Functiona1 description

The second-side controller receives requests from the

screenprinter controller. The second-side controller

distinguishes two types of requests: requests for

batches of new empty boards and requests for batches

of boards that need components on the second-side.

In the latter case, the second-side controller places a

request for a newly defmed batch of half products at

the reflow & cleaning controller.

The incoming and outgoing batches are dealt

with as follows. If the second-side buffer contains a

batch, then this batch is forwarded to the

screenprinter station and the corresponding batch

definition and request to the reflow & cleaning

controller are removed from the database. If the

second-side buffer does not contain a batch then the

second-side controller considers the requests for a

batch of empty boards. The eldest request will be

fulfilled frrst. Fulfilment of a request involves the

forwarding of a batch of empty boards from the raw

material store to the screenprinter station. The reason

why batches in the second-side buffer have a higher

priority than batches from the raw material store is to

avoid a dead-lock in the material flow of the loop

that is caused by products that need a second side. A

dead-lock can occur when all buffers and stations in

the loop contain a batch and none of the batches can

be moved to the next station or buffer. Furthermore,

it should be noted that the maximum contents of lhe

second-side buffer in the current implementation is

one batCh only, although physically it would be

possible to contain more batches.

112

B.2.2 Conceptual schema

A data structure diagram of the conceptual schema is
given in figure B.l. The conceptual schema, the

constraints and the domains of the second-side

controller are defmed as follows. The central object

classes in the diagram are request and batch. A

request refers to the batch that is requested.

Furthermore, a request refers to the station that will

consume the batch related to the request and to the

station that will produce the batch related to the
request. The batch refers to the item_type it contains,

and to the station that created the batch. From the

station, there is an optional relation to the batch to

indicate the batch-in-process. The buffer has an
optional relation to batch to indicate the batch it

contains.

figure 8.1 data structure diagram of the second-side

controller

SCHEMA second-side

CLASSES

class station

attributes

station_name : string;

produced_requests : SET OF request;

received_requests : SET OF request;

batch_available: { available,non-available);
ready_to_receive: {Yes, No);

batch_in_process : batch;

end; -- class station

class buffer

attributes

buffer_name : string;
status : {full, empty} ;

batch_in_buffer : batch;

end; -- class buffer

class batch

attributes

batch_id : integer;

creator : station;
item_type: item_type;

size : { 1..3 };

end; -- class batch

class request

attributes

producer : station;

appendix B

-- the station that will proouce the batch,

i.e. receive the request

consumer : station;

-- the station that will COJ1sume the batch,

i.e. create the request
batch : batch;

item_type: item_type;

end; -- class request

class item_type

attributes

item_type : string;

second_side : {yes, no);
end; -- class item_type

INTEGRITY CONSTRAINTS

-- for every information base state i must hold that

for each request r produced by thd controller there

exists a request r' received by the controller for a
batch of the same item type and si~e. for a second­

sided board. Moreover, r' require~ a second side

(second_side = 'Yes'), and r is not double sided
(second_side = 'No').

C2(i) =

(\;/ r: r E i.request A r.consumer.station_name =

'second-side':

(3 r': r' E i.request: r'.producer.station_name =

'second-side' A r'.batch.item_type.item_type =
r.batch.item_type.item_type A r' .batch.size =

r.batcb.size A r' .batch.item_type.second_side =

'yes' "r.batcb.item_type.second_side ='no'))

for every pair (iJ) of information base states

must hold that if in state i the second-side buffer is

full and the screenprinter station does not contain a

batch, it is not allowed that in state j the second-side

buffer is still full and the screenprinter does contain

a batch (which was received from the raw material

stock). This constraint expresses the priority of the

second-side buffer over the raw material store.

C9((i,j)) =

(\;/ b, b', s, s': bE i.buffer" b' E j.buffer"

s E i.station As' E j.station A b b' A s = s'

"b.buffer_name ='second-side' A

s.station_name='screenprinter':

b.status = 'full' " s.batch_in_process = nil

~ .., (b'.status = 'full' A s' .batch_in_process

*nil))

-- for every information base state i must hold that

the second-side controller may not produce more than

one request per batch.

Cll(i)""

(V b: b E i.batch: (# r: r E i.request:

r.cousumer.station_name='second-side' "
r.batch=b) s; I)

-- for every infonnation base state i must hold that

once a batch is in process in 'second-side', there may

be no outstanding requests for that batch by 'second­

side'

Cl2(i) =
(\;/ S, b; S E i.StatiOn A b E i.batcb A

s.batch_in_process=b A

s.station_name='second-side':

.., (3 r: r E i.request: r.batch=b A

r.consumer=s))

113

-- for every information base state i must hold that

the set of produced_requests of a station is identical

to the set of requests with that station as consumer

C20(i) = (V s: s e i.station: s.produced_requests

= { r E i.request I r.consumer = s))

-- for every information base state i must bold that

the set of received_requests of a station is identical to

the set of requests with that station as producer

C21(i) = (V s: s E i.station: s.received_requests =

{ r e i.request I r.producer = s))

-- for every infonnation base state i must bold that

for each request there is one producer station

C37(i) = (\;/ I: I E i.request:

(3! p: p E i.station: p = !.producer))

-- for every information base state i must bold that

for each request there is one consumer station

C38(i) = (\;/ 1: I E i.request:

(3! p: p E i.station: p =!.consumer))

-- for every information base state i must hold that

for each request there is one batch

C39(i) = (\;/ I: 1 E i.request:

(3! p; p E i.batch: p =!.batch))

-- for every information base state i must hold that

for each batch there is one creator station

C4l(i) = (V 1: IE i.batch:

(3! p: p E i.station: p = !.creator))

for every infonnation base state i must hold that

for each batch there is one item_type

C42(i) = (\;/ 1: I E i.batch:

(3! p: p e i.item_type: p = l.item_type))

DOMAIN RULES

-- the own domain of the module consists of the

objects of the object types request that bave 'second­

side' as the name of the associated station, and the
objects of the object types station and buffer with the

name 'second-side'.

114

own domain (i) =

{t e i.request I t.consumer.station_name ='second­

side') u {t e i.buffer I t.buffer_name = 'second­

side') u {t e i.station I t.station_name = 'second­

side')

-- the foreign domain of the module consists of all
objects of the object types item_type and batch, the

objects of the object type request with 'second-side'

as the station name, and the objects of the object type

station with 'screenprinter' or 'retlow&cleaning' as

the station name.

foreign domain (i) =
{ t e i.item_type) u { t e i.batch} u { t e i.request I

t.producer.station_name ='second-side'} u {t e

i.station I t.station_name = 'screenprinter' v

t.station_name = 'retlow&cleaning')

--note: formally spoken is 'i.item_type' identical to

' { t e i.item_type }'. However, for reasons of

uniformity and understandability, the latter notation is

used (end of note).

END; -- schema second-side

appendix B

8.3 Screenprinter controller

B.3.1 Functional description

The screenprinter station has the most straightforward

controller. The controller receives a request from the

component placement l controller. This request is

converted to a request for the second-side controller.

In due time, the screenprinter station receives a batch

from the raw material store or the second side buffer.

The type of the products of the ' batch is then

identified. A screen-printing mask is then selected

dependent on the type of product, and a 'squeegee'

operation is performed. The batch is forwarded to

component placement station l when all operations

bave been performed on all products' in a batch.

B.3.2 Conceptual scbema

The conceptual schema, the constraints aud the

domains are defmed as follows. A data structure

diagram of the conceptual schema is given in figure

B.2. The central object classes in the diagram are

request and batcb. A request refers i:o the batch that

is requested. Furthermore, a request refers to the
station that will consume the batcb related to the

request and to the station that will .K-oonce the batch

related to the request. The batch refers to the
I

item_type it contains, and to the station that created

the batch. From the station, there is an optional

relation to the batch to indicate the batch-in-process.

figure B.2 data structure diagram of the

screenprinter controDer
I

example: the model factory

SCHEMA screenprinter

CLASSES

class station

attributes
station_name : string;

produced_requests : SET OF request;

received_requests : SET OF request;

batch_available: { available.non-available};

ready_to_receive: {Yes, No};

batcb_in_process :batch;

end; class station

class batch

attributes
hatch_id : integer;

creator : station;

item_type: item_type;

size: {1..3};

end; class batch

class request

attributes
producer : station;

consumer : station;

hatch· batch;

item_type: item_type;

end; -- class request

class item_type

attributes
item_type : string;

second_side: {yes, no};

end; -- class item_type

INTEGRITY CONSTRAINTS

-- for every outgoing request there must be an

incoming request with the same item type and batch

size: for every information base state i must hold that

for every request that this station produces there must

exist a request that it receives, and the item type and

batch size of both requests should be identical.

Cl(i) =
('t;! r: r e i.request " r.consumer.station_name =

'screenprinter':

115

(3 r': r' e i.request: r'.producer.station_name =
'screenprinter' " r' .batch.item_type =

r.batch.item_type " r' .hatcb.size = r.batch.size))

-- for every information base state i must bold thai

the screenprinter may not produce more than one

request per hatch.

Cll(i) =
('if b: b e i.batcb: (# r: r e i.requesc

r.consumer.station_name = 'screenprinter' "

r.batch=b) ~ l)

-- for every information base state i must bold that

once a batch is in process in 'screenprinter', there

may be no outstanding requests for that hatch by

'screenprinter'

Cl2(i) =

('t;/ S, b: S E i.station 1\ b E i.batch 1\

s.batch_in_process=b " s.station_name =
'screenprinter':

-. (3 r: r e i.request: r.batch=b "

r.cousumer=s))

-- for every information base state i must bold that

the set of produced_requests of a station is identical

to the set of requests with that station as consumer

C20(i) = ('if s: s e i.station: s.produced_requests

= { r e i.request I r.consumer = s})

-- for every information base state i must bold that

the set of received_requests of a station is identical to

the set of requests with that station as producer

C21(i) = ('t;! s: s e i.station: s.received_requests =
{r e i.request I r.producer = s})

-- for every information base state i must bold that

for each request there is one producer station

C37(i) = ('t;/ I: 1 e i.request:

(3! p: p e i.station: p = !.producer))

-- for every information base state i must hold that

for each request there is one consumer station

116

C38(i) = (';/ 1: 1 e i.request:

(3! p: p e i.station: p =!.consumer))

-- for every information base state i must bold that

for eacb request there is one batch

C39(i) = (';/ 1: l e i.request:

(3! p: p e i.batcb: p = l.batcb))

-- for every information base state i must hold that

for each batch there is one creator station

C41(i) = (';/ 1: I e i.batcb:

(3! p: p e i.station: p = !.creator))

-- for every information base state i must bold that

for each batch there is one item_type

C42(i) = (';/ 1: I e i.batch:

(3! p: p e i.item_type: p = l.item_type))

-- for every information base state i must hold that

for eacb batch there is at least one request

C47(i) = (';/ b: b e i.batcb:

(3 r: r e i.request: r.batcb = b))

DOMAIN RULES

-- the own domain of the modole consists of the

o~ects of the object types request and station that

bave 'screenprinter' as the name of the (associated)

statiOJL

own domain (i) =
{ t e i.request I t.cousumer.station_name =
'screen printer' } v { t e i.station I

t.station_name='screenprinter')

-- the foreign domain of the screenprinter module

cousists of all objects of the object types item_type

and batch, the objects of the object type request with

'screenprinter' as the associated station name, and the

objects of the object type station with 'second-side'

or 'component-placement#l' as the station name.

appendix B

foreign domain(l) =
{t e i.item_type} v {t e i.batcb} v {t e i.request I

t.producer.station_name = 'screenprinter'} v
{t e i.station I t.station_name = 'second-side' v

t.station_name = 'component-placement# I' }

END; - schema screenprinter

example: the model factory

B.4 Component placement #1
controller

8.4.1 Functional description

The component placement #1 controller receives a
request from the component placement #2 controller.
This request is converted to a request for the
screenprinter controller. When a batch is received
from the screen printer the appropriate components are
placed upon the boards. The batch is forwarded to
component placement station #2 when all operations
have been performed on all products in a batch. If the
component placement #I controller has a shortage of
components the status of the component buffer is set
to empty in order to trigger the material handler for
replenishment.

8.4.2 Conceptual schema

The conceptual schema, the constraints and the
domains are defmed as follows. A data structure
diagram of the conceptual schema is given in figure
B.3. The central object classes in the diagram are
request and batch. A request refers to the batch that
is requested. Furthermore, a request refers to the
station that will consume the batch related to the
request and to the station that will produce the batch
related to the request. The batch refers to the
item_type it contains, and to the station that created
the batch. From the station, there is an optional
relation to the batch to indicate the batch-in-process.
Finally, there is a component buffer which refers to

the station and the item_type it contains.

117

figure B.3 data structure diagram of the component
placement #1 controller

SCHEMA component-placement# I

CLASSES

class station
attributes

station_name : string;
produced_reqnests : SET OF request;
received_requests : SET OF request;
batch_available: { available,non-available};
ready_to_receive: (Yes, No};
batch_in_process : batch;

end; -- class station

class component_buffer
attributes

buffer_name : string;
buffer_station : station;
status: {full, empty};

item_type: item_type;

end; ·· class buffer

class batch
attributes

batch_id : integer;
creator : station;
item_type: item_type;
size: {1..3};

end; •• class batch

118

class request

attributes

producer : station;
consumer : station;

batch : batch;
item_type : item_type;

end; -- class request

class item_type

attributes
item_type : string;
second_side: {yes, no};

end; -- class item_type

INTEGRITY CONSTRAINTS

for every outgoing request there must be an
incoming request with the same item type and batch

size: for every information base state i must hold that
for every request that this station produces there must
exist a request that it receives, and the item type and
batch size of both requests should be identical.
Cl(i) =
("t r: r E i.request A r.consumer.station_name =

'component-placement# I':
(3 r': r' e i.request: r'.producer.station_name =
'component-placement# I' A

r' .batch.item_type = r.batch.item_type A

r' .batch.size =: r.batch.size))

-- for every information base state i must hold that
the component placement #I may not produce more
than one request per batch.
Cll(i) =
("t b: b E i.batch: (# r: r e i.request:

r.consumer.station_name=: 'component­
placement# I' A r.batch=b) ~ I)

-- for every information base state i must hold that

once a batch is in process in 'component­
placement#l', there may be no outstanding requests
for that batch by 'component-placement#l'
CI2(i) =
('rf S, b: S E i.stafion A b E i.batch A

s.batch_in...:process=b A s.station_name =

appendix B

'component-placement#l': -. (3 r: r e

i.request: r.batch=b A r.consnmer=s))

-- for every information base state i must hold that
the set of produced_requests of a station is identical
to the set of requests with that station as consumer

C20(i) = ("t s: s e i.station: s.produced_requests
= { r e i.request I r.consumer = s})

-- for every information base state i must hold that
the set of received_requests of a station is identical to
the set of requests with that station as producer

C2l(i) = ("t s: s e i.station: s.received_requests =
{r e i.request l r.producer = s))

-- for every information base state i must hold that
for each component_buffer there is one item_type

C35(i) = ("t I: I e i.component_buffer:
(3! p: p e i.item_type: p = l.item_type))

-- for every information base state i must hold that

for each component_buffer there is one station
C36(i) : ("t I: I e i.component_buffer:

(3! p: p e i.station: p =
l.buffer_station))

-- for every information base state i must hold that
for each request there is one producer station
C37(i) = ("t 1: I E i.request:

(3! p: p e i.station: p = l.producer))

-- for every information base state i must hold that

for each request there is one consumer station
C38(i) = ("t 1: I e i.request:

(3! p: p e i.station: p = l.consnmer))

for every information base state i must hold that

for each request there is one batch
C39(i) = ("t I: I e i.request:

(3! p: p e i.batch: p = l.batch))

-- for every information base state i must hold that
for each batch there is one creator station
C41 (i) = ("t I: I E i.batch:

(3! p: p e i.station: p = I. creator))

example: the model factory

-- for every information base state i must hold that

for each batch there is one item_type
C42(i) = (\;f 1: 1 E i.batch:

(3! p: p E i.item_type: p = l.item_type))

-- for every information base state i must bold that
for each batch there is at least one request
C47(i) = (l;f b: b e i.batch:

(3 r: r e i.request: r.batch = b))

DOMAIN RULES

-- the own domain of the module consists of the

objects of the object types request, station and
component_buffer that have 'component­

placemenl#l' as the name of the (associated) station.

own domain (i) =
{ t e i.request I t.conswner.station_name =
'component-placemenl#l'} v {t e i.station I

t.station_name = 'component-placemenl#l'} v (t E

i.component_buffer I t.buffer_station.station_name =
'component-placemenl# l' }

-- the foreign domain of the module consists of all
objects of the object types item_ type and batch, the
objects of the object type request with 'component­
placemenl# I' as the producer station name, and the
objects of the object type station with 'component­

placemenl#2' or 'screenprinter' as the station name.

foreign domain(i) =
{ t E i.item_type} u { t E i.batch} u { t E i.request I
t.producer.station_name ='component-
placemenl# I') u { t e i.station I tstation_name =
• component-placemenl#2' v t.station_name =
'screen printer' }

END;-- schema component-placemenl#l

119

B.5 Component placement #2

controller

This module is identical to component placement #l.

120

8.6 Reftow & cleaning controller

8.6.1 Functional description

The reflow & cleaning controller receives a request

from the in-process store or from the second-side

controller. In either case, the request is converted to

a request for the component placement #2 controller.

When a batch is received from component placement

#2, the type of products in the batch is detected. In

case the products need a second-side to be processed,

the retlow & cleaning operation is performed, and the

batch is forwarded to the second-side buffer. In case

the products do not need a second-side, a slightly

different series of actions have to be taken. This is a

consequence of the fact that the in-process store does

not have a physical input-buffer to store batches

temporarily, and the fact that a batch should not stay

in the reflow & cleaning operation area after the

operation is performed. Therefore, the availability of

a batch is broadcasted before an operation is

performed upon the batch. The operations are delayed

until the in-process store is ready to receive the

batch. Then the operations are performed and the

batch is forwarded.

B.6.2 Conceptual schema

The conceptual schema, the constraints and the

domains are defmed as follows. A data structure

diagram of the conceptual schema is given in figure

B.4. The central object classes in the diagram are

request and batch. A request refers to the batch that

is requested. Furthermore, a request refers to the

station that will consume the batch related to the

request and to the station that will produce the batch

related to the request. The batch refers to the

item_type it contains, and to the station that created

the batch. From the station, there is an optional

relation to the batch to indicate the batch-in-process.

appendix B

figure B.4 data structure diagram of the reflow &

cleaning controller

SCHEMA reflow&cleaning

CLASSES

class station

attributes

station_name : string;

produced_requests : SET OF request;

received_requests : SET OF request;

batch_available: { available,non-available);

ready_to_receive: {Yes, No);

batch_in_process : batch;

end; -- class station

class batch

attributes

batch_id : integer;

creator : station;

item_type: item_type;

size: { 1 .. 3);

end; class batch

class request

attributes

producer : station;

consumer : station;

batch: batch;

item_type : item_type;

end; -- class request

example: the model factory

class item_type

attributes
item_type : string;

second_side : {yes, no};

end; -- class item_type

INTEGRITY CONSTRAINTS

-- for every outgoing request there must be an

incoming request with the same item type and batch
size: for every information base state i must hold that

for every request that this station produces there must
exist a request that it receives, and the item type and

batch size of both requests should be identical.

CHi)=

('It r: r e i.request " r.consumer.station_name =
• reflow&cleaning':

(3 r': r' E i.request r' .producer.station_name =
'reflow&cleaning' "r' .batch.item_type =

r.batch.item....type " r' .batch.size = r.batch.size))

-- to avoid a deadlock in the flow of second-side
products the following constraint is defined: for every

information base state i must bold that if there are
two or more requests produced by the reflow &
cleaning controller for a batch that needs a
second_side then there may be no more then 4

requests produced in total.
C8(i) =
(# r: r e i.request" r.consumer='reflow&cleaning':

r.batch.item_type.second_side = 'yes') ;c: 2 --+ (#

r: r E i.request A r.consumer.station_name =

'reflow&cleaning': r) :s; 4

-- for every information base state i must bold that
the reflow & cleaning controller may not produce
more than one request per batch.
Cll(i) =
('It b: b e i.batch: (# r: r e i.request

r.consumer.station_name= • reflow&cleaning'"
r.batch=b) :s; 1)

.. for every information base state i must bold that
once a batch is in process in 'reflow&cleaning', there
may be no outstanding requests for that batch by

'reflow&cleaning'

Cl2(i) =

121

('It s, b: s e i.station " b e i. batch A

s.batch_in__process=b " s.station_name =
'second-side': ..., (3 r: r e i.request: r.batch=b

"r.consumer=s))

-- for every information base state i must bold that
the set of produced_requests of a station is identical

to the set of requests with that station as consumer
C20(i) = ('It s: s e i.station: s.produced_requests

= {r e i.request I r.consumer = s})

-- for every information base state i must hold that
the set of received_requests of a station is identical to

the set of requests with that station as producer
C2l(i) = ('It s: s e i.station: s.received_requests =

{ r e i.request I r.producer = s})

-- for every information base state i must hold that

for each request there is one producer station
C37(i) = ('It 1: I e i.request

(3! p: p e i.station: p = l.producer))

-- for every information base state i must hold that
for each request there is one consumer station
C38(i) = ('It 1: l e i.request:

(3! p: p e i.station: p = lconsumer))

-- for every information base state i must bold that

for each request there is one batch
C39(i) = ('It 1: 1 e i.request:

(3! p: p e i.batch: p = !.batch))

-- for every information base state i must bold that
for each batch there is one creator station
C41(i) = ('It 1: I e i.batch:

(3! p: p e i.station: p = !.creator))

for every information base state i must hold that
for each batch there is one item_type
C42(i) = ('It 1: I E i.batcb:

(3! p: p E i.item_type; p = l.item_type))

122

-- for every infonnation base state i must hold that

for each batch there is at least one request

C47(i) = ('</ b: b E i.batch:

(3 r: r e i.request: r.batch = b))

DOMAIN RULES

-- the own domain of the module consists of the

objects of the object typeS request and station that

have 'reflow&cleaning' as the name of the

(associated) station.

own domain (i) =
{ t e i.request I tcousmner.station_name =
'reflow&cleaning'} v {t E i.station I

t.station_name= 'reflow&cleaning' }

-- the foreign domain of the module consists of all

objects of the object typeS item_type and batch, the

objects of the object type request with

'reflow&cleaning' as the producer station name, and

the objects of the object type station with 'in-process­

store', 'second-side' or 'component-placement#2' as

the station name.

foreign domain(i) =
(t e i.item_type) v { t e i.batch J v { t e i.request I

t.producer.station_name = 'reflow&cleaning'} v { t
e i.station I t.station_name = 'in-process-store' v

t.station_name = 'second-side' v t.station_name =
'component-placement#2'}

END; -- schema reflow&cleaning

appendix B

B. 7 In-process store controller

B.7.1 Functional description

The in-process store controller receives a request

from the test & repair controller. The request will

decrease the economic stock level of the in-process

store. If possible, the in-process store controller will

fulfil the request by taking the products from the

stock and forwarding them to test & repair. A new

batch is defined and a request is generated when the

minimmn stock level is reached. This request is then

sent to the reflow & cleaning controller. The in­

process store controller monitors Continuously the

availability of a batch in the reflow & cleaning

controller. A batch received from the reflow &

cleaning controller will be stored in the stocks and

the stock level will be increased.

B. 7.2 Conceptual schema

The conceptual schema, the constraints and the

domains are defmed as follows .. A data structure

diagram of the conceptual schema lis given in figure

B.S. Tbe central object classes in the diagram are

request and batch. A request ref~ to the batch that

is requested. Furthermore, a request refers to the

station that will consmne the batch related to the

request and to the station that will produce the batch

related to the request Tbe batch refers to the

item_type it contains, and to the station that created

the batch. From the station, there is an optional

relation to the batch to indicate the batch-in-process.

Finally, the in-process store schema contains objects

of the object type stock. Stocks refer to the item_type

they contain and the station they belong to.

example: the model factory

figure 8.5 data structure diagram of tbe in-process­

store controller

SCHEMA in-process-store

CLASSES

class station

attributes
station_name : string;

produced_requests : SET OF request;

received_requests : SET OF request;

batch_ available: { available,noo-available};

ready_to_receive: {Yes, No};

batcb_in_process : batch;

end; -- class station

class stock

attributes
station : station

item_type : item_type;

actual_stock_level : integer;

economic_stock_level : integer;

maximum_stock_level : integer;

minimum_stock_level : integer;

end; -- class stock

class batch

attributes
batch_id : integer;

creator : station;

item_type: item_type;

size : { 1..3 };

end; -- class batch

class request

attributes
producer : station;

consumer: station;

batch: batch;

item_type : item_type;

end; -- class request

class item_type

attributes
item_type : string;

secood_side : {yes, no};

end; -- class item_type

INTEGRITY CONSTRAINTS

123

-- batches can only be received by the in-process

store if tbe stock for that item type has sufficient

space: for every information base state i must bold

tbat if tbere is a batch available in reflow and

cleaning, but the maximum stock level for that item

type would be exceeded, then the in-process store is

not ready to receive that batch.

C3(i) =
('v s, t, st: s,t e i.station A st e i.stock:

t.station_name = 'in-process-store' A

s.statioo_name = 'reflow&cleaning' A

s.batch_available = 'available' A

slstation = t A

stitem_type = s.batcbjn_process.item_type A

slactual_stock_level + s.batcb_in_process.size

> slmaximmn_stock_level -7

t.ready_to_receive = 'No')

-- for every information base state i mnst bold tbat

the economic stock equals the actual stock plus

outstanding requests minns incoming requests.

ClO(i) =
CV s: s e i.stock: s.econornic_stock:_level =

s.actual_stock_level + (l: r: r e i.request A

r.consumer.station_name = 'in-process-store':

r.batch.size) - (l: r: r e i.request A

r.producer.station_name = 'in-process-store':

r.batcb.size))

124

-- for every information base state i must hold that

the in-process-store may not produce more than one

request per batch.

Cll(i) =
0i b: b e i.batch: (# r: r e i.request:

r.consumer.station_:name= 'in-process-store' "

r.batch=b) ~ l)

-- for every information base state i must hold that

once a batch is in process in 'in-process-store', there

may be no outstanding requests for that batch by 'in­

process-store'.

Cl2(i) =
('V s, b: s e i.station "be i.batch "

s.batch_in_process=b " s.station_name = 'in­

process-store': .., (3 r: r e i.request: r.batch=b

"r.consumer=s))

-- for every information base state i must hold tbat

the set of produced_requests of a station is identical

to the set of requests with that station as consumer

C20(i) = 0i s: s e i.station: s.produced_requests

= {r e i.request I r.consumer = s})

-- for every information base state i must bold that

the set of received_requests of a station is identical to

the set of requests with that station as producer

C2l(i) = 0i s: s e i.station: s.received_requests

{ r e i.request I r.producer = s})

-- for every information base state i must bold tbat
for each stock. there is one item_type

C33 (i) = ('V 1: 1 e i.stock:

(3! p: p e i.item_type: p = l.item_type))

-- for every information base state i must hold that

for each stock there is one station

C34(i) = 0i I: I E i.stock:

(31 p: p e i.station: p = !.station))

-- for every information base state i must hold that

for each request there is one producer station

C37(i) = 0i I: I e i.request:

(3! p: p e i.station: p = !.producer))

appendix B

-- for every information base state i must hold that

for each request there is one consumer station

C38(i) = 0i 1: l e i.request:
(3! p: p e i.station: p =!.consumer))

-- for every information base state i must hold that

for each request there is one batch

C39(i) = ('V 1: I e i.request:

(3! p: p e i.batch: p = !.batch))

-- for every information base state ~ must hold that

for each batch there is one creator station

C41(i) = 0i 1: IE i.batch:

(3! p: p e i.station: p = !.creator))

-- for every information base state i must hold that

for each batch there is one item_type

C42(i) = ('V 1: I e i.batch:

(3! p: p e i.item_type: p = J.item_type))

DOMAIN RULES

-- the own domain of the module consists of the

objects of the object types request, 'station and stock

that have 'in-process-store' as ~ name of the

(associated) station.

own domain (i) =
{ t e i.request I t.consumer.station_name = 'in­

process-store' } u { t e i.station I t.station_name=

'in-process-store' } u { t e i.stock I

t.station.station_name 'in-process-store'}

-- the foreign domain of the mod~le consists of all
objects of the object types item_type and batch, the

objects of the object type request with 'in-process­

store' as the producer station natrle, and the objects

of the object type station witll 'test&repair' or

'reflow&cleaning' as the station name.

foreign domain(i) = ,
{ t E i.item_type} u { t e i.batch }, u { t e i.request I

t.producer.station_name = 'in-process-store') u { t

e i.station I t.station_name = 'test&repair' v

t.station_name = 'reflow&cleaning' l

END; -- schema in-process-store,

example: the model factory

8.8 Test & repair controller

8.8.1 Functional description

Test & repair contains two stations, a test station and

a repair station. A buffer is located between the

repair station and the test station to store repaired

batches. The test & repair controller receives a

request from the fmal product store controller. This

request is converted to a request for the in-process

store controller.

The test station can accept batches from both the

in-process store and the repair buffer. The batches in

the repair buffer have priority to the batches coming

from the in-process store. This constraint is created in

order to avoid hardware deadlocks in the test-and­

repair cycle.

When a batch is received from in-process store

the corresponding request is deleted by the test-and­

repair controller. Then the product type is determined,

so the test operation can be performed. Depending on

the result of the test, the batch is either forwarded to

the finished product store, or sent to the repair

station. Rejected batches are repaired manually at the

repair station, and then put into the repair buffer. The

operator of the repair station can request a tray of

components at the material handler system by

pushing the appropriate button.

8.8.2 Conceptual schema

The conceptual schema, the constraints and the

domains are defmed as follows. A data structure

diagram of the conceptual schema is given in figure

B.6. The central object classes in the diagram are

request and batch. A request refers to the batch that

is requested. Furthermore, a request refers to the

station that will consume the batch related to the

request and to the station that will produce the batch

related tO the request. The batch refers to the

item_type it contains, and to the station that created

the batch. From the station, there is an optional

relation to the batch to indicate the batch-in-process.

The buffer bas an optional relation to batch to

125

indicate the batch it contains. Furthermore, the

component buffer refers to the station and the

item_type it contains, and the component request

concerns one specific item type and one component

buffer.

figure B.6 data structure diagram of the test &
repair controller

SCHEMA test&repair

CLASSES

class station

attributes
station_name : string;

produced_requests : SET OF request;

received_requests : SET OF request;

batcb_available: { available,non-available l;
ready_to_receive: (Yes, No);

batch_in_process : batch;

end; -- class station

class buffer

attributes
buffer_name : string;

status : {full, empty};

batchjn_buffer : batch;

end; -- class buffer

126

class component_buffer

attributes
buffer_name : string;
buffer_station : station;
status : {full, empty};
item_type: item_type;

end; •• class component_buffer

class batch
attributes

batch_id : integer;
creator : sla.tion;
item_type: item_type;

size: I 1..3);

end; -- class batch

class request
attributes

producer : sla.tion;
consumer : sla.tion;

batch : batch;
item_type : item_type;

end; •• class request

class component_request
attributes

item_type : item_type;

buffer : component_buffer;

end; -- class request

class item_type
attributes

item_type : string;

second_side: {yes, no};

end; -- class item_type

INTEGRITY CONSTRAINTS

-- for every outgoing request there must be an
incoming request with the same item type and batch

size: for every information base state i must bold that
for every request that this sla.tion produces there must
exist a request that it receives, and the item type and
batch size of both requests should be identical.

appendix B

CI(i) =
('V r: r e i.request A r.consumer.station_name =

'test&repair':
(3 r': r' e i.request: r' .producer.station_name =
'fmal-product-store' A r' .batcb.item_type =

r.batch.itenLtype A r' .batcb.size = r.batcb.size))

for every pair (i,j) of information base states
must hold that if in state i the repair buffer is full and
there is a batch available in the in-process-store then
the repair buffer bas priority (in other words, it is not
allowed to remove the batch from the in-process-store
first)
C7((i,j)) =

('V b, s: b e i.buffer A b e j.buffer A s e i.station
As e j.station A b.buffer_name =
'repair_buffer' A s.station_name ='in-process­

store':
b.status = 'full' A s.batcb_ayailable =
'available' ~ .., (b.status =,'full' A

s.batch_available = 'non-available'))

-- for every information base state, i must hold that
the test & repair controller may not produce more

than one request per batch.
Cll(i) =
{'V b: b e i.batch: (# r: r e i.request:

r.consumer.station_name= 'test&repair' A
r.batch=b)::; 1)

-- for every information base state i must hold that

once a batch is in process in 'test&repair', there may

be no outstanding requests for that batch by
'test&repair'

Cl2(i) =
("i/ S, b: S E i.statiOn AbE i.batch A

s.batch_in_process=b A s.statibn_name

'test&repair':-. {3 r: r e i.request r.batch=b A
r.consumer=s))

-- for every information base state i must hold that
the set of produced_requests of a' station is identical
to the set of requests with that station as consumer
C20(i) = ('V s: s e i.station: s.produced_requests

= { r e i.request I r.consumer = s})

example: the model factory

-- for every information base state i must bold tbat
the set of received_requests of a station is identical to

the set of requests with tbat station as producer

C21 (i) = ("V s: s e i.station: s.received_requests =
{r e i.request I r.producer = s})

-- for every information base state i must bold tbat
for each component_buffer there is one item_type

C35(i) = ('<:! 1: I e i.component_buffer:

(3! p: p E i.item_type: p = l.item_type))

-- for every information base state i must bold that

for each component_ buffer there is one station

C36(i) = ("V 1: I e i.component_buffer:

(3! p: p e i.station: p = Lbuffer_station))

-- for every information base state i must bold tbat

for each request there is one producer station

C37(i) = ('<:/ 1: I e i.request:

(3! p: p E i.station: p = !.producer))

-- for every information base state i must bold tbat

for each request there is one consumer station

C38(i) = ("V 1: I E i.request:

(3! p: p E i.station: p = l.cousumer))

for every information base state i must bold that

for each request there is one batch

C39(i) = ('<:! 1: I e i.request:

(3! p: p E i.batch: p = !.batch))

-· for every information base state i must hold that

for each batch there is one creator station

C4l(i) ("V 1: I E i.batch:

(3! p: p e i.station: p = !.creator))

for every information base state i must hold that

for each batch there is one item_type

C42(i) = ("V 1: I e i.batch:

(3! p: p e i.ltem_type: p = l.item_type))

-- for every information base state i must hold that

for each component_request there is one item_type

C45(i) ("V 1: I e i.component_request:

(3! p: p E i.item_type: p = l.item_type))

127

-- for every information base state i must hold that

for each component_request there is one

component_ buffer

C46(i) = ("V 1: I E i.component_request:

(3! p: p e i.component_buffer:

p = !.buffer))

-- for every information base state i must hold that

for each batch there is at least one request

C47(i) = ('<:/ b: b E i.batch:

(3 r: r e i.request: r.batch = b))

DOMAIN RULES

-- the own domain of the module consists of the

objects of the object types request,

component_request, and component_ buffer that have

'test&repair' as the name of the associated station,

and the objects of the object types buffer and station

with 'test&repair' as the name.

own domain (i) =
{ t e i.request I t.consumer.station_name =
'test&repair'} v (t E i.station I t.station_name=

'test&repair' I v { t e i.component_request I

t.buffer.buffer_station.station_name = 'test&repair'}

v { t e i.buffer I t.buffer_name = 'test&repair'} v

{ t e i.component_buffer I

t.buffer_station.station_name = 'test&repair'}

-- the foreign domain of the module consists of all

objects of the object types item_type and batch, the

objects of the object type request with 'test&repair'

as the producer station name, and the objects of the

object type station with 'final-product-store' or 'in­

process-store' as the station name.

foreign domain(i) =
{t e i.item_type} v {t e i.batchl v {t E i.request I

t.producer.station_name = 'test&repair' I v { t e

i.station I tstation_name = 'final-product-store' v

t.station_name = 'in-process-store' }

END; -- schema test&repair

128

B.9 Final product store controller

8.9.1 Functional description

The fmal product store controller receives production

orders and related production order lines from an

external source. On due date, the production orders

are opened and decrease the economic stock level of

the fmal product store. If possible, the final product

store controller will fulfil the production orders by

taking the products from the stock and forwarding

them to the shipment area in the model factory. A
new batch is defined and a request is generated wben

the minimum stock level is reached. This request is

then sent to the test & repair controller. The final

product store controller waits upon the arrival of a

batch. A batch received from the test & repair

controller will be stored in the stocks and the stock

level will be increased.

8.9.2 Conceptual schema

The conceptual schema, the constraints and the

domains are defmed as follows. A data structure

diagram of the conceptual schema is given in figure

B.7. The central object classes in the diagram are

request and batch. A request refers to the batch that

is requested Furthermore, a request refers to the

station that consumes the batch related to the request

and to the station that produces the batch related to

the request. The batch refers to the item_type it

contains, and to the station that created the batch.

From the station, there is an optional relation to the

batch to indicate the batch-in-process. Finally, the

final product store schema contains objects of the

object type stock. Stocks refer to the item_type they

contain and the station they belong to.

appendix B

figure B.7 data structure diagram, of the final

product store controller

SCHEMA final-product-store

CLASSES

class station

attributes
station_name : string; ,

produced_requests : SET OF request;

received_requests: SET' OF request;

batch_available: { available,non-available);

ready_to_receive : {Yes, No};

batch_in_process : batch;

end; -- class station

class location

attributes
location_id : { 1..9 J;
current_amount : { 0, I};
maximum amount : integer;

itell'Ltype : item_type; .

end; -- class location

class stock

attributes
station : station

item_type : item_type;

example: the model factory

actual_stock_Ievel : integer;

economic_stock_level : integer;

maximum_stock_level : integer;

minimum_stock_level : integer;

end; -- class stock

class batch

attributes
batcb_id : integer;

creator : station;

item_type: item_type;

size: { 1..3};
end; -- class batch

class request

attributes
producer : station;

consumer : station;

batch : batch;

item_type : item_type;

end; -- class request

class item_type

attributes
item_type : string;

second_side: {yes, no};

end; -- class item_type

class production_order

attributes
order_id : integer;

order_lines: set of production_order_line;

due_date : date;

status : {bold, open, closed} ;

end; -- class production_order

class production_order_line

attributes
order: production_order;

line_id : integer;

item_type : item_type;

status : (hold, open, closed} ;

qty _requested : integer;

qty _delivered : integer;

end; -- class production_order_Iine

129

INTEGRITY CONSTRAINTS

-- for every information base state i must bold that if

the status of a production order is hold, then the

status of all its order lines must be hold.

C4(i) =
Cv o: o e i.production_order: o.status = 'bold' ~

(V I: I e o.order_lines: !.status = 'hold'))

-- for every pair (i,j} of information base states

must hold that if in state i the status of all order lines

of a production order is closed, then the status of the

production order must be closed in state j.

C5((iJ)) =
(V o: o e i.production_order A o e

j.production_order: ('if 1: I e i.o.order_lines:

l.status ='closed')~ i.o.status = 'closed'))

-- for every information base state i must hold that if

the status of one of the order lines of a production

order is open, then the status of the production order

must be open.

C6(i) =
('if o: o e i.production_order: (3 I: I e

o.order_lines: !.status= 'open')~ o.status =
'open'))

-- for every information base state i must hold that

the economic stock equals the actual stock plus

outstanding requests minus incoming requests.

ClO(i) =
(V s: s e i.stock: s.economic_stock_level =

s.actual_stock_level + a: r: r e i.request A

r.consumer.station_name = 'final-product-store':

r.batch.size) - a: r: r e i.request A

r.producer.station_name = 'final-product-store':

r.batch.size))

-· for every information base state i must hold that

the final-product-store may not produce more than

one request per batch.

Cll(i) =

('il b: b e i.batch: (# r: r e i.request:

r.consumer.station_name='fmal-product-store'

A r.batch=b) :;;; 1)

130

-- for every information base state i must hold that

once a batch is in process in 'final-product-store',

there may be no outstanding requests for that batch

by 'fmal-product-store'.

Cl2(i) =
(rl S, b: S E i.station A b E i.batch A

s.batcb_in_process=b A s.station_name = 'final­

product-store': ..., (3 r: r e i.request: r.batcb=b

A r.consumer=s))

-- for every information base state i must hold that

the set of produced_requests of a station is identical

to the set of requests with that station as consumer

C20(i) = Crt s: s e i.station: s.produced_requests

= { r e i.request I r.consumer = s})

-- for every information base state i must hold that

the set of received_requests of a station is identical to

the set of requests with that station as producer

C2l(i) = ('v s: s e i.station: s.received_requests =

{ r e i.request I r.producer = s})

-- for every information base state i must bold that

the order_lines of a production_order is identical to

the set of orderJines with that production_order as

the order

C22(i) = ('<I s: s E i.production_order:

s.order_lines = (r E i.order_line I r.order

=s))

-- for every information base state i must hold that

for each production order there is at least one

production orderline.

C30{i) = Crt p: p e i.production_order:

(# 1: I e p.order_lines: I) <:: I)

-- for every information base state i must bold that

for each production orderline there is one production

order.

C3l(i) = ('<I 1: I e i.production_order_line:

(3! p: p e i.production_order: p =
!.production_ order))

-- for every information base state i must hold that

for eacb production orderline there is one item_type.

appendix B

C32(i) = ('<I 1: I e i.production_order_line:

G! p: p e i.item_type: p = l.item_type))

-- for every information base state i must bold that

for each stock there is one item_type

C33(i) = ('<I 1: I E i.stock:

G! p: p e i.item_type: p = l.item_type))

-- for every information base state i must hold that

for each stock there is one station

C34(i) = Crt l: I e i.stock:

(3! p: p e i.station: p = l.station))

-- for every information base state i, must bold that

for each request there is one produCGr station

C37(i) = ('<I 1: I e i.request:

G! p: p e i.station: p = !;producer))

-- for every information base state i must bold that

for each request there is one consumer station

C38(i) = ('<I I: I e i.request

(3! p: p i.station: p = !.consumer))

-- for every information base state ,i must hold that

for each request there is one batch ,

C39(i) = ('<I 1: I e i.request

(3! p: p e i.batcb: p = 1;batcb))

-- for every information base state' i must bold that

for each batch there is one creator station

C4l(i) = ('<I 1: I e i.batcb:

(3! p: p e i.station: p = !.creator))

-- for every information base sta~ i must hold that

for each batch there is one item_type

C42(i) = Crt l: I E i.batcb:

(3! p: p e i.item_type: ,P = Utem_type))

-- for every information base stare i must bold that

for each location there is one item_type

C44(i) = ('<I 1: I e i.location:

(3! p: p E i.item_type:' p = !.item_ type))

example: the model factory

DOMAIN RULES

-- tbe own domain of tbe module consists of tbe

objects of tbe object types production_order,

production_order_line and location, and all objects of

tbe object types request and station !bat llave 'fmal­

product-store' as tbe name of tbe (associated) station.

own domain (I) =
{ t e i.production_order I v
(t e i.production_order_line) v {t E Llocation} v
{ t e i.request I tconsumer.station_name = 'fmal­

product-store') v (t e i.station I t.station_name=

'final-product-store'}

-- tbe foreign domain of the module consists of all

objects of tbe object types item_type and batch, and

tbe objects of tbe object type station witb

'test&repair' as tbe station name.

foreign domain(i) { t e i.item_type) v { t e

i.batch} v (t e i.station I t.station_name=

'test&repair'}

END; -- schema final-product-store

131

B.lO Material handler controller

B.IO.l Functional description

The material handler controller monitors continuously

tbe component buffers of tbe component placement

stations. Simultaneously, tbe controller can receive

component requests from tbe test & repair controller.

A move order for a component tray is created if

eitber a component buffer is empty or if a component

request is placed. Each move order receives a priority

number, and orders are executed according their

priority.

B.10.2 Conceptual schema

The conceptual schema. tbe constraints and tbe

domains are defmed as follows. A data structure

diagram of tbe conceptual schema is given in figure

B.8. A move order refers to one component buffer

which contains one item type. Furthermore,

component requests are made for one item type and

one component buffer.

figure B.8 data struCture diagram of tbe material

handler controller

SCHEMA material-handler

CLASSES

class component_buffer

attributes

buffer_name : string;

status : {full, empty};

item_type: item_type;

end; -- class component_buffer

132

class move_order

attributes
order_id: integer;

buffer : component_buffer;

priority : integer;

end; -- class move_order

class component_request

attributes
item_type : item_type;

buffer : component_buffer;

end; -- class request

class item_type

attributes
item_type : string;

second_side : {yes, no l;
end; -- class item_type

INTEGRITY CONSTRAINTS

-- for every information base state i must hold that

for each component_buffer there is one item_type

C35(i) = ('V 1: I e i.componenLbuffer:

(3! p: p e i.item_type: p = l.item_type))

-- for every information base state i must hold that

for each move_order there is one component_ buffer

C40(i) ('<;/ 1: I e i.move_order:

(3! p: p e i.component_buffer: p =
I. buffer))

-- for every information base state i must hold that

for each component_request there is one item_type

C45(i) = ('V 1: I e i.component_request:

(3! p: p e i.item_type: p = l.item_type))

-- for every information base state i must hold that

for each component_request there is one

componenLbuffer

C46(i) = ('V 1: I e i.componenLrequest:

(3! p: p e i.component_buffer: p =

!.buffer))

DOMAIN RULES

-- the own domain of the module consists of the

objects of the object types move_ order

own domain (I)= {t e i.move_order)

-- the foreign domain of the module consists of all
objects of the object types item_type and

component_ buffer

foreign domain(i) =

{t e i.item_type) v {t e i.component_request) v
{t e i.componenLbuffer)

END; --schema material-handler

133

Appendix C

Glossary

Aggregation: a special form of association,

between a whole and its parts, in which the

whole is composed of the parts [Rumbaugh et al.

91].

Applicable constraint: a constraint is applicable

e is a possibility that the constraint may be
violated by an update operation that is defined

for that module.

Association: a relationship among instances of

two or more classes describing a group of links

with common structure and common semantics

[Rumbaugh et al. 91].

Cartesian product: given the collection of (not

necessarily distinct) sets D1, 0 2, ••• , o., the

Cartesian product 0 1 x 0 2 x ... x o., is the set

of all possible n-tuples <d1,~, ••• ,d.>, such that

d1e 0 1, ~E 0 2, ••• d.e o. [Put 88].

Class: a description of a group of objects with

similar properties, common behaviour, common

relationships, and common semantics

[Rumbaugh et al. 91].

Classification: a form of abstraction in which a

collection of things is considered as a higher

level construct called type, class or set [Put 88]

Client: a system component that calls upon the

services provided by another component The

component providing the service is the supplier

[Rumbaugh eta!. 91].

Cohesion: the insensitivity of a module for

structural changes in its environment. Cohesion

should be maximized to create more autonomous

units. A measure for cohesion is defined as the

ratio between the number of own specifications

and the number of visible specification of a

module [Pels 88].

Conceptual schema: a definition of the total
information contents of the information system,

both structure and semantics [Put 88].

Conceptualisation principle: a conceptual

schema should only include conceptually

relevant aspects, both static and dynamic, of the

universe of discourse, thus excluding all aspects

of (internal and external) data representation,

physical data organisation and access as well as

all aspects of particular external user

representations such as message formats, data

structures, etcetera [Griethuysen 82].

Constraint: a boolean function about some

condition or relationship that must be maintained

as true.

134 appendix C

Coupling: a measure for the knowledge other

modules have about that module. Coupling

should be minimized to allow changes in a

module to take place without interfering other

modules. A measure for coupling of a module A

is defined as the average of the number of other

modules for which each own specification

(object class, attribute or constraint) of A is

visible.

Database: the concrete physical representation of

the information contained in the data processing

system to describe the universe of discourse.

Data independence: the capacity to change the

schema at one level of a database system

without having to change the schema at the next

higher level.

Derived attribute: an attribute that is computed

from other attributes [Rumbaugh et a1. 91].

Distributed database: a database which is

distributed over multiple sites, while a single

global conceptual schema is provided to the

users [Bell et al. 92].

Dynamic constraint: a boolean function on the

transition from the current information base state

to a new information base state.

External schema: a description of the database

view of one group of database users. Each view

typically describes the part of the database that

a particular user group is interested in and hides

the rest of the database from that user group

[Elmasri et al. 89].

Federated database system: a collection of

cooperating but autonomous component database

systems [Sheth et al. 90].

Flexibility: the ability to adjust the primary

process according to new requirements of the

environment.

Foreign domain: the set of objects (in a specific

instant or period of time) for which a module

has retrieval authorization but no update

authorization.

Generalisation: the relationship between a class

and one or more refined or specialised versions

of it [Rumbaugh et al. 91].

Horizontal fragmentation: (1) horizontal module

fragmentation. Allotting different objects of one

class to different domains or modules, (2)

horizontal database fragmentation. distribution of

different objects of one class over different local

schemas.

Information base: a description of the actual

objects consistent with the conceptual schema

that are perceived to exist in the universe of

discourse in a specific instant or period of time

and their actual states of affairs.

Information hiding: all information about a

module should be private to the module unless

it is specifica11y declared public [Meyer 88].

Infrastructure: hardware and

(computers, networks, opetating

applications, etc.) that is shared

different autonomous units.

software

systems,

between

Inheritance: an object oriented mechanism that

permits classes to share attributes and operations

based on a relationship, usually generalisation

[Rumbaugh et al. 91].

Instance: an object described by a class

[Rumbaugh et al. 91].

Integrity constraint: see Constraint.

lntemal schema: a description of the physical

storage structure of the database. An internal

schema uses a physical data model and describes

the complete details of data storage and access

paths for the database [Elmasri et al. 89].

Linguistic modular units: this principle refers to

the requirement that the language used to specify

the design must support the view of modularity.
I.e., the grammar of the language should support

the notion of modularity.

Logical data independence: the capacity to

change the conceptual schema without having to

change external schemas or application
programs.

Memory independence: corresponds to the

possibility of recalling the past without being

involved in its actual representation in the

current state of the system [Put 88].

Method: the implementation of an operation for
a specific class [Rumbaugh et al. 91].

Modular composability: a method should favour

the production of software elements that may

freely be combined with each other to produce

new systems, possibly in an environment
different from the one in which they were

initially developed.

135

Modular continuity: a method should make it

possible that a small change in a problem

specification results in a change of just one

module. Such changes should not affect the

architecture of the system, that is to say the

relations between modules.

Modular decomposability: a method should help

in the decomposition of a new problem into

several subproblems, whose solution may be

pursued separately. In addition, the method

should also help the decomposition of an

existing system into separate components.

Modular protection: a method should yield
architectures in which the effect of an abnormal

condition occurring at run-time in a module will

remain confined to this module, or at least will

propagate to a few neighbouring modules only.

Modular understandability: a method should

help to produce modules that can be separately

understood by a human reader. At worst, the

reader will have to look at a few neighbouring

modules.

Module: a part of an information base that can

be used separately [Pels 88]. Sometimes a

weaker definition is used: a coherent subset of a

system containing a tightly bound group of

classes and their relationships [Rumbaugh et at.
91].

Object: a concept, abstraction, or thing with

crisp boundaries and meanings for the problem

at hand; an instance of a class [Rumbaugh et al.

91].

136
---·-------------

Object-orientation: a software development

strategy that organises software as a collection of

objects that contain both data structure and

behaviour [Rumbangh et al. 91].

Own domain: the set of objects (in a specific

instant or period of time) for which a module

has update authorization.

Physical data independence: the capacity to

change the internal schema without having to

change the conceptual (or external) schemas.

Private domain: the set of objects (in a specific

instant or period of time) from the own domain

that are not included in the view domain of any

other module.

Public domain: the set of objects (in a specific

instant or period of time) from the own domain

of a module that are visible for one or more

other modules.

Specialisation: the creation of subclasses from a

superclass by refining the superclass [Rumbaugh

et al. 91].

Static constraint: a boolean function that must

be satisfied in every information base state.

Temporal constraint: generalisation of a dynamic

constraint referring to information base states

different from the current (or new) state;

checking a temporal constraint requires

information about one or more states in the past
(or future).

Transferability: the property of an application

that the application can be relocated to another

module or a modified module. An application is

transferable to a modified module if it satisfies

all constraints of the modified module. An
application is transferable to another module if

it satisfies all constraints of that module.

Universe of discourse: that portion of the real

world or postulated world that is being modelled

[Griethuysen 82].

User (in a strict sense): anybody or anything that

issues commands and messages to the

information system and receives messages from

the information system [Griethuysen 82].

Vertical fragmentation: (I) vertical module

fragmentation. Allotting different attributes of

one object to different domains or modules.

Vertical module fragmentation can be avoided

by the definition of subtypes. (2) vertical

database fragmentation. distribution of different

attributes of one object over different local

schemas.

View domain: the set of objects (in a specific

instant or period of time) that are visible for a

module.

Visible constraint: a constraint is visible in a

module if and only if a user of that module can

determine the logic value of the constraint.

100% principle: all relevant general static and

dynamic aspects, i.e. all rules, laws. etc., of the

universe of discourse should be described in the

conceptual schema; the information system

cannot be held responsible for not meeting those

described elsewhere, including those in

application programs [Griethuysen 82].

137

Summary

In the past, many information systems were built as complex integrated systems on centrally located

computers. These systems were often built with old technologies that exhibit the characteristics of

a monolith, i.e., a system that is increasingly difficult to enhance or modify.

New Information Technologies make it possible to design information systems as federations

of more or less autonomous modules. According to this approach, an information system is

extended by adding modules, and modified through step by step changes in the individual modules.

The research question of this thesis is to describe a method for the modular design of

information systems for Computer Integrated Manufacturing (CIM). The focus of the research has

been on the modular design and implementation of shop floor control systems. These systems

contribute considerably to goals of industrial companies, such as greater flexibility and

responsiveness, better use of resources, a reduction in inventory levels and faster delivery of

customer orders in order to be competitive. However, in the research area of manufacturing

relatively little attention is being paid to shop floor control systems.

Furthermore, the proposed method is validated, and extended where appropriate. Two areas of

extension are the design of CIM architectures and the reuse of software. The research question

concerning the extension towards CIM architectures is: what is the relation between modular design

of information systems at the conceptual level and the modular implementation of information

systems in different CIM architectures. The research question concerning the extension towards the

reuse of software is: how can the method of modular design contribute to the reuse of software.

The characteristics of the proposed method differ in a number of ways from traditional methods

for information systems design for CIM. Most notably, the method is based on the following

starting-points, which are often lacking in traditional, waterfall based methods:

• information system design is an evolutionary process

• information systems have to be built from components

• information system requirements are continuously changing

The method described in this thesis is based on the design of the conceptual schema of the

information base. An information system is defined as a collection of interfaced modules. Each

module refers to a part of the information base that can be used separately, and is therefore specified

by its own conceptual schema. Interfaces between modules are defined in terms of domains, which

describe the update and retrieval authorisation of a module with respect to the information base.

These concepts make it possible to validate the modularity of a design in terms of criteria such as

138

decomposability, composability, understandability, continuity, and protection.

In this thesis, it is shown that it is not sufficient to consider only the modular design of the

information system if one wants to implement a modular information system. Therefore, three types

of implementation architectures are discussed, viz. database architectures, system architectures, and

organisational control architectures. It is indicated that distributed architectures provide best

conditions for the implementation of independent modules in such a way that the modularity criteria

are satisfied.

The proposed method has been validated in a laboratory that consists of a scale model factory

of a Printed Circuit Board production line. In this laboratory it was possible to implement a modular

information systems in a realistic environment. This experiment has been used as a vehicle for

research, and is described extensively in this thesis.

Finally, further research is recommended in the following areas. First, it is worthwhile to study

the relation between control architectures and modular information systems in further detail. This

is likely to result in a more adequate application of Information Technology in manufacturing.

Second, the formalisation of negotiation procedures between autonomous modules and the

pragmatics of data are important research issues. Third, the reuse of modules and the design of

standard software requires additional study. Fourth, more research is needed of the infrastructural

requirements for the implementation of reusable software.

139

Samenvatting

Tot voor kort werden infonnatiesystemen vaak ontworpen en geimplementeerd als complexe,
ge'integreerde systemen op centrale computersystemen. Deze systemen zijn vaak gebouwd met
behulp van oude tecbnologieen en hebben de karakteristieken van een monoliet. Dat wil zeggen,
een systeem dat in toenemende mate moeilljk te onderhouden of uit te breiden is.

Nieuwe infonnatietechnologieen maken het mogelijk om infonnatiesystemen te ontwerpen als
federaties van min of meer autonome modulen. Een infonnatiesysteem wordt dan uitgebreid door
nieuwe modulen toe te voegen en aangepast door middel van stapsgewijze wijzigingen in de
individuele modulen.

De onderzoeksvraag van dit proefschrift bestaat uit het beschrijven van een methode voor bet
modulair ontwerpen van infonnatiesystemen voor Computer Integrated Manufacturing (CIM). Het
accent van bet onderzoek heeft daarbij gelegen op bet ontwerpen en implementeren van
informatiesystemen voor shop floor control. Deze systemen vonnen een belangrijke bijdrage voor
het realiseren van doelstellingen als het vergroten van flexibiliteit, het beter benutten van
produktiemiddelen, het reduceren van voorraden en bet verkorten van levertijden. Tot nu toe heeft
er echter relatief weinig onderzoek plaatsgevonden naar bet ontwerpen van informatiesystemen
voor shop floor control.

Vervolgens is de methode gevalideerd en op een aantal punten uitgebreid. Twee gebieden van
uitbreiding zijn het ontwerpen van CIM architecturen en het hergebruik van software. De
vraagstelling met betrekking tot CIM architecturen luidt: wat is de relatie tussen bet conceptueel
modulair ontwerpen van informatiesystemen en bet implementeren van deze systemen in CIM
architecturen. De onderzoeksvraag met betrekking tot bet hergebruik van software luidt: hoe kan
de methode van modulair ontwerpen bijdragen aan bet hergebruik van software.

De karakteristieken van de voorgestelde methode verschillen op een aantal pun ten van de meer
traditionele methoden. In tegenstelling tot de traditionele methoden, die vaak gebaseerd zijn op bet
waterval-model, heeft de voorgestelde methode de volgende uitgangspunten:

• het ontwerpen van informatiesystemen is een evolutionair proces
• informatiesystemen dienen, indien mogelijk, opgebouwd te worden uit bestaande

componenten
• informatiesysteemeisen zijn onderhevig aan continue veranderingen

140

De methode beschreven in dit proefschrift is gebaseerd op het ontwerpen van het conceptuele

schema van de gegevensbank. Een informatiesysteem wordt daarbij gekarakteriseerd als een

verzameling van modulen die gekoppeld zijn door middel van hun interfaces. Iedere module wordt

beschreven door middel van zijn eigen conceptuele schema. De interfaces tussen modulen worden

beschreven door middel van de raadpleeg- en wijzigingsbevoegdheden van de module met

betrekking tot de gegevensbank. Deze bevoegdheden worden beschreven in zogenaamde

'domeinen'. Het eigen domein beschrijft welke gegevens de module mag wijzigen en het vreemde

domein beschrijft welke gegevens de module mag raadplegen, maar niet wijzigen. Deze concepten

maken het mogelijk om een on twerp te valideren met be trekking tot de modulariteit ervan. Criteria

voor modulariteit zijn onder andere, decomponeerbaarheid, componeerbaarheid, inzichtelijkheid

van een module, continu1teit van een module, en bescherming van een module.

Een modulair ontwerp van een informatiesysteem is echter niet voldoende om een modulaire

implementatie van een informatiesysteem te verkrijgen. In vele gevallen zullen impleinentatiezaken

een beperking vormen van de wijze waarop een conceptueel on twerp ge1mplementeerd kan worden.

Hiertoe zijn in dit proefschrift drie typen implementatiearchitecturen besproken, namelijk

databasearchitecturen, systeemarchitecturen en besturingsarchitecturen. Hierbij wordt aangegeven

dat gedistribueerde architecturen dusdanige condities kunnen creeren voor het implementeren van

modulen dat zij voldoen aan de hierboven gestelde criteria voor modulariteit.

De voorgestelde methode is vervolgens gevalideerd in een laboratorium bestaande uit een

schaalmodel van een produktielijn voor printplaat-assemblage. Dit laboratorium biedt een

realistische omgeving voor het implementeren van een modulair informatiesysteem voor shop floor

control. Dit experiment is gebruikt voor een belangrijk deel van het onderzoe~ en is daarom

uitvoerig beschreven in dit proefschrift.

Tenslotte worden de volgende aanbevelingen voor verder onderzoek gedaan. :Ten eerste zou

er verder onderzoek plaats moeten vinden naar de relatie tussen besturingsarchitecturen en

modulaire informatiesystemen. Dit onderzoek zal waarschijnlijk leiden tot een effectiever gebruik

van informatietechnologie. Ten tweede vormen het formaliseren van procedures tussen autonome

modulen en de pragmatiek van gegevens belangrijke onderwerpen voor het' realiseren van

gedistribueerde systemen. Ten derde zal er meer onderzoek plaats moeten yinden naar de

mogelijkheid van hergebruik van modulen en hetontwerpen van standaardsoftware ten behoeve van

deze herbruikbaarheid. Ten vierde zal er meer onderzoek plaats moeten ~inden naar de

infrastructuur die nodig is voor bet ontwerpen, implementeren en beheren van herbruikbare
software.

141

Curriculum Vitae

Patrie Timmermans was born on 26 August 1966 in Gilze. In 1984 he fmished University Prepatory

Education (Gymnasium ~) at the Theresia Lyceum in Tilburg. He studied Computing Science at

the Eindhoven University of Technology (TUE) with a major in Management Information Systems,

and received his Master's in March 1989. In April 1989 he joined the School of Industrial

Engineering & Management Science at TUE as a researcher to carry out a Ph.D. research in the area

of modular design of information systems. This research was carried out in cooperation with the

Digital Cooperative Engineering Centre in Amsterdam during a period of three years, partially on

a research contract.

Additionally, he is employed since May 1989 as a scientific consultant of the Netherlands

Organisation for Applied Scientific Research (TNO), Institute of Production and Logistics Research

(IPL), Section Logistics Management. In this affiliation he has participated in the ESPRIT basic

research action nr. 3143 'Factory of the Future', and was a guest researcher at the Technical

University of Denmark in the System Science group of the Faculty of Electrical Power Engineering.

At present, he holds a post-doc position at TUE, and is involved in several international research

initiatives, such as the Esprit Working Groups Esprit-7400 'modelling of CIM systems' and Esprit-

7401 'development of CIM systems'.

Stelling en

behorende bij het proefschrift

Modular design of information systems
for shop floor control

van

Patrie Timmermans

9 juli 1993

Technische Universiteit Eindhoven

Gedistribueerde architecturen, zowel op conceptueel als op implementatieniveau, creeren
betere condities voor modulaire informatiesystemen dan bijvoorbeeld hierarchische
architecturen.
(Bron: dit proefschrift, hoofdstuk 6)

II

Top-down functionele decompositie als methode voor het decomponeren van
informatiesystemen is vaak ontoereikend vanwege het ontbreken van een top in zulke
systemen.
(Bronnen: dit proefschrift, hoofdstuk 4.

Bertrand Meyer, Object-oriented software construction, Prentice Hall, 1988)

III

Hergebruik van software wordt pas gemeengoed indien (tevens) gebruik gemaakt wordt
van bottom-up ontwerpen in de levenscyclus van een informatiesysteem. Bovendien
moeten herbruikbare componenten als zodanig ontworpen worden.
(Bron: Bertrand Meyer, Object-oriented software construction, Prentice Hall, 1988)

IV

Een omvangrijke klasse van informatiesystemen voor de fabricage wordt beschreven door
middel van de volgende karakteristieken: evolutionair ontwikkeld, continu veranderende
systeemeisen, opgebouwd uit standaardcomponenten. Een methode voor
systeemontwikkeling dient hier dan ook op gebaseerd te zijn.
(Bron: dit proefschrift, hoofdstuk 5)

v

Bertrand et al. stellen: "Alhoewel computer-simulatiemodellen in vele gevallen voldoen,
zal de realiteit van een produktiebesturing in vele gevallen niet volledig beschreven
kunnen worden door middel van een computer-simulatiemodel."
Het gebruik van een werkend schaalmodel als representatie van een produktiesysteem biedt
een realistischer beeld.
(Bronnen: dit proefschrift, hoofdstuk 3.

J.W.M. Bertrand, J. Wijngaard, J.C. Wortmann, Production control systems: a
structural and design-oriented approach, Elsevier, Amsterdam, 1990)

VI

Geen enkele modelleertaal is in staat louter neutrale en objectieve feiten weer te geven.
(Bron: R.C. Kwant, Fenomenologie van de taal, Aula, 1963)

VII

Gezien Kuhn's wetenschappelijk-filosofisch theorie valt er in de Bedrijfskunde een
revolutie te verwachten die de overgang van pre-paradigmatisch naar 'norrnale'
wetenschap aangeeft, waarna er een stroomversnelling in de vooruitgang van de
wetenschap Bedrijfskunde zal plaatsvinden.
(Bron: Thomas S. Kuhn, De structuur van wetenschappelljke revoluties, Boom,

MeppeUAmsterdarn, 4e druk, 1987 (oorspronkelijke editie 1962))

VIII

Gezien stelling 7 heeft falsificerend onderzoek in de Bedrijfskunde (nog) nauwelijks enige
betekenis.
(Bronnen: Thomas S. Kuhn, De structuur van wetenschappelljke revoluties, Boom,

Meppei/Amsterdarn, 4e druk, 1987 (oorspronkelijke editie 1962))

IX

De doorlooptijd van een bedrijfskundig promotieonderzoek dient ten minste 4 jaar te
bedragen a) om zich in te werken in de wetenschappelijke arena, b) om voldoende
diepgang te bereiken, en c) om voldoende terugkoppeling uit de wetenschappelijke wereld
te garanderen.

X

Internationalisering van onderzoekers is de hoofdvoorwaarde voor internationalisering van
onderzoek. De meest serieuze methode hiertoe is langdurige uitwisseling van deze
onderzoekers.

XI

Europese onderzoeksprogramma's in Basic Research dienen niet zozeer beoordeeld te
worden op hun directe output in de vorrn van rapporten, artikelen, software, etc., als wei
op de groei van kennis bij en uitwisseling van kennis tussen de deelnemende bedrijven,
instituten, universiteiten en individuen in deze organisaties.

XII

Het huidige imperialisme, in de vorrn van het transponeren van culturele waarden en
norrnen, gaat psychologisch verder en is niet minder verwerpelijk dan het imperialisme in
strikte zin.

XIII

Stijldansen is een sport en dient als zodanig erkend te worden, ook in Nederland.
(Bron: Grote Winkler Prins Encyclopedie, Amsterdam, 1990)

XIV

Het begrip dat men kan opbrengen voor het feit dat iemand weinig televisie kijkt, staat
niet in verhouding met de verbazing bij het niet aantreffen van een televisietoestel in diens
woonkarner.

XV

Promoveren is 10% inspiratie en 90% transpiratie. Een verblijf in een ver warm land
verandert deze verhouding niet, echter wei de intensiteit.

