

A cure for stuttering parity games

Citation for published version (APA):
Cranen, S., Keiren, J. J. A., & Willemse, T. A. C. (2012). A cure for stuttering parity games. (Computer science
reports; Vol. 1205). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/868b7685-5cc0-43eb-b5d9-6a281b90b87e

Technische Universiteit Eindhoven
 Department of Mathematics and Computer Science

A cure for stuttering parity games

Sjoerd Cranen, Jeroen J.A. Keiren and Tim A.C. Willemse

12/05

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra

 prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1

Computer Science Reports 12-05
Eindhoven, March 2012

A cure for stuttering parity games

Sjoerd Cranen, Jeroen J.A. Keiren, and Tim A.C. Willemse

Department of Computer Science and Mathematics
Eindhoven University of Technology

PO Box 513, 5600MB Eindhoven, The Netherlands

Abstract. We define governed stuttering bisimulation for parity games, weak-
ening stuttering bisimulation by taking the ownership of vertices into account
only when this might lead to observably different games. We show that governed
stuttering bisimilarity is an equivalence for parity games and allows for a natu-
ral quotienting operation. Moreover, we prove that all pairs of vertices related by
governed stuttering bisimilarity are won by the same player in the parity game.
Thus, our equivalence can be used as a preprocessing step when solving parity
games. Governed stuttering bisimilarity can be decided in O(n2m) time for par-
ity games with n vertices and m edges. Our experiments indicate that governed
stuttering bisimilarity is mostly competitive with stuttering equivalence on parity
games encoding typical verification problems.

1 Introduction

Parity games [10, 21, 25] are played by two players (represented by 2 and 2) on a
directed graph in which every vertex is owned by one of the players, and vertices are
assigned a priority. The game is played by moving a single token along the edges in
the graph; the choice where to move next is dictated by the player owning the vertex
on which the token currently resides. Both players try to play such that the thus created
infinite path is winning for them, and a vertex is won by the player that can play such
that, however the opponent plays, every path from that vertex is won by her. The winner
of a vertex is uniquely determined [10, 21, 25] and partitioning the graph in vertices that
are won by player 2 and those won by player 2 is referred to as solving the parity game.

The parity game framework is a key instrument in solving practical verification
and synthesis problems, see [10, 2]. Its practical significance is mirrored by its role in
searching for the true complexity of model checking: modal µ-calculus model checking
is polynomially reducible to parity game solving, and vice versa. Despite the appar-
ent simplicity of the latter problem, the precise complexity of solving parity games
is still open: the problem is known to be in NP ∩ coNP, and more specifically in
UP ∩ coUP [16], suggesting there just might exist a polynomial time algorithm. In-
deed, non-trivial classes of parity games have been identified that admit polynomial
time solving algorithms, see e.g. [4, 22].

In the past decade, several advanced algorithms for solving parity games have been
designed. These include algorithms exponential in the number of priorites, such as Jur-
dziński’s small progress measures algorithm [17] and Schewe’s bigstep algorithm [23],
as well as the sub-exponential algorithm due to Jurdziński et al. [18]. Orthogonally to

the algorithmic improvements, heuristics have been devised that may speed up solving
parity games that occur in practice, see [11] for an overview. Such heuristics work par-
ticularly well for verification problems, which give rise to games with only few different
priorities.

The heuristic that we consider in this paper, following, e.g., Fritz and Wilke’s study
of delayed simulation [13], is based on the use of fine-grained equivalence relations that
approximate the solution to a parity game. The idea is to recast the solving problem as
the problem of deciding winner equivalence between vertices: two vertices in a parity
game are equivalent whenever they are won by the same player. Finding equivalence
relations that refine winner equivalence and that are decidable in polynomial time yields
a preprocessing step that can be used to reduce games prior to solving.

From a practical viewpoint, we are particularly interested in those simulation and
equivalence relations that strike a favourable balance between their power to compress
the game graph and their computational complexity. Stuttering bisimulation [7] for
Kripke Structures is among a select number of candidates worth considering, with an
O(nm) time complexity (n being the number of vertices and m the number of edges).
Indeed, as earlier experiments [9] indicate, off-the-shelf stuttering bisimulation reduc-
tion algorithms can be competitive when compared to modern available parity game
solvers. Stuttering bisimulation, however, is inept when faced with alternations between
players along the possible plays: it cannot relate vertices belonging to different players.
Turn-based games, controller synthesis problems e.g. [2], and, in general, constructs
such as 2♦φ and ♦2φ in µ-calculus verification, all give rise to such parity games.

A natural question is, therefore, whether stuttering bisimulation can at all be mod-
ified so that it is able to relate vertices that belong to different players. We positively
answer this question in this paper by defining a relation, which we dub governed stut-
tering bisimulation (reflecting that a player’s ruling capabilities are taken as primitive),
which we show to be strictly weaker than stuttering bisimilarity. In addition, we prove
that governed stuttering bisimilarity:

– is an equivalence relation on parity games.
– refines winner equivalence.
– is decidable in O(n2m) time using a partition refinement algorithm.

The time complexity for deciding governed stuttering bisimilarity is a factor n worse
than that for stuttering bisimilarity; this is due to a single type of class in a partition for
which our algorithm requires O(mn) rather than O(m) time to check its stability. Our
experiments, however, indicate that this factor does not manifest itself in practice; in
fact, our algorithm is mostly competitive with the one for stuttering bisimilarity.

Structure of the paper. Section 2 briefly introduces the parity game framework. We
recall the definition of stuttering bisimulation and we define governed stuttering bisim-
ulation in Section 4. In Section 5, we show that governed stuttering bisimulation is an
equivalence relation, we show it refines winner equivalence, and we address its decid-
ability. We discuss our experiments with a prototype implementation of our algorithm
for deciding governed stuttering bisimulation in Section 6. Related work is discussed in
Section 7, and future work is described in Section 8.

2

2 Preliminaries

A parity game is a two-player graph game, played by two players on a directed graph.
The game is formally defined as follows.

Definition 1 (Parity game). A parity game is a directed graph (V,→, Ω,P), where

– V is a finite set of vertices,
– → ⊆ V × V is a total edge relation (i.e., for each v ∈ V there is at least one
w ∈ V such that (v, w) ∈ →),

– Ω :V → N is a priority function that assigns priorities to vertices,
– P :V → { 2,2} is a function assigning vertices to players.

If i is a player, then ¬i denotes the opponent of i, i.e., ¬ 2 = 2 and ¬2 = 2. A sequence
of vertices v1, . . . , vn for which vm → vm+1 for all 1 ≤ m < n is a path, and may be
denoted using angular brackets: 〈v1 . . . vn〉. The concatenation p · q of paths p and q is
again a path. Infinite paths are defined in a similar manner. We use pn to denote the nth

vertex in a path p.
A game starting in a vertex v ∈ V is played by placing a token on v, and then

moving the token along the edges in the graph. Moves are taken indefinitely according
to the following simple rule: if the token is on some vertex v, player P(v) moves the
token to some vertex w such that v → w. The result is an infinite path p in the game
graph. The parity of the lowest priority that occurs infinitely often on p defines the
winner of the path. If this priority is even, then player 2 wins, otherwise player 2 wins.

A strategy for player i is a partial function σ :V ∗→ V , that is defined only for paths
ending in a vertex owned by player i and determines the next vertex to be played onto.
The set of strategies for player i in a game G is denoted S∗G,i, or simply S∗i if G is clear
from the context. If a strategy yields the same vertex for every pair of paths that end
in the same vertex, then the strategy is said to be memoryless. The set of memoryless
strategies for player i in a game G is denoted SG,i, abbreviated to Si when G is clear from
the context. A memoryless strategy is usually given as a partial function σ :V → V .

A path p of length n is consistent with a strategy σ ∈ S∗i , denoted σ
 p, if and
only if for all 1 ≤ j < n it is the case that if σ is defined for 〈p1 . . . pj〉, then pj+1 =
σ(〈p1 . . . pj〉). The definition of consistency is extended to infinite paths in the obvious
manner. A strategy σ ∈ S∗i is said to be a winning strategy from a vertex v if and only if
i is the winner of every path consistent with σ. A vertex is won by i if i has a winning
strategy from that vertex. Parity games are memoryless determined [10], i.e. each vertex
in the game is won by exactly one player, and it suffices to play a memoryless strategy.

In this paper, we are concerned with relations partitioning the vertices in a parity
game such that all related vertices are won by the same player. Let R be a relation
over a set V . For v, w ∈ V we write v R w for (v, w) ∈ R. For an equivalence
relation R, and vertex v ∈ V we define [v]R, the equivalence class of v under R, as
{v′ ∈ V | v R v′}. The set of equivalence classes of V under R is denoted V/R. A
collection {Bi | i ∈ I}, with ∅ 6= Bi ⊆ V , is called a partition of V if

⋃
i∈I Bi = V

and for i 6= j : Bi ∩ Bj = ∅. An element Bi of a partition is called a block. If P
and Q are partitions of V then Q refines P if ∀Bi ∈ Q : ∃Bj ∈ P : Bi ⊆ Bj . We

3

use the notions of equivalence relation and partition interchangeably, and occasionally
write v P v′ rather than v, v′ ∈ B for some B ∈ P .

Determinacy of parity games effectively induces a partition on the set of vertices V
in those vertices won by player 2 and those vertices won by player 2. This partition is
the natural equivalence relation on V .

Definition 2 (Winner equivalence). Let (V,→, Ω,P) be a parity game. Vertices v, w ∈
V are winner equivalent, denoted v ∼ w iff v and w are won by the same player.

3 Properties of parity games

We first formalise some intuitions about parity games. In the following lemmata, let
v ∈ V , i a player, U,U ′ ⊆ V , R an equivalence relation and U ⊆ V/R.

One of the most basic properties we expect to hold is that a player can force the play
towards some given set of vertices, or otherwise her opponent can force the play to the
complement of that set.

Lemma 1. v i 7→R U ∨ v ¬i 7→R V \ U.

Proof. We prove the equivalent v i 67→R U =⇒ v ¬i 7→R V \ U. Assume that v i 67→R U .
We show that v ¬i 7→R V \ U . We distinguish on the player of v.

– P(v) = i. As v i 67→R U , we know ∀v′ : v → v′ =⇒ v′ 6∈ U , hence also
∀v′ : v → v′ =⇒ v′ ∈ V \ U , so v ¬i 7→R V \ U .

– P(v) 6= i. As v i 67→R U , and the parity game is total, we know ∃v′ : v → v′ ∧
v′ 6∈ U . Let v′ be such, and define σ:Si such that σ(v) = v′. σ is a witness for
v ¬i 7→R V \ U .

In a similar train of thought, we expect that if from a single vertex, each player can force
play towards some target set, then the players’ target sets must contain related vertices.

Lemma 2. v i 7→R U ∧ v ¬i 7→R U
′ =⇒ ∃u∈U, u′ ∈U ′ : u R u′ ∨ u R v ∨ u′ R v.

Proof. Assume v i 7→R U ∧ v ¬i 7→R U
′. Then there must be strategies σ ∈ S∗i and

σ′ ∈ S∗¬i such that v σ 7→R U ∧ v σ′ 7→R U
′. Assume that P(v) = ¬i (the other case

is symmetric). Then we have that σ(v) is undefined and σ′(v) = v′ for some v′ ∈ V .
Obviously, v σ→ v′ and v σ′→ v′.

From the definitions of v σ 7→R U and v σ′ 7→R U
′ we obtain v′ ∈ U ∨ (v R v′ ∧

v′ σ 7→R U) and v′ ∈ U ′ ∨ (v R v′ ∧ v′ σ′ 7→R U
′). This leads to four cases:

1. v′ ∈ U ∧ v′ ∈ U ′
2. v′ ∈ U ∧ (v R v′ ∧ v′ σ′ 7→R U

′)
3. (v R v′ ∧ v′ σ 7→R U) ∧ v′ ∈ U ′
4. (v R v′ ∧ v′ σ 7→R U) ∧ (v R v′ ∧ v′ σ′ 7→R U

′)

The first three cases directly imply the desired result. The fourth case gives rise to
a repetition of the same argument. The argument cannot be repeated infinitely long,
because then v σ 7→R U would not hold. ut

4

Notice that this lemma relies on R being an equivalence relation. In particular, tran-
sitivity is used in the repetition of the argument. If we consider sets of classes in R that
a player can force to, rather than arbitrary sets of vertices, we arrive at a much stronger
version of Lemma 1; the result follows directly from lemmata 1 and 2.

Corollary 1. v i 67→R U =⇒ v ¬i 7→R V/R \ U .

The above lemmata reason about players being able to reach vertices. The following
lemma is essentially about avoiding vertices: it states that if one player can force diver-
gence, then this is the same as saying that the opponent cannot force the play outside
the class of the current vertex.

Lemma 3. v i 7→R ⇐⇒ v ¬i 67→R V \ [v]R

Proof. Note that the truth values of v i 7→R and v ¬i 67→R V \ [v]R only depend on edges
that originate in [v]R, and that these truth values do not depend on priorities at all.
Therefore, the truth value of these predicates will not change if we apply the following
transformations to our graph:

– For all u ∈ V \ [v]R, replace all outgoing edges by a single edge u→ u.
– Make the priorities of all vertices in [v]R such that they are even iff i = 2, and the

priorities of all other vertices odd iff i = 2.

In the resulting graph, player i wins if and only if v i 7→R, and player ¬i wins if and
only if v ¬i 7→R V \ [v]R. Since v can only be won by one player, the desired result
follows. ut

Lastly, we want to formalise the idea that if a player can force the play to a first set of
vertices, and from there he can force the play to a second set of vertices, then he must
be able to force the play to that second set.

Lemma 4. (v i 7→R U ∧ (∀u ∈ U \ U ′ : v R u ∧ u i 7→R U
′)) =⇒ v i 7→R U

′

Proof. Assume v i 7→R U ∧ (∀u ∈ U \ T : v R u ∧ i 7→R T). There must be a strategy
σ ∈ Si such that v σ 7→R U and for each u ∈ U \ T a strategy σu ∈ Si such that
u σu
7→R T . We define strategy σ′ ∈ S∗i as follows:

σ′(πv) =

{
σ(v) if ∀u ∈ U \ T : u 6∈ πv
σ(vu) if πv = π′uπ′′v ∧ u ∈ U \ T ∧ ∀u′ ∈ U \ T : u′ 6∈ π′

Observe that a deterministic strategy σ′′ ∈ Si can be found that has the same behaviour
as σ′. Furthermore v σ′′ 7→R T , and hence v i 7→R T . ut

Note that again the lemma is generalised to use a relation R. In practice, this R can be
used to provide extra information on the paths towards U ′.

5

4 Governed stuttering bisimulation

In [9] we introduced stuttering bisimulation for parity games. Informally, stuttering
bisimulation compresses subsequences of “identical” vertices along a path p in a parity
game, such that the path retains the essentials of the graph’s branching structure. Iden-
tical vertices are basically vertices with the same priority, owned by the same player.

Before we give the formal definition of stuttering bisimulation, we first introduce
some notation. Let (V,→, Ω,P) be a parity game. From hereon, let U ⊆ V be arbitrary
sets of vertices; we write v → U if there exists a u ∈ U such that v → u.

Let R ⊆ V × V be a relation on the set of vertices. The generalised transition
relation v 7→R U , defined below, formalises that U is eventually reached from v by
some computation path through R-related nodes. Dually, v 7→R expresses that v is the
start of an infinite computation path along vertices related through R.

v 7→R U
µ
= ∃u : v → u ∧ (u ∈ U ∨ (v R u ∧ u 7→R U))

v 7→R
ν
= ∃u : v → u ∧ v R u ∧ u 7→R

We next formalise the notion of stuttering bisimulation, deviating notationally from [9];
the definitions, however, are easily seen to coincide and the modifications are standard.
Our main reason for deviating from [9] is that the presented definition facilitates ex-
plaining the intuition of its generalisation to governed stuttering bisimulation.

Definition 3 (Stuttering bisimulation [9]). Let (V,→, Ω,P) be a parity game. Let
R ⊆ V × V be an equivalence relation on vertices; R is a stuttering bisimulation if
v R v′ implies

a) Ω(v) = Ω(v′) and P(v) = P(v′);
b) v → C implies v′ 7→R C, for all C ∈ V/R \ {[v]R}.
c) v 7→R iff v′ 7→R;

Two states v and v′ are said to be stuttering bisimilar, denoted v ' v′ iff there is a
stuttering bisimulation relation R, such that v R v′.

Our objective is to weaken stuttering bisimulation so that it will be able to relate vertices
of different players. However, we cannot simply weaken clause a) to Ω(v) = Ω(v′)
without modifying the remaining clauses, as this would enable us to relate vertices won
by different players, as the below parity game demonstrates:

2 2 1 2 2

The suggested weakening of clause a) would allow us to relate all vertices with priority
2; the two left vertices, however are won by player 2, whereas the other vertices are
won by player 2.

The problem in the above example is that the computation paths that appear in
clauses b) and c) may consist of vertices owned by different players. This means that a
fixed player is at the mercy of her opponent to stay on a computation path: the opponent
may simply choose an alternative next vertex if that would better suit her. We are there-
fore forced to reason about computation trees, taking all the opponent’s choices into

6

account. Effectively, clause b) must be strengthened to ensure that a player eventually
reaches class C along some computation tree, and clause c) must be strengthened to
ensure that a player can construct an infinite computation tree not leaving its own class.

We first extend our notation to facilitate reasoning about computation trees rather
than computation paths. Given a memoryless strategy σ for some player, the ability to
move from vertex v to another vertex u depends on this strategy.

v σ→u =

{
v → u ∧ σ(v) = u, if σ(v) is defined
v → u, otherwise

From the viewpoint of a fixed player and her memoryless strategy σ, a token may be
moved along the edges of a computation tree that only branches at vertices owned by
her opponent. The notation v σ 7→ U , defined below, formalises that all plays according
to σ eventually reach the set of vertices U . This notation is generalised to v σ 7→R U ,
enabling us to express that, additionally, all plays allowed by σ reach U immediately
when they follow an edge to a vertex that is no longer related under relation R. The
notation v σ 7→R is basically its dual; it expresses that all plays allowed by σ can reach
only vertices related under R to the previous vertex in that play:

v σ 7→R U
µ
= ∀u : v σ→u =⇒ u ∈ U ∨ (v R u ∧ u σ 7→R U)

v σ 7→R
ν
= ∀u : v σ→u =⇒ v R u ∧ u σ 7→R

If the strategy is unimportant to the purpose at hand, we abstract from the specific
strategy that is used and reason only in terms of a player i having a strategy with the
capability of forcing a play to a set of vertices U , and, dually, for i to be able to force
the play to diverge within a class of R:

x i 7→R U = ∃σ ∈ Si : x σ 7→R U
x i 7→R = ∃σ ∈ Si : x σ 7→R

We omit R if it is the relation that relates all vertices in V . Note that v i 7→R ∅ never
holds. On the other hand, v i 7→R V and v i 7→ are trivially true. We write v i 67→R U for
¬(v i 7→R U); likewise for all other arrows. If U ⊆ V/R, then we write v i 7→R U to
denote v i 7→R

⋃
C∈U C.

Definition 4 (Governed stuttering bisimulation). Let (V,→, Ω,P) be a parity game.
LetR ⊆ V ×V be an equivalence relation. ThenR is a governed stuttering bisimulation
if v R v′ implies

a) Ω(v) = Ω(v′);
b) v → C implies v′ P(v) 7→R C, for all C ∈ V/R \ {[v]R}.
c) v i 7→R iff v′ i 7→R for i ∈ { 2,2}.

Vertices v and v′ are governed stuttering bisimilar, denoted v ∼ v′, iff a governed
stuttering bisimulation R exists such that v R v′.

If we additionally require that P(v) = P(v′), we find that v 7→R U iff v P(v) 7→R U ,
and, likewise, v 7→R iff v P(v) 7→R. This is the basis for the following proposition.

7

Proposition 1. LetR ⊆ V ×V be a governed stuttering bisimulation, such that v R v′

implies P(v) = P(v′). Then R is a stuttering bisimulation.

Example 1. Consider the parity game depicted in Figure 1a. The equivalence relation
that relates vertices with equal priorities is a governed stuttering bisimulation. Stuttering
bisimulation does not relate any of the vertices.

0 1 2

21

(a)

0 0

1 1

(b)

0

1

(c)

0

1

(d)

Fig. 1: All vertices in (a) with the same priorities can be related using governed stutter-
ing bisimilarity. Both (c) and (d) are minimal representations of (b).

5 Properties of governed stuttering bisimulation

We next study three key properties of governed stuttering bisimulation, viz., governed
stuttering bisimilarity is an equivalence on parity games, it refines winner equivalence
and it is decidable in polynomial time.

5.1 Governed stuttering bisimilarity is an equivalence

Proving that ∼ is an equivalence relation on parity games is far from straightforward:
transitivity no longer bows to the standard proof strategies that work for stuttering
bisimilarity and branching bisimilarity [24]. As a result of the asymmetry in the use
of two different transition relations in clause b) of Definition 4, proving that the equiv-
alence closure of the union of two governed stuttering bisimulation relations is again a
governed stuttering bisimulation relation is equally problematic.

The strategy we pursue is as follows. We characterise governed stuttering bisimula-
tion, in two steps, by a set of symmetric requirements. The obtained alternative charac-
terisation is then used in our equivalence proof. These alternative characterisations do
not facilitate the reuse of standard proof strategies, but they are instrumental in the tech-
nically involved proof that the equivalence closure of two governed stuttering bisimu-
lation relations is again a governed stuttering bisimulation relation. Apart from being
convenient technically, the characterisations offer more insight into the nature of gov-
erned stuttering bisimilarity. Hence, instead of providing the details of our equivalence
proof, we focus on the alternative characterisations of governed stuttering bisimulation.

Our result below states that we can rephrase condition b) of governed stuttering
bisimulation by requiring that a fixed player must have the same power to force the
play from any pair of related vertices to reach an arbitrary class. Thus, we abstract from
the player that takes the initiative to leave its class in one step.

8

Theorem 1. Let R ⊆ V × V and v, v′ ∈ V . Then R is a governed stuttering bisimula-
tion iff R is an equivalence relation and v R v′ implies:

a) Ω(v) = Ω(v′);
b) v i 7→R C iff v′ i 7→R C for all i ∈ { 2,2}, C ∈ V/R \ {[v]R};
c) v i 7→R iff v′ i 7→R for all i ∈ { 2,2}.

Proof. The proof for the implication from right to left is immediate. For the other di-
rection, assume that R is a governed stuttering bisimulation. Observe that it suffices to
prove clause b; the other two are in full agreement with Definition 4.

Let i be an arbitrary player, and suppose that v i 7→R C for some v ∈ V and C ∈
V/R \ {[v]R}. Obviously, there must be some u ∈ [v]R such that u→ C. Let u be such,
and distinguish the following two cases:

– Case P(u) = i. It follows directly from Definition 4 that v′ i 7→R C.
– Case P(u) 6= i. From Lemma 3 it follows that v ¬i 67→R as v i 7→R C, and that v i 67→R

because u ¬i 7→R C. By Definition 4, it then also holds that v′ i 67→R and v′ ¬i 67→R.
Towards a contradiction, suppose that v′ i 67→R C. By Lemma 1 it must then be the
case that v′ ¬i 7→R V \ C. Because of this, and v ¬i 67→R and v i 67→R it follows that
there must be some u′ such that u′ → V \C \ [v]R. We again distinguish two cases:
• Case P(u′) = i. Then u′ i→V \ C \ [v]R, and by definition of governed stut-

tering bisimulation u i 7→R V \C \ [v]R, which contradicts u ¬i 7→R C according
to Lemma 3.

• Case P(u′) 6= i. Then u′ ¬i→V \ C \ [v]R, and by definition of governed
stuttering bisimulation v ¬i 7→R V \C\[v]R, which is a contradiction to v i 7→R C
according to Lemma 3. ut

While the above alternative characterisation of governed stuttering bisimulation is now
fully symmetric, the restriction on the class C that is considered in clause b) turns out
to be too strong to facilitate our proof that ∼ is an equivalence relation. We therefore
generalise this clause once more to reason about sets of classes. A perhaps surprising
side-result of this generalisation is that the divergence requirement of clause c) be-
comes superfluous. Note that this last generalisation is not trivial, as v i 7→R{C1, C2} is
in general neither equivalent to saying that v i 7→R C1 and v i 7→R C2, nor v i 7→R C1 or
v i 7→R C2.

Theorem 2. Let R ⊆ V × V and v, v′ ∈ V . Then R is a governed stuttering bisimula-
tion iff R is an equivalence relation and v R v′ implies:

a) Ω(v) = Ω(v′);
b) v i 7→R U iff v′ i 7→R U for all i ∈ { 2,2},U ⊆ V/R \ {[v]R}.

Proof. We show that the above clause b is equivalent to clauses b and c from Theorem 1.
We split the proof into an if -part and an only-if -part.

⇐ Clause b follows immediately (if v i 7→R C, take U = {C}). Clause c follows directly
from Theorem 1 if we substitute V/R \ {[v]R} for U .

⇒ Let R be a governed stuttering bisimulation relation and let v, v′ ∈ V such that
v R v′. Assume that v i 7→R U for some U ⊆ V/R \ {[v]R}. Let S = {u ∈
[v]R | u i→U}. We distinguish the following two cases:

9

∃u ∈ S : P(u) = i. Let u be such. There is a class C ∈ U such that u i→C (in
particular, u i 7→R C). By Theorem 1 then also v′ i 7→R C, from which v′ i 7→R U
follows immediately.

∀u ∈ S : P(u) 6= i. From v i 7→R U we derive, using Lemma 3, that v ¬i 67→R. By
Theorem 1 it follows that v′ ¬i 67→R. We also know that v′ i 67→R, because other-
wise for all nodes u in S we have u i 7→R by Theorem 1, which cannot be the
case because P(u) 6= i.
Towards a contradiction, suppose that v′ i 67→R U , then by Lemma 1 we have
v′ ¬i 7→R V/R \ U . Because v′ ¬i 67→R and v′ i 67→R, we find v′ ¬i 7→R V/R \ U \
{[v]R} and some u′ ∈ S such that u′ ¬i→V/R \ U \ {[v]R} to witness it. In
particular, u′ ¬i→C for some C ∈ V/R \ U \ {[v]R}, and by Theorem 1 also
v ¬i 7→R C. This contradicts v i 7→R U by Lemma 2. ut

Note that the divergence requirement v i 7→R iff v′ i 7→R can be recovered by in-
stantiating set U by V/R \ {[v]R} for player ¬i in the above theorem. The last char-
acterisation enables us to prove that that ∼ is an equivalence relation. As the proof is
non-standard we introduce several lemmata leading up to this result.

We define the composition (R ◦ S) of two relations R and S such that v (R ◦ S) w
iff there exists some u such that v S u and u R w. Vertices v and w are related under
union, i.e. v (R ∪ S) w iff v R w or v S w.

Lemma 5. If R and S satisfy the first clause from Theorem 2, then so does (R ∪ S)
∗.

Proof. If v, v′ ∈ V are related under (R ∪ S)
∗, then there exists a sequence of vertices

v, u0, u1, . . . , un, v
′ such that each consecutive pair in the sequence is related under R

or S. By transitivity of = we then have Ω(v) = Ω(v′). ut

We introduce the following notion to allow for a structured proof of the second
property of governed stuttering bisimulation.

Definition 5. Let R be a relation. We call R weakly transferring if it is reflexive and
v′ R v implies for all v, v′ ∈ V and U ⊆ V that

v i 7→R∗ U =⇒ ∃U ′ ⊆ V : v′ i 7→R∗ U
′ ∧ ∀u′ ∈ U ′ : ∃u ∈ U : (u R u′ ∧ u′ R u).

Lemma 6. Let R and S be weakly transferring relations, and v, v′ ∈ V s.t. v′ R v,
then

v i 7→(R∪S)∗ U =⇒ ∃U ′ ⊆ V : v′ i 7→(R∪S)∗ U
′ ∧

∀u′ ∈ U ′ : ∃u ∈ U : (u R u′ ∧ u′ R u). (1)

Proof. If v i 7→R∗ U , then this follows immediately from v′ R v and the fact that R
itself is weakly transferring.

Suppose now that v i 67→R∗ U , and let σ ∈ S∗i be such that v σ 7→(R∪S)∗ U . It must be
the case that v σ 7→R∗ T for some smallest T ⊆ V \ [v]R, and furthermore T must be

10

such that ∀u ∈ T : u σ 7→(R∪S)∗ U ∨ u ∈ U . Because
R is weakly transferring, we must have v′ i 7→R∗ T

′

for some T ′ such that ∀u′ ∈ T ′ : ∃u ∈ T : (u R
u′ ∧ u′ R u). Furthermore, because v′ R v, and
v (R ∪ S)

∗
u for every u ∈ T \ U , we also have

v′ (R ∪ S)
∗
u′ for all u′ ∈ T ′ \ U .

We can repeat the argument for every u′ ∈ T ′ to
find u′ i 7→(R∪S)∗ U ′ for some U ′ ⊆ V for which
∀u′ ∈ U ′ : ∃u ∈ U : u R u′; we either end up at
the trivial case above, or repeat the argument again.
The argument cannot be repeated infinitely often, be-

v v′

u u′

U

T T ′

R

R

(R ∪ S)∗
R

cause then false would be the least solution of v i 7→(R∪S)∗ U . Using Lemma 4 we now
obtain v′ i 7→(R∪S)∗ U ′, concluding our proof.

ut

Lemma 7. If R and S are weakly transferring relations, then (R ∪ S) is too, and so is
(R ◦ S).

Proof. Let R and S be two weakly transferring relations. We give two separate proofs
for (R ∪ S) and (R ◦ S) being weakly transferring.

Notice that (R ∪ S)
∗
=(R ◦ S)

∗ because R and S are reflexive.

– R ∪ S is weakly transferring. Suppose that v′ (R ∪ S) v. In that case v′ R v or
v′ S v. Suppose v′ R v (the other case is completely symmetrical), then Lemma 6
immediately gives us the desired result because R⊆(R ∪ S).

– R ◦ S is weakly transferring. If v′ (R ◦ S) v, then there must be some x ∈ V
such that v′ S x and x R v. Suppose that v i 7→(R∪S)∗ U for some U ⊆ V . We use
Lemma 6 to obtain some U ′ ⊆ V such that

x i 7→(R∪S)∗ U
′ ∧ ∀u′ ∈ U ′ : ∃u ∈ U : (u R u′ ∧ u′ R u).

We can prove something similar to Lemma 6 for S to obtain a set U ′′ ⊆ V such
that

v′ i 7→(R∪S)∗ U
′′ ∧ ∀u′′ ∈ U ′′ : ∃u′ ∈ U ′ : (u′ S u′′ ∧ u′′ S u′).

Combining the two, we find

v′ i 7→(R∪S)∗ U
′′ ∧ ∀u′′ ∈ U ′′ : ∃u ∈ U : (u (R ◦ S) u′′ ∧ u′′ (R ◦ S) u).

Because (R ∪ S)
∗
=(R ◦ S)

∗, we have hereby proven that (R ◦ S) is weakly transfer-
ring. ut

Lemma 8. If R and S are equivalence relations satisfying the second clause from The-
orem 2, then (R ∪ S)

∗ also satisfies that clause.

Proof. Notice that an equivalence relation R is weakly transferring if and only if the
second clause of Theorem 2 holds forR. Using Lemma 7 it is easy to see that (R ∪ S)

∗

is also weakly transferring. Furthermore, (R ∪ S)
∗ is an equivalence relation because

R and S are, and therefore the second clause of Theorem 2 must also hold for (R ∪ S)
∗.
ut

11

Lemma 9. If R and S are governed stuttering bisimulation relations, then (R ∪ S)
∗

satisfies the third clause of Theorem 2.

Proof. Assume v R v′, and v i 7→(R∪S)∗ . Let σ ∈ S∗i be such that v σ 7→(R∪S)∗ , and
let U ⊆ V be the smallest set such that v σ 7→R U . Then it follows directly from the
definition of governed stuttering bisimulation that v′ i 7→R U

′ for some U ′ ⊆ V such
that ∀u′ ∈ U ′ : ∃u ∈ U : u R u′. It must be the case that u (R ∪ S)

∗
v for all u ∈ U ,

so by transitivity of R and (R ∪ S)
∗, v′ (R ∪ S)

∗
u′ for all u′ ∈ U ′. This argument

can be repeated ad infinitum.
Using a symmetric proof, we can show that if v S v′ and v i 7→(R∪S)∗ imply that

v′ i 7→(R∪S)∗ . If v (R ∪ S)
∗
v′, then there must be a sequence v, u0, . . . un, v′ in which

every consecutive pair of vertices is related under R or under S. The desired result then
follows from transitivity of implication. ut

Lemma 10. If R and S are governed stuttering bisimulation relations, then so is the
relation (R ∪ S)

∗.

Proof. Obviously, (R ∪ S)
∗ is an equivalence relation, because R and S are too. Lem-

mas 5, 8 and 9 show that (R ∪ S)
∗ satisfies the remaining criteria for governed stutter-

ing bisimulation. ut

Finally, we prove that ∼ is an equivalence relation.

Theorem 3. ∼ is an equivalence relation.

Proof. Because the identity relation is a governed stuttering bisimulation relation, ∼ is
reflexive. It is symmetric, because if v ∼ v′ then there is a governed stuttering bisimu-
lation relation R such that v R v′, but then also v′ R v, hence v′ ∼ v. It is transitive,
because if v ∼ v′ and v′ ∼ v′′, then there are governed stuttering bisimulation rela-
tions R and S such that v R v′ and v′ S v′′. Obviously v (R ∪ S)

∗
v′′, and because

(R ∪ S)
∗ is a governed stuttering bisimulation relation according to Lemma 10, also

v ∼ v′′. ut

5.2 Quotienting

The main reason for studying equivalence relations for parity games is that they may
offer the prospect of minimising the parity game by collapsing vertices that are consid-
ered equivalent. The resulting minimised structure is referred to as the quotient. How-
ever, not all equivalence relations admit such a quotienting operation; in particular, the
delayed simulation [13] for parity games fails to have a natural quotienting operation.

Quotienting for governed stuttering bisimulation can be done efficiently. Due to the
nature of governed stuttering bisimulation, we have some freedom in the definition of
the quotient, in particular when assigning vertices to players. We therefore first define a
notion of minimality, and we subsequently define the quotient in terms of that notion.

12

Definition 6 (Minimality). A∼-minimal representation of a parity game (V,→, Ω,P)
is defined as a game (Vm,→m, Ωm,Pm), that satisfies the following conditions (where
c, c′, c′′ ∈ Vm):

Vm = { [v]∼ | v ∈ V }
Ωm(c) = Ω(v) for all v ∈ c
Pm(c) = i, if for all v ∈ c, and some c′ 6= c we have v i 7→∼ c′ and v ¬i 67→∼V \ c′

c→m c iff v i 7→∼ for all v ∈ c for some player i

c→m c′ iff v i 7→∼ c′ for all v ∈ c for some player i and c′ 6= c

Observe that for the third clause above, if from some vertex v the play could be forced
to c′ by i without ¬i having the opportunity to diverge, player i is in charge of the game
when the play arrives in c. This requires the representative in the quotient to be owned
by player i.

Note that a parity game may have multiple∼-minimal representations. It is not hard
to verify that every parity game contains at least as many vertices and edges as its ∼-
minimal representations. Moreover, any parity game is governed stuttering bisimulation
equivalent to all its ∼-minimal representations. As a result, the governed stuttering
bisimulation quotient of a graph can be defined as its least ∼-minimal representation,
given some arbitrary ordering on parity games. A natural ordering would be one that is
induced by an ordering on players, e.g., 2 < 2.

Example 2. Consider the parity game in Figure 1b. Two of its four minimal represen-
tations are in Figure 1c and 1d. Observe that the particular player chosen for the 0 and
1 vertices is arbitrary and does not impact the solution to the games.

5.3 Governed stuttering bisimilarity refines winner equivalence

In this section, we prove that governed stuttering bisimilarity is strictly finer than win-
ner equivalence. That is, vertices that are won by different players are never related
by governed stuttering bisimilarity. In order to prove this result, we must first lift the
concept of governed stuttering bisimilarity to paths.

Paths of length 1 are equivalent if the vertices they consist of are equivalent. If paths
p and q are equivalent, then p · 〈v〉 ∼ q iff v is equivalent to the last vertex in q, and
p · 〈v〉 ∼ q · 〈w〉 iff v ∼ w. An infinite path p is equivalent to a path q if for all finite
prefixes of p there is an equivalent prefix of q and vice versa.

We defineΠn
ϕ(v) to be the set of paths of length n that start in v and that are allowed

by some strategy ϕ. Πω
ϕ (v) is then the set of all infinite paths allowed by ϕ, starting in

v. In a similar fashion, we also define Ψnϕ (v), which contains those paths starting in v
that are allowed by ϕ and that consist of exactly n segments in which all vertices in
a segment are related by ∼, except the last vertex. Also included in Ψnϕ (v) are infinite
paths that stay in the same class forever after n or less such segments.

13

Definition 7 (Levels). Formally we define the nth level paths Ψnϕ (v) of a strategy ϕ
from root vertex v for all paths p as follows:

p ∈ Ψ0
ϕ(v) iff p = 〈v〉

p · q ∈ Ψn+1
ϕ (v) iff p ∈ Ψnϕ (v) ∧ ϕ
 p · q ∧

((p · q ∼ p ∧ |q| =∞) ∨
(∃q̄, v : q = q̄ · 〈v〉 ∧ p · q̄ ∼ p ∧ p · q 6∼ p))

Note that Πω
ϕ (v) = Ψωϕ (v). The following lemma is the basis for establishing that

governed stuttering bisimilarity refines winner equivalence.

Lemma 11. Given some v, w ∈ V such that v ∼ w, then for every strategy ϕ ∈ Si we
have a strategy ψ ∈ S∗i such that ∀n ∈ N : ∀p ∈ Ψnψ (w) : ∃p′ ∈ Ψnϕ (v) : p ∼ p′

We are now in a position to prove that governed stuttering bisimilarity refines winner
equivalence.

Theorem 4. Governed stuttering bisimulation strictly refines winner equivalence.

Proof. Let ϕ be a strategy for player i that wins from v ∈ V . Without loss of generality
assume that ϕ is memoryless, and let w ∈ V such that v ∼w. By Lemma 11, we know
that there is some strategy ψ such that for every path in Ψωψ (w) there is a related path in
Ψωϕ (v). As Πω

ϕ (v) = Ψωϕ (v), this means that for every path starting in w that is allowed
by ψ, we have an equivalent path starting in v that is allowed by ϕ. Equivalent paths
have the same set of infinitely often recurring priorities. Any priority that may be visited
infinitely often under ψ could therefore also have been visited infinitely often under ϕ.
Therefore, ψ must be a winning strategy. The strictness of the refinement follows from,
e.g., the example in Figure 1.c, in which player 2 wins both vertices. ut

5.4 Decidability

Our algorithm for deciding governed stuttering bisimilarity is based on Groote and
Vaandrager’sO(nm) algorithm for deciding stuttering bisimilarity [15]. Before we pro-
vide the details, we introduce the necessary additional concepts.

Our algorithm requires a generalisation of the well-known notion of attractor sets [21]
along the lines of the generalisation used for the computation of the Until in the alternating-
time temporal logic ATL [1]. The generalisation introduces a parameter restricting the
set of vertices that are considered in the attractor sets.

BAttr
0
i (U) = U

BAttr
n+1
i (U) = BAttr

n
i (U)

∪ {v ∈ B | P(v) = i ∧ ∃v → v′ : v′ ∈ BAttr
n
i (U)}

∪ {v ∈ B | P(v) 6= i ∧ ∀v → v′ : v′ ∈ BAttr
n
i (U)}

BAttr i(U) = BAttr
ω
i (U)

Leavei(B,W) = BAttr i(W) ∩B

The set Leavei(B,W) captures the subset ofB from which player i can force the game
to W ⊆ V . The formal correspondence between Leave and i 7→ is formalised below;
this allows for restating the criteria from Definition 4 in terms of Leave. We first capture
some more general properties about Attr and Leave.

14

Lemma 12. Let P partition V , and letB ∈ P be a block. Define U = B\BAttr¬i(V \
B), then:

1. ∀u ∈ U : P(u) = i =⇒ (∃u→ u′ : u′ ∈ U)
2. ∀u ∈ U : P(u) 6= i =⇒ (∀u→ u′ : u′ ∈ U)

Proof. We prove the two properties separately.

1. Let u ∈ U and P(u) = i. Towards a contradiction, suppose that ∀u → u′ it holds
that u′ 6∈ U . Because of totality of→ there must be at least one such u′. It follows
that ∀u→ u′ : u′ ∈ V \ (B \BAttr¬i(V \B)). Observe that V \ (B \BAttr¬i(V \
B)) = BAttr¬i(V \B), hence u′ ∈ BAttr¬i(V \B), for all u′ such that u→ u′. By
definition of Attr , then also u ∈ BAttr¬i(V \B), but then u 6∈ B\BAttr¬i(V \B),
which contradicts u ∈ U , hence (∃u→ u′ : u′ ∈ U).

2. Let u ∈ U and P(u) 6= i. Towards a contradiction, suppose that ∃u→ u′ such that
u′ 6∈ U . Let u′ be such. Observe that u′ ∈ V \ (B \ BAttr¬i(V \ B)), and thus
u′ ∈ BAttr¬i(V \ B). By definition of Attr , then also u ∈ BAttr¬i(V \ B), thus
u 6∈ U , which contradicts the assumption that u ∈ U , hence ∀u→ u′ : u′ ∈ U . ut

Lemma 13. Let P be a partition of V , and let B ∈ P be a block. Then for all u ∈ B:
u i 7→P if and only if u 6∈ Leave¬i(B, V \B).

Proof. Let P partition V , and letB ∈ P be a block. We first prove the implication from
left to right by contraposition, i.e. we show that for all u ∈ B, if u ∈ Leave¬i(B, V \B),
then u i 67→P . By definition of Leave, Leave¬i(B, V \B) = BAttr¬i(V \B)∩B. Observe
that, if u ∈ BAttr¬i(V \B)∩B, there is some least n such that u ∈ BAttr¬i(V \B)∩B.
We show by induction on n that ∀u ∈ B : u ∈ BAttr

n
¬i(V \B) ∩B =⇒ u i 67→P .

– n = 0. We find that BAttr0¬i(V \ B) = V \ B, and (V \ B) ∩ B = ∅, hence the
statement vacuously holds.

– n = m+1. As induction hypothesis asssume that ∀u ∈ B : u ∈ BAttr
m
¬i(V \B)∩

B =⇒ u i 67→P .
Let u ∈ BAttr

m+1
¬i (V \B) ∩B. By definition of Attr , we find three cases.

• u ∈ BAttr
m
¬i(V \ B) ∩ B. This follows immediately from the induction hy-

pothesis.
• u ∈ {v ∈ B | P(v) 6= i ∧ ∃v → v′ : v′ ∈ BAttr

m
¬i(V \ B)} ∩ B. So we

know that P(u) 6= i, and ∃u → v′ : v′ ∈ BAttr
m
¬i(V \ B). Let u′ be such,

and observe that either u′ ∈ BAttr
m
¬i(V \ B) ∩ B or u′ ∈ V \ B because

(V \ B) ⊆ BAttr
m
¬i(V \ B). In the latter case there is a strategy for player ¬i

such that u ¬i 7→P V \ B, and by Lemma 3 we find u i 67→P . In the first case,
observe that by the induction hypothesis, u′ i 67→P . According Lemma 3, we
find that u′ ¬i 7→P V \B. Application of Lemma 4 gives us that u ¬i 7→P V \B,
and again using Lemma 3, we have u i 67→P .
• u ∈ {v ∈ B | P(v) = i ∧ ∀v → v′ : v′ ∈ BAttr

m
¬i(V \ B)} ∩ B. So we

know that P(u) = i, and ∀u → v′ : v′ ∈ BAttr
m
¬i(V \ B). By totality of→

there is at least one such v′. Observe that u ¬i 7→P BAttr
m
¬i(V \B). According

to the induction hypothesis, we know ∀v ∈ B : v ∈ BAttr
m
¬i(V \B)∩B =⇒

v i 67→P . Applying Lemma 3 we also know that ∀v ∈ B : v ∈ BAttr
m
¬i(V \

B) ∩B =⇒ v ¬i 7→P (V \B). Using Lemma 4 we find that u ¬i 7→P (V \B).
Another application of Lemma 3 gives us the desired result u i 67→P .

15

Finally we prove the implication from right to left, i.e. we prove that ∀u ∈ B : u 6∈
Leave¬i(B, V \ B) =⇒ u i 7→P . Define U ⊆ B to be the subset of B that cannot be
forced by player ¬i to leaveB, i.e. U = B\Leave¬i(B, V \B) = B\¬iAttrB(V \B).
Observe that for all u ∈ V : u ∈ U iff u 6∈ Leave¬i(B, V \ B), so we reformulate our
goal as ∀u ∈ B : u ∈ U =⇒ u i 7→P . Assuming a total ordering on vertices of U , we
define strategy σ ∈ Si that is defined for vertices in U , such that

σ(u) = min{u′ ∈ U | u→ u′}

Observe that {u′ ∈ U | u → u′} 6= ∅ due to Lemma 12, hence σ(u) is well-defined.
Furthermore for all v ∈ U with P(v) 6= i, all successors are in U due to Lemma 12. As
a result, u σ 7→P , and hence u i 7→P . ut

Lemma 14. Let P partition V , and let B,B′ ∈ P such that B 6= B′. Let v ∈ B
such that v → B′. Then for all w ∈ B it holds that w P(v) 7→P B

′ if and only if w ∈
LeaveP(v)(B,B

′).

The proof of this lemma follows the same line of reasoning as the proof of Lemma 13.
Groote and Vaandrager’s algorithm for stuttering bisimulation repeatedly refines

a carefully chosen initial partition P0 using a so-called splitter. We apply the same
principle, choosing P0 such that for all v, v′ ∈ V , v P0 v

′ if and only if Ω(v) = Ω(v′)
as our initial partition. As our splitter, we define a function pos that returns the set of
vertices in B from which a given player i can force the play to reach B′, or, in case
B = B′, force the play to diverge:

posi(B,B
′) =

{
{v ∈ B | v i 7→P } if B = B′

{v ∈ B | v i 7→P B
′} if B 6= B′

In line with [15], we say that B′ is a splitter of B if and only if ∅ 6= posi(B,B
′) 6= B

for some player i. A partition P is stable with respect to a block B ∈ P if B is not a
splitter of any block in P . The partition itself is stable if it is stable with respect to all
its blocks.

A high-level description of our algorithm for governed stuttering bisimulation, is
given as Algorithm 1. We now detail Algorithm 1 using the approach from [15]. Given
the nature of the definition of divergence in governed stuttering bisimulation, we cannot
remove divergent states in a preprocessing step.

Our algorithm maintains a partition P . Initially P = P0, such that for all v, v′:
v P0 v

′ iff Ω(v) = Ω(v′). Algorithm 2 then computes the largest governed stuttering
bisimulation.

Given a parity game, our algorithm maintains two lists of blocks, todo and stable .
A block B′ is in stable if the current partition is stable with respect to B′, otherwise
B′ is in todo. Initially all blocks in P0 are in todo. While the todo list is not empty,
we check for each block B whether it is a splitter of any block B′ using the routine
TrySplit(B,B′). If a splitter is found, the todo list is updated accordingly, and if some
inert transition has become non-inert all stable blocks are added to the todo list in ac-
cordance with Lemma 16.

16

Algorithm 1 Decision procedure for ∼
n← 0
repeat

splitter ← ⊥
for each B ∈ Pn and player i do { Find splitter in O(nm) }

if there exists v ∈ B with v → B′ and ∅ 6= posi(B,B
′) 6= B for B′ ∈ Pn then

splitter ← (B, posi(B,B
′))

end if
end for
if splitter = (B,Pos) then { Refine partition in O(m) }
Pn+1 ← (Pn \ {B}) ∪ {Pos, B \ Pos}

end if
n← n+ 1

until Pn−1 = Pn

Algorithm 2 Algorithm for computing ∼
todo ← P0; stable ← ∅;
repeat
B′ ← head(todo)
for each v → v′ ∈ B′.incoming do

if v 6∈ B then
BL.append(v)

end if
end for
repeat
B ← BL.pop() {Determine for each block B whether B′ is a splitter for B}
(foundsplitter , inert becomes non inert , B1, B2)← TrySplit(B,B′)

until foundsplitter or BL = ∅
if foundsplitter then

todo.remove(B)
todo.append(B1, B2)
if inert becomes non inert then

todo ← todo + stable; stable ← ∅
end if

else
todo.remove(B′)
stable.append(B′)

end if
until todo = ∅

We next elaborate on TrySplit(B,B′), which is given as Algorithm 3. This deter-
mines whether B′ is a splitter of B, using Leave according to Lemmata 13 and 14. If a
splitter is found, the actual splitting is performed; the non-inert edges are added to the
appropriate block, and for all inert edges it is checked whether they are still inert, and
if not they are also added as non-inert edges to the appropriate block.

The following lemma shows that our algorithm indeed computes ∼.

17

Algorithm 3 TrySplit(B,B′)

foundsplitter ← false; inert becomes non inert ← false
i← 0
repeat
B1 ← posi(B,B

′)
i← i+ 1
foundsplitter ← ∅ 6= B1 6= B

until i > 1 or foundsplitter
if foundsplitter then
B2 ← B \B1

for v → v′ ∈ B.incoming do
if v′ ∈ B1 then
B1.incoming .append(v → v′)

else
B2.incoming .append(v → v′)

end if
end for
for C ∈ {B1, B2} do

for v ∈ C do
for v′ → v ∈ v.incoming do

if v′ 6∈ C then
inert becomes non inert ← true
v.incoming .remove(v′ → v)
C.incoming .append(v′ → v)

end if
end for

end for
end for
return (foundsplitter , inert becomes non inert , B1, B2)

else
return (foundsplitter , inert becomes non inert , ∅, ∅)

end if

Lemma 15. If P is a stable partition refining P0, then P is a governed stuttering bisim-
ulation. If P is the largest such partition then P coincides with ∼.

Proof. We first prove the first part of the statement. Let P be a stable partition refining
P0, and let v, v′ ∈ V such that v P v′. We show that P satisfies the three properties
described in Theorem 1.Ω(v) = Ω(v′) follows immediately as P is a refinement of P0.
The transfer and divergence properties follow immediately from the observation that P
is stable, and the definition of pos .

For the second part of the statement observe that ∼ is an equivalence relation ac-
cording to Theorem 3. Furthermore it is defined to be the largest governed stuttering
bisimulation, and it induces a stable refinement of P0. As any stable refinement is a
governed stuttering bisimulation our result follows.

That stable blocks only have to be reconsidered if inert transitions become non-inert
follows from the following lemma.

18

Lemma 16. Let Pn and Pn+1 be partitions of V , such that Pn and Pn+1 have the
same inert transitions. Assume that Pn+1 refines Pn. Let B′ ∈ Pn, Pn+1 such that Pn
is stable with respect to B′. Then also Pn+1 is stable with respect to B′.

Proof. Towards a contradiction, suppose that there exists a block B ∈ Pn+1 such that
B′ ∈ Pn, Pn+1 is a splitter of B, we show that than Pn is not stable with respect to B′.
We distinguish two cases.

1. B = B′. As B′ is a splitter of itself under Pn+1, and B′ ∈ Pn, we immediately
find that B′ is a splitter of itself under Pn, which is a contradiction.

2. B 6= B′. As B′ is a splitter of B, we know that v, v′ ∈ B such that v i 7→Pn+1
B′ ∧

v′ i 67→Pn+1 B
′ for some player i. Let v, v′ be such. Observe that there is a block

B′′ ∈ Pn such that B ⊆ B′′. In case B = B′′, then immediately we find that B′ is
a splitter of B′′, which violates the stability of Pn. Suppose B ⊂ B′′. As Pn and
Pn+1 have the same inert transitions, there are no u ∈ B, u′ ∈ B′′ such that u →
u′. From this, and the assumption that v′ i 67→Pn+1

B′ it follows that v′ i 67→Pn
B′.

Likewise we have that v i 7→Pn
B′, and henceB′ is a splitter ofB′′ under Pn, which

contradicts stability of Pn.

In both cases we arrive at a contradiction, hence Pn+1 is stable with respect to B′.

The number of iterations the algorithm requires to compute ∼ is bounded in the
following theorem.

Theorem 5. Algorithm 2 terminates after at most n−|P0| refinement steps. The result-
ing partition Pf is the coarsest stable partition refining P0.

Proof. Termination of the algorithm after at most n− |P0| refinement steps is straight-
forward. Next we show that the resulting partition Pf is the coarsest stable partition
refining P0. We prove, by induction on the number of refinement steps j, that any stable
partition refining P0 is also a refinement of the current partition Pj . Clearly the state-
ment holds initially. Let R be a stable refinement of P0. By the induction hypothesis,
R is a refinement of Pj . Let Pj+1 be the refinement of Pj , after refining using splitting
pair (B,B′) (i.e. B′ is a splitter of B). We show that R is also a refinement of Pj+1.
Let C be a block in R. Then there is a block D in Pj such that C ⊆ D. We show
that C is included in a block of Pj+1. In case D 6= B we are done. In case D = B,
assume that splitting was done with respect to player i, then we have to show that either
C ⊆ posi(B,B

′), or C ⊆ B \ posi(B,B′).
Towards a contradiction, suppose that there are v, v′ ∈ C such that v ∈ posi(B,B

′)
and v′ 6∈ posi(B,B

′). We distinguish two cases:

– B 6= B′. As v ∈ posi(B,B
′), we know v i 7→Pj

B′. We know there is a sequence
of classes C1, . . . , Cn in R, with C1 = C, Cn = C ′, and Cj i→Cj+1, in other
words, in each of the classes Cj , the game can be forced to Cj+1 by player i. Since
R is a stable refinement of P0, and v, v′ ∈ C we find that also v′ ∈ posi(B,B

′),
which is a contradiction.

– B = B′. As v ∈ posi(B,B
′), we know v i 7→Pj . We know there is a sequence of

classes C1, . . . , Cn in R such that Ci i 7→R Ci+1, and C = C1 = Cn. Following a
similar line of reasoning as in the previous case, we find that then v′ ∈ posi(B,B

′),
which is a contradiction.

19

Given the above considerations, we can determine the running time complexity of
our algorithm as follows.

Theorem 6. Algorithm 1 decides ∼ in O(n2m) time for a parity game that contains n
vertices and m edges.

Proof. Deciding whether a block B′ is a splitter of block B in Algorithm 3 takes
O(mB +nB) time (the time required to compute the attractor set). If a splitter is found,
the actual splitting takesO(m) time. As a result, deciding whether a block B′ is a split-
ter for the current partition takes ΣB(O(mB + nB)) = O(m) time. Finding a splitter
of the current partition (if it exists) hence has time complexityO(nm). As only n−|P0|
refinement steps are possible (Lemma 5), the time complexity of O(n2m) follows.

Our time complexity is worse than the O(nm) achieved by the original algorithm for
deciding stuttering bisimulation. The extra factor O(n) is due to the complexity re-
quired to search for a splitter which, in our case, requires O(nm) time, instead of the
original O(m) time.

The hard case turns out to be the problem of finding a splitter for a blockB that con-
sists of a single strongly connected component in which all vertices in B are divergent
for exactly one player. For this problem, we only have an O(nmC) algorithm, lead-
ing to the O(nm) time bound for a single iteration. The following problem statement
formalises this ‘hard case’.

Problem 1. Let P be a partition, and let C ∈ P be a block, such that C is a strongly
connected component, and for all v ∈ C we have v i 7→P , and v ¬i 67→P . Determine, in
O(m) time, whether there exist v, v′ ∈ C and a block B ∈ P such that v i 7→P B and
v′ i 67→P B.

Claim. Given a solution to Problem 1, the largest governed stuttering bisimulation can
be computed in O(nm) time.

6 Experiments

While the running time of our algorithm for governed stuttering bisimilarity is theo-
retically worse than that of the algorithm for stuttering bisimilarity, we expect that for
solving parity games, in practice both are comparable. We test this hypothesis on a set
of over 200 real-life model checking problems, part of which was previously used to
study the effect of stuttering bisimilarity for parity games, see [9].

Whereas in [9] a signature based approach [5] was used, in the present paper we use
the Groote-Vaandrager algorithm for computing stuttering bisimilarity in order to an-
swer our hypothesis. For computing governed stuttering bisimilarity we have modified
the implementation of Groote-Vaandrager to include the changes presented in Algo-
rithm 1.

For running our experiments we reuse the setup of [9] for solving parity games,
i.e., we use an optimised C++ implementation of the small progress measures algo-
rithm [17], and the optimised variants of the small progress measures, recursive [21,
25] and bigstep algorithms [23] offered by the PGSolver [11] toolset.

20

All experiments were conducted on a machine consisting of 28 Intel R© Xeon c©
E5520 Processors running at 2.27GHz, with 1TB of shared main memory, running a
64-bit Linux distribution using kernel version 2.6.27. None of our experiments employ
multi-core features.

6.1 Test sets

The parity games that were used for our experiments are clustered into four test sets.
We give a brief description of each of the sets below.

Model checking Our main interest is in the practical implications of governed stut-
tering bisimilarity reduction on solving model checking problems. To this end, a
number of model checking problems have been selected from the literature [20,
3, 14]. The properties that have been checked include fairness, liveness and safety
properties.

Games The second test set considers a number of turn-based, two player board games.
For each of these games, and for each player, we have encoded the property that
said player can play the game in such a way that, regardless of the play of the
opponent, she can win the game.

PGSolver The third test set was taken from [11] and consists of the elevator problem
and the Hanoi towers problem described in that paper. It also includes alternative
encodings of these problems, taken from [9].

Equivalence checking The last test set consists of a number of equivalence checking
problems encoded into parity games as described in [8].

The problems in these test sets are scalable. In every test set, a number of instances
of every problem is included. Each problem gives rise to a parity game with at most 4
different priorities, which is typical for practical verification problems.

The model checking, PGSolver and equivalence checking problems were studied
before in the setting of stuttering bisimilarity [9]. We extended that test set to include
more examples of parity games with alternations between players and priorities. We can
expect improved reductions compared to stuttering bisimilarity in these cases.

6.2 Measurements: Size and Time

To analyse the performance of our reduction, we measured the difference in the sizes
(computed as the sum of the number of vertices and the number of edges) of the stutter-
ing and governed stuttering minimal games. A reduction of 0% means that the governed
stuttering bisimilarity reduced game has the same size as the stuttering bisimilarity re-
duced game.

For every problem in the test set, we compute the reduction as the average reduction
over all instances of that problem. We do this in order to measure the reduction rate for
the different problems, rather than for the instances. Figure 2a shows the average re-
duction for problems in each test set, together with the minimal and maximal reduction
achieved within that set.

In addition, we measured the times needed to reduce the parity games plus the time
needed to solve the reduced game using the fastest solver. That is, the sum of these

21

two is the total solving time for a parity game. This way, our results can be compared to
those listed in [9]. In Figure 2b, every data point represents a problem instance, of which
the total solving time of the stuttering minimal game determines the x-coordinate, and
the total solving time for the governed stuttering bisimilarity minimal game determines
the y-coordinate.

0 20 40 60 80 100

pgsolver

equivalence

games

modelchecking

Reduction (%)

(a) Minimum, maximum and aver-
age reduction of parity games using
governed stuttering bisimulation re-
duction, as percentage of the size af-
ter stuttering bisimilarity reduction

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

Stuttering

G
ov
er
n
ed

st
u
tt
er
in
g

modelchecking
equivalence
pgsolver
games

(b) Solving times (=sum of reduc-
tion time and subsequent solving)
in seconds using governed stuttering
bisimilarity set out against the solv-
ing times using stuttering bisimilar-
ity. The dotted line is defined as x =
y and serves as a reference. Note that
the axes are in log scale.

Fig. 2: Comparison of sizes and times of reductions

6.3 Discussion

Figure 2b shows that solving times for governed stuttering bisimilarity are generally
comparable to those for stuttering bisimilarity, confirming our hypothesis.

Whether governed stuttering bisimilarity offers additional reductions over stuttering
bisimilarity depends largely on the kind of property that is checked, and the resulting
structure of the parity game. On average, a modest additional reduction is achieved, and
there are practical cases in which the additional reduction is almost 100%.

For several model checking cases, stuttering bisimilarity already reduces the parity
game to a graph with one vertex per priority. Obviously, governed stuttering bisimilarity
cannot improve on that. However, in one of our problems (model checking a leadership

22

protocol) a reduction of almost 100% is achieved, increasing the average reduction for
this test set.

The properties that we considered on two-player games naturally give rise to alter-
nations between players in the parity game. For these type of properties, the reduction
achieved using governed stuttering bisimilarity surpasses that of stuttering bisimilar-
ity by about 20% on average. Similar results for parity games obtained for controller
synthesis (see e.g. [2]) may be obtained as these exhibit similar structures.

For the equivalence cases, stuttering bisimilarity reduction already yields games of
a small size and governed stuttering bisimilarity does not reduce any further.1

Interestingly, one of the PGSolver cases taken from [11] shows a better reduction
using governed stuttering bisimilarity, in contrast to an alternative encoding also used
in [9].

Summarising, we conclude that governed stuttering bisimilarity reduces slightly
better than stuttering bisimilarity, without noticable loss of performance.

7 Related work

As observed in Fritz’ thesis [12], direct simulation for parity games led to disappoint-
ing reductions, spurring Fritz and Wilke to investigate a weaker notion, called delayed
simulation [13] and its induced equivalence. Delayed simulation equivalence is incom-
parable to governed stuttering bisimilarity. Contrary to governed stuttering bisimilarity,
delayed simulation equivalence has the capability to relate vertices with different pri-
orities. On the other hand, governed stuttering bisimilarity can relate vertices with the
same priority in cases that delayed simulation equivalence cannot, as illustrated by the
two parity games below, in which governed stuttering bisimulation relates all vertices
with equal priority whereas delayed simulation equivalence does not:

0 0 2 0 2 2

Contrary to governed stuttering bisimulation, the definition of the simulation relation is
entirely in terms of a simulation game, viz., a game graph equipped with Büchi winning
conditions. The simulation game gives rise to an O(d2n3m) algorithm for deciding
delayed simulation (here, n is the number of vertices, m the number of edges, and d
the number of different priorities in the game), significantly exceeding our O(n2m)
complexity for governed stuttering bisimulation.

Apart from delayed simulation, in the setting of Boolean equation systems, the no-
tion of idempotence-identifying bisimilarity was defined and investigated [19]. This
equivalence relation enables one to relate conjunctive equations to disjunctive equa-
tions. In parity games, this translates to being able to relate 2 vertices and 2 vertices, re-
spectively. Idempotence-identifying bisimilarity is much finer than governed stuttering
bisimilarity, as the former is based on strong bisimilarity. Interestingly, the complexity
of deciding idempotence-identifying bisimilarity is the same as for strong bisimilarity.

1 [9] reports a poor reduction for stuttering equivalence in these cases. This was caused by
“optimisations” that were used during generation of the parity games.

23

8 Concluding remarks

We have described a non-trivial modification of stuttering bisimulation that allows re-
lating vertices that belong to different players. The resulting relation, dubbed governed
stuttering bisimulation, is an equivalence relation that can be decided in O(n2m) time
using a partition refinement algorithm. Although this complexity is worse than the
O(nm) time complexity for deciding stuttering bisimulation, our experiments indicate
that this factor does not manifest itself in practice. In fact, the algorithm is largely com-
petitive with the one for stuttering bisimilarity.

An obvious question is whether elements of Fritz and Wilke’s delayed simula-
tion [13] and governed stuttering bisimulation can be combined. Given the complexity
of the proofs of most of our results for governed stuttering bisimulation and our at-
tempts to weakening governed stuttering bisimulation along these lines, we are rather
sceptic about the chances of success. Even if one would manage to define such a rela-
tion, it would likely have little practical significance due to the prohibitive complexity
of delayed simulation.

An interesting extension of our work could be to generalise the concepts of gov-
erned stuttering bisimilarity to games with other payoff functions that are insensitive to
stuttering. We expect such a generalisation to be reasonably straightforward.

Finally, we observe that stuttering bisimulation (also known as branching bisimu-
lation in labelled transition systems) underlies several confluence reduction techniques
for syntactic system descriptions, see [6]. Such reductions partly side-step the state-
space explosion. We believe that our study offers the required foundations for bringing
similar-spirited confluence reduction techniques to a setting of symbolic representations
of parity games.

References

1. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,
49(5):672–713, September 2002.

2. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with partial
observation. TCS, 303(1):7–34, 2003.

3. B. Badban, W. Fokkink, J.F. Groote, J. Pang, and J. v.d. Pol. Verification of a sliding window
protocol in µCRL and PVS. FAC, 17:342–388, 2005.

4. D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. DAG-width and parity games. In
STACS’06, volume 3884 of LNCS, pages 436–524. Springer, 2006.

5. S.C.C. Blom and S. Orzan. Distributed branching bisimulation reduction of state spaces.
Electronic Notes in Theoretical Computer Science, 89(1):99–113, 2003.

6. S.C.C. Blom and J.C. v.d. Pol. State space reduction by proving confluence. In CAV’02,
volume 2404 of LNCS, pages 676–694. Springer, 2002.

7. M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in
propositional temporal logic. TCS, 59:115–131, 1988.

8. T. Chen, B. Ploeger, J. v.d. Pol, and T.A.C. Willemse. Equivalence Checking for Infinite
Systems Using Parameterized Boolean Equation Systems. In CONCUR’07, pages 120–135,
2007.

9. S. Cranen, J.J.A. Keiren, and T.A.C. Willemse. Stuttering mostly speeds up solving parity
games. In NFM’11, volume 6617 of LNCS, pages 207–221. Springer, 2011.

24

10. E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy. In FOCS’91,
pages 368–377, Washington, DC, USA, 1991. IEEE Computer Society.

11. O. Friedmann and M. Lange. Solving parity games in practice. In ATVA’09, volume 5799 of
LNCS, pages 182–196. Springer, 2009.

12. C. Fritz. Simulation-Based Simplification of omega-Automata. PhD thesis, Christian-
Albrechts-Universität zu Kiel, 2005.

13. C. Fritz and T. Wilke. Simulation relations for alternating parity automata and parity games.
In DLT’06, volume 4036 of LNCS, pages 59–70. Springer, 2006.

14. J.F. Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system for lifting trucks. In
JLAP, volume 55, pages 21–56. Elsevier, 2003.

15. J.F. Groote and F.W. Vaandrager. An efficient algorithm for branching bisimulation and
stuttering equivalence. In ICALP’90, volume 443 of LNCS, pages 626–638. Springer, 1990.

16. M. Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. IPL, 68(3):119–124,
1998.

17. M. Jurdziński. Small progress measures for solving parity games. In STACS’00, volume
1770 of LNCS, pages 290–301. Springer, 2000.

18. M. Jurdziński, M. Paterson, and U. Zwick. A Deterministic Subexponential Algorithm for
Solving Parity Games. In SODA’06, pages 117–123. ACM/SIAM, 2006.

19. J.J.A. Keiren and T.A.C. Willemse. Bisimulation Minimisations for Boolean Equation Sys-
tems. In HVC’09, volume 6405 of LNCS, 2011.

20. S.P. Luttik. Description and formal specification of the link layer of P1394. In Workshop on
Applied Formal Methods in System Design, pages 43–56, 1997.

21. R. McNaughton. Infinite games played on finite graphs. APAL, 65(2):149–184, 1993.
22. J. Obdrzálek. Clique-Width and Parity Games. In CSL, pages 54–68, 2007.
23. S. Schewe. Solving parity games in big steps. In FSTTCS’07, volume 4855 of LNCS, pages

449–460. Springer, 2007.
24. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation se-

mantics. J. ACM, 43(3):555–600, May 1996.
25. W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on

infinite trees. TCS, 200(1-2):135 – 183, 1998.

25

Science Reports Department of Mathematics and Computer Science
 Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the
requested reports).

In this series appeared (from 2009):

09/01 Wil M.P. van der Aalst, Kees M. van Hee, Compositional Service Trees
 Peter Massuthe, Natalia Sidorova and
 Jan Martijn van der Werf

09/02 P.J.l. Cuijpers, F.A.J. Koenders, Queue merge: a Binary Operator for Modeling Queueing Behavior
 M.G.P. Pustjens, B.A.G. Senders,
 P.J.A. van Tilburg, P. Verduin

09/03 Maarten G. Meulen, Frank P.M. Stappers Breadth-Bounded Model Checking
 and Tim A.C. Willemse

09/04 Muhammad Atif and MohammadReza Formal Specification and Analysis of Accelerated Heartbeat Protocols
 Mousavi

09/05 Michael Franssen Placeholder Calculus for First-Order logic

09/06 Daniel Trivellato, Fred Spiessens, POLIPO: Policies & OntoLogies for the Interoperability, Portability,
 Nicola Zannone and Sandro Etalle and autOnomy

09/07 Marco Zapletal, Wil M.P. van der Aalst, Pattern-based Analysis of Windows Workflow
 Nick Russell, Philipp Liegl and
 Hannes Werthner

09/08 Mike Holenderski, Reinder J. Bril Swift mode changes in memory constrained real-time systems
 and Johan J. Lukkien

09/09 Dragan Bošnački, Aad Mathijssen and Behavioural analysis of an I²C Linux Driver
 Yaroslav S. Usenko

09/10 Ugur Keskin In-Vehicle Communication Networks: A Literature Survey

09/11 Bas Ploeger Analysis of ACS using mCRL2

09/12 Wolfgang Boehmer, Christoph Brandt Evaluation of a Business Continuity Plan using Process Algebra
 and Jan Friso Groote and Modal Logic

09/13 Luca Aceto, Anna Ingolfsdottir, A Rule Format for Unit Elements
 MohammadReza Mousavi and
 Michel A. Reniers

09/14 Maja Pešić, Dragan Bošnački and Enacting Declarative Languages using LTL: Avoiding Errors and
 Wil M.P. van der Aalst Improving Performance

09/15 MohammadReza Mousavi and Proceedings of Formal Methods 2009 Doctoral Symposium
 Emil Sekerinski, Editors

09/16 Muhammad Atif Formal Analysis of Consensus Protocols in Asynchronous Distributed
 Systems

09/17 Jeroen Keiren and Tim A.C. Willemse Bisimulation Minimisations for Boolean Equation Systems

09/18 Kees van Hee, Jan Hidders, On-the-fly Auditing of Business Processes
 Geert-Jan Houben, Jan Paredaens,
 Philippe Thiran

10/01 Ammar Osaiweran, Marcel Boosten, Analytical Software Design: Introduction and Industrial Experience Report
 MohammadReza Mousavi

10/02 F.E.J. Kruseman Aretz Design and correctness proof of an emulation of the floating-point operations
 of the Electrologica X8. A case study

mailto:wsinsan@tue.nl

10/03 Luca Aceto, Matteo Cimini, Anna On Rule Formats for Zero and Unit Elements
 Ingolfsdottir, MohammadReza
 Mousavi and Michel A. Reniers

10/04 Hamid Reza Asaadi, Ramtin Khosravi, Towards Model-Based Testing of Electronic Funds Transfer Systems
 MohammadReza Mousavi, Neda Noroozi

10/05 Reinder J. Bril, Uğur Keskin, Schedulability analysis of synchronization protocols based on overrun without
 Moris Behnam, Thomas Nolte payback for hierarchical scheduling frameworks revisited

10/06 Zvezdan Protić Locally unique labeling of model elements for state-based model differences

10/07 C.G.U. Okwudire and R.J. Bril Converting existing analysis to the EDP resource model

10/08 Muhammed Atif, Sjoerd Cranen, Reconstruction and verification of group membership protocols
 MohammadReza Mousavi

10/09 Sjoerd Cranen, Jan Friso Groote, A linear translation from LTL to the first-order modal µ-calculus
 Michel Reniers

10/10 Mike Holenderski, Wim Cools Extending an Open-source Real-time Operating System with Hierarchical
 Reinder J. Bril, Johan J. Lukkien Scheduling

10/11 Eric van Wyk and Steffen Zschaler 1st Doctoral Symposium of the International Conference on Software Language
 Engineering (SLE)

10/12 Pre-Proceedings 3rd International Software Language Engineering Conference

10/13 Faisal Kamiran, Toon Calders and Discrimination Aware Decision Tree Learning
 Mykola Pechenizkiy

10/14 J.F. Groote, T.W.D.M. Kouters and Specification Guidelines to avoid the State Space Explosion Problem
 A.A.H. Osaiweran

10/15 Daniel Trivellato, Nicola Zannone and GEM: a Distributed Goal Evaluation Algorithm for Trust Management
 Sandro Etalle

10/16 L. Aceto, M. Cimini, A.Ingolfsdottir, Rule Formats for Distributivity
 M.R. Mousavi and M. A. Reniers

10/17 L. Aceto, A. Birgisson, A. Ingolfsdottir, Decompositional Reasoning about the History of Parallel Processes
 and M.R. Mousavi

10/18 P.D. Mosses, M.R. Mousavi and Robustness os Behavioral Equivalence on Open Terms
 M.A. Reniers

10/19 Harsh Beohar and Pieter Cuijpers Desynchronisability of (partial) closed loop systems

11/01 Kees M. van Hee, Natalia Sidorova Refinement of Synchronizable Places with Multi-workflow Nets -
 and Jan Martijn van der Werf Weak termination preserved!

11/02 M.F. van Amstel, M.G.J. van den Brand Using a DSL and Fine-grained Model Transformations to Explore the boundaries of
 and L.J.P. Engelen Model Verification

11/03 H.R. Mahrooghi and M.R. Mousavi Reconciling Operational and Epistemic Approaches to the Formal Analysis of
 Crypto-Based Security Protocols

11/04 J.F. Groote, A.A.H. Osaiweran and Benefits of Applying Formal Methods to Industrial Control Software
 J.H. Wesselius

11/05 Jan Friso Groote and Jan Lanik Semantics, bisimulation and congruence results for a general stochastic
 process operator

11/06 P.J.L. Cuijpers Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence

11/07 F.P.M. Stappers, M.A. Reniers and Transforming SOS Specifications to Linear Processes
 S. Weber

11/08 Debjyoti Bera, Kees M. van Hee, Michiel A Component Framework where Port Compatibility Implies Weak Termination
 van Osch and Jan Martijn van der Werf

11/09 Tseesuren Batsuuri, Reinder J. Bril and Model, analysis, and improvements for inter-vehicle communication
 Johan Lukkien using one-hop periodic broadcasting based on the 802.11p protocol

11/10 Neda Noroozi, Ramtin Khosravi, Synchronizing Asynchronous Conformance Testing
 MohammadReza Mousavi
 and Tim A.C. Willemse

11/11 Jeroen J.A. Keiren and Michel A. Reniers Type checking mCRL2

11/12 Muhammad Atif, MohammadReza Formal Verification of Unreliable Failure Detectors in Partially
 Mousavi and Ammar Osaiweran Synchronous Systems

11/13 J.F. Groote, A.A.H. Osaiweran and Experience report on developing the Front-end Client unit
 J.H. Wesselius under the control of formal methods

11/14 J.F. Groote, A.A.H. Osaiweran and Ananlyzing a Controller of a Power Distribution Unit
 J.H. Wesselius Using Formal Methods

11/15 John Businge, Alexander Serebrenik Eclipse API Usage: The Good and The Bad
 and Mark van den Brand

11/16 J.F. Groote, A.A.H. Osaiweran, Investigating the Effects of Designing Control Software
 M.T.W. Schuts and J.H. Wesselius using Push and Poll Strategies

11/17 M.F. van Amstel, A. Serebrenik Visualizing Traceability in Model Transformation Compositions
 And M.G.J. van den Brand

11/18 F.P.M. Stappers, M.A. Reniers, Dogfooding the Structural Operational Semantics of mCRL2
 J.F. Groote and S. Weber

12/01 S. Cranen Model checking the FlexRay startup phase

12/02 U. Khadim and P.J.L. Cuijpers Appendix C / G of the paper: Repairing Time-Determinism in
 the Process Algebra for Hybrid Systems ACP

12/03 M.M.H.P. van den Heuvel, P.J.L. Cuijpers, Revised budget allocations for fixed-priority-scheduled periodic resources
 J.J. Lukkien and N.W. Fisher

12/04 Ammar Osaiweran, Tom Fransen, Experience Report on Designing and Developing Control Components
 Jan Friso Groote and Bart van Rijnsoever using Formal Methods

12/05 Sjoerd Cranen, Jeroen J.A. Keiren and A cure for stuttering parity games
 Tim A.C. Willemse

	TITEL.PG12-05
	Blanco
	CSR-12-05
	Blanco
	PUBL.LS4csr 2009 tm

