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CHAPTER 1 

GENERAL INTRODUCTION 

Inelastic scattering of charged particles from atoms and nuclei is an 

important tool for studying the properties of excited states. In general, 

the quantum-mechanical description of inelastic scattering processes with 

multiple excitation requires the numerical solution of the Schrodinger 

equation, reformulated as a set of N coupled linear second-order radial 

differential equations. By means of this solution, the scattering matrix 

elements can be calculated and, from them, the excitation probabilities 

which can be compared with experimental data. 

In this thesis computational aspects of solving the Schrodinger equa­

tion have been studied for small, as well as for large sets to describe 

inelastic scattering problems with multiple excitation in nuclear 

physics. 

In the usual approach, the set of coupled equations is solved as many 

times as the dimension of the set with linearly independent regular 

starting values for each of the solution vectors. The equations are 

integrated from the origin to a radius at which all nuclear and coupling 

interactions become insignificant. By constructing the physical solution 

as a linear combination of the solution vectors with the appropriate 

asymptotic behaviour of an incoming partial wave in the entrance channel 

plus outgoing partial waves in all relevant exit channels, the desired 

S-matrix elements can be found. This standard procedure is satisfactory 

for small systems of coupled equations, i.e., for light-ion reactions, 

but it is particularly time-consuming for large systems associated with 

heavy-ion collisions. In addition, this procedure generates S-matrix 

elements which form a complete N x N matrix. However, in the nuclear 

physics context, often only a restricted number of entrance channels 

(only one for a zero-spin ground state) is important which means that 

only a restricted number of columns of the scattering matrix is needed. 

In these cases, iteration methods can be applied for which the solutions 

are obtained directly without the need for solving the set of coupled 

equations N times. 

When studying scattering problems by solving the Schrodinger equation 

numerically, an insight has to be gained into the loss of accuracy in the 

solutions and S-matrix elements, due to the discretization of the set of 

differential equations and due to other possible sources of deficiencies. 

Especially, when solving scattering problems with energies near or below 
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the Coulomb barrier, special attention has to be paid to the loss of 

accuracy that results from a tendency of the solution vectors to become 

"nearly linearly dependent" during integration through a classically 

forbidden region where rounding errors occur that are inherent in the 

finite representation of numbers in a computer. This loss of accuracy 

necessitates "stabilization" of the set of solution vectors in a specific 

way. 

The set of coupled equations can be integrated by means of well-known 

multistep methods, such as the Numerov method. In applying these metods 

special attention has to be paid to the behaviour of the solution. The 

heavier the charged particles in the scattering process and the higher 

the energy of their relative motion, the more rapidly the solution will 

oscillate in the classically allowed region and the smaller the step 

sizes in the multistep methods have to be chosen. Since, in general, 

these circumstances occur together with large systems of coupled 

equations and a long range of the Coulomb coupling interaction, the 

multistep methods can become prohibitively time-consuming. 

Until recently, calculations with many coupled equations have been 

possible only within the semi-classical framework of multiple Coulomb 

excitation. This approach has a number of limitations. Its accuracy 

decreases steadily as the excitation energy of the reaction channels 

increases and the transferred angular momentum becomes larger. At 

energies significantly above the Coulomb barrier, the computational 

complexity of accurate semi-classical calculations increases rapidly; 

alternatively, the accuracy of the simplest semi-classical calculation 

decreases rapidly. Thus, although semi-classical methods are of great 

value, their limitations are such that a fully quantum mechanical method 

that can cope with substantially more than twenty to thirty coupled 

channels would be a valuable alternative. 

In order to meet with the problems that occur in heavy-ion collisions, 

due to the standard procedure for solving the N coupled radial equations 

N times and the step-size dependency of the multistep methods, it is 

advantageous to formulate piecewise analytical solution methods together 

with iteration methods. In this way, heavy-ion multiple Coulomb excita­

tion, as well as multiple excitation including the effects of the nuclear 

interaction, can be treated effectively. In these methods, the partial 

wave radial solution of the Schri5dinger equation is decomposed into 

regular and outgoing components, i.e., it is written as a linear combina­

tion of two basis functions which oscillate in the classically allowed 

region with relatively slowly varying amplitudes. These basis functions 
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are the solutions of the decoupled radial equations. An appropriately 

chosen reference potential will allow them to be expressed in terms of 

piecewise analytic reference solutions. Rewriting the set of coupled 

differential equations in an integral form, the varying amplitudes 

satisfy a set of coupled integral equations. The integrals that appear in 

these equations can be evaluated analytically when piecewise analytic 

reference solutions are used, provided that they belong to a suitably 

chosen reference potential. The set of integral equations is solved by 

means of iteration. 

This thesis will be subdivided into the following chapters: 

In Chapter 2, the formalism for multiple excitation in inelastic 

scattering processes will be discussed. The set of coupled radial diffe­

rential equations is derived for the channel-spin as well as for the 

spin-orbit representation. The general expression for the set is reduced 

to the form used in the following chapters in order to study solution 

methods. 

In Chapter 3, the accuracy of the numerical integration process is 

investigated for small sets, using a multistep integration method. A 

method for measuring the accuracy of the regular solution subspace, 

spanned by the solution vectors, is used rather than the accuracy of the 

solution vectors themselves. This. method computes the principal angles 

between two solution subspaces that are obtained under different nume­

rical conditions. Chapter 4 is also devoted to the integration of small 

sets but, in order to take into account the long range of the Coulomb 

coupling effectively, a piecewise analytical solution integration method 

is applied to the integration range beyond the range of the nuclear 

potential. It appears that, due to its effectiveness, this method can be 

used to solve moderately large sets as well. 

In Chapter 5, the solution of large sets is investigated in order to 

describe quantum mechanically heavy-ion multiple Coulomb excitation. The 

results of an investigation, which includes in addition a nuclear inter­

action potential, are presented in Chapter 6. In both chapters, the set 

of coupled differential equations has been rewritten as an equivalent set 

of coupled integral equations. Using goniometric or Airy functions as 

piecewise analytic reference solutions, the integrals in this set can be 

evaluated analytically. Coulomb wave functions can be used as reference 

solutions too, because the corresponding integrals can be evaluated 

effectively using recurrence relations. The set of integral equations is 

solved iteratively with a considerable reduction of computation time 

compared with conventional calculations described in the two foregoing 
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chapters, where the set was solved as many times as the dimension of the 

set. The effectiveness of two iteration schemes, an inward-outward and a 

sequential or perturbative'one, has been investigated in some test cases 
238 40 84 

that deal with multiple excitation of _U by Ar and Kr. In general, 

only a few iterations are needed in the inward-outward scheme. In chapter 
. . 238 84 5, the excLtatLon probabilities for U, Coulomb excited by 385 MeV Kr 

up to a state with I
11 = 24+ of the ground-state rotational band (GSB), 

are shown and they are compared with the excitation probabilities calcu­

lated according to the semi-classical theory. In chapter 6, the excita­

tion probabilities for Coulomb-nuclear excitation of 238u by 286 MeV 40Ar 
84 and 718 MeV Kr up to high spin states of the GSB are calculated and for 

the former compared with experimental data. 

In Chapter 7, the recurrence relations are given satisfied by the 

electric multipole radial matrix elements or Coulomb integrals which 

arise in particular in the integral representation of the radial 

Schrodinger equation. The numerical stability and the accuracy obtained 

are discussed. 

A method for vectorization of coupled-channel Fortran programmes, 

based upon the integral equation method, is presented for use on the 

Cyber 205 computer (with one vector-pipeline), in Chapter 8. Results are 

given for the above-mentioned 
40

Ar and 84Kr test cases. In these tests 

with dimensions of the set of 64 and 169 , respectively, it appears that 

the vector algorithm gives a partial speed-up of 4 to 8, resulting in an 

overall factor of 2 to 3 speed-up as compared with a highly optimized 

scalar algorithm. 

Chapter 9 presents the results of determining the intrinsic quadrupole 
. 163 167 and hexadecapole moments of the odd-A nucleL Dy and Er. In addi-

tion, the intrinsic quadrupole moment of 176Lu was determined precisely 

as part of a general study of the electromagnetic properties of this 

odd-odd nucleus. These properties are interesting, because 176Lu has been 

proposed for using the B-decay of its K,I
11 

= 7,7- ground state to 176Hf 

as a cosmic clock for s-process nucleosynthesis. These results were 

obtained in collaboration with the group of Prof. Dr. Th. w. Elze from 

the university of Frankfurt (BRD). 

Finally, it should be noted that some chapters show overlap. This is 

due to the fact that chapters 3 to 9 constitute independent papers. 

Overlap occurs, especially, in the sections which describe the intro­

duction and the formalism. 

- 4 -



CHAPTER 2 

FORMALISM FOR MULTIPLE EXCITATION IN INELASTIC SCATTERING PROCESSES 

1. INTRODUCTION 

When we consider inelastic collisions between two nuclei a and A, such 

a pair of particles will be called a "partition" of the total collection 

of nucleons involved and will be denoted by a Greek letter such as a. The 

nuclei a and A may exist in any of a large number of excited states as 

well as their ground states. Sometimes we will use the symbol a to mean 

simply the partition a+A, and sometimes it will refer to a particular 

internal state of that partition too, i.e., a particular state of either 

nucleus a or A. The term "channel" will be used to refer to a particular 

internal state of a partition in a particular state of relative motion. 

This term will also be used flexibly [1]. 

All processes other than elastic or inelastic scattering will be 

ignored. Let ~ be the relative position vector of the centers of mass of 

projectile a and target A and let xa and xA be the internal nuclear 

coordinates. We assume that the Hamiltonian equation of the system has 

the form 

(2 .1) 

where Ha' HA are the internal Hamiltonians of projectile and target and T 

is the relative kinetic energy operator. The interaction potential V 

contains the nuclear and Coulomb components VN(r), VC(r) of the optical 
+ 

pot:ntial and the nuclear and Coulomb transition potentials VN(r,xa,xA)' 

VC(r,xa,xA) that couple internal excitations of a,A with the relative 

motion [1]: 

(2.2) 

The internal states of a and A are eigenstates of the internal Hamil­

tonians H and H · a A' 

(2.3) 

where the superscripts a,A distinguish different internal states of given 
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angular momentum and the energies are excitation energies referred to the 

respective ground states. 
... 

The relative orbital angular momentum L of a and A and their respec-
+ a 

tive angular momenta Ia and tA are coupled to the total angular momentum 

j = i + iA + t . Since the interaction V(;,x ,xA) is a scalar 1 must be a a a 
conserved; its magnitude J and projection M on to the z-axis are good 

quantum numbers. In addition, parity must also be c~nserved; therefore, 11 

is a good quantum number too. There are three choices for the order of 

coupling these three angular momenta to their resultant, i.e., 

+ + + + + + 
I + I = sa' sa + L J (2 .4a) a A a 

+ i + + + + (2.4b) L + J a' J + !A J 
a a a 

+ + + + + + 
(2.4c) L + !A JA' JA + I J 

a a 

The coupling scheme should be chosen, where possible, so as to simplify 

the treatment of scattering. If there is a strong interaction coupling 

between the two nuclear spins, but not to their relative orbital motion 
+ + 

(e.g., one proportional to IA.Ia times a scalar function of r), this 

interaction is diagonal in the channel spin S and the channel-spin 
a 

representation (2.4a) will be the most useful one. More often, at least 

with light ions, the strongest interaction is to couple the spin of the 

light ion to the relative orbital motion. If this ion is the one labeled 

a, the spin orbit representation (2.4b) will diagonalize the spin-orbit 

coupling and will be the most convenient one to use. If both types of 

coupling are of the same importance, none of the representations will 

diagonalize both simultaneously. Then, the choice is arbitrary, or it may 

be made on some other grounds. One of these grounds may be the need to 

use existing computer programs with a minimum modification. In the next 

two sections, we will derive coupled radial equations for the channel­

spin, as well as, for the spin-orbit representation. In particular, 

expressions will be given for the coupling matrix elements in both 

representations, taking into account, the mutual excitation of projectile 

and target [1). In section 4, the reduction of these general expressions 

will be discussed ignoring the projectile excitation, as well as its 

spin. In section 5, the boundary conditions are treated satisfied by the 

so-called physical solutions of the coupled radial equations. 
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2. CONSTRUCTION OF COUPLED-CHANNEL EQUATIONS WITH MUTUAL EXCITATION IN 

THE 'CHANNEL-SPIN' REPRESENTATION 

* We introduce the channel eigenstates 

+ 

(2 .5) 

corresponding to the channel spin Sa' where we ignore the effects of 

antisymmetry between projectile and target nucleons. From now on, the 

superscripts a and A will be deleted in the notation. A basis state of 

partition a for given total angular momentum J and parity 1f can be 

specified by a definite channel spin Sa and a definite relative orbital 

angular momentum £a, Solutions of the SchrBdinger equation can be expres­

sed, then, in terms of these channel-spin basis states, in the form of: 

with a = yiaiASaia. We have added a subscript y to stand for any other 

labels (besides the spins Ia,IA) needed to specify the internal states of 

the two nuclei. In practice, only a restricted number of channels are 

included in the expansion (2. 6). Within the truncated model space so 

defined, the Schrodinger equation reduces to a finite set of coupled 

radial equations [1] 

(2. 7) 

The elements Vaa'(r) of the coupling matrix in (2.7) are 

vaa'(r) < [/a y £a [ ~Ia s J 

+ + ~I J JM 
VN(r,xa,xA)+VC(r,xa,xA) 

A- a 

Jl,' 

S'J [ i a YJI,, a[ ~I~ \A.] ) N C - Vaa'(r)+Vaa'(r), (2.8) 
JM 

a 

and Vopt(r) VN(r)+VC(r). Because 
+ + 

VN(r,xa,xA)+VC(r,xa,xA) is a scalar, 

* A square bracket with two angular-momentum dependent functions in it 

denotes vector coupling. Thus, e.g., (~.~j,]JM L (jmj'm'IJM)~. ~ .• ,. 
J m m' Jm J m 
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the matrix with elements V ,(r) is diagonal in J and M and in w and is 
aa J 

independent of M. Consequently, 1jJ 'If (r') for different values of the total 
a t t' 

angular momentum J and different parity n [n = n n (-) a= 1!" 1 11" 1
(-) a] are aA aA 

not coupled; a set of coupled equations· (2. 7) exists for each pair of 

values J,n. The number of coupled equations in (2.7) is denoted by Nand 

the channel wave number ka is given by: 

(2.9) 

In these formulae, E is the center-of-mass energy in the incident ground­

state channel and ~ is the reduced mass. Closed channels, for which ka is 

imaginary will not occur in the following. 

The nuclear part of the optical potential will be taken to be of com­

plex ivoods-Saxon form, e.g., 

where 

e = exp[(r- R )/a], 
v v v 

whilst v, R and a are v v 
meters of the real part 

parameters W and e have a w 
of the nuclear potential. 

(2 .lOa) 

(2.10b) 

the strength, the radius and diffuseness para­

of the nuclear potential, respectively. The 

similar meaning relative to the imaginary part 

The Coulomb part of the optical potential is given by the interaction 

potential of a point charge with a uniform sphP i a ha e ist i ution 

within the Coulomb radius Rc and zero charge outside it: 

r < R 
c 

r > R 
c 

(2 .11) 

where Za and ZA represent the charge numbers of the projectile and target 

nucleus, respectively. 

A complete specification of the coupling matrix V ,(r) requires the 
a a 

introduction of a detailed model for the internal nuclear states involved 

and specific assumptions about the nuclear and Coulomb interaction 
+ + 

potentials VN(r,xa,xA) and VC(r,xa,xA). The evaluation of these matrix 

elements is the most crucial part of the whole calculation; however, we 

will not do this. Never-the-less, the nuclear transition potential can 
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still be written in a general form as [2,3]: 

(a,A)( ) {[Q(a) Q(A)] 
vA A A r A A A 

a A a A 
(2 .12) 

where the superscripts a,A distinguish terms of different character but 

with the same tensorial ranks Aa• AA· The operators Q~:) and Q~:) operate 

only on the coordinates of the nuclei a and A, respectively. The dot in 

(2.12) indicates a scalar product of two tensor operators of the same 

rank A. These tensor operators work on different degrees of freedom of 

the system, i.e., they commute. 

The transition electric-electric multipole Coulomb interaction poten­

tial between the charge distributions of a and A is given by [4]: 

V ( + ) (4~) \ ( ) a a 3/ 2 A [ (2A +2AA)! ]1/2 
c r' x a' xA = " L - ""(""2A""a""'+,...,l""")...,.!..,.( 2;;:.A,..A""'+,..:,l;,)...,.! ..,.( 2""X,..+,..,l,....) 

Aa,AA,A (2.13) 

Aa~XA+l {(Ma(EAa)MA(EAA)]A • iAYA(f)}, 
r 

where the electric multipo1e moments are defined as: 

(2.14) 

with a charge density given by p(t), which for a deformed target nucleus 

(projectile) may differ from the spherical one associated with (2.11). 

If the expression (2.12) is used for the transition nuclear potential, 
N 

then, the coupling matrix element Vaa'(r) of (2,8) can be obtained expli-

citly as [ 5] : 

VN ,(r) = 
a a 

(2.15) 

where the geometrical factor G(I lAS ~ ,I'IA'S'~';A AAAJ) in the channel­a a a a a a a 
spin representation is defined as: 
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R.'-R. +A J+S +R. +R.' 
G(I IS R. I'I'S'R.'·A A AJ) • (4n)~l/Z i a a (-) a a a 

a A a a' a A a a' a A 

( 

R, R, I 

i i• 1 a a 
a a 0 0 

(2.16) 

with x • (2x+l) 112 • The reduced matrix elements <I IIQ(a)III'> and a A a 
a 

<I IIQ(A)H'> appearing in (2.15) contain the dynamics of the nuclei a 
A AA A 

and A, respectively, that are involved in the problem [5,6J. Based upon 

some model, explicit forms can be given for these 

[2J. It is noted that the basis states (2.6) are 
m 

accompanying the spherical harmonics YR.(e,~). 

reduced matrix elements 

defined with i 1 factors 

A factor iA is included 

explicitly in the scalar product of the two tensor operators (2.12) too. 

These phase factors ensure convenient time-reversal properties. 
c In the same way, the coupling matrix element Vaa'(r) can be derived 

from (2.13) for the Coulomb transition potential: 

l <I II M (EA ) Ill'> <IA UMA(EAA) IliA'> 
Xa+XA+l a a a a 

r 

(2 .17) 

where the geometrical factor is again given by (2.16). 
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3. CONSTRUCTION OF COUPLED-CHANNEL EQUATIONS WITH MUTUAL EXCITATION IN 

THE 'SPIN-ORBIT' REPRESENTATION 

Using an analogy with (2.16), we introduce the spin-orbit basis states 

according to coupling scheme (2.4b): 

with a = ytalajaiA. If we insert this expansion into the Schr~dinger 

equation, we obtain a finite set of coupled radial equations for the 

radial functions ~Jn(r) similar to (2.7) 
a 

(2.19) 

where the elements Vaa'{r) of the coupling matrix are now given by: 

~I 
A J JM 

+ 
The nuclear interaction potential VN{r,xa,xA) can be expanded to: 

(2.21) 

and equivalently the electric-electric Coulomb interaction potential VC 

(2.22) 

~ {[i).Y,(r)M (EX )j, • MA(EXA)}, 
). +XA+1 ~ a a ~A 

r a 

The standard reduction formulae for the coupling matrix elements of the 

scalar product of two commuting tensor operators such as (2.21) and 
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N 
{2.22) can be used here, too. Then, Vaa'(r) in the spin-orbit representa-

tion becomes: 

(2.23) 

where the geometrical factor G(~ I j IA'~'I'j'IA';A AAAJ) in the spin-a a a aaa a 
orbit representation is defined as: 

G(~ I j I .~'I'j'I';A A AJ) 
a a a A a a a A a A 

J+IA+~ +j' 
(-) a a 

(2.24) 

c 
In the same way, the coupling matrix element Vaa'(r) in the spin-orbit 

representation is obtained from (2.22) for the Coulomb transition 

potential: 

Vc < > (4~>3/2 \' aa' r ,. " t.. 

(2.25) 

where the geometrical factor is given by (2.24) 
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4. THE COUPLING MATRIX ELEMENTS V ,(r) FOR A = 0 and I a 0 
~~ a ' a 

In the preceeding sections, we described the general formalism for 

inelastic scattering, including mutual excitation. In the next chapters, 

however, calculation methods and their results will be discussed based 

upon a formalism that ignores the excitation of the projectile, as well 

as its spin, if it has any. Therefore, in this section, the expressions 

for the coupling matrix elements V ,(r) will be given to which the 
~" N C 

general expressions (2.15, 2.17) and (2.23, 2.25) of Vaa'(r) and Vaa'(r) 

in the channel-spin and spin-orbit representation, respectively, reduce 

for A = 0 and I = 0. 
a a 

Uhen the projectile excitation is not considered, or the interaction 

acts only on the internal degrees of freedom of one nucleus, say A, we 

may put Aa = 0 and Q~a) = 1. It is then clear that AA = A and the reduced 
a 

matrix elements of the projectile in (2.15) and (2.17) become: 

<I NQ(a)HI'> 
a Aa a 

(2I +1) 112 
a 

0I I' (2.26) 
a a 

and 

Z e 
(2I +1)1/2 <I a liMa (EA a) II I~> 

a 0
! I' (2.27) 

(4'11)1/2 a a a 

respectively. 

The geometrical factor (2.16) in the channel-spin representation 

reduces for A = 0 to 
a 

G(I I S t I I'S't'·OAAJ) 
a A~ ~· a A~ ~· 

R.'-t +>. J - s' 
(4w)-112 i ~ a (-) " 

A l {S S' S S' a a 
J a a I.A_ IA 

(2.28) 

This expression reduces further if Ia = 0 (then Sa = IA and s~ = 0) to: 

.t'-.t +A J+I +.t +.t' 
(4'11)-1/2 i a a (-) A a a 

( 
.t .t' A) { .t R. 

1 

A l A a a a a • 

0 0 0 IA IA J 

- 13 -
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The expression for the geometrical factor (2.24) in the spin-orbit repre­

sentation reduces for A = 0 to: 
a 

~·-~+A 
(411)-112 i (1 (1 

J+IA+R.. +j' 
(-) <X a 

·(> R..' 'W j',} {' R..' :J i i• (1 a a -.. j• <X (1 
(2.30) 

a a 0 0 IA IA J Ja a j~ ja 

For Ia = 0 (then 

expression (2 .29) 

when I = 0: 
a 

j = a 
that 

R.. a 
we 

G(R.. OR. I R..'O~'I';OAAJ) 
a a A' a a A 

and j~ = R..~) it reduces further to the same 

obtained in the channel-spin representation 

R.. '-R.. +A J+I +R.. +R..' 
( 411 )-1/2 i <X <X (-) A a a 

(2.31) 

In the next chapters, we will study methods for solving a set of coupled 

radial equations (2.19) without mutual excitation and for spinless 

projectiles, i.e., for A = 0 and I = 0. Then, the expressions for the 
a N a C 

coupling matrix elements Vaa'(r) and Va<X'(r) given by (2.23) and (2.25), 

respectively, reduce to: 

(2.32) 

and 

(2.33) 

where the geometrical factor G(R.. 0~ IA'~'O~'I';OAAJ) is given by (2.31). 
ct<X <1<1A 
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5. BOUNDARY CONDITIONS FOR THE SOLUTION FUNCTION WJn(r) 
Jw a 

In order to obtain solutions + (r) of the sets (2.7) or (2.19) of the a 
coupled radial equations of physical interest, i.e., the physical 

solutions, two boundary conditions have to be fulfilled (a = It when 1 =0 a 
and I 0). At the origin +Jn(r) should vanish: 

a a 

lim 
r+O 

(2.34a) 

Jw 
whilst, for large distances, Wa (r), must represent an ingoing partial 

wave in the entrance channel plus outgoing partial waves in all the 

relevant exit channels. The precise asymptotic form defines the scat­

tering matrix elements SJTI aa0 

- [kaoJl/2 + SJTI H.(r) & - -- H (r) 
.. aao ka ! aao' 

(2.34b) 

where the subscript and superscript a 0 correspond to an ingoing wave in 

the entrance channel for a = a 0 • In principle, there are N entrance 

channels. The ingoing and outgoing Coulomb waves H;(r) and H~(r), res­

pectively, are given in terms of the well-known regular and irregular 
+ 

Coulomb wave functions F!(r) and G!(r), by Ht(r) = {G!(r) ± iF!(r)}. 

{ JTI Jn 1 The solution v1 (r), ••• , wN (r) 1 of (2.7) or (2.19) can be considered 
Jn . 

as a solution vector w (r). The solution vectors constitute a vector 

space of dimension 2N. This 2N-dimensional space contains an N-dimensio­

nal subspace of regular solutions that satisfy the boundary conditions 

(2.34a). The generation of a basis of N linearly independent solution 
JTI vectors +s (r), s = 1,2, ••• ,N, for the regular subspace, by solving (2.7) 

or (2.19), involves the explicit construction of N regular solution 

vectors, each with a linearly independent choice of starting conditions. 

The solution vectors wJn(ao)(r) that we are looking for, are regular; 
Jn hence, they are linear combinations of the vectors ws (r) and are.found 

by considering the boundary condition (2.34b) at a matching radius 

r = Rm which is sufficiently large for all the potentials except VC(r) in 

(2.2) to be negligible. 

Thus, the sets (2.7) or (2.19) have to be solved N times. Especially, 

for large systems this will be time-consuming. In addition, this 

procedure generates S-matrix elements which form a complete N x N matrix; 

while in the physics context, often only a restricted number of entrance 

channels is important which means that only a restricted number of 
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columns of the scattering matrix is needed. For these cases, iteration 

methods can be applied and solutions are obtained directly without the 

need of solving the sets (2.7) or (2.19) N times. 

The scattering amplitudes are expressed in terms of the S-matrix 

elements (see Chap. IX of Ref. [ 4] ) 

}r{exp[i(cr~o+a~)J si~;Ioto-oiioo~~o}Y~m(S,~), 

(2.35) 

in which cr~ is the Coulomb phase shift 

(2.36) 

From the scattering amplitudes, it is easy to calculate the cross section 

for state 1: 

(2.37) 

and other observable quantities. The excitation probability, for 

instance, is given by: 

(2.38) 

where crR is the Rutherford cross section. 
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ABSTRACT 

In general, the quantum-mechanical description of inelastic scattering 

processes requires the numerical solution of the radial Schrodinger 

equation. To investigate the accuracy of the numerical integration 

process, a method has been used successfully for measuring the accuracy 

of the regular solution subspace spanned by the solution vectors, rather 

than the accuracy of the solution vectors themselves. This method 

computes the principal angles between two solution subspaces obtained 

under different numerical conditions. One of the subspaces is constructed 

under optimal conditions so that it is considered to be the reference 

subspace, the other being the subspace to be investigated. In this 

method, the quality of a solution subspace obtained by a numerical 

procedure, can be measured, e.g., the extent to which solution vectors, 

as a basis of the solution subspace, remain linearly independent in the 

range from the origin to the matching radius Rm during the integration. 

The computation of the principal angles can be used to inspect the 

loss of accuracy in the integration range originating from the truncation 

error inherent in the difference formula employed and to detect possible 

sources of deficiencies in the numerical process for solving the Schro­

dinger equation. A method has been developed and applied with which defi­

ciencies caused by discontinuities in the potential matrix can be avoided. 

The loss of accuracy due to the tendency of the solution vectors to 

become nearly linearly dependent during the integration through a classi­

cally forbidden region as an effect of round-off errors, can be examined 

by determining the principal angles, as well. This loss of accuracy 

requires stabilization of the set of solution vectors. We found that the 

stabilization in only a few well chosen mesh points in our nuclear 

physics test cases of alpha scattering from 
28

si, proved to be sufficient 

for obtaining an S-matrix accuracy satisfactory for practical purposes. 

* This chapter has been accepted for publication in Computer Physics 
Communications. - 17 -
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1. INTRODUCTION 

For the quantum-mechanical description of inelastic scattering 

processes with multiple excitation the radial Schrl:)dinger equation, i.e., 

a set of coupled linear second-order differential equations, has to be in 

general solved numerically. In the case of nuclear physics scattering 

problems with energies near or below the Coulomb barrier, special 

attention has to be paid to the stability of the solutions since, without 

precautions, the initial linear independence of the solution vectors will 

be destroyed. Solving the set of coupled equations with a multistep 

integration method, the accuracy of the solutions, as well as of the 

S-matril!: elements can be measured by means of the differences in these 

quantities computed for successively decreasing step sizes. 

For the study of stability and accuracy in the solutions of nuclear 

physics scattering processes, Tamura's code JUPITOR [l,Sj has been used. 

1n this code Stl:>rmer' s multistep integration method has been applied 
7 which has a local discretization or truncation error of order h ; 

whereas, the global error for a fixed integration interval will be of 
5 4 5 

order h • Therefore, an accuracy is expected of order h to h • However, 

even after developing a satisfying stabilization procedure, it appears 

that the accuracy obtained is of the order h. 

A primary aim of this paper is to investigate the reasons for the 

serious loss of accuracy and to detect the possible sources of 

deficiencies. For examining the accuracy of the integration process, a 

method has been used for measuring the accuracy of the regular solution 

subspace spanned by the solution vectors, rather than the accuracy of the 

solution vectors themselves. This method computes the principal angles 

between two solution subspaces obtained under different numerical 

conditions (varying integration step length and stabilization strategy). 

One of the subspaces has been constructed under optimal conditions, so 

that it is considered as the reference subspace, the other being the 

subspace to be investigated. This seems to be a very sensitive method and 

the deficiencies have been located with it. It appears that the loss of 

accuracy is, in part, caused by discontinuities in the second and higher 

radial derivatives of the Coulomb part of the diagonal potential and in 

the Coulomb part of the coupling potential and its higher radial 

derivatives at the Coulomb radius. Another source of deficiency appears 

to be a programming error in the original version of the code JUPITOR. 

- 18 -



Measuring the Accuracy of the Solution Subspace 3 

After developing and applying a method that avoids the inaccuracies in 

the solutions due to the discontinuities mentioned, the expected accuracy 

of the solutions and S-matrix elements can be obtained. It must be 

stressed that the method presented can also be applied to the general 

case in which the diagonal, as well as the coupling potential and/or 

their higher radial derivatives, show discontinuities at some radius. 

Along with the loss of accuracy in the solutions and S-matrix elements 

due to the discretization of the set of differential equations, there is 

also, a loss of accuracy due to the tendency of the solution vectors to 

become nearly linearly dependent in combination with the finite 

representation of numbers in the computer (round-off errors). Gaining an 

insight into the latter loss of accuracy is the second purpose of this 

paper. This can be obtained by the method of computing angles between the 

subspaces spanned by the solution vectors. 

In section 2, a concise description of the scattering formalism is 

given. This description is limited to the formulae needed for this paper. 

Section 3 is devoted to the integration methods used in JUPITOR to solve 

the set of differential equations. To maintain the linear independence of 

the set of solution vectors, a stabilization procedure and a criterion 

for the need to perform a stabilization are discussed in section 4. In 

section 5, attention is paid to the boundary conditions at the matching 

radius. Section 6 describes a method of computing the principal angles 

between subspaces spanned by the solution vectors. In section 7, a method 

is derived to avoid the inaccuracies in the solutions due to radial 

discontinuities in the potential matrix. The results of our 

investigation are presented and discussed in Section 8 and 9. These 

results have been obtained for the inelastic scattering of 10 and 104 MeV 

alpha particles from 28si. Section 8 contains the results related to the 

detection of the sources of deficiencies and the avoidance of their 

inaccuracies in the solutions. In addition, the influence of the 

deficiencies, and of their removal, on the accuracy of the S-matrix 

elements will be discussed. From these results that were obtained for 

successively decreasing step sizes, an insight has been obtained into the 

accuracy of the integration process. Section 9 treats the results 

related to the loss of accuracy due to the tendency of the solution 

vectors to move towards linear dependency. Finally, in section 10, 

conclusions are drawn. 
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2. CONCISE DESCRIPTION OF THE SCATTERING FORMALISM 

The quantum-mechanical description of inelastic scattering in nuclear 

physics has been discussed extensively in literature [1-4]. This 

description leads to a set of coupled second-order differential equations 
Jll for the partial wave radial functions WI~' having the following form: 

2 
k2 R.(Hl) 2!l l Jll ~ 2!l J1T J1T r.!_ + ---2-- 2 Vd. (r) tPu(r) I VU·I'R.'(r) w1 ,R.,(r), l 2 I 'li. l.ag t.2 dr r I'R.' ' 

(2.1) 

assuming a spinless projectile. Here, J,R. and I denote the total angular 

momentum, the orbital angular momentum and the spin of the target 

nucleus, respectively. The excitation energy of the target in a state 

with spin I is £1 • The total angular momentum J, its projection onto the 

z-axis and the parity 11 are good quantum numbers. Let E be the center-of­

mass energy in the incident channel, then, the wave number k
1 

and Sommer­

feld parameter nlare given by: 

2 2!l 
k ~- (E-£

1
), 

I t_2 
(2.2a) 

(2.2b) 

where ].l is the reduced mass, while z
1 

and z
2 

represent the charge numbers 

of the projectile and target nucleus, respectively. 

In the following description of the diagonal potential V and the 
diag 

coupling potential V~~;I'~' Tamura's paper [1] has been used. This 

description is limited to the formulae needed .in this paper. Tamura's 

paper is recommended for a more detailed description of the formalism. In 

the present study, only scattering from a rotational target nucleus has 

been considered. 

The diagonal potential is only the usual optical-model potential, 

written in two parts as: 

(2.3) 

representing the nuclear and Coulomb diagonal potentials, respectively. 

For the nuclear potential, the Woods-Saxon form has been taken to be: 

Vnucl(r) = -V(l+ev)-l- iW(l+ew)-l, 
diag 

where 

e 
v 

exp((r-R )/a], v v 
- 20 -
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Measuring the Accuracy of the Solution Subspace 5 

whilst V, Rv and av are the strength, the radius and diffusness 

parameters of the real part of the nuclear potential, respectively. A 

similar meaning is allocated to W and ew concerning the imaginary part of 

the nuclear potential. The Coulomb potential, derived from a constant 

charge distribution in the target within the Coulomb radius Rc and zero 

outside it, has the form: 

(!...}) 
R 

c 
r " R c 

r > R 
c 

(2.6a) 

(2.6b) 

For later reference, it is noted that this potential, together with its 

first derivative, is continuous at r = Rc; however, its second and higher 

derivatives are discontinuous. 

The radially dependent part of the coupling potential can also be 

written as two different terms: 

V>.. (r) = Vnucl;X(r) + VCoul;>..(r). 
coupl coupl coupl (2. 7) 

They represent the radial dependence of the nuclear and Coulomb coupling 

potential, respect! vely. The superscript >.. refers to the transferred 

angular momentum during the scattering process. Since only a rotational 

target nucleus has been considered, the nuclear coupling potential is 

given by a Legendre polynomial expansion with expansion coefficients for 

>.. * 0: 

1 
vnucl;>..(r) = -J{ V(l+e )-l + iW(l+e )-l } Y,

0
(e) d(cos(8)), 

coupl 0 v w A 
(2.8) 

where 

(2.9) 

with the nuclear mass deformation parameters B~,. A similar expression 

will hold for ew • The Coulomb coupling potential is expressed up to 

second order of the deformation. The radial dependence has the form: 

VCoul;\r) 
coupl 

[ 

>.. 
(1->..)(~ ) r<R 

C(2) c } c 6>.. R >..+1 ' 
(>..+2)(_£) r>R 

r c 

- 21 -
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C(l) · C(2) . 
where the parameters aA and aA describe the charge deformation in 

first and second order, respectively. Also, for later reference, we note 

that the right-hand side of (2.10) and its higher radial derivatives are 

discontinuous at' r = R • 
c 

To obtain solutions 
Jlf 

for ~It(r), two boundary 
Jlf 

conditions have to be 

fulfilled. At the origin w
1

£(r) should vanish: 

lim wi~(Io!o)(r) = 0, 
r+O 

(2 .lla) 

Jlf 
whilst, for large distances, ~I!(r), must represent an ingoing partial 

wave in the entrance channel plus outgoing partial waves in all the 

relevant exit channels. 

scattering matrix elements 

asymptotic form defines the 

- + The ingoing and outgoing Coulomb waves H£ and H!, respectively, are given 

in terms of the well-known regular and irregular Coulomb wave functions 

F £ and G!, by £ (GJI,±iF £). The indices 1 0,£0 correspond to an ingoing 

wave in the entrance channel for I = 10 and £ = J/,0• 

30 

N 10 
'E 

4 6 8 10 12 14 16 
r(fm) 

Fig.l. The sum of the centrifugal 

potential for three different 

Jl,-values and the real part of 

vdiag(r). Also, the behaviour of 

the imaginary part of vdiag(r) is 

shown. Two laboratory energies of 

10 and 104 MeV are indicated and 

correspond respectively, to an 

energy near the Coulomb barrier 

and one well above it. 

- 22 -
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In Figure 1, the sum of the centrifugal potential for three different 

t-values and the real part of Vdiag(r} is plotted as a function of r. 

Also, the behaviour of the imaginary part of Vdiag(r) is shown. Two 

laboratory energies of 10 and 104 MeV for inelastic alpha scattering from 
28si are indicated and correspond respectively, to an energy near the 

Coulomb barrier and one well above it. These energies are the energies of 

two test cases from which the different items treated in this paper will 

be clarified. Section 8 contains more details about these test cases, 

such as the optical model parameters employed to plot Figure 1. 

The set of coupled equations (2.1} has to be solved for each J value 

in a whole range of J values. From the scattering matrix elements 

obtained for these J values, the cross section of the ground state and 

each excited state, as well as other observable quantities, can be 

calculated. 

3. INTEGRATION OF THE SET OF DIFFERENTIAL EQUATIONS 

The set of differential equations (2.1) is rewritten in a more 

convenient form: 

d2 n 
---2 ~ (r} ~ L A ,(r) ~ ,(r), 
dr c c'=1 cc c 

c • 1,2, ••• ,n (3.1) 

where the various channels are represented by the channel number c, 

assuming that there are n channels. The quantities A , are the elements 
cc 

of a matrix A which will be called the potential matrix. Denoting the 

entrance channel by the sub- and superscript i, the boundary conditions 

(2.11) can be written as: 

lim 
r~ 

c ~ 1,2, ••• ,n 

(3.2a) 

(3.2b) 

where k is the wave number in channel c. In principle, there are n 
c 

entrance channels. 

The solution {v
1 
(r), •••• ~n(r)} of (3.1) can be considered as a 

solution vector ~(r). The solution vectors constitute a vector space of 

dimension 2n. This 2n-dimensional space contains an n-dimensional 
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subspace of regular solutions that satisfy the boundary conditions 

(3.2a). In order to generate a basis of n linearly independent solution 

vectors w (r), s = l, ••• n, for the regular subspace by solving (3.1), 
s 

suitable initial conditions have to be specified. For these, the 

following can be chosen: 

-(t +1) 1 
lim (kcr) c wcs(r) = (2t +1)!1 ocs' 
r~ c 

(3.3) 

where Wcs(r) denotes the component c of the solution vector ws(r) and tc 

is the orbital angular momentum in channel c. These solution vectors form 

the columns of a solution matrix 7(r) [~1 (r), .• ,~ (r), •• ,w (r)] 
s n 

with w (r) E tn. 
s 

The solution vectors Wi(r) that we are looking for, are regular; 

hence, they are linear combinations of the ws(r) which are found by 

taking into account the boundary condition (3.2b) at the matching radius 

R . Also, this yields the scattering matrix elements S .; more details 
m c1 

will be given in section 5. 

The regular solution vectors ~ (r) are constructed by numerical 
s 

integration from the origin to the matching radius Rm. In Tamura's code 

JUPITOR [5] use is made of Euler's and St<5rmer's multistep integration 

methods which need the knowledge of the solution vectors in two and five 

prior mesh points of the integration range. 

Euler's method is used to initiate the radial integration. The use of 

this or a similar two-point method is essential, since it is not possible 

to specify the values of the solution vectors near the origin at more 

than two mesh points. One of these points can be the origin, where all 

the solution vectors have to be eliminated; another mesh point is r
1 

close to the origin, where a value to the solution vectors can be given 

according to (3.3): 

(3.4) 

Using matrix notation for both the solution and potential, Euler's 

method becomes: 

2 
~(r) = 27(r-h) - V(r-2h) + h B(r-h), (3.5) 

where B(x) = A(x)V(x). The local truncation error of this formula is of 

- 24 -
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4 order h • Here, r is a mesh point and h the mesh or step size. 

St3rmer's method can be applied, provided that r is not in the 

vicinity of the origin: 

~(r) ~ 2~(r-h) - f(r-2h) 
h2 

r 
+ 24QL299B(r-h) - 176B(r-2h) + 194B(r-3h) 

- 96B(r-4h) + 19B(r-5h)]. (3.6) 

The local truncation error of this formula is of order h7• This error 

will be introduced at each step. However, the propagation of the local 

truncation error after many integration steps gives a global error in the 
·5 

solution, at a matching radius Rm' of the order h , neglecting starting 

errors and round-off errors [6,7]. In order to keep starting errors small 

enough, Euler's method has been used in the starting region with a 

reduced step length. 

To calculate the first derivative of the solution, at some mesh point 

r, the formula : 

~·(r) = l~h[f(r-2h)- 8W(r-h) + 8W(r+h) - f(r+2h)] (3.7) 

. 4 
has been used; it has a truncation error of order h • 

4. STABILIZATION PROCEDURE 

In the preceding section, it was shown that n linearly independent 

solution vectors's can be generated by choosing appropriate initial 

values. These solution vectors form the columns of a solution matrix W 

with components denoted by ' • Integrating through a classically 
cs 

forbidden region, the components with negative local kinetic energy will 

generally consist of an exponentially growing part and an exponentially 

decreasing part. The former is responsible for the tendency to destroy 

the initially generated linear independence of the solution vectors. The 

longer the integration continues through a classically forbidden region, 

the stronger this tendency will be; for instance, it will occur in 

scattering problems of nuclear physics with energies near or below the 

Coulomb barrier. 

This section will be subdivided into three subsections. In the first, 

a description of the stabilization procedure is given. The second 

subsection shows how this procedure is implemented in our program. In the 

third subsection, a criterion for the linear independence of the set of 
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solution vectors w
8 

is discussed and its use, restoring this independence 

by stabilization, is shown from our test cases. 

4.1 Description of a stabilization procedure 

To maintain the linear independence of the solution vectors ws' the 

following stabilization procedure was applied. At some mesh point R, 

called a stabilization point, the components in the solution vectors 

were reordered in order of decreasing real part of the local relative 

kinetic energy. This reordering allows permutations of the rows and the 

columns, both of the potential matrix A and the solution matrix ~ by the 

same permutation. To be precise, a permutation matrh: P was determined 
T 

such that the diagonal entries in the matrix P Re(-A(R))P had decreasing 

order. 

First we set: 

t? = diag(A(R)) 

which defines a diagonal matrix 

2 
with entries Ac' where 

1/2 
A = (-e (R)-ix (R)] • c c c 

( 4 .la) 

(4.lb) 

(4.2) 

The real part ec of the local kinetic energy in channel c is given by 

R. (R. +1) 
( ) = k2- c c - 2~ Re[V (r) + V (r)], ec r c t2 diag cc (4.3a) 

whereas, the imaginary part Xc is given by 

(4.3b) 

where Vcc(r) is a diagonal element of the coupling potential in (2.1). 

We see that, the values will be (much) larger than the x values, in a 
c 

large part of the classically forbidden region; therefore, the reordering 

has been based on the e values. This would be the case for the next 
c 

considerations, too. 

Secondly, we reorder A2 

(4.4) 
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2 
with increasing real parts of the entries we. 

If ~ = PT~ is the correspondingly reordered ~-matrix, it satisfies 

2 
~ = PTA(r}P ~(r) 

dr 2 = (Q + Z(r)) ~(r), (4.5) 

where 

Z(r) = PT[A(r) - diag(A(R))j P. (4.6) 

If negative Ec(R) values occur, the most rapidly growing components of a 

column of ~ will be located the furthest down this column. 

To explain the stabilization procedure, let 

i(r) = ~(r) U, (4.7) 

where U is a nonsingular matrix. Then i(r) satisfies (4.5) 

(4.8) 

If we neglect the contribution of Z(r) in (4.8), the solution matrix ~(r) 

would be 

~ 1 -1 
~(r) = ~ exp(-(r-R)Q)[~(R) - Q ~'(R)] U 

+ ~ exp(+(r-R)Q)[~(R) + Q-l~'(R)] U, (4.9) 

where the prime denotes differentiation with respect to the argument r. 

In the case of negative E (R) values, the coefficients of the 
c 

exponentially growing components are in the coefficient matrix 

[~(R) + Q-l~'(R)j U. (4.10) 

The matrix U can be constructed so that this matrix becomes zero below 

the diagonal in the rows where the Ec(R) values (renumbered to correspond 

to the reordering of channels) are negative [8]; thus: 

~ -1~ 
[~(R) + Q ~'(R)]cc' = 0 

for all c and c' such that 

c ~ c ~ n, 
1 ~ c'< c, 

(4.lla) 

(4.llb) 

- 27 -



12 L.D. Tolsma and G.w. Veltkamp 

where c is determined by 

(4.11c) 

In other words, a new set of linearly independent solution vectors ~ , is c 
obtained that - assuming Z(r) = 0 - has the following properties: 

If ec,(R) >> lxc,(R)I then, all components of ~c' oscillate. 

If 8c 1 (R) << -lxc,(R)I then, no component of $c' grows faster than 

exp((r-R)wc,)' the fastest growing one being component ~c'c'' 

However, due to Z(r) * 0, for r > R, there will be a coupling between the 

components of a solution vector and, therefore, the differential equation 

for a declining component may contain exponentially growing coupling 

terms. The influence of the latter terms on this component depends upon r 
2 

and the ratio of the entries of Z(r) and Q and they will determine where 

the next stabilization point will be located. 

4.2 Practical implementation of the stabilization procedure 

To carry out the above-described stabilization procedure, firstly, we 

must specify the permutation matrix P. The matrix A is premultiplied by a 

product 

(4.12) 

of n-c+l elementary matrices Ic for c < c < n, where the entries of In 

are chosen such that the premultiplication of the matrix Re(-A) by In 

causes the interchange of the row with the smallest local kinetic energy 

and the row at position n. Premultiplication by I 
1 

interchanges the row 
n-

with the smallest energy but one and the one at position n-1. This is 

continued for all rows up to and including row c. Let 

(4.13) 

Secondly, we postmultiply '¥ and '¥' by a diagonal matrix D such that 

columns of 

(4.14) 

have approximately the same length. It should be noted that when one of 

the elements of A becomes very small, an average value has to be taken. 

- 28 -



Measuring the Accuracy of the Solution Subspace 13 

Moreover, we define the matrix: 

(4.15) 

Then, to ensure that IIU has "upper triangular form", the matrix U can be 

chosen as a product of elementary Householder matrices [9,10,11]: 

(4.16) 

in which c runs over the components of (4.15) with negative local kinetic 

energy. Here 

(4.17) 

where the matrix I is the n-by-n identity matrix and the unit column 

vector w ·with n components can be constructed from row c of 
c 

(4.18) 

by [ 12]: 

2KWH = ( (c) (c) (c)+ S (c)/l {c)l 0 O) 
c ~cl • ~c2 , ••• , ~cc ~cc ~cc • ,... • (4.19) 

where, only for this equation, the capitals K and S are used to define 

positive constants, given by the expressions 

(4.20) 

By constructing the unitary transformation matrix U in this way, a stable 

solution matrix i is obtained 

(4.21) 

-1 
in terms of the permuted original solution matrix ~D • Backward 

permutation gives 

~ ~ T -1 
'¥ = P<l>P = ~ U, (4.22) 

where the stabilization matrix U is written as 

U=U U 
1 

••• u ... U.. n n- c c (4.23) 

with the permuted Householder matrices 

(4.24) 
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However, in our program, a slightly different approach has been 

followed. We used the permutation matrices P defined as 
c 

P =I I 
1 

••• I (4.25) 
c n n- c 

with Pc = P and correspondingly we changed the definition of Uc given by 

(4.24) in: 

ll = P U PT. 
c c c c 

(4.26) 

This llleans that 

PU = [I I 1 ... I ... I~][u u 
1 
... u •.. u~J n n- c c n n- c c (4.27) 

in (4.21), has been replaced by the product 

~ - -
InUnin-lun-l'''IcUc···IcUc (4.28) 

~ 

in order to obtain a stable solution matrix ~. as given by (4.22). Here, 

Uc corresponds to the unitary matrix (4.17) for which the unit column 

vector we has been constructed, in the same way as (4.19), from row c of 

(4.29) 

instead of (4.18). 

We note that, although the index c only runs over the components with 

negative local kinetic energy, in principle, it is also possible to let c 

run over all the components of the solution vectors, including those with 

positive local kinetic energy. 

This stabilization procedure has been applied to St'Brmer's multistep 

integration formula (3 .6). For this purpose, the solution matrix '¥ is 

calculated up to and including the mesh point R+2h. The diagonal matrix D 

and Householder matrices Un,Un_1 , .•• ,uc•'''•Uc are determined from the 

solution matrix and its derivative at mesh point R. The derivative of the 

solution matrix is determined by means of Eq. (3. 7). The solution 

matrices at the mesh points of St'Brmer's formula can now be transformed 

according to (4.22) 

~(R+kh) = ~(R+kh)D-l(R)U(R) (4.30) 

for k = -2,-1,0,1,2. Using the stabilized solution matrices (4.30) in 

St'Brmer' s formula, a stable solution matrix can be obtained from mesh 

point R+3h onwards._ 
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4.3 Criterion for the linear independence of the set of solution vectors 

To discuss a criterion for the linear independence of the set of 
2nxn 

solution vectors ws' we have to consider the matrix F E C given by 

(4.14) 

F (4.31) 

where D is a normalizing diagonal matrix which will be chosen later. Due 

to the initial conditions (3.3), the set of solution vectors ws is 

initially linearly independent. Then the matrix F has rank n. A Singular 

Value Decomposition of this matrix yields n non-zero singular values 

(4.32) 

It is shown in [11] that F can be written as 

F (4.33) 

where the vectors ui and vi are, respectively, the i-th left singula,r 

vector and the i-th right singular vector. 

Using the 2-norm, the condition number of F can be expressed in terms 

of its largest and smallest singular values 

(4.34a) 

We see that K2 (F) > 1. If F has a small condition number, then F is said 

to be well-conditioned. If, on the contrary, K2(F) is large, then F is 

said to be ill-conditioned. If the columns of F are orthogonal and D is 

chosen so that these columns are normalized in the 2-norm, then [11] 

K
2

(F) = 1. (4.34b) 

If the set of solution vectors becomes nearly linearly dependent, -

which, in general, happens gradually during the integration process -

then, the matrix F becomes ill-conditioned. This implies that F becomes 

nearly rank deficient, i.e., F is near to a matrix of rank lower than n. 

To quantify this, let 

E = (4.35) 
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then rank (F-E) 
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n-1 and 

1 
K
2

(F) • (4.36) 

Hence, the ratio (4.36) gives an indication of the distance, in a 

relative sense, of F to the set of matrices with rank lower than n. 

These considerations lead to the introduction of a linear independence 

number of a set of solution vectors ~s defined by 

v(F) = {~ 
K2\" J 

F given by (4.31) with D such that 
the columns of F have the same length (4.37) 

This number can be used as a criterion for the need to perform a 

stabilization in order to restore the linear independence of a set of 

solution vectors. 

Figures 2 and 3 show the independence numbers v(F) as functions of r, 

with F given by (4.31) and determined without any stabilization during 

the integration process, for our test cases with projectile energies of 

10 and 104 MeV, respectively. A more detailed description of the test 

cases will be given in section 8. In the figures, the numbers v(F) are 

plotted on a logarithmic scale at the mesh points R = Sh, 10h, ••• , 3.4 fm 

for h = 1/5, 1/10, 1/20, 1/40 and 1/80 fm and the corresponding curves 

are denoted by vl/h' The solid line curves correspond to a multipole 

expansion of the deformed nuclear and Coulomb potentials, given by (2.8) 

and (2.10), respectively, up to degree A = 8. The broken line curves 

correspond to an expansion up to degree A = 4. 

Looking at Figures 2 and 3 the following remarks can apply: 

Firstly, close to the origin, the set of solution vectors ~s is 

linearly independent to a reasonable extent. However, a little further up 

the integration range, the linear independency deteriorates. This happens 

less quickly, the larger the step size h. 

Secondly, in the classically forbidden region, the curves of both 

figures are nearly identical which means that in this region, the linear 

independence number is not dependent upon the energy of the incoming 

particle. However, the higher this energy, the smaller the classically 

forbidden region will be. For a projectile energy of 104 MeV, this region 

ends at r = 1.9 fm, as shown in Figure 3 (see also Figure 1). In the 

classically allowed region, the curves are horizontal. 
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Thirdly, comparing the curves with solid and broken lines, the behaviour 

of the linear independence number depends on the maximum degree of the 

expansion of the deformed potential. This means that the number of non­

zero elements and their entries in the potential matrix A of (3 .1) 

determine the behaviour of v(F). It seems that the values of the matrix 

elements themselves are of less importance, although they depend upon the 

deformation paramete~s ~A· 

Fourthly, at the radii of about 1.0 and 1.5 fm, the curves v80 and 

v40 , respectively, decrease to a v~lue of the order of the machine 

precision of our computer. For a Burroughs 7900, the single floating-

10° "~~'{'~Y~, ~.····~·, ~ 

\\.' ......... 28si!o.,o.'l 
\' ' ...... _ Etab~10MeV __ v.i 

\ \' ', --..... 
\ \ ' ,, ..... .... 

'102'" 
\ \ ', ', '--....-~-- _ v10 
I \ ' ' \ ', ', '-.. ..... 

\ ' '-._ v10 
' ', ----' . ' ' .... 

10 ' ........... 
---::t.Q.._ ' --~ ...... 

' ' ' ....... ..__ ~4Q__ 

106 

108 

~ 
Hl10~ 

~ 
1012l 

0 0.4 0.8 ~·~~·~ 1.2 1.6 2.0 2A 2.8 32 
r(fml rtfml 

2Bs; to.,o.'l 
Etab ·104MeV 

2.4 2.8 3.2 

Figs. 2 and 3. In these figures, plots of the linear independence numbers 

v1/h determined with step sizes h • 1/5, 1/10, 1/20, 1/40, 1/80 fm and 

without any stabilization during the integration process, are shown for 

energies of 10 and 104 MeV, respectively. The solid line curves corres­

pond to a multipole expansion of the deformed nuclear and Coulomb poten­

tials up to degree A • 8. The broken line curves correspond to an expan­

sion up to degree A • 4. 
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18 L.D. Tolsma and G.w. Veltkamp 

point numbers are represented by a normalized mantissa of 13 octal 
1 1-13 -11 digits; thus, the machine precision is equal to T 8 ~ 0.7 10 • 

If the value of v(F) is of the order of the machine precision then, the 

set of solution vectors w has completely lost its linear independency 
s 

and corresponds to the erratic behaviour of v(F) beyond this point. 

Figure 4 illustrates how v(F) can be used to indicate when 

stabilization is needed to maintain the linear independence of a set of 

solution vectors *s at some level. The figure shows two curves of v(F) 

calculated for h = l/80 fm, A 8 and projectile energy of 10 MeV. For 
(-2) -2 

the curve denoted by v80 , the criterion v(F) < 10 has been used, for 
(-4) -4 (-2) the other, denoted by v80 , we used v(F) < 10 • The behaviour of v80 (-4) and v80 for r < 3.4 fm shows that only in two and one mesh points, 

respectively, a stabilization is needed to maintain the imposed 

conditions of the curves. We see that after a stabilization, v(F) nearly 

regains its original value of unity. 

28si(a,o.'l i 
Elab·10M~ 

o.4 o...~..a__._1,_1:-'--,~.6~-c2~.o~-=2L.,..4. 2a 3.2 
r [ fml 

Fig.4. This figure illustrates how the linear independence number v can 

be used to indicate when stabilization is needed to maintain the linear 

independence of a set of solution vectors at a certain level. Two plots 

of v , calculated for h • 1/80 fm, are shown. For the 
(-2) -2 denoted by v 80 , the criterion v < 10 has been used, 
{-4) -4 denoted by v 80 , v < 10 was used. The behaviour of 

curve that is 

for the other, 

the curves for 

r < 3.4 fm shows that a stabilization is needed in a few mesh points 

only, to maintain the imposed conditions. After a stabilization, v nearly 

regains its original value of unity. 
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Finally, in practice, we state that it seems only necessary to stabilize 

the solution matrix at a few mesh points in a classically forbidden 

region of the integration range in order to maintain the linear 

independence at some prescribed level. However, if necessary the program 

can carry out the stabilization procedure after every 5 step lengths in 

the integration range, including the classically allowed region. 

In section 9, th~ influence of v(F) deviating from 1 on the loss of 

accuracy in the solutions and S-matrix elements will be discussed. 

5. MATCHING THE BOUNDARY CONDITIONS AT RADIUS R 
m 

The integration of a set of coupled equations (3.1) is performed up to 

some mesh point of the integration range. This mesh point has to be 

chosen so that the nuclear potential at this point, as well as in 

general, the Coulomb part of the coupling potential are both negligible. 

Here, the set of coupled equations reduces to a set of decoupled 

equations of which the solutions are known, since they are given by the 

boundary conditions (3.2b). This point in the integration range is called 

the matching radius Rm' 

As described in section 3, the set of n coupled equations is solved n 
times in order to satisfy the boundary conditions (3.2b) at R • Satis-

m 
fying these conditions needs a set of 2n linear equations, because a 

column of n S-matrix elements related to outgoing partial waves in all 

the relevant exit channels has to be determined for each ingoing partial 

wave in the entrance channel, as well as, a column of n normalization 

coefficients of the solutions. Since in principle, there are n entrance 

channels, complete n-by-n scattering and normalization matrices can be 

generated. The boundary conditions (3.2b) and their derivatives with 

respect to kcr are usually taken in order to obtain a set of 2n linear 

equations. In that case the matching relationship at radius Rm in matrix 

notation can be written as 

[:] N 
(5.1) 

. (±) 1/2 
where N is the normalization matrix, and H and K are diagonal 

matrices defined by 

H(±) (±) (±) (±) 
diag(H1 , ••• ,He , ••• ,Hn ) (5.2) 

1/2 . 1/2 1/2 1/2 K d1ag(k1 , ••• ,kc , ••• ,kn ). (5.3) 
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The solution matrix~ contains the solution vectors Ws• s = l, ••• ,n as 

discussed in section 3. 

The Wronskian of two solution matrices ~ and f is defined by 

Using the Wronskian 

W(H(-)' H(+)) = H(-)H(+)'- H(-)'a(+) = 2ii, 

the normalization and scattering matrices are given by 

N = -2i(W(H(+), f)j-l 

and 

S = W(H(-)' K112f) [W(H(+), K112v)j-l, 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

respectively. Equation (5.7) shows that the S-matrix does not depend upon 

the normalization of the solution matrix, i.e., upon the choice of the 

normalization matrix N in (5.1). 

Based upon considerations of invariance of the scattering process 

under time reversal, it can be proved that the S-matrix is symmetric. It 

follows from the matching conditions (5.1) and the definition (5.4) that 

(5.8) 

which relates the asymmetry of the S-matrix to the Wronskian of the 

normalized solution matrix with itself, It can be proved that the 

Wronskian of any two regular solution matrices at every point of the 

integration range is equal to zero, when taking into account the symmetry 

of the A-matrix in (3.1) and the regularity of the solution matrix at the 

origin. Hence, deviations from zero of the Wronskian of the normalized 

solution matrix with itself, determined during the integration, tell us 

something about the influence of the unwanted irregular solution matrix 

and might be used as a measure for the accuracy of the regular solutions. 

In this connection, it has to be realized that the solution matrix was 

stabilized several times during the integration process and had to be 

normalized at the end. Therefore, deviations from zero in the sense of 

equation (5.8) can only be determined after ending the integration 

process. 

To make a calculation that achieves the above-suggested possibility 

for measuring the accuracy of the solution matrix, we assume that during 

the integration process the stabilization procedure had been applied at 

the mesh points R1 , ••. ,Rp, ••• ,Rt' The point Rt+l corresponds to the 
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matching radius Rm· The normalized solution matrix between the points 

Rpand Rp+l can then be written as 

(5.9) 

referring to (4.22) and where ,<p-l) corresponds to the unnormalized 

solution matrix between Rp and Rp+l in case no stabilizations are 

performed at the points R , ••• ,Rt • The matrix N is the normalization 
' p 

matrix given by (5.6). The solution (5.9) will be called the physical 

solution. 

After ending the integration, the physical solution matrix can be 

calculated at every mesh point of the integration range and the Wronskian 

of the physical solution matrix with itself can be determined. However, 

measuring of the accuracy of the solution matrix at the mesh points 

between the origin and R by means of this Wronskian will be perturbed by 
p 

possible deficiencies occuring at the mesh points between R and R • This 
p m 

perturbation is inherent in the use of the physical solution matrix, as 

shown by equation (5.9). In other words, errors in the physical solution 

at the mesh points below R are introduced by what happens at the mesh 
p 

points above R including the matching radius. Since this is really the 
p 

case, as will be shown in one of the following sections, this method is 

not suited to our purpose. The method of computing angles between 

subspaces spanned by the solution vectors which will be treated in the 

next section, does not have this disadvantage and can detect deficiencies 

below R independently of those which occur in the remainder of the 
p 

integration range. Moreover, in contrast to this method, the S-matrix and 

Wronskian give only an indirect measure of the lost accuracy during the 

integration process. 

As has been already noted, the S-matrix does not depend upon the 

normalization of the solution matrix. Or, stated positively, the S-matrix 

is entirely determined by the regular subspace spanned by the solution 

vectors at the matching radius. Therefore, the accuracy of the S-matrix 

should be examined by studying the accuracy of this subspace measured by 

calculating the angles between it and a reference subspace. 

6. COMPUTING ANGLES BETWEEN SUBSPACES SPANNED BY THE SOLUTION VECTORS 

In this section, a method for computing angles between subspaces 

spanned by solution vectors (and their derivatives) will be discussed. 
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By computing these angles, differences between the subspaces spanned by 

two solution matrices f and '+oV, which were obtained by variants of the 

numerical process, can be investigated. To this end, the following two 

matrices F and G ~ CZnxn are defined 

F G = + ov J 
+ ov• > 

(6.1) 

r = R r = R 

where the prime denotes a differention of the components wcs with respect 

to r. The matrices F and G consist of n linearly independent columns. 

The linearly independent columns of the matrices F and G span n-dimen-
2n 

sional subspaces SF and SG c Q! , respectively. Differences between the 

subspaces SF and SG are characterized by the principal angles e
1

, ••• ,en 

E [0,1r/Zj between SF and SG. In (13J these angles are defined for 

k = 1,2, ••• ,n recursively by: 

H H 
max max u v • ukvk' 

u E SF v E SG 
(6.2a) 

with 

(6.2b) 

and subject to the constraints 

0, i = 1,2", ... ,k-1. (6 .2c) 

It can be seen that 0 '01 ' ••• (en ( '!f/2. The vectors {u1, ••• ,un} and 

{v1 , ••• ,vn} form unitary bases for SF and SG, respectively, and are 

called the principal vectors of the subspace pair (SF,SG). 

To compute the principal angles and vectors, the QR-decompositions of 

the matrices F and G need to be determined 

H 
QFQF In' R ,.nxn, 

F E "' 
(6.3a) 

H 
QGQG = 1n• R ,..nxn, 

G ~ .. (6.3b) 

where QF and QG have orthonormal columns and RF and RG are upper trian­

gular. The n columns of QF and QG form unitary bases for the subspaces SF 

and SG, respectively. The matrix In denotes the n-by-n identity matrix of 

dimension n. For these'decompositions, either the method of Householder 

transformations or the modified Gram-Schmidt method can be used. 
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Subsequently, by means of unitary matrices U and V, the Singular Value 

Decomposition of the product matrix Q~QG is determined 

(6.4) 

which yields the singular values a1 > a2 > ••• >on> O. 

It can be shown that the principal angles ek and principal vectors of 

the subspace pair (SF,SG) are given by [13] 

(6 .Sa) 

(6.5b) 

(6.5c) 

The principal angles depend on the subspaces SF and SG only, which 

implies that they are invariant against postmultiplication of the 

matrices F and/or G by any regular matrix. The main advantage of 

determining the principal angles is that they give a measure for the 

nearness of the subspaces SF and SG' independently of the bases 

representing them; thus, looking at the equations (5.1) and (5.9), the 

principal angles are not influenced by the normalization matrices N, the 

scaling matrices D or the stabilization matrices U • In particular the 

latter maintain or restore the quality of the bases of the subspaces in 

the sense of being orthogonal, as much as possible, but do not affect the 

subspaces themselves. 

This method for computing the principal angles between the subspaces 

SFand SG, i.e., between solution spaces represented by! and ~o,, has 

been applied inspecting the accuracy loss along the integration interval 

and detecting possible sources of deficiencies in the numerical process. 

It is a very sensitive method for this purpose, as is seen in the test 

cases we studied and illustrated in the Figures 6.a and 7 .a, where the 

largest principal angle between SF and SG' in the sense just mentioned, 

is plotted as a function of r for four different combinations of 

subspaces. It is shown clearly that the behaviour of the curves at r = 4 

and 17 fm is discontinuous and which corresponds to deficiencies of the 

numerical process. More details will be given in section 8. 

In the next section, a method will be developed for avoiding 

inaccuracies in the solution vectors, due to one of the deficiencies. 
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7. AVOIDING INACCURACIES IN THE SOLUTION VECTORS AT COULOMB RADIUS R c 
The Stormer integration method (3. 6) contains higher derivatives of 

the solutions at mesh point r-h [6,14] implicitly. To guarantee a local 
7 truncation error of order h , the higher derivatives up to and including 

the sixth order have to be continuous. However, the second and higher 

radial derivatives of the Coulomb part of the diagonal potential (2.6) 

and the Coulomb part of the coupling potential (2.10), as well as its 

higher derivatives are discontinuous at the Coulomb radius Rc' This means 

that the potential function Acc'(r) in (3.1) is neither continuous, nor 

continuously differentiable for r = Rc' This causes discontinuities in 

the second and higher derivatives of the solutions. 

In this section, a method will be presented that avoids these 

inaccuracies in the solutions due to the discontinuities at radius R • 
c 

The method can be applied to the general case, too, in which the diagonal 

and the coupling potential and/or their higher radial derivatives are 

discontinuous at some radius. In deriving the method, it was supposed 

that the radius Rc coincides with a mesh point. The approach presented 

here differs from the one published recently [15]. 
Using vector and matrix notation, the set of differential equations 

(3.1) for r ( Rc+2h is written as 

~''(r) = A(r)~(r), 

and for r ~ R -2h as 
c 

~''(r) = A(r)~(r), 

r ' R +2h c 

r ;. R -2h 
c 

(7 .la) 

(7.lb) 

The radial dependence of the Coulomb part of A(r) in (7.la) corresponds 

to (2.6a) and (2.10a) taken for r ( R +2h; whereas, this part of A(r) in 
c 

Fig.S. This figure illustrates a 

possible radial dependence of the 

potential matrices A(r) and A(r) in 

the vicinity of the radius Rc· 

behaviour of a component of 

The 

the 

solution vector has been given 

diagrammatically. 
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(7.lb) corresponds to (2.6b) and (2.10b) taken for r) Rc-2h. Figure 5 

illustrates a possible radial dependence of both A(r) and A(r) in the 

vicinity of the radius R • In this figure, the behaviour of a component 
c 

of the solution vector has been given diagrammatically. Integrating from 

the origin up to R +2h, the solutions V(R +kh) for k = -2,-1,0,1,2 will 
c 5 c 

be known with an accuracy of order h and using (3.7), the derivative of 

the solutions in R can be calculated with an accuracy of at least order 
4 c 

h • Further integration without loss of accuracy requires knowledge of 

i(R +kh) fork= -2, ••• ,2 with an accuracy of order h5• 
c 

Taking x = r-Rc, the equations (7.1) can be written as 

V''(x) = A(x)V{x), 

and 

Define for the mesh points ~ = kh: 

v<m) 
k 

X ( 2h 

X >-2h. 

(7 .2a) 

(7 .2b) 

(7. 3a) 

(7 .3b) 

The problem which has to be solved requires the determination of Vk with 

known Vk and given ~and~ fork= 0,±1,±2. The continuity condition at 

x = 0 gives: 

~(1) 
vo 

- vo, (7 .4a) 

.. (1) 
'o • (7 .4b) 

In order to derive expressions for the other Vk' define the differences 

(7. Sa) 

(7. 5b) 

and expand AVk in a Taylor series about x = 0 using (7.4) 

2 3 4 
At = (kh) AV(2) + (kh) AV(3) + (kh) AV0(4) + O(h5). 
k21'o -n-o~ (7 .6) 
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Using 

fl\(1(2) 
k 

gives 

L.D. Tolsma and G.w. Veltkamp 

(flAI(I)(1) = llA(1)1(1 + 6A 1(1(1) 
0 0 0 0 0 

fll(l(4) A 81(1(2) + (flAI(I)o(2) 
0 0 0 

(7 .7) 

(7.8) 

(7.9a) 

(7. 9b) 

(7.10a) 

(7.10b) 

Substituting (7.8), (7.9a) and (7.10a) in (7.6), the expressions for the 

differences fll(lk for k = ±1,±2 obtain the form: 

Alternatively, substituting (7.8), (7.9b) and (7.10b) in (7.6), the 

expressions for the differences become: 
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+ 
h4 

AOt.A0'¥0 + o(h5 ), !Zi 
(7 .12a) 

2 

ll'¥±2 ~ [llAo'¥o + (l±l)llA1'¥1 + (1+1)t.A_1'¥_1J 

4 
o(h

5
). + ~ AoflAo'¥o + (7 .12b) 

It appears that the expressions (7 .11) are rather more accurate than 

(7.12). 

8. RESULTS OF DETECTING DEFICIENCIES, THEIR AVOIDANCE AND THE ACCURACY OF 

THE INTEGRATION PROCESS 

In the next two sections, the results of our investigation will be 

presented; they were obtained by calculating the inelastic scattering of 
28 28 

10 and 104 MeV alpha particles from Si. A multiple excitation of Si, 
+ + + with spin sequence 0 - 2 (1.78 MeV) - 4 (4.61 MeV), has been induced by 

the alpha particles. This means that the number of coupled equations n in 

the set (3.1} becomes 9. This set has been solved for a total angular 

momentum value J = 5 and a matching radius R = 17 fm, A purely 
m N C 

rotational model is assumed with deformation parameters ~2 = 62= -0.329 
N C and B4 = 64 = -0.108. The deformed nuclear and Coulomb potentials, given 

by (2.8) and (2.10), respectively, are expanded up to degree A = 8. The 

optical model parameters are V = 89.749 MeV, W = 31.46 MeV, r = 1.443 fm, 
v 

rw = 1.429 fm, rc = 1.317 fm and av = 0.628 fm, aw = 0.729 fm. The test 

case with 104 MeV alpha projectiles corresponds to one of the test cases 

mentioned in the Karlsruhe report [sj. 
In the first subsection, the results will be presented for detecting 

the sources of deficiencies in the numerical process by means of the 

calculation of angles between subspaces spanned by the solution vectors. 

Also, the effects of avoiding the deficiencies, in part by the 

application of the method explained in the preceding section, will be 

shown. In the second subsection, the influence on the accuracy of the 

S-matrix elements by the deficiencies and their removal, will be 

discussed. Finally, in the third subsection, a figure will be shown and 

discussed in which the results of calculations from both preceding 
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subsections have been combined. By means of this figure, preliminary 

conclusions can be drawn concerning the accuracy of the integration 

process. These results, presented in all three subsections, have been 

based on calculations obtained for successively decreasing step sizes. 

8.1 Angles between the subspaces spanned by the solution vectors. 

The set of differential equations (3.1) was solved with step sizes 

h = 1/5, 1/10, 1/20, 1/40 and 1/80 fm. The unnormalized solution vectors 

and their derivatives at the mesh points R = Sh, lOh, ••• , R for h = 1/5, 
m 

1/10, 1/20, 1/40 and 1/80 fm were used to construct the solution matrices 

G. These matrices will be identified by a subscript corresponding to 

1/h = 5, 10, 20, 40 and 80. The matrices G80 will be considered as 

"reference matrices", since they conform with the highest accuracy. The 

solution vectors have been stabilized at the mesh points mentioned in 

order to ensure that they were as linearly independent as possible. 

Subsequently, subspaces s
5

, ••• ,s
80 

were associated, successively, with 

the matrices G5, ••• ,G80 • The principal angles between the subspaces Sl/h 

and s 80 , with 1/h = 5, ••• ,40 were computed with the method explained in 

section 6 at the mesh points R = 5h, lOh, ••• , Rm. In Figures 6a,b and 

7a,b, the largest principal angles el/h between sl/h and s80 are plotted 

on a logarithmic scale for projectile energies of 10 and 104 MeV, 

respectively. 

The solutions related to the curves in Figures 6a and 7a were obtained 

by means of Tamura 1 s code JUPITOR in its original form. The curves in 

Figure 6a clearly show discontinuities at r = 4.0 fm, which corresponds 

to the Coulomb radius Rc and at the matching radius Rm = 17.0 fm. The 

curves in Figure 7a show a pronounced discontinuity at the Coulomb 

radius only. The discontinuity at Rc arises if the Coulomb potential is 

approximated to be due to a homogeneously distributed nuclear charge 

within a sharp radius Rc. This potential is then not continuously 

differentiable at this point (see (2.6) and (2.10)), also, some of the 

terms are discontinuous (see (2.10)). The discontinuity in the curves at 

Rc can be removed by using the method given in section 7. This method 

avoids inaccuracies in the solutions due to the deficient behaviour of 

the Coulomb potential at Rc' This is clearly shown by the curves of 

figures 6b and 7b; they behave steadily at the Coulomb radius. 

The discontinuity in the curves of Figure 6a at Rm appears to be 

cam;ed by a programming error in Tamura 1 s code [ 5]. In the subroutine 
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28s; {a,a'l 
Etab= 10MeV 

tlfrnl 

Fig.6a. The largest principal angles 

al/h between the solution subspaces 

Sl/h and s80 , 1/h = 5, 10, 20, 40. 

The curves clearly show discontinui­

ties at the Coulomb radius R • 4 fm 
c 

and the matching radius Rm a 17 fm. 

2Bs;(a,tt'l 
Etab •10MeV 

r!fml 

Fig.6b. The same as Figure 6a, but 

the deficiencies causing the discon-

the Solution Subspace 29 
10° 

28si(a,a'l 
Etab •104MeV 

1o1 

1Q1 

~ 
163'-

620 

11i4 
e4o 

....... 8 10 12 14 16 
r(fml 

Fig. 7 a. The same as Figure 6a, 

except that the discontinuity at the 

matching radius Rm does not show up 

in the case of 104 MeV. 

a 10 12 14 16 
rlfml 

Fig. 7b. The same as Figure 7a, but 

the discontinuity at the Coulomb 

tinuities now have been removed. _ 
45 

_ radius Rc now has been removed. 
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COUPLE at line 926 the conditional statement should read 

IF(NX-(NXCPLE+2)) 1330,1330,1610 instead of IF(NX-NXCPLE+2).,., •• Conse­

quently, the non-diagonal elements of the potential matrix A in (3.1) 

become reduced to zero in fact. Since for projectile energies near the 

Coulomb barrier these elements at Rm are still important compared to the 

diagonal elements, their effect of becoming zero will be reflected in the 

behaviour of the principal angles. A similar discontinuity does not 

appear in the curves of Figure 7a at Rm' because for energies well above 

the Coulomb barrier, the relative importance of the non-diagonal elements 

at this radius is much less. 

8.2 S-matrix elements for successively decreasing step sizes. 

In this subsection, the influence on the accuracy of the S-matrix 

elements by the deficiencies and their removal will be discussed. This 

will be performed for an arbitrarily chosen element of the S-matrix, 
5 

~amely, s45 .
05 

which will be used along with others for calculating the 
• + 

cross sections of the 4 state. In Tables 1 and 2, the values calculated 

for this S-matrix element are shown as a function of successively 

decreasing step sizes h, labelled by t (tests) for the projectile 

energies of 10 and 104 MeV, respectively. The values resulted from the 

same calculations as those for the principal angles in the previous 

subsection. The tables show, in columns 3, 4 and 5 respectively, the real 
5 and imaginary parts of s45 ,05 , as well as, the modulus of 

(S~5 , 05 - s~5 , 45 >, denoted,by "asym" in seven decimal figures. In columns 

6, 7 and 8, the absolute values of the differences between the successive 

entries in columns 3, 4 and 5, respectively, are given in five decimal 

figures. The numbers in parentheses at the top of the columns denote the 

powers of 10 by which the underlying numbers have to be multiplied. Both 

tables are subdivided into four different parts that correspond to the 

calculations which were performed with or without the presence of radial 

discontinuities in the potential matrix A in (3.1) at R and R • The 
c m 

values in parts a are influenced by both discontinuities. Those in parts 

b and c are influenced only by the discontinuity at R and R , 
m c 

respectively. The influence of both discontinuities have been removed in 

parts d as shown. 

Tables 1 and 2 give rise to the following conclusions related to the 

influence of the deficiencies on the accuracy of the S-matrix elements: 

Firstly, the discontinuity in the potential matrix A at Rm is the main 
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28 + + + 
Table 1. S-matrix element for 10 Mev alpha scattering from Si(O -2 -4 ) 

as a function of successively decreasing step sizes h. 

t 1/h 85 (t) 
45;05 

Iss (t) _ 8s(t+1)1 
45;05 45;05 

-1 fm real imag jasyml real imag jasyml 

(-3) {-3) (-6) (-5) (-5) (-6) 

a) With discontinuities in potential matrix A at Rc = 4fm and R = 17£m. 
m 

1 5 .6127480 -.2479657 .2283326 .69039 .39919 .17426 

2 10 .6196519 -.2439738 .0540680 .29780 .23112 .04096 

3 20 .6226299 -.2416626 .0131061 .13444 .12202 .00984 

4 40 .6239743 -.2404424 .0032611 .06353 .06235 .00240 

5 80 .6246096 -.2398189 .0008627 

b) With discontinuity in potential matrix A at Rm' 

1 5 .6125957 -.2480221 .2416972 .69514 .40783 .18690 

2 10 .6195471 -.2439438 .0548013 .30286 .22974 .04168 

3 20 .6225757 -.2416464 .0131256 .13716 .12118 .00989 

4 40 .6239473 -.2404346 .0032368 .06488 .06195 .00220 

5 80 .6245961 -.2398151 .0010354 

c) With discontinuity in potential matrix A at Rc. 

1 5 .6256308 -.2393349 .0073168 .02961 .01113 .00624 

2 10 .6253347 -.2392236 .0010758 .00597 .00199 .00096 

3 20 .6252750 -.2392037 .0001156 .00277 .00085 .00006 

4 40 .6252473 -.2391952 .0000523 .00136 .00039 .00001 

5 80 .6252337 -.2391913 .0000669 

d) Without any discontinuity in potential matrix A. 

1 5 .6254759 -.2393937 .0177432 .02462 .01993 .01611 

2 10 .6252297 -.2391944 .0016341 .00089 .00067 .00150 

3 20 .6252208 -.2391877 .0001338 .00005 .00003 .00008 

4 40 .6252203 -.2391874 .0000570 .00000 .00001 .00011 

5 80 .6252203 -.2391875 .0001710 
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28 + + + 
Table 2. S-matrix element for 104 Mev alpha scattering from Si(O -2 -4 ) 

as a function of successively decreasing step sizes h. 

t 1/h ss (t) 
45;05 

Iss (t) _ 8s(t+1)1 
45;05 45;05 

-1 fm real !mag jasymj real !mag jasymj 

(-2) (-2) (-4) (-2) (-2) (-4) 

a) With discontinuities in potential matrix A at R = 4fm and R 17fm. 
c m 

1 5 .1931047 -.4105927 .6898895 .21452 .39530 .63340 

2 10 .4076243 -.0152959 .0564886 .00044 .01163 .05441 

3 20 .4080613 -.0036645 .0020782 .00061 .00096 .00201 

4 40 .4086671 -.0027067 .0000687 .00028 .00040 .00007 

5 80 .4089502 -.0023105 .0000017 

b) With discontinuity in potential matrix A at Rm • 

1 5 .2031317 -.4191230 • 7032578 .20771 .40675 .64599 

2 10 .4108368 -.0123757 .0572717 .00157 .01027 .05516 

3 20 .4092644 -.0021086 .0021127 .00005 .00019 .00204 

4 40 .4092181 -.0019220 .0000697 .ooooo .00001 .00006 

5 80 .4092158 -.0019163 .0000061 

c) With discontinuity in potential matrix A at Rc' 

1 5 .1931483 -.4105629 .6894037 .21447 .39529 .63300 

2 10 .4076221 -.0152734 .0564087 .00044 .01162 .05435 

3 20 .4080594 -.0036535 .0020609 .00061 .00095 .00200 

4 40 .4086661 -.0027012 .0000644 .00028 .00039 .00006 

5 80 .4089496 -.0023077 .0000012 

d) Without any discontinuity in potential matrix A. 
1 5 .2031763 -.4190919 .7027446 .20766 .40674 .64556 

2 10 .4108344 -.0123530 .0571892 .00157 .01026 .05509 

3 20 .4092625 -.0020975 .0020943 .00005 .00018 .00203 

4 40 .4092171 -.0019165 .0000647 .ooooo .ooooo .00006 

5 80 .4092152 -.0019135 .0000042 

=========================================·============================== 
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reason why the accuracy obtained for the energies near the Coulomb 

barrier is of order h only. This is shown in parts a and b of the columns 

6 and 7 of Table 1. The accuracy of the solutions and their derivatives 
5 5 

a~ Rm are of the order h too, whereas, ls45; 05- s05 ; 45 j is of the order 

h which appears in parts a and b of columns 8. This effect does not 

appear in the corresponding parts of Table 2, due to the relatively 

unimportant non-diagonal elements of the potential matrix A at Rm for 

those energies well above the Coulomb barrier. This is also the reason 

for the differences between parts b and d of the columns 6, 7 and 8 of 

Table 2 being very small or even zero. 

Secondly, the influence of the.discontinuity in the potential matrix A 

at Rc has only minor importance when compared to that at Rm for energies 

near the Coulomb barrier. For energies well above it, this discontinuity 

gives rise to only a small deviation. However, for both energies, the 

discontinuity at Rc departs from the expected order of accuracy. This is 

shown in part c of columns 6 and 7 in the tables. 

Thirdly, only after removing both discontinuities in the potential 

matrix A does the accuracy of the S-matrix elements become of the order 
4 5 h to h • This is shown in part d of the columns 6 and 7 in the tables. 

Fourthly, from part d in the tables, we see that the entries of column 
5(t) 5(t) 

5, i.e .• , ls45 •05 - s05 •45 j values are about an order of magnitude smaller 
' S{t) 5(5) 5(t) than the estimate js45 ; 05 - s45 ; 05 ! for the error in s45 ; 05 • This means 

that a high degree of symmetry in the S-matrix elements does not 

guarantee an equal high accuracy of these elements. 

Finally, the differences between the calculations with and without 

either discontinuities are rather small and the former will have little 

serious consequence for the calculations in our test cases in practice. 

From now onwards, the calculations have been performed without any 

discontinuity in the potential matrix. 

8.3 About the accuracy of the integration process. 

In this subsection, we look for a relationship between the asymmetry 

of the S-matrix and the largest principal angle between the solution 

subspaces when they are used as a measure of the accuracy of the inte­

gration process. Examining this relationship, the modulus of the largest 
T 

element of (S-S ) is plotted in Figure 8 on a double logarithmic scale as 

a function of the step size h. The values of the moduli are denoted by 

full dots. The largest principal angles, el/h' 1/h = 5~ 10, 20 and 40, 
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Fig.8. The modulus of the 
T largest element of (S-S ) 

(full dots), and the largest 

principal angle el/h' 1/h = 
5, 10, 20, 40 at the matching 

radius Rm(open dots), plotted 

as functions of the step size 

h. The slopes of the straight 

parts of the curves are all 

between 4. 8 and 5.1 indica­

ting that St~rmer's diffe­

rence method does give rise 

to a global truncation error 

of order h5 • 

defined in subsection 8.1, at the matching radius Rm are also plotted in 

the figure. They are indicated by open dots. Parts a and b of the figure 

refer to projectile energies of 10 and 104 MeV, respectively. 

Looking at Figure 8, the following preliminary conclusions that 

relate to the accuracy of the integration process itself can be drawn: 

Firstly, the slopes of the straight parts of the curves are all 

between 4.8 and 5.1 indicating that Stormer's difference method does 

give rise to a global truncation error of order h5 • This is not only 

indicated by the moduli of the largest elements of (S-ST) (solid lines), 

but also, by the largest principal angles at Rm (broken lines). 

Therefore, both quantities can be used to measure the accuracy; however, 

during the integration process, only the largest principal angle can 

serve as such a measure, as opposed to the largest element of (S-ST), 

which has been pointed out in section 5. In other words, only the largest 

principal angle is capable of describing the development of a global 

error during the course of the integration. Once more, this is confirmed 

by the
5

curves el/h' 1/h = 5, ••• ,40 in Figures 6b and 7b, that also show 

an O(h ) character along most of the integration range. The declining 
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behaviour of the curves during the first part of the integration 

corresponds to a damping of the global truncation error, probably caused 

by the rising character of the solutions here. 

Secondly, for energies well above the Coulomb barrier, the accuracy of 

the numerical process for all step sizes is fully determined by the 

global truncation error due to the particular difference equation used. 

For energies near the Coulomb barrier, the errors are considerably less 
5 and the O(h ) character appears only with the larger step sizes. For 

smaller step sizes, the truncation errors are so small that round-off 

errors are dominant. This is shown in Figure 8a by those parts of the 

curves deviating from a straight line at the smaller step sizes. Looking 

at the curve e40 in Figure 6b, we can see that these round-off errors are 

accumulated during the second half of the integration range. 
T Finally, we can observe that the largest element of (S-S ) is a factor 

of one to two orders of magnitude smaller than the largest principal 

angle. 

Here, we wish to state that, historically, the disappointing behaviour of 

the S-matrix elements for successively decreasing step sizes, as shown by 

part a of Tables 1 and 2, motivated us to investigate the integration 

process. 

9. RESULTS RELATING TO THE LOSS OF ACCURACY DUE TO THE TENDENCY OF THE 

SOLUTION VECTORS TOWARDS LINEAR DEPENDENCY 

In this section, we present the results of our investigations related 

to the loss of accuracy due to the tendency of the solution vectors to 

become nearly linearly dependent during the integration through a 

classically forbidden region. This loss of accuracy is a consequence of 

the finite representation of numbers in the computer (round-off errors) 

and it would not occur if this representation is infinitely precise. 

The tendency of the solution vectors towards linear dependency is 

illustrated in Figures 9 and 10 for projectile energies of 10 and 104 

MeV, respectively. In these figures, the principal angles e
1

, ••• ,e
9 

(as 

given by (6.2)) between two solution subspaces are plotted on a 

logarithmic scale as a function of r. The solution matrices associated 

with these subspaces were calculated for h = 1/80 fm in order to keep the 

truncation error as small as possible. One of the solution matrices was 

stabilized at all the mesh points R = Sh, 10h, ••• ,Rm' in order to ensure 

that the solution vectors remained as linearly independent as possible. 
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The other solution matrix has not been stabilized at all. The first 

subspace can be considered as the reference subspace and the second one 

the subspace to be investigated. Figure 9 shows that, at 10 MeV, three 

principal angles obtain a value of n/2 which indicates that the dimension 

of the initial nine dimensional solution subspace has been reduced to 

six. Figure 10 shows that, at 104 MeV, dimension reduction of the 

solution subspace is less drastic. A dimension reduction of the solution 

subspace means that the representation of the physical solution as a 

linear combination of the solution vectors has completly lost its 

accuracy. 

2Bs; {a,a'l 

Elabz10MeV 

2Bs;jo.,a'J 
Etab•104MeV 

Figs. 9 and 10. These figures illustrate the tendency of the solution 

vectors towards linear dependency by showing the principal angles 

e1 , ••• ,e9 between a reference subspace and a subspace to be investigated, 

for energies of 10 and 104 MeV, respectively. The two solution matrices 

associated with these subspaces were calculated for h = 1/80 fm; the 

first one was stabilized at all the mesh points R • 5h, lOb, ••• , Rm' 

whereas, the second one has not been stabilized at all. Principal angles 

obtain a value of w/2 which indicates that the dimension of the initial 

nine dimensional solution subspace has been reduced. 
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In order to keep such a loss of accuracy within given bounds, the 

integration through a classically forbidden region necessitates the 

stabilization of the solution matrix ~. This will be necessary in only a 

few mesh points. In Figure 4, this is shown for a small part of the 

integration range near the origin. For the whole integration range, it is 

shown in the Figures 11 and 12 for projectile energies of 10 and 104 l1eV, 

respectively. In these two figures, the linear independence numbers are 

plotted logarithmically as a function of r for two different cases 

denoted by v~~) and v~~Z) which were calculated for h 1/80 fm. For the 
(0) 

curve that is denoted by v80 , the solution matrix has been stabilized at 

10-1 

102 

10-1 

"' (-2) 
~80 107 

162 107 

(-2) 
vao 

108 
168 

10
3 

"C 

~ 
CD 

11i9 109 

2Bs; (o.,o.'l 2Bs; 1a,o.'l 
Etab·10MeV 

1010 
Etab=104MeV 

1<f10 

:-___l _ _j_ _ _L_ _ _l_ _ _L__L__j _ __[__j11i11 
8 10 12 14 16 

~---!:----J,----;----;;--~----:!::c-----::-----::-_j10-11 
10 12 14 16 

r(fml r(fm) 

Figs. 11 and 12. In these figures, two plots of the linear independence 

number v calculated for h • 1/80 fm, are shown for energies of 10 and 104 

MeV, respectively. For the curve that is denoted by v~g) (broken line), 

the solution matrix has been stabilized at all the mesh points R = 5h, 

lOh, ••• , Rm, while for the other one, denoted by v~~2 ) (solid line), 
-2 stabilization is performed only at those mesh points in which v < 10 

The largest principal angle between the two subspaces associated with the 

solution matrices belonging to the curves v~g) and v~~2 ) is denoted by 
,.(0,-2) 
"'80 • 
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all the mesh points R = Sh, 10h, ••• ,R , while for the other one, denoted 
(-2) m 

by v80 , stabilization is performed only at those mesh points in which 
-2 v < 10 • In these cases the solution matrices, called F and G 

respectively, have been constructed from (4.31) at the above mesh points. 

The largest principal angle between the subspaces associated with F and 

G, denoted by 0~~,- 2 ), is plotted on a logarithmic scale in Figures 11 

and 12 too. 

l.rhen looking at these figures, the following remarks can be made: 

Firstly, during a decline of v~;2 > as a function of r, the errors are 
(0 -2) growing, as visualized by an increasing behaviour of 0so' . 

Secondly, during the first part of the integration range (r < 4 fm) 
(0 -2) eso' shows an erratic behaviour; however, beyond this part, as shown 

b Fi 11 0(0,-2 ) . . hl d . h d 1" f (-2 ) h y gure , -
80 

, Lt rLses smoot y ur~ng t e ec ~ne o v80 ; t e 

value at Rm is determined here mainly. 

Thirdly, in the classically allowed region, v~;2 ) behaves constantly; 

however, here 0~~,-2 ) still rises steadily until it reaches its final 

.value at R. 
m 

From these remarks, we can conclude that the loss of accuracy is 

caused mainly by a build-up of round-off errors during the course of 

integration beyond the initial region. To understand this, we will 

discuss the increase of the largest principal angle in some integration 

interval and how it relates to an accumulated condition number to be 

defined later. 

If the round-off is the only source of errors in some interval of the 

solution matrices F and G leading to perturbations EF and EG in F and G, 

respectively, it can be expected (13] that, in this interval, 0~~,- 2) 

will increase 

t.0(o,-2) 
80 

by 

1 UEFU l UEGO 
{ VTFJ 'ifF"T + vrer 1iGT } • (9.1) 

This means that round-off errors in the solution matrices, generally, 

will lead to perturbations in the corresponding solution spaces. If these 

perturbations are measured by the largest principal angle between the 

perturbated and the unperturbated spaces, in fact, these angles may be 

larger than the relative errors in the solution matrices by a factor of 

the order of the condition number of the solution matrices. The relative 

errors are likely to be of the order of the machine precision (macheps) 

of our computer (see subsection 4.3). 

This suggests that a solution matrix contains less information about 
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Fig.l3. The largest principal 

angle e~~,-t). t- 1, 2, •••• 6 

at the matching radius Rm 

(open dots) and the modulus of 

the largest element of (S-ST) 

(full dots), plotted as func­

tions of the accumulated con-

dition number Kt• For energies 

near the Coulomb barrier, 

round-off errors are accumu-

lated during the course of the 

integration. For energies well 

above the Coulomb barrier, 

this is less so. 

the subspace it represents, when it becomes more ill-conditioned. It 

should be stressed that stabilization does not overcome this loss of 

accuracy; it only reduces the condition number and, therefore, the effect 

of round-off errors in the next integration interval. 

Now, let us define an accumulated condition number as: 

L 1/v (9.2) 
at all R 

by summing the condition numbers of the solution matrices calculated at 

all the mesh points. Then, combination of (9.1) and (9.2) suggests that 

at the matching radius Rm 

0(0,-2(R ) - K~ • macheps. 
80 m " 

(9.3) 

To find an experimental relationship between the build-up of round-off 

errors and the accumulated condition number, we performed "runs", in 
-t 

which stabilization is carried out only when v < 10 • In this way, 
(0 -t) (-t) 

principal angles e 80 • and accumulated condition numbers KI: were 

calculated for t = 1,2, ••• ,6. In Figure 13, the largest principal angle 

e~~,-t), t = 1,2, ••• ,6, at the matching radius Rm (open dots) and the 

- 55 -



40 L.D. Tolsma and G.W. Veltkamp 

T 
modulus of the maximum element of (S-S ) (full dots) are plotted on a 

double logarithmic scale as functions of Ki-t). For energies near the 

Coulomb barrier, we can see from Figure 13a that the position of the full 

and open dots conforms with (9.3). Clearly, this shows that round-off 

errors were accumulated during the course of the integration. However, 

for energies well above the Coulomb barrier, this was less so, as is 

shown in Figure 13b. We note that, as shown in both figures, the moduli 

of the largest element of (S-ST) correspond quite well to the largest 

principal angles at Rm. This is in contrast to the cases shown in Figure 

8, where it was not the noise level, but the amount of truncation error 

that varied. We cannot explain this difference yet. 

Subsequently, we pay attention to a peculiar phenomenon concerning the 

asymmetry of the S-matrix. It seems that errors in the calculated 

elements SJ for £ > t are generally larger than those for t < t 0• I&;Iolo o 
In other words, the errors in the low-R. to high-R. transition elements are 

larger than in the corresponding inverse transition elements. At the same 

time it appears that, for many elements, this effect will increase as the 

values 11- 10 1 increase. Roughly, this means that most of the entries 

below the diagonal of the S-matrix have larger errors than those above 

the diagonal. This phenomenon has been encountered in many, coupled­

channel calculations and can be explained [16]. In our discussion of this 

phenomenon, we will consider the F-norm (Frobenius norm) of the part 

D~-t) of (S(O) - S(-t)) for which I > lo 

[, I']'''. (9.4) 

where S(O) is the S-matrix calculated by stabilizing the solution matrix 
(-t) 

~ at all the mesh points R = Sh, lOh, ••• , Rm; whereas, S denotes the 

S-matrix obtained by stabilizing ~ at these mesh points when only 
-t (-t) 

v < 10 , t = 1,2, ... ,6. In the same way liD< HF for I< &0 can be 

defined. Tables 3 and 4 contain these F-norms and their differences as 

functions of the accumulated condition numbers K~-t)for projectile 

energies of 10 and 104 MeV, respectively. The S-matrices have been 

calculated with h = 1/80 fm. 

Looking at Tables 3 and 4, we can see that, for t < 2, i.e.,with two 

or three stabilizations of '1', very accurate values for the S-matrix 
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28 + + + 
Table 3. F-norms (9.4) for 10 Mev alpha scattering from Si(O -2 -4 ) 

as a function of the accumulated condition number K~-t). 

t 

1 

2 

3 

4 

5 

6 

(-t) 
Kl: 

.17 104 

.31 104 

.55 105 

.28 106 

.24 107 

.19 1Q8 

(-3) 

.0000364 

.0000253 

.0001523 

.0005935 

.0106600 

.3101392 

(-3) 

.0001751 

.0000715 

.0000559 

.0002768 

.0022983 

.0072964 

(-3) 

-.0001387 

-.0000462 

.0000964 

.0003168 

.0083617 

.3028428 

==~==============================-~==================================== 

28 + + + Table 4. F-norms (9.4) for 104 MeV alpha scattering from Si(O -2 -4 ) 

as a function of the accumulated condition number K~-t). 

t (-t) IID(-t) I llD(-t)ll UD(-t)U -ID(-t)ll 
"1: > F < F > F < F 

(-6) (-6) (-6) 

1 .13 10'+ .0035279 .0043661 -.0008383 

2 .16 10'+ .0027832 .0032752 -.0004920 

3 .82 105 .1243626 .0061164 .1182462 

4 .82 105 .1243626 .0061164 .1182462 

5 .31 106 .1488424 .0084672 .1403752 

6 .23 107 .0334215 .0035366 .0298849 

======================================================================= 

elements are obtained. The tables show that, for t > 2, ID~-t) IIF is 

larger than ID~-t)IF and that the difference between the two grows with 

increasing K~-t) values. This indicates that the calculated elements 
J 

Slt;Ioto for t > t 0 are affected more by the perturbation of the solution 

space at Rm• than those for t < t 0• This effect will be stronger, as 

stabilizing of '!' is delayed. The increasing character of the elements 

with t > t 0 in the physical solution matrix for a classically forbidden 

region, apparently, provides the main contribution to the perturbation of 

the solution space at R • 
m 

Finally, we can remark that, on the contrary, the errors in the 
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S-matrix originating from the truncation error, inherent in the 

difference formula employed, behave quite symmetrically, in the sense 

that the asymmetry HS(h) - (S(h))TU in the S-matrix obtained by 
F 

integration with a step length h is an order of magnitude smaller than 

the estimate II g(h)_ g(l/SO)I for the error in g(h). This reaffirms our 
F 

opinion that it is dangerous to conclude from a high degree of symmetry 

in an obtained S-matrix that its elements contain small errors. 

10. CONCLUSIONS 

The following conclusions can be drawn: 

1. The quantum mechanical description of inelastic collisions between 

particles requires, in general, the numerical solution of the radial 

Schrl5dinger equation. For investigating the accuracy of the numerical 

integration process, a method has been successfully used for measuring 

the accuracy of the regular solution subspace spanned by the solution 

vectors, rather than the accuracy of the solution vectors themselves. 

This method computes the principal angles between two solution subspaces 

that are obtained under different numerical conditions (varying length of 

integration step and stabilization strategy). One of the subspaces is 

constructed under optimal conditions, so that it is considered as the 

reference subspace, the other being the subspace to be investigated. In 

this method, the quality of a solution subspace, obtained by a numerical 

procedure, can be measured, e.g., the extent to which solution vectors, 

as a basis of the solution subspace, remain linearly independent in the 

range from the origin to the matching radius Rm' during the integration. 

2. The method of computing the principal angles enables us to inspect 

the loss of accuracy in the integration range originating from the 

truncation error inherent in the difference formula employed and to 

detect possible sources of deficiencies in the numerical process for 

solving the SchrBdinger equation. It appears to be a very sensitive 

method for the latter purpose. 

3. A method has been developed with which inaccuracies in the solutions 

due to a deficiency caused by discontinuities in the potential matrix can 

be avoided. After applying this method, the accuracy of the solution 

vectors and the S-matrix elements agreed with the order of the global 

truncation error belonging to the multistep integration method used. 

4. The largest principal angle at the matching radius, as well as the 
T modulus of the largest element of (S - S ), can be used as measures of 
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the global truncation error in the integration process. During the 

execution of this process, however, only the local largest principal 

angle can serve as such a measure. In other words, only the largest 

principal angle is capable of recording the development of the global 

truncation error during the course of integration. Also, the effect of 

other types of errors can be recorded in a like manner. 

5. The largest principal angle can be used to investigate the loss of 

accuracy as a result of a tendency by the solution vectors to become 

nearly linearly dependent during the integration through a classically 

forbidden region as an effect of round-off errors inherent in the finite 

representation of numbers in a computer. This loss of accuracy 

necessitates stabi,lization of the set of solution vectors. This process 

can be effectively monitored by introducing a so-called "linear 

independence number v" for the set of solution vectors. In this way, we 

found that stabilizing the set of solution vectors in a few well chosen 

mesh points only, for our nuclear physics test cases of alpha scattering 
28 

from Si, proved to be adequate for obtaining an S-matrix accuracy that 

is quite satisfactory. 
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To reduce the computation time in nuclear coupled-channels calculations including 
Coulomb excitation, the applicability of Gordon's numerical method has been in­
vestigated to the integration range beyond the range of the nuclear potential. It turns 
out that a considerable reduction of computation time can be obtained. The larger 
the integration range and the relative wave number, pertinent to a given reaction process 
and reaction energy, the larger is this reduction. This is illustrated by two test cases 
dealing with a and 16() scattering near the Coulomb barrier. Consequently, although 
the method is sometimes also of considerable advantage in the case of scattering of 
light particles, it seems to be especially suitable to heavy ion scattering problems. 

1. INTRODUCTION 

The inclusion of the contribution of Coulomb excitation in coupled-channels 
calculations of nuclear scattering problems often increases the computation time 
considerably. To reduce this time we have investigated the applicability of 
a method for solving systems of coupled linear second-order differential equations, 
introduced by R. G. Gordon in connection with atomic and molecular scattering 
and bound state problems [1, 2]. For most collisions between atoms and ions at 
thermal energies, the de Broglie wavelength associated with the relative motion 
is short as compared to the long range of the interatomic potential. This range can 
then be divided into intervals which are sufficiently small to approximate the 
potential matrix by a linearly varying reference potential matrix and which on 
the other hand contain a sufficient number of de Broglie wavelengths. This 
enables one to write the general solution vector in e.g., the classically allowed 
region as a linear combination of two rapidly oscillating Airy functions with slowly 
varying coefficient vectors. An important advantage of Gordon's method is 
connected with the fact that part of the .numerical procedure is independent of 
energy. Apart from a possible decrease of computation time at a single scattering 

384 
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energy [3], an additional amount of time is thus saved when the calculation is 
repeated at a slightly different energy. 

In Section 2, we give a concise formulation of Gordon's method. In Section 3, 
the application of Gordon's method to nuclear scattering problems is discussed. 
To study this applicability, the method has been implemented in Tamura's code 
JUPITOR. In the resulting code JUPIGOR, the integration range is divided into 
a part up to the radius where the nuclear interaction has died out and a large 
part where only the Coulomb interaction operates. From preliminary calcula­
tions it appeared that Gordon's method is not efficient over the first part: the step 
size has to be taken too small. This part is therefore dealt with by a conventional 
step-by-step method. Subsequently, the remaining integration range is divided 
into steps such that the Coulomb interaction matrix is linearized, up to a few 
percent over one step. Here Gordon's method turns out to be very efficient and 
to reduce computation time considerably. 

In Section 4, we present the results of our study on the 11.5, 16.5, 
21.5 MeV 122Te(a, a')122Te [12] and 39, 44,49 MeV SSNi(l60, 1110')58Ni [13] inelastic 
scattering problems. Preliminary results of our investigation on the 10-16 MeV 
114Cd{a, a')114Cd inelastic scattering problem have been published elsewhere [14]. 

2. A CoNcisE FoRMULATION oF GoRDON's METHOD 

The Schrodinger equation for the partial wave radial function in potential 
scattering is, in conventional notation, 

!~ + k2 - 2m V(r) 
( dr 2 

This equation can be rewritten into the form 

1(1 ~ 1) ! ifi(r) 0. (2.1) 

(2.2) 

Consider some interval of the integration range with the midpoint at radius r. 
Although in Gordon's method several forms can be used for the reference potential, 
we follow him in choosing a linear one of the form 

U0(r) = V(r) + (r- r)(dU/dr)lr=t, (2.3) 

where V is the average value of the potential over the interval. Using (2.3) as 
potential in (2.2) gives us the Airy functions Ai and Bi as a set of two linearly 
independent solutions. As shown by Gordon these functions can be efficiently 
evaluated numerically. The general reference solution may now be written as 

ifi0(r) Ai[rx(/3 + r)] a + Bi[a(/3 + r)] b, (2.4) 
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with the constants 

a: = (!!!!_ I _)1/S, 
dr r=r 

fJ = U(r) k2 
_ r. 

dUfdr lr-i 
(2.5) 

The constant coefficients a and b are determined by conditions of continuity at 
the interval boundaries. For instance, if they would be adapted to the value and 
derivative of the exact solution ifi(r) at the "left-hand" boundary r, , 

a = 7r{Bi'[a:(fJ + r1)] t/;(r1) - a:-1 Bi[a:(fJ + r1)] t/;'(r1)}, (2.6a) 

b = 7T{a:-1 Ai[a:(fJ + r1)] t/;'(r1) Ai'[a:(fJ + r1)] tf;(r1)}, (2.6b) 

where the prime denotes differentiation with respect to the argument. 
Including the difference between the true potential and the reference potential 

one obtains corrections Lla(r) and Llb(r) to the coefficients a and b. The solution of 
the Schrodinger Eq. (2.2) can now be approximated by the reference solution (2.4) 
plus a correction term 

t/;(r) ~ Ai[a:(fJ + r)]{a + Lla(r)} + Bi[a:(fJ + r)]{b + Llb(r)}, (2.7) 

where the varying coefficients, to first order in [U(r) - U0(r)] are given by 

Lla(r) = -71' C Bi[cx(fJ + r')]{U(r')- Uo(r')} t/;0(r') dr', {2.8a) 
• r, 

Llb(r) = 7T r Ai[cx(fJ + r')]{U(r')- U0(r')} t/;o(r') dr'. (2.8b) .. , 
These coefficients remain small as long as the reference potential is a good approxi­
mation to the true potential. Thus, in the classically allowed region the solution 
(2. 7) has been written as a linear combination of two rapidly oscillating Airy 
functions with slowly varying coefficients. The integrals in (2.8) can be evaluated 
analytically. 

In the case of n coupled equations the differential operator and k2 in (2.2) stand 
for diagonal (n x n) matrices while the potential is in general a nondiagonal (n x n} 
matrix U(r). To obtain a reference potential matrix a similarity transformation is. 
performed which reduces U(r) to diagonal form 

x-1U(r) X diag(.\), (2.9) 

where X is the transformation matrix and .\ are the eigenvalues. In other words 
U(r) has been transformed from a free basis into a local basis such that it is diagonal. 
As reference potential matrix the following diagonal matrix is chosen 

U0(r) = [X-10(r) X]dtag (r- r)[X-1(dU/dr)l.--r X]dtag, (2.10} 
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where O(r) is the average value of the potential matrix over the interval and the 
subscript "diag" means that only the diagonal elements are retained. With this 
diagonal matrix the set of reference equations becomes uncoupled and the Airy 
functions are again the linearly independent exact solutions. Writing the Airy 
functions in diagonal matrix form, the general reference solution vector in the 
local basis is given by 

\f.l0 = Ai a + Bi b. (2.11) 

The constant coefficient vectors a and b are once more determined by boundary 
conditions like (2.6). The solution vector of the coupled equations may now be 
approximated by 

\f.~ ~ Ai(a da) + Bi(b + db), (2.12) 

where the varying coefficient vectors are determined by 

da -TT fr Bi{U- U0} \f.l0 dr', 
,.I 

(2.13a) 

db 1r r" Ai{U U0} \f.l0 dr'. 
• ,.I 

(2.13b) 

The continuity condition for the solution vector in the free basis leads to a relation 
between the local solution vector in interval p and that in interval p + I, both taken 
at the common boundary point: 

Note that the following quantities are independent of energy: 

the diagonalized potential matrix x-10X, 
the transformed derivative potential matrix X-1(dUfdr) X, 
the transformation matrix T ~ . 

(2.14) 

These quantities can therefore be used at other values of the energy, which turns 
out to save more than half of the computation time. 

The general solution vector can be written as a linear combination of n inde­
pendent solution vectors. These solution vectors can be collected as the columns 
of a solution matrix '1'. The component c of the vectors (solution) is denoted by 
!fics . Suppose that the components in the solution vectors are arranged in order 
of decreasing local relative kinetic energy. Integrating through a classically 
forbidden region, the components with negative kinetic energy will in general 
consist of an exponentially growing and an exponentially decreasing part. The 
former is responsible for a tendency to destroying the initially taken linear indepen-
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dence of the solution vectors. To maintain this linear independence, the solution 
matrix can be stabilized by an unitary transformation such that the exponentially 
growing components below the diagonal with local negative kinetic energy are 
eliminated. In this way a stable solution matrix \jr is obtained 

(2.15) 

in terms of the original solution matrix lf'. The unitary matrix d/1 can be chosen [4] 
as a product of elementary unitary Hermitian matrices: P nP n-1 ... Pc ... , in which c 
runs over the components with local negative kinetic energy and with 

(2.16) 

The unit column vector W 6 with n components can be constructed from row c of '1': 

2Kw/ = (ifJ~, ifi~ , ... , ifi:c + Sifi:c/1 ificc I, 0, ... , 0), (2.17) 

where K and S are defined as positive constants, given by the expressions 

c 

s2 
= 2: ific.ifi:S • 2K2 = ~ + S I iflcc 1. (2.18) 

•~1 

It can easily be shown that the solution matrix 1ft obtained has vanishing elements 
below the diagonal in the rows c up to and including n, while the corresponding 
elements of the derivative ofY become small. If on the other hand a different choice 
is made for We by replacing ifics by ifi~. in Eq. (2.17), the abovementioned results 
for 1ft and -P' are interchanged. Clearly, it is possible to eliminate the exponentially 
growing solution by means of the linear combination kcifics + ifJ;s. The wave 
number kc is defined as (I Ac 1)112 in terms of one of the negative eigenvalues Ac 
in Eq. (2.9). 

In Gordon's method [I] the solution vectors are real. In view of our preference 
for the use of complex solution vectors in Section 3, we have given the above­
mentioned formulae in an adapted notation. Furthermore, we note that in Gordon's 
code an approximation to [X-10(r) X]atag in Eq. (2.10) is used. In Section 3 this 
approximation is not made. We use in Eq. (2.9) O(r) instead of U(f). 

3. THE APPLICATION OF GORDON'S METHOD TO NUCLEAR SCATTERING PROBLEMS 

The Calculational Procedure 

The coupled-channels formalism for inelastic scattering in nuclear physics has 
been discussed extensively in the literature [5-8]. This formalism leads to a set of 
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coupled differential equations for the radial wave functions uf1 of the following 
form 

= L: vft,rz{r) uf·z·Cr), (3.1) 
l'l' 

assuming a spinless projectile. Here /, I and I denote the total angular momentum, 
the orbital angular momentum and the spin of the target nucleus in the state 
with excitation energy E1 , respectively. The coupling potential is denoted by 
Vfz:JT , the optical model potential by yoPt, whereas z1 and z2 are the charge 
numbers of the projectile and target nucleus, respectively. The total angular 
momentum J, its projection on the z-axis and the parity are good quantum 
numbers. 

If n is the number of coupled equations (3.1) for a given J, the solution satisfying 
the usual boundary conditions [6] can be written as a linear combination of n 
independent regular solutions uff"1 

~ (v) J(v) ' 1/2 ia1 [ ( k;: ) 3
/
2 

J J • ] 
L.. a un ,":;:, (21 -t- 1) e 13u,ou,Fz + k C1,z,:n{ G1 + zF1} , (3.2) 
v=l 

where G1 and F1 are the irregular and regular Coulomb wave functions and cr1 the 
partial-wave Coulomb phase shift. The subscript i refers to the initial channel. 
A similar set of equations holds for the derivatives of the respective functions and 
together with Eq. (3.2) they supply the matching and normalization conditions. 
The calculated matrix elements Cf,z,:ll are used in the calculation of the elastic 
and inelastic scattering amplitudes. 

To study the applicability of Gordon's method, it has been implemented in 
Tamura's code JUPITOR [9]. In the resulting code JUPIGOR, the integration 
range is divided into a part up to the radius where the nuclear interaction has died 
out, to be called the coupling radius r cp and a large part up to the matching radius 
r m where only the Coulomb interaction operates. 

From preliminary calculations for a single channel case with a complex nuclear 
potential, it appeared that Gordon's method is not efficient up to the radius rep. 

The step size has to be taken too small, because the nuclear potential varies too 
fast over this range to be efficiently linearized. This part is therefore dealt with by a 
conventional method with a step size of 0.1 to 0.2X [I 0], where X is the de Broglie 
wavelength. In JUPITOR the step-by-step Stormer method is used for this purpose. 
Subsequently, we divide the remaining integration range into steps such that the 
potential is linearized up to a few per cent over one step. In the next subsection 
the procedure followed in choosing the step sizes will be dealt with. 

- 66 -



390 L. D. TOLSMA 

Choosing Step Sizes 

Taking a perturbation potential matrix [U(r) - U0(r)] which is quadratic in r 
on the diagonal and linear in r for the off-diagonal elements, the perturbation 
integrals (2.13) can be evaluated analytically. Notwithstanding this, the calculation 
of these first-order corrections to the reference solution needs extended matrix 
multiplications. As a consequence, the calculation of the solution (2.12) requires 
about two or three times as much computational effort as does the calculation of 
the reference solution (2.11) alone. In view of this it is useful to avoid the calculation 
of the perturbation integrals in cases where this is possible. 

In Gordon's method the step size is taken such that the perturbation integrals are 
small enough to keep the accuracy of the reference solution at some required level. 
For some potential and total angular momentum this requires the calculation of 
these integrals once; for subsequent calculations at different energies, with the 
same potential and total angular momentum, the reference solution can then be 
calculated efficiently using the same intervals and applying the energy independent 
matrices following Eq. (2.14) of Section 2. 

In our application of Gordon's method we prefer to prescribe the step size 
without the calculation of the perturbation integrals. Over the integration range 
r.'D < r < rm the potential of each uncoupled equation of set (3.1) has a radial 
dependence of the form 27Jkr-1 + 1(1 + 1) r-2, where 7J is the Coulomb parameter. 
Preparatory calculations have shown that in the case of an uncoupled equation a 
sufficient accuracy of the final results can be obtained by choosing the step sizes 

I f 2~k + 1(1+1) 

~~ r ---rr . 

l 

1 
M T"'o.o2 0.04 

't 

FIG. 1. The step sizes over the integration range from r., tor,. are chosen by linearizing the 
potential up to a few percent over one step. 
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such that over one step the maximal deviation of the actual potential with respect 
to the linearized potential equals a few percent of the difference between the actual 
potential and the average potential (see Fig. 1). In the case of coupled equations it 
is evident that coinciding intervals have to be chosen in all channels of the same 
coupled J set. The step size is determined according to the abovementioned method, 
applied to a similar potential form 27Jkr-1 + /(1 + 1) r-2, in which now an average 
value of l over the coupled channels has been taken into account. For the test 
cases to be dealt with in Section 4 the first steps have a size of about 1 fm, the last 
few about 8 fm, depending on the value of r m . 

The radial region around the classical turning points of the individual equations 
deserves special attention, because the coupling between the equations is most 
effective here. This complication occurs for such high J values that some or all of 
the turning points are beyond rc11 • In the region of turning points more rigorous 
linearizing conditions are imposed. 

In this way we can work with the reference solution avoiding the calculation of 
the perturbation integrals (2.13). For subsequent calculations with the same total 
angular momentum and Coulomb interaction but with a different energy and/or 
nuclear interaction the reference solution can be evaluated using the same step 
sizes and applying again the energy independent matrices following Eq. (2.14). 

4. RESULTS AND DISCUSSION 

In this section the results of two test cases will be presented. In both cases 
the multiple excitation of a "vibrational" nucleus with one-phonon and two­
phonon triplet states is considered. The excitation is induced by inelastic scattering 
of alpha and 160 particles, respectively, near the Coulomb barrier. The code 
JUPI GOR allows independent variation of each of the optical potential deformation 
parameters {3, involved in the coupling of the levels considered. In addition, the 
corresponding reduced electric multipole matrix elements can be introduced inde­
pendently. In view of the purpose of this paper, however, we prefered to consider 
the following simple choice. The coupling potential has been expanded up to and 
including the first order in the deformation. A purely harmonic vibrational model 
is assumed. As a consequence, the deformation parameters {302 , {320 , {322 and {324 , 

defined by Tamura [ll], have been taken equal, whereas {3~0 = {3~2 = {3~ 0. 
The common {3 value is given below. Some of the calculated C-matrix elements 
for alpha and 160 scattering have been collected in Tables I and II, respectively. 
In Fig. 2 the reduction of computation time for Gordon's method compared with 
Stormer's method, is given as a function of the matching radius r m for a total 
angular momentum value J 5. 
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Multiple Excitation of 122Te by ll.5, 16.5, and 21.5 MeV 4He 

In this case, the Coulomb parameter and wave number are about 8.0 and 1.7, 
respectively. The optical model parameters are: V 250 MeV, W 31.6 MeV, 
r., = rw = rc = 1.333 fm, at)= aw = 0.582 fm. The abovementioned deformation 
parameters are taken equal to 0.15. 

Calculations were carried out for several total angular momentum J values. 
However, we have concentrated our attention in this article on J 5 and 30, 
because the results for these two J values tum out to be representative for the 
general properties of low and high J values. Furthermore, calculations were 
performed for several r m values distributed between 25 and 200 fm. It appears that 
in most practical calculations for this reaction with energies near the Coulomb 
barrier, the contribution of Coulomb excitation to the C-matrix elements can 
only be neglected if rm is chosen equal to about 100 fm or larger. In the following 
we shall confine ourselves to such r m values. In addition, to study the extent of 
linear independence of the solution vectors, calculations were also carried out in 
the J = 30 case for different r cp values. 

In Table I the C-matrix elements are presented for J 5 and 30 at laboratory 
energies of 16.5 and 21.5 MeV. The rows containing the C-matrix elements 
calculated with our code JUPIGOR are denoted by G, those with Tamura's code 
JUPITOR by T. The results have been obtained with rcTJ and rm values of 15 and 
I 00 fm, respectively. 

First, we discuss the J = 5 (Ii = 0; /i = 5) results for E1ab 16.5 MeV 
(G- 1, T- 1, T- 2, T- 3) andE1ab = 21.5 MeV (G- 2, T- 4). Row G 
contains the C-matrix elements, obtained with a step size of 0.10 fm for StOrmer's 
method up to rep and 33 steps according to Gordon's method for the remaining 
integration up to r m • The rows T - I, T - 2, and T - 3 contain the elements 
calculated with step sizes of 0.05, 0.10 and 0.20 fm, respectively, for StOrmer's 
method over the whole integration range. Comparing G 1 with T 1, we see 
that in most C-matrix elements a 3-figure correspondence is obtained. Variations 
of of rm beyond 100 fm lead to changes in the C-matrix elements G 1 of a 
fraction of 1 %. To get an indication of the computational efficiencies we have 
compared G - 1 with T - 2, the latter results being almost identical to T 1. 
For rm = 100 fm this gives a reduction of the computation time by a factor of 
about 9 (Fig. 2). Row G - 2 contains the C-matrix elements obtained at 
at E1ab 21.5 MeV using the same intervals from rcTJ to rm as in G- 1 and 
applying the energy independent matrices as expressed in Section 2 (following 
Eq. (2.14)), which already have been calculated for G- 1. In this way the compu­
tation time is reduced by a total factor of about 20 (Fig. 2). As evident from 
Table I, the correspondence of G - 2 with T - 4 is satisfactory. A similar corre­
spondence is obtained at an energy of 11.5 MeV. These results have not been 
presented. 
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Next, we discuss the J = 30 (/i 0; l, 30) results for Etab = 16.5 MeV 
(G 3, T- 5, T- 6, T- 7) and E1ab 21.5 MeV (G- 4, T- 8). Row G- 3 
contains the C-roatrix elements obtained with a step size of 0.20 fro for 
Stormer's part (rep = 15 fro, rm 100 fro). This step size can be taken relatively 
large because of the monotonous behaviour of the solution vector up to rep. 

Gordon's method needs in this case 44 steps. The rows T- 5, T- 6 and T- 7 
contain the elements calculated with step sizes of 0.05, 0.10 and 0.20 fro, respec­
tively. Comparing these results the correspondence can be considered as satisfactory 
except for some elements, particularly the elastic channel and the 11 = 4, 11 = 32,34 
elements. Calculations for rm beyond 100 fm give rise to variations of the G - 3 
elements within one per cent, apart from some elements which show variations of 
a few percent. The C-roatrix elements of the elastic channel and the small elements 
for 11 = 4, 11 = 32,34, which are not expected to contribute significantly to cross 
sections, show larger relative variations, but remain of the same order of magnitude. 

The abovementioned discrepancy in the C-matrix element of the elastic channel 
can be understood by considering that the elastic component of the solution vector 
in Eq. (3.2), divided by (21 + 1)112 exp(ia1), corresponds at this high J value with 
the regular Coulomb wave function F1 in about four figures. Consequently, the 
relatively small value of the C-matrix element is obtained by subtracting two 
quantities, which agree up to about four figures, and is rather sensitive to small 
variations in the elastic component of the solution vector. However, we believe 
that in most practical calculations this discrepancy has no consequences. 

The discrepancy for It 4, It 32,34 cannot be explained on this basis: the 
accuracy of the C-matrix elements of the inelastic channels is more directly related 
to the accuracy of the inelastic components of the solution vector. We believe that 
the T - 5 and T - 6 values for these C-matrix elements are too large due to a 
numerical instability in the Stormer procedure, originating from a tendency of 
the solution vectors to become linearly dependent for high angular momenta. 
To confirm this we have carried out addition calculations for different rep values 
(rm = 100 fm). 

For rep values up to about 15 fm, it turns out that in all C-matrix elements a 
3 a four-figure correspondence is obtained, whereas for rep = 20 fm some C-matrix 
elements begin to show agreement to within two-figures. The correspondence for 
the rep values larger than 20 fro remains acceptable, except for the 11 = 4, 
11 = 32,34 elements. We note that for J = 30 the radial region of the classical 
turning points of the individual equations lies between r ~ 21 and r ~ 26 fm. 
For rep = 25 fm the 11 4, 11 32,34 elements still have the same order of 
magnitude, but they deviate more and more for rep values of 30 and 35 fm, lying 
in the classically allowed region, especially when a step size of 0.05 fm is taken over 
the integration range up to rep. In this case they become of the same order of 
magnitude as in the case T 5 of Table I. 
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Looking at the solution vectors, it turns out that for rep values of about 5 fm 
and larger the Stormer procedure generates some solution vectors, which show a 
tendency to become linearly dependent. We conclude, however, that by using 
Gordon's stabilization transformation in the dassically forbidden region for suffi­
ciently small rep values, this tendency can be suppressed, which then leads to 
reliable values of the C-matrix elements. 

The Stormer procedure used in Tamura's code does not contain a facility to 
maintain linear independence. However, we believe that in principle it is possible 
to apply Gordon's stabilization procedure to the Stormer method. In this case the 
potential matrix needs only to be diagonalized to determine the arrangement of 
the components in the solution vectors in order of decreasing relative kinetic 
energy. It is not necessary to transform the solution vectors into a local basis. 
Presumably, stabilization is only needed in a few points of the classically forbidden 
region. We have not realized these ideas in the Stormer procedure to stabilize the 
solution vectors below r cp • The reason is that in general and also in our test cases, 
the linear dependence enters only for high J values. However, note that in our code 
JUPIGOR rep has been chosen such that the nuclear potential can be neglected 
outside rep. In the first instance one may be inclined to conclude from this that it is 
less meaningful to take rep smaller than 15 fm, the value of rep which has been 
taken for the results in the table. For high J values, however, the nuclear potential 
no longer contributes significantly to the C-matrix elements. (This is already the 
case for J r:::; 15.) In these cases a small rep value can be recommended to guarantee 
the linear independence of the, solution vectors, as well as for reasons of compu­
tational efficiency. For practical cross section calculations it is therefore 
advantageous to take rc'P for the high J values considerably below 15 fm, e.g., 
1 fm, or even smaller. In JUPIGOR this is actually done. 

The C-matrix elements in row G - 4 are calculated by using the energy 
independent matrices, which already have been determined in G - 3. The corre­
spondence with T- 8 is satisfactory, except for the abovementioned discrepancies. 
About a similar correspondence is obtained at an energy of 11.5 MeV. 

Multiple Excitation of 58Ni by 39, 44 and 49 MeV l&Q 

This case has a Coulomb parameter and wave number of about 21 and 4.5, 
respectively. The optical model parameters are: V 22.69 MeV, r 11 1.30 fm, 
av 0.533 fm, W = 2.35 MeV, rw = 1.37 fm, aw 0.375 fm, and rc 1.25 fm 
[13]. The deformation parameters are taken equal to 0.18. The values of rc'P and rm 

have again been taken as 15 and 100 fm, respectively. In Table II the C-matrix 
elements are presented as before for J = 5 and 30 at laboratory energies of 44 and 
49MeV. 

We discuss now the J = 5 (li = 0, li = 5) results for Blab 44 MeV (G 1, 
T- 1, T- 2, T- 3) and B1ab = 49 MeV (G 2, T 4). Comparing G 
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TABLE I 

J 
A Sample CI 1 . 

i i .. 
for 'I with target states o· 2.(0.564i- 0°(1.357)- 2°(1.257) - 4+(1.180) 

1
1 

= 0 li = 5 
If lf 

0 5 2 3 2 5 2 7 0 5 2 3 2 5 2 7 

Elab=16.5 MeV ( -1 J ( OJ (-2) ( -1) ( -1) ( -1) (-1) ( -2 J (-3) (-3) ( -2) (-2) (-3) (-3) (-3) (-4) 

,a .100b 33" ".631 )".144 .714 .563 .275 -.234 -.213 -.998 -.876 -.837 .212 .199 .718 -.705 .266 .197 

.osoe .629 .144 . 714 .563 .275 -.234 -.213 -.997 -.876 -.B37 .212 .199 -.718 -.705 .267 .192 
T-2 • 100 .628 .144 .715 • 563 .275 -.234 -.213 .997 -.877 -,838 .212 .199 .719 .706 .267 .196 
T-3 .zoo • 581 .143 .820 .560 .272 .234 -.214 -.997 .759 -.780 .212 .123 -.626 .652 .282 -.072 

Elab=21.5 MeV ( -1) ( 0) ( -1) ( -1) I -z l ( -1) (-1) ( -2) (-2) ( -1) ( -2) ( -2) (-2) ( -2) ( -2) (-2) 

G-2 .100 33 -. 412 .446 .281 .170 .875 -.270 1-.348 -.982 .383 .112 .653 .622 .233 -.652 1-.834 ,-. 20~ 
T-4 .100 .412 .446 .291 .170 .874 .270 -.348 • 981 ,382 -.112 .653 .622 .233 -.652 -.834 .201 

'I.r l.r 

4 1 4 3 4 5 4' 7 4 9 

Elab=16.5 MeV ( -2) ( -2) ( -2) (-Z) ( -3) (-3) (-3) ( -3) (-3) (-3) 

-1 .100 33 -.464 -.119 .176 .120 -.449 -.552 .383 .132 -.275 -.405 

T -1 .050 -.464 -.119 .17G .120 -.450 -.551 .384 .132 1-.271 -.406 
T -2 .100 -.464 -.119 .176 .120 .450. -.553 ,384 .133 -.277 -.406 
T-3 .200 -.466 -.092 .173 .122 -.377 -.469 .413 .101 -.274 -.408 

Elab"21.5 MeV (-1) ( -3) (-2) [-2) ( -2) [-2) (-21. (-2) (-4) (-2) 

G-2 .100 33 -.118 -.447 .522 .586 .353 .620 -.695 .252 .124 .840 
T-4 .100 -.118 -.442 .522 .586 .353 .620 -.695-.252 .159 .S40 

\;,) 

'C. 

r 
!" 

~ 



..... 
~ 

Ii • 0 1' = 301 If lf 
1 -lab= 

G-3a 

T -sd . oso~ I .052 .1551.107 :4101.559 . ~091 . 821 - 291.34'3 • 108 ,. 55(1 1-. -.4?71 T -6 .100 -.032 .1 .107 .309 • 809 - 30 • 342 .108 . -.298 .489 -.565 
T-7 .200 -4.65 .177 .107 .317 .. SSG .313 .794 - 3D • 342 .1rl4 .818 - -.409 .111 .747 

Elab=21.5 MeV ( -2) (-2) ( -4 J ( -4) (- ~) ( (- 'J) 

G-4 .200 44 .16e -.1GB .53:3 .485 .435 .1 .no 
T-B .100 .158 -.168 .537 .48S . 4~Jil ./51 

If l f 

4 26 4 28 4 30 4 32 4 34 

Elab=16.5 MeV ( -4) ( -3) ( -4) ( -4) ( -4) ( -4) ( -4) ( -5) (-5) (- 5) 

G -3 .zoo 44 1-.125 .178 .412 .804 .3G9 .210 .105 .012 -194 .n7 
T -5 .050 I- .149 .177 .415 .801 • 35~1 .208 . 002 1. '1 .o -76.1 
T -6 .100 -.14!3 .177 . 415 .801 . 389 .209 .1 -. 258 1- .65 -4. J3 
T -7 .zoo 1-.134 .177 .420 .796 .369 .206 .1 04 • 046 . 511 -5. Hl 

Elab=Z1.5 MeV ( -4) (-3) (-4) (-3) (-4) (-4) ( -4) ( -4) ( ·5) ( ·Sl 

G -4 .200 44 1-.891 .208 .245 .141 .530 .544 .:<14 .102 .596 29 
T -8 .100 -.675 .218 .255 .141 .530 .644 • 211\ .111 6.97 -2.42 

a: Rows.; 

d Rows 

containing JUPlGOR results. b Step for Stormer's method up to to r • m 
containing JUPITOR results, e Step size for Stormer • s method range. 

z Left entries mean: -1 !' = .631
10 

, right entries mean: 
0 

, where additional exponents have been 

added between brackets above the co+umns. 

z c:: 
(") 

~ 
::0 

~ s • (") 

~ 
~ m 
&; 

~ 
I:"' ; 
w 
\0 
VI 



""' ""' 
I 

A Sample 

Ii 0 li ; 5 

Elab"44.0 MeV 

G -1 a ,b 320 

T-1 d .025 e 
T-2 .osn 
T-3 .100 

Elab"49.0 MeV 

G-2 • 050 32 
T-4 .oso 

I l far 58Ni( 
f f 

0 5 2 

( 0) ( 0) ( -1 J 

l.118 r.38o .493 

.118 .380 .484 

.118 .380 .495 

.095 ,362 .520 

( 1 ) ( OJ (-2) 

-.373 .505 .894 
-.376 .505 .909 

TABLE II 

1
) with target stat8s 

3 2 5 2 

( -1) ( -1) [ -1) { -1) 

.246 -.264 .772 .102 

;2413 -.264 .272 .102 
.244 -.265 -.272 .1 03 
• 160 -.301 .222 .164 

( -1 ) [ -2) [-1] ( -2 J 

.204 -.260 ,189 -.340 

.204 -. 268 - .189 -.336 

4 

Elab=44.0 MeV. (-2) 

G ·1 • 050 32 1-.768 

T -1 .025 -.769 
T -2 .oso -,767 
T -3 .100 -.666 

Elab=49. 0 MeV ( -1) 

G -2 .050 1-.117 
T -4 ;oso 1-.117 

- 2+(4. ) - 0+(2.943) 2+(2. 

If lf 

7 0 5 2 3 2 5 

[ -1) [ -3) (-2) { ·2) (-2) (-2) (·2) 

.407 -.886 .906 .343 -.587 -.218 .545 

.408 -.873 JG .343 .585 -.218 . 545 

. ~~6 -.848 .906 . 341 -. 588 -.216 • 545 
-.485 .882 .243 • 61 s - .129 )6 

[ -1) (-2] (-2) ( -2) ( -2) [-2) [-4) 

.21/ -.821 .188 .766 .319 .482 .760 

.217 -.019 .191 .764 -.321 -.481 -.572 

T • lf ·'f 

1 4 3 4 5 4 7 

( ·2) ( -2) ( -2 J (-2) (-2) [ -2) (-2) 

.366 .560 -.226 1-.537 .203 .504 -.212 

.366 .560 .226 1-.53/ .203 .504 .212 

.368 .559 -.227 -.536 .205 .503 -.213 

.468 .506 -.301 -.487 .276 .~53 -.280 

(-2) ( -2) [-3) (-2) [ -2) ( -2 J ( -2) 

.234 .751 .222 -. 570 .160 .320 .331 

.238 .750 -.250 1-.570 -.158 .321 .300 

- 4+(2.459) 

2 7 

[ -2) [ ·2 J 

.285 • 516 

.284 .517 

.282 .517 

.197 .538 

[ -2) ( -2] ! 

.415 .228 

.415 .226 

4 9 

(-2) [ -2) 

• 539 .181 

,539 .182 
-.538 .184 
-.~91 .256 

(-2] (-2) 

.103 -.438 
,101 -.438 

~ 

r 
!::i 

~ 



..... 
ln 

I. • 0 l. • 30 
l l 0 30 2 

Elab•44.0 MeV (-2) (-2) ( -1) 

G-3a .zoo 0 
36 .605 .326 .479 

T-Sd .025 8 
.SOD .325 .479 

T-6 .050 .459 .324 .479 
T-7 •. 100 -7.66 .916 .438 

Elab=49.0 MeV (-1) (-2) 

G-4 .200 36 .110 .496 
T-8 .OSO .122 .496 

28 

(-1) 

.zoo 

.199 

.zoo 

.266 

If lf 

2 30 2 32 0 30 2 28 2 30 2 32 

(-2) ( -1) ( -2) (-2) (-3) (-3) (-2) (-3) ( -5) (-3) ( -3) ( -4) 

-.200 -.214 -,678 -.187 -.256 -.616 .154 -.868 -.283 -.234 -.222 -.295 

1-.200 -.213 -.667 -.184 -.256 -.614 .454 -.865 ,086 -.233 -.221 -.276 
1-.205 -.213 1-.667 .182 .257 -.612 .153 -.868 .ozs -.233 -.221 -.271 
1-.513 -.205 -.677 -.079 -.33[] ,-.556 .136 -1.05 -3.18 -.225 .216 .038 

21 (-1)1 c-:n 1-211 (-3) (-2) 1 (-2) c-4) 1 c-3) c-3)1 c-3) c-3) 

-.2671-.705 -.4671 .191 -.1021.267 -.7201 .174 -.2331-.276 .235 
.2GG -.701 .464 .191 -.102 .266 -.620 .178 -.233 -.273 .233 

If lf 

4 26 4 28 4 30 4 32 4 34 

Elab=44.0 MeV (-2) (-2) (-2) (-3) (-3) ( -3 J (-3) (-3) (-4) (-4) 

-3 .zoo ::\5 .zoo .422 .191 -.323 .121 -.812 -.243 .149 -.796 .587 

T -5 .025 .201 .420 .190 -.322 .119 .811 -.243 .146 .783 .595 
T -6 .050 .202 .419 .189 -.327 .117 -.810 -.243 -.145 -.799 .586 
T -7 .100 .254 .379 .179 -.579 .001 .800 1-.254 .107 .673 .672 

Elao•49.0 MeV ( -3) ( -2) ( -2) (-3) [-3) c -z l (-3) (-3) ( -3 J ( -4) 

G -4 .zoo 36 .403 .628 .268 .720 .7:!9 -.101 1-.213 .384 151 .211 
T -8 .050 .391 .624 .267 .72A .77n .101 -.213 .382 -.150 .183 

a Rows containing JUPIGOR results. b Step size for Stormer's method up to c Number of steps from to r 

Rows containing JUPITOR results. e Step siz8 for Stormer's method over the •Jhole integration range. 
m 

l Left entries mean: 0 r right entries mean: ImC
1 

,38010 
() 

, where additional exponents have been 0 .11810 ' . 
added between brackets above the columns. 
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with T - 1 we see that in most C-matrix elements a three-figure correspondence 
is obtained. However, the comparison with T - 2 gives only small discrepancies 
and may be used to determine the reduction of the computation time. For 
rm = 100 fm this reduction is about a factor of 18 (Fig. 2). The C-matrix elements 
of row G- 2 at Eiab 49 MeV have again been obtained by applying energy 
independent matrices. The reduct! on of the computation time is now a total factor 
of about 42 (Fig. 2). The agreement with T 4 is satisfactory. A similar agreement 
is evident from the results at an energy of 39 MeV, which have been left out in 
Table II. 

1.; 

B so 
c: 

.2 

1 

50 100 150 200 
____. matching rd:dius r m \fm) 

Fro. 2. Reduction factor of computation time for Gordon's method compared with Stormer's 
method, applied to the integration range from rev to rm for a total angular momentum value 
J = 5. The solid and dashed curves represent the results of alpha and oxygen particles scattering, 
respectively. The dotted curves represent the results obtained by applying energy independent 
matrices already calculated for a different energy. 

Finally, considering the J = 30 (Ii = 0, /i = 30) results for E1ab = 44 MeV 
(G- 3, T 5, T 6, T- 7) and Etab = 49 MeV (G 4, T- 8) similar 
conclusions can be drawn as in the preceding J = 30 case. Note, however, that the 
type of discrepancy observed for some C-matrix elements is absent here. 

5. CONCLUSION 

In describing a nuclear reaction process including Coulomb excitation by means 
of a coupled-channels calculation, the analysis often involves the solution of a large 
set of coupled linear second-order differential equations. It turns out that a con-
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siderable reduction of computation time can be obtained by applying Gordon's 
numerical method, especially if the calculation is to be carried out for various 
energies and/or optical model parameter sets. The larger the integration range and 
the relative wave number, pertinent to the reaction process, the larger is this 
reduction. Consequently, although the method is also of considerable advantage in 
some light particle scattering cases, it seems to be especially suitable to heavy ion 
scattering problems. Furthermore, a comparison of the results in this paper with 
those recently published by the present author [14], indicates that the reduction 
factor increases also with the dimension of the set of coupled equations to be solved. 
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CHAPTER 5 

PHYSICAL REVIEW C VOLUME 20, NUMBER 2 AUGUST 1979 

Solving coupled equations by iteration for heavy ion multiple Coulomb excitation 

L. D. Tolsma 
Department of Physics. EindhOV<n University of Technology, EindhOV<n. The Netherlands 

(ReceW<d 26 December 1978) 

The set of coupled linear second-order differential equations which has to be solved for quantum­
mechanical calculations of inelastic scattering processes with multiple excitation can be rewritten as an 
equivalent set of coupled llrst-order integral equations. When Airy functions are nord as piecewise analytic 
reference solutions, it makes it possible to evaluate analytically the integrals that arise in the set of integral 
equations. This set can be solved iteratiV<Iy with a considerable reduction of computation time in cases of 
heavy ion scattering, when compared to quantum-mechanical coupled-channel calculations of the 
conventional type, The efficiency of two iteration schemes, art inward--outward and a perturbative one, has 
been investigated for some test cases dealin& with multiple Coulomb excitation of "'U by Kr and Pb. It 
turns out that, for heavy ion scattering, only the inward-outward iteration scheme has a practical 
importanCe. Finally, the excitation probabilities for "'U, Coulomb excited by 385 MeV Kr up to l = 2411, 
are shown for a reduced E2 transition matrix element of 3.5 eb and they are compared with the excitation 
probabilities calculated accordina to the semiclassical !henry. 

tUCL_EAR REACTIONS Solving coupled equations by Iteration; quantum mechJ 
ardcally calculated excitation probabilities for heavy ion multiple Coulomb 

excitation. 

I. INTRODUCTION 

For collisions between heavy ions, the asymptotic 
de Broglie wavelength associated with the relative 
motion is very sbort as compared to the long range 
of the strong Coulomb interaction. In general also 
many open channels are involved to a significant 
extent. In heavy ion multiple Coulomb excitation, 
the rotational bands of a deformed target nucleus 
can be excited up to I ;<:2011. The analysis of such 
excitations can be performed according to the 
semiclassical theory, in which the infiuence of the 
energy transfer a.Itd the change in orbital angular 
momentum during the collision are neglected in 
principle.' However, for a.n accurate analysis of 
the excitations of the high-spin states, or a study 
of the deviations with respect to semiclassical 
theories in more general circumstances, 2 it is 
advisable to have the disposal of fully quantum­
mechanical calculations of the cross sections. 
These coupled-channel calculations of conventional 
type are not feasible yet, due to the tremendous 
amount of computation time needed. An attempt 
has been made to find a solution to this problem 
by investigating the appticatinn of a method for 
solving systems of coupled linear second-order 
differential equations by iteration. 

The efficiency of this method, as in Gordon's 
method, • depends upon the possibility to divide 
the integration range into Intervals which are suf­
ficiently small to approxl.ma.te the potential by 
some more simply varying reference potential 
but which, on the other band, contains a sufficient-

20 

ly large number of de Broglie wavelengths. For 
heavy ion collisions, both conditions are fulfilled. 
A further element of the method is the decompos­
ition of the partial wave radial solntion into regular 
and outgoing components. This means that the so­
lution in, e.g., the classically allowed region is 
written as a linear combination of two rapidiy os­
cUlating base functions with more or less slowly 
varying amplitudes. The chosen reference poten­
tial allows these base functions to be expressed in 
terms of piecewise analytic reference solutions. 
Taking the reference potential over the interval as 
a linear one, these reference solutions are given 
by Airy functions.' 

The Schr!ldinger equation for the partial wave 
radial solution Is rewritten in an integral form 
which leads to a system of coupled first-order 
integral equations for the amplitndes. These amp­
litudes are obtained by means of a.n iteration pro­
cedure. Two Iteration schemes, an inward-out­
ward• •' and a perturbative one,' have been investi­
gated. When compared to previous applications of 
these iteration schemes, the advantage of the new 
method is thet the integrals are evaluated analyti­
cally. 

Although the results are presented for some 
Coulomb excilation inelastic scattering problems, 
it is possible in principle to inclnde the infiuence 
of a nuclear interaction. Inelastic heavy ion scat­
tering cases involving an optical potential are now 
being investigated. 

fn the next section, a concise formulation is 
given for the quantum-mechanical theory of in-
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elastic scattering as applied to multiple Coulomb 
excitation. In Sec. III, the calculation procedure 
is discussed and the two iteration schemes are de­
scribed. In Sec. IV the results of the stndy that 
considers the above-mentioned amplitudes is pre­
sented, plus the scattering matrix elements for the 
heavy ion multiple Coulomb excitation of 238U by 
385 MeV Kr and 1000 MeV Pb. Both iteration 
schemes are illustrated by figures and a table 
which show the rate of convergence and the ac­
curacy achieved. In Sec. V, the excitation prob­
abilities for '"'U, Coulomb excited by 385 MeV Kr 
up to /=2411, is shown for a reducedE2 transition 
matrix element of 3.5 eb and is compared with re­
sults from the semiclassical theory with eMrgy­
symmetrized classical orbits.' In the last section 
some conclusions are drawn. 

II. CONCISE QUANTUM-MECHANICAL FORMULATION 
OF INELASTIC SCATfERING 

In genera!, the quantum-mechanical description 
of inelastic scattering leads to a set of coupled 
second-order differential equations of the partial 
wave radial functions 1/Jf, of the following form: 

where (I' IIM(E;I.) III) denotes the reduced matrix 
element of the electric 2'" -pole moment of the tar­
get. 

To obtain the solutions for ,g,(r), two boundary 
conditions have to be fulfilled. At the origin, they 
must vanish and for large distances they must be 
related to an ingoing partial wave ln the entrance 
channel plus outgoing partial waves in all relevant 
exit channels. The precise asymptotic form de­
fines a scattering matrix. We follow Alder and 
Winther's convention 7 for defining an R matrix by 
the following asymptotic condition: 

.Pf)l•'•l ,"::;'_ Hi('llr; krrl ~11•6"• 

:kr J 112 

-l~ Rf,liololt;('l!r; kr r). (2.4) 

The ingoing and outgoing Coulomb waves Hi and 
IT,, respectively, are given byH[=(G1 :iF1), in 
terms of the well-known regular and irregular 
Coulomb wave fWlctions F 1 and G1 • The indices 
10 ,1 0 correspond to an ingoing wave In the en­
trance channel for I= I 0 and l = l 0 • 

The dimension N of the set (2.1) Is determined 
largely by the maximum value I m" of the target 

~ l(l+1)]"·J ( ) r - ---;=:r- '+' 1l r 

for a sploless projectile. Here J, l, and I denote 
the total angular momentum, the orbital angular 
momentum, and the spin of the target nucleus with 
excitation energy <r, respectively. The total ang­
ular momentum J, its projection on the z axis and 
the parity are good quantum numbers. The wave 
number k1 and Sommerfeld parameter 'lr are given 
by 

k ' 21l (E ) 
I /i' - Er • 

_ 21l z,z,e' 
'llr-v 2kl , 

(2.2) 

where tJ. is the reduced mass, while Z 1 and z, 
represent the charge numbers of the projectile 
and target nucleus, respectively. The coupling 
potential for the special case of multiple Coulomb 
excitation is given by' 

(2.3) 

spin. Considering the excitation of a ground state 
rotational band with spin sequence 0+, 2+, 4 +, • , • , 
Im.,, N Is given by 

(2.5) 

This means that for Im., =20, N becomes 121 and 
for even higher values of Im.,, N assumes huge 
values. In conventional coupled-channel calcula­
tions, the set (2.1) has to be solved N times for 
each J value in order to satisfy the boundary con­
ditions. Especially for large systems this is time 
consuming. In addition, this procedure generates 
R-matrix elements which form a complete NXN 
matrix. However, in the nuclear physics context 
of a case with a zero-spin ground state, ooly one 
column of this matrix is needed, namely those 
elements which connect the ground state entrance 
channel to all the experimentally relevant exit 
channels. This is the motivation to study iteration 
methods for which the solutions rpf,(r) are obtained 
directly without the need for solving the set (2.1) 
Ntimes. 

The scattering amplitudes are expressed in 
terms of the R-matrlx elements' 
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X ii {exp[i (a 10 + a 1 )]Rf1 :~010 -Ou01l110 } Y 1,. (II, <f>), 

In which a 1 is the Coulomb phase shift 

a ,('Ill "'argr(l + 1 +i'll). 

From the scattering amplitudes it is easy to calculate the cross section for state I 

thr(8}- 1 .!r... "I t -O)i' 
dO - 21 +1 1l L.. froM0 ~tJI\6,tjJ-o 10 110 11 

and other observable quantities. The excitation probablllty, for Instance, Is given by" 

P(ll)~.!r...~ 
I flto t/qR ' 

where a R is the Rutherford cross section. 

Ill. THE CALCULATION PROCEDURE 

The Schrlldinger equation (2.1) is rewritten In the more convenient form 

[..:;..+lr1
2 -U11(rl}Mrl= "t,u11(r),P1(r), i=1,2, ••• ,N 

I• I 

and the boundary condition (2.4) as 

The superscript and subscript II denates the entrance cllannel. 

20 

(2.6) 

(2.7) 

(2.8) 

(2.9} 

(3.1) 

(3.2) 

When considering some Interval or the Integration range with lis midpoint at radius Jl' and expanding the 
potential function in a Taylor series, the equation is the following: 

[~+~t,•- t (r-¥)"' d"'UM(r) I _J.p,(r)= f[t {r-f')• d"'U,!(r)l _]1/ii(r). (3.3} 
dr .,., 0 m! dr r=.,. J,tl ,.~ 0 m! dr r=r 

Subsequently, introducing an average value for the components of the first derivatives at the left-hand 
side, 

[frr.+k1'-U,.(f')-(r-f') dc;(r) I..,}Mr) 

= {<r -f'l r dU u(r) I -- dU.,(r) • -J + (r- ¥)
2 

d'U ;.i(r) I -} 1/i,(r) 
1.: dr •=• dr I,., 2 d , •• 

(3.4) 

or, In more convenient notation, 

[frr+k/-i'i'11(¥)-(r-f'l dr;;.r) I .. ,]Mrl=~W11(r)>IJJ{r), (3.5) 

where il11 is introduced as the average value of 
the diagonal potential for the Interval. The poten­
tial form at the left -hand side is the reference 
potential. The reason for Introducing an average 
vatue of the first derivatives will become clear 

later in this paper. 
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1. The regular solution G1(r). It is defined to 
vanish at the origin and by the asymptotic form 

G,(r) ;:::'~ 
2
-fr. [Hj(1J1; k, r) -R~H;(171 ; k, r)] . 

(3.6a) 

2. The irregular outgoing wave solution c;(r). 
This is defined by the asymptotic form 

c;(r) :::~ r;;-l H;(711; k, r). (3.6b) 
v I 

Owing to the special form of the left-hand side 
of Eq. (3.5), the solutions (3.6) can be expressed 
in terms of Airy functions which can be efficiently 
evaluated numerically, as shown by Gordon3 

G1(r) ~AI [a(ll, + r)]a1 + Bi[a(ll,.;. r)] b1 (3.7a) 

and 

Equivalently, 

>f1(r)= G1(r)c1(r) -G; (r)c;(r), 

with the boundary conditions 

c1(oo): _;.o1• 

' 
and 

c;(ol =0. 

with the constants 

"'= (dU,(r) I _) 11
', 

dr ,.=r 
(3.8) 

11- u,t•) -k/ r 
'- dU., r)/dri,"-; - · 

The constant coefficients a1, 1>1 and a;, bT are de­
termined by conditions of continuity at the interval 
boundaries. 

Now the Green's function which belongs to the 
coupled differential Eq. (3.5) can be introduced; 
it is regular at the origin and has an outgoing wave 
asymptotic form of 

(3.9) 

where r < and r, are the smaller and the larger 
values of r and r', respectively. 

With an ingoing wave in the entrance channel k, 
the coupled differeutlal Eq. (3.5) can be written 
as a set of N coupled integral equations 

(3.10a) 

(3.10b) 

(3.lla) 

(3.11b) 

In practice, however, instead of Eq. (3.11b) the approximate condition 

(3.11c) 

is used for a relatively small r 0 , in order to prevent the set of integral equations becoming singular. 
The choice of r 0 is very important. It must be neither too small nor too large. Of course, the R -matrix 

elements have to be independent of the actual value of r 0 • In Sec. IV this subtle point is discussed in more 
detail. The asymptotic value of the outgoing coefficients c;(r) are related to the R-matrix elements 

(3.12) 

The set of coupled integral equations (3.10) can be solved by iteration. We have concentrated our invest­
igation on the behavior of the amplitudes c1(r) and c;(r) instead of the wave function Itself. This has been 
done for two iteration schemes. 

A. Inward-outward iteration scheme 

In this scheme, the following set of coupled integral equations for the amplitudes c,(r) and cj(r) are con­
sidered: 

(3.13a) 

(3.13b) 
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for i: 1, 2, ..• ,N. This scheme was proposed by 
Alder, Roesel, and Morf" and lchlmura et al.' 
They used a differential form of these equations. 

When solving these equations iteralively, a start 
is made at infinity (in practice a few hundred or 
even thousand fm), where the c;(r) values are 
known, due to the boundary condition (3.11a), but 
the cj(r) are not. However, the product c;w,1c; 
oscillates rapidly over the classically allowed 
region of the integration range which tends to 
nullify the contribution of the term with cj(r). This 
will also be apparent from some of the figures in 
the next section. It is, therefore, justifiable to 
take the value of these coefficients equal to zero 
as a first guess. Now, a first approximation to 
c, (r) can be generated by the inward Integration 05 

Eq. (3.13a) from infinity to r 0 • The obtained values 
of c,(r), together with the initial condition (3.1lc), 
are used in an outward integration of Eq. (3.13b) 
from r 0 to infinity, where the term with c,(r) is 
now considered as a known inhomogeneous func­
tion. Thls outward integration gives a first ap­
proximation to cj(r) with a value at infinity, which 
corresponds to a first approximation of the R­
matrix elements. 

The iteration procedure continues as a secood 
inward integration of Eq. (3.13a) using the cal­
culated values of cj(r) and so forth, until conver­
gence is obtained for cj(.,). In the cases testsd, 
only a few steps in the iteration process were 
needed. 

B. Perturbattve iteration scheme 

The set of coupled Integral equations for the amplitudes c1(r) and c;(r) can also be written as 

c1(r) = _;.llu + [' G;(r') i;w11(r')[G1(r')c1(r') -c;(r')cj(r')]dr' 
., 0 j;; 1 

-.f G;(r') f:w11(r')[G1(r')c1(r')-Gj(r')cj(r')]dr', 
0 J = 1 

c;(r)= [ G1(r') :f;w11(r')[G1(r')c1(r') -c;(r')cj(r')]dr'. 
0 J= 1 

(3.14a) 

(3.14b) 

In this scheme, which wa.s proposed by Rayna!, • the coupling potential W Is considered as a perturbation. 
To illustrate the iteration proce<hlre the results for the nth step of the Iteration in case k = 1 are written 

as 

2 [' 1~ cj"'(r) = -,-/l11 + c;(r')Xj"'(r')dr' - G;(r')Xj"'(r')dr' 
' • 0 

(USa) 

c;'"'(r): [' G1(r')Xj"'(r')dr', 
0 

(3,15b) 

where 

i·l N 
x:•} = W u[G 1ci"·t) -Gt c~cn ·t>] + L W 0 [G 1cjn> -Gj cj("1] + L. W" [G1 cj" -tl -G;c;<n-H] (3.16a) 

J=2 J:: f 

for i: 2, 3, .•• , N and 

N 
x<•> = W [G c<•·" G•c•<•-n] + "'W [G c<•> G•c•<•>] f 1111-11 £....tili-ll (3.16b) 

1=2 

for i=1. 
The calculation of Eq. (3.15) starts with i = 2, 

using (3.16a) under the initial conditions 

c}0 '(r ) = .!.6 c•<•>(r ) = 0 0 i 11' J 0 • (3.17) 

This component must be Integrated to infinity, due 
to the third term in (3.15a), before the calculation 
can be continued for i = 3. The iteration step ends 
with the integration of the first component using 
(3.16b). 

We have also Investigated a perturbattve scheme 
with the initial conditions 

c'"'(oo) = .!.6 c•<••(oo) -O 
J i 11, J - ' (3.18) 

and adapted Integral expressions for cj"'(r) and 
ci'"'(r). However, in the cases tested, the results 
varied little from those obtained with the initial 
conditions (3.17). 

To solve Eqs. (3.13) and (3: 14) we use the rel­
atively slow variation of the amplitudes c1(r) and 
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c;(r) with respect to the rapid oscillations of the 
functions G ,(r) and cr(r) in the classically allowed 
region. This behavior is understood by noting that 
c1(r) and c;(r) nearly lose their r dependence on 
the midpoint of an interval. This dependence is 
weak as long as the difference between the true 
potential and the reference potential is small. 
Thus, a choice of step size has to be made so that 
small variations of c1(r) and c;(r) over an interval 
can be neglected. 

Assuming that in the fl.rst iteration step we have 
already integrated Eq. (3.13a), for example, from 
the right up tor, and using the values of c,(r,), 
this equation yields a first-order contribution to 
c1(r,) at the "left-band" boundary r 1 , provided in­
tegrals of the form 

f 'r 
G1 (r)(r -r)"'G1(r)dr (3.19) ,, 

are determined. Expressing G,(r) [and also a;(r)] 
in Airy functions and introducing an average value 
for the first derivatives [see (3.4)] when the con­
stant a becomes independent of the channels, lnte­
grals are obtained of the form 

J'r (r -Y)"' Ai[a(/31 + r)] Bl[a(/31 + r)]dr. 

,, (3.20) 

This type of integral can be evaluated analytically. 
The analytical expressions for the integrals of 
m =0, 1, 2; (3 1 ={>1 and form =0, 1; 1)1 * {31 were 
given by Gordon,' while the expression for m = 2 
and fl, * /3; is given in the Appendix. 

IV. RESULTS AND UISCUSSION 

In this section we present results with respect 
to the amplitudes c(r), c'(r) and the R-matrix ele­
ments for two heavy ion scattering test cases. In 
these cases, the multiple Coulomb excitation of the 
ground-state rotational band of a doubly even nu­
cleus with the corresponding spin sequence bas 
been considered. The reduced transition matrix 
elements which are used were calculated according 
to the simple rotational model starting from given 
values of the reduced E2 and E4 matrix elements, 
(2+IIM(E2)ftO+) and(4+IIM(E4)110'), respectively. 
Before starting our investigation on the heavy ion 
test cases, we made for a light ion test case' a 
comparison between iteratively calculated R -matrix 
elemenis and those calculted with a conventional 
coupled-channel computer program (AROSA8

). It 
turns out that a three- to four-figure correspon­
dence is obtained. 

Mulllple Cordomb excil!1tion of"'() by 185 MeV Kr. (Ref, 10) 

For this case, the Sommerfeld parameter and 
wave number are approximately 244 and 29, re-

spectively. The target spin sequence is 
o•, 2', 4', ... , 20+ (N=121). In Fig. 1 the values 
of the complex R -matrix element, with a set of 
quantum numbers and hypothetical E2 and E4 val­
ues as mentioned in the figure, are plotted with a 
logarithmic radial scale in the complex plane, for 
successive Iteration steps of both schemes. This 
figure shows as a surprising result the very rapid 
convergence of the inward-outward iteration 
scheme when compared to the perturbative one. 
It is seen that the perturbatlve values jump from 
one quadrant to the other while approaching the 
convergence limit ouly after more than about thir­
teen steps. On the contrary, the inward-outward 
scheme bas a starting value which already nearly 
coincides with the convergence limit. It appears 
that for larger values of the reduced E 2 transition 
matrix element, the rate of convergence for the 
perturbative iteration scheme is poorer. For the 
more realistic reduced £2 element of 3.5 eb, it 
diverges. The Inward-outward scheme needs only 
a few steps to converge in this case. Therefore, 
from now on we concentrate our investigation on 
the inward-outward Iteration scheme, using an 
£2 element equal to 3.5 eb. 

Figure 2 shows the behavior of the amplitudes 
c(r) and c'(r), during the first and final iteration 
step, for the set of quantum numbers l 0 =0, l = 2, 
10 =1=100. Numerically speaking, the fourth iter­
ation step gives at least a three-figure agreement 

\ 

..- ,100 

84<r+ 239u Etab·3S5MeV 

1 0 ~0 
I ., "100 

I 
lo.._.. 

I 

\ 

' 

<211 MIE2) 110) • 2.5eb 
(i, ll M(Ei.) 11 0) z O.O~b2 

(.6 -+) Inward-outward 1teratmo 
(0-- +) perturbahve 1teraboo 

_ .. __ ~ .. ·--:C .. I :___ ____ ___] 

FIG. 1. A R-matrix element for a heavy ion scattering 
case. plotted With a logarithmic radial scale in tbe com­
plex plane and calculated for successive iteration steps 
according to the inward-outward iteration scheme and the 
perturbative one. The convergence limit is Indicated by 
a cross fi- ). Note the rapidity of convergence of the in­
ward-outward scheme. 
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0.60 

IL 

·0.<0 

El~b·~V 

<21 M(E2110).3.5eb 
<GK M(E4110l •O.O.b' 

inward- outward Iteration 

FIG. 2. This figure illustrates the inward-outward 
iteration scheme for a heavy ion scattering case. The 
amplitudes c( r) and c•( r) are plotted as a function of r 
for the first iteration step 1---) and the final one (-). 
The difference between the first and final iteratlon steps 
for c{r) is visible only in the neighborhood of the classi­
cal turning points. The location of the latter is given in 
Fig. 3. 

with the final result. We note that the influence of 
c•(r), obtained in an outward iniegration, on c(r) 
during the next inward integration over the classi­
cally allowed region is rather weak. Only in the 
region around the classical turning points of the 
decoupled set of equations the difference between 
the first and final iteration steps is visible in the 
figure. Clearly, even one iteration step yields a 
reasonable result. To study the behavior of the 
amplitudes in more detail, the imaginary parts of 
c(r) and c•(c) are plotted in Fig. 3 on a larger r 
scale for the above -mentioned set of quantum num­
bers and, additionally, for 10 =0, !=6, l 0 =l=l00. 
Both sets, but espeelally the latter, suggest that 
the step sizes must be chosen with care over a 
limited part of the integration range outside the 
turning points, due to the tendency of the ampli­
tudes to oscillate here. rn connection with the 
foregoing, the general behavior of the amplitudes 
may be summarized as follows: They change 
monotonically inside the Innermost turning point 
and tend to osclltate outside It before approaching 

FIG. 3. The same as Fig. 2, but the imaginary parts of 
c( r) and c•( r) are now plotted on a larger r scale for two 
different sets of quantum numbers. The inner- and outer­
mt)St classical turning points are indicated by arrows. 

10 

t(fmJ 

Etan•38SMeV 

<2UM<E2>nO>•lS.b 
<1.1 MfELJHOh().Oebz 

FIG. 4. This figure shows the behavior of the imaginary 
part of c(r) for two different values of the starting point 
r 0, plotted as a function of r for the first part of the In­
tegration range and for successive iteration steps. 
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constant values in the asymptotic region. 
In the previous section, it is stated that the 

starting point r0 has to be taken so that its choice 
does not affect the value of the R -matrix elements 
asymptotically. It seems that, on the one hand, 
making r 0 too small gives rise to diverging asymp­
totic values of these elements, while on the other 
hand, for large values of r 0 the R -matrix elements 
become dependent on r 0 • However, in the present 
case, the margin is rather large, as can be seen 
from Fig. 4. This figure shows for two different 
r 0 values the imaginary part of c{r), which is 
plotted as a function of r for the first part of the 
integration range and for successive iteration 
steps. The upper part of the figure corresponds 
to starting values of the components 1/J~{r) in the 
solution vector of about e>cp{ -20), while the lower 
part corresponds to values of about e>cp( -30). It 
is seen that outside the starting point the ampli­
tude for successive iteration steps changes very 
rapidly; nevertheless, it converges for both r 0 

values to the same value at about 15.5 fm, far 
inside the ilmermost turning point of the decoupled 
set of equations. As Fig. ~ shows, this turning 
point Is located at 17.35 fm. The behavior of c+(r) 
and the real part of c(r) are similar, In general, 
such a behavior guarantees a stable iteration pro­
cess, since it means that numerically speaking the 
components ~{r), due to (3.10b), obtain a signifi­
cant value inside the innermost turning point. 
Comparing the R-matrix elements at infinity tor 
the present two r 0 values, it Is seen that a two-
to three-figure correspondence is obtained, Ulus­

. trating the degree of independence on r 0 • 

Also, a comparison is made with a conventional 
coupled-channel calculation In the sense of Sec. II. 
For this, only the computer program JUPIGOR 11 

was available. It uses Airy functions as piecewixe 
analytic refe renee solutions too. The results are 
presented in Table I. Comparing the significant 
R-matrix elements, a two- to three-figure cor­
respondence is obtained, even for the high-spin 
states. Calculations of the modulus give rise to 
discrepancies of about one per cent. In view of the 
uncertainties in e>cperimental excitation probabil­
ities," such an accuracy may be called satisfac­
tory. Note that there is a considerable reduction 
of computation time. With our computer, the aver­
age computation time for one integration step when 
solving a system of 121 coupled equations takes 
about 140 sec for a conventional coupled-channel 
calcutation; but for the inward-outward scheme 
it takes about 4.3 sec, Including four Iteration 
steps. Every extra iteration step takes about 0.3 
sec. 

Finally, It should be noted that iteration schemes 
based on the Integral form of the Sclu'adinger equa-

tion, have been studied elsewhere in light particle 
problems for inelastic scattering as well as for 
rearrangement." In that study, an analysix of the 
kernel eigenvalue problem was made in order to 
understand the convergence properties. In this 
study such an analysis was not made; however, it 
is believed that the striking difference in conver­
gence properties of the two iteration schemes, 
examined here, has to be sought In the fact that in 
the inward-outward scheme, the amplitudes c(r) 
and c+(r) are iterated independently, while this is 
not the case In the perturbative scheme. 

Multiple Coulomb excitation of "'V by 1000 MeV Pb 

This case has been studied to investigate the 
stability of the inward-outward iteration scheme 
for very heavy ion multiple excitations. The Som­
merfeld parameter and wave number are now 542 
and 53, respectively. The target spin sequence 
chosen is o•, 2+, 4•, ... , 32• {N =289). Figure 5 
illustrates the behavior of the imaginary parts of 
the amplitudes c(r) and c•(r) during the first and 
the final iteration step, for a set of quantum num­
bers mentioned In the figure. It turns out that in 
this case, too, only a few iteration steps are need­
ed. Numerically speaking, the sixth iteration step 
gtves at least a three-figure agreement with the 
final result. io this figure, the amplitudes are 
plotted as a function of r for the region in the 
neighborhood of the classical turning points, as 
is done In Fig. 3 for the excitation by 84Kr. Com­
paring both figures shows a similar behavior, al­
though the amplitudes in Fig. 5 have a slightly 
more oscillatory dependence on the integration 
vartable r. 

The Insensitivity of the R-matrix elements to 
the starting point r 0 has also been Investigated for 
the present case. This is illustrated in Fig. 6, 
where for two different r 0 values the imaginary 
part of c(r) is plotted as a function of r for the 
first part of the integration range and for succes­
sive iteration steps. The upper and lower part of 
the figure correspond to starting values of the 
components ~(r) in the solution vector of about 
e>cp{ -20) and exp( -30), respectively. It Is seen 
that, as in Fig. 4, the amplitude converges for 
both r 0 values to the same value at about 19.6 fm, 
sufficiently inside the innermost turning point, 
which is located at 20.64 fm. The amplitude c+(r) 
and the real part of c(r) show a similar behavior. 
This behavior guarantees a stable iteration pro­
cess. The degree of independence on r0 is illus­
trated by comparing asymptotically the R-matrix 
elements for both r 0 values. This comparison 
shows a two- to three-figure correspondence. 

It must be noted that In a similar case to that 
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TABLE l. selected Rf., 01 values for ••Kr+ 238U withe,,. =385 MeV, (211 M(E2)11 0)=3.5 eb, (4IIM(E4) II 0)=0.0 eb'. The values for a quantum-mechanical cou-
pled-channel calculation of

0
conventlonal (Co>nv. C. C.) type tJUPIGORI , as well as the values for an inward-outward Iterative Unw .-OUtw. Iter.) calculation after four 

g 
iteration steps are given. The significant elements show a correspondence of about two and sometimes three figures, even for the high-spin states. The compu-
tation time per integration step, solving a system of 121 coupled equations for lrnax= 20, takes about 140 sec for the former calculation. while for the latter. it 
takes about 4.3 sec. Left entries mean real parts, middle entries mean imaginary parts, and right entries mean the moduli. Additional exponents have been 
added in parentheses above the columns. 

= 
J=lo=lOO 

--
I=O 

(0) (0) (0) 
Conv. C. C. 0.120 0.197 0.231 
lnw.-OUtw. Iter. 0.119 0.1~5 0.229 

0.9% 

1=4 l=l,-4 I l-l, l =lo ¥2 l.;;;.ll)+4 
(0) (-1) (0) (0) (0) (-1) (-1) (-1) (-1) (-1/ (-1) (-l) (0) (0) 

Conv. C. C. 0.113 -0.560 0.126 -0.103 0.163 0.105 0.919 -0.135 0.929 -0.776 0.535 0.943 0.171 -0.117 0.118 
lnw.-Outw. Iter. 0.116 -0.533 0.127 -0.103 0.152 0.104 0.906 -0.141 0.917 -0.777 0.515 0.932 0.196 -0.118 0.119 

0.8% 0.8% 1.3% 1.2% 1.0% 

Ic8 I l t,-4 l·lo l •lo + 4 l ~t,. 8 '" (0) (0) (-1) (-1) (0) (-1) (-1) (-1) (-1) (-1) (-11 (-1) (-11 (-1) 
0 

QO Conv. C. C. 0.120 0.971 0,154 0.685 0.766 0.103 0.648 0.624 0.900 0.727 0.296 0.785 0.714 -0.400 0.819 .... lnw.-Outw. Iter. 0.119 0.995 0.155 0.682 0.785 0.104 0.644 0.628 0.899 0.713 0.324 0.783 0.714 -0.388 0.813 ...; 
0.6% 1.2% 0.1% 0.3% 0.7% 0 

'" !•12 t·t,-12 l =l,-6 t-l, l "lo '6 l "' 
(-1) (0) (0) (-1) (-1) (-l) (-2) (-1) (-1) (-1) (0) (Ol (0) (0) 3: 

Conv. C. c. -0.157 0.126 0.127 0.165 -0.825 0.841 -0.713 0.895 0.898 -0.216 -0.105 0.107 0.104 0.144 0.178 > 
lnw.-OUtw. Iter. -0.159 0.127 0.128 0.167 -0.835 0.851 -0.765 0.903 0.906 -0.200 -0.106 0.108 0.104 0.147 0.180 

0.7% 1.2% 0.9% 1.0% 1.2 

1=16 
(-2) (O) (0) (-2) (-1) (-1) (-2) (-1) (-1) (-1) (.:.1) (-1) (-1) (-1) (-1) 

Conv. C. C. -0.375 -0.156 0.156 0.608 -0.836 0.838 0.190 -0.699 0.699 -0.108 -0.583 0.593 -0.364 -0.592 0.695 
lnw.-Outw. Iter. -0.328 -0.157 0.157 0.656 -0.835 0.837 0.252 -0.700 0.701 -0.099 -0.579 0.588 -0.365 -0.600 0,702 

0.6% 0.1% 0.3% 0.8% 1.0% 

1"20 ! =1,-20 l =1 0-10 l =I, l =I, f 10 l "lo i 20 
(-2) (-1) (-1) (-2) (-1) (-1) (-3) (-1) (-1) (-2) (-1) (-1) (-2) (-2) (-1) 

Conv. C. C. -0.365 0.722 0.723 0.232 -0.304 0.305 0.218 0.189 0.189 -0.224 -0.104 0.106 o.:l81 0.704 0.800 

Inw.Outw. Iter. -0.337 0.721 0.722 0.231 -0.301 0,302 0.105 0.188 0.188 -0.215 -0.102 0.104 0.383 0.714 0.809 
0.2% 1.0% 0.8% 1.9% u% 

1!!: 
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FIG." 5. This figure illustrates the Inward-outward 
Iteration scheme for a very heavy !on scattering case. 
The Imaginary parts of the amplitudes c( r) and c'( r) are 
plotted as a function of .- for the first Iteration step (---) 
sed the final one (--). This has been done for the region 
In the neighborhood of the Inner- and outermost classical 
turning points, wblch are Indicated by arrows. The amp­
litudes show a slightly more osciUsiory depeodence on r 
as compared tu the amplitudes In Fig. 3. 

illustrated In Fig. 5, but with a target spin se­
quence of o•. 2'' 4' •.•. '24'' the Inward-outward 
iteration scheme does not converge. Apparently, 
it can be considered as a further condition for a 
stable iteration process that the coupling scheme 
of the differential equations tncludes all expert­
mentally relevant target states. 

In conclusion, the Inward-outward iteration 
·scheme is successful and manageable even for 
multiple Coulomb excitation induced by very heavy 
ion collisions where it shows a rapid convergence. 

V. COULOMB EXCITATION PROBABILITIES OF 84Kr+ 238U 
at 38S MeV 

To calculate the scattering amplitudes, cross 
sections, and excitation probabilities, use Is made 
oi some subroutines provided by the program 
AROSA.8 However, It is necessary to adapt these 
subroutines due to the large number of J values 
needed In the partial-wave sums. 

For the calculation of the cross sections (2.8) 
and excitation probabilities (2.9), a target spin 
sequence of 0', 2', 4+, •.. , 24+ (N = 169) and reduced 

1.0 

20 

1.0 

<2YMIE2'lll0> .. 35cob 
(41!M(ELHI0)-.. 0.0eb2 

FIG. 6. This figure shows for the same very heavy !on 
scattering case as In Fig. 5, the behavior of the Imagi­
nary part of c( r) for two different values of the starling 
point r0, plotted as a function of r for the first part of 
the integration range and for successive iteration steps. 

E2 and E4 transition matrix elements equal to 3.5 
eb and 0.0 eb", respectively, have been taken. The 
R-matrlx elements were calculated for the follow­
ing sequence: J=O, 40, (1); 42,100, (2); 104,196, (4); 
204, 516, (8); 532, 1332, (16). The values tn paren­
theses Indicate J steps. The values of the missing 
R-matrlx elements are obtained by Interpolation. 

It is well known that the number of target states, 
which are coupled, is reduced at high J values. To 
illustrate this behavior, In Fig. 7 the absolute val­
ues of some R -matrix elements are plotted against 
J. These values are multiplied by the weight 
(2J + 1)11', with which the R-matrlx elemente ap­
pear In the expression of the s catterlng amplitudes 
(2.6). It appears that the full set of coupled differ­
ential equations is necessary only up to a J value 
equal to about 200. For higher J values the dimen­
sion of the set can be gradually decreased. 

In Figs. 8(a) and 8(b) the quantum-mechanical 
(QM) Coulomb excitation probabilities, calculated 
tn the center-of-mass system, are plotted for all 
target states Included as a function of the scatter­
Ing angle e. In addition, the probabUities are 
plotted from calculations based upon the semi-
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6' 

FIG. 7. The absolute values of some R-matrix ele­
ments; multiplied by a weight factor, are plotted against 
J for several spin states of the target. 

classical (SC) theory with energy-symmetrized 
classical orbits. 14 Comparing both probabilities, 
it is seen that, as expected, the difference be­
tween the QM and SC probabilities for the low­
spin states [Fig. 8(a)] is small, although signifi­
cant. The difference tS somewhat larger for the 
other states. Looking at Fig. 8(b), it is noted thai 
at backward angles, the QM and SC probabilities 
for I~= to• coincide. For I"= 12•, 14+, and 16+ 
the QM probability becomes larger than the SC 
value, for I' ta• they coincide again, while for 
I' = io•, 22', and 24 + the SC probability increases 
relative to the QM probability. rt is observed that 
the systematics of the differences between the QM 
and SC excitation probabilities, depending upon the 
excited target state and scattering angle, shows 
up quite clearly In the present study. 

VI. CONCLUSIONS 

The description of a heavy ion nuclear scatter­
Ing process, especially of multiple Coulomb ex­
citation, by means of a quantum -mechanical cou­
pled-channel calculation of conventional type is not 
feasible at present, since the analysis Involves the 
solution of a very large set of coupled linear sec­
ond-order differential equations, which has to be 
solved as many times as the dimension of the set 

to form a full set of linearly independent solutions. 
Rewriting the set of coupled differentlal equa­

tions in integral form, transforms it into an equi­
valent set of coupled first-order integral equations. 
Approximating the pntential energy over a radial 
interval by a linear reference potentlal, makes it 
possible to use Airy functions as piecewise anal­
ytic reference solutions. This opens up the possi­
bility of evaluating analytically the integrals ap­
pearing in the set of first-order Integral equations. 
This set can be solved iteratively which, In cases 
of heavy ion scattering, gives a considerable re­
duction of computation time as compared to the 
above-mentioned coupled -chanhel calculations. 
The efficiency of two iteration schemes, an in­
ward-outward and a perturbative one, was ex­
amined. It appears that for heavy ion scattering 
only the inward-outward scheme has practical 
importance, since it converges for any realistic 
value of the deformation parameters and needs 
only a few iteration steps. The accuracy which 
can be achieved is sufficient for practical pur­
poses. Finally, it is concluded that the piecewise 
analytical approach by inward-outward iteration 
enables one to describe quantum-mechanically 
heavy ion scattering processes which are of in­
creasing importance. Additionally, it opens up 
a favorable study procedure for heavy ion col­
lisions. 
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APPENDIX 

We consider Integrals over Airy functions of the 
form 

where A and B are the Airy functions or any linear 
combinations nf them. Integrals involving m 
= 0, 1, 2; 1', = 1'\, and m= 0, 1; 1'1 *fl., were given by 
Gordon. 3 The analytical expression for the Inte­
gral with m= 2 and tl, *fl., may also be derived: 
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FIG. 8. (a) The quantum-mechanical (QM) and semiclassical (SC) Coulomb excitation probahU!tles P b calculated in 
the center-of-mass system, are plotted as a function of the scattering angle 6 for the low-spin states of the target. (b) 
The same as {a), but the excitation prohabil1ties P 1 are now plotted as a function of the scattering angle 6 for the high­
spin states of the tsrget. The difference between the QM and SC excitation probabilities depends upon both the excited 
target state and scattertug angle. 

f R'A[a(P, +R)j B[a(P,.+R)]dR 

=- •(/ f3 )< {12(/31 +/32)+[24+2a3(/31 +P,.)(P1 -/32)
2]R+4a'(f3,-f3,)2R'}{A[a(P1 +R)] B[a(P,+R)]} 

a s- 2: 

+ a'(/3,
4
-/3,}3 {P,.A'[a(P1 +Rl] B[a(P,. +R)j -/31 A(a(ll1 +R)] B'[a(P.+R)J} 

+ aa(P,
1
-Il,)5 {[24 +2a'(j31 +/!2)(P1 - /32)

2
] + 12a•(/31 - f32)' R +a6(/!1 -I!,)•R"} 

X {A'[a(P1 +R)J B [a(P. +R)j -A[a(P1 +R)] B'[a(P,.+R)]} 

+ a'(il:-/3,)4 [6+a'(I!,-I!,J2RJ{A'[a(il1 +R)] B'[a(P.+Rl]}, 

where the prime denotes differentiation with respect to the argument. The constant il does not contain Y 
as In (3.8). 
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CHAPTER 6 

SOLVING COUPLED EQUATIONS BY ITERATION FOR HEAVY ION 

MULTIPLE COULOMB-NUCLEAR EXCITATION 

L.D. Tolsma 

Department of Physics, Eindhoven University of Technology 

Eindhoven, The Netherlands 

ABSTRACT 

To describe quantum mechanically multiple Coulomb-nuclear excitation 

in heavy-ion reactions, the set of coupled differential equations of the 

partial-wave radial solutions is rewritten in integral form. Decomposing 

these solutions in,to two basis functions, the corresponding amplitudes of 

these functions satisfy a set of coupled integral equations. Expressing 

the basis functions in terms of appropriately chosen piecewise analytic 

reference solutions, the integrals appearing in this set can be evaluated 

analytically. The coupled set of amplitude equations is solved itera­

tively. The efficiency of two iteration methods, the inward-outward and 

the sequential one, has been investigated for test cases dealing with 

multiple Coulomb and nuclear excitation of 238u by-286 MeV 40Ar and 
84 718 MeV Kr up to high spin states of the ground-state rotational band. 

Pade approximants to the S-matrix elements were also included in both of 

the iteration methods. It turns out that the inward-outward iteration 

method converges much faster than the sequential one. In many cases, the 

inward-outward method does not need Pade acceleration at all, while the 

sequential method does. It happens that convergent cases in the 

inward-outward method diverge in the sequential method aided by Pade 

approximants. 

Numerical studies of the excitation probabilities as a function of the 

scattering angle for the aforementioned heavy-ion reactions show that the 

probability functions of the members of the ground-state rotational band, 

satisfy a general rule at near-grazing angles, previously formulated for 

the excitation probability as a function of the energy near the Coulomb 

barrier for backward scattering from a deformed rotor. 

[

NUCLEAR REACTIONS Solving coupled radial equations by iteration.] 

Quantum mecanically calculated excitation probabilities for 

heavy-ion multiple Coulomb-nuclear excitation. 
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1. INTRODUCTION 

The quantum-mechanical description of inelastic scattering of charged 

particles from nuclei requires the solution of the Schr3dinger equation, 

which can be reformulated as a set of N coupled linear second-order 

differential equations of the partial-wave radial functions. Such a 

description becomes computationally complex when heavy ions are involved 

in the scattering process, mainly due to: 

1. The rapidly oscillating behaviour of the solution function within the 

classically allowed region of the integration range. 

2. The long range of the Coulomb coupling. Therefore, the integration of 

the set of coupled equations should be carried out over long ranges. 

3. The large number of coupled equations or channels that, in general, 

should be considered. 

4. The large number of partial waves that should be included when calcu-

lating the quantities observed. 

In the usual approach, the set of coupled equations is solved as many 

times as the dimension of the .set with linearly independent regular 

star-ting values at the origin for each of the solution vectors. The 

equations are integrated from the origin to a radius at which all nuclear 

and coupling interactions become insignificant. By constructing the 

physical solution as a linear combination of the solution vectors with 

the appropriate asymptotic behaviour of an incoming partial wave in the 

entrance channel plus outgoing partial waves in all the relevant exit 

channels, the desired S-matrix elements can be found. This standard 

procedure is satisfactory for small systems of coupled equations, i.e., 

for light-ion reactions but is particularly time-consuming for the large 

systems associated with heavy-ion collisions. In addition, this procedure 

generates S-matrix elements which form a complete N x N matrix. However, 

in the nuclear physics context, often only a restricted number of 

entrance channels (only one for a zero-spin ground state) is important 

which means that only a restricted number of columns of the scattering 

matrix is needed. In these cases, iteration methods can be applied for 

which the solutions are obtained directly without the need for solving 

the set of coupled equations N times. 

The set of coupled equations can be integrated by means of the well­

known multistep methods, such as the Numerov method. In applying these 

methods special attention has to be paid to the behaviour of the solu­

tion. The heavier the charged particles in the scattering process and the 
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higher the energy of their relative motion, the more rapidly the solution 

will oscillate in the classically allowed region and the smaller the step 

si2:es in the multistep methods have to be chosen. Since, these circum­

stances occur, in general, together with large systems of coupled equa­

tions and a long range of the Coulomb coupling, the multistep methods can 

become prohibitively time-consuming. 

In order to cope with the problems that occur in heavy-ion collisions, 

due to the standard procedure for solving the N coupled radial equations 

N times and due to the step-size dependency of the multistep methods, it 

is advantageous to formulate piecewise analytical solution methods 

together with iteration methods. In this way, an efficient treatment of 

heavy-ion multiple, Coulomb excitation has been discussed in a previous 

paper [ 1]. It was shown that the partial-wave radial solution of the 

Schrodinger equation can be decomposed into regular and outgoing 

components, i.e., can be written as a linear combination of two basis 

functions which oscillate in the classically allowed region with 

relatively slowly varying amplitudes. These basis functions are the 

solutions of the decoupled radial equations. An appropriately chosen 

reference potential will allow them to be expressed in terms of piecewise 

analytic reference solutions. The efficiency of these methods depends 

upon the possibility of dividing the integration range into intervals 

which are sufficiently small to approximate the potential by some simpler 

varying reference potential, but which, on the other hand, contains a 

sufficiently large number of oscillations of the solution. It was also 

shown that, after rewriting the set of coupled differential equations 

into an integral form, the varying amplitudes satisfy a set of coupled 

integral equations. The integrals that arise in these equations can be 

evaluated analytically when Airy functions are used as piecewise analytic 

reference solutions corresponding to a linear reference potential [2]. 

The set of integral equations was solved by means of an iteration 

procedure. Two iteration schemes, an inward-outward [3,4] and a 

sequential or perturbative one [5,6] were investigated. It appeared that 

only the inward-outward iteration scheme is of practical importance. 

In an extended study about techniques for heavy-ion coupled channels 

calculations which include nuclear and Coulomb interactions, various 

iterative methods were compared in order to solve the coupled radial 

equations in the interior region of configuration space [ 7,8]. The 

Born-Neumann series, the method of moments, Austern's modification of the 
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Sasakawa method and the sequential iteration were studied, but not the 

inward-outward iteration. The conclusion was drawn that sequential 

iteration with Pad~ acceleration is the most rapidly convergent and 

efficient method. The integration of the set of coupled equations itself 

was carried out by means of a multistep method. 

In this paper we report the continuation of our investigation into the 

numerical solution of the radial Schr~dinger equation in order to 

describe heavy-ion multiple excitation including nuclear interactions. 

This was done within the framework of the iterative piecewise analytical 

solution method too. The approximation of the potential by a linear 

reference potential implies the generation of complex Airy functions 

[ 9,10] for the intervals of the integration region where the optical 

potential contributes significantly to the total interaction. However, 

since the numerical evaluation of complex Airy functions is rather 

computer-time consuming, approximation of the potential by a constant 

reference potential has been investigated for this part of the integra­

tion range [11]. It appears that this approach is much more efficient, 

because the corresponding reference solutions are goniometric functions. 

In addition, Coulomb wave functions has been used as piecewise analytic 

reference solutions within the long range of the Coulomb coupling. The 

Coulomb integrals that arise in the coupled integral equations for the 

amplitudes can be efficiently evaluated using their recursion relations 

[ 12]. The efficiency of both iteration methods, the inward-outward and 

the sequential one, has been investigated, for test cases dealing with 

multiple Coulomb and nuclear excitation of 238u by 286 MeV 40Ar and 
84 718 MeV Kr up to high spin states of the ground-state rotational band. 

Pade approximants to the S-matrix elements were also included in both of 

the iteration methods. It turns out that the inward-outward iteration 

method is still the most rapidly convergent one and, even in many cases 

it does not need Pad~ acceleration at all, while the sequential iteration 

method does. The first results of our investigation have been published 

already [13,14]. 

The set of coupled second-order differential equations of the partial­

wave radial functions can be rewritten equivalently into two sets of 

coupled first-order differential equations of the above-mentioned ampli­

tudes. In a study [15], these sets were solved iteratively by neglecting 

in the pure Coulomb coupling region of the integration range, the rapidly 

oscillating contributions to the equations. The inward-outward iteration 
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method was used. As an application of this approach, rotational model 

calculations were performed for a case of multiple Coulomb-nuclear 

excitation of 238u by 340 MeV 
40

Ar. 

In section 2, a concise quantum-mechanical description of inelastic 

scattering is given. Section 3 is devoted to the iterative piecewise 

analytical solution method. Several forms of the reference potentials and 

the corresponding reference solutions are described. The inward-outward 

iteration method, as well as the sequential method are explained. Section 

4 contains the results of our investigation related to the behaviour of 

the amplitudes and the rate of convergence of both iteration methods. In 
238 . 40 section 5, the excitation probabilities for U, exc1ted by 286 MeV Ar 

and 718 Mev 
84

Kr, h Fi 11 i ti 6 1 i d are s own. na y, n sec on , cone us ons are rawn 

and a final remark is made. 

2. CONCISE DESCRIPTION OF THE SCATTERING FORMALISM 

The coupled equations to be solved for the partial-wave radial 
J1T 

functions ~I~(r) are: 

[~ + k2 - ~~~+l2- ~ v (r)] wJ1T(r) = ~ ~ VJI~·I'"'(r) ,,J1T (r) 
dr2 I r2 '112 diag IR. il2If£' ... , ... "I'!'' 

(2 .1) 

assuming a spinless projectile. Here, J,R. and I denote the total angular 

momentum, the orbital angular momentum and the spin of the target 

nucleus, respectively. The excitation energy of the target is £I' in a 

state with spin I. The total angular momentum J, its projection onto the 

z-axis and the parity 1T are good quantum numbers and, therefore, the 

equations (2 .1) refer to a single combination of (J, 1T) for the system. 

Let E be the center-of-mass energy in the incident channel, then, the 

asymptotic wave number ki is given by: 

(2.2a) 

and the Sommerfeld parameter ni which will be needed later, by: 

(2.2b) 

where ~ is the reduced mass, while ZP and ZT represent the charge numbers 

of the projectile and target nucleus, respectively. 
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The diagonal potential is just the usual optical-model potential which is 

written in two parts as: 

(2.3) 

representing the nuclear and Coulomb diagonal potentials, respectively. 

For the nuclear potential, the Woods-Saxon form was taken: 

(2.4) 

where 

e = exp[(r-R )/a], 
v v v (2. Sa) 

whilst V, Rv and av are the strength, the radius and diffuseness para­

meters of the real part of the nuclear potential, respectively. Denoting 

the projectile and target masses by Ap and AT respectively, the radius 

Rv is given by: 

[ 
l/3 l/3] 

Rv .. rv Ap + A.r , (2.5b) 

where rv is the real optical radius parameter. A similar explanation 

applies to W and ew concerning the imaginary part of the nuclear 

potential. The Coulomb potential, derived from a constant charge distri­

bution in the target within the Coulomb radius Rc and zero outside it, 

has the form: 

[ _! (3 -
2 

(~ ) ) r " R (2.6a) 
c 2 2R c c 

vdiag(r) = ZPZTe c 1 (2.6b) - r > R r c 

l/ 3 
with R rcA.r (2.6c) c 

where rc is the Coulomb radius parameter. 

Representing the coupling or transition potential by a multipole 

expansion of the deformed optical model and assuming rotational eigen­
J1T 

states for the nuclear wave functions, the elements Vlt;I't'{r) of the 

coupling matrix will have the form: 

(2.7) 
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where the geometrical factor GA(It,I't';J) is given by: 

(I' A I)(~ A t'){I ~ J} 
0 0 0 0 0 0 t' I' A ' 

(2.8) 

assuming couplings within the ground-state rotational band (GSB) only. 
l/2 

Here, the symbol i stands for (2x+l) 

The radially dependent part of the coupling potential can be described 

with two different terms, too: 

(2. 9) 

They represent the radial dependence of the nuclear and Coulomb coupling 

potential, respectively. The superscript A. refers to the transferred 

angular momentum during the scattering process. Since, only a rotational 

target nucleus has been considered, the nuclear coupling potential is 

given by a Legendre polynomial expansion with expansion coefficients for 

A :f: 0 [16]: 

1 
VN;A.(r) - -4wf{ V(l+e )-l + iW(1+e )-1 } Y,

0
(6) d(cos(6)), 

cpl 0 v w A 
(2.10) 

where 

(2 .lla) 

The radius Rv(6) is assumed to be given by: 

(2.llb) 

with the nuclear mass deformation parameters 6~, [17]. The last term in 

the summation maintains volume to this order in the deformation para­

meters. A similar expression holds for e • The Coulomb coupling potential 
w 

is expressed up to the second order in the deformation. The radial depen-

dence has the form: 
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where the parameters s~(l) and s~(2 ) describe the charge deformation in 

the first and second orders, respectively. 

To obtain Jlf solutions for w
11

(r), two boundary conditions have to be 

fulfilled. At 
Jlf 

the origin w11(r) should vanish: 

lim wi~(Ioto)(r) = 0, 
r+O 

(2 .13a) 

J11 
whilst, for large distances, Wit(r) must represent an ingoing partial 

wave in the entrance channel plus outgoing partial waves in all the 

relevant exit channels. The precise asymptotic form defines the 

scattering matrix elements SJ11 
: 

I.t;Io.to 

- + The ingoing and outgoing Coulomb waves H,q, and H1 , respectively, in terms 

· of the well-known regular and irregular Coulomb wave functions F 1 and G ,q,• 
+ 

are H~ = (G
1

±iF
1
). The indices I 0,10 correspond to an ingoing wave in the 

entrance channel for I = 1 0 and 1 = 10 • 

The set of coupled equations (2.1) has to be solved for each J value 

in a full range of J values. From the scattering matrix elements 

obtained for these J values, the cross section for the ground state and 

each excited state, as well as other observable quantities, can be 

calculated [1]. 

3. ITERATIVE PIECEWISE ANALYTICAL SOLUTION METHOD 

The Schrodinger equation (2.1) can be rewritten in the form: 

2 
[d 2 + k2i- uii(r)] Wi(r) 
dr 

N 
L ui.(r) W.(r), 

j*i J J 

and the boundary condition (2.13b) as: 

i = 1,2, ••• ,N 

The superscript and subscript k refer to the entrance channel. 

(3.1) 

(3.2) 

Considering some interval of the integration range with its midpoint 
- rf at a radius r and, introducing a reference potential U (r) for that 
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interval, equation (3.1) becomes: 

i 1,2, ••• ,N (3.3) 

where the right-hand side contains the difference between the true poten­

tial and the reference potential [ 1]. Replacing the right-hand side of 

equation (3.3) by zero, several forms of the reference potential and the 

corresponding solutions can be considered. The form that will be used in 

practice depends upon the location of the integration range: 

3.1 Constant reference potential [2,11j 

(3.4) 

where uii is introduced as the average value of the potential over the 
2 -

interval. For ki > Uii the reference solutions Ai(r) and Bi(r) are 

goniometric functions: 

sin[Yi(r-~)j 

cos[ Y i (r-~)], 

sinh[oi(r-r)] 

cosh[oi(r-r)], 

3.2 Linear reference potential [2j 

-

(3.5a) 

(3.5b) 

(3.6a) 

(3.6b) 

(3.7) 

where again Uii is the average potential over that interval. It should 

be noted that, for the first derivative, an average value for the 

components of the first derivative has been taken. This has to do with 
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the analytical evaluation of integrals (3.23a) later in this paper[!]. 

The reference solutions are the Airy functions Ai and Bi: 

Ai(r) = Ai(a(Bi+r)] 

Bi(r) • Bi[a(Bi+r)], 

with the constants 

l/3 

a "' [dUav(r) I -] 
dr r=r and 

(3.8a) 

(3.8b) 

(3.9) 

3.3 Coulomb reference potential 

(3.10) 

with the Sommerfeld parameter ni and wave number ki. The reference so­

lutions are the regular and irregular Coulomb wave functions F~ and G~: 

F~ (ni;k1r) 
i 

B1 (r) = G£i(ni;kir). 

(3.lla) 

(3.llb) 

When n = 0, the reference solutions reduce to the spherical Bessel and 

Neumann functions which were used by Sams and Kouri [18]. 

3.4 Integral representation of the coupled radial differential equations 

If the right-hand side of equation (3.3) is replaced by zero, each of 

the resulting decoupled equations will have two linearly independent 

solutions: 

l. The regular solution Gi(r), which vanishes at the origin and is 

asymptotically defined as: 

G. (r) 
~ 

(3.12a) 

2. The irregular outgoing wave solution G;(r), which is defined by the 

asymptotic form: 

-r + (3.12b} 
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Owing to the the special form of the left-hand side of equation (3.3), 

the solutions (3.12) can be expressed in terms of the linearly indepen­

dent reference solutions Ai(r) and Bi(r) that belong to a specific form 
rf 

of the reference potential ui1(r): 

(3.13a) 

and 

(3.13b) 

+ + The constant coefficients a
1

, bi and ai, bi are determined by conditions . 
of continuity at the interval boundaries. 

Subsequently, the Green's function which belongs to equation (3.3) can 

be constructed; it is regular at the origin and has asymptotically an 

outgoing wave form: 

(3.14) 

where r< and r> are the smaller and the larger values of rand r', res­

pectively. With an ingoing wave in the entrance channel k, the set of 

coupled differential equation (3.3) can be rewritten as an equivalent set 

of N coupled integral equations: 

00 N k 
= G1(r) [ 2 J G;(r') Z: w1 .(r') \ji~(r') dr'] \jii(r) T 0ik-

r j=l J 

+ r N 
\ji~{r') - Gi{r) f G. (r') Z: wij(r') dr'], (3.15a) 

0 l. j=l J 

(3.15b) 

The boundary conditions are: 

(3.16a) 

+ ci (0) • 0. (3.16b) 

In practice, however, instead of (3.16b) the approximate but numerically 
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adequate physical boundary condition: 

(3.16c) 

is used for a relatively small ro, in order to prevent the set of inte­

gral equations becoming singular. 
+ The asymptotic value of the outgoing coefficients ci(r) are related to 

the s-matrix elements: 

(3.17) 

The set of coupled integral equations (3.15) can be solved by itera­

tion. We have concentrated our investigation on the behaviour of the 
+ coefficients ci(r) and ci(r), instead of the wave function itself. They 

+ may be considered as the amplitudes of the functions Gi(r) and Gi(r), 

respectively. Two iteration methods, the inward-outward and the 

sequential method have been investigated. 

3.4.1 Inward-outward iteration method 

In the inward-outward iteration method, the following set of coupled 
+ integral equations for the amplitudes c1(r) and c1(r) was considered: 

00 N 
ci(r) 

2 J G1(r') I Wij(r') Gj(r') cj(r') dr' = T 0ik -
r j"'l 

.. N 
J G;(r 1

) l: wij(r 1 ) G"':"(r 1
) 

+ dr' , (3.18a) + c .(r 1 ) 

r j"'l J J 

+ 
r N 

ci(r) J G1(r') l: W (r') G (r 1
) c (r') dr' 

0 j=l ij j j 

r N 
G"':(r 1

) 
+ - f G1 (r 1

) I wij(r') cj(r') dr 1 
, (3.18b) 

0 j"'l J 

for 1 = 1,2, ••• ,N. This method was proposed by Alder, Roesel and Morf [3] 

and Ichimura et al.[4]. They used a differential form of these equations. 

For solving these equations iteratively, a start should be made at 

infinity, where the cj(r) values are known, due to the boundary condition 
+ + + (3.16a), although the cj(r) are not. However, the product GiWijGj 
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oscillates rapidly over the classically allowed region of the 

range and tends to nullify the contribution of the term with 

integration 

c~(r). This 
J 

will be apparent from Fig. 1. It is, therefore, justifiable to make the 

value of the coefficients c~(r) equal to zero in (3.18a) as a first 
J 

estimate. Then, the first approximation of ci(r) can be generated by an 

inward integration of (3.18a). The values of ci(r) obtained, together 

with the initial condition (3.16c), can be used for an outward integra­

tion of (3.18b), where the term with c.(r) is now considered as a known 
J 

inhomogeneous function. This outward integration gives a first approxi-

mation of c:(r) ~ith a value at infinity, which corresponds to the first 
1 

approximation of the S-matrix elements according to (3.17). The iteration 

procedure continues as a second inward integration of (3.18a) using the 
+ calculated values of ci(r) as known inhomogeneous functions and so forth, 

until convergence is obtained for c;(~). 
For later reference, it should be noted that, in solving the set of 

integral equations (3.18a) for the vector c(r), the coupling between its 

components ci(r) is retained during each step of the iteration procedure, 

along with the coupling implied by the "inhomogeneous" part containing 
+ the vector c (r). The same holds mutatis mutandis for the components of 

+ the vector c (r). 

3.4.2 Sequential iteration method 

Alternatively, the set of coupled integral equations for the 
+ amplitudes ci(r) and ci(r) can be written as: 

W .. (r') [G.(r')c.(r')-G~(r')c~(r')]dr' 
1J J J J J 

~ N 

f G;(r') I wiJ.(r') [G.(r')c.(r')-G~(r')c~(r')]dr', 
0 j=1 J J J J 

(3.19a) 

r N 
f Gi(r') I wiJ.(r') [G.(r')c.(r')-G~(r')c~(r')]dr'. 
0 j=1 J J J J 

(3.19b) 

In the sequential iteration method, which was proposed by Raynal [5,6], 

the coupling potential W is considered to be a perturbation. 
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To illustrate the iteration procedure, the results for the n-th step of 

the iteration for k = 1 are written as: 

r "" 
c(n)(r) 2 J G1(r') x~n)(r') dr' J G1(r') x<n>(r') dr' "'T 0il + i 0 ~ 0 i 

(3.20a) 

c~(n)(r) = 
r 

x<n>(r') J Gi(r') dr' , (3.20b) 
~ 0 i 

where 

N 
+ L W .[G.c~n-1 )-G~c+(n-l)] (3.21a) 

j=i iJ J J J j 

for 1 "'2,3, ••• ,N and 

(3.21b) 

for i = L 

The calculation of Eqs. (3.20) starts with i - 2, using (3.2la} under 

the initial conditions 

(3.22) 

This component must be integrated to infinity, due to the third term in 

(3.20a), before the calculation can be continued for i = 3. The iteration 

step ends with the integration of the first component using (3.2lb). 

Note, also for later reference, that in solving the set of integral 

equations (3.19) according to an iteration procedure illustrated by 

(3.20), in fact, a set of coupled equations is replaced by a set of 

uncoupled inhomogeneous equations with driving terms specified by the 

known functions (3. 21). The basic idea behind this iteration method is 

solving the N inhomogeneous equations (3.20) in some definite sequential 

order; each improved solution [G.(r)c~n)(r) -G+j(r)c:(n)(r)] is immedia-
J . J J 

tely inserted in the inhomogeneous term of the subsequent equations, as 

given by the second term in (3.21a) and (3.2lb). 
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3.4.3 Radial integrals 

To solve equations (3.18) and (3.19), we make use of the relatively 

slow variation of the amplitudes ci(r) and c:(r) with respect to the 
~ + 

rapid oscillations of the functions Gi(r) and Gi(r) in the classically 

allowed region. The r-dependence of the amplitudes is weak, as long as 

the difference between the true potential and the reference potential is 

small. Thus, a choice of step size pas to be made so that small varia­

tions of ci(r) and c:(r) over an interval can be neglected. 

Supposing that_the true potential has been expanded in a Taylor series 

around r "" r and assuming that, .in the first iteration step, we have al­

ready integrated (3.18a), for instance, from the right up to r and using 
r 

the value of ci(rr)' this equation yields a first-order contribution to 

ci(rt) at the "left-hand" boundary rt' provided integrals of the form 

r 
r 

f Gi(r) (r-r)m Gj(r) dr 
rt 

are determined with m = 0,1,2. Expressing Gi(r), as well as 

(3.23a) 

the reference solutions of the constant or linear reference potentials, 

integrals will be obtained which can be evaluated analytically. If Airy 

functions are used for this purpose, then, an average value for the first 

derivatives has to be introduced. 

In the case of a Coulomb reference potential, integrals of the form 

(3.23b) 

+ are obtained for J.. "" 2,3,4, ••• Expressing Gi(r), as well as Gi(r), in 

the regular and irregular Coulomb wave functions as the corresponding 

reference solutions, these integrals can be effectively evaluated by 

making use of recursion relations [12]. 

4. RESULTS AND DISCUSSION 

In this section, we present the results related to the amplitudes 
+ c(r), c (r) and the S-matrix elements for the multiple Coulomb-nuclear 

excitation of 238u by 718 MeV 84Kr. In this case with n = 178.3 and 
-1 

k = 39.7 fm , the rotational model has been considered for the target 
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nucleus with a spin sequence according to the ground-state rotational 

band up to 111 
= 24+ (N = 169). The optical potential parameters were 

chosen as: 

v 

r v 

50.0 MeV, 

1.129 fm, 

W • 32.0 MeV, 

r w 

a w 

1.211 fm, 

0.43 fm, 

r 
c 

1.400 fm, (4.1) 

corresponding to the optical potential parameters for elastic scattering 

of 84Kr from 208 Pb [19j, because the parameters for 238u were not known 

at the time that the calculations were made. 

The nuclear mass and charge deformation parameters BN and BC(l) A A 
appearing, respectively, in (2.11) and (2.12) are: 

- 0.2370, = o.o, 
(4.2) 

e~<l> = o.2121, 

Figure 1 shows the behaviour of the real parts of the amplitudes c(r) 
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+ and c (r) calculated in the inward-outward method, as well as in the 

sequential method as a function of r for the set of quantum numbers 

Io = 0, I • 4, ~0 = i = 350. The orbital angular momentum corresponds to 

a near-grazing partial wave. The dashed curves indicate the results of 

the first inward-outward iteration step, the dashed-dot curves the first 

sequential one, whereas the full curves result from the final iteration 

step for both schemes. The inner and outermost classical turning points 

are indicated by vertical arrows. This figure shows the very rapid 

convergence of the inward-outward iteration scheme when compared to the 

sequential one. It is seen that the curves of the first inward-outward 

step nearly coincide with the curves of the final step. It takes only a 

few iteration steps to obtain convergence. However, the difference 

between the first and final sequential iteration steps is much larger; a 

lot more iteration steps are needed to obtain convergence. 

We note that in the inward-outward scheme the influence of c+(r), 

obtained in an outward integration, on c(r) during the next inward inte­

gration over the classically allowed region is rather weak. Only in the 

region around the classical turning points of the decoupled set of equa­

tions is the difference between the first and final iteration steps 

visible in the figure. It can be seen that the amplitudes have an 

oscillating behaviour over a limited part of the integration range 

outside the turning points. The step sizes must be chosen with care [20], 

since they have to be such that small variations of c(r) and c+(r) over 

an interval can be neglected. This means that the step sizes in this 

region which includes the range of the optical potential for most of the 

orbital angular momenta, have to be made rather small. Here, the use of a 

constant reference potential is the most effective one; the calculations 

can be carried out about 9 times faster when compared to the use of a 

linear reference potential. 

The tendency of c(r) and c+(r) to oscillate just outside the turning 

points is a general feature of these amplitudes. As a consequence, 

especially for light-ion scattering problems, it seems to be more 
+ effective to generate the solutions Gi(r) and Gi(r), in this part of the 

integration range, directly with a multistep integration method using a 

fixed step length l21j. The integrals appearing in (3.18) and (3.19) are 

then determined numerically according to commonly used methods. In this 
208 208 -way, some calculations for the reaction Pb(a,a') Pb(3 , 2.6146 MeV) 

Elab = 21.0 MeV have been made. 
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Thus, looking at the figure, the general behaviour of the amplitudes may 

be summarized as follows: they behave monotonically inside the innermost 

turning point and tend to oscillate outside it before approaching 

constant values in the asymptotic region. This behaviour determined our 

strategy for choosing the step sizes: they were chosen such that a 

constant reference potential could be used up to just a few fm outside 

the outermost turning point (including the optical potential), a linear 

reference potential for the region of strong Coulomb coupling interaction 

('" 50fm), and a Coulomb reference potential for the last part of the 

integration range (up to '" 1000 fm or more). 

In Table 1, the convergence properties of the modulus of the S-matrix 
200 350 

elements s4 200 . 0 200 and s4 350 . 0 350 for the multiple Coulomb-nuclear 
, ' ' , ' , 

excitation are shown as a function of an iteration number n for the 

inward-outward method, as well as for the sequential iteration method. 

The numbers in parentheses at the top of the columns (or alongside) 

denote the powers of 10 by which the underlying numbers have to be multi­

plied. Table 2 shows the same, but now the multiple excitation is caused 

by the Coulomb interaction only. In order to accelerate the convergence, 

use can be made of Pade approximants. It seems that sequences of the Pade 

approximants for the S-matrix elements accelerate the convergence of the 

original sequence when it converges, and continue to converge under many 

circumstances in which the original sequence diverges [5,8]. The tables 

contain also the results of calculations which take these approximants 

into account. 

Table 1 shows that the four original sequences (without Pade accelera­

tion) converge; the inward-outward sequences much faster than the 

sequential ones. This is even so when compared to the sequential sequen­

ces with Pade acceleration. It is seen that the inward-outward method 

requires only a few iterations to converge for the selected partial waves 

and does not need Pade acceleration at all. 

Table 2 contains the iteration sequences of physically hypothetical 

(Coulomb excitation only) but numerically interesting S-matrix elements. 

It shows that the sequential method diverges completely. Even with the 

aid of Pade approximants they do not converge to the right values. Also 

in this case, the inward-outward method needs only a few iterations for a 

J-value equal to 350. However, for lower J-values the rate of conver-

gence becomes less. The evaluation of the Pade approximants can accele­

rate the convergence in these cases. This is illustrated in the table for 

- 110 -



Coupled Equations for Heavy Ion Coulomb-Nuclear Excitation 19 

TABLE 1 

Convergence properties of the modulus of two S-matrix elements for the 
238 84 multiple Coulomb-nuclear excitation of U by 718 MeV Kr are shown as 

a function of an iteration number n for the inward-outward, as well as 

for the sequential iteration method. 

a) 

n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

ISJ = 200 I 
4,200;0,200 

Inward-outward 

+Pade 

(-04) (-04) 

0.8809 

0.8788 

0.8788 0.8788 

Sequential 

+Pade 

(-04) (-04) 

13.604 

48.973 

55.332 10.440 

34.512 4.4840 

13.642 1.4770 

3.0750 0.6801 

1.6980 0.8564 

0.7055 0.8416 

0.8625 0.8502 

0.8498 0.8496 

0.8492 0.8495 

0.8495 0.8495 

0.8495 

b) 

ISJ = 350 I 
4,350;0,350 

Inward-outward 

+Pade 

(00) (00) 

0.2522 

0.2630 

0.2629 0.2629 

0.2628 0.2628 

0.2628 0.2628 

Sequential 

+Pade 

(00) (00) 

2.9526 

6.2808 

5·6258 1.2146 

3.8127 0.5459 

1.7690 0.1608 

0.7991 0.2378 

0.4452 0.2662 

0.2320 0.2633 

0.2970 0.2624 

0.2446 0.2625 

0.2721 0.2626 

0.2582 0.2626 

0.2643 

0.2619 

0.2628 

0.2625 

0.2626 

0.2626 

=·==··-----===============-=··======·=~----------======================= 

J = 200. It seems that for much lower J-values the inward-outward itera­

tion method diverges too, even with the aid of Pade approximants (J~100, 
see also Fig. 2). 

In conclusion, these numerical studies show as a general feature of 

both iteration methods that the more important the left-hand side of 

equation (3.3) is relative to its right-hand side, the higher the rate of 
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TABLE 2 

The same as table 1, but now the multiple excitation is caused by the 

Coulomb interaction only. 

a) 

n 

1 

2 

3 

4 

ISJ = 200 I 
4,200;0,200 

Inward-outward 

(00) 

0.6028 

0.0560 

+Pade 

(00) 

0.2441 0.1858 

0.1980 0.1992 

Sequential 

+Fade 

.24(2) 

.38(3) 

.23(4) 

.77(4) 

(01) 

3.0083 

0.4792 

b) 

ISJ = 350 I 
4,350;0,350 

Inward-outward 

(00) 

0.2376 

0.2451 

+Pade 

(00) 

0.2431 0.2430 

0.2434 0.2433 

Sequential 

+Fade 

(00) 

8.1810 

31.075 

48.045 

47.268 

(00) 

4.9820 

1.6410 

5 0.1975 0.1987 .19(5) 1.1744 0.2434 0.24]4 34.329 0.8351 

6 0.1966 0.1989 .46(5) 1.1744 21.303 0.0600 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

0.2027 0.1992 

0.1980 0.1992 

0.1983 

0.2000 

0.1990 

0.1989 

0.1994 

0.1992 

0.1992 

.13(6) 

.38(6) 

.10(7) 

.26 (7) 

1.1744 

0.8344 

1.8518 

1.2877 

.67(7) 0.0608 

.17(8) 0.1516 

.45(8) 0.1516 

.11 (9) 

.28(9) 

• 71 (9) 

.2(10) 

.5(10) 

13.342 0.3064 

8.7680 0.2646 

6.9470 0.2181 

4.9176 0.2379 

4.0631 0.2370 

2.5842 0.2377 

2.0063 0.2377 

1.3799 

0.8721 

0.8730 

0.2809 

0.5803 

=========================================~---~------------------======== 

convergence will be. This rate is much higher for the inward-outward 

iteration method compared to the sequential one, because in solving the 

set of coupled integral equations (3.18) for the amplitudes, the coupling 

between their components is still retained during the iteration proce­

dure, as opposed to solving the set of coupled integral equations (3.19) 

which is replaced by a set of "uncoupled inhomogeneous" equations. The 

latter are solved considering the inhomogeneous terms as perturbations. 

The sequential iteration method solves the equations in a certain 
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sequential order, instead of in a straightforward way equivalent to the 

Born-Neumann series. 
J 

Finally, in Fig. 2, the S-matrix elements s4 .~=J;O,~o=J are plotted in 

the complex plane as a function of J. The solid cUJ:ves indicate the 

results for the Coulomb-nuclear excitation. The S-matrix elements were 

calculated for the sequence: J = 88,216(16); 224,264(8); 268,296(4); 

298,368(2); 372,400(4); 408,472(8); 488,552(16); 584,712(32) and partly 

given in the fig~re. The dashed curves indicate the results for a pure 

Coulomb interaction. These S-matrix elements were calculated for the 

sequence: J 88,344(4); 352,472(8); 488,552(16); 584, 712(32); 

776,1992(64). The values in parentheses indicate J steps. In practice, 

however, it seems to be necessary to calculate the S-matrix elements only 
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Fig. 2. The S-matrix elements SJ are plotted in the complex 
4, .t=J; o, ~o=J 

plane as a function of J. The solid curves indicate the results for the 

Coulomb-nuclear excitation, while the dashed curves do the same for a 

pure Coulomb interaction. The figure shows clearly that the influence of 

the nuclear interaction is felt up to rather high J values. 
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for a more limited number of appropriately spaced J values. The values of 

the missing S-matrix elements are obtained by interpolation. The figure 

shows clearly that the influence of the nuclear interaction is felt up to 

rather high J values (~ 648). Since the number of target states which are 

coupled is reduced at high J values, the full set of coupled differential 

equations is calculated only up to a J value equal to about 472. For 

higher J values the dimension of the set can be gradually decreased. 

5. COULOMB-NUCLEAR EXCITATION PROBABILITIES OF 40Ar+238u and 84Kr+238u 

In this section the quantum-mechanical excitation probabilities [1], 

calculated in the center-of-mass system, are presented for the multiple 
238 40 84 

Coulomb-nuclear excitation of U induced by Ar and Kr up to high 

spin states of the ground-state rotational band (GSB). Also, the proba­

bilities will be presented when pure Coulomb excitation is considered. 
. 40 

In Fig. 3, the probabil1ties for 286 MeV Ar are plotted as a 

function of the scattering angle e for the GSB-states up to the one with 

Ilf 14 +. The optical potential parameters are: V = 73.0 MeV, W = 80.3 

MeV, r r = 1.131 fm, r = 1.4 fm, and a = a = 0.624 fm. The solid 
v w c v w N 

curves show the probabilities for Coulomb-nuclear excitation (62 = 0.237, 
N C(1) C(1) 64 = 0.067, 62 = 0.2121, 64 = 0.0667). The dashed curves represent 

the result expected for pure Coulomb excitation. The figure shows that at 
0 

scattering angles smaller than the grazing angle e of about 52 , the gr 
probabilities are completely determined by multiple Coulomb excitation. 

At this angle, the interference between the Coulomb and nuclear inter-

actions begins to set in and corresponds to an orbital angular momentum 

R. . '" 200, given by the classical orbit relation R. = ncot(S/2). 
gr 

Furthermore, at angles e < e , which correspond to orbits much larger gr 
than R. , the gr angular distribution for elastic scattering deviates consi-

derably from the typical Fresnel shape by falling below the Rutherford 

cross section. The quarter-point angle, i.e., the scattering angle where 

the summed probabilities for all final rotational states equals 1/4, is 
0 . 

about 70 

Similar 

and corresponds to an orbital angular momentum R-114 '" 138. 

calculations of the excitation probabilities have been 

performed with the same above-mentioned optical potential parameters for 
40 

340 MeV Ar projectiles [15j. Comparing the probabilities, given in this 
+ + + 

paper, with ours, it seems that the extrema in the 0 , 2 and 4 probabi-

lity functions, occuring at smaller angles of course, have the same value 
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Fig. 3. The quantum-mechanical 

excitation probabilities PI are 

plotted against the scattering 

angle ecm for the target states 

up to I~ = 14+. The solid curves 

show the probabilities for 

Coulomb-nuclear excitation. The 

parameter set is given in the 

text. The dashed curves indicate 

the result expected for pure 

Coulomb excitation. 

in magnitude as our calculated values. However, the maxima of the 6+ and 

8+ functions are about a factor of 1.8 and 4 smaller, respectively. Thus, 

the excitation probabilities for the high-lying members of the GSB in 
238u are larger for 286 MeV than for 340 MeV 

40
Ar projectiles. This means 

that the interference between the Coulomb and nuclear interactions for 

high spin states probably can be investigated, at energies near the 

Coulomb barrier, most favourably. 

The figure shows also the elastic scattering experimental data [22]. 

It is remarkable how they disagree with the elastic 0+ curve, while on 

the contrary the agreement with the curve of summed probabilities is 

worth mentioning. Apparently, the measurements do not represent elastic 

data only, but also quasi-elastic data from the low-lying members of the 

GSB. A precise measurement of the elas~ic scattering angular distribution 
18 184 

of 90 MeV 0 on W has given indications for this [23]. 
84 In Figs. 4a and 4b, the excitation probabilities for 718 MeV Kr are 

displayed for the GSB-states up to I~ 16+. The optical potential and 
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deformation parameters are given by (4.1) and (4.2), respectively. It is 

seen in these figures, that for scattering angles smaller than the 
0 

grazing angle of about 37 the probabilities are completely determined 

by multiple Coulomb excitation. Coulomb-nuclear interference starts to 

set in at this angle which corresponds to t ~ 532. The quarter-point o gr 
angle is about 55 corresponding to t 114 ~ 342. Large interference 

effects are seen in this case. 

Relating to the behaviour of the probability functions in the Figs. 3 

and 4 at near-grazing scattering angles where the Coulomb-nuclear inter­

ference sets in, it can be noted that: 

For most of the probability functions the initial Coulomb-nuclear 

interference is constructive (destructive) if the pure Coulomb 

excitation probability function for increasing scattering angles is 

approaching a minimum (maximum). 

It is remarkable that this behaviour satisfies a general rule previously 

formulated for the behaviour of the excitation probability as a function 

of the projectile energy near the Coulomb barrier for backward scattering 

from a deformed rotor [24] and based upon a semiclassical model [17]. In 

this model, it is assumed that the nuclear interaction can be approxi­

mated by a smooth complex potential which is largely real in the surface 

region. 

These calculations show clearly that the excitation probabilities of 

excited states at scattering angles in the Coulomb-nuclear interference 

region can serve as sensitive probes to study peripheral processes at the 

deformed nuclear surface. This can be done very effectively with the 

method described in this paper [ 25]. When the S-matrix elements are 

calculated once for a full range of appropriately spaced J values, only 

those S-matrix elements with a J value corresponding to an orbital 

angular momentum between t 114 - At 114 and !gr' have to be recaculated 

with a new value of the parameter set in order to fit the experimental 

data at scattering angles in the interference region. The value of At
114 

can be chosen relatively small. The larger the absorption in the reaction 

at smaller than "quarter-point" distances, the smaller this value can be 

taken. Thus, in practice only a restricted number of J values is needed, 

as can be seen in figure 2 for 84Kr + 238u. 
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B4Kr+ 238u 

Etab·718MeV 

Fig. 4. (a)The quantum-mechanical excitation probabilities PI are plotted 

against the scattering angle ecm for the low-lying GSB target states. The 

solid curves show the Coulomb-nuclear probabilities. The parameter set is 

given in the text. The dashed curves show the result expected for pure 

Coulomb excitation. Large interference effects are seen. (b) The same as 

(a), but now for the high-lying members of the GSB. 

6. CONCLUSIONS AND FINAL REMARK 

To describe quantum mechanically multiple Coulomb-nuclear excitation 

in heavy-ion reactions, the set of coupled differential equations of the 

partial-wave radial solutions is rewritten in integral form. Decomposing 

these solutions into two basis functions the corresponding amplitudes of 

these functions satisfy a set of coupled integral equations. Expressing 

the basis functions in terms of appropriately chosen piecewise analytic 

reference solutions, the integrals appearing in this set can be evaluated 

analytically. The coupled set of amplitude equations is solved itera­

tively. The efficiency of two iteration methods, the inward-outward and 

the sequential one, has been investigated for test cases dealing with 
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238 40 
multiple Coulomb and nuclear excitation of U by 286 MeV Ar and 

718 MeV 84Kr up to high spin states of the ground-state rotational band. 

Pad~ approximants to the S-matrix elements were also included in both of 

the iteration methods. It turns out that the inward-outward iteration 

method converges much faster than the sequential one. In many cases, the 

inward-outward method does not need Pad~ acceleration at all, while the 

sequential method does. It even happens sometimes that convergent cases 

in the inward-outward method diverge in the sequential method aided by 

Pade approximants. This large difference in convergence may be explained 

by noting that in the inward-outward method the coupling between the 

amplitudes is retained during the iteration procedure, as opposed to the 

sequential method where the set of coupled equations is replaced by a set 

of "uncoupled inhomogeneous" equations. The latter are solved in a cer­

tain sequential order, treating the inhomogeneous terms as perturbations. 

Our numerical studies of the excitation probabilities as a function of 

the scattering angle for the aforementioned heavy-ion reactions show that 

the probability functions of the members of the ground-state rotational 

band, satisfy a general rule at near-grazing angles, previously formu­

lated for the excitation probability as a function of the energy near the 

Coulomb barrier for backward scattering from a deformed rotor. 

Finally, we turn to a conclusion drawn by M. Rhoades-Brown et al. [8] 

in connection with the relative efficiency which they obtained for the 

sequential method plus Pade acceleration, compared to the method studied 

by us previously [1]. Based on estimates of time requirements for a case 

with 121 coupled equations (example 2 of Table I in Ref. [8]), which 

calculation was not yet attempted by them, they came to the conclusion 

that their approach should be some 200 times faster than the conventional 

method, while our approach is some 30 times faster than the conventional 

method. Related to this conclusion, the following should be noted: 

1. The conventional method they used to compare their iteration results 

with, is based upon the Numerov multistep integration method, whereas 

the conventional method used in our comparison is based upon Gordon's 

piecewise analytic reference solutions method [ 26]. One integration 

step in this method includes many step sizes of a multistep integra­

tion method. In some circumstances, a considerable reduction of 

computation time (20 times for medium-weight ions and much more for 

heavy ions) can be obtai'ned compared to a conventional multistep 

method. 
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2. They present estimates of time requirements for the sequential, as 

well as for the conventional multistep method. However, the number of 

couplings per equation is taken 9 for the former, whereas for the 

latter 121 couplings are taken into account. This seems incorrect: it 

overestimates the conventional method with a factor of about 13. 

Therefore, our conclusion is that the way in which Rhoades-Brown et al. 

estimate the relative efficiency and which favours their method compared 

to ours, is disputable. It shows that the comparison of efficiencies of 

methods or approaches is a delicate q~estion without running the corres­

ponding codes on the same computer under the same conditions such as the 

required accuracy. We showed from practical test cases that our approach 

is very efficient [25]. 
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CHAPTER 7 

RECURRENCE RELATIONS FOR COULOMB EXCITATION ELECTRIC MULTIPOLE 

* RADIAL MATRIX ELEMENTS 

L.D. TOLSMA 

Department of Physics, Eindhoven University of, Technology, 

P.O.Box 513, Eindhoven, The Netherlands 

PROGRAM SUMMARY 

Title of the program: RECREM. 

Program obtainable from: CPC Program Library, Queen's University of 

Belfast, N. Ireland. 

Programming language used: FORTRAN IV. 

Operating system: MCP. 

No. of lines in the combined program and test deck: 1390. 

No. of bits in a word: 48. 

Keywords: atomic, nuclear, heavy ions, Coulomb excitation, inelastic 

scattering, radial matrix element, recurrence relation. 

Nature of the physical problem 

The radial Schrtldinger equation which has to be solved for the quantum 

mechanical description of inelastic collisions between charged particles 

can be rewritten as an equivalent set of coupled integral equations. The 

partial wave radial function is written as a linear combination of two 

linearly independent basis functions with more or less slowly varying 

amplitudes. For large r values of the integration region or for high R. 

values of the orbital angular momentum these amplitudes consist of 

electric multipole radial matrix elements, i.e., integrals riA~' over a 
' finite interval [R1 ,R2J and with an integrand containing a product of the 

-A-1 Coulomb wave functions XR.(n,kr) and YR.,(n',k'r) and a form factor r , 

where A ~ 1. Such integrals have to be determined for one or more radial 

intervals when solving the set of integral equations [1,2J. The calcula­

tion of the excitation probabilities for analysing experimental data 

needs the solution of the Schrodinger equation and, thus, the knowledge 

of these integrals for a few hundred or even thousand partial waves, 

especially, for heavy ion collisions. 

Method of solution 

Radial matrix elements Ii~~· of any multipolarity satisfy recurrence 

* This chapter has been accepted for publication in C~mputer Physics 

Communications. 
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relations. Diagonal (JI.'=JI.) and upper-diagonal (JI.'=JI.+l) matrix elements 

are calculated using an upward recursion, starting with four initial 

integrals. Each of these four initial values is obtained by a call to the 

subprogram CLMINT [ 3]. Using the diagonal and upper-diagonal matrix 

elements in their turn as initial values, the remaining lower and upper­

diagonal matrix elements are calculated by a sidewards recursion with 

JI.,R.' values for which It- Jl.'l.; A., The diagonal and upper-diagom··, 

matrix elements can also be calculated by solving a pentadiagonal &/'>tem 

of linear equations obtained by combining and rearranging two recurrence 

relations. Four boundary values of the radial matrix elemJ:ltS are 

required: two for low Jl. values and two for high Jl. values. Each o; these 

four boundary values is also obtained by a call to CLMINT. 

Restrictions on the complexity of the problem 

If the recurrence relations of the radial matrix elements are used in 

an upward or downward recursion, then they are susceptible to error 

growth. This growth depends largely on the ratio of k and k.'. The more 

this ratio differs from unity, the more the recurrence relations will 

lose their accuracy due to the cancellation of terms. This loss of 

accuracy is not encountered when two recurrence relations are combined 

and rearranged into a pentadiagonal system of linear equations which can 

be solved by standard methods. 

Typical running time 

The running time is mainly determined by the computation time for the 

initial or boundary radial matrix elements required by CLMINT, i.e., it 

depends on whether the radial matrix elements are calculated by an upward 

recursion or by solving a system of linear equations. The output of the 

test runs gives the processor time of both alternatives. The computation 

time for the initial or boundary radial matrix elements depends largely 

on the parameters and the lower limit R1 [3). These integrals are 

generated efficiently by CLMINT for parameters encountered in heavy ion 

scattering processes. 
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LONG WRITE-UP 

1. INTRODUCTION 

Inelastic scattering of charged particles from atoms and nuclei is an 

important tool for studying the properties of excited states. In general, 

the quantum-mechanical description of inelastic scattering processes with 

multiple excitation requires the numerical solution of the radial 

Schrtldinger equation, i.e., a set of coupled linear second-order 

differential equations. This set can be rewritten as an equivalent set of 

coupled integral equations [1-6]. In this integral formalism, the partial 

wave radial function is written as a linear combination of two basis 

functions with coefficients or amplitudes containing the integrals. Both 

linearly independent basis functions are the solutions of the decoupled 

SchrBdinger equation that can be solved for some form of the potential 

[5,8,9]. These basis functions oscillate within the classically allowed 

region of the integration range which, in general, occurs rapidly depen­

ding on the energy of the incoming particle. On the contrary, the ampli­

tudes, satisfying a set of coupled integral equations, vary more or less 

slowly in this region. 

Both electromagnetic and nuclear interactions play important roles in 

the study of the inelastic scattering of light and heavy ions from nuclei 

with projectile energies comparable to the Coulomb barrier. However, the 

range of the electromagnetic interaction, especially for low multipola­

rities, is much longer than the range of the nuclear interaction. There­

fore, the form of the potential for large r values corresponds to the 

Coulomb interaction only and the basis functions can be written here in 

terms of the Coulomb wave functions. This holds for high t values of the 

orbital angular momentum too. Under these circumstances, solution of the 

set of coupled integral equations on an interval [R1 , R2] requires the 

determination of integrals of the form 

(1.1) 

where Xt(n,kr) and Yt,(n',k'r) denote the regular and/or irregular 

Coulomb wave functions and A corresponds to the electric multipole 

moment. Thus, there are four possible combinations. The orbital angular 

momenta t and £' refer to the entrance and exit channels, respectively. A 

similar convention applies to the asymptotic wave number of the relative 
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motion k and to the Sommerfeld parameter n. The vector addition rule 

imposes the condition that It- 1'1 (A. The integrals (1.1) are called 

the electric 2A-pole radial matrix elements or Coulomb integrals. Such 

integrals have to be determined for one or more radial intervals when 

solving the set of integral equations. They play a role in DWBA 

calculations too. Then x
1
(n,kr) and Y

1
,(n',k'r) correspond to the regular 

Coulomb wave functions and the interval boundaries are: R1 • 0, R2 • oo, 

In order to take all the strength of the electromagnetic interaction 

into account, the following requirements should be fulfilled: 

1. In the case of multiple excitations, in general, many channels should 

be considered. 

2. The integration of the set of coupled equations should be carried out 

for long distances. 

3. Many partial waves should be included when calculating the scattering 

amplitudes. 

The heavier the charged particles in the scattering process, the larger 

will be the set of coupled equations, the longer will be the integration 

distances and the larger will be the number of partial waves. Requirement 

(1) can be met by using iteration procedures ·for solving the set of 

coupled integral equations [2-7]. Requirement (2) can be fulfilled since, 

without much effort, integrals (1.1) with large boundary values R1 and R2 
for large intervals can be determined [10-13]. The problem of the large 

number of partial waves can be overcome by using recurrence relations 

that the integrals (1.1) satisfy [14-16]. 

A primary aim of this paper is to provide a program that calculates 

the radial matrix elements for any multipolarity by means of recurrence 

relations in a numerically stable and reliable manner. The recurrence 

relations used are presented in section 2. They need initial values of 

the integrals which in our case are obtained by a call to the subprogram 

CLMINT [13]. This subprogram efficiently generates integrals (1.1} fork 

and n values that are commonly encountered in heavy ion scattering 

problems. It must be stressed that the initial values obtained by another 

method can be used too [16]. In section 3, special attention is paid to 

the numerical stability of the recurrence relations, since they are 

susceptible to error growth due to the finite representation of numbers 

in the computer (rounding errors). It seems that this stability is 

largely dependent on the ratio of the wave numbers k and k' in (1.1). 

The more this ratio deviates from unity • the more unstable are the 
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relations. Section 4 describes a method for computing the integrals in 

cases in which the ratio of k and k 1 differs substantially from unity. 

This method is based upon the solution of a set of linear equations. 

2. RECURRENCE RELATIONS FOR THE RADIAL MATRIX ELEMENTS 

Using the recurrence relations for the Coulomb wave functions given by 

Eqs. (14.2.1 - 14.2.3) of Ref. [17] and partial integration of (1.1), 

many recurrence relations for the radial matrix elements can be derived 

[10,11,16], among which three, four and five-term relationships. We start 

with the following five-term one: 

+ n'(~+1)2(~2+n2Ji (~'- (~->..) ) I(>..) 
'I ~ rr'+IJ _t-1 t ~I 

{ '(.t 1 
?. 1 (tH) 2 (H+l) ) 1 2 (n (2~+1) n')} (>.) 

- nn i (.t+l)<-t-U. (~'+1) 2 (H'+l) + u (£+1) n'(H'+l)'\ I~.~~ 

+ ~~(~+1) (2.t+1) ((~'+l)2+ •2)~ [.t(t+L) _ (.t'+l+>.)) I(>.) 
n (.t 1+1){2t1+1) n ~ t,t'+L 

+ .tt'(.t+t'+2+>..)(.t+1) [(.t+1)2+ 2)~ [(1'+1)2+ •2]~ I(>..) 
(H'+l)(JI.'+l) n n Jl.+l, .t'+l 

.t'(.t+l)2 [.t2+ 2)~ J(A) - JI.JI.'(£+1)2(2£+1) [(.t'+L)2+ •2]'"/A.) 
k n Jl.-l,t' k (t1+1)(2t 1+1) n .t,.t'+l' 

where the J's in the inhomogeneous terms are given by: 

XJI.(n,kr) Y Jl.' (n' ,k' r) 

+ r 
Rl 

(2.1) 

(2 .2) 

Using (2 .1) with .t 1 = 11., gives rise to a recurrence relation between 

five integrals of the form: 

<2-t->..)(£+1)
2 [t2+n2]i[t2+n•2]~ I(>.) + n'(>..+l)(t+1)[.t~2]\ I(>.) 

(2!+1) t-l,.t-1 .t-l,t 

(2.3a) 
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By symmetry, t can be interchanged with t', n with n' and k with k' in 

(2.1) to yield a recurrence relation which is used with t' ~ ~+1. Multi­

plying the relationship obtained by (2t+l)/(~(~+2)2) to give a recurrence 

relation of the form: 

(2t+l-A)(t2+n 2]\[(t+1)2+ , 2)\ 1 (A) + n(A-1){2t+l)((~+l)2+ , 2)\ 1 (A) 
~ n t-1,~ t(t+l) n t,t 

_ n'(A-1)(2£+3)((£+1)2+ 2]\ 1 (A) 
( .t+l )(t+2) n R.+l, t+1 

+ (2t+3+A)[(t+l)2+n2)\((t+2)2+n'2)~ I(A) 
(ffi) m,m 

== (H+l)[(t+1)2+n' 2]\ J(A) _ (U+3)[(t+l)2+n2)\ J(A) 
~ ~.t ~ t+l,i+l. (2 .3b) 

The integrals in the recurrence relations (2. 3a) and (2. 3b) are repre­

sented pictorially by the dots (e) in the Figs. 1a and lb, respectively. 

Starting with four initial values of the integrals, the diagonal (t'~t) 

and upper-diagonal (t'==t+l) values are determined by upward recursion. 

I' 0 1 2 3 4 l' 

• • • • 

• 2 • :r. • • * a 

3 * • * • * • 
t' 

4 • • * • * 
• • 

• • * • 
• • b * • * • 

Fig. 1. Pictorial represen- Fig. 2, Pictorial representation of 

tation of the integrals in the integrals for A == 1,3 (dots) and 

Eqs. (2.3a and b). The ori- for A == 2,4 (stars) under the 

gin is chosen arbitrarily. condition of A-I £-t' I ) 0 and even. 
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However, the vector addition rule requires in general, that the 

integers x-1~-~·1 have to be> 0 and, in our applications, also even. In 

Fig. 2 these integrals are represented pictorially by dots (e) for odd 

A.-values and by stars (*) for even A.-values. To be. more specific, in the 

figure for X = 1, one lower and one upper-dotdiagonal are obtained; for 

A = 2, the main, one lower and one upper-stardiagonal, for X = 3, two 

lower and two upper-dotdiagonals, for X = 4, the main, two lower and two 

upper-stardiagonals, etc. To generate these integrals a sidewards recur­

rence scheme has been set up using the integrals on the diagonal and 

upper-diagonal as the initial values, up to ~ and ~· values for which 

1~-~·1 =X at the edge of the band (see Fig. 2). This will be called the 

X-inplane recursion, in contrast to X-up recursion which will not be 

considered here. 

When calculating the integrals on the lower-diagonal (t'=~-1), use has 

been made of the relationship: 

+ k'(2t+1+A.) [(~+1 )~ •2)\ I(A) = -J(X) 
(U+l)(J!.+l) n t,H1 J!.,t * (2.4a) 

and 

k A [J!.~nZ); I(X) + nk (~->. _ 1 ) I(X) + k' (~~n' 2 ]; I(X) 
<u-1>t t, ~-1 r ~-1 ~-1, t-1 r t-1,t 

_ k(H-1-X) [U-l)~n2]~ 1 (>.) = -J(>.) • .J • (2 •4 b) 
<ZI-1)(!-1) J!.-2, t-1 t-1, t-1 F· ~-1 

The integrals below the lower-diagonal can be determined by a rela­

tionship of the form: 

(~~!r)~~~{)[(H1)~n2]\ I~~i.t• + (nku~:i;A)- (~:!~)) I~~!• 

_ k(~+t'+1-X)[J!.2r 2]\ 1 (>..) 
(U+l)t n ~-1, t' 

+ k' [<~· 1)~ •2]~ (A.) = -J(A.) 
(1"'+1) + n IJ!.,t'+l t,t' (2.5) 

The integrals above the upper-diagonal are obtained by a version of this 

relationship in which J!. is exchanged with~·. k with k' and n with n'. 
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Finally, we note that Eqs. (2.3a) and (2.3b) for /.. • 1 give Raynal's 

formulae {37a) and (37b) of Ref. [16), respectively [18]. 

3. ON THE STABILITY OF THE RECURRENCE RELATIONS 

The recurrence relations that satisfy the Coulomb wave functions in 

the integrand of the Coulomb integrals are only accurate if the quanti­

ties obtained from them do not decrease monotonously; they are then said 

to be stable. Coulomb wave functions change their behaviour at the 

turning point given by 

(3.1) 

For kr < pT, the regular Coulomb wave function decreases, while the 

irregular Coulomb wave function increases, for increasing R,. Thus a 

downward recursion is stable for the former and an upward recursion for 

the latter. For kr > pT, the functions are always of the order of unity 

and, therefore, both recursions are stable. 

These stability considerations hold for the recurrence relations of 

the Coulomb integrals too. However, it seems that the stability of these 

relations depends largely upon the ratio of k and k' as well. The more 

this ratio differs from unity, the more the recurrence relations are 

likely to lose accuracy due to the cancellation of terms. Equation (2.3b) 

can be used for /.. = 1 to investigate the stability as it depends on 

k/k'; it is written as: 

(H+4) st{n) st+l(n') It+l- [CH+1) fsf<n') + (H+3) ~.sf<n>] It 

2 () (') _(2R.+3)S() +(H+l)S(')J + t sR.._1 n st n IR.-l = --p-- t n JR..+l ~ R. n £, 

(3 .2) 
where 

and J" = J(l) 
"' IL,R. 

(3.3) 

It is noted that (2.3b) is decoupled from (2.3a) for/.. = 1. 

Consider (3 .2) for II. » n and n 1 because, in general, stability 

problems occur for large t values. Then, this equation can be approxi­

mated by 

(3.4) 

where 
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(3.5) 

The general solution of (3 .4) is a linear combination of any pair of 

linearly independent homogeneous solutions and a particular solution of 

the inhomogeneous difference equation. The homogeneous part of (3 .4), 

namely: 

1"+1 - a I + I = 0 
"' t t-1 

(3 .6) 

can be recognized as a Poincare difference equation of order 2 with [19] 

t(p) = p2 - ap + 1 (3. 7) 

as its characteristic polynomial. Let Pl and P2 be the roots of t(p) = 0, 

then 

(3 .8) 

The general solution of (3.6) is of the form 

(3.9) 

where c 1 and c 2 are determined from the initial conditions, e.g., the 
a -a values of 1 0 and I 1• Substituting a = e + e in (3.8), gives three 

different cases depending on the magnitude of a relative to 2 [20]: 

[ -e J [ e J I 1-I 0e te 11-Ioe -te 
2sinh(&) e 2sinfi(e) e , a > 2, 2cosh(6) = a 

(3.10a) 

I = t t I1 - (R.-1) Io , a= 2 (3 .lOb) 

[ -ie] [ i6] 11-Ioe eiR.e 11-Ioe -ue 
2 sin(6) 2 sin(e) e a < 2, 2 cos(6) = a 

(3.10c) 

A particular solution of (3.4) can be constructed by upward recursion, 

putting 1 0 and I 1 equal to zero as starting values. It obtains the same 

structure as the homogeneous solution. Since a is given by (3.5), it ob­

tains a value greater than two for k' * k. Consequently, the homogeneous, 

as well as this particular solution, has for t >> n, n' an exponential 

behaviour. The greater e = arccosh(a/2), the faster they will increase. 
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calculated by upward recursion with 

k = 20.2, k' • 20.0 fm-1, a= 2.0000990, e = 0.0099503, 

n'= 100, R1 =50, R2 = 1000 fm 

Homogeneous Particular Inhomogeneous 

solution (3.2) solution (3.2) solution (3.2) 

.74898849(-03) -.14030570(-07) .74897446(-03) 

.74325684(-03) -.34597983(-07) .74322224(-03) 

.73746395(-03) -.49608806(-07) .73741434(-03) 

.70164788(-03) .15848483(-05) .70323272(-03) 

Calculated by 

CLMINT 

.76025184(-03) 

.75465483(-03) 

.74897446(-03) 

.74322224(-03) 

.73741434(-03) 

.70323272(-03) 

50 .46639846(-03) .10025890(-03) .56665735(-03) .56665734(-03) 

100 .29395997(-03) .27920531(-03) .57316528(-03) .57316528(-03) 

150 .24557573(-03) .44972935(-03) .69530507(-03) .69530506(-03) 

200 .27205249(-03) .56121168(-03) .83326417(-03) .83326416(-03) 

250 .35652820(-03) .56398933(-03) .92051754(-03) .92051752(-03) 

300 .50617154(-03) .44030855(-03) .94648008(-Q3) .94648006(-03) 

350 .74653404(-03) .11715096(-03) .86368500(-03) .86368496(-03) 

400 .11239398(-02) -.48828549(-03) .63565430(-03) .63565423(-03) 

450 .17142789(-02) -.14171720(-02) .29710690(-03) .29710679(-03) 

500 .26390403(-02) -.27765884(-02) -.13754809(-03) -.13754825(-03) 

550 .40917620(-02) -.46639718(-02) -.57220985(-03) -.57315793(-03) 

600 .63807262(-02) -.72549701(-02) -.87424384(-03) -.87459489(-03) 

650 .99975505(-02) -.10883732(-01) -.88618107(-03) -.88618168(-03) 

700 .15727328(-01) -.16196527(-01) -.46919919(-03) -.46920015(-03) 

750 .24825585(-01) -.24527402(-01) .29818368(-03) .29818216(-03) 

800 .39302831(-01) -.38382541(-01) .92028946(-03) .92028706(-03) 

850 .62382496(-01) -.62012538(-01) .36995777(-03) .36995344(-03) 

This will be illustrated with calculations for the different solutions of 

(3.2). The results are presented in Tables 1 and 2. The first columns of 

these tables contain the homogeneous solution of (3.2) for a = 2.0000990 

and a = 2.0090909, respectively. (The numbers in parentheses denote the 
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TABLE 2 

R 
R J 2 

F ,q,(n,kr) ~ F .t+1 (n' ,k'r)dr 
1 r2 

calculated by upward recursion with 

0 

1 

-1 
k = 22, k' = 20 fm , 

Homogeneous Particular 

a = 2.0090909, e = o .0953102, 

rl = 100, R1 = 50, R2 = 1000 fm 

Inhomogeneous 

solution (3.2) solution (3.2) solution (3.2) 

Calculated by 

CLMINT 

.92563155(-04) 

.92672150(-04) 

2 .92776701(-04) -.22888868(-07) .92753812(-04) .92753812(-04) 

3 .92879707(-04) -•53846401{-07) .92825860(-04) .92825859(-04) 

4 .92984066(-04) -.72114109(-07) .92911952(-04) .92911948(-04) 

10 .93800222(-04) .17600872(-05) .95560309(-04) .95560284(-04) 

50 .15025824(-03) -.96979881(-04) .53278363(-04) .53276911(-04) 

100 .10189443(-02) -.11192354(-02) -.10029114(-03) -.10029025(-03) 

150 .19771036(-01) -.19669954(-01) .10108267(-03) .10109828(-03) 

200 .72225574( 00) -.72235723( 00) -.10148861(-03) -.10092014(-03) 

250 .38020759( 02) -.38020709( 02) .50218758(-04) .80148920(-04) 

300 .24939521( 04) -.24939542( 04) -.20441507(-02) -.80882462(-04) 

350 .18823517( 06) -.18823531( 06) -.14810279( 00) .78088342(-04) 

400 .15613038( 08) -.15613051( 08) -.12290854( 02) -.91111798(-04) 

450 .13837781( 10) -.13837792( 10) -.10893259( 04) .10558075(-03) 

500 .12871636( 12) -.12871647( 12) -.10132700( 06) -.70596447(-04) 

550 .12415805( 14) -.12415814( 14) -.97738638( 07) -.17157634(-04) 

600 .12316249( 16) -.12316258( 16) -.96954921( 09) .98012132(-04) 

650 .12490099( 18) -.12490108( 18) -.98323489( 11) .50702183(-04) 

700 .12892791( 20) -.12892802( 20) -.10149353( 14) .30547595(-04) 

750 .13502195( 22) -.13502206( 22) -.10629083( 16) .78447955(-04) 

8oo .14310477( 24) -.14310488( 24) -.11265372( 18) .48430286(-04) 

850 .15319781( 26) -.15319793( 26) -.12059907( 20) -.48633213(-04) 

powers of 10 by which the preceding numbers have to be multiplied.) This 

solution has been obtained by upward recursion of the homogeneous part of 

(3.2) with the integrals Io and 1 1 as starting values. They show a 

monotonous behaviour. The second columns of both tables contain the 
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particular solution, obtained by upward recursion of (3.2) with Io and I1 

equal to zero as starting values. They show a monotonous behaviour too. 

The third columns contain the inhomogeneous solution of (3.2) obtained by 

summation of the homogeneous and the particular solutions. The fourth 

columns contain the values of the Coulomb integrals calculated by a call 

on CLMINT. They are used here as a reference for the correct solution. 

Their accuracy, for the lower t values, is to seven figures at least and, 

for the higher ones, about six figures [13]. 

Comparison of the third and fourth columns of Table 1, shows that, for 

a = 2.0000990, the solution obtained by upward recursion is stable up to 

a maximum t value equal to 850, demanding an accuracy of at least five 

figures. The same applies for smaller a values. However, for 

a = 2.0090909, a similar correspondance only exists between the third and 

fourth columns of Table 2 up to a maximum t value equal to about 150. 

Therefore, the conclusion can be drawn that the more a differs from two, 

the sooner accuracy is lost due to rounding errors in the summation 

of the homogeneous and the particular solutions. Although the accuracy of 

these solutions themselves is quite satisfactory, their tendency to 

become equal in magnitude with an opposite sign and their finite repre­

sentation in the computer causes a loss of accuracy of the inhomogeneous 

solution. This is clearly shown by the first and second columns and from 

the result of their summation in the third column of Table 2. We note 

that, since the general solution has an oscillatory behaviour, as seen in 

the fourth columns of Tables 1 and 2, also, since a is always greater 

than two, this loss of accuracy will not only occur with upward recursion 

but with downward recursion as well. 

It is not difficult to see that the above-mentioned maximum t values 

depend on the accuracy of the initial integrals too, with which the 

recursion starts. The greater this accuracy, the larger these t values 

will be. 

In this section, the dependence of stability on the ratio k/k' has 

been investigated using a special recurrence relation for A= 1. However, 

we believe that this dependence is similar for relations like those in 

Eqs. (2.3), (2.4) and (2.5), i.e., that it is a general feature of the 

present recurrence relations. 

In the next section, a stable recurrence procedure has been developed 

whose stability is not dependent on the value of a. 

- 132 -



Recurrence Relations for Radial Matrix Elements 13 

4. A STABLE RECURRENCE PROCEDURE 

In order to develop a stable algorithm, the recurrence relations 

(2.3a) and (2.3b) will be written in the following condensed form in 

which the superscript (A) is suppressed 

= y t (4 .la) 

(4.lb) 

Comparing these expressions with Eqs. (2.3a) and (2.3b), respectively, 

will define the coefficients and the inhomogeneous terms. Instead of 

solving an initial value problem by upward or downward recursion, a 

boundary value problem can be set up to find the solution of (4.1). This 

requires the solution of a pentadiagonal system of linear equations 

bl t1 c1 1
1 1 
' 

yl-al10 0 
' 

-s1IO 1 
' 

d1 ql e1 r1 0 I1,2 z1 -pl10,l 

a2 s2 b2 t2 c2 1
2 2 
' 

P2 d2 q2 e2 r2 12 3 • 

0 yL-cLIL+l,L+l 

zL-eL1L+l L+l-rL1L+l L+2 
' ' 

(4 .2) 

This solution can be produced by a standard method provided by the NAG­

library, for example. The required boundary integrals I 0 0 , 10 1 , 
• • 

IL+l,L+l and IL+l,L+2 are calculated by a call on the subroutine CLMINT. 

This procedure is very stable, even for extreme k/k' ratios. However, 

it is considerably more computer-time consuming than the upward recur­

sion, mainly due to the need to determine the boundary integrals with 

high t values. The results of a calculation such as this are mentioned in 

Tables 3a and 3b. The first columns of these tables contain the solution 

of the set of linear equations (4.2) for a = 2.0000990 and a = 2.0090909, 

respectively. The second columns correspond to the fourth columns of 
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TABLE 3 

R 
R f 2 

Ft(n,kr) !_ Ft+l(n',k'r)dr calculated by solving a pentadiagonal 
1 r2 

a) k = 20.2, -1 k' = 20.0 fm , 

a= 2.0000990, e - 0.0099503, 

n'= 100, R1 = so, R2 = 1000 fm 

solution of Calculated by 

system (4.2) CLMINT 

system of linear equations with 

!.1 
b) k = 22, k' = 20 fm , 

a = 2.0090909, e = 0.0953102, 

n'= 100, R1 =50, R2 = 1000fm 

solution of Calculated by 

system (4.2) CLMINT 

0 .76025184(-03) .92563155(-04) 

50 .56665735(-03) .56665734(-03) .53278469(-04) .53276911(-04) 

100 

150 

200 

.57316527(-03) 

.69530506(-03) 

.83326415(-03) 

.57316528(-03} -.10029034(-03) -.10029025(-03) 

.69530506(-03) .10109823(-03) .10109828(-03) 

.83326416(-03) -.10092005(-03) -.10092014(-03) 

250 .92051751(-03) .92051752(-03) .80149136(-04) .80148920(-04) 

300 .94648005(-03) .94648006(-03) -.80882976(-04) -.80882462(-04) 

350 .86368495(-03) .86368496(-03) .78087827(-04) .78088342(-04) 

400 .63565422(-03) .63565423(-03) -.91112025(-04) -.91111798(-04) 

450 .29710678(-03) .29710679(-03) .10558073(-03) .10558075(-03) 

500 -.13754827(-03) -.13754825(-03) -.70596446(-04) -.70596447(-04) 

550 -.57221013(-03) -.57315793(-03) -.17157216(-04) -.17157634(-04) 

600 -.87424428(-03) -.87459489(-03) .98012135(-04) .98012132{-04) 

650 -.88618176{-03) -.88618168(-03) .50702227(-04) .50702183(-04) 

700 -.46920028(-03) -.46920015(-03) .30547687(-04) .30547595(-04) 

750 .29818195{-03) .29818216(-03) .78447997(-04) .78447955(-04) 

800 .92028673(-03) .92028706(-03) .48430491(-04) .48430286(-04) 

850 .36995344(-03) -.48633213{-04) 

Tables 1 and 2 and they are used as the reference solutions. The upper 

boundary integrals IL+l,L+l and IL+l,L+2 are calculated for L = 849. 

Comparing columns 1 and 2 of these tables, suggests that the present 

procedure of solving a set of linear equations will yield Coulomb 

integrals with an accuracy corresponding to the accuracy of the upper 

boundary integrals; i.e., an accuracy corresponding to five to six 
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decimal places. This accuracy does not depend upon the value of a. 

It is easy to see that the three-term recurrence relation (3 .2) is 

equivalent to a tridiagonal system of linear equations comprising the 

main diagonal and two lower diagonals. Formulae based on LU decomposition 

show this; consequently, such a tridiagonal system will be unstable as 

well. Relationship (3 .2) can be rearranged as a tridiagonal system 

existing of the main diagonal and the two diagonals adjacent to it. 

Formulae produced by a LU decomposition will show that stable solutions 

can be obtained if the lowe~ and upper values of the solution a~e known. 

The pentadiagonal system of linear equations (4.2) has, basically, the 

same favourable properties. 

5. TEST CALCULATIONS AND DISCUSSION 

The output of four test runs gives the electric multipole radial 

matrix elements calculated by upward recursion, as well as by solving a 

pentadiagonal system of linear equations. Both processor times are given 

too. 

The results of test runs 1 (A • 1, k • 20.2, k' = 20.0, n' = 100) and 

2 (A = 2, k • 20.2, k' = 20.0, n' 100) show that with k > k' the upward 

recursion is rather more stable for the lower-diagonal integrals than for 

the upper-diagonal ones; however, test run 3 (A • 2, k • 20.0, k' • 20.2, 

n • 100) shows that with k < k' the opposite is the case. It seems that 

the recursion shows this feature for higher A values, too. For A • 1 this 

can be understood by considering the coefficient of It in the upper­

diagonal recurrence relation (3.2) 

(5 .1) 

The coefficient in the corresponding lower-diagonal recurrence relation 

(not given in this article) is 

(5 .2) 

For k > k', the coefficient (5.2) will be smaller than the coefficient 

(5.1) and, since these coefficients play the same role as a in the 

approximated relation (3.4), the lower-diagonal recurrence relation will 

be more stable than the upper one. When k < k', the coefficient (5.2) 
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will be greater than the coefficient (5.1) and, therefore, the lower­

diagonal recurrence relation will be less stable than the upper one. We 

believe that for higher A values similar considerations will hold. 

Looking at the results of test run 4 (A = 2, k = 20.0, k' "' 20.0, 

n = 100) and comparing the F G. and G F integrals which were obtained 
. t • 1 1 

by upward recursion, as well as by solving band linear equations, the 

conclusion is confirmed once again more that the latter give more 

accurate results than the former. 

6. NOTES ON THE PROGRAM 

A flow diagram of the various subroutines is given in Fig. 3. Arrows 

in two directions imply calling and returning. The functions of each 

subprogram are described briefly below. 

1) The main program reads the necessary input parameters and calls for 

subroutines RECMUD and RECLIP in order to calculate the radial matrix 

elements. Subsequently, it calls the subroutine RECPRN in order to print 

the results before ending the calculation. 

START END 

r---
1 

I 
I .-:::-:::-:-:=-=-=::-1 

I I 
L ----- ______ _j 

Fig. 3. Flow diagram illustrating calls and returns with respect to the 

subprograms used in the program. 
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2) RECMUD calls CLMINT to calculate the Coulomb integrals for four 

combinations of ~ and ~· = ~. t+l. Then, it uses these integrals either, 

as initial values in an upward recursion, or as boundary values for 

solving a system of linear equations in order to calculate the main and 

upper-diagonal integrals I~~~ and I~~:+l using Eqs. (2.3a) and (2.3b), 

respectively. The calling sequence is: 

CALL REGMUD(DRMl ,DRM2 ,DETI ,DWNI ,DETF ,DWNF ,LAMB ,LMIN ,LMAX 

IACC ,LINQ ,DMINT,DSINT,DA ,DB ,DAL ,LXLN ,LXLNM2, 

FC ,FDC ,GC ,GDC ,SIGMA,IEXP , 

DFil ,DGil ,DFFl ,DGFl ,DFI2 ,DGI2 ,DFF2 ,DGF2 ,LXCN ) 

All the real variables and arrays are declared to be DOUBLE PRECISION. 

The type and meaning of the parameters are: 

DRMl ,DRM2 real, lower and upper integration limits R1 and R2 , 

respectively. 

DETI ,DETF real, Sommerfeld parameters nand n', respectively. 

DWNI ,DWNF real, wave numbers k and k 1 , respectively. 

LAMB integer, electric multipole moment A• 

LMIN , LMAX integer, minimum and maximum values, respect! vely, of the 

angular momentum range for which radial matrix elements are 

required. 

IACC 

LINQ • 0 

LINQ = 1 

integer, chosen from 0 or 1. See calling sequence CLMINT. 

upward recursion. 

solving a pentadiagonal system of linear equations. 

DMINT,DSINT real arrays, contain the main- and upper-diagonal radial 

matrix elements, respectively and should be dimensioned to at 

least to the size (LXLN,4). 

DA,DB,DAL 

LXLN 

LXLNM2 

FC,FDC 

GC,GDC 

SIGMA 

IEXP 

real arrays, see for explanation the NAG-Library routines 

FOlLBF and F04LDF. They should be dimensioned to the size 

(5,LXLNM2), {LXLNM2,4) and (2,LXLNM2), respectively. 

integer, equals to LMAX-LMIN+l+mod(A,2)+A/2. 

integer, equals to (LXLN-2)*2. 

real arrays, contain the output Coulomb wave functions F
1

, 

Fi, G~, Gi, arranged by order, after calling the subroutine 

DCOULM. They should be dimensioned to the size LMAX+LAMB. 

real array of dimension LMAX+LAMB for Coulomb phase shifts. 

integer array of dimension LXLNM2 for modulo exponent of 

Coulomb wave functions, also used in FOlLBF and F04LDF. 
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DFil ,DFI2 real arrays, contain the regular Coulomb wave functions for 

n, kR
1 

and n, kR
2

, respectively. 

DFFl ,DFF2 real arrays, contain the regular Coulomb wave functions for 

n', k'R
1 

and n', k'R
2

, respectively. 

DGil ,DGI2 real arrays, contain the irregular Coulomb wave functions for 

the same above-mentioned parameters. These Coulomb wave 

function arrays should be dimensioned to the size LXCN. 

LXCN integer, equals to LMAX-LMIN+l+A. 

3) RSCLIP calculates the other Coulomb integrals, by means of A-inplane 

recursion, using Eqs. (2.4) and (2.5). The calling sequence is: 

CALL R.ECLIP(DRMl ,DRM2 ,DETI ,DWNI ,DETF ,DWNF ,LAMB ,LMIN ,LMAX , 

LXLN ,LAPl ,FFINT,FGINT,GFINT,GGINT,DMINT,DSINT, 

DF!l ,DGil ,DFFl ,DGFl ,DFI2 ,DGI2 ,DFF2 ,DGF2 ,LXCN 

The type and meaning of the parameters is the same as in the calling 

sequence of RECMUD, except for: 

FFINT,FGINT real arrays, contain the required radial matrix elements ri~!• 
GFINT,GGINT for the four combinations FJI.FJI.,. FJI.GJI." GlJI." GJI.G~.' of the 

LAPl 

Coulomb wave functions and should be given the dimension of 

(LXLN, LAP!). 

integer, equals to A+l. 
(A) 

4) RECPRN prints the radial matrix elements IJI.,JI.' in a ).-dependent format 

In the output, they are denoted as M(-A-1, FJI., FJ/. 1 ), etc, corresponding 

to a notation used in Refs. [11,14]. The calling sequence is: 

CALL RECPRN(ETI,WNI,RMl,LMIN,LAMB,LlNQ,ETF,WNF,RM2,LMAX,IACC, 

FFINP,FGINP,GFINP,GGINP,L&~P,LAPl,LMDL) 

The meaning of the parameters is the same as in the calling sequences of 

RECMUD and RECLIP, except for: 

FFINP,FGINP real temporary arrays, contain the radial matrix elements 
(A) 

GFINP,GGINP IJI.,JI.'' to facilitate their output as a function of fl. with 

increment LMDL and should be given the dimension of 

(LXMLP, LAP!). 

LXMLP integer, at least the number of increments LMDL. 

5) CLMINT calculates the radial matrix elements ri~~· given by (1.1) for 

a value of n, k and A, and a single valued pair of (t,t'). This is done 

for the four combinations of the Coulomb wave functions. Fig. 3 shows the 

subprograms called by Ck~INT (catalogue number: ACCM) [13j. 
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6) DCOULM combines our double precision versions DRICAT and DRCWFF of the 

Coulomb wave functions subprograms RICATI (catalogue number: ABOQ) [21] 

and RCWFF (catalogue number: ABPC) [22,23], respectively, to use the most 

efficient one for some pair of n and kr values. 

The main program, RECMUD and RECLIP share a less important COMMON 

block, labelled PRINT. Together with the DATA statement it gives the 

possibility to print out intermediate results in RECMUD and RECLIP. The 

concerning statements are self-explanatory. 

Each test run requires five input data cards. The first one should 

contain a test run number. The second and fourth are similar and must 

contain DRM1, DRM2, DETI, DWNI, DWNF. The third and fifth must include 

LAMB, LMIN, LMAX, IACC, LINQ, LMDL. They differ only from the variable 

LINQ which is chosen equal to 0 and 1, respectively. 

Finally, we notice that, although RECMUD and RECLIP can calculate the 

radial matrix elements of any multip6larity, the arrays in the main 

program have been dimensioned up to a X value equal to S. The same holds 

for the print facilities of RECPRN. 

ACKNOWLEDGMENTS 

The author is thankful to H.F. Arnoldus for useful discussions and his 

interest in this work. 

REFERENCES 

[1] K. Alder and H.C. Pauli, Nucl. Phys. 128(1969)1931. 

[2] J. Raynal, in Computing as a Language of Physics, edited by A. Salam 

(IAEA, Vienna, 1972), P• 292. 

[3] K. Alder, F. Roesel and R. Morf, Nucl. Phys. ~(1977)145. 

[4] M. Ichimura, M. Igarashi, s. Landowne, C.H. Dasso, B.S. Nilsson, 

R.A. Broglia and A. Winther, Phys. Lett. 67B(1977)129. 

[s] L.D. Tolsma, Phys. Rev. C20(1979)592. 

[6] M. Rhoades-Brown, M.H. Macfarlane and S.C. Pieper, Phys. Rev. 

C21(1980)2417. 

M. Rhoades-Brown, M.H. Macfarlane and S.C. Pieper, Phys. Rev. 

E.!. ( 1980 )2436. 

[7] J. Raynal, Phys. Rev. C23(1981)2571. 

- 139 -



20 L.D. Tolsma 

[8] R.G. Gordon, J, Chem. Phys. ~(1969)14. 

R.G. Gordon, Quantum Scattering Using Piecewise Analytic Solutions, 

in: B. Alder, s. Fernbach and M. Rotenberg (eds), Methods in 

Computational Physics 10 (Academic, New York, 1971). 

[9] L.Gr. Ixaru, Comput. Phys. Commun. 20(1980)97. 

L.Gr. Ixaru, "Numerical Methods", D. Reidel Publishing Company, 

Dordrecht, 1984. 

[10] L.C. Biedenharn, J.L. McHale and R.M. Thaler, 

Phys. Rev. 100(1955)376 

[11] K. Alder, A. Bohr, T. Huus, B. Mottelson and A. Winther. 

Rev. Mod. Phys. 28(1956)432. 

[12] G.H. Rawitscher and C.H. Rasmussen, 

Comput. Phys. Commun. ~(1976)183. 

[13] H.F. Arnoldus, Comput. Phys. Commun. 32(1984)421. 

[14] M. Samuel and u. Smilansky, Comput. Phys. Commun. ~(1971)455. 

[15] L.E. Wright, Phys. Rev. C20(1979)393. 

[15] Section IV of Ref. [7]. 

[17] M. Abramowitz and I.A. Stegun, Eds. "Handbook of Mathematical 

Functions", National Bureau of Standards, Washington, D.c. 

[18] 

[ 19 J 
[zo] 
[21] 

Note: Our definition of the Coulomb integral with R2= ~ corresponds 

to Raynal's definition (25) in [7] as: ri~~~ = (kk')A/2M(H,K,R)~~~~· 
w. Gautschi, SIAM Reviev 1(1967)24. 

C.F. Fischer and R.A. Usmani, SIAM J, Numer. Anal. ~(1969)127. 

c. Bardin, Y. Dandeu, L. Gauthier, J, Guillermin, T. Lena, 

J. M. Pernet, H.H. Wolter and T. Tamura, 

Comput. Phys. Commun. }(1972)73. 

[22] A.R. Barnett, D.H. Feng, J.w. Steed and L.J.B. Goldfarb, 

Comput. Phys. Commun. ~(1974)377. 

[23] A.R. Barnett, Comput. Phys. Commun. !!(1976)141. 

- 140 -



..... 
"'"' ..... 

TEST RUN OUTPUT 

TEST Rl!N I 

"""'"' CALCULATION OF ELF\TI!IC Ml'l.TIPOLE RADIAL MATRIX ELEMENTS BY UPWARD 
ETl . <1900990 1 OOE•02 WNI . 2020onoonOE' 02 RMI . SOOOOOOOOOE+02 LMI N 0 
ETF ~ .10000!IOOOOE+03 WNF 2000000000E->02 RM2 ~ .10000000001!+04 LMAX 850 

Ll 
0 

100 
200 

Ll 
0 

100 
200 

Ll 
0 

100 
200 

Ll 

0 
LF-Ll -I 

89023756730D-03 
28267318809D 03 

LF·LI 1 
0. 

.413368404300-03 
-.953107!5462D-OJ 

0 
LF-LI I 

.402408837030 03 

.945201975491)-03 

LF-LI -1 
0 0. 

100 .896331528950 03 
200 .293063465260 03 

PROCESSOR TIME IS 9.6 

LF·LI • I 
76H25IR38'l31l fl.\ 

.573lf>527?53LJ 03 
83.l2641 o<l2!1l> OJ 

LF- Ll • I 
60938389?25[1 03 

.77512717704[1 03 

.47482508417[1 03 

LF · Ll 'I 
591\122584.121) UJ 
7833542349'>]) H3 
41!.l2SI733/17ll OJ 

LP-LI I I 
.7&548qi6816P OJ 
.jb369?6656&P 03 
.823296427331l OJ 

SECONDS . 

I'll POLE RADIAL MATRIX ELEMENTS M( 2. FLI . FLF) 
1.1 LF=l.l-1 tF~LI+l l.l 

]On .l6920099116D-03 .946480083290-03 600 
4on .R7376303949D- 03 .635654295310-03 700 
;no !tH>'l726.l930D-02 .137548090530-03 800 
I>II'OI.E RAil I AL MATRIX ELEMENTS M( -2. FL I ,GLF) 

1.1 I.Fd.l I LF=LI+1 Ll 
300 .'lli67644JJJD OJ .750290270730-04 600 
4Htl .'<>054'!S7715D OJ · .687203663520-03 700 

. 2.l22n4.l'-'f>IJ!l 03 93695135266D-03 800 
RAIHAL MATRIX ELEI\.lENTS M(-2.GLI,FLF) 

l.F -LI 1 LF·LI +1 Ll 
.9274175Jnf>21l (13 .889732120970-04 600 

400 .506989899430 03 .699674868700-03 700 
sun .219&27H2&95P OJ .923399928490-03 son 
Ill POLE RADIAL MATRIX ELEMENTS M( -2 .OLI .GLF) 

Ll Lf·LI· I LF~LI+1 Ll 
300 .382486030420-03 .946072102380-03 600 

.88781950588D-03 .644857704390-03 700 
,99691906416D-03 .12569671280D-03 800 

RECURSION 
LAMBilA 
IACC o 

1.1 NQ • 
Ll\ii[)L -jon 

LF-U- I 
.45913bS50420 113 
.65876360?120 03 
.897415812870 OJ 

LF~Ll I 
928278911020 OJ 

.832525782230 03 

.644610233950 03 

LF·LI -I 
.. 93969931950D-03 

.85834888327D-03 

.676?4970129D-03 

LF~Ll 1 
.478312744370-03 
640859101860-03 

.847896204930-03 

LP-LI • I 
87424384l89ll-03 

.469199186930 03 
?2U28946197D 03 

LF·LI<I 
310634680090-03 

.804975136160-03 

.2151657621120-03 

LF-LI•I 
.328025832900-03 
. 798618763550-03 
. 156412818790 03 

LF~LI•l 
.888378951210-03 

.. . 500123382300-03 
.909700723130-03 

"'**~1t***"''* CALCtltATJON OF F.l.H'TRIC MULTI POlE RAIHAL MATRIX ELEMENTS BY BAND LINEAR EQUATIONS 
ETI .9900990IODEo02 WNI . 2020000000E+02 RM1 •. 50000000001!+02 !MIN " n LAMBDA 1 LINQ 

LM[)L ETF .1DDDOUOODUiloD3 WNF . 21HIIJODOOOOE+02 RM2 • IOOOOOO(lOOF.t04 LMAX 850 IACC 0 

Ll LF·LI I 
0 n. 

IOU .890237572SID-Q3 
200 .282673192790 03 

LF-LI I 
D. 

.413368410510-03 
.9531D716D210 OJ 

Ll LF·LI I 
D 0 

100 40240884516]) OJ 
200 .94520198281() 03 

Ll l.FooLI. I 
o n. 

100 .89633153362D-03 
200 .29306346947D-03 

PROCESSOR Tll\.lE IS 51.4 

Lf-LI•l 
.76D25183893D-03 
.573165272530-0J 
.833264154470-03 

Lf', Ll '1 
. 1>(>93838'12250 03 
.7.751271853'11) 03 
.474825101821) 03 

LF·LI"l 
598122584320-03 
783354245910-03 

.483251756970 03 

LF·LI+1 
.765489168160-03 
.5&36996593'10-03 
.8232'16414071)-03 

SECONDS. 

lliPOLE RADIAL MATRIX ELEMENTS M( 2.FLI.FLFl 
Ll LF·LI-1 Ll'·LI' I U 

Jon - .369200986640-0J 946480D51730 OJ 6nn 
400 -.873763033490-03 635654224070-03 7UO 
son ... I009726382'l0-02 . 13754825/IDn nl goo 
HI POLE RADIAL MATRIX ELEMENTS M( 2 Ftl .GLF) 

Ll LF=LI 1 LF-1.1 1 I Ll 
300 931676448720-03 75D2898Q473D 04 bOO 
400 500549584310 03 68720l57ft65D 03 700 
500 232204311410().03 .9369SI15298D 03 ROD 
01 POLE RADIAL MATRIX FI.EMENTS M( 2. Gl.l . FLF) 

L1 LI'~Ll I LF-1.1•1 Ll 
lOU .?27417537670 OJ .889731628800-04 600 
4no 5H6'l8?9n88nn nJ . 699674757600 03 7nn 
son .21?n27nll211l 03 .<!2.l3'l?667120 n3 son 
!JIPOLE RADIAL MATRIX ELEMENTS M( 2.GLI.GLF) 

1.1 LF·LI I LF~LI+I Ll 
300 .382486026370 03 Q46D7207412D-03 600 
400 .187819500500 03 .6448S7h40600-03 700 
son q9&?1?n551JO nJ 12569&862870 OJ soo 

LF·LI 1 
.45<Jl3653114D-03 
. 651176364867D-03 
.89741589775D-03 

LF~LI I 
.928278888050-03 
.832525735110-03 

.. 644610335070-03 

LF-LI • I 
.874244247210-03 
.46920UI8.S'I?[l H3 
qzo2869n52Rll-n3 

Lf,-LI •I 
310634197210 03 

.804976326420-03 

. 215168736510-03 

LF·Ll-1 LF·LI•l 
.Q3969928943D-03 .3280252U083D-03 
.85834882159D-03 .798o2032154D 03 
.67694'183365D-03 .!5641671225D-03 

LF-LI I 
.. 478312727110-03 

.640859137270-03 

.8478Q628093D-03 

LF=LI+I 
.88837931414D 03 

- .50012427689D 03 
.90'1698487530-03 

~ 
() 
c: 
1"1 
P1 
(!> 

~ 
(!> 

~ .... 
Ill ... ..... g 
.... 
0 
P1 

r: 
llo ..... 
Ill 
1-' 

~ ... 
1"1 ..... 
>I 

r;r;j .... 
i 
::l 
l"t 
I» 

N ..... 



,..... 
-1>­
N 

TEST RIIN 2 

'' ''' ''''' CALCI'LATION 
ETI r .9900Q9tll0t1E}\12 
ETF = • IOOOIHIOOOOE 1 (1,\ 

Of ELECTRIC MULTIPOLE RADIAL MATRIX ELEMENTS BY IIPWARU 
WNI . 2020000000E-Hl2 RM1 ~ . 5000000000E 102 LMIN .... o 
WNF .2oooooooonE102 RM2-= .lOOOOOOOOOE+04 LI\1AX- 750 

Ll 
0 

100 
200 
300 

Ll 
0 

100 
·200 
300 

Ll 
0 

100 
200 
300 

Ll 

LF-Ll 2 
0. 

.70718031346[) 05 
-. 126S67141231l 04 

. l'l814413S88Il 04 

LF~Ll ·2 
0. 
-. 18021499662fl 04 

. 1520591S492[1 04 

.3S125954397ll 05 

LF-Ll 2 
0. 

.17926607340(1 (14 

.1526900873SD-114 

.3248R929198D OS 

LF~LI-2 
0 0. 

100 .73043823552D-05 
zoo .12403481085D 04 
300 .l'l9056f\7025D-04 

PROCESSOR TIME IS 10.4 

Ql'AilR\IPOLF RADIAL MATRIX ELEMENTS M( J. FLI . Fl.!') 
LF Ll LF~LI12 Ll LF Ll 2 

o .155983901330 04 400 l~.l204~2692V 04 
.IR7R';flll6'!41l-fl4 .52868706696D-06 SOO .9TIS40471227r>-05 
.1711n203R9911 04 423>02I07S7D-05 60n nntr.4o92'111-ns 
.~SORR58.\.l60J) fl.) .12f)51PJ97912D 04 711\l 2lfJ788179270 04 

QIIAIIRIIPOLE RAlliAL MATRIX ELEMENTS M\ 1. FLI .GLF) 
LF L1 Ll'--·Ll +2 Ll LF 1.1 2 

n. .tnn5963142D-04 400 .91295887268D 05 
.. 1t29S71370lll 05 l872266572oD-04 SOO .1932393209'!0 04 
85h257<l7h4hll 05 . 18027Q55624D- 04 ono 2U.lR7608116U 04 

.1f)qR4.llf)llO?r' 04 .127QJ3q4640D 04 7110 S22172641JCJO 05 
Ql'AilR\'POLE RAfliAL MATRIX ELFMFNTS M( 3,GI.I,FLF) 

LF-1..1 LF-Lir2 Ll l.F~LI 2 
(I .107031006641) 04 400 .92h0022249JI)~05 

. .lJ771240000J) 05 . 1872f)720R.\7J) 114 .)Ort . l89h540030lll-04 

. R30 157b4684D OS . 17f)77R41)89fJO 04 600 ·. 20R I 08864Q40 04 

.1714543Sfl0311 04 .l2618842218fl 04 700 SR48J4053230 OS 
Ql'AflRlJPOLE RADIAL MATRIX ELEMENTS M( 3 .GLI .GLF) 

LF~l.l LI'·Ll12 Ll l.F~Ll-2 
0. 

.187420512851)-04 

. 171233S2410D-04 

.. 8S8075S9445D-fl5 

.t:\707S4Ih&7ll o4 4no .IRo<J772'l254U-n4 

.27746982511{1 06 .SOO .()00075337860 OS 

.3'l786437645D 05 600 718647l'lll'lD-OS 

.131772809261l 04 700 .2l'l64724365D-04 
SECONDS. 

RECURSION *t•***~*** 
LAMBDA 2 L1 NQ ~ 0 
IACC - II !.MilL ~Jno 

LF -Ll 
.4.11185302516() 05 

t68.'\85n53'l7n-04 
J747S870373D-04 

.2453b.l'l5594fl-05 

1..1' -I. I 
.1Rf.0.'\19Cl273D 04 
98926487.112() 05 

.8394911051320 OS 

.1957456112411 (14 

LF"LI 
.18(}049613521) 1)4 

.98783Cl97882D OS 

.8.11S8217736D-05 

. 19807627'l45D-04 

LF~LI 
- .43852375S40D-OS 
- .16499S83345D-04 

.179161067250-04 

.186875614880-05 

''"""" CALCULATION OF ELECTRIC MULTI POLE RADIAL MATRIX ELEMENTS BY BAND LINEAR EQUATIONS 
ETI ~ .'l'lOO'l'lOIOOE+02 WNI ~ .2020000000E1·02 RMI ~ .5000000000E•02 LMIN ~ 0 LAMBDA~ 2 
ETF .JOOOOOOOOOE+03 WNF ~ .200(1000000E>02 RM2 - .IOOOOOtHIOOE104 LMAJ( ~ 750 IACC ~ 0 

LINQ ~ I 
LMDL ~100 

Ll 
(I 

Inn 
200 
300 

Ll 
0 

100 
200 
300 

Ll 
() 

100 
200 
300 

Ll 

LF-LI 
0. 

.707181n8725D 05 

. 1265670o<J82D 04 

.198144042900 04 

LF-LI-2 
0. 

.180215204'l2D-04 

.IS205935400D-04 

.35126095179D-OS 

LF~LI- 2 
0, 

.17'l26628165D-04 

.15269028643D-04 

.32489069995D-05 

LF~LI-2 
0 0. 

100 .73043960901D-05 
200 - .12403467944D-04 
300 .199056577280-04 

PROCESSOR TIME IS 42.9 

QUADRUPOLE RADIAL MATRIX ELEMENTS M( 3 .FLI .FLF) 
LF~LI LF~LI•2 Ll J.f.LI 2 

0. . 1SS'l8390141fl 04 400 . 18320444610D-04 
.18784')996560 04 . 5287077202..111 Oh ';00 1)11)403758950-05 
.171161790611) 04 4235071)943311 us 6011 7..1271782459D-05 
. 88088179452() 115 . l2'l.'\'ll..l820R1l 04 7011 . 2197884200SD-04 

Q\lAilRUPOLE RAil! AI. MATRIX ELEMENT~ Ml .1. FL I ,GLF) 
LF-Ll I.F-l.l•2 Ll Ll'-1.1 2 

0. .I1192S9n313111 04 4tltJ .912<>57f>4933D-05 
.312'l5R'lS98SD-flS .18722634493fl 04 SOO . l'l323'li7670D-04 

- .8562S4216181l 05 IR027Rb6SSJD 04 f\00 .20.187o86f\'l5D 04 
. 169842S78631l 04 . 127'l31823361l 04 70n o22168'l'l733fl OS 

Ql'ADRlii'OLE RADIAL MATRIX ELEMENTS M( 3.GLI,FLF) 
LF·· L I LF~L112 Ll LF-LI 2 

0 lll71lll00653D 114 4!10 q2661tlllllll4D 05 
.337714283114[1 0'; .l872'l68'lS<)IID 04 SOU 1896538S86'lD 1!4 
.8301S388600[l 0.'\ .179777518021) 04 6110 208I086506<)D 1)4 
. 17l4537384<Jfl 04 l2618n2'lRSf\JI-04 700 58483040831D OS 

Q\IAilR\IPOI.E RAil I AI. MATRIX EI.FMENTS M( .1. GLI . GLI') 
U',J.I 

0. 
.1874203'l246D 04 
.17123327571D-04 
.85807155504D-05 

SECONDS. 

LF-l.l • 2 Ll LF~Ll 2 
.15711754167SD 04 4011 .18S'l7721171D 04 
.27749048397[1-06 500 .'l0607438444D-OS 
.3'l787026423D OS 600 .71864860666D 05 
.13177421243D-04 700 .21964748445D 04 

LF~LI 
.430860033300-05 

-.168586976270-04 
-.174761365790-04 

.245307778900-0S 

LF~LI 
. 186050841 'l2D- 04 
.98924485850D-05 
.83'l53034377D-05 
. l95754113'l5D-04 

LF~LI 
. l89(14855250D-04 
.987810960030-0S 
.831o224784'lD-05 
. 198084784030-04 

LF~LI 
.438S3076421D-05 

-. l64'l'l715S8'lD-04 
. 17916372'l60D-04 
.18681'l43151D-05 

LF=-LI •·2 
. 178S8317835D-04 
. 103S2880562D-04 

- .'l3407974710D-05 
-. 1528671113'lD-04 

LF~LI +2 
.l'l757886206D-07 
.146'l8395357D-04 
.147625'l4213D-04 
.83694953330D-05 

u-~Lt+2 

.5490155109SD-08 

. l434008'l132D-04 

. 152IO'li8607D-04 
- .79229096273D-05 

LF~LI+2 
.181678199120-04 
.10318712831D-04 
.93273069648D-05 
.15734S26963D-04 

Lf,Lf•2 
. 178S8bS2394D-04 
. 103S3692249D (14 
.93387'l65810D-05 
. 1S281715387D-04 

LF~LI >2 
.1'l251587676D-07 

-. 14699623742D-04 
-.14765622346D-04 

.83619347265D-05 

LF~L1+2 
- .. 4'1837254'1280-08 

.14341317826D-04 

.15213'l47493D-04 

.7'l153471611D-05 

LF~LI+2 
.18168154517D-04 
.1031952462'lD-04 

- .93253058087D-05 
-.15729530SS5D-04 

N 
N 

t"' 

0 

~ 
0 ..... 

i 
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TEST RliN 3 

**''*'"" CALCt'LATION OF ELH'TRI(' M\II.TIPOLI; RADIAL MATRIX ELEMENTS BY UPWARD 
ETI ~ .1000000tlOQE;03 WNI . 200HtHI<HHJ<>r- >U? RMI .50()0000000E+02 LMIN 0 
ETF ~ . QQ009900<19E >02 WNF . 202UOOnoooF • 02 RM2 ~ . l<IOOU0tlOOOE+04 LMAX 750 

Ll 
0 

100 
zoo 
300 

Ll 
0 

100 
200 
300 

Ll 

Lf~LI -2 
o. 

.352700584730-06 

.3821969J7001J-05 

.12'>4134'>5380-04 

LF-tl 2 
0. 

.187762316670-04 

.180102<:162221) 04 

.1301R!00202D 04 

LF·LI -2 

"· . 186842QJSQ50 04 
.!80766P72P00 04 
. 1275JIQ623DD 04 

LF ~Ll 2 
o o. 

100 .58642tl81380 D6 
200 .407438153580 OS 
300 .128536298450-04 

PROCESSOR TIME IS 10 . 

QliAIIRI'POLF RAlliAL MATRIX ELEMENTS M( -3 .FLI.FLF) 
LF-LI LF-LI·1 1.1 LF~LI -2 

0. . lf.J(,'II520.141) 04 400 .1815209903JD--04 
.187850026870-04 h80880H85191) u~ 500 .106481564260-04 
.1711618527(10 04 .1265561182.){) 04 600 .88727159'1250-05 
.88088280054{) 05 .2UD21U9602411 04 700 1578!1375430-04 

QllAHRt1POLE RAIJIAL MATRIX ELEMENTS M( 3 .FLI .GLF) 
LF~Ll LF--!.1 •2 Ll LF-LI-2 

0. .<J84422'-''114ol> n;, 4on .li>I28393515D-06 
13835660-0S . 18t7Jl21173D n4 son .1448I65D0740-D4 
548tl1420-05 15<>625321>f>80 114 oon 150178371730-04 

1453886590-04 .J211551PI49P H5 7Pn .791887413970~05 
QJ!APRUI'OU RA!lll\l.MATRIX f!LFMFNTS M( 3.GLI.FLF) 

l.Fd,i Ll'~Ll •2 Ll LF~LI-2 
n . 100670551150 04 400 .250675355810-06 

li2958Sl24hD OS .181772777820-04 50tl -.141232784440-04 
.856255131010 OS 150091588680-04 6UO -.154441614080-04 

169842726701> 04 -.303994216920 us 700 .729198390560-05 
QtiADRUPOLE RADIAL MATRIX ELEMENTS M( 3 .GLI .GLF) 
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SOLVING LARGE SETS OF COUPLED EQUATIONS ITERATIVELY BY VECTOR 
PROCESSING ON TilE CYBER 205 COMPUTER 

L.D. TOLSMA 
Department of Physics, Eindhoven University of Technology, Eindlwven, The Netherlands 

The set of coupled linear second-order differential equations which has to be solved for the quantum-mechanical description 
of inelastic scattering of atomic and nuclear particles can be rewritten as an equivalent set of coupled integral equations. This 
set can be solved iteratively. A concept nf vectorization of coupled-channel Fortran programs, based upon this integral method, 
is presented for the use of the Cyber 205 computer. 

I. lnlroduction 

In general, the quantum-mechanical description 
of inelastic scattering of atomic and nuclear par­
ticles leads to a set of coupled second-order dif­
ferential equations of the partial wave radial func­
tions .pJ1 of the following form: 

[ 
d2 
-2+k}­
dr 

= L Vft;n·(r).pJ-r(r), 
I'/' 

(1) 

for a spinless projectile. Here J, I and I denote the 
total angular momentum, the orbital angular 
momentum and the spin of the target with excita­
tion energy t 1 , respectively. In eq. (1) V0(r) is the 
spherical part of the interaction potential. The 
coupling matrix at the right-hand side contains the 
contribution of the multipole expansion of the 
interaction potential. 

To obtain the solutions for .P:,( r ), two boundary 
conditions have to be fulfilled. At the origin, they 
must vanish and for large distances they must be 
related to an ingoing partial wave in the entrance 
channel plus outgoing partial waves in all relevant 
exit channels. The precise asymptotic form defines 
a scattering matrix. 

In conventional coupled-channel calculations, 
the set (1) has to be solved as many times as the 
dimension N of the set for each J value in order 

to satisfy the boundary conditions. Especially for 
large systems this procedure is time consuming 
and hardly feasible. In addition it generates a 
complete N X N scattering matrix, while in the 
physics context of a case often only a restricted 
number of columns of this matrix is needed, namely 
those elements which connect the entrance channel 
to all the experimentally relevant exit channels. 
This has been the motivation to study iteration 
methods for which the solutions ar:e obtained di­
rectly without the need for solving the set (1) N 
times. The calculation of the solutions has been 
based upon the use of piecewise analytic reference 
solutions. This will be explained in the next sec­
tion. 

A concept of vectorization of coupled-channel 
Fortran programs, based upon the method to be 
explained, is presented for the use on the Cyber 
205 computer. Finally, some results will be men­
tioned. 

2. Concise description of the calculation procedure 

Considering some interval of the integration 
range and introducing a reference potential urr 
for that interval, the SchrOdinger equation (1) in 
compact notation [1} is 

[dd:2 +k(-lf;f(r)].Pdr)= jtl Jt;1(r)>f'ir), 

i = 1, 2, ... , N. (2) 

0010-4655/85/$03.30 ©Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

- 145 -
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Several forms of the reference potential have been 
considered, depending on the location on the in­
tegration range: 
- Constant reference potential [2.3] 

(3a) 

where V is introduced as the average value of the 
diagonal potential for the interval. The reference 
solutions are the trigonometric and exponential 
functions. 
- Linear reference potential [2] 

(3b) 

where V is also the average potential over the 
interval. and r is the midpoint. The reference 
solutions are the Airy functions which can be 
efficiently evaluated numerically, as shown by 
Gordon (2]. 
- Coulomb reference potential 

(3c) 

with the wave number k and Sommerfeld parame­
ter 1). The reference solutions are the regular and 
irregular Coulomb wave functions. 
If the right-hand side of eq. (2) is replaced by zero, 
each of the resulting decoupled equations has two 
linearly independent solutions: 
1. The regular solution G1( r ). This is defined to 

vanish at the origin and by the asymptotic form 

(4a) 

2. The irregular outgoing wave solution Gt(r). 
This is defined by the asymptotic form 

Gt(r) - (l/~)Ht(rr1 ; k 1r). (4b) 
r--+ 'X: 

The functions H- and H+ are the ingoing and 
outgoing Coulomb waves, respectively. They are 
given in terms of the well-known regular and 
irregular Coulomb wave functions. 

The solutions (4) can be expressed in terms of 
the linearly independent reference solutions A(r) 
and B(r), which belong to a specific form of the 
reference potential (3). 

G,(r) A1(r)a 1 +Mr)b1 (Sa) 

and 

(5b) 

The constant coefficients a1, b1 and a;, bt are 
determined by conditions of continuity at the in­
terval boundaries. 

Subsequently the Green's functions can be con­
structed and set (2) can be rewritten as an equiv­
alent set of N coupled integral equations. With an 
ingoing wave in the entrance channel k, this gives 

1/>7(r) G,(r{T81k-{" G7(r') 

X E W,1(r'),&J(r')dr'] 
j=l 

-G,+(r)[fu'G,(r') 1~1 W.i''),&J(r')drl 

(6a) 

Equivalently, 

1/-~(r) G,(r)c1(r) G,+(r)c,+(r), (6b) 

with the boundary conditions 

c1(ao)= (2/i)8,k 

and 

ct(O) = 0. 

(7a) 

(7b) 

The asymptotic value of the outgoing coefficients 
c;'(r) are related to the S-matrix elements. 

The set of coupled integral eqs. (6) can be 
solved by iteration. In this paper only an 
inward-outward iteration scheme has been ap­
plied [4,5]. In this scheme, the following set of 
coupled integral equations for the amplitudes c, ( r) 
and c,+(r) are considered: 

N 

X L W,1(r')G1(r')c/r')dr' 
j=l 

. N 

+ {"G,+(r') L W,1(r')G/(r')c
1
+(r')dr', 

r }=1 

(8a) 
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N 

G1(r') L, W;/r')Gj(r')c/r')dr' 
j-1 

r N -1 G,(r') L, W;,(r')G,+(r')c!(r')dr', 
0 }-1 

fori=1,2, ... , N. (8b) 

To solve these equations we use the relatively slow 
variation of the amplitudes c1( r) and ct (r) with 
respect to the rapid oscillations of the functions 
G,(r) and G((r) in the classically allowed region. 
The r dependence of the amplitudes is weak as 
long as the difference between the true potential 
and the reference potential is small. Thus, a choice 
of step size has to be made so that sm~ll variations 
of c,(r) and c,-(r) over an interval can be ne­
glected. 

Expressing G,(r) and Gt(r) in reference solu­
tions, integrals are obtained of the form 

(9) 

With the reference solutions which belong to the 
reference potentials (3), this type of integral can be 
evaluated analytically. Even in the case applying 
the Coulomb potential as a reference potential the 
corresponding integrals can be evaluated effi­
ciently by making use of recursion relations [6]. 

3. Vector processing on the Cyber 205 

The most computer-time consuming parts are 
the determination of the solutions G. and G+ the 
evaluation of the integrals (9) in 'the co~;ling 

all an a13 al4 

a21 a22 a23 a2s a26 a21 

a31 a32 a33 a34 a36 a31 a3s 

a41 a43 a44 a47 a <IS 

as2 ass as6 

a62 a 53 a6s a66 a67 

an a73 a14 a16 a77 a18 

as3 a84 as1 Ggg 

a94 a9s 

matrix and especially the iteration process for c1 

and , depending upon the number of iterations 
that are needed. These parts of our Fortran pro­
gram have been coded directlyin the vector For­
tran offered by the Cyber 205 computer system. 
To get optimal performance special attention has 
been paid to the data structure being as contigu­
ous as possible, which is the main demand in 
vector processing. However, the vector processing 
possibilities are highly determined by the structure 
of the coupling matrix. For large systems of cou­
pled equations with N for instance equal to 
hundred or even a few hundred the coupling ma­
trix is sparse. The structure of sparsity, i.e., the 
number and placements of zeros, depends on the 
physical model being studied. Due to this sparsity 
contiguity can only be obtained by the application 
of "data motion" primitives, the so-called Q8-
routines [7]. See also the appendix. 

The vector processing of the above-mentioned 
time consuming parts will be briefly explained. 

The determination of the solutions G1 and G;' 
contains the determination of the reference solu­
tions and the coefficients a,, b, and a:, b,+. The 
calculation of these coefficients is a recursive pro­
cess. Therefore, the maximum vector ·length can 
only be N. However, the calculation of the refer­
ence solutions can be performed in blocks with a 
vector length of N X K, where K is a number of 
integration steps. This has not yet been done by 
us. 

The evaluation of the integrals (9) in the cou­
pling matrix will be illustrated from a simple ex­
ample for which the coupling matrix pictorially 
looks like 

a49 

(10) 
as9 

a99 

aN-2N-1 

aN-lN-1 aN-IN 

aN N~1 aNN 
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where the explicit representation of the individual 
zeros is omitted. 

The mathematical expressions of the diagonal 
and non-diagonal integrals are different. The diag­
onal integrals can be obtained by using in the 
expressions vector operations of length N. Since 
the coupling matrix is symmetric, only the left­
lower part has to be considered. The number of 
non-zero elements in this part is supposed to be 
M. With the following row index vector for the 
lower non-diagonal coupling matrix elements 

(2 3 4 3 56 7 4 6 7 8 7 8 9 6 7 8 9 ... N- 1 N] 

(11) 

and the corresponding column index vector 

[111222233334445678 ... N 2N-1] 

(12) 

the reference solutions in (5) are gathered into 
vectors with length M or M X K. The non-diag­
onal integrals can now be evaluated by means of 
simple vector operations. Subsequently, the diago-

an 
a21 

a3l 
a41 

a;z 

a62 

an 

as3 

a94 

au aB a14 

a22 a23 a2s az6 
a32 a33 a34 a36 

a43 a44 a47 a48 

a;s as6 

a63 a65 a66 a67 

an a,4 a76 an 
a84 as? ass as9 
a9s a99 

aN-lN-2 aN-1N-1 aN-1N 

aNN-1 aNN 

The iteration process for c1(r) and ct(r) is 
recursive. Therefore the next considerations hold 
only for one integration step. The vector length of 
these coefficients is N. With the following column 
index vector (see (15)) 

[1 1 1 1 2 2 2 3 4 ... 2 2 2 3 5 3 3 4 8 .. . 

333465479 ... 454706680 ... ] (16) 

nal and non-diagonal integrals are merged and a 
sequence number is attached to the matrix ele­
ments in the following way 

[1(11) 2(21) 3(31) 4(41) 5(22) 6(32) 7(52) 

8(62) 9(72) 10(33) 11(43) 12(63) 13(73) 14(83) 

15(44) 16(74} 17(84) 18(94) ... ]. (13) 

This sequence is reordered and supplemented with 
the corresponding sequence number belonging to 
the elements of the .right-upper part of the matrix 
according to 

[1 2 3 4 7 8 91418 ... 2 5 61119121317 26 ... 

3 6 10 15 20 20 16 24 27 ... 
47111602122250 ... ]. (14) 

The zeros in this and the subsequent sequence (16) 
correspond to inactive elements, which will be 
suppressed by the use of control vectors. By 
gathering the calculated integrals according to se­
quence (14), all the integrals of the coupling ma­
trix are obtained. Pictorially the matrix (10) looks 
now like 

a27 

a37 a3s 

a49 

a7s (15) 

they are gathered to a vector length equals the 
length of the sequence (14) or matrix (15). The 
multiplication of the matrices and vectors in (8) 
can now be performed. The new coefficients are 
obtained by the addition of parts with a length N 
of the result vector of this multiplication. The 
construction of the original coupling matrix in 
form (15) dispenses with the necessity for the use 
of the data motion primitive Q8SSUM. 
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4. Results 

To analyse experimental data, the set (1) has to 
be solved in general for some hundreds of differ­
ent J-values. Here the results will be mentioned of 
calculations for one arbitrary J-value of two dis­
tinct heavy ion nuclear collision test cases. A spar­
sity factor, i.e. the number of zeros in the coupling 
matrix compared to the total number of matrix 
elements can be given by 

(17) 

In table 1 the processor time in seconds for the 
calculation of the solutions G1 and Gt, the in­
tegrals in the coupling matrix and the iteration 
process for c1 and ct, beside the overhead and 
total-time, are shown for both test cases. For each 
test case the processor times for a highly optimized 
scalar mode can be compared with a vector mode 
of the program. 
The table shows that the gain of the vector mode 
compared to the scalar mode for the solutions G1 

and Gt is restricted. The main reason is that for a 
part of the integration range a call to the Airy 
function subroutine has to be done which is not 
yet vectorized. In addition, this is a recursive pro­
cess which allows only a maximum vector length 
of N. This is also the case with the iteration 
process, although a high sparsity factor favours the 
vector mode. However, the most important speed­
up comes from the evaluation of the integrals in 
the coupling matrix. The table shows that for this 
part the explained vector algorithm is about 6 
times faster than the original scalar algorithm, 
mainly due to the possibility of choosing here a 
maximum vector length of M X K. This results in 
a overall speedup of about a factor of 2 to 2.5. 

Table 1 
Processor times in seconds 

Mode ,Sol. G, o+ Integrals Iteration Overhead Total-time 

Test case A with N = 64, M = 516, K = 10 and Sf= 0.73 
scalar 2.286 11.283 7.621 1.341 22.531 
vector 1.861 2.107 6.448 1.361 11.777 

Test case B with N = 169, M = 588, K = 10 and Sf= 0.95 
scalar 5.407 HD09 9.215 0.986 33.917 
vector 4.803 2.788 5.233 1.073 13.897 
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Appendix 

The Q8 intrinsic functions Q8VGA THR, 
Q8VMERG, QSVCTRL, Q8SNCT, have been ap­
plied in our code. They are clearly described in the 
Fortran 200 Manual (chap. 10) [7]. Here a brief 
explanation of Q8VGA THR will be given, which 
is the most used Q8-function in our program. A 
call looks like 

R(1; M) QSVGATHR(S(l; N), 1(1; M); 

R(l; M)). 

where S is the source, I the index and R the result 
vector, respectively. Each element of the result 
vector corresponds to an element in the index 
vector. This means that the index vector has to be 
as long as the result vector. The elements in the 
index vector indicate which element of the source 
vector are assigned to the corresponding elements 
in the result vector. This is illustrated below, where 
the function is applied to gather the reference 
solution G1 by means of the index vector (11). 

S-vector [ G1 G2 G3 G4 Gs G6 G7 Gs G9 •.. ], 

!-vector [2 3 4 3 5 6 7 4 6 7 8 7 8 9 ... ], 

R-vector [ G2 G3 G4 G3 G5 G6 G7 G4 G6 G7 

G8 G7 G8 G9 ... ]. 
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E 2 and E 4 transition moments in 1~ and 167Ert 
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Coulomb excitation by a particles is used to determine reduced E2 and E4 transition matrix elements 
between ground~band rotational states in 163Dy and 167Er. The following results are obtained for 163Dy: 
(712 S12IIM(E2)Ii512 5/2) 3.83±0.10 eb; (912 512IIM(E2)II512 5/2) 2.31±0.02 eb; 
(11/2 512IIM(E4)Ii5/2 5/2) = o.60!g:~ e b', and for '"Er: (912 712IIM(E2)Ii7/2 7/2) 4.38±0.08 
eb; (11/2 712IIM(E2)Ii712 7/2) = 2.24±0.01 el>; (13/2 712IIM(E4)!1712 
7/2) 0.17!g:Ji e b'. Quadrupole and hexadecapole moments deduced from these values are compared with 
those of neighboring even· A nuclei. 

[
NUCLEAR REACTIONS 16"Dy(a,a' ), 167Er(<>,a'), E ;12 MeV, measured u(Ea'•] 

160°). Deduced E2 and E4 matrix elementa. 

I. INTRODUCTION 

In recent years much experimental information 
has become available on quadrupole and hexadeca­
pole moments of even-A nuclei in both the rare 
earth and actinide regions of the Periodic Table. 
In most of these studies a particles of sufficiently 
low energy have been used to Coulomb excite the 
a• and 4• levels of the ground-state rotational 
band. The reduced E2 and E4 transition matrix 
elements, (2.IIM(E2)\IO+) and (4+IIM(E4)IIO+), are 
determined by comparing the experimental exci­
tation probabilities of the 2 + and 4 + rotational 
states with theoretical values calculated within 

of 16'Dy and '""E r with 12 MeV a-particles from 
the University of Frankfurt Van de Graaff accel­
erator. The elastically and inelastically scat­
tered projectiles were detected at ~=160°With 

the framework of a suitable theory of multiple 
Coulomb excitation. 

The purpose of the present experiment is to ex­
tend the precise Coulomb excitation stndies per­
formed in this laboratory•-• and elsewhere•-u to 
odd-A nuclei. Owing to the higher-level density, 
generally, more ground-band levels are populated 
by Coulomb excitation with a particles than In the 
neighboring even nuclei. Thus one is enabled to 
determine additional E2 matrix elements and 
verify the validity of the nuclear model used in 
the analyslx. 

From the observed excitation probabilities of 
the various ground-band levels, the intrinsic 
quadrupole and hexadecapole moments are de­
termined and compared with those of the neigh­
boring even-A isotopes. Preliminary results 
were reported earlier .'4 

II. EXPERIMENTAL PROCEDURE 

The experiments were performed by bombard­
ing thin (10-30 SJg/cm2) enriched (>91%) targets 

17 

163 Dy(ct,ct') 

8,= 160° 

E,t 12 MeV 

10' '-' ----'------''-----'---\i'!.:J,. 
2550 2600 2650 

CHANNEL NUMBER 

FIG. 1. Spectrum of 12 MeV a-particles scattered 
from 163Dy. 

75 
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FIG. 2. Spectrum of 12 MeV a-particles scattered 
from 161Er. 

two cooled Si surface-barrier detectors posi­
ti.,ned symmetrically to the beam direction. A 
peak-to-background ratio of better than 30 000:1 
and an energy resolution of -21 keV full width at 

half maximum (FWHM) have been achieved. Typ­
ical spectra are shown in Figs. 1 and 2. 

The excitation cross section for the first excited 
state of the ground band was determined by means 
of a computer cnde which separated the respec­
tive peak from the elastic group In a self-consis­
tent Iterative procedure assuming identical line 
shapes. The intensities were simultaneously cor­
rected for known impurities in the target material, 
At higher excitation energies a fourth-order poly­
nomial fit was used to separate the peaks from 
the background. The excitation probabilities of 
the f, 1f +, and 'f• levels in '""Er were deter­
mined to an accuracy of 3.5%, 1.3%, and 8. 7\t, 
respectively. Similar uncertainties have been 
observed in 103Dy. 

III. ANALYSIS AND DISCUSSION 

The reduced E2 and E4 transition matrix ele­
ments were obtained from the measured excita­
tion probabilities by using both the quantum me­
chanical coupled-channels code JUPIOOR15 and 
tbe semiclassical Winther-de Boer multiple Cou­
lomb excitation code.'" 'lbe calcutations show 

TABLE I. Results of the Coriolis calculation for 16'Er. Coriolis parameters: E:n= SOOo83 
±14.11 keV, E~n= 733.82%44.11 !reV, Eln=-143.40±1.59 !reV, /(!./26= 9.11±0.03 !reV, 
A 3n 5; 2=-10.81"'4.69keV, A 5t 2 u 2=-5.1H1.77 keV. 

Level energy 
Spin (keV) 

I K' (Nn,A) Calc. Exp. (633) 

1 r (633) -2.0 0.0 0.0009 0.0154 0.9999 

• 81.5 79.3 0.0018 0.0234 0.9997 

' 11 181.4 177.6 0.0029 0.0304 0.9995 

' 13 299.4 293.7 0.0042 0.0371 0.9993 T 
!I 435.6 432.4 0.0057 0.0436 0.9990 • 
1! 589.9 592.0 0,0073 0.0500 0.9987 T 
1! 762.3 772.0 0.0093 0.0564 0.9994 
2 

t r (651) 532.0 532.0 1.0000 

{ 578.0 574.5 0.9948 0.1021 

' 638.4 641.7 0.9880 0.1547 -0.0033 T 
• 716.2 0.9799 0.1991 -o.0064 y 

11 811.4 0.9711 0.2383 -0.0101 T 

1 r (642) 816.0 812.5 -0.1021 0.9948 

i 883.3 874.0 -0.1547 0.9878 -0.0151 

~ 969.8 933.0 -0.1992 0.9797 -o.0225 

11 1075.2 -0.2385 0.9707 -o.0289 

' 13 1200.0 1205.0 -0.2735 0.9812 -0.0345 

' 
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TABLE D. Reduced matrix elements 
(11K1iiM(E;I.)iii1K1) In units of eb''' for levels populated 
by Coulomb excitation in the 163rJyP. ,0! 1

) and 167Er(a ,a1
) 

Nactions. 

'"ny 
(t f8M{E2lllf 3.83±0.10 

(t tliM(E2)ilj 2.31±0.02 

<Y j~M(E4)1!i t>=o.so±t!i 

(t fiM(E2)it f)=4.38±0.08 

<¥ fliM(E2lllf 2.24±0.01 

(~ fliM(E4>IIt 0.77±X:~l 

<t j-IIM(E2)ilf f>= 0.49±0.03 

(f tiiM(E2)it t>=0.42±0,Q2 

<t tiiM(E2lllf f>=0.53±0,03 

<t tiiM(E2)11f {)=0.44±0.04 

<¥ YIIM(E2)IIt t>=0.70±0,02 

that the hexadecapole moment can be determined 
from the cross section of the third excited state, 
while its influence on the first and second ex­
cited states is negligibly small since the excita­
tion of the latter two levels is governed by E2 
transitions. For '"'Er two E2 matriX elements, 
<HIIM(E2lll}}) and {lftiM(E2llltf), were de­
termined from the excitation of the t and 't levels 

· by means of the quantum mechanical coupled­
channels code. The ratio of these matriX ele­
ments was compared with the theoretical model 
predictions which are needed to calculate the en­
tire E2 matriX. For both nuclei studied here, it 

appears that the reduced transition probabilities 
are well described by the rigid-rotor model, 
without Coriolis mixing. Whether or not band 
m!Xtng can be neglected was tnvestigated in a 
three-band Coriolts calculation tn which level en­
ergies were fitted to the experimental values by 
varying band-head energies, rotational parameter, 
and coupling strengths. The result of such a cal­
culation, which included levels of the K ~t•, ·f, 
and %• bands in 167Er, is shown in Table I. AB 
can be seen, the coupling between the ground­
state band and the higher bands is rather weak. 
A previously assigned K band based on a lev-
el at 592 keV in "''Er was not included in our 
Coriolis calculations, since Tveter et al ,'7 have 
found that the 't+ state at 711 keV is the band head 
of a Y-vibrational band. This assignment is sup­
ported by the strong excitation of the 711 keV lev­
el in the present experiment. Similar results are 
obtained for the K ~~-, f, and f bands in 16'Dy. 

The influence of quantum mechanical effects on 
the cross sections was evaluated by calculating 
the excitation probabilities in terms of the E2 
matrix with both the semiclassical and quantum 
mechanical coupled-channels code. The quanta! 
effects reduced the differential cross sections of 
the r. If+. and lf+ levels in 1"'Er by approximate­
ly U>%, 1.7%, and 6,5%, respectively. These 
quantum mechanical corrections were then ap­
plied to the differential cross sections' calculated 
with the semiclassical code as a function of the 
E4 matrix. The reduction of the excitation prob­
ability of the lf+ state by 6.5% was taken to be 
independent of the magnitude of the ('\;'tijM(E4lllft) 
matrix element. This is justified on the basis of 
the results shown in Fig. 2 of Ref. 1. 

The E2 and E4 matrix elements obtained from 
the present study are listed in Table IL The sign 

TABLE m. of the quadrupole and hexadecapole moments of 16:.:-t...., ..nd 161Er 
with those even-A nuclei. 

Q21)(b) Q., (b') (K'=K,.,.±2iM(E2;±2)iK,.c) (eb) 

'Glny 7.36±0,03 0.64±0.24 
{Ref.6) 

t•3Dy 7.29±0.13 1.02±Y:M 

u•oy 7.54±0.04 o.M±8:H 
(Ref. I) 

'"Er 7.67±0.03 0.52±a:ij 0.256±0.005 (K' 2) 
(Refs. 1 and 4) 

mEr 7.60±0.10 1.35±3;1: 0.248±0.007 (K'= Y> 0.249±0,012 (K' = t) 
168Er 7.61±0.06 o.47±8:H 0.255±0.005 {K' 2) 
{Refs, 6 and 
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of the E4 matrix element was taken to be positive, 
in analogy to tbe even-A neighboring nuclei. Also 
shown are interband matrix elements for "''Er 
which have been determined from the measured 
cross sections by means of semiclassical calcu­
lations assuming identical intrinsic quadrupole 
moments• In the K =~·, f, and 'f rotational 
bands. The E2 matrix elements obtained are 
found to be in good agreement with previous mea­
surements .t• 

Intrinsic quadrupole and hexadecapole moments 
derived from the measured reduced E2 and E4 
matrix elements are compared with those of the 
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Abstract: The i ntri ns i c quadrupo 1 e moment of 
1 "Lu has beeri determined by Coulomb excitation 
with a-particles to be 6.98 ± 0.10 b. Evidence 
for a new level at approximately 578 keV with 
presumably collective structure is presented. 

The electromagnetic properties of 175lu are 
of much current interest s i nee it has been pro­
posed to use the ~-decay of its K,l" = 7,7-
ground state to 176Hf (Tl/2 3.6x 1010 y) as a 
cosmic chronometer for s-process nucleosynthesis 
(see e.g. [11 and references cited therein). The 
ground-state decay, however, is complicated by 
the K,I" = 0,1- isomeric state at 127 keV which 
decays to 175Hf with a half 1 ife of only 3.68 hr. 
If, at stellar temperatures, this short-lived 
isomer is linked to the ground state by electro­
magnetic interaction, then the total half life 
aaainst a-decay will be considerably smaller than 
the known ~round-state value and the applicabi-
1 ity of 17 Lu as cosmic c 1 ock may become ques­
tionable. In order to make estimates possible to 
what extent the isomer can be excited, we have 
initiated a general study of the electromagnetic 
properties of 1 76Lu, part of which is the precise 
determination of its intrinsic quadrupole moment 
reported in this c011111unication. 

The experiment was performed by exposing 
thin {<10 119/cm2

), isotopically pure 175 Lu tar­
gets to a-particle beams with energies of 9.5, 
13.5 and 14.0 MeV obtained from the University of 
Frankfurt Van de Graaff accelerator. The targets 
were fabricated using the Karlsruhe isotope se­
parator. Elastically and inelastically scattered 

1 This Short Note has already appeared in Vol. 309 No. 3 ( 1983) 
pp. 275-276 but unfortunately lhe list of authors was not com­
plete 

a-projectiles were detected by two cooled and 
collimated Si surface-barrier detectors position­
ed at ±164° with respect to the beam direction. 
An energy resolution of typically 22 keV (FWHM) 
was achieved. At the beam energy of 13.5 MeV two 
separate measurements were performed and, hence, 
a total of 8 spectra was obtained. A representa­
tive spectrum measured at 13.5 MeV is shown in 
Fig. 1. This spectrum shows excitati-on of the 
ground band up to and including the to- state, 
with an additional peak seen at 578 keV (marked 
by "?"). This latter group is probably due to a 
collective 17 'Lu level which is reported here for 
the first time. Since the intensity of this peak 
strongly decreases with decreasing projectile 
energy and, moreover, its position in the spec­
trum is independent of the projectile energy, it 
is most unlikely that this peak is caused by a 
target contaminant. 

The excitation cross section of the a- state 
was obtained relative to the elastic-scattering 
strength by using a computer code that separated 
the a- and 7- peaks in an iterative, selfconsis­
tent procedure assuming identica 1 1 i ne shapes. 
The intensities of the other groups were obtained 
by fitting third-order polynomials to the back­
ground below and above each peak. 

To deduce the intrinsic quadrupole moment 
from the measured excitation probabilities, semi­
classical Coulomb-excitation cross sections were 
calculated using the Winther-de Boer code [2]. 
All E2 matrix elements which connect the 7-, a-, 
:r and 10- levels were included in these calcula­
tions, with the rigid-rotor fonnula [3] used to 
relate the reduced matrix elements to the intrin­
sic quadrupole moment Q0 , 

<lfKjjM(E2)jjliK> ; -./!,..(2-1
1
-.+-1)_5_/_16-, {I;K20jlfK)eQ

0
• 
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Fig. 1: Spectrum of a-particles scattered elasti­
cally and inelastically from a 176Lu target. Pro­
jectile energy Ea = 13.5 MeV, 81ab = 164°. The 
group labelled "?" (Eexc ~ 578 keV) is presumably 
due to a collective state in 176Lu reported here 
for the first time. 

The quadrupole moment Q0 was derived by adjusting 
the entire E2 matrix to fit the measured excita­
tion probability of the s- level. The E2 matrix 
obtained in this way was found to reproduce also 
the experimental excitation cross sections of the 
9- and w- levels within their experimental un­
certainties. This result justifies in turn the 
application of the ri~id-rotor model to describe 
the lowest states of 76 Lu. 

Several corrections were applied to the semi­
classical calculations just described, the most 
important of which is due to quantal effects. 
This correction was evaluated by calculating the 
excitation cross sections with a quantum-mechani­
cal coupled-channels code [4] and comparing the 
results to the semi-classical calculations. Quan­
tal effects were found to enhance the quadrupole 
moment deduced from the excitation probability of 
the s- state measured at 13.5 MeV by 1.4%. Fur­
ther corrections which are due to atomic screen­
ing, vacuum polarization and dipole polarization 
of the target nucleus have been applied following 
the prescription given in ref. [5]. The sum of 
these corrections, all of which act in the same 
direction, reduce the quadrupo 1 e moment by "" 1. 1% 
to 1.4% depending on the projectile energy. The 
E4 excitation, however, has been neglected as it 
has virtually no effect ( < 0.1%) on the quadrupole 
moment deduced, assuming an either positive or 
negative intrinsic hexadecapole moment as found in 
the neighbouring 1 76 Yb and 176Hf nuclei, respecti­
vely [6,7]. 

Table 1 shows the results for the intrinsic 
quadrupole moment Q obtained from the individual 
measurements perfo~ed at different bombarding 
energies, together with their statistical errors. 
The sign of Q

0 
was chosen to be positive accord-

J. Gerl et al.: Quadrupole Moment of 176Lu 

ing to the prolate deformation observed in this 
mass region. The result obtained at the highest 
projectile energy (14.0 MeV) is seen to be con­
siderably smaller than the values deduced at 
lower bombarding energies. This fact is attri­
buted to the onset of interference effects bet­
ween the Coulomb and nuclear interactions. Also 
included in Table 1 is the weighted average <Q

0
> 

Table 1: Intrinsic quadrupole moment Q of 1 
?GLu 

as derived from the individua9. Coulomb­
excitation measurements performed at 
different bombarding energies and the 
resulting average value <Q

0
> 

(MeV) Qo (b) <Qo> (b) 

9. 5 6.99 ± 0.09} 
13.5 6.94 ± 0.05 6.98 0.10 

7.02 ± 0.06 
14.0 6.69 ± 0.08 

obtained from the measurements at 9.5 and 13.5 
MeV. The error associated with <Q0 > as given in 
Table 1 has been chosen to be approximately twice 
the statistical uncertainty in order to account 
for the fact that the 578 keV level has been ne­
glected in the Coulomb-excitation calculations. 
Inclusion of this state in the data analysis was 
found to alter the quadrupole moment only within 
these error 1 imits when either E2 or E3 excita­
tion was assumed and matrix elements were used 
that reproduce all of the measured excitation 
cross sections. A more detailed discussion of the 
results described in this communication, together 
with additional data on the electromagnetic pro­
perties of 176 Lu will be the subject of a forth­
coming publication. 
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SUMMARY 

The quantum-mechanical description of inelastic scattering processes 

with multiple excitation induced by atomic particles requires the 

numerical solution of the Schrodinger equation, which can be reformulated 

as a set of coupled linear second-order radial differential equations. 

In this thesis, the computational aspects of solving the Schrodinger 

equation are investigated for small, as well as for large sets. 

For small sets the investigation deals with the accuracy of the 

numerical integration process. The sets are solved as many times as the 

dimension of the set with linearly independent regular starting values 

for each of the solution vectors. A method has been used successfully for 

measuring the accuracy of the regular solution subspace spanned by the 

solution vectors, rather than the accuracy of the solution vectors them­

selves, in order to investigate the accuracy of the integration process. 

This method computes the principal angles between two solution subspaces 

obtained under different numerical conditions (varying integration step 

length and stabilization strategy). One of the subspaces is constructed 

under optimal conditions so that it is considered to be the reference 

subspace, the other being the subspace to be investigated. In this 

method, the quality of a solution subspace obtained by a numerical 

procedure, can be measured, e.g., the extent to which solution vectors, 

as a basis of the solution subspace, remain linearly independent in the 

range from the origin to the matching radius Rm during the integration. 

The computation of the principal angles can be used to inspect the 

loss of accuracy in the integration range originating from the truncation 

error inherent in the difference formula used and to detect the possible 

sources of deficiencies in the numerical process for solving the 

Schrodinger equation. A method has been developed and applied with which 

deficiencies caused by discontinuities in the potential matrix can be 

avoided. 

The loss of accuracy due to the tendency of the solution vectors to 

become "nearly linearly dependent" during the integration through a 

classically forbidden region as an effect of round-off errors, can be 

examined by determining the principal angles, too. This loss of accuracy 

requires stabilization of the set of solution vectors. We found that, in 
28 

our test cases of alpha particle scattering from Si, including some 

with an energy near the Coulomb barrier, stabilization in only a few 

well-chosen mesh points was sufficient to obtain an S-matrix accuracy 

adequate for practical purposes. 
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In order to take into account the long range of the Coulomb coupling 
effectively, an integration method has been applied based upon piecewise 

analytic reference solutions. 

To describe heavy-ion reactions, large sets will occur together with a 

rapidly oscillating behaviour of the solution function within the classi­

cally allowed region of the integration range and with an even longer 

range of the Coulomb coupling. In order to investigate the computational 

aspects of these sets, the set of coupled differential equations of the 

partial-wave radial solutions is rewritten in integral form. Decomposing 

these solutions into two basis functions, the corresponding amplitudes 

satisfy a set of coupled integral equations. Expressing the basis 

functions in terms of appropriately chosen piecewise analytic reference 

solutions, the integrals appearing in this set can be evaluated analyti­

cally. The goniometric and Airy functions, as well as the Coulomb wave 

functions are used as reference solutions. The integrals containing 

Coulomb wave functions can be determined efficiently using recurrence 

relations. The coupled set of amplitude equations is solved iteratively. 

The efficiency of two iteration methods, the inward-outward and the sequ­

ential one, has been investigated for test cases deal,ing with multiple 
238 84 Coulomb excitation of U by 385 MeV Kr up to high spin states of the 

ground-state rotational band. The Coulomb and nuclear excitation of 238u 
by 286 MeV 40 Ar and 718 MeV 84 Kr has been considered too. Pade 

approximants to the S-matrix elements were also included in both of the 

iteration methods. It turns out that the inward-outward iteration method 

converges much faster than the sequential one. In many cases, the inward­

outward method does not need Pade acceleration at all, while the sequen­

tial method does. It even happens sometimes that convergent cases in the 

inward-outward method diverge in the sequential method aided by Pade 

approximants. The excitation probabilities as a function of the scat­

tering angle were calculated for the aforementioned heavy-ion reactions. 

A method for vectorization of coupled-channel Fortran programmes, 

based upon these integral equations, has been investigated for use on the 

Cyber 205 computer (with one vector-pipeline). Results are given for the 
238 40 84 excitation test cases of U by Ar and Kr. In these cases with 

dimensions of the set of 64 and 169, respectively, it appears that the 

vector algorithm gives a partial speed-up of 4 to 8, resulting in an 

overall factor of 2 to 3 speed-up as compared with a highly optimized 

scalar algorithm. 

Finally, the intrinsic quadrupole and hexadecapole moments of some 

odd-A nuclei have been determined in collaboration with a group from the 

university of Frankfurt (BRD). 
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SAMENVATTING 

De quantummechanische beschrijving van inelastische verstrooiings­

processen met meervoudige excitatie geinduceerd door atomaire deeltjes 

vereist de numerieke oplossing van de Schrijdinger-vergelijking. Deze ver­

gelijking kan worden geschreven als een stelsel gekoppelde lineaire dif­

ferentiaalvergelijkingen van de tweede orde voor de radiale golffuncties. 

In dit proefschrift worden aspecten onderzocht die een rol spelen bij het 

oplossen van de Schrodinger-vergelijking voor zowel kleine als grote 

stelsels. 

Het onderzoek van kleine stelsels heeft betrekking op de nauwkeurig-

held van het numerieke integratieproces. 

wordt het stelsel zo vaak opgelost als 

Volgens de standaardprocedure 

zijn dimensie bedraagt, met 

lineair onafhankelijke reguliere startwaarden voor ieder van de oplos­

singsvectoren. Om de nauwkeurigheid van het integratieproces te onder­

zoeken is met succes een methode gebruikt om de nauwkeurigheid te meten 

van de oplossingsruimte, opgespannen door de oplossingsvectoren, in 

plaats van de nauwkeurigheid van die vectoren zelf, Deze methode berekent 

de kanonieke hoeken tussen twee oplossingsruimten die onder verschillende 

numerieke omstandigheden verkregen zijn. Een van de ruimten wordt onder 

optimale omstandigheden berekend en dient als referentieruimte, terwijl 

de tweede de ruimte is die wordt onderzocht. Met deze methode kan de kwa­

liteit van een oplossingsruimte, verkregen met een numerieke' procedure, 

gemeten worden; bijvoorbeeld, de mate waarin de lineaire onafhankelijk­

heid van de oplossingsvectoren als basis van een oplossingsruimte gehand­

haafd blijft tijdens de integratie van de oorsprong tot de straal Rm. 

De berekening van deze hoeken kan worden gebruikt om het verlies aan 

nauwkeurigheid in het integratie-interval, als gevolg van de afbreekfout 

die inherent is aan de gebruikte differentieformule, na te gaan. Tevens 

kunnen mogelijke onvolkomenheden in het numerieke proces worden waargeno­

men. Een methode is ontwikkeld en toegepast waarmee gebreken, veroo~zaakt 

door discontinuiteiten in de potentiaalmatrix, kunnen worden vermeden. 

Het nauwkeurigheidsverlies ten gevolge van de neiging van de oplos­

singsvectoren om tijdens de integratie door een klassiek verboden gebied 

"bijna lineair afhankelijk" te worden door afrondfouten, kan ook door 

bepaling van de kanonieke hoeken worden onderzocht. Dit verlies vereist 

stabilisatie van het vectorstelsel. Het bleek dat in onze testgevallen 
28 

van alpha-verstrooiing aan Si, waarvan enkele met een energie in de 

buurt van de Coulomb-barriere, stabilisatie slechts in een klein aantal 

goedgekozen integratiepunten nodig was om een nauwkeurigheid van de 

S-matrix te verkrijgen, die voldoende is voor practische toepassingen. 
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Om met de lange dracht van de Coulombkoppeling effectief rekening te 

houden, is een integratiemethode toegepast gebaseerd op intervalsgewijs 

te bepalen analytische referentieoplossingen. 

Bij de beschrijving van zware-ionenprocessen komen grote stelsels voor 

met een snel oscillerend gedrag van de oplossingsfunctie in het klassiek 

toegankelijke gebied van het integratie-interval en met een nog langere 

dracht van de Coulombkoppeling. Om de berekeningsaspecten van deze 

stelsels te onderzoeken wordt het stelsel gekoppelde differentiaal­

vergelijkingen voor de radiale parti~le-golfoplossingen geschreven in 

integraalvorm. Door deze oplossingen in twee basisfuncties te ontwikkelen 

voldoen de overeenkomstige amplitudes aan een stelsel gekoppelde inte­

graalvergelijkingen. De integralen die in dit stelsel voorkomen kunnen 

analytisch worden bepaald door de basisfuncties intervalsgewijs uit te 

drukken in geschikt gekozen analytische referentieoplossingen. Zowel 

goniometrische en Airyfuncties als Coulombgolffuncties worden als refe­

rentieoplossingen gebruikt. De integralen met Coulombgolffuncties kunnen 

efficient met recursierelaties worden bepaald. Het gekoppelde stelsel van 

amplitudevergelijkingen wordt iteratief opgelost. De efficientie is 

onderzocht van twee iteratieschema's, de inwaarts-uitwaarts-methode en de 

sequentiele, voor testgevallen van meervoudige Coulomb-excitatie van 
238u 

84 
door 385 MeV Kr tot aan hoge spintoestanden van de grondtoestand 

rotatieband. Tevens is de Coulomb-kern-excitatie van 238u door 286 MeV 
40Ar en 718 MeV 84Kr bekeken. Ook werd in beide iteratiemethoden Pade­

approximatie op de S-matrixelementen toegepast. Het blijkt dat de 

inwaarts-uitwaartse iteratiemethode veel sneller convergeert dan de 

sequentiele. In veel gevallen heeft de inwaarts-uitwaartse methode in het 

geheel geen Pade-versnelling nodig in tegenstelling tot de sequentiele 

methode. Voor bovengenoemde zware-ionerireacties werden de excitatie­

waarschijnlijkheden als functie van de verstrooiingshoek berekend en voor 

zover mogelijk vergeleken met het experiment. 

Een methode voor vectorisatie van gekoppelde-kanalen Fortranprogram­

ma 's, gebaseerd op deze integraalvergelijkingen, is voor gebruik op de 

Cyber 205 supercomputer (met een vectorpijplijn) onderzocht. Resultaten 

worden gegeven voor de testgevallen waarin 238u geexciteerd wordt door 
40 84 

Ar and Kr. Voor deze gevallen, met een stelsel van dimensie 64, 

respectievelijk 169, blijkt dat het vectoralgoritme een partiele 

versnelling geeft van 4 tot 8, resulterend in een totale versnellings­

factor van 2 tot 3 vergeleken met een geoptimaliseerd scalair algoritme. 

Tenslotte zijn de intrinsieke quadrupool- en hexadecapoolmomenten van 

enige oneven-A kernen bepaald in samenwerking met een groep van de 

universiteit te Frankfurt (BRD). 
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DANKWOORD 

Het onderzoek dat aan dit proefschrift ten grondslag ligt kon slechts 

tot stand komen door bijdragen die andere personen hieraan hebben 

geleverd. Langs deze weg wil ik dan ook graag een woord van dank aan hun 

adres uitspreken. 

Dit geldt op de eerste plaats voor mijn beide promotoren, de 

professoren Dr. B.J. Verhaar en Dr. G.w. Veltkamp. Door mij deelgenoot te 

maken van hun kennis en inzicht in het onderhavige onderwerp en mij 

daarop kritisch te bevragen, hebben zij mede richting en inhoud van het 

onderzoek bepaald. De soms moeizame discussies met hen waren toch een 

voortdurende stimulans voor mij. 

Ret beschreven onderzoek kon niet worden uitgevoerd zonder uitgebreid 

en langdurig rekenwerk, dat op de Burroughs 7700/7900 computers van de 

Technische Hogeschool moest worden verricht. Hiervoor bleek het. nodig om 

het onderste uit de computerkan te halen, wat nooit gelukt zou zijn 

zonder de hulp van medewerkers van het Rekencentrum, met name van Gertjan 

Visser, Henk van de Langenberg, Carel Braam en Piet Tutelaers. Ook de 

medewerking, voor o.a. de speciale weekend-arrangementen, die ik van Loek 

van de Putte en zijn medewerkers ondervond, heb ik zeer op prijs gesteld. 

In een later stadium van het onderzoek zijn berekeningen uitgevoerd op de 

Cyber 205 supercomputer van het Academisch Rekencentrum te Amsterdam. Ook 

een aantal medewerkers van dit rekencentrum ben ik zeer erkeritelijk voor 

de verleende assistentie. 

Een gewaardeerde bijdrage aan de vormgeving van dit proefschrift is 

geleverd door Ruth Gruijters en incidenteel ook door de heer c. Quak, die 

het tekenwerk voor hun rekening heben genomen. Dr. Peter Attwood ben ik 

zeer erkentelijk voor zijn bijstand bij het vinden van de juiste 

formuleringen in het engels. 

Tenslotte dank ik stagiairs en afstudeerders voor hun bijdrage aan het 

onderzoek en mijn collega 's uit de groep Experimentele Kernfysica voor 

hun vriendschap die van grote morele betekenis voor mij was. 

Allen, van harte bedankt !!! 
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STELLINGEN 

behorende bij het proefschrift van 

L.D. Tolsma 

Eindhoven, 13 juni 1986. 



1. Conclusies met betrekking tot de geldigheid van benaderingen als de 

Bornapproximatie, toegepast op de "modulerende amplitudes", welke 

zijn gebaseerd 'op berekeningen waarin de grondtoestand met slechts 

een aangeslagen toestand wordt gekoppeld, gelden niet a priori voor 

gekoppelde-kanalenberekeningen met meervoudige excitatie. 

M. Rhoades-Brown, M.H. Macfarlane and s.c. Pieper, 

Phys. Rev. C21(1980)2417. 

2. M. Rhoades-Brown e. a. maken een vergelijking tussen de geschatte 

rekentijden, die enerzijds nodig zijn voor een door hen toegepaste 

iteratiemethode voor het oplossen van grote stelsels differentiaal­

vergelijkingen en anderzijds voor de standaardmethode. De voor hun 

aanpak gunstig uitvallende conclusie is onjuist. 

M. Rhoades-Brown, M.H. Macfarlane and S.C. Pieper, 

Phys. Rev. C21(1980)2436. 

3. De zogenoemde lambda-up recursierelatie voor electriscbe-multipool 

radiale matrixelementen is, vanuit numeriek oogpunt beschouwd, voor 

veel toepassingen nauwelijks bruikbaar. 

4. Een grote mate van symmetrie in berekende S-matrixelementen is geen 

garantie voor een even grote numerieke nauwkeurigheid van deze 

elementen. 

R.G. Gordon, "Quantum Scattering Using Piecewise Analytic Solutions" 

in: Methods in Computational Physics 10, Atomic and Molecular 

Scattering, eds. B. Alder et al. (Academic, New York, 1971), p.Sl; 

Dit proefschrift, hoofdstuk 3. 

s. De analyses van experimentele resultaten met behulp van het in brede 

kring gebruikte computerprogramma JUPITOR hebben hun waarde niet 

verloren ondanks de defici~nties hierin die met de in dit proef­

schrift beschreven methode zijn waargenomen. 

T. Tamura, Oak Ridge National Laboratory Report No.ORNL-4152(1967); 

H. Rebel and G.W. Schweimer, Kernforschungszentrum Karlsruhe Report 

No. KFK-i333(1971). 



6. Het op1ossen van een ste1se1 differentiaa1verge1ljkingen 

1 • 1,2, ••• ,n 

met een integratiemethode gebaseerd op een differentieformule waar­

van de afbreekfout van hoge orde is, moet zinloos worden geacht als 

de potentiaalfunctie vij(r) discontinuiteiten in 1age afge1eiden 

be vat. 

N.M. Clarke, Comput. Phys. Commun. ~(1982)365; 

Dit proefschrift, hoofdstuk 3. 

7. De bijdrage die uni versiteiten en technische hogescholen moe ten 

leveren aan techno1ogische innovatle en versterklng van de economie 

dlent nlet ten koste te gaan van wat er van hun universaliteit nog 

over is. Deze laatste dreigt opnieuw aangetast te worden door de 

beleidsvoornemens van de minister om de activiteiten op het gebied 

van de 1ichame1ijke, sociaa1-culturele en geestelijke vorming van 

studenten niet meer tot de universitaire taken te rekenen. 

Notitie inzake het be1eid betreffende studentenvoorzieningen; 

Ministerie van Onderwijs en Wetenschappen, junl 1985. 

Commentaar op de notitle van het Landelljk Over1eg Studenten­

pastoraat, Humanistisch Studentenraadswerk, Joods Studentenwerk 

'rJAR, october 1985. 

8. De wijze waarop de universiteiten in Japan tegen een zeer gerlnge 

vergoeding gebruik kunnen maken van supercomputers steekt schr11 af 

bij het hier te laude gehanteerde doorberekeningssysteem van de 

gemaakte rekenkosten. Dit zal verstrekkende gevolgen hebben voor de 

ontwikkeling van wetenschap en techniek. 

K.G. Wilson, "Science, Industry, and the New Japanese Challenge" in: 

Supercomputers their impact on science and technology, 

Proceedings of the IEEE 72(1984)6. 

J.M. van Kats, R. Llurba en A.J. van der Steen, Reisverslag bezoek 

aan Japan, verschijnt in ACCU-reeks, Academisch Computer Centrum 

Utrecht, 1986. 



9. De Technische Hogeschool Eindhoven dient in overweging te nemen om 

ten behoeve van onderwijs en onderzoek een multiprocessor parallel-

computer a an te schaffen met een architectuur zoals een, die 

gebaseerd is op de hyperkubus topologie. 

dimensie 0 1 2 3 4 5 

processoren 1 2 4 8 16 32 

verbindingen 0 1 4 12 32 80 

topo1ogie 

De hyperkubus topologie 

10. Zo er al sprake is van een be1eid van de zijde van het Nederlandse 

Episcopaat ten aanzien van het pastoraat onder studenten van het 

Wetenschappe1ijk en Hoger Beroeps-Onderwijs dan wordt dit tot nu toe 

gevoerd onder het motto "over hen, zonder hen". De kerkgeschiedenis 

leert dat het ook anders kan. 

11. De door priesters geleide rooms-katholieke lekenorganisatie Opus Dei, 

die haar activiteiten met name richt op studerende jongeren, gaat 

uit van een spiritualiteit die geen ruimte laat voor de vorming van 

een persoonlijk geweten. 

J. Escriva de Balaguer, de Weg, o.a. de alinea's 457, 777 en 945. 

12. Ook al is Neelie's bod nog zo snel, 

Ret gaspedaal overtroeft 66k dit wel. 


