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CHAPTER 1
GENERAL INTRODUCTION

Inelastic scattering of charged particles from atoms and nuclei 1s an
important tool for studying the properties of excited states. In general,
the quantum—-mechanical description of inelastic scattering processes with
multiple excitation requires the numerical solution of the Schrédinger
equation, reformulated as a set of N coupled linear second-orxder radial
differential equations. By means of this solution, the scattering matrix
elements can be calculated and, from them, the excitation probabilities
which can be compared with experimental data.

In this thesis computatiomal aspects of solving the Schrédinger equa-
tion have been studied for small, as well as for large sets to describe
inelastic scattering problems with wmultiple excitation 1in nuclear
physics.

In the usual approach, the set of coupled equations is solved as many
times as the dimemsion of the set with linearly independent regular
starting values for each of the golution wvectors. The equations are
integrated from the origin to a radius at which all nuclear and coupling
interactions become insignificant. By constructing the physical solution
as a linear combinatiom of the solution vectors with the appropriate
agsymptotic behaviour of an incoming partial wave in the entrance channel
plus outgoing partial waves in all relevant exit channels, the desired
S—matrix elements can be found. This standard procedure is satisfactory
for small systems of coupled equations, 1.e., for light-ion reactions,
but it is particularly time-~consuming for large systems associated with
heavy-ion collisions. In addition, this procedure generates S-matrix
elements which form a complete N x N matrix. However, in the nuclear
physics context, often only a restricted number of entrance channels
(only one for a zero-spin ground state) 1s important which means that
only a restricted number of columns of the scattering matrix is needed.
In these cases, iteration methods can be applied for which the solutions
are obtained directly without the need for solving the set of coupled
equations N times.

When studying scattering problems by solving the Schrddinger equation
numerically, an insight has to be gained into the loss of accuracy in the
solutions and S—matrix elements, due to the discretization of the set of
differential equations and due to other possible sources of deficiencles.

Egpecially, when solving scattering problems with energies near or below



the Coulomb barrier, special attention has to be paid to the loss of
accuracy that results from a tendency of the solution vectors tc become

“"nearly 1linearly dependent” during integration through a classically
forbidden region where rounding errors occur that are inherent in the
finite representation of numbers in a éomputer. This loss of accuracy
necessitates "stabilization™ of the set of solution vectors in a specific
way.

The set of coupled equations can be integrated by means of well-known
multistep methods, such as the Numerov method. In applying these metods
special attention has to be paid to the behaviour of the solution. The
heavier the charged particles in the scattering process and the higher
the energy of their relative motion, the more rapidly the solution will
oscillate in the classically allowed region and the smaller the step
sizes in the aultistep methods have to be chosen. Since, in pgeneral,
these circumstances occur together with large systems of coupled
equations and a long range of the Coulomb coupling intetraction, the
multistep methods can become prohibitively time-consuming.

Until recently, calculations with many coupled equations have been
possible only within the semi-classical framework of wmultiple Coulomb
excitation. This approach has a number of limitations. Its accuracy
decreases steadily as the excitation energy of the reaction channels
increases and the transferred angular momentum becomes larger. At
energies significantly above the Coulomb barrier, the computational
complexity of accurate semi-classical calculations increases rapidly;
alternatively, the accuracy of the simplest semi-classical calculation
decreases rapidly. Thus, although semi-classical methods are of great
value, their limitations are such that a fully quantum mechanical method
that can cope with substantially more than twenty to thirty coupled
channels would be a valuable alternative.

In order to meet with the problems that occur in heavy-ion collisions,
due to the standard procedure for solving the N coupled radial equations
N times and the step-size dependency of the multistep methods, it is
advantageous to formulate piecewise analytical solution methods together
with iteration methods. In this way, heavy-ion multiple Coulomb excita-
tion, as well as multiple excitation including the effects of the nuclear
interaction, can be treated effectively. Im these methods, the partial
wave radial solution of the Schréddinger equation is decomposed into
regular and outgoing components, i.e., it is written as a linear combina-
tion of two basis functions which oscillate in the classically allowed

region with relatively slowly varying amplitudes. These basis functions



are the solutions of the decoupled radial equations. An appropriately
chosen reference potential will allow them to be expressed in terms of
plecewise analytic reference solutions. Rewriting the set of coupled
differential equations 1ia an integral form, the varying amplitudes
satisfy a set of coupled integral equationg. The integrals that appear in
these equations can be evaluated analytically when piecewise analytic
reference solutions are used, provided that they belong to a suitably
chosen reference potential. The set of integral equations is solved by
means of iteration.

This thesis will be subdivided into the following chapters:

In Chapter 2, the formalism for multiple excitation in 1inelastic
scattering processes will be discussed. The set of coupled radial diffe-
rential equations is derived for the channel-spin as well as for the
spin-orbit representation. The general expression for the set 1s reduced
to the form used in the following chapters in order to study solution
methods.

In Chapter 3, the accuracy of the numerical integration process 1is
investigated for small sets, using a wultistep integration method. A
method for measuring the accuracy of the regular solutioa subspace,
spanned by the solution vectors, is used rather than the accuracy of the
solution vectors themselves. This method computes the principal angles
between two solution subspaces that are obtained under different nume-
rical conditions. Chapter 4 1s also devoted to the integration of small
éets but, in order to take into account the long range of the Coulomb
coupling effectively, a pilecewise anmalytical solution integration method
is applied to the integration range beyond the ramge of the nuclear
potential. It appears that, due to its effectiveness, this method can be
used to solve moderately large sets as well.

In Chapter 5, the solution of large sets is investigated in order to
describe quantum mechanically heavy-ion multiple Coulomb excitation. The
results of an investigation, which includes in addition a nuclear inter-
action potential, are presented in Chapter 6. In both chapters, the set
of coupled differential equations has been rewritten as an equivalent set
of coupled integral equations. Using goniometric or Airy functions as
plecewise analytic reference solutions, the integrals in this set can be
evaluated analytically. Coulomb wave functions can be used as reference
solutions too, because the corresponding integrals can be evaluated
effectively using recurrence relations. The set of integral equations is
solved 1iteratively with a considerable reduction of computation time

compared with conventional calculations described 1n the two foregoing
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chapters, where the set was solved as many times as the dimension of the
set. The effectiveness of two 1lteration schemes, an inward-outward and a
sequential or perturbative one, has been investigated in some test cases
that deal with multiple excitation of 23?U by 40Ar and 84Kr. In general,
only a few iterations are needed in the inward~outward scheme. In chapter
3, the excitation probabilities for 238U, Coulomb excited by 385 MeV SAKr
up to a state with ITr = 24+ of the ground-state rotational band (GSB),
are shown and they are compared with the excitation probabilities calcu~
lated according to the semi-classical theory. Ian chapter 6, the excita-

tion probabilities for Coulomb-nuclear excitation of 238U by 286 MeV 4OA

r
and 718 MeV 84Kr up to high spin states of the G5B are calculated and for
the former compared with experimental data.

In Chapter 7, the recurrence relations are glven satisfied by the
electric multipole radial matrix elements or Coulomb integrals which
arise in particular in the integral representation of the radial
Schriddinger equation. The numerical stability and the accuracy obtained
are discussed,

A method for vectorization of coupled-channel Fortran programmes,
based upon the integral equation method, is presented for use on the
Cyber 205 computer (with one vector—pipeline), in Chapter 8. Results are
given for the above-mentioned AOAr and 84Kr test cases. In these tests
with dimensions of the set of 64 and 169 , respectively, it appears that
the vector algorithm gives a partial speed-up of 4 to 8, resulting in an
overall factor of 2 to 3 speed-up as compared with a.highly optimized
scalar algorithm.

Chapter 9 presents the results of determining the intrinsic quadrupole
and hexadecapole moments of the odd-A nuclei 163Dy and 167Er. In addi-
tion, the intrinsic quadrupole moment of 176Lu was determined precisely
as part of a general study of the electromagnetic properties of this
odd—-odd nucleus. These properties are interesting, because 176Lu has been

176Hf

as a cosmic clock for s-process nucleosynthesis. These results were

proposed for using the B-decay of its K,I“ = 7,7_ ground state to

obtained in collaboration with the group of Prof. Dr. Th. W. Elze from
the university of Frankfurt (BRD).

Finally, it should be noted that some chapters show overlap. This is
due to the fact that chapters 3 to 9 constitute independent papers.
Overlap occurs, especially, im the sections which describe the intro~

duction and the formalism.



CHAPTER 2
FORMALISM FOR MULTIPLE EXCITATION IN INELASTIC SCATTERING PROCESSES

1. INTRODUCTION

When we consider inelastic collisions between two nuclel a and A, such
a pair of particles will be called a "partition” of the total collection
of nucleons involved and will be denoted by a Greek letter such as a. The
nuclei a and A may exist in any of a large number of excited states as
well as their ground states. Sometimes we will use the symbol a to mean
simply the partition atA, and sometimes it will refer to a particular
internal state of that partition too, i.e., a particular state of either
nucleus a or A. The term “channel” will be used to refer to a particular
internal state of a partition in a particular state of relative motion.
This term will also be used flexibly [1].

All processes other thamn elastic or inelastic scattering will be
ignored. Let ; be the relative position vector of the centers of mass of
projectile a and target A and let xa and xA be the internal nuclear
coordinates. We assume that the Hamiltonian equation of the system has

the form
. .
H = Ha(xa) + HA(xA) + T+ V( r,xa,xA), (2.1)

where Ha’ H, are the internal Hamiltonians of projectile and target and T

is the rethive kinetic energy operator. The interaction potential V
contains the nuclear and Coulomb components VN(r), VC(r) of the optical
potential and the nuclear and Coulomb tramsition potentials VN(;,xa,xA),
VC(;’xa’xA) that couple internal excitations of a,A with the relative

motion [1]:
+ + >
v(r:xang) = VN(r) + vc(r) + VN(r’xa’xA) + VC(r’xa’xA)' (2.2)

The internal states of a and A are eigenstates of the internal Hamil-

tonians H and H :
a A

a a
[Ha - € ) oy (%) =0,
a a a
(2.3)
A A
(B, - €2 ) e . (x,) =0,
A 1,7 "I,M, A

where the superscripts a,A distinguish different internal states of given



angular momentum and the energies are excitation energies referred to the
respective ground states.

The relative orbital argular momentum ta of a and A and their respec~
tive angular momenta 1 and fA are couplgd to the total angular momentum
= Ia + IA + fa' Since the interaction V(;,xa,xA) is a scalar J must be
conserved; 1ts magnitude J and projection M on to the z-—axis are good
quantum numbers. In addition, parity must also be conserved; therefore, 7
is a good quantum number too. There are three choices for the order of

coupling these three angular wmomenta to theilr resultant, i.e.,

*> > > > > >

I, +1, =5, Syt Ly=1 (2.4a)
T +1 =3, F+1 =3 (2.4b)
a a a a A

> > > > > >

L+ I, =J,, Jy+I = (2.4¢)

The coupling scheme should be chosen, where possible, so as to simplify
the treatment of scattering. If there is a strong interaction coupling
between the two nuclear spins, but not to their relative orbital motion
{e.g., one proportional to TA'fa times a scalar function of r), this
interaction is diagonal in the channel spin §u and the channel-spin
representation (2.4a) will be the most useful one. More often, at least
with light ions, the strongest interaction 1s to couple the spin of the
light ion to the relative orbital motion. If this ion is the one labeled
a, the spin orbit representation (2.4b) will diagonalize the spin-orbit
coupling and will be the most convenient one to use. If both types of
coupling are of the same importance, none of the representations will
diagonalize both simultaneously. Then, the choice is arbitrary, or it may
be made on some other grounds. One of these grounds may be the need to
use existing computer programs with a minimum modification. In the next
two sections, we will derive coupled radial equations for the channel-
spin, as well as, for the spin-orbit representation. In particular,
expressions will be given for the coupling matrix elements im both
representations, taking into account, the mutual excitation of projectile
and target [1]. In section 4, the reduction of these general expressions
will be discussed ignoring the projectile excitation, as well as its
spin. In section 5, the boundary conditions are treated satisfied by the

so-called physical solutions of the coupled radial equations.



2. CONSTRUCTION OF COUPLED~CHANNEL EQUATIONS WITH MUTUAL EXCITATION IN
THE 'CHANNEL~SPIN' REPRESENTATION

*
We introduce the channel eigenstates

a,A,Sa A
¢ (x ,x,) = [@ (x) o (x ):I (2.5)
Ia,IA a’ A Ia a IA A s M

a's

>
carresponding to the channel spin Sa’ where we 1gnore the effects of
antisymmetry between projectile and target nucleons. From now on, the
superscripts a and A will be deleted in the notation. A basis state of
partition o for given total angular momentum J and parity =w can be
specified by a definite channel spin SOl and a definite relative orbital
angular momentum la. Solutions of the Schrédinger equation can be expres-

sed, then, in terms of these channel-~spin basis states, in the form of:

£
Ju + 21 Jn a -
¥y (T,x,x,) =2 g ¥, (r? [1 Yla(r) I:ebla(xa) @IA(xA)]Sa:Im (2.6)

with a = YIaIASaEa. We have added a subscript Y to stand for any other
labels (besides the spins Ia’IA) needed to specify the internal states of
the two nuclei. In practice, only a restricted number of channels are
included in the expansion (2.6), Within the truncated model space so -
defined, the Schrddinger egquation reduces to a finite set of coupled

radial equations [1]

d
+ k- ——— -
a? e 2

2 g Ay (4,1) 2u opt(r):l
r 42

,67 I v () v,
a'sl
(2.7)

The elements Vaa.(r) of the coupling matrix in (2.7) are

2
_ a > >
Vg (1) = <[i Yza [“’Ia °1A:I Sa:l ™ V(e o2, PV (1,5, %))
o
i Y,, ' )V , (2.8
I: "[Ia IA]S‘]JM) W @, @8

opt > >
= + .
and V (r) VN(r) Vc(r) Because VN(r,xa,xA)+VC(r,xa,xA) is a scalar,

%
A square bracket with two angular-momentum dependent functions in it

denotes vector coupling. Thus, e.g., [¢ ¢ ,] = z (jmj* m'lJM)¢ d..
] - jm”j'm’

-7 -



the matrix with elements Vua'(r) is diagonal in J and M and in ® and is

independent of M. Consequently, wiﬂ(f) for different values of the total
. £1
angular momentum J and different parity = [ﬂ = ﬂaﬂA(-) ¢ = ﬂ;ﬂA(') a] are

not coupled; a set of coupled equations  (2.7) exists for each pair of
values J,m. The number of coupled equations in (2.7) 1is denoted by N and
the channel wave number ka is given by:

2 Z]J[

k" (B - 2 - e? ). (2.9)

Ia A

In these formulae, E ig the center-of-mass energy in the incident ground-
state channel and y is the reduced mass. Closed channels, for which ku is
imaginary will not occur in the following.

The nuclear part of the optical potential will be taken to be of com-

plex Woods-Saxon form, e.g.,

vy(r) = ~V(1+ev)-l - W(te ), (2.10a)
where
e, = exp[(r - R )/a ], . (2.10b)

whilst V, Rv and a  are the strength, the radius and diffuseness para-
meters of the real part of the nuclear potential, respectively. The
parameters W and Ew have a similar meaning relative to the imaginary part
of the nuclear potential.

The Coulomb part of the optical potential is given by the Interaction
potential of a point charge with a uniform sphe 1 a ha e ist i ution
within the Coulomb radius Rc and zero charge outside it:

, ﬁ:(s-(-;—f) r <R

Vc(r) = Zaer . (2.11)

T r >R

where Za and ZA represent the charge numbers of the projectile and target
nucleus, respectively.

A complete specification of the coupling matrix Vuu,(r) requires the
introduction of a detalled model for the internal nuclear states involved
and specific assumptions about the nuclear and Coulomb interaction
potentials VN(;,xa,xA) and VC(;’xa’xA)' The evaluation of these matrix
elements is the most crucial part of the whole calculation; however, we

will not do this. Never—the~less, the nuclear transition potential can

-8 -




still be written in a general form as [2,3]:

Vy(Ex,x) = § vfaiAi( ) {[q(a) (A)]X @), @az)
a,A a
: :

A A
a’ A’
where the superscripts a,A distinguish terms of different character but

with the same tensorial ranks Aa’ XA. The operators Q(a) and Q(A) operate

only on the coordinates of the nuclei a and A, respectively. The dot in
(2.12) indicates a scalar product of two tensor operators of the same
rank A. These tensor operators work on different degrees of freedom of
the system, i.e., they commute.

The transition electric~electric multipole Coulomb interaction poten~

tial between the charge distributions of a and A is given by [4]:

(2Aa+2AA)z 1/2
(2x +1)!(2xA+1)!(2A+1)

+ - 3/2
Vc(r,xa,xA) (4m)
Aarraod (2.13)

1 LA
AT {[M @ M, D], - 7Y, (D]
r
where the electric multipole moments are defined as:

MEAE) = [ e Y (#) dt (2.14)

with a charge density given by p(;), which for a deformed target nucleus
(projectile) may differ from the spherical one associated with (2.11).

If the expression (2.12) is used for the transition nuclear potential,
then, the coupling matrix element V ,(r) of (2.8) can be obtained expli-
citly as [5]:

vga.(r) = ) iaAAi(r) <1 nq( a) 1'> <I uQ(A)n1A>
a,,A
A ahysd
1] L' .
G(IaIASala,IaIASGLG,AaAAXJ), (2.15)

tTfat Te -
where the geometrical factor G(IaIASala,IaIASaEa,XaAAAJ) in the channel

spin representation is defined as:



/2 z'—z +A J+S +L +1!
G(I 1,5 R ,I'TISIAA AAT) = Gn)” ¢ (=) * o ©

L' Ea L' Ia I; Aa
T T3 3 ar 3 [
Eala A 0 0 o s's g SaSa A IA IA AA
a S S' 2
a @

(2.16)

with X = (2x+1)l/2. The reduced matrix elements <IaHQ§a)HI;> and

<IAHQ{A)HIA> appearing in (2.15) contain the dynamics of the nuclei a
A

and A, respectively, that are involved im the problem [5,6]. Based upon
some model, explicit forms can be given for these reduced watrix elements
[ZJ. It is noted that the basis states (2.6) are defined with iz factors
accompanying the spherical harmonics Y?(e,¢). A factor ix is included
explicitly in the scalar product of the two tensor operators (2.12) too.
These phase factors ensure convenient time-reversal properties.

In the same way, the coupling matrix element Vga,(r) can be derived

from (2.13) for the Coulomb transitiom potential:

vc () = (4“)3/2 ) (_)Xa - (zxa+2AA)! 1/2
a’ (2Aa+1)!(2xA+1)1(2A+1)
A LA
a'"A
1 '
'X:#Xzir <IaﬂMa(EAa)HIa> <IAHMA(EAA)HIA>
T

1 1 1,
G(I IASala,IaIASal 2 xJ), (2.17)

where the geometrical factor is again given by (2.16).

- 10 ~



3. CONSTRUCTION OF COUPLED-CHANNEL EQUATIONS WITH MUTUAL EXCITATION IN
THE 'SPIN-ORBIT' REPRESENTATION
Using an analogy with (2.16), we introduce the spin-orbit basis states
according to coupling scheme (2.4b)
£a
(r) [[i YE () GI (xa):l @I (x ):l (2.18)
a a ja A IM

LIRS 1
(r,x,%,) = <
a
If we insert this expansion into the Schrddinger

with o = yzaIaJaIA

equation,
radial functions wa

L (£a+1) 2p opt Jm 2y
A <>_] ) =5

[dz 2
ka - 2
r

we obtain a finite set of coupled radial equations for the

(r) similar to (2.7)
N

Z vaa.(n Wi,
(2.19)

(r) of the coupling matrix are now given by:

where the elements V
:l 0 ] v (f MV ( )
r,X_,X r,X ,Xx
j IA IM N a’"A C

1(1
V(o) = <[[1
¢ a a
2 ] N C
[[1 Y, °I'J.. P ] > 2V (O (8) (2.20)
a a Ja A IM »

The nuclear interaction potential VN(; X_,¥X,) can be expanded to:
A
oM},

* = (3 A) (a)
Ve(Ex k) = ) vy R ([, @) of JA
a,A

sA

Xa’AA

(ZAa+2AA)!

and equivalently the electric~electric Coulomb interaction potential V
[ -11/2
T ,
(zka+1 ) (zzAﬂ) t (2AA+1) ,
(2.22)

> /

Vo, x ,x,) = (47) l
Agrdpsd
r— {[1y, @A )], . M (EAD}
X&+XA+1 A a' "a’ix AYTTAND
r

The standard reduction formulae for the coupling matrix elements of the
{2.21) and

scalar product of two commuting tensor operators such as
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(2.22) can be used here, too. Then, : +{r) in the spin-orbit representa-

tion becomes:

I {axAi(r) <I ﬁQ
a,A

A shyoh

(a)nI. (a)

N 1
Voo (D) > <1, EQXA >

G(,1 LITLITAA AT, (2.23)

a a A’ o-ata A’

2 L} ? 1 . o
where the geometrical factor G(EalajaIA,lulajaIA,AaAAxJ) in the spin

orbit representation i{s defined as:

2'-4 + J+L , +4 +5!
G(QaIaj I 1/2 PEC I -) A "a “a

RN IE NSRS NEN LY

A SN
1 3 1
Aol Eu Ly A Ja Ja AA TR ?
L0 N J 3l a I_I' A %\,
ao 0 0 0 ' 1 J aa A a a a
s st
A Ja Ja AA

(2.24)

In the same way, the coupling matrix element Vga,(r) in the spin~orbit
representation is obtained from (2.22) for the Coulomb transition

potential:

3/2 ; (2A 21 )! 1/2

c
Vagr (F) = (4m) O D T TG _

A XA,A

1
R A > <L I'>
Xa+AA+l IaﬁMa(Exa)HIa < AHMA(EXA)l1 A

G(a 1 3 I, AT 4110 A A AT),  (2.25)

where the geometrical factor is given by (2.24)
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4. THE COUPLING MATRIX ELEMENTS Vaa,(r) FOR Aa = 0 and Ia =0

In the preceeding sections, we described the general formalism for
inelastic scattering, including mutual excitation. In the next chapters,
however, calculation methods and their results will be discussed based
upon a formalism that ignores the excitation of the projectile, as well
as its spin, if it has any. Therefore, in this section, the expressions
for the coupling matrix elements Vaa'(r) will be g;ven to whigh the
general expressions (2.15, 2.17) and (2.23, 2.25) of Vaa'(r) and Vaa‘(r)
in the channel-spin and spin~orbit representation, respectively, reduce
for Aa = 0 and Ia= 0.

When the projectile excitation is not considered, or the interaction
acts only on the internal degrees of freedom of one nucleus, say A, we

ia) = 1. It is then clear that A, = X and the reduced
a

matrix elements of the projectile in (2.15) and (2.17) become:

may put Aa = 0 and Q

(a), ., _ 1/2
<1 1g,*’ur!> @I+t (2.26)
a aa
and
zae 1/2
<Ia||Ma(EXa)'II;> = 77 (213"’1) 51 I* e (2.27)
(4r) aa

respectively.
The geowmetrical factor (2.16) in the channel-spin representation

reduces for Aa =0 to

R'=g 42 J - 8!
a

-1/2 a a
tqtgt. = -
G(1, 1,5 2,1 L35 2% ;0A0]) (4m) 1 -)
A RRAY EE Y DR M
g AR @ % lggel e 1 2.28)
0 0 0/}s's a) *%j1r 1 1
a a A A Ta

This expression reduces further if Ia = 0 (then Sa = IA and S& = 0) to:

L4 +A J4+I +8 +2'
a A a a

~-1/2 1 @y

TTtgt., =
G(OL,T,2 ,01;112';000J) (4m)

LI @ e ? Rl (2.29)
00 of|131,4



The expression for the geometrical factor (2.24) in the spin-orbit repre-
sentation reduces for xa =0 to:

- .
/2 ila £a+X J+IA+£a+Ja

-1
Ty, = -
G(RyT,3,1,, 40T 3A11;0000) (4m) )
L2 A\ (i i a L2 A
DI ¢« a a 3.3 & a . (2.30)
] 1 £
0 0 of|11,J 38,1,

For I =0 (then j_ = & and j' = %2') it reduces further to the saume
a a a a a

expression (2.29) that we obtained in the channel-spin representation
when I = 0:
a

-2 + +1 48 +g!
~-1/2 L za A J IA lu Ea

* -)

G(R 02 I ,R'08'I';0AMNJ 4 i
( o a A e et A ) (4m}

L 2" £ 2"

~ my o 23 a a
1.1 X N | P . (2.31)
A A

In the next chapters, we will study methods for solving a set of coupled
radial equations (2.19) without mutual excitation and for spinless
projectiles, i.e., for Aa = 0 and Ia = 0. Then, the expressions for the
(r) and Vga,(r) given by (2.23) and (2.25),

2

coupling matrix elements vaa

respectively, reduce to:

(a) (a)

N
Voo ' (B) = ; vy (E) <10, I)> G(R 08,1,,2008 13;0AA]) (2.32)

and

C 4n 1
Vigr(r) = Ze ; o ;x¢r <I, MM, (EX )UTL> G(& 08 I,,8108711;0M\),

(2.33)

where the geometrical factor G(la0£a1 £;0£&I';OAAJ) is given by (2.31).

A’ A
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5. BOUNDARY CONDITIONS FOR THE SOLUTION FUNCTION wJ"(r)

In order to obtain solutions ¢ (r) of the sets (2.7) or (2.19) of the
coupled radial equations of phyaical interest, 1.e., the physical
solutions, two boundary conditions have to be fulfilled (a = If when XaBO

and I_ = 0). At the origin ‘pi"(r) should vanish:

1im @0y - o, (2.34a)
r+0

Jw
whilst, for large distances, wa (r), must represent an ingoing partilal
wave in the entrance channel plus outgoing partial waves in all the
relevant exit channels. The precise asymptotic form defines the scat-

Jm
tering matrix elements Saao'

1/2
0w r, m e - [;.Z.U:I / Hy(r) S0 (2.34b)
where the subscript and superscript a; correspond to an ingoing wave in
the entrance channel for a = ap. In principle, there are N entrance
channels. The ingoing and outgoing Coulomb waves H;(r) and H:(r), reg—
pectively, are given in terms of the well-known regular and irregular
Coulomb wave functions F (r) and G (r), by Hl(r) = {G (r) = iF (r)}

The solution {¢l (r),..., wN (r)} of (2.7) or (2.19) can be considered
as a solution vector w (r). The solution vectors constitute a vector
space of dimension 2N. This 2N~dimensional space contains an N-dimensio-
nal subspace of regular solutions that satisfy the boundary conditions
(2.34a). The generation of a basis of N linearly independent solution
vectors ¢iﬁ(r), s =1,2,...,N, for the regular subspace, by solving (2.7)
or (2,19), involves the explicit construction of N regular solutfon
vectors, each with a linearly independent choice of starting conditions.

The solution vectors ¢J"(u°)

{(r) that we are looking for, are regular;
hence, they are linear combinations of the vectors ¢g“(r) and are‘found
by considering the boundary condition (2.34b) at a matching radius

= Rm which is sufficiently large for all the potentials except Vc(r) in
(2.2) to be negligible.

Thus, the sets (2.7) or (2.19) have to be solved N times. Especially,
for 1large systems this will be time~consuming. In additiomn, this
procedure generates S-matrix elements which form a complete N x N matrix;

while in the physics context, often only a restricted number of entrance

channels is important which means that only a restricted number of
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columns of the scattering matrix is needed. For these cases, 1iteration
methods can be applied and solutions are obtained directly without the
need of solving the sets (2.7) or (2.19) N times.

The scattering amplitudes are expressed in terms of the S-matrix

elements (see Chap. IX of Ref. [4])

4 172 172 g -3
CRDMIE () T (2ag¥l) 170 (20T gMg |IM0) ( AmIM | TMg)
Ip I

Reg R

1 . Jw
el exel 100y 490)] STpor 000t ang Y aal® >
(2.35)
in which 01 is the Coulomb phase shift
9,(n) = argl(S+1+in). (2.36)

From the scattering amplitudes, it is easy to calculate the cross section

for state I:

dcxI(e)= 1 E}_ I

2
3 i
dQ 2Ip+l Iy MgM

$=0) (2.37)

1oMgrn(®s

and other observable gquantities. The excitation probability, for

instance, is given by:

-

T do
v ?
ho o

—

PI(S) = (2.38)

3

where GR is the Rutherford cross section.
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CHAPTER 3

MEASURING THE ACCURACY OF THE SOLUTION SUBSPACE OBTAINED BY
NUMERICAL INTEGRATION OF THE SCHRODINGER EQUATION*
L.D. TOLSMA
Department of Physics, Eindhoven University of Technology
and
G.W. VELTKAMP
Department of Mathematics, Eindhoven University of Technology,
Eindhoven, The Netherlands
ABSTRACT

In general, the quantum—mechanical description of inelastic scattering
processes requires the numerical sclution of the radial Schrddinger
equation. To 1investigate the accuracy of the numerical dintegratiom
process, a method has been used successfully for measuring the accuracy
of the regular solution subspace spanned by the solution vectors, rather
than the accuracy of the solution vectors themselves. This method
computes the principal angles between two solution subspaces obtained
under different numerical conditions. One of the subspaces is constructed
under optimal conditions so that it is considered to be the reference
subspace, the other being the subspace to be investigated. In this
method, the quality of a solution subspace obtained by a numerical
procedure, can be measured, e.g., the extent to which solution wvectors,
as a basls of the solution subspace, remain linearly independent in the
range from the origin to the matching radius Rm during the integration.

The computation of the principal angles can be used to inspect the
loss of accuracy in the integration range originating from the truncation
error 1nherent in the difference formula employed and to detect possible
sources of deficiencies in the numerical process for solving the Schri-
dinger equation. A method has been developed and applied with which defi-
ciencies caused by discontinuities in the potential matrix can be avoided.

The loss of accuracy due to the tendency of the solution vectors to
become nearly linearly dependent during the integration through a classi-
cally forbidden region as an effect of round-off errors, can be examined
by determinimg the principal angles, as well. This loss of accuracy
requires stabilization of the set of solution vectors. We found that the
stabilization in only a few well chosen mesh pointe in our nuclear
physics test cases of alpha scattering from 2881, proved to be sufficlent

for obtaining an S—matrix accuracy satisfactory for practical purposes.

%
This chapter has been accepted for publication in Computer Physics

Communications. -17 -



2 L.D. Tolsma and G.W. Veltkamp

1. INTRODUCTION

For the quantum-mechanical description of 1nelastic scattering
processes with multiple excitation the radial Schrddinger equation, i.e.,
a set of coupled linear second~order differential equatiomns, has to be in
general solved numerically. In the case of nuclear physics scattering
problems with energies near or below the Coulomb barrier, special
attention has to be pald to the stability of the solutions since, without
precautions, the initial linear independence of the solution vectors will
be destroyed. Solving the set of coupled equatiocns with a multistep
integration method, the accuracy of the solutions, as well as of the
S-matrix elements can be measured by means of the differences in these
quantities computed for successively decreasing step sizes.

For the study of stability and accuracy in the solutions of nuclear
physics scattering processes, Tamura's code JUPITOR [I,SJ has been used.
In this code Stbrmer's multistep 1integration method has been applied
which has a local discretization or truncation error of order h7;
whereas, the global error for a fixed integration interval will be of
order hs. Therefore, an accuracy is expected of order h4 to hs. However,
even after developing a satisfying stabilization procedure, it appears
that the accuracy obtained is of the order h.

A primary aim of this paper is to investigate the reasons for the
serious loss of accuracy and to detect the possible sources of
deficiencies. For examining the accuracy of the integration process, a
method has been used for measuring the accuracy of the regular solution
subspace spanned by the solution vectors, rather than the accuracy of the
golution vectors themselves. This method computes the principal angles
between two solution subspaces obtained wunder different numerical
conditions (varying integration step length and stabilization strategy).
One of the subspaces has been constructed under optimal conditions, so
that it is considered as the reference subspace, the other being the
subspace to be investigated. This seems to be a very sensitive method and
the deficiencies have been located with it. It appears that the loss of
accuracy is, in part, caused by discontinuities in the second and higher
radial derivatives of the Coulomb part of the diagonal potential and in
the Coulomb part of the coupling potential and its higher radial
derivatives at the Coulomb radius. Another source of deficiency appears

to be a programming error in the original version of the code JUPITOR.

- 18 =~



Measuring the Accuracy of the Solution Subspace 3

After developing and applying a method that avoids the inaccuracies in
the solutions due to the discontinuities mentioned, the expected accuracy
of the solutions and S-matrix elements can be obtained. It must be
stressed that the method presented can also be applied to the general
case in which the diagonal, as well as the coupling potential and/or
thelr higher radial derivatives, show discontinuities at some radius.

Along with the loss of accuracy in the solutions and S-matrix elements
due to the discretization of the set of differential equations, there is
also, a loss of accuracy due to the tendency of the solution vectors to
become nearly 1linearly dependent 1in combination with the finite
representation of numbers in the computer (round-off errors). Gaining an
insight into the latter loss of accuracy is the second purpose of this
paper. This can be obtained by the method of computing angles between the
subspaces spanned by the solution vectors.

In section 2, a concise description of the scattering formalism is
given. This description is limited to the formulae needed for this paper.
Section 3 is devoted to the integration methods used in JUPITOR to solve
the set of differential equations. To maintain the linear independence of
the set of solution vectors, a stabilization procedure and a criterion
for the need to perform a stabilization are discussed in section 4. In
section 5, attention is paid to the boundary conditions at the matching
radius. Section 6 describes a method of computing the principal angles
between subspaces spanned by the solution vectors. In section 7, a method
is derived to avoid the inaccuracies in the solutions due to radial
discontinuities 1n the potential matrix. The results of our
investigation are presented and discussed in Section 8 and 9. These
results have been obtained for the inelastic scattering of 10 and 104 MeV
alpha particles from 2BS:L. Section 8 contains the results related to the
detection of the sources of deficiencies and the avoidance of their
inaccuracies in the solutions. In addition, the influence of the
deficiencies, and of their removal, on the accuracy of the S-matrix
elements will be discussed. From these results that were obtained for
successively decreasing step sizes, an insight has been obtained into the
accuracy of the integration process. Section 9 treats the results
related to the loss of accuracy due to the tendency of the solution
vectors to move towards linear dependency. Finally, in section 10,

conclusions are drawn.
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4 L.D. Tolsma and G.W. Veltkamp

2. CONCISE DESCRIPTION OF THE SCATTERING FORMALISM

The quantum—mechanical description of inelastic scattering in nuclear
physics has been discussed extensively 1in literature [1-4]. This
description leads to a set of coupled second-order differential equations

for the partial wave radial functions wiz, having the following form:

C R TC S T
dr2 I r2 hZ dlag 18

22 Vigsprpe(®) Vg0,

2.1)
assuming a spinless projectile. Here, J,2 and I denote the total angular
momentum, the orbital angular momentum and the spin of the target
nucleus, respectively. The excitation energy of the target in a state
with spia I is EI. The total angular momentum J, its projection onto the
z~axis and the parity m are good guantum numbers. Let E be the center—of-
mass energy in the incident channel, then, the wave number kI and Sommer—

feld parameter n_are given by:

I
2 2
k] =5 (B-E)), (2.2a)
h
2
Z.Z. e
2u 172
n, =L = (2.2b)
I hZ 2k1

where yu is the reduced mass, while Zl and 22 represent the charge numbers
of the projectile and target nucleus, respectively.

In the following description of the diagomal potential Vdiag and the
Jm '
12;1'%" Tamura's paper [1] has begn used. This

description is limited to the formulae needed in this paper. Tamura's

coupling potential V

paper is recommended for a more detailed description of the formalism. In
the present study, only scattering from a rotational target nucleus has
been considered.

The diagonal potential 1is only the usual optical-model potential,

written in two parts as:

aucl Coul

Vdiag(r) = vdiag(r) + diag(r)’ (2'3)

representing the nuclear and Coulomb diagonal potentials, respectively.
For the nuclear potential, the Woods—Saxon form has been taken to be:

nucl

-1
Vaiag() = V(lte y - W(l+e ), (2.4)

where

e, = exp[ (xR )/a_|, (2.5)
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Measuring the Accuracy of the Solution Subspace 5

whilst V, Rv and a, are the strength, the radius and diffusness
parameters of the real part of the nuclear potential, respectively. A
similar meaning is allocated to W and e, concerning the imaginary part of
the nuclear potential. The Coulomb potential, derived from a constant
charge distribution in the target within the Coulomb radius Rc and zero

outside it, has the form:

= (3 - (&2 r <R (2.6a)
2R R c
vCoul(r) =7 7. e c [
diag 172 % r> R, (2.6b)

For later reference, it is noted that this potential, together with its
first derivative, is continuous at r = Rc; however, its second and higher
derivatives are discontinuous.

The radially dependent part of the coupling potential can also he
written as two different terms:

VeoupL™) ™ Vegupi ) * Vegupt () @7
They represent the radial dependence of the nuclear and Coulomb coupling
potential, respectively. The superscript A refers to the transferred
angular momentum during the scattering process. Since only a rotational
target nucleus has been considered, the nuclear coupling potential is
given by a Legendre polynomial expansion with expansion coefficients for
A % 0O:

1
:gﬁ;lx(r) g{ V(lte )T+ tH(lve )T ] Y, (0) d(cos(8)), (2-8)
where
e, = exp[{r - R (1 + ;vsi,YA,o(e) Y}a,] | (2.9)

with the nuclear mass deformation parameters Bg,. A similar expression
will hold for e, - The Coulomb coupling potential is expressed up to

second order of the deformation. The radial dependence has the form:

A A
2 (£~ (1-2) (3=) r<R_ (2.10a)
yCouliA o 3z,Zye (501 Re™ 0(2) ¢ 4 C
coupl (2A+1)R A R, A+l Rc A+l
c [-r-- (M2) [;-] >R, (2.10b)
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6 L.D. Tolsma and G.W. Veltkamp
where the parameters Bi(l) nd Bf( ) describe the charge deformation in
first and second order, respectively. Also, for later reference, we note
that the right-hand side of (2.10) and its higher radial derivatives are
discontinuous at r = R .

To obtain solutions for wlz(r), two boundary conditions have to be
fulfilled. At the origin wI (r) should vanish:

1o T Tty = o, (2.11a)
r+0
. Jn .
whilst, for large distances, wIl(r)’ must represent an ingoing partial
wave in the entrance channel plus outgoing partial waves in all the
relevant exit channels. The precise asymptotic form defines the

scattering matrix elements S

Iz o2
1/2
Jn(I 2.) 1 Ju +
070 - ; .
Y1y (r) 7. 611 L8, H, (“1 ik 01:) X S“;Io“o Ho (k)
(2.11b)
The ingoing and outgoing Coulomb waves H; and HI, respectively, are given
in terms of the well-known regular and irregular Coulomb wave functiomns
+
Y + R + .
Fz and GZ’ by HZ (Gk“iFl) The indices IO,ZU correspond to an ingoing

wave in the entrance channel for I = I, and £ = &;.

30f- Bsjmat

Fig.l. The sum of the centrifugal
potential for three different
g-values and the real part of
(r). Also, the behaviour of

diag
the imaginary part of vdiag(r) is

shown. Two laboratory energies of
10 and 104 MeV are indicated and

correspond respectively, to an

energy near the Coulomb barrier

| I ! ! ! and one well above it.
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Measuring the Accuracy of the Solution Subspace 7

In Figure 1, the sum of the centrifugal potential for three different

f~values and the real part of V g(r) is plotted as a function of r.

dia

Also, the behaviour of the imaginary part of g(r) is shown. Two

v
laboratory energies of 10 and 104 MeV for inelasticé:f;ha scattering from
2851 are indicated and correspond respectively, to an energy near the
Coulomb barrier and one well above it. These energies are the energies of
two test cases from which the different items treated in this paper will
be clarified. Section 8 contains more details about these test cases,
such as the optical model parameters employed to plot Figure 1.

The set of coupled equations (2.1) has to be solved for each J value
in a whole range of J wvalues. From the scattering matrix elements
obtained for these J values, the cross section of the ground state and

each excited state, as well as other observable quantities, can be

calculated.

3. INTEGRATION OF THE SET OF DIFFERENTIAL EQUATIONS

The set of differential equations (2.1) 1s rewritten 1in a wmore
conveniaent form:

d2 n

E:E ¢c(r) = cg=1 Acc,(r) wc,(r), c=1,2,...,n (3.1)
where the various channels are represented by the channel number ¢,
assuming that there are n channels. The quantities Acc' are the elements
of a matrix A which will be called the potential matrix. Denoting the
entrance channel by the sub~ and superscript i, the boundary conditions

(2.11) can be written as:

lim vi(e) = 0, c=1,2,...,n (3.2a)
c
r+0
1/2
i( ~ H. 5 - ki +
v (r) 5. Hy Sy m H, S ;s ¢ =1,2,...,n (3.2b)
c

where kc is the wave number in channel c. In primeciple, there are n
entrance channels.

The solution {wl(r),...,wn(r)} of (3.1) can be considered as a
solution vector {(r). The solution vectors constitute a vector space of

dimension 2n. This 2n~dimensional space contains an n~dimensional
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8 L.D. Tolsma and G.W. Veltkamp

subspace of regular solutions that satisfy the boundary conditions
(3.2a). In order to generate a basis of n linearly independent solutfion
vectors ¢S(r), s =1,.,.n, for the regular subspace by solving (3.1),
suitable initial conditions have to be specified. For these, the

following can be chosen:

-(2 +1)

. c 1
iig (kcr) l”cs(r) = T?T:iTTTT 6ot (3.3

where ¢cs(r) denotes the componemt ¢ of the solution vector ws(r) and lc
is the orbital angular momentum in channel c¢. These solution vectors form
the columns of a solution matrix ¥(r) = [¢l(r),..,¢s(r),..,¢n(r)]

with y_(r) € .

The solution vectors ¢i(r) that we are looking for, are regular;
hence, they are linear combinations of the ws(r) which are found by
taking into account the boundary coundition (3.2b) at the matching radius
Rm. Also, this yields the scattering matrix elements Sci; more detalls
will be given in section 5.

The regular solution vectors ws(r) are constructed by numerical
integration from the origin to the matching radius Rm. In Tamura's code
JUBITOR [5] use is made of Euler's and Stdrmer's multistep integration
methods which need the knowledge of the solution wvectors in two and five
prior mesh points of the integration range.

Euler's method is used to initiate the radial integration. The use of
this or a similar two-point method is essential, since it is not pessible
to specify the values of the solution vectors near the origin at more
than two mesh points. One of these points can be the origin, where all
the solution vectors have to be eliminated; another mesh point is r
close to the origin, where a value to the solution vectors can be given

according to (3.3):

Ec+1

" 1
wcs(rl)--(2--—-.1-5-;-(,“;r T (k.rp) 8§ 4 (3.4)

Using matrix notation for both the solution and potential, Euler's

method becomes:
¥(r) = 2¥(r-h) — ¥(r-2h) + h’B(r-h), (3.5)

where B(x) = A(x)¥(x). The local truncation error of this formula is of
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Measuring the Accuracy of the Solution Subspace 9

order hh. Here, r is a mesh point and h the mesh or step size.
Stérmer's method can be applied, provided that r is not in the

vicinity of the origin:

2
¥(r) = 2¥(r-h) - ¥(r-2h) + 216[299B(r-h) - 176B(r-2h) + 194B(r-3h)

- 96B(r—4h) + 19B(r-5h)]. (3.6)

The local truncation error of this formula is of order h7. This error
will be introduced at each step. However, the propagation of the local
truncation error after many integration steps gives a global error im the
solution, at a matching radius Rm’ of the order hs, neglecting starting
errors and round-off errors [6,7]. In order to keep starting errors small
enough, Euler's method has been used in the starting region with a
reduced step length.

To calculate the first derivative of the solution, at some mesh point

r, the formula :

¥'(r) = T%F[?(r—Zh) - 8¥(r-h) + 8Y(r+h) - ¥(r+Zh)] (3.7)

i 4
has been used; it has a truncation error of order h .

4. STABILIZATION PROCEDURE

In the preceding section, it was shown that n linearly independent
solution vectors ws can be generated by choosing appropriate initial
values. These solution vectors form the columns of a solution matrix ¥
with components denoted by wcs' Integrating through a classically
forbidden region, the components with negative local kinetic enerpy will
generally conmsist of an exponentially growing part and an exponentially
decreasing part. The former is responsible for the tendency to destroy
the initially generated linear independence of the solution vectors. The
longer the integration continues through a classically forbidden region,
the stronger this tendency will be; for instance, it will occur in
scattering problems of nuclear physics with energies near or below the
Coulomb barrier.

This section will be subdivided into three subsections. In the first,
a description of the stabilization procedure 1is given. The second
subsection shows how this procedure is implemented in our program. In the

third subsection, a criterion for the linear independence of the set of
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10 L.D. Tolsma and G.W. Veltkamp

solution vectors ws is discussed and its use, restoring this independence

by stabilization, is shown from our test cases.

4.1 Description of a stabilizatiom procedure

To maintain the linear independence of the solution vectors ws’ the
following stabilization procedure was applied. At some mesh point R,
called a stabilization point, the components in the solution vectors
were reordered In order of decreasing real part of the local relative
kinetic energy. This reordering allows permutations of the rows and the
columns, both of the potential matrix A and the solution matrix ¥ by the
same permutation. To be precise, a permutation matrix P was determined

T
such that the diagonal entries in the matrix P Re(~A(R))P had decreasing

order.
First we set:
2 .
A" = diag(A(R)) (4.1a)
which defines a diagonal matrix

2 2 2 2
A" = diag(A],ee e hseeesAn) (4.1b)

2
with entries Ac’ where
. 1/2

A, = [-EC(R)-lxc(R)] . (4.2)

The real part e of the local kinetic energy in channel c is given by
2 ic(£c+l) 2u
= - R + .

e (1) = K ”";E““‘ 2 Re[Vdiag(r) vcc(r)], (4.3a)

whereas, the imaginary part Xe is given by

X (r) = - %;.Im[vdiag(r) +v (], (4.3b)

where Vcc(r) is a diagonal element of the coupling potential in (2.1).

We see that, the €, values will be (much) larger than the Xo values, in a
large part of the classically forbidden region; therefore, the reordering
has been based on the €. values. This would be the case for the next
considerations, too.

Secondly, we reorder AZ

Y 2 2 2 2
PAP = g = dlag(ml,...,mc,...,mn) (4.4)
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with increasing real parts of the entries wz.

If ¢ = PTTP is the correspondingly reordered ¥-matrix, it satisfies

2
a“e(r)y _ T
- PTA(L)P o(r)
= (2% 2(r)) o(r), (4.5)
where
2(r) = P [A(r) - diag(A(R))] P. (4.6)

If negative EC(R) values occur, the most rapidly growing components of a
column of ¢ will be located the furthest down this column.

To explain the stabilization procedure, let
B(r) = o(r) U, 4.7

where U is a nonsingular matrix. Then E(r) satisfies (4.5)

2~
—d-iz(fl = (2% 2(x)) ¥(r). (4.8)
dr

If we neglect the contribution of Z(r) in (4.8), the solution matrix E(r)
would be

B(r) = 3 exp(-(-R)D[8(R) - g o' (R)] U
+ 3 exp(+(r-R)D[8(R) + 210" (R)] U, (4.9)

where the prime denotes differentiation with respect to the argument r.
In the case of negative ec(R) values, the coefficients of the

exponentially growing components are in the coefficient matrix
[e(R) + 9 o' (R)] U. (4.10)

The matrix U can be constructed so that this matrix becomes zero below
the diagonal in the rows where the ec(R) values (renumbered to correspond

to the reordering of channels) are negative [8]; thus:

[8(r) + 9'13'(R)]cc. =0 (4.11a)

for all ¢ and c¢' such that

= 0)

< <n,
< <ec, (4.11b)

Cc
cl
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where ¢ is determined by

es(R) <0 < eg(R). (4.11¢)

In other words, a new set of linearly independent solution wvectors Ec' is

obtained that - assuming Z(r) = 0 — has the following properties:

1f ec,(R) >> lxc,(R)i then, all compoments of Ec. oscillate.
1f Ec,(R) << -[xc.(R)i then, no component of ac' grows faster than

exp((r*R)mc,), the fastest growing ome being component $c,c,.

However, due to Z(r) # 0, for r > R, there will be a coupling between the
components of a solution vector and, therefore, the differenmtial equation
for a dehlining component may contain exponentially growing coupling
terms. The influence of the latter terms on this component depends upon T
and the ratio of the entries of Z{r) and QZ and they will determine where

the next stabilization point will be located.

4.2 Practical implementation of the stabilization procedure
To carry out the above~described stabilization procedure, firstly, we
must specify the permutation matrix P. The matrix A is premultiplied by a

product

L JURES SRTES SN (4.12)

n

of n~c+l elementary matrices Ic for ¢ < ¢ € n, where the entries of In
are chosen such that the premultiplication of the matrix Re(-A) by In
causes the interchange of the row with the smallest local kinetic enmergy

and the row at position n. Premultiplication by In_ interchanges the row

1
with the smallest eaergy but one and the one at position n~l. This is

continued for all rows up to and including row &. Let
P=IT el .o.lp. (4.13)

Secondly, we postmultiply ¥ and ¥' by a diagonal matrix D such that

columns of

L _1"' J pt (4.14)
ALy

have approximately the same length. It should be noted that when one of

the elements of A becomes very small, an average value has to be taken.
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Moreover, we define the matrix:

1= P [¥R) + A v (r)]p te. (4.15)

Then, to ensure that NU has "upper triangular form”, the matrix U can be

chosen as a product of elementary Householder matrices [9,10,11]:

U=UU ool ol | (5.16)

in which ¢ runs over the components of (4.15) with negative local kinetie

energy. Here

u =1 - ZWCWE, (4.17)

where the matrix I is the n-by-n identity matrix and the unit column

vector wc'with n components can be constructed from row ¢ of

1wy . (4.18)
by [12]:
ZKw (nif), g;’,..., ﬁz) (c)/l ) 0,0 0, (4.19)

where, only for this equation, the capitals K and S are used to define

positive constants, given by the expressions

«(e)]2

CS

52 = 2 (C)

s=1

2K = S + S

(4.20)

By constructing the unitary transformation matrix U in this way, a stable

solution matrix & is obtained

~ -1
3 =Pl try (4.21)

in terms of the permuted original solution matrix TD‘l. Backward
permutation gives

~ ~ T -1

Y =P =D U, (4.22)
where the stabilization matrix Il Is written as

RS I PP | JPPPY X (4.23)

with the permuted Householder matrices

= pu el (4.26)
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14 L.D. Tolsma and G.W. Veltkamp

However, in our program, a slightly different approach has been

followed. We used the permutation matrices Pc defined as

P =11 veel (4.25)
c n n-1 c

with Pe = P and correspondingly we changed the definition of uc given by
(4.24) inz

I =puypP. (4.26)
Cc c cc

This means that

PU = [T T .o enIg][U B LeeeU oneUs] (4.27)

in (4.21), has been replaced by the product

101 .0

JRUR SEPYUIIFPRS SRS 17N (4.28)

in order to obtain a stable solution matrix q, as given by (4.22). Here,

Uc corresponds to the unitary matrix (4.17) for which the unit column

vector LA has been constructed, in the same way as (4.19), from row c of

(c)

T -1, -1 ~
n = PC[W(R) + A y (R)]D IU...I (4.29)

+lenrlc
instead of (4.18).

We note that, although the index c only runs over the components with
negative local kinetic energy, in principle, it is also possible to let c
run over all the components of the solution vectors, including those with
positive local kinetic energy.

This stabilization procedure has been applied to StUrmer's multistep
integration formula (3.6). For this purpose, the solution matrix ¥ is
calculated up to and including the mesh point R+2h. The diagonal matrix D
and Householder matrices Un’“n-l""’Uc""’UE are determined from the
solution matrix and its derivative at mesh point R. The derivative of the
solution matrix is determined by means of Eq. (3.7). The solution

matrices at the mesh points of Stdrmer's formula can now be transformed

according to (4.22)
¥(R+kh) = ¥(R+kh)D T (R)(R) : (4.30)

for k = -2,-1,0,1,2. Using the stabilized solution matrices (4.30) in
Stdrmer's formula, a stable solution matrix can be obtained from mesh

point R+3h onwards..
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Measuring the Accuracy of the Solution Subspace 15

4,3 Criterion for the linear independence of the set of solution vectors
To discuss a criterion for the linear independence of the set of

2
solution vectors ws’ we have to consider the matrix F € ¢ "~

(4.14)

n given by

¢

¥
F = D
Al

-l (4.31)

where D is a normalizing diagonal matrix which will be chosen later. Due
to the initial conditions (3.3), the set of solution vectors ws is
initially linearly independent. Then the matrix F has rank n. A Singular

Value Decomposition of this matrix yields n non-zero singular values

g, » 0

L > .eees 20> 0. (4.32)

2

It is shown in [11] that F can be written as

n
T
F = Z g.u,v,, (4.33)

=1 1 171

where the vectors uy and v, are, respectively, the i-th left singular
vector and the i-th right singular vector.
Using the 2-norm, the condition number of F can be expressed in terms

of its largest and smallest singular values

ky(F) = o,/ . ‘ (4.34a)

We see that KZ(F) » 1. If F has a small condition number, then F is said
to be well-conditioned. If, on the contrary, KZ(F) is large, then F is
said to be ill-conditioned. If the columns of F are orthogonal and D is

‘chosen so that these columns are normalized in the 2-norm, then [11]

ky(F) = 1. (4.34b)

If the set of solution vectors becomes nearly 1inearly dependent, -
which, in general, happens gradually during the integration process - '
then, the matrix F becomes ill-conditioned. This implies that F becomes
nearly rank deficient, i.e., F is near to a matrix of rank lower than n.
To quantify this, let

T
E = O U Vs (4.35)
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16 L.D. Tolsma and G.W. Veltkamp

then rank (F-E) = n-1 and

uE!2 o

HFI2

= . (4.36)

Hence, the ratio (4.36) gives an indication of the distance, in a
relative sense, of F to the set of matrices with rank lower than n.
These considerations lead to the introduction of a linear independence

number of a set of solution vectors ws defined by

v(F) = {?—%FT F given by (4.31) with D such that
2 the columns of F have the same length (4.37)
This number can be used as a criterion for the need to perform a
stabilization in order to restore the linear independence of a set of
solution vectors.

Figures 2 and 3 show the independence numbers v(F) as functions of r,
with ¥ given by (4.31) and determined without any stabilization during
the integration process, for our test cases with projectile energies of
10 and 104 MeV, respectively. A more detailed description of the test
cases will be given in section 8. In the figures, the numbers vw(F) are
plotted on a logarithmic scale at the mesh points R = 5h, 10h,..., 3.4 fm
for h = 1/5, 1/10, 1/20, 1/40 and 1/8C fm and the corresponding curves
are denoted by vl/h' The solid line curves correspond to a multipole
expansion of the deformed nuclear and Coulomb potentials, given by (2.8)
and (2.10), respectively, up to degree A = 8. The broken line curves
correspond to an expansion up to degree XA = 4,

Looking at Figures 2 and 3 the following remarks can4app1y:

Firstly, close to the origin, the set of solution vectors ws is
linearly independent to a reasonable extent. However, a little further up
the integration range, the linear independency deteriorates. This happens
less quickly, the larger the step size h.

Secondly, in the classically forbidden region, the curves of both
figures are nearly identical which means that in this region, the linear
independence number is not dependent upon the energy of the incoming
particle. However, the higher this energy, the smaller the classically
forbidden region will be. For a projectile emergy of 104 MeV, this region
ends at r = 1.9 fm, as shown in Figure 3 (see also Figure 1). In the

classically allowed region,vthe curves are horizontal.
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Thirdly, comparing the curves with solid and broken lines, the behaviour

of the linear independence number depends on the maximum degree of the

expansion of the deformed potential. This
zero elements and their entries in the

determine the behavicur of v(F). It seems

means that the number of non~-
potential matrix A of (3.1)

that the values of the matrix

elements themselves are of less importance, although they depend upon the

deformation parameters BA'

Fourthly, at the radii of about 1.0 and 1.5 fm, the curves v and

Vig? regpectively, decrease to a value

80
of the order of the machine

precision of oqur computer. For a Bur}oughs 7900, the single floating~

1[)0 ;R‘\k T T T T T T YT T
N \\\ \\\ ~ - 285 10,a')
NN DN ~Sa E‘ab=10HeV Yy
Y o RTEER g PN N e e e —— 2
N\
- Yo |
ALV NS S SN T2 g e NN N e e T
- ——
=l .
IV NN N Te=J 3 TRV N S v
e e o e Ve
5 Vi -
1% 5
W9 .
- Vzo - manf
N
-10 .
e 80 B (a,x)
Eqap =10eMeV
15’[2 YN VR WONOE RS SO W TR TR N Y SN S SO S T 1512 TSNS YRS S YT TR RN Y U TN SO SR N N S W
0 04 08 12 16 20 W 28 32 0 04 08 12 16 20 24 28 32

r{fm)

rifm}

Figs. 2 and 3. In these figures, plots of the linear independence numbers

Yi/h determined with step sizes h = 1/5,

1/10, 1/20, 1/40, 1/80 fm and

without any stabilization during the integration process, are shown for

energies of 10 and 104 MeV, respectively. The solid line curves corres-

pond to a multipole expansion of the deformed nuclear and Coulomb poten~

tials up to degree A = 8, The broken line curves correspond to an expan—

sion up to degree A = 4.
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18 L.D. Tolsma and G.W. Veltkamp

point numbers are represented by a normalized mantissa of 13 octal
digits; thus, the machine precision is equal to % 81"13 ~ 0.7 10—11.
If the value of V(F) 1s of the order of the machine precision then, the
set of solution vectors ws has completely lost its linear independency
and corresponds to the erratic bebhaviour of v(F) beyond this point.
Figure 4 1llustrates how V(F) can be used to 1indicate when
stabilization is needed to maintain the linear independence of a set of
solution vectors ¢s at some level. The figure shows two curves of v(F)
calculated for h = 1/83_5?, A = 8 and projectile energy of 10 MeV. For

the curve denoted by vs? , the criterion v(F) < 10_2 has been used, for
-4
80

the other, denoted by v ), we used v(F) < 10-4. The behaviour of véaz)
and véaﬁ) for v € 3.4 fm shows that only in two and one mesh points,
respectively, a stabilization 1s needed to maintain the imposed
conditions of the curves. We see that after a stabilization, v(F) nearly

regains its original value of unity.

108
10!
w2
el

4l -
16 W

o Bsifaa’) |
LA € 1ap~10MeV

i | L L i i 1 i i 1 1 o i

L
0 04 0B 12 16 20 24 280 32
r{fm}
Fig.4. This figure illustrates how the linear independence number v can
be used to indicate when stabilization is needed to maintain the linear
independence of a set of solution vectors at a certain level. Two plots
of v, calculated for h = 1/80 fm, are shown. For the curve that is
denoted by v(-z), the criterion v ¢ 10“2 has been used, for the other,
224
8

V]
denoted by v a , v &€ 10 4 was used. The behaviour of the curves for
r < 3.4 fm shows that a stabilization is needed in a few mesh poiats
only, to maintain the imposed conditions. After a stabilization, v nearly

regaing its original value of unity.
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Finally, in practice, we state that it seems only necessary to stabilize
the solution matrix at a few mesh points in a classically forbidden
reglon of the integration range 1In order to maintain the linear
independence at some prescribed level. However, if necessary the program
can carry out the stabilization procedure after every 5 step lengths in
the integration range, including the classically allowed region.

In section 9, thg influence of v(F) deviating from 1 on the loss of
accuracy in the solutions and S—matrix elements will be discussed.

5. MATCHING THE BOUNDARY CONDITIONS AT RADIUS R.m

The integration of a set of coupled equations (3.1) is performed up to
some mesh point of the integration range. This mesh point has to be
chosen so that the nuclear potential at this point, as well as in
general, the Coulomb part of the coupling potential are both negligible.
Here, the set of coupled equations reduces to a set of decoupled
equations of which the solutions are known, since they are given by the
boundary conditions (3.2b). This point in the integrationm range is called
the matching radius Rm.

As described in section 3, the set of n coupled equations is solved 1
times in order to satisfy the boundary conditions (3.2b) at Rm. Satis—
fying these conditions needs a set of 2n linear equations, because a
column of n S-matrix elements related to outgoing partial waves in all
the relevant exit channels has to be determined for each ingoing partial
wave 1in the entrance channel, as well as, a column of n normalization
coefficients of the solutions. Since in principle, there are n entrance
channels, complete n-by-n scattering and normalization matrices can be
generated. The boundary conditions (3.2b) and their derivatives with
respect to kcr are usually taken in order to obtain a set of 2n linear
equations. In that case the matching relationship at radius Rm in matrix

notation can be written as
" ) +)
H H -1/2

N = - .| K
¥ g™ o)

s k1’2, (5.1)

(£)

: 1/2
where N is the normalization matrix, and H and K / are diagomnal

matrices defined by
+
4

diag(ufi),...,uﬁi),...,Hgt)) (5.2)
k72 - diag(kilz,...,kilz,...,kilz). (5.3)
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The solution matrix ¥ contains the solution vectors b, 8 = l,¢ee,n as
discussed in section 3.

The Wronskian of two solution matrices & and ¥ is defined by

. T ]

WO, ¥) = oT¥' - oy, (5.4)
Using the Wronskian
+ =) (+)! =)'+
D O LA ORI O I

W(H(—), H 241, (5.5)

the normalization and scattering matrices are given by

N = —21[w™, vt (5.6)
and
s =wa'™), K1/2¥) [W(H(+), K1/ZW)]-1, (5.7)

respectively. Equation (5.7) shows that the S~matrix does not depend upon
the normalization of the solution matrix, i.e., upon the choice of the
normalization matrix N in (5.1).

Based upon considerations of invariance of the scattering process
under time reversal, it can be proved that the 5-matrix is symmetric. It
follows from the matching conditions (5.¥) and the definition (5.4) that

T /2.\P ~1/2 1/2 ~-1/2

S - § a_ii_w(xl N K s K''T¥ N K ) (5.8)

which relates the asymmetry of the S-matrix to the Wronskian of the
normalized solution wmatrix with itself. 1t can be proved that the
Wronskian of any two regular solution matrices at every poeint of the
integration range is equal to zero, when taking into account the symmetry
of the A-matrix in (3.1) and the regularity of the solution matrix at the
origin. Hence, deviations from zerc of the Wronskian of the normalized
solution matrix with itself, determined during the integratiomn, tell us
sométhing about the influence of the unwanted irregular solution matrix
and might be used as a measure for the accuracy of the regular solutions.
In this connection, it has to be realized that the solution matrix was
stabilized several times during the integration process and had to be
normalized at the end. Therefore, deviations from zero inm the sense of
equation (5.8) can only be determined after ending the integration
process. )

To make a calculation that achieves the above-suggested possibility
for measuring the accuracy of the solution matrix, we assume that during
the integration process the stablilization procedure had been applied at

the mesh points Rl""’Rp""'Rt' The point Rt+ corresponds to the

1
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Measuring the Accuracy of the Solution Subspace 21

matching radius Rm. The normalized solutlon matrix between the points

Rpand R 1 can then be written as

pt

(p-1)

referring to (4.22) and where ¥ corresponds to the unnormalized

1
pexformed at the points Rp""’Rt « The matrix N 1s the normalization

matrix given by (5.6). The solution (5.9) will be called the physical

solution matrix between Rp and Rp+ in case no stabilizations are

5

solution.

After ending the Iintegration, the physical solution matrix can be
calculated at every mesh point of the integration range and the Wronskian
of the physical solution matrix with itself can be determined. However,
measuring of the accuracy of the solution matrix at the mesh points
between the origin and Rp by means of thils Wronskian will be perturbed by
possible deficiencies occuring at the mesh polnts between Rpand Rm' This
perturbation is inherent in the use of the physical solution matrix, as
shown by equation (5.9). In other words, errors in the physical solution
at the mesh points below R are introduced by what happens at the mesh
points above Rp including g;e matching radius. Since this is really the
case, as will be shown in one of the following sections, this method is
not sulted to our purpose. The method of computing angles between
subspaces spanned by the solution vectors which will be treated in the
next section, does not have this disadvantage and can detect deficienciles
below Rp independently of those wWhich occur in the remainder of the
integration range. Moreover, in contrast to this method, the S-matrix and
Wronsklan give only an indirect measure of the lost accuracy during the
integration process.

As has been already noted, the S—matrix does not depend upon the
normalization of the solution matrix. Or, stated positively, the S-matrix
is entirely determined by the regular subspace spanned by the solution
vectors at the matching radius. Therefore, the accuracy of the S-matrix
should be examined by studying the accuracy of thls subspace measured by

calculating the angles between it and a reference subspace.
6. COMPUTING ANGLES BETWEEN SUBSPACES SPANNED BY THE SOLUTION VECTORS

In this section, a method for computing angles between subspaces

spanned by solution vectors (and their derivatives) will be discussed.
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By computing these angles, differences between the subspaces spanned by
two solution matrices ¥ and ¥+8¥, which were obtained by variants of the

numerical process, can be investigated. To this end, the following two
2nxn

matrices F.and G et are defined
v ¥ + &Y
T Ly ’ T L 4 sy ’ -1
A ¥ L
- T = R ( + ) =R

where the prime denotes a differention of the components wcs with respect
to r. The matrices ¥ and G consist of n linearly independent columns.

The linearly independent columns of the matrices F and G span n~dimen~
sional subspaces SF and SGt: Ezn, respectively. Differences between the
subspaces SF and SG are characterized by the principal angles 01,...,0n
e [0,m/2] between S, and S,. In [13] these angles are defined for
k =1,2,...,n recursively by:

H .
cos(Gk) = max max qu =WV, (6-2a)

u € SF v € SG

with

ﬁunz = llvll2 =1 (6.2b)

and subject to the constralnts
H _ .
uu = 0, v vy = 0, 1=1,2,...,k-1. (6.2c)

It can be seen that 0 < @, € ... € O < w/2. The vectors {u yeaa,0 } and
1 n 1 n

{vl,...,vn} form unitary bases for S_ and SG’ respectively, and are

F
called the principal vectors of the subspace pair (SF,SG).
To compute the principal angles and vectors, the QR-decompositions of

the matrices F and G need to be determined

H
F = QpRg, QG =

it
(o]
o
m
@

(6.3a)

i
-

6 = QgBs» ngc =

o’ R.ec &, (6.3b)

where QF and QG have orthonormal columns and R_ and RG are upper trian-—
gular. The n columns of QF and QG form unitary bases for the subspaces SF
and SG’ respectively. The matrix In denotes the n—by-n identity matrix of
dimension n. For these decompositions, either the method of Householder

transformations or the modified Gram~-Schmidt method can be used.
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Subsequently, by means of unitary matrices U and V, the Singular Value

Decomposition of the product matrix QgQG is determined

"H H L
U (QpQ )V = diag(oy,+.+,0)), (6.4)
which ylelds the singular values % b v, P ees 2 % > 0.
It can be shown that the principal angles Ok and principal vectors of

the subspace pair (SF,SG) are given by [13]

cos(@k) = o (6.5a)
{ul,..-,un} = QU (6.5b)
{vl,...,vn} = QGV. (6.5c)

The principal angles depend on the subspaces 5, and SG only, which

implies that they are invariant against postmuliiplication of the
matrices F and/or G by any regular matrix. The main advantage of
determining the principal angles is that they give a measure for the
nearness of the subspaces SF and SG,
representing them; thus, looking at the equations (5.1) and (5.9), the

independently of the bases

principal angles are not influenced by the normalization matrices W, the
scaling matrices D or the stabilization matrices il . In particular the
latter maintain or restore the quality of the bases of the subspaces in
the sense of being orthogomal, as much as possible, but do not affect the
subspaces themselves.

This method for computing the priancipal angles between the subspaces
S_and 8§

F G?
been applied inspecting the accuracy loss along the integration interval

1.e., between solution spaces represented by ¥ and ¥+§¥, has

and detecting possible sources of deficiencies in the numerical process.
It is a very sensitive method for this purpose, as 1s seen in the test
cases we studied and illustrated in the Figures 6.a and 7.a, where the

largest principal angle between SF and 5 in the sense just mentioned,

s
is plotted as a function of r for féLr different combinations of
subspaces. It 1s shown clearly that the behaviour of the curves at r = 4
and 17 fm 1s discontinuous and which corresponds to deficlencies of the
numerical process. More details will be given in section 8.

In the next section, a method will be developed for avoiding

inaccuracies in the solution vectors, due to one of the deficiencies.
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7. AVOIDING INACCURACIES IN THE SOLUTION VECTORS AT COULOMB RADIUS R,

The Stérmer integration method (3.6) contains higher derivatives of
the solutions at mesh point r—h [6,14] implicitly. To guarantee a local
truncation error of order h , the higher derivatives up to and including
the sixth order have to be continuous. However, the second and higher
radial derivatives of the Coulomb part of the diagonal potential (2.6)
and the Coulomb part of the coupling potential (2.10), as well as its
higher derivatives are discontinuous at the Coulomb radius Rc. This means
that the potential function Acc'(r) in (3.1) is neither continuous, nor
continuously differentiable for r = Rc' This causes discontinuities in
the second and higher derivatives of the solutiouns.

In this section, a method will be preseunted that avolds these
inaccuracies in the solutions due to the discontinuities at radius Rc'
The method can be applied to the general case, too, in which the diagonal
and the coupling potential and/or their higher radial derivatives are
discontinuous at some radius. In deriving the method, it was supposed
that the radius Rc coincides with a mesh point. The approach presented
here differs from the one published recently [15].

Using vector and matrix notation, the set of differential equations

(3.1) forr « Rc+2h is written as

¥''(r) = A(r)¥(r), r < Rc+2h (7.1a)
and for r » Rc-2h as

¥r1¢r) = K(n)¥(r), r > R_-2h (7.1b)

The radial dependence of the Coulomb part of A(r) in (7.la) corresponds
to (2.6a) and (2.10a) taken for r Rc+2h; whereas, this part of X(r) in

fr)

,f’”'“:%;?%N\\‘\Q\ Fig.5. This figure illustrates a

AN -
¢:;\ i _ posaible radial dependence of the
[ 2 ~
> ‘ potential matrices A(r) and A(r) in

" L. the vicinity of the radius Rc' The
Alr) »~ TAlr) :
K‘*; - behaviour of a component of the
AlD - “‘-»EEL__ solution vector has been given
| i i I i diagrammatically.
Re-2h R R+ 2h
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(7.1b) corresponds to (2.6b) and (2.10b) taken for r > Rc-Zh. Figure 5
illustrates a possible radial dependence of both A{r) and A(r) in the
vicinity of the radius Rc. In this figure, the behaviour of a component
of the solution vector has been given diagrammatically. Integrating from
the origin up to Rc+2h, the solutio;s W(Rc+kh) for k = -2,-1,0,1,2 will
be known with an accuracy of order h™ and using (3.7), the derivative of
the solutiouns in Rc can be calculated with an accuracy of at least order
ha. Further integration without loss of accuracy requires knowledge of

W(Rc+kh) for k = ;2,...,2 with an accuracy of order h5.

Taking x = r—Rc, the equations (7.1) can be written as
¥'r(x) = A(x)¥(x), x < 2h (7.2a)

and

A(x)¥(x) . x >2h. (7.2b)

';P'"(x)

Define for the mesh points xk = kh:

v - (d/dx) M (x,), (7.3a)
(m) m
Ay 7 = (d/dx) A(x)- (7.3b)

The problem which has to be solved requires the determination of ﬁk with

known Wk and given Ak>and Xk for k = 0,t1,£2. The continuity condition at

% = 0 gives:

YO = YO, , . (7.4a)

) _ () V ‘

Yo YO . A (7.4b)
In order to derive expressions for the other ¥k’ define the differences

oYy =¥, - Tk, (7.5a)

oA =K - . (7.5b)

and expand AY, in a Taylor series about x = O using (7.4)

k

2 3 4
_(kh)© (2) | (kh)® L (3) , (kh)? | (4)
A = = By T+ S MY+ S MY

c + 0(h5).‘ (7.6)
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Using
(2) ~(2) (2) ~ o~
A D= o T ST = AN ALY
= R - v+ (A - A)Y = KAy + oy, (7.7
gives
0e$® = gy, (78
1 1 1
A‘l’((]3) = (mw)é ). AA((] )'”0 + Mowé ) (7.9a)
o L (v - aa¥ )+ o), (7.9b)
Th 1°1 -1 -1 ? A .
G) _ 7~ (2 (2)
AYy = RgaygTT + (8A¥)
- 7 (2) (1) (1) (2)
= Kpaage, + aalP v+ 205w v oaa el (7.10a)

= KA Y -t (MY + AA LY
2 111 -1 7

0~0°0

) ,
L = 2840%0) + 0(n°). (7.10b)

Substituting (7.8), (7.%9a) and (7.10a5 in (7.6), the expressions for the
differences AVk for k = *1,%2 obtain the form:

. 1.2 1 .3, (1) (1)
AY,, — h"8A ¥, * ——h (AAO "’of BAYTT)
1.4~ ) 1,1 2) 5
+ =z h (AOAAO‘P0+AA0 ‘PO+2AAO Yo HAA¥TT) + 0(R7), (7.11a)
. 2 ) 4 . 3,,,(1) ¢
ATtZ 2 h AAOWO t— h (AA0 Yo + AAOWO

+ 2 nY@E pa oy +aaPy

3 1 (BT84 o*“"‘c()l)‘l’él)*‘ﬂ*‘*o\l’éz))+0(h5)- (7.11b)

Alrernatively, substituting (7.8), (7.9b) and (7.10b) 1in (7.6), the

expressions for the differences become:
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2
h ' <
A, = r [108A)¥) + (1%2)4A)¥) + (172)A4_ ¥ |

£
Yo V 5
+ o Epage, + o), (7.12a)
2
A, = 32 [sajt, + (LEL)AAY, + (IFL)AA_ Y |
RN VRN (7.12b)
T A84% (h7). .

It appears that the expressions (7.l1) are rather more accurate than
(7.12).

8. RESULTS OF DETECTING DEFICIENCIES, THEIR AVOIDANCE AND THE ACCURACY OF

THE INTEGRATION PROCESS

In the next two sections, the results of ocur investigation will be
presented; they were obtained by calculating the inelastic scattering of
10 and 104 MeV alpha particles from 2881. A multiple excitation of 2851,
with spin sequence 0+ - 2+(1.78 MeV) - 4+(4.61 MeV), has been induced by
the alpha particles. This means that the number of coupled equations n in
the set (3.1) becomes 9. This set has been solved for a total angular
momentum value J = 5 and a matching radius Rm = 1; fm.CA purely
rotational model is assumed with deformation parameters By = 32= -0.329
and BE = 32 = —0.108. The deformed nuclear and Coulomb potentials, given
by (2.8) and (2.10), respectively, are expanded up to degree A = 8. The
optical model parameters are V = 89.749 MeV, W = 31.46 MeV, r” 1.443 fn,
r, = 1.429 fm, r, = 1.317 fm and a, = 0.628 fm, a, = 0,729 fm. The test
case with 104 MeV alpha projectiles corresponds to one of the test cases
mentioned in the Karlsruhe report [5].

In the first subsection, the results will be presented for detecting
the sources of deficiencies in the numerical process by means of the
calculation of angles between subspaces spanned by the solution vectors.
Also, the effects of avoiding the deficiencies, 1in part by the
application of the method explained in the preceding section, will be
shown. In the second subsection, the influence on the accuracy of the
S-matrix elements by the deficiencies and their removal, will be
discussed. Finally, in the third subsection, a figure will be shown and

discussed in which the results of calculations from both preceding
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subsections have been combined. By means of this figure, preliminary
conclusions can be drawn concerning the accuracy of the integration
pracess. These results, presented in all three subsections, have been

based on calculations obtained for successively decreasing step sizes.

8.1 Angles between the subspaces spanned by the solution vectors.

The set of differential equations (3.l1) was solved with step sizes
h =1/5, 1/10, 1/20,.1/40 and 1/80 fm. The unnormalized solution vectors
and their derivatives at the mesh points R = 5h, 10h,..., Rm for h = 1/5,
1/10, 1/20, 1/40 and 1/B0 fm were used to construct the solution matrices
G. These matrices will be identified by a subscript corresponding to

1/h = 5, 10, 20, 40 and 80. The matrices G,, will be considered as

80
"reference matrices”, since they conform with the highest accuracy. The
solution vectors have been stabilized at the mesh points mentioned in
order to ensure that they were as linearly independent as possible.

Subsequently, subspaces 55,..., were assoclated, successively, with

SSO

the matrices GS""’GSO' The principal angles between the subspaces Sl/h

and SSO’ with 1/h = 5,...,40 were computed with the method explained in
section 6 at the mesh points R = 5h, 10h,..., Rm. In Figures 6a,b and

7a,b, the largest principal angles 0 between S and 580 are plotted

on a logarithmic scale for projeii?le energie;/ZE 10 and 104 MeV,
respectively.

The solutions related to the curves in Figures 6a and 7a were obtained
by means of Tamura's code JUPITO& in its original form. The curves in
Figure 6a clearly show discontinuities at r = 4.0 fm, which corresponds
to the Coulomb radius Rc and at the matching radius Rm = 17.0 fm. The
curves in Figure 7a show a pronounced discontinuity at the Coulomb
radius only. The discontinuity at RC arises if the Coulomb potential is
approximated to be due to a homogeneously distributed nuclear charge
within a sharp radius Rc. This potential is then not continuously
differentiable at this point (see (2.6) and (2.10)), also, some of the
terms are discontinuous (see (2.10)). The discontinuity in the curves at
Rc can be removed by using the method given in section 7. This method
avoids inaccuracies in the solutions due to the deficient behaviour of
the Coulomb potential at Rc. This is clearly shown by the curves of
figures 6b and 7b; they behave steadily at the Coulomb radius.

The discontinuity in the curves of Figure 6a at Rm appears to be

caused by a programming error in Tamura's code [5]. In the subroutine
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Ejap= 10MeV
W
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i
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r{fm}
Fig.6a. The largest principal angles
between the solution subspéces
and S i/h = 5, 10, 20, 40.

®1/n

51/n 80’
The curves clearly show discontioui-

ties at the Coulomb radius Rc =4 fm
and the matching radius Rm =17 fm.

25 (aa)
€{ab ~10MeV
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8
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rifm}
Fig.6b. The same as Figure 6a, but

the deficiencies causing the discon~

tinuities now have been removed.
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Fig.7b. The same as Figure 7a, but
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radiusg RC now has been removed.
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COUPLE at line 926 the conditional statement should read

IF(NX~(NXCPLE+2)) 1330,1330,1610 instead of IF(NX~NXCPLE+2).,.,.. Conse=«
quently, the non~diagonal elements of the potential matrix A in (3.1)
become reduced to zero in fact. Since for projectile energies near the
Coulomb barrier these elements at Rm are still important compared to the
diagonal elements, their effect of becoming zero will be reflected in the
behaviour of the principal angles. A similar discontinuity does not
appear in the curves of Figure 7a at Rm, because for energies well above
the Coulomb barrier, the relative importance of the non-diagonal elements

at this radius is much less.

8.2 S—matrix elements for successively decreasing step sizes.

In this subsection, the influence on the accuracy of the S—-matrix
elements by the deficiencies and their removal will be discussed. This
will be performed for anm arbitrarily chosen element of the S-matrix,
825;05 which will be used along with others for calculating the
cross sections of the 4 state. In Tables 1 and 2, the values calculated

pamely,

for this S-matrix element are shown as a function of successively
decreasing step sizes h, labelled by t (tests) for the projectile
energies of 10 and 104 MeV, respectively. The values resulted from the
same calculations as those for the principal angles in the previous
subsection. The tables show, in columns 3, 4 and 5 respectively, the real
ang imagina;y parts of 525;0
(545;05 - 505;45), denoted by "asym” in seven decimal figures. In columns

5 as well as, the modulus of

6, 7 and 8, the absolute values of the differences between the successive
entries in columns 3, 4 and 5, respectively, are given in five decimal
figures. The numbers in parentheses at the top of the columns denote the
powers of 10 by which the underlying numbers have to be multiplied. Both
tables are subdivided into four different parts that correspond to the
calculations which were performed with or without the presence of radial
discontinuitieg in the potential matrix A ipn (3.1) at Rc and Rm. The
values in parts a are influenced by both discontinuities. Those in parts
b and ¢ are influenced only by the discontinuity at Rm and Rc,
respectively. The influence of both discontinuities have been removed in
parts d as shown.

Tables 1 and 2 give rise to the following conclusions related to the
influence of the deficiencies on the accuracy of the S-matrix elements:

Firstly, the discontinuity in the potential matrix A at Rm is the main
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31

28 + + ,+
Table 1. S-matrix element for 10 Mev alpha scattering from  Si(0 -2 ~4 )

as a function of successively decreasing step sizes h.

t

1/h

fm

real

(-3

5 (t)
45;05

imag
-3

S

|asym|

(-6)

SS (t) _ S5(t+1)

45305 45;05
real imag
(-5) (-5)

'asym‘
(-6)

a) With discontinuities in potential matrix A at Rc = 4fm and Rm = 17fm.

1 5 6127480  ~.2479657  .2283326 -69039 »39919 174286
2 10 -6196519  -.2439738 -0540680 .29780 -23112 .04096
3 20 +6226299 -.2416626 .0131061 » 13444 .12202 00984
4 40 6239743  -.2404424 -0032611 .06353 .06235 -00240
5 80 .6245096 -.2398189 .0008627

b) With discontipuity in potential matrix A at Rm'

1 5 .6125957  -.2480221 «2416972 .69514 -40783 .18690
2 10 6195471 -.2439438 .0548013 .30286 .22974 .04168
3 20 26225757 -.2416464 .0131256 .13716 .12118 .00989
4 40 «6239473  -.2404346 .0032368 .06488 .06195 ,00220
5 80 6245961  -,2398151 -0010354

c) With discontinuity in potential matrix A at Rc'

1 5 .6256308 -.2393349 .0073168 .02961 .01113 .00624
2 10 -6253347  -.2392236 -0010758 »00597 .00199 .00096
3 20 -6252750 -.2392037 -0001156 .00277 .00085 .00006
4 40 .6252473  -.2391952 .0000523 .00136 .00039 .00001
5 80 .6252337  ~.2391913 «0000669

d) Without any discontinuity in potential matrix A.

1 5 6254759  -.2393937 0177432 .02462 -01993 .01611
2 10 «6252297  -.2391944 .0016341 .00089 .00067 .00150
3 20 .6252208  ~-.2391877 .0001338 »00005 .00003 .00008
4 40 +6252203 -.2391874 .0000570 .00000 .00001 .00011
5 80 .6252203  -.2391875 .0001710
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+
Table 2. S-matrix element for 104 Mev alpha scattering from2851(0 —2+*4+)

as a function of successively decreasing step sizes h.

5 (t) 5 (t) _ 5(t+L)

£ l/n 845305 545505 ~ S45;05
fn L real imag |asym| real imag |asym|
(-2) -2y (~4) (~2) (-2) (~4)

a) With discontinuities in potential matrix A at Rc = 4fm and Rm = 17fm.

1 5 «1931047  -.4105927 .6898895 -21452 .39530 .63340
z 10 4076243  -.0152959 .0564886 -00044 .01163 .05441
3 20 .4080613 -.0036645 .0020782 .00061 .00096 .00201
4 40 4086671  -.0027067 .0000687 .00028 .00040 .00007
5 80 .4089502  -.0023105 .0000017

b) With discontinuity in potential matrix A at Rm.

1 5 2031317  -.4191230 .7032578 .20771 40675 +64599
2 10 .4108368 -.0123757 0572717 .00157 .01027 .05516
3 20 .4092644 -.0021086 .0021127 .00005 »00019 .00204
4 40 -4092181 -.0019220 .0000697 ,00000 .00001 00006
5 80 +4092158 -.0019163 .0000061
c) With discontinuity in potential matrix A at Rc.
1 5 .1931483 ~.4105629 .6894037 21447 .39529  .63300
2 10 .4076221 -.0152734 .0564087 .00044  .0l162 .05435
3 20 -4080594 ~.0036535 .0020609 -00061 .00095 .00200
4 40 .4086661 -.0027012 -0000644 .00028 .00039 00006
5 80 +4089496 —-.0023077 .0000012

d) Without any discontinuity in potential matrix A.

1 5 .2031763  ~-.4190919 « 7027446 .20766 40674 +64556
2 10 -4108344  ~.0123530 .0571892 .00157 -01026 »05509
3 20 .4092625 -.0020975 .0020943 .00005 .00018 .00203
4 40 .4092171  -.0019165 -0000647 .00000 .00000 .00006
5 80 «4092152  -.0019135 -0000042
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reason why the accuracy obtained for the energies near the Coulomb

barrier is of order h only. This is shown in parts a and b of the columns

6 and 7 of Table 1. The accuracy of the solutions and their derivatives
5 5

a; R_are of the order h too, whereas, 1545;05- 805;45

h” which appears in parts a and b of columns 8. This effect does not

is of the order

appear in the corresponding parts of Table 2, due to the relatively
unimportant non-diagonal elements of the potential matrix 4 at Rm for
those energies well above the Coulomb barrier. This is also the reason
for the differences between parts b and d of the columns 6,7 and 8 of
Table 2 being very small or even zero.

Secondly, the influence of the .discontinuity in the potential matrix A
at RC has only minor importance when compared to that at Rm for emergies
near the Coulomb barrier. For energies well above it, this discontinuity
gives rise to only a small deviation. However, for both energies, the
discontinuity at RC departs from the expected order of accuracy. This is
shown in part ¢ of columns 6 and 7 in the tables.

Thirdly, only after removing both discontinuities 1in the potential
matrix A does the accuracy of the S-matrix elements become of the order
h4 to hs. This is shown in part d of the columns 6 and 7 in the tables.

Fourthly, from part d in the tables, we see that the entries of column

t t
5, i.e., ISS(,) - SS(,) i values are about an order of magnitude smaller
45305 05 ?g

than the estimate 1325;35 - SZ%?%SI for the error in SZ§§35‘ This means
that a high degree of symmetry in the S-matrix elements does not
guarantee an equal high accuracy of these elements.

Finally, the differences between the calculations with and without
either discontinuities are rather small and the former will have little
serious consequence for the calculations in our test cases in practice.

From now onwards, the calculations have been performed without any

discontinuity in the potential matrix.

8.3 About the accuracy of the integration process.

In this subsection, we look for a relationship between the asymmetry
of the S-matrix and the largest principal angle between the solution
subspaces when they are used as a measure of the accuracy of the inte~
gration process. Examining this relationship, the modulus of the largest
element of (S~ST) is plotted in Figure 8 on a double logarithmic scale as
a function of the step size h. The values of the moduli are denoted by

full dots. The largest principal angles, 1/h = 5, 10, 20 and 40,

® /n
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163

' : f 10 Fig.8. The modulus of the
largest element of (S-ST)
(full dots), and the largest

—o. ®

28j(a,a’)

principal angle el/h’ 1/h =
5, 10, 20, 40 at the matching
radius Rm(open dots), plotted
as functions of the step size

h. The slopes of the straight

E(ap=10MeV

parts of the curves are all
E between 4.8 and 5.1 indica-
© ting that StYrmer's diffe-
rence method does give rise
to a global truncation error

of order h5.

/ R -6

I/ E|ap=106MeY g

/
a / b

=7

L 0

102 10!
h(fm})

defined in subsection 8.1, at the matching radius Rm are also plotted in
the figure. They are indicated by open dots. Parts a and b of the figure
refer to projectile energies of 10 and 104 MeV, respectively.

Looking at Figure 8, the following preliminary conclusions that
relate to the accuracy of the integration process itself can be drawn:

Firstly, the slopes of the straight parts of the curves are all
between 4.8 and 5.1 indicating that Stérmer's difference method does
give rise to a global truncation error of order hs. This is not only
indicated by the moduli of the largest elements of (S—ST) (solid lines),
but also, by the largest principal angles at Rm (broken lines).
Therefore, both quantities can be used to measure the accuracy; however,
during the integration process, only the largest principal angle can
serve as such a measure, as opposed to the largest element of (S—ST),
which has been pointed out in section 5. In other words, only the largest
principal angle is capable of describing the development of a global
error during the course of the integration. Once more, this is confirmed

by the curves © 1/h = 5,...,40 in Figures 6b and 7b, that also show

1/h?
5
an O0(h™) character along most of the integration range. The declining
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behaviour of the curves during the first part of the 1integration
corresponds to a damping of the global truncation error, probably caused
by the rising character of the soluticns here.

Secondly, for energies well above the Coulomb barrier, the accuracy of
the numerical process for all step sizes 1s fully determined by the
global truncation error due to the particular difference equation used.
For energles near the Coulomb barrier, the errors are comnsiderably less
and the O(hs) character appears only with the larger step sizes. For
smaller step sizes, the truncation errors are so small that round-off
errors are dominant. This is shown in Figure 8a by those parts of the
curves deviating from a straight line at the smaller step sizes. Looking
at the curve 940 in Figure 6b, we can see that these round—-off errors are
accumulated during the second half of the integration range.

Finally, we can observe that the largest element of (S-ST) is a factor
of one to two orders of magnitude smaller than the largest principal

angle.

Here, we wish to state that, historically, the disappolnting behaviour of
the S—matrix elements for successively decreasing step slzes, as shown by
part a of Tables 1 and 2, motivated us to 1nvestigate the integration

process.

9. RESULTS RELATING TO THE LOSS OF ACCURACY DUE TO THE TENDENCY OF THE

SOLUTION VECTORS TOWARDS LINEAR DEPENDENCY

In this section, we present the results of our investigations related
to the loss of accuracy due to the tendency of the solution vectors to
become nearly linearly dependent during the integration through a
classically forbidden region. This loss of accuracy is a counsequence of
the finite representation of numbers in the computer (round-off errors)
and it would not occur if this representation is infinitely precise.

The tendency of the solution vectors towards linear dependency 1is
illustrated in Figures 9 and 10 for projectile energies of 10 and 104
MeV, respectively. In these figures, the principal angles 91,...,69 (as
given by (6.2)) between two solution subspaces are plotted on a
logarithmic scale as a function of r. The solution matrices assoclated
with these subspaces were calculated for h = 1/80 fm in order to keep the
truncation error as small as possible. One of the solution matrices was
stabilized at all the mesh points R = 5h, th,...,Rm, in. order to ensure

that the solution vectors remained as linearly independent as possible.
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The other solution matrix has not been stabilized at all. The first
subspace can be considered as the reference subspace and the second one
the subspace to be investigated. Figure 9 shows that, at 10 MeV, three
principal angles obtain a value of n/2 which indicates that the dimension
of the initial nine dimensional solution subspace has been reduced to
six. Figure 10 shows that, at 104 MeV, dimension reduction of the
solution subspace is less drastic. A dimension reduction of the solution
subspace means that the representation of the physical solution as a

linear combination of the solution vectors has completly lost its

accuracy.
1 i ¥ H T T T H T H H T T H ¥ T
L fg l 89
0 -] 0 =
oo [ 10 B (o)
Eqap=106MaV
- 855 {o,a'} e = tab -
Eq gy =t0Mev 6
04 b
0o 07 i
BN b
18 .
g
3
8y ]
e o
/\/\M 91
i i H | 1 i i
L 6 8 W 2 % 1
r{fm) rifm}

Figs. 9 and 10. These figures illustrate the tendency of the solution
vectors towards linear dependency by showing the principal angles
91,...,99 between a reference subspace and a subspace to be investigated,
for energies of 10 and 104 MeV, respectively. The two solution matrices
associated with these subspaces were calculated for h = 1/80 fm; the
first one was stabllized at all the mesh poimts R = 5h, l0h,..., Rm,
whereas, the second one has not been stabilized at all. Principal angles
obtain a value of w/2 which indicates that the dimension of the initial

nine dimensional solution subspace has been reduced.
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In order to keep such a loss of accuracy within given bounds, the
integration through a classically forbidden region necessitates the

stabilization of the solution matrix ¥. This will be necessary in only a

few mesh points. In Figure 4, this is shown for a small part of the
integration range near the origin. For the whole integration range, it is

shown in the Figures 11 and 12 for projectile energies of 10 and 104 MeV,

respectively. In these two figures, the linear independence numbers are
plotted logarithmically as a function of r for two different cases
0 -2
denoted by véo) and véo ) which were calculated for h = 1/80 fm. For the
0 R . .
curve that is denoted by véo), the solution matrix has been stabilized at
0 i 0 :
10 =S T L PSS e B e 10 T T v%' T T
=l D —
V80 V80
10" 1w 1
-
102 LN ¥ 10’
(-2)
Vao 8
10'3 g8 10—3_ 10
B
° (0,2}
oll
80 -
16° 16°
B
285i(a,a') Bgj(a,a’) =
Efap=10MeV E oy ~104MeV
; b
g™ a g
1 1 1 1 b 1 1 1 1611 | 1 1 | 1 | 1 1 10‘11
0 2 b 6 8 10 122 W % 0 2 b6 2 1% %

r{fm)

Figs. 11 and 12.

In these figures,

8 10
r{fm)

two plots of the linear independence

number v calculated for h = 1/80 fm, are shown for energies of 10 and 104

MeV,

the solution matrix has been stabilized at all the mesh points R =

10h,

stabilization is performed only at those mesh points in which v < 10°

respectively. For the curve that is denoted by v

«sey R , while for the other one, denoted by v
m

2

»

gg) (broken 1line)
5h,
éaz) (solid line)

The largest principal angle between the two subspaces associated with the

solution matrices belonging to the curves v

(0,-2)
680 .
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all the mesh points R = 5h, th""’Rm’ while for the other one, denoted
by véaz), stabilization is performed only at those mesh points in which

v < 10 “. In these cases the solution matrices, called F and G
respectively, have been constructed from (4.31) at the above mesh points.
The largest principal angle between the subspaces associated with F and
G, denoted by Oég’_z), is plotted on a logarithmic scale in Figures 11
and 12 too.

When looking at these figures, the following remarks can be made:
Firstly, during a decline of végz) as a function of r, the errors are
growing, as visualized by an increasing behaviour of eég"z).

Secondly, during the first part of the integration range (r < 4 fm)

Oég’—z) shows an erratic behaviour; however, beyond this part, as shown
by Figure 11, @ég’-z), it rises smoothly during the decline of véaz); the

value at Rm is determined here mainly.

Thirdly, in the classically allowed region, véaz) behaves constantly;
however, here Ogg’—z) stlll rises steadily until it reaches its final

.value at Rm.

From these remarks, we can conclude that the loss of accuracy is
caused mainly by a build~up of round-off errors during the course of
integration beyond the initial region. To wunderstand this, we will
discuss the increase of the largest principal angle in some integration
interval and how it relates to an accumulated condition number to be
defined later.

If the round~off is the ouly source of errors in some interval of the
solution matrices F and G leading to perturbations EF and E  in F and G,
respectively, it can be expected [13] that, in this interval, Ggg’_ D

will increase by

2005=2) 1 B + 1 1EG! 1 9.1)

80 VIFY IF 1 V(G) TG T

This means that round-off errors in the solution matrices, generally,
will lead to perturbations in the corresponding solutionm spaces. If these
perturbations are wmeasured by the largest principal angle between the
perturbated and the unperturbated spaces, in fact, these angles may be
larger than the relative errors in the solution matrices by a factor of
the order of the condition number of the solution matrices. The relative
errors are likely to be of the order of the machine precision (macheps)

of our computer (see subsection 4.3).

This suggests that a solution matrix coutains less information about
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Fig.13. The largest principal
angle eég"t), tesl, 2,0ee, 6
2Bsi (@,0) at the matching radius R

10 16" (open dots) and the modulus o?
the largest element of (S-ST)
(full dots), plotted as func-

=5 - i
10 €{ap=104MeV 165 tions of the accumulated con-

E dition number Kg+ For energies
@ near the Coulomb barrier,
106 round-off errors are accumu-
. lated during the course of the

o [ o - integration. For energles well

(XY

above the Coulomb barrier,

this is less so.

161902 I ILI |6| IB 21 ILI |6| 180

the subspace it represents, when it becomes more ill-conditioned. It
should be stressed that stabilization does not overcome this loss of
accuracy; it only reduces the condition number and, therefore, the effect
of round-off errors in the next integration interval.
Now, let us define an accumulated condition number as:
Ky = ) 1/v (9.2)
at all R

by summing the condition numbers of the solution matrices calculated at
all the mesh points. Then, combination of (9.1) and (9.2) suggests that

at the matching radius Rm

0,-2
Ggo’ (Rm) ~ Kg e macheps. (9.3)

To find an experimental relationship between the build-up of round-off

errors and the accumulated condition number, we performed “rums”, in

which stabilization is carried out only when v < 10—t. In this way,

principal angles egg’—t) and accumulated condition numbers Ké—t) were

calculated for t = 1,2,...,6. In Figure 13, the largest principal angle
6(0,=t)

80 , t =1,2,...,6, at the matching radius Rm (open dots) and the
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modulus of the maximum element of (S~ST) (full dots) are plotted on a
(-t
T

Coulomb barrier, we can see from Figure l3a that the position of the full

double logarithmic scale as functions of « . For energies near the
and open dots conforms with (9.3). Clearly, this shows that round-off
errors were accumulated during the course of the integration. However,
for energies well above the Coulomb barrier, this was less so, as is
shown in Figure 13b. We note that, as shown in both figures, the moduli
of the largest element of (S-ST) correspond quite well to the largest
principal angles at Rm. This is in contrast to the cases shown in Figure
8, where it was not the noise level, but the amount of truncation error
that varied. We cannot explain this difference yet.

Subsequently, we pay attentiom to a peculiar phenomenon concerning the
asymmetry of the S-matrix. It seems that errors in the calculated

elements Sil'l } for & > &; are generally larger than those for & < £4.
3+0*~0

In other words, the errors in the low~% to high-{ transition elements are
larger than in the corresponding inverse transition elements. At the same
time it appears that, for many elements, this effect will increase as the
values |2 - 20| increase. Roughly, this means that most of the entries
below the diagonal of the S-matrix have larger errors than those above
the diagonal. This phenomenon has been encountered in many coupled-
channel calculations and can be explained [16]. In our discussion of this
phenomenon, we will consider the F~norm (Frobenius norm) of the part
oi’t) of ({0 = 578y for which £ > g,

1/2
(-t) J(0) J(~t) 2
iD I, = -85 9.4
> ,LZ gl ATk 14;I0%’ ! 8.9
where S(O) is the S-matrix calculated by stabilizing the solution matrix

¥ at all the mesh points R = 5h, 10h,..., Rm; whereas, S(*t) denotes the

S-matrix obtained by stabilizing ¥ at these mesh points when only

v < 10-t, t =1,2,¢¢.,6. In the same way ﬂDi-t)HF for 2 < %; can be

defined. Tables 3 and & contain these F-norms and their differences as
(-t)
z

energies of 10 and 104 MeV, respectively. The S—matrices have been

calculated with h = 1/80 fm.

functions of the accumulated condition numbers x for projectile

Looking at Tables 3 and 4, we can see that, for t & 2, i.e.,with two

or three stabilizations of ¥, very accurate values for the S—-matrix

- 56 -~



Measuring the Accuracy of the Solution Subspace 41

28+ _+ +
Table 3. F~norms (9.4) for 10 Mev alpha scattering from Si(0 -2 -4 )

as a function of the accumulated condition number Kg-t)-
(-t (~t) (~t) (-t), _ (-t)
t Ky HD> “F HD< IF uD> IF lID< "F
(~3) (-3) (-3)

1 .17 '10* .0000364 .0001751 -.0001387

2 .31 10% .0000253 .0000715 -.0000462

3 .55 105 .0001523 .0000559 .0000964

4 .28 108 .0005935 .0002768 .0003168

5 .24 107 .0106600 0022983 .0083617

6

.19 108 .3101392 .0072964 .3028428

+  + +
Table 4. F-norms (9.4) for 104 MeV alpha scattering from 28Si(O -2 =4 )

as a function of the accumulated condition number Kg-t).
(-t) (-t) (-t) (-t), _..(-t)
t Ky [DNERRG me g D, “THg=ID g
(~6) (~6) ' (-6)
1 .13 10% .0035279 .0043661 -.0008383
2 .16 10% .0027832 .0032752 ~.0004920
3 .82 10° .1243626 .0061164 .1182462
4 .82 105 .1243626 .0061164 .1182462
5 .31 109 .1488424 .0084672 .1403752
6 .23 107 .0334215 .0035366 .0298849

elements are obtained. The tables show that, for t > 2, IDi-t)H is

(-0, :

larger than 01D and that the difference between the two grows with

< F
increasing Ké £) values. This indicates that the calculated elements
SiE‘I Iy for L > 4, are affected more by the perturbation of the solution
s10X0

space at Rm' than those for £ < ;. This effect will be stronger, as
stabilizing of ¥ is delayed. The increasing character of the elements
with 2 > 245 in the physical solution matrix for a classically forbidden
region, apparently, provides the main contributionm to the perturbation of

the solution space at Rm.

Finally, we can remark that, on the contrary, the errors in the
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S-matrix originating from the truncation error, inherent in the
difference formula employed, behave quite symmetrically, im the sense
that the asymmetry RS(h) - (S(h))TilF in the S-matrix obtained by
integration with a step length h 1is an order of magnitude smaller than
the estimate Hs(h)— S(llao)HF for the error in S(h). This reaffirms our
opinion that it 1s dangerous to conclude from a high degree of symmetry

in an obtained S-matrix that its elements contain small errors.

10. CONGCLUSIONS

The following conclusions can be drawn:
1. The quantum mechanical description of inelastic collisions between
particles requires, in general, the numerical solution of the radial
Schrddinger equation. For investigating the accuracy of the numerical
integration process, a method has been successfully used for measuring
the accuracy of the regular solution subspace spanned by the solution
vectors, rather than the accuracy of the solution vectors themselves.
This method computes the principal angles between two solution subspaces
that are obtained under different numerical conditions (varying length of
integration step and stabilization strategy). One of the subspaces is
constructed under optimal conditions, so that it is considered as the
reference subspace, the other being the subspace to be investigated. In
this method, the quality of a solution subspace, obtained by a numerical
procedure, can be measured, e.g., the extent to which solution vectors,
as a basis of the solution subspace, remain linearly independent in the
range from the origin to the matching radius Rm’ during the integration.
2. The method of computing the principal angles enables us to inspect
the loss of accuracy in the integration range originating from the
truncation error inherent in the difference formula employed and to
detect possible sources of deficlencies 1in the numerical process for
solving the S5chrédinger equation. It appears to be a very sensitive
method for the latter purpose-
3. A method has been developed with which inaccuracies in the solutions
due to a deficiency caused by discontinuities in the potential matrix cam
be avoided. After applying this method, the accuracy of the solution
vectors and the S-matrix elements agreed with the order of the global
truncation error belonging to the multistep integration method used.
4. The largest principal angle at the matching radius, as well as the

modulus of the largest element of (8 - ST), can be used as measures of
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the global trunmcation error in the integratiom process. During the
execution of this process, however, only the local largest principal
angle can serve as such a measure. In other words, only the largest
principal angle is capable of recording the development of the global
truncation error during the course of integration. Also, the effect of
other types of errors can be recorded in a like manner.

5. The largest principal angle can be used to investigate the loss of
accuracy as a result of a tendency by the solution vectors to become
nearly linearly dependent during the integration through a classically
forbidden region as an effect of round-off errors imherent in the finite
representation of numbers 1in a computer. This loss of accuracy
necessitates stabilization of the set of solution vectors. This process
can be effectively monitored by introducing a so-called “linear
independence number v” for the set of solution vectors. In this way, we
found that stabilizing the set of solution vectors in a few well chosen
mesh points only, for our nuclear physics test cases of alpha scattering
from 2881, proved to be adequate for obtaining an S-matrix accuracy that

is quite satisfactory.
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To reduce the computation time in nuclear coupled-channels calculations including
Coulomb excitation, the applicability of Gordon’s numerical method has been in-
vestigated to the integration range beyond the range of the nuclear potential. It turns
out that a considerable reduction of computation time can be obtained. The larger
the integration range and the relative wave number, pertinent to a given reaction process
and reaction energy, the larger is this reduction. This is illustrated by two test cases
dealing with « and '®Q scattering near the Coulomb barrier. Consequently, although
the method is sometimes also of considerable advantage in the case of scattering of
light particles, it seems to be especially suitable to heavy ion scattering problems.

1. INTRODUCTION

The inclusion of the contribution of Coulomb excitation in coupled-channels
calculations of nuclear scattering problems often increases the computation time
considerably. To reduce this time we have investipated the applicability of
a method for solving systems of coupled linear second-order differential equations,
introduced by R. G. Gordon in connection with atomic and molecular scattering
and bound state problems [1, 2]. For most collisions between atoms and ions at
thermal energies, the de Broglie wavelength associated with the relative motion
is short as compared to the long range of the interatomic potential. This range can
then be divided into intervals which are sufficiently small to approximate the
potential matrix by a linearly varying reference potential matrix and which on
the other hand contain a sufficient number of de Broglie wavelengths. This
enables one to write the general solution vector in e.g., the classically allowed
region as a linear combination of two rapidly oscillating Airy functions with slowly
varying coefficient vectors. An important advantage of Gordon’s method is
connected with the fact that part of the numerical procedure is independent of
energy. Apart from a possible decrease of computation time at a single scattering

384
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energy [3], an additional amount of time is thus saved when the calculation is
repeated at a slightly different energy. A

In Section 2, we give a concise formulation of Gordon’s method. In Section 3,
the application of Gordon’s method to nuclear scattering problems is discussed.
To study this applicability, the method has been implemented in Tamura’s code
JUPITOR. In the resulting code JUPIGOR, the integration range is divided into
a part up to the radius where the nuclear interaction has died out and a large
part where only the Coulomb interaction operates. From preliminary calcula-
tions it appeared that Gordon’s method is not efficient over the first part: the step
size has to be taken too small. This part is therefore dealt with by a conventional
step-by-step method. Subsequently, the remaining integration range is divided
into steps such that the Coulomb interaction matrix is linearized, up to a few
percent over one step. Here Gordon’s method turns out to be very efficient and
to reduce computation time considerably.

In Section 4, we present the results of our study on the 11.5, 16.5,
21.5 MeV 22Te(qx, «')122Te [12] and 39, 44, 49 MeV ¥Ni(160, ¥(Q")3Ni [13] inelastic
scattering problems. Preliminary results of our investigation on the 10-16 MeV
MWCd(a, o )MCd inelastic scattering problem have been published elsewhere [14].

2. A Concise FORMULATION OF GORDON’s METHOD

The Schrédinger equation for the partial wave radial function in potential
scattering is, in conventional notation,

= Ty - LDy =0, @1)

This equation can be rewritten into the form
(d2fjdr®) 4+ (k2 — U(r)} = 0. (2.2)

Consider some interval of the integration range with the midpoint at radius 7.
Although in Gordon’s method several forms can be used for the reference potential,
we follow him in choosing a linear one of the form

Uy(r) = U@ + (r — FNU/dr)],s (2.3)

where U is the average value of the potential over the interval. Using (2.3) as
potential in (2.2) gives us the Airy functions 4i and Bi as a set of two linearly
independent solutions. As shown by Gordon these functions can be efficiently
evaluated numerically. The general reference solution may now be written as

tho(r) = Ai[(B +r)la + Bilo(f + )] b, 24)
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with the constants
U@ — k.

= ( o ,_F)lla’ B= dujdr ., 2.5)

dr

The constant coefficients @ and b are determined by conditions of continuity at
the interval boundaries. For instance, if they would be adapted to the value and
derivative of the exact solution (r) at the “left-hand” boundary r,,

a = ={Bi'[a(B + r)] $(r)) — ot Bila(B + r)] ' (n)}, (2.62)
b = m{a Ailo(B + r)] §'(r) — A'[a(B + r)] ()}, (2.6b)

where the prime denotes differentiation with respect to the argument.

Including the difference between the true potential and the reference potential
one obtains corrections da(r) and 4b(r) to the coefficients a and b, The solution of
the Schrddinger Eq. (2.2) can now be approximated by the reference solution (2.4)
plus a correction term

P(r) ~ Aila(B + r)fa + da(r)} + Bil«(B + r)Kb + 4b(r)}, @7

where the varying coefficients, to first order in [U(r) — U,(r)] are given by
da(r) = —m [ Bila(8 + r)HUG) — ULr)} dolrydr',  (2.8a)

Abr) = 7 [ Aila(B + rYHUG) — Uy(r)} d(r”) . (2.8b)

These coefficients remain small as long as the reference potential is a good approxi-
mation to the true potential. Thus, in the classically allowed region the solution
(2.7) has been written as a linear combination of two rapidly oscillating Airy
functions with slowly varying coefficients. The integrals in (2.8) can be evaluated
analytically.

In the case of n coupled equations the differential operator and k2 in (2.2) stand.
for diagonal (n X ») matrices while the potential is in general a nondiagonal (n x n)
matrix U(r). To obtain a reference potential matrix a snmllanty transformation is.
performed which reduces U(F) to diagonal form

X-WU(F) X = diag(A,), (2.9»

where X is the transformation matrix and A, are the eigenvalues. In other words.
U(F) has been transformed from a free basis into a lecal basis such that it is diagonal.
As reference potential matrix the following diagonal matrix is chosen

Uy(r) = X0¢) Xlaag + ( — P)XHAU/dr)| s Xlutag » (2.10y
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where U(7) is the average value of the potential matrix over the interval and the
subscript ““diag” means that only the diagonal elements are retained. With this
diagonal matrix the set of reference equations becomes uncoupled and the Airy
functions are again the linearly independent exact solutions. Writing the Airy
functions in diagonal matrix form, the general reference solution vector in the
local basis is given by

Y, = Aia + Bib. .11

The constant coefficient vectors a and b are once more determined by boundary
conditions like (2.6). The solution vector of the coupled equations may now be
approximated by

¢ ~ Ai(a + Aa) + Bi(b + Ab), (2.12)

where the varying coefficient vectors are determined by
An = —n [ BIU — Uy} ¢, dr', (2.13a)

Ab = 7 [ AKU — Uy} o dr'. (2.13b)

The continuity condition for the solution vector in the free basis leads to a relation
between the local solution vector in interval p and that in interval p + 1, both taken
at the common boundary point:

p+1 == x;-lf-lxp‘l"y =Ty, (2.19
Note that the following quantities are independent of energy:

the diagonalized potential matrix X-10X,
the transformed derivative potential matrix X-(dU/dr) X,
the transformation matrix T, .

These quantities can therefore be used at other values of the energy, which turns
out to save more than half of the computation time.

The general solution vector can be written as a linear combination of » inde-
pendent solution vectors. These solution vectors can be collected as the columns
of a solution matrix ¥. The component ¢ of the vector s (solution) is denoted by
., . Suppose that the components in the solution vectors are arranged in order
of decreasing local relative kinetic energy. Integrating through a classically
forbidden iegion, the components with negative kinetic energy will in general
consist of an exponentially growing and an exponentially decreasing part. The
former is responsible for a tendency to destroying the initially taken linear indepen-
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dence of the solution vectors. To maintain this linear independence, the solution
matrix can be stabilized by an unitary transformation such that the exponentially
growing components below the diagonal with local negative kinetic energy are
eliminated. In this way a stable solution matrix ¥ is obtained

WF — Py, (2.15)

in terms of the original solution matrix ¥. The unitary matrix 4 can be chosen [4]
as a product of elementary unitary Hermitian matrices: P,P,_; ...P, ..., in which ¢
runs over the components with local regative kinetic energy and with

P, =1—2ww,. ' (2.16)
The unit column vector w, with # components can be constructed from row ¢ of ¥:

2Kw, = (P31, P& seees Yoo + SYL/ Pec 1, 0,.., 0), 2.17)

where K and S are defined as positive constants, given by the expressions

8§t = i ‘)bos‘)b::; s 2K* = §* + S‘ '/‘cc |- (218)

§=1

It can easily be shown that the solution matrix ¥ obtained has vanishing elements
below the diagonal in the rows ¢ up to and including », while the corresponding
elements of the derivative of % become small. If on the other hand a different choice
is made for w, by replacing ¢, by ¢,, in Eq. (2.17), the abovementioned results
for % and ¥’ are interchanged. Clearly, it is possible to eliminate the exponentially
growing solution by means of the linear combination k.., + .,. The wave
number k, is defined as (| A, )/ in terms of one of the negative eigenvalues A,
in Eq. (2.9).

In Gordon’s method [1] the solution vectors are real. In view of our preference
for the use of complex solution vectors in Section 3, we have given the above-
mentioned formulae in an adapted notation. Furthermore, we note that in Gordon’s
code an approximation to [X-20(F) X]sg in Eq. (2.10) is used. In Section 3 this
approximation is not made. We use in Eq. (2.9) U(7) instead of U(#).

3. THE APPLICATION OF GORDON’S METHOD TO NUCLEAR SCATTERING PROBLEMS

The Calculational Procedure

The coupled-channels formalism for inelastic scattering in nuclear physics has
been discussed extensively in the literature [5-8)]. This formalism leads to a set of
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coupled differential equations for the radial wave functions u;, of the following
form

zlzze

[fn (a’2 l(1+1))+(E o) — 222

T + V| uhr)

== Z VJ-”l;J'l'(r) ug’l'(r)) (3’1)

"y

assuming a spinless projectile. Here J, / and I denote the total angular momentum,
the orbital angular momentum and the spin of the target nucleus in the state
with excitation energy e, respectively. The coupling potential is denoted by
Vi1, the optical model potential by VoPt whereas z, and z, are the charge
numbers of the projectile and target nucleus, respectively. The total angular
momentum J, its projection on the z-axis and the parity are good quantum
numbers.

If n is the number of coupled equations (3.1) for a given J, the solution satisfying
the usual boundary conditions [6] can be written as a linear combination of n
1ndependent regular solutions ;!

ia ki 3/2 -
2 a®ulP ~ @I+ 1) ’[8,,‘8;;‘.&-{—( k) C1L.nlG + zF,}], (3.2)

v=1

where G, and F, are the irregular and regular Coulomb wave functions and a, the
partial-wave Coulomb phase shift. The subscript / refers to the initial channel.
A similar set of equations holds for the derivatives of the respective functions and
together with Eq. (3.2) they supply the matching and normalization conditions.
The calculated matrix elements Ciﬂ&” are used in the calculation of the elastic
and inelastic scattering amplitudes.

To study the applicability of Gordon’s method, it has been implemented in
Tamura’s code JUPITOR [9]. In the resulting code JUPIGOR, the integration
range is divided into a part up to the radius where the nuclear interaction has died
out, to be called the coupling radius r,, and a large part up to the matching radius
r», where only the Coulomb interaction operates.

From preliminary calculations for a single channel case with a complex nuclear
potential, it appeared that Gordon’s method is not efficient up to the radius r,,, .
The step size has to be taken too small, because the nuclear potential varies too
fast over this range to be efficiently linearized. This part is therefore dealt with by a
conventional method with a step size of 0.1 to 0.2X [10], where A is the de Broglie
wavelength. In JUPITOR the step-by-step Stérmer method is used for this purpose.
Subsequently, we divide the remaining integration range into steps such that the
potential is linearized up to a few per cent over one step. In the next subsection
the procedure followed in choosing the step sizes will be dealt with,
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Choosing Step Sizes

Taking a perturbation potential matrix [U(r) — Ug(r)] which is quadratic in r
on the diagonal and linear in r for the off-diagonal elements, the perturbation
integrals (2.13) can be evaluated analytically. Notwithstanding this, the calculation
of these first-order corrections to the reference solution needs extended matrix
multiplications. As a consequence, the calculation of the solution (2.12) requires
about two or three times as much computational effort as does the calculation of
the reference solution (2.11) alone. In view of this it is useful to avoid the calculation
of the perturbation integrals in cases where this is possible.

In Gordon’s method the step size is taken such that the perturbation integrals are
small enough to keep the accuracy of the reference solution at some required level.
For some potential and total angular momentum this requires the calculation of
these integrals once; for subsequent calculations at different energies, with the
same potential and total angular momentum, the reference solution can then be
calculated efficiently using the same intervals and applying the energy independent
matrices following Eq. (2.14) of Section 2.

In our application of Gordon’s method we prefer to prescribe the step size
without the calculation of the perturbation integrals. Over the integration range
Fop < 1 < Iy the potenfial of each uncoupled equation of set (3.1) has a radial
dependence of the form 2nkr-! + I(/ 4- 1) r-%, where 7 is the Coulomb parameter.
Preparatory calculations have shown that in the case of an uncoupled equation a
sufficient accuracy of the final results can be obtained by choosing the step sizes

2k, Ly
T Tt

%-fu:o.oz - 0.04

i |
n T rr

Fic. 1. The step sizes over the integration range from r,, 10 r,, are chosen by linearizing the
potential up to a few percent over one step.
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such that over one step the maximal deviation of the actual potential with respect
to the linearized potential equals a few percent of the difference between the actual
potential and the average potential (see Fig. 1). In the case of coupled equations it
is evident that coinciding intervals have to be chosen in all channels of the same
coupled J set. The step size is determined according to the abovementioned method,
applied to a similar potential form 2nkr-* + /(! 4 1) r~2, in which now an average
value of / over the coupled channels has been taken into account. For the test
cases to be dealt with in Section 4 the first steps have a size of about 1 fm, the last
few about 8 fm, depending on the value of r,, .

The radial region around the classical turning points of the individual equations
deserves special attention, because the coupling between the equations is most
effective here. This complication occurs for such high J values that some or all of
the turning points are beyond r,, . In the region of turning points more rigorous
linearizing conditions are imposed.

In this way we can work with the reference solution avoiding the calculation of
the perturbation integrals (2.13). For subsequent calculations with the same total
angular momentum and Coulomb interaction but with a different energy and/or
nuclear interaction the reference solution can be evaluated using the same step
sizes and applying again the energy independent matrices following Eq. (2.14).

4. RESULTS AND DiIscussioN

In this section the results of two test cases will be presented. In both cases
the multiple excitation of a “vibrational” nucleus with one-phonon and two-
phonon triplet states is considered. The excitation is induced by inelastic scattering
of alpha and %0 particles, respectively, near the Coulomb barrier. The code
JUPIGOR allows independent variation of each of the optical potential deformation
parameters 8, involved in the coupling of the levels considered. In addition, the
corresponding reduced electric multipole matrix elements can be introduced inde-
pendently. In view of the purpose of this paper, however, we prefered to consider
the following simple choice. The coupling potential has been expanded up to and
including the first order in the deformation. A purely harmonic vibrational model
is assumed. As a consequence, the deformation parameters 8,5, Ba0 > B2z and Sy, ,
defined by Tamura [11], have been taken equal, whereas By, = Bgs = Bos = 0.
The common B value is given below. Some of the calculated C-matrix elements
for alpha and 80 scattering have been collected in Tables I and II, respectively.
In Fig. 2 the reduction of computation time for Gordon’s method compared with
Stérmer’s method, is given as a function of the matching radius r, for a total
angular momentum value J == 5.
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Multiple Excitation of 122 Te by 11.5, 16.5, and 21.5 MeV “He

In this case, the Coulomb parameter and wave number are about 8.0 and 1.7,
respectively. The optical model parameters are: V = 250 MeV, W = 37.6 MeV,
¥, =ty = r, = 1.333fm, a, = a,, = 0.582 fm. The abovementioned deformation
parameters are taken equal to 0.15. ,

Calculations were carried out for several total angular momentum J values.
However, we have concentrated our attention in this article on J = 5 and 30,
because the results for these two J values turn out to be representative for the
general properties of low and high J values. Furthermore, calculations were
performed for several r,, values distributed between 25 and 200 fm. It appears that
in most practical calculations for this reaction with energies near the Coulomb
barrier, the contribution of Coulomb excitation to the C-matrix elements can
only be neglected if #,, is chosen equal to about 100 fm or larger. In the following
we shall confine ourselves to such r,, values. In addition, to study the extent of
linear independence of the solution vectors, calculations were also carried out in
the J = 30 case for different r,, values.

In Table I the C-matrix elements are presented for J == 5 and 30 at laboratory
energies of 16.5 and 2]1.5 MeV. The rows containing the C-matrix elements
calculated with our code JUPIGOR are denoted by G, those with Tamura’s code
JUPITOR by T. The results have been obtained with r., and r,, values of 15 and
100 fm, respectively,

First, we discuss the J =5 (f; = 0; I, = 5) results for Ejan = 16.5 MeV
(G— 1, T—1,T—2,T—3)and Ejap = 21.5MeV(G — 2, T —4).Row G — 1
contains the C-matrix elements, obtained with a step size of 0.10 fm for Stérmer’s
method up to r,, and 33 steps according to Gordon’s method for the remaining
integration up to #,, . The rows T'— 1, T — 2, and T — 3 contain the elements
calculated with step sizes of 0.05, 0.10 and 0.20 fm, respectively, for Stérmer’s
method over the whole integration range. Comparing G — 1 with T — 1, we see
that in most C-matrix elements a 3-figure correspondence is obtained. Variations
of of r, beyond 100 fm lead to changes in the C-matrix elements G — 1 of a
fraction of 19. To get an indication of the computational efficiencies we have
compared G — 1 with T — 2, the latter results being almost identical to T — 1.
For r,, == 100 fm this gives a reduction of the computation time by a factor of
about 9 (Fig. 2), Row G — 2 contains the C-matrix elements obtained at
at Ejap = 21.5 MeV using the same intervals from r,, to r, as in G — 1 and
applying the energy independent matrices as expressed in Section 2 (following
Eq. (2.14)), which already have been calculated for G — 1. In this way the compu-
tation time is reduced by a total factor of about 20 (Fig. 2). As evident from
Table 1, the correspondence of G — 2 with T — 4 is satisfactory. A similar corre-
spondence is obtained at an energy of 11.5 MeV. These results have not been
presented.
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Next, we discuss the J = 30 (I; == 0; /; = 30) results for Ejap = 16.5 MeV
(G—3T—5T-—-6T-—Tand Elgp = 21.5MeV(G —4, T —8). RowG —3
contains the C-matrix elements obtained with a step size of 0.20 fm for
Stérmer’s part (r,, = 15 fm, r,, = 100 fm). This step size can be taken relatively
large because of the monotonous behaviour of the solution vector up to 7., .
Gordon’s method needs in this case 44 steps. The rows T — 5, T —6and 7 — 7
contain the elements calculated with step sizes of 0.05, 0.10 and 0.20 fm, respec-
tively. Comparing these results the correspondence can be considered as satisfactory
except for some elements, particularly the elastic channel and the I, = 4,1, = 32,34
elements. Calculations for r,, beyond 100 fm give rise to variations of the G — 3
elements within one per cent, apart from some elements which show variations of
a few percent. The C-matrix elements of the elastic channel and the small elements
for I, = 4, I, = 32,34, which are not expected to contribute significantly to cross
sections, show larger relative variations, but remain of the same order of magnitude.

The abovementioned discrepancy in the C-matrix element of the elastic channel
can be understood by considering that the elastic component of the solution vector
in Eq. (3.2), divided by (2! 4+ 1)}/2 exp(ia;), corresponds at this high J value with
the regular Coulomb wave function F; in about four figures. Consequently, the
relatively small value of the C-matrix element is obtained by subtracting two
quantities, which agree up to about four figures, and is rather sensitive to small
variations in the elastic component of the solution vector. However, we believe
that in most practical calculations this discrepancy has no consequences.

The discrepancy for 7, == 4, I, = 32,34 cannot be explained on this basis: the
accuracy of the C-matrix elements of the inelastic channels is more directly related
to the accuracy of the inelastic components of the solution vector. We believe that
the T — 5 and T — 6 values for these C-matrix elements are too large due to a
numerical instability in the Stérmer procedure, originating from a tendency of
the solution vectors to become linearly dependent for high angular momenta.
To confirm this we have carried out addition calculations for different r_, values
(r = 100 fm).

For r,, values up to about 15 fm, it turns out that in all C-matrix elements a
3 a four-figure correspondence is obtained, whereas for r,, = 20 fm some C-matrix
elements begin to show agreement to within two-figures. The correspondence for
the r,, values larger than 20 fm remains acceptable, except for the I, = 4,
I; = 32,34 elements. We note that for J = 30 the radial region of the classical
turning points of the individual equations lies between r ~ 21 and r ~ 26 fm.
For r,, = 25fm the I, == 4, I, = 32,34 elements still have the same order of
magnitude, but they deviate more and more for r,, values of 30 and 35 fm, lying
in the classically allowed region, especially when a step size of 0.05 fm is taken over
the integration range up to r,, . In this case they become of the same order of
magnitude as in the case T — 5 of Table I.
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Looking at the solution vectors, it turns out that for r,, values of about 5 fm
and larger the Stérmer procedure generates some solution vectors, which show a
tendency to become linearly dependent. We conclude, however, that by using
Gordon’s stabilization transformation in the classically forbidden region for suffi-
ciently small r,, values, this tendency can be suppressed, which then leads to
reliable values of the C-matrix elements.

The Stormer procedure used in Tamura’s code does not contain a facility to
maintain linear independence. However, we believe that in principle it is possible
to apply Gordon’s stabilization procedure to the Stérmer method. In this case the
potential matrix needs only to be diagonalized to determine the arrangement of
the components in the solution vectors in order of decreasing relative kinetic
energy. It is not necessary to transform the solution vectors into a local basis.
Presumably, stabilization is only needed in a few points of the classically forbidden
region. We have not realized these ideas in the StGrmer procedure to stabilize the
solution vectors below r., . The reason is that in general and also in our test cases,
the linear dependence enters only for high J values. However, note that in our code
JUPIGOR r,, has been chosen such that the nuclear potential can be neglected
outside r,,, . In the first instance one may be inclined to conclude from this that it is
less meaningful to take r,, smaller than 15 fm, the value of r,, which has been
taken for the results in the table. For high J values, however, the nuclear potential
no longer contributes significantly to the C-matrix elements. (This is already the
case for J ~ 15.) In these cases a small r,,, value can be recommended to guarantee
the linear independence of the solution vectors, as well as for reasons of compu-
tational efficiency. For practical cross section calculations it is therefore
advantageous to take r,, for the high J values considerably below 15 fm, e.g.,
1 fm, or even smaller. In JUPIGOR this is actually done.

The C-matrix elements in row G — 4 are calculated by using the energy
independent matrices, which already have been determined in G — 3. The corre-
spondence with 7" — 8§ is satisfactory, except for the abovementioned discrepancies.
About a similar correspondence is obtained at an energy of 11.5 MeV.

Multiple Excitation of Ni by 39, 44 and 49 MeV 20

This case has a Coulomb parameter and wave number of about 21 and 4.5,
respectively. The optical model parameters are: V == 22.69 MeV, r, = 1.30 fm,
a, = 0.533 fm, W = 2.35 MeV, r, = 1.37fm, a,, = 0.375 fm, and r, = 1.25fm
[13]. The deformation parameters are taken equal to 0.18. The values of r,, and r,,
have again been taken as 15 and 100 fm, respectively. In Table II the C-matrix
elements are presented as before for J = § and 30 at laboratory energies of 44 and
49 MeV.

We discuss now the J = 5 (I; = 0, I; = 5) results for Ejap = 44 MeV (G — 1,
T—1,T—2, T —3)and Ejap = 49 MeV (G — 2, T — 4). Comparing G — i
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TABLE I
_. A Sample Ci 1, 12 for '2?Tala,a’) with target states 07 - 27(0.584) - 07(1.357) - 2%(1.257) - 47(1.180)
A A
Ip 1
;0 1, =5 £ f
0 5 A 2 5 z 7 0 5 2 3 2 5 2 7
Figp=16:5 MV | (-1 (03} (-20 -1} -1 13| =1 2] 33 -3} -2) (23] (-3} (-3)] (-3) (-4)
-1 100 33°[5631 To1aa] 71a .s563| 275 -.23a|-.213 -.006]-.678 -.837| .212 .138]-.718 -.708] L2858 .19
1-19 050 .629 .44} .714 .563| .275 -.234]-.213 -.597}-.876 ~.837| .21z .199}-.718 -.705| .267 .192
T-2 .100 628 .124] .715 .563] .275 -.234}-.213 -.307}-.877 -.6838) .212 .194]-.719 ~.706] .267 .196
T-3 .200 581 143} .820 .560| .272 -.234}-.213 -.997}-.753 -.780} .212 .123|-.825 -,652| .282 -.072
Eyp21s ey [ G0 o cu ot enl en tof ¢ cof e o] (21 Ga] 2 -2
G-2 .100 33 |-.412 .a48} .291 .170| .875 -.270|-.346 ~.982] .383 -,112] .653 .522| .233 -.652{-.834 -.202
T-4 .100 -,412 .446] .291 .170] .874 -.270|-.348 -.0e1| .382 -.112] .653 .s522| .233 -.B52{-.B34 -.201
Te 1
4 1 4 3 4 5 4 7 4 g
E1gp=16.5 MaV | (-2) (-2)] (-2} (-2)| (-3) (-3)] (-3) (-3)| (-3} (-3
&-1 .100 33 [-.484 -.119} .176 .120|-.449 -.552| .383 .132]-.275 -.435
T-1 .050 -.464 -.118] .176 ,120{-.450 -.551| .384 .132)-,277 -.406
T-2 .100 -.464 -, 18] .176 .120(-.450 -.553[ (384 .133|-,277 -.408
T-3 .200 -.466 -,092| .173 .122|-.377 -.459| 413 .101)-.274 -.408
Elab=21.5 MeV | (-1) (-3)] (-2) (-2)| (-2} C(-23] (-2). (-2)] (-4 (-2)
G-z .100 33 |-.118 -.447| .522 .586| .353 -.B20|-.8S5 -.252| .124 840
T-4 .100 -.118 -.442| .522 .s@6| .353 -.620|-.695 -.252| ,159 840

14313
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Te ¢
I,=0 1, = 30
1 1 0 30 2 28 2 30 2 32 0 30 2 28 2 24 2 32
E1an=16.5 MeV (-3} (-33f (-1} (-3)] (-23 (~23] (-3} (-23) (~4) -1 (-2} (-4)]| (-5) {-B)| {-4) (-3}
G-3% .ZOOb 44°] .342 .158) .08 »424] .553 -,309) .813 -.131] .346 .108§ (563 .8231-.299 -.162] 107 -.200
T“Sd.DSDg L052 L155) .107  .410) .559 ~.309] .821 -.129§ .345 .4D8] .559 .024|-.270 ~,477] 153,247
T-6 .100 ~.032 156§ .107 .408] .558 -,308) .809 -.4130) .342 .108 559 .824(-.298 -.489] .109 -.56%5
T-7 200 -4.8% 177} .107 317 .550 ~-.313} 754 -.13071 .342 104 565 .814(-.297 -.409] ,113 -.242
E15n=21.5 MeV (-3) (-3} (-1 (-2)] (-2y (-2)] (-27 (-2)) (-3} (-&)) (-a0 (-3)] (-%) (-%)] (-4) (-5}
5-4 .200 44 034 L222F 118 185 .839 -.291 168 -.1GBF L5383 .48S5] .438  .155-1.01 ~.625] 240,730
T-8 .100 -.217  .224) .118 .1B6| ,833 -.282] .,168 -.168] .537 .485] .45%4 157 |-.4854 -.6168] 245 L7871
If lf
4 26 4 28 4 30 4 32 4 34
E1ap=16.5 MeV (-4) (-3)| (-4) (-4) ] (-4y (-4)} (-4} (-5)] (-5} (-5)
G-3 .200 44 ~,425 178 .412 .804} .309 .210} .105 -.012( .194 -.137
T-5 .,080 ~,149 1771 .415 .8017§ .369 .208}~-.002 1.21| 71.0 -76,3
T-5 .100 -.143 .1771 .415 .804% | .368 .209] .119 -.258(-3.65 -4.03
T~7 .,200 ~,134 177 .420 .796] .369 .20} .104 ~-.046| .511 -5,30
Eyap=21.5 MeV (43 (-3)| (-4) (-3)| (-4} (-4}| (-4} (-4}} (-5} (-5}
G-4 .200 44 -.891 .z08] .24 L1411 0530 L6441 .214  .102) .598 -.B29
T-8 ,100 ~.625 .218 255 1411 .530 .B44} 214 111) 5.37 -2.42
2 Rows containing JUPIGOR results. Step size for Stdrmer’s method up to L ¢ Number of steps from rCD to roe

Rows containing JUPITOR results, €

'
Left entries mean: ReC” = -631,

added between brackets above the

-1

columns.

N r right entries mean: ImEJ

10

Step size for Stdrmer’s method over the whale i&tegratian range.

= 144

D, where additisnal exponents have bsen
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TABLE TI
A Sample CJ far %1%, 1807y with target states 0 - 27(1.4581 - 07(2.943) - 27(2.775) - 47(2.459)
I, 11
it ety
I, =0 1, =5 T ¢

1 1 0 5 2 3 2 5 2 7 v 5 2 3 2 5 2 7

E1ap=44+0 MeV oy ol -y -0 ) -1 ey G0 3y G2 2) (-2) ] 2 (R2) (-2) 0 (-2

5-19 0507 32 L11o Tozau| .a33 .za6|-.264 -.272| 102 .407]-.808 .90s| .393 -.587]-.218 .545| .285 -.518
-
1219 [025¢ .11a .380] .484 24G6]-.264 -.272| .102 .s08}-.873 .qos| .343 -.sB8|-.218 .545] .284 -,517 3
T-2 .050 .18 .380| .495 ,244}-.285 -.272| .103 .s07)-.848 .o06) .341 -.588|-.216 .545] .282 -.517 o
T-3 .100 095 .a6z| .s20 .1s0f-.301 -.222| .184 [3s0}-.485 .sez| .243 -.615|-.129 .556] .197 -.538 _l
) =]
Erap=28.0 Mev | (-13 (o3 -2 -0l (-2 -1 =20 -0f 23 2] -2 (-23] (-21 (-4)] (-2) (-2} g
G-2 .050 32f-.373 .sos| .ss4 .zpal-.260 -.183|-.340 .217}-.821 .188| .786 -.319|-.482 ~.780] .415 224 >

T-4 .050 -.a76 .505] .ous  .204)-.288 -.189|-.336 .217}-.818 .191] .754 -.321|-.481 -.572| .415 .226

Tl

4 1 4 3 4 5 4 7 4 g

E1gn=%4.0 MeV (-2} (-2} (-2) (-2)] (-2 (-2}] (-2) (-2)| (-2} (-2}

G-1 .,350 32 |-.768 .366| .580 -.226)-.537 .203| .504 -.212|-.539 181

T-1 .025 -.769 .366| .580 -.226{-.537 .203] .504 -.212]-.533 .182

T-2 050 -,767 .388| .559 -.227|-.538 .205] .503 -.213|-.538 .184

T-3 .100 -.686 .4B8| .506 -.301]|-.487 .278] .453 -.280)-.491 .256

E1qp=49.0 Mev -1 2y 23 (-31] (-2 -2V (21 (23] (-2) (-2

G-2 .050 -.117  .234| .751 -.222]-.570 ~.160] .320 .331] .103 -.438

T-4 .050 ~.117 .238| .750 -.250|~.570 -.158] .321 .300] ,101 -.438




- g[ -

=0 1 =30 Ir 1f :
1 L 2 28 z 30 2 32 g 30} 2 28 2 30 2 32
E155,=44.0 MeV (-2 (-23f (-1} (-13] (-2} (-1 (=27 (=23} -3 (-3} (-2) (-3} (-5 (-3} (-3 (-4

1) 4
G—az .200” 36 .s05 .328] .473 ~,z00]-.200 -.214] -,5678 -.187}-.256 -.616} .154 -.888]-.283 -.234|-.222 ~.2495
1-5% g25° 600 .325) .473 -.199{-.200 -.213 -.667 -.184]-.256 -.614 ] .154 -.865| .086 -.233}-.221 -.270
T-§ .050 ,459 .324) .479 -.200}{-.205 -.213| -.667 -.182}-.257 -.612} .153 -.868) .028 -.233]-.221 ~.271
T-7 .400 -7.56 .916] .438 -,266|-.513 ~.208} -.677 -.079}-.330 -.556 ] .136 -1.05|~3.18 ~.225}-.216 .038
Eippd9.0 ey | -1 o - ool 2y o] e o e ol cal G onf ea ¢
5-4 .200 38 | .110 .498) .608 -.108] .472 -.287]-.705 -.467] .191 -.102] .267 -.720] .1724 -.233|-.276 -.235
T-8 .050 .122 .4as} .s05 -.106{ .472 -.266} -.701 -.464f .191 -.102] .266 -.820] .178 -.233}-.273 -.233
I, 1,
5 26 4 28 PN a3z 4 34

E1ab=44.0 MeV (-2 (-2} (-2 ¢(-3)] (-3} (-31} (-3) (~3)] (-4) (-4)
-3 200 a3s | .z200 .422] .191 -.323] 121 -.812|-.243 -.149}-.798 .87
T-5 .a25 201 .420{ .190 -.322] .119 -,811(-.243 -.146]-.783 .545
T-8 ,050 .20z .419} .189 -.327| .117 -.810(-.243 -.445]-.798 .s@s
T-7 .100 .254 .379| .178 -.579| 001 -.800|~.254 -.107|-.673 .&72
Eq5n°49.0 MeV (-37 (-2 (=20 (-31] (-37 (-2)| (-3} (-3)] (-3} (-4)
G-4 .z200 36 | .403 .s28| .266 .720] .729 -.101]-.213 -.384|-.151 211
T-8 .050 .381 .624| .287 .728| .728 -.101}~.213 -.382|-.150 .183
? Rows containing JUPIGOR results. tor

e
Rows containing JUPITOR results.

o r
.11&31[3 .

Left antries

mean:

J

ReC

added between brackets above the columns.

right entries mean: ImC~ = 38D

o Step size for Stdrmer’'s method up to rcp.

1

¢ Number of steps frem rcp

Step size for St8rmer’s method over the whole Integration range.

Dn, where additional exponents have been
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with T — 1 we see that in most C-matrix elements a three-figure correspondence
is obtained. However, the comparison with T — 2 gives only small discrepancies
and may be used to determine the reduction of the computation time. For
rn» = 100 fm this reduction is about a factor of 18 (Fig. 2). The C-matrix elements
of row G — 2 at Fyjap = 49 MeV have again been obtained by applying energy
independent matrices. The reduction of the computation time is now a total factor
of about 42 (Fig. 2). The agreement with T — 4 is satisfactory. A similar agreement
is evident from the results at an energy of 39 MeV, which have been left out in
Table IL

T T 1 i 3 ./| T H
. P
g sof- 7 SBnic B0, oy i
-— v =
o - E{ap =39 49 MeV
8 o~
g -
e o A 1227¢ (o1, ') T
] ~ € 12115215 MeV

./
./
30 o

= G 150 B0
=7 Bit150,%01
Elab=l.-'iMeV

20

12270 (e 0
E{,p=165Mev

! ! 1 H t ; L
6 50 100 150 200

———— matching radus ry, {(fm}

Fig. 2. Reduction factor of computation time for Gordon’s method compared with Stormer’s
method, applied to the integration range from r., to r, for a total angular momentum value
J == 5. The solid and dashed curves represent the results of alpha and oxygen particles scattering,
respectively. The dotted curves represent the results obtained by applying energy independent
matrices already calculated for a different energy.

Finally, considering the J == 30 (J; = 0, /; = 30) results for Ejap = 44 MeV
(G—3, T—5 T—6, T—7) and Eup =49 MeV (G — 4, T — 8) similar
conclusions can be drawn as in the preceding J = 30 case. Note, however, that the
type of discrepancy observed for some C-matrix elements is absent here.

5. CONCLUSION
In describing a nuclear reaction process including Coulomb excitation by means

of a coupled-channels calculation, the analysis often involves the solution of a large
set of coupled linear second-order differential equations. It turns out that a con-
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siderable reduction of computation time can be obtained by applying Gordon’s
numerical method, especially if the calculation is to be carried out for various
energies and/or optical model parameter sets. The larger the integration range and
the relative wave number, pertinent to the reaction process, the larger is this
reduction, Consequently, although the method is also of considerable advantage in
some light particle scattering cases, it seems to be especially suitable to heavy ion
scattering problems, Furthermore, a comparison of the results in this paper with
those recently published by the present author [14], indicates that the reduction
factor increases also with the dimension of the set of coupled equations to be solved.
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Solving coupled equations by iteration for heavy ion multiple Coulomb excitation

L. D. Tolsma
Depariment of Physics, Eindhoven University of Technology, Eindhoven, The Netherionds
(Received 26 December 1978)

The set of coupled linear second-order differential equations whu:h haa to be solved for quantum-
mechanical calculations of inelastic scattering p with fion can be rewrilten as an
equivalent s=t of coupled first-order integral equations. When Airy l'nnctwns are used as piecewise analytic
reference solutions, it makes it possible to evaluate analytically the integrals that arise in the set of integral
cquations. This set can be solved lr.cniuvely with a mns:demhle reduction of computahon time in cases of
heavy ion eri when pal to | pled-ch fati of the
coaventional type. The efficiency of two i h an inward d and a perturbative one, has
been investigated for some test cases dealing with multiple Coulomb excitation of **U by Kr and Pb. It
lums out that, for heavy ion scattering, only the inward-outward iteration scheme has a practical
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p Finally, the

probabilities for 34y, Coulomb excited by 385 MeV Kr up to [ = 244,

are shown for a reduced E2 transition matrix element of 3.5 ¢b and they are compared with the excitation

probabilities calculated g to the semick

1 theory.

anically calculated excitation probabilities for heavy ion multiple Coulomb

FUCLEAR REACTIONS Solving coupled equations by iteration; quantum mech—:|

excitation.

1. INTRODUCTION

Faor collisions between heavy fons, the asymptotic
de Broglie wavelengih associated with the relative
motion is very short as compared to the long range
of the strong Coulomb interaction. In general also
many open channels are involved to a significant
extent. In heavy ion multiple Coulomb excitation,
the rotational bands of a deformed target nucleus
can be exclted up to [ =20K. The analysis of such
excitations can be performed according to the

.semiclassical theory, in which the influence of the
energy transfer and the change in orbital angular
momentum during the collizion are neglected in
principle.! However, for an accurate analysis of
the excitations of the high-spin gtates, or a study
of the deviations with respect to semiclassical
theories in more general circumstances,? it is
advisable to have the disposal of fully quantum-
mechanical calculations of the cross sections,
These coupled-channel calculations of conventional
type are not feasible yet, due to the tremendous
amount of computation time needed. An attempt
has been made to find a solution to this problem
by investigating the application of 8 method for
solving systems of coupled linear second-order
differential equations by iteration.

The efficiency of this method, as In Gordon’s
msthod,® depends upon the possibility to divide
the integration range into intervals which are suf-
ficiently small to approximate the potential by
some more simply varying reference potential
but which, on the other hand, contains a sufficient-

20

ly large number of de Broglie wavelengths. For
heavy ion collisions, both conditions are fulfilled.
A further element of the method is the decompos-
ition of the partial wave radial solution into regular
and outgoing components, This means that the so-
lution in, e.g., the classically allowed region is
written as a linear combination of two rapidly os-
cillating base functions with more or less slowly
varying amplitudes. The chosen reference poten-
tial allows these base functions to be expressed in
terms of piecewise analytic reference solutions.
Taking the reference potential over the interval as
a linear one, these reference solutions are given
by Airy functions.?

The Schrbdinger equation for the partial wave
radial solution is rewritten in an integral form
which leads to a system of coupled first-order
integral equations for the amplitudes. These amp-
litudes are obtained by means of an iteration pro-
cedure. Two iteration schemes, an inward-out-
ward®'® and & perturbative one,® have been investi-
gated. When compared to previous applications of
these iteration schemes, the advantage of the new
method is that the integrals are evaiuated analyti-
cally, .

Aithough the results are presented for some
Coulomb excitation inelastic scattering problems,
it is possible in principle to include the influence
of a nuclear interaction. Inelastic heavy ion scat-
tering cases involving an optical potential are now
being investigated.

In the next section, a concise formulation is
given for the quantum-mechanical theory of in-

592 ® 1979 The American Physical Society

79 -



20 SOLVING COUPLED EQUATIONS BY ITERATION FOR... 593
elastic scattering as applied to multiple Coulomb [d’ b 2, k; I{1+137 s )
excitation, In Sec. III, the calculation procedure P o o= g L

is discussed and the two iteration gchemes are de-
scribed. In Sec. IV the results of the study that =Y Vi@l (), (2.1
considers the above-mentioned amplitudes is pre- i

sented, plus the scattering matrix elements for the
heavy ion multiple Coulomb excitation of 2**U by
385 MeV Kr and 1000 MeV Pb. Both iteration
schemes are illustrated by figures and a table
which show the rate of convergence and the ac-
curacy achieved, In Sec. V, the excitation prob-
abilities for **®U, Coulomb excited by 385 MeV Kr
up to /=247, is shown for a reduced E2 transition
matrix element of 3.5 eb and is compared with re-
sults from the semiclasgical theory with energy-

for a spinless projectile. HereJ, !, and [ dencte
the total angular momentum, the orbital angular

momentum, and the spin of the target nucleus with
excitation energy ¢, respectively. The total ang-
ular momentum J, its projection on the z axis and
the parity are good quantum numbers. The wave

number k, and Sommerfeld parameter 7, are given

:2“

symmetrized classical orbits.' In the last section B 7 E-<),
some conclusions are drawn. (2.2)
2
1L. CONCISE QUANTUM-MECHANICAL FORMULATION = %‘r Zl?i =,
- 7
OF INELASTIC SCATTERING
where 4 is the reduced mass, while Z, and Z,

In general, the quantum-mechanical description represent the charge numbers of the projectile
of inelastic scattering leads to a set of coupled and target nucleus, respectively. The coupling
second-order differential equations of the partial potential for the special case of multiple Coulomb
wave radial functions ¢f, of the following form: excitation is given by’

¢+ vz ’ r g
Vi) = 2,00 3 (B D1 (-1)“"“U'uMLEnnI)(’ ‘ "){‘” ! }7\111'

00 0/(x I I
(2.3)
f
where (I’ |M(EX} [ I} denotes the reduced matrix spin. Considering the excitation of a ground state
element of the electric 2"-pole moment of the tar- rotational band with spin sequence 0%, 2%, 4%, ...,
get. I..«s N is given by
To obtain the solutions for w,’, (r}, two boundary _

conditions have to be fuliflled. At the origin, they N=3 U0, (2.9)

must vanish and for large distances they must be
related to an ingoing partial wave in the entrance
channel plus outgoing partial waves in all relevani
exit channels. The precise agymptotic form de-
fines a scattering matrix. We follow Alder and
Winther’s convention’ for defining an K matrix by
the following asymptotic condition:

This means that for /,,., =20, N becomes 121 and
for even higher values of I, N assumes huge
values. In conventional coupled-channel caleula-
tions, the set {2.1) has to be solved N times for
each J value in order to satisfy the boundary con-
ditions. Especially for large aystems this is time
consuming. In addition, this procedure generates

4‘1’5’"“1,’3:'.., Hiylng ky7) 8y, By R-matrix elements which form a complete NXN
Chy, Y3 matrix. Ho.wever, in the nuclear physics context
-LT’IL] Ry 1o Hi (s ky 7). (2.4) of 2 case with a zero-spin ground state, only one
column of this matrix is needed, namely those
The ingoing and outgoing Coulomb waves H; and elements which connect the ground state entrance
H,, respectively, are given by H} =(G, iF}), in channel to all the experimentally relevant exit
terms of the well-known regular and irregular channels. This is the motivation to study iteration
Coulomb wave functlons F, and G;. The indices methads for which the solutions yj,(r) are obtained
1,,1, correspond to an ingoing wave in the en- directly without the need for solving the set (2.1)
trance channel for I=[ and 1=1,. N times.
The dimension N of the set (2.1) is determined The scattering amplitudes are expressed in
largely by the maximum value [, of the target terms of the R-matrix elements’
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f(8, ¢)ID"D""=_(E;!:—'SW 3 (@l 1M2ito "t (1 01 M, M ) (I IM|JM )

[ PEL4
1 g
X 57 {explt (o, + ¢ NRY 1y = Our B0, 1Y 1w (6, 00, (2.8}
in which o, is the Coulomb phase shift
o)y =argl(l+1+in). 2.7
From the scattering amplltudes it is easy to caleulate the cross section for state /'
do(8) 1 ‘
TR TS | p,, ;DZ Lf 1y g1 tBr $=0)[* {2.8)

and other observable quantities. The excitation probability, for instance, is given by®

Po)= —L —j%i— , (2.9)
where o is t!le Rutherford cross section,
L. THE CALCULATION PROCEDURE
The Schridinger equation (2.1) is rewritten in the more convenient form

[ai:’”": -U“(r)](&,(r): li;t/”(r)w,(r), i=1,2,...,N @.1
and the boundary condition (2.4) as

W) o 8 H; - —:-] mR"HI. (3.2)
The superscript and subscript k denotes the entrance channel,

When considering some interval of the integration range with s midpoint at radius ¥ and expanding the
potential function in a Taylor series, the equation is the following:

[ngk‘ 2 (r-?)"g_"y_u(_rlt ] Jr) = ﬁLZD ("F’- —d-—fﬁ.ﬂ‘ ,:]”(')' (3.9

Subsequently, introd g an average value for the components of the first derivatives at the left-hand
side,

[freme-vur-o-n 22| Ty

au ,,(r) AU, (r) | (r=-7P d°0,()
= - et £ AL - X
{(r n[ dr oy dr r=r ¥ 2 dr* =7 )
L& 7)" d=U,ir) 3.4)
| > ]“’"’) ¢
$4EEi > m=0
or, in more convenient notation,
d? - AUy
[frene-Butn - - 2L Ty ): W )0t0), : @.5)
i
where U, 15 introduced as the average value of later in this paper.
the diagonal potential for the interval. The poten- If the right-hand side of Eq. (3.5) is replaced by
tial form at the left-hand side is the reference zero, each of the resulting decoupled equations has
potential. The reason for introducing an average two linearly independent solutions:

value of the first derivatives will hecome clear
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1. The regular solution G,{#). It is defined to with the constants
vanish at the origin and by the asymptotic form vs
R (anw(r) )
: ar oy / 7

Glr) o ——[Hi(my; By 7) RO 7))

R (3.8

L TP k7

(3.6a) b= s T
The constant coefficients @, b, and a;, b] are de-
termined by conditions of continuity at the interval
boundaries.

Now the Green's function which belongs to the
coupled differential Eq. (3.5) can be introduced;
1t is regular at the origin and has an outgoing wave
asymptotic form of

2. The irregular outgoing wave solution G{{r).
This is defined by the asymptotic form

. 1
Gi(’),-m :}g—i_Hs(ﬂpki")- (3.6h)

Owing to the special form of the left-hand side
of Eq. (3.5}, the solutions (3.8} can be expressed
in terms of Airy functions which can be efficiently Gy, 7)Y =-Glr )Gilr,). (3.9

3 3
evaluated numerically, as shawn by Gordon whore ¥, and 7, are the smaller and the larger

Gy(r) =Ai[a(B; + )a, +Bi[a(3, + )]s, (3.72) values of » and ¥/, respectively.
With an ingoing wave in the entrance channel %,
the coupled differential Eq. (3.5) can be written
G;(r)=Ai[a(8, + 7)) a; + Bi[a(s, + ¥)]b; , (3.7D) as a set of N coupled integral equations

and

- hd r ¥y
#0602 - 610 Wi dar | -6 [T 6 W wear] . 610w
4 = ° =i

Equivalently,

W) =G6,F) e lr) -G (r) ), (3.100)
with the boundary conditions

c{(m)=%ﬁu (3.11a)
and

c;(0)=0. (3.11b)

In practice, however, instead of Eq. (3.11b) the approximate condition
. 7o N
=[G W o) B ar =0 (3.110)
° I=1

is used for a relatively small 7,, in order to prevent the set of integyal equations becoming singular.

The cheoice of 7, is very important. It must be neither too small nor too large. Of course, the R-matrix
elements have to be independent of the actual value of 7,. In Sec, IV this subtle point is discussed in more
detail. The asymptotic value of the outgoing coefficients cj(#) are related to the R-matrix elements

i) =Ry~ Ry by . (3.12)
The set of coupled integral equations (3.10) can be solved by iteratlon. We have concentrated our invest-

igation on the behavior of the amplitudes c,(r) and c}(+) instead of the wave function itself. This has been
done for two iteration schemes.

A, Inward-vutward iteration scheme

In this scheme, the following set of coupled integral equations for the amplitudes ¢,(#) and cj(*) are con-
sidered:

" N "o
c,(r):%ﬁn- f Gi(") Y W) Gyl e r'yar + f G iw,,(r’)c;(r')c;(w)ar', (3.132)
id N = r N -
a=f 6,6) W16 Nar - [ ) W o6l cjtrar (3.13b)
° =1 e i=3
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fari=1,2,...,N. This scheme was proposed by
Alder, Raesel, and Morf* and Ichimura ef al.®
They used a differential farm of these equations.
When solving these equations iteratively, a start
is made at infinity (in practice a few hundred or
even thousand fm), where the ¢, (r) values are
known, due ta the boundary condition {3.11a), but
the ¢j(r) are not. However, the product G}w,,G;
oscillates rapidly over the classically allowed
region of the integration range which tends to
nuilify the contributlon of the term with ¢j(x). This
will also be apparent from some of the figures in
the next section. It is, therefore, justifiable to
take the value of these coefticients equal to zero
as a first guess. Now, a first approximation to
¢,{r) can be generated by the inward integratlon oil

Eq. (3.13a) from infinity to »,. The obtained values
of ¢,(r}, together with the initial condition (3.11c),
are used in an outward integration of Eq. {3.13b)
from », to infinity, where the term with ¢ {r) is
now considered as a known inhomogeneous fune-
tion. This outward integration gives a first ap-
proximaticn to ¢(r) with a value at infinity, which
corresponds to a first approximation of the R-
matrix elements.

The iteration procedure continues as a second
inward integration of Eq. (3.13a} using the cal-
culated values of ¢{(r) and 8o forth, untii conver-
gence is obtained for cj(»). In the cases tested,
only a few steps in the iteration process were
needed.,

B. Perturbative iteration scheme
The set of coupled integral equations for the amplitudes c,(r) and ¢;(r) can also be written as

L ¥
e =Lo,+ fu CIr) 3 AP [G4lr") €,) G ) )]
i=

- [T Gitr) WL (6, cifr') =G5 ) et (3.142)
Q i=t
i) = [ Gulr) W )16, e,) -G e N (3.140)
o i=:

In thls scheme, which was proposed by Raynal,® the coupling potential W is considered as a perturbation.
To illustrate the iteration procedure the results for the nth step of the iteration in case ¥ =1 are written

as

, -
6§ )= 20, + j; G Xy - fﬂ Gl XY

™= [ e xmerar,
o

where

i-1 N
X =W, [Gre"™ " =Glei® Ve 3 W, (6,6 =Gl ci™]+ 30 W [Gy et =Gl i ]
P=t

i=z
for i=2,3,...,N and

N
X Wa(Guef" Y ~GLel" T4 3. WulGyef? - Giej®]
J=2

fori=1.

The calculation of Eq. {3.15) starts with i =2,
using (3.18a) under the initial conditions

)= 20,, 6Or)=0. (3.7

This component must be integrated to infinity, due
to the third term in (3.15a), before the calculation
can be continued for {=3. The lteratlon step ends
with the integration of the first component using
(3.16b).

(3.15a)

(3.15b)

(3.16a)

(3.16b)

" we have also investigated a perturbative scheme
with the initial conditions
V(=)= -?;-O,m ;=) =0, (3.18)

and adapted integral expressions for ¢{"'(r) and
c;*(r). However, in the cases tested, the results
varied little from those obtained with the initial
conditlons (3.17),

To solve Eqs. (3.13) and (3.14) we use the rel-
atively slow variation of the amplitudes c,{r) and

- 83 -



¢;{r) with respect to the rapid oscillaiions of the
functions G;(r) and Gi(») in the classically allowed
region. This behavior is understood by noting that
¢,{r} and c}{r) nearly lose their » dependence on
the midpoint of an interval. This dependence ia
weak as long as the difference between the true
potential and the reference potential is small.
Thus, a choice of step size has to be made so that
small variations of ¢,(r) and ¢;{r) over an interval
can be neglected.

Assuming that in the first iteration step we have
already integrated Eq. (3.13a), for example, {rom
the right up to », and using the values of ¢(r,),
this equation yields a first-order contribution to
c,{r; ) at the “left-hand” boundary »,, provided in-
tegrals of the form

v,

I 6, -G )
s

are determined. Expressing G;(r) [and also G}(7)]

in Airy functions and introducing an average value

{for the first derivatives [gee (3.4)] when the con-

stant & becomes independent of the channels, inte-

grals are obtained of the form

(3.19)

v
f "(r " AL{ (B, + )] Bila(d, + ¥)dr .

" (3.20)
This type of integral can be evaiuated analytically.
The analytical expressions for the integrals of
m=0,1,2; B, =8, and form =0, 1; B,# 5, were
given by Gordon,® while the expression for m =2
and 3, # §; is given in the Appendix.

IV. RESULTS AND DISCUSSION

In this section we present results with respect
to the amplitudes c{r), c*(r) and the R-matrix ele-
ments for two heavy ion scattering test cases. In
thegs cases, the multiple Coulomb excitation of the
ground-state rotational band of a doubly even nu-
cleus with the corresponding spin sequence has
been considered. The reduced transition matrix
elements which are used were caleulated according
to the simple rotational model starting from given
values of the reduced E2 and E4 matrix elements,
(2 |ME)] 0 and (4 [M(EQ) 0", respectively,
Before starting our investigation on the heavy ion
test cases, we made for a light lon test case®a
comparison between iteratively calculated R-matrix
elements and those calculted with a conventionai
coupled-channel computer program {AR0QBAS), It
turns out that a three- to four-~figure correspon-
dence is obtained.

Mulsiple Coulomb excitotion of L by 385 MeV Kr. (Ref. 10)

For this case, the Sommerfeld parameter and
wave number are approximately 244 and 29, re-

20 SOLVING COUPLED EQUATIONS BY ITERATION FOR...

»
=
-3

spectively, The target spin sequence is

07,2" 4%, .,,,20" (N=121}). In Fig. 1 the values
of the complex R-matrix element, with a set of
quantum numbers and hypothetical E2 and E4 val-
ues as mentioned in the {igure, are plotted with a
logarithmlc radial scale in the complex plane, for
successive iteration steps of both schemes, This
figure shows as a surprising result the very rapid
convergence of the inward-outward iteration
scheme when compared to the perturbative one.

It is seen that the perturbative values jump from
one quadrant te the other while approaching the
convergence limit only after more than about thir-
teen steps. On the contrary, the inward-outward
scheme has a starting value which already nearly
coineides with the convergence limit. It appears
that for larger values of the reduced E 2 transition
matrix element, the rate of convergence for the
perturbative iteration scheme is poorer. For the
more realistic reduced E2 element of 3.5 eb, it
diverges. The inward-outward scheme needs only
a few steps to converge in this case. Therefore,
from now on we conhcentrate our investigation on
the Inward-outward iteration scheme, using an
E2 clement equal to 3,5 eb.

Figure 2 shows the behavior of the amplitudes
cfr) and ¢*(r), during the first and final iteration
step, {or the set of quantum numbers /,=0, I=2,
1o={=100, Numerically speaking, the fourth iter-
ation step gives at least a three-figure agreement

00

Blrs 238y E o «J85MeV <20 M(E2) 10)  25eb
CLUMEL) 102 » D0et?
1?0 Lo =100 A

P=d 1 =00
;

y 0 fls \
N

0.1 H :
e W
{ NS " / /I
\ 12013 @ / /
\\ \\\ ‘\09 /1 2'9/
A N
N
{4 —»+} nward - autward 1teration
{@ == +} perturbative rteration e
——, e

FIG. 1. A R-matrix element for a heavy jon scattering
case, plotted with a logarithmic radial scale in the com-
plex plane and calculated for successive iteration stepa
according to the inward-cutward iteration scheme and the
perturbative one. The convergence limit is indicated by
a crass & ). Note the rapldity of convergence of the in-
ward-~outward scheme.
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FIG. 2. This figure illustrates the inward-outward
iteration scheme for a heavy ion scattering case. The
amplitudes c{»} and ¢*{») are plotted as a function of »
for the first iteration step (---) and the final one ().
The difference between the first and final iteration steps
for c{»}is visible only in the neighborhood of the ciassi-
cal turning points. The location of the latter is given in
Fig. 3.

with the final result. We note that the influence of
c*(#), obtained in an outward integration, on c(»)
during the next inward integration over the classi-
cally allowed region is rather weak, Onmly in the
region around the classical turning points of the
decoupled set of equations the difference between
the first and final iteration steps is visible in the
figure. Cleariy, even one iteration step yields a
readonable result, To study the behavior of the
amplitudes in more detail, the imaginary parts of
c(r) and ¢’(c) are plotted in Fig, 3 on a larger »
scale for the above-mentioned set of quanium num-
bers and, additionally, for I,=0, I=6, [,=[=100,
Both sets, but especially the latter, suggest that
the step sizes must be chosen with care over a
limited part of the imtegration range outside the
turning points, due to the tendency of the ampli-
tudes to oscillate here. In connection with the
foregoing, the general behavior of the amplitudes
may be summarized as follows: They change
monotonically inside the innermost turning point
and tend to oscillate outside it before approaching

I8

nward - outward iteration

" i s

FIG. 3. The same as Fig. 2, but the imaglnary paris of
c(r} and e*{¥} are now plotted on a larger » scale for two
different sets of quantum numbers, The inner- and cuter.
most classical turning points are indicated by arrows.
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FIG. 4. This figure shows the behavior of the imaginary
part of ¢{v) for two differant valnes of the starting point
g plotted as a function of  for the first part of the in-
tegration range and for successive iteration steps.
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constant values in the asymptotic region.

In the previous section, it is stated that the
starting point 7, has to be taken so that its choice
does not affect the value of the R -matrix elements
asymptotically, It seems that, on the one hand,
making ¥, too small gives rise to diverging asymp-
totic values of these elements, while on the other
hand, for large values of r, the R -matrix elements
become dependent on ¥,. However, in the present
case, the margln is rather large, as can be seen
from Fig. 4. This figure shows for two different
7, values the imaginary part of ¢(r), which is
plotted as a function of ¥ for the first part of the
integration range and for successive iteration
steps. The upper part of the figure corresponds
to starting values of the components p}(r) in the
solutfon vector of about exp(~20), while the lower
part corresponds to values of about exp{--30). It
is seen that outside the starting point the ampli-
tude for successive iteration steps changes very
rapidly; nevertheless, it converges for hoth 7,
values to the same value at about 15.5 fm, far
inside the innermost turning point of the decoupled
aet of equations. As Fig. J shows, this turning
point is located at 17.35 fm. The behavior of c*(r)
and the real part of c(r) are similar. In general,
such a behavior guaraniees a stable iteration pro-
cess, since it means that numerically speaking the
components ¢4(r), due to (3.10b), obtain a signifi-
cant value inside the Innermost turning point.
Comparing the R-matrix elements at infinity for
the present two 7, values, it is seen that a two-
to three-figure correspondence is obtained, illus-

" trating the degree of independence on 7,,.

Also, a comparison is made with a caonventional
coupled-channel calculation in the sense of Sec, IL
For this, only the computer program JUPIGOR™
wag available, It uses Airy functions as piecewise
analytic reference solutions too. The results are
presented in Table 1. Comparing the significant
R-matrix elements, 2 two- to three-figure cor-
respondence is obtained, even for the high-spin
states. Calculations of the modulus give rise to
discrepancies of about ona per cent. In view of the
uncertainties in experimental excitation probabil-
ities,” such an accuracy may be calied satisfac-
tory. Note that there is a considerable reduction
of computation time. With cur computer, the aver-
age computation time for one integration step when
solving a system of 121 coupled equations takes
about 140 gac for a conventional couplad-channel
calculation; but for the inward-outward scheme
it takes about 4.3 sec, including four iteration

. steps. Every extra iteration step takes about 0.3
sec.

Pinally, it should be noted that iteration schemes
based on the integral form of the Schridinger equa-

tion, have been studied elsewhere in light particle
problems for inelastic scattering as well as for
rearrangement.” In that study, an analysis of the
kernel eigenvalue problem was made in order to
understand the convergence properties. In this
gtudy such an analysis was not made; however, it
is believed that the striking dlfference in conver-
gence properties of the two iteration schemes,
examined here, has to be sought in the fact that in
the inward-outward scheme, the amplitudes c(»)
and ¢"(¥) are iterated independently, while this is
not the case in the perturbative scheme.

Muiltiple Coslomb excitation of ¥°U by 1000 MeV Pb

This case has been studied to investigate the
stability of the Inward-outward iteratlon scheme
for very heavy ion multiple excitations, The Som-~
merfeld parameter and wave number are now 542
and 53, respectively. The target spin sequence
chosen is 0%, 2", 4%,...,32" (N=289). Flgure5
illustrates the behavior of the imaginary parts of
the amplitudes c(7) and ¢’(r} during the first and
the final iteration step, for a set of quantum num-
bers mentioned in the figure. It turns out that in
this case, too, only a few iteration steps are need-
ed. Numerically speaking, the sixth iteration step
gives at least a three-flgure agreement with the
final result. In this figure, the amplitudes are
plotted as a function of » for the region in the
neighborhood of the classical turning points, as
is done in Fig, 3 for the excitation by *Kr, Com-
paring both figures shows a simflar behavior, al-
though the amplitudes in Fig. 5 have a slightly
more oscillatory dependence on the integration
variable 7.

The insensitivity of the R -matrix elements te
the starting point 7, has algo been investigated for
the present case, This is illustrated in Fig. 6,
where for two different 7, values the imaginary
part of ¢(r) is plotted as a function of » for the
first part of the integration range and for succes-
sive iteration steps. The upper and lower part of
the figure correspond io starting values of the
components §5(r} in the solution vector of about
exp(~20) and exp(~30), respectively. It is seen
that, as in Fig. 4, the amplitude converges for
both », values to the same value at ahout 19.6 fr,
sufficiently inside the innermost turning point,
which ig located at 20.64 fm. The amplitude ¢*{r)
and the real part of ¢(»} show a similar behavior.
This behavior guarantees a stable Heration pro-
cess. The degree of independence on 7, is llus-
trated by comparing asymptotically the R-matrix
elements for beth 7, values. This comparison
shows a two~ to three-figure correspondence.

E must be noted that in a similar case {o that
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TABLE L. 5elected Rf;;q, values for MKr+ U with E,, =385 MeV, (2[| M(E2)|| 0)=3.5 eb, (4{[M(E4))| 0)=0.0 ¢b’. The values for a quantum-mechanical cou-
pled~channel calculation of eanventional (Conv, C, C.) type (UPIGOR;, as well as the values for an inward-outward iterative {Inw.-Outw, Iter.} ealculation after four
iteration steps are given. The significant elemants show a correspandence of about two and sometimes three figures, even for the high-spin states, The compu-

tation time per integration step, solving a syatem of 121 coupled equations for fn. =20, takes about 140 sec for the former calculation, while for the latter, it
takes about 4.3 sec. Left entries mean real parts, middle entries mean imaginary parts, and right entries mean the moduli. Additinnal exponents have been
added ln parentheses above the columns.

J=13=100
I=0 1=l
(0) 0} {0}
Conv, C. C. 0.120 0,197 0.231
Inw.~Qutw, Iter., 0.119 0.195  0.229
0.9%
I=4 1=ly~2 1=ly=2 1=l l=lg+2 L=ty +d
(0) (=1} (0} 0) {~1} (0) (=1} (1} {=1) (=1} (=1} {(~1} (=1} {01 {0)
Conv. C. C. 0.113 ~0.560 0,126 ~0.103 0.163 0.105 0.919 —0.135 0.929 =~0.776 0.535  0.943 0.171  ~0.117  0.118
Inw.-Cubw, Iter. ¢.116 -0.533 0.127 -—0.103 0.152  0.104 0.906 -0141 0,917 -0.777 0.515 0,932 0,19 ~0.118 0,119
0.8% 0.5% 1.3% 1.2% 1.0%
I=8 1=l)—~8 Lely—4 1=, Lelgtd 1=[p+8
{0 (=1} {0) {~1} -1} (0} {~1} {~1) =1} (=1} (=1} {1} (=1} (~1) (=1}
Conv. C. C. 0.120 0,971 0,154 0.685 0.766  0.103 0.648 0.624  0.900 0.727 0.296 0,785 0.714 ~-0.400 0.819
inw.-Outw, Iter. 0.119 0.995  0.155 0.682 0.785 0.104 0.644 0.628  0.899 0.718 0,324 0,783 0.714 -0,383  0.813
0.8% 1.2% 0.1% 0.3% 0.7%
=12 L=lg—12 l=lg=~6 1=l 1=1y*8 P=lp+12
{~1) 0} (03 1) -1} ~B {~2) (=1}, =1} (=1 (0 (0} 0 0y 0
Conv. C. C. ~0,157 0.126  0.137 0.165 -—0.825 0.841 0,713 0.895  0.898 ~-0.216 =0.105 0.107 0.104 0.144  0.178
Inw.-Outw. lter. =0.159 0.127 0,128 0.167 =-0.835 0.851 -0.765 0.903  0.806 ~0.200 0,106 0.108 a.104 0.147  0.180
0.7% 1.2% 0.9% 10% 1.2%
I=18 p=ly~16 1=ly—8 1=14 =4+ 8 =15+ 16
(=2) {0) (] (=2) (=1} (w1} {=2) =1} {~1) (~1) {=1} {~1) {1} (=1} -1
Conv. C. C. ~0.375 ~0,156 0.156 0.608 -0.836 0.83% 0.190 ~0,689 0.699 ~0.108 ~0.583 0.593 ~0.364 ~—0,592 0.695
Inw.-Cutw. Iter. -0.328 -0.157 0.157 0.656 —-0,835 0,837 0.252 ~0,700 0,701 ~0.099 —0.579 0.588 -0.365 ~0.600 0,702
‘ 0.6% 01% 0.3% 0.8% 1.0%
=20 1=lg=20 1=y~ 10 L=, 1=ip+10 E=1 20
(=2} =1} {=1) (=2} (~1) (~1) 33 («1} (=1} (=2} 1) (~1) (—2} {m2) =1
Conv. C. C. ~0,365 0722 0.723 0.232  ~2.304 0.305 0.218 0.189 0.189 ~0.224 -0,104 0.108 0.381 0.704  0.800
Inw.Ouiw. lter.  ~0.337 0.721 0722 0.231 ~0.301 0.302 0,105 0.168 0,188 -0.215 -0.102 0,104 0.383 0.714  0.809
0.2% 1.0% 0.8% 1.9% 11%

[y
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FIG. 5. This figure {Hustrates the inward-outward
jteration scheme for a very heavy ion scattering case.
The imaginary partse of the amplitudes c{r) and c*{») are
plotted as a function of r for the first iteration step {-—-)
and the {inal one {(——). This has been done for the regica
in the neighborhood of the inner- and outermost classical
turning points, which are indicated by arrows. The amp-
litudes show a slightly more oscillatory dependence on »
as compared to the amplitudes in Fig. 3.

{lustrated in Fig. 5, but with a target spin se-
quence of 0*,2°, 4", ..., 24", the inward-outward
iteration scheme does not converge. Apparently,
it can be considered as a further condition for a
stable iteration process that the coupling schems
of the differential equations includes all experi-
mentally relevant target states.

_ In conclusion, the inward-outward iteration
scheme is successful and manageable even for
multiple Coulomb excitation induced by very heavy
ion collisions where it shows a rapid convergence.

V. COULOMB EXCITATION PROBABILITIES OF *Kr + 239U
at 385 MeV

To calculate the scattering amplitudes, cross
sections, and excitation probabilities, use is made
of some subroutines provided by the program
AROSA.® However, it is necessary to adapt these
subroutines due to the large number of J values
needed in the partial-wave sums.

For the calculation of the cross sections (2.8)
and excitation probabilities (2.9}, a target spin
sequence of 0°, 2", 4", ..., 24" (N=169) and reduced
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FIG. 6. This figure shows for the same very heavy ion
scattering case as in Fig. 5, the behavior of the imagi-
nary part of ¢(r) for two different values of the starting
point ry, plotted as a function of » for the first part of
the integration range and for successive {teration steps.

E2 and E4 transition matrix elements equal to 3.5
eb and 0.0 b, respectively, have been taken, The
R-matrix elements were calculated for the follow-
ing sequence: J=0,40, (1); 42,100, (2); 104, 196, (4);
204, 516, (8); 532, 1332, (16). The values in paren-
theses indicate J steps. The values of the missing
R.matrix elements are obtained by interpolation,

It is well known that the number of target states,
which are coupled, 15 reduced at high J values. To
illustrate this behavior, in Fig. 7 the abaolute val-
ues of seme R -matrix elements are plotted against
J. These values are maltiplied by the weight
(24 +1)¥?, with which the R-matrix elements ap-
pear in the expression of the scattering amplitudes
(2.6), It appears that the full set of coupled differ-
ential equatlons is necessary only up to a J value
equal to about 200, For higher J values the dimen-
sion of the set can be gradually decreased.

In Figs. 8(a) and B(b) the quantum-machanical
(QM) Coulomb excltation probabilities, calculated
in the center-nf-mass system, are plotted for all
target states included as a function of the scatter-
ing angle 6. In addition, the probabilities are
plotted from calculations based upon the semi-
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FIG. 7. The absolute values of some R-matrix ele-
ments, multiplied by a weight factor, are plotted against
J for several spin stetes of the target.

clagsical {SC) theory with energy-symmetrized
classical orbits.’! Comparing both probabilities,
it is seen that, as expected, the difference be-
tween the @M and SC probabilities for the low-

. spin states [Fig. 8(a)] s small, although signifi-
cant. The difference i3 somewhat larger for the
other states. Looking at Fig. 8(b), it is noted that
at backward angles, the QM and 5C probabilities
for 7% =10" coincide. For I"™ =12*, 14*, and 16"
the QM probability becomes larger than the 3C
value, for /" =18" they coincide again, while for
I"=20", 22%) and 24" the SC probabiiity increases
relative to the QM probability. It is observed that
the systematics of the differences between the QM
and SC excitation probabilities, depending upon the
excited target state and scattering angle, shows
up quite clearly in the present study.

VI. CONCLUSIONS

The description of a heavy ion nuclear scatter-
ing process, especially of multiple Coulomb ex-
citation, by means of a quantum-mechanical cou-
pled-channel calculation of conventional type is not
feasible at present, since the analysis involves the
solution of 2 very large set of coupled linear sec-
ond-order differential equations, which has to be
solved as many times as the dimension of the set

to form a full set of linearly independent solutions.
Rewriting the set of coupled differential equa-
tions in integral form, transforms it into an equi-
valent set of coupled first-order integral equations.
Approximating the potential energy over a radial
interval by a linear reference potential, makes it
possible to use Airy functions as piecewise anal-
ytic reference solutions. This opens up the possi-
bility of evaluating analytically the integrals ap-
pearing in the set of first-order integral equations.
This set can be solved iteratively which, in cases
of heavy ion scattering, gives a considerable re-
duction of computation time as compared to the
above-mentioned coupled-chanhel calculations.
The efficiency of two iteration schemes, an in-
ward-outward and a perturbative one, was ex-
amined. It appears that for heavy ion scattering
only the inward-~outward scheme has practical
importance, since it converges for any realistic
value of the deformation parameters and needs
only a few fteration steps. The accuracy which
can be achieved is sufficient for practieal pur-
poses. Finally, it is concluded that the piecewise
analytical approach by inward-outward fteration
enghles one to describe quantum-mechanically
heavy ion scattering processes which are of in-
creasing importance, Additionally, it opens up
3 favorable study procedure for heavy ion col~
lisions.
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APPENDIX

We consider integrals over Airy functions of the
form :

fR"'A [a(8, +R)] Ba(8, +R)JdR,

where A and B are the Airy functions or any linear
combinations of them, Integrals involving m
=0,1,2; f,=B andm=0,1; 8,#f, were given by
Gordon.* The analytical expression for the inte-
pral with m=2 and 3, # 8, may also he derived:
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FIG. 8. {a) The quantum-mechanical {§M) and semiclaaslcal {SC) Coulomb excitation probabilities P,, calculated in
the center-of-mags system, are plotted aa a function of the scattering angle 6 for the low-apin states of the target. ()
The same as {a}, but the excltation probabilitles P, are now plotted as a fumction of the scattering angle § for the high-
spin states of the target. The difference between the QM and SC excitation probabilities depends upon both the excited

- target state and scattering angle.

[ Alate s R Blas, + R)aR
= _m {12(8, +8,) +[24 + 20°(8, +8,)(8, ~ R, R +40°8, - B, R*HA (a8, +R)] B[a8; +R)]}

+ gy (A8, 4R Bals, +R)) - B,ALalB, +R)] Blal8, +R)]}

+ T (28 20,4 BB, ~ 6] 412075, ~ B R ¢ a6, - B)R}
*{4’[a(s, +R)] B[a(B, +R)] - A[a(p, +R)] Fla(8, +R)]}
+ T 18+ @6, =8P RUA (8, +R)] B (a3, +R]},

where the prime denotes differentiation with respect to the argument, The constant § does not contain ¥
as in (3.8).

- G0 -



0.4 L. D. TOLSMA 20

K. Alder and A. Winther, Electromagnetic Excitation
{North-Holland, Amsterdam, 1975).

23, de Boer, G. Danunh sH M , F.Roessel,
and A. Winther, J, Phys. G 3, 889 (1977); M. W. Gui-
dry, R. Do 1o, J. 0. Ras and J. P. Bois-
son, Nucl. Phys. A295, 482 {1978).

®R. G. Gordon, J. Chem. Phys. 51, 14 (1965} R. G. Gor-
don, in Methods in Computational Physics: 10, Atemic
and Molecular Scaliering, edited by B. Alder, S. Fern-
bach, and M. Rotenberg {Academic, New York, 1871},
p- 81,

K. Alder, F. Roesel, and R. Morf, Nucl. Phys. A284,
145 (19773, -

SM. Ichimura, M. lgarashi, S. Landowne, C. H. Dasso,
B. 5. Nilsaon, R. A, Broglia, and A, Winther, Phys.
Lett. §78, 129 (1977).

3. Raynal, Computing as a Language of Physics (IAEA,

Vienna, 1972), p. 281.
8ee Chap. IX of Ref. 1.

’F. Roesel, J. X. 8aladin, and K. Aler, Comp. Phys.
Commun. B, 35 (1974).

*H. J. Wollersheim, W. Wilcke, Th.W. Elze, and
D. Pelte, Phys. Lett. 48B, 323 {1974).

€. Grogse, J. de Boer, R. M. Diamond, F. 3. Stephens,
and P. Tidm, Phys. Rev. Letl, 35, 565 (1975}

"y, D. Tolsma, J. Comp. Phys. 17, 384 (1575).

M. W. Guidry, E. Eichler, N. K. Johnson, G. D. Q’Kel-
ley, R. J. Sturm, and R. O. Sayer, Phys. Rev. C 12,
1937 {1975}, -

%p. J. R. Soper, Phys. Rev. C 10, 1282 (1974).

MA, Winther and J, de Boer, in Coulomb Excitation, edit-
ed by K. Alder and A. Winther {Academic, New York,
1970}, p. 303.

~ 91 -



- 92 -



CHAPTER 6

SOLVING COUPLED EQUATIONS BY ITERATION FOR HEAVY ION
MULTIPLE COULOMB-NUCLEAR EXCITATION

L.D. Tolsma
Department of Physics, Eindhoven University of Technology
Eindhoven, The Netherlands

ABSTRACT

To describe quantum mechanically multiple Coulomb-nuclear excitation
in heavy-ion reactions, the set of coupled differential equations of the
partial-wave radial solutions is rewritten in integral forn. Decomposing
these solutions into two basis functions, the corresponding amplitudes of
these functions satisfy a set of coupled integral equations. Expressing
the basis functions in terms of apﬁropriately chosen piecewise analytic
reference solutions, the integrals appearing in this set can be evaluated
analytically. The coupled set of amplitude equations is solved itera-
tively. The efficiency of two iteration methods, the inward-outward and
the sequential one, has been investigated for test cases dealing with

multiple Coulomb and nuclear excitation of 238U by 286 MeV 40Ar and

718 MeV 84Kr up to high spin states of the ground-state rotational band.
Padé approximants to the S-matrix elements were also included in both of
the iteration methods. It turns out that the inward-outward iteration
method converges much faster than the sequential one. In many cases, the
inward-outward method does not need Padé acceleration at all, while the
sequential method does. It happens that convergent cases 1in the
inward-outward method diverge 1in the sequential method aided by Padé
approximants. )

Numerical studies of the excitation probabilities as a function of the
scattering angle for the aforementioned heavy-ion reactions show that the
probability functions of the members of the ground-state rotational band,
satisfy a general rule at near—-grazing angles, previously formulated for
the excitation probability as a function of the energy near the Coulomb

barrier for backward scattering from a deformed rotor.

NUCLEAR REACTIONS Solving coupled radial equations by iteration.
Quantum mecanically calculated excitation probabilities for

heavy-ion multiple Coulomb-nuclear excitation.
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1. INTRODUCTION

The quantum-mechanical description of inelastic scattering of charged
particles from nuclel requires the solution of the Schrddinger equation,
which can be reformulated as a set of N coupled linear second-order
differential equations of the partial-wave radial functions. Such a
description becomes computationally complex when heavy ions are involved
in the scattering process, mainly due to:
1. The rapidly oscillating behaviour of the solution function within the

classically allowed region of the integration range.
2. The long range of the Coulomb coupling. Therefore, the integratiom of

the set of coupled equations should be carried out over long ranges.
3. The large number of coupled equations or channels that, in gemeral,

should be considered.
4. The large number of partial waves that should be included when calcu-

latiaog the quantities observed.
In the usual approach, the set of coupled equations 1s solved as many
times as the dimension of the .set with linearly independent regular
starting values at ‘the origin for each of the sgolution vectors. The
equations are integrated from the origin to a radius at which all nuclear
and coupling interactions become insignificant. By constructing the
physical solution as a linear combination of the solution vectors with
the appropriate asymptotic behaviour of an 1incoming partial wave in the
entrance channel plus outgoing partial waves in all the relevant exit
channels, the desired S5-matrix elements can be found. This standard
procedure 1is satisfactory for small systems of coupled equations, i.e.,
for light—ion reactions but is particularly time—consuming for the large
systems assoclated with heavy-ion collisions. In addition, this procedure
generates S-matrix elements which form a complete N x N matrix. However,
in the nuclear physics context, often only a rtestricted number of
entrance channels (only one for a zero-spin ground state) is important
which means that only a restricted number of columns of the scattering
matrix is needed. In these cases, iteration methods can be applied for
which the solutions are obtained directly without the need for solving
the set of coupled equations N times.

The set of coupled equations cam be integrated by means of the well-
known multistep methods, such as the Numerov method. In applying these
methods special attention has to be paid to the behaviour of the solu—-

tion. The heavier tﬁe charged particles in the scattering process and the
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higher the energy of their relative motion, the more rapidly the solution
will oscillate in the classically allowed region and the smaller the step
sizes in the multistep methods have to be chosen. Since, these circum~
stances occur, in general, together with large systems of coupled equa-
tions and a long range of the Coulomb coupling, the multistep methods can
become prohibitively time-consuming.

In order to éope with the problems that occur in heavy-ion ecollisions,
due to the standard procedure for solving the N coupled radial equatioms
N times and due to the step—size dependency of the multistep metheods, it
is advantageous to formulate piecewise analytical solution methods
together with iteration methods. In this way, amn efficlent treatment of
heavy~ion multiple, Coulomb excitation has been discussed in a previous
paper [l]. It was shown that the partial-wave radial solution of the
Schrdodinger equation can be decomposed into regular and outgoing
components, i.e., can be written as a linear combination of two basis
functions which oscillate in the classically allowed region with
relatively slowly varying amplitudes. These basis functions are the
solutions of the decoupled radial equétions. An appropriately chosen
reference potential will allow them to be expressed in terms of plecewise
analytic reference solutions. The efficiency of these methods depends
upon the possibility of dividing the integration range into intervals
which are sufficiently small to approximate the potential by some simpler
varying reference potential, but which, on the other hand, contains a
sufficiently large number of oscillations of the solution. It was also
shown that, after rewriting the set of coupled differential equations
into an integral form, the varying amplitudes satisfy a set of coupled
integral equations. The integrals that arise in these egquations can be
evaluated analytically when Airy functions are used as piecewise analytic
reference solutions corresponding to a linear reference potential [2].
The set of integral equations was solved by means of an iteration
procedure. Two iteration schemes, an inward-outward [3,4] and a
sequential or perturbative one [5,6] were investigated. It appeared that
only the inward-outward iteration scheme is of practical importance.

In an extended study about techniques for heavy-ion coupled channels
calculations which include nuclear and Coulomb interactions, various
iterative methods were compared in order to solve the coupled radial
equations in the interior region of configuration space [7,8]. The

Born~Neumann series, the method of moments, Austern's modification of the
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Sasakawa method and the sequential iteration were studied, but not the
inward-outward iteration. The conclusion was drawn that sequentlal
iteration with Padé& acceleration 1s the most rapldly convergent and
efficient method. The integration of the set of coupled equations itself
was carried out by means of a multistep method.

In this paper we report the continuation of our investigation into the
numerical solution of the radial Schrddinger equation in order to
describe heavy~ion multiple excitation including nuclear interactions.
This was done within the framework of the iterative plecewise analytical
solution method too. The approximation of the potential by a linear
reference potential implies the generation of complex Alry functions
[9,10] for the intervals of the integration region where the optical
potential contributes significantly to the total interaction. However,
since the mnumerical evaluation of complex Airy functions 1s rather
computer—time consuming, approximation of the potential by a constant
reference potential has been investigated for this part of the integra-
tion range [11]. It appears that this approach is much wore efficient,
because the corresponding reference solutions are goniometric functions.
In addition, Coulomb wave functions has been used as pilecewise analytic
reference solutions within the long range of the Coulomb coupling. The
Coulomb integrals that arise in the coupled iategral equations for the
amplitudes can be efficiently evaluated using their recursion relations
[12]. The efficiency of both iteration methods, the inward-outward and
the seguential one, has been investigated, for test cases dealing with

238U by 286 MeV 40Ar and

multiple Coulomb and nuclear excitation of
718 MeV 84Kr up to high spin states of the ground-state rotational band.
Padé approximants to the S-matrix elements were also included in both of
the iteration methods. It turns out that the inward-outward iteration
method is still the most rapldly convergent one and, even 1in many cases
it does not need Padé& acceleration at all, while the sequential iteration
method does. The first results of our investigation have been published
already [13,14].

The set of coupled second—order differential equations of the partial=~
wave radial functions can be rewritten equivaleatly into two sets 6f
coupled first-order differential equations of the above-mentioned ampli~-
tudes. In a study [15], these sets were solved iteratively by neglecting
in the pure Coulomb coupling region of the integration range, the rapidly

oscillating contributions to the equationa. The inward-outward iteration
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method was used. As an application of this approach, rotational model
calculations were performed for a case of multiple Coulomb—nuclear
excitation of 238U by 340 MeV 4OAr.

In section 2, a concise quantummechanical description of inelastic
scattering is given. Section 3 1is devoted to the iterative piecewise
analytical solution method. Several forms of the reference poteatials and
the corresponding reference solutions are described. The inward—-outward
iteration method, as well as the sequential method are explained. Section
4 containg the results of our ilnvestigation related to the behaviour of
the amplitudes and the rate of convergence of both iteration methods. In
section 5, the excitation probabilities for 238U, excited by 286 MeV 4OAr
and 718 MeV BAKr, are shown. Fipnally, in section 6, conclusions are drawn

and a final remark is made.

2. CONCISE DESCRIPTION OF THE SCATTERING FORMALISM
The coupled equations to be solved for the partial-wave radial

functions wiz(r) are:

2
d 2 _ A(&Hl) | Zp Jn < 2p Jn Jx
[:1.;.2, + K2 ._Q?.l 3 Vyiag® VI ® ¥ IZ}UVI,L;I.Q.(:) AN OR

(2.1)
assuming a spinless projectile. Here, J,& and I denote the total angular
momentum, the orbital angular momentum and the spin of the target
nucleus, respectively. The excitation energy of the target is EI, in a
state with spin I. The total angular momentum J, its projection onto the
z—axis and the parity v are good quantum numbers and, therefore, the
equations (2.1) refer to a single combination of (J,n) for the system.
Let E be the center-of-mass energy in the incident channel, then, the

asymptotic wave number k_ is given by:

1
2 _2p ’
kI = ;7 (E sI), (2.2a)
and the Sommerfeld parameter ny which will be needed later, by:
2
Z 2. e
2y “P°T
ng = h_‘% - (2.2b)
I

where p is the reduced mass, while ZP and ZT represent the charge numbers

of the projectile and target nucleus, respectively.
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The diagonal potential is just the usual optical-model potential which is

written in two parts as:

N C
vdiag(r) = vdiag(r) + vdiag(r)’ (2.3)

representing the nuclear and Coulomb diagonal potentials, respectively.

For the nuclear potential, the Woods-Saxon form was taken:

N -1 -1
Varag(P) = V(lte )T - W(te )™, 2.4)

where

e, = exp[(r-Rv)/av]. (2.5a)

whilst V, Rv and a, are the strength, the radius and diffuseness para-
meters of the real part of the nuclear potential, respectively. Denoting
the projectile and target masses by AP and AT respectively, the radius
Rv is given by:
1/3 1/3
R, = T, (A +a, I, (2.5b)

where rv is the real optical radius parameter. A similar explanation
applies to W and e, concerning the imaginary part of the nuclear
potential. The Coulomb potential, derived from a constant charge distri-
bution in the target within the Coulomb radius Rc and zero outslde it,

has the form:

2
= (- &) r <R (2.6a)
C
C _ 2 ¢ c

Vaiag(r) = ZpZge 1

< r > Rc (2.6b)
1/3

with Rc = rcAT s (2.6c)

where rc is the Coulomb radius parameter.
Representing the coupling or transition potential by a multipole

expansion of the deformed optical model and assuming rotational eigen-
Jn

states for the nuclear wave functions, the elements VI£°I'£'(r) of the
’
coupling matrix will have the form:
Jn = A 1ot
Vig;rre (P ; Vep1(F) G, (LL,174%:3), 2.7)
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where the geometrical factor GA(IE,I'E';J) is given by:

172 [ . Ay o~
6, (18,178%) = (47) A SO AN B SO I RN

GADEOE L) aw

assuming couplings within the ground-state rotational band (GSB) ouly.
172
Here, the symbol X stands for (2x+l) .
The radially dependent part of the coupling potential can be described

with two different terms, too:
V@ = (r) +vO (r) (2.9)
cpl

They represent the radial dependence of the nuclear and Coulomb coupling
potential, respectively. The superscript A refers to the transferred
angular momentum during the scattering process. Since, only a rotational
target nucleus has been considered, the nuclear coupling potential is
given by a Legendre polynomial expansion with expansion coefficients for
A% 0 [16]:

1
vi;}(r) - -4w£{ v(ire )7+ (e )7} Y, ((8) dcos(8)), (2.10)
where
e, = expl(r - R (0))/a,]. (2-11a)

The radius RV(B) is assumed to be given by:

2

1/3 1/3 (B
R (0) =, [A,  +a; {1+ ;,[Bg'YA'O(e) ]}] (2.11b)

with the nuclear mass deformation parameters B?, [17]. The last term in
the summation maintains volume to this order in tﬁe deformation para-
meters. A similar expression holds for e The Coulomb coupling potential
is expressed up to the second order in the deformation. The radial depen-

dence has the form:

A - A
2 () Q-2 (5) <R (2.12a)
3Z2 Z.e R R [
Ary = BTTZ 15C(1) c + Bc(2) c 1,
cpl (IMLIR (8 R_ A+ R M+
c = (A+2)[;¢J DR, (2-12b)
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(1) (2)

where the parameters Bi and BS describe the charge deformation in
the first and second orders, respectively.
To obtain solutions for Wi:(r), two boundary conditions have to be

fulfilled. At the origin wi;(r) should vanish:

1n vy Fokod(ry = o, (2:132)
r*0
whilst, for large distances, wi;(r) must represent an ingoing partial
wave in the entrance channel plus outgoling partial waves in all the

relevant exit channels. The precise asymptotic form defines the

scattering matrix elements SJ1T :
8 19148
1/2
JT(Iyhg) ~ & 8 - . 1 Jm +on .
Yie RS R AT L MU g TR W ARHE

(2.13b)

The ingoing and outgoing Coulomb waves H; and HI, respectively, in terms
v of thf well~known regular and irregular Coulomb wave functions FE and Gl’
are H; = (GliiFl)' The indices IO,EO correspond to an ingoing wave in the
entrance channel for I =I5 and £ = 4.

The set of coupled equations (2.1) has to be solved for each J value
in a full range of J values. From the scattering matrix elements
obtained for these J values, the cross section for the ground state and
each excited state, as well as other observable quantities, can be

calculated [1].

3. ITERATIVE PIECEWISE ANALYTICAL SOLUTION METHOD
The Schrddinger equation (2.1) can be rewritten in the form:
[d2 2

N
S + kK, ~ U, ()] ¥ () = ¥ U (£) v (), i=1,2,...,N (3.1)
er i ii i 41 ij j

and the boundary condition (2.13b) as:

L |
k - k +
Vi) 3w Sy By ['k_i] Sk Byt (3.2
The superscript and subscript k refer to the entrance channel.

Considering some interval of the integration range with its midpoint

at a radius r and. introducing a reference potential Urf(r) for that
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interval, equation (3.1) becomes:

d2 2 rf ¥

[+ Kk - U (D] v, (x) = I W, () p(r), 1=1,2,....,N (3.3)
p) i i1 i . ij i

dr j=1

where the right—-hand side contains the difference between the true poten-

tial and the reference potential [1]. Replacing the right-hand side of

equation (3.3) by zero, several forms of the reference potential and the

corresponding solutions can be considered. The form that will be used in

practice depends upon the location of the integration range:

3.1 Constant reference potential [2,11J

rf -
Uii(r) = Uii’ (3.4)
where ﬁii is introduced as the average value of the potential over the
interval. For ki > ﬁii the reference solutions Ai(r) and Bi(r) are

goniometric functions:

A(r) = sin[Yi(r-;)J (3.5a)
B,(r) = cos[y,(r-1)], (3-5b)
_ 2 " 1/2 2 -
with Yi— (ki - Uii) and for ki < Uii the solutions are
A (r) = sinh[Gi(r—;)] (3.6a)
B,(r) = cosh[6 (r-r)], (3.6b)

2. 1/2
)

in which 6i= (Uii - k

3.2 Linear reference potential [ZJ

dUav(r)

rf = -
Upg (o) =0y + (eon) —— g > 3-7

where again Eii is the average potential over that interval. It should
be noted that, for the first derivative, an average value for the

components of the first derivative has been taken. This has to do with
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the analytical evaluation of integrals (3.23a) later in this paper[l].

The reference solutions are the Airy functions Ai and Bi:
A(r) = Ai[a(81+r)] (3.8a)

B, (r) = Bi[a(Bi+r)], (3.8b)

with the comnstants
1/3 -

U, -k
T -
- B - - - 3'9
:=r:] and By au, (o)/ar| = (3:9)

. = dUav(r)
dr

3.3 Coulomb refereance potential

m ok, R, (%,41)
7 DS S SRS g |
U () = ——+ - (3.10)

with the Sommerfeld parameter n, and wave number k,6. The reference so~

. i i
lutioas are the regular and irregular Coulomb wave functions FE and GE:
Ai(r) = Fli(ni;kir) (3.11a)
B,(r) =G, (n 5k x). (3-11b)

i

When n = 0, the reference solutions reduce to the spherical Bessel and

Neumann functions which were used by Sams and Kouri [18].

3.4 Integral representation of the coupled radial differential equations
If the right-hand side of equation (3.3) 1s replaced by zero, each of

the resulting decoupled equations will have two linearly independent

solutions:

1. The regular solution Gi(r), which vanishes at the origin and is

asymptotically defined as:

i

- 0
G, (r) 7, [ (n5k,1) = s, HI(ni;kir)]. (3.12a)

r e
+
2. The irregular outgoing wave solution Gi(r), which is defined by the

asymptotic form:
+ 1 +
Gi(r) 3@ ,_VEE Hi(ni,kir). (3.12b)
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Owing to the the special form of the left-hand side of equation (3.3),
the solutions (3.12) can be expressed in terms of the linearly indepen-~
dent reference solutions Ai(r) and Bi(r) that belong to a specific form
of the reference potential U;f(r):

Gi(r) = Ai(r)ai + Bi(r)bi (3.133)
and

Gz(r) = Ai(r)aI + Bi(r)bz. (3.13b)

The constant coefficients ai,
4

of continuity at the interval boundaries.

b, and at, ot

i are determined by conditions

Subsequently, the Green's function which belongs to equation (3.3) cam
be constructed; it is regular at the origin and has asymptotically an

outgoing wave form:
G, (r,r') = =G,(r,) G (r,) (3.14)
ire? 1y </ TNy ¢

where r, and r, are the smaller and the larger values of r and r', res-—
pectively. With an ingoing wave in the entrance channel k, the set of
coupled differential equation {3.3) can be rewritten as an eguivalent set

of N coupled integral equations:

- N
K 2
RONE L] 610" 121 iy Vi ar]

+ [ Ir v ¥ [ k [ ]
G, (r) ! G, (r") jgl Wij(r ) ¢j(r y dr'], (3-15a)

i

+ + _
Gi(r) ci(r) - Gi(r) ci(r)- (3.15b)

The boundary conditions are:

2 ,
() =768, (3.16a)
51(0) = 0. (3.16b)

In practice, however, instead of (3.16b) the approximate'but numerically
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adequate physical boundary condition:
+
ci(rg) =0 {(3.16¢)

is used for a relatively small rj, in order to prevent the set of inte~
gral equations becoming singular.
The asymptotic value of the outgolng coefficients cI(r) are related to

the S-matrix elements:
c;(m) =5, -8, 6, . (3.17)

The set of coupled integral equations (3.15) can be solved by itera-
tion. We have concentrated our investigation on the behaviour of the
coefficients ¢ (r) and c (r), instead of the wave function itself. They
may be con51dered as the amplitudes of the functions G (r) and G (r),
respectively. Two 1iteration methods, the inward—outward and the

sequential method have been investigated.

3.4.1 Inward-outward iteration method
In the inward-outward iteration method, the following set of coupled

+
integral equations for the amplitudes ci(r) and ci(r) was considered:

e (r) = %- - j S ED) Jél Wig(r') Gy(x") e (x") dr’
® 4 N + +
+ G (") ¥ Wij(r') G (r') c.(r') dr' , (3.18a)
T 3=1 3 J
+ r N
e (r) = é G, (x") j£1 wij(r ) Gj(r ) cj(r ) dr

f Gy (") 2 W, (r )6 (r‘) cj(r') dr' , (3.18b)
=1

for 1 = 1,2,...,N. This method was proposed by Alder, Roesel and Morf [3]
and Ichimura et al-[é]. They used a differential form of these equations.
For solving these equations iteratively, a start should be made at
infinity, where the cj(r) values are known, due to the boundary condition

+

+
(3.16a), although the cj(r) are not. However, the product GIwijG'
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osclllates rapldly over the classically allowed region of the integration
range and tends to nullify the contribution of the term with c;(r). This
will be apparent from Fig. 1. It ié, therefore, justifiable to make the
value of the coefficlents cg(r) equal to zero in (3.18a) as a first
estimate. Then, the first approximation of ci(r) can be generated by an
inward integration of (3.18a). The values of ci(r) obtained, together
with the initial condition (3.16c), can be used for an outward integra-
tion of (3.18b), where the term with cj(r) is now considered as a known
inhomogeneous function. This outward integration gives a first approxi-
mation of cI(r) with a value at infinity, which corresponds to the first
approximation of the S—matrix elements according to (3.17). The iteration
procedure continues as a second inward integration of (3.18a) using the
calculated values of cI(r) as known inhomogeneous functions and so forth,
until convergence is obtained for cI(m).

For later reference, it should be noted that, in solving the set of
integral equations (3.18a) for the vector c(r), the coupling between its
components ci(r) is retained during each step of the iteration procedure,
along with the coupling implied by the “inhomogeneous” part containing
the vector c+(r)- The same holds mutatis mutandis for the components of

+
the vector c (r).

3.4.2 Sequential iteration method
Alternatively, the set of coupled integral equations for the

amplitudes ci(r) and cI(r) can be written as:

- 2 t + 1] N 1 t 1] + 1] + 1 A
e (r) =3 8, + é 6 (r )jzl Wij(r ) [Gj(r )cj(r )—Gj(r )cj(r ) Jar

o N
+ L] 1 1] I_+ V+ 1] 1
- 6 (r )jél LAPIC) [Gj(r Je(r)=6 3 (xe(r ) Jar*,

o

(3.19a)

efry = fr G, (c") ? W, (" [6.(che. (x)~cTe)et(rr) Jar.
1 o 1L iy 37 ey (r =6 5(r e

(3.19b)

In the sequential iteration method, which was proposed by Raynal [5,6],
the coupling potential W is considered to be a perturbatibn.
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To illustrate the iteration procedure, the results for the n-th step of

the iteration for k = 1 are written as:

r -]
My =25 4 ! i) 2y art - ! ¢taen 2™y ar
(3.20a)
r
et ™ ey - [ 6" xi“)(r') ', (3.20b)
o
where

(n) _ (n-1)_+ +a-1) |, (0)_g* )
X0 =g (6 e TGl ]+ jZZ Wi.[GJ PREIL ]
(@-1)_+ #(o-1)] g o
i Jzi Wiglegey oy Tl G

§

for i = 2,3,...,N and

(n) _ (n-l) + +(n 1)
xin w11[ 6ye 1+ 112 Yy

[¢,eM-c" +(“)] (3.21b)

134733

for i = 1.
The calculation of Eqs. (3.20) starts with i = 2, using (3.21a) under
the initial conditions

2

(0)(0) -2 +(0)

PRI IR (3.22)

This component must be integrated to infinity, due to the third term in
(3.20a), before the calculation can be continued for i = 3. The iteratiomn
step ends with the integration of the first component using (3.21b).
Note, also for later reference, that in solving the set of integral
equations (3.19) according to an iteration procedure illustrated by
(3.20), in fact, a set of coupled equations 1is replaced by a set of
uncoupled inhomogeneous equations with driving terms specified by the
known functions {3.21). The basic idea behind this iteration method is
solving the N inhomogeneous equations (3.2Q0) in some definite sequential
(“)(r) —G;(r)cf(n)(r)] is immedia~
tely inserted in the inhomogeneous term of the subssguent equations, as

given by the second term in (3.21a) and (3.21b).

order; each improved solution [G (r)e
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3.4.3 Radial integrals

To solve equatioms (3.18) and (3.19), we make use of the relatively
slow variation of the amplitudes ci(r) and c;(r) with respect to the
rapid oscillations of the functions Gi(r) and G:(r) in the classically
allowed region. The r—dependence of the amplitudes is weak, as long as
the difference between the true potential and the reference potential 1is
small. Thus, a cholce of step size has to be made so that small varia-
tions of ci(r) and cI(r) over an interval can be neglected.

Supposing that the true potential has been expanded in a Taylor serles
around r = r and assuming that, in the first iteration step, we have al-
ready integrated (3.18a), for instance, from the right up to rr and using
the value of Ci(rr)' this equation ylelds a first—order contribution to

Ci(rl) at the "left—hand” boundary r provided integrals of the form

ﬂ'l

r

T
[ G, (r) (r-t)" Gj(r) dr  (3.23a)
T

3

are determined with m = 0,1,2. Expressing Gi(r), as well as GI(r), in
the reference solutions of the constant or linear reference potentials,
integrals will be obtained which can be evaluated analytically. If Airy
functions are used for this purpose, then, an average value for the first
derivatives has to be introduced.

In the case of a Coulomb reference potential, integrals of the form

r

r
[ e D) 6,(r) dr (3.23b)
T

2

are obtalned for A = 2,3,4,.. . Expressing Gi(r), as well as G:(r), in
the regular and irregular Coulomb wave functions as the corresponding
reference solutions, these integrals can be effectively evaluated by

making use of recursion relations [12].

4. RESULTS AND DISCUSSION
In this section, we present the results related to the amplitudes

+
c(r), c¢ (r) and the S-matrix elements for the multiple Coulomb~nuclear

238 84

excitation of U by 718 MeV Kr. In this case with n = 178.3 and

k = 39.7 fm-l, the rotatiomal model has been considered for the target
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nucleus with a spin sequence according to the ground-state rtotational

band up to I" = 247 (v =
chosen as:
V = 50.0 MeV, W = 32.0 MeV,
L 1.129 fm, r, = 1.211 fm,
a =1.10 fm, a = 0.43 fm,
v W

169). The optical potential parameters were

L 1.400 fm, (4.1)

corresponding to the optical potential parameters for elastic scattering

84

of Kr from 208Pb [

19, because the parameters for

238U were not known

at the time that the calculations were made.

N
The nuclear mass and charge deformation parameters BX and 8

c(1l)
A

appearing, respectively, in (2.11) and (2.12) are:

N
2

N
4

B = 0.2370, 8 0.0,

c(l) _ c(l) _
By = 0.2121, 8,07 = o0.0.

(4.2)

Figure 1 shows the behaviour of the real parts of the amplitudes c(r)

L— P — T T T | —

Blyrs 238y E\ p=718MeV

0.6k ;
ReCigylr) !
04
/[ [Re Csegle)
o2l,” /[ 105

bt ! lx * L 1 L ! L
T 1 T T i H T AT l
L
K4
0101 1570, 1350 ”F;:E' "
wh, [ = se
Ted, [ =350 7 o
0.05-
0 1
12

Fig. 1. This figure shows tne reai

parts of the amplitudes c(r) and
+

¢ (r) calculated in the inward-

as well as in the

The dashed

outward method,
sequential method.
curves 1ndicate the €irst inward-

outward iteration step, the dashed~

dot curves the first sequential
step, whereas the full curves
result from the final iteration

step for both methods. The inner

and outermost c¢lassical turning

points are 1andicated by vertical
arrows. This figure shows the very
rapld convergence of the inward-
iteration wmethod

outward when

compared to the sequential one.
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and c+(r) calculated in the inward-outward method, as well as in the
sequential method as a function of r for the set of quantum numbers
Ig = 0, I =4, &5 = £ = 350. The orbital angular momentum corresponds to
a near—grazing partial wave. The dashed curves indicate the results of
the first inward—-outward iteration step, the dashed-dot curves the first
5equential one, whereas the full curves result from the final iteration
step for both schemes. The inner and outermost classical turning points
are indicated by vertical arrows. This figure shows the very rapid
convergence of thé inward-outward iteration scheme when compared to the
sequential one. It 1s seen that the curves of the first inward-outward
step nearly coincide with the curves of the final step. It takes only a
few iteratiom steps to obtain convergence. However, the difference
between the first and final sequential iteration steps is much larger; a
lot more iteration steps are needed to obtaln convergence.

We note that in the inward-outward scheme the influence of c+(r),
obtained in an outward integration, on c(r) during the next inward inte-
gration over the classically allowed region is rather weak. Only in the
region around the classical turning points of the decoupled set of equa-
tions is the difference between the first and finmal 1iteration steps
visible in the figure. It can be seen that the amplitudes have an
osclllating behaviour over a limited part of the 1integration range
outside the turning points. The step sizes must be chosen with care [20],
since they have to be such that small varlations of c(r) and c+(r) over
an interval can be neglected. This means that the step sizes 1n this
region which includes the range of the optical potential for most of the
orbital angular momenta, have to be made rather small. Here, the use of a
constant reference potential 1s the most effective one; the calculations
can be carried out about 9 times faster when compared to the use of a
linear referemce potential.

The tendency of c(r) and c+(r) to oscillate just outside the turning
points 1s a general feature of these amplitudes. As a consequence,
especlally for light-ion scattering problems, it seems to be wmore
effective to generate the solutions Gi(r) and Gt(r), in this part of the
integration range, directly with a multistep integration method using a
fixed step length l21J. The integrals appearing in (3.18) and (3.19) are
then determined numerically according to commonly used methods. In this
way, some calculations for the reaction 208Pb(u,a')2081?b(3_, 2.6146 MeV)
Elab = 21.0 MeV have been made. ‘
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Thus, looking at the figure, the general behaviour of the amplitudes may
be summarized as follows: they behave monotonically inside the innermost
turning point and tend to oscillate outside it before approaching
constant values in the asymptotic region. This behaviour determined our
strategy for choosing the step sizes: they were chosen such that a
constant reference potential could be used up to just a few fm outside
the outermost turning point (including the optical potential), a linear
reference potential for the region of strong Coulomb coupling interaction
(= 50fm), and a Coulomb reference potential for the last part of the
integration range (up to = 1000 fm or more).

In Table 1, the convergence properties of the modulus of the S-matrix
200 350

4,20030,200 22 54 350;0,350
excitation are shown as a function of an iteration number n for the

elements S for the multiple Coulomb—nuclear
inward-outward method, as well as for the sequential iteration method.
The numbers in parentheses at the top of the columns (or alongside)
denote the powers of 10 by which the underlying numbers have to be multi-
plied. Table 2 shows the same, but now the multiple excitation 1s caused
by the Coulomb interaction only. In order to accelerate the convergence,
use can be made of Padé approximants. It seems that sequences of the Padé
approximants for the S-matrix elements accelerate the convergence of the
original sequence when it converges, and continue to converge under many
circumstances in which the original sequence diverges [5,8]. The tables
contain also the results of calculations which take these approximants
into account.

Table 1 shows that the four original sequences (without Padé accelera-
tion) converge; the inward-outward sequences much faster than the
sequential ones. This is even so when compared to the sequential sequen-—
ces with Padé acceleration. It is seen that the inward-outward method
requires only a few iterations to converge for the selected partial waves
and does not need Padé acceleration at all. )

Table 2 contains the 1iteration sequences of physically hypothetical
(Coulomb excitation only) but numerically interesting S-matrix elements.
It shows that the sequential method diverges completely. Even with the
aid of Padé approximants they do not converge to the right values. Also
in this case, the inward-outward method needs only a few iterations for a
J-value equal to 350. However, for lower J-values the rate of conver-
gence becomes less. The evaluation of the Padé approximants can accele-

rate the convergence in these cases. This 1s illustrated in the table for
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TABLE 1

Convergence properties of the modulus of two S-matrix elements for the

multiple Coulomb—nuclear excitation of 238U by 718 MeV 84Kr are shown as

a function of an iteration number n for the inward-outward, as well as

-

for the sequential itefation method.

a) lSJ = 200 l b) lSJ = 350 I
4,200;0,200 4,350;0,350
n Inward—ouéward Sequential Inward~outward Sequential
+Padé +Padé +Padé +Padé
(~04) (=04)} (-04) (-04) (00) (00) (00) (00)
1 0.8809 13.604 0.2522 2.9526
2 0.8788 48.973 0.2630 6.2808
3 0.8788 0.8788] 55.332 10.440|| 0.2629 0.2629| 5.6258 1.2146
4 34,512 4.4B40]| 0.2628 0.2628] 3.8127 0.5459
5 13.642 1.4770|| 0.2628 0.2628] 1.7690 0.1608
6 3.0750 0.6801 ‘ 0.7991 0.2378
7 1.6980 0.8564 0.4452 0.2662
8 0.7055 0.8416 0.2320 0.2633
9 0.8625 0.8502{| 0.2970 0.2624
10 0.8498 0.8496 0.2446 0.2625
11 0.8492 0.8495 0.2721 0.2626
12 0.8495 0.8495 0.2582 0.2626
13 0.8495 0.2643
14 ' 0.2619
15 0.2628
16 0.2625
17 0.2626
18 0.2626

J = 200, It seems that for much lower J~values the inward-outward itera-
tion method diverges too, even with the aid of Padé approximants (J§100,
see also Fig. 2).

In conclusion, these numerical studies show as a general feature of
both iteration methods that the more important the left-hand side of
equation (3.3) is relative to its right-hand side, the higher the rate of
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TABLE 2
The same as tahle 1, but now the multiple excitation 1s caused by the

Coulomb interaction only.

a) ISJ = 200 l b) ISJ = 350 I
4,200;0,200 4,350;0,350
n Inward-outward Sequential Inward-outward Sequential
+Padé +Padé +Padé +Padé
(00) (00) (o1) (00) (00) (00) (00)
1 | 0.6028 .24(2) 0.2376 8.1810
2 | 0.0560 .38(3) 0.2451 31.075
3 | 0.2441 0.1858] .23(4) 3.0083|| 0.2431 0.2430| 48.045 4.9820
4 | 0.1980 0.1992] .77¢4) 0.4792|| 0.2434 0.2433] 47.268 1.6410
5 | 0.1975 o0.1987] .19¢5) 1.1744]| 0.2434 0.2434] 34.329 0.8351
6 | 0.1966 0.1989] .46(5) 1.1744]| - 21.303 0.0600
7 | 0.2027 0.1992] .13¢6) 1.1744 13.342 0.3064
8 | 0.1980 0.1992] .38(6) 0.8344 8.7680 0.2646
9 | 0.1983 .10¢7) 1.8518 : 6.9470 0.2181
10 | 0.2000 .26(7) 1.2877 . 4.9176 0.2379
11 | 0.199% .67(7) 0.0608 4.0631 0.2370
12 | 0.1989 .17(8) 0.1516 2.5842 0.2377
13 | 0.1994 .45(8) 0.1516 2.0063 0.2377
14 | 0.1992 .11(9) 1.3799
15 | 0.1992 .28(9) 0.8721
16 L71(9) | 0.8730
17 .2(10) 0.2809
18 .5(10) 0.5803

convergence will be. This rate 1s much higher for the inward-outward
iteration method compared to the sequgntial one, because in solving the
set of coupled integral equations (3.18) for the amplitudes, the coupling
between their components is still retained during the iteration proce-
dure, as opposed to solving the set of coupled integral equations (3.19)
which is replaced by a set of “"uncoupled inhomogeneous"” equations. The
latter are solved considering the Inhomogeneous terms as perturbations.

The sequential iteration wmethod solves the equations in a certain
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sequential order, instead of in a straightforward way equivalent to the
Born-Neumann series.

Finally, in Fig. 2, the S—matrix elements § are plotted in

i,E=J;0,J£0=J
the complex plane as a function of J. The solid cuznves indicate the
resuelts for the Coulomb—nuclear excitation. The S-matrix elements were
calculated for the sequence: J = 88,216(16); 224,264(8); 268,296(4);
298,368(2); 372,400(4); 408,472(8); 488,552(16); 584,712(32) and partly
given in the figure. The dashed curves indicate the results for a pure
Coulomb interaction. These S-matrix elements were calculated for the
sequence: J = 88,344(4); 352,472(8); 488,552(16); 584,712(32);
776,1992(64). The values in parentheses indicate J steps. In practice,

however, it seems to be necessary to calculate the S-matrix elements only

T T I I T T

03 Bh+ 238y, =TIBMeV

-02- _ 1 i

u z | ; P |
- 03 -02 -01 0 0.1 0.2 0.3
Re

J .
Fig. 2. The S-matrix elements SA,!,=J;0,9,0=J are plotted in the complex

plane as a function of J. The solid curves indicate the results for the
Coulomb—nuclear excitation, while the dashed curves do the same for a
pure Coulomb interaction. The figure shows clearly that the influence of

the nuclear interaction is felt up to rather high J values.

- 113 ~



22 L.D. Tolsma

for a more limited number of appropriately spaced J values. The values of
the missing S—-matrix elements are obtained by interpolation. The figure
shows clearly that the influence of the nuclear interaction is felt up to
rather high J values (® 648). Since the number of target states which are
coupled is reduced at high J values, the full set of coupled differential
equations is calculated only up to a J value equal to about 472. For

higher J values the dimension of the set can be gradually decreased.

5. COULOMB-NUCLEAR EXCITATION PROBABILITIES OF 40Ar+238U and 84Kr+238U

In this section the quantum—mechanical excitation probabilities [1],
calculated in the center—-of-mass system, are presented for the multiple
Coulomb-nuclear excitation of 238U induced by 40Ar and 84Kr up to high
spin states of the ground-state rotational band (GSB). Also, the proba-—
bilities will be presented when pure Coulomb excitation is considered.

In Fig. 3, the probabilities for 286 MeV 40Ar are plotted as a
function of the scattering angle © for the GSB-states up to the one with
ITr = l4+. The optical potential parameters are: V = 73.0 MeV, W = 80.3
MeV, r,=r, = 1.131 fm, r = 1.4 fm, and a, =a = 0.624 fm.NThe solid
curves show the probabilities for Coulomb—nuclear excitation (82 = 0.237,

8Y - 0.067, sg(l) = 0.2121, 32(1) = 0.0667). The dashed curves represent

tﬁe result expected for pure Coulomb excitation. The figure shows t%at at
scattering angles smaller than the grazing angle @gr of about 52 , the
probabilities are completely determined by multiple Coulomb excitation.
At this angle, the interference between the Coulomb and nuclear inter-
actions begins to set in and corresponds to an orbital angular momentum
zgf = 200, given by the classical orbit relation £ = ncot(96/2).
Furthermore, at angles © < Ogr’ which correspond to orbits much larger
than lgr’ the angular distribution for elastic scattering deviates consi-
derably from the typical Fresnel shape by falling below the Rutherford
cross section. The quarter-point angle, i.e., the scattering angle where
the sumﬁgd probabilities for all fingl rotational states equals 1/4, is
about 70 and corresponds to an orbital angular momentum 21/4 = 138.
Similar calculations of the excitation probabilities have been
performed with the same above-mentioned optical potential parameters for
340 MeV 40Ar projectiles [lSJ. Comparing the probabilities, given in this
paper, with ours, it seems thét the extrema in the O+; 2+ and 4+ probabi-

lity functions, occuring at smaller angles of course, have the same value
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R Fig. 3. The quantum—mechanical

excitation probabilities PI are

~
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i L the result expected for pure
o | Coulomb excitation.
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0.01

0.001

in magnitude as our calculated values. However, the maxima of the 6+ and
8+ functions are about a factor of 1.8 and 4 smaller, respectively. Thus,
the excitation probabilities for thé high-lying members of the GSB in
238U are larger for 286 MeV than for 340 MeV 4OAr projectiles. This means
that the interference between the Coulomb and nuclear interactions for
high spin states probably can be investigated, at energies near the
Coulomb barrier, most favourably.

The figure shows also the elastic scattering experimental data [22].
It is remarkable how they disagree with the elastic 0+ curve, while on
the contrary the agreement with the curve of summed probabilities is
worth mentioninpg. Apparently, the measurements do not represent elastic
data only, but also quasi—elastic data from the low-lying members of the
GSB. A precise measurement of the elastic scattering angular distribution
of 90 MeV 18O on 184W has given indications for this [23].

In Figs. 4a and 4b, the excitation probabilities for 718 MeV 84Kr are
displayed for the GSB-states up to 1 = l6+. The optical potential and
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deformation parameters are given by (4.1) and (4.2), respectively. It is
seen in these figures, that for scattering angles smaller than the
grazing angle of about 370 the probabilities are completely determined
by multiple Coulomb excitation. Coulomb—~nuclear interference starts to
set in at this an%le which corresponds to Egr = 532. The quarter—point
angle is about 55 corresponding to 11/4 » 342. Large interference
effects are seen in this case.

Relating to the behaviour of the probability functious in the Figs. 3
and 4 at near—grazing scattering angles where the Coulomb—nuclear intex-
ference sets in, it can be noted that:

For most of the probability functions the initial Coulomb-nuclear

interference 1is constructive (destructive) 1f the pure Coulomb

excitation probability function for iuncreasing scattering angles is

approaching a minimum (maximum)-.
It is remarkable that this behaviour satisfies a general rule previously
formulated for the behaviour of the excitation probability as a fumction
of the projectile energy near the Coulomb barrier for backward scattering
from a deformed rotor [24] and based upon a semiclassical model [17]. In
this model, it is assumed that the nuclear interaction can be approxi-
mated by a smooth complex potential which is largely real in the surface
region.

These calculations show clearly that the excitation probabilities of
excited states at scattering angles in the Coulomb-nuclear interference
reglon can serve as sensitive probes to study peripheral processes at the
deformed nuclear surface. This can be done very effectively with the
method described in this paper [25]. When the S-matfix elements are
calculated once for a full range of appropriately spaced J values, only
those S—matrix elements with a J value corresponding to an orbital
angular momentum between 11/4 - A11/4 and Lgr’ have to be recaculated
with a new value of the parameter set in order to fit the experimental
data at scattering angles in the interference region. The value of All/h
can be chosen relatively small. The larger the absorption in the reaction
at smaller than "quarter-point” distances, the smaller this value can be
taken. Thus, in practice only a restricted number of J values is needed,

4
as can be seen in figure 2 for 8 Kr + 238U.
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Fig. 4. (a)The quantﬁm—mechanical excitation probabilities PI are plott.ed
against the scattering angle ecm for the low-lying GSB target states. The
sulid curves show the Coulomb-nuclear probabilities. The parameter set is
given in the text. The dashed curves show the result expected for pure
Coulomb excitation. Large interfergnce effects are seen. (b) The same as

{a), but now for the high~lying members of the GSB.

6. CONCLUSIONS AND FINAL REMARK

To describe quantum mechanically multiple Coulomb-nuclear excitation
in heavy—~ion reactions, the set of coupled differential equations of the
partial—wave radial solutions is rewritten in integral form. Decomposing
these solutions into two basis functions the corresponding amplitudes of
these functions satisfy a set of coupled integral equations. Expressing
the basis functioms in terms of appropriately chosen piecewise analytic
reference solutions, the integrals appearing in this set can be evaluated
analytically. The coupled set of amplitude equations is solved itera-
tively. The efficiency of two iteration methods, the inward-outward and

the sequentizl one, has been investigated for test cases dealing with
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4
multiple Coulomb and nuclear excitation of 238U by 286 MeV oAr and
84
718 MeV

Padé approximants to the S—matrix elements were also included in both of

Kr up to high spin states of the ground-state rotational band.

the iteration methods. It turns out that the inward-outward iteration

method converges much faster than the sequential one. In many cases, the

inward-outward method does not need Padé acceleration at all, while the
sequential method does. It even happens sometimes that convergent cases
in the inward-outward method diverge in the sequential method aided by

Padé approximants. This large difference in convergence may be explained

by noting that in the 1inward-outward method the coupling between the

amplitudes is retained during the iteration procedure, as opposed to the
sequential method where the set of coupled equations 1s replaced by a set
of "uncoupled 1nhomogeneous” equations. The latter are solved in a cer-
tain sequential order, treating the inhomogeneocus terms as perturbationms.

Our numerical studies of the excitation probabilities as a function of
the scattering angle for the aforementioned heavy-ion reactions show that
the probability functions of the members of the ground-state fotational
band, satisfy a general rule at near-grazing angles, pfeviously formu-
lated for the excitation probability as a function of the energy near the
Coulomb barrier for backward scattering from a deformed rotor.

Finally, we turn to a conclusiom drawn by M. Rhoades-Brown et al. [8]
in connection with the relative efficiency which they obtained for the
sequential wmethod plus Padé acceleration, compared to the method studied
by us previously [1]. Based on estimates of time requirements for a case
with 121 coupled equations (example 2 of Table I in Ref. [8]), which
calculation was not yet attempted by them, they came to the conclusion
that their approach should be some 200 times faster than the conventional
method, while our approach is some 30 times faster than the conventional
method. Related to this conclusion, the following should be noted:

1. The conventional method they used to compare their iteration results
with, is based upon the Numerov multistep integration method, whereas
the conventional method used im our comparison is based upon Gordon's
plecewise analytic reference solutions method [26]. One integration
step in this method includes many step sizes of a multistep 1lntegra-
tion method. In some circumstances, a considerable reduction éf
computation time (ZQ times for medium-weight ions and much more for
heavy ions) can be obtained compared to a conventional multistep

methaod.
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2. They present estimates of time requirements for the sequential, as
well as for the conventional multistep method. However, the number of
couplings per equation is taken 9 for the former, whereas for the
latter 121 couplings are taken into account. This secems incorrect: it
overestimates the conventional method with a factor of about 13.
Therefore, our conclusion is that the way imn which Rhoades-Brown et al.
estimate the relative efficiency and which favours thelr method compared
to ours, is disputabie. It shows that the comparison of efficiencies of
methods or approaches is a delicate question without running the corres-
ponding codes on the same computer under the same conditions such as the
required accuracy. We showed from practical test cases that our approach

ig very efficient [25].
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CHAPTER 7

RECURRENCE RELATIONS FOR COULOMB EXCLITATION ELECTRIC MULTIPOLE
RADIAL MATRIX ELEMENTS*
L.D. TOLSMA
Department of Physics, Eindhoven University of, Technology,
P.0.Box 513, Eindhoven, The Netherlands

PROGRAM SUMMARY
Title of the program; RECREM.
Program obtainable from: CPC Program Library, Queen's University of
Belfast, N. Ireland.
Programming language used: FORTRAN IV.
Operating system: MCP.
No. of lines in the combined program and test deck: 1390.
No. of bits in a word: 4B.
Keywords: atomic, nuclear, heavy ions, Coulomb excitation, inelastic

scattering, radial matrix element, recurrence relation.

Nature of the physical problem

The radial SchrBdinger equation which has to be solved for the quantum
mechanical description of inelastic collisions between charged particles
can be rewritten as an equivalent set of coupled integral equations. The
partial wave radial function is written as a linear combination of two
linearly independent basis functions with more or less slowly varying
amplitudes. For large r values of the integration region or for high £
values of the orbital angular momentum these amplitodes consist of
)
£,2

electrie multipole radial matrix elements, i.e., integrals I , over a
?

finite interval [RI’RZJ and with an integrand containing a product of the
Coulomb wave functious Xz(n,kr) and Yﬁ,(n’,k'r) and a form factor rol-l,
"where A » l. Such integrals have to be determined for one or more radial
intervals when solving the set of integral equations [1,2]. The calcula~-
tion of the excitation probabilities for analysing experimental data
needs the solution of the Schrddinger equation and,Athu:, the knowledge
of these integrals for a few hundred or even thousand partial waves,
especially, for heavy ion collisions.

Method of solution
\)

Radial matrix elements I2 ! of any multipolarity satisfy recurrence
1

This chapter has been accepted for publication in Computer Physics

Communications.
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relations. Diagonal (£'=%) and upper—diagonmal {L'=¢+l) matrix elements
are calculated using an upward recursion, starting with four initial
integrals. Each of these four initial values is obtained by a call to the
subprogram CLMINT [3]- Using the diagonal and upper—-diagonal matrix
elements in their turn as initial values, the remaining lower and upper—
diagonal matrix elements are calculated by a sildewards recursion with
%,%' values for which Il - &'| € A. The diagonal and upper-diagons’
matrix elements can also be calculated by solving a pentadiagonal & :stem
of linear equations obtained by combining and rearranging two recurrence
relations. Four boundary values of the radial matrix elem>iatg are
required: two for low & values and two for high £ values. Each of these

four boundary values 1s also obtained by a call to CLMINT.

Restrictions on the complexity of the problem

If che recurrencevrelations of the radial matrix elements are used in
an upward or downward recursion, theﬁ they are susceptible to error
growth. This growth depends largely on the ratio of k and k'. The more
this ratio differs from unity, the more the recurrence.relations will
lose their accuracy due to the cancellation of terms. This loss of
accuracy is not encountered when two recurrence relations are combined
and rearranged into a pentadiagonal system of linear equations which can

be solved by standard methods.

Typical running time

The running time 1s mainly determined by the computétion time for the
initial or boundary radial matrix elements required by CLMINT, 1i.e., it
depends on whether the radial matrix elements are calculated by an upward
recursion or by solving a system of linear equatioms. The output of the
test runs gives the processor time of both alternatives. The computation
time for the initial or boundary radial matrix elements depends largely
on the parameters and the lower limit Rl [3]. These integrals are
generated efficiently by CLMINT for parameters‘encountered in heavy ion

scattering processes.
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LONG WRITE~UP
1. INTRODUCTION

Inelastic scattering of charged particles from atoms and nuclei is an
important tool for studying the properties of excited states. In general,
the quantum~mechanical description of inelastic scattering processes with
multiple excitation requires the numerical solution of the radial
Schrddinger equation, 1i.e., a set of coupled linear second-order
differential equations. This set can be rewritten as an equivalent set of
coupled integral equations [1—6]. In this integral formalism, the partial
wave radial function is writtem as a linear combination of two basis
functions with coefficients or amplitudes containing the integrals. Both
linearly independent basis functions are the solutions of the decoupled
Schrtdinger equation that can be solved for some form of the potential
[5,8,9]. These basis functions oscillate within the classically allowed
region of the integration range which, in general, occurs rapidly depen-
ding on the energy of the incoming particle. On the contrary, the ampli-
tudes, satisfying a set of coupled integral equations, vary more or less
slowly in this region.

Both electromagnetic and nuclear interactions play important roles in
the study of the inelastic scattering of light and heavy ions from nuclei
with projectile energies comparable to the Coulomb barrier. However, the
range of the electromagnetic interaction, especially for low multipola-
rities, is much longer tham the range of the nuclear interaction. There-
fore, the form of the potential for large r values corresponds to the
Coulomb interaction only and the basis functions can be written here in
terms of the Coulomb wave functions. This helds for high £ values of the
orbital angular momentum too. Under these circumstances, solution of the
set of coupled integral equations on an interval [Rl’ RZ] requires the

determination of integrals of the form

R
A 2
Ig,l)l,' = R,{ xz(“skr) Yy(ﬂ',k'f) :%IF'T * ) (1.1)

1

where Xg(n,kr) and YE,(n',k'r) denote the regular and/or irregular
Coulomb wave functions and A corresponds to the electric multipole
moment. Thus, there are four possible combinations. The orbital angular
momenta £ and L' refer to the entrance and exit channels, respectively. A

similar convention applies to the asymptotic wave number of the relative
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motion k and to the Sommerfeld parameter n. The vector addition rule
imposes the condition that |£ - l'l € A. The integrals (l.l) are called
the electric ZA—pole radial matrix elements or Coulomb integrals. Such
integrals have to be determined for one or more radial intervals when
solving the set of integral equations. They play a role in DWBA
calculations too. Then Xl(n,kr) and YZ,(n',k'r) correspond to the regular
Coulomb wave functions and the interval boundaries are: R1 =0, R2 = o,

In order to take all the strength of the electromagnetic interaction
into account, the following requirements should be fulfilled:

1. In the case of multiple excitations, in general, many channels should
be considered.

2. The integration of the set of coupled equations should be carried out
for long distances.

3. Many partial waves should be included when calculating the scattering
amplitudes.

The heavier the charged particles in the scattering process, the larger

will be the set of coupled equations, the longer will be the integration

distances and the larger will be the number of partial waves. Requirement

(1) can be wmet by using 1iteration procedures for solving the set of

coupled integral equations [2"7]- Requirement (2) can be fulfilled since,

without guch effort, integrals {(l.l1) with large béundary values Rl and R2

for large intervals can be determined [10-13]. The problem of the large

number of partial waves can be overcome by using recurrence relations

that the integrals (l.l) satisfy [1#-16].

A primary aim of this paper is to provide a program that calculates
the radial matrix elements for any multipolarity by means of recurrence
relations in a numerically stable and reliable manner. The recurrence
relations used are presented in section 2. They need initial values of
the integrals which in our case are obtained by a call to the subprogram
CLMINT [13]. This subprogram efficiently generates integrals (1.1) for k
and n values that are commonly encouatered in heavy iom scattering
problems. It must be stressed that the initial values obtained by another
method can be used too [16]. In section 3, special attention is paid to
the numerical stability of the recurrence relations, since they are
susceptible to error growth due to the finite representation of numbers
in the computer {rounding errors). It seems that this stability is
largely dependent on the ratio of the wave numbers k and k' in (1.1).

The more this ratio deviates from unity, the more unstable are the
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relations. Section 4 describes a method for couwputing the integrals in
cases in which the ratio of k and k' differs substantially from unity.

Thic method is based upon the solution of a set of linear equations.

2, RECURRENCE RELATIONS FOR THE RADIAL MATRIX ELEMENTS

Using the recurrence relations for the Coulomb wave functions given by
Eqs. (14.2.1 ~ 14.2.3) of Ref. [17] and partial integration of (l.l),
many recurrence relations for the radial matrix elements can be derived
[10,11,16], among which three, four and five~term relationships. We start
with the following five-term one:

(2+27-1) 2 2412 1 ' 24 rz*j M)

D2 [22]7 [ 2R L

A}
.ot (g2 21% (21 (4m0) (V)
n' (D 2[0Z2]E {7 - agmry) Tt e

(#+1)2 (28+1) n (2441) n']} I(A)

v . :
fn* (g (1) =22 b yrggmry) + ' D2 (Gragmys

- 2,8
(2+1) (28+1) 1 1018 (R(&HL) )
Gy (DI (e - R ) 1y
(RFLH2+2) (4+1) 21% , 21% (V)
* S (TR [(a+1)Z4n2]? [(2'+1) 240" 2] Losl, 2t41
_'(at1)? 5 () 28 (8+1)2(24+1 carh (A
= (k ) [22#n2] Jz-—l,z' -5 Ez‘+i)(21'+i) [(&'+1) %' 2] J!(L,J)L'+1’
(2.1)
where the J's in the inhomogeneous terms are given by:
X, (n,kr) Y y(n’.k'l‘) R
s LR - Z, (2.2)

2,2 T
r R

1

Using (2.1) with &' = &, gives rise to a recurrence relation between

five integrals of the form:

- 2
B B ezen 2 1) )+ s fezm?]* 1)

L]
- {nn'(2?+(z+1)2]+22(l+1)2(%.+ II_"-)} Iit‘i - n(x+1)£[(z+1)2+n‘2]%18‘i+1

20+2+2) 22 . A
+ SR oz Mo ) 1)

2 2 .
= _E'__,_”'(“l) [22n2]® Jiﬁi,l - __k_l CH) [(gr1)2en2)® Ji"iﬂ . (2.3a)
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By symmetry, £ can be interchanged with &', n with n' and k with k' in
(2.1) to yield a recurrence relation which is used with 2' = g+1. Multi-
plying the relationship obtaimed by (22+1)/(2(%+2)2) to give a recurrence

relation of the form:

(21:1-A)[£2+n2]5[(2+l)2+n‘2]% Iiii,z + n(lzliiil+1)[(l+l)z+n‘2]¥ Ii?i

= {ann"+(o4) (1), +(2 z+3)%') Ig,):i-\\-].

n"(A-1)(22+3) 5 (W)
- "(FT)‘(WT‘[(ZH)Z"'”Z] Lol h

+ (:”,+3+)\)[(JL_‘_1)z_,_nz]Li[(11,+2)2+n-2]'Aj Iiii,g+2

(24+1) ¥ (0 L @2u3) 5 (0

= 1)2+n*2 - +1) 24n2 . .
e ATl B B P A i b B P (2.3b)
The integrals in the recurrence relations (2.3a) and (2.3b) are repre~
sented pictorially by the dots (®) in the Figs. la and lb, respectively,
Starting with four initial values of the integrals, the diagonal (&'=%)

and upper-diagonal (L'=%+l) values are determined by upward recursion.

' 0 1 2 3 4 [
. . * . *
. e 19 x . x . x
l
[ ] 2 x L] x [} x . X
3
K % . £ . X .
ll
4L % . * . * . b 4
. .
l [ L] x ® X ]
. .
b X . x .
Fig. 1. Pictorial represen-— Fig. 2. Pictorial representation of
tation of the integrals in the integrals for A = 1,3 (dots) and
Eqs. (2.3a and b). The ori- for A = 2,4 (stars) under the
gin is chosen arbitrarily. condition of A-|¢-2'| > 0 and even.
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However, the vector addition rule requires 1im general, that the
integers X-lZ-E'l have to be » 0 and, in our applications, also even. In
Fig. 2 these integrals are represented pictorially by dots (®) for odd
A-values and by stars (*) for even A-values. To be more specific, in the
figure for A = 1, one lower and one upper-dotdiagonal are obtained; for
A = 2, the main, one lower and one upper—stardiagonal, for A = 3, two
lower and two upper~dotdiagounals, for A = 4, the main, two lower and two
upper~stardiagonals, etc. To generate these integrals a sidewards recur-
rence scheme has been set up using the integrals on the diagonal and
upper~diagonal as the initial values, up to £ and &' values for which
ll—k'l = X at the edge of the band (see Fig. 2). This will be called the
A—-inplane recursion, in contrast to A-up recursion which will not be
considered here.

When calculating the integrals on the lower~diagomal (&'=2~1), use has

been made of the relationship:

1215 (A _ nk A+ M) _k 21 (1)
('zz+“15 [22en2]* 10 - (T - 1) Iy ~ g [
k' (24+1+1)) v213 () _ () I .
* TR e DA T T = I ' (2.42)
and

k A [12+n2]5 M %E (};% -1) €))] + k

' , A
I, g 3 )

201 £, 2-1 -1,2
_ k(22-1-)) - 21% +()) = 1) :
DD D T T T e Foe-1 4P

The integrals below the lower-diagonal can be determined by a rela~
tionship of the form:

ZEHUZ +1) z+1,1' zizﬂi (z'+15 2,8
_ k{(ate'+1-)) )
TED LA 2] L1, 0
k' ' v21% ()\) - (X)
t L D ER T L = T ) (2.3)

The integrals above the upper-diagonal are obtained by a version of this
relationship in which & 1s exchanged with &', k with k' and n with n'.
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Finally, we note that Eqs. (2.3a) and (2.3b) for A = 1 give Raynal's
formulae (37a) and (37b) of Ref. [16], respectively [18].

3. ON THE STABILITY OF THE RECURRENCE RELATIONS

The recurrence relations that satisfy the Coulomb wave functions in
the integrand of the Coulomb integrals are only accurate if the quanti-
ties obhtained from them do not decrease monotonously; they are then said
to be stable. Coulomb wave functions change their behaviour at the
turning point given by

pp =+ [n2+ z(z+1)]s‘. 3.1
For kr < Prs the regular Coulomb wave function decreases, while the
irregular Coulomb wave function increases, for increasing L. Thus a
downward recursion 1is stable for the former and an upward recursion for
the latter. For kr > pT’ the functions are always of the order of unity
and, therefore, both recursions are stable.

These stability considerations hold for the recurrence relations of
the Coulomb integrals too. However, it seems that the stability of these
relations depends largely upon the ratio of k and k' as well. The more
this ratio differs from unity, the more the recurrence relations are
likely to lose accuracy due to the cancellation of terms. Equation (2.3b)
can be used for A = 1 to investigate the stability as it depends on

k/k'; it is written as:

@e#4) 5,00 5, (V) Ty, - (@) £ 52nt) + 2e43) £,52m] 1,

(22+3)

2441
+208, () 8,00 Loy = - Sl s T + SR 5,00 9
(3.2)
where
- 2 . {1 . L
sy = (L% 1= e and Jy =300 (3.3)

(#+1)2

It is noted that (2.3b) is decoupled from (2.3a) for A = 1.
Consider (3.2) for & >> n and n' because, in general, stabllity

problems occur for large £ values. Then, this equation can be approxi-

mated by

I, -al +1 ,=-2,J . +% (3.4
7S B T AN | AN 5 R S -4)
where
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“=E+E' . (3.5)

The general solution of (3.4) is a linear combination of any pair of
linearly independent homogeneous solutions and a particular solution of
the 1nhomogeneous difference equation. The homogeneous part of (3.4),

namely:

- + = .
L, -l +1,_ =0 (3.6)

can be recognized as a Polncaré difference equation of order 2 with [19]
(p) = p2 - ap +1 3.7)

as its characterlstic polynomial. Let p; and ps be the roots of #(p) = 0,
then

2 5
a a
P12=7*{lz) -1} (3.8)
The general solution of (3.6) is of the form
£ £
Iz = c¢c] p) + ¢c2 P2, (3.9)

where c¢; and c, are determined from the initial conditions, e.g., the

values of I; and I;. Substituting a = ee + e_e in (3.8), gives three

different cases depending on the magnitude of a relative to 2 [20]:

I-Ige” 20 I,~Ige 10
Zsinh(®) € - Zsinn(d) | © » @ > 2, 2cosh(f) = a
(3.10a)
= | * - (D) Lo , a=2 (3.10b)

~18

I1-Ige 1 129 Il"Ioeie .—126
7o) | ¢ T | Tem@y | e %<2 2Zcos(®)=a
n (3.10¢)

A particular solution of (3.4) can be constructed by upward recursion,
putting I, and I, equal to zero ag starting values. It obtains the same
structure as the homogeneous solution. Since o is given by (3.5), it ob-
tains a value greater than two for k' # k. Consequently, the homogeneous,
as well as this particular solution, has for £ >> n,n' an exponential

behaviour. The greater O = arccosh{a/2), the faster they will increase.
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TABLE 1

Ry 1
v L
le Fz(n,kr) :Z FE+1(n ,kfr)dr

k = 20.2, k' = 20.0 fm

L.D.

Tolsma

1

, a = 2.0000990,

calculated by upward recursion with

8 = 0.0099503,

n' = 100, R, = 50, R2 = 1000 fm
L Homogeneous Particular Inhomogeneous Calculated by
solution (3.2) solution (3.2) solution (3.2) CLMINT
0 .76025184(-03)
1 .75465483(~03)
2 .74898849(-03) -.14030570(~07) .74897446(-03) .74897446(-03)
3 .74325684(~03) -.34597983(~07) .74322224(~03) +74322224(~03)
4 .73746395(~03) ~.49608806(~07) .73741434(-03) «73741434(-03)
10 .70164788(-03) .15848483(—05) .70323272(~03) .70323272(-03)
50 .46639846(~03) .10025890(-03) -56665735(-03) .56665734(~03)
100 .29395997 (-03) «27920531(~03) .57316528(~03) .57316528(~03)
150 .24557573(~03) «44972935(-03) .69530507 (~03) .69530506(~03)
200 .27205249(~03) .56121168(~03) .83326417(~03) .83326416(~03)
250 .35652820(-03) .56398933(~03) .92051754(~03) .92051752(-03)
300 .50617154(-03) .44030855(~03) -94648008(-03) «94648006(—03)
350 .74653404(-03) .11715096(~03) .86368500(-03) .86368496(-03)
400 .11239398(~-02) -.48828549(-03) .63565430(~03) .63565423(~03)
450 .17142789(~02) ~.14171720(~02) +29710690(-03) +29710679(~03)
500 .26390403(~-02) ~.27765884(-02) ~-.13754809(-03) -.13754825(-03)
550 .40917620(-02) -.46639718(-02) -.57220985(~03) ~.57315793(~03)
600 .63807262(-02) ~.72549701(~02) -~—.87424384(-03) ~—.87459489(—03)
650 .99975505(-02) -.10883732(-01) -.88618107(~03) ~-.88618168(~03)
700 .15727328(~01) ~.16196527(-01) -.46919919(~03) ~.46920015(~03)
750 .24825585(-01) -.24527402(~01) -29818368(~03) .29818216(~03)
800 .39302831(-01) -.38382541(-01) .92028946(-03) .92028706(-03)
850 .62382496(~01) -.62012538(-01) .36995777(-03) .36995344(~-03)

This will be illustrated with calculations for the different solutions of

(3.2). The results are preseated in Tables 1 and 2. The first colummns of

these tables contalin the homogeneous solution of (3.2) for o = 2.0000990

and a
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Recurrence Relations for Radial Marrix Elements 11

R
R f 2 Fk(n’kr) iE,F£+l(n',k'r)dr calculated by upward recursion with
1 r

22, k' =20 fm },

k = a = 2.0090909, B8 = 0.0953102,
n = 100, R, = 50, R, = 1000 fu
2 Homogeneous Particular Inhomogeneous Calculated by
solution (3.2) solution (3.2) solution (3.2) CLMINT
0 +92563155(~04)
1 «92672150(~04)
2 .92776701(-04) -.22888868(~07) .92753812(-04) .92753812(~04)
3 .92879707 (~04) ~:53846401(~07) .92825860(~04) .92825859(~04)
4 .92984066(~04) ~.72114109(-07) .92911952(-04) -92911948(-04)
10 .93800222(-04) .17600872(~05) .95560309 (-04) .95560284 (~04)
50 .15025824(-03) ~.96979881(-04) -53278363(~04) -53276911(~04)
100 .10189443(~02) -.11192354(-02) -.10029114(-03) ~.10029025(~03)
150 .19771036(~0L) -.19669954(-01) .10108267 (-03) .10109828(-03)
200 .72225574( 00) -.72235723( 00) -.10148861(-03) -.10092014(-03)
250 .38020759( 02) ~.38020709( 02) .50218758(~04) .80148920(-04)
300 .24939521( 04) ~=.24939542( 04) ~—.20441507(~02) ~.80882462(~04)
350 .18823517( 06) ~-.18823531( 06) =-.14810279( 00) .78088342(~04)
400 .15613038( 08) =-.15613051( 08) ~-.12290854( 02) ~.91111798(-04)
450 .13837781( 10) -.13837792( 10) -.10893259( 04) .10558075(-03)
500 .12871636( 12) ~-.12871647( 12) ~-.10132700( 06) =—.70596447(—-04)
550 .12415805( 14) =-.12415814( 14) -—.97738638( 07) =.17157634(~04)
600 +12316249( 16) ~-.12316258( 16) ~.96954921( 09) .98012132(~04)
650 .12490099( 18) =-.12490108( 18) -.98323489( 11) .50702183(~04)
700 .12892791( 20) -.12892802( 20) -—.10149353( 14) .30547595(~04)
750 .13502195( 22) ~-.13502206( 22) -.10629083( 16) 78447955(-04)
800 <14310477( 24) ~-.14310488( 24) =.11265372( 18) +48430286 (~04)
850 +15319781( 26) ~-.15319793( 26) ~—.12059907( 20) -.48633213(-04)

powers of 10 by which the preceding numbers have to be multiplied.) This

solution has been obtained by upward recursion of the homogeneous part of

(3.2) with the integrals I; and I, as starting values. They show a

monotonous behaviour.

The second columuns of both tables contain the
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particular solution, obtained by upward recursion of (3.2) with I and I,
equal to zero as starting values. They show a monotonous behaviour too.
The third columns contain the inhomogeneous solution of (3.2) obtained by
summation of the homogeneous and the particular solutions. The fourth
columns contain the values of the Coulomb integrals calculated by a call
on CLMINT. They are used here as a reference for the correct solution.
Their accuracy, for the lower % values, is to seven figures at least and,
for the higher ones, about six figures [13].

Comparison of the third and fourth columns of Table 1, shows that, for
a = 2.0000990, the solution obtained by upward recursion is stable up to
a maximum £ value egqual to 850, demanding an accuracy of at least five
figures. The same applies for smaller a values. However, for
a = 2,0090909, a similar correspondance only exists between the third and
fourth columns of Table 2 up to a mazximum £ value equal to about 150.
Therefore, the conclusion can be drawn that the more o differs from two,
the sooner accuracy is lost due to rounding errors in the summation
of the homogeneous and the particular solutions. Although the accuracy of
these solutions themselves is quite satisfactory, their tendency to
become equal in magnitude with an opposite sign and their finite repre-—
séntation in the computer causes a loss of accuracy of the inhomogeneous
solution. This is clearly shown by the first and second columns and from
the result of their summation in the third column of Table 2. We note
that, since the general solution has an oscillatory behaviour, as seen in
the fourth columns of Tables 1 and 2, also, since o 1is always greater
than two, this loss of accuracy will not only occur with upward recursion
but with downward recursion as well.

It is not difficult to see that the above-mentioned maximum £ values
depend on the accuracy of the initial integrals too, with which the
recursion starts. The greater this accuracy, the larger these £ values
will be.

In this section, the dependence of stability on the ratio k/k' has
been investigated using a special recurrence relation for X = 1. However,
we believe that this dependence is similar for relations like those in
Egs. (2.3), (2.4) and (2.5), i.e., that it is a general feature of the
present recurrence relations.

In the next section, a stable recurrence procedure has been developed

whose stability is not dependent on the value of a.
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4. A STABLE RECURRENCE PROCEDURE
In order to develop a stable algorithm, the recurrence relations
(2.3a) and (2.3b) will be written in the following condensed form in

which the superscript (A) is suppressed

b (4.1a)

+ + =
a1, 0115 -1, 1P e, o e te, e Y oa o, 2t Yo

d L Z (4.1b)

+ + + =
Pelomn, ot 9ele, 09 e st lon, en " alenr, 142 = 2

Comparing these expressions with Egs. (2.3a) and (2.3b), respectively,
will define the coefficients and the inhomogeneous terms. Instead of
solving an initial value problem by upward or downward recursion, a
boundary value problem can be set up to find the solution of (4.1). This

requires the solution of a pentadiagonal system of linear equations

_ - - - - -
b s o9 I 17450 "t
0 -
4 9 ¢ T L2 % Pilo1
a2 32 b2 t2 c2 12’2
P, 4 4 & T Ty | L
0 3, s, b g L R R PO A
P 9y 9 IL,L+H ZreL it "L e L2
(4.2)

This solution can be produced by a standard method provided by the NAG~-

library, for example. The required boundary integrals I0 0* I0 1’
. » ?

I and 1 are calculated by a call on the subroutine CLMINT.

L+1,L+1 L+1,L+2

This procedure is very stable, even for extreme k/k' ratios. However,
it is considerably more computer—-time consuming than the upward recur—
sion, mainly due to the need to determine the boundary integrals with
high £ values. The results of a calculation such as this are mentioned in
Tables 3a and 3b. The first columns of these tables contain the solution
of the gset of linear equations (4.2) for a = 2.0000990 and a = 2.0090909,

respectively. The second columns correspond to the fourth columns of
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TABLE 3

R

f 2 F (n,kr) L F . (n',k'r)dr calculated by solving a pentadiagonal
Rl £ 2 2+1

system of linear equations with

22, k' = 20 fu ©,

a) k = 20.2, k' = 20.0 fm T, b) k =

a = 2.0000990, 6 = 0.0099503, a = 2.0090909, 6 = 0.0953102,
n'= 100, R, = 50, R, = 1000 fm n*= 100, R, = 50, R, = 1000£fm
£ solution of Calculated by solution of Calculated by

system (4.2) CLMINT system (4.2) CLMINT
0 .76025184(~03) .92563155(-04)
50 .56665735(-03) -56665734(~03) .53278469(~04) .53276911(-04)
100 .57316527(-03) .57316528(-03) ~-.10029034(-03) -.10029025(-03)
150 .69530506(~03) .69530506(-03) .10109823(-03) .10109828(~03)
200 «83326415(~03) .83326416(~03) -.10092005(-03) =~.10092014(~03)
250 .92051751(-03) .92051752(~03) .80149136(~04) -80148920(~04)
300 .94648005(-03) .94648006(~03) -.80882976(~04) -—.80882462(-04)
350 .86368495(-03) .86368496 (-03) .78087827 (~04) .78088342(~04)
400 .63565422(~03) .63565423(-03) =~.91112025(~04) -—.91111798(-04)
450 .29710678(~03) .29710679(-03) .10558073(-03) -10558075(~03)
500  ~.13754827(-03) ~.13754825(-03) -.70596446(-04) ~—.70596447(—~04)
550 ~-.57221013(-03) =~.57315793(~03) =-.17157216(=04) -.17157634(~04)
600 ~.87424428(-03) ~-.87459489(-03) .98012135(~04) .98012132(~04)
650 -.88618176(-03) -.88618168(—-03) .50702227(~04) .50702183(~04)
700 ~.46920028(~03) -—.46920015(-03) -30547687 (~04) +30547595(~04)
750 .29818195(~03) .29818216(-03) 78447997 (-04) .78447955(-04)
800 .92028673(-03) -92028706(~03) 48430491 (~04) -48430286(~04)
850 .36995344(~03) ~.48633213(-04)

Tables 1 and 2 and they are used as the reference solutions. The upper

L1, i+l 2P T4 142

Comparing columns 1 and 2 of these tables,

boundary integrals 1 are calculated for L = 849.

suggests that the present
procedure of solving a set of 1linear equations will yileld Coulomb
integrals with an accuracy corresponding to the accuracy of the upper
boundary integrals;

i.e., an accuracy corresponding to five to six
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decimal places. This accuracy does not depend upon the value of a.

It 1s easy to see that the three-term recurrence relation (3.2) is
equivalent to a tridiagonal system of linear equations comprising the
main diagonal and two lower diagomals. Formulae based on LU decomposition
show this; consequently, such a tridiagounal system will be unstable as
well, Relationship (3.2) can be rearranged as a tridiagounal system
existing of the main diagonal and the two diagomals adjacent to it.
Formulae produced by a LU decomposition will show that stable solutions
can be obtained if the lower and upper values of the solution are known.
The pentadiagonal system of linear equations (4.2) has, basically, the

same favourable properties.

5. TEST CALCULATIONS AND DISCUSSION

The output of four test runs gives the electric mulripole radial
matrix elements calculated by upward recursion, as well as by solving a
pentadiagonal system of linear equations. Both processor times are given
too.

The results of test runs 1 (A = 1, k = 20.2, k' = 20.0, n' = 100) and
2 (A =2, k=20.2, k' = 20.0, n' = 100) show that with k > k' the upward
recursion is rather more stable for the lower-~diagonal integrals than for
the upper~diagonal ones; however, test run 3 (A = 2, k = 20.0, k' = 20.2,
n = 100) shows that with k < k' the opposite is the case. It seems that
the recursion shows this feature for higher A valuesg, too. For A = 1 this
can be understood by considering the coefficient of Il in the upper-

diagonal recurrence relation (3.2)

k'.2 k 2
@a#1) £ 8,(n") + (2243) grSy(m)- (5.1)

The coefficient in the ecotresponding lower-diagonal recurrence relation

(not given in this article) is

k 2 k' 2 .
Qe 55,0 + @e3) £'5, (). (5.2)

For k > k', the coefficient (5.2) will be smaller than the coefficient
(5.1) and, since these coefficients play the same role as a in the
approximated relation (3.4), the lower-diagonal recurrence relation will
be more stable than the upper ome. When k < k', the coefficient (5.2)
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will be greater than the coefficient (5.1) and, therefore, the lower—
diagonal recurrence relation will be less stable than the upper one. We
believe that for higher A values similar considerations will hold.
Looking at the results of test run 4 (XA = 2, k = 20.0, k' = 20.0,
n = 100) and gomparing the FRGE and GEFE integrals which were obtained
by upward recursion, as well as by solving band linear equations, the
conclusion is confirmed once again more that the latter give more

accurakte results than the former.

6. NOTES ON THE PROGRAM

A flow diagram of the various subroutines is given in Fig. 3. Arrows
in two directions imply calling and returning. The functions of each
subprogram are described briefly below.
1) The main program reads the necessary input parameters and calls for
subroutines RECMUD and RECLLIP in order to calculate the radial matrix
elements. Subsequently, it calls the subroutine RECPRN in order to print

the results before ending the calculation.

[START | . MAIN | . END
RECMUD [RECLIP RECPRN]
N I O

CIMINT iFO1LBF‘ FOLLDF @DCOULMI
ol Rt T e H A SN
i GAMMA

l 4
([DRICAT| [DRCWFF]

l
|
!
!
T 4
|
!
I
I
i

[BELLIN, [GAUSS |

! :
[COULOMP—{INTEGR }—WKB]
I
JRICCAJI [STEED |

!
|
i
|
I
!
I
l
|

Fig. 3. Flow dlagram illustrating calls and returns with respect to the

subprograms used in the program.
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2) RECMUD calls CLMINT to calculate the Coulomb integrals for four
combinations of & and &' = &, %+l. Then, it uses these integrals either,
as initial values in an upward recurasion, or as boundary values for
solving a system of linear equations in order to calculate the main and
upper—diagonal integrals Iétz and Iifg+l using Eqs. (2.3a) and (2.3b),
respectively. The calling sequence 1s:
CALL RECMUD(DRML ,DRM? ,DETI ,DWNI ,DETP ,DWNF ,LAMB ,LMIN ,LMAX |,

IACC ,LINQ ,DMINT,DSINT,DA ,DB  ,DAL ,LXLN ,LXLNM2,

FC ,FDC ,GC ,GDC ,SIGMA,IEXP , -

DFI1 ,DGI1 ,DFFl ,DGFl ,DFI2 ,DGI2 ,DFF2 ,DGF2 ,LXCN )
All the real variables and arrays are declared to be DOUBLE PRECISION.
The type and meaning of the parameters are:

DRML ,DRM2 real, lower and upper integration limits R, and R

1 2
respectively.

DETI ,DETF real, Sommerfeld parameters n and n', respectively.

DWNI ,DWNF real, wave numbers k and k', respectively.

LAMB integer, electric multipole moment A.

LMIN ,LMAX integer, wminimum and maximum values, respectively, of the

angular momentum range for which radial matrix elements are

required.
IACC integer, chosen from O or 1. See calling sequence CLMINT.
LINQ = 0 upward recursion.
LING = 1 solving a pentadiagonal system of linear equations.

DMINT,DSINT real arrays, contain the main~ and upper-diagonal radial
matrix elements, respectively and should be dimensioned to at
least to the size (LXLN,4).

DA,DB, DAL real arrays, see for explanation the NAG-Library routineé
FOLLBF and FOALDF. They should be dimensioned to the size
(5,LXLNM2), (LXLNM2,4) and (2,LXLNM2), respectively.

LXLN integer, equals to LMAX-LMIN+l+mod(X,2)+1/2.

LXLNM2 integer, equals to (LXLN-2)*2.

FC,FDC real arrays, contain the output Coulomb wave functions FE’

GC,GDC Fi, Gg, Gi, arranged by order, after calling the subroutine
DCOULM. They should be dimensioned to the size LMAX-+LAMB.

SIGMA real array of dimension LMAX+LAMB for Coulomb phase shifts,

IEXP integer array of dimension LXLNM2 for modulo exponent of

Coulomb wave functions, also used in FOLLBF and FOQ4LDF.

- 137 -



18 L.D. Tolsma

DFI1 ,DFI2 real arrays, contain the regular Coulomb wave functions for
n, le and n, kRZ’ respectively.
DFFl ,DFF2 real arrays, contain the regular Coulomb wave functions for

n', k'R1 and ', k'R_, respectively.

2!

DGI1 ,DGI2 real arrays, contain the irregular Coulomb wave functions for
the same above-mentioned parameters. These Coulomb wave
function arrays should be dimensioned to the size LXCN.

LXCHN integer, equals to LMAX~LMIN+1+A.

3) RECLIP calculates the other Coulomb integrals, by means of A-inplane
recursion, using Eqs. (2.4) and (2.5). The calling sequence is:
CALL RECLIP(DRML ,DRM2 ,DETI ,DWNI ,DETF ,DWNF ,LAMB ,LMIN ,LMAX ,
LXLN ,LAPl ,FFINT,FGINT,GFINT,GGINT,DMINT,DSINT,
DFIl ,DGIl ,DFF1 ,DGFL ,DFI2 ,DGI2 ,DFF2 ,DGF2 ,LXCN )
The type and meaning of the parameters 1is the same as in the calling

sequence of RECMUD, except for:
M)
[ A

GFINT,GGINT for the four combinations FEFL" FZGQ" GEFE" GEGE' of the

Coulomb wave functions and should be given the dimension of

(LXLN, LAP1).

FFINT,FGINT real arrays, contain the required radial matrix elements I

L.AP1 integer, equals to A+l.

)
2,4
In the output, they are denoted as M(-A-1l, Fl'

to a notation used in Refs. [11,14]. The calling sequence is:
CALL RECPRN(ETI,WNI,RM1,LMIN,LAMB,LINQ,ETF,WNF,RM2,LMAX, TACC,
FFINP,FGINP,GFINP,GGINP,LXMLP,LAP1,LMDL)

4) RECPRN prints the radial matrix elements I in a A-dependent format

Fl')’ etc, corresponding

The meaning of the parameters is the same as in the calling sequences of
RECMUD and RECLIP, except for:
FFINP,FGINP real temporary arrays, contain the radial matrix elements

GFINP,GGINP I(A) to facilitate their output as a function of R with

2,1!’
increment LMDL and should be given the dimension of
(LXMLP,LAPL).
LXMLP integer, at least the number of increments LMDL.

5) CLMINT calculates the radial matrix elements Iixi, given by (1.1) for
J

a value of n, k and A, and a single valued pair of (£,4'). This is dome

for the four combinations of the Coulomb wave fumctions. Fig. 3 shows the

subprograms called by CLMINT (catalogue number: ACCM) [13].
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6) DCOULM combines our double precision versions DRICAT and DRCWFF of the
Coulomb wave functions subprograms RICATI (catalogue number: ABOQ) [21]
and RCWFF (catalogue number: ABPC) [22,23], respectively, to use the most
efficient one for some pair of n and kr values.

The main program, RECMUD and RECLIP share a less important COMMON
block, labelled PRINT. Together with the DATA statement it gives the
possibility to print out intermediate results im RECMUD and RECLIP. The
concerning statements are self-explanatory.

Each test run requires five input data cards. The first one should
contain a test run number. The second and fourth are similar and must
contain DRM1, DRM2, DETI, DWNI, DWNF. The third and fifth must include
LAMB, LMIN, LMAX, IACC, LING, LMDL. They differ only from the variable
LINQ which is chosen equal to 0 and 1, respectively.

Finally, we notice that, although RECMUD and RECLIP can calculate the
radial matrix elements of any multipolarity, the arrays in the main
program have been dimensioned up to a A value equal to 5. The same holds

for the print facilities of RECPRN.
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PROCESSOR TIME IS

(R RN ]

ETI1 9900990 100E+02 WNI - .2020000000E+02 RM1 = ,500000000NE+02 LMIN - 0 = 1 LINQ = 1
ETF L0000 000E (03 WNF - L 2000000000E+02 RM2 = .1000000CG0E+D4 WAX « 850 IACC = 0 IMDL =100
DIPOLE RADJAL MATRIX ELEMENTS M(.2_FL{ FLF}
Lt LF=LI 1 LF-Li-1 L LF~L1-1 LF=L1+1 Li LF=L1-1
0 o, LT60255 8389303 300 - .36920098664D-03 .94648005173D 03 bon .45913653114D-03
100 CB2021757251D- 02 .57316527253D-03 400 - .87376303349D-03 .63565422407D-63 700 .63876364867D-01
200 L2RZ6T72192790 03 . 83126415447D- 03 508 .10097263329D-02 . 13754825813D 631 8§00 .8B9741589775D-03
DiPOLE RADIAL MATRIX ELEMENTS M( 2 FLI GLF)
Lt LF-L1 1 LF-L1+1 Lt LF=L1-1 LF-L1+1 LE-Li-1
o 0. .60938389225D-03 300 .931067644872D-03 .75028989473D 04 600 .92327888805D-03
160 . .41316841051D.-83 L77512718539D .03 400 .500549584310-02 .68726157865D-01 700 .83252573511D-03
200 L9531n716021D 03 .47482510182D-03 500 .23220438410D.03 .91695115298D 63 8§00 - .64461033507D-03
DIPOLE RADIAL MATRIX ELFMENTS M{ 2 GLT, FLF)
L1 LF-L1 1 LF=LI+1 L1 LE=LI1 1 LF-LI+} LF=L1-1
noo. -.598122584232D-03 300 .92741753767D) 0} .88973162880D-04 600 -.%1969928943D-02
100 .411240884516D. 03 .78335424591D-03 400 L50698990880D 03 .699674757600 D3 TUO0 -.858348B2159D- 03
200 .94520198281D 03 .48325175697D-03 500 .219627011210 03 .92339966712D 83 800 -67694983365D-03
DIPOLE RANEAL MATRIX ELEMENTS M{ 2 GL! GLF)
Ll LF«L1-1 LF=Li+1 L1 LF-L1-1 LF=L1+1 L1 LF=L1-1
0 0, .76548916816D-03 300 LAB8248602637D 03 L94607207412D-063  H00 - .4T7831272711D-03
100 .89633153362D-03 .56369965939D.03 400 .88781950050D 01 .64485764060D-01 700 .64085913727D-03
200 .29306346947D-03 .82329641407D-03 500 -.995691905513D 063 .125696862870-03 800 .84789628093D-03

PROCESSOR TIME 1§

9.6 SECONDS.

PR

51.4 SECONDS.

CALCULATION OF ELECTRIC MULTIPOLE RADIAL MATRIX ELEMENTS

TEST RUN OUTPUT
TEST RUN 1
Frovamexds CALCULATION OF ELECTRIC MULTIPOLE RADIAL MATRIX ELEMENTS BY UPWARD
ET! = .99N09%0160E+02 WNI -~ .2020000000E:02 RMI - ,5000000000E+02 IMIN = 1]
ETF = .10009000000E+03 WKWF - _2000000000E+02 RM2 - .1000000000E+04 LMAX - 350
DIPOLE RADIAL NMTRIX ELEMENTS M( -2 FLI . FLF}
Lt LF=Li-1 LF=LI:+t . LF=L1-1 LF=L1+1 Lt
[UN) CTe6251RI8OID 03 oo . 369200091160-03 .94648008329D-03 600
100 .89023756730D-03 .57316527953b 031 ann .87376303949D- 03 .63565429531D-03 700
200 L2R267318809D-0n3 .83326416928D 03 500 L H0097263930D-02 .13754809053D-03 800
DIPOLE RADIAL MATRIX ELEMENTS M(-2,FLI GLF)
L1 LF=L1-1 LE-L11 1A LF-L1 1} LF=L1+1 L
o 0. .6N93RIRAZ225M N3 J00 .91167H4432233D 03 -.75029027073D-04 600
100 -.41336840430D.03 7751274877040 031 400 . 50454957715D 03 .h8720366352D-03 700
200 ~-.953310715462D-03 47482508417 03 500 . 232204396130 03 .93695135266D-03 800
NIPOLE RADIAL NMTR!X FLFMENTS M(-2 GLIT, FLF)
Li LF=LF 1 LF-Liul Lt LF-LI LF=Li+1
0 0. SPR12258432D 103 Ane .027417510629 ¢3 .88973212097D-04 600
100 .40240883703D 03 783354234990 63 400 . 506989899430 3 .69967486870D—03 700
200 . 245201975490D-03 483251733470 6} 500 .21962T42695D 03 .92339992849D-03 800
DIPOLE RADIAL MATRIX ELEMENTS M(-2 GL1 GLF)
L1 LF=LE -1 LF-11+1 Lt LF=LE-} LF=L1+1 L
0 o, 7654821681600 03 300 .3IR2486H03042D-03 .94607210238D-03 600
100 .89633152895D.03 563699665661 03 400 .88781950588D-03 ,64485770439D-03 700
200 .29306346526D-03 82327642733D 03 500 996219064160-03 -, 12569671280D-03 800

RECURS1ON
LAMBNA = |
tACC

BY BAND LINFAR EQUATIONS
AMBDA

LING =
-~ IMDL
LF-11-1
.45013655042D 63
.65876360912D 03
.B9741581287D 03

LF=Li. 1
.92827891162D .63
.B3252578221D-03

~.64461023395D-03

LF=L1-1
-.93969931950D-01
-.85834888327D-03

.67694970129D-03

LF=Li-1
-.47831274437D-03
.64085910186D-03
.84789620493D-03

IR

(]

- 104

TEARARE R R

LF
.87424
46919

i
89D-03

=LT:
3841
9186930 03

.020289461070 03

LF-Lt+1

.31063468009D-03
.B0497513616D-03
.21516576202D-03

LF=Li+1]

.328012583290D-03
.79861876355D-03
.15641281879D-03

LF=LI+1

.88837895121D-03
.500123382300-03
.90970072313D-03

LF-L1+i

-.8%424424721D .03

. 469200185990 03
.92028696528D-013

LF-LI+1
0634197210-03

L3
.80497632642D-03
215

5168736510-03
LF=-LI+}

.32802520083D-03
.79862012154D-03

<. 15641671225D-03

LF=L1+1

.88837931414D-03

:.50012427689Dv03

.90969848753D-03

S3udWSTE XTATEH TETPYY 10 SUOTIRTIY 90UALINDIY

12



[4 4!

Ll

0 0.

100
200 -
3oo

L1
1]

100 -

200 -
Li
0
100
200
300
LI
[
100

L1
100
200
300

Li

(U
100 -.180
.15205935400D-04
300 -.351

200 -

L1

0 0.

.17926628165D-04
.15269028643D-04
.32489069995D-05

100
200
3oo

L1

0 o.
.73043960901D-05
.12403467944D-04
.19905657728D-04
PROCESSOR TIME IS

100
200 -
300

0.
.73043823552D-05
200 -
3o -,

PROCESSOR TIME IS

LF=L}I .2

021499662D 04

18
.15205915492D 04
300 -.351

25954397 85
LF-L1 2

[17926607340D- 04
.15269008735D-0n4
132488929198D-05

LF-L1-2

12403481085D- 04
19905667025D-04

IR

QUADRUPOLE RADIAL MATRIX

LE- L1

L3E295713701D 05
. 856257976460 05
167984319007 04

QUADNRUPOLE RADIAL

LF-11

1337712460001.05
.R3015764684D 05
1171454350030 a4

LF-L1

.18742051285D.-04
.17123352410D-04
.85807559445D-05
10.4 SECONDS.

CALCULATION OF ELECTRIC MULTIPOLE
= .2020000000E+02

.2000000000E+02
QUADRUPOLE

ETI = .9900990100E+02 WNI
ETF -1000000000E+03  WNF =
LF-LI 2 LF-L1

ST0718168725D.05
- .12656700982D 04
.19814404290D-04

LF-LT-2
21520492D-04
26095179D- 05
LF-LI-2

LF-L1-2

118784999656D-04
[17116179061D-04
88088179452 05

LF-LI

. 312958959850 -05
.85625421618D 05
.16984257863D 04 .
QUADRUPOLE RAD!AL MATRIX

LF-L1
4283040 05

.33771
.83015388600D 05
1714

5373849D 04

QUAI]RUPOI E RADIAL MATRIX

LF-LI

.18742039246D 04
.17123327571D-04
.85807155504D-05
42.9 SECONDS.

LE=L1+2

LF-L1:2

LE-LI1+2

157075416670
.27746982511D
.39786437645D
. 1317728092601

RM1
RM2

F-LIl+2

F-1.1:+2

.10925963142D-04
.18722665726D-04
. 18027955624D- 04
.12793394640D 04
MATRIX

LA0T7031006641) 04
.18729720837)) 04
.17977840899D .
. 126188422180 04
QUADRUPOLE RADIAL MATRIX

04

N4
06
05

-04

.15598390141D 04
.5287077202130D N6
.42350799433 0§
. 129591238208 04
QUADRUPOLE RADIAL MATRIX

109259631310 04
[18722634493D .04
T18027866553D 04

12793182336D-04

LF-L1:2
8729689590D

.10703100653D 04
t

04

.17977751802D 04
12618629856D- 04

127749048397D-
139787026423D-
113177421243D-

04
06
05
04

L1
400
500
600
700

ELEMENTS Mt 1. FLI

TEST RUN 2

srrxievys s CALCULATION OF ELECTRIC MULTIPOLE RADIAL MATRIX ELLEMENTS BY UPWARD
ETI = .9900990100E+02 WNI - .2020000000E+02 RM1 = .5000000000E+02 IMIN - [
ETF = .1000000000F+03  WNF L20000000000E+02  RM2 = .10600000000E+04 1LMAX - 750
QUADRUPOLF RADPIAL MATRIX ELFMENTS M( 3 FLI FLF)

LF-L1 2 LF-L1 LF=L1:2 L1 LF-LI 2

0. .15598390133D 04 400 .18320452692D 04

.707180313460D-05 L18785011694D-04 .52868706696D-06 500 .90540471227D- 05
.12656714123D 04 17116203899 04 .42350210757D-05 600 .73271640929D .05
.19814413588D 04 .R8N885R3II60ND 05 .12958997912D 04 700 21978817927D 04

.GLF)
LF LT 2

912958872680 05
193239320990 04
.20387608116D 04

522172641390 05

ELEMFNTS M( .3 GLI, FLF)
L1 LF-L1 2

4400 .926602224910-05
500 - L 18965400301D-04

600 .20810886494D 04
700 58483405323D 05

L1
400
500
600
700

L1
400
500
600
700

11
400
500
600
700

L1
400
500
6040
700

L1
400
500
600
700

ELEMENTS  M(

ELFMENTS  M(

-3 .GLI
LF=-L1-2

.GLF)

. 18597729254D- 04
.90607533786D 05
.71864719119D-05
.21964724365D- 04

IMIN = 0 = LINQ = 1
LMAX = 750 TACC = 0 IMDL =100
3 .FLI ,FLF)

LF=LI -2 LF-L

.18320444610D-04
.90540375895D-05
.73271782459D-05
.21978842005D-04
ELEMENTS  M(

3 FLI
LF-1L1 2

.GLF)

.91295764933D-05
.19323917670D-04
.20387586695D 04
.52216899733D 05
ELEMENTS  M(

3.GL!
LF-L

,FLF)

.92660100134D 05
-.18965385869D 04
-.20810865069D n4

.58483040831D 05

3. GL1
LF-LI 2

.GLF)

.18597721171D-04
.90607438444D-05
.71864860666D-05
.21964748445D 04

RECURSION
LAMBDA - 2
TACC = 0

R

LF-L
43085302516 05

C16858565397D-04
.17475870373N-04
124536395594D-05

L¥E-11

.18605190273D 04

989264873120 05

.83949005132D 05
.19574561124D 04

LF-LI

.18904961352D 04
.98783097882D-05
.83158217736D-05

-.19807627945D-04

RADIAL MATRIX ELEMENTS BY BAND LINEAR EQUATIONS
L5000000000E:02 LAMBDA
1000000000FE+04
RADIAL MATR 1X ELEMENTS M(

LF=LI

.43852375540D-05
.16499583345D-04
.17916106725D-04
.18687561488D-05

IR R R TR

.43086003330D-05
.16858697627D-04
.17476136579D-04
.24530777890D-05

LF-L}

-.18605084192D-04

.98924485850D-05
.83953034377D-05
.19575411395D-04

LF=LI

.18904855250D-04
,98781096003D-05
.83162247849D-05
.19808478403D-04

LF-L

1
-.43853076421D-05

.16499715589D-04
.17916372960D-04
.18681943151D-05

*

LF=L1+2

.17858317835D-04
.10352880562D-04
.93407974710D- 05
.15286711139D-04

LF=L}1+2

.19757886206D-07
.14698395357D-04
.14762594213D-04
.83694953330D-05

LF=L14+2

.54901551095D-08
.14340089132D-04
.15210918607D-04
.79229096273D-05

LF=L1+2

.18167819912D-04
.10318712831D-04
.93273069648D-05
.15734526963D-04

LF-LI+2
7858652394D-04
0353692249D- 04
3387965810D- 05
5281715387D-04

LF=LI+2

.19251587676D-07
.14699623742D-04
.14765622346D-04
.83619347265D-05

LF=L1+2

.49837254928D-08
.14341317826D-04
.15213947493D-04
.79153471611D-05

LF=L1+2
8168154517D-04
0319524629D-04
3253058087D-05
5729530555D-04

[44
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- Ev1 -

a O,

Li

100
200
300

FrerEar T bR

CALCULATION OF FI

¢

ET! = .1000000QOADE+G3  WNY
ETF = .9900990G099E+02 WNF -
LF-L¥-2 LF-L1

135270058473D-06
138219693700D-05
112941349538D-04

LF-L1 2

118776231667D- 04

.12853629845D-04

PROCESSOR TIME IS 10.

L1
{100
200
300

Li

0 0.

100
200
300

L1
0
100
200
300
Ll
0
100

200
300

PROCFSGOR TIME

TR}

18785002687D-
171161852700
8808

8280054

LF=L1
0

- 180102962220 04 .83015480142D-
L13018100202D 04 .171453188659D-
LF=L1 -2 LF-L1

i
186842435950 ¢4 LA129583124mD
180766072001 N4 .85625513101D
127531962300 n4 169842726700

LF=L1 2 LE-L1

. 1
<5864291B8138D 06 . 187420422940 -
.40743815358D-05 .17123333792D-

858072560840 -

2 SECONDS .

1337713835660

QUAPRUPOLF RADIAL MATRIX ELEMENTS M{-3 FLI1
1

E-LY 2
LU6169152a34D 04

ta CHB3NBBONR51IID 05
04 12655611825 04
@45 L20N21096024D 04

QUADRUPOLE RADIAL MAT
LF-L1+2

.98442299146D 45
05 181733211730 04
05 . 15062532008D n4
04 A2115510149D

L]

OUADR(!POIF RADIEAL MAT
LF-LIs2

LLH067055815D 04

05 .18177277782D- (4
05 -.15009158868D .04
na -.30399421692D-05

QUADRUPOLE RADIAL MAT
LF~L1+2
.16278378179D-404
.65575169044D-05
~.12911328017D-04
~.19800497407D-04

44
04
05

TEST RUN )
TRI('NHWT!POLE RADIAL MATRIX ELEMENTS BY UPWARD
L2000000000F 02 RMI = .5000000000E+02 IMIN = [}
L2020000000F+02  RMZ = 100DO00000E+04 LMAX ~ 750

.FLF)
LF-L1-2

400 181520199033D-04
5a0 10648156426D-04
600 -.88727159925D-a5
700 15781137543D- 04
RIX ELEMENTS M(-3 FLI ,GLF)
L1 LF~L1-2
400 .« .39128393515D-06
500 . 14481650074D-04
600 .15017837173D- 04
700 .79188741397D-05

RI1X

FLFMFNT§ M( -3 . Gll

FLF)

LF=L1-
400 25067535581D~0b
500 -.14123278444D-04
600 - .15444161408D-04
700 . 72919839056D-05
RIX ELEMENTS M(-3 .GL1,GLF)
Ll LF=L1-2
400 .17876905862D-04
500 .10635036807D-04
600 ..90040278085D-05
760 .15777044991D-04

CALCULATION OF ELECTRIC MULTIPOLE RADIAL MATRIX ELEMENTS BY BAND LlNrAR EQUATIONS
LAMB

R RE]

LINQ = ©
LMDI, =100

RECURS TON
LAMBDA - 2
TACC = 0

LF-11
-, 43085829275D
168586648500
.17476070662D
.24532167920D

LF-11
189048808780 -
.98781578795D
.831612770G380
. 198082736741

[
04
44
05

64
05
a5
04

LF=LI
L18605109801D
.98924968141D-
.83952064351D
.19575206845D

LF=L1
43852902383D-05
-.16499682798D-04
1
1

04
03
05
na

7916307015D-04
8683133B46D-05

FAL Ry

ETI = .1000000000E+03 WNI = .2000000000E+02 RMI1 = .50600000000FE«+02 [IMIN = DA = 2 LINDQ = 1
ETF - .9900%90099E+02 WNF ~ .2020000000E+02 RM2 - 1000000DVGE it LMAX - 750 fACC -« 0 IMDL =100
QUADRUPOLE RADIAL MA]RIY BLEMENTS M™M{ 3 FLI FLF)
LF-L1 2 LF=L1 LF-Li:+2 [N LF-LI 2 - LF-LI

135270538180D 06
.38219834904D-05

171161790580

.12941383388D-04 .88088179488D
LF-L1 2 LF=L1
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SOLVING LARGE SETS OF COUPLED EQUATIONS ITERATIVELY BY YECTOR
PROCESSING ON THE CYBER 205 COMPUTER

L.D. TOLSMA

Department of Physics, Eindhaven University of Technology, Eindhoven, The Netherlands

The set of coupled linear sccond-order differential equalions which has te be solved for the quantum-mechanical description
of inelastic scaitering of atomic and nuclear particles can be rewritten as an equivalent set of coupled integral equations. This
set can be solved iteratively. A conocept of vectorization of coupled-channel Fortran programs, based upon this integral method,

is presented for the use of the Cyber 205 compulier.

1. Introduction

In general, the quantum-mechanical description
of inelastic scattering of atomic and nuclear par-
ticles leads to a set of coupled second-order dif-
ferential equations of the partial wave radial func-
tions ¢, of the following form:

dl

I(F1+1)
i +k12 -
dr?

T~ Vo(r) [¥1(7)

r

=ZIVIJ1;H'(’)‘H7'(")> (1)

for a spinless projectile. Here J, / and [ denote the
total angular momentum, the orbital angular
momentum and the spin of the target with excita-
tion energy ¢, respectively. In eq. (1) ¥5(r) is the
spherical part of the interaction potential. The
coupling matrix at the right-hand side contains the
contribution of the multipole expansion of the
interaction potential.

To obtain the solutions for ¢7,(r), two boundary
conditions have to be fulfilled. At the origin, they
must vanish and for large distances they must be
related to an ingoing partial wave in the entrance
channel plus outgoing partial waves in all relevant
exit channels. The precise asymptotic form defines
a scattering matrix.

In conventional coupled-channel calculations,
the set (1) has to be solved as many times as the
dimension N of the set for each J value in order

to satisfy the boundary conditions. Especially for
large systems this procedure is time consuming
and hardly feasible. In addition it generates a
complete N X N scattering matrix, while in the
physics context of 2 case often only a restricted
number of columns of this matrix is needed, namely
those elements which connect the entrance channel
to all the experimentally relevant exit channels.
This has been the motivation to study iteration
methods for which the solutions are obtained di-
rectly without the need for solving the set (1) N
times. The calculation of the solutions has been
based upon the use of piecewise analytic reference
solutions. This will be explained in the next sec-
tion.

A concept of vectorization of coupled-channel
Fortran programs, based upon the method to be
explained, is presented for the use on the Cyber
205 computer. Finally, some results will be men-
tioned.

2. Concise description of the calculation procedure

Considering some interval of the integration
range and introducing a reference potential U™
for that interval, the Schrodinger equation (1) in
compact notation [1] is

d2 ) " N
a? +hki - Ui{r) ‘Ps(’)=j§,l W, (r);(r),

i=1,2,..., N. )
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Several forms of the reference potential have been
considered, depending on the location on the in-
tegration range:

— Constant reference potential [2,3]

Ui(r)="10, (3a)

where U is introduced as the average value of the
diagonal potential for the interval. The reference
solutions are the trigonometric and exponential
functions.

- Linear reference potential [2]

U'l(r)=TU+(r=7)dU/dr}my, (3b)

where [ is also the average potential over the
interval, and 7 is the midpoint. The reference
solutions are the Airy functions which can be
efficiently evaluated numerically, as shown by
Gordon [2}.

- Coulomb reference potential
U™ (ry=2nk/r+i({+1)/r%, (3¢)

with the wave number k and Sommerfeld parame-

ter n. The reference solutions are the regular and

irregular Coulomb wave functions.

If the right-hand side of eq. (2) is replaced by zero,

each of the resulting decoupled equations has two

linearly independent solutions:

1. The regular solution G,(r). This is defined to
vanish at the origin and by the asymptotic form
G(r) = (i/2{K ) H (ni kir)

e
~S'H (n;; ki’)] . (4a)

2. The irregular outgoing wave solution G (r).
This is defined by the asymptotic form

GH(r) = (/&) H] (n ko). (4b)

The functions H~ and H™* are the ingoing and
outgoing Coulomb waves, respectively. They are
given in terms of the well-known regular and
irregular Coulomb wave functions.

The solutions (4) can be expressed in terms of
the linearly independent reference solutions A(r)
and B(r), which belong to a specific form of the
reference potential (3).

G/(r)cAi(r)a1+b£(r)bi (sa)

and
G (r)=A,(r)a’ + B(r)b}. (5b)

The constant coefficients a,, b, and o, b are
determined by conditions of continuity at the in-
terval boundaries.

Subsequently the Green’s functions can be con-
structed and set (2) can be rewritten as an equiv-
alent set of N coupled integral equations. With an
ingoing wave in the entrance channel k, this gives

KpoN 2 ® g,
\bi(r)“ci(r)[i‘sak'.{: G/ (r)
x ¥ Pl/,.j(r’)%"f(r’)dr’]

=1

" N
—G,*(r)[ [ L m,-(ww,*:(r»dr'].
(VI =1

(6a)
Equivalently,
4 (r)=G(r)e(r) =G/ (r)ef (r), (6b)
with the boundary conditions
() ={(2/1)8, (7a)
and : )
¢ (0)=0. {7b)

The asymptotic value of the outgoing coefficients
¢ (r}) are related to the S-matrix elements.

The set of coupled integral eqs. (6) can be
solved by iteration. In this paper only an
inward-outward iteration scheme has been ap-
plied [4,5]. In this scheme, the following set of
coupled integral equations for the amplitudes c,(r)
and ¢ (r) are considered:

2 50
c(r)=58,= [ G ()

N
X Z] W,.j(r')Gj(r’)cj(r’)dr'
j=

- - N
+ G E WG ()¢ ()dr,
) P

(8a)
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7 (1) = [ G{r) T W, ()G (r)e()ar

- [6.r) Z W, ()6 ()] (),

fori=1,2,..., N. (8b)

To solve these equations we use the relatively slow
variation of the amplitudes c,(r) and ¢/'(r) with
respect to the rapid oscillations of the functions
G,(r) and G} (r) in the classically allowed region.
The r dependence of the amplitudes is weak as
long as the difference between the true potential
and the reference potential is small. Thus, a choice
of step size has to be made so that small variations
of ¢,(r) and ¢ (r) over an interval can be ne-
glected.

Expressing G,(r) and G;'(r) in reference solu-
tions, integrals are oblained of the form

Jaw,sdr (9
LA

With the reference solutions which belong to the
reference potentials (3), this type of integral can be
evaluated analytically. Even in the case applying
the Coulomb potential as a reference potential the
corresponding integrals can be evaluated effi-
ciently by making use of recursion relations [6].

3. Vector processing on the Cyber 205

The most computer-time consuming parts are
the determination of the solutions G; and G, the
evaluation of the integrals (9) in the coupling

G i Gy Oy

a3 iy dp Ggs Oy Uy
dy  dyp 43 dig @3 a3 a3
ay Qg3 Q44 Ay dgg

asy dss  dsq

dgy g dgs  Qge Qg7
Gy Q73 81 @y d77 Qg
gy Ogq Qg7 Qgg
Qgq Qg

matrix and especially the iteration process for ¢;
and ¢, depending upon the number of iterations
that are needed. These parts of our Fortran pro-
gram have been coded directly in the vector For-
tran offered by the Cyber 205 computer system,
To get optimal performance special attention has
been paid to the data structure being as contigu-
ous as possible, which is the main demand in
vector processing. However, the vector processing
possibilities are highly determined by the structure
of the coupling matrix. For large systems of cou-
pled equations with A for instance equal to
hundred or even a few hundred the coupling ma-
trix is sparse. The structure of sparsity, ie., the
number and placements of zeros, depends on the
physical model being studied. Due to this sparsity
contiguity can only be obtained by the application
of “data motion” primitives, the so-called Q8-
routines [7]. See also the appendix.

The vector processing of the above-mentioned
time consuming parts will be briefly explained.
- The determination of the solutions G, and G;
contains the determination of the reference solu-
tions and the coefficients a;, b, ‘and a;, 5. The
calculation of these coefficients is a recursive pro-
cess. Therefore, the maximum vector-length can
only be N. However, the calculation of the refer-
ence solutions can be performed in blocks with a
vector length of N X K, where K is a number of
integration steps. This has not yet been done by
us.
- The evaluation of the integrals (9} in the cou-
pling matrix will be illustrated from a simple ex-
ample for which the coupling matrix pictorially
looks like

a9
, (10)
dgy
gy
An_aN-1
Ay-1n-1t QNN
Dy §-1 Y
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where the explicit representation of the individual
zeros is omitted.

The mathematical expressions of the diagonal
and non-diagonal integrals are different. The diag-
onal integrals can be obtained by using in the
expressions vector operations of length N. Since
the coupling matrix is symmetric, only the left-
lower part has to be considered. The number of
non-zero elements in this part is supposed to be
M. With the following row index vector for the
lower non-diagonal coupling matrix elements

[234356746787896789.. N-1N]
(11)

and the corresponding column index vector

[111222233334445678...N-2N~1]
(12)

the reference solutions in (5) are gathered into
vectors with length M or M X K. The non-diag-
onal integrals can now be evaluated by means of
simple vector operations. Subsequently, the diago-

~ The iteration process for c,(r) and ¢/ (r) is
recursive. Therefore the next considerations hold
only for one integration step. The vector length of
these coefficients is V. With the following column
index vector (see (15))

[111122234...222353348___
333465479...454706680...] (16)

Gy ap ay3 dyy

an 4n a3 ays a6
n  an ay3 34 XT3
adn  4da3 dag A4y g
ds; dss Asg

de2 Qg s Qg e
d;; an a4 76 an
Jg3 G gy Ggg Qg
Qgq Gy dgy

An_1n-2 OGn-1N-1 @xN
X Ayn-1 QNN

nal and non-diagonal integrals are merged and a
sequence number is attached to the matrix ele-
ments in the following way

[1(11) 2(21) 3(31) 4(41) 5(22) 6(32) 7(52)
8(62) 9(72) 10(33) 11(43) 12(63) 13(73) 14(83)
15(44) 16(74) 17(84) 18(94) ... ]. (13)
This sequence is reordered and supplemented with
the corresponding sequence number belonging to

the elements of the right-upper part of the matrix
according to

[12347891418...256111912131726...
361015202016 24 27. .
47111602122250...]. (14)

The zeros in this and the subsequent sequence (16)
correspond 10 inactive elements, which will be
suppressed by the use of control vectors. By
gathering the calculated integrals according to se-
quence (14), all the integrals of the coupling ma-
trix are obtained. Pictorially the matrix (10) looks
now like

o : (15)

they are gathered to a vector length equals the
length of the sequence (14) or matrix (15). The
multiplication of the matrices and vectors in (8)
can now be performed. The new coefficients are
obtained by the addition of parts with a length N
of the result vector of this multiplication. The
construction of the original coupling matrix in
form (15) dispenses with the necessity for the use
of the data motion primitive Q8SSUM.
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4. Results

To analyse experimental data, the set (1) has io
be solved in general for some hundreds of differ-
ent J-vajues. Here the results will be mentioned of
calculations for one arbitrary J-value of two dis-
tinct heavy ion nuclear collision test cases. A spar-
sity factor, i.e. the number of zeros in the coupling
matrix compared to the total number of matrix
elements can be given by

Sf=[N2-(2M + N)| /N2 (17)

In table 1 the processor time in seconds for the
calculation of the solutions G; and G, the in-
tegrals in the coupling matrix and the iteration
process for ¢; and ¢;", beside the overhead and
total-time, are shown for both test cases. For each
test case the processor times for a highly optimized
scalar mode can be compared with a vector mode
of the program.

The table shows that the gain of the vector mode
compared to the scalar mode for the solutions G,
and G is restricted. The main reason is that for a
part of the integration range a call to the Airy
function subroutine has to be done which is not
yet vectorized. 1n addition, this is a recursive pro-
cess which allows only a maximum vector length
of N. This is also the case with the iteration
process, although a high sparsity factor favours the
vector mode. However, the most important speed-
up comes from the evaluation of the integrals in
the coupling matrix. The table shows that for this
part the explained vector algorithm is about 6
times faster than the original scalar algorithm,
mainly due to the possibility of choosing here a
maximum vector length of M X K. This results in
a overall speedup of about a factor of 2 to 2.5.

Table 1
Processor times in seconds

Mode ,Sol. G, G* Integrals Iteration Overhead Total-time

Test case A with N = 64, M = 516, K =10 and Sf = 0.73
scalar 2.286 11.283  7.621 1.341 22,331
vector 1.861 2107 6.448 1.361 11777

Test case B with ¥ =169, M = 588, K =10 and Sf = 0.95
scalar 5.407 18309 9.215 0.986 33917
vector 4,803 2788 5233 1.073 13.897
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Appendix

The Q8 intrinsic functions Q8VGATHR,
QB8VMERG, Q8VCTRL, Q8SNCT, have been ap-
plied in our code. They are clearly described in the
Fortran 200 Manual (chap. 10) [7]. Here a brief
explanation of Q8VGATHR will be given, which
is the most used Q8-function in our program. A
call looks like

R(1; M) = Q8VGATHR(S(1; N), I{1; M);
R(1; M)),

where 8 is the source, I the index and R the result
vector, respectively. Each element of the result
vector corresponds to an element in the index
vector. This means that the index vector has to be
as long as the result vector. The elements in the
index vector indicate which element of the source
vector are assigned to the corresponding elements
in the result vector. This is illustrated below, where
the function is applied to gather the reference
solution G, by means of the index vector (11).

S-vector [G, G, Gy G, Gs G5 G, Gy Gy.... ],

Ivector[23435674678789 ... ],

R-vector [G, G, G, G, G5 G, G, G, G, G,
Gy G5 Gy Gy... ].

References

1} L.D. Tolsma, Phys. Rev. C20 (1979) 592.

[2] R.G. Gordon, J. Chem. Phys. 51 (1969) 14.

{31 L.Gr. Ixaru, Compul. Phys. Commun. 20 (1980) 97.

[4] K. Alder, F. Roesel and R. Morl, Nucl. Phys. A284 (1977)
145.

[5]1 M. Ichimura, M. Igarashi, S. Landowne, C.H. Dasso, B.S.
Nilsson, R.A. Broglia and A. Winther, Phys. Let.. 67B
(1977 129.

[6] L.D. Tolsma, to be published.

(7] Fortran 200 version 1 Reference Manual, Control Data
(1984).

- 149 -



CHAPTER 9

SOME APPLICATIONS
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E2 and E4 transition moments in "Dy and "YErt
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Coulomb excitation by & particles is used to determine reduced E2 and E4 transition matrix elements
between ground-band rotational states in "Dy and '*"Er. The following results are oblained for #*Dy:
€1/2 5/2|| M(E2)||5/2 5/2) = 3.83 4.0.10 e b; <972 5/2f M(E2)|5/2 5/2> = 231 +0.02 eb;
{1172 5/2)| M(E®)||5/2 5/2) = 0.60%2%2 e b2, and for "'Er: (9/2 /2| M{E2)|{7/2 7/2> = 4.38 4 0.08

el 1172 T/2IM(ED|I/2 1/2) = 1341001 eb; 1372 1/2{ M(EQ|7/2
7/2) == 0.77+23 e b’ Quadrupole and hexadecapole deduced from these values are compared with
those of neighboring even- A nuclei.

NUCLEAR REACTIONS *Dy(e,a’), ¥'Er{e,a’), E =12 MeV, measured o(E,-,
160°}. Deduced E2 and E4 matrix elements.

1. INTRODUCTION of !%Dy and '"Er with 12 MeV a-particles from

the University of Frankfurt Van de Graaff accel-
In recent years much experimental information erator. The elastically and inelastically scat-
has become available on quadrupole and hexadeca- tered projectiles were detected at 4,=160° with

pole moments of even-A nuclei in both the rare

earth and actinide regions of the Periodic Table.

In most of these studies o particles of sufficiently

low energy have been used to Coulomhb excite the 1 T
2* and 4" levels of the ground-state rotational 57
band. The reduced E2 and E4 transition matrix

elements, (2*|M(E2)|0") and (4*|M(EL)O"), are 163 Dy (a,a’) : /\
determined by comparing the experimental exci- 1wk e

tation probabilities of the 2 and 4* rotational 6= 160 ;
states with theoretical values calculated within -

the framework of a suitable theory of multiple Ec(‘ 12 MeV
Coulomb excitation.

The purpose of the present experiment is to ex-
tend the precise Coulomb excitation siudies per-
formed in this laboratory*™ and elsewhere® ! to
odd-A nuclei. Owing to the higher-~level density,
generally, more ground-band levels are populated
by Coulomb excitation with o particies than in the
neighboring even nuclei. Thus cne is enabled to
determine additional E2 matrix elements and - ¢
verify the validity of the nuclear model used in
the analysis, -

From the cbserved excitation probsbilities of W % s, ' T
the various ground-band levels, the intrinsic 2 .
quadrupole and hexadecapole moments are de~
termined and compared with those of the nelgh-
boring even-A isotopes. Preliminary results 10 L t ‘ oy
were reported earlier ™ 2550 2600 2650

CHANNEL NUMBER

W

COUNTS /CHANNEL

e
<
T
i

~
w
et
-
Ny
=
L]

1. EXPERIMENTAL PROCEDURE
The experiments were performed by bombard- FIG. 1. Spectrum of 12 MeV a-particles scattered
ing thin (1030 yg/cm?) enriched (> 91%) targets from #3py,
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FIG. 2. Spectrum of 12 MeV o -particles scattered
from *Er.

two cooled Si surface-barrier detectors posi-
tioned symmetrically to the beam direetion, A
peak-to-background ratio of better than 30 000:1
and an energy resolution of ~21 keV full width at

. ELZE, AND L. D. TOLSMA 17

half maximum {(FWHM) have been achieved, Typ~-
ical spectra are shown in Figs. 1 and 2.

The excitation cross section for the first excited
state of the ground band was determined by means
of a computer ¢ode which separated the respec-
tive peak from the elastic group in a self-consis-
tent iterative procedure agsuming identical line
shapes. The intensities were simultaneously cor-
rected for known impurities in the target material,
At higher excitation energies a fourth-order poly~
nomial fit was used to separate the peaks from
the background. The excitation probabilities of
the &*, L*, and 13" levels in *"Er were deter-
mined to an accuracy of 3.5%, 1.3%, and 8.7%,
respectively. Similar uncertainties have been
observed in **Dy,

HI. ANALYSIS AND DISCUSSION

The reduced E2 and E4 transition matrix ele-
ments were obtained from the measured excita~
tion probabilities by using both the quantum me-
chanlcal coupled-channels code JUPIGOR'S and
the semiclagsical Winther-de Boer multiple Cou-
lomb excitation code,'® The calculatlons show

TABLE I. Results of the Coriolis calculation for ¥'Er, Coriolis parametars: E,,,— 500089
+14.11 keV, EJ/y= 733.82444.11 keV, E};,=-143.4041,59 keV, H2/20= 8.1120.03 keV,
Agsa5/a=—10.8124.69keV, Ay)p 7/3=—5.112 177 kaV.

Level energy
Spin (keV)

Ampl.llude of wave ﬂmcmm

1K™ (Nm A Cale. Exp. §" @51 $ ®42) 1" w3

1} 633 ~2.0 0.0 0.0009 0.015¢ 0.8989

3 81.5 79.3 0.0018 0.0234 0.9997

% 181.4 177.6 0.0029 0.0304 0.8995

g 299.4 293.7 0.0042 0.0371 0.9993

¥ 435.8 4324 0.0057 0.0436 0.9990

g 589.9 592.0 0.0073 0.0500 0,9987

u 762.3 772.0 0.0083 0.0564 0.9884
14 @5y 532.0 532.0 1.0000 res es
$ 578.0 574.5 0.9948 0.1021

.;. 638.4 641.7 0,9880 0.1547 -0.,0033

g 716,2 0.9799 0.1991 —0.0084

g 811.4 0.9711 0.2383 ~0,0001
§4 e 816.0 812,56 ~0.1021 0.9948

} 883.3 874.0 ~0.1547 0.9878 ~0.0151

4 269.8 933.0 ~0.1992 0.9797 -0.0225

2 1075.2 ~0.2385 0.9707 —0.0289

% 1200.0 1205.0 -0.2735 0.9612 —~0.0345
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17 E2 AND E4 TRANSITION MOMENTS IN '*Dy AND " Er 7

TABLE I. Reduced matrix elements
(U KA MEM 1,K,) in units of eb*/2 for levels populated
by Coulomb excitation in the '®Dyir,a’) and ¥'Er@, e’}
reactions.

lG!Dy
(4 §1ME2]§ §y=3.8320.10
3 HIMER§ $=2.3120.02
& ElmEn] S §r=060234
lGTEr

3 LIMEHNE §)=4.3840.08
& HimMERL I=2.242001
& LIMEONL Ly= 01738

G JIMEDIE Ir=04920.03
& $ImER Lry=0.422002
& slimMEDE 1)=0.53+0.03
I 2imERNE Jr=04a20.04
& YimED))} $y=0.1020.02

that the hexadecapole moment can be determined
from the croas section of the third excited state,
while its influence on the first and second ex-
cited states is negligibly small since the excita-
tion of the latter two levels is governed by E2
trangitions. For *Er two E2 matrix elements,
& HMENID and QZAM(EDNZL), were de-
termined from the excitation of the § and &} levels
" by means of the quantum mechanical coupled-
channels code. The ratio of these matrix ele~
ments was compared with the theoretical model
predictions which are needed to calculate the en~
tire E2 matrix. For both nuclei studied here, it

appears that the reduced transition probabilities
are well described by the rigid-rotor model,
wlthout Coriolis mixing, Whether or not band
mixing can be neglected was investigated in a
three-band Coriolls calculation in which level en-
ergies were fitted to the experimental values by
varying band-head energies, rotational parameter,
and coupling Strengths. The result of such a cal-
culation, which included levels of the K =1*, 5%,
and 3* bands In **Er, is shown in Table 1. As
can be seen, the coupling between the ground-
state band and the higher bands is rather weak,
A previously assigned K =1* band based on a lev-
el at 592 keV in *™Er was not included in our
Coriolis calculations, since Tveter ef al.'” have
found that the i state at 711 keV is the band head
of a y-vibrational band. This assignment is sup-
ported by the strong excitation of the 711 keV lev-
el in the present experiment, Similar resulis are
obtained for the K =3, §, and § bands in *Dy.

The influence of quantum mechanical effects on
the cross sections was evaluated by calculating
the excitation probabillties in terms of the E2
matrix with both the semiclassical and quantem
mechanical coupled-channels code. The quantal
effects reduced the differential cross sections of
the ", &', and &% levels in '*"Er by approximate-
ly 1.6%, 1.7%, and 6,5%, respectively. These
quantum mechanical corrections were then ap~
plied to the differential cross sections calculated
with the semiclassical code 2s a function of the
E4 matrix, The reduction of the execitation prob-
ability of the 13" state by 6.5% was taken to be
independent of the magnitude of the (WL ME4NLL
matrix element, This is justified on the basis of
the results shown in Fig. 2 of Ref. 1,

The E2 and K4 matrix elements obtained frnm
the present study are listed in Table I. The sign

TABLE [[. Comparison of the quadrupole nnd hexadecapole moments of %%, .nd ¥'Er

with those of neighboring even-4 nuclei,

A () Qo (9 (K’ =Ky 2| M{E2;22)|Ky.) (2b)

162y 7.36+0.03 0.6420.24

{Rel. 6}
83y 7.20%0.13 1902z}
1s4py 7544004 0.54x3

(Ref. 1)
gy 7.67%0.03 0.522)3 0.256 0,005 (K* = 2)

(Refs. 1 and 4)
gy 7.60£0.10 1L35xfH  0.24820.007 (K'=Y) 0.249%0,012 (K’ =)
tspr 7.61+0.06 0475 0.255+0.005 (K’ = 2}

(Refs, 6 and 18)
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of the E4 matrix element was taken to be positive,
in analogy to the even-A neighboring nuclei. Also
shown are interband matrix elements for '™Er
which have been determined from the measured
crosa sections by meane of semiclassical calcu-
lations assuming 1dent1ca.l intrinsie quadrupole
moments® in the K =3, &, and & rotational
bands, The E2 matrix elements obtained are
found to be in good agreement with previous mea-
surements.'?

Intrinsic quadrupole and hexadecapole moments
derived from the measured reduced E2 and E4
matrix elements are compared with those of the

ELZE, AND L. D. TOLSMA 17

even-A neighboring nuclei in Table II. 1t is seen
that there ia agreement of these values within the
experimental uncertainties, In the case of the Er
isotopes, the intrinsic interband matrix elements
between the ground-state band and the y-vibra-
tional bands (K, =Kz.+2) are also shown, In sum-
mary, the measured multipole moments indicate

" that the shapes of the strongly deformed odd-A

nuclef '**Dy and '*"Er are similar to those which
have been determined for the respective neigh-
boring even-A isctopes,

This research was supported in part by the
Bundesministerium fdr Forschung und Technologie.
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forschung, Darmstadt, Germany.
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Abstract: The intrinsic quadrupole moment of
178y has been determined by Coulomb excitation
with a-particles to be 6.98 = §.10 b. Evidence
for a new level at approximately 578 keY¥ with
presumably collective structure is presented.

The electromagnetic praperties of '7®Lu are
of much current interest since it has been pro-
posed to use the p-decay of its K,IT = 7,7~
ground state to '7EHF (Tysp = 3.6x10'° y) as a
cosmic chronometer for s-process nucleosynthesis
{see e.g. [1] and references cited therein}. The
ground-state decay, however, is complicated by
the K,IT = 0,1" isomeric state at 127 keV which
decays to !7°Hf with a half life of only 3.68 hr,
If, at stellar temperatures, this short-lived
isomer is linked to the ground state by electro-
magnetic interaction, then the total half life
against B-decay will be considerably smaller than
the known ground—state value and the applicabi-
lity of '?®Lu as cosmic clack may become ques-
tionable. In order to make estimates possible to
what extent the isomer can be excited, we have
initiated a general study of the electromagnetic
properties of !7®Lu, part of which is the precise
determination of its intrinsic guadrupole moment
reported in this communication,

The experiment was performed by exposing
thin {<10 pg/cm?), isotopically pure '7SLu tar-
gets to a-particle beams with energies of 9.5,
13.5 and 14.0 MeV obtained from the University of
Frankfurt Van de Graaff accelerator, The targets
were fabricated using the Karlsruhe jsotope se-
parator. Elastically and inelastically scattered

*  This Short Note has already appeared in Vol. 309 No. 3 (1983}
pp. 275-276 but unfortunately the list ol authors was not com-
plete

a~projectiles were detected by twe cooled and
collimated Si surface-barrier detectors position-
ed at +1640 with respect to the beam direction.
An energy resalution of typically 22 keV (FWHM)
was achieved. At the beam energy of 13.5 MeV two
separate measurements were performed and, hence,
a total of 8 spectra was obtained. A representa-
tive spectrum measured at 13.5 MeV is shown in
Fig. 1. This spectrum shows excitation of the
ground band up to and including the 10~ state,
with an additional peak seen at 578 keV (marked
by "2"}. This latter group is probably due to a
collective *78Ly Tevel which is reported here for
the first time, Since the intensity of this peak
strongly decreases with decreasing projectile
energy and, moreaver, its position in the spec-
trum is independent of the projectile energy, it
is most unlikely that this peak is caused by a
target contaminant.

The excitation cross section of the 8~ state
was obtained relative to the elastic-scattering
strength by using a computer code that separated
the 8~ and 7~ peaks in an iterative, selfconsis~
tent procedure assuming identical 1ine shapes.
The intensities of the other groups were obtained
by fitting third-order polynomials to the back-
ground below and above each peak.

To deduce the intrinsic quadrupole moment
from the measured excitation probabilities, semi-
classical Coulomb-excitation cross sections were
calculated using the Winther-de Boer code [2].
A1l E2 matrix elements which connect the 7~, 8",
9~ and 10~ levels were included in these calcula-
tions, with the rigid-rotor formula [3] used to
relate the reduced matrix elements to the intrin-
sic quadrupole moment Q,,

<Lek| M(E2)| {1 k> = V[2T,+1) 5/16m (1,K20]1¢K)eq, .
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Fig. 1: Spectrum of a-particles scattered elasti-

cally and inelastically from a Lu target. Pro-
jectile energy Ey = 13.5 MeV, Ojap = 164°. The
group labelled "?" (Egy. ™ 578 keV) is presumably
due to a collective state in ‘"®Lu reported here
for the first time.

The quadrupole moment Q, was derived by adjusting
the entire E2 matrix to fit the measured excita-
tion probability of the 8™ level. The E2 matrix
obtained in this way was found to reproduce also
the experimental excitation cross sections of the
9~ and 10~ levels within their experimental un-
certainties. This result justifies in turn the
application of the ri?id-rotor model to describe
the lowest states of 7°Lu.

Several corrections were applied to the semi-
classical calculations just described, the most
important of which is due to quantal effects.

This correction was evaluated by calculating the
excitation cross sections with a quantum-mechani-
cal coupled-channels code [4] and comparing the
results to the semi-classical calculations. Quan-
tal effects were found to enhance the quadrupole
moment deduced from the excitation probability of
the 8 state measured at 13.5 MeV by 1.4%. Fur-
ther corrections which are due to atomic screen-
ing, vacuum polarization and dipole polarization
of the target nucleus have been applied following
the prescription given in ref. [5]. The sum of
these corrections, all of which act in the same
direction, reduce the quadrupole moment by ~ 1.1%
to 1.4% depending on the projectile energy. The

E4 excitation, however, has been neglected as it
has virtually no effect (<0.1%) on the quadrupole
moment deduced, assuming an either positive or
negative intrinsic hexadecapole moment as found in
the neighbouring 17¢Yb and !'7°Hf nuclei, respecti-
vely [6,7].

Table 1 shows the results for the intrinsic
quadrupole moment Q_ obtained from the individual
measurements performed at different bombarding
energies, together with their statistical errors.
The sign of Qo was chosen to be positive accord-

J. Gerl et al.: Quadrupole Moment of '"°Lu

ing to the prolate deformation observed in this
mass region. The result obtained at the highest
projectile energy (14.0 MeV) is seen to be con-
siderably smaller than the vaiues deduced at
lower bombarding energies. This fact is attri-
buted to the onset of interference effects bet-
ween the Coulomb and nuclear interactions. Also
included in Table 1 is the weighted average <O°>
Table 1: Intrinsic quadrupole moment Q of 1781y
as derived from the individual Coulomb-
excitation measurements performed at
different bombarding energies and the
resulting average value <Qo>

E (Mev) q, (b) <Qg> (b)

9.5 6.99 * 0.09

13.5 6.94 + 0.05 6.98 + 0.10
7.02 = 0.06

14.0 6.69 + 0.08

obtained from the measurements at 9.5 and 13.5
MeV. The error associated with <Q,> as given in
Table 1 has been chosen to be approximately twice
the statistical uncertainty in order to account
for the fact that the 578 keV level has been ne-
glected in the Coulomb-excitation calculations.
Inclusion of this state in the data analysis was
found to alter the quadrupole moment only within
these error limits when either E2 or E3 excita-
tion was assumed and matrix elements were used
that reproduce all of the measured excitation
cross sections, A more detailed discussion of the
results described in this communication, together
with additional data on the electromagnetic pro-
perties of !7®Lu will be the subject of a forth-
coming publication.
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SUMMARY

The quantum-mechanical description of inelastic scattering processes
with multiple excitation dinduced by atomic particles requires the
numerical solution of the Schrédinger equation, which can be reformulated
as a set of coupled linear second-order radial differential equations.
In this thesis, the computational aspects of solving the Schriddinger
equation are investigated for small, as well as for large sets.

For small sets the investigation deals with the accuracy of the
numerical integration process. The sets are solved as many times as the
dimension of the set with linearly independent regular starting values
for each of the solution vectors. A method has been used successfully for
measuring the accuracy of the regular solution subspace spanned by the
solution vectors, rather than the accuracy of the solution vectors them—
selves, in order to investigate the accuracy of the integration process.
This method computes the principal angles between two solution subspaces
obtained under different numerical conditions (varying integration step
length and stabilization strategy). One of the subspaces 1is constructed
under optimal conditions so that it 1is considered to be the reference
subspace, the other being the subspace to be investigated. In this
method, the quality of a solution subspace obtained by a numerical
procedure, can be measured, e.g., the extent to which solution vectors,
as a basis of the solution subspace, remain linearly independent in the
range from the origin to the matching radius Rm during the integration.

The computation of the principal angles can be used to inspect the
loss of accuracy in the integration range originating from the truncation
error inherent in the difference formula used and to detect the possible
sources of deficlencies 1in the numerical process for solving the
Schrddinger equation. A method has been developed and applied with which
deficiencies caused by discontinuities in the potential matrix can be
avoided.

The loss of accuracy due to the tendency of the solution vectors to
become “"nearly 1linearly dependent™ during the integration through a
classically forbidden region as an effect of round-off errors, can be
examined by determining the principal angles, too. This loss of accuracy
requires stabilization of the set of solution vectors. We found that, in
our test cases of alpha particle scattering from 2831, including some
with an energy near the Coulomb barrier, stabilization in only a few
well-chosen mesh points was sufficient to obtain an S-matrix accuracy

adequate for practical purposes.
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In order to take into account the long range of the Coulomb coupling
effectively, an integration method has been applied based upon piecewise

analytic reference solutions.

To describe heavy-ion reactions, large sets will occur together with a
rapidly oscillating behaviour of the solution function within the classi-
cally allowed region of the integration range and with an even longer
range of the Coulomb coupling. In order to investigate the computational
aspects of these sets, the set of coupled differential equations of the
partial-wave radial solutions is rewritten in integral form. Decomposing
these solutions into two basis functions, the corresponding amplitudes
satisfy a set of coupled integral equations. Expressing the basis
functions in terms of appropriately chosen piecewise analytic reference
solutions, the integrals appearing in this set can be evaluated analyti-
cally. The goniometric and Airy functions, as well as the Coulomb wave
functions are used as reference solutions. The integrals contalning
Coulomb wave functions can be determined efficiently using recurrence
relations. The coupled set of amplitude equations is solved iteratively.
The efficiency of two ilteration methods, the inward-outward and the sequ~
erntial one, has been investigated for test cases dealing with multiple

Coulomb excitation of 238U by 385 MeV 84Kr up to high spin states of the

ground—-state rotational band. The Coulomb and nuclear excitation of 238U
by 286 MeV 4OAr and 718 MeV 84Kr has been considered too. Padé
approximants to the S—-matrix elements were also included in both of the
iteratfon methods. It turns out that the inward-outward iteration method
converges much faster than the sequential one. In many cases, the inward-
outward method does not need Padé acceleration at all, while the sequen-
tial method does. It even happens sometimes that convergent cases in the
inward-~outward method diverge 1in the sequential method aided by Padé
approximants. The excitation probabilities as a function of the scat-
tering angle were calculated for the aforementioned heavy~ion reactions.

A method for vectorization of coupled-channel Fortran programmes,
based upon these integral equatiomns, has been investigated for use on the
Cyber 205 computer (with one vector-pipeline). Results are given for the
excitation test cases of 238U by AOAr and 84Kr. In these cases with
dimensions of the set of 64 and 169, respectively, it appears that the
vector algorithm gives a partial speed=-up of 4 to 8, resulting in an
oveérall factor of 2 to 3 speed~up as compared with a highly optimized
scalar algorithm.

Finally, the intrinsic quadrupole and hexadecapole moments of some
odd-A nuclei have been determined in collaboration with a group from the
university of Frankfurt (BRD).
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SAMENVATTING

De quantummechanische beschrijving van inelastische verstrooiings—
processen met meervoudige excitatie geinduceerd door atomaire deeltjes
vereist de numerieke oplossing van de Schrddinger—vergelijking. Deze ver—
gelijking kan worden geschreven als een stelsel gekoppelde lineaire dif-
ferentiaalvergeli jkingen van de tweede orde voor de radiale golffuncties.
In dit proefschrift worden aspecten onderzocht die een rol spelen bij het
oplossen van de Schrédinger-vergelljking voor =zowel kleine als grote
stelsels.

Het onderzoek van kleine stelsels heeft betrekking op de nauwkeurig-
heid van het numerieke integratieproces. Volgens de standaardprocedure
wordt het stelsel zo vaak opgelost als zijn dimensie bedraagt, uet
lineair onafhankelijke regullere startwaarden voor ieder van de oplos-—
singsvectoren. Om de nauwkeurigheid van het integratieproces te onder-
zoeken is met succes een methode gebruikt om de nauwkeﬁrigheid te meten
van de oplossingsruimte, opgespannen door de oplossingsvectoren, in
plaats van de nauwkeurigheid van die vectoren zelf. Deze wmethode berekent
de kanonieke hoeken tussen twee oplossingsruimtén die onder verschillende
numerieke omstandigheden verkregen zijn. Een van de ruimten wordt onder
optimale omstandigheden berekend en dient als referentieruimte, terwijl
de tweede de ruimte is die wordt onderzocht. Met deze methode kan de kwa—
liteit van een oplossingsruimte, verkregen met een numerieke procedure,
gemeten worden; bijvoorbeeld, de mate waarin de lineaire onafhankeli jk—
heid van de oplossingsvectoren als basis van een oplossingsruimte gehand-
haafd blijft tijdens de integratie van de oorsprong tot de straal Rm.

De berekening van deze hoeken kan worden gebruikt om het verlies aan
nauwkeurigheid in het integratie—interval, als gevolg van de afbreekfout
die inherent is aan de gebruikte differentieformule, mna te gaan. Tevens
kunnen mogeli jke onvolkomenheden in het numerieke proces worden waargeno-
men. Een methode is ontwikkeld en toegepast waarmee gebreken, veroorzaakt
door discontinuiteiten in de potentiaalmatrix, kunnen worden vermeden.

Het nauwkeurigheidsverlies ten gevolge van de mneiging van de oplos-
singsvectoren om tijdens de integratie door een klassiek verboden gebied
"bijna lineair afhankelijk"” te worden door afrondfouten, kan ook door
bepaling van de kanonieke hoeken worden onderzocht. Dit verlies vereist
stabiligatie van het vectorstelsel. Het bleek dat in onze testgevallen
van alpha-verstrooiing aan 2831, waarvan emnkele met een energle in de
buurt van de Coulomb~barridre, stabilisatie slechts in een klein aantal
goedgekozen integratiepunten nodig was om een nauwkeurigheid van de

S—matrix te verkrijgen, die voldoende is voor practische toepassingen.
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Om wmet de lange dracht van de Coulombkoppeling effectief rekening te
houden, 1s een integratiemethode toegepast gebaseerd op intervalsgewl js
te bepalen analytische reférentieoplossingen.

Bij de beschrijving van zware-ionenprocessen komen grote stelsels voor
met een snel oscillerend gedrag van de oﬁlossingsfunctie in het klassiek
toegankell jke gebled van het integratie-interval en met een nog langere
dracht van de Coulombkoppeling. Om de berekeningsaspecten van deze
stelsels te onderzoeken wordt het stelsel gekoppelde differentiaal-
vergell jkingen voor de radiale partiéle—golfoplossingen geschreven in
integraalvorm. Door deze oplossingen in twee basisfuncties te ontwikkelen
voldoen de overeenkomstige amplitudes aan een stelsel gekoppelde inte-
graalvergeli jkingen. De integralen die in dit stelsel voorkomen kunnen
analytisch worden bepaald door de basisfuncties intervalsgewlijs uit te
drukken in geschikt gekozen analytische referentieoplossingen. Zowel
goniometrische en Airyfuncties als Coulombgolffuncties worden als refe-
rentieoplossingen gebruikt. De integralen wet Coulombgolffuncties kunnen
efficiént met recursierelaties worden bepaald. Het gekoppelde stelsel van
amplitudevergeli jkingen wordt iteratief opgelost. De efficigntie 1is
onderzocht van twee iteratieschema's, de inwaarts—-uitwaarts—methode en de
sequentiéle, voor testgevallen van meervoudige Coulomb—excitatie van 238U
door 385 MeV AKr tot aan hoge spintoestanden van de grondtoestand
rotatieband. Tevens is de Coulomb-kern-excitatie van 238U door 286 MeV
hoAr en 718 MeV SAKI bekeken. Qok werd in beide iteratiemethoden Padé&-
approximatie op de S-matrixelementen toegepast. Het blijkt dat de
inwaarts—-ultwaartse iteratiemethode veel sneller coavergeert dan he
sequentiéle. In veel gevallen heeft de inwaarts—uitwaartse methode in het
geheel geen Padé-versnelling nodig iIn tegenstelling tot de sequentidéle
methode. Voor bovengenoemde zware-ionenreacties werden de excitatie-
waarschi jnli jkheden als functie van de verstrooiingshoek berekend en voor
zover mwogelijk vergeleken met het experiment.

Een methode voor vectorisatie van gekoppelde-kanalen Fortranprogram—
ma's, gebaseerd op deze 1integraalvergelijkingen, is voor gebruik op de
Cyber 205 supercomputer (met #8&n vectorpijplijn) onderzocht. Resultaten
worden gegeven voor de testgevallen waarin 238U gedxciteerd wordt door
aoAr and 84Kr. Voor deze gevallen, met een stelsel van dimensie 64,
respectievelijk 169, blijkt dat het vectoralgoritme een partiéle
versnelling geeft van 4 tot 8, resulterend in een totale versnellings—
factor van 2 tot 3 vergeleken met een geoptimaliseerd scalair algoritme.

Tenslotte zijn de intrinsieke quadrupool- en hexadecapoolmomenten van
enige oneven~A kernen bepaald in samenwerking met een groep van de
universiteit te Frankfurt (BRD).
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DANKWOORD

Het onderzoek dat aan dit proefschrift ten grondslag ligt kon slechts
tot stand komen door bijdragen die andere personen hieraan hebben
geleverd. Langs deze weg wil ik dan ook graag een woord van dank aan hun
adres uitspreken.

Dit geldt op de eerste plaats voor mijn beide promotorem, de
professoren Dr. B.J. Verhaar en Dr. G.W. Veltkamp. Door mij deelgenoot te
maken van hun kennis en Inzicht in het onderhavige onderwerp en mij
daarop kritisch te bevragen, hebben zij mede richting en inhoud van het
onderzoek bepaald. De soms moeizame discussies met hem waren toch een
voortdurende stimulans voor mij.

Het beschreven onderzoek kon niet worden uitgevoerd zonder uitgebreid
en langdurig rekenwerk, dat op de Burroughs 7700/7900 computers van de
Technische Hogeschool woest worden verricht. Hiervoor bleek het nodig om
het ounderste uit de computerkan te halen, wat nooit gelukt 2zou zijn
zonder de hulp van medewerkers vam het Rekencentrum, met name van Gertjan
Visser,‘Henk van de Langenberg, Carel Braam en Piet Tutelaers. Qok de
medewerking, voor o.a. de speclale weekend-arrangementem, die ik van Loek
van de Putte en zijn medewerkers ondervond, heb ik zeer op prijs gesteld.
In een later stadium van het onderzoek zijn berekeningen uiltgevoerd op de
Cyber 205 supercomputer van het Academisch Rekencentrum te Amsterdam. Qok
een aantal medewerkers van dit rekencentrum ben ik zeer erkeritelijk voor
de verleende assistentie.

Een gewaardeerde bijdrage aan de vormgeving van dit proefschrift is
geleverd door Ruth Gruijters en incidenteel ook door de heer C. Quak, die
het tekenwerk voor hun rekening heben genomen. Dr. Peter Attwood ben ik
zeer erkentelijk voor zijn bijstand bij het vinden van de julste
formuleringen in het engels.

Tenslotte dank ik staglairs en afstudeerders voor hun bijdrage aan het
onderzoek en mijn collega's wit de groep Experimentele Kernfysica wvoor
hun vriendschap die van grote morele betekenls voor mij was. 7

Allen, van harte bedankt !!!
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STELLINGEN

behorende bij het proefschrift vam

L.D. Tolsma

Eindhoven, 13 juni 1986.
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Conclusies met betrekking tot de geldigheid van benaderingen als de
Bornapproximatie, toegepast op de "modulerende amplitudes”, welke
z1jn gebaseerd op berekeningen waarin de grondtoestand met slechts
8&n aangeslagen toestand wordt gekoppeld, gelden niet a priori voor

gekoppelde-kanalenberekeningen met meervoudige excitatie.

M. Rhoades-Brown, M.H. Macfarlane and S.C. Pieper,
Phys. Rev. C21(1980)2417.

M. Rhoades—Brown e.a. maken een vergelijking tussen de geschatte
rekentijden, die enerzijds nodlg zijn voor een door hen toegepaste
iteratiemethode voor het oplossen van grote stelsels differentiaal-
vergeli jkingen en anderzijds voor de standaardmethode. De voor hun

aanpak gunstig uitvallende conclusie is onjuist.

M. Rhoades-Brown, M.H. Macfarlane and S.C. Pieper,
Phys. Rev. C21(1980)2436.

De zogemoemde lambda-up recursierelatie voor electrische-~multipool
radiale matrixelementen 1s, vanuit numeriek oogpunt beschouwd, voor

veel toepassingen nauwelijks bruikbaar.

Een grote mate van symmetrie in berekende S—matrixelementen is geen
garantie voor een even grote numerieke nauwkeurigheid van deze

elementens.

R.G. Gordon, "Quantum Scattering Using Piecewise Analytic Solutions™
in: Methods 1in Computational Physics 10, Atomic and Molecular
Scattering, eds. B. Alder et al. (Academic, New York, 1971), p.81;
Dit proefschrift, hoofdstuk 3.

De analyses van experimentele resultateu met behulp van het in brede
kring gebruikte computerprogramma JUPITOR hebben hun waarde niet
verloren ondanks de defici¥nties hierin die met de 1in dit proef-

schrift beschreven methode zijn waargemomen.

T. Tamura, Oak Ridge National Laboratory Report No.ORNL-4152(1967);
H. Rebel and G.W. Schwelmer, Kernforschungszentrum Karlsruhe Report

No. KFK-1333(1971).



Het oplossen van een stelsel differentiaalvergelijkingen

& ‘z‘
v .(r) = v, . () v.(x), i=1,2,.00,n
4l i 7 1 j

met een integratiemethode gebaseerd op een differentieformule waar—
van de afbreekfout van hoge orde 1s, moet zinloos worden geacht als
de potentiaalfunctie Vij(r) discontinuiteiten in lage afgeleiden

bevat.

N.M. Clarke, Comput. Phys. Commun. 27(1982)365;
Dit proefschrift, hoofdstuk 3.

De bijdrage die universitelten en technische hogescholen moeten
leveren aan technologische innovatie em versterking van de economie
dient niet ten koste te gaan van wat er van hun universalitelt nog
over 1s. Deze laatste dreigt opnieuw aangetast te worden door de
beleldsvoornemens van de minister om de activitelten op het gebled
van de lichamelijke, sociaal-culturele en geestelljke vorming van

studenten niet meer tot de unlversitalre taken te rekenen.

Notltie inzake het beleid betreffende studentenvoorzieningen,
Ministerie van Onderwljs en Wetenschappen, juni 1985.
Commentaar op de notitie van het Landelijk Overleg Studenten—

pastoraat, Humanistisch Studentenraadswerk, Joods Studentenwerk

TJAR, october 1985.

De wijze waarop de universiteiten in Japan tegen een zeer geringe
vergoeding gebruik kunnen maken van supercomputers stéekt schril af
bij het hier te lande gehanteerde doorberekeningssysteem van de
gemaakte rekenkosten. Dit zal verstrekkende gevolgen hebben voor de

ontwikkeling van wetenschap en techniek.

K.G. Wilson, "Science, Industry, and the New Japanese Challenge" in:
Supercomputers -~ their impact on science and technology,
Proceedings of the IEEE 72(1984)6.

J.M. van Kats, R. Llurba enm A.J. van der Steen, Relsverslag bezoek
aan Japan, verschijnt in ACCU-reeks, Academisch Computer Centrum
Utrecht, 1986.



10.

11.

12.

De Technische Hogeschool Eindhoven dient in overweging te nemen om
ten behoeve van onderwijs em onderzoek een multiprocessor parallel-
computer aan te schaffen met een architectuur zoals een, die

gebaseerd is op de hyperkubus topologile.

dimensie 0 1 2 3 4 5
processoren 1 2 4 8 16 32
verbindingen 0O 1 4 12 32 80

topologie O O=0 EI ﬁ

De hyperkubus topologie

Zo er al sprake is van een beleid van de zijde van het Nederlaundse
Episcopaat ten aanzien van het pastoraat onder studenten van het
Wetenschappelijk en Hoger Beroeps-Onderwijs dan wordt dit tot nu toe
gevoerd onder het motto “"over hen, zonder hen”. De kerkgeschiedenis

leert dat het ook anders kan.

De door priesters geleide rooms—katholieke lekenorganisatie Opus Dei,
die haar activiteiten met name richt op studerende jongeren, gaat
uit van een spiritualiteit die geen ruimte laat voor de vorming van

een persoonlijk geweten.

J. Escriva de Balaguer, de Weg, o.a. de alinea's 457, 777 en 945.

Ook al is Neelie's bod nog zo snel,

Het gaspedaal overtroeft 66k dit wel.



