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SUMMAllY 

The Metal-Oxide-Silicon Field Effect Transistor (MOSFET) bas proven to be the 

work horse of modern IC technology. In the development of the MOSFET over the 

last decade, the IJIOst striking feature is the reduction of the dimensions of 

the active region into the deep-submicron range. However, this decrease in 

device size leads to an increase in complexity of the device physics. First 

of all, the free charges gain much energy due to the corresponding high and 

steep peak in the electric field and the so called hot-carrier effects will 

play an essential role in the device behavior. Secondly •' quantization effects 

become increasingly important. 

The main goal of this thesis is to obtain a better insight in the 

hot-electron effects in submicron Si n-channel MOSFETs, by making use of 

simulations. In these simulations the electron temperature distribution and 

avalanche generation distribution in the MOSFETs are calculated. In addition 

the device currents are calculated, in particular the substrate current, 

which is a measure of the overall avalanche generation. The simulation 

results obtained are compared to experimental data obtained from other 

research institutes (in particular Philips Research Laboratories). In the 

end, this research may lead to further improvement of the devices in the 

future. 

Much effort bas been spent in solving numerically the Boltzmann transport 

equation, including high-energy effects. To solve the transport equation, 

basically two different methods are available. One is the Ensemble Monte 

Carlo method, in which the trajectories of a large number of simulation 

carriers are followed through the device. The great advantage of the Monte 

Carlo method is that complicated band structures and scatter mechanisms, and 

all sorts of quantum effects can be included. Furthermore, no a priori 

knowledge of the energy distribution function is needed. But the Monte Carlo 

method bas its price: it is extremely expensive in computing time and storage 

space. The method also introduces much numerical noise. 

The second method, the hydrodynamic method, is an extension of the well

established drift-diffusion method and takes into account the first three 

moments of the Boltzmann transport equation. This method is faster and less 

noisy than the Monte Carlo method, and in this thesis the hydrodynamic method 

bas been preferred as a device simulator. However, lts main disadvantage is 

that implicitly a shifted, asymmetrie Maxwell-Boltzmann distribution function 

is assumed. Therefore in theory, its range of applicability is less than that 

of the Monte Carlo method. Nevertheless, our simulations show that the 
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hydrodynamic method can be used in the deep-submicron region, which fulfills 

our requirements. However, it has to be noted that the hydrodynamic method 

yet does give rise to serious convergence problems. 

Although the Ensemble Monte Carlo method in this thesis is not used for the 

actual simulation of MOSFETs, in order to obtain the transport parameters as 

a function of electron energy, a Monte Carlo simulator bas been developed for 

bulk material. The results show a nearly linear relation between average 

eleetron energy and applied field. Furthermore a constant energy relaxatlon 

time of 0.4 picosecond has been found. This value is nearly independent of 

the doping concentration. 

In addition a Monte Carlo one-dimensional device simulator has been developed 

for studying the electron transport in diode structures. Results obtained 

with this simulator have been compared with results obtained by the 

hydrodynamic method. Simulations show that the heat-flow in the hydrodynamic 

model is better described by the adiabatic model than by the more 

conventional Wiedemann-Franz model. 

Next a quasi two-dimensional hydrodynamic MOSFET simulator has been 

developed. In this simulator the transport parameters have been defined as a 

function of local electron energy. Using the adiabatic heat-flow model in 

combination with the avalanche parameters at the Si-Si0
2 

interface, as 

defined by Slotboom, good agreement between the calculated and the 

experimental values of the substrate current bas been found. 

Furthermore the full two-dimensional hydrodynamic simulator TRENDY, developed 

at the University of Twente, has been improved and tailored to our problem. 

However TRENDY yields substrate currents that are much lower than the 

experlmental deta. This is due to the fact that TRENDY uses the 

Wiedemann-Franz heat flow model. Probably better results can be obtained if a 

good discretization scheme for the adiabatic model bas been found. 

Finally further studies have shown that the use of the drift-diffusion 

method, in combination with 

temperature, yields very 

hot-electron effects. 

a post-routine to 

useful first-order 
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SAHENVATTDIG 

De Metaal-Oxide-Silicium Veld-Effekt-Transistor (MOSFET) kan met recht het 

werkpaard van de moderne IC-technologie genoemd worden. Meest opvallend in de 

ontwikkeling van de MOSFET gedurende de afgelopen tien jaar, is de verkorting 

van het aktieve gebied tot diep in het submikron-gebied. Echter, in deze 

kort-kanaal HOSFETs is de fysika aanmerkelijk meer complex. Op de eerste 

plaats winnen de aktieve ladingsdragers veel energie als gevolg van de 

corresponderende hoge en steile piek in het elektrisch veld en gaan de 

zogenaamde hete-ladingsdragerseffekten een belangrijke rol spelen in het 

transistorgedrag. Ten tweede worden de quantumeffekten belangrijker. 

Het doel van dit proefschrift is het verkrijgen van meer inzicht in de hete

elektroneneffekten in submikron silicium n-kanaals MOSFETs door middel van 

si111Ulaties. In deze simulaties worden o.a. de verdeling van de elektronen

temperatuur en de generatie van extra ladingsdragers als gevolg van ladings

vermenigvuldiging in de MOSFETs berekend. Ook de stromen aan de contacten 

worden berekend, in het bijzonder de substraatstroom, die een maat is voor de 

totale vermenigvuldigingsgeneratie. De verkregen simulatieresultaten worden 

vergeleken met experimentele data, die verkregen zijn van andere 

onderzoekainstituten (in het bijzonder van het Philips Natuurkundig 

Laboratorium). Uiteindelijk kan dit onderzoek leiden tot verdere verbetering 

van de MOS transistoren in de toekomst. 

Veel werk is besteed aan het numeriek oplossen van de Boltzmann transport

vergelijking, waarin de hoge-elektroneneffekten meegenomen worden. In 

principe zijn er twee verschillende methoden beschikbaar om de 

transportvergelijking op te lossen. Eén is de Ensemble Monte Carlo methode, 

waarin een groot aantal simulatie-elektronen gevolgd worden op hun weg door 

de transistor. Het grote voordeel van de Monte Carlo methode is dat 

gekompliceerde bandenstrukturen, verstrooiingsmechanismen en ook allerlei 

quantumeffekten meegenomen kunnen worden. Maar dit voordeel heeft ook zijn 

prijs: de Monte Carlo methode vergt zeer veel rekentijd en geheugenruimte. 

Bovendien is de methode behept met ruis. 

De tweede methode, de hydrodynamische, is een uitbreiding van de veel 

gebruikte drift-diffusie methode, waarbij nu de eerste drie momenten van de 

Boltzmann transportvergelijking als uitgangspunt genomen worden. De 

hydrodynamische methode is sneller en produceert minder ruis dan de Monte 

Carlo methode. In dit proefschrift is dan ook de voorkeur gegeven aan het 

hydrodynamisch model. Het belangrijkste nadeel is echter dat dit model 

impliciet een verschoven, asymmetrische Maxwell-Boltzmann verdelingsfunktie 
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veronderstelt. Daardoor is het toepassingsgebied in theorie kleiner dan dat 

van de Monte Carlo methode. Onze simulaties tonen aan dat dit in de praktijk 

nogal meevalt, en dat de hydrodynamische methode tot diep in het submikron

gebied bruikbaar is. Helaas is echter ook gebleken, dat deze methode nog 

ernstige convergentieproblemen heeft. 

Hoewel de Ensemble Monte Carlo methode in dit proefschrift niet gebruikt 

wordt voor de simulatie van MOSFETs, is, om de transportparameters als 

funk.tie van de elektronenenergie te kunnen beschrijven, wel een Monte Carlo 

simulator ontwikkeld voor bulkmateriaal. De resultaten laten een vrijwel 

lineaire relatie zien tussen de gemiddelde elektronenenergie en het 

aangelegde veld; bovendien is een konstante energie·relaxatietijd van 

ongeveer 0.4 picosekonde gevonden. De gevonden waarden zijn praktisch 

onafhankelijk van de aanwezige verontreinigingskoncentratie. 

Bovendien is een Monte Carlo één-dimensionale devicesimulator ontwikkeld voor 

de studie van het elektronentransport in diodestrukturen. Resultaten 

verkregen met deze simulator zijn vergeleken met resultaten verkregen met een 

hydrodynamische simulator. Hierbij blijkt dat de warmtestroming in het 

hydrodynamische model beter beschreven wordt door een adiabatisch model dan 

door het vaker gebruikte Wiedemann-Franz model. 

Vervolgens is een quasi twee-dimensionale hydrodynamische MOSFET simulator 

ontwikkeld. In deze simulator zijn de transportparameters als funktie van de 

lokale elektronenenergie beschreven. Gebruikmakend van het adiabatische 

warmte-stromingsmodel, in combinatie met de vermengvuldigingsparameters aan 

het Si-Si0
2 

grensvlak, zoals gedefinieerd door Slotboom, zijn de berekende 

substraatstromen in goede overeenstemming met de experimentele data. 

Daarnaast is de twee-dimensionale simulator TRENDY, ontwikkeld aan de 

Universiteit van Twente, verbeterd en aangepast aan ons specifieke probleem. 

De substraatstromen berekend met TRENDY zijn veel lager dan de experimentele 

waarden. Dit komt doordat in TRENDY het Wiedemann-Franz model gebruikt is. 

Betere resultaten worden waarschijnlijk verkregen als een goed discretisatie

schema voor het adiabatische model gevonden is. 

Tenslotte heeft verder onderzoek aangetoond dat resultaten, verkregen met 

behulp van een drift-diffusie oplossing, in combinatie met een post-processor 

om de elektronentemperatuur te berekenen, een zeer bruikbare eerste-orde 

benadering oplevert van de hete-elektroneneffekten. 
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Chapter 1 

MOTIVATION AND INTB.ODUCTION 

1.1 Motivation 

The Metal-Oxide-Silicon Field Effect Transistor (MOSFET) bas proven to be the 

work horse of. modern IC technology and is used as a switching device, 

amplifier and load. A general description of the working of the MOS 

transistor is given in section 1.2. In the development of the MOS transistor 

over the last decade, the most striking feature is the reduction of the 

dimensions (down sealing) of the active regions into the submicron range 

(i.e. less than 1 micrometer). The major driving forces bebind down sealing 

are speed improvement, reduction of power consumption and improvement of 

packing density. At the moment devices are produced with channel lengths less 

than 100 nanometers. However, this decrease in device size leads to an 

increase in complexity of the device physics. First of all, the free charges 

moving from source to drain gain much energy due to the corresponding high 

peak in the electric field and the so called hot-carrier effects will play an 

essential role in device behavior. Secondly, quantization effects in the 

inversion layer become increasingly important. Both quantization and 

hot-electron effects are described in detail in section 1.3. 

The main goal of this thesis is to obtain a better insight in the 

hot-electron effects in submicron Si n-channel MOSFETs, by making use of 

simulations. In these simulations the electron temperature distribution and 

avalanche generation distribution in the MOSFETs are calculated. In addition 

the device currents are calculated, in particular the substrate current, 

which is a measure of the overall avalanche generation. The simulation 

results obtained are compared to experimental data obtained from other 

research institutes (in particular Philips Research Laboratories). In the end 

this may lead to further improvement of the devices in future. 

The use of numerical simulation is common practice in the world of electronic 

device engineering nowadays. However different goals may be served. The 

technologist is mainly interested in process simulations; the designer of 

integrated electronic circuits uses circuit analysis programs like SPICE and 

other programs that contain analytical models of the terminal behavior of the 

devices. For our purpose a detailed numerical physical simulator is needed 

that gives insight in what exactly is going on inside the device. 

Traditionally the well-known drift-diffusion model bas been used for this 

kind of simulation. Although in theory the drift-diffusion model is no longer 

15 



valid in case of small devices, in practice lts usefulness can be extended to 

regions far beyond the range of theoretical applicability. So fora long time 

more complicated models were hardly needed. However, as devices do get 

smaller and smaller, more advanced models have to be used. Therefore in our 

work most effort bas been spent in solving numerically the Boltzmann 

transport equations, including high·energy effects. 

To solve the Boltzmann transport equation basically two different methods are 

available. One is the Ensemble Monte Carlo method, in which the trajectories 

of a large number of si11111lation carriers are followed througb the device. The 

great advantage of the Monte Carlo method is that complicated band structures 

and scatter mechanisms can be included. If the Monte Carlo method is combined 

with Schrödinger's equation also all sorts of quantum effects can be 

included. Furthermore, no a priori knowledge of the energy distribution 

function is needed. But the Monte Carlo method bas lts price: it is extremely 

expensive in computing time and storage space. The method also introducee 

much numerical noise. 

The second method, the hydrodynamic method, is an extension of the well 

established drift·diffusion method and takes into account the first three 

moments of the Boltzmann transport equation. The derivation of the basic 

hydrodynamic equations is presented in section 1.4. These equations are 

solved iteratively. This method is faster and less noisy than the Monte Carlo 

method. However, its main disadvantage is that it operates only on average 

quantities and that a priori a shifted, asymmetrie Maxwell·Boltzmann 

distribution is assumed. Furthermore it cannot take quantization and some 

hot-carrier effects (such as ballistic carriers, see section 1.3.2) into 

account. Therefore in theory lts range of applicability is less than that of 

the Monte Carlo method. 

In this thesis the hydrodynamic method bas been preferred over the Monte 

Carlo method for the simulation of submicron MOSFETs. The Monte Carlo method 

bas been used for other purposes. In order to obtain the transport parameters 

needed by the hydrodynamic method as a function of electron energy a Monte 

Carlo simulator bas been developed for bulk material. In addition for 

studying the electron transport in diode structures a Monte Carlo device 

simulator in one dimension bas been developed. This sim.Ulator bas been used 

as a numerical reference to check the validity and range of applicability of 

the hydrodynamic method. In this thesis the development and use of the 

various simulators mentioned, combined with simulation results, is described 

in detail. Section 1.5 gives an overview. 
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1.2 Basic principle• of the JIOS transistor 

MOS transistors come in two verslons, the n-channel MOST, in which the 

current is generated mainly by electrons moving from source to drain, and the 

p·channel type, in which holes are moving between the contacts. In modern 

technology both are made simultaneously in the so called CMOS-process (see 

figure 1.1). We will limit ourselves here to a description of the n·channel 

MOST (n·MOST). The working of the p·MOST is dual to the n·MOST. In principle 

the n-MOST is a very simple and straightforward device. In the substrate a 

p-well is created by implantation of acceptors. In this p·well two n+·contact 

areas are created by heavy donor implantation. On top of the device a thin 

oxide is grown, on which a gate contact is deposited. Now voltage is applied 

to the contacts. If the gate-source voltage is below a certain threshold 

voltage, all p·n junctions are in reverse and very little current is flowing. 

The device is said to operate in the sub·threshold region; as a switching 

device the MOST is considered to be in the off-state. In modern technology 

there is an extra p-implant directly underneath the gate to increase the 

threshold voltage and so decrease the leakage currents in the sub·threshold 

region. If the gate-source voltage is above the threshold voltage, a large 

concentration of electrons is drawn towards the Si-Si0
2 

interface directly 

underneath the gate. The electron channel connecting source and drain is 

called the inversion channel. Now electrons can move easily from source to 

drain and the device is in the on-state. At increasing drain-source voltages 

the drain-gate voltage finally drops below the threshold voltage and the 

current is pinched off at the drain side, allowing no further increase in the 

current. The device is said to be in saturation. 
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1.3 Quantisation and hot-electron effects in submicron MOSFE'ls 

1.3.l Quantization effects 

To understand the physical background of the quantization effects in MOS 

transistors, it is necessary to look in detail at the Si-Si0
2 

interface. In 

figure 1.2 a band diagram of this interface is given. Due to the difference 

in the work function between gate contact and Si, the difference between the 

Fermi level EF in the bulk and the intrinsic Fermi level E
1

, and due to the 

applied gate voltage VGB' the Si band shows a strong band bending near the 

interface. This way a well-defined potential well is created. It is a well 

known fact that in such a potential well the electrons cannot be considered 

to be free in all three dimensions but the motion in the direction 

perpendicular to the Si-Si0
2 

interface is quantized. The potential well, also 

called quantum well, bas roughly a triangular form. An important parameter 

defining the exact shape of this well is the doping concentration at the 

interface: the higher the doping, the steeper and narrower the well. 

It should be noted that the quantum well is a fundamental property of all MOS 

transistors, independent of the channel length. In large-device processes the 

doping concentration at the interface is fairly low and the quantum well is 

wide, which means that many discrete states close to one another are present, 

and quantization effects are not noticed in the device behavior. However, in 

short channel devices the situation is different. In modern MOS technology it 

is good practice to increase the p-implant directly underneath the gate for 

decreasing channel lengths. This needs some explication. Junction depletion 

layers are surrounding the source and drain contact areas, and there also is 

a depletion layer underneath the gate. As can be seen in figure 1.3, part of 

the depletion charge is shared by the source and drain junction. In long 
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channel devices this part is negligible compared to the total depletlon 

charge, but this is not the case in short channel transistors. Conaequently 

less charge is controlled by the gate contact and it becomes easier to turn 

on the device. In other words the threshold voltage is lower in short channel 

devices. A high p-implant is used to counteract this effect. A high p-dope 

decreases the width of the depletion layer at the source and drain junctiona, 

and consequently the charge shared is lowered. This way the threshold voltage 

is kept constant over a larger range of device lengths. This high p-implant 

also increases the voltage at which punch-through occurs. 

However, when the doping at the Si-Si0
2 

interface is increased, the potential 

well becomes narrower, and quantization effects become more prominent. In a 

narrow well E
0

, the lowest energy level available does not coincide with the 

bottom of the conduction band (figure 1.2), and the work function difference 

is increased, which in lts turn increases the threshold voltage. The 

quantization mentioned above decreases the number of states in the quantum 

well and this makes it even less easy to turn on the device, and increases 

the threshold voltage even further. A quantitative analysis is given by Van 

Dort and 'Woerlee [1991). Their method is used in the MOST models presented in 

this thesis. 

1.3.2 Bot-electron effects 

By applying an electric field the electrons gain momentum and energy. If the 

field is strong enough the energy gain is substantial and the electron 

temperature, which is a measure for the amount of energy, becomes 

significantly higher than the lattice temperature. These high-energy 

electrons are called hot electrons, and they play an important role in 

submicron devices. The effect of hot electrons on the device behavior could 

be substantially reduced if the applied voltages were down-scaled according 

to the sealing rules, but for practical reasons this is not done. The most 

important hot-electron effects are given here: 

1. Oxide injection: some electrons travelling from source to drain can gain 

so much energy that they force their way into the oxide layer underneath 

the gate. Some tunnel through and cause a gate current to flow, but most 

get trapped in the oxide, creating a negative oxide chàrge. This 

degenerates the device performance very rapidly. 

2. Veak avalanche: the energy of a substantial number of electrons can become 

higher than the forbidden gap and these electrons are able to create new 

electron-hole pairs. The newly created electrons add to the source-drain 

current, while most of the holes move into the substrate and give rise to 

a substrate 'current. Some holes are injected in the oxide, in analogy to 

the electron injection described before. 

19 



3. Velocity overshoot: electrons at the drain side can reach a velocity that 

is higher than the saturation velocity. To understand thls phenomenon 

qualltatively one bas to consider the individual carriers to be in 

constant interaction with the phonons in the lattice. This interaction is 

energy dependant: an increase of electron energy also gives an increase of 

interaction. At high electric fields the gain of energy in equilibrium on 

the average is equal to the loss of energy to the lattice, and the 

electron velocity always equals the saturation velocity. If however the 

electric field is suddenly increased, the electrons gain momentum faster 

than it can be relaxed to the lattice, and velocity overshoot occurs. Such 

a situation can occur in a submicron MOS device, where the field in the 

channel rises to a high peak at the drain side. 

4. Ballistic carriers: if the source-drain distance is smaller than the aean 

free path of the electrons, a considerable number of electrons reaches the 

drain without having had any interaction with the lattice or impurities. 

This gives rise to a so-called ballistic peak in the energy distribution 

function. 

5. Energy diffusion current: since the electrons do not have a uniformly 

distributed average energy along the channel, an extra component is added 

to the total device current. 

To make practical devices in the submicron range possible, it is necessary to 

reduce the peak in the electric field and the hot-electron effects. This is 

done by implanting a low doped extension of the drain (LDD). For practical 

reasons the source also is extended. Often there is an extra 

anti-punch-through (ATP) p-implant to avoid breakdown between the contacts. A 

three-dimensional plot of the doping profile in a modern submicron device is 

given in figure 1.4. 

1.4 Derivation of the hydrodynamic equations 

Kodels based on the Boltzmann transport equations have been in use since the 

sixties, the most well known iterative schemes having been developed by 

Gummel [1964) and Scharfetter and Gummel [1969]. The early models were based 

on the Poisson equation and the zero- and first-order moments of the 

Boltzmann transport equation, the so called drift-diffusion approach. The 

hydrodynamic method is an extension of the drift-diffusion method and also 

includes the second-order moment. In this section the full set of the 

hydrodynamie equations for both electrons and holes is given. However the 

derivation of these equations only is given for electrons. For holes a 

similar description holds. 
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Fig 1.4 Doping profile of a subm1cron LDD HOSFET 

Important is the Poisson equation that is given by 

V' 't - • !1. (N+ • N- + p • n) 
f D A 

(1.4.1) 

The electric field Î is defined by 

Î - - v t (1.4.2) 

Assuming all particles to have zero volume, and assuming all particle 

interactions to be instantaneous, it is possible to define for each kind of 

particle a distribution function f (t,t,t) in the six-dimensional 
c 

phase-space. If both electrons and holes are present generation and 

recombination of particles may occur. An extra term fG
2
(t,t,t) is needed to 

correct for this process. The derivative of the distribution function with 

respect to time along a particle trajectory ti equals zero as a result of 

the need to conserve the number of states, the so called Liouville theorem 

(1.4. 3) 

Expansion of equation (1.4.3). leads to the implicit form of the Boltzmann 

transport equation, that reads 

IJ f +Vf• dt+Vf• o.i 
IJt: c !r. c dt . r c dt -

(1.4.4) 
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Next the group velocity ~ is defined by 

... dl w--dt: (1.4.5) 

The derivative of momentum with respect to time is equal to the sum of all 

forces acting on the particles. This is written as the sum of all external 

forces j 
1 

and all internal forces j I due to collisions, as long as the 

external forces can be considered to be constant over a distance comparable 

with the dillensions of the carrier, which is true in all our problems. Thus 

hem_; +"I 
dè 1 I 

(1.4.6) 

Combining (1.4.4) and (1.4.6) yields 

(1.4.7) 

In both the hydrodynamic metbod and the Monte Carlo method all changes in f
0 

by scatter processes are assumed to be instantaneous and the right-hand-side 

of equation (l.4.7) is written explicitly as a collision term 

Vf 
r c 
-~f + (!...f) dt: Gil at: c ccll 

(1.4.8) 

Equation (1.4.8) is called the explicit form of the Boltzmann transport 

equation. This form acts as a starting point for the Konte Carlo method, that 

is described in detail in chapter 2. 

In the hydrodynamic method the first three moments of (l.4.8) are needed. The 

zero-order moment is obtained by direct integration of (1.4.8) over the 

momentum space Vt and gives the carrier conservation equation. The 

first-order moment is obtained by multiplying (1.4.8) with the group velocity 

~ before integration and this gives the momentum conservation equation. The 

energy conservation equation is obtained by multiplying (1.4.8) with 
1 •-t-t i m (w•w) before integrating over Vt (second-order moment). Before the 

integrations are actually carried out and the results presented some 

definitions and further assumptions have to be discussed. 

The electron density n(f,t:) (function of position in space i and time t:) is 

defined by integrating the distribution function for electrons f (~,t,t) over 
n 

the momentum space Vt 
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n(f.t) - J f ci.t.t) & 
v " 

(1.4.9) 

t 

Here & stands symbolically for dk dk dk . The generation·recoabination rate 
~ x y~&~ ~ 

GR(r,t), the average electron velocity v (r,t), electron energy V (r,t) and 
2 ~ n n 

heat flow vector Q"(r,t) are defined in a similar way 

GR(t,t) - ~ J f ctf.t) & 
dt V Gil 

t 

The electron current density J reads 
n 

:t 
n 

~ qnv 
n 

For holes a similar set of definitions is given with j - q p ; • 
p p 

(1.4.10) 

(1.4.11) 

(1.4.12) 

(1.4.13) 

(1.4.14) 

In addition a few more assumptions are needed in the hydrodynamic method: 

1. All particle velocities are non-relativistic. 

2. External forces are only due to the electric field (in case of electrons 

'·-. q Î). 
3. No degeneration effects occur. 

4. In the second-order moment terms appear that represent the gas pressure 

tensor. If the distribution function is considered isotropic with respect 

to ; this term can be simplified to the hydrostatic pressure, and then the 

concept of electron (or hole) temperature can be introduced in the 

equations. These temperatures are indicated by Tn and TP. 

In the first· and second-order moments the collision term represents the loss 

in momentum and energy from .the electron system to the external world. In 

semiconductors this in general is the crystal lattlce. In the hydrodynamic 

method this loss is represented by a relaxation time. In general the momentum 

relaxation time rP differs from the energy relaxation time r •. Because each 

function f c can be given as the sum of an asymmetrical part f c • and a 

symmetrical part f••' the collision term can be defined by 
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f 
ca 

f' 
p 

f - f 
ca co (1.4.15) 

f' 

" 
Here f

00 
represents the equilibrium distribution. In equation (1.4.15) f

00 
is 

· assumed to be symmetrical, which is the case in our problems. The integration 

over the momentum space, using the definitions and assumptions given for both 

holes and electrons is a tedious but rather straight forward matter that is 

dealt with in most standard text books on the subject of plasma and particle 

dynamica and is omitted here. The final results, however, are given for both 

electrons and holes. 

- The carrier conservation equations 

!_E - ! V .j - GR a t q r n 

!..2_ + ! V .j - GR a t q r p 

• The momentum conservation equations 

j f' j 
( n k T ) J+ n 

a 
(nn) • ~ (Jn•VJ ..! - qµnÊ+q V B n f' 

Pii ät f' ---n q n n PD r * m 
D 

j + p" _!_ Gpl 
f' J 

r V ( p kBTp ) + 2.! (JP•VJ ....!-qµpÊ- q p pp8tp q p p pp r * 

Here the mobility is given by 

q f'pn 
µ---

n * m 
D 

and 
q f'pp 

µ---
p • 

m 
p 

- The energy conservation equations 

a w-w 

m p 

(nW) 
D +v. s - Ê.j n ~ + GR•fl a t r n n f' 

Wn 

a (pJI > fl - JI p +v. s - i.j -p~+ a t " p p f' 
wp 

Here W - .! k T + ,! m* 
n 2 Bn 2 n 

s -n 

j 
Q

0
• (W +kT) n 

n B n q 

n 

GR•W 
p 

Tl - ! k T + ! m* 
p 2 B p 2 p 

j 
S-·Q+(fl+kT)....! 

p p p Bp q 
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i is called the energy flow vector. It should be noted that implicitly the 

assumption bas been made that the momentum-energy relation is parabolic. 

In traditional device modeling some extra simplifications are made. First of 

all no energy effects are taken into account and the carrier temperature is 

always considered to be equal to the lattice temperature. Aa a result no 

energy conservation equation is needed and in addition to the Poisson and 

carrier conservation equations, only simplified momentum equations are used. 

In general these are even further simplif ied by neglecting the tille 

derivative and the convection term (3•V) ~. As a result the so-called 

drift-diffusion equations are obtained 

3-qµnÊ+qDVn 
D 1l D r 

(1.4.25) 

3-q~pÊ-qDVp 
p p p " 

(1.4.26) 

At relatively low electric fields (large devices) the drift-diffusion model 

has proven to work very well (which also justifies the simplifications that 

have been made) and is still an important tool in device modeling. 

In the derivation thus far it has been assumed everywhere that the transport 

parameters m* (conductivity effective mass), T and r (momentum and energy 
p " 

relaxation times) are all constants. However in practice this is not true. 

Depending on the model used these parameters are a function of electric 

field, position in the device, local electron energy or a combination of 

these. Including all these factors complicates the Boltzmsnn transport 

equation enormously and the derivation of msnageable moments is impossible. 

Therefore the assumption is made that the transport parameters locally can be 

considered constant, and the field or energy dependency is introduced after 

the derivation of the equations (l.4.15) to (1.4.23). Although formally not 

correct, this bas been common practice and has worked very well in device 

simulations, where the gradient in the parameters in fact is small compared 

to the gradient in the charge concentration. In the drif t-diffusion model the 

parameters are taken to be a function of the local field. The hydrodynamic 

approach offers the possibility to use transport parameters as a function of 

local carrier energy, which is more in accordance with physical reality, and 

this bas been used in this thesis. Also the hydrodynamic method makes it 

possible to include the effects of non-parabolic energy bands in an 

approximste way by allowing the average effective mass to be a function of 

the average energy. 
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A final note on the Generation·Reco11bination GR term has to be made. This 

term consists of three different mechanis11S: 

l. The Shockley-Read-Hall recombination 

{1.4.27) 
r {n + n) + r (n + p) 

p I n I 

In the above the intrinsic charge concentration is represented by n
1

• 'n 

and r represent the electron and hole life time. 
p 

2. The Auger recombination 

GR - {n
2 

• n p) { <!" n + <!" p ) 
All I n p 

(1.4. 28) 

Here t/'0 and t/' 0 are the Auger constants. 
n P 

3. The avalanche generation 

- !. ( Q 11 1 + Q 11 1 ) GRllV q n n p p 
(1.4.29) 

Here a and a are the impact ionization rates. 
n P 

l.S OUtline of this thesis 

This thesis will focus on the study of a hydrodynamic device model in which 

electron transport is dominant. 

In chapter 2 special attention is given to the determination of the transport 

parameters as a function of local electron energy and doping concentration. 

An Ensemble Monte Carlo simulation program has been developed for this goal. 

In this chapter the Monte Carlo method is described in detail. The main 

questions we try to answer in this chapter are: 

· Does a multi-valley model of the Si conduction band suffice for our 

purpose. 

· What model for the ionized impurity scattering and the impact ionization 

scattering can best be used in the Monte Carlo program. 

· How do the transport parameters have to be defined to get a consistent set 

of parameters. 

- How can the transport parameters be described as a function of local doping 

concentration and local electron energy. 
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- What effect bas an interface with an applied field perpendicular to this 

interface on the transport parameters. 

In chapter 3 the Monte Carlo method is extended to a one-dimensional drift 

device simulator. The program is used as a reference for the hydrodynamic 

device simulator that is described in the next chapter. Special attention bas 

been given to: 

- The modeling of the ohmic contacts. 

- To avoid that virtually all simulation electrons pile up in the highly 

doped contact regions, the simulation electrons in the contact regions 

represent a larger nl.llllber of real ele.ctrons than in the other regions. 

- The study of velocity and energy distributions in one-dimensional drift 

devices. 

In chapter 4 a time·dependent hydrodynamic one-dimensional drift-device 

simulator is described. To study the validity of the hydrodynamic method, 

simulation results of this model are compared with simulation results of the 

Monte Carlo simulator. Major topics that are studied: 

- How well compare the results obtained by the Monte Carlo method with the 

results obtained by the hydrodynamic method. 

- How important are the inclusion of the velocity convection term 

rt •V ) (J /n) and the energy convection term ! m"l:l 2
• 

l"'n r n 2 

- What definition of the heat-flow term Q is the best to use in device 
n 

simulators. 

In chapter 5 the one-dimensional hydrodynamic device simulator is extended to 

a quasi two-dimensional device simulator suited for the simulation of 

n-channel MOSFETs. Special attention is given to: 

- The calculation of the thickness of the inversion channel and the effective 

gate-voltage correction due to quantization effects. 

- The simulation of MOS devices in the deep-submicron range. Simulation 

results are compared to experimental data from the literature and provided 

by Philips Research Laboratories, which gives an indication of the 

usefulness of the model proposed. Furthermore, the results will be used to 

study the range of applicability of the drift-diffusion model compared to 

the hydrodynamic model. 

- An evaluation of the weak-avalanche parameters. 
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In chapter 6 a study is presented of the hot-electron models in the 

c01111D.ercially available two-dimensional MOS device simulator MINIMOS and the 

two-dimensional hydrodynamic simulator TRENDY (Van Schie [1990) and Volbert 

[1991]). Attention is given to: 

- How well are the hot-electron effects calculated by the various simulators. 

- Does a drift-diffusion simulator combined with a post-processing routine 

for calculating the hot-electron effects, offer a fast, robust, and above 

all, useful alternative to the hydrodynamic method. 

- How well does the analytical method to calculate the electron temperature 

developed by Slotboom [1991] compare to more detailed numerical methods. 

Finally in chapter 7 our final conclusions and advice for further research 

are given. 
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Chapter 2 

THE TIWISPOB.T PAIWIETIB.S 

2.1 Introduction 

To solve the hydrodynamic equations describing electron transport a number of 

transport parameters are needed as a function of local electron energy. The 

parameters of interest are the mobility µn, the momentum relaxation time ~ 
pil 

and the energy relaxation time~ , the conductivity effective mass m*, the 
wn n 

diffusion coêfficient Dn and the impact ionization rate an. All parameters 

are calculated by analyzing the steady-state results of a large number of 

silllulations of electron transport under different applied electric fields. 

The silllulation method used is the Monte Carlo method. 

The name Monte Carlo is used for any method of solution where random numbers 

are inVolved. Since the early seventies this method bas also been applied to 

electron transport in semiconductor devices. The Monte Carlo method is used 

to solve the Boltzmann transport equation given by equation (1.4.8) without 

any a priori assumptions of the distribution function. The method in 

principle can be applied to any material. The pioneers have been Kurosawa 

[1966] and Fawcett, Boardman and Swain [1970] who applied the method to bulk 

GaAs. Initially only one simulation electron was taken into account, and its 

behavior was followed during a long period of time. Due to the inerease in 

computing and storage capability of available computers, the Monte Carlo 

method later was applied to a large number of electrons, called the Ensemble 

Monte Carlo method. An excellent review of the Monte Carlo method in 

semiconduetors was given by Jacoboni and Reggiani [1983]. In section 2.2 of 

this chapter the basic principles of the Ensemble Monte Carlo method are 

discussed. Section 2.3 discusses how the Honte Carlo method bas to be applied 

to Si. In particular the band structure of Si and the scatter mechanisms in 

this material have to be considered in detail. 

In section 2.4 methods to extract the transport parameters from the Monte 

Carlo simulation results in a consistent way are presented. The resulting 

transport parameters in the bulk are given in section 2. 5. In addition the 

effects of the Si-Si0
2 

interface on the above parameters is studied. In 

section 2. 6 the conclusions are summarized. Finally section 2. 7 can be 

considered an appendix to this chapter. 

2.2 Basic principles of the Ensemble Monte Carlo method 

The basic idea bebind the Ensemble Monte Carlo method is to follow on a time 
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step basis the trajectories of an ensemble of simulation carriers. The number 

of carriers in the program typically is several thousands. The Monte Carlo 

approach of carrier transport is based on the assUD1ption that the motions of 

the fixed ions in the lattice around their equilibrium position and the 

1110tions of the free carriers are decoupled. Now the carriers during their 

flight do not interact continuously with the lattice, but only at discrete 

moments in time. Furthermore it is assumed that the interaction bas effect 

only on the carriers , and that there is negligible effect on the lattice. In 

this way the history of each carrier is a series of free flights during which 

the carrier is accelerated due to the forces applied to the carriers, 

followed by a scatter event. 

A basic element in the Monte Carlo method is the use of random numbers in the 

program to make decisions (hence the name Monte Carlo). In this program 

pseudo random numbers ~ with an uniform distribution on [0,1) were produced 

by the mixed congruential scheme (Hammersley and Handscomb [ 1964)). It bas 

been proven that this scheme for all practical purposes performs 

satisfactorily (Graybeal and Pooch (1980)). 

In this thesis only electrons are taken into account in the . Monte Carlo 

method and no holes. During free flight the external forces Î
1 

operate on the 

free electron, and it is assumed that Î
1 

is only due to the electric field Î. 
Then the time derivative of the wave vector of a given carrier is given by 

(2.2.1) 

Each free flight ends by an abrupt change in t-space from one state to 

another when the carrier is subject to a scatter process. All scatter 

processes are considered as being instantaneous and then for each scatter 

process k a rate of transition S (Î ,i ) from initial state i to final state 
lt i f i 

"tt is :efined (see section 2.3). Now the probability that an electron in 

state tt
1 

scatters to any other state is given by the scatter rate >. (l ) , 
lt i 

being the integration of Sit over the momentum space Vit 

A (l ) - _V_ J S (l ,i ) di 
lt i ( 2lf) 3 lt i f f 

lt 

(2.2.2) 

The factor V/(2lf) 3 accounts for the density of states in Î-space. Since the 

spin is not altered by scattering it is not necessary to include an extra 

factor of two. The above formula is only valid for non-degenerate materials. 

Due to the high density of states in Si, degeneracy is not relevant in most 

devices and is not considered in this work. 
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Once the scatter process is chosen, the new wave vector Î can be calculated. 
~ f 

In this way the wave vector li: is known at each moment of time, and if the 

band structure of the -terial concerned is known, knowledge of the wave 

vector of a given carrier leads to knowledge of the kinetic energy u of that 

carrier, which leads to the carrier group velocity ~via the equation 

(2.2.3) 

By integration of ~ the real space position ~ of each carrier is obtained. If 

t_ u, : and i of all carriers are known the drift velocity :: , the average 
n 

carrier energy Wn, the carrier temperature Tn, the conductivity effective 
* mass mn, the momentum and energy relaxation times r and r and the 

pn wn 
diffusion coefficient D can be calculated. 

n 

The strength of the Monte Carlo method lies in its ability to deal with 

complex band structures and various complex scatter mechanisms. Definite 

knowledge about scatter processes is combined with random numbers which 

deelde if a scatter process occurs, and if so, random numbers also decide 

exactly which scatter process occurs and how strong its effect is on the 

carrier. 

Disadvantages are that statistica! errors tend to accumulate when long 

periods of time are simulated. In addition extensive computing and storage 

power is needed. Especially at weak flelds the thermal noise generated is 

very strong compared to the drift velocity and very large numbers of 

simulation carriers or very long simulation times are needed to f ind 

representative averages. 

2.2.1 Free-flight calculations 

Each free flight of an electron starts at the glven initial state of that 

electron. The force field Ê applied to the electron changes the kinetic 

energy, momentum and (in an elliptic, non-parabolic valley) also the 

effective -ss of the electron continuously during that free flight. Now if 

the total scatter rate is given by A(Î) - l À (Î), then the probabillty that 
k 

the electron will suffer its next collision durlng dt around time t since the 

last collision is given by (Jacoboni and Reggiani [1983]) 

:P(t)dt - A(Î(t)) exp 1-JtA(Î(t')) dt' l dt 
0 

(2.2.4) 

As Î changes constantly due to the external forces, A(Î) is not an analytica! 

function of Î, and (2.2.4) can only be evaluated at high computational costs. 

To simplify the calculations a new fictitious self-scatter process was 
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introduced by Rees [1968, 1969). If r is the maximWll value of A(Î) in the 

region of I-space of interest, the self-scatter rate is chosen in such a way 

that the total scatter probability, including this self-scattering, is 

constant and equal to r. If the ~arrier is subject to such a self-scattering, 

its state I after the collision is taken to be equal to its state i before 

the collision, so that in practica the electron path continues unperturbed as 

if no scattering at all had occurred. The inclusion of the self-scattering 

does not change the rate of occurrence of real scatter processes, as was 

proven by Fawcett et al. [1970]. Introducing this self-scatter process, 

equation (2.2.4) is simplified to 

f>(t) - r exp(-rt) (2.2.5) 

and a random nUlllber /t is used to generate the free-flight duration tr 

1 
tr - - f ln (lt) (2.2.6) 

The extra computing time needed in taking care of the self-scattering is more 

than compensated for by the simplification of the calculation of the 

free-flight duration. 

In general the scatter rate A(Î) in state 'i, is an increasing function of 

kinetic energy u and in the self-scatter method is taken r - A(u.), wbere u. 

is the maximum kinetic energy with a negligible probability of being reached 

by the carrier during simulation. However this gives a very large value of r 
which makes the simulation very inefficient. 

For a more efficient estimate of r the maximal kinetic energy obtained during 

a particular free flight bas to be known a priori. This problem can be solved 

using iterative techniques. One method using an iterative approximation bas 

been given by Hockney and Eastwood [1981), which can be used if A(u) is 

monotonie in u. 

The method proposed by Hockney starts by estimating the value of r from the 

initial value of the energy u
0

; then with equation (2.2.6) the time of free 

flight t r and the final energy u
1 

at the end of the free flight are 

calculated; now if r < A(u
1
), the process is restarted with the new 

r - A(u
1
); this procedure is repeated until r ~ A(u

1
), using every time the 

same random nU111ber to calculate t . In practice the number of iterations is 
r 

on the average only two or three. A problem of this approach is tbat r is now 

an implicit function of the random nU111ber .ri, which is formally forbidden 

(Jacoboni and Reggiani, [1983]). Ina Monte Carlo simulation all carriers are 

followed during a series of time intervals. During each interval At all 

carriers scatter at least once (self-scattering at the end of the time 
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interval). After each time interval the ensemble of carriers is evaluated 

(e.g. calculation of the distribution function or the drift velocity). Our 

simulations have shown that if the Hockney algorithm is used, the results 

appear to become dependent on the value of b.t, which certainly cannot be 

explained from a physical point of view. 

To avoid this problem a different approach is used. Again a first estimate of 

r is obtained from the initial value of the kinetic energy. A second estimate 

is obtained from the energy that the electron would get if it were allowed to 

proceed its free flight up to the end of the time interval. As final value of 

r the maxilllWll of the two estimates is taken. This approach does not show any 

dependency of simulation results on the time interval b.t. If b.t is below the 

average free-flight duration, both methods give the same results. Although 

the Hockney algorithm is more efficient, and correct as long as the time 

interval is small enough, the second algorithm bas been preferred and used in 

our program. 

For most scatter processes the scatter rates are a function of kinetic 

energy, which makes it easy to tabulate them. In addition, the maxillWll sum of 

scatter rates in each energy interval u to u + 6u u e [O,u••x] ) is 

calculated and tabulated. In this way it is not necessary to calculate r at 

each electron free flight and considerable computing time is saved. However 

not all scatter processes can be tabulated. In the ionized impurity 

scattering model and the electron-electron scattering model there is also a 

dependence on the electron temperature, which is an average value over all 

electrons. For this reason those two scatter processes have not been 

tabulated, but are calculated each time over and again. 

2.2.2 Selection of the scatter process 

Once it is decided how long the free flight will be, the wave-vector Î
1 

and 

the kinetic energy u
1 

just before the scattering occurs are calculated. To 

deelde to which scatter process the electron is subject, the maximum total 

scatter rate r is used. Now given a random number ll., the product ~ is 

compared with successive sums of the scatter rates \ (u 
1

) and a scatter 

mechanism is selected. A table of scatter rates is used, which saves much 

computing effort. Only when the electron energy exceeds u • .,. of the table, 

all scatter rates have to be calculated. Of course u".,. is chosen large 

enough to ensure this occurring only very occasionally. If none of the 

scatter mechanisms has been selected, a self-scattering occurs. 

After the scatter process is known, the final energy uf is calculated, and 

from u! also IÎfl· The normalized cumulative distribution PS(~) for the angle 

~ (figure 2.1) which determines the spatial orientation of ~f with respect to 
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f f f Sk(a1 ,if) k: sin6f dkfdlJfdl;f 
0 0 0 

(2.2.7) 

With the help of a random number ~6 in (0,1), the new value 6 is calculated 

(2.2.8} 

The distribution over the angle <P is always uniform and therefore, given a 

random number ~ in [0,1) 
<P 

(2.2.9) 

2.3 Band structure and scatter processes 

2.3.l Band strueture 

In a Monte Carlo program complieated band structures can be incorporated. 

Most commonly in semiconductors the band is considered as a set of valleys 

all modeled by the effeetive mass approximation. In Si this multi-valley 

model already bas proven to yield adequate results if the applied eleetrie 

field is not too high (E < 100 kV/cm), e.g. Canali et al. [1975]. However, 

even at high fields the multi-valley model can be used if high energy valleys 

and impact ionization scattering are included. These two meehanisms strongly 

reduce the electron energy at high fields and only very few electrons ever 

gain an energy higher than 2 eV. Then the effective mass approximation is 

still valid. Furthermore the multi-valley model is easy to implement in a 

Monte Carlo program and yields results fast. 

In our simulations the multi-valley model bas been preferred to a more 

realistic band 1110del as described by Tang and Hess [1983] and Fischetti and 
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pseudo-potentlal calculatlons (Tang 
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Lam: (1988], who use the empirica! pseudo-potential method to describe the 

conduction bands. Their band structure bas been plotted in figure 2.2 (solid 

lines). The multi-valley model is given in the same figure (dashed Unes). 

More collllllents on this choice of band model is given in section 2.3,3. 

Basically the effective mass approximation gives a parabolic dispersion 

relation in each valley but a non-parabolicity factor a is introduced 

according to Kane [1957] 

2 k2 
k

2 k2 

u( 1 + a u) - ~ ( m" + m" + mz ) 

" " z 

(2.3.1) 

In first approximation the conduction band of Si consists of six X-valleys 

distributed along the principal axes. This valley can clearly be observed in 

figure 2.2. For all practical purposes two valleys lying on the same axis are 

indistinguishable, so the number of X-valleys used in the program is reduced 

to three, each having a multiplicity of two. The X-valleys are strongly 

elliptic: mXl - 0. 9163 m0, and mn - 0 .1905 m0• Like Jacoboni and Reggiani 

(1983) a non-parabolicity factor ax- 0.5 bas been chosen. 

Since our interest is in high energy effects it is necessary also to include 

in the model the four valleys that lie along the (l,1,1) directions, the so 

called L-valleys. Data on the L-valley were obtained from the data by Tang 

and Hess [1983]. They give a 1.06 eV gap between the bottom of the L- and 

X-minima. The data from Hess show the L-valley to be strongly anisotropic 

with mL 
1

- 1. 53 m
0 

and mL t. - 0 .16 m
0

• Although the L-valley can be described 

accurately, there is little quantitative knowledge on the scatter rates into 

and out of the L·valleys. So a detailed description of the L-valleys serves 

no purpose and to keep our program manageable the L-valleys have been 

considered spherical with an effective mass mL- 0.3 m
0

, which is the density 

of state effective mass of the L-valleys. 
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a
0 

- 5.43 1 
- 2329 kg/m

3 
p• 

v. - 9040 m/s 

( - 11.7 
" p - 0.01 
ii 

X-valley (Jacobonl et al. [1983] 

UGAP - 1.107 eV 

m:u- 0.9163 m
0 

m - 0.1905 m :u. 0 
-1 

°'x - 0.5 eV 

E - 9.0 eV 
AX 

1 n - 220 K 

1 tz - 550 K 

1 n - 685 K 

1 - 140 K 
gl 

1 - 215 K 
g2 

1 - 720 K 
g3 

Efl - 3.0 10
9 eV/m 

En - 2.0 1010 eV/m 

au - 2.0 1010 eV/m 

a - 5.0 109 eV/m 
gl 

109 a - 8.0 eV/m 
g2 

1010 a -11.0 eV/m 
g3 

L-valley (Tang and Hess [1983]) 

u - 1.06 eV 
XL 

mL - 0.3 m
0 

-1 
aL - 0.0 eV 

BAL- 9.0 eV 

'xLl- 672 K 
1 - 634 K 

XL2 

IXL 3- 480 K 

IXL 4- 197 K 

a - 3.o XLl 
1010 

SXL2- 3.0 1010 

E - 3.0 1010 
XL3 

:s: 
XL4 - 3.0 1010 

Table 2.1: Scatter, band and materlal parameters oE SI. 

eV/m 

eV/m 

eV/m 

eV/m 

Now the L-valleys are indistinguishable for all practical purposes and in our 

model the number of L-valleys is reduced to one with a multiplicity equal to 

four. Furthermore, the L-valley included in this model is considered 

parabolic, so aL - 0. Table 2 .1 gives an overview of all band parameter.s. Also 

included are the scatter parameters that are discussed in more detail in the 

next section. 

The X-valleys in Si are strongly anisotropic and have to be dealt with by 

transforming t-space to :-space by the transformation proposed by Herring and 

Vogt [1956]. Each valley has its own transformation matrix T
1

, defined by 

(2.3.2) 

Defining in the 1-th X-valley: - Tl the dispersion relation (2.3.1) reads 
i 

(2.3.3) 

This means that each of the X-valleys is spheric in the :-u relation with an 

isotropic effective mass m
0

• The Herring-Vogt transformation bas to be 

extended to equations (2.1.1) and (2.1.2), which give in ~-space 
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(2.3.4) 

; - m (1 h 2 ) i IC 

0 
+ axu i 

(2.3.5) 

Since the transformation matrix Ti is valley dependent an important 

consequence of the Herring-Vogt transformation is that the effective field 

Ê - T Ê differs in each valley. And since The L-valleys are considered 
i i 

isotropic the transformation matrix is defined (I is the identity matrix) by 

T - (m /m ) 
112 

I 
L O L 

(2.3.6) 

In general we are interested in the properties of the system in the direction 

of the applied electric field. This direction is not necessarily parallel to 

one of the principal axes of the lattice. Now two independent coordinate 

systems are chosen: the external coordinate system (x' ,y' ,z') with unit 

vectors 'ft , 'ft and 'ft , and the internal system (x,y,z) with unit vectors 
~ ~ x' ~ y' z' 
ex, e Y and e z. The internal system bas its axes in the direction of the 

principal axes of the lattice, while the external system is defined such that 

the externally applied electric field is aligned to the x'-axis, so 

Ê•- E Ï: . Now an orthonormal transformation matrix U, where i• - U i, is 
x• 

needed. Two orthonormal vectors d and d are chosen to define the 
? ? ?x? Y? ? ? ? 

transformations e - d e + d e + d e and e - d e + d e + d e . 
z' xx x xy y xz z y' yx x yy y ys z 

Now define d - d x d , the matrix U can be given by 
z x y 

[ 
d d d 

l 
xz xy xz 

u- d d d 
yz yy yz 

d d d 
zx zy zz 

Basically we are interested in 

calculations deal with the internal 

find the final set 

u( 1 + axu) 
h 2 

2 
- - IC m 

0 

of equations 

the ex te mal variables, 

variables. Using ~· - U i, 

with Ê - T U7 Ê• 
i i 

k' - u ;: 
1i 

with U - U T-1 

1i i 

;. __ l __ ~ u ;: 
1+2a u m Zi 

with U - U T 
2i i x 0 
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;. - u ; we 

(2.3.8) 

(2.3.9) 

(2.3.10) 

(2.3.11) 



2.3.2 Phonon scatter processes 

Two different types of phonon scatter processes are relevant in Si: acoustic 

phonon scattering and non-polar optie phonon scattering. These processes are 

described here. Because the valleys in Si are considered elliptic, a 

Herring-Vogt transformation is used to transform i-space to 1-space (see 

section 2.3.1). Now the transition probability Sk and~the scatter rate lk for 

each scatter process k also have to be defined in ic:-space in analogy with 

equation (2.2.2). 

2.3.2.1 Acov.stic phonon scattering 

In this type of scatter process little energy is involved and the process is 

always an intra-valley process, i.e. the electron does not change valley. In 

general this process can be considered to be elastic. However this assumption 

breaks down at very low lattice temperatures (few degrees K) or at very high 

fields. The first situation is of no concern to us, but the second is. 

However, at high fields the optie scatter processes become dominant and the 

exact value of the acoustic scatter process has little importance. Therefore 

the elastic model can be used even at high fields (Jacoboni and Reggiani 

[1983]). The transition probability in 1-space from the initia! wave vector 

;:i (with energy ui) to the final wave vector ;:f (with energy uf) was given by 

Rode [1978] and reads 

(2.3.12) 

Here T
0 

represents the lattice temperature, E:A the deformation potential of 

acoustic scattering, p• the crystal density and V
8 

the velocity of sound in 

Si and V the crystal volume. In case of a parabolic band structure, the 

overlap factor !1(ît ,;: ) equals one. But in a Kane type band structure l1 reads 
J. f 

!1(Ï: .: ) 
i f { 

/ (1-+au ) (l+au } ' ja2 u u 

- (1+2au
1

)(1+2a~ ) + ./ (ï+2a~ ~(1+2au) 
J. f i f 

... }2 cos v (2.3.13) 

Here {J is the angle between the initial and final state it and it , and in the 
i f 

X-valley the acoustic scatter rate ÀA as a function of energy u reads 

\(u)- 2 (2.3.14) 

In which the density of state effective mass in the X-valley mXd is given by 

(2.3.15) 
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Using the random number 11., the scatter angle ~ can be calculated 

~ - arccos [ [ (1+2au)
3 

(1·11.) + ll. ] 1
13 

-- 1 _ 1 J 
au (2.3.16) 

The values of the different material parameters p 
1 

, v 
1 

and EA are given in 

table 2.1. 

2.3.2.2 Ron-polar optie phonon scattering 

Two modes of scattering are present, either by absorption or by emission of a 

phonon, and scatter processes take place in the L-valley as well as in the 

X-valley. Now all scatter processes are inter-valley, i.e. electrons move 

from one valley to another. The overlap factor is given by 

(2.3.17) 

Because the scattering is inter-valley and each valley does not necessarily 

have the same non-parabolicity factor a, a distinction is made between the 

initial non-parabolicity factor a
1 

and the final ar. Then the scatter rate is 

(Fawcett et al. [1970]) given by 

À (u) 
op 

(l+ai ui )(l+afut) 

1+2a u 
i i 

(2.3.18) 

Here E represents the optical coupling constant, () the equivalent optical 
op op 

phonon temperature and Zv is the number of the valleys attainable by the 

electron. If the scattering occurs by emlssion of a photon the energy after 

scattering is given by u - u - k () - ll.u, and in case of absorption by 
f 1 B op 

u - u + k 9 · ll.u. ll.u represents the energy dlfference between initial and 
f i B op 

final valley. The phonon number N is glven by (2.3.19) in case of emission 
op 

and by (2.3.20) in case of absorption 

k () 
exp( B op 

kT 
N -

B O 
op k () 

exp( ~p) . 1 
kil TO 

(2.3.19) 

N -
1 

op k () 
exp( B op 

) - 1 kT 

(2.3.20) 

B 0 

~ ~ 
The overlap factor Y does not depend on the angle ~ between tr. 

1 
and tr. t and 
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neither is the transition rate, so the scattering is uniform and 

6 - arccos (2~ - 1) (2.3.21) 

Three kinds of inter-valley scattering have been taken into account, 

g·scattering, f-scattering and X·L·scattering, all of which are caused either 

by emission or by absorption. 

1. g·scattering: in this scatter process an electron from one X-valley 

scatters to the other X-valley that is situated on the same axis. The 

number of attainable valleys zv- l and the energy shift Au - 0. There are 

three different g-scatter processes involved, g
1

, g
2 

and g
3 

each with its 

own phonon energy and coupling constant. 

2. f·scattering: this is the process complementary to g-scattering, in which 

an electron in an X-valley scatters to another X-valley, not situated on 

the same axis. Now zv- 4 and Au - 0. All four valleys have equal 

probability to be attained by the scattering electron. There are three 

different f-scattering processes. 

3. X·L scattering: this process deals with the scattering between the 

X-valleys and the L-valleys. In case an electron scatters from an.L-valley 

to an X·valley then zv- 6 and Au - -u1L; uxL is the energy gap between the 

bottom of the L-valley and the X-valley. If an electron scatters from X

to L-valley zv- 4 and Au - uxL' All valleys have equal probability to be 

attained by the scattering electron. There are four different X-L 

scattering processes (Tang and Hess [1983)). 

Probably there is also some inter-valley scattering among the L-valleys. 

However, since no data is available it is not considered here. The values of 

1 and S in case of f- or g-scattering were obtained from Canali et al. 
op op 

(1975], and in case of X-L scattering they were obtained from Tang and Hess 

[1983]. The scatter rates have been plotted in figure 2.3. 

2.3.3 Discussion of the band structure and the pbonon scatter parameters 

In the previous two sections the model of the conduction band and the phonon 

scatter processes have been described and values have been assigned to the 

various parameters. In figure 2.4 the drift velocity in intrinsic Si 

calculated by our Monte Carlo program is compared to the experimental results 

obtained by Canali et al. [1971]. Good agreement is obtained for 

E < 100 kV/cm. However, a discrepancy occurs for higher fields. This probably 

is due to the simplifications made in the model of the L-valley and the X-L 

scatter mechanism. In order to obtain a better fit, the effective mass and 

non-parabolicity factor of the L-valley, the X-L scatter parameters and the 
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impact ionization parameter (see section 2.3.4.1) have been modified. 

However, no improvement was obtained. 

A second comment bas to be made on the overlap factor~. Some authors always 

set 1' to one (e.g. Zimmermann [1980]). However, simulations show that ~bas a 

eonsiderable effect on the electron energy at high fields: the energy is 

inereased by some 20%. Therefore in all our simulations we use the ~ 

described by equations (2.3.13) and (2.3.17). 

2.3.4 Non-phonon scatter processes 

Electrons not only interact with the phonons, but are also subject to several 

other scatter processes. The most important ones are dealt with in this 

section: impurity scattering, impact ionization scattering, electron-electron 

scattering and interface scattering. 

2.3.4.1 Impurity scattering 

Impurities in the crystal cause extra scatter processes. In the first place 

they disturb the lattice. causing neutral impuri ty scat ter processes. In 

general these have a small effect on the carriers and are difficult to 

describe. They have not been taken into account here. More important is the 

scatter process due to the charge of the impurities, the ionized impurity 

scattering. 

Several methods to model this scatter process have been proposed: 

1. The model proposed by Conwell and Weisskopf (1950) uses the Born 

approximation and is essentially a two-body model. The Coulomb field is 

cut off at a radius equal to one half the mean distance between the 

scattering centers. 

41 



1000 

100'--~-+-~~...,_~__,~~-' 

1e+15 1e+16 1e+17 1e+18 1e+19 

N (cm->) 

Fig 2.5 Low-field mobility as a functlon 
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represents experimental data. 

2. The Conwell·'lileisskopf model was improved by Brooks and Herring (Brooks 

[1955}). They introduced screening into the model, thereby allowing the 

scattering potential to fall with distance more rapidly. A complete 

overview of the Conwell·Weisskopf and Brooks-Herring models was given by 

Chattopadhyay and Queisser [1981]. 

3. If the average distance between the scattering centers is smaller than the 

screening length, more than one center can play a role and the 

Brooks-Herring approach is in error, as it simply adds the effects of all 

centers. A refinement of the model was given by Ridley [1977] by 

introducing the restriction that only one scattering center is acting on 

the electron. The model contains both the Conwell-Weisskopf and the 

Brooks-Herring models as limiting cases and was first used in a Monte 

Carlo simulator by Van de Roer and 'liliddershoven [1986]. An extensive 

description is given by Nederveen [1989]. The equations needed are given 

in the appendix 2.7.1. 

4. A fourth model was proposed by Perri [1986]. In this model the electron is 

scattered only by the nearest scattering center. All other centers are 

assumed to be screened completely. This model comes in two verslons: one 

in which the scattering angle is calculated assuming the scattering center 

to be unscreened, the second in which a screening of the scattering center 

is assumed to be present. 

All above models have one serious draw-back in common: they do not fit 

experimental data. All of them give too high values for the low-field 

mobility as is shown in figure 2.5. In this figure the solid line represents 

experimental data, the dashed linea simulation data using different ionized 

impurity models. In all simulations full ionization of the impurities was 

assumed, which is in fact not correct. However, accounting for this would 

make matters even worse. In addition to the possibility that the models are 

just not good enough, some other explanations can be given: 
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1. In the 1110dels the distortion of the lattice by the doping atoms bas not 

been taken into account. However this effect is expected to become 
19 -3 appreciable only at very high doping concentrations (N

1 
> 10 cm ) and 

the models fall already at much lower concentrations. 

2. Electron-electron interaction has not yet been taken into account. 

Especially at high doping levels (which also means high electron 

concentration in the calculations done) this could be an important 

scattering mechanism. This aspect is dealt with in section 2.3.4.3. 

However simulations show only a minor effect of electron-electron 

scattering on the low-field mobility. 

3. Another contribution to the discrepancy could be that in practice the ions 

are not distributed homogeneously in the crystal; some clustering of ions 

is to be expected (Widdershoven [ 1988]) . An approximate model of the 

possible effects of clustering is described further on: see (2.3.28). 

In our simulations the Perri model that assumes one unscreened scattering 

center has been used because the results obtained by this model fit 

experimental data better than most other models. Furthermore, if the 

unscreened Perri model is used in a Monte Carlo device simulator, this model 

has the important advantage that in the scatter process only the nearest 

impurity is included. In the other models also distant charges have effect on 

the scattering. But the effects of distant charges already have been taken 

into account by the electric potential distribution in the device, so there 

is some double-counting. Furthermore, the unscreened Perri model is easy to 

implement and easily can be extended with the clustering ion concept. 

The unscreened Perri model is described here in more detail: 

If N
1 

is the ionized impurity concentration, the average distance between 

scatter centers equals N"
113

• Now assume that only one impurity acts on an 
I _, 

electron moving through the lattice with velocity lwl at the moment of each 

interaction, then the averaged geometrical cross section is defined (see 

figure 2.6a) by 

(2.3.22) 

Now in an infinitesimal time step dt the movement of the electron is assumed 

to be in a straight line, and an elementary volume dV is defined (figure 

2.6b) 

dV - a l;tl dt • 
(2.3.23) 
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Fig 2.6a The average geometrical cross Fig 2.6b Elementary volume dV. 
section is defined as that section 
that contains exactly one impurity. 

Now dn, the number of ions present in the volume dV is defined by dn - N
1
dV. 

The scatter rate ~p' which is equal to the number of ions dn/dt encountered 

by the moving electron per time unit, is given by 

~ (u) - N " l;:I - ! l;:I Nl/3 
P l a 4 l 

(2.3.24) 

The scattering angle between the electron wave vector before and after the 

scatter process is calculated by taking the Lagrangian of the 

electron-impurity system assuming a pure Coulomb potential. In a parabolic 

band this gives (McQuarrie (1976)) 

(2.3.25) 

Z
1 

is the multiplicity of the impurity. The impact parameter u
1 

is calculated 

from the geometrical cross section by using a random number ~ 

2 -2/3 
"1 - ~ 1r Nl (2.3.26) 

lf the band is non-parabolic according to equation (2.3.1) then the energy u 

bas to be substituted by the modified energy u
1 

(Perri (1986)) given by 

u _ u (1 + au) 
1 

(1 + 2au)
2 

(2.3.27) 

The unscreened Perri model easily can be extended to include clustering of 

ions. Our clustering model bas the basic assumption that ions possibly form 

clusters of two or three ions, and that these clusters are distributed 

homogeneously through the lattice. lf the fraction of the ions that is in a 

44 



1000 

100 ...._ _________ .... 

1e+15 1e+16 1e+17 1e+18 1e+19 
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of the ionized impurity concentration; 
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cluster of two equals a
2 

and the part that is in a cluster of three equals a
3 

then the effective number of impurities is reduced 

N 
l,eft: 

[ 1 - ! a 
2 2 

2 - - a 
3 3 

N 
l 

(2.3.28) 

The effective scatter rate and the impact parameter o
1 

now may be calculated 

by substituting NI,eff instead of N
1 

in (2.3.24) and (2.3.26). If a scatter 

process occurs, a random number decides whether a one, a two or a three ion 

cluster is involved, i.e. Z
1 

equals 1, 2 or 3. In figure 2. 7 simulation 

results for different a
2 

ratios is given (in this plot a
3 

equals zero). 

Figure 2. 7 shows that in general clustering does decrease the mobility a 

little, but the discrepancy between simulations and experiment can not be 

fully explained by the mechanism of clustering. 

2.3.4.2 Impact ionization scattering 

Electrons with sufficiently high energies are involved in impact ionization 

processes. This process can be treated as an additional scatter mechanism in 

Monte Carlo simulation. The impact ionization scatter rate is calculated by 

the empirical formula given by Keldysh {1965]) 

u 
t.h 

is the 

energy gap. 

(2.3.29) 

threshold energy for impact ionization which is equal to the 

À (u ) is the total phonon scattering rate at the threshold 
ph th 

energy. As electrons situated in the X-valleys are subject to different 

scatter mechanisms as those in the L-valleys, À has a different value in 
ph 

both cases. p 
11 

is a constant; following Tang and Hess [ 1983], the value 

p
11

- 0.01 has been used. An electron subject to an impact ionization process 

loses an amount of energy equal to uth' Furthermore it is assumed that the 

scatter process is intra-valley. In figure 2.8 simulation results are 
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Fig 2.8 Impact ionization rate as a 
function.of the inversed electric 
field in intrinsic Si; experimental 
data are represented by the solid line; 
simulated data by the dashed line . 

compared to the experimental results obtained by Van Overstraeten and the Man 

[1970). At high fields a good agreement bas been found. At low fields the 

agreement is much less, but in that range the practical importance of the 

avalanche generation is not very great. 

2.3.4.3 Electron-electron scattering 

Not only do carriers interact with the lattice and impurities, but also with 

other carriers. A model was proposed by Lugli and Ferry [1983). The 

asaumptions made are that the electrons interact elastically only via a 

short-range screened Coulomb potential, and that the valleys are parabolic 

and spherical. In Si these last assumptions are invalid. The Herring-Vogt 

transform provides spherical valleys in it-space, but a serious problem 

remalns: the electron-electron scattering essentially absorbs neither energy 

nor momentum, but the latter condition is not fulfilled in it-space. The model 

used here is a modification of the model proposed by Brunetti et al. [1985) 

who introduced an extra self-scatter rate for electron-electron scattering. 

Then the total electron-electron scatter rate is given by 

l (u) 
" 

(2.3.30) 

Here P. is the inverse Debye length associated with screening 

2. 

IJ. - ( 
n q ) 112 

E € k T 
r 0 B n 

(2.3.31) 

These equations are only valid if both electrons are situated in an X-valley 

and have both the same effective mass mXd' but as the effective mass in the 

L-valleys mL bas nearly the same value as mxd' the L-valleys may be included. 

If a simulation electron attempts an inter-carrier collision, a counterpart 
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electron is selected at random from the electron distribution. Define • is 
i 

the relative initial wave vector between the simulation electron and the 

counterpart • - t - t . In the process a self-scattering is included, and i 0 i ei 
the electron-electron collision is accepted only if a random number ll. results 

to be less than the acceptance condition C 
a 

(2.3.32) 

Now the angle 6 between the relative wave vectors i
1 

and *f' before and after 

the scattering is given by 

6 - arccos [ 1 

(1. l)z fj: (l-11.) 

] (2.3.33) 

1 + 

where ll. is a random number, uniformly distributed over (0,1). Now 

-+ 1 -+ -+ -+ 
" " + "ei + gf Of 2 Oi (2.3.34) 

-+ 1 -+ -+ -+ 
" " + "ei - gf Of 2 01 

(2.3.35) 

Using this algorithm, the state of the simulation electron is changed at the 

time of the collision; the state of the counterpart is changed at the time in 

which its simulation was suspended. In this procedure the distribution of the 

counterpart carriers is not exactly synchronous with the simulation time of 

the simulation electron, but this difference is not relevant if the time step 

duration At is smaller than the time between two inter-particle collisions. 

Considering these equations some conclusions can be drawn: 

1. At very low electron densities the scatter rate \. becomes very high. 

This is due to the self-scattering, as can be seen by the acceptance 

condition (2.3.32) that becomes very low at low electron densities. 

Furthermore, the scatter angle nearly equals zero at low electron 

concentrations. All this results in a negligible scatter effect at low 

electron concentration, but it also means that the method proposed is very 

inefficient in this case. 

2. At very high electron densities both the scatter rate .). and the 
•• 

acceptance condition approach zero. This means that at high electron 

densities there is hardly any electron-electron scattering at all. This is 

a consequence of the screening effect in the model, that becomes very 

strong and prohibits the electron-electron interactions. 
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3. The influence of the electron temperature on the electron-electron scatter 

process is opposite to the influence of the electron concentration. 

In practice the time step duration bas to be smaller than the time between 
21 -3 two inter-carrier interactions. At n - 10 m and mx - 0. 3 m

0 
the ave rage 

scatter time is À-l = 8•10- 16 s (self-scattering included). From simulations 
•• 

it is found that the acceptance condition factor typically bas a value of 0.2 

which leads to a time step of At - 5•10- 15 s. 

Sb1111lations at room temperature in the low-field region show that 

electron-electron scatter processes have only a minor effect on the transport 

parameters e.g. the low-field mobility. In the high energy region the 

simulations by Brunetti et al. [ 1985) show a minor decrease of the energy 

relaxation time due to electron-electron scattering and this was confirmed by 

our simulations. 

2.3.4.4 Interface scattering 

This scatter process is of no relevance if the pure bulk material is 

considered. However in studying an interface (e.g. the Si-Si0
2 

interface) 

this scatter process becomes relevant. Here the interface scat tering is 

considered to be elastic, and scattering occurs in two forms: 

1. Specular reflection, in which the component of the wave vector 

perpendicular to the interface changes its sign by reflection. 

2. Diffuse reflection, in which the angle of the reflected wave vector is 

distributed uniformly over the interval [O,w] away from the interface. 

The selection between these two forms at the moment of scattering is made by 

random numbers. The ratio between the two different mechanisms cannot be 

.decided on theoretical grounds. A best fit to experimental data in case of 

the Si-Si0
2 

interface was found by Laux and Fischetti [1988) if both scatter 

mechanisms were given equal probability. 

2.4 Definition of the transport parameters 

The Ensemble Monte Carlo method can be used to calculate the transport 

parameters of interest, such as the mobility µn, the momentum relaxation time 

r and the energy relaxation time r , the conductivity 
pn wn 

the diffusion coêff icient D and the electron temperature 
n 

* effective mass m , 
n 

Tn. In this chapter 

it is described how these transport parameters can be calculated in a Monte 

Carlo program. 
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2.4.l Average electron velocity and energy 

At the end of each time step àt the kinetic energy u and velocity i of each 

of the H simulation electrons are known. Then the average electron energy 

W - <u> and the average electron velocity ~ - <~ can be calculated at time 
n n 

t - N•àt 
Il 

l H 
w (t ) - -H L u (t ) 

n Il i Il 
(2.4.l) 

i•l 

~ l M ~ 
v cc > - - r" cc > n 11 H i 11 

(2.4.2) 
i•l 

In the steady state W and ~ are time independent. The number of simulation 
n n ~ 

electrons H determines the statistical fluctuations in W and v . For our 
n n 

purpose H - 5000 gives sufficiently accurate results. 

A more sophisticated way of averaging is to integrate over each free flight, 

and then taking the sum over all free flights and over all electrons. 

Defining S the number of different free flights during àt, and taking the 

duration of the j-th free flight àtJ- tJ- tJ·l' yields 

t 
M S j 

~ <t > - .! r .L Z: J: <t' > dt' 
n 11 H àt i 

i•l j•l t 

(2.4.3) 

j-1 

It must be emphasized however that now the average is taken over a period of 

time instead of the average at a definite point in time. In the steady state 

the two averaging techniques given by (2.4.2) and (2.4.3) represent 

essentially the same quantity (ergodic theorem}, however when studying 

transient problems, this does not hold anymore. 

In general the integral in (2.4.3} is approximated by a simple average over 

the free flight 

àt 
j 

(2.4.4) 

~ 
As long as the variable w

1
(t) is linear int or as long as the change of the 

variable during one free flight is small enough, this approximation is 

allowed. A similar expression is given for Wn. In principle, compared to the 

first method, the second method gives a reduction in the statistica! 

uncertainty. In practice this is hardly noticed, and in case of short time 

steps àt the advantage of the second method disappears completely. 
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2.4.2 Jlobility 

In the steady state in the infinite homogeneous bulk material, pn can be 

easily defined. If the electric field E applied is pointing in the 

x-direction then 

v 
"" p---

'4 E 

" 
(2.4.5) 

Using this definition pn is given only in the direction parallel to E, and 

therefore is a function of l~ttice orientation. 

2.4.3 &elaxation times 

To calculate the relaxation times 

used. The 110111entum relaxation time 

r and r , two different methods are 
pn wn 

r essentially is a tensor. However in 
pn 

practice r is taken by definition 
pn 

in the direction of E, and is dealt with 

as a scalar. The first method follows strictly the definitions 

Bw v 
(--'-') - - "" 8 t: c r 

pn 

(~)-
8 t: c 

W-W 
f1 0 ----r 

'"' 

v 
'4/1 

-~ 

" r - -.... 

(--"> 8 t: c 

(2.4.6) 

(2.4.7) 

The drift velocity v"
11 

in (2.4.6) is defined by (2.4.4). To calculate rpn 

also an expression for the collision term has to be found. This is done by 

the summation of all changes in the electron velocity in the direction of the 

field at all scattering moments during the interval At 

(2.4.8) 

Ina similar way (2.4.7) is dealt with. 

A second method uses the transport equations in the steady state in 

homogeneous material, which gives 

fl k - - DJ: (2.4.9) r (jE pn 

" 
q E"v"" (2.4.10) f' - - w - w .... 

" 0 

In Si the valleys are elliptic and each valley bas its own effective wave 
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vector ii and its own effective field ii (see section 2.3.1), which gives a 

new definition for r 
Pil 

(2.4.11) 

Here N is the total number of valleys. Using the definitions (2.4.10) and 

(2.4.11) rpn and r." is given only in the direction parallel to the applied 

field. therefore the relaxation times are also a function of lattice 

orientation. 

Calculations using either (2.4.6) and (2.4.7) or (2.4.10) and (2.4.11) show 

that as long as the strength of the applied electric field is high enough 

(E > 1 kV/cm), both methods give the same results; however, the statistical 

uncertainty in the first method is larger. 

2.4.4 Conductivity effective mass 
* Essentially, the conductivity effective mass m" is a tensor, the elements of 

which are defined by 

• m 
nij 

Three different practical definitions are considered 

(2.4.12) 

1. Because the conduction band is modeled as non-parabolic and non-spherical 

(2.3.1), the diagonal tensor elements have values 

_l_ - < 
* m 
nH 

1 2ah2k2 

i 
~~~~~- + ~~~~~ > 
m~(l + 2au) 3 mi(l + 2au) 

and the non-diagonal elements are given by 

1 . 
m 

nij 

- < -

(2.4.13) 

(2.4.14) 

If the field is parallel to one of the principal lattice axes, equation 

(2.4.13) can be used to calculate m• in the direction of the electric 
n 

field, with the appropriate choice of index i. However if the field is not 

parallel to one of the principal lattice axes, then a coordinate 

transformation with transformation matrix U (2.3.9) is needed. 
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2. Zillllllermann (1980) bas proposed a more simplified approximation of m* 
n 

* * mn - m
0 

(1 + 6a <u> ) (2.4.15) 

Here •: is defined by 

l 1 3 
-; - iiï -i--2-
• 0 - + -

(2.4.16) 

o m m 
1 t 

3. •* also can be calculated directly from the momentum relation, yielding 
n 

hk 
* "" m ----n v 

nz 

(2.4.17) 

Simulations show that (2.4.17) and (2.4.13) give very similar results, with 

values of 0.3 m
0 

at low fields (E < 10 kV/cm) and a value of 0.5 m
0 

at 

E - 100 kV/cm. The simplified expression (2.4.14) gives much higher values 

form* at high fields, and should not be used if E > 50 kV/cm. 
n 

2.4.S Electron temperature 

It is not a priori clear which definition of the electron temperature Tn is 

the best. Here, four different definitions are compared. 

1. Aasuming a shifted Maxwell-Boltzmann distribution, Tn is defined by 

2 
T

11 
- Ik V

11 
and 

1 * ~ z v -r.r--mlvl 
n n 2 n n 

(2.4.18) 
B 

2. A more complicated definition bas been given by Williams [1982) for Ga.As 

to include non-parabolicity, also assuming a Maxwell-Boltzmann 

distribution 

SaV • 3 + [ (SaV -3)
2+ 120aV ] 112 

T- __ n ___ -:::,-,---n _____ n __ 

n 30ak
1 

(2.4.19) 

In the limit a-+O equations (2.4.18) and (2.4.19) are identical. 

3. A third definition of Tn makes use of the definition of the electron gas 

pressure tensor P n. This method is very well suited for Monte Carlo 

simulations. In a parabolic band the diagonal elements of Pn are given by 

P - n m* ( <w2> - v2 
) 

nii n i ni 
(2.4.20) 
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Then the hydrostatic pressure P
0 

is defined by 

P -nkT-!~p 
n Bn31..nii 

i 

All this yields he following definition for T
0 

* lil 
T - ___!! L ( <1112> - vz ) 

D 3k i ni 
B i 

(2.4.21) 

(2.4.22) 

4. Definition (2.4.22) can be modified by defining the hydrostatic pressure 

only in the direction of the field. This yields 

* 111 
T- ~ 

n k 
Il 

(2.4.23) 

All four different definitions have been compared, yielding the following 

conclusions: 

1. The kinetic term in (2.4.18) can be neglected. 

2. The results obtained by (2.4.23) hardly can be distinguished from the 

results using (2.4.22). 

3. The values of Tn calculated by (2.4.19) are some 10% lower than the values 

obtained by (2.4.22), which, in its turn, are 10% lower than the values 

obtained by (2.4.18). 

2.4.6 Diffusion coefficient 

A definition of the diffusion coefficient parallel to the electric field D 
n(f 

is given by the generalized Einstein relation 

k T 
D B n 
Dl/- -q- p.D (2.4.24) 

This method needs a priori an adequate definition of Tn, which is a problem 

(see section 2.4.5). 

The Monte Carlo method offers an alternative way to calculate the diffusion 

coefficient by looking at the position of all electrons. At the start of the 

simulation all electrons are situated in the origin of space. The way they 

spread out during the simulation gives a measure for the diffusion 

coefficient D". In appendix 2. 7. 2 it is shown how the position of each 

electron can be calculated. Using the second Fick equation and the time 

derivative of the second central moment of electron density an expression for 

Dn// is found (Jacoboni and Reggiani [1983]) 
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Fig 2.9 Diffusion coefficient as a 
function of the parallel field; both 
experimental data (crosses) and 
simulated data have been plotted 
various definitions: 
eq. (2.4.25) yields the solld line; 
eq. (2.4.24) with Tn•To yields the 

dashed line; 
eq. (2.4.24) in combination with 

(2.4.18) yields the dash-dot line; 
eq. (2.4.24) in combination wlth 

(2.4.22) yields the dash-dot-dot 
line. 

(2.4.25) 

In a Kante Carlo simulator, time is discretized to time steps At, and so is 

equation (2.4.25). In addition this method gives us the opportunity of 

calculating the diffusion coefficient perpendicular to the applied field in 

relation to that field 

Dn.I. - Î / t < (x - <x:>) (y - <y>) > (2.4.26} 

A drawback of the method described is that statistical errors are 

accumulating during simulation time, so the statistical error in D
11 

increases 

as a function of time. Especially as the steady-state conditions are studied, 

whicb require a large amount of simulation time, this can be a serious 

problem. 

In figure 2.9 various results have been plotted. Experimental data, given by 

Canali et al. [1975], are represented by the crosses. The solid line 

represents results obtained by equation (2.4.25); the other lines represent 

the result obtained if equation (2.4.24) is used. If the electron temperature 

is assumed to be equal to the lattice temperature the dashed line is 

obtained. If T
11 

is defined either by (2.4.18) or (2.4.22), the dash-dot line 

and the dash-dot-dot line are obtained respectively. 

Surprisingly, at relatively low fields (E < 20 kV/cm), the best fit between 

experimental and theoretical data is obtained if the electron temperature 

equals the lattice temperature, and the worst fit if the Einstein relation is 

used. No physical explanation for this bas as yet been found, but the same 

also has been observed in GaAs. Several attempts have been made to try to 

explain the phenomenon (e.g. by taking into account that also Tn is a 

function of electron position which modifies the Fick equation) but all 

failed. At high fields (E > 50 kV/cm) no experimental data were available, 
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but it is clear that the Einstein relation (dash-dot and dash-dot-dot lines 

in figure 2.9) also will fall in this region. 

Although the problem is not solved, it probably offers no difficulties for 

the rest of our work: in later studies the transport parameters are mainly 

used to model submicron MOS transistors, in which electron transport by drift 

is much more important than transport by diffusion. So the exact value of the 

diffusion coefficient probably is of little interest. 

2.4.7 Impact ionization rata 

The impact ionization rate for electrons an can be calculated directly from 

the Monte Carlo simulations. First the impact ionization scatter rate ~ 1 (E) 
is calculated by counting the number of impact ionization scatter events that 

occur during a certain period of time while the system is in the steady 

state, and dividing the result by the total number of simulation electrons. 

Due to the high noise rate the period of time mentioned has to be taken 

rather long (several picoseconds). Now an(E) can be calculated by 

(2.4.27) 

The results have been plotted in figure 2.8 (dashed line) combined with 

experimental data and as stated before, there is good agreement between the 

two sets of data, especially at high fields. At low fields the agreement is 

less but this should not worry us too much as at low fields the impact 

ionization is of little practical relevance. 

2.5 Simulation results and discussion 

All transport parameters have been obtained by analyzing the steady-state 

results of a large number of simulations of bulk Si. As explained in section 

2.3.4.1 the unscreened Perri method bas been preferred to model the ionized 

impurity scattering. Electron-electron scattering consumes enormous amounts 

of computing time with little effect and therefore has been neglected. Impact 

ionization is included. Furthermore the lattice temperature T
0 

is assumed to 

be 300 K, and all X and L valleys are included. In each simulation the 

electric field is switched on from zero to a finite value, assuming that all 

electrons are initially in thermal equilibrium with the crystal lattice (the 

initialization are described in appendix 2.7.3). After several picoseconds 

the system reaches the steady state. Repeating this procedure while the 

electric field E is varied over a wide range of values {typically from 1 to 

600 kV/cm), for various doping concentrations N
0 

(from zero to 1019 cm- 3
), 

the transport parameters are found as a function of the applied field and 
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doping concentration. As is shown, the electron energy Wn increases 

monotonically with applied field, and only a simple transformation gives the 

electron transport parameters as a function of W instead of E. In section 
n 

2.5.1 simu.lation results of the bulk material are presented. The applied 

electric field is always directed in the (1,0,0) direction. The mobility is 

calculated using (2 .4. 5), the momentum relaxation time using (2.4. 9). the 

energy relaxation time using (2.4.10), and the average effective mass using 

definition (2.4.13). In section 2.5.2 the transport parameters are described 

using analytica! expressions based on the Monte Carlo data. In section 2.5.3 

interface properties are dealt with. Part of the electrons arriving at the 

interface are scattered diffusively, part are reflected as described in 

section 2.3.4.4. The driving field is applied in a direction parallel to the 

interface. However also a field perpendicular to the interface is applied. 

Simu.lation results are given and discussed. Section 2.6 sUD11Darizes our 

conclusions. 

2.5.1 Slmulation results in the bulk 

In figure 2 .10 the averaged electron velocity (solid lines) and energy 

(dashed lines) in intrinsic Si are presented as a function of time at two 

different applied electric fields (20 kV/cm and 200 kV/cm respectively). 

Immediately after the field is switched on at t-0 the electrons gain energy 

and momentum. the gain in momentum is greater than the momentum relaxation to 

the lattice. 

As a result of this the velocity reaches values higher than the saturation 

velocity. This phenomenon is called velocity overshoot. This velocity 

overshoot should not be confused with the phenomenon that in some materials 

(e.g. GaAs) the velocity at a certain critical field reaches a maximum value 

higher than the saturation velocity at much higher fields. The latter effect 

~is from an entirely different nature and is caused by electrons being 

transferred to another valley with a higher effective mass. This leads to a 
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Fig 2.11 Calculated valley occupancy 
(X-valleys, both "hot" and "cold", and 
L-valleys) as a function of the applled 
field; the solid line represents 
the values in intrinsic material, the 
dashed line in n-type doped Sl. 

decreasing mobility and consequently a decrease in velocity is found. For a 

more detailed description of this phenomenon see e.g. Aspnes [1976]. 

After 2 ps equilibrium is reached for all electric fields applied. In figure 

2.11 the valley occupancy in the steady state has been plotted as a function 

of the applied electric field. The field is directed in the (1,0,0) 

direction, and because of different orientations of the X-valleys, four of 

the X·valleys have a smaller effective mass than the other two, and electrons 

are able to gain more energy in those valleys. For this reason they are 

called the "hot• X-valleys. The other are called •cold" X-valleys. At low 

fields all X-valleys hold the same number of electrons. At increasing fields, 

due to the fact that in the hot valleys the electrons are more subject to 

scattering, relatively more electrons are situated in the cold valleys. At 

even higher f ields the scattering satturates in all valleys and there is a 

tendency to an even distribution over all valleys. This even distribution is 

not reached because at that point (E = 100 kV/cm) many electrons gain enough 

energy to make the transition to the L-valley. In figure 2.11 the solid line 

indicates the situation for intrinsic material, the dashed line for extrinsic 

material with N - 1018 cm- 3
• As can be seen, the doping concentration is 

D 

hardly relevant for the valley occupancy. 

In figures 2 .12a and 2 .12b the velocity and energy distribution functions 

have been plotted when an electric field of 100 kV/cm is applied. The broken 

lines represent the result of our simulations. The continuous lines represent 

the Maxwell-Boltzmann distribution assuming a parabolic band. In the latter 

case the velocity distribution in the direction of the field is described by 

(2.5.1) 

Neglecting the kinetic term, the energy distribution is described by 
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kuT J 
B n 

(2.5.2) 

• 2 
The parameters T • v and m are obtained from the simulation k

8
Tn- -

3 
<u>, 

• n O n 

v
0
- <:v

1
,> and mn - 0.47 m

0
• 

It is clearly seen that at this high field the distribution definitely is not 

Maxwellian. The velocity distribution function is very asymmetrie, and the 

high velocity tails are truncated: the velocity hardly ever exceeds 108 cm/s. 

Also the high energy tail is lower than the Maxwell-Boltzmann distribution 

function predicts. Other simulations show that the Maxwell-Boltzmann 

distribution function holds more or less up to 20 kV/cm. 

In figure 2.13a the electron energy in the steady state bas been plotted as a 

function of the applied electric field. The doping concentration is used as 

parameter. The solid line represents intrinsic material, the dashed line 

extrinsic, with N
0

- 1018 cm- 3
• The triangles in the energy plot represent 

results for intrinsic Si obtained by Fischetti [1991]. In Fischetti's work a 

more realistic band model bas been used. Nevertheless, their values are much 

higher, probably due to underestimating the impact ionization rate, that bas 

a value nearly a factor 10 lower than used in this work. 

From these results the following conclusions can be drawn: 

1. The energy Wn increases monotonically with the field E. For this reason it 

is possible to define the inverse E-W
0 

relation (see section 2.5.2.2). 

2. For fields E < 100 kV/cm our results are very similar to the results 

obtained by the Fischetti group. A discrepancy arises for higher fields, 

where our results tend to be lower. 
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Fig 2.13 Calculated average electron energy (a) and electron mobility (b) 
in both intrinsic (solid line) and n-type material (dashed line) as 
a function of applied electric field; the triangles in (a) represent data 
obtained by Fischetti [1991]; in (b) the lines with dots represent data 
obtained by Selberherr [1989]. 

3. The average electron energy has little dependency on the doping 

concentration, which is not very surprising as the model used assumes 

elastic interaction between ionized impurities and electrons. 

In figure 2.13b the electron mobility in the steady state has been plotted as 

a function of E. Again ND is used as a parameter. The curves without dots 

represent our Monte Carlo results. The results obtained from the mobility 

model presented by Selberherr (1989], if no surface scattering is included, 

are marked by large dots. The lat ter model has a good fit to experimental 

data. 

Now the following conclusions can be drawn from figure 2.13b: 

1. In intrinsic material the Monte Carlo results and the Selberherr model are 

indistinguishable for all electric fields considered. 

2. In extrinsic material the Monte Carlo simulations give too high values for 

the mobility at low fields (E < 50 kV/cm). This is a result of an 

inadequate ionized impurity scattering model (see 2.3.4.1). 

3. At high fields (E > 50 kV/cm) the doping concentration bas negligible 

effect on the mobility. 

Other relevant transport parameters are T and mn. The conductivity 

effective mass m 
n 

is given in figure 2.14a and appears to increase 

monotonically as a function of energy, which is not surprising, given a band 

structure with non-parabolic valleys. The solid line gives the value for 

intrinsic material, the dashed line for material doped with ND 1018 cm-
3

. 

The effect of doping on mn is negligible. 
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Fig 2.14 Calculated electron conductivity effective mass (•) and energy 
relaxation time (b) in both intrinsic and n-type Si as a function of the 
applied electric field. 

The energy relaxation time bas been plotted in figure 2.14b. At low fields 

(E < 10 kV/cm) the energy gained by the electrons is negligible (see figure 

2.13a) and therefore the value of rwn in this region is not of any relevance. 

In figure 2 .14b it can be seen that r wn bas a nearly constant value in the 

high-field region (E > 10 kV/cm), and ranges from 350 to 500 feiatoseconds. 

The solid line gives the values found for intrinsic Si, the simple dashed 

line for doped material (N - 1018 cm- 3
). It can be seen tbat the effect of 

D 

the doping concentration on r"n is little. 

The results are in good agreement with results given by Jacoboni and Reggiani 

(1983]. However, the results published by Fischetti [1991], using a 

different, more realistic conduction band model, give a r
1111 

that bas a value 

of 500 fs, in the energy range up to 0.1 eV, and a nearly constant value of 

900 fs if W > 0. 5 eV. This latter value seems rather high. Furthermore a 

decrease of the r"n is expected due to an increase in the impact ionization 

scatter rate À
11

• The Fischetti group probably bas underestimated À
11

• 

2.5.2 Analytical form of the transport parameters 

Using the Monte Carlo simulation results, the transport parameters are 

described in an analytica! form that will be used in the hydrodynamic 

equations. In sec tions 2. 5. 2. 1 to 2. 5. 2. 4 the various relevant transport 

parameters (µ n, m:, r wn and an) are given as a function of the applied 

electric field E. 

To obtain these parameters as a function of the local electron energy, E bas 

to be substituted by an effective electric field Eecc· Eeff is a function of 

the local electron energy and is dealt with in section 2.5.2.5. 
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2.5.2.l Mobility 

As shown in the previous section the Selberherr mobility model for the bulk 

gives good agreement with the Konte Carlo data for intrinsic material. 

Furthermore it bas been explained in section 2.3.4.1 that the ionized 

impurity scatter model in the Monte Carlo method does not lead to results 

that fit with experimental data. For this reason the Selberherr mobility 

model bas been used in our hydrodynamic model that is described in the next 

chapter. Thus the mobility is defined by 

(2.5.3) 

2 
(2.5.4) 

In section 2.5.4 N
1 

is the impurity concentration. The values of the 

different parameters at 300 K are given in table 2.2. 

L 1430 cm2/Vs Table 2.2 Mobility parameters at 300 K /in 

µn*min 
80 cm2 jVs (Selberherr (1989)). 

1017 -3 
N 1.12 cm 
rd 

a 0.72 
n 

v 107 cm/s 
aat 

2.5.2.2 Conductivity effective mass . 
From figure 2.14a it can be seen that m also is a function of the applied 

n • 
field. However, in the rest of this work the value of mn only appears in the 

kinetic term of the energy, and this term hardly is of any relevance in Si. 

Therefore the field dependency of m* can safely be neglected and the constant 
n 

low field value m· - 0.256 m can be used. 
n O 

2.S.2.3 Energy relaxation time 

A first order approximation for rwn gives the constant value rwn- 0.4 ps. 

A very good fit with the data given in figure 2.14b (if E > 10 kV/cm) bas 

been found by fitting two eosine functions on a logarithmic scale. The 

expression used is 

If E < E 
0 

then 

If E s E s E then 
0 l 

T 
wn 

T 
wO 

(2.5.5) 
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( 
2 ln(E) - ln(E

0
) - ln(E

1
) ) 

" - ! (" + " + (.,. ·" ) sin ! --...---=~--:--=,-..,.---;;.... 
..., 2 ..o wl wl ..o 2 ln(E

1
) - ln(E

0
) 

If E :S E :S E then 
1 2 

f' .... 

The values of the different parameters at 300 K are given in table 2.3. 

f' 0.35 ps 
wo 

f' 0.50 ps 
Wl 

E 
0 

E 
1 

20 kV/cm 

200 kV/cm 

Table 2.3 Energy relaxatlon time 
parameters at 300 X, extracted 
Erom Honte Carlo slmulatlon data. 

f' 0.35 ps E 600 kV/cm 
w2 2 

2.5.2.4 Impact ionization rate 

The impact ionization as a function of applied electric field can be 

described by the expression given by Chynoweth [1958] 

a - a
0 

exp [ -E IE ] 
n n crit 

(2.5.6) 

The values of a: and Eer!& for Si were obtained by Van Overstraeten and De 

Man [1970] from experimental data a 0 
- 7 .03•105 [cm-1

] and 
6 D 

Ecru.- 1.23•10 [V/cm]. As bas been shown in figure 2.8 the Monte Carlo 

results give good agreement with these experimental data, especially at high 

fields. For this reason expression (2.5.6) is considered to give an adequate 

description of the impact ionization rate in the bulk material. 

2.5.2.5 Effeetive electrie field 

In sections 2.5.2.1 to 2.5.2.4 all transport parameters have been defined as 

a function of the electric field. However we are interested in the parameters 

as a function of the energy. In figure 2 .13a the energy W n is given as a 

function of E. We are interested in the inverse relation: given Wn, what is 

the so·called effective electric field E Because W inereases 
e!! n 

monotonically as a function of E it is possible to define this inverse 

relation. The procedure is as follows: 

First consider the energy conservation equation in the steady state 

w-w 
E•J - n _n __ o 

n r 
WD 

Now two different verslons are considered: 
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Fig 2.15 The effective electrlc field as 
a function of electron energy; the 
solld line results dlrectly from the 
Honte Carlo results; the dashed 
line is calculated by eq. (2.5.10) 
combined with (2.5.5); the dash-dot 
is obtained by eq. (2.5.8) with 
constant energy relaxatlon time. 

1. Because in the region of interest v equals, as a first approximation, the 
n 

saturation velocity vsat, Jn can be defined by J n - - q n v••t This yields 

w - w 
E 

n 0 

off 

q T '"' V sat 

2. Amore complete version uses the definition vn- - µnE. This yields 

q µ E! 
n 

w-w 
n O ----

T 
wn 

(2.5.8) 

(2.5.9) 

Combining (2.5.9) with the Selberherr mobility given by (2.5.4) and 

solving E yields 

E 
off 

_ ( _c_w_n_-_w_0_>_
2 

+ _w_n_-_w_0_ ) i12 

2 2 2 LI 
q T"nvsat q µn T 

(2.5.10) 

In figure 2.15 the exact electric field (solid line) as a function of 

electron energy is compared to the calculated effective fields using 

(2.5.10), combined with (2.5.5). Good agreement is found. Also the simple 

expression (2.5.8), assuming a constant Tw- 0.4 ps yields a good agreement 

(dash-dot line} at high energies. 

2.5.3 Interface transport parameters 

The transport parameters will be used in a hydrodynamic device simulator, 

mainly to simulate MOS devices, where electron transport is concentrated at 

the Si-Si0
2 

interface. In this paragraph the effects of the interface are 

discussed. No quantization effects at the interface have been taken into 

account, as bas been done by e.g. Basu [1978] and Chu-Hao (1985]. 
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Fig 2.16 Surface electron mobility and fnergy (a) and energy relaxation 
time (b) in n-type Si (Nd-3.3 1017 cm· ) as a function of the 
applied parallel electric field; theperpendicular electric field 
is the parallleter (values in kV/cm). 
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Fig 2.17 Low-field electron mobility in 
intrinsic Si as a function of the 
distance Erom the interface; the 
interface scatter ratio a is the 
parameter. s 

The applied field bas two components, E
11 

parallel to the interface, and Ei 

perpendicular to the interface. Both can be varied independently. In 

addition, the ratio as between specular reflection and diffuse reflection at 

the interface bas to be defined. 

In figure 2 .16 the surf ace mobility, the average energy, and the energy 

relaxation time have been plotted as a function of E for doped material 
17 -3 Il 

(N
0 

- 3.3•10 cm ). The parameter is Ei. In these simulations the ratio as 

equals 0.5, being the value found by Laux and Fischetti (1988]. 

From the simulation results the following conclusions can be drawn: 

1. At high parallel fields (E
11 

>Ei) the interface scattering bas negligible 

effects. 

2. The surface mobility decreases substantially with increasing Ei. 

3. Also the average electron energy decreases with increasing Ei; however the 

effect is small in the region of interest. 

4. The energy relaxation time is nearly independent of E11 and Ei. 
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Finally the value of a
5 

has been va.ried. Simulation data for intrinsic Si 

have been plotted in figure 2.17 (E
11

- 10 kV/cm and E~- 100 kV/cm). If a
8

• l, 

the interface scattering is purely specular reflexion, and if a
8

- 0 all 

interface scattering is diffuse. The perpendicular field forces the electrons 

towards the interface, and the number of simulation electrons decreases fast 

with increasing distance from the interface. Therefore the error in the 

mobility increases fast with increasing distance. 

The following conclusions can be drawn: 

1. A conducting channel of some 10 nm bas been found. 

2. If a- 0 the interface moblity equals the bulk mobility (i.e. 680 cm2 /Vs 
s 

at E
11

- 10 kV/cm). 

3. For increasing a
5 

the interface mobility decreases strongly. 

4. Furthermore it bas been found that a value a
5

- 0. 75 gives the best 

agreement with the Selberherr interface mobility model. 

2.6 Summary and concluaions 

The conclusions that are relevant to the rest of our work are summarized: 

1. The electron energy is a monotonie function of the applied electric field 

and therefore the inverse relation can be defined. 

2. Because no adequate results of the ionized impurity scattering from first 

principles is available, the measured bulk mobility is better described by 

the model given by Selberherr [1989]. To obtain the energy dependence of 

the mobility, in the latter model the electric field can be replaced by 

the effective electric field given by (2.5.8) or (2.5.10). 

3. The calculated impact ionization rate is well described by the model given 

by Van Overstraeten and De Man [1970]. Energy dependence of the impact 

ionization rate is obtained by using the effective electric field concept. 

4. The energy relaxation time is almost independent of the applied field. A 

value of 400 fs seems appropriate both for bulk and interface material. A 

small, nearly negligable, dependence on doping concentration has been 

found in our simulations. Our results are in agreement with Jacoboni and 

Reggiani [1983]. The value 1' - 900 fs, 
wn 

found by Fischetti (1991] is 

probably too high, due to an underestimation of the impact ionization 

scatter rate. 
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. 2 • 7 Appendices 

2.7.1 The Ridley model of the ionized f.mpurity scattering 

The Ridley approach is a classical approach to the problem of ionized 

impurity scattering [1977]. From that theory Van de Roer and Wïddershoven 

[1986] deduced definitions of the scatter rate and scatter angle that can be 

used in a Monte Carlo simulator. They found that, if l
88 

is the scatter rate 

calculated using the Brooks-Herring model. the scatter rate in the Ridley 

model can be defined by 

À <ih - 1:ci>I [ i - exp<-
ll a 

liith \s defined by 

l (it) 
BH 

TN ./2 (k T ) 2 (m m ) 312 

I B n () d 

with a - N"
113 

I 

(1+2au) [u(l+au)) 112 

(2.7.1) 

(2.7.2) 

Here P. is the inverse Debye length associated with screening as given by 

equation (2.3.31). 

Now the distribution of the angle 6 between initial velocity vector and final 

velocity vector in i-space is non-isotropic, and is a function of a random 

number lt. Van de Roer and Widdershoven found that in the Ridley model this 

angle Oll(lt) - 6
88

(1t
8
), with 1t

8 
given by 

lt - • 
R 

1:cif> 1 
al (it) 

BH 

This yields 

al ei> 
log [ 1 - (l·lt) _R __ ] 

1:cit> 1 

6 (1t) - 6 (1t ) - arccos [ 1 -
R BH R 

2.7.2 Calculation of the electron position 

(2.7.3) 

(2.7.4) 

Knowledge of the position of each of the simulation electrons is needed in 

Monte Carlo bulk simulations in calculating the diffusion coefficients, and 

it is needed in Monte Carlo interface and device simulations. The electron 

position does not change at the moment of scattering; it only changes during 

the free flight. If the position of the electron at the beginning of the free 
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-+ flight is x
0 

and the time of flight is tr, then 

-+ 7 
x - x + 

0 0 

t 
r 

f ;:(t) dt 

With equation (2.3.5) this yields 

Here 1 is path length, defined by 

t 
7 " ;t dt 
8 -J 1+2au 

0 

From equation (2.3.3) it can be deduced that 

(2.7.5) 

(2.7.6) 

(2.7.7) 

h2 
2 

1+2au - [ 1+2a - " ]112 (2. 7 .8) 
mo 

And equation (2.2.1), with i the transformed wave vector at the start of the 
f 

free flight, yields 

'it(t) -+ -" -f 
(2.7.9) 

Then with" - lil. "t - lifl and Ei - jÊij the combination of equations 

(2.7.8) and (2.7.9) yields 

i+2au - [ 1 + 2°"2 + 2at2E2 - 4at ei .! > 1112 

f i f i 
(2.7.10) 

Next substituting (2.7.9) and (2.7.10) in (2.7.7) and using two standard 

integrals (Gradshteyn, [1980]), with R-a+bt+ct2 

f dt 1 1/2 
-- - -::r- log [2•(cR) +2ct+b] 
Rl/2 YC 

(2.7.11) 

(2.7.12) 

Taking R - 1+2au it can be deduced in a straight forward way that 

7 :i 2a 
s - - )!; - (u -u ) + 

i c i f 

7 i b 1 ( 2fc(l+2au1 ) + 2ct:"+ b) 
(iç! + i 2c ) Vc log Uc(l+2au ) + b 

f 

(2.7.13) 
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Here uf is the energy at the ~tart of the free flight and u
1 

at the end; 

b - -40< ei •Ê) and c - 2a E
2

• If Î is known, the position j can be 
f i i 

calculated with (2.7.6). 

Note: in case a-0 the log-function in (2.7.13) is not defined. However the 

limit ~ does exist and yields 

lim 1 - i t - ! i t
2 

- ! t: ei + i ) 
~ !r 2 ir 2 r f i 

(2.7.14) 

: is the transformed wave vector at t . 
i r 

2.7.3 Initializatlon of the electron energy and wave vector 

Before a Monte Carlo run is started, all variables have to be initialized. We 

are mainly interested in parameters as a function of the applied electric 

field at steady-state conditions in an homogeneous bulk material. In 

principle the initial position of the electrons is not of interest. Only in 

calculating the diffusion, by studying the way electrons diverge, is the 

position of the carriers used. For this reason at t-0 all electrons are 

situated at the origin. We assume thermal equilibrium at t-0 at a lattice 

temperature T
0

, and assume all electrons to be in the lowest valleys. In case 

of Si this means that all electrons are uniformly distributed over all six 

X-valleys. The electron temperature is assumed to be equal to the lattice 

temperature, and the initia! drift velocity is assumed to be zero. 

More of a problem is to calculate the distribution of electrons over iÎ-space. 

One way to do this is to look at the ît distribution which is chosen to be 

Maxwellian. Another way, and that is the way it is done in this program, is 

to look at the energy distribution. If the valleys in the material are 

spheric and parabolic, the energy distribution function is given by 

P(u) - 2,.. u112 exp ( - u 
(1rk T ) 3/2 kB TO 

B 0 

(2.7.15) 

This equation can be rewritten as a chi-square distribution of order n-3 

(2.7.16) 

n-2 2 

And x <x> - -~x __ exp ( - x2 
n 2nf2 r(!) 

2 

e2.7.17) 

68 



Now x2 is found using random numbers. In this case (n-3) x2 can be found by 

(2.7.18) 

Here Il , Il and Il are random numbers distributed uniformly on [0,1). If x2 

1 2 3 ~ 
is known, u can be calculated, and if u is known so is K. This procedure of 

generating random numbers, calculating x2
, u and i is repeated for all 

simulation electrons. The direction of i in a spheric valley is chosen to be 

isotropic, which means that the az imuthal angle rp equals 2'11' Il 
4 

, and the 

tangential angle '8 equals arccos (1 • 2 1t
5
), where ll.

4 
and ll.

5 
are random 

numbers distributed uniformly on [0,1) 

The problem appears to be more complicated wben the valleys are elliptic 

instead of spheric, as is the case in Si. However by applying a suitable 

transformation, it is possible to define a transformed wave vector t, and in 

't-space the valleys are again spherical and the same procedure can be 

applied. More serious is the problem when the valleys are non-parabolic with 

a non-parabolicity factor a, and the energy distribution function becomes 

much more complicated. Using an appropriate expansion of the energy 

distribution function leads to the following first order approximation 

(2.7.19) 

c -3 
l + ~ ak T 

4 B 0 

(2.7.20) 

~ak T 
c 4 B 0 -5 

1 +~ ak T 
(2.7.21) 

• Il 0 

Now two different x2 have to be calculated, one x2 belonging to X , wbich can 
·l 3 

be calculated using equation (2.7.18), and one x
5 

belonging to X
5

, which can 

be calculated by 

(2.7.22) 

Here 1t
1

, 1t
2

, 1t
3 

and ll.
4 

are random numbers distributed uniformly over [0,1). 

This results in 

kT 
B 0 

u - -2- (2.7.23) 

If Î is known, the electron velocity can be calculated too, and all variables 

have been initialized. 
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Chapter 3 

MORTE CARLO DEVICE SIMULATION IN ONE DIMENSION 

3.1 Introduct1on 

The Ensemble Monte Carlo method not only can be used for simulating bulk 

material or interface properties, but also for simulating the characteristics 

of complete devices. A description of a full two·dimensional Monte Carlo 

simulator of a GaAs HEMT was given by Nederveen [1989], a description of a 

two·dimensional MOST simulator by Laux and Pischetti [1988, 1991]. The major 

problem of these simulators is that the simulation electrons have to be 

distributed over a two-dimensional space. Because of limited computing 

capacity the number of electrons bas to be limited, and in large parts of the 

device the simulated electron density is very low. This makes the results 

very noisy. This noise bas no physical background, but is purely due to the 

Monte Carlo method. 

In our study we are not so much interested in developing a Monte Carlo device 

simulator, but more in developing a hydrodynamic device simulator. The Monte 

Carlo method is a tool in this work and is used as a reference to simulation 

results obtained by the hydrodynamic method for determining the accuracy and 

the limits of applicability of the hydrodynamic method. For this purpose a 

one-dimensional Monte Carlo device simulator suffices. In this chapter this 

simulator is described. Simulation results are used to answer the question 

how to model the device contacts best. More simulation results are presented 

in the next chapter, aft.er the introduction of the hydrodynamic drift device 

simulator. 

3.2 The one-diaensional Monte Carlo device simulator 

In the Monte Carlo device simulator only electron transport is dealt with. 

The device consist of three layers: two n-doped contact layers and one p- or 

n·type drift layer in between. Ohmic contacts are defined at the left hand 

and right hand side of the device, and the potential at the contacts is 

applied externally. In analogy with MOST structures the device contacts are 

called source and drain. 

The most important differences between bulk material simulations and device 

simulations are the following: 

1. The applied field is not distributed uniformly over the device and depends 

on the device structure and the charge density. Therefore the Poisson 
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equation bas to be introduced in the program. 

2. Parameters which can be considered as uniform in a bulk simulator {e.g. 

impurity concentration, electron concentration, electron temperature) are 

functions of the position in the device. 

3. The range of electron densities varies by several orders of magnitude. If 

each simulation electron had to represent the same electric charge, then 

the majority of the simulation electrons would accumulate in the contact 

layers, which are the least interesting parts of the device. To avoid 

this, the charge represented by each simulation electron is multiplied by 

a weight factor, depending on its position in the device. 

4. A model of the contacts bas to be incorporated in the program, describing 

how electrons are absorbed in a contact and how they are injected from it. 

These topics are dealt with in this chapter more extensively. The global set 

up of the program is as follows: 

1. Definition of device geometry and initialization conditions. 

2. Calculating the charge distribution in the device, solving the Poisson 

equation and calculating the electric field distribution. 

3. Use of the Monte Carlo method during a certain time step 6t to obtain the 

new position, velocity and energy distribution of the simulation electrons 

in the device. 

The last two steps are repeated as long as is considered necessary. Stability 

considerations needed to decide on the spatial discretization parameter t:.x 

and on the tempora! discretization parameter 6t are discussed in section 3.3. 

3.2.1 Device geometry 

A uniform one-dimensional grid is used to discretize the drift. device. The 

number of intervals is N", each of size t:.x, and the total device length L 

equals N"t:.x. The number of grid points equals N"+1, being labelled 0 to N". 

The i-th interval is defined between grid points i-1 and i. The doping 

concentration is defined at the grid points. Between two grid points the 

doping concentration is considered constant having the averaged value of the 

concentration at the grid points. The charge density, the potential, the 

average velocity and the average energy are defined at the grid points; the 

electric field and the electron temperature are considered to be constants 

between two grid points. The device is divided in three different layers: the 

source region {from grid point 0 to L
8
), the drain region {from Ld to L), and 

the drift region in between. The electric charge represented by each 

simulation electron differs in each region. If each simulation electron 

situated in the drift region represents H real electrons, then each 
r 
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simulation electron in the source region represents q.
0

•Hr real electrons, and 

in the drain region q.d•Hr. q.
0 

and q.d are the charge weights of respectively 

source and drain. If an electron moves from one region to another its weight 

changes as is described in more detail in section 3.2.5. 

It is not a priori known how the electron density distribution in the device 

looks like, but it seems a logical choice to choose the weight factor q.
0 

to 

be equal to the ratio of the source region dope and the drift region dope, 

and similar for q. d. Then the simulation electrons are distributed 

homogeneously over the device. However simulations show that we have to take 

care that the electron charge weight in the contact regions does not become 

so large that the movement of one electron bas a severe effect on the 

potential distribution. This wo~ld make the program very unstable. In general 

it is better to restrict q.• and q.d to not too large values (up to a factor of 

ten). 

3.2.2 Initializations 

Before the actual simulation is started, the electrons are considered to be 

in thermal equilibrium and the energy and wave-vector distributions at the 

onset of the simulation are calculated as described in appendix 2.7.3. 

The initial position of the simulation electrons needs some attention. The 

initial total number of simulation electrons is H (H can be up to 20000 

electrons). All donors and acceptors are assumed to be fully ionized. Now the 

number of simulation electrons in the i-th interval H
1 

is proportional to the 

doping concentration divided by the factor q.
1
Hr. M

1 
is given by 

(3.2.1) 

1 

Here 0 represents the contact area. In the drift region the weight factor q.1 
equals one, in the source and drain regions q.

1 
equals q.• and q.d, 

respectively. Now Hr can be calculated 

~ (N + N ) 
2 Di-1 Di 

q.i 
(3.2.2) 

If the number of simulation electrons situated in each interval is known, the 

probability that an electron is situated in the i-th interval is given by 

p 
i 

H ~ (N + N ) 0 llx 
i 2 Di·l Di 

-H- q.!Uf 
i r 

(3.2.3} 
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The initial spatial position of each simulation electron in each interval is 

calculated by assuming an uniform distribution over that interval. 

3.2.3 Charge distribution 

To calculate the electron density from a given electron distribution the 

cloud in cell (CIC) method is used, in which the charge of each sillulation 

electron is fairly distributed over both nearest grid points: if the dlstance 

of the slmulatlon electron to one of these grid points is a Ax, this point is 

asslgned a fraction 1-a of the charge the electron is carrying, and the other 

one a fraction a of that charge. In calculating the average electron velocity 

and average electron energy at each grid point the same method is used. 

A different method is used in calculating the electron temperature Tn
1 

in 

each interval by averaglng the energy of all electrons in that interval, 
1 

using the simplified definition 

T _ _!_<u> 
ni 3k i 

(3.2.4) 
B 

In the program the impurity concentration is defined at each grid point and 

the charge density is given by 

(3.2.5) 

3.2.4 The Poisson equation 

lf the charge density is known, the Poisson equation (3.2.6) is used to 

calculate the potential and the field everywhere in the device 

(3.2.6) 

A three point differential scheme is used, and the tridiagonal matrix solver 

DGTSL from the LINPACK-library is used to calculate the potential at each 

grid point, given the external applied potentials at the final grid points. 

Since the potential is defined at the grid points, the elèctric field can be 

calculated ln a straightforward way from the potential distribution 

E -1 
(3.2.7) 

Because of the various valleys and the fact that the X·valleys in Si are 

strongly elliptical, each electron bas its own effective field, as described 

in chapter 2. 3. Using Herring·Vogt transformations, the effective electric 

field of each electron can be calculated. lf by scattering the electron jumps 

from one valley to another, this effective field bas to be readjusted. 
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3.2.5 Electron transport 

The situation in a device is much more complicated than in bulk material. As 

the electron is moving through the device it changes its position and by 

doing so the force working on the electron, the material properties (and so 

the scatter rates} change. To be able to deal with these problems it is 

necessary to limit the maximum time of flight in such a way that the electron 

never moves more than one interval llx during each flight. Because it is also 

necessary to reevaluate the potential distribution at regular time intervals, 

the introduction of a time step at the end of which all free fllghts are 

ended with a self-scatter process, is a natural one. The actual size of this 

time step is discussed in section 3.3. 

Assuming that the position of an electron indeed does not change more than 

the size of one interval llx, and assuming all parameters to be sufficiently 

smooth, it is reasonable to state that during each flight the electric field, 

the impurity- and electron concentrations and the electron temperature remain 

constant, and that these parameters depend only on the initial position of 

the electron. All this makes the Monte Carlo process in a device very similar 

to the process in bulk material, and the same conduction band model and 

scatter mechanisms are involved. To calculate the position of each electron 

the equations in appendix 2.7.2 are used. 

A problem occurs at the interface between drift region and contact regions 

owing to the difference in weight factor between the regions, as described in 

section 3. 2 .1. In the case that the electron moves from the drift region 

(charge weight equal to one} to the source region (weight equal to q
8

) it is 

stated that the probability that the electron actually moves into the source 

region equals 1/9
0 

(the decision being made by the random number generator). 

If this situation occurs, the electron changes its charge weight to q
0

• All 

other times the electron is completely annihilated. A similar procedure is 

followed if an electron moves from the drift to the drain region. If however 

an electron moves from the source to the drift region, the problem is more 

complex. The electron having a weight 9
8 

(an integer value) is split up in q
6 

new electrons, all having a weight equal to one. All these electrons have 

identical electrical properties and positions, and are distributed randomly 

among the already existing simulation electrons. Naturally all this coming 

and going of electrons demands a very accurate administration. If an electron 

moves from the drain to the drift region, the problem is similar. 

3.2.6 Avalanche generation 

In the Monte Carlo program extra simulation electrons actually can be 

generated by weak avalanche processes. If a hot electron is subject to impact 

ionization scattering, it loses part of its energy, as described in section 

2.3.4.2. In addition a new simulation electron is generated at the same 
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position in the device with the same charge weight as the scattering 

electron, and with zero energy and zero wave vector. Because the Monte Carlo 

program can only deal with electrons, no holes are generated. 

3.2.7 Modeling of the contact& 

If the Si device is highly doped at the metal contact but not yet 

degenerated, and if externally a voltage u.z is applied to the contact, then 

the internal voltage at the contact is given by 

• - u 
0 "" 

(3.2.8) 

where Nc and Nv are the number of states in conduction and valence band, 

respectively. 

To describe the contacts two different models are used. 

1. The regenerating contact 1110del: the exact moment an electron reaches a 

contact, it is absorbed at that contact and a new electron is generated 

instantaneously at the other contact in a hemi-Maxwellian distribution 

(velocity directed into the device). An iterative process is used to 

calculate the exact moment a simulation electron reaches the contact. A 

possible difference in charge weight between source and drain region is 

taken into account. If the avalanche generation is negligible, the device 

as a whole always is necessarily charge neutral. 

2. The neutral contact model: this model uses the assumption of charge 

neutrality at the metal contacts. In the Monte Carlo program this implies 

that each time step the charge density at the contacts is calculated, and 

simulation electrons are injected, or removed at the contact to get as 

close as possible to charge neutrality. The injected electron is placed at 

a random position in the first interval bordering the contact and drawn 

from a Maxwellian distribution. A possible difference in charge weight 

between source and drain is taken into account. In this model the device 

as a whole is not necessarily charge neutral. 

3.2.8 Calculation of the device currents 

In order to calculate the primary device currents, three different methods 

are used. They all can be implemented easily in the program. By implementing 

different methods that all calculate the device currents an extra check on 

the validity of the calculations is obtained. 

1. The numb~r of electrons that is absorbed by the drain, minus the number of 

electrons absorbed by the source during a certain interval of time At
0 
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equals the total current through the device. Of course the charge weight 

of each electron has to be taken in to account. In a similar way the 

avalanche current is calculated by simply counting the number of 

simulation electrons generated by the impact ionization scattering . 

.Because of the counting of single electrons the noise calculated is 

increasing at decreasing device current and decreasing time interval At
0 

Especially if the transient behavior of a device is studied, this can be a 

problem. In the steady-state studies At
0 

can in principle chosen to be 

arbitrarily long, just to reduce the noise. 

2. The primary device current density jx at each position x can be defined by 

Jx - - q nxvox' Now if H
1 

is the number of simulation electrons situated 

in the i-th interval between x and Ax, and if q
1
Hr is the total number of 

electrons represented by each simulation electron in the i-th interval 

(see section 3.2.2), then by definition the electron density nx and 

electron drift velocity v
0

x at position x read 

and v 
Dx 

1 
'M 

i 

w 
ji 

(3.2.9) 

Here wji represents the velocity of the j-th electron at the i-th 

interval. Then the primary device current i" at each position x reads 

w 
ji 

(3.2.10) 

Equation (3. 2 .10) is also val id at the contacts. The numerical noise is 

high if Hi is low. A noise reduction is obtained if the current is 

calculated regularly and averaged during a long total simulation time. 

Again this is only applicable in the steady-state situation. 

3. A noise reduction also is obtained if the current is averaged over the 

whole length of the device. Then the total device current I
0 

can be 

defined by 

1 
ID - L f i" dx i • 

x 
(3.2.11) 

Here N represents the number of spatial intervals in the device. 
x 

Combining (3.2.10) and (3.2.11) yields 

I 
D 
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9 is the charge weight of the j-th simulation electron and w the 
j .l 

velocity of the j-th electron. Because equation (3.2.12) gives the average 

current over the device, this is not very accurate if the avalanche 

current (which is generated locally somewhere in the device) is of the 

same order of magnitude as the primary device current. 

3.3 Stability considerations 

Because of discretization in time and space, the stochastic character of the 

Monte Carlo method and computational errors the simulation results are not 

exact. If the errors are too large the simulation results have no practical 

significance at all. To ensure that the errors are small, simulation and 

discretization parameters have to satisfy a number of conditions. Since in 

Monte Carlo simulations electrons can be considered as a collisionless 

electron plasma with scatter processes superimposed, these conditions can be 

derived from plasma theory. An extensive treatment of the stability 

considerations bas been given by Hockney and Eastwood [1981]. 

1. To achieve integration stability, the following condition must be 

fulfilled 

w•At<2 
pn 

Here w is the plasma frequency defined by 
po 

2 

[ ~r2 
f e m 

r 0 D 

(3.2.13) 

(3. 2.14) 

This conditions guarantees that errors in the electron position caused by 

integration over the electron velocity remain small enough for the 

silllulation to stay stable. 

2. To be sure that electrons do not pass field fluctuations unnoticed, llx and 

At: are chosen in such a way that during a single free flight never more 

than one grid point is passed. This means 

w • At< llx 
1118% 

Here "max is the maximal electron velocity. 

(3.2.15) 

3. Considering an uniform collisionless and field-free plasma, any moving 

charge passes this plasma undisturbed. However if a Monte Carlo model is 
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4. 

used, there are some stochastic errors in the uniform charge distribution. 

Therefore small electric fields will arise, and a charge cannot pass 

undisturbed anymore. A measure of this disturbance is given by the 

collision time r 
0

, the average time it takes for a passing charge to be 

deflected 90° from lts original course. As long as the collision frequency 
-1 

.>. c - r c is much smaller than the minimal scat ter frequency .>.min, this 

effect can be neglected. Using the expression of Hockney for .>. 

Here L 
D 

L- [ D 

w 
-;-:---;-;"~-;-~ ~ << .>. 

2w min 

is the Debye length at equilibrium, defined by 

f'2 
2 qn 

Because of errors in the calculation of the electron momentum, 

{3.2.16) 

{3.2.17) 

the total 

energy of the system is increasing continuously. So the total simulation 

time should not be too long. A heating time r
5 

is defined as the time in 

which the average increase in electron energy is .! k T . As long as the 
2 B 0 

total simulation time T is smaller than r
5

, the effect can be neglected. 

Using Hockney's expression for r
5 

we find 

{3.2.18) 

The heating constant K
5 

depends on the algorithm used and has a value of 1 

in our program. 

3.4 Simulation results 

The program described has been used to simulate various modif ications of the 

drift device. These devices also have been simulated using the hydrodynamic 

device simulator described in the next chapter. Simulation results are 

compared. In this way it is possible to evaluate the validity of the use of 

the hydrodynamic simulator. The results of this comparison are discussed in 

detail in section 4.3 after the introduction of the hydrodynamic simulator. 

In this section we describe several devices and check whether the stability 

considerations have been met. Simulations are performed concentrating on the 

question which choice of contact model {neutral contact or regenerating 

contact model, see section 2.3.7) is the best. 

The simulated devices have a total device length of 1000, 800 and 700 run, and 

a corresponding drift region of 400, 200 and 100 nm respectively. In the 
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drift regions the doping rate is 1016 cm-3
, in the contact regions 1018 cm-3

• 

The source is grounded and a positive voltage is applied to the drain. 

Taking into account that m* l!: 0.256 m
0 

(see figure 2.14a) and that 
18 18 -3 n 

10 :s; n :s; 10 cm everywhere in each device, a maximal plasma frequency 

c.i • 30 rad/ps is found. This fixes the upper limit for the time step to 

l:J.~':,,_l:J.t < 0.06 ps. Simulations in bulk show that in general w < 106 m/s -( figure 2 .12b) , so a choice of At • 0. 01 ps and t.x • 10 nm satisfies both 

conditions (3.2.13) and (3.2.15). The Debye length varies per region, but bas 

a minimum value L • 4 nm. In our simulations the number of simulation 
D.sin 

electrons M equals 7500 or more, and, given a maximal device length of 

L - 1000 nm, the collision frequency ~ always is less than 5•1010 Hz. As in 
c 

Si the scatter frequency is about 1012 
Hz (figure 2. 3), also condition 

(3.2.16) is fulfilled. Finally with the parameters defined above, it is found 

that f' 
8 

l!: 2. 5 ps. However it bas to be noted that this is really the worst 

case situation for these devices. In general the number of electrons M 

exceeds the initial number, m* is larger than 0.256 m , and the electron 
n 0 

density is less than 1018 cm- 3 in most of the device. So the value of f' is 
B 

sufficiently large to allow a total simulation time of 10 ps that is needed 

for these devices that reach a steady state after 2 or 3 ps. 

Simulations using the parameters given above (l:J.t; - 0.01 ps, bJc - 10 nm, 

T - 10 ps and M - 7500) have been performed for the three devices having two 

different contact models. The applied potential bas been varied from 0 to 5 

Volts. Although the parameters have been chosen in such a way to guarantee 

numerical stability, strong instabilities may occur if the regenerating 

contact model is used. This is caused by electron accumulation at the source 

contact due to the fact that all electrons entering the drain contact with a 

high velocity are generated at the source contact, having only a low average 

velocity. This accumulation can become so strong that condition (3.2.13) is 

violated. The problem can be solved by a further decrease of the time step. A 

time step l:J.t= - 0.001 is found to be adequate, but causes a substantial rise 

in simulation time. In the neutral contact model these instabilities do not 

occur as electron accumulation at the contacts is actively suppressed by the 

model. 

In figure 3.la the characteristics of the three devices have been plotted for 

the neutral contact model (solid lines). In addition the characteristics of 

the 100 nm device obtained by the regenerating contact model (dsshed line) is 

given. In the plot error bars have been included. The total simulation time 

is 10 ps. The regenerating contact model gives slightly smaller primary 
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Flg 3.1 Primary device current (a) and avalanche current (b) for varlous 
drift dev1ces as a functlon of applied voltage; results obtained using 
both the neutral contact 1110del (solid line) and the regenerating contact 
model (dashed 11ne) have been plotted. 
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Fig 3.2 Electron density (a) and energy distribution (b) in a 100 nm drift 
device; Vda- 4 V; the solid line represents data obtalned using the neutral 
contact model, the dashed line using the regenerating contact model. 

currents, but for most part of the curve this difference lies within the 

calculated error margin due to 'the stochastic character of the Monte Carlo 

method. 

In figure 3.lb the calculated avalanche currents have been plotted. Again the 

difference between the different contact models is small. In figure 3.2 the 

electron energy and electron distribution of the 100 run device are given for 

both contact models. The strong charge accumulation obtained by the 

regenerating model is clearly seen. In the energy plot the difference is only 

marginal. 

In all further simulations the neutral contact model has been preferred due 

to superior stability properties. Furthermore this model seems more in 

accordance with the physical reality of contact behavior. 
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Cbapter 4 

TIME-DBPENDDT HYDRODYlWIIC DEVICE SIHULATION IN ORB DIMENSIOR 

4.1 Introcl.uction 

In chapter l the first three moments of the Boltzmann transport equation are 

given by equations (1.4.16) to (1.4.24) for both holes and electrons 

respectively. In this chapter it will be described how these are solved for 

one-dimensional devices. If all three moments are taken into acco\lllt the 

model is called hydrodynamic; if only the first two moments are considered 

and all energy effects are neglected, the model is called a drift-diffusion 

model. The drift-diffusion method is widely used and well known in the field 

of semiconductor device modeling. In section 4.2 it is described how the full 

set of equations is discretized and implemented in a one-dimensional 

hydrodynamic simulator. 

Several drift devices have been simulated. The results are presented in 

section 4.3. Transient as well as steady-state results are compared to 

results obtained by the Monte Carlo method described in the previous chapter. 

This comparison will give insight into the limits of applicability of the 

hydrodynamic model. The simulator will also be used to look at 

the hydrodynamic equations in more detail, in particular 

~ ' 1 * 1' 12 convection (Jn• V) vn, the energy convection i mn vn , and the 

An overview of the conclusions is given in section 4.4. 

4.2 The one-dlmensional hydrodynamic device simulator 

some terms in 

the velocity 

heat flow Q. 
n 

A one-dimensional device simulator is developed using the first three moments 

of the Boltzmann Transport Equation. Only electron transport is taken into 

consideration. The program allows a number of optional simplifications. 

1. The transport parameters are defined as a function of electric field or as 

a fWlction of energy. 

2. The inclusion of the energy conservation equation is optional (in this 

way, the classical drift-diffusion method is considered as a special case 

of the more general hydrodynamic method). 

3. The inclusion of the velocity convection (l •V) ~ is optional. 
n n 

i "I' 12 4. The inclusion of the energy convection i mn vn is optional. 

5. Several models of the heat flow ij are present. 
n 

6. The inclusion of generation-recombination is optional. 
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The simulator bas been structured as follows: 

1. The device to be analyzed has to be defined. 

2. The equilibrium situation is calculated (zero applied voltage). 

3. Potentials are applied at the contacts and the Poisson equation is solved 

to calculate the electric field in the device. 

4. The transport parametersµ, m*, r and r everywhere in the device are 
n n pn wn 

calculated as a function of the local electron energy (or, optional, as a 

function of the local electric field). 

5. The current density and electron velocity are calculated by solving the 

momentum conservation equation (1.4.18). 

6. The electron energy and temperature are calculated by solving the energy 

conservation equation (1.4.21). 

7. The electron density is calculated using the carrier conservation equation 

(1.4.16). 

Steps 3 to 7 are repeated until sufficient accuracy is obtained. 

4.2.1 Device definition 

A non-uniform one-dimensional grid is used to discretize the device. The 

number of intervals is Nx, the size of the i-th interval equals l!.x:i. The grid 

points are labelled 0 to Nx. The i-th interval is defined between grid points 

i-1 and i. The charge density, the potential, the doping concentration and 

the average electron energy ar, defined at the grid points; the electric 

field, the current density andi the electron velocity are defined in the 

intervals. Only electron transport is considered, so everywhere in the device 

n >> p. Ohmic contacts are defined at both ends of the device. In analogy 

with MOS devices, the contacts are called source and drain. Band gap 

narrowing is included by defining the intrinsic carrier concentration n
1 

as a 

function of the local doping concentration 

( 
U2 ) 

nl - nIO exp v: 1 F + er + i ) l (4.2.1) 

Here F is defined by 

F - log [ NAN+ ND) 
norm 

(4.2.2) 

The values of the parameters are (Slotboom and De Graaff [1976]): 

n - 1.48•1010 cm-3
, vG

0
- 9 mV, N 1017 cm-3

• 
IO norm 

4.2.2 Equilibrium solutlon 

If no external voltages are applied to source and drain, no currents will be 

flowing in the device and the electron temperature will be equal to the 
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lattice temperature. The electron and hole density are given everywhere in 

the device by the Boltzmann factors 

(4.2.3) 

(4.2.4) 

Here • is the potential difference between the mid·gap and the Fermi-level. 

Combining these equations with the Poisson equation (1.4.l) yields a 

non-linear differential equation in *· A three point discretization scheme is 

used; the Newton-Raphson method combined with the tridiagonal matrix solver 

DGTSL is used to calculate the potential at each grid point. Consequently the 

electron and hole density at each grid point are known. 

4.2.3 The momentWll conservation equation 

The equilibrium solution is used to initialize the non-equilibrium 

calculations. Voltages are applied to the source and drain contacts and the 

new potential distribution is calculated. Using the E•ff -Wn relation, as 

obtained from Monte Carlo simulations (2.5.10), the transport parameters m*, 
n 

r and r are calculated as a function of W . 
~ ~ D 

For given potential •, electron density n, and transport parameters, next the 

electron current density is calculated by solving equation (l.4.18). A highly 

efficient discretization scheme given by Scharfetter and Gummel [1969) to 

solve the drift diffusion equation (1.4.25) is used. Tbis method assumes a 

linear variation of • along each interval and the current density J is 
D 

assumed to be constant along each interval. This discretization scheme bas 

been dealt with extensively in the literature. An extension of this method, 

that makes it possible also to include the drift term due to a gradient in 

the electron temperature was presented by Tang [1984). The extra assumption 

needed is a linear variation of Tu along each interval. A further extension 

by Rudan and Odeh [1986] allows the inclusion of the velocity convection, 

which is taken to be constant along each interval. An alternative way to 

include the velocity convection term will be presented in this work. 

Generally, if the interval sizes are small enough and if abrupt changes in 

doping profile are avoided, all assumptions are acceptable. 

To obtain equation (1.4.18) the assumption was made that the conduction band 

is parabolic. Section 4.2.3.1 deals with the discretization of (1.4.18). To 

model a non-parabolic conduction band an extra term bas to be included. This 

is dealt with in section 4.2.3.2. 
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4.2.3.l Parabolic band structure 

The momentlllll conservation equation (1.4.18) is repeated here for the 

one-dimensional situation, assuming the conductivity effective mass to have a 

constant value 

J + n " .J!_ ( Jn ) 
n pn8t n 

" - .....E 
q (J•.J!_) -qµnE+p, .J!_ (nkT) 

n8xn n n8x Bn 
(4.2.5) 

Now consider the current density at the i-th interval between mesh points i-1 

and i. The equation (4.2.5) is split in two, using the interval label i as an 

extra suffix 

J 
( n ni ) 

i 

+ v ) ni 

. 
mni 8 

v"i - q vni ax vni 

-J 
Oi 

8 
+ ax ( n1k:Tni) ) 

(4.2.6) 

(4.2.7) 

(4.2.8) 

Equation (4.2.6) is solved using an implicit Euler time discretization scheme 

with time step àt. This yields 

J'" -
ni 

" nn•w Jold + Át noldJ 
pni i ni 1 01 

nold ('f + àt) 
i pni 

(4.2.9) 

Equation (4.2.7) is solved using the modified Gummel-Scharfetter algorithm. 

The discretization scheme used is the one given by Forghieri et al. [1988]. 

In this scheme not the mobility, as is usual, but the diffusion coefficient 

is assumed to be constant within each interval. As shown in section 2.6, D 
n 

is a less sensitive function of electron energy than the mobility, so this 

asslllltption certainly is allowed and even better. Using a constant D n, the 

energy conservation equation can be discretized using a scheme analogous to 

the Gummel-Scharfetter scheme. This cannot be done if the mobility is assumed 

to be constant. The gradient of the electron temperature T" is assumed to 

have a constant value PTi over each interval and is defined by 

k T • k T 
B n1 B ni ·l 

q ÁXi 
(4.2.10) 

Combining equations (4.2.7) and (4.2.10) yields 
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{4.2.11) 

Defining 

E + V 
i i 

1----
/JTi 

(4.2.12) 

The parameter '1 is a constant since E
1

, V
1 

and /Ju are constants on each 

interval. Next multiplying equation (4.2.11) with a factor T"f+l yields 
n 

( + 1 ) fJ + Tî+l !LE_ ) 
l Ti n 8 X 
' 

(4.2.13) 

This equation is rewritten using definition {4.2.10) 

kJ BT [ 8T ] ~ T7+1 __ n - D n ( -, + 1 ) T1 __ n + Tl+l !LE_ 
q{J n ax qni n ax n ax 

Ti 

(4.2.14) 

The integration of (4.2.14) over the interval (x
1

_
1

,x
1

) is straightforward 

and yields 

Then J
01 

can be solved 

q n t-1 (: ;i \ 
B ni l _ ( ;i-1 

ni 
)

-,+2 -~ 
B ni-1 

Def ine 

T 

( 
ni-1 ) A

1 
- (-, + 2) log -T-

ni 

Then (4.2.16) can be rewritten 

J 
Oi 

qn ) _.!:.:.!.... :B ( -A ) 
k T i 

B ni-1 

Here :B(A) represents the Bernoulli function, given by 

A 
:B(A) - exp{A) - 1 
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l ~'r-, i 
n i-1 

(4.2.16) 

(4.2.17) 

(4.2.18) 

(4.2.19) 



If T - T then 1 and ~ are not defined. However in the limit T ~ T 
ni ni-1 i . ni ni-1 

J
01 

can be calculated. If everywhere in the device Tn- T
0

, then the original 

Scharfetter-Gummel scheme as used in the drift-diffusion model, is obtained. 

A problem is the calculation of the velocity convection V
1

• This term very 

easily gives rise to instabilities, and an upstream discretization scheme is 

necessary. If vn
1
> 0 this gives 

v - v 
ni ni-1 

If vn
1
< 0 this gives 

v - v 
ni+l ni 

If Jn
1 

is known, vni can be calculated 

v 
ni 

4.2.3.2 Non·parabolic band structure 

(4.2.20) 

(4.2.21) 

(4.2.22) 

The momentum conservation equation including a non-parabolicity correction 

was given by Bordelon et al. [1990]. An equation very similar to (1.4.18) was 

obtained. The difference is the inclusion of the parameter Hn in the 

diffusion term. However our calculations show the expression of Hn given by 

Bordelon to be incorrect. The correct expression for the momentum 

conservation equation is (if the velocity and the energy convection are 

omitted) 

J + n f' _L ( nJn ) - q µ n E + J.1 (1+2aW )3 _L ( nk T (l+arin) J 
n Il" 8 t n n n 8 X B n (l+2aW )2 

n 

(4.2.23) 

The procedure to solve this equation uses again a Gummel-Scharfetter scheme 

identical to the one followed in section 4. 2. 3 .1. In this scheme it is 

necessary to assume the non-parabolicity factor to be constant at each 

interval. In analogy to equation (4.2.11) it has been found 

( 
.9...E_ [E + V k T i 1 

B n 

+ H p ) 
n Ti 

(4.2.24) 

Here Hn is defined by 
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H - (1 + aW )- (1 + 2afl ) 
n n n 

(4.2.25) 

Now define 

(4.2.26) 

Combining equations (4.2.24) and (4.2.26) yields 

J flD [!12!..( +1)p +an] 
Oi - q ni ni kln -y Ti h (4.2.27) 

The final result is nearly identical to equation (4.2.18) with the exception 

of an extra factor H at the RHS and a different definition of -,. 
ni 

4.2.4 The energy eonservation equation 

For •
1

, n
1 

and Jn
1 

given everywhere in the device, the energy conservation 

equation (1.4.21) bas been solved, yielding values for Tn
1 

and Wni. For 

convenience the energy conservation equation is repeated here for the 

one-dimensional case 

a cnr.r > a s w - w 
-.,..---n- + __ n - E•J - n ~ + GR•W at ax n " n 

Here W
0 

is defined by 

3 1 * 2 w--kT+-m v 
n 2 B n 2 n n 

And S n is defined by 

J 
s--Q-(W+kT)-! 

n n n Bn q 

wn 
(4.2.28) 

(4.2.29) 

(4.2.30) 

First the energy flow s" is discretized. At the i-th interval between mesh 

points i-1 and i the label i is used as an extra suffix. Assuming Sni to be 

constant over each interval, Sni can be given by the general equation 

S -A kT -B kT +C 
ni i B ni i B ni-1 i 

(4.2.31) 

However the coefficients A
1

, B
1 

and C
1 

depend on the way the heat flow Q
0 

is 

modeled. Three models are considered here 

1. The adiabatic model which assumes Q - O. 
n 

2. The model following the Wiedemann-Franz law which defines 
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Q - -ic ....!__ k T and ic - (~ + c) D n 
n n8X lln n 2 n 

(4.2.32) 

The value of the factor c is nearly independent of the material and is 

given a value of c - 0.8. 

3. The model presented by Bordelon et al. (1990] who deduced that both the Qn 

and the term k
11
T"J"/q can be neglected. Then equation (4.2.30) reads 

(4.2.33) 

Combining the three models mentioned with the general equation (4.2.31) the 

following is obtained: 

Ad 1 For the adiabatic model the parameters Ai, Bi and ei are defined by 

A- O· 
1. ' 

J 
B-~~ 

i 2 q C - - !. m* 
1. 2 nl. 

.r 
nl. 

3 2 
q ni 

(4.2.34) 

Ad 2 For the Wiedemann-Franz model, equation (4.2.30) in combination with 

(4.2.32) can be rewritten in the form 

-n 

c 
3 

3 
n 

In this equation the parameters c
1

, c
2 

and c
3 

read 

c - ------(= + c) q D 
2 ni 

1 c -2 

s 
ni 

(= + c) D 
2 nl. 

.! m• Ja 
2 nl. nl. c -------

3 c= + c) 
3
D 2 q ni 

(4.2.35) 

(4.2.36) 

In the discretization, an exponential variation of n along the interval 

is assumed 

where 
1 n 

ar - - log(-1
-) t:.x n (4.2.37) 

i l.·1 

Sol ving the differential equation (4. 2. 35), combined with (4.2. 37), 

yields an expression of the form (4.2.31) with the definitions for the 

parameters A
1

, B
1 

and ei 

= + c) D ft 2 ni i 

t:.x 
i 

(4.2.38) 
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! + c) D fi 
B 

2 n1 i 
:B( -Di) 

i Ax 
i 

!+ c) J2 D 'fi 
c 2 1 * ni ni 1 

(:B(Di) - :B( -Di) FM] -m ~ F 
1 5 2 ni 2 i q i 

2 

In these equations the parameters 0
1

, i\
1 

and F
1 

are defined by 

F 
i 

! AxJ 
2 i ni 

(! + c) q D i\ 
2 ni i 

fi 
i 

{4.2.39) 

(4.2.40) 

(4.2.41) 

(4.2.42) 

Ad 3 The Bordelon model is very similar to the adiabatic model. The 

difference is only a factor k
8
Tn. This yields 

J 
s-!~ 

i 2 q (4.2.43) 

For a given Sni the electron temperature is solved from the energy 

conservation equation (4.2.28) by an implicit Euler time differentiation, and 

by using the tridiagonal matrix solver DGTSL. 

4.2.5 Device currents 

Two kinds of currents are defined: 

1. The source and drain currents: The source and drain contacts are ass'l.lllled 

to be ohmic and there is a voltage drop at the contacts, as described in 

sec tion 3. 2 . 7 , the value of which is gi ven by equation ( 3 . 2 . 8) . Charge 

neutrality is assumed, which implies n - N
0 

(as we are dealing only with 

electron transport). Generally the source and drain currents J
8 

and J
0 

consist of a transport and a displacement component, defined by 

J J 8 E 
S,D - n +€at (4.2.44) 

2. Avalanche current: In the model no hole transport is taken into account. 

However at high fields weak-avalanche effects occur, and electrons and 

holes are created. In the model only electrons are generated and the total 

electron generation is called the avalanche current. 
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4.3 Simulation resulta 

Fig 4.1 Doping profiles of different 
drift devices, one with a 100 nm drift 
region (dashed line) and one with 
a 400 nm drift reglon (solid line). 

A series of control aimulations have been performed on bulk material. Results 

were in close agreement with the Monte Carlo results described in 2.5. Next, 

a series of simulations using the n•-n-n+ drift device already described in 

section 3.4 bas been performed. In figure 4.1 the doping profile of the 

devices with a drift region of 100 nm (dashed line) and 400 nm (solid line), 

respectively, is given. The simulation results will be used to obtain answers 

to the following questions: 

1. Does, compared to the Konte Carlo method the hydrodynamie method deseribe 

hot electron behavior adequately. 

2. How important are the velocity convection (J •V) ~ and the energy 
n n 

1 *1' 12 convection - m v . 
2 n n 

3. Which heat-flow model is the best. 

The bias voltage is varied from 0 to 5 V. The mesh lines are distributed 

unif ormly over the device and the spatial resolution has been varied between 

10 nm and 20 nm. lt has been found that over the whole range of bias voltages 

the resolution mainly effects the transient behavior of the avalanche 

eurrent. The effect on the steady-state currents is less then 2 t for both 

the avalanche and the device current. From these results it is eoncluded that 

a spatial resolution of 10 nm is sufficient. This value bas been used in all 

further simulations described in this section. 

Since band gap narrowing is not implemented in the Monte Carlo program, it 

also bas not been taken into account in the hydrodynamic simulations. From 

the simulation results it bas been concluded that the velocity convection and 

energy convection are of minor importance in Si devices and can be neglected. 

Their effect on any parameter never exceeds the 2 t margin. This in contrast 

with e.g. GaAs simulations where both terms are important due to the higher 

electron velocity in the material. 
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Fig 4.2 Steady·state drain current (a) and avalanche current (b) as a 
function of the applied voltage. Plotted are the Honte Carlo results 
(solid line), varlous hydrodynamic results (l. Adiabatic (dashed line), 
2. Wiedemann·Franz (dash-dot), 3. Bordelon (dash-dot-dot)), and 
4. the drift·diffuslon model (large dashes). 

In figures 4.2a and 4.2b the total drain current and the avalanche current in 

the steady state have been plotted as a function of the applied field. For 

the 100 nm device the Monte Carlo model (solid line with error bars) is 

compared to the drift·diffusion model (dashed line, index 4), and to three 

verslons of the hydrodynamic model, using different heat-flow models: (1) the 

adiabatic model (dashed line), (2) the Wiedemann-Franz model {dash-dot line) 

and (3) the Bordelon model (dash·dot·dot). The transport parameters are 

calculated by a spline interpolation between various data points obtained by 

the Monte Carlo bulk simulator. No extra non-parabolicity factor is included. 

For the 400 nm device only the results from Monte Carlo simulations and the 

adiabatic hydrodynamic model have been plotted. 

From figure 4.2a it can be seen that the adiabatic model gives the best fit 

to the Monte Carlo data (Elias et al. [1990]). The small discrepancy can be 

accounted for by the larger avalanche current calculated by the Monte Carlo 

method, which bas been plotted in figure 4.2b. The rather large discrepancy 

between hydrodynamic and Monte Carlo results shown in figure 4.2b is due to a 

different model of the avalanche generation. 

In the hydrodynamic simulations the avalanche parameters have been chosen in 

accordance with experimental data. The Monte Carlo program however, uses the 

Keldysh model. As bas been discussed in chapter 2, there is good agreement 

between Monte Carlo and experimental results at high fields (see figure 2.8), 

but at low fields the Monte Carlo method overestimates the avalanche 

generation. 

In figures 4. 3 to 4. 6 the internal energy and velocity distribution in the 

100 nm and the 400 nm device have been plotted. 
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Fig 4.3 Electron energy (a) and electron velocity (b) distribution in the 
steady state in the 100 nm drift device. The drift region is defined from 
x-0.2 to x-0.3 p.m, and the device is driven at 5 V. Honte Carlo results 
(solid line) and results from the adiabatic hydrodynamic model (dashed 
lines) are shown. The transport parameters have been defined in two 
different ways, either by a spline approximation (simple dashed line) or 
by an analyical function (dash-dots). 
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Fig 4.4 Plot similar to 4.3, but now the 400 nm device is taken into 
consideration; the active region is defined from 0.2 to 0.6 p.m. 

In figures 4.3a and 4.3b results obtained by the Monte Carlo (solid line) and 

by the adiabatic model (dashed lines) are compared for the 100 nm device. The 

voltage applied is 5 V. This yields a peak field of 400 kV/cm. The simple 

dashed line assumes a spline interpolation of the transport parameters, the 

dash-dot line the analytica! approximations given by (2.5.5) and (2.5.10). 

Figures 4.4a and 4.4b give similar results for the 400 nm device. Here a peak 

field of 250 kV/cm has been found. 

These figures show that the results obtained by the adiabatic model are in 

good agreement with the Monte Carlo results on a microscopie level. 

Furthermore, it is confirmed that the analytica! expressions (2.5.5) and 

(2. 5 .10) give adequate models of the transport parameters. At the given 

voltages no significant effect on the drain current has been found. However, 
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since the avalanche rate is very sensitive to the electron energy, due to the 

exponential relation in (2.5.6), a small difference in the energy gives rise 

to substantial differences in the avalanche current. This bas been observed 

in our simulations. If the transport parameters are defined by (2. 5. 5) and 

(2.5.10) the avalanche current in general will be decreased substantially (in 

the worst case the value is about one third compared to the spline definition 

of the transport parameters). The main discrepancies between the adiabatic 

hydrodynamic and the Monte Carlo approach are the following: 

1. In the 400 nm device the adiabatic model clearly gives a stronger cooling 

at the source side of the drift region. Furthermore a discrepancy in the 

lower energy tail occurs at the drain contact. However these have hardly 

any effect on the device characteristics or the impact ionization rate. 

2. In the velocity distribution plots it can be noted that both methods show 

velocity overshoot, especially in the 100 nm device, and that the Monte 

Carlo method gives a slightly higher velocity maximum. 

In figures 4.5 and 4.6 the similar results are presented as in figures 4.3 

and 4.4, but now the Monte Carlo model (solid line) is compared to the 

Wiedemann-Franz model (dashed line) and the Bordelon model (dash-dot line). 

As can be seen in figure 4.6a, in the 400 nm device these two energy models 

give fairly good agreement in the energy distribution compared to the Monte 

Carlo results. However large discrepancies occur in the velocity 

distribution: the Bordelon model gives values that are much too low, and the 

Wiedemann-Franz model gives a large velocity overshoot peak at the drain 

side. For the 100 nm device the discrepancy between the different models is 

even larger, for both velocity and energy distribution. Assuming a 

non-parabolic band structure by giving the non-parabolicity parameter o: a 

value not equal to zero, and using the equation given in section 4.2.3.2, 

does not improve the fit between hydrodynamic and Monte Carlo results. This 

can be explained by considering the valley model used in the EMC method. At 

low energies the non-parabolicity of the X-valleys is hardly important. But 

at high energies a substantial part of the electrons will be situated in the 

L-valleys, and they have been assumed to be parabolic (see table 2.1). 

Further, some simulations have been performed by varying the factor c in the 

Wiedemann-Franz heat-flow model. But again, no significant improvements have 

been obtained. 

In figure 4. 7 the transient behavior is shown for both the 100 nm and the 

400 nm device when the voltage is abruptly switched on from 0 to 5 V. The 

solid line represent the Monte Carlo results, the dashed lines the 
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Fig 4.5 Plot similar to 4.3, but now the Wiedemann-Frsnz (dashed line) 
and the Bordelon hydrodynamic results (dash-dot line) are plotted 
together with the Honte Carlo results (sol1d line). 
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Fig 4.6 Plot s1m1lar to 4.5, but now the 400 nm device is taken into 
cons1deration. 
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Fig 4.7 Trsnsient behavior of the device current (a) and the avalsnche 
current (b) in bath the 100 and 400 nm drift device, driven at 5 V. 
Honte Carlo results (solid 11nes) and results Erom the adiabatic model 
(dashed lines) are given. The transport parameters have been defined 1n t:wo 
different ways, either by a spline approximation (simple dashed line) or 
by an analyical Eunction (dash-dots). 
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hydrodynamic results using the adiabatic heat-flow model (with a difference 

in the definition of the transport parameters). For the drain current (figure 

4.7a) excellent agreement bas been obtained, also when transient behavior is 

dominant, just after the voltage step bas been applied. The fit for the 

avalanche current (4.7b) is less and, as noted before, rather sensitive to 

the exact transport parameter model. The discrepancy amounts to a factor of 

two. 

4.4 Summary and concluslons 

Summarizing it can be concluded that: 

1. Both the velocity convection and the energy convection can safely be 

neglected, both in the steady state and in transient situations. 

2. A spatial resolution of the mesh of 10 nm is adequate. 

3. The non·parabolic model given by Bordelon et al. [1990) is not correct. 

4. To represent the heat flow the adiabatic model bas to be preferred over 

the Wiedemann·Franz and the Bordelon models. 

5. If the adiabatic model is used, the hydrodynamic model gives good 

agreement with the Monte Carlo model, even for very small devices and high 

energy. This agreement holds for steady·state and transient simulations. 

6. Neither the energy and velocity distributions, nor the drain current is 

very sensitive to the exact transport parameter definition. However, the 

effect on the avalanche current is large. 

In this chapter all conclusions have been drawn by comparing different 

models. In order to get a better impression of the validity of the 

hydrodynamic model, simulation and experimental results are compared in the 

next chapter. 

95 



Chapter 5 

QUASI TWO·DDIENSIORAL HYDRODYIWIIC MOS DEVICE SIHlJLA.TOR 

S.l Introductlon 

Solving the transport equations in a MOS device is essentially a 

two-dimensional problem. Contrary to drift-diffusion simulators, 

two-dimensional hydrodynamic simulators are not very robust, need much 

computing time, and give easily rise to numerical instabilities. Therefore in 

this chapter a more robust, quasi two-dimensional hydrodynamic MOS simulator 

is described, in which the electron transport is considered to be a 

one-dimensional problem in the direction parallel to the Si-Si0
2 

interface. 

Since in a MOS device the charge transport is concentrated in a potential 

well (the channel) at the Si-Si0
2 

interface, this is a reasonable first-order 

approximation. However, in calculating the electric potential also the 

vertical structure of the device is taken into account. The electron 

transport in the MOS is dealt with in a similar way as is described in the 

previous section. 

In the simulator quantum effects (due to the potential well induced by the 

gate voltage) are accounted for by introducing a correction term in the 

electric potential of the gate contact, as was suggested by Van Dort and 

Woerlee [1991]. This is discussed in detail in section 5.2. 

In section 5.3 it is shown how the electrical potential is calculated. Two 

important assumption have been made. The first assumption states that 

underneath the gate contact the horizontal field is much smaller than the 

vertical field. In that case the calculation of the potential can be 

considered to be a one-dimensional problem in the direction perpendicular to 

the Si-Si0
2 

interface, and the charge induced at the gate is equal to the 

total charge induced in the semiconductor according to Gauss• law. By a 

double integration of the Poisson equation, taking into account the various 

boundary conditions, the potential at the Si-Si0
2 

interface is calculated. 

The second assumption made is that the MOSFET operates in strong inversion. 

This means that the electron density at the surface is high, and the voltage 

drop over the channel in the direction perpendicular to the interface is 

small. Then the potential in the channel equals the potential at the Si-510
2 

interface. 

Simulation results are compared: to experimental data on submicron devices. 

These data were obtained from Philips Research Laboratories (transistors with 
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channel lengths down to 0.25 µm) and from the literature (devices developed 

at MIT with channel lengths down to 0.09 µm, Shahidi et al. [1988]). In 

section 5.4 the devices and experimental results are described. 

In 5.5 simulation results are compared to the experimental data. Special 

attention bas been paid to avalanche generation and velocity overshoot in the 

devices. The chapter ends with a summary of the results in 5.6. 

5.2 The electric potential at the gate contact 

In most practical devices the gate consists of highly doped poly-Si material. 

In the devices considered, the gate is heavily n-type doped. This means that 

the Fermi-level in the gate is situated at the bottom of the conduction band. 

Since the potential at each position in the device is defined at mid gap, 

relative to the Fermi-level in the substrate, and since both crystalline and 

poly-Si have the same work function, it can be easily seen (figure 5.1) that 

the electric potential at the gate contact •G can be obtained from 

u 
• -v+!-!.!! 

G G 2 q 
(5.2.1) 

Here U represents the energy gap between conduction and valence band. 
gap 

In (5.2.1) VG represents the external voltage applied to the gate contact. 

However (5.2.1) is only valid if the conducting electrons are situated at the 

bottom of the conduction band and if all quantization effects can be 

neglected. As was described in the introduction section 1. 3 .1, due to the 

high channel implant,this is not the case in deep-submicron MOS devices. 

As the electrons are confined in a narrow potential well at the Si-Si0
2 

interface, the motion of the electrons is quantized in the direction 
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perpendicular to the interface and the energy difference àu between the 

lowest energy level in the well and the bottom of the conduction band bas to 

be accounted for. Now an effective gate potential can be defined 

lw •e - f
6 

- q- (5.2.2) 

Two different ways to calculate Au are given: 

1. AsStming the quantum well to be triangular, the following expression bas 

been given by Stern and Howar'd [1967] 

tw ... ! ( 3w2 q2b2~ )1/3 

2 16 * • D 

(5.2.3) 

• E
7 

represents the electric field in the well and 111n represents the 

effective electron mass. 

2. In the electric quant\111 lillit approxi111ation only the lowest energy level 

is occupied, and the following bas been given by Pals [1972] 

{ } [ 
2J:.2g2 }1/3 

Au"' ~( 1 _1431a)+~ ~ 14 a 21504 1 a • 
min •in m 

n 

(5.2.4) 

In this equation the parameter a•in is defined by 

1/3 ( 2581 )1/3 
0

.1n -
5 1 + 7168 ° (5.2.5) 

where a is the ratio of the total charge in the inversion layer and the 

total charge in the depletion layer. 

Our simulations have shown thai in MOSTs both approxillations give nearly 

identical results. 

5.3 'Jhe cbannel potentlal 

The part of the device underneath the gate is considered to be a 4-layered 

structure (see figure 5.2) consisting of the oxide layer with thickness dox' 

the channel region with tbickness A, the depletion region with tbickness 

1'
0 

-A, and the bulk. In the oxide layer a uniform charge density pos is 

assumed. Furthermore, a box-like doping profile is assumed, having a value 

NA• in the channel region, a value NAd in the depletion region, and a value 

NAb in the bulk. The depletion region is considered to be fully depleted, so 
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the charge density pd equals • q NAd. In the simulator the doping profile, 

oxide properties and geometrical structure of the device have to be given a 

priori. Unknown parameters are the channel potential t(O), the channel charge 

density p •, the channel thickness t., the thickness of the depletion layer 

lrD·A, and the gate-voltage correction Au. 

The device simulator operates in two modes. First, in the initialization 

mode, the source-drain voltage and the source-bulk voltage are set to zero, 

and the channel thickness A and the gate-voltage correction t.u are solved in 

a self-consistent way. This is described in section 5.3.1. In the 

non-equilibrium mode the external voltages are applied and the device 

currents and internal distributions in the channel are calculated (see 

section 5.3.2). 

5.3.1 Initialization mode 

Directly underneatb the gate the device is considered to be a one-dimensional 

vertical structure consisting of the layers described before. Now Poisson's 

equation is integrated over the various layers. This yields three equations 

at a t q 

1 1 + W- A ) ay w· . ay 
f D 

IJ. Si 

(5.3.1) 

D 

a t a • p 

1 1 + 
_•_ A ay - . ay 
f 

IJ. 0 Si 

(5.3.2) 

a t a t p 

1 1 ~d ay - . ay 
f ox 

0 -d Olt 

(5.3.3) 

01' 

Double integration of the Poisson equation yields three more equations 
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•CW-) - •CA+) 
1 q NAd 

W- I!. )2 + !!...! 1 ( W - A ) C5.3.4) ----
D 2 E D a Y /!.+ D Si 

•CA-) - •CO+) ,!. ~ A2 + !!...! 
1 A (5.3.5) 

2 ESi 8 y o• 

•CO-) - t(-d ) ,!. Po.,,~ + !!...! 1 d (5.3.6) 
oz 2 E oz a Y oz 

oz -d 
oz 

Several boundary conditions have to be satisfied: 

1. lt is assumed that no charge sheets are present, so between two layers the 

voltage and the electric displacement are continuous functions 

(5.3.7) 

and (5.3.8) 

2. The potential at the top of the oxide "t( -d 
0

.,,) equals the effective gate 

potential t
6 

given by (5.2.2) 

u 
t( -d ) - V + ,!. gap 

oz G 2 q 
l!.u 
q 

(5.3.9) 

3. Assuming a triangular well, l!.u is given by (5.2.4), and the electric field 

EY in the well is defined by 

a t 
E - - -1 

y a Y o• (5.3.10) 

4. The potential at the bottom of the depletion layer •CW-) equals the bulk 
D 

potential, and this gives, with V
8 

the externally applied voltage to the 

substrate contact 

t(W-) - t - V 
D B B 

k T N 
B L log ~ 
q nI 

5. Furthermore, it is assumed that in the bulk no field is present 

(5.3.11) 

(5.3.12) 

After combining equations (5.3.1) to (5.3.6) with the given boundary 

conditions, and after elimipation of all the derivative terms, 

the following three equations are left: 
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(5.3.13) 

(5.3.14) 

(5.3.15) 

These three equations contain six unknown parameters 't(A), t'(O), W 
0

, A, p • 

and Au. To solve this set of equations, three more conditions are needed. The 

first of these extra conditions is given by equation (5.2.4). The electric 

field E is defined by (5.3.10) and, in combination with (5.3.1), (5.3.2) and 
y 

the boundary conditions, this yields 

(5.3.16) 

The second of these extra equations is the definition of the charge density 

in the channel. In the initialization mode no current is flowing and the 

quasi Fermi-levels for both electrons and holes are flat. Assuming a 

Boltzmann distribution in the channel, the following equation holds 

(5.3.17) 

Combining equations (5.3.13) to (5.3.17) leaves only one more condition to be 

defined. The thickness of the inversion layer l:J. bas to be given. Assuming 

that the channel thickness l:J. is determined by the position of the lowest 

101 



" " 

0.1 .._ _________ ..... 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 

v.. (V) 

Ê 
!. 

<1 

7.5 ....----------.... 

5.0 

2.5 

~. 
~ -··-··-·-··--=== 

o.o...._ _________ ..... 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 

v.. (V) 

Flg 5.4 (a) Gate-voltage correction and (b) channel thlclcness as a Eunctlon 
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energy level in the quantum well, yields (see also figure 5.3) 

9(t.) - 9(0) - :u (5.3.18) 

Now the set of equations is complete and all parameters can be calculated. 

This is done using a Newton-Raphson method. The results are used in the 

second mode of the simulator, the non-equilibrium mode. 

In figure 5 .4a the calculated gate-voltage correction t.u is given as a 

function of applied gate voltage, and in figure 5.4b the calculated channel 

thickness A bas been plotted with the doping concentration NA as parameter. 

In these data a triangular quantum well bas been assumed. However, this 

assumption is not very important, since results obtained using the electric 

quantum limit approximation giveh by equation (5.2.5) ere nearly identical to 

the data presented. 

The simulation data in figure 5.4a agree qualitatively very well with the 

expectations. An increase in the gate voltage, which increases the slope of 

the quantum well, also increases the energy difference t.u. Furthermore, the 

higher the value of NA, the narrower and steeper the quantum well. 

Consequently t.u increases. In spite of this higher value of Au, due to the 

narrowing of the well, the channel thickness A decreases with increasing gate 

voltage or doping concentration, as can be seen in figure 5.4b. 

Quantitatively there is good agreement with Van Dort and Woerlee [1991], who 
' 17 -3 

find a value of t.u - 0.226 eV if NA - 3.3 10 cm . Using two-dimensional 

drift-diffusion simulations, an estimate of the channel thickness can be made 

which gives a value of 5 nm. This is also in good agreement with our results. 
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5.3.2 Non-equilibrium mode 

In the second step of the simulator, the non· equilibrium mode, a voltage 

difference is applied between the source and the drain contacts. The results 

from the initialization mode are used. Optionally, either both A and Au are 

assumed to retain the same constant values that have been calculated in the 

initialization mode (section 5. 3. 2 .1), or the above assumption is dropped, 

and local changes in A and Au due to the changes in the surface potential are 

allowed (section 5.3.2.2). 

5.3.2.l Approach assumf.ng constant A and Au 

In the non-equilibrium mode, the values for A, Au, obtained from the 

initialization mode are assumed to be constant, while the values for t(O), W
0 

and pa are used as initial values. The non-equilibrium problem is solved 

iteratively. Given the surface potential t{O) at each position in the device, 

the electron density n at each position in the device can be calculated by 

solving the hydrodynamic equations as described in section 4.2. If n and the 

doping concentration NA• at each position are known and if the hole density 

can be neglected everywhere in the channel (which is the case in n-MOS 

devices), then the charge density can be calculated 

(5.3.19) 

Given this charge density the new surface potential is calculated. This 

process is repeated until the steady state is reached. The results during the 

iteration also represent the transient behavior of the device as a function 

of time. During each iteration, the potential at each position in the device 

bas to be solved. Therefore the device is divided into three different 

regions: the n-type contact regions outside the gate, the channel region 

underneath the gate that is p-type, and the intermediate region between 

contact and channel that is underneath the gate but is n-type. 

In the channel region the equations (5.3.14) and (5.3.15) are solved in 

combination with (5.3.19) at each position. Secause A and Au are defined this 

can be done self-consistently yielding values for the surface potential and 

the depletion width at each position. In the contact regions Poisson's 

equation is solved directly using a three·point iteration scheme. The 

vertical dimension of the contacts A
00

n has to be given a priori. In the 

intermediate region it is assumed that no depletion layer is present, so 

1f
0

- A equals zero, while A and Au are assumed to equal the values given for 

the channel region. Then only equation (5.3.15) remains relevant and is used 

to calculate the surface potential in the intermediate regions. 
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5.3.2.2 Approach alloving local changes in A and Au 

In the non-equilibrium model discussed here, the channel thickness A and the 

gate-voltage correction Au are no longer assumed to have a constant value 

during the simulation. At each iteration step the new channel potential is 

calculated by solving the full set of equations (5.3.13) to (5.3.15) in 

combination with (5.2.4), (5.3.18) and (5.3.19). However, the channel 

thickness A is not constant everywhere in the device, and an additional 

problem arises in the electron transport calculations because the problem is 

not one-dimensional anymore. This problem is solved in the following way: 

given the current densities J"
1 

and Jni+l' the previous electron density 

niold' and the channel thickness .6
1 

at the i•th grid point and .6i+
1 

at the 

i+l-th grid point, the new electron density is calculated by a discretization 

of the electron conservation equation (1.4.16), which yields 

A 
J i+l - Jni ) 

ni+1 ~ 
n - n + At: --------- + GR At 

i iold .!. (fJ.x + Ax ) i 
2 i i+l 

(5.3.20) 

A similar expression is used to calculate the electron energy. 

5.4 Experimental data of a 0.17 µm MOSFET tecbnology 

A series of scaled submicron devices have been processed at Philips Research 

Laboratories Eindhoven using a 0.17 µm process technology. The oxide 

thickness of these devices is 5. 9 nm. Electrical measurements for devices 

with gate lengths of 0.35, 0.6 and 1.0 µm respectively have been made 

available. Detailed knowledge of the doping profiles of these devices was 

obtained from SIMS measurements .• A full two-dimensional plot of the doping 

profile of the 0.35 µm device is 'given in figure 5.5. The devices have a high 

surface doping underneath the gate, so quantum effects are to be expected, 

and a correction on the gate potential as described in the previous section 

is needed. In figure 5.6a the horizontal profile at the Si-Si0
2 

interface is 

given; figure 5.6b shows a detail of the vertical profile directly underneath 

the gate. 

In figure 5. 7 the drain current is given as a function of the source· gate 

voltage at very low 

plot yields the 

µ - 320 cm
2 
/Vs bas no 

source-drain voltage (VDS- 0.1 V). By extrapolation this 

low-field mobility µ"
0 

in the channel. A value 

been found. Also the value of the effective channel 

length L•ff can be calculated from these data. It bas been found that L•ff is 

80 nm shorter than the gate length for all devices. The full characteristics 

of the 1.0 µm and the 0.35 µm device have been plotted in figures 5.8a and 
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1. 

Flg 5.5 2-D doplng proflle of the 0.35 µm n-HOSFET processed at 
Philips Research Laboratories. 
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Flg 5.6 Doplng profile of the 0.35 µm n-HOSFET: (a) horlzontal cross section 
along the S1-S102 interface; (b) vertlcal cross section directly 
underneath the gate (detail). The pos1t1on of the gate contact is shown 
in (a) by the black bar at the top. 

5.Bb (solid lines). They are discussed in more detail in the next chapter. In 

figure 5. lOa and 5. lOb the substrate current of the same devices bas been 

plotted (solid lines). The dashed lines in figures 5.8 and 5.10 represent 

simulation results that are discussed in the next section. 

5.5 Simulation results 

The final device and simulator description is given in section 5.5.1. In the 
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F1g 5.7 Dra1n current of the n-HOSFETs 
processed at Phil1ps Research Labs 
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simulations the following questions are dealt with. First, how well describes 

the quasi two-dimensional simulator the devices in the steady state. This is 

discussed in more detail in section 5.5.2. Secondly, attention is paid to the 

question of the limits of applicability of the drift-diffusion method, 

compared to the hydrodynamic method. Important in this validity problem is 

how well the electron energy and the avalanche generation are calculated. 

This is dealt with in section 5.5.3. In addition attention bas been paid to a 

third major question, whether in MOS transistors the avalanche effects are 

adequately described by the impact ionization parameters given by Van 

Overstraeten for bulk material, or whether a new set of parameters is needed. 

In section 5.5.4 velocity overshoot effects are discussed. Finally in section 

5.5.5 two heat-flow models (Adiabatic and Wiedemann-Franz) are compared. 

5.5.l Device geometry and simulator mode 

The hydrodynamic transport model in the MOST simulator is identical to the 

one described in the previous chfpter and is essentially one-dimensional. 

Same parameters have been set: · 

1. The mobility in the channel is described by (2.5.3) and (2.5.4), the 

Selberherr model. The surf ace scatter parameters have been given such a 

value that the low-field mobility is in accordance with experimental data. 

2. The energy relaxation time is described by (2. 5. 5) and the field-energy 

relation by (2. 5 .10). The results presented in chapter 2 have been 

preferred to the data given by Fischetti (1991] for reasons stated in that 

chapter. 

3. The impact ionization rate is described by the Chynoweth formula (2.5.6). 

4. In the simulations local changes in l:J. and l:J.u are allowed (see section 

5.3.2.2). 

5. The triangular well approximation (5.2.4) bas been used. 
1 

6. The adiabatic heat-flow model lis used in most of the simulations, because 

that gives the best fit to Monte Carlo results as was shown in chapter 4. 
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Table 5.1 Simulation 
parameters of various 
devices. 

The si111Ulator is applied to the devices described in the previous section. In 

table 5 .1 the corresponding process parameters are given. Additionally, in 

this table similar data is given of the devices from MIT, described by 

Shahidi et al. (1988] is given. 

R&garding the Philips process, the following assumptions have been made: 

1. The surface scatter parameters have been given such a value that the 

low-field mobility equals 320 cm2/Vs in accordance with experimental data. 

2. The exact doping profile is approximated by a box profile (see f1gure 

5.6b). The doping concentration in the channel is given a value 
17 -3 

NA•- 3.3 10 cm . Considering the fact that in the devices discussed the 

depletion region width is approximately 50 nm, the assumption that the 

depletion concentration N bas a constant value of N - 4.0 1017 cm- 3 

Ad Ad 
seems appropriate. The active device is concentrated in the first 100 nm 

underneath the oxide, and therefore the bulk layer also is assumed to . 

begin in this region. A reasonable value 

appears to be N - 1017 cm-3
• Control 

Ab 

for the bulk concentration N 
6 

simulations show that small 

variations in NAd and NAb only have minor effects on both the drain and 

the avalanche currents. 

3. The contact dope N equals 2.2 1020 cm- 3 and the contact thickness t.. 
De con 

is taken to be 80 nm. This gives a good agreement in the active charge 

density, if compared to the results obtained by MINIMOS. 

4. The distance between grid lines bas a finest value of 3 nm at the 

channel-drain junction. Control simulations show that if the latter grid 

resolution is halved, a maximum deviation of 1 % in the drain current is 

found. In the avalanche current the deviation is larger but still small. 

In a similar way the device parameters for the MIT devices have been 

obtained, although the doping profile of these devices was less accurately 

known. Corresponding data are also presented in table 5.1. 
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Fig 5.9 These plots are similar ~o 5.8 but now the device currents have 
been plotted for a 0.25 µm device (a) and a 0.20 pm device (b). The 
s1mple dashed 11nes represent hydrodynamic simulation results, and the 
dash-dot lines the drift-diffusion results. 

5.5.2 Device characteriatics 

The device characteristics of the devices described in section 5.5 are 

calculated and compared to experimental data. The drain current of the 

devices with gate lengths of 0.35 µm and 1.0 µm (which means L•ff"' 0.27 and 

0.92 µm, respectively) have been plotted in figures 5.8a and 5.8b (simple 

dashed lines) together with the experimental data (solid lines). 

The simulations describe both the 1.0 µm and the. 0.35 µm device well. The 

resulting discrepancies in the saturation region are a result of 

two-dimensional effects that have been neglected in our simulations. 

Additionally, drift-diffusion simulations using the same process parameters 

have been carried out and have been plotted in the same figures (dash-dot 

lines). For the 1.0 µm device, the hydrodynamic and the drift-diffusion 

simulation results are indistinguishable. However, for the 0. 35 µm device 
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significant differences occur: in the drift-diffusion model the current 

saturates for high drain voltages, while in the hydrodynamic model there is 

an increase of the current due to energy effects. This effect is stronger for 

inereasing gate voltages. 

Similar effects have been found for smaller devices, using the same process 

parameters. In figures 5.9a and 5.9b the device currents for a 0.25 µm and a 

0.20 µm device have been plotted (which means an effective channel length of 

0.17 µm and 0.12 µm respectively). Again, the simple dashed lines represent 

the hydrodynamic results, the dash-dot lines represent the drift-diffusion 

results (no experimental data of these devices was available). 

These results show that for low gate voltages the drift-diffusion method 

gives a good first-order approximation of the 0.35 µm device currents, 

notwithstanding the fact that the electrons have high energies in a 

considerable part of the channel. 

For increasing gate voltages and for decreasing channel lengths the 

discrepancy between the hydrodynamic and the drift-diffusion approach 

increases. However, the difference in the drain current calculated in the 

drlft-diffusion mode, compared to the results obtained by the hydrodynamic 

mode never exceeds a factor of 25\ for devices with effective channel lengths 

down to 100 nm. 

Although from a fundamental point of view the drift-diffusion method is not 

correct for deep-submicron devices, from a practical point of view the use of 

the drift-diffusion method, combined with a post-routine that calculates 

energy and avalanche generation afterwards, is very attractive. The use of 

full two-dlmensional hydrodynamic simulators still causes great problems: the 

simulators available are not very robust and easily give rise to numerical 

instabilities. Furthermore, the computing time needed is, roughly speaking, 

one order of magnitude larger than the time needed for a drift-diffusion 

solution. For this reason it is interesting to see how well the results of a 

full hydrodynamic simulator agree with the results of a drift-diffusion 

simulator extended with a post-processing routine for the energy distrlbutlon 

and avalanche generation. This is dealt with in the next section. 

5.5.3 Energy distribution and avalanche generation 

The avalanche currents for the 0.35 and 1.0 µm devices have been plotted in 

figures 5. lOa and 5. lOb. The data are obtained both from experiment (solid 

lines) and from simulations (dashed lines). These simulations over-estimate 

the values of the avalanche current by one order of magnitude. 
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Fig 5.11 Avalanche currents of devices 
with different gate lengths (0.35, 
0.25 and 0.20 µm). Plotted are the 
full hydrodynamic results (solid 
lines) and the results obtained by 
the drift-di:f:fusion model combined 
with a post-routine to calculate energy 
and avalanche generation (dashed lines). 

Essentially, the Van Overstraeten parameters were obtained from measurements 

on bulk material; however a MOf device operates at the Si-Si0
2 

interface. 

According to Slotboom et al. [1987] this bas important consequences for the 

impact parameters. Based on experimental data, they have presented for MOS 

devices a new set of values for the impact parameters: a 0 
- 2.45 106 cm"1 and 

" E - 1.92 108 V/cm. Simulations, using these parameters also have been 
crlt 

carried out. The results have been plotted in figure 5.10 as well 

(dash-dot·dot curves). A decre11:se of the calculated avalanche current is 

found and the calculated values are more in agreement with the experimental 

data. However, the difference between calculations and experiments is still 

substantial, not only quantitatively, hut also qualitatively: at high drain 

voltages the simulations give an increasing avalanche current for increasing 

gate voltage. This is not found in the experimental data. 

In figure 5.11 the avalanche curtents have been calculated for different gate 

lengths (in these devices the difference between gate and effective channel 
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Fig 5.12 Energy distribution (a) and avalanche generation (b) in HOS 
devices with different gate lengths, driven at Vaa-1.5 V and Vds- 2.6 V. 
The gate contact is defined Erom x-0.35 to x-0.55, x-0.60 and 
x-0.70 pm respectively. The solid line represents extended drift-diffusion 
results, the dashed line full hydrodynamic results. 

length is approximately 80 Illl) • In these calculations at Vos - 1. 5 V the 

Slotboo111 avalanche parameters have been used. 

The results obtained from full hydrodynamic calculations (dahed lines) and 

results from the drift-diffusion mode (solid lines) are compared. Considering 

the fact that, due to the exponential relation between avalanche and energy, 

the avalanche generation is very sensitive to slight variations in the energy 

distribution, the discrepancy observed in figure 5.11 is not very large. Even 

for devices with an effective channel length of only 120 Ill1I the discrepancy 

between full hydrodynamic and the drift-diffusion method is at the most a 

factor three. This supports the work of Slotboom et al. [1991], who have 

shown that the avalanche currents in submicron MOS transistors calculated by 

a two-dimensional drift-diffusion simulator extended with an energy 

post-processing routine,, give good agreement with experimental data. 

Finally, in figures 5 .12a and 5 .12b the internal energy distribution and 

avalanche generation have been plotted for devices with different gate 

lengths (0.35, 0.25 and 0.20 pm). Again, the full hydrodynamic results 

(dashed lines) are compared to post-routine results (solid lines). The 

agreement is surprisingly well. 

5.5.4 Velocity overshoot 

According to transport theory, velocity overshoot occurs in small MOS devices 

at the drain side of the channel due to large local gradients in the electric 

field. In analogy with figures 5.12a and 5.12b the electron velocity for MOS 

devices with various gate lengths bas been plotted in figure 5.13. 
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Fig 5.14 Calculated averaged channel 
velocity as a functlon of channel length 
in lfOS devices processed at HIT. The 
triangles represent experlmental data 
by Shahldi et al. [1988]. 

As can .be seen, in the hydrodynamie mode velocity overshoot occurs (up to 

more than two times the saturation velocity), while in the drift-diffusion 

mode the electron velocity never exceeds the saturation velocity. 

Surprisingly, the maxilllUlll velo~ity overshoot depends only slightly on the 

channel length and does not c~mse the increase of the average velocity 

overshoot with decreasing gate length. By Shahidi et al. [1988] experimental 

data was obtained at MIT on the average channel velocity in MOS devices and 

their results confirmed that velocity overshoot indeed does occur in 

submicron MOS devices. These data are represented in figure 5.14 by 

triangular dots. The solid line represents the simulation data obtained by 

the simulator described in this ~hapter. Good agreement bas been found. 

5.5.5 Other simulation models 

The choice of adiabatic heat-flow model and value of energy relaxation time 

was based on Monte Carlo simulation results. In combination with these, the 

use of the Slotboom parameters in stead of Van Overstraeten parameters does 

reduce the avalanche currents alnd improves the fit between simulation and 

experimental data. This was shown in the previous sections. However, it bas 

to be noted that there are more ways of obtaining such an improvement: 
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1. Taking a higher value of energy relaxation time f' _ also reduces the 

avalanche currents. A value f' wn - 0. 9 ps, ( found by Fischetti et al. ) 

yields avalanche currents very similar to the results presented in figures 

5.10. 

2. The use of the Wiedemann-Franz heat-flow model results in a different 

temperature distribution. However, in combination with Van Overstraeten 

avalanche parameters, this model yields nearly the same avalanche currents 

as Slotboom parameters in combination with the adiabatic model. Only at 

high drain voltages the Wiedemann-Franz model yields notable lower results 

(factor 2 at V
08

- 2.6 V). 

A final choice between these different models based on the experimental data 

available can not be made. 

5.6 SUlllll8ry and conclusions 

A quasi two-dimensional hydrodynamic MOS device simulator bas been developed. 

Device characteristics obtained by this simulator are in fair agreement with 

experimental data for devices with channel lengths down to 0.25 µm. The 

agreement between the calculated and measured avalanche currents is less 

good. Several possibilities to optimize the fit between experimental and 

simulation data have been found: 

1. Adiabatic heat-flow model, combined with Slotboom avalanche parameters and 

a value f'..,.- 0.4 ps. 

2. Adiabatic heat-flow model, combined with Van Overstraeten avalanche 

parameters and a value f''l/ftJ- 0.9 ps. 

3. Wiedemann-Franz heat-flow model, combined with Van Overstraeten avalanche 

parameters and a value r.,,,- 0.4 ps. 

A final choice between these different models based on the experimental data 

available can not be made. 

Simulation results show that the use of a drift-diffusion simulator extended 

with a post-processing routine to calculate the electron energy and avalanche 

generation yields adequate results, even for deep-submicron devices, with the 

restriction that the avalanche current must be substantially lower than the 

device current. In the next chapter the same problem is studied again, but 

now for full two-dimensional simulators. 

The maximum electron velocity exceeds the saturation velocity in submicron 
7 ' 

devices, and has a value up to approximately 2 10 cm/s. This value does only 

slightly depend on the channel length. The average channel velocity increases 

with decreasing channel length, in agreement with experimental findings by 

Shahidi et al. [1988]. 
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Chapter 6 

FULL TWO-DDllNSIORAL HYDB.ODYJ.WfiC HOST SIHULATIONS 

6.1 Introduction 

In this chapter various simulators and methods to calculate the electron 

temperature are compared. Table 6.1 gives an overview. In this introductory 

section this table is explained. 

In the previous chapter, section 5. 5, the quasi two·dimensional device 

simulations have been dealt with. The beat flow Q bas been modeled either by 

the Viedemann-Franz model (V·F) or the adiabatic heat-flow model Q - if. In 

all simulations an expression for the energy relaxation time (TIJ) bas been 

used. Furthermore, both drift·diffusion results extended with an energy 

post-processing routine (DD+), and full hydrodynamic simulations (HD) have 

been carried out. This informatibn is found systematically in table 6.1. 

In this chapter mainly full two·dimensional simulations are discussed. For 

this purpose use bas been made of the well known MOS simulator MINIMOS, 

developed by Selberherr et al. [1980], and of the general two·dimensional 

simulator TRENDY, developed at the University of Twente by Van Schie [1990] 

and Volbert [1991]. Both simulators are discussed in more detail in sections 

6.2.1 (MINIMOS) and 6.3.l (TRENDY), respectively. The simulators have been 

applied to the devices described in the previous chapter. In section 6.2.2 

Simulator R Section 

W·F TW + 5.5.5 
Quasi 2-D 

Adiab TW + 5.5.2 

HOT + 6.2.2 
MINIMOS 

Adiab Analyt + 6.4 

TW + + 6.3.2 
IJ·F 

LIJ + 6.3.3 

* * TRENDY 
Adiab LIJ + 6.3.3 

Analyt + 6.4 

Table 6.1. Overview of all slmul-tors and methods used to calculate 
the electron temperature. (+)-done: (·)-not done; (*)-not converglng. 
This table ls explalned ln detail in section 6.l. 
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simulation results obtained by MINIMOS, using a simplified set of 

hydrodynamic equations (HOT mode) are discussed. The results are not very 

satisfactory. 

In section 6. 3. 2 results obtained by TRENDY, using the Wiedemann-Franz 

heat-flow model are discussed. Like all simulators that take into account the 

full hydrodynamic equations, TRENDY has two serious drawbacks: 

1. The program is not very robust and numerical instabilities easily arise. 

2. Hydrodynamic simulations require much computing time, typically one order 

of magnitude more than for the drift-diffusion mode. 

To overcome these problems the use of extended drift-diffusion simulations is 

suggested, in analogy to section 5.5.3. In section 6.3.2 it is studied how 

appropriate this approach is, if applied to full hydrodynamic two-dimensional 

simulation results obtained by TRENDY, assuming the Wiedemann-Franz heat-flow 

model. 

The use of the adiabatic heat-flow model did not yield converging results, 

neither in the hydrodynamic, nor in the extended drift·diffusion mode. 

However, by defining a relaxation length (LW) approach in stead of a 

relaxation time (TIJ), convergence can be achieved. This is discussed in 

section 6.3.3. Good agreement with experimental results has been obtained. 

In section 6.4 an analytical solution to the energy post-processing problem, 

formulated by Slotboom et al. [1991], is given. This method is used in 

combination with MINIMOS and TRENDY results. 

In section 6.5 the results obtained by the two-dimensional simulator are 

compared to the results obtained by the quasi two-dimensional MOS simulator, 

that was discussed in the previous chapter. Finally, in section 6. 6 all 

conclusions are summarized. 

6.2 l.esults vith the simulator KINIKOS 

The MINIMOS program developed by Selberherr et al. (1980] in particular is 

dedicated to the simulation of MOS transistors. Essentially MINIMOS is a 

drift·diffusion simulator. However, a hot-electron model is included, in 

which the electron temperature is calculated by a simple series expansion of 

the sol ut ion of the energy conservation law. This is described in section 

6.2.1. In section 6.2.2 simulation results using the MINIMOS hot-electron 

model are presented. 
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6.2.l The 111111DIOS hot-electron Jl!Odel 

In the calculation of the electron temperature in MINIMOS several 

aillplifications have been made. This is described by Selberherr [1989]. 

Starting from the full energy conservation equation (1.4.21), these 

simplifications are: 

1. The enrgy convection is neglected (W - ! k T ). 
n 2 B n 

2. The energy flow is defined by i - k T j /q. 
n B n n 

3. The gradient in the electron velocity is assumed to be small. 

4. The generation/recombination term is neglected. 

This yields in steady state 

k T - T 
j • ( Î + _!_ V (n T ) ) - ! n k n L 

n q n n 2 B 1' wn 
(6.2.1) 

Applying these assumptions, also the momentum equation in steady state can be 

rewritten as 

k 
j - q µ n [ Î + _!_ V (n T >) 

n n q n n 
(6.2.2) 

Combining (6.2.1) and (6.2.2) yields 

(6.2.3) 

Here the driving force En is defined by 

k 
E - j Î + _!_ V (n T ) 

n q n n 
(6.2.4) 

In analogy with equations (2.5.3) and (2.5.4) the mobility is defined by 

(6.2.5) 

In addition it can be shown that 

" r - vz ( !_ - _1 ) 
n n aat µ LIS 

n µ 
(6.2.6) 

n 

Furthermore, a definition for the energy relaxation time "wn is used 
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(6.2.7) 

The value of the fudge factor 7 is in the range [O,lJ. 

The substitution of (6.2.6) and (6.2.7) in (6.2.3) finally yields the 

expression to ealeulate the eleetron temperature T used in MINIMOS 
n 

T - T ( l - 7 + 7 µ~IS) 
n L pn 

(6.2.8) 

Several notes have to be made. 

1. In both MINIMOS4.0 and MINIMOS5.l the above equations were not implemented 

.eorreetly. However this could be corrected quite easily. 

2. The definition of~ seems to be rather arbitrary, and is likely only taken 

to simplify the equations. No physical theory bas been given. 

3. The parameter r..., given by (6.2.7) bas no energy (or field) dependence. 

However it is related to the doping concentration by the mobility. Using 

the default value 7 - 0.8 gives in intrinsic material r...,- 0.44 ps, which 

is in fair agreement with the values found by our Monte Carlo simulations 

and in the literature. However, even at moderate doping concentrations, 

this value drops fast. At N
1
- 3.3 10

17 
cm"

3 
a value ""n- 0.15 ps bas been 

found, which is very low. 

6.2.2 Results obtalned using the hot-electron model 

Simulation results were obtained for the devices described in section 5.5. 

The device characteristics for the 1.0 pm and the 0.35 µm devices have been 

plotted, respectively in figure 6.la and 6.lb. The simulator was run either 

in the drift-diffusion mode (small dsshes) or the hot-electron mode (large 

dsshes). The solid lines give the experimental values. 

Due to the limited knowledge of the exact doping profile, external resistors 

of 80 Ohm, both to the source and the drain contact have to be added to 

obtain a good fit in the low-field region at VG
5

- 1.5 V. Also a gate-voltage 

correction llu - -0.27 V bas been added to account for the quantum well. In 

MINIMOS no automatic voltage correction was implemented, and therefore it bas 

not been taken into account that llu is in fact an increasing function of VGs 

(see section 5.3). Therefore at high gate voltages the current calculated are 

expected to be too high. This also bas been found. Figure 6.la shows a very 

good agreement between simulated drift-diffusion resultlli! and experimental 

data for the 1.0 pm device, where hot-electron effects are not important. At 
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Fig 6.1 Prima.ry device current fora 1.0 µm (a) and a 0.35 µm (b) device. 
Experimental data (solid lines) and HINIHOS5.1 simulation data are shown: 
the sma.11 dashes represent the 2-D mode, the large dashes the HOT mode. 

VGS 2.5 V the calculated values of IDS indeed are higher than the 

experimentally obtained values.: For the 0. 35 µm device ( figure 6. lb) the 

calculated drift-diffusion currepts are too low in the saturation region. The 

reason for this is that in such a small device the high electron temperature 

gradients cause an extra current component. This is not accounted for in the 

drift-diffusion model. 

However, in MINIMOS, the hot-electron (HOT) mode yields unexpected results: 

strong negative differential res~stances occur in the saturation region, even 

in the 1.0 µm device, where hardly any effect is expected. This effect is not 

observed in the experiments. Considering the theory given in 6.2.l, these 

negative slopes can be explained qualitatively: due to the increasing Tn at 

increasing applied voltages, the factor En increases. This results in a 

decreasing mobility and a decreasing source-drain current. 

In figure 6. 2 the electron temperature in the device, as calculated by 

MINIMOS, at a bias of VGS- 1.5 V and V
06

- 2.6 V, is given. Qualitatively this 

results fulfills the expectations, showing a high peak of several thousands 

degrees Kelvin at the drain side of the channel. The peak is near the 

interface, extending 0.1 µm into the device. 

The irregularities in e.g. the djrain depletion layer, are caused by the fact 

that the resolution of the automatically generated mesh is not very good. 

The avalanche generation rate GRAv allows a more quantitative check on the 

temperature distribution. GRAV is calculated as a function of the local 

electron temperature. The Chynoweth formuls (2.5.6) bas been used, in 

combinstion with an adequate Tn -E.u relation. This relation has been given 

by (2.5.8), which yields, if the energy convection is neglected 
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Fig 6.2 Electron temperature in a 0.35 pm device, biased at Vsa-1.5 V 
and Vda•2.6 V, calculated by the HINIHOS5.l HOT mode. 
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Fig 6.3 Avalanche current in a 0.35 pm 
device, biased at Vsa-1.5 and 2.5 V 
respect1vely. The sol1d l1nes 
represent exper1mental data and the 
squares HINIHOS5.l s1mulation data. 
The dashed lines represent least 
squares fit of these simulated data. 

(6.2.9) 

An acceptable parameter fit between calculated and experimental data for the 

0.35 µm device has been found, using the Van Overstraeten avalanche 

parameters combined with a value r wn - 0. 35 ps in equation 6. 2. 9. This is 

shown in figure 6.3. The data do not yield smooth curves due to the fact that 

the resolution of the mesh is not sufficient. 

Further remarks to be made are the following: 

1. More simulations show GRAv to be very sensitive to the value r,"" A change 
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of 20% in r..,. leads to an ord~r of magnitude change in GRAv· 

2. The value of r used withirl the MINIMOS program is not consistent with 
wn 

the value of rwn needed to obtain a best fit with the experimental data. 

3. MINIMOS calculations using a value -, - 2.2 {which yields a r..,.- 0.4 ps) 

were not converging. In addition, this higher -, also would yield a higher 

temperature, and thus a further decrease in the device currents. 

4. It can easily be shown, that the use of the parameter values given by 

Slotboom et al. [1987], in combination with rwn- 0.25 ps yields nearly 

identical results as presented in plot 6.3. 

From these results it can be concluded that the HOT mode in MINIMOS does not 

work satisfactorily. 

6.3 Reaulta with the device simulator TRENDY 

TRENDY bas been developed and described by Van Schie [1990] and Wolbert 

[1991] at the University of Twente. The program allows hydrodynamic 

calculations. In the original ve
1

rsion of TRENDY the transport parameters were 

defined as a function of local ellectric field. This is not correct and yields 

too high values for the avalianche currents. Therefore TRENDY bas been 

modified. In this modified ver~ion the parameters are functions of local 

electron energy by using the ' principle of effective electric field as 

described before. The Wn·E relation used is given by equation (6.2.9). 

A further modification concerning the heat flow was attempted. In the 

original version of TRENDY the Wiedemann-Franz heat-flow model was 

implemented. 

An extra procedure bas been added that allows the use of the adiabatic 

heat-flow model which is the better model as is shown in chapter 4 of this 

thesis. However we did not succeed in finding an adequate discretization 

scheme. None of the two-dimensional simulation runs, using the adiabatic 

heat-flow model, did converge. 

6.3.l The full hydrodynamic solution 

With TRENDY the simulation of the previously described 0.35 µm device driven 

at the same bias bas been ~ttempted. Several serious problems became 

apparent: 

1. The use of the hydrodynamic mode of TRENDY is extremely time-consuming. 

2. There is no automatic grid generator available, and it takes an 

intelligent trial and error method to find an adequate grid. 

3. The simulator bas serious convergence problems that depend heavily on the 

mesh. Even drift-diffusion calculations sometimes do not converge. 

120 



0.35 pm device; Vgs-1.5 V; Vds -2.6 V 

I Dim Exper Q Relax Avalan DD+ HD 

0.413 W·F TW 0.348 0.371 

Slotb 0.755 7.73 
TV 

Overst 40.6 170 
W-F 

Slotb 0.891 * LW 
Overst 45.4 * 

710 
267 * LW 
2340 * 

Adiab 
249 * Analyt 
2230 * 

Table 6.2 Terminal current values obtained from full hydrodynamic 
and from various post-processing simulations. 

4. Several bugs, e.g. the contact and interface definitions, in TRENDY had to 

be corrected. 

Nevertheless, we did succeed in obtaining results at the bias Vos- 1.5 V and 

Vns- 2.6 V. Using the Wiedemann-Franz heat-flow model and the Van 

Overstraeten avalanche parameters, the simulation yields I
0
s - 0.371 mA and 

IAV - 170 nA. The value of I
08 

is 10% lower than the experimental data. This 

may be due to the mobility model used, hut it also suggests that the 

calculated electron temperatures are too low. This is also confirmed by the 

calculated avalanche currents, that are much lower than the experimental data 

(see table 6.2). 

The value of I AV calculated at the given bias is much lower than the value 

found experimentally (I AV - 710 nA). If the avalanche parameters have the 

values given by Slotboom et al. [ 1987], even a much lower value I AV- 7. 73 nA 
is found. This is in agreement with section 5.5.4. 

6.3.2 Comparison of the full hydrodynamic and the post-processing method 

In this section the differences found between the results from the full 

hydrodynamic simulation with Wiedemann-Franz model, and f rom the 

drift-diffusion simulation combined with a post-processing routine that 

calculates the electron temperature and avalanche generation rate, are 

compared. The goal of this comparison is to be able to give a more founded 

opinion whether the use of post-processing methods is justified. 
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Table 6.2 shows that the hydrodynamic method gives a 10% higher source-drain 

current than the drift·diffusion method. This is due to the extra thermal 

currents. More striking is the difference in calculated avalanche currents. 

To analyze this phenomenon in more detail, the differences in calculated 

values of electron temperature, electron density, and avalanche, generation 

rate is discussed in more detail. 

First the electron temperature distribution is considered; compare figures 

6.4a and 6.4b. At first sight, there is a large discrepancy between the two 

plots. An important difference is the high electron temperature ridge in the 

depletion layer in plot 6.4a. However this temperature ridge is situated in a 

region of low electron density and therefore bas no relevance for the device 

characteristics. The same applies for all side peaks and the cool spot at 

mid·channel in figure 6.4b. Therefore, if the temperature ridge in the 

depletion layer and all side peaks are ignored, a great similarity between 

the two plots becomes obvious: the position along the channel of the 

temperature peak is identical, at 0.3 µm from the beginning of the channel. 

Both temperature peaks have a value of 4500 K at the Si-Si0
2 

interface and 

this value increases with increasing depth, up to a final maximum of 5500 K 

in the extended drift-diffusion model and 6000 K in the full hydrodynamic 

model. This maximum lies at a depth of 0.08 µm, which is also the junction 

depth of the drain. 

Next, the electron density distribution plotted in 6.5, is considered. The 

electrori density distribution at the interface is in both plots very similar, 

with a slightly deeper dip at the drain side in the drift·diffusion model. 

However an obvious disagreement is found in the total current path; in the 

drift-diffusion situation, the current path is close to the Si-Si0
2 

interface, and the channel does not extend beyond 25 nm from the interface. 

On the other hand, in the full hydrodynamic solution the current path is much 

more diffuse, and the channel extends more or less up to 80 nm. This is due 

to the fact that the high temperature peak gives rise to a strong diffusion 

term away from the hot spot, which forces electrons into the bulk of the 

semiconductor. 

Furthermore, the high temperature peak also causes a strong velocity 

overshoot (up toa factor 3 of the saturation velocity), so the total current 

generated in the hydrodynamic situation is slightly higher. 

Finally the avalanche generation rate GRAV bas been considered (see figure 

6.6). GRAV is a function of the electron temperature and of the electron 

current density. As expected from the above, the avalanche current is much 

more concentrated at the interface if the drift-diffusion model is used. 
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Fig 6.4 Electron temperature distribution in a 0.35 µm device, biased at 
Vsa-1.5 V and Vdo-2.6 V. 
a. TRENDY full hydrodynamic results (Wiedemann-Franz heat flow model). 
b. TRENDY drift-diffusion and energy post-processing. 
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Fig 6.5 Electron density distribution in a 0.35 µm device, biased at 
Vaa-1.5 V and Vdo-2.6 V. 
a. TRENDY full hydrodynamic results (Wiedemann-Franz heat flow model). 
b. TRENDY drift-diffusion and energy post-processing. 
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Flg 6.6 Avalanche generatlon rate in a 0.35 µ.m device, biased at 
Vsa-1.5 V and Vda-2.6 V. 
a. TRENDY full hydrodynamic results (Jliedemann-Franz heat flow model). 
b. TRENDY drift-difEusion and energy post-processing. 
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Because the avalanche generation rate has an exponential relation with the 

electron temperature, minor differences in Tn result in major differences in 

GRAv· Because both the electron temperature and the total current are 

slightly higher in the hydrodynamic model, the avalanche current is also 

higher. After integration we find the avalanche current calculated by the 

hydrodynamic model up to one order of magnitude higher than the value 

calculated by the extended drift-diffusion model. 

From the above the following conclusions can be drawn: 

1. The full hydrodynamic model yields higher currents and a more diffuse 

current path than the drift-diffusion model. 

2. In both models the calculated avalanche current and the source-drain 

current are lower than the experimental data. This suggest that the 

electron temperatures calculated are too low. 

3. Using the Viedemann-Franz heat-flow model, the Van OVerstraeten avalanche 

parameter values give better results than the Slotboom's parameters. 

4. The post-processing method can be used to calculate the electron 

temperature distribution (under the restriction that the avalanche current 

is 111UCh lower than the drain current). 

5. In calculating the avalanche currents, the post-processing method yields 

slightly lower values than the full hydrodynamic method. 

6.3.3 &esults obtained using the adiabatic heat-flow model 

As was shown in chapter 4, the adiabatic heat-flow model yields higher 

electron temperatures than the Viedemann-Franz model, and a better agreement 

with Monte Carlo results. Unfortunately, we did not succeed in constructing 

an adequate two-dimensional discretization scheme. Therefore no full 

hydrodynamic simulations using the adiabatic model could be executed, and a 

comparison between hydrodynamic and post-processing results is not possible. 

Actually, not even a converging two-dimensional post-processing routine based 

on the adiabatic heat-flow model could be developed. This is mainly due to 

the high fields and electron velocities occurring in the depletion layers. 

However a solution to these problems bas been found by assuming a slightly 

different relaxation mechanism: not a constant relaxation time ,,. is 
wn 

assumed, but a constant relaxation length Àwn' as defined by 

s - - v,,. 
3 n wn 

(6.3.l) 

Then a value ).wn- 67 nm is equivalent to ,,..,,.- 0.4 ps if vn equals vut. 

This method has been tested using the post-processing method with the 

Viedemann-Franz heat-flow model. Simulations show that the use of a constant 
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Fig 6.7 Avalanche currents. The solid llnes represent experlmental data, 
the dashed lines TRENDY extended dr1ft-dlffusion results. 
(a) Jliedemann-Franz heat flow, comblned wlth Van Overstraeten parameters. 

The large dashes represent results assuming a constant relaxation time, 
the small dashes results assuming a constant relaxatlon length. 

(b) Adiabatic heat-flow model comblned wlth Slotboom parameters, with two 
different values of the relaxation length. 

\" instead of a constant r..., yields slightly higher values for T
11 

and IAV 

The newly calculated value of IAV is some 10% higher then the value obtained, 

using a constant r...,. This is shown in figure 6.7a. 

This small increase of the peak temperature (only a few percent) is due to a 

higher relaxation time if the velocity is lower than the saturation velocity. 

From a pragmatic point of view the l..., approach is to be preferred above the 

r..., approach, both because of the increase of numerical stability, and 

because the small increase in IAV partly compensates the decrease caused by 

the use of the post-processing method in stead of the full hydrodynamic 

solution. 

In figure 6.7a the avalanche currents have been plotted using the 

Viedemann-Franz model combined with Van Overstraeten parameters in the 

post-processing mode. Here the Àwn- 67 nm approach has been used. The shape 

of the curves is very similar to the experimental curves, only the values are 

111Uch lower. In accordance with experimental data it bas been found that an 

increase in gate voltage yields a decrease in avalanche current. 

In figure 6.7b the results of post-processing have been presented that assume 

an adiabatic heat-flow model, combined with a constant \" and Slotbooa 

avalanche parameters. In analogy with conclusion 4 of the previous section, 

it bas been assumed that T
11 

can be calculated correctly if the 

post-processing routine is used. 

Additional simulations show that the use of Van Overstraeten parameters 
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yields avalanche currents that are much higher than experimental dsta. In 

combination with the adiabatic model the use of Slotboom's parameter values 

seems more adequate. The calculated avalanche currents are slightly lower 

than the experimental dsta. This was expected (see conclusion 5 of the 

previous section). Considering all results, the conclusion that the 

calculated electron temperature distribution is in good agreement with the 

real situstion, seems justified. 

lt should be noted that the use of .a smaller relaxation length \"- 55 nm 

gives a better fit (figure 6. 7b, large dashes). Although the difference 

between calculated and experimental data is . better explained by the error 

made by the post-processing method, it can be compensated by a different 

value of À • 

"" 
6.4 An analytical aolution 

Using the assumption of a constant relaxation length, an analytical solution 

to the calculation of the electron temperature was given by Slotboom [1991]. 

An important second asswnption made is that the problem essentially is one 

dimensional along each current path. Furthermore several other assumptions 

were added to the energy conservation law (1.4.21): 

1. The energy convection is neglected (W - ! k T ). 
l 2 B D 

2. Using the adiabatic energy model (Q - ëh and condition (1) yields an 

energy flow S - ~ k T J /q. 
n 2 B n n 

3. The velocity convection is neglected. 

4. The generation/recombination term is neglected GR - O. 

Now (1.4.21) yields in the steady state 

S kB 
EJ +--J 8T 
xnz :i.qnxxn 

3 --n 
2 kB 

T - T 
n L 

,,. 
wn 

(6.4.1) 

Rewriting (6.4.1) combined with the definition J""- - qnv..,. and the 

definition (6.3.1) yields 

T • T 
8T +-0--L+!!Lg -0 

XD À Sk X 
wn B 

(6.4.2) 

Because À"" is assumed to have a constant value, equation (6.4.2) can be 

solved analytically, wi th the following expression for the electron 

temperature 
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Fig 6.8 Avals.nche currents. The simulation data are obtained from 
post-processing of HINIHOS drlft-diffuslon results uslng the s.nalytlcal 
method: (a) 1.0 µm device, (b) 0.35 µm device. Results uslng two different 
values for the energy relaxation length are shown. The parameter is the 
gate voltage. 

z 
T (x) - T - ! !L f E (u) exp ( u-x ) du 

n L 5 k
8 0 

z >. wn 
(6.4.3) 

The discretization of equation (6.4.3), assuming the electric field to have a 

constant value Ezi over the interval t.x:
1 

between the grid points x
1

_
1 

and x
1 

(Gummel-Scharfetter), yields. 

(6.4.4) 

In (6.4.4) H
1 

is defined, 

(6.4.5) 

The results obtained by using this analytical method in post-processing are 

nearly indistinguishable from the results obtained by the two-dimensional 

post-process calculations that · use the same constant relaxation length 

assumption. A great advantage of the analytical method is, that it gives no 

convergence problems at all, and can also be applied without any problem fer 

MINIMOS results, which have, due to the smaller grid resolution, even more 

pronounced side peaks than TRENDY results. This way a fast, stable 

quasi-hydrodynamic simulator bas been developed. Applying the method to 

MINIMOS drift-diffusion data yields figure 6. 8a and 6. 8b. An excellent fit 

between simulated and experimental data is found if >. - 55 nm. This is in -agreement with the results found by Slotboom et al. [1991]. 

129 



1e+15 

~ 1•+14 
e 
J te+13 

1e+12 

1e+11 .......,--------~ 
o.o 0.1 0.2 0.3 0.4 0.5 

x (um) 

1e+23 

1e+22 

1•+21 
î 
~E 1e+20 
e 
~ 1•+19 

~ 
~ 

1e+18 

1e+17 

1••16 
o.o 0.1 0.2 0.3 0.4 0.5 

x (um) 

4000 

2000 

o'------------" 0.0 0.1 0.2 0.3 0.4 0.5 

x (um) 

Fig 6.9 Electron sheet denslty (a), 
interface.electron temperature (b) 
and sheet avalanche generatlon 
rate (c). Full hydrodynamlc TRENDY 
and Quasi 2-D results are shown. The 
position of the gate contact ls from 
x-0 to x-0.35 µm; Vds-2.6 V and 
Vgs-1.5 V. 

6. S Comparison of quasi and full two-dimensional results 

In figures 6.9 full hydrodynamic results obtained by the quasi 

two-dimensional simulator and by TRENDY are compared. The lliedemann-Franz 

heat-flow model bas been used, and the 0.35 µm device bas been biased at 

V GS- 1. 5 V and V DS - 2. 6 V. In this figure the gate contact is located from 

x- 0 µm to x- 0.35 µm. The solid line represents the full two-dimensional 

TRENDY solution and the dashed curve the quasi two-dimensional solution. In 

the quasi two-dimensional simulations the mobHity is taken such that the 

device current is in agreement with the full two-dimensional results. In 

figure 6. 9a the electron sheet densities have been plotted, that can be 

obtained from the electron density by integration in vertical direction. 

A fair agreement is found at th~ position x- 0.3 µm, which is at the end of 
i the channel, just in front of tqe drain p-n junction. For our purposes this 

is the most important region, because only there the electron temperature 

reach~s high va lues, as can be seen in figure 6. 9b. 

In the ranges 0.3 < x > 0.35 µm and 0 < x < 0.1 µm the assumption that 

underneath the gate the vertical field is much larger than the horizontal 
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field is not fulfilled, and a discrepancy is found. However these areas have 

no significance for the device behavior. 

A second discrepancy is found in the channel itself due to differences in the 

definition of the doping profile. 

In figure 6. 9b the electron temperature at the interface bas been plotted. 

Again a good agreement is found at the position x- 0.3 pm. Because at this 

position the electron temperature reaches its maxillUlll, also good agreement in 

the sheet avalanche generation rate is to be expected, which is confirmed by 

figure 6.9c. 

From these results it can be concluded that the quasi two-dimensional lllOdel 

yields only a first order approximation of the device behavior, regarding 

both terminal behavior and internal distributions. Improvements can be added 

to the model, e.g. a full two-dimensional potential calculation instead of 

the layered structure model used, but whether these improvements will yield 

results comparable to the drift·diffusion method combined with an energy 

post-routine cannot be said a priori. 

6.6 SWlllllllry and concluaions 

In this chapter it bas been shown that full hydrodynamic results of submicron 

n-channel MOSFETs using TRENDY can be obtained. However, much effort in 

defining an adequate grid and much computational effort was needed, because 

TRENDY bas some serious convergence problems (like all hydrodynamic 

simulators) that have not been solved yet. 

In all results obtained use was made of the Yiedemann-Franz heat-flow model. 

Uslng the adiabatlc heat-flow model dld not yield any results at all. 

The above facts strongly limit the practical use of the TRENDY full 

hydrodynamic simulations in two-dimensions. This is in contrast with the 

TRENDY one-dimensional simulations, which do not give any problems. 

Full two-dimensional hydrodynamic results have been compared to results 

obtained by applying a post-routine to drift·diffusion results. AlthouSh 

there are some serious dlscrepancies, e.g. in the electron denslty 

distribution, a fair agreement bas been found in the electron temperature 

distribution. The peak temperature in the hydrodynamic mode is only some 10% 

higher than in the drift-diffusion mode. The same applies for the 

source-drain current: the hydrodynamic simulations yield 10\ higher values 

than the drift-diffusion calculations. This is due to the extra thermal 

current components. However, these minor variations yield a major discrepancy 

in the avalanche current. Variations up to one order of magnitude have been 
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observed. In this work the avalanche current always was much smaller than the 

source-drain current. lf this is not the case, the discrepancy certainly will 

increase. 

In this chapter we also looked in more detail at the analytical model 

proposed by Slotboom, who assumed an adiabatic model with a constant energy 

relaxation length )."", in combination with the post-processing method, and 

the Slotboom avalanche parameters. The calculated avalanche currents are in 

. fair agreement with experimental data •. This can be explained by the fact that 

the error introduced by assuming a constant relaxation length in stead of a 

constant relaxation time, partly compensates the error introduced by the use 

of the post-processing method. Furthermore avalanche parameters that fit the 

experimental data have been used. In this way a fast and robust method to 

calculate good first-order approximations bas been found, that may be useful 

for device designers. However, its limits of applicability have not been 

established. 

In addition the hot electron mode of KINIHOS bas been studied, but results 

obtained this way were not satisfactory. 

Finally the quasi two-dimensional results, described in chapter 5, have been 

compared to full two-dimensional TRENDY results. The agreement is not very 

good, but the quasi two-dimensional model can be used as a first-order 

approximation. 
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Chapter 7 

FUTl1U WOll 

The most important problems that demand further study are: 

l. How to improve the convergence and stability of the full hydrodynamic 

model in two-dimensions. Promising in this respect is the method proposed 

by Schilders (1993]. 

2. Furthermore it is important to obtain a good discretization scheme in 

combination with the adiabatic heat-flow model, which, according to our 

Monte Carlo simulations, is the better model. 

Only after these problems have been solved, the hydrodynamic model can be 

used as a useful tool for device designers. 

Further work that·is suggested as a continuation of the present work: 

l. Improvement of the band-structure model and scatter mechanisms in the 

L-valley in the Monte Carlo simulators to model the high-field region more 

correctly. 

2. Improvement of the ionized impurity and impact ionization models in the 

Monte Carlo method. 

3. Further Monte Carlo studies of the interface behavior, including the 

impact parameters at the interface. 

4. Extension of the Monte Carlo device simulator with hole transport. 

5. Study of the transient behavior of the quasi two-dimensional model. 

6. Improvement of the convergence of the quasi two-dimensional model by using 

a different iteration scheme. Maybe the model then can be used as a fast 

hydrodynamic device simulator in compact models. 

7. Improvement of the quasi two-dimensional model by using a full 

two-dimensional potential calculation in stead of the layered structure 

used in this work. 

8. Implemention of an automatic grid generator in TRENDY. 

9. Implemention in both MINIMOS and in TRENDY of a subroutine to calculate 

automatically the gate-voltage correction due to the quantum well. 
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Stellingen bij het proefschrift 

Modeling of hot-electron effecta in Si MOS devicea 

door 

Peter Elias 

1. Het adiabatische warmtestromingsmodel in hydrodynamische device-simulaties 
is te prefereren boven het Wiedemann-Franz model. 

Dit proefschrift, hfdst 4. 

2. Het gebruik van een drift-diffusie-oplossing gecombineerd met een 
post-processor om de elektronentemperatuur en de vermenigvuldigings
faktor te berekenen levert, indien vergeleken met een volledig 
hydrodynamische oplossing, een afwijking van ca 10% in de drainstroom en 
een afwijking van een faktor twee in de substraatstroom van 
MOS-transistoren met kanaallengten tot 0.3 µm. 

Dit proefschrift, hfdst 5 en 6. 

3. Daar in de etymologie van het woord okay geen verbinding gelegd wordt met 
de nederlandse scheepvaart, mag verondersteld worden dat de uitdrukking Op 
Koers in het begin van de 19e eeuw nog niet gebezigd werd. 

Hencken [1952], The American language, Suppl. 

4. Een verbetering van kwaliteit, produktiviteit en arbeidsvreugd in het 
wetenschappelijk onderzoek wordt ongetwijfeld verkregen, indien steeds 
twee AIO's aan eenzelfde projekt werken, en zij in hun mogelijkheden tot 
overwerk niet belemmerd worden. 

5. Als de overheid niet in staat is op korte termijn serieus op te treden 
tegen het massaal overtreden van de regels voor verkeerslichten door 
fietsers en voetgangers, dan doet zij er verstandig aan deze regels af te 
schaffen. 

6. Zolang in numerieke modellen, die gebruikt worden bij de Elektro- en 
Magneto-Encephalografie, uitsluitend bolsymmetrische beschrijvingen van 
het menselijk hoofd worden gehanteerd, zal de nauwkeurigheid van de 
bronlokalisatie niet beter worden dan circa 1 cm. 

Peters en Elias [1988], Hed. & Biol. Eng. & Comp., vol 26. 
Cohen, Cuffin, e.a. {1990}, Annals of Neurology, vol 28. 

7. Programmatuur ontwikkeld aan nederlandse universiteiten zal in het 
algemeen een stille dood sterven, als ze niet overgedragen kan worden aan 
een commercieel software-huis. 

8. Bij de berekening van de 1-V karakteristieken van AlGaAs DBRT-diodes moet 
aandacht besteed worden aan de rol van de inhomogene verdeling van 
Aluminium in de barrières. 

Salemink en Albrektsen [1991], J. of Vacuum Sc. & Techn.B, vol 9, iss 2. 


