
Views and Concerns and Interrelationships

Lessons Learned from Developing the Multi–View
Software Engineering Environment PIROL

vorgelegt von

Diplom-Informatiker

Stephan Herrmann

Von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuß:

Vorsitzender: Prof. Dr.-Ing. Günter Hommel
Berichter: Prof. Dr.-Ing. Stefan Jähnichen
Berichterin: Prof. Dr.-Ing. Mira Mezini

Tag der wissenschaftlichen Aussprache: 23.9.2002

Berlin 2002
D 83





Contents

I Introduction 3
I.1 Efficiently Managing Complexity . . . . . . . . . . . . . . . . . . 5
I.2 CO5: Five Levels of Discussion . . . . . . . . . . . . . . . . . . . 6
I.3 The Software Engineering Environment PIROL . . . . . . . . . . 7

I.3.1 Concerns and Dimensions of PIROL . . . . . . . . . . . . 8
I.4 From Separated Concerns towards a Confederation of Components 10

I.4.1 Dealing with Partiality . . . . . . . . . . . . . . . . . . . . 10
I.4.2 Striving for Larger Modules . . . . . . . . . . . . . . . . . 12

I.5 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . 12
I.5.1 Description guided by a Concern Interaction Matrix . . . 13
I.5.2 Towards a comprehensive notion of views . . . . . . . . . 15
I.5.3 How to read this thesis . . . . . . . . . . . . . . . . . . . 15

II The Development of PIROL 17

1 A Common Object-Oriented Meta Model for Seamlessness 19
1.1 Objects versus Files and Documents . . . . . . . . . . . . . . . . 20

1.1.1 Conceptual Objects . . . . . . . . . . . . . . . . . . . . . 21
1.2 Extending Lua for Object-Oriented Programming . . . . . . . . . 23

1.2.1 Imperative core . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.3 Functions values . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.4 Integration of client libraries . . . . . . . . . . . . . . . . 26
1.2.5 Meta programming using tagmethods . . . . . . . . . . . 28

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Persistence and Object-Oriented Programming 33
2.1 Basic Data Model of PCTE . . . . . . . . . . . . . . . . . . . . . 34
2.2 Persistence Interacts with other Concerns . . . . . . . . . . . . . 36

2.2.1 Meta modeling . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 Implementing the mapping . . . . . . . . . . . . . . . . . 41
2.3.2 Meta model deployment . . . . . . . . . . . . . . . . . . . 42

2.4 Other languages for persistent meta models . . . . . . . . . . . . 42
2.4.1 Arcadia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.2 GOODSTEP . . . . . . . . . . . . . . . . . . . . . . . . . 44

i



CONTENTS

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Model Granularity 49
3.1 Structured decomposition and composition . . . . . . . . . . . . 50

3.1.1 Term Grammars . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Model Granularity Interacts with other Concerns . . . . . . . . . 51

3.2.1 Meta modeling . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Behavior Modeling 55
4.1 Behavior Modeling Interacting with other Concerns . . . . . . . . 56

4.1.1 Meta modeling . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.3 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 PIROL’s Boot Process . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Exception Handling 63
5.1 Exception Handling Interacting with other Concerns . . . . . . . 63

5.1.1 Meta Modeling . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.3 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.4 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Data Integrity 67
6.1 PIROL’s Mechanisms for Data Integrity . . . . . . . . . . . . . . 67

6.1.1 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.2 Towards Semantical Integrity . . . . . . . . . . . . . . . . 67
6.1.3 Avoiding Redundancy . . . . . . . . . . . . . . . . . . . . 69
6.1.4 Technical Integrity . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Data Integrity Interacting with other Concerns . . . . . . . . . . 71
6.2.1 Meta modeling . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.3 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.4 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.5 Exception handling . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Language Support for Consistency . . . . . . . . . . . . . . . . . 77
6.3.1 APPL/A . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.2 GTSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 A Client–Server Architecture 83
7.1 Decoupling and Integration . . . . . . . . . . . . . . . . . . . . . 83
7.2 A three–tier architecture for PIROL . . . . . . . . . . . . . . . . . 84
7.3 MSG: the communication channel . . . . . . . . . . . . . . . . . 85

ii



CONTENTS

7.3.1 Synchronization . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.2 Enhancements of MSG . . . . . . . . . . . . . . . . . . . . 86

7.4 Client-Server Architecture Interacting with other Concerns . . . 91
7.4.1 Meta modeling . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.3 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.4 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.4.5 Exception handling . . . . . . . . . . . . . . . . . . . . . . 95
7.4.6 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8 Control Integration 101
8.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.1.1 Dimensions of integration . . . . . . . . . . . . . . . . . . 101
8.1.2 Roles of developers . . . . . . . . . . . . . . . . . . . . . . 102
8.1.3 Pairwise integration . . . . . . . . . . . . . . . . . . . . . 103

8.2 Elements of Control Integration . . . . . . . . . . . . . . . . . . . 103
8.2.1 Multicast communication . . . . . . . . . . . . . . . . . . 104
8.2.2 Change propagation for consistent views . . . . . . . . . . 105
8.2.3 Remotely controlling tools . . . . . . . . . . . . . . . . . . 107

8.3 Control Integration Interacting with other Concerns . . . . . . . 110
8.3.1 Meta modeling . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.3.3 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3.4 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3.5 Exception handling . . . . . . . . . . . . . . . . . . . . . . 113
8.3.6 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.3.7 Client-server architecture . . . . . . . . . . . . . . . . . . 115

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.4.1 Independence with regard to earlier chapters . . . . . . . 116
8.4.2 Concerns and their relations . . . . . . . . . . . . . . . . . 117

9 Multi User Capability 121
9.1 Multi user capability interacting with other concerns . . . . . . . 122

9.1.1 Meta modeling . . . . . . . . . . . . . . . . . . . . . . . . 122
9.1.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.1.3 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.1.4 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.1.5 Exception handling . . . . . . . . . . . . . . . . . . . . . . 126
9.1.6 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.1.7 Client–Server Architecture . . . . . . . . . . . . . . . . . . 127
9.1.8 Control Integration . . . . . . . . . . . . . . . . . . . . . . 132

9.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

iii



CONTENTS

10 Logical Component Gluing using DVCs 135
10.1 Striving for “logical” independence . . . . . . . . . . . . . . . . . 135

10.1.1 Anticipating meta model mismatches . . . . . . . . . . . . 135
10.1.2 Storing shared versus tool–specific data . . . . . . . . . . 136

10.2 Dynamic View Connectors . . . . . . . . . . . . . . . . . . . . . . 137
10.2.1 The structure of virtual repositories . . . . . . . . . . . . 138
10.2.2 Implementing tools to virtual class graphs . . . . . . . . . 139
10.2.3 Mapping constructs . . . . . . . . . . . . . . . . . . . . . 140
10.2.4 Repository, view, and connector objects . . . . . . . . . . 146
10.2.5 Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . 146
10.2.6 Tool integration with DVCs . . . . . . . . . . . . . . . . . 148

10.3 DVCs interacting with other concerns . . . . . . . . . . . . . . . 149
10.3.1 Meta Modeling . . . . . . . . . . . . . . . . . . . . . . . . 149
10.3.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.3.3 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.3.4 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
10.3.5 Exception handling . . . . . . . . . . . . . . . . . . . . . . 153
10.3.6 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
10.3.7 Client-server architecture . . . . . . . . . . . . . . . . . . 156
10.3.8 Control Integration . . . . . . . . . . . . . . . . . . . . . . 159
10.3.9 Multi User Capability . . . . . . . . . . . . . . . . . . . . 160

10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

11 Common Services across Components 161
11.1 Tool administration . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.2 Workbench provided context menu . . . . . . . . . . . . . . . . . 164

11.2.1 Determination of available tools . . . . . . . . . . . . . . . 166
11.2.2 Document handling and creation . . . . . . . . . . . . . . 166
11.2.3 User-to-user communication . . . . . . . . . . . . . . . . . 166
11.2.4 Workflow support: document states . . . . . . . . . . . . 167
11.2.5 Lua/P scripting . . . . . . . . . . . . . . . . . . . . . . . . 167

11.3 Common services interacting with other concerns . . . . . . . . . 167
11.3.1 Meta Modeling . . . . . . . . . . . . . . . . . . . . . . . . 167
11.3.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.3.3 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.3.4 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.3.5 Exception handling . . . . . . . . . . . . . . . . . . . . . . 169
11.3.6 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11.3.7 Client server architecture . . . . . . . . . . . . . . . . . . 169
11.3.8 Control integration . . . . . . . . . . . . . . . . . . . . . . 169
11.3.9 Multi User Capability . . . . . . . . . . . . . . . . . . . . 170
11.3.10Dynamic View Connectors . . . . . . . . . . . . . . . . . . 170

11.4 User Interface Management Services . . . . . . . . . . . . . . . . 170
11.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

iv



CONTENTS

12 Evolution of PIROL 173
12.1 Meta model evolution . . . . . . . . . . . . . . . . . . . . . . . . 174

12.1.1 Upgrading . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
12.2 Evolution interacting with other concerns . . . . . . . . . . . . . 176

12.2.1 Meta Modeling . . . . . . . . . . . . . . . . . . . . . . . . 176
12.2.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 176
12.2.3 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . 177
12.2.4 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
12.2.5 Exception handling . . . . . . . . . . . . . . . . . . . . . . 177
12.2.6 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
12.2.7 Client–server architecture . . . . . . . . . . . . . . . . . . 178
12.2.8 Control integration . . . . . . . . . . . . . . . . . . . . . . 178
12.2.9 Multi User Capability . . . . . . . . . . . . . . . . . . . . 178
12.2.10Dynamic View Connectors . . . . . . . . . . . . . . . . . . 178
12.2.11Common services . . . . . . . . . . . . . . . . . . . . . . . 182

12.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

13 Tools and Supported Activities 183
13.1 PON — PIROL Object Navigator . . . . . . . . . . . . . . . . . . 184

13.1.1 Basic capabilities of PON . . . . . . . . . . . . . . . . . . 184
13.1.2 Configurability of PON . . . . . . . . . . . . . . . . . . . 187
13.1.3 Framework design of PON . . . . . . . . . . . . . . . . . . 187

13.2 Graphical editors . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
13.2.1 ZooEd — ZimOO Editor for class diagrams . . . . . . . . 188
13.2.2 GEFTool — Graphical Editor Framework . . . . . . . . . 191

13.3 Text editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
13.3.1 MESSED — Message Editor . . . . . . . . . . . . . . . . 192
13.3.2 pjEdit — Source Code Editor . . . . . . . . . . . . . . . . 194

13.4 Gateways to the outside . . . . . . . . . . . . . . . . . . . . . . . 196
13.4.1 COFS — Conceptual Object File System . . . . . . . . . 196
13.4.2 PIROLWEB — PIROL–WWW gateway . . . . . . . . . . 199

13.5 Small Lua/P tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
13.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

14 Miscellaneous and Summary so far 203
14.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

14.1.1 Profiling technique . . . . . . . . . . . . . . . . . . . . . . 203
14.1.2 Concrete measurements . . . . . . . . . . . . . . . . . . . 204
14.1.3 On the role of performance optimization . . . . . . . . . . 207

14.2 Suitability of Lua . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
14.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
14.2.2 Program structure . . . . . . . . . . . . . . . . . . . . . . 210
14.2.3 Static correctness . . . . . . . . . . . . . . . . . . . . . . . 212
14.2.4 Things that could not be done with Lua . . . . . . . . . . 213

14.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
14.3.1 Lua/P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
14.3.2 Multi-paradigm modularization and re-usability . . . . . . 214

v



CONTENTS

14.3.3 An example maintenance task . . . . . . . . . . . . . . . . 215
14.3.4 Object-oriented SEEs . . . . . . . . . . . . . . . . . . . . 216

14.4 Concern interaction . . . . . . . . . . . . . . . . . . . . . . . . . 217
14.4.1 Concern characteristics . . . . . . . . . . . . . . . . . . . 218
14.4.2 Concern kinds . . . . . . . . . . . . . . . . . . . . . . . . 224
14.4.3 Towards a meta language for concerns . . . . . . . . . . . 225

III Views 227

15 Views in Software Engineering 229
15.1 Views, Abstraction and Decomposition . . . . . . . . . . . . . . . 229

15.1.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . 229
15.1.2 Decomposition and composition . . . . . . . . . . . . . . . 230
15.1.3 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
15.1.4 Relating different view concepts . . . . . . . . . . . . . . . 234
15.1.5 Relating abstraction, decomposition and views . . . . . . 235

15.2 Views in the Software Life Cycle . . . . . . . . . . . . . . . . . . 237
15.2.1 Loose coupling in the early phases. . . . . . . . . . . . . . 238
15.2.2 Implementation: weaving separate views and aspects . . . 238
15.2.3 Design: mediating between specification and implemen-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
15.2.4 Concern Modeling . . . . . . . . . . . . . . . . . . . . . . 240

16 Technology for Views 241
16.1 Database related views . . . . . . . . . . . . . . . . . . . . . . . . 242

16.1.1 “Views for Tools in Integrated Environments” . . . . . . . 242
16.1.2 Portable Common Tool Environment . . . . . . . . . . . . 245
16.1.3 O2 views . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
16.1.4 MultiView . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
16.1.5 Views in Chimera . . . . . . . . . . . . . . . . . . . . . . 250
16.1.6 Tolerating Inconsistency . . . . . . . . . . . . . . . . . . . 251

16.2 Views and Subjectivity in Programming . . . . . . . . . . . . . . 251
16.2.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
16.2.2 Collaborations and Subjects . . . . . . . . . . . . . . . . . 253
16.2.3 Roles and collaborations in PIROL . . . . . . . . . . . . . 255

16.3 Towards Views for Improved Modularity of Behavior . . . . . . . 257
16.3.1 Implicit invocation . . . . . . . . . . . . . . . . . . . . . . 257
16.3.2 Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
16.3.3 Views need context . . . . . . . . . . . . . . . . . . . . . . 259

17 Views in PIROL and beyond 261
17.1 Mappings and Translations . . . . . . . . . . . . . . . . . . . . . 261

17.1.1 Inter-language working . . . . . . . . . . . . . . . . . . . . 261
17.1.2 Representatives . . . . . . . . . . . . . . . . . . . . . . . . 262
17.1.3 Derived data . . . . . . . . . . . . . . . . . . . . . . . . . 262

17.2 The Software Process as Context . . . . . . . . . . . . . . . . . . 262

vi



CONTENTS

17.3 Other representations . . . . . . . . . . . . . . . . . . . . . . . . 263
17.4 Documents and Virtual Repositories . . . . . . . . . . . . . . . . 264

17.4.1 Dynamic View Connectors . . . . . . . . . . . . . . . . . . 264
17.5 LAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
17.6 Object Teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
17.7 Lessons learned and the Future . . . . . . . . . . . . . . . . . . . 267

18 Acknowledgements 269

IV Appendices 271

A Definition of Lua/P 273
A.1 Syntax of Lua/P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
A.2 Interface of builtin class List . . . . . . . . . . . . . . . . . . . . 276

B Diploma theses related to PIROL 279

C List of Figures 285

D Index 287

E Bibliography 295

vii



CONTENTS

viii



Zusammenfassung

Software-Entwicklungsumgebungen sind komplexe Systeme mit besonderen An-
forderungen an Modularität und Anpaßbarkeit. Diese Arbeit beschreibt die Ent-
wicklung der Umgebung PIROL. Die Beschreibung ist dabei in eine Abfolge der
folgenden 12 Themen gegliedert. (1) Metamodellierung ist das Grundkonzept,
nach dem PIROL seine Daten gemäß einem objektorientierten Datenmodell zer-
legt, so daß beliebige Werkzeuge auch auf die Daten anderer Werkzeuge auf sinn-
volle Art und Weise zuzugreifen können. (2) Das Metamodell wird zur persisten-
ten Speicherung der Daten auf Konzepte des Repositories H-PCTE abgebildet.
(3) Die Granularität eines Metamodells ist für die Effektivität und Effizienz des
Gesamtsystems entscheidend. PIROL unterstützt hybride Modellierung als Kom-
promiß beider Extreme. (4) Durch Methoden des Metamodells wird Verhaltens-
modellierung für verschiedenste Aufgaben unterstützt. (5) Ausnahmebehandlung
wird systematisch unterstützt. (6) Verschiedene Mechanismen zur Wahrung der
Datenintegrität sind enthalten. (7) Das System wurde nach einer Client–Server
Architektur entwickelt, deren zentrale Komponente eine “Workbench” ist, die die
Repository-Sprache Lua/P ausführt. (8) Steuerungsintegration erlaubt durch ver-
teilte Steuerflüsse das enge Zusammenspiel lose gekoppelter Komponenten. (9)
Die koordinierte Zusammenarbeit mehrerer Benutzer wird unterstützt. (10) Die
logische Unabhängigkeit von Werkzeugen wird durch das neue Konzept der Dy-
namic View Connectors erreicht. (11) Allgemeine Dienste sind in der Umgebung
einheitlich verfügbar. (12) Das System unterstützt die Weiterentwicklung.
All diese Themengebiete sind sehr eng miteinander verzahnt und die Darstellung
ist zu großem Teil der gegenseitigen Beeinflussung gewidmet. Es wird gezeigt,
wie eine Großzahl der Entwurfsentscheidungen genau aus diesen Beeinflussungen
motiviert sind. Die Beschreibung folgt damit dem Konzept der “Concern Inter-
action Matrix”, das hier zur Bewältigung von Komplexität vorgeschlagen wird.
Dabei werden Charakteristika einzelner Anliegen und einzelner Zusammenhänge
herausgearbeitet. Die Beschreibung PIROLs wird durch die Liste der integrier-
ten Werkzeuge, Ansätze von Laufzeit-Messungen und einige Betrachtungen zur
Beurteilung abgerundet.
Abschließend werden verschiedene Konzepte rund um den Begriff “Sichten”
erörtert. Sichten sind ein zentrale Anliegen von PIROL. Außerdem generalisiert
die Diskussion über die mehrdimensionale Darstellung des Hauptteiles. Es wer-
den Begrifflichkeit, Konzepte und Techniken für Sichten in der Softwaretechnik
vorgestellt und diskutiert. Dabei wird die Brücke geschlagen von Sichten in objek-
torientierten Datenbanken, über aspekt-orientierte Softwareentwicklung bis hin
zum allgemeinen “Concern Modeling”, zu dem die o.g. Methode einen Beitrag
leisten soll. Sichten werden dabei als ein zentrales Konzept der Softwaretechnik
neben Abstraktion und Zerlegung beurteilt. Dynamic View Connectors sind ein
wesentlicher Beitrag von PIROL, durch den Datenbanksichten und aspektorien-
tierte Programmierung zusammengeführt werden. Zwar ist der Sichten-Begriff
längst nicht so scharf definiert, wie die Begriffe Abstraktion und Zerlegung, aber
gerade die Überlappungen und Diskrepanzen, die durch Sichten abgebildet wer-
den können, machen dies Konzept zu einem starken Strukturierungsprinzip, das
zwar einigen Aufwand zur Behandlung von Inkonsistenzen erfordert, aber ande-
rerseits hilft, komplexe Systeme handhabbar und wartbar zu gestalten.



Abstract

Software engineering environments are complex systems with special require-
ments regarding modularity and adaptability. This thesis describes the devel-
opment of the environment PIROL. The description is structured as a sequence
of the following 12 concerns: (1) Meta modeling is the basic concept by which
PIROL decomposes its data in accordance to an object-oriented data model.
This allows arbitrary tools to access data of other tools in a meaningful way.
(2) For persistent storage the model is mapped to the concepts of the repos-
itory H-PCTE. (3) The granularity of a meta model determines effectiveness
and efficiency of the system. PIROL supports hybrid modeling as a compromise
between extremes. (4) By methods of the meta model behavior modeling is
supported for a wide range of tasks. (5) Exception handling is supported sys-
tematically. (6) Several mechanisms for preserving data integrity are integrated.
(7) The system follows a client–server architecture. As its central component,
the “workbench” executes the repository language Lua/P. (8) Control integra-
tion allows for close cooperation of loosely coupled components by means of
distributed control flows. (9) The coordinated cooperation of multiple users is
supported. (10) Logical independence of tools is achieved by the novel concept
of Dynamic View Connectors. (11) Common services are available throughout
the environment in a uniform way. (12) The system is prepared for evolution.
All these concerns are tightly interlocked. A considerable share of the pre-

sentation is dedicated to such mutual interactions. Is is shown, how a large
number of design decisions is motivated exactly by these interactions. The
description follows the concept of a “Concern Interaction Matrix” which is
proposed for managing complexity. Characteristics of concerns and their in-
teractions are elaborated. The description of PIROL is completed by a list of
integrated tools, initial performance measurements and evaluation.
Finally, several concepts relating to the notion of “views” are discussed.

Views are a central concern of PIROL. Furthermore, the discussion generalizes
over the multi-dimensional presentation in the body of this thesis. Notions,
concepts and techniques for views in software engineering are presented and
discussed. This discussion connects views in object-oriented databases, aspect-
oriented software development and general “concern modeling”, to which the
method of “Concern Interaction Matrices” contributes. Views are regarded as a
central concept of software engineering at the same level as abstraction and de-
composition. Dynamic View Connectors are a significant contribution of PIROL
that combines database views and aspect-oriented programming. The notion of
“views” is defined with far less precision than abstraction and decomposition,
but indeed by the overlap and mismatches, which can be captured by views, this
concept is a strong principle for structuring software and information. Effort is
needed for handling inconsistencies as they may arise, but after all, views are a
suitable means for managing the complexity of systems and for designing these
systems for evolution.



Part I

Introduction

3





Separation and Composition
of Concerns

I.1 Efficiently Managing Complexity

This thesis is about separating and composing different concerns that influence
a complex software system. So where should we start? Begin with an in–
depth description of the software crisis? Certainly that was the time, when the
need for separation of concerns (SoC) has first been articulated1. But software
engineering is no longer an unknown discipline whose goals and tools are yet to
be defined. Many techniques and methods have been developed during the past
30 years, that address the goals of modularization and SoC. This might give
rise to the hope that SoC has matured by now. Different factors, however, tell
us, that there is still quite a way to go until SoC really meets its expectations.
First, software is still becoming more and more complex. The problems to be

solved by software are more and more challenging, the stock of legacy software
continuously grows, and the interaction between different pieces of software
becomes more and more an issue. That is to say, the problems to be solved by
software technology are still becoming harder.
Also the process of software development calls for better modularization:

the parts of a software system are to be developed by more or less separate
teams, maybe at different companies, in different countries, at different points
in time. This forces to strive for more or less self–contained modules, that
can be developed independently from other modules. Distributed development
may also lead to heterogeneity. At the same time composing a concrete system
from modules should enable to build a greater variety of products with less
development effort, in order to reduce the time to market. That is to say, the
circumstances of software development call for a much more efficient process.
This conflict eventually led to a second focus of research: not only the

separation of concerns is an issue, but also their composition requires closer
investigation if re-use of existing parts is to contribute to efficient development
of complex systems.
Finally, recent work has brought to light, why there has still been such a

large gap between the separated concern in an analysis model and the tangled
1This notion is commonly associated with Parnas [Par72], but none of his articles of that

time actually uses the words separation of concerns (although this topic is really addressed).
It is more likely, that Dijkstra coined the notion, which has, however, not been verified by the
author.

5



Introduction

designs and implementations that resulted from it. For analysis and informal
descriptions it is no problem to dedicate different sections to different views
and concerns. However, most formalisms which are precise and constructive
enough for expressing a software design and its implementation allow decompo-
sition only along one dimension. Usually, only one hierarchy can be expressed
in a really independent fashion, dominating all other concerns that need to
be broken down to smaller pieces, too. This “tyranny of the dominating di-
mension” [TOHS99] triggered the search for multi–dimensional separation of
concerns. The attempt to find a common label for different related approaches
led to coining the notion “Aspect-Oriented Software Development” (AOSD)2.
Chap. 16 will report on recent approaches that can be attributed to this field.

I.2 CO5: Five Levels of Discussion

This thesis combines constructive, empirical and theoretical considerations.
Five different levels of discussion have been identified by the following “slo-
gan”3

CO5: Confederatively Connecting Concerns as Components and
Collaboration

Some parts of this thesis will punctiliously present technical details of the
software engineering environment PIROL and its language Lua/P. At this level
pitfalls and success stories are to be reported that outline the process of devel-
oping a family of component based software systems which by their very nature
include a great variety of perspectives, concerns and dimensions. This is where
the concrete concerns determining PIROL will be discussed. Self–application
is inherent to software engineering environments. So the reader should not
be startled by observations like: “tool support for separation of concerns is a
concern dimension in PIROL”.
The next obvious level tries to generalize the findings and observations to-

wards design and implementation of components. This notion is one of the most
desired in its field, yet definitions significantly diverge. This discrepancy is not
solved in a general way, but only with respect to the task at hand. Components
are defined as a means to an end, specifically as a technique for encapsulating
the concerns influencing a system under development.
Less obvious is the distinction between regular components and collabora-

tions. This focus is intended to introduce a shift towards a more systemic
understanding of software. Interaction between its elements is put into focus
when considering software. The concept of roles is to abstract over concrete
elements or individuals when describing recurring collaborative interactions. It
is taken into account that the structure of interaction does not strictly follow
any hierarchical breakdown. Of course comprehensibility is greatest when col-
laborations and structural hierarchy conform to each other, but exceptions to
2From the discussion at hand, a previous candidate, “Advanced Separation of Concerns”,

appears to capture better what is at the core, but meanwhile “Aspect-Oriented” is too strong
a notion, to be subsumed under any other label.
3This was the working title of this thesis for quite a while.

6



The Software Engineering Environment PIROL

the idealistic picture have to be anticipated as well. It is important to regard
not only structural patterns when defining adaptable components, but also to
regard behavioral variability when defining collaborations thus striving for lin-
gual capability to express adaptable patterns of interaction between elements
of a software system.
Even less obvious is the need to introduce connectors as first class enti-

ties. So far, the decomposition of a problem has been over–emphasized. Con-
nectors complete the picture as they express how the system is put together
from its parts. Only with explicit connectors, the system assembly can be
modified due to (1) maintenance, (2) run–time administration or even (3) self–
reconfiguration.
The most abstract level of discussion deals with the overall system metaphor

that guides the process of developing systems. In order to support this metaphor
also the languages used for modeling and developing software systems should
be reconsidered. The proposed model is said to be a confederation of concerns.
This is to imply an understanding, where a structural breakdown in multiple
hierarchies builds the back–bone of a system that includes a great variety of
interaction patterns. Some concrete interactions may strictly adhere to the hi-
erarchical structure while others deliberately cross-cut any structure. Drawing
a parallel from constitutional structures, legislation, e.g., is pretty much top-
down, whereas the participants in a law–suit can be any legal entities both at
the suing and the defendant sides. One participant may even be a member of
another or both may be groups, which overlap.
So, this thesis is trying to bridge the range from technical details up-to

considerations of metaphors. Great care has to be employed when applying
metaphors from the living environment or human societies to computer–related
concepts and artifacts. No claim should be made, to really portray complex
systems from the real world by software entities and models. In contrast, the
foundation of the techniques and concepts to be presented here stems from
the experience of constructing a concrete software system or rather a family of
such systems. Any consideration drawing parallels to the real world should be
regarded as a shy attempt to re–use findings from other fields and disciplines
of research. It is not computer science that has invented complexity. Complex
systems have been around before mankind entered the stage. Mankind has —
sometimes unconsciously — added new forms of structure and organization,
some of which are viable others are not.
Modeling reality in order to capture its essentials in software greatly con-

cerns the question of how humans build their model of reality. The patterns
behind social structures are one way to understand one class of complex sys-
tems.

I.3 The Software Engineering Environment PIROL

The technical and empirical background of this thesis lies in the development
of a concrete system family: PIROL is a framework for multi–view software
engineering environments (SEE). The development of PIROL had started as a

7



Introduction

student initiative at Technical University Berlin. Its ability to raise the enthu-
siasm of many diploma candidates stems from the universality of the original
vision: to construct SEEs that by a few simple and elegant concepts integrate
the many facets of software development in a way that reconciles the separation
of different views along different dimensions with a tight and smooth integration
thereof. A major guide–line in the development of PIROL has been the ECMA
reference model for SEE frameworks [ECM93]. By building upon this reference
model, a strong focus of PIROL has always been to allow integration along the
five dimensions data, control, presentation, process and framework. PIROL has
never been a funded research topic on its own. Within the ESPRESS project,
PIROL has contributed to the development of a proof-of-concept environment
for a special combination of the Z and Statechart notations including editing
support as well as a set of tools for verification and validation [BGHHm98].
Most recently a confrontation of PIROL’s problems, as they are common

to SEEs, with current work in the AOSD field has inspired the adoption and
adaptation of special programming language techniques in order to provide even
better pluggability of tools into the PIROL environment. This fits well into the
picture, that a centerpiece of PIROL’s design is an object oriented repository
language, Lua/P. This language has proven to be a powerful concept for universal
solutions to recurring problems. Lua/P and PIROL’s object oriented meta model
— written in Lua/P— define the universe in which objects, documents and tools
‘live’.
Research concerning SEE frameworks has always drawn profit from and

rendered new results to many different research areas. Among these fields are:
software architecture, database technology, component technology to name the
most prominent ones. Another recurring theme in SEE development is the
concept of different views. This usually means that different tools operate on
different views of the underlying database or repository.
This thesis collects a multitude of observations and experiences that oc-

curred during the development of PIROL. It tries to give a comprehensive
(though certainly not complete) picture of very different techniques for sepa-
rating and composing the concerns of the particular PIROL system, comparing
the chosen techniques with related approaches from the respective fields.
Although drawing from the experience of a specific system, many obser-

vations will be generalized to arbitrary SEEs, to component based systems in
general, and to the research of AOSD as such. A special focus is dedicated
to interactions between different concerns: these are the issues, that render
separation of concerns difficult.

I.3.1 Concerns and Dimensions of PIROL

When exploring the design space for SEEs, a central issue is to choose an appro-
priate software architecture. By choosing for PIROL a three–tiered repository
architecture with both explicit and implicit invocation, important decisions are
made concerning:

• Persistent storage and access to shared data.

8



The Software Engineering Environment PIROL

• Localization of common functionality in the middle tier.

• The possibility to compose a system from independent programs (tools),
running in separate processes.

• Designated responsibilities for user interaction and view updating.

Other design decisions were due in the choice of the database technology to
use. Choices range, e.g., from relational over object based and EERA models
up-to object oriented database systems. Concerns to be considered comprise
expressiveness of schema definitions, retrieval support, and language mappings.
Based on the chosen database a set of common system services has to be con-

sidered including access control, tool synchronization, data consistency, change
propagation etc. The main issue here was to smoothly integrate these services
with other concerns providing the uniform flexibility where needed yet providing
these services — as far as possible — in a transparent and automatic fashion.
Flexibility is a central requirement of an SEE framework. In order to de-

liver a noticeable gain, the open–closed principle of classes in object–oriented
languages (cf. [Mey97]) has to be extended to tools and the repository: each
component should be closed saying it should be ready-to-use. At the same time
it should be open in that it should be easy to perform certain modifications.
Three dimensions of flexibility had to be distinguished: flexibility across

• development time, i.e. the system should be easily maintainable.

• the life–time of a database, i.e. the data in the database should remain
valid and usable while the system still evolves.

• different contexts, i.e. different views of the same or overlapping data
should co-exist without negative interference.

It will be shown, how the last kind of flexibility, when pursued consequently,
leads to a concept of views, that provided the greatest challenge during the
development of PIROL. This is where Dynamic View Connectors (DVC) will
be introduced as a specialized programming language feature, that draws from
recent AOSD technology.
Generalizing over DVCs and similar concepts, further language issues will

be discussed regarding flexibility, reuse and modularization beyond the level of
classes. Techniques that are covered by this discussion range from late classifi-
cation, class–based versus object–based inheritance, and type-safe refinement,
connection and adaptation of graphs of mutually recursive classes.
Furthermore, different aspects of component integration will be made ex-

plicit. This discussion will include the dimensions of (1) the overall communi-
cational style (explicit or implicit invocation and stream-based communication),
(2) different protocol layers contributing to invocation of operations and func-
tions, and (3) mappings of the data to be exchanged, including the mappings of
basic types as needed for inter-language working as well as structurally mapping
mismatching data models.

9



Introduction

I.4 From Separated Concerns towards a Confedera-
tion of Components

Along the road from separated concerns towards a confederative system of com-
ponents, collaborations, and connectors, some short–comings of main–stream
programming models and languages have to be identified. Existing proposals
for solving some of these problems are very different in nature. We find systems,
standards, frameworks, methods and last but not least advanced languages that
all contribute to a greater expressiveness for the many facets of relevant complex
systems.

I.4.1 Dealing with Partiality

Starting from toy examples software engineers are inclined to believe, that a
good system description — at whichever level of precision, at whichever stage in
the software life cycle — will be complete with respect to all relevant aspects.
Implementation is believed to be the transformation of one complete model
into another. Taking Coplien’s definition of a large system — anything that
is “larger than one mind”[Cop99] — this belief is shattered. Complex systems
scrape the limit up-to which a human mind is capable of identifying all relevant
aspects that contribute to a given element of a software model.
Evidence is arising that we have to live with partiality when describing

software systems.
When separating a concern into a module it is evident that the module is

only a partial definition of a system. As long as decomposition happens only
along one dimension, explicit interfaces can be specified or deduced, which more
or less completely define how a given piece fits into the whole. However, as soon
as several dimensions of concerns are regarded for modular break-down, true
independence between these dimensions can only be achieved if their concerns
“know” nothing about each other and only later — say during a deployment
phase — concerns are applied to each other. The final system behavior will
be composed of different concerns and the concern interaction is invisible in
most concern definitions. Thus a module is no longer just limited in its scope
within the system structure, but also to one or more aspects. Each seemingly
atomic operation in a module may at run-time be interwoven with behavior that
is attached from another module. This description is deliberately simplified.
Research has only achieved initial steps towards this goal.
The oldest tradition of partial views stems from the field of database tech-

nology. Sect. 16.1 will summarize representative approaches to specifying views
of different kinds of (post-relational) databases. Some of the criteria to be
discussed are:

• Is a view read–only or can it be modified in a way that the original data
is changed and re-computation of the view will afterwards yield the new,
changed view?

• Are changes to the base automatically propagated to all its views?

10



From Separated Concerns towards a Confederation of Components

• What kinds of derivations are allowed for defining a view? Answers will
range from simple predicate–based filters up-to powerful re–arrangements
of data.

• Is the complete database schema defined a-priori and are views derived
from that global schema, or can views add to the global schema?

Another area employing the concept of views is the Model–View–Control
(MVC) architecture (originally called a ‘paradigm’). At given places, the close
relation between architectural issues (MVC as a software architecture) and lan-
guage issues (implementing MVC using implicit invocation) will be discussed.
Putting together some advanced database view concepts and the behavioral

aspect, lay the grounds for recent programming models like Subject Oriented
Programming or some techniques for Collaboration Based Design. Although
most of these models don’t emphasize the concept of views, notions like sub-
jectivity allude to the same partiality as is expressed by views. In this fairly
new area of research, terminology is not yet established in a consensual way.
So from a high–level perspective the notions of aspects, concerns, dimensions
etc. still need to be reconciled, but also on a more technical level the provided
mechanisms call for a common theory laying down a complete set of choices in
language design from which concrete programming models can be explained in
a uniform terminology. In this respect, the rôle of PIROL is in exploring the use-
fulness of existing concepts by adaptation to the specific conditions of an SEE.
Lua/P contains a few very specialized constructs. It will be shown, how experi-
ence from Lua/P contributed to another prototypical language called LAC and
finally into a general purpose programming model called Object Teams, which
aims at converging notions and techniques from different AOSD approaches.
Other than in an outlook, Object Teams are, however, beyond the scope of this
thesis.
After deciding on how to deal with partiality, the subject of completeness

has to be re-addressed:

• Some view models still start with a complete system and only derive views
from it.

• Tool support may be thought of, by which completeness of a model made
up of partial views can be checked.

• The construction process may ensure some degree of completeness when
defining the connectors that assemble partial components to a system.
This should of course be supported by tools, too.

• Robust systems can be thought of, that discover situations of missing
specification/implementation at run-time and recover by means of some
fallback mechanism. This depends on the existence of meaningful de-
fault behavior that goes beyond writing “method not understood” to the
console.

11



Introduction

I.4.2 Striving for Larger Modules

During the past few years much has been written about software components.
The problematic nature of this notion, caused a plethora of diverging defini-
tions, has been mentioned before. However, the reason for wanting components
is obvious: larger pieces of software should be more independent and easier
integrated than before, in order to achieve higher levels of re-use. The prob-
lems with components are obvious, too: re-usability and independence call for
closed, self contained components while composability calls for adaptability and
openness of components. At the class level this dilemma is known – and to some
extent solved – as the open–closed principle [Mey97]. It has not yet encountered
a genuine, universal solution at any higher level of modularity.
Observations hint at the possibility that no single answer will solve the

dilemma for all cases. At the same time, hints are given that techniques for
defining component interfaces need additional concepts aside from those already
covered by classes. Transition systems may be added for specifying state–based
behavioral aspects. Another important notion turns out to be the concept of
collaborations. The difficulty with collaborations may be the fact, that they
don’t always fit into a hierarchical break-down.
This thesis claims that, in order to reach a more powerful notion of compo-

nents, it is necessary to give up some overly strict requirements to component
interfaces – i.e. components may not be purely black boxes4 – as well as soft-
ening the boarder between systems with a strict hierarchy and systems with no
hierarchy at all. The goal should be to develop a technical concept that cor-
responds to the metaphor of confederated sub-systems. This thesis contributes
to this goal mainly by its investigation on the notion of views.

I.5 Organization of this Thesis

This thesis is about identifying and separating the concerns of integrated en-
vironments and about the interactions that occur between these concerns. It
covers these issues mainly in terms of technical solutions that help to build
systems with the required properties of modularity.
When describing a complex system in natural language similar difficulties

arise with respect to structuring the text. In this sense also the structure of
this thesis is an experiment in multi–dimensionality. However, the structural
requirements for a natural language text differ significantly from development
documents and software code. Compilers and related tools are far better in
dealing with circular dependencies and forward references. These tools need
not understand those parts that have not yet been defined, they just need
signatures in order to check static correctness. A human reader, however, is
easily confused if all early chapters in a book heavily refer to notions to be
defined in later chapters. Thus, the seemingly natural structure of dedicating
one chapter to each concern in the system, is only useful in the ideal case, where
each concern can be explained independent of any other concern in the system.

4Confer the discussion in [Kic94] (“Why are black boxes so hard to re-use”).

12



Organization of this Thesis

Concerns B C D E

A

B

C

D

E

A

Figure 1: Path of describing concerns and their interactions

I.5.1 Description guided by a Concern Interaction Matrix

This thesis takes a different approach: following the path of evolutionary de-
velopment, the description starts with a small core of concepts, that in itself
defines a self–contained universe. Then as additional concerns are introduced to
the discussion, each concern is first defined by itself and then related to (almost)
each concern that has already been presented. The idea is to incrementally fill
a concern matrix, which for each pair of concerns tells whether and how they
relate to each other. We will call this matrix the Concern Interaction Matrix .
Figure 1 visualizes this process. This really sounds like bad news, like resigning
from the goal of keeping different concerns independent of each other. There is
four answers to this.

1. When distinguishing between different layers of a system, those parts that
are closer to the bottom of a system (or a hierarchy of abstractions), seem
to have tighter interactions and even conflicts between concerns than those
towards the top (or more abstract) layers. Those layers that contribute to
a common infrastructure tend to be more complex than those components
that define application logic and the user interface. The latter components
may be large, but complexity is greatest where all different concerns meet.

In other words: if complexity may migrate from client code to infrastruc-
ture components this may introduce hard problems for the development
of the infrastructure, but the client code will eventually be easier to de-
velop and maintain. So development of infrastructure is intensive while
development of client code tends to be extensive.

2. This Concern Interaction Matrix should be considered in completeness,
but it will occur that some cells in the matrix remain empty, signifying no
interaction between the given concerns. It is still important to also visit
these cells and to document why there is believed to be no interaction.

3. For many cases that bad news is true: complexity cannot be eliminated.
All approaches to be presented in this thesis rather help to manage com-
plexity. Standard solutions may be provided for standard concerns. Uni-
versal solutions may be a starting point for capturing arbitrary concerns,
but for many cases the best help that can be provided may be a method

13



Introduction

for managing the complexity that is inherent to the problem at hand and
cannot be reduced by known techniques. The concept of a Concern Inter-
action Matrix may be a first step towards this method. At given points
this concept will be contrasted with the notion of multi–dimensional sep-
aration of concerns and it will be examined to which extent a matrix may
be used in fact to reduce a multi–dimensional space to two dimensions.

4. The limits of separation of concerns can still be pushed. This is a central
issue of this thesis and also a fairly young research issue. After gathering
experience with enhancing modularity of models and implementation, it
is quite likely that documentation and texts like this thesis will eventually
also benefit from these new understandings and techniques.

Most considerations of this thesis follow the given case study. The descrip-
tion of the software engineering environment PIROL will be the skeleton of this
thesis. It will follow the evolutionary approach mentioned above. Starting with
a small core of concepts the thesis will be organized as a spiral that as it moves
out from the core incrementally widens the horizon and in each iteration revisits
all concerns that had been introduced in previous iterations.
The following chapters of this thesis each capture one iteration in this pro-

cess, so naturally the first chapters are quite short, and as the description moves
out, chapters will grow. This is the order of concern dimensions:

1. An object oriented meta model for a seamless life cycle.

2. Persistence

3. Granularity of the data model

4. Behavioral modeling

5. Error handling

6. Data integrity

7. Client–server architecture

8. Control integration

9. Multi–user capability: sharing, protection and communication

10. A-posteriori integration of components

11. Common services across components

12. Evolution of PIROL

This path will be a somewhat idealistic view of the actual development of
PIROL. Naturally, the actual order of introducing new features to the environ-
ment was not optimal. So at some places this thesis reorders things, but the
structure of description essentially corresponds to the process of PIROL’s incre-
mental development. Also, the list of concerns was not defined in one go, but

14



Organization of this Thesis

an appropriate set of concerns was only found while writing this thesis. Some
concerns candidates where dropped from this list, because they turned out to be
outside the technical core of PIROL. Other concerns only became explicit when
analyzing intricate interactions between other concerns. In situations, where a
well structured description of concerns seemed impossible, this could be solved
by splitting one concerns into two, or introducing an additional concern.
The discrepancy between original development and documentation should

not alarm us, it is in fact backed by Parnas’ advice of faking a Rational Design
Process [PC86].
The following issues are relevant, too, but no chapter has been dedicated to

them:

• Repository objects versus documents,

• Process modeling,

• Static checking of Lua/P,

• Performance.

Some of these are relevant throughout, like objects–versus–documents and
performance. Process modeling will be touched at places but appears to be
fairly decoupled from the technical core. Static checking of Lua/P was planned,
but within its prototypical setting found no appropriate solution.

I.5.2 Towards a comprehensive notion of views

The different levels of Part II will be blended into a generalized elaboration on
the concept(s) of “views” within software engineering. Part III will relate views
to abstractions and decomposition/composition; concepts, which are claimed
to be of similar universality in software engineering. By analyzing different
technologies for views — mainly from the areas of databases and programming
languages — differences and similarities are identified.

I.5.3 How to read this thesis

This thesis combines different threads of argumentation into one linear story.
Readers interested in only one part of these considerations may follow different
paths through the document. Aside from four identifiable paths, the reader
may always use the references at the margin, to move around in this document,
which is facilitated by hyperlinks in the PDF version.
One thread of Part II is the description of the PIROL system. This thread

is found mainly in the introductory part of each chapter. Within this thread Background

5a few sections that are marked “Background” — just like this paragraph —
present the base technology used for implementing PIROL.
Also related work is interwoven with the presentation and discussion of Related Work

5PIROL. This is done, because the way in which other research relates to PIROL
is very different for different works. There is little coherence between different
cited publications other than by tying each publication to how things are solved

15



Introduction

in PIROL. Related work will mostly occur towards the beginning or end of a
chapter.
The third thread deals with analyzing how the different concerns interact

with each other. This thread is made up of one section within each chapter
titled “X interacting with Y”. Numberings of subsections therein correspond to
the chapters to which they relate.
Within this thread sections are marked as either “Discussion”, “Applica-New Feature

5 tions” or “New Feature”. Only the latter will introduce new mechanisms. Sec-
tions marked “Applications” apply previously introduced mechanisms to the
domain model (with the domain being “Software Development” this is PIROL’s
meta model). Sections marked “Discussion” introduce no new content and
can safely be skipped when focusing on PIROL rather on the topic of concern
interaction.
The forth thread summarizes the observed styles of concern interaction (Sec-

tion “Summary” within each chapter). These summaries will be of most impor-
tance for consecutive parts, which will elaborate on general issues of managing
concerns. Sect. 14.4 will collect the findings of these chapter summaries and
draw further conclusions.
Part III elaborates on different uses of the word “views” in software en-

gineering. This is to some extent a self-contained discussion but also tries to
blend the following two levels: (1) PIROL as an application aims at supporting
different views during software development. (2) The realization and docu-
mentation of PIROL applies several techniques for views and related concepts.
Throughout Part III, discussion of findings from the literature will prevail, thus
markings of different purposes of different paragraphs are not used there.

16



Part II

The Development of PIROL

17





Chapter 1

A Common Object-Oriented
Meta Model for Seamlessness

The original motivation of PIROL is linked to the promise of object-oriented
development to provide for seamlessness between the phases of the software
life-cycle. The notions of objects and classes are said to provide a common
conceptual basis enabling all phases to speak the same language [CY91, Mey97].
This is said to be a major benefit of object–orientation as compared to more
traditional structured development. In fact, earlier approaches requested to
create several documents that had no clear connection to each other. E.g., a
functional decomposition by some kind of flow diagram had no mapping at all
to the modular break–down as shown in a module diagram.
The focus on seamlessness has led to some over–simplifications that re-

stricted the expressiveness of object-oriented models. More expressive language
models in the field of aspect-oriented software development, show that classes AOSD and AOP

[16.2,16.3.2→]are not the ultimate modules and inheritance and aggregation are not sufficient
for certain kinds of module composition. On the other hand such languages
introduce module interdependencies that are far from being obvious.
Yet, the object-oriented approach helps to bring together at least the late

phases of software development. In the early days of PIROL, also a reference
glossary was favored at TU Berlin as an early means to capture the problem
domain [Rei92]. Combining the concept of reference glossaries with object-
oriented ideas results in classifying glossary entries, e.g., into classes, methods
etc. Data dictionaries [CAB+94, HLN+90] of other approaches pursue the
same goal. PIROL’s primary contribution is, to bring together tools for different
development phases, relating a glossary entry for a class to its views in analysis,
design and implementation. Information is to be shared between phases, and
links should make navigation between different documents really easy.
The technique chosen for integrating different phases and their tools is meta

modeling, which is meanwhile well accepted for different purposes. Intentions of
meta models range from language definition at different levels of formality and
completeness to database design and tool integration. The “UML semantics”
[OMG99], despite of its title, uses meta modeling only to define the structure
of valid UML models. [Kla00] and related approaches use meta models to

19



Chapter 1 A Common Object-Oriented Meta Model for Seamlessness

precisely define the semantics of a formalism. The notion “meta model” refers
to any model of a formalism that in turn is used for modeling some application
domain. In our closer context the meta model developed for PIROL is a model
of object-oriented models. It tries to unify the concepts of different languages
and notations. [Pet00] analyzes a set of object-oriented programming languages
(OOPL), leading to a refined meta model that comprises the major constructs of
many OOPLs. The complexity of the full meta model, which is not discussed
here, reflects the differences between OOPLs that are far from being trivial,
although some “marginal” OOPLs are already excluded from the analysis (none
of the languages is an extension of a functional language (like CLOS [Kee89],
Objective ML/OCaml [RV98]), none is prototype based (like Self [US87]) etc.).
The actual model of object-oriented models constitutes the PRODUCT package

of PIROL’s meta model. It was recognized early [Gro94] that also the develop-
ment process may generate data that are to be stored in the repository. This
yields a package PROCESSES defining entities such as PROCESS STEP and TASK,
PERSON and GROUP, STATE and TRANSITION, etc.
The question of integrating the PRODUCT and PROCESSES packages (and other

packages to be introduced later) is taken care of by the root package GENERAL.
Here a class ANY RO is introduced as super–class for most other classes, which al-
lows to link administrative and process–related objects to each product–related
object.

1.1 Objects versus Files and Documents

In order to clarify some terminology, an anticipation of the next chapter (Per-
sistence and Object-Oriented Programming) will show the direction that guidesMeta modeling

interacts with
persistence

[→Sect. 2.2.1]

the development of the meta model. The primary goal of PIROL’s meta model
is to enable software development tools to store artifacts in a common reposi-
tory such that different tools can share information through the repository. An
object in the repository will be called RO (repository object). Accordingly, the
meta model is the RO class model (ROCM for short).
The repository is a replacement for a structure of directories in which more

traditional tools store their artifacts as files. Meta modeling is used to make
public the structure of artifacts. In the file based approach, each tool is respon-
sible for the structure of its own files, without any external promise, that this
structure will remain valid between versions of the tool. In the repository based
approach this responsibility is centralized, which has the advantage that a tool
may rely on the structure of data that has been stored by another tool. The
drawback of this approach is its reduced flexibility with respect to evolution of
tools and the meta model. We will address this conflict later.Dynamic View

Connectors overcome
this conflict [10→] It’s not only the structure that is to be shared through the repository, but

the meta model is supposed to define the semantics of software artifacts. This
raises two issues that will be discussed in subsequent chapters. First, it is the
question of granularity that determines how much “meaning” can be put intoGranularity [3→]
a meta model. Certainly, directories and files without public structure carry
very little meaning. But, should each letter in a document, each line in a

20



Objects versus Files and Documents Section 1.1

diagram be an RO, or where should we stop in decomposing a document into
objects? Second, mere data modeling might give too much room for different
interpretations by different tools. One step towards a more meaningful meta
model is attaching behavior to ROs, other possibilities will be discussed in terms Behavior [4→]
of consistency constraints. Data integrity [6→]
Decomposition of documents into objects is perhaps the most fundamental

design decision of PIROL. In order to overcome the lack of files in our approach
a virtual file system will be presented. Finally, the handling and retrieval of Virtual file system

[13.4.1→]information in the repository is very different from handling files, because of
the much larger number of ROs as compared to files (and because a repository
contains an arbitrary graph of ROs as compared to the strict hierarchy of direc-
tories in a file system). In order to retain manageability of data in a repository,
documents are reintroduced as handles by which sets of ROs can be extracted,
displayed and manipulated by a tool. In the PIROL repository such documents
are called conceptual objects (CO for short).

1.1.1 Conceptual Objects

Conceptual objects are modeled by a specific RO class CO. Each CO represents
a document and for this purpose maintains a set of contained objects that
contribute to that document. Of course, also a CO is a persistent object, but
it represents a document which as such is not a persistent object, because it is
decomposed into a number of ROs. COs are meant to hide this decomposition
allowing the user to still work with an intuition of documents.
Considerations have been put forward, that the set of contained objects

should not be defined by an explicit set but by a query. Our current experience,
however, states that such strategies of selecting all objects contributing to a
document are more easily implemented within each tool, than by a generic
query mechanism. So, currently the tools are responsible for maintaining the
contained objects–set while the user edits a document. The query approach
might, however, be a useful future extension.
During the design of PIROL’s meta model the question arose, where to put

that information that pertains to presentation only. This can be described
roughly as layout–information. PIROL’s design confines ROs to semantically
relevant information. ROs should contain only information that might possibly
be meaningful beyond the scope of any single document. This excludes data
like coordinates in a diagram, font information and the like. Still this infor-
mation needs to be persistent. This dilemma is solved by assigning all layout
information to the CO representing the document. For this purpose COs are im-
plemented as resource managers, that may store additional properties for each
contained RO. This happens in a hashtable like fashion, where a compound key,
made of an RO and a property name, is used to index the table, that contains
property values. The data structures used for this mechanism will be presented
in Sect. 2.2.1.
For instance, a CO for a UML class diagram encapsulates graphical infor-

mation about the (CLASS) ROs included in the diagram such as their positions,
fonts, expand/collapse flags, etc. COs have an open structure: a tool may store

21



Chapter 1 A Common Object-Oriented Meta Model for Seamlessness

Accounting

Account

balance : Amount

Customer
from Customers

Customer

name : String
address : Address

#c1 :CLASS

name = "Customer"
...

Documents:

Persistent
Objects:

COs:

ROs:

created by a User

implemented by a Tool

stored in the Repository

Customers

#at1:AT

#co1 : CO
name = "Accounting"
ROID
#c1
#c2
...

property
position
position

value
(10,42)
(2,4)

#co2 : CO
name = "Customers"
ROID property

position
shrink

value
(7,20)
False

#c1
...

Figure 1.1: Documents are implemented as COs

arbitrary properties for any RO without prior declaration. To sum up, one
could interpret a CO as a guide on how to ”transform”a graph of ROs starting
at a given root RO into a document.

For illustration consider the scenario presented in Fig. 1.1. In the up-
per part of the figure two documents are shown as they are displayed to the
user of a graphical editor, representing two different packages, Accounting and
Customers. The symbol for the class Customer appears in both diagrams (it
is defined in one package and used in the other). The lower part of the figure
shows a subset of the persistent objects that represent the two documents in the
repository. Each Class object manipulated by the tool is represented by two
different objects in the repository. Intrinsic information is stored within a CLASS
object, while tool–specific properties are stored within conceptual objects, one
for each document. E.g., the appearances of Customer in the Accounting, re-
spectively Customers class diagrams, correspond to two RO–CO pairs in the
repository, {#co1, #c1} and {#co2, #c1} respectively. The first line in #co1
reads: CLASS object #c1 is drawn at position (10,42) within the first document.

This approach is developed from a database perspective and appears a lit-
tle bit clumsy from the tool perspective. Dynamic View Connectors define aDynamic View

Connectors [10→] uniform abstraction layer on top of ROs and COs that smoothes this distinction.

COs are implemented as cascaded resource managers, i.e., each COmay refer
to a master CO from which it “inherits” its properties. This technique has not
been used to date.

22



Extending Lua for Object-Oriented Programming Section 1.2

1.2 Extending Lua for Object-Oriented Programming

The language to express PIROL’s meta model is to be an OOPL. However, in
order to be free to add concepts to this language as needed, two special pur-
pose languages have been developed. The first prototype was called DROSSEL
(descriptive reference object system structure extension language [Her94]). For
the sake of fast prototyping it was based on a language that was easily available
for extending: Tcl (tool command language [Ous94]). The lack of typing and a
suitable syntax eventually led to a re–implementation using again an “extension
language”. This time Lua [IdFC96] was used and extended to Lua/P (Lua for
PIROL). Using Lua proved far more successful than Tcl. In fact, Lua/P [Her00]
turns out to be the central concept of PIROL by which most other techniques
are integrated. Lua/P is not a general purpose OOPL, but a repository language,
i.e., a domain specific language geared for programming a repository. The Lua/P
interpreter, eventually called the PIROL workbench, is the centerpiece of PIROL.

Syntax of Lua/P. Although many issues of this thesis relate to the design of
the language Lua/P, its concrete syntax should not be over emphasized. Most of
the syntax used is in fact syntax of plain Lua. Lua’s technique of associative ar-
rays [IdFC96](see below) provides a flexible way for “declarative” programming,
but this approach is bounded by the existing parser. Only small modifications
are performed by a little preprocessor that is written in Lua and part of the
workbench. This preprocessor is just a prototypical workaround used to allow
a more intuitive syntax in a few places, where Lua cannot provide fully satis-
factory solutions. Preprocessing is not totally robust, but this problem should
vanish once a separate type checker for Lua/P exists, that could of course also Discussion on type

checking [14.2.3→]perform the task of preprocessing. The current syntax of Lua/P can be found in
Appendix A.1.
So, Lua is the glue that integrates many concerns and techniques, while

others are implemented anew in Lua and finally in Lua/P. In the following, the
essential concepts will be presented that were used for the development of Lua/P
on top of Lua.

1.2.1 Imperative core

The basic operational model of Lua is a very simple Pascal–like model. Pro- Background

5grams consist of blocks that can be functions or control structures like if and
while. Basic statements are assignments and function calls. A function call
may be used as an expression (function) or as a statement (procedure), which
should correspond to functions that do, resp. don’t return a value. This cor-
respondence is, however, an example of Lua’s tolerance: functions with return
value may also be used as a statement, ignoring the return value.
Variables don’t need to be declared before use. Any undeclared variable

is considered global. A variable may be declared local, which restricts its
visibility and life time to the current block.

23



Chapter 1 A Common Object-Oriented Meta Model for Seamlessness

1 t = {}
2 t[1] = 2
3 t[2] = {}
4 t[3] = t[1]
5 t[”name”] = ”Joe”
6 t[”age”] = 14

(a) Regular usage of a table

7 t = {}
8 t[”Berlin”] = 1
9 t[”London”] = 1
10 if t[”Paris”] then
11 print(”France”)
12 end
13 if t[”Berlin”] then
14 print(”Germany”)
15 end

(b) Table used as set

16 t = {}
17 t.name = ”Joe”
18 t.age = 14
19 write(t.name..”is ”)
20 print(t.age..”years old.”)
21 if t.age == t[”age”] then . . .

(c) Table used as record

22 t = {
23 ”spring”, ”summer”, ”fall”, ”winter”;
24 length = 4
25 elementtype = ”string”
26 wordlengths = { 6, 6, 4, 6 }
27 }

(d) Manifest table

Explanations: 1,3,7,16: {} creates an empty table.
10, 13: conditionals interpret every non-nil value as true.
19, 20: “..” is the concatenation operator for strings.
21: always true (different syntax for the same expression).
23: list part with keys: 1,2,3,4, values: strings.
26: key: string, value: table (used as list or array)

Figure 1.2: Syntax of using Lua tables

1.2.2 Types

While variables have no (static) type, runtime values have distinguishable types
with only a few automatic conversions like printing a number using its string
representation. Lua basically supports four data types: string, number, table
and function. Only strings and numbers have value semantics. Tables, func-
tions and userdata (to be presented later) are passed using reference semantics.
The concept of tables unifies different structures like array, list, set, hashtable

and record. This kind of data structure has been called “associative array”
[IdFC96]. Different usage patterns turn such tables into a variety of complex
data structures and a few small syntactic enhancements allow a very expressive
style. At the implementation level a table is an ordinary hashtable, but its val-
ues and hash keys may be of any type (except nil keys). The standard ways
of creating and accessing a table are shown in Fig. 1.2(a).
Using (integer) numbers as keys allows to use a table as a (dynamically

growing) array (cf. lines 2–4 in Fig. 1.2(a)). By means of appropriate access
functions such an array may also be used as a list. The standard functions
tinsert and tremove in fact suffice for this task.

24



Extending Lua for Object-Oriented Programming Section 1.2

When using a table as a set , the set elements are used in position of the
hash key and the associated values are either 1 (included in set) or nil (cf.
Fig. 1.2(b)). Note, that there is no difference between a table slot, whose value
is set to nil and a slot that has never been allocated.
If strings are used as hash keys, an alternative syntax emphasizes that this

simulates records (cf. Fig. 1.2(c)). The value in a table slot may be of any type.
This allows to nest tables at arbitrary depth. Different types may be combined
within one table, resulting in complex structures and possibly in mixtures of
the standard structures array, list, set, hashtable and record.
A table may be created and initialized in a declarative way (cf. Fig. 1.2(d)),

such that a list part (implicit consecutive indices) and/or a record part can be
given directly. Also nesting is allowed in manifest tables.
It is part of Lua’s concept of reflection to allow iteration over all entries in

a table yielding all (key, value) pairs in the table. Similarly all global variables
can be visited, which alludes to the global name space being a global, unnamed
table.1 Finally, the type of any value can be queried using the builtin function
type.

1.2.3 Functions values

Functions are regular values that can be stored in variables or tables and can
be passed as function arguments. The standard function definition

function name (a1, a2) statements end
is in fact just syntactic sugar for defining an anonymous function and assigning
the function to a global variable:

name = function (a1, a2) statements end
When defining a function within a block, certain scoping issues have to be
observed: local variables of the enclosing block may only be used when accessed
as so-called upvalues. The % operator freezes the value of a local variable at
the time of evaluating the function definition. This results in a function closure
consisting of a function and an environment of frozen upvalues. Such a function
closure can safely be passed outside the scope of its definition without danger
of accessing obsoleted local variables. When calling a function closure, only the
explicit arguments need to be passed. These mechanisms suffice to implement
any style of higher order functions. E.g., a predefined function foreach allows
a compact style of table iteration. Figure 1.3 shows how a function map can be
implemented and used.
Another syntactical issue prepares Lua for object-oriented programming

although plain Lua has no distinguished concept of objects or classes. Functions
may be defined with the special syntax of using a colon as separator between
a table and its field name (cf. Fig. 1.4(a)). Such a function can be called like
methods in object-oriented languages. Figure 1.4(b) shows how the interpreter
sees the code: at the definition side, the colon has the effect of adding an

1During the transition from Lua 3.2 to 4.0 this fact has been made explicit by a function
globals() which returns as a table all global variables. After this transition, traversing global
variables no longer needs a special function.

25



Chapter 1 A Common Object-Oriented Meta Model for Seamlessness

1 function map (list, func)
2 local new list = {}
3 foreach (list, function (index, value)
4 %new list[index] = %func(value)
5 end
6 )
7 return new list
8 end

9 alist = map({3,4,8}, function (num) return num ∗ 2 end)
10· foreach (alist, print)

 1 6
2 8
3 16

Figure 1.3: Example of higher order functions in Lua

function table:function name (a1, a2)
statements

end

table:function name (a1, a2)

(a) how to write and use a method

table.function name =
function (self, a1, a2)
statements

end

table.function name (table, a1, a2)

(b) how it is interpreted

Figure 1.4: Methods in Lua

argument self to the front of the argument list. At the calling side the “object”,
i.e., the table at the left of the colon is inserted into the argument list.
These merely syntactical transformations allow to access the target of a

“method call” as an implicit argument called self. The only price for this very
light–weight convenience is the danger of confusing the dot and colon notations,
which will not be discovered by the interpreter, because the resulting mismatch
between formal and actual argument lists will be padded with nils.

1.2.4 Integration of client libraries

One of the primary goals of Lua is to act as an extension language, i.e., a
language that can be added to any application, allowing for configuration and
macro programming along certain functions that are exported from the appli-
cation to Lua. This concept has first been made popular by Tcl/Tk [Ous94].
By now, there is quite a number of “embeddable interpreters” ranging from
simplistic shell-like models up-to full blown functional and object-oriented lan-
guages. The integration platform for most of these approaches is a C API, by
which the application can create and configure an interpreter for the extension
language.

26



Extending Lua for Object-Oriented Programming Section 1.2

Embedding Lua into an application involves three mechanisms:

1. calling compiled application functions from Lua,

2. executing Lua statements from the application, and

3. passing values from C to Lua and vice versa.

(1) requires the compiled host program to register all functions that should
be callable from Lua. This involves (a) writing a wrapper function (in C), that
translates between different styles of argument passing and different data types,
(b) making this function known to Lua as a value of type function, and (c)
assigning it to a (global) Lua variable.
The reverse mechanism (2) is implemented by two simple C functions

lua dostring and lua dofile.
Value passing (3) is supported (a) by C functions for accessing all Lua types

and (b) by the capability of exposing arbitrary C references (technically void*)
to Lua as values of type userdata. These values are opaque for the Lua side,
except that they can be classified by an additional tag , that can be inquired by
the Lua side. Usually the C side will allocate one tag for each reference type
that is made visible to Lua. Lua programs can now dynamically query the tag
as a type qualifier of userdata and use the appropriate functions to further
process that value.
In this kind of architecture it is usually the compiled application (the “host”

program) that plays the role of a “main”. It at some point creates an interpreter
instance and registers all functions to be exported. After that the flow of control
depends on the kind of integration. Three common patterns exist:

• Control remains within the host program, which only for specific tasks
asks the interpreter to evaluate a block of statements or the contents of a
file.

• A shell like main loop reads lines at a console and executes line by line
using the interpreter.

• An event based main loop has Lua functions registered as callbacks, such
that external events may trigger the evaluation of Lua functions.

Such considerations about main program and subordinate modules are in-
dependent of the actual size of the involved components. So, in PIROL the ap-
proximate ranking of components from largest to smallest is shown in Fig. 1.5.
The size given for the meta model (5) is a minimum, which grows as addi-

tional tools and services are integrated.
From this little statistic, no simple architectural picture can be drawn, that

clearly identifies “the application”, “used libraries” and a small “scripting layer”
on top of everything. Lua is used as an integration platform for very different
modules. The largest module happens to be the one, that is best hidden from
upper layers: the persistence module (1). Also, integration (2,6) is a reasonable
part of the overall system. Which module is in control and which module is
purely transparent depends in fact on the perspective by which one looks at
the system.

27



Chapter 1 A Common Object-Oriented Meta Model for Seamlessness

Component Code size
source language binary

(1) A client library for persistence and
related services (cf. Chap. 2)

N/A 1.6 MB

(2) Lua level integration code and
interpreter extension

10 KLOC Lua (237 kB
byte-code)

(3) A client library for inter process
message passing (cf. Chap. 7)

10 KLOC C 90 kB

(4) Lua interpreter 7.9 KLOC C 66 kB
(5) The meta model (application logic) 5.6 KLOC Lua/P (143 kB

byte-code)
(6) C level integration code 3.5 KLOC C 98 kB2

(7) Lua standard libraries 2.6 KLOC C 43 kB

Figure 1.5: Statistic of code size in PIROL

1.2.5 Meta programming using tagmethods

Lua is said to be an “extensible extension language” [IdFC96]. Of course, al-
ready registering C functions can be considered as an extension of the language.
But there are other techniques that provide far more openness.

Firstly, all functions, including builtin primitives, are values, that can be
passed around. Thus, it is easy to replace any builtin function by a customized
version, while still using the original version, which for this purpose may be
stored in some variable. This certainly allows to change the concrete semantics
of certain operations, but never leaves the general style of programming.

Lua is, however, not a fixed language, but could rather be described as
a framework for interpreted languages. The hot-spots of this framework are
certain events during the execution of a Lua program, which are identified
simply by the syntax of a statement. The most important events from this set
are given by Fig. 1.6.

Now, a ‘normal’ language would strictly require the o in gettable/settable
events to be a table, and the f in a function event to be of type function
etc. Not so in Lua. To be precise, not the type decides about the interpreter’s
behavior, but the tag of a value. While types number, string and function
each have a fixed tag (i.e., tag ∼= type), the tag of a table can be changed to a
user-defined tag using settag(obj,tag). Also, all userdata have tags distinct
from all other tags.

2It appears as an anomaly, that the C level integration code is small in terms of lines of
code but generates large binary code. This may be explained by the nature of this code, which
is very repetitive and makes considerable use of macro programming. Wrapping C functions
for Lua can to some extend even be automated by generators. This approach was not chosen,
because many of these wrappers also perform slight adaptations, that could not be generated
automatically. Still the complexity of this code is low, giving no rise to extensive comments.
In terms of complexity the source code size is probably the more expressive metric, rather
than the compiled binary size.

28



Extending Lua for Object-Oriented Programming Section 1.2

statement event description signature

o[i] gettable retrieving a field from a table (o, i)
o[i] = v settable assigning a value to a table field (o, i, v)
f(a1 ..) function calling a function with arguments (f, a1 ..)
n1 < n2 lt comparing two numbers (n1, n2)
s1..s2 concat concatenating two strings (s1, s2)
N/A gc collecting an object by the

garbage collector
(o)

i getglobal retrieving a global variable (i)
. . .

Figure 1.6: Event types and signatures for tagmethods

type number string function table
tag 2 3 4 5 6syntax

o[i]

o[i] = v

f(a1 ..)

n1 < n2

s1..s2

builtin behavior (fixed / redefinable)

predefined tags userdefined tags

settable

gettable

call

less

concat

...

Figure 1.7: Matrix of tagmethods.

Given events and tags, the Lua interpreter at its core has a matrix (Fig. 1.7),
with one column for each event and one row for each defined tag. Whenever
a statement of, e.g., the gettable syntax o[i] is executed, function lookup is
performed in this matrix using “gettable” and the tag of the primary value
(here left side of bracket: o) as indices. If lookup yields a function, this func-
tion is executed with arguments as shown in the signature column of the above
table. Such functions are called tagmethods because they specify for a tagged
set of values how the interpreter should behave in certain events. The matrix of
tagmethods is thus a mapping from syntactical patterns to language implemen-
tation. Of course standard tagmethods are built in, which define the “normal”
behavior of the interpreter. These cannot be overridden. When creating a new
tag, this is based on one of the types table or userdata. Tags derived from
table are initialized with the builtin functions for tables, which can later-on
be redefined.
Figure 1.8 gives examples of making numbers usable with the syntax of a

table or function, and shows how to catch undefined global variables. The id-
ioms tag(1) and tag(nil) are used to retrieve the predefined tags of types
number and nil. Of course, these examples are not meant to be usable code,
but brightly illustrate at which level the interpreter’s behavior can be re-
programmed.

29



Chapter 1 A Common Object-Oriented Meta Model for Seamlessness

function times (o, i)
return o ∗ i

end

settagmethod(tag(1), ”gettable”, times)
seven = 7
print(seven[6]) –– calls times(7,6)

 42

(a) gettable: number value used as table

function tripletimes (o, i, v)
print(o ∗ i ∗ v)

end

settagmethod(tag(1), ”settable”, tripletimes)
seven = 7
seven[3]=2 –– calls tripletimes(7,3,2)

 42

(b) settable: number value used as table

settagmethod(tag(1), ”function”, times)
print(seven(6)) –– calls times(7, 6)

 42

settagmethod(tag(1), ”function”, tripletimes)
seven(3,2) –– calls tripletimes(7,3,2)

 42

(c) function: number value used as function

function timesseven (i)
return i..” times seven”

end

settagmethod(tag(nil), ”getglobal”, timesseven)
print(six) –– calls timesseven(”six”)

 six times seven

(d) getglobal:using an undefined global variable name

Figure 1.8: Examples of tagmethods

The gc tagmethod can only be defined for userdata. In fact, defining
tagmethods for userdata is one of the most powerful features of Lua: this
allows to export not only functions but also structured objects. Passing an
opaque handle to Lua and defining gettable and settable tagmethods lets
external structures transparently appear like Lua tables. This idiom allows very
easy implementation of proxies, which has also been shown in [CRI97].
On the other hand, also standard Lua tables can be given new semantics by

redefining their access functions. Firstly, t=newtag("table") allocates a new
tag, copying the standard tagmethods from the standard “table” tag. Then,
e.g., gettable and settable methods can be overwritten. Here the original
versions are still available as builtin functions rawgettable and rawsettable.
The Lua documentation [RIC] illustrates a typical usage of the gettable

tagmethod: implementing method dispatch as a dynamical lookup function
for fields that don’t exist in a given object (table) but may be found along a
chain of parent references. A modified version of this technique is used for the
first step of adapting Lua for PIROL: turning the unstructured language into
an object-oriented one. The most important design decisions taken along this
road are presented in Chap. 4.
At this point, only one fundamental distinction is discussed: unlike the

examples from the documentation, where the linkage of tables via a parent
reference knows only one kind of entities, Lua/P has a strict separation between
objects and classes. While this is normal for most mainstream object-oriented
languages, Lua seems to suggest a prototype based solution, where objects
and classes cannot be distinguished. In this setting, inheritance is equal to
delegation and method dispatch is implemented as a search through a chain of

30



Extending Lua for Object-Oriented Programming Section 1.2

1 function lookup (object, name)
2 local value = rawgettable (object, name)
3 if value then
4 return value –– value is locally available
5 end
6 local parent = rawgettable (object, ”parent”)
7 if parent then
8 return parent[name] –– continue lookup at parent
9 end
10· return nil
11 end

12 object tag = newtag(”table”)
13 settagmethod(object tag, ”gettable”, lookup)

14 function new(fields)
15 settag(fields, object tag)
16 return fields
17 end

(a) Implementing dispatch and creation

20· joe = new{ –– function call new({..}) abbreviated to new{..}
21 firstname = ”Joe”,
22 lastname = ”Smith”
23 }
24 function joe:hello () –– bind method to object
25 print(”Hi, I’m ”..self.firstname..””..self.lastname)
26 end

27 jim = new{
28 parent = joe,
29 firstname = ”Jim”,
30· lastname = ”Miller”
31 }
32 jean = new{
33 parent = joe,
34 firstname = ”Jean” –– lastname inherited from joe
35 }
36 joe:hello()

 Hi, I’m Joe Smith
37 jim:hello()

 Hi, I’m Jim Miller
38 jean:hello()

 Hi, I’m Jean Smith

(b) Using the new language

Figure 1.9: Prototype based object-oriented programming in Lua 31



Chapter 1 A Common Object-Oriented Meta Model for Seamlessness

parent objects. One of the best known examples of prototype based languages
is Self [US87]. The flexibility of prototype based languages will be discussed
at several occasions throughout this thesis. In Chap. 10 the central concept of
Dynamic View Connectors will be presented, which in fact applies an object
based delegation mechanism. However, at the core of Lua/P, objects and classes
are strictly different things.
This section concludes with a short — condensed — example of how Lua can

be turned into a prototype based object-oriented language (Fig. 1.9(a)) and how
this can be used within Lua’s flexible syntax (Fig. 1.9(b)). One abbreviation is
used, that has not been explained yet: when passing a manifest table as only
argument to a function, the adjacent braces and parentheses can be collapsed
to just a pair of braces (i.e., in a call like func({i1=v1,i2=v2}) the parentheses
can be omitted; cf. lines (20,23) etc.).

1.3 Summary

This chapter has presented the conceptual backbone of PIROL: the decision
to use an object-oriented meta model for all artifacts that are created within
a software development project and the language Lua from which an OOPL
is derived in order to implement the meta model. Lua has been presented
as a framework for programming languages, that combines few fundamental
concepts: one structured data type (table), an imperative core supplemented
by higher order functions, a C level API for integration of client libraries and
a radical mechanism for meta programming (tagmethods). In spite of the
flexibility and diversity of these mechanisms, Lua remains a simple and light-
weight language from which a variety of languages can be derived that don’t
suffer from unwanted complexity.
Subsequent chapter summaries will put a focus on concern interactions, clas-

sifying in which way the newly presented concepts interact with those presented
before. This chapter only initializes this chain and has no interactions to report.
But already hints have been given, how the decision for object-oriented meta
modeling will have to be reconsidered in the light of the following chapters.
When contrasting object based and file based techniques it should have become
clear, that this is a very fundamental difference with impact on more or less
every further consideration. At this point, no evaluation in this matter can be
given, yet. But throughout this thesis we will look for traces, how this questionSee, e.g., [2.4→]
has been dealt with in previous research and will compare this to findings and
experiences from the PIROL project.

32



Chapter 2

Persistence and
Object-Oriented Programming

The first goal of PIROL’s meta model is to allow persistent storage of infor-
mation that should be used across different phases and their tools. At the
time PIROL’s concepts were formed, object-oriented database management sys-
tems (OODBMS) were still quite young. Because none of the system that
were available to our analysis seemed to meet all requirements of PIROL, not
a general–purpose OODBMS was chosen, but rather a system, that is special-
ized for building integrated software engineering environments (SEE) : PCTE
(Portable Common Tool Environment) [ECM90]. This is not a true OODMBS
but contains an object management system (OMS) that is structurally object
based without supporting a notion of methods.
The Stoneman project [DoD80] was the first to use a database for tool in- Related Work

5tegration. Since then, data integration has been recognized as a key issue in
constructing tool environments. The three core dimensions of tool integration
— data, control, presentation — have been identified by Wasserman [Was89],
which is a fundamental reference in the field of tool integration. Wasser-
man mentions three possible techniques for data integration: files, relational
databases and PCTE, which was only emerging as a standard at that time. It
was Wasserman’s central believe that tool integration would have to be based
on such standards. Tools would have to be developed for standard interfaces.
As he already observes the problem of agreeing on a single standard, he then
proposes to decouple each tool from underlying technology by a clear cut inter-
face where the object management system could be plugged into a tool. Such
pluggability should be achieved by a layered architecture of each tool. Wasser-
man’s tool environment “Software through Pictures” was a promising effort to
open tool environments. It was, however, developed with too optimistic expec-
tations concerning standards and pluggability, and maybe: too early. Given
today’s component technology, Wasserman’s vision seems more realistic, than
back in 1989. But perhaps, his misperception was not a matter of technical
standards but of logical integration, which gives semantics to the integration of
independently developed tools. This issue will be discussed in Chap. 10.
Still in 1993, in [ESW93] the authors discuss the requirements for a dedi-

cated database system for process-centered software development environments.

33



Chapter 2 Persistence and Object-Oriented Programming

Although PIROL may not be process-centered, we still view process support as
an important goal. Thus the considerations of [ESW93] also hold for PIROL.
The authors of [ESW93] identify a comprehensive list of requirements and issues
(listed in a re-arranged fashion):

Requirement References
(1) Syntax-direction Sect. 13.3.2
(2) Documents versus nodes in a

graph-structured database
Chap. 1

(3) Tree versus graph structure Sect 2.2.1
(4) Inter-document relationships Chap. 1
(5) Persistence and integrity Chap. 2, Chap. 6
(6) Efficiency throughout

and Sect. 14.1
(7) Update incrementality Chap. 3, Sect. 8.3.3
(8) Data and behavior definition

(in [ESW93]: Data Definition Language/
Data Manipulation Language)

Chap. 1, Chap. 4

(9) Evolution
(in [ESW93]: change and schema updates)

Chap. 12

(10) Queries (in [ESW93]: Reasoning support) — 1

(11) Consistency preservation Chap. 6
(12) Distribution Chap. 7, Chap. 8
(13) Multi-user support Chap. 9
(14) Access control Chap. 9
(15) Security Sect. 7.3.2
(16) Adjustable transaction mechanism Sect. 9.1.7
(17) Backtracking and versioning — 2

(18) Views Chap. 10, Part III

The conclusion of [ESW93] is — as indicated in the subtitle “The Goal
has not yet been attained” — that none of the existing database management
systems of that time meets all listed requirements. While they give quite a
good ranking to PCTE, they criticize its performance problems with regard to
a large number of small objects and the lack of encapsulation with operations.

Discussion of model
granularity [3→]

Integration of
methods in our meta

model [4→]

2.1 Basic Data Model of PCTE

The data model of PCTE is in fact quite simple. This data model is notBackground

5 responsible for the complexity of PCTE. This complexity is rather due to the
number of additional issues that are also dealt with, like referential integrity,
access control, transactions, reflexive schema management, notifications etc.
Also, these issues interact in more or less obvious ways.

1Queries have not (yet) been identified as a requirement for PIROL.
2Versioning is not fully solved in PIROL. See Sect. 9.1.7 for a discussion.

34



Basic Data Model of PCTE Section 2.1

The basis of all this is a data model with basically three abstractions: ob-
jects, links and attributes. The corresponding types are defined in terms of the
following properties:

attributetype
type one of string, natural, integer, boolean or enumeration

objecttype
parent type objecttype from which to inherit all properties.
attributes attributetypes that are applied to this objecttype (see below)
links linktypes that are applied to this objecttype

linktype
cardinality defined by either a key attribute or a range thereof
destination objecttype of permissible link targets
category strength: ranging from implicit to composition (see below)
attributes attributetypes that are applied to this linktype

Attribute– and linktypes can be defined independent of any objecttype.
Only applying an attribute– or linktype to an objecttype renders these defini-
tions useful: applying an attribute– or linktype ALT to an objecttype OT defines
that all objects of type OT have the property ALT. Furthermore, attributetypes
can be applied equally to object– and linktypes. By separating definition and
application of attribute– and linktypes the same definition can be reused for
many applications, but this comes for the price of a flat name space: different
objecttypes may not have attributes with identical names but different types.
The inheritance mechanism of PCTE is compliant with object-oriented pro-

gramming languages in that it defines a hierarchy of type compatibilities. Links
are typed to a target objecttype, but all linktypes are implicitly polymorphic.
They also allow subtypes of the specified type.
The most intricate part of PCTE’s data model is the concept of links. The

category of a linktype defines a link’s strength with regard to constraints of
referential integrity. The strongest link category, composition, is used to define Integrity issues [6→]
compound objects that can be manipulated in one step by certain operations.
Additional properties define whether a link can be used for navigation, and
whether it should be duplicated when copying an object. Attributes can be
attached to links, and if one or more attributes are defined as a key, the link
automatically has a one-to-many cardinality. In that case the link name is
composed of the name of the linktype and the value of the key attribute(s).
Each linktype also has a reverse type, such that links always exist as pairs. If
no reverse linktype is specified an implicit linktype is generated.
In the specification of PCTE each object or link may also have a contents,

i.e. an uninterpreted block of binary data, intended for large chunks of data
that are handled more like sequential files rather than like ASCII–strings. The
PCTE implementation used in PIROL, H–PCTE [Kel92], is more flexible in that
it allows to access any attribute declared as string in a contents fashion. It
is left to internal optimization, whether string attributes are stored as intrinsic
part of the object or as separate external files in the database directory.
An API exists for creating all type definitions interactively. H–PCTE also

35



Chapter 2 Persistence and Object-Oriented Programming

provides a tool, ddlc, that translates textual type definitions in a data definition
language (DDL) to their internal representation.
Finally, type definitions are grouped to schema definition sets, which are

the units of further scoping and visibility issues.

2.2 Persistence Interacts with other Concerns

2.2.1 Meta modeling

PCTE is focused on database technology. PIROL’s meta model is a more or lessNew Feature
5 standard object-oriented model. More precisely, PIROL’s repository language
Lua/P integrates the worlds of object-oriented programming and of repositories.
This requires to map the concepts of PCTE to a style that is more fashion-
able for the OOPL Lua/P. This section gives details of how PCTE types and
Lua/P types are mapped to each other. On page 41 the integration of PCTE
mechanisms into the syntax of Lua/P will be shown.

Mapping PCTE types to Lua/P

The module concept of PCTE, schema definition sets (SDS), is directly mapped
to packages in Lua/P. The type mapping is developed according to these require-
ments:

1. Map basic types (attribute types)

2. Map reference types (link types)

3. Map 1:n relationships

4. Optimize in order to reduce number of objects

5. Exploit link properties

6. Exploit reverse links

7. Allow for multiple inheritance

Basic and reference types (items 1 and 2) are straight forward. Only numeric
types had to be unified. Lua/P only supports one type Integer dropping the
cardinal type from PCTE and floating point numbers from Lua.
As 1:n relationships (3) are a vital capability of PCTE they are directly

supported by Lua/P in terms of a builtin type constructor List. Attributes
declared as List can be considered as auxiliary Lua objects of a builtin class List
with value semantics. I.e., these auxiliary objects need not be created explicitly
nor is assignment to such a field valid. Only the methods of the builtin class
List and Lua’s builtin indexing mechanism o[i] allow to query and modify the
list. Appendix A.2 gives the interface of List.
It is the responsibility of the internal classes implementing the List interface

to synchronize a set of links in PCTE with a list in Lua/P. This is mainly an issue
of mapping two sets of indices: In PCTE each link in a list has a unique integer
key, which is immutable. Thus deleting an element may introduce “holes” in
the list, while inserting may require to re–link all elements after the point of

36



Persistence Interacts with other Concerns Section 2.2

insertion. On the Lua/P side, however, list indices are always consecutive. In
other words, in PCTE the list is optimized as to do reorganization only if
really needed, while in Lua/P consecutive indices are ensured. This strategy is
encapsulated by all List classes.

Caching. The design of PIROL generally provides for direct access to
repository data without buffering in Lua. Lists are an exception to this rule.
The index structure of a list is kept in a cache after reading. This is because
building up this index structure is a time consuming operation and it is common
to access the same list successively many times. The operations of class List
can not be implemented efficiently without caching. Note, that only the index
structured is cached not the data contained in the list. It should not surprise,
that storing data in a database is well complemented by keeping a minimal set
of data as a transient copy in a cache.

Specific optimizations. For the type mapping at hand it is important
to minimize the number of objects in the repository in order to achieve a good
performance. Many (auxiliary) objects in a typical object-oriented design can
be replaced by light–weight tuples. Lists of tuples are a convenient way to
save one extra object for each list element. This is made possible by optimized
mappings of such lists to available constructs in PCTE. Three cases need to be
distinguished regarding the type of tuple elements:

• Only basic types
This case will be covered by packing techniques to be presented in Chap. 3. Reducing the number

of objects [3→]
• Basic types and exactly one reference type

This is implemented in PCTE by links with link attributes. The reference
component is mapped to the link, all other tuple components are link
attributes.

• More than one reference type
Only these tuples actually need auxiliary PCTE objects.

Lists of basic types (String, Integer, Boolean) have no direct representation
in PCTE. Thus they also rely on the mentioned packing techniques. Packing lists of basic

types [3.2.2→]In addition to carrying attributes, links have far more properties in PCTE
(cf. requirement 5 in the above list) than references in traditional OOPLs
have. It is not perfectly clear, which properties should really be visible in the
repository language Lua/P but two categories should certainly be distinguished:
existence links can be seen as regular references that also guarantee refer-
ential integrity . Composition links have an even stronger semantics: objects
connected by composition links are considered one compound object. Several
operations — like copying, moving — can be performed on such compounds as
a whole. Lua/P supports this distinction by two separate clauses in the definition
of a class’s structure: attributes declares all basic type attributes and existence
links, components declares composition links.

37



Chapter 2 Persistence and Object-Oriented Programming

Each link in PCTE is automatically accompanied by a reverse link (item 6
in the above list of requirements), i.e., links always exist in pairs. This is very
convenient for many queries to the repository (like: “what are the packages
that refer to (import) this class”). This information is readily available even
if it is not explicitly modeled in the meta model. On the other hand it is not
safely possible to manipulate reverse links without side effects on the original
link. Thus it suffices to provide reading access to reverse links. This requires
no additional language construct but is encapsulated by methods of the metaMethods of the

meta model [4→] model.
As PCTE allows multiple inheritance (7) it was only straight forward to

also support multiple inheritance in Lua/P. There has been a vehement debate
about the dangers of multiple inheritance, and in the context of Java the word
has be spread, that it should even be avoided completely. On the other side,
conceptually sound languages like Eiffel [Mey92] show which mechanisms are
needed to manage multiple inheritance. Quite contrary to both positions, our
experience tells us, that — in the bounded field of programming a repository —
even the most simple form of multiple inheritance delivers far more benefits than
problems. The exact picture of multiple inheritance in Lua/P will be given in
Chap. 4. An example of its usefulness in our context relates again to minimizing
the number of objects and will be given just below.

Flexibility versus Performance

Many design patterns [GHJV95] that aim at flexibility propose to introduce
auxiliary classes that don’t originate from analysis but are needed only as a
capsule for certain object properties that should be interchangeable in a flexible
manner. PIROL’s meta model requires exactly this flexibility. Fig. 2.1 shows
the root class of the meta model, ANY RO that models all those administrative
data that should be associated to every object in the repository. By spreading
these data over six classes, each of these parts can be specialized independently.
Furthermore, factory methods allow to centrally enable such specializations for
all objects that are created within a certain context.
If, e.g., a project decides to allow sophisticated version branching it will

find the data that can be stored by class VERSION insufficient. A specializa-
tion of VERSION will be implemented and the name of that class is stored in
PROJECT.version class, such that throughout that project only instances of
the specialized version class will be created.
This design achieves the desired flexibility but it is in fact untenable due to

the exploding number of objects, which it causes. For every object created as
a descendant of ANY RO five auxiliary objects would have to be created. Only
one of these objects, STATE, can easily be optimized by the Flyweight pattern,
such that usually no more than a handful of STATE objects are needed per
installation of PIROL.
For all other auxiliary objects an optimization is introduced using multiple

inheritance (see Fig. 2.2). For the standard situation, where none of these
classes is specialized, all data can be merged into one object, while still retaining
the ability to apply dedicated and independent specializations. This is achieved

38



Persistence Interacts with other Concerns Section 2.2

VERSION

count: Integer

ANY_RO

name : String

DESCRIPTION

text

ATTRIBUTION

PERMISSION
owner: AGENT
readers: List(AGENT)
writers: List(AGENT)

STATE
«flyweight»

attribution

version

state

permission

description

Figure 2.1: Structure of ANY RO (before optimization)

Whole

Part

Whole

Part

part

part

part

w: Whole

part_features
whole_features

part

w: Whole

p2: SpecialPart
part

Flexibility
by delegation:

Optimization
by inlining:

Both approaches can
specifically replace one 
part by a specialized part

Classes Objects

p: Part
part_features

w: Whole
whole_features

Figure 2.2: Optimization by object inlining

by having ANY RO (indirectly) inherit classes ATTRIBUTION, VERSION etc. (see
Fig. 2.3).3 The references attribution, version etc. are still maintained and
simply point to self.
In the standard case the number of objects is now reduced by a factor of

five. If any facet of this compound object is to be replaced by a specialized
variant it is still possible to create an auxiliary object and attach it to the host
object. As a result flexibility and performance are reconciled and the overhead
of auxiliary objects is only paid for when needed. We call this technique object
inlining (Fig. 2.2).

Transient data

Finally, the presence of persistent data brings about an additional distinction
that has effect throughout many other concerns: not all data are to be kept
persistently, because this imposes performance penalties that are sometimes
unacceptable. Chapter 11 will present common services, that are implemented → Sect. 11.3.2

brings the example
that motivated
transient data.

3Note, that ANY RO also needs to inherit from an even more fundamental class ANY.

39



Chapter 2 Persistence and Object-Oriented Programming

VERSION

count: Integer

ANY_RO

name : String

DESCRIPTION

textATTRIBUTION

PERMISSION
owner: AGENT
readers: List(AGENT)
writers: List(AGENT)

STATE
«flyweight»

attribution

version

state

permission

description

example: ANY_RO

name = "example"
text = ...
count = 3
owner = ...
readers = ...
writers = ...

attribution

version

permission

description

busy: STATE

state

Figure 2.3: Optimized structure of ANY RO

in Lua/P but require a performance that cannot be achieved using persistent
objects.
Transientness can be declared in Lua/P at two levels: attributes can be de-

clared as transient. This can be used to efficiently use Lua structures as cache
for run time information. Transient attributes can be of any legal Lua type,
no mapping to PCTE needs to exist. Thus transient attributes to some extent
fall outside the general picture. Secondly, classes can be marked as transient.Restrictions caused

by this relaxed typing
[7.4.2→]

Objects of transient classes will never be stored in the repository, but are other-
wise indistinguishable from repository objects. In order to hide the distinction
between persistent and transient objects not only their classes must share the
same general structure, but all attribute types that can be declared for persis-
tent classes need to be rebuilt for transient classes.
This is trivial for basic type attributes. Reference attributes are imple-

mented as Lua references to Lua handles of persistent objects. List, finally, had
to be rebuilt completely due to the specialized mapping of persistent lists to
sets of links in PCTE. This results in another List class with the same interface
as for persistent lists, but a different implementation.

Object access

One aspect of persistent objects can usually be ignored when handling PCTE
objects: loading objects from the repository is transparent for client code. The
signatures of the PCTE API use handles (“object references”) to refer to objects
without saying at which point in time an object will be loaded.4 Client code
may safely assume that any (part of an) object is loaded transparently whenever
it is needed (on demand loading).
To give the exact picture of object access in H–PCTE, two more concepts

will come into focus: objects are not loaded one by one, but as one database
segment at a time. Thus H–PCTE is designed as a main memory database in

4In PCTE several operations do have a parameter that specifies whether objects should
be loaded lazily or eagerly, but the consequences are too subtle to be of importance for this
discussion.

40



Implementation Issues Section 2.3

order to reduce disk access.
Secondly, the architecture of H–PCTE includes a server such that a single

process controls all access to a given repository. A segment may be loaded
to one of two different locations: to the server process or to a client process.
Segments loaded to the server require inter process communication for each
access while segments loaded to a client pay for the enhanced performance by
restricted visibility: no other client can access a segment that is loaded to a Segments and object

accessibility [9→]client.
Aside from issues of explicitly loading segments to memory, object access

is encapsulated completely by only a small number of PCTE API function.
However, a smooth integration of PCTE into Lua/P calls for even more trans-
parency: object access should not require to explicitly use any access function,
but statements like

o1.a1 = o2.a2

should automatically be mapped to the appropriate API function calls. The
next section will give the implementation details of the given type mappings
and of syntactical embedding of PCTE into Lua/P.

2.3 Implementation Issues

The previous section has defined the requirements for implementing Lua/P on
top of PCTE’s data model. Here, some implementation issues of this mapping
will be discussed.

2.3.1 Implementing the mapping

The internal (run–time) representation of a class consists mainly of two Lua
tables of access functions, one for reading, the other for writing. All access
functions directly operate on the contents of the PCTE repository, thus avoiding
any danger of inconsistency between PCTE and Lua/P. Both tables are indexed
by attribute names. This relies on Lua’s capability, to handle functions as reg- Higher–orderedness

in Lua [←1.2.3]ular values, that can be stored in variables. Secondly, use of function closures
is made, such that general lookup functions are embedded into a closure con-
taining some of the parameters as frozen values that are already known at the
time of constructing the internal class structure.
At run–time each object knows its class. Field access of objects is then

redefined (using Lua’s tagmethods). This technique allows to use PCTE object Extensibility by
tagmethods [←1.2.5]references as if they were the actual object. Any field access relative to an object

reference is implemented by either a gettable or a settable tagmethod, that
uses PCTE API functions to perform the repository access.
Fig. 2.4 sketches the techniques of this implementation: The client state-

ment in line 30 triggers a gettable event on o2. Line 26 associates function
luap object lookup with this event. Line 12 retrieves a lookup function from
the corresponding class, for which the class initialization (sketched in lines
28/29) installed pcte object get string attribute. This function is invoked
in line 14. Writing value v to o1.a1 works in analogy. Note, that for a list at-

41



Chapter 2 Persistence and Object-Oriented Programming

tribute only a read func is installed (lines 5–9). The lookup function for lists is
a closure, that shows how information about the element type — which is avail-
able only at class definition time — is stored in this closure using an upvalue
(%elem type).
To sum up, an event of reading or writing an attribute is simply redirected

to the appropriate access function, that is determined by the class of the current
object and the attribute name. By this mechanism the most simple syntax of
attribute access — both for lookup and in assignments — has the effect of
directly operating on the persistent object in the repository.
The internal class structure also contains the table of methods (see Chap. 4)

and knows about

• creation methods (see Chap. 4).

• list-classes of list attributes (selecting between simple lists and the differ-
ent styles of tuple lists).

• class attributes (these are always transient and stored only here).

2.3.2 Meta model deployment

Having a repository concern and one of object-oriented programming, both
manifesting at PIROL’s meta model, raises the issue of transformation and
installation of the meta model. What are the inputs and the tools for the
deployment process? The mappings between Lua/P and PCTE, as introduced
above, imply different representations of the same meta model. Only for a fixed
set of core packages of the meta model, a DDL5 specification is needed. This is
part of the boot–strapping strategy. After that only Lua/P is used for definition
of the meta model. The full boot procedure will be presented after behaviorThe boot process

builds upon behavior
modeling [4.2→]

modeling has been introduced.

2.4 Other languages for persistent meta models

The literature reports on many SEEs that decompose their data into persis-Related Work
5 tent, structured objects. Judging from published articles, RPDE3 seems quite
closely related to PIROL. Unfortunately, no comprehensive description about
the language used in RPDE3 could be found. A conceptual comparison will be
given in Part III.

From Files to Objects. It should be noted, that the transition from plain
files to structured objects in a database was not performed in one single step.
The concept of attributed software objects (ASO) [Lam94] combines both con-
cepts by attaching additional attributes to files. Attributes are primarily used
for version control, document states and build management, but user defined
attributes may in arbitrary ways classify files and attach specific data. File
based tools can completely ignore such extensions while specific replacements

5H-PCTE’s Data Definition Language.

42



Other languages for persistent meta models Section 2.4

for commands like ls, cat and make exploit attributes for additional function-
ality.
Also PCTE can be used for a hybrid model, in which objects directly

replace files, storing the traditional file contents without further decomposi-
tion/processing into object contents. The actual PCTE data model in this
setting only captures administrative information just like in the ASO approach.
How much detail is covered by PIROL’s data model will be subject of

Chap. 3.

2.4.1 Arcadia

Within the Arcadia project [TBC+88], two extensions to Ada have been devel-
oped. The first, APPL/A [Sut90] is most interesting with respect to managing
consistency of persistent structures and will be discussed later. The second lan- Languages for

consistency
[6.3,6.3.1→]

guage, Pleiades, focuses on the following requirements: “high-level primitive
type constructors, navigational and associative access over the same structure,
persistence and consistency management”[TC93].
High-level types are an issue in Pleiades, because it builds on a pre-object-

oriented version of Ada. Re-usable structures for lists, graphs and relationships
should not be a language issue in an object-oriented setting. PIROL features a
general RELATION class with sub-classes like GENERALIZATION (between classes),
DEPENDENCY (between arbitrary program units), which can be exploited by other
RO classes and tools in very different ways. Such issues require no language
extension, but can be handled by generic design of the meta model. More
specifically, also Lua/P supports lists as a fundamental type constructor. While
conceptually an RO class LIST would have provided the same functionality,
built-in support for lists is crucial for efficiency and easily maps to one-to-many
relationships in PCTE.
The tension between navigational and associative access relates closely to

the transition from relational databases to object-oriented ones. Both have their
preferred way of retrieval, and [TC93] concludes that both forms are needed for
an SEE. In PIROL, the navigational access is emphasized, with no need to-date
of supporting queries over large amounts of data. We are, however, confident,
that once the need for queries would arise, one of the existing query languages
for H-PCTE [Haa, Hen95] could readily be integrated into Lua/P.
Regarding persistence, [TC93] develops a reachability based approach, which

is similar to PCTE’s strategy of maintaining a connected graph of persistent
objects. Pleiades does not consider references other than containment for
persistence. It is not clear, how the system copes with a link who’s target
is lost due to a missing containment link. In contrast to PCTE, Pleiades
supports implicit transientness by simply creating unconnected objects. Lua/P
also supports transientness, but based on Transient declarations of attributes
or classes. Pleiades also introduces lazy retrieval of the transitive closure of
reachable objects, i.e., on-demand loading. Similarly, a PCTE client need not
worry about loading an object, either. In H-PCTE loading happens in chunks
called segments. Such partitioning is not reported concerning Pleiades. Segments [←2.2.1]

43



Chapter 2 Persistence and Object-Oriented Programming

The last feature of Pleiades, consistency management, will be deferred to
our discussion of APPL/A.APPL/A [6.3.1→]

2.4.2 GOODSTEP

The GOODSTEP project [AAA+94] has had great impact on the development
of OODBMS suitable for SEEs [EKS93]. Two systems are central to GOOD-
STEP with respect to the topics at hand: the OODBMS O2 will be discussedThe O2 database

[16.1.3→] more in detail in Part III, the tool specification language GTSL [Emm96] will
be discussed here.
The name “GOODSTEP Tool Specification Language” requires to discuss

what is a tool in an SEE. For this thesis the question has to be postponed
until Chap. 7, because architectural considerations are decisive, here. Not so
for GOODSTEP. Most issues in the mentioned articles about GOODSTEP and
GTSL can be compared directly to our notion of a persistent meta model.
GTSL is a multi-paradigm language, it combines different concepts which

appear most appropriate for different aspects of the system. First of all, it is
an object-oriented language, that encapsulates persistent objects, much in the
same sense as Lua/P (see Chap. 4 for methods in Lua/P). The central idea is a
generalization over disparate abstract syntax trees for each document to one
compound abstract syntax graph. Such a graph is spanned by a tree of aggre-
gation edges and augmented with additional reference edges, which implement
semantic relationships. Such relationships are usually created by analysis like
name resolution, which links name applications to corresponding declarations.
Also inter-document relationships play an important role, since these relation-
ships are used for maintaining project-wide consistency. Similar to PCTE,
GTSL supports implicit reverse links of all reference edges6. Multi-valued ag-
gregation edges are supported by a LIST type constructor. All this very closely
resembles Lua/P. A class in GTSL must be declared as either terminal (leaf) or
non-terminal. The benefit of this distinction remains unclear.
Despite of the use of an object-oriented meta model, GOODSTEP basically

operates on documents, where the AST representation is just used internally.
There is no concept comparable to COs or Dynamic View Connectors, providingDynamic View

Connectors [10→] for overlapping documents, which share common objects. The view concept of
O2 is said to be supported, too, but no details could be found in publishedViews in O2

[16.1.3→] papers. A special feature of GTSL relates to this dual view of documents:
each non-terminal class contains an unparsing scheme, which defines how the
abstract syntax is to be translated into concrete syntax. PIROL assumes that
only some classes have a textual concrete syntax representation (other objects
might only appear in a diagram or be displayed in a table or by a form based
tool, etc.), and multiple representations are also anticipated. For this reason,
unparsing is not built-in to PIROL but left to specific RO classes. A moreSOURCECODE [13.3.2→]
general approach to external representations is discussed in Part III.Garlan’s display

views [16.1.1→] Instead of sharing objects between views, GTSL admits any redundancy
incurred by documents with overlapping contents and adds consistency rules

6From [Emm96] it appears, that reverse links are not featured for aggregation links, which
seems a bit odd.

44



Summary Section 2.5

concerning inter-document relations. Such rules are the second paradigm, which
is supported by GTSL. In [Emm96] the author makes a strong statement about
the style in which consistency should be specified, concluding that condition–
action pairs are strictly preferable over any imperative concept. Consistency
rules will be discussed in Chap. 6.

Language support for
consistency [6.3→]

GTSL is said to also feature imperative concepts, the meaning of which is
not perfectly clear, after object-oriented concepts (which build on imperative
ones) are already included. The author assumes, that this label is motivated by
the support for interactions. Interactions can be compared to common services Services provided via

context menu [11.2→]of PIROL. Therefore, a discussion has to be postponed until later.
Throughout the literature about object-oriented meta models, performance

and complexity are important issues. In the context of GTSL, especially config-
uration management is said to be an issue, which “has not yet been sufficiently
addressed” [Emm96]. Related articles report on the large number of objects
[ESW93] and fine-grained concurrency control [EAMP97, EKS93] as being hin-
drance for using most available database systems. Hope is pinned on general
OODBMSs like GemStone and O2 of which the latter unfortunately disap- Views in O2 [16.1.3→]
peared from the market.
The main reasons against PCTE are said to be (a) the inability to manage

large collections of small objects and (b) the absence of methods. Of these,
(a) will be discussed in the following chapter (Chap. 3), and (b) is subject of
Chap. 4.

2.5 Summary

The concerns meta modeling and persistence are layered , i.e., persistence is
encapsulated in such a way, that no direct access to this layer should be needed.
In this special case we even have a transparent encapsulation, such that regular
usage of the upper layer (meta modeling) implies invocation of the lower layer
(persistence) whenever relevant.
More concretely spoken, by reading and writing objects of PIROL’s meta

model, these objects are implicitly, i.e., without further action, stored and re-
trieved from the repository. Each Lua/P object (except for those, that are explic-
itly transient) is always persistent, without ever calling any store or retrieve
functions.
The interaction of meta modeling and persistence is thus once and for all

implemented by the mapping between PCTE and Lua/P. This mapping has been
developed to combine convenience at the level of client programs with a good
performance at the repository level. Note, however, that this encapsulation does
not completely hide PCTE from all layers above, because PCTE covers far more
concerns than just persistence. These other concerns will be encapsulated by
different techniques, to be presented when those concerns come into focus.
Also note the difference between generic concerns and their specific appli-

cations: the language Lua/P is for certain parts determined by the data model
of PCTE. Vice versa, the choice of a repository is restricted by the required
properties of Lua/P. These interdependencies manifest in the concrete mapping

45



Chapter 2 Persistence and Object-Oriented Programming

between PCTE and Lua/P. This mapping, however, achieves an independence at
the application level: packages written in Lua/P need not care about persistence
issues.
Transparency has been achieved mainly for the sake of comprehensibility.

This should not be confused with an assumed substitutability of the repository.
Although PCTE is hidden from the Lua/P programmer, it has had significant
impact on the design of Lua/P. Nobody should expect a re-implementation of
Lua/P using a different repository or database to be a reasonable task. Different
persistence technology may draw parallels from the system at hand, but would
certainly yield a different flavor of a repository language. Evidence for this will
grow, as further concerns are added to the discussion.
Finally, introducing persistence brings along the choice between persistent

and transient data. Other concerns should, as far as possible, be unaffected by
this choice, i.e., this difference should be transparent. A few other concerns,
however, have to invest extra effort into this transparency.

46



Summary Section 2.5

1 function luap define string attr (class, field)
2 class.read funcs[field] = pcte object get string attribute
3 class.write funcs[field] = pcte object set string attribute
4 end

5 function luap define obj list attr (class, field, elem type)
6 class.read funcs[field] = function (obj, f)
7 return Object List:New(obj, f, %elem type)
8 end
9 end

10· function luap object lookup (obj, field)
11 local class = luap get class(obj)
12 local lookup = class.read funcs[field]
13 if lookup then
14 return lookup(obj, field)
15 else . . . –– accessing an undeclard field, raise an error
16 end
17 end

18 function luap object write (obj, field, value)
19 local class = luap get class(obj)
20· local write = class.write funcs[field]
21 if write then
22 write(obj, field, value)
23 else . . . –– accessing an undeclard field, raise an error
24 end
25 end

26 settagmethod(luap object tag, "gettable", luap object lookup)
27 settagmethod(luap object tag, "settable", luap object write)

–– Example definitions:
28 luap define string attr(C1, "a1")
29 luap define string attr(C2, "a2")

–– Assuming o1: C1, o2: C2, this client code:
30· o1.a1 = o2.a2
–– automatically calls:
31 v = pcte object get string attribute(o2, "a2")
32 pcte object set string attribute(o1, "a1", v)

Figure 2.4: Implementing object lookup

47



Chapter 2 Persistence and Object-Oriented Programming

48



Chapter 3

Model Granularity

Fine grained data modeling is a powerful means for a tight integration of tools
that are to share as much information as possible. It contrasts to data inte-
gration using the source text by eliminating the need for many tools to include
their own parser. Also referring to an element within a text is much more dif-
ficult than referring to, say, an object in the repository. Text references always
need to be interpreted and are fragile in one way or other: positions and names,
that may be used for qualifying a reference, may change without notifying the
referring instance.
Of course an object-oriented meta model could very well be used to decom-

pose a document all the way down to single identifiers and symbols. This tech-
nique is, however, hardly usable for SEEs. A prominent approach to fine grained
data modeling for SEEs has been standardized as extension of PCTE[PCT95].
Unfortunately no tool vendor ever really implemented this standard due to
tremendous performance problems that should be expected. Database technol-
ogy in fact imposes quite strict limits on the number of objects that can be Minimizing the

number of objects
[←2.2.1]

accessed efficiently when, e.g., loading a document. Each persistent object has
at least a constant overhead in space and access time. In a uniform approach,
each object in the database requires its own access control and versioning. For
very fine grained data this is neither acceptable nor needed.
Quite a different lesson can be learned from the area of compiler construction

and related tools. Such tools rely on a set of types that represent all constructs
of a (programming) language in a tree or DAG structure, called abstract syntax.
The definition of these types and many transformations are much more compact
and perhaps more elegant when using a functional programming language rather
than an object-oriented one. For this reason a previous instantiation of PIROL
[BGHHm98], which was targeted at processing formal specifications based on
their abstract syntax, used the programming language Pizza [OW97]. We made
good experiences with Pizza’s combination of object-oriented and functional
techniques. In this setting the bottleneck was the serialization of Pizza objects.
Serialization, which was used to write units of the abstract syntax as binary
blocks into the repository, again imposed performance problems on the system.
In response to this experience, Lua/P was extended by some new features:

The types needed for an abstract syntax or similar structures can be defined

49



Chapter 3 Model Granularity

as term grammars. Terms as values of these types can be handled and stored
efficiently by the workbench. Allowing term types for attribute declarations
yields a smooth integration of medium grained objects and very fine grained
terms. Finally a touch of functional programming in Lua/P allows concise im-Algorithms over

terms [4.1.3→] plementations of algorithms over terms.

3.1 Structured decomposition and composition

Data modeling is about decomposing concepts into atomic pieces of information.
Equally important is the possibility to express structural relationships between
pieces of data. These relationships are expressed at the type level by means of
type constructors. We have already seen two type constructors in Lua/P: Class
and List.

• Classes are the primary structure for any kind of data. They support the
definition of three relationships: association, composition (the strongest
form of association) and inheritance.

• Lists are the preferred container for elements of the same type. Elements
may be simple values, objects or tuples.

Note, that already lists are introduced in Lua/P with the intention of reducing
the number of persistent objects. Next follows the definition of another set
of type constructors, that allow very fine grained data modeling even in the
presence of a repository: term grammars.

3.1.1 Term Grammars

Terms are tree structures whose leaves are simple values or terminal symbols.
Simple values are strings, integers, boolean or subtypes thereof. Lua/P provides
four kinds of type rules (the LHS of each rule is a type):

subtype of The LHS type can be used wherever the RHS type is required.
It has the same structure.

one of The LHS type has alternatives that are listed here. The alter-
natives still have to be defined.

one of const Similar to the above but the alternatives are terminal symbols
given by their representation.

production The LHS type is a tuple of the types listed at the RHS. Produc-
tion rules have no keyword.

Fig. 3.1 gives an example grammar defining a simple expression language.
The names e1, operator and e2 as defined in rule (2) are selectors for the
components of an expr term. The second component in rule (3) is not named,
so the type name expr is also used as selector. The ’?’ in rule (4) specifies that
the last component (else exp) is optional. The expr in rule (9) may occur zero
to many times (denoted by ’*’). Elements of such a list can only be accessed

50



Model Granularity Interacts with other Concerns Section 3.2

Grammar {EXPRESSION;
(1) expr = one of{value, binexp, unexp, ifexp},
(2) binexp = {{e1: expr}, {operator: binop}, {e2: expr}},
(3) unexp = {{operator: unop}, expr},
(4) ifexp = {{condition: expr}, {then exp: expr}, {else exp: expr}, ’?’},
(5) binop = subtype of{STRING},
(6) unop = one of const{{uplus=’+’}, {umin=’-’}},
(7) value = one of{INT, BOOL, varappl},
(8) varappl = subtype of{STRING},
(9) exprlist = {expr, ’*’},
}

Figure 3.1: Grammar EXPRESSION.

by their numerical index. Finally the whole grammar is given a name in order
to make it a selectable name space.
Each type defined in a grammar can be used for attribute declarations as in

Class {SIMPLE FUNCTION;
inherit = ROUTINE,
Attributes = {
value : EXPRESSION.expr

}
}

3.2 Model Granularity Interacts with other Concerns

3.2.1 Meta modeling

The techniques introduced so far allow for a kind of hybrid meta modeling, Discussion
5where the object-oriented concepts are used for higher level abstractions, that

are to be shared by very different tools operating on very different views of
the repository. At lower levels heavy weight objects are replaced by hierarchic,
structured terms. These two techniques harmonize only if some integration
issues are solved. Mainly three issues can be identified: syntax, semantics and
references.
The syntax of accessing parts is the same for objects and terms:

compound.field or compound[index]. The first form applies for attributes
and named term components, while the second form applies to elements in
a list or elements in a term with repetition. Such transparency is achieved
by associating different tagmethods with ROs, lists and terms, which roughly Lua tagmethods

[←1.2.5]implement the same behavior based on different low level APIs.
In spite of this smooth syntactical integration, Lua/P programmers need

to observe one difference: object-oriented structures are handled by reference
semantics, whereas for some part term structures introduce value semantics.
Details are given below in Sect. 3.2.2.

51



Chapter 3 Model Granularity

The last issue concerns references between the worlds of objects and terms.
For now, we restrict this issue to stating that

• an object may contain a term,

• an object may point into a term using a path expression, and

• a term may refer to an object.

Path expressions are not yet implemented and references from terms to objects
are not yet fully automated. However, these techniques need to be discussed in
some more detail after raising the issue of data integrity.

References between
terms and objects

[6.2.3→]

3.2.2 Persistence

When motivating the additional mechanism for very fine grained data modeling,Discussion
5 the focus on performance has already been mentioned. The straight–forward
object-oriented approach to very fine grained data modeling conflicts with the
performance requirement, when it comes to making these structures persistent.
By introducing terms as a separate technique, we can ensure that very fine

grained data always exhibit a tree structure, which can be packed efficiently.
Packed structures are then stored as one binary block into an attribute of PCTE
type contents. So for the repository there is no overhead for very fine grainedPCTE type

“contents” [←2.1] data as compared to storing the unparsed text. However, within the workbench,
that block is unpacked again and thus exists as structured, type–safe data.
In the example of class SIMPLE FUNCTION above, the repository would see

value as one binary block, while the workbench sees a structured term of type
expr according to the EXPRESSION grammar.
This concept is implemented by a C library, that is responsible forImplementation

5 • building type rules from a grammar definition,
• building terms while ensuring type correctness according to these rules,
• accessing term components,
• efficiently packing/unpacking terms to a binary stream (serialization).

4
Access to objects and terms is to some extent uniform, but the difference

of reference versus value semantics remains, as stated above. This restriction
is imposed by the mapping of terms to PCTE. Assignment of a term to an RO
attribute considers the term value atomic. Please recall, that performance issues
motivated terms in the beginning. Incremental modifications at the repository
level would defeat this advantage.
At the Lua side, however, terms can indeed be modified incrementally. Pro-

grammers just have to be aware, that such incremental modifications only op-
erate on a transient copy, which is made persistent only at the next assignment
to an RO attribute. This is the only case, where the interface between Lua/P
and the repository is semantically relevant for programmers.
Knowing about the capabilities of terms we can now present, how lists ofImplementation

5 basic types are mapped to PCTE. Lua classes Pcte Term List and sub-classes

52



Summary Section 3.3

for String, Integer and Boolean, implement the List interface by a mapping to Class List [A.2→].
a Term of type STRING LIST, INT LIST, or BOOL LIST, respectively. Persistence
of such lists is achieved by storing the serialized form of the list term into a
string attribute in PCTE. Thus, lists of basic types share all positive properties
of terms while providing an interface that is compatible to other types of lists.
This technique is far more efficient than directly using any capabilities of PCTE,
which would involve some surrogate objects or links to carry all list elements
as attribute values. In order to hide the value semantics of the underlying
term implementation, modified lists of these types are collected and stored
automatically at certain transaction points. Requests as

transactions [7.4.5→]

3.3 Summary

The distinction between a top level object-oriented meta model and a very
fine grained refinement using term types yields a hybrid model, where both
techniques co-exist. There is a clear relation between both sub-models: term
types appear only as attribute types in the object-oriented model, while a term
can never contain an object, only a reference. The persistence concern dictates
an optimization of very fine grained data, that determines some design decisions.
But by and large, this optimization is encapsulated by the mapping between
PCTE and Lua/P.
Objects and terms appear uniform to some extent by virtue of their Lua

encapsulation. This eventually includes the different mechanisms for references
between terms and object structures. However, the difference of reference versus
value semantics remains visible to Lua/P programmers.
In order for this integration of techniques to work smoothly also subsequent

concerns have to respect the hybrid model.

53



Chapter 3 Model Granularity

54



Chapter 4

Behavior Modeling

Previous chapters have presented PIROL mainly as a specialized database man-
agement system. In order move on to an environment that implements certain
services and actively integrates an open number of tools, PIROL needs concepts
and mechanisms for behavior implementation. In order to provide behavior in
close integration with repository objects, repository classes are augmented by
method definitions. This lifts the structurally object-oriented repository PCTE
to a full OODBMS, supporting the full model of object orientation.
Only two issues need to be specified:

1. Which “flavor” of object orientation is implemented by Lua/P?

2. Which architecture is used to implement method execution?

Ad (1): Lua/P has the regular semantics of method redefinition and dy-
namic binding . It allows multiple inheritance, but without refined mechanisms
for conflict resolution. In case methods of the same name are inherited from
more than one super–class, the first class (according to the order of the inherit
clause) has priority, i.e., its methods overwrite methods of the same names from
other super–classes. Naturally, methods defined in the sub–class overwrite all
inherited methods of that name.
Overloading is not supported by Lua/P, i.e., methods are never distinguished

by their signature. No class can ever have two separate methods of the same
name.
Regular methods are also used for object initialization. No special construc-

tor syntax (like in C++ and Java) is used, but each class may declare a list of
methods, that are suitable for object initialization. If such a creation method
is declared, object creation must use one of them. If no creation method is de-
clared, an empty method New is implicitly defined as the only creation method.
Creating an object is denoted by calling any creation method on the class:

object = CLASS:creation method(arg1, ...)

This style of object creation mainly follows the style of Eiffel [Mey92].

Calling a super version of a method is done by a qualified (statically bound)
invocation:

55



Chapter 4 Behavior Modeling

SUPER CLASS.method(self, arg1, ...)

It is for technical reasons of Lua, that this call is denoted with a period instead
of a colon delimiter. This allows unambiguous distinction between creationMethod syntax

using “:” [←1.2.3] calls and qualified calls, but entails the necessity, to explicitly pass self as first
parameter, which is usually hidden.
Qualified calls should only be used for super calls. They may be used to

distinguish between the versions of one method from different super–classes
when multiple inheritance is involved.

Ad (2): Lua/P is an interpreted language. The distinction to compiled
languages is blurred a little by the fact, that also a byte–compiled variant of
Lua code can be used, but conceptually this compilation is irrelevant. The Lua/P
interpreter is a distinct component within PIROL, called the workbench. For
the current discussion, it suffices to know that this workbench is a component
that encapsulates the repository, to which it communicates through the PCTE
API, i.e., the workbench incorporates the H-PCTE client library, transparently
using its proprietary mechanism of inter process communication.

4.1 Behavior Modeling Interacting with other Con-
cerns

4.1.1 Meta modeling

The meta model started as a pure data model for shared storage of data in aApplications

5 common repository. In the era of object orientation it is kind of difficult to see
such a structurally object-oriented model without thinking about methods as
well. Of course, adding methods to RO classes is a very powerful technique,
but the purpose of such methods varies greatly according to the concern that
is being captured by ROs.
The ROCM (RO class model) is divided into subsystems or packages. This

is how the core packages use methods:

GENERAL

The root classes ANY and ANY RO have methods interfacing to the language itself
(conforms, get class), which could alternatively be implemented as special
operators (cf. Java’s instanceof operator). Also a method eq is needed to
replace the test for object identity.1 Here, two oddities from H-PCTE and
Lua contribute to a little complication: the H-PCTE API makes no statement
whether two different object references really refer to different or the same
object. A function Pcte object references are equal must be called for
reference comparison. Lua, on the other hand, considers test for identity (==)
as even more fundamental than all those events that can be redefined using

1Note, that this applies indeed to object identity. Of course a field by field test for equality
has to be implemented by methods, but for identity test OOPLs usually have a special operator
(= or ==).

56



Behavior Modeling Interacting with other Concerns Section 4.1

tagmethods. I.e., no tagmethod can be installed for this event. For these
reasons the programmer must be required to use the eq method for comparing
object references instead of the == operator.
Methods get origin and get origin list encapsulate knowledge about

reverse links that otherwise don’t fit smoothly into the object-oriented model. Reverse links [←2.1]
Consider, e.g., the nested structure of SUBSYSTEMs which follows the Compos-
ite Pattern [GHJV95]: although only links from parents to children are mod-
eled (attribute subsystems: List(SUBSYSTEM)) each subsystem also implicitly
knows about its containing super-system. Although this reference is unnamed it
can be retrieved using low level PCTE operations that are encapsulated by this
method. In our example this is invoked as subsys:get origin("SUBSYSTEM",
"subsystems"). This generates a query for an object of type SUBSYSTEM that
has a link called subsystems pointing to the current object subsys. If it is
unknown how many objects might have such a link, get origin list has to
be employed resulting in a list of matching objects.
Class ANY RO adds access control (modeled by the indirect association to a This structure was

depicted in
Fig. 2.1 on page 39.

PERMISSION object). Methods are provided, that allow to change the permission
for an object, which ensure that the explicit information in the PERMISSION
object are always consistent with the effective permissions as defined by access
control lists (ACL) at the level of PCTE. ACLs in PCTE allow a very fine
grained control over different actions involving a given object or link. Many of
these details are hidden by methods of ANY RO and PERMISSION. For the user
of PIROL it suffices to understand the attributes and methods of these classes.
Some classes have simple retrieval methods for simplified access. E.g. class

CO (conceptual object) has several tuple lists that are intended as mappings Conceptual objects
[←1.1.1]RO × key −→ value. E.g., string values are stored in this tuple list:

string resources: List{ro: ANY, key: String, strval: String}
The semantics of the desired mapping is implemented by these access methods:

CO:get string(ro: ANY, key: String): String
CO:set string(ro: ANY, key: String, strval: String)

Further classes in package GENERAL are PIROL, PROJECT, WORKBENCH, and FOLDER,
which setup the top-level generic structure of a repository. Methods from these
classes are used to

• retrieve a user’s workbench object during startup of the workbench
process,

• interface to mechanisms of distribution and control integration
(see Chap. 7, Chap. 8),

• access common services (see Chap. 11).

PRODUCT

Methods in this package (and related packages TYPES, RELATIONS) only help to
maintain the consistency of its objects and provide utility functions for informa-
tion retrieval. A package ROCM (for RO class model) refines classes from PRODUCT
for reflective definition of the ROCM. This package significantly contributes to
PIROL’s bootstrapping process.

Bootstrapping
PIROL [4.2→]

57



Chapter 4 Behavior Modeling

PROCESSES

This package serves several goals of which only one mechanism is to be presented
here, while other issues are deferred to Chap. 9.
While other approaches consider this a primary concern of its own, this the-Related Work

5 sis pre-assumes the necessity for some process support, but focuses on concerns
that are closer to realization. Therefore, process support is only indirectly cov-Process integration

[8.1.1→] ered wherever the technical discussion is impacted by this high-level goal. See
[ACF97] for an assessment of process centered SEEs.4
Package PROCESSES defines a state machine for the states of documents.

It is assumed, that in a controlled development process each document has a
state that gives evidence on where in the process this document currently sits.
A typical sequence of such states would be busy, proposed, published, accessed,
frozen[Lam94]. There is no general answer, to which degree software support
for development processes should be guiding or prescriptive and how much of
the involved workflows should be subject to automization [Gro94].
An automaton of document states is, in any case, a natural piece of au-

tomization that could be useful for about every project. Such an automaton
consists of one STATE object for each state and one TRANSITION object for each
transition from one state to another. Each document has a reference to exactly
one STATE object and classes STATE, TRANSITION, GUARD, and ACTION implement
the state machine that allows to advance the state of a document according to
a defined transition.
As a refinement of these very generic mechanisms, classes PERMISSION GUARD

and PERMISSION ACTION allow to relate the guards and actions in this state ma-
chine to roles and persons, providing for a role based workflow.

Classes PERSON and
ROLE [9→]

Class ACTION also shows that it may sometimes be desirable to leaveNew Feature
5 the level of static object-oriented programs: This class has an attribute
cmd strings: List(String). Each string in this list is executed as a Lua/P-
script whenever the corresponding transition fires. Here we profit from the
fact, that Lua/P is capable of scripting, i.e., dynamic execution of statements
that are given as strings. This is a notable abbreviation over regular object-
oriented techniques, were each specific action would have to be programmed
by a subclass of ACTION. Note, that subclassing in PIROL would involve the
whole process of generating and installing PCTE types. This overhead is not
justified if just a new implementation to a given method is needed. This can
be done interactively without terminating any server process or launching any
generator/compiler.

TOOLS

This package has to be deferred to Chap. 8.

4.1.2 Persistence

There is no need for any methods related to retrieving objects from persistentDiscussion
5 storage and storing modified objects back to this storage. We transparently
encapsulated persistence such that every modification at the level even of single

58



Behavior Modeling Interacting with other Concerns Section 4.1

attributes is immediately made persistent. Methods of the meta model profit
from this design and can be seen as orthogonal to the persistence concern.
While this holds for objects, loading a segment from the repository needs to be Segments in PCTE

[←2.2.1], as user
context [9.1.7→].

controllable from the level of Lua/P and is encapsulated by methods of the meta
model.

4.1.3 Granularity

So far, we have seen how to integrate behavior implementation into the object- New Feature
5oriented part of the meta model. Chap. 3, however, claimed that for the very

fine grained parts of the meta model, not an object-oriented model prevails,
but grammar based terms should be preferred. This hybrid model of object-
oriented and term-like objects calls for a similar combination of techniques for
implementing behavior. Three issues need to be considered:

1. Is behavior implemented by imperative methods or pure functions?

2. To which modules are methods or functions associated?

3. How are type-based conditionals implemented?

Ad. 1: Sect. 3.2.1 stated that the repository considers terms as immutable
objects with value semantics. This seems to suggest term precessing by pure
functions, but within Lua/P incremental modification of terms is actually no
problem. Still, a functional style of programming with terms seems natural, as
terms are born from experience with functional programming. The choice is,
however, left to the Lua/P programmer.

Ad. 2: In Chap. 3, we said that term types tied to our experience with
the Pizza language. Unlike Pizza, Lua/P does not support attaching methods to
term types, because the latter are not full-fledged classes. Only list-like terms
can be accessed using methods as defined by the interface List (see App. A.2).
Other than these general purpose methods that are generically attached to all
terms, terms are intended primarily for processing using functions, for which no
corresponding concept of modules is enforced to date. This lack of an additional
module concept is basically due to the lack of application of and experience with
term processing. Currently these functions can either be global or local to other
functions or methods. In the long run each complex operation over terms should
be placed in a module of its own.

Ad. 3: In object-oriented programming, classes not only form the main
unit of modularization, but also provide the basis for a fundamental mecha-
nism of conditional control flow. Dynamic binding is the builtin mechanism
of dispatching according to the dynamic type of an object. The corresponding
mechanism in functional programming is type based pattern matching . In Lua/P
this is done by a function t select which matches a given term against a list of
type patterns. Patterns are given by t case branches. In the simple case, each
pattern specifies a type and a function that should be executed, if the term is

59



Chapter 4 Behavior Modeling

function expr2string (t)
return

�� ��t select (t,
(1)

�� ��t case (’@value’,
function (val)
return val

end),
(2)

�� ��t case ({’expr’, ’@binop’, ’expr’},
function (e1, op, e2)
return (”(”..expr2string(e1)..op..expr2string(e2)..”)”)

end),
(3)

�� ��t case (’unexp’, {’@unop’, ’expr’},
function (op, expr)
return (”(”..op..expr2string(expr)..”)”)

end),
(4)

�� ��t case (’exprlist’,
function (list)
return ”{”..

list:
�� ��foldl (””,
function (e, col)
if col ˜= ”” then col=col..”, ” end
return col..expr2string(e)

end)..
”}”

end),�� ��t otherwise (
function () return ”?” end)

)
end

Figure 4.1: Using pattern matching for a simple pretty printer.

conform to that type. The function is called with the term as only argument.
In addition to the top-level type a pattern may also give a list of types to which
the sub-terms must conform. If such a pattern is matched, the sub-terms are
passed as distinct arguments to the function. When the string representation
of a term is desired this conversion can be automated by prepending the @ oper-
ator to the type pattern. Finally a t otherwise branch may provide a default
function, that is used if no pattern is matched.

See Fig. 4.1 for a simple pretty-printing function for expressions according to
the grammar of Fig. 3.1 on page 51. Note, that in object-oriented programming
the standard technique for this problem would be to apply the visitor pattern,
introducing far more overhead than the more functional approach.

The first branch in Fig. 4.1 matches subtypes of value, the next branch
matches any term consisting of an expression, a binary operator and another
expression. Branch (3) combines matching of top-level type (unexp) and struc-
ture (unary operator and expression). All operators and values are passed by

60



PIROL’s Boot Process Section 4.2

their representation (use of @). Expressions are passed as terms. Branch (4)
again is a simple match by type. It shows an application of the foldl function,
which is borrowed from ML [Pau96]. We introduced foldl to Lua/P as one of
the most general higher order functions, that iterates over a list, collecting the
results through a second argument (col). In this example the effect resem-
bles a smarter mapconcat function: the representation of all list elements are
concatenated using ’, ’ as a separator except for the first element.

4.2 PIROL’s Boot Process

Classes appear in four different representations in PIROL:

1. Lua/P source code,

2. Workbench–internal structures (plain Lua tables),

3. ROs as reflexive definition,

4. PCTE types.

Of these four, only two are visible: (1) is the input as created during de-
velopment and customization of the environment. (3) provides a set of objects
available for introspection of the current meta model. This level is currently
not used for dynamic changes of the meta model except for one purpose: during
deployment.
This is, how a concrete (customized) meta model is installed into PIROL: For

the core package GENERAL, PRODUCT, RELATIONS, ROCM, TYPES and PROCESSES
type definitions exists as schema definition sets (SDS) in PCTE’s data definition
language (DDL). For the same packages also Lua/P files are provided. At boot PCTE type

definitions [←2.1]time the Lua/P packages are interpreted several times with different results.

Building the internal structures. One pass of reading each Lua/P
package is completely dedicated to building the internal representation of classes
as defined in Chapter 2.3.1. The result of this pass is an encapsulation of Internal structure of

classes [←2.3.1]predefined Lua/P classes, such that ROs can be created and modified without
explicit calls to the PCTE API.

Creating ROs as representation for introspection. A special Lua
module, that is used only during the boot process, reads the Lua/P packages
again, but changes the interpreter such that no internal structures are created,
but instances of ROCM PACKAGE, ROCM CLASS, ATTRIBUTE, TYPE and METHOD. One
of the ideas behind this transformation is to eventually do without any external
files, but keep the meta model completely within the repository. Currently,
method bodies are not stored in PCTE, but only for the lack of necessity. This
encoding of the meta model is, however, used by generic tools, that may dynam-
ically inquire an object’s class and all its features. Convenience methods exist,
like CLASS:get all features of type (feat type, feat class), which are
used by the PIROL Object Navigator (PON, see Sect. 13.1) for displaying, e.g.,

61



Chapter 4 Behavior Modeling

all string attributes of any given object. Finally, this intermediate representa-
tion is used for the next step: creating PCTE type definitions.

Creating PCTE type definitions. This step is only needed for packages
outside the meta model core (core packages already have the PCTE types by
compiling the given SDS files). Note, that additional packages can be added to
an existing installation at any time, not only during first time booting. Class
ROCM CLASS simply has a method compile schema, that creates a PCTE type
definition with all attributes and links applied as defined by the Lua/P input and
its mapping to PCTE. This is performed using a special part of the PCTE-API
that allows to create and setup types programmatically. It is noteworthy, that
type definitions can be created incrementally, most importantly: If one Lua/PIncremental type

definitions and
multiple views in
PCTE [16.1.2→]

package imports a type from another package that is (maybe due to circular
imports) not yet installed, the importing package may already create an empty
type in the other package. Only later, when the second package is installed,
that empty type is stepwise filled by applying attributes and links.
A future application of this technique might be to develop additional Lua/P

packages within PIROL as instances of ROCM CLASS etc. With a simple call to
compile schema each new class can immediately be used for creating persistent
objects.

4.3 Summary

The main concern interaction of this chapter regarded the different levels of
granularity and their styles of computation. These two styles co-exist without
problems. Functional programming allows to add a new dimension of modular-
ity, because many modules of functions may operate on the same set of types.
Modular definition of hybrid traversals concerning objects and terms will be→Sect. 10.3.3 will

discuss the current
issue in the presence

of DVCs.

discussed later.
By and large, the addition of methods and functions to the meta model is

an orthogonal extension, that does not conflict with any previously introduced
concern.
Model behavior can rather be seen as a facilitator , that helps to define inter-

faces (between sub-models and between concerns), encapsulate techniques and
provide a uniform environment, in which services from very different concerns
can be exploited in a seamless way. The boot process provided an example
where the method ROCM CLASS.compile schema makes PCTE’s capability of
incremental schema definition available to clients without the need to worry
about PCTE-specific details. The same hold for many methods in package
GENERAL.

62



Chapter 5

Exception Handling

Now as we have methods attached to RO classes we have to take into account
that each method invocation may fail. Exception handling is not a new issue for
software engineering and language design. A very expressive model of declar-
ing, throwing and handling exceptions is included in the Java language. Eiffel
[Mey92] on the other hand provides a clean embedding of exception handling
into its model of design by contract. The emphasis for PIROL lies not in copy-
ing one of these approaches or even combining the positive aspects of several
approaches, but we were looking for a pragmatic, domain specific approach,
that is just “good enough” for PIROL’s needs. In PIROL this concern, which
naturally cuts across all structures of a system, requires quite different consid-
erations at the different levels of the system. For this reason the actual focus of
this chapter lies in the single concern interactions, and similar considerations
will follow in subsequent chapters.

5.1 Exception Handling Interacting with other Con-
cerns

5.1.1 Meta Modeling

At the current point of discourse, it is difficult to separate the meta modeling Applications

5concern from the behavior concern with respect to their interactions with excep-
tion handling. In order to simplify this discussions, both aspects are discussed
here.
Regular methods of the meta model do not make frequent use of exceptions1.

Different conditions that may occur are rather handled in an explicit way. This
style of programming emphasizes that exception handling should not be misused
as a normal control structure for anticipated conditions.
Of course, the different packages of the meta model have to deal with very

different conditions. These are the exceptions typically thrown within each
Lua/P package:

1In Lua/P, the word “error” is used. In this text both words are used as synonyms, because
focus lies on the mechanism rather on subtle differences in semantics.

63



Chapter 5 Exception Handling

GENERAL: methods in classes ANY and PERMISSION dealing with modify-
ing access rights of an RO may fail if the user is not owner ofAccess control in a

multi user
environment [9→]

the RO (NotOwner).

PROCESSES: Several kinds of access exceptions may occur in the context of
manipulating objects of type PERSON and GROUP, as these have
the semantics of representing users and user groups. Several
operations require administrator privilege. Most of these op-
erations need to retain consistency with PCTE internal struc-
tures. It is the invocation of PCTE functions that may fail
and thus throw an exception.

ROCM: Also this package needs to observe and maintain consistency
with PCTE and may throw an exception if it fails to do so.Compiling reflective

objects to PCTE
type definitions

[←4.2]
Generally, exceptions are also used as a workaround for missing abstract

declarations of methods: abstract methods are implemented as empty methods
that throw an exception AbstractMethod. All in all, there is only a small
number of methods in the meta model that actively throw an exception.
Thus, exceptions are normally thrown by other levels of the system, and

methods of the meta model simply pass exceptions up to the top-level caller.
No catch mechanism is included in Lua/P. This is in contrast to the capability
of plain Lua, where a function call may be a “protected call”, which will catch
any error within. This mechanism is only used by the implementation of the
workbench in order to catch errors at top level.

5.1.2 Persistence

The occurrence of an exception during a method that may have modified per-Discussion
5 sistent data might leave these data in an inconsistent state. Two additional
concerns come to mind. The requirement of data integrity is to be introducedData integrity [6→]
in the next chapter. Secondly, a solution for the problem at hand will certainly
include transactional protection. Within this thesis, transactions are not con-
sidered a top-level concern. This might be arguable but the list of concerns not
including transactions already spans a space in which all issues of transactions
are covered. This is how transaction related issues are allocated:

• Transactions are motivated by data integrityData integrity
[6, 6.2.5→]

• What cleanup is necessary when aborting a transaction?Transaction abort
[7.4.5→]

• When are transactions started, committed and aborted?Client requests and
transactions [7.4.5→]

5.1.3 Granularity

Having different levels of granularity seems not to influence exception handling.Discussion
5 The other way round a special term type ERROR is used to model exceptions
as light weight objects. An ERROR term simply combines an integer error code
with a string message explaining the exception condition.

64



Summary Section 5.2

5.1.4 Behavior

Most aspects of this interaction have been discussed in the context of meta
modeling. Here only one aspect is to be added, that relates to matters of pure
language technology.
Much effort has been put into making the workbench robust against type Applications

5errors in Lua/P programs, as long as no type checker is available. This is mainly
a matter of catching the attempt to access non-existent fields of an object.
Other exceptions are thrown, when object creation violates the rules concerning
creation methods. As soon as a type checker is available, these exceptions will Creation methods

[←Sect. 4 on page 55]be almost obsolete, but this code has still to be kept for the sake of reflective
programming: several methods of the meta model, e.g., retrieve classes by their
name, that might be stored in a string attribute. These applications cannot be
checked by a type checker.

5.2 Summary

The most intricate interactions concerning exception handling are still to come
in later chapters. In our first analysis and early drafts of this thesis, exception
handling only occurred as a special form of interaction between concerns like
data integrity and behavior. Only a closer look revealed that such an interaction
could not be cleanly captured as an interaction between only two concerns, but
other concerns got involved, too.
This entangling of several concerns in one interaction was taken as a signal,

that exception handling should rather be treated as a concern of its own right,
allowing for separate discussion of its relationship to all other concerns in the
system. It should not surprise, that this newly identified concern adds a little
less than a full new dimension to our discussion: from the perspective of excep-
tion handling the concerns of meta modeling and behavior seem to collapse to
one concern. Without loss of expressiveness this chapter could have completely
merged both concerns into one section. The concern interaction matrix need
not be complete. Concerns that have empty cells in their row (column) of in-
teraction may be considered weaker than others. They may also be harder to
identify. But already a small number of interactions with other concerns should
justify the separate treatment of a concern.
There is another oddity in exception handling. This concern is not alone de-

rived from any system requirements. Of course, the requirement of robustness
may call for exception handling. But exception handling should also be seen
as a mediator between other concerns. By its very nature of crosscutting mod-
ules of the system, exception handling can influence the control flow in a way,
that would otherwise be very hard to achieve. For certain conditions, excep-
tion handling is perfectly suited for “teleporting” the locus of control out of a
module, just because another module somewhere deeper in the system signaled
the violation of some condition.
Together with mechanisms of centrally installed exception handlers excep-

Exception handlers
[7.4.5→]

tion handling has some similarity to aspect-oriented programming and will be AOP [16.3.2→]
further discussed in that context.

65



Chapter 5 Exception Handling

66



Chapter 6

Data Integrity

6.1 PIROL’s Mechanisms for Data Integrity

6.1.1 Encapsulation

PIROL’s meta model is in the first place a data model for the underlying reposi-
tory. Methods are only added as an additional mechanism, they are not needed
for accessing attributes of objects. We already saw assignments like

o1.a1 = o2.a2

which in contrast to “normal” OOPLs “break” the encapsulation of objects o1
and o2.
Of course, encapsulation is a fundamental technique for ensuring semantical

integrity . The problem with encapsulation is the single choice of decomposition “Tyranny of the
dominating
decomposition”
[15.1.2→]

criteria, disallowing overlapping modules. The effect is quite often, that for
the sake of encapsulation one set of decomposition criteria is strictly enforced,
while other criteria are not reflected in the system’s module structure. Regard-
ing those suppressed criteria, locality and comprehensibility are significantly
compromised. This tension, which is the main motivation of aspect-oriented
software development , will be discussed in Part III.
PIROL partly relaxes the rules of encapsulation. In Lua/P all attributes are

implicitly public. This renders possible some experiments regarding a modular-
ization that cross-cuts the class structure and realizes a significant abbreviation
of regular usage of ROs: Throughout large parts of the ROCM get and set
methods would be needed in fact for every attribute declared. Such a wide
spread usage of trivial access methods adds nothing to the comprehensibility of
the system.

6.1.2 Towards Semantical Integrity

While language support for strict, one–dimensional encapsulation cuts both
ways, semantical integrity should be taken very seriously. Many approaches
pay respect to the finding that a structural model should be more detailed
than – say – a UML class diagram, in order to carry the intended meaning.

67



Chapter 6 Data Integrity

Event Type Arguments Description

Simple attributes:
assign req. value assignment of value to the resp. attribute of self.
get req. none retrieve the resp. attribute from self.

List attributes:
adding notif. index, value value is being added to self at position index.
removing notif. index, value value is being removed from self at position index.
append req.
remove req.

}
all regular list functions

. . . req.

Abbreviations: req. = request — notif. = notification

Figure 6.1: Events for attribute guards

AttributeAccess CLASS.SimpleAttribute {
Event = method (Arguments). . . end,
. . .

}
ListAccess CLASS.ListAttribute {
Event = method (Arguments). . . end,
. . .

}

Figure 6.2: Syntax of attribute guards

The UML meta model employs well–formedness rules written in OCL1. Many
database approaches allow to define consistency constraints that relate several
values to each other (Examples, discussed in this thesis are [SHO95, Emm96]).
In this tradition, Lua/P introduces the concept of attribute guards. An at-

tribute guard allows to intercept the event of accessing an attribute. Two kinds
of events can be distinguished: requests and notifications. When intercepting a
request, the guard is fully responsible of performing the requested action. When
intercepting a notification, the requested action has already happened.
Also the kind of attribute must be considered: simple attributes define only

two request events: get and assign. For list attributes each List–method cor-
responds to a request event, and two additional notification events are defined:
adding and removing. Fig. 6.1 summarizes the events, Fig. 6.2 shows the
general syntax of a guard definition. The implicit argument self refers to the
base object for AttributeAccess and to the list in the case of a ListAccess.
The base object can be retrieved from a list by list.base.
The effect of triggering an event on a guarded attribute largely depends on

the style by which the guard is implemented. Several styles will be discussed
in the following sections. By allowing any legal Lua/P statements within guards
we are flexible to do very different kinds of things. An additional command
allowed within a guard implementation is raw eventname, i.e., the standard
implementation of the event being intercepted. For lists these raw versions

1Object Constraint Language [OMG99]

68



PIROL’s Mechanisms for Data Integrity Section 6.1

are temporarily installed methods of List, while raw get and raw assign are
temporarily available as global functions.2 By this mechanism it is impossible
to use these raw versions other than within a guard implementation. In other
words: there is no way an attribute guard can be bypassed when accessing a
guarded attribute.
Note, that this rule is even stricter than the regular class based encapsula-

tion with get and set methods: (1) It comprises also protection of the contents
of list attributes, which would be unprotected if a get method would simply
return the container object. (2) Guards apply even when acting within one ob-
ject: they are triggered on every access, irrespective of the context from which
the access is triggered.
A future version of Lua/P might support a slight extension of the guard

concept. With little effort guards could also be used as class invariants. An
easy solution would associate a class invariant with all attributes on which it
depends. Of course, this would require some static program analysis, for which
infrastructure is missing in PIROL. Furthermore, methods should be allowed,
to temporarily violate a class invariant (see also the discussion on transaction Tolerating

inconsistency
[16.1.6→]support in APPL/A, Sect. 6.3.1 on page 79).

At the implementation level, a guard definition is a meta program that
modifies a class by replacing a normal accessor by a guard. Very interesting
effects can be obtained if such guards are attached dynamically to a class.
Sect. 11.3.6 will report on an application of dynamically attached guards.

Observer mechanisms
[11.3.6→]

Guards allow access oriented programming à la LOOPS’ active values Related Work
5[SBK86]. There is also some similarity to properties in C# [C#01]3, which

allow attribute-style access to class members provided that get/set methods
are implemented. In Lua/P standard get and assign functions exist automatically,
and guards need to be implemented only for additional actions. A built-in tech-
nique for lists and list guards exists in none of these languages. Other languages
supporting comparable concepts for integrity are discussed below (Sect. 6.3). 4

6.1.3 Avoiding Redundancy

Some constraints in the design of a database schema originate from some sort of
redundancy . If information is replicated — possibly in different formats — extra
effort is needed, in order to keep these interdependent data in sync. Fig. 6.6 be-
low will show a guard that results from such redundancy. PIROL was, however,
developed with the intention to avoid redundancy wherever reasonable. The
fine grained meta model allows to store documents with much less redundancy
than any file based approach. Another means for reducing redundancy is the
use of functions that compute derived data on demand instead of storing these
data. Many methods of the ROCM are introduced for exactly this purpose.
Meyer proposes the principle of uniform access [Mey97] to hide the distinction

2This is another application of Lua function closures (cf. Sect. 1.2.3): these temporary
functions encapsulate the values of the current object and the current attribute. The latter is
not explicitly accessible within a guard but is implicit context information generated during
guard definition.
3Lua/P guards where developed before C#.

69



Chapter 6 Data Integrity

Class ROUTINE {
inherit FEATURE,
attributes={
arguments: List(ENTITY),
type: TYPE
signature:Derived(String), –– Declaration
. . .

}
}
. . .
function ROUTINE:derive signature () –– Derivation Function
local args = self.arguments:foldl ( ”(”,
function (arg, pre)
if not pre == ”(” then pre = pre..”, ” end
return pre..arg.signature –– read another Derived Attribute

end)
args = args..”)”
if self.type then
return self.name..args..”: ”..self.type.name

else
return self.name..args

end
end

Figure 6.3: Derived attribute ROUTINE.signature

between attribute queries and query functions. In Eiffel, an expression o.a
may either refer to reading an attribute a or calling a nullary function a()
on o. Meyer argues, that for functions without side–effect, the client should not
bother with the difference between such an explicit function and the implicit
accessor by which the value of an attribute can be read. For this reason the
syntactical difference between o.a and o.a() as it appears in many program-
ming languages is leveled. In Lua/P only special features — declared as derived
attributes — are interchangeable with attributes.
In Lua/P a derived attribute consists of two parts: a variable declaration and

a function definition.
As an example of derived attributes, consider the signatures of routines as

modeled in the RO-class ROUTINE (Fig. 6.3). Names, arguments and result types
of routines are kept persistently either as direct attribute (name) or using sepa-
rate repository objects of types ENTITY (arguments) and TYPE (result type). It
should on the other hand still be possible to query the signature of a routine (en-
coded as a human readable string) with just one query. The structural definition
of ROUTINE declares an attribute signature: Derived(String). This attribute
must be implemented by a derivation function, whose name is constructed ac-
cording to the convention of prepending the attribute name with ‘derive ’.
With these definitions in place, the expression my routine.signature is evalu-

70



Data Integrity Interacting with other Concerns Section 6.2

ated as my routine:derive signature(). The body of the derivation function
makes use of the compact style of the foldl higher–order function. Higher order function

foldl [←4.1.3]The first benefit of these syntactical manipulations is that evolution is made
easier, because now the implementation may switch between an attribute and
a function without visible impact on usage clients. Switching from a function
— i.e., a derived attribute — to a stored attribute is always safe. This typically
happens, when a value that could be computed shall later-on be cached per-
sistently for reasons of performance. The opposite — migrating from stored to
derived — is only safe, if no client performs any writing access to the attribute,
which would break in the case of a function. This asymmetry has been noticed
and a similar construct exists, where both directions — reading and writing — redirect construct

[10.2.3→]are implemented.
The prevalent motivation for derived attributes as a middle ground between

attributes and functions relates to component communication in PIROL. Integration of derived
attributes and
change propagation
[8.3.6→]

Avoiding redundancy should always be the primary goal. Only if this is not
reasonable, attribute guards may be used to safeguard the integrity of redundant
data.

6.1.4 Technical Integrity

Another issue of data integrity is referential integrity , which will be discussed
below in Sect. 6.2.2.
While referential integrity ensures the existence of a target object for every

link, type safety is to ensure that the type of the target object matches the Discussion of static
typing [14.2.3→]expectations of the referring context.

6.2 Data Integrity Interacting with other Concerns

6.2.1 Meta modeling

Attribute guards were introduced as a means for enforcing the semantics of the Applications

5meta model. With attribute guards we now have a way of encoding invariants
over the meta model. Two styles can be distinguished: Restrictive and opera-
tional guards. Fig. 6.4 gives an example of a restrictive guard. The invariant
is

self.main routine:feature of() = self.root class

In other words: The main routine must be a feature of4 the root class. If an as-
signment to main routine tries to violate this invariant, an error is raised. The
effect of raising an error within a guard will be discussed below (Sect. 6.2.5).
An operational guard is shown in Fig. 6.5. This guard ensures the constraint,

that a class containing at least one abstract method must be abstract, too:

r.is abstract ⇒ r.feature of().is abstract

4Class FEATURE (of which ROUTINE is a subclass) has no explicit reference to the
containing class, but method feature of can retrieve this information based on implicit reverse
links (cf. 4.1.1) by a call self:get origin("CLASSIFIER", "features")

71



Chapter 6 Data Integrity

Class {SYSTEM;
. . .
attributes = {
root class: CLASS,
main routine: ROUTINE,
. . .

}
. . .

}
. . .
AttributeAccess SYSTEM.main routine {�� ��assign = method (routine)

if self.root class:eq(routine:feature of()) then
raw assign(routine)

else
pirol error( ERROR.GuardException,
"SYSTEM: main routine must be of class root class.")

end
end

}

Figure 6.4: A restrictive guard for SYSTEM.main routine

AttributeAccess ROUTINE.is abstract {�� ��assign = method (flag)
if flag == self.is abstract then return end –– Nothing to be done.
raw assign(flag) –– Actually perform the assignment.
if flag then –– Only consider transition false→true.
local class = self:feature of()
class.is abstract = flag –– Propagate the change.

end
end

}

Figure 6.5: An operational guard for ROUTINE.is abstract

This guard does not raise an error but propagates the change to the containing
class, if needed, thus enforcing the constraint operationally.
The next example, Fig. 6.6, shows an operational guard for an adding no-

tification on SUBSYSTEM.classifiers. Here the constraint is

c ∈ c.subsystem.classifiers
saying a class must be contained in the list of classifiers of its subsystem. This
constraint is necessary because the reference c.subsystem is partially redun-
dant and must be kept aligned with the reverse s.classifiers. This is no
full redundancy since a classifier may be referenced by many subsystems, but
it refers to exactly one subsystem in which it is defined.

72



Data Integrity Interacting with other Concerns Section 6.2

ListAccess SUBSYSTEM.classifiers {�� ��adding = method (index, class)
if not class.subsystem then –– Don’t overwrite existing link.
class.subsystem = self.base

end
end,

}

Figure 6.6: A list guard for SUBSYSTEM.classifiers

For this constraint class CLASSIFIER is primarily responsible, but adding
a classifier to a subsystem should also synchronize the subsystem link, which
is shown by the guard in Fig. 6.6. Associating the guard with the adding
event generalizes from the concrete list method that is used. Thus the guard is
triggered for each object that is being added to the list.
This section has shown examples of how attribute guards can give additional

meaning to data in the repository. The examples were confined to relationships
within the meta model. Sect. 9.1.6 will show, how attribute guards can integrate
additional low level features of PCTE into the meta model. Sect. 8.3.6 will
go the opposite direction showing an attribute guard that controls distributed
components.

6.2.2 Persistence

The conceptual architecture of the PIROL workbench assigns to attribute guards New Feature
5a place very close to the bottom, right next to the persistence layer. I.e., any

request to modify persistent data has to pass the corresponding guard, if one is
defined. This ensures that persistent data always satisfy the guard conditions.
Another type of constraints is already ensured by the underlying repository.

PCTE guarantees referential integrity at any time. This means that links5 will
never point to deleted objects. This can be compared to programming languages
that have no explicit operator for deleting an object, but only references can
be deleted. Objects are only deleted implicitly after the last incoming reference
has been deleted (garbage collection). As a result of this mechanism — both in
PCTE and in languages with automatic garbage collection — all objects and
links always constitute a connected graph with an explicit root object from
which all other objects are reachable via links.
This places a special burden on Lua/P: whenever an RO is created, PCTE

requires a link pointing to this object, otherwise it cannot be persistent. It is,
however, a very convenient and frequent practice to assign new objects to local
variables, first. Only later within the same method (or its calling method) a
persistent link attaches the new object to another RO. This is not possible with
PCTE.
The first approach in Lua/P required that every object creation already spec-

5Only links of certain categories (cf. Sect. 2.1) This discussion does, e.g., not apply to
implicit links.

73



Chapter 6 Data Integrity

ified an origin object and a link, by which the object could be attached to the
graph of persistent objects. This required a special function Linked New with
non-standard syntax6. It could, however, not be tolerated that every object
creation already knew this origin RO and the attaching link. Consider, e.g., a
method clone that should create and return a copy of the target object. Only
its application context can create the link needed for persistently creating the
object. Not to speak of the confusion that would result, if different versions
of clone would be needed, one for attaching the new object using a regular
link, the other one for inserting it into a List. All this would break the encap-
sulation of PCTE in that too much knowledge about the repository would be
visible within Lua/P. Programming in Lua/P would have to be aware of PCTE
and its concern of referential integrity, while PCTE — other than programming
languages — does not know about local variables.
The solution in PIROL involves an explicit modeling of dangling objects.

Objects that are not created by Linked New but using the syntax

lua var = CLASS:creation method(arg1, . . . )

are attached to an object of type WORKBENCH using a list

dangling objects: List{
obj: ANY,
persistent: Boolean

}
This list acts as an “orphanage” for newly created objects. Links from this
list are used to keep objects alive that are not otherwise reachable. The next
attachment of an orphan to a living object will cut the link from the orphanage
— the object is “adopted”. Special housekeeping is needed in order to figure
out whether an orphan is attached to a live object or just to another orphan.
When the workbench process shuts down, it wipes the list of dangling objects
deleting all orphans that have not been adopted. This deletion can be prevented
by setting the persistent flag in the above tuple definition. Objects with this
marking are not deleted, even if the dangling objects link is the only link by
which the object can be reached.
Tools may use that flag, if objects are kept in this list over a longer period of

time. Thus an orphan can be protected against data loss, in case of unexpected
termination of tool or workbench.
Note, that maintenance of the dangling objects list involves some effortDiscussion

5 in caching administrative data and has to be considered during each creation of
a link. This is complicated by the fact, that dangling objects my refer to each
other transitively and changing the status of one of these objects (either deletion
or attachment to a non-dangling object) can require to propagate that change
to many other dangling objects. So, from the performance point of view, one
might be inclined to avoid dangling objects completely.7 Most statements of

6The syntactical problem originated from the need to combine object creation, invocation
of a creation method for initialization and link creation into one function call. The resulting
syntax is: Linked New(originRO, ”linkName”, ”className”, ”creationMethodName”, arg1, . . . ).
7Surprisingly, measurements (Sect. 14.1.2) showed that for standard situations the penalty

imposed by dangling objects can well be tolerated.

74



Data Integrity Interacting with other Concerns Section 6.2

object creation in Lua/P could in fact be transformed into a call to Linked New.
This could be done by a simple preprocessor for Lua/P, which already exists
for minor syntactical improvements. However, in a distributed setting this →See Sect. 7.3.2 for

the full discussion.approach would place severe restrictions not only on methods of the meta model
but also on the implementation of tools, which cannot be tolerated. 4

Integrity of cached data

Caching has been introduced as a natural complement to persistence. This will
Caching of lists
[←2.2.1]

have to be considered in the discussion of aborting a transaction. The same Transaction abort
[7.4.5→]holds for transient objects. Both kinds of data are outside the rule of PCTE.
Transient data
[←2.2.1]

6.2.3 Granularity

Term grammars extend the explicit modeling of structures below the level of Discussion
5classes. Thus, structural integrity can be ensured for any desired level of gran-

ularity.
Support for very fine grained semantical integrity is less explicit. Currently,

guards can only be applied at the level of attributes of an object. Elements
within a term structure do not have guards. Implementing guards for the
semantic integrity of terms requires more effort but can be done using attribute
level guards, since only those terms are persistent that have been asigned to an
RO attribute.
Referential integrity needs to be reconsidered for term structures, because

these structures introduce objects about which PCTE knows nothing. So,
PCTE cannot be responsible for their referential integrity. The precise phras-
ing of the problem at hand is: how are references between terms and objects
implemented and how can their integrity be ensured?
For object references from within a term, a näıve solution might use a unique

object identifier encoded to a term of type OID which would be a subtype of
STRING. This, however, conflicts with the requirement of referential integrity.
Imagine the contents of some term referring by OID to an object which is later-on
removed from the repository (by removing all links leading to the object). This
would render the OID-reference invalid, i.e., pointing to a non–existent object.
This can only be avoided if the repository is made aware of this reference.
The dilemma is solved by introducing an indirection called indirect refer- New Feature

5ence: each object containing one or more terms has a list of objects, which are
referenced by its contents. This list exists at the repository level as a set of
links. Within a term only indices to this list are used. Translating indices to
objects and back can be transparently automated by the functions that store
and retrieve terms8. Thus the responsibility for referential integrity is split
into two parts: the Lua/P interpreter is responsible for synchronizing references
out of a term with actual PCTE references. PCTE is then responsible for the
validity of this PCTE reference.
A similar situation arises when attaching HTML contents to ROs. For this

8Automatic translation is not yet implemented, i.e., the indirection is still explicit.

75



Chapter 6 Data Integrity

purpose each RO of type ANY RO may have a DESCRIPTION9, that carries a bi-
nary attribute text. When using HTML as the format for this text, references
to other ROs may be included using a textual encoding to be shown later.PIROL URL protocol

[11.3.8→] Also these references from HTML to ROs are implemented using the indirec-
tion shown above, i.e., the encoding uses only numbers that are indices to the
regular list

referenced by contents: List(ANY)

Another issue of referential integrity concerns the deletion of terms. Within
the Lua/P interpreter (disregarding persistence), terms (and sub-terms) are han-
dled using reference semantics. Terms are implemented by a C library, that is
accessible from Lua only via API functions. From this follows, that Lua has
only partial knowledge about references to terms. Additional reference count-
ing is implemented in C, which aids the Lua interpreter in performing garbage
collection of terms and sub-terms. This is not trivial because the Lua garbage
collector may trigger collection of a term, that has sub-terms which remain
reachable and must not be collected. This complication is, however, limited
by the fact, that cycles in term structures are not allowed. A hook of the Lua
garbage collector is used to decrement this count whenever a term ceases to
be accessed from Lua. This results in a hybrid and multi-language garbage
collector.

6.2.4 Behavior

Methods in two ways help to ensure data integrity: methods may be used asDiscussion
5 functions that compute data that would otherwise be stored in a redundant
attribute. This reduction of redundancy avoids the problem of data integrity
for some cases.
Secondly, access methods may implement conditional modifications of at-

tributes, that don’t allow invalid values and combinations. The drawback of
such access methods is the difficulty of enforcing their usage. Every method
that is added to a class may introduce a hole, by which the original access
methods can be bypassed.
Conceptually, attribute guards are stricter than access methods, because

they are attached directly to their attribute. Unfortunately, experience with
attribute guards in PIROL has already pointed at situations, where this rule→See Sect. 9.1.6 for

an example. is too strict. Further investigation should show whether this issue should be
solved by improved language technology or by methodology. The rule could be
proposed that guards should be used where absolute strictness is adequate. As
soon as the guard needs to be bypassed in any situation, its constraint should
rather be implemented by a regular access method instead. This leaves the
choice of providing alternative access strategies.
Another approach to more flexibility might be to declare different scopes

for attribute guards. A strict guard is triggered by every attribute access and
can never be bypassed. For less strict guards, methods of the same class might

9As shown in Sect. 2.2.1, this object is usually inlined with the ANY RO.

76



Language Support for Consistency Section 6.3

be allowed to bypass the guard, enforcing strictness only for external access.
Such scoping has not been implemented in Lua/P. Scoping should be part of a
rigorous type system for Lua/P.

Discussion of static
typing [14.2.3→]

Another reason for using attribute guards in places where one would expect
regular methods will be presented when talking about distributed components.

Behavior implemen-
tation using guards
[8.3.6→]

6.2.5 Exception handling

Exceptions cause a program to immediately leave the current call stack. This Discussion
5could result in severe data corruptions. Lua/P does not include a mechanism

for catching exceptions because this aggravates the danger of data corruption.
With exception catching, data may be in an inconsistent state without any-
one noticing that an exception had occurred. A clean solution would have to
follow the lines of Eiffel’s rescue and retry mechanisms [Mey92], which ensure
that the method causing the exception eventually either succeeds or throws the
exception to its caller. Such a mechanism seemed too complicated for Lua/P
and instead data integrity in the presence of exceptions will be ensured by
transaction roll-back. Transactions

[7.4.6→]Moreover, exceptions are used in order to enforce integrity constraints.
Fig. 6.4 on page 72 presented a guard that raised an exception in the case
of detecting a constraint violation. The exception is in fact a means of en-
forcing data integrity in such a case by rolling back the current transaction.
Otherwise partial modifications might leave the object in an inconsistent state.
Every assignment in a Lua/P program can possibly trigger a GuardException.

In Lua/P methods do not declare which exceptions can be thrown like this is
enforced in Java. It is not clear whether such exception declarations can be
adapted for this setting. Of course, GuardExceptions could always be regarded
as RuntimeException according to Java terminology. ClassCastExceptions
and ArrayStoreExceptions belong in this category, for which no declaration is
needed. The common motivation is, that those exceptions are not triggered by
a method call but by a more fundamental language construct. Their declaration
would pollute method declarations to the brink of unreadability.

6.3 Language Support for Consistency

Several projects on SEEs have brought about language support for consistency. Related Work
5As we have pointed out several times, PIROL was designed with the goal of

minimizing redundancy thus preventing inconsistencies in the first place. A
different road is followed in [EAMP97], where redundancy is deliberately toler-
ated in the database schema. On the basis of detailed dependency constraints
three strategies exist to choose from:

• Constraint enforcement simply disallows user input that would lead to
inconsistencies,

• Change propagation calculates which document is affected by a modifica-
tion and sends a message to the corresponding tool that is then responsible
for re-establishing consistency, (see 8.2.2)

77



Chapter 6 Data Integrity

• Violation toleration means to let the user create temporary constraint
violations. Tools should then highlight these violations in order to guide
the user to eventually correcting the inconsistency.

In the sequel, two languages are discussed, that have dedicated support for
consistency: APPL/A [SHO95] and GTSL [Emm96].

6.3.1 APPL/A

Within the Arcadia consortium [TBC+88] an extension to Ada has been devel-
oped, called APPL/A [Sut90, SHO95]. This language was developed before the
introduction of object-oriented concepts to Ada. This may explain the dom-
inant use of value semantics instead of references, which are at the heart of
object-orientation10. Still, APPL/A features some concepts that are well worth
comparison. The contributions of APPL/A are: relations, triggers, predicates
and transaction support. All four concepts will be presented briefly; the focus
regarding consistency lies on triggers and predicates.

Relations. APPL/A, being a pre-object-oriented approach, lifts relations
as known from relational databases to the level of a programming language.
Technically, relations are modules that encapsulate a list of tuples. As stated
above, attributes of tuples have value semantics. Relations may have out at-
tributes, which are implemented as a function with explicitly declared depen-
dencies. APPL/A relations are said to be freely programmable. This includes
the choice of lazy versus eager computation of computed attributes, which is
completely up-to the programmer, which probably means, that no caching nor
dependency management is built into the language. Thus, computed attributes
have a similar intention as derived attributes in Lua/P, however with less support
from the infrastructure.

Dependency
management for
derived attributes

[8.3.6→]
Triggers. Triggers are defined in separate units, that are attached a-
posteriori to relations, i.e., relations are ignorant of their attached triggers.
Communication between a relation and its triggers is by implicit invocation in
conformance with the Mediator model by Sullivan and Notkin [SN92]. More
specifically, triggers can be attached to operations of relations either on accep-
tance or on completion. This can be compared to before and after methods
of CLOS [Kee89] or before and after advice in AspectJ [KHH+01]. However,
triggers do not have the opportunity to influence the behavior of the associ-
ated relation, neither by parameter passing nor by throwing an exception or
otherwise aborting an operation.
Triggers can be compared to uses of attribute guards in Lua/P, where the

guard propagates value changes to other persistent units. Just like list guards,
triggers can be attached to either of the primitive operations. Lists in Lua/P

10Interestingly, [TC93] within the same project, argue that “the lack of identity in the
semantics of relations and relationships that database systems define is inappropriate in many
software engineering applications, where both types of objects may have to be shared by
numerous other objects”. APPL/A does not support references based on object identity.

78



Language Support for Consistency Section 6.3

have a richer interface than relations, which motivated the introduction of ad-
ditional events adding and removing as the unions of all adding and removing
operations. In contrast to triggers in APPL/A, Lua/P guards have full control
over execution of the original operation, including modification of parameters
and exception throwing. Triggers are top-level modules and some triggers can
even be instantiated multiply. Guards in Lua/P are conceptually part of the
class to which they apply. Technically, also guards can be attached from any
point of the program (currently, they can, however, not be removed again). It
is not perfectly clear, what scoping rules should apply to guards.
Finally, triggers have a synchronization problem that prohibits access to the

underlying relation within a trigger. Guards in Lua/P have no such restriction.

Predicates. As a complement to triggers, predicates in APPL/A may
express constraints over relations. A predicate may relate to more than one
relation. Different modes exist, controlling visibility and enforcement of predi-
cates. A “mandatory” predicate is globally visible, while “optional” predicates
must be included explicitly to be applicable. Automatic enforcement can be
switched on and off dynamically, default enforcement state can be declared in
the predicate definition. If an operation of a relation results in a violation of an
enforced predicate, the operation is automatically un-done and an exception is
thrown.
Enforced predicates behave like guards that for certain conditions explicitly

throw a guard exception. The most interesting property of APPL/A predicates
is the support for dynamic activation and deactivation, which is not present in
Lua/P. Technically, the distinction between triggers and predicates seems un-
necessary, but from a method point of view, this makes the multi-paradigm
approach more explicit. Triggers are used for coordination while predicates in
a rule–like style express constraints. For this purpose, APPL/A features the
three quantifications every, some and no like in
every s in Source Repository satisfies bool func(s) end every

Transaction support. APPL/A separates five properties of transactions.
In this respect it is similar in intention to Ostermann’s approach to untangling
object composition [OM01]. The result is in both cases a flexible application of
more or less orthogonal concepts instead of predefined bundles like “inheritance”
(concerning composition) or “synchronized” (concerning transactions).
The serial and atomic specifiers define blocks with reader/writer synchro-

nization (serial) and all-or-nothing behavior (atomic). In this terminology,
PIROL only supports atomic transactions. Integrity by means of

transactions [7.4.6→]Three specifiers, suspend, enforce and allow define blocks in which the set
of enforced predicates is temporarily changed. This mainly encapsulates the
(de-)activation of predicates as mentioned above. An allow block adds the
capability to allow violations that exist at entry of the block to perpetuate but
disallowing any new violations to be introduced.

79



Chapter 6 Data Integrity

Multi-paradigm support for consistency. Triggers, predicates and
guards all introduce some capability of programming outside the pure imper-
ative paradigm. In all cases the run-time system invokes user defined func-
tions. Both approaches, APPL/A and Lua/P, are quite promising in this re-
gard. Differences are imposed by different pre-assumptions. APPL/A builds
on a traditional relational schema with value semantics. Lua/P extends object-
oriented programming, thus relying on classes, objects and references. Con-
versely, APPL/A is more advanced in terms of synchronization, which builds
on the strong concepts of Ada. The version of Lua used for PIROL does not
support multi–threading. On the other hand, basic transactional support isThreads and

transactions [9.1.7→]
Transactions and
roll-back [7.4.6→]

built-in to PIROL without further coding effort in Lua/P programs.

6.3.2 GTSL

The GOODSTEP Tool Specification Language [Emm96] has already been dis-
cussed in Sect. 2.4.2. Here we only add to this by mentioning the concept of
semantic rules in GTSL. Such a rule consists of a condition and an action. The
condition is composed of the three fundamental predicates CHANGED, DELETED
and EXISTS. From this follows, that rules correspond in fact to APPL/A trig-
gers not predicates, because the given conditions are actually events11. Actions
are defined as a list of statements. In this, GTSL rules appear as a minimalistic
set of concepts. The main purpose of these rules is again propagating changes
between documents in order to maintain consistency. Considering that GTSL
has been developed later than APPL/A, more sophisticated concepts might be
expected concerning consistency. Regarding transactions, the central article
[Emm96] only mentions a few issues on object locking.

6.4 Summary

Data integrity is a very fundamental issue and imposes obligations to many
other concerns (e.g., the scheme of indirect references, or hybrid garbage collec-
tion for terms). Although integrity cross-cuts many other concerns, the mech-
anism of attribute guards as a means to ensure this integrity, is such located in
the overall architecture of PIROL that it applies below other mechanisms, i.e.,
it cannot be bypassed. At the same time it can exploit all concerns that are
made available at the level of Lua/P, including and especially Lua/P methods.
This structure is, in a way, a circular dependency between concerns. This

is achieved by framework technology: Lua/P is a framework, that provides as
hot spots all events of accessing an attribute of an RO. Attribute guards may
intercept these accesses and react in very specific ways. This is a restricted style
of meta programming , providing the developer of the meta model (or extensions
thereof) with a great power. It is obvious, that badly implemented attribute
guards may compromise the system in unpredictable manners. Thus testing or
other forms of verification or validation should be performed with special care

11It should be assumed, that EXISTS be only used for further qualifying an event. If this
assumption is false, rules can indeed be used as predicates and triggers.

80



Summary Section 6.4

for all attribute guards, such that executing a guard either yields “the expected
result” or raises an exception.
The implicit maintenance of referential integrity and the explicit mechanism

of attribute guards enrich the technique of meta modeling towards carrying
more semantics. For this mechanism exception handling acts again as a medi-
ator that may influence the control flow and trigger roll–back of transactions
(cf. Sect. 7.4.6). Attribute guards and methods compete in certain situations
and methodological support should help in the choice of the most appropriate
technique.

Allocating responsibility. One issue occurred, of which it is not clear,
whether it should be solved by changes to the language or by guidelines on
good design. Certain constraints by their very nature relate to two or more
attributes, possibly of different objects. However, a guard has to be attached
to one attribute in particular. If one chooses to attach guards to two related at-
tributes and lets each guard propagate changes to the other attribute, an infinite
recursion is programmed, which is difficult to detect. If both guards actually
agree on the changes to be performed, it suffices to check before propagation,
whether the update actually changes the current value. Thus, well-behaved
guards will immediately come to a fixpoint and terminate. Such checking could
indeed by performed by the run-time system, as to trigger guards only for value
changes. It should be investigated, whether this yields unexpected results for
situations, that might rely on guard invocation at every assignment.

81



Chapter 6 Data Integrity

82



Chapter 7

A Client–Server Architecture

All that has been said so far actually neglected the architecture according to
which PIROL is built. This chapter will unveil how tools can connect as client
components to a server that is called the PIROL workbench.
At the time when the development of PIROL started, the notion “compo-

nent” was far less defined than it is today. This gives us a chance to take
an unbiased look at the driving forces that led to PIROL’s specific component
model. With the transition to a distributed component architecture plenty of
secondary requirements come into focus, many of which heavily interact with
each other and with the concerns presented so far. This chapter will first present
the new forces and mechanisms in a somewhat linearized fashion. The next two
chapters are tightly coupled to the issues at hand: “Control Integration” and
“Multi user capability”. The distributed architecture will gain full relevance
only in the light of these subsequent chapters. In the summary of chapter 8
some of the dependencies and interactions will be discussed with more details,
some of which will only be presented in that chapter.
This chapter should not be mistaken as an attempt to deduce architecture

and mechanisms for PIROL or even for component systems in general. The
claim is: the presented combination of concepts and mechanisms forms a sound
architecture that solves many issues of repository based environments while
clearly defining which issues have not been solved completely and which forces
should be taken into consideration in order to close the gap.

7.1 Decoupling and Integration

PIROL is meant to be composed from various tools possibly made by different
developers. The set of tools, functions and services is to be kept flexible in
order to service various projects with different needs. From a perspective of
research in software engineering, flexible tool integration is even more impor-
tant. New software technology mostly comes with new tools, but the usefulness
of technology and supporting tools can only be evaluated in full, if the new
tools can be used in combination with tools for other issues and dimensions
of software development that have not been changed. A full-blown software
engineering environment simply requires so much development effort, that no

83



Chapter 7 A Client–Server Architecture

Repository

Workbench Workbench

Tool Tool

Session
User A

ToolTool

Session
User B

Message channel

Data access

Figure 7.1: PIROL’s three–tier architecture

research project, which may succeed to create a tool prototype for some new
method or technique, has a chance to provide a complete environment that
would support industrial strength evaluation in real world projects. Somewhat
realistic comparison can thus only be achieved, if most tools can be reused
over a long time and only the relevant tools for supporting new techniques are
replaced.
So for a number of reasons decoupling of tools became an issue. One require-

ment on the road of decoupling is the independence of any single programming
language. Tool developers shall be free in their choice of a programming lan-
guage. Not only shall developers be free to use the language they are most
experienced with. Also the existence of certain class libraries may be a rea-
son to use different languages for different tools and tasks. This force can be
summarized as the quest for the greatest possible independence of separately
developed parts.
On the other hand all these independent parts should contribute to the over-

all system in such a fashion that users would perceive it as just one (compound)
tool. In order to provide such a uniform appearance of separate modules con-
cepts of integration come into focus. For the moment, however, let us focus onDimensions of

integration [8.1.1→] the client-server architecture and how tools connect to the server.

7.2 A three–tier architecture for PIROL

The simple picture of PIROL’s architecture given in Fig. 7.1 shows the three
tiers repository , workbench and tools. It shows that each tool is only connected
to a workbench. One workbench together with all tools running in its context is
called a user session. The figure also shows two different kinds of connections:
while the workbench exchanges data with the repository using the proprietary
protocol of H–PCTE, for other forms of communication message channels are
used, that will be presented in the next section.
These are the responsibilities of the different tiers:

Repository: Persistent storage of data.

84



MSG: the communication channel Section 7.3

Workbench: Execution of Lua/P methods, guards etc. Definition of a user’s
context. Coordination of tools.

Tools: Interactive manipulation of ROs and documents.

In order to further examine client-server communication in PIROL, the mech-
anisms for connecting tools to the workbench are to be presented next.

7.3 MSG: the communication channel

At the core of connecting tools in PIROL lies the MSG facility which is taken
from the FIELD environment [Rei90]. The first prototype of PIROL had used
the ToolTalk system [Sun93], which is a successor of MSG. While comparing
ToolTalk and MSG the latter was chosen because of its portability across dif-
ferent Unix platforms. Also the availability of MSG’s source code proved very
useful because specialized mechanisms required modification of MSG.
While MSG is a quite sophisticated messaging facility, for the issues at hand

it suffices to know that it realizes socket based communication between different
OS processes1.
This communication is mediated by a special message server but the benefits → The issues of

Chap. 8 will exploit
this server.

of this server will only be visible in the following chapter.

7.3.1 Synchronization

The next dimension in message communication concerns the synchronization
between OS processes. MSG provides two different functions for sending mes-
sages: the send operation can be seen as an event. The sending client does not Implicit invocation

[16.3.1→]wait for any acknowledgement or reply (asynchronous notification). The call
operation waits for another process to reply to the message and receives the
data of the reply (synchronous request).
Also at the listening side synchronization provides options. In its normal

mode the MSG server keeps a message queue for each connected client, such
that only one request is sent to the client and all further messages to the same
client are held back until the request returns.
As part of the embedding of MSG into Lua, the workbench provides a

function eventually call which detaches a request from (a part of) its action.
The protocol is illustrated in Fig. 7.2. This function hooks into the MSG client
protocol, such that is sends a reply before performing further actions. Note,
that generally replies are not explicit in the Lua encapsulation of MSG, but
the return value of the function answering a request message will automatically
be sent back as reply. Eventually call bypasses this standard behavior, such
that a synchronous request may be used to initiate an asynchronous action. The
function eventually call can be used several times before returning control
to the caller, thus scheduling several actions for execution. The effect is, that
after the reply tool and workbench continue operation in parallel.

1Since in the context of SEEs, the notion process is so heavily overloaded the prefix OS is
used to discriminate operation system processes.

85



Chapter 7 A Client–Server Architecture

:Tool :Workbench

request

reply
eventually_call(func)

section of
parallel

operation

Figure 7.2: Delayed operation using eventually call.

:Tool :Workbench

request

local 
operations

callback(reply)

section of
parallel

operation

Figure 7.3: Detached request with callback.

Another mode of parallel operation can by achieved in MSG by detaching a
reply from its request. See Fig. 7.3 for this protocol. By this mechanism a client
can asynchronously send a request while registering a callback function to be
invoked when the reply is received. This combines the semantics of a request
with non-blocking behavior of a notice. The main difference to the previous
strategy lies in when the reply is sent: before or after the section of parallel
operation. In PIROL, only eventually call is used. There was no reason to
have the client (tool) determine which requests are detached and which are not.

7.3.2 Enhancements of MSG

When integrating MSG into PIROL some encapsulation and modifications have
been carried out. The most important modification concerned the integration
of MSG with those term types introduced in Chap. 3.

MSG and term grammars

In the context of MSG, term types are used for type–safe transmission of val-
ues, simple and structured. This makes use of the serialization capabilities of
terms. Such packing of data is commonly called marshalling. Different client li-

86



MSG: the communication channel Section 7.3

braries map term types to native types of the involved programming languages,
currently C/C++, Lua and Java. This serves for some degree of interoperabil-
ity, with a limited number of basic types (INT, BOOL, STRING, CHAR) but
unlimited capability to construct union and power types.
A special term grammar MSG is used to define all legal types of PIROL

messages. Only a small number of message types with few variants in signatures
are needed.

• query: a tool requests a value from the repository

• roset: a tool requests to set the value of an RO attribute.

• execute: a tool requests to execute a method of the meta model.

• create: a tool requests to create an RO.

Two additional message types will be explained in the next chapter: Additional message
types [8.2.1→]

• changed: the workbench broadcasts the change of a value in the reposi-
tory.

• tool execute: the workbench requests a tool to execute a method.

The complete grammar of messages is given in Fig. 7.4. It is a verbatim listing
of the Lua/P grammar definition. Details for List–related messages will be given
below (Sect. 7.4.3 on page 94). The benefit of this grammar is to provide type-
safe messaging without hard-coding message types into MSG. In order to ensure
that workbench and tools operate on the same grammar, the message server
also maintains term grammars and provides these to each client as part of the
connecting protocol. Type mismatches will be caught by the term library, when
definition and usage of a type do not correspond.

Proxy classes

In order to further illustrate the meaning of the above message types, the Proxy
design pattern [GHJV95] comes into play: Libraries of proxy classes encapsulate
MSG based communication for each specific programming language that is used
for tool implementation. The goal of the proxy pattern is to provide objects
that encapsulate access to remote objects while offering the same interface as
the “real”, remote objects. For each attribute of the meta model the proxy class
contains a get and a set method that translate the call into a proper query or
roset message. Each method of the meta model is naturally mapped to an
execute message. create messages will be dedicated a more detailed look Creation using

proxies [p.92→]later in this chapter.
See Fig. 7.5 for examples: It shows an RO, face: ICON, in the workbench

and a corresponding proxy object in a tool. Accessing the attribute ICON.name
happens through the two methods getName and setName which are implemented
by sending a query and a roset request respectively. Method execution is pre-
sented by the example of ICON.import data, implemented by a execute re-
quest. Creating an ICON RO finally is triggered by the static method make ICON
which maps to a create request using method ICON:make.

87



Chapter 7 A Client–Server Architecture

Grammar {MSG;
data types

roid = subtype of{STRING},
feature = subtype of{STRING},
roid list = {roid, ”*”},
entity = {{name=STRING}, {val=entity val}},
entity val = one of{STRING, INT, BOOL, roid, tuple,

STRING LIST, INT LIST, roid list, tuple list},
tuple = {entity, ”*”},
tuple list = {tuple, ”*”},
arguments = {entity val, ”*”},

declaration of required reply type
type desc = {{msg type=INT}, {class type=STRING}, ”?”},

roset messages
roset = {roid, feature, roset arg},
roset arg = one of{entity val, roset options},
roset options = {roset option, ”+”},
roset option = one of{append, replace, insert, delete},
append = {entity val},
replace = {{index=INT}, entity val},
insert = {{index=INT}, entity val},
delete = {{index=INT}},

query messages
query = {roid, feature, type desc, query option, ”?”},
query option = one of{length, item, search},
length = {},
item = {{index=INT}},
search = subtype of{entity val},
searchall = subtype of{entity val},

query bin = {roid, feature, {host=STRING}, {port=INT}, arguments,”?”},
object creation

create = {{class=STRING}, creatorcall, ”?”},
creatorcall = {{creator=feature}, arguments, ”?”},

method invocation
execute = {roid, feature, type desc, arguments, ”?”},

(the folloging message will be introduced in Sect. 8.2.3)
tool execute = {roid, feature, arguments, ”?”},

change propagation
changed = {roid, feature, changed arg},
changed arg = one of{entity val, no change, changed options},
no change = one of const{{nochange=’<no change>’} },
changed options = {changed option, ”+”},
changed option = one of{appended, replace, insert, delete},
appended = {{index=INT}, entity val},

user communication (see Chap. 9)
inform = {{receiver=roid}, {msg=STRING}, {obj=roid}},

}

Figure 7.4: Grammar MSG: message types in PIROL.88



MSG: the communication channel Section 7.3

face: ICON

getName()
setName()
import_data(file)
make_ICON():ICON

Workbench

Tool 

face: ICON

name: String
filename: String

import_data(file)
          «creation»
make()

«proxy»

qu
er

y

ro
se

t

ex
ec

ut
e

«RO»

cr
ea

te

Figure 7.5: Messages in PIROL (1)

client MSG PtP-socket workbench
host, port = create()

query_bin(roid, feature, host, port, args...)
query_bin(roid, feature, host, port, args...)

write(data)data = read()

Figure 7.6: Reading data through a point-to-point socket

Point-to-point communication

All messages considered so fare are mediated by the MSG server. For certain
situations point-to-point connections can be traded, through which large blocks
of data can be transfered efficiently. The experience of the ESPRESS project2

showed that large binary data should not be sent through the message server.
In its adaptation for ESPRESS the PIROL repository had to store units of spec-
ification that were written in µSZ and encoded as parsed and serialized Pizza
structures [BGHHm98]. These units typically had a binary size of several hun-
dred kilobytes, which are not efficiently handled by MSG. Fig. 7.6 and Fig. 7.7
show the protocol for transferring binary data. Although Java-serialization of
Pizza structures is no longer used in PIROL, serialized terms which replace this

2Between 1995 and 1998 a variant of PIROL was used within the ESPRESS project aimed
at methods and tools for embedded system development using Z and Statecharts. Within
this project special emphasis was on tools for analyzing a model in the combined specification
formalism µSZ based on a common abstract syntax representation in Pizza[OW97].

89



Chapter 7 A Client–Server Architecture

client MSG PtP-socket workbench

host,port = roset_bin(roid, feature)
host, port = roset_bin(roid, feature)

host, port = create()

write(data)
data = read()

eventuall_call(read)

Figure 7.7: Writing data through a point-to-point socket

mechanism now may be treated in the same way. See below (Sect. 7.4.3) for
details.

Security

Introducing inter process communication (IPC) into PIROL also raises the issue
of security. Any user who has access to an MSG channel is potentially able
to perform arbitrary operations in PIROL. Thus, connecting to MSG had to
be secured using a cryptological protocol of authentication. For this purpose
the open–source library md5–crypt is integrated into MSG and any client that
wants to connect to the channel must prove knowledge of a shared secret. This
is the exact protocol:

• The MSG server creates a lock-file with restrictive file permissions. This
file stores the host and port information that is needed to connect to the
server socket. Also, a generated “cookie” is stored in this file. As this file
is only readable within the Unix account that started the MSG server,
PIROL’s security is founded on the security of Unix accounts. Note, that
this always includes unlimited permission for Unix user “root”.

• A client that wants to connect to the MSG channel, first reads this lock-
file, from which it takes the information of how to connect to the server
socket.

• In reply to the connect request, the MSG server sends a challenge to the
client: it is a random word, that shall be used as “salt” for encrypting
the “cookie” in the lock-file, thus proving knowledge of this shared secret.
Note, that the “cookie” is never sent across the socket. It is important
that this challenge is a random word, so that listening at the socket for
the authentication of another client does not help an intruder, because he
will always be challenged to encrypt the cookie with a different “salt”.

• Only if the client is able to correctly encrypt the cookie, it is admitted
to the channel. It is granted a credit of 100 points. Each message sent
to the server decrements this credit. If the client runs low in credit, it is
challenged again. If it fails to authenticate again the connection is closed
by the server.

90



Client-Server Architecture Interacting with other Concerns Section 7.4

Note, that this protocol is not really dependent on any specific infrastructure
aside from an internet connection between client and server. The lock-file may
indeed be transferred using any secure protocol like scp. The assignment of
limited credits should confine the damage incurred by an intruder that by some
means “stole” an existing socket connection.

Minor fixes to MSG

Among the many minor fixes that were needed to use MSG for PIROL in the in-
tended way, one issue relates to the sequence of processing. When de-registering
a message pattern all resources associated with this pattern are freed. Unfor-
tunately, also those arguments are part of the resources that are passed to
the client’s callback. This had the unpleasant effect, that a callback that de-
registers its own pattern inadvertently also freed the arguments that it still
needed for operation. This is solved by delaying the actual freeing of an active
pattern until after its callback terminated. Of course, this kind of problem
only occurs in a programming language with manual memory management. In
PIROL this holds only for the libraries for MSG and term types (garbage col-
lection of terms has been discussed in Sect. 6.2.3) plus different modules for
integration into Lua and Java, which all are implemented in C. Other mod-
ules that are implemented in C are H–PCTE and Lua. These are, however,
considered black boxes whose memory management is not a concern of PIROL.

7.4 Client-Server Architecture Interacting with other
Concerns

7.4.1 Meta modeling

At first sight meta modeling and the client-server architecture seem to be or- Discussion
5thogonal. Objects are defined by the meta model and the architecture provides

mechanisms how these objects can be handled by different OS processes possi-
bly on different nodes. Considering the impact of the file/object alternative, we This conflict

motivated the
introduction of COs
[←1.1.1]

find that granularity again becomes an issue. While file based environments are
forced to exchange their data as complete files, a repository based environment
is enabled to exchange much smaller increments. Through meta modeling it is
possible to exchange and modify single attributes of ROs. If this capability is to
be exploited by the environment the mechanisms for distribution must support
the same granularity, too. PIROL provides three distinct levels of granular-
ity: documents, objects/attributes, and term values. Here we analyze how the
object/attribute level is made available across message based communication.
This is the central level for meta modeling. The term level will be discussed Distribution affects

handling of term
values [7.4.3→]

below.

Proxy classes

The message types introduced above support manipulation of data at the at-
tribute level. These messages are encapsulated by language specific libraries of

91



Chapter 7 A Client–Server Architecture

proxy classes. Through these proxy classes distribution can indeed be hiddenProxy classes
[←p.87] to a large extent, such that tool implementors can make use of the whole meta

model without great effort concerning the remote access to ROs.
The general presentation of proxy classes above omitted the details of cre-New Feature

5 ation in the presence of proxies. Creation methods of Lua/P have no direct
equivalent in languages like Java, that do not support named constructors.
For this reason, each Lua/P creation method is encapsulated by a static proxy
method, that maps to a createmessage. In Java the name of this static method
is by convention prepended by the class name, because Lua/P allows to rede-
fine creation methods in subclasses, which cannot be reflected by Java’s static
methods. The return type of these methods would have to be redefined in or-
der to return a properly typed proxy object for the newly created RO. Such
redefinitions, although perfectly type safe, are not permitted in Java.
Sect. 6.2.2 has argued that for object creation the preferred choice should beObject creation and

referential integrity
[←6.2.2]

to always create an object along with a link that connects it to another object.
The above technique of object creation via static methods of proxy classes does
not work for such linked creation. Because the function LinkedNew could not
satisfactorily be rebuilt in arbitrary programming languages, the creation of
isolated objects had to be supported by Lua/P which is implemented using the
“orphanage” dangling objects.Managing newly

created objects
[← 6.2.2 on page 74]

Creation of proxy objects for existing ROs runs under a different regime.
In this case the RO must be known by its ROID — short for repository object
identifier — which will be passed to the constructor. However, care must be
taken, not to introduce inconsistency through unwanted duplication. To avoid
this problem, the proxy library has to provide a caching mechanism, that stores
all proxies that have already been created in the tool. Obtaining a proxy object
must always go through this cache, that — according to the Flyweight-Factory
pattern [GHJV95] — first looks for an existing proxy for the given ROID and
only in case of a cache miss creates a new proxy and inserts it into the cache.

Reflection and interoperability

The first programming language that was connected to the workbench via MSG
was Lua. In that case no explicit proxy classes were needed, because Lua’s
reflective mechanisms are powerful enough to easily create proxy classes on the
fly, or rather, to use a proxy meta class plus tables of type information to map
access to a proxy object to the appropriate messages.
Similarly, the workbench does not need wrapper classes that explicitly han-

dle data conversion for access via MSG, but these conversions are implemented
generically based on the reflexive information that is available an all levels:
PCTE, Lua/P and term encoded messages.
A similar technique is used in the low level Java binding of MSG: values

passed from Java to MSG are inspected regarding their Java types and accord-
ingly encoded using terms. This low level binding uses untyped object arrays
for method arguments. This level is encapsulated by proxy classes for type safe
usage.

92



Client-Server Architecture Interacting with other Concerns Section 7.4

7.4.2 Persistence

Having tools access the repository on the level of single attributes helps to make Implementation

5persistence transparent for tools. No dirty flags have to be kept in order to write
changes back to the repository, because writing is immediate for each request.
Only one issue remains: within the workbench ROs are referenced by H–PCTE
object handles. This is not possible for tools which have no direct access to the
repository. Here a different technique has to be employed to refer to ROs. In fact
tools should be able to use native references of their programming language, i.e.,
references to their proxy objects. Thus only the messaging layer is responsible
for marshalling RO references and translating them into proxy references.
When marshalling an RO–reference, unique object identifiers are used: ROIDs.

Following the discussion in Sect. 6.2.3, usage of object identifiers has to take care
that such externalized references stay consistent with the repository contents. Integrity of exter-

nalized references
[ 7.4.6 on page 98→]

The central property of OIDs, their uniqueness, is already guaranteed by
PCTE, which assigns an exact identifier to each object3. Since this identifier
is a plain string it can be re-used for the purpose at hand. Within PIROL this
identifier implements the concept of ROIDs.
The PCTE specification defines that an exact identifier consists of a prefix

denoting the PCTE installation and a postfix uniquely identifying an object
within the installation. No further assumptions should be made. H–PCTE,
however, uses a compound postfix consisting of a segment identifier and a num- Segments [←2.2.1]
ber within the segment. Using this information it is easy to retrieve an object
given only its ROID by simply parsing the ROID followed by a lookup within
the segment’s directory of objects.
This strategy for object lookup is, however, a possible slowdown for the

environment, since lookup in the — possibly huge — segment directory is in-
volved. For most cases this can be avoided by keeping a cache (implemented
as a hashtable) that maps ROIDs to RO handles in the workbench. ROIDs
are used mainly on the tool–to–workbench communication channel. Tools only
operate on ROIDs that have previously been passed to them by the workbench,
so each ROID used on the channel will already be present in the mentioned
cache when needed.
In contrast, references to transient objects which do not have an Transient data

[←2.2.1]exact identifier assigned by PCTE are marshaled using an identifier that
is only valid within the enclosing workbench session. Restrictions apply to the
visibility of transient attributes: for these attributes Lua types are permitted
that do not have a mapping to either PCTE or proxy objects. These attributes
are not directly visible to tools. Other than that, transientness of data is of no
importance for the techniques presented in this chapter.

7.4.3 Granularity

The discussion about granularity motivated the introduction of term types into Optimization

53Note, that such uniqueness is not guaranteed for object handles at the PCTE API: different
handles may refer to the same object and a handle (which is an opaque pointer) can be re-used
for different objects over time (cf. Sect. 4.1.1 on page 56).

93



Chapter 7 A Client–Server Architecture

the type system of Lua/P. In PIROL, serialization has first been implemented
for terms. For this reason transmitting terms via MSG is straight forward. It
should only be noted that for terms no externalized identifiers are used, i.e.,
terms are passed across the message channel by value semantics, not reference
semantics, which is well in line with how terms are treated by the repository.
Two optimizations are possible: the workbench retrieves term values from

the repository by de-serializing the packed form that is stored. Using the pro-
tocol for binary data given in Fig. 7.6 and Fig. 7.7 the complete serialized term
can directly be piped through a socket. This way the data flow bypasses MSG
and the workbench and avoids the unnecessarily repeated de-serialization and
serialization. Secondly, it should be possible to modify terms incrementally
across the message channel. The latter is, however, not yet implemented.
No general solution can of course be given on how to map term types to dif-

ferent programming languages, i.e., how to encapsulate terms in proxy classes.
The Java mapping uses Pizza [OW97], because Pizza’s algebraic types are built
on the same conceptual background as term types. For tool programmers these
Pizza classes are convenient, even if the tool is actually implemented in plain
Java, because Java classes can without problems access Pizza classes. The
construction of converters between term values and Pizza object structures,
however, is not yet automated and thus quite tedious.
A third type constructor besides classes and term types exists, that should

also be considered when mapping data structures for message based communi-
cation: List. In the context of communicating components, the question has
to be answered at which level of granularity lists are send across the channel.

→ Sect. 14.1.2 will
discuss optimized
queries for lists.

The decision in this regard is partly left to the programmer.
Note, how the set of message types has been constructed in alignment withNew Feature

5
Grammar of message
types [←Fig. 7.4]

Lua/P. Let’s have a look on the details of adapting MSG messages for Lists.
Firstly, the primary list methods are exported to the message channel by means
of special message types. So the term types length, item and search are sub-
types of the message field query option. Similarly, append, replace, insert
and delete are subtypes of roset option. While query naturally only sup-
ports one option at a time, roset can in fact perform many modifications in one
step, which is why roset options is defined as a list of roset option. Finally,
a list can also be retrieved in a single step if no query option is given. In this
case the whole list will be encoded as a term. Note, that objects contained in
a list are only transfered by reference, i.e., an object list is encoded by a list of
ROIDs.

7.4.4 Behavior

The three–tier architecture does not impose new requirements on Lua/P, which
implements the services that can be accessed by clients. We have introducedNew Feature

5 proxy classes without saying who produces them. Class ROCM CLASS has been
presented in Sect. 4.2 as being responsible for compiling schema definitions
from their RO–representation to PCTE schemas. A very similar mechanism
is used to generate proxy classes from the same ROs of type ROCM CLASS. The
only difference is now, that proxy generation is language dependent and thus

94



Client-Server Architecture Interacting with other Concerns Section 7.4

cannot be seen as intrinsic responsibility of these ROs. Instead separate Lua/P
scripts are provided that traverse the RO structure producing a proxy class for
each ROCM CLASS encountered. The script for generating Java proxies is called
proxygen. 4
Through proxy classes tools can exploit the behavior implemented in RO

classes.

7.4.5 Exception handling

As we have seen in Chap. 5, Lua/P has the capability of throwing classified New Feature
5errors or exceptions. It lacks, however, facilities to catch these errors. So,

what can be done to prevent an exception from terminating the application,
i.e., the workbench? With respect to the client-server architecture this can now
be answered as follows. The decision whether a specific error can be repaired,
or whether it should be reported to the user, or whether it can be ignored
completely can usually be made only in the implementation of a tool, because
only there knowledge about the intention of a failed operation is available. And
only a tool can effectively report errors to the user. For these reasons all errors
are propagated to the tool that initiated the failing operation. At the same
time, each request from a client to the workbench is identified as a transaction
that can either be executed completely or will be rolled back to the previous
stable state. Among several housekeeping actions, a successful request commits
all list attributes that are encoded as terms, i.e., lists for which incremental Lists encoded as

term [←3.2.2]modifications are not instantly persistent.

Exceptional control flow

Implementing error propagation involved intervention in the fundamentals of Implementation

5the different runtime systems. In order to obtain a good combination of conve-
nience and performance a set of callbacks in different directions co-operate for
catching and reporting common errors, especially access errors due to insuffi-
cient permissions. Fig. 7.8 shows the somewhat complex sequence for a request
that is aborted due to a permission error.
The diagram is divided into a C part (left hand side) and a Lua part (right

hand side). The actual pay-load of this sequence is encoded in the call chain
1.1−→1.1.2−→1.1.2.1 (colored in blue). Dispatched from the MSG interface, a
call to the Lua part of the workbench is issued. Before calling the critical PCTE
function, a temporary error function is installed in the module error.lua
(1.1.1). When the PCTE interface detects an access error, it triggers the er-
ror function that had been deposited (1.1.2.2.1). The additional indirection of
my func and pirol error is introduced for performance reasons: my func as-
sembles an error message (txt) and deposits this in error.lua. This assembly
should only happen in the error case because it requires some repository access
and is itself time consuming. Without this consideration, error code and mes-
sage could have been set at stage 1.1.1 already. At the time that trigger error
terminates, the precise code and message are deposited in error.lua. Now a
call to lua error breaks the conventional control flow, terminates all active

95



Chapter 7 A Client–Server Architecture

msg-lua lua-interp pcte-lua error.lua wb.lua

1: lua_call(wb_func)
dispatch()

1.1 wb_func()

1.1.1 set_err_func(my_func)

1.1.2 lua_pcte_func()
1.1.2.1 success=pcte_func()

1.1.2.2(a) [success != ok]
propagate_error() 1.1.2.2.1 trigger_error()

1.1.2.2.1.1 my_func()

1.1.2.2.1.1.1 pirol_error(code, txt)

1.1.2.3 lua_error()
terminate

terminate
success=false

3 code, txt = get_error()

4 msg_reply(ERROR(code, txt))

2(a) [success == false]
request_abort()

2.1 transaction_undo()

C Lua

Figure 7.8: Control flow of aborting a request

procedures below lua call (1) and returns a failure code. The MSG dispatch-
ing code first tells the error module to abort the current request. Then the
stored error code and message are retrieved and an ERROR reply is assembled
from this information and sent to the initiating MSG client.
Complexity stems from the fact that function pcte func must throw anDiscussion

5 error from the third nesting level. This function cannot perform this on its own.
It needs information from wb.lua which should not be computed in advance
(for the given performance reasons). Also several levels of active procedures
from both languages, C and Lua, have to be terminated prematurely. Finally,
the msg-lua module must report the error to the client who issued the request.
The performance of this scheme has already been mentioned. The stan-

dard control flow of successful operations has only the very small penalty of
call 1.1.1. Everything else not directly related to the pay-load function only
happens in the error case. Modularity is also observed. Care has been taken to
keep the MSG and PCTE interfaces completely decoupled. No direct depen-
dencies exist. Lua functions my func and also request abort (see step 2(a))
are registered as callbacks. Thus this dependency is created only at run-time.
Only trigger error and get error are currently hard-coded into the caller
side.
The additional burden of exception handling is mostly done in a generic

way. E.g., calls to propagate error (1.1.2.1) are generated into the code by

96



Client-Server Architecture Interacting with other Concerns Section 7.4

a macro that encapsulates all calls to the PCTE API. Only installing the con-
text specific error reporting function (my func) happens explicitly in client code
(here: wb.lua). This effort cannot reasonably be reduced. Perhaps the style of
error handling is a little bit unusual, but in fact the resulting coding conven-
tion comes very close to the try-catch construct of Java, which has no direct
correspondence in Lua. The mentioned deficiency of try-catch is, however,
avoided because exception catching only prevents the workbench from termi-
nating while propagating the condition to the tool and providing transactional
protection.

Aborting a transaction

In the above description a call to request abort is mentioned without telling
about the effect of the function. For the moment, two tasks can be identified.

• The current PCTE transaction is rolled back. This puts the repository
into the previous stable state with all issues of data integrity observed.

• Some information that is cached within the workbench must be invali-
dated. This concerns all lists that have been modified within the trans- List caching [←2.2.1]
action that is being rolled back.

Propagating exceptions to a tool

As an example for tool implementations, the Java library for PIROL tools uses
a small layer of C code (embedded as native methods) for sending messages
via MSG. These wrapper functions analyze the reply value, and if an ERROR
term is detected, a Java Exception object is created and thrown. For this
reason, every error code that is used by Lua/P must be mapped to a specific
exception class in Java, all of which are subclasses of PirolException. This
common superclass enables tools to catch all these errors using only one catch
clause, while leaving the option to handle different exceptions separately. It is
interesting, that the C code can thus produce exception conditions, which are
passed up through the Java stack, such that the tool implementation doesn’t
even see that the exception was caused outside the tool. In other words, proxy
objects are transparent to exceptions in that they don’t behave differently than
corresponding local objects would.
The same Java library also provides the facility of installing exception han-

dlers. Each exception that is to be thrown at the MSG interface is first
redirected to any installed handlers. Only if no handler successfully handled
the exception it is thrown to the client code. This facility is typically used
such that (a) every exception is reported in a tool’s status line and (b) all
AccessExceptions are further-on ignored, because this is in fact a quite “nor- Access control [9→]
mal” situation in a distributed, multi user environment. The gain of this facility
is the possibility to change reaction to all exceptions passed from MSG in one
single location.4

4Interception of all PIROL exceptions was facilitated by the generic C layer, which dis-
patches all communication between Java and MSG.

97



Chapter 7 A Client–Server Architecture

The workbench finally doesn’t need to catch any errors, because each oper-
ation performed by the workbench is carried out on behalf of a request from a
tool. Note, that also Lua/P scripts are executed by a request that is issued by
a really tiny tool: a script launcher. Now each request is a bounded piece of
execution, which may succeed or fail. A failing request, however, does by no
means force the workbench to terminate.

7.4.6 Integrity

Semantical integrity

The issue of data integrity is in part motivated by the presence of exceptions. ByDiscussion
5 identifying client requests and workbench transactions data integrity is indeed
ensured at the desired level. Each workbench session runs in a transaction, that
is only committed when the workbench is idle for several seconds. The exact
value is a parameter for optimization, because committing a transaction takes
some time. Within each transaction every request coming in from a tool sets
a checkpoint. Before a transaction is committed roll-back can go back to any
previous checkpoint. More specifically, a failing request will roll back to the last
checkpoint, before propagating the exception to the tool. The intention behind
this is to never leave the repository in an inconsistent state. Failing request
have no effect on the repository.
Aside from transactional issues, where distribution in fact helps to clarify the

concepts for data integrity, distribution puts special emphasis on transparency.
This must include all mechanisms for safe guarding data integrity. For attribute
guards the mechanism of exception handling already mediates such that excep-Attribute guards

[←6.1.2] tions triggered by a guard violation cause a roll–back of the enclosing request
and signal the error condition back to the initiating tool. Everything beyond
this point is entirely within the tool’s responsibility.

Referential integrity

Externalizing references by means of ROIDs endangers referential integrity be-
cause PCTE does not know whether a tool still has a proxy for an RO that is to
be deleted. Therefore, the workbench must keep PCTE links either to all ob-
jects that are referenced by tools, or all deleting operations must be wrapped, to
check for objects that are possibly affected by deleting a link and then checking
for externalized references to these objects. The first approach is a lot eas-
ier to implement, but affects each passing of a ROID to a tool, which might
affect performance. Fortunately, this approach benefits from the ROID–RO
cache mentioned in Sect. 7.4.2. The additional PCTE links — called keep–alive
links— are simply duplications of cache entries. This means that (a) no ad-
ditional computation is needed, (b) only after a cache miss a link has to be
created and (c) garbage collection for cache and keep–alive links coincides.
For this multi–level garbage collection two strategies exist. Both strategies

need to record a qualified variant of reference counts, where for each ROID–RO
entry a list of tools is maintained that currently use the ROID. This relies on
the capability to determine the sender of the current MSG request. Using this

98



Client-Server Architecture Interacting with other Concerns Section 7.5

information and a mapping from MSG clients to tools the workbench records
all tool–ROID dependencies whenever it returns a ROID to a tool.
Within the first strategy, only terminating a tool triggers garbage collection.

This will delete all usage marks of the terminating tool and collect all entries
with no further tools depending on them. As a refinement, the second strategy
uses the tool’s garbage collector as an additional trigger. Each proxy object
that is being collected triggers a collect notification for the workbench, which
then deletes the usage mark and possibly the ROID–RO entry. Note, that
employing the tool’s garbage collector for proxies, needs to ensure, that the
proxy cache mentioned in 7.4.1 does not prevent collection of proxies. In some
languages including Lua and Java this can be done using weak references for this
cache. Currently, only the first strategy is implemented, i.e., garbage collection
happens only on tool termination.5

Last but not least, terminating and starting the workbench process com-
pletely wipes the list of keep–alive links, since at both points in time no tool is
running in the workbench’s session. Using both events makes the system more
robust against crashes of the workbench process.
Note, that all this care about externalized references is a direct result of

decoupling tools from the repository in so far as no tool is a direct reposi-
tory client, but tools communicate with the repository only via MSG and the
workbench.
Summarizing referential integrity, three kinds of object references exist be-

yond the scope of PCTE: term–to–RO, HTML–to–RO, and ROID–to–RO (for Indirect references
[←6.2.3]externalized references). All of these are backed–up by keep–alive links, that

prevent object destruction while an RO is still referenced. By the example of
proxy objects it has been shown, how garbage collection cross-cuts many ar-
chitectural layers: proxy objects, which could be cached using weak references
only, are subject to the tool’s garbage collector. A finalization method of prox-
ies (or any comparable hook into the garbage collector) notifies the workbench
about this collection. If no other tool uses the ROID the workbench may then
delete the ROID–RO cache entry. If this actually frees the RO handle — i.e. the
workbench keeps no further (private) reference to the RO — the Lua/P garbage
collector may collect the handle and finally propagates this to H–PCTE. If the
keep-alive link to the RO was in fact the last link to this object it is finally
deleted in the repository.

Change propagation for consistent views

This section would be incomplete without at least mentioning another issues
that arises because tools share data via the workbench: how are the views of
different tools kept consistent? The full discussion about consistent views will Sect. 8.2.2 shows

how this is solved
using change
propagation.

be postponed until Chap. 8 introduced additional communication options.

5This is further complicated by efforts to share one JVM for several tools. In that case,
tool termination will go unnoticed, since there is no OS-process terminating before the last
tool closes this shared JVM.

99



Chapter 7 A Client–Server Architecture

7.5 Summary

From a client perspective, the client-server architecture is — by and large —
transparent. The implementation of this architecture cross-cuts many other
concerns but this extension is quite straightforward giving hints at the near
orthogonality between concerns. This chapter referred to the following tech-
niques:

MSG PIROL’s communication facility.

Terms Marshalling messages and their parameters.

Term-API Encapsulation of Terms for the sake of interoperability between
Lua, C/C++ and Java (so far).

Proxies Providing transparent access to remote objects.

Transparency is achieved by means of

• the design of the concrete message protocol, closely aligned with Lua/P,

• fine grained, automatic repository updates,

• extending exceptions and garbage collection (safe guarding referential in-
tegrity) across the boundaries of OS processes.

This architecture also facilitates a due integrity issue: having explicit requests
gives a reasonable boundary for transaction rollback in case of an exception.
The presentation in this chapter was artificially simplified, because the ar-

chitecture was from its very beginning designed with support for a close control
integration, which will now be presented in the following chapter.

100



Chapter 8

Control Integration

Through separation of concerns the PIROL system is split into separate modules
or components, devised as clients (tools) and a server (workbench). From what
has been said so far, tools may share data through the repository, but they would
still appear as isolated tools, not an integrated environment, if we had no means
to have tools cooperate and “speak” to each other. Only by further mechanisms
for integration these separated modules are composed into a system. In the
early 1990s, research in SEEs has performed different efforts of partitioning the
design space for integration [WF91].

8.1 Integration

Environment integration is a multi-faceted issue. First, we will discuss different
dimensions of integration, answering the question what (conceptually) shall be
integrated. Secondly, we will briefly classify perspectives by asking, who is
performing integration. Also the physical entities to be integrated need to be
considered. We will divide the issue into pairwise relations between components.

8.1.1 Dimensions of integration

Early versions of the ECMA reference model for frameworks of software engi- Related Work
5neering environments (cf. [ECM93]) manifested an agreement on three classes

of integration, data, control, and presentation integration.
We have already seen the answer to data integration. Meta modeling and

persistence allow tools to operate on shared data rather than each tool keeping
its data privately. The requirement of language independence adds to this issue,
as now mechanisms for type level interoperability are needed that convert values
between their representations in various programming languages [WWRT90].
In PIROL this interoperability is achieved using terms and their mapping to
specific programming languages (marshalling and demarshalling). Marshalling

[←7.3.2, 7.4.2]Control integration is the major topic of this chapter: how can indepen-
dently developed tools communicate? This presumes that a communication
channel is made available and protocols are defined governing the communica-
tion on that channel. Given the channel and its protocol, the system can have

101



Chapter 8 Control Integration

a global control flow, that is not forced to stop at a tool’s boundary.
Presentation integration lies at the border of technology and design. Wasser-

man [Was89] identifies four levels of presentation integration: window system
(like X11), window manager (like mwm, the Motif window manager), windowing
toolkit (like Motif) and guidelines for a specific look&feels. Only all four levels
in concert provide for consistency across components. In this area, technology
does not suffice, but only tools developed along a common style, using common
metaphors and conventions allow the user to forget about their different origin
and nature. Chap. 11 will present some ideas how also architectural decisionsCommon services

[11→] can contribute to a handling of tools that levels the boundaries between tools.
In addition to these three non-controversial issues, Wasserman mentioned

two more dimensions: platform integration and process integration [Was89].
Of these, platform integration dealt with issues of operating systems and hard-
ware platforms. This issue was dropped by later works. The other dimension
— process integration — was, however, subject of many projects and publica-
tions. The 3rd edition of the ECMA reference model [ECM93] adopted process
integration and finally introduced framework integration as the fifth dimen-
sion. Note, that these areas do not directly relate to integration mechanisms,
but process integration is seen “on top” other services, while framework inte-
gration mainly defines implementation constraints on integration mechanisms.
For such reasons [WF91] differentiate mechanisms (data, control, presentation)
from integration at the levels of end-user-services and process.
Process integration is closest to the domain at hand. Software development

takes place mainly in the dimensions of the product being developed and the
development process. In PIROL this observation is already reflected by corre-
sponding packages of the meta model.ROCM package

PROCESSES
[←4.1.1]

Framework integration regards the interface that the framework provides
to tools and postulates that also administrative tasks of an SEE should be
supported by the framework. In other words, the framework should provide
services and facilities for its own configuration such that administrative tools
can be constructed and used much alike regular tools. The effect is a reflective
architecture of the framework. Examples for tasks in this category are instal-
lation and configuration of accounts, user groups, and tools. How framework
integration is covered in PIROL will be discussed in Sect. 8.3.1 and Chap. 11.

8.1.2 Roles of developers

The focus on integration suggests to differentiate roles and activities in the
process of constructing an SEE, as each role defines a different perspective on
the issue of integration. The ECMA reference model identifies these roles:

1. Platform suppliers

2. Environment suppliers

3. Tool suppliers

4. Users

102



Elements of Control Integration Section 8.2

5. Environment adaptors

6. Process developers

Roles (1)–(3) can be seen as suppliers of components in a layered architec-
ture. In the case of SEEs, also users (4) are developers, so in our context “user”
will hardly ever refer to end–users, but to users of the SEE. Roles (5) and (6)
are not very well defined in the RM, but hint at the growing importance of
system assembly with its issues of adapting components and the framework,
deploying components, and setting–up relationships between components, i.e.,
programming interaction between components. All these are roles and activi-
ties that are fully developed only in the field of component technology [Szy98]
(“develop-package-assemble-deploy software”) of which early works in SEEs are
definitely influential precursors.

8.1.3 Pairwise integration

Thomas and Nejmeh emphasize that integration can only be fully understood,
if we look at specific pairs of entities that are being integrated [TN92]. The
following relationships can be identified within an architecture like PIROL’s:

1. tool–to–workbench integration

2. workbench–to–workbench integration

3. workbench–to–repository integration

4. tool–to–repository integration

5. tool–to–tool integration

6. tool–to–user integration

7. user–to–user integration

Of these relationships, only (1)–(3) are implemented directly, while (4) and
(5) are mediated by the workbench and (6) is mainly left to the individual
tools except for a few common services. Finally, (7) will be a topic of the next

Context menus
[11.2→]

chapter. Multi user
capabilities [9→]As we have said, tool or component integration is a multi-faceted issue.

A good overview on the different conceptual models can be found in [Sta99],
which mainly compares the works by Wasserman [Was89], Thomas and Nejmeh
[TN92], and Brown et al [BFW91].

8.2 Elements of Control Integration

After data integration has been presented by previous chapters, this chapter
presents the technology responsible for connecting tools in terms of a common
control flow and shows how some details can be encapsulated by additional
logical layers and concepts.

103



Chapter 8 Control Integration

Control integration is the second core dimension of tool integration accord-Related Work
5 ing to [ECM93] and [Was89]. At the time of Wasserman’s writing, he could
identify two alternatives for control integration: Hewlett Packard’s Broadcast
Messages Server (BMS)[Cag90] and messages services integrated with data man-
agement systems such as PCTE and Software Backplane [Pas89].
At the time the development of PIROL started, early versions of CORBA

[OMG97] were available, but we decided not to use it, because CORBA seemed
too heavy-weight. The requirements of PIROL were limited to different styles
of passing messages. CORBA’s focus on brokering requests to components that
could reside on arbitrary nodes was not needed by PIROL. Instead, PIROL uses
a modified version of the messaging facility MSG [Rei90], which granted great
freedom in the development of PIROL. From todays perspective, and after hav-
ing learned so much during the development of PIROL, a re-implementation of
PIROL using todays improved CORBA-technology would certainly be reward-
ing.
Also approaches for constructing desktop environments should be consid-Desktop integration

[11.4→] ered. While CDE’s message passing is based on ToolTalk[Sun93] and HP’s
Encapsulator[Fro89], KDE uses a specialized lightweight facility called DCOP
[Tib00].4
For the given reasons, PIROL implements control integration using MSG,

which has already been briefly presented in the previous chapter. For the fullIntroduction of MSG
[←7.3] picture of control integration a more in depth look at the architecture and

mechanisms of MSG is required.
This is the architecture of MSG: a message server runs as a background

process listening at certain sockets for

• clients to connect to the channel

• registered clients to send messages to the channel.

8.2.1 Multicast communication

Using MSG, Communication happens in amulticast style [Bro92, Rei90]: clients
announce their interest in messages by registering message patterns. Each pat-
tern is associated with a callback function of the client. The message server
then distributes each incoming message to all clients that subscribed to a pat-
tern which matches the message. Originally, this matching was performed us-
ing string based regular expressions. Depending on the policies for registering
message patterns, this mechanism can implement anything from point-to-point
communication (using tool identifiers in messages) up-to full broadcast (all tools
listening to the same pattern(s)).

Message patterns in PIROL

In PIROL message patterns are defined using terms. By each message pattern
a client announces interest in a set of messages. For this purpose, terms may
contain wildcards which are (sub-)terms that have a type but no value. Two
kinds of wildcards are supported: monomorphic and polymorphic wildcards.

104



Elements of Control Integration Section 8.2

When matching a term against a pattern, amonomorphic wildcard only matches
a term of the same type, while polymorphic wildcards also match terms of
subtypes of their defined type. Wildcards may be used both for atomic and
structured terms. Each match for a wildcard will be captured and passed as an
argument to the callback function. Note, that this style of dispatching based
on pattern matching is equivalent to using the t select feature. Programming by

pattern matching
[←4.1.3]

Pattern matching may become critical for the system performance, although
in PIROL message delivery has not yet been observed to be a bottleneck. Using
wildcard terms as patterns allows quite efficient matching. While performing
matching, most patterns can be excluded by just comparing the integer–encoded
type of both terms. Only at the leaves of a term, strings may have to be
compared, but string comparison will only test for equality. If performance
degrades at a large number of patterns, by local optimization the MSG server
could store all registered patterns in a tree structure where patterns of the same
type are combined into one branch of the tree, such that complete branches
can be excluded by just comparing the type at their root. Note, that pattern
matching does not suffer from marshaling, since matching can efficiently be
performed on the serialized representation of a term.
Message dispatch based on pattern matching is the only fundamental mecha-

nism of this chapter. To blend this into the conceptual framework of all previous
chapters, the following abstractions are introduced on top of the core multicast
communication.

• Two new message types: changed and tool execute,

• Representative objects and extended proxies,

• Strategies and protocols for communication.

These abstractions help to achieve various communication styles without ex-
plicitly falling back to the send/receive primitives.

8.2.2 Change propagation for consistent views

Introducing the changed message type serves the purpose of implementing
change propagation between tools.
By data integration tools may operate on different views of shared data.

We have already touched the requirement to keep the views of different tools
consistent. This motivates change propagation1 as one of the central mecha- Consistency of data

shared by different
views
[← 7.4.6 on page 99]

nisms of PIROL. With this we mean notifications that propagate data changes
performed on behalf of one tool to all other tools that depend on the same
data. The resulting architecture is a modified model–view–control (MVC) style
[KP88], where view and control are merged in tools while the workbench im-
plements the model.

1Please note the different uses of this notion. In [EAMP97], e.g., the authors use reference
edges between persistent entities in order to compute “change propagation” within the repos-
itory. In that setting, a tool may be required to react to a change notification by updating its
persistent data, which is not covered by the mechanism being presented here.

105



Chapter 8 Control Integration

History of Model View Control

Already the Arcadia architecture [TBC+88] very closely resembled the MVCRelated Work
5 style with the following correspondences. An object management system plays
the role of a model, a control component executed what they call process pro-
gramss2. Most interestingly, a user interface management component applies
the concept of “Artists” as originally introduced by Myers [Mye83]. An Artist
wraps a given model object such that operations, which are invoked by the con-
trol component, can be intercepted in order to notify a view object regarding
necessary presentation updates.
The exact chain of research is difficult to re-construct, but Arcadia might

have influenced the model view control style, as it has become popular through
the Smalltalk-80 environment [KP88]. Also the concept of Artists using wrap-
pers and method interception may have had impact on the later development
of composition filters [BAWY95] and aspect-oriented programming.

Aspects-oriented
programming
[16.3.2→]

MVC in PIROL

While the original model–view–control architecture employs a bilateral observer
pattern for notifications, in PIROL this mechanism is mediated by the message
server. This way the workbench doesn’t need to record data dependencies but
simply broadcasts any data change to the message channel. Tools subscribe
to notifications not directly at the subject component but at the mediating
message server. For this, they register a set of message patterns and provide a
callback function for each pattern. Callbacks are then invoked by all notifica-
tions that are relevant for the tool. Callbacks can be implemented generically
for all incoming notifications, or individually for specific message patterns.
The effect of this mediated notification scheme is the same as in the classical

observer pattern, only subscription is much more flexible with respect to detail
levels.
Notifications are sent at the end of each request that is serviced by the

workbench. So in terms of tool synchronization a request–notification cycle is
atomic.

Integrating event sources

Integrating change observation for tools that have a graphical user interface
(GUI) requires to harmonize different event sources, because GUI events are
usually handled by a main loop, that can not easily be changed. For this
purpose the Java library for PIROL tools uses a separate thread for listening to
MSG events. Each incoming message is then wrapped in an MSGEvent object3.
This event is then inserted into the system’s main event queue. The usage of
two threads is necessary because only so, both event sources can be observed
simultaneously. Processing via a single event queue is needed because Swing

2Arcadia was designed as a process-centered environment, thus “the diverse software pro-
cesses that users want to employ in developing and maintaining software” are defined using a
process programming language [TBC+88].
3Oddly, this class must be a subclass of AWTEvent!

106



Elements of Control Integration Section 8.2

is in general not thread safe, classes using Swing should be called only from
one thread. In addition, it is a known quirk in Java, that listening to a socket
requires busy waiting, thus degrading the system performance. In contrast,
integrating MSG into Tcl/Tk was a lot easier, because Tk already anticipated
additional event sources that are associated with a file descriptor. The Tk
main loop allows to install a file handler, that is fired, whenever data becomes
available at the given file descriptor.

Trigger-deliver-react

Change propagation has successfully been split into three separate mechanisms:

Trigger The workbench detects each event that is relevant for change propa-
gation,

Deliver MSG is responsible for delivering changed messages to all tools that
have announced their interest by an appropriate message pattern,

React A tool registers callbacks that are free to implement any specific re-
action as to update its display and internal state.

The advantage of such separation lies in separate extensibility on each of
these three levels.

8.2.3 Remotely controlling tools

Representative objects

We already saw proxy objects for remotely accessing ROs thus hiding commu- Proxies [←7.3.2]
nication details from tool implementation. Fig. 8.1, which summarizes different
communication patterns, gives a further example by the pair of M: Menu objects.
Proxy objects are used by tools to access repository objects.
For the opposite direction, RO A: TOOL (in the Workbench process) plays a

role similar to proxies: in the example it provides an operation select which
is implemented by sending an MSG request of type tool execute to which the
tool process responds. While such delegation is typical of proxies, RO in the
workbench is already “the real object”, and it only delegates selected methods,
that need to be performed in the tool process, like, e.g., selecting an object for
high-lighting. In order to discriminate the two styles of proxies, the latter kind
will in the sequel be called tool representative or just representative object.
In [BFW91] the question whether tool process themselves are represented Related Work

5in the database is subsumed under “pervasiveness” of the database. This is,
however, not further explicated. 4

System-wide synchronization

The list of message types partly defines the communication protocol between
tools and the workbench. However, the whole picture requires to also consider
the behavior of both kinds of components. The mere fact that message can be

107



Chapter 8 Control Integration

Tool B
A: TOOL

getFont()
setFont()
getDefaultHost()
getProgramPath()
select(obj: ANY)
changeFont()

<<extended proxy>>

Workbench

Tool A

Request:
Tool asks Workbench

Changed message:
Workbench notifies Tool

Tool Request:
Workbench delegates to Tool

<<proxy>>

M: Menu

Local method invocation

invoke(5)

(a)

(b)

(c)

(d)

M: Menu

invoke(opt:int)

select(o5)

invoke(5)

kinds of messages:

A: TOOL

font
defaultHost
programPath
start()
shutdown()
isActive()
select(obj:ANY)

<<representative>>

qu
er

y

ro
se

t

ch
an

ge
d

to
ol

_e
xe

cu
te

ex
ec

ut
e

1.

6.

7.

5.

2.

3.

4.

Figure 8.1: Messages in PIROL

exchanged in both directions possibly leads to various situations of dead-lock
and infinite loops.
The following protocol problems have been identified:

1. Infinite Loop: A tool that issues a roset request usually has a pattern for
observing changes of that value, that is just being modified. When the
workbench broadcasts the change also the initiating tool may be notified
which possibly causes the tool to redo the same change again issuing the
same request over and over again. This situation will in the sequel be
called update recursion.

2. Deadlock Workbench → Tool → Workbench: the workbench requests a
service from a tool (tool execute request), but that service may again
require access to the workbench. The workbench currently is not re-
entrant, i.e., while waiting for the tool’s service to finish, the workbench
is blocked.

3. Deadlock Tool → Workbench → Tool: A tool requests a method invoca-
tion from the workbench. If during this request the workbench requires a
service from the same tool, the tool will still be blocked.

Experiments have been carried out to provide solutions to these problems,
though it should be stated, that PIROL’s protocol will remain unsafe unless a
clean concept of transactions is consistently integrated.

108



Elements of Control Integration Section 8.2

Ad (1): a mechanism of “echo-blocking” has been introduced to MSG. By
this mechanism, tools can chose, whether or not they want to receive the change
notifications for any changes caused by the same tool (“echoing of updates”).
For this reason the MSG server keeps explicit track of which tool initiated the
current request4, and change notifications by the workbench are marked as
echo-messages, such that the MSG server can exclude the initiating tool from
message delivery.5

A more elegant solution can be devised if a tool is designed specifically for
PIROL’s architecture. Such a tool may preferably decouple modifications of ROs
via proxy methods and internal updates: Any action triggered from the GUI
just sends a request to the workbench. Only when the workbench broadcasts the
successful change, the normal callbacks for changedmessages trigger the update
within the tool. This mechanism is called indirect modification and implements
a strict control → model → view call chain, where control and view happen
to reside in the same component without communicating directly. This is safer
than the mechanism of echo blocking because the latter will not notice if the
effect of a request differs from the tool’s expectation. Such differences may be
caused by attribute guards or by overridden methods.

Ad (2): Every action of the workbench happens as an answer to a request
of a tool. If the workbench passes the locus of control (using a tool execute
message) to a tool, the workbench would normally not be able to answer further
requests, because it is still busy. This situation is simply solved by temporarily
allowing further requests while waiting for a tool execute message to return.
Actually only messages from the active tool are accepted, because these

should be considered as belonging to the same control flow, while messages from
other tools are still blocked. To be precise, re-entrance is not a problem. The
problem is concurrency within the workbench, for which no proper mechanisms
are provided.

Ad (3): This pattern has the same structure as (2). For lack of relevance
it has however remained unimplemented. I.e., if this situation would occur it
would in fact produce a deadlock, but no Lua/P methods that are used by tools
actually send a tool execute message to the same tool.

Lessons learned from these experiments. Echo blocking was difficult
to implement, because several parts of the system have to collaborate for this
mechanism. All of these parts in some way or other refer to tools, but all have
different perceptions of tools:

• MSG assigns client numbers to tools (and to the workbench, which is just
another MSG client).

4To be precise, there is a set of originators for the sake of nested requests. Currently the
number of bits allocated for this set limits the number of clients to 32.
5An alternative solution, which is probably even more powerful and expressive, needs to

introduce a notion of explicit control flows: One control flow includes all messages that are sent
by clients while transitively responding the a request. Blocking would apply to all messages
(except for the explicit reply) that originate from the same control flow.

109



Chapter 8 Control Integration

• The workbench keeps as representative a TOOL RO. For illustration, see
also RO A: TOOL in Fig. 8.1.

• Also, OS processes should be considered.

MSG had to be extended such that clients can retrieve their client num-
ber. The workbench on the other hand collects all information when a tool is
started, such that the representative RO knows both the OS process ID and
the MSG client ID. Depending on a tool’s architecture the solution by indirect
modification might be significantly more elegant.
In fact echo blocking remains an unsatisfactory work around, because it

completely ignores the possibility, that a request may return unexpected results
caused by an exception or by an attribute guard.

8.3 Control Integration Interacting with other Con-
cerns

8.3.1 Meta modeling

ROCM package TOOLS

When introducing representatives (page 107), an RO class TOOL has already
been mentioned. In fact, TOOL is just the root of an inheritance hierarchy
modeling the following characteristics of tools.6

Definition vs. instance. Tool definitions of type TOOL KIND contain configu-
ration information for a program that is ready to launch. For the environment,
a running tool is encapsulated by a tool instance RO (the representative) of
class TOOL INSTANCE and related.
Instance vs. container. Many tools correspond to separate programs, but

in some cases several tools (separately invocable functions) are combined to one
program running in one shared process. For running, a tool needs an instance
of TOOL PROCESS that can be re-used from a running tool or must be started
anew. Starting TOOL PROCESSes is the responsibility of PROCESS MANAGERs.
Each TOOL KIND specifies, whether its instances are willing to share a process
with other instances or tools.
Local vs. remote. Each TOOL PROCESS can be assigned a HOST (or EXTERN -

HOST, i.e., a host belonging to a different NFS), such that launching will take
place on that dedicated host. This is to reflect special resource requirements of
tools.
Other classes of ROCM package TOOLS are

JAVA TOOL KIND Tools of this kind can be launched in a running TOOL -
PROCESS by dynamic class loading and reflective invocation

6The initial structure of this package was designed during the ESPRESS project. Af-
ter some evolution, [Mat02] has restructured this with respect to the kind-process-instance
relationships.

110



Control Integration Interacting with other Concerns Section 8.3

of a main method. Class and method name are stored in
the JAVA TOOL KIND object.7

DOCUMENT TYPE A tool is usually specialized to operate on documents of a Refining COs towards
document types
[10.3.7→]

certain type.
TOOL POOL This subclass of FOLDER contains the tools that are avail-

able in a given session (attribute tools of WORKBENCH).
MENU This implements the concept of workbench provided context

menus. Context menu
[11.2→]

Split objects

Considering only tool-to-workbench requests, tools don’t add to the semantics of
ROs. Tools just provide user interfaces to ROs. Every manipulation takes place
within the workbench. Using tool execute requests this situation changes.
Not only can the control flow be reversed, but objects can be constructed that
only partially reside in the workbench.
Concerning each tool two cooperating entities exist: a repository object of New Feature

5type TOOL and the actual tool OS process. The TOOL RO has been introduced
as the representative object. Consider the main object of the tool process as
being responsible for the tool’s functionality. Now this main object and the
representative could be seen as facets of the same split object. Whenever the
local object accesses its persistent configuration it uses the corresponding TOOL–
RO via proxy methods. Whenever the workbench needs to invoke a function of
the external tool object it delegates this call using tool execute.
Such proxy objects are called extended proxies because they not only en- Example of extended

proxy [←Fig. 8.1]capsulate the repository object but also add functionality. This addition may
for example be implemented by subclassing a pure proxy class and adding the
new methods in the subclass. While this could be called remote inheritance, it
is not equivalent to ordinary inheritance, because extended proxies are not al-
lowed to redefine methods that are already implemented in Lua/P, because such
redefinitions are not known to the workbench, which would break the expected
behavior of dynamic binding.

8.3.2 Persistence

At first sight, control integration and persistence appear completely decoupled.
But both mechanisms in concert may in fact extend the functionality of tools.
The representative object devised for encapsulating tool execute messages
may also be used to make internal state of a tool persistent. E.g., consider the
window size by which a tool appears on the screen. Currently, the attribute
window size is only used for static configuration purposes, but it could easily
be used for dynamic re-configuration as well: If a tool would propagate dynamic
window resizing to its representative and also listens to changes of this attribute,
window size would immediately become a dynamic, consistent and persistent
property of a tool.

7Such launching happens in close cooperation with corresponding Java classes in package
pirol.tools of the PIROL client library.

111



Chapter 8 Control Integration

There is a simple reason, why this is currently not used in PIROL: ROs
of type TOOL PROCESS are discarded when the corresponding OS process ter-
minates. TOOL KINDs on the other hand can be shared by many tools, with
possibly different window sizes on the screen. The above consideration suggest,
to also keep individual TOOL PROCESS objects across invocations and sessions.
Along these lines PIROL could easily imitate the concept of perspectives asRelated Work

5 it is provided by eclipse [Ecl]. An eclipse perspective is a pre-configured set of
tools that are composed into one top-level window.

8.3.3 Granularity

Sect. 7.4.3 has shown the correspondence between granularity of the data model
and the granularity as reflected by specific message types and their signatures.
The same correspondence must hold for change propagation regarding struc-
tured values.
The granularity of change notifications is very fine in order to reduce over-New Feature

5 head in tools that would be caused if large pieces of data would be invalidated
even if only small pieces actually changed. Generally, changed messages are
sent in a similar fashion as roset requests. Normally, for lists only differencesOptions for list

requests [←7.4.3] (appended, replace, insert or delete) are sent, no complete new values.
For optimization many atomic list modifications may be packed into a single
changed message. Such packing also folds different updates that refer to the
same element thus minimizing the number of updates to be performed by tools.
Modifications of terms are currently not supported by incremental notifi-

cations. Each assignment to a term type attribute causes the new term to be
broadcast in full. Here lies some potential for optimization which is not yet
pursued. List attributes that internally are encoded as terms combine bothMapping lists of

basic types [←3.2.2] strategies: They record incremental changes in the style of changed options.
If any absolute setting of the list term happens (e.g., method wipe simply as-
signs an empty term), all incremental changes within the current request are
canceled and only the final new value is broadcast in full.
Atomicity of a request–notification cycle is observed by folding several changes

into one detailed changed message. The workbench thus guarantees that each
request issues at most one changed message per attribute independent of the
attribute’s type.
Secondly, granularity is also an issue of designing tools. Using PIROL’sDiscussion

5 style of control integration, a tool may at the same time be a complex piece of
software with many user-visible features, and still be controlled in a fine grained
way. This is not possible in environments, where the framework can only launch
tools and wait for a result upon tool termination.

8.3.4 Behavior

Through proxy classes tools can exploit the behavior implemented in RO classes.
The message protocol also allows to add behavior to the RO class model by
integrating the functionality of tools. By means of tool representatives and the

112



Control Integration Interacting with other Concerns Section 8.3

protocol of execute and tool execute requests, tools may invoke each others
functions.
After finding that PIROL’s MSG protocol is not safe in terms of dead locks Discussion

5and update recursion, the obligation may be shifted to the level of defining
the behavior of ROs. PIROL currently does not exhibit any protocol problems
because the relevant situations simply don’t occur by the way RO methods and
tools are implemented. It is beyond the scope of this work to develop specifica-
tion and verification techniques for this task, but work in software architecture
suggests that this can indeed be done. In fact, one of the problems reported
on page 108 was not discovered when working with the implementation but
while specifying aspects of PIROL’s protocols using the architecture description
language Wright [Bil00].

8.3.5 Exception handling

Change propagation as presented in this chapter must pay attention to excep-
tion handling. Exceptions that are thrown in the workbench cause a roll-back Transaction roll-back

[←7.4.6]to the previous transactional checkpoint. At that time the workbench may have
already detected some change events, which it is about to broadcast to the MSG
channel. Any request that is aborted by an exception must not broadcast any Transaction abort

[←7.4.5]change event.
Control integration adds one more case to exception handling. This is,

because a tool execute request may also fail. For this to work, the workbench
easily interprets any result of type ERROR and throws this error in order to
terminate its active request. However, PIROL’s Java client library does not
yet support propagating exceptions to the workbench. Note, that this is only
relevant for tool execute messages, not for changed messages, because the
latter are asynchronous messages, that do not send a reply to the workbench.

8.3.6 Integrity

Integrity largely benefits from the mechanisms presented in this paper. In fact,
change propagation is a key mechanism for data consistency in PIROL. This will
become even clearer, once derived attributes are seen under the light of change
propagation, too.

Derived attributes

Special attention has to be paid to derived attributes. With concurrent tools Derived attributes
[←6.1.3]it is not sufficient to query the value of a derived attribute once and continue

working with this value. Another tool might cause a change of this attribute,
which would cause a data inconsistency between tools. Although not stored
persistently, tools should be able to treat derived attributes just like regular
attributes, with the only exception that derived attributes are not directly
writable.
For these reasons the workbench has to calculate changed messages for

derived attributes just like for regular ones. While executing the derivation
method associated with a derived attribute, the workbench records all data

113



Chapter 8 Control Integration

dependencies, i.e., all objects that were read in order to calculate the derived
value. If any of these objects is changed later-on the derivation method is
evaluated again and if the calculated value differs from the previously calculated
value, the new value is sent to all relevant tools by means of a regular changed
message.

In effect, derived attributes combine the best of the two concepts ‘func-
tion’ and ‘attribute’: they are free of redundancy and also observable. With
respect to change propagation, derived attributes differ from other attributes
only by the way how changed events are triggered. Delivery and reaction mayTrigger-deliver-react

[← 8.2.2 on page 107] completely ignore the difference between regular and derived attributes.

External semantics

Another integrity issue is the relation between a tool representative and the
running tool. This can, however, be implemented using the same mechanisms
as are used for other ROs. So this is more a matter of disciplined program-
ming to inform the workbench about the internal state of a tool and also
react to changes of such properties in the workbench. Additional attribute
guards may be needed, so that a tool can veto a change concerning its rep-
resentative, which it regards as an error. If, e.g., the window size of a tool
is to be set to a negative number, the tool should disallow such modification.
The vetoing GuardException may be thrown directly in the attribute guard,
or after communicating with the tool’s OS process. Note that this requires
an explicit tool execute invocation because a simple changed event happens
asynchronously and thus cannot be vetoed.

Such a guard for the window size attribute demonstrates, how guards can
be used to give meaning to certain attributes. This is not restricted to val-
ues within the repository or workbench, but also external components can be
influenced by attribute guards. As another example consider the list of ac-
tive tools that each WORKBENCH object records as running in its session. These
links are setup by the creation method of TOOL INSTANCE8 and related classes.
In order to keep the list and the actually running processes synchronized one
could of course disallow any modification of the list of active tools other than
through closing the tool. The more flexible and powerful solution attaches a
guard to the list, which intercepts the remove event in order to close the ac-
tual tool. Only if this succeeds, the object is actually removed from the list.
Else, a GuardException is thrown. This illustrates, how, e.g., a generic browser
can be used to control the component system: although the browser does not
know about closing other tools, it might know about displaying object lists like
active tools and it might provide a remove operation on lists. This suffices
to close any running tool just by removing its RO representative from the list
of active tools.

8Class TOOL KINDmodels all tools that are actually programs that can be started as separate
OS processes. Class TOOL INSTANCE represents the OS processes that are running this program
(see Sect. 8.3.1 and Sect. 11.1).

114



Summary Section 8.4

8.3.7 Client-server architecture

The client server architecture implies quite restricted communication. The ad-
ditional message types introduced in this chapter have only slightly extended
this architecture. Physical communication only happens between a tool and the
workbench. Logically, however, a tool may invoke methods of any other tool.
Tool-to-tool messages are routed via the workbench, using the representative
object as a reference. Also at a finer level of granularity objects within different
tools and within the workbench may thus directly communicate with each other
(again from a logical perspective). When comparing PIROL’s architecture to
modern component models, PIROL tends to provide finer grained control flows
between fine grained entities. By the concept of representatives, some entities
appear as components and as fine grained objects simultaneously. Both are
different views of a common concept.

8.4 Summary

In an early version the contents of this chapter was integrated in the previous
one (then called “A Distributed Component System”). The result was a bloated
chapter about PIROL’s component model with many concerns heavily tangled.
That state was not satisfactory as it revealed no clear structure and was very
difficult to read.
The separation into two chapters is artificial as no abstract requirements

were easily extracted from the web of mechanisms. Since both chapters are
very close to realizations and many of these mechanisms were part of PIROL
from the very beginning, it was difficult to find a reasonable separation. It
seemed justified to put “distribution” at the same level as, e.g., “persistence”,
but that headline seemed to entail all details of PIROL’s component model.
The next attempt challenged “change propagation” as a major concern of

PIROL. In fact some other concerns interact with “change propagation”, which
suggests those concerns to be on the same level. A reason against this attempt
was the close relation between “change propagation” and “integrity”. This
looked like “change propagation” only became an issue, because something was
interacting with “integrity”.
Eventually, the most problematic tangling could be identified as relating to

complex control flows in the overall system. “Change propagation” is certainly
an important part in this concern, but those control flows are more fundamental.
Only during the process of splitting the chapter into two, the coherent character
of each new chapter appeared: Chap. 7 describes how to decouple components
from a server and deals with different issues of interoperability. That defines the
physical architecture. This chapter, on the other hand, presents the concepts
needed for overcoming the overly rigid decoupling. On top of the physical archi-
tecture a common control flow connects all components to a tightly integrated
system.
The separation into two chapters yielded two chapters of fairly similar size.

Also few forward references were needed and some forward reference were in
fact dissolved by rearranging subsections. All these observations hint at having

115



Chapter 8 Control Integration

found a good modularization of the issues at hand.
At the level of mechanisms this chapter introduced little more than just mul-

ticast communication based on registering message patterns. How this mecha-
nism should be used is largely motivated by interaction with other concerns:

Integrity motivated change propagation,

Meta modeling suggested representative objects for uniform access to objects
and tools,

Behavior utilizes the tool execute message type for tying tool functions into
the behavior part of the meta model.

Other concerns gave lower-level guidance on how to implement control integra-
tion. The presentation of this chapter should suggest that implementing control
integration in an existing system that already obeys all concerns discussed be-
fore this chapter should be surprisingly easy provided that all architectural
parts are accessible for modification, most notably the “middleware”, in our
case MSG, and the libraries by which it is encapsulated. This is, however, spec-
ulation because change propagation based on some form of control integration
was part of PIROL from its very first days.

8.4.1 Independence with regard to earlier chapters

The development of PIROL has both similarities and decisive differences when
compared to modern component based software development (CBSD). In gen-
eral, CBSD is faced with the selection of an appropriate component model along
with its technical infrastructure like middleware and containers. This selection
can either be delayed to a late point during design in case the application fits
into an unspecific mainstream component architecture. For those applications
that have very specific requirements towards their architecture specific technol-
ogy has to be selected significantly earlier during development, maybe already
during analysis.

Co-development of system and infrastructure

PIROL’s component model matured along with the actual system development.
In the workbench-MSG-tools subsystem (i.e., everything above PCTE), infras-
tructure and application where developed simultaneously. Only so it was possi-
ble to keep the component infrastructure as presented in this and the previous
chapter aligned with all concepts presented in earlier chapters. Any selection
of existing infrastructure would have significantly restricted the design space of
PIROL. The model presented in chapters 1 through 6 is very specific and nor-
mally would not allow a-posteriori transformation towards a standard compo-
nent architecture. The development of PIROL did not follow the same sequence
as its presentation in this thesis. Still I consider this presentation as re-assuring
in the following sense: Most decisions presented in chapters 1–6 are of a more
conceptual nature than the mechanisms presented here and in the previous
chapter. The fact that the earlier chapters could be written in a self contained

116



Summary Section 8.4

way with little forward references to these later chapters demonstrates that
those concepts where not dictated by technology.

Referential structure of this thesis

In order to underpin the claimed absence of forward references, the LATEX text
processor has been used to identify all forward references across the border
between chapters 6 and 7 (demonstrating the usefulness of explicit references)9.

Out of a total number of 255 cross references within Part II, 14 references
cross the mentioned chapter boundary. Most of these reference are of purely
informative nature as they lead the road to further discussions which are not
needed at the point of reference. Three references connect features presented
in early chapters to motivations for their introduction that are given in later
chapters. These features are: Derived attributes, attribute guards and dangling
creation. While these references are considered valuable for the presentation, all
features are also motivated in their context of introduction. The presentation
and argumentation would still be sound without these references.

Finally, one caveat is expressed by one of these 14 forward references:
transient attributes cannot be accessed by tools. This is a valuable hint that the Restricted visibility

[←7.4.2] of transient
attributes [←2.2.1]

kind of an attribute and its visibility should be separated (e.g., by introducing
visibility modifiers in Lua/P).

Concepts versus technology

For a generic system like PIROL which provides infrastructure to systems built
on top (concrete instantiations of PIROL), concepts and technology are highly
interdependent. The degree of decoupling achieved by the presentation in this
thesis shows that mechanisms indeed follow intended concepts and not vice
versa.

8.4.2 Concerns and their relations

This thesis emphasizes the relations between different concerns. These relations
are a key to motivation of design decisions. Relations say, why things are
done this way, and what else must be changed if one concern is changed. In
Sect. 15.2.4 we will see an approach of concern modeling that exploits relations
for planning maintenance tasks. On a textual level, references are a comparably
weak means for dealing with relations. For this reason, Fig. 8.2 gives an intuitive
map of major concerns from this and the previous chapter. The following types
of relations are shown:

9Numbers hold at the time of writing these lines, which is after chapters 9 and 10 have
already been written.

117



Chapter 8 Control Integration

MSG

Tool

Metamodel

notice

callback

request-msg

tool_execute

protocols

indirect
modification

update

cast

single
multi

synchr.

echo blocking
eventually..

msg-types

changed
tool_execute

req-types

query
roset
execute
create

Lua/P

Terms

marshalling

point-to-point

ROID

exceptions
keep-alive

rollback

transaction

PCTE

links with
referential
integrity

singlemulti

wb-request

types

basic
structured block
reference
exception

Figure 8.2: Concerns and their relations

simple line unspecified relation

bold arrow points from a logical concern to its implementation

line with triangle head specialization (like in UML)

“comb” single
multi list of alternatives

The symbols for concern signify:

118



Summary Section 8.4

gray rectangle notice concern with few relations

blue ellipse callback central concept that connects many concerns

green rounded rectangle MSG physical concern (software)

bisque rectangle
with “comb”

types

sub
reference

classification

What can be achieved by such maps? The author uses graphical represen-
tations mainly for arranging elements in a plain until a reasonable layout has
been found. From his experience, finding a good layout often coincides with a
better understanding of interrelationships, i.e., while arranging graphical ele-
ments a mental model is re-shaped and an intuitive understanding of grouping
and graduated importance is formed. A layout may be considered reasonable
if it has few intersections and short edges. Such criteria can be optimized by
a spring-embedding algorithm. At the same time, background knowledge con-
cerning the elements being represented in the diagram is also relevant, in order
to come to a layout where conceptually related items are grouped together.
From what has been said above, a combination of manual arrangement perhaps
aided by algorithm support would be most helpful. Significant research has
been done on visualizing software, where layout is a very relevant issue. The
concern map given above differs from standard software visualization in that it
connects elements and concepts from different levels of abstraction. Sect. 15.2.4
will discuss concern modeling in more detail.

119



Chapter 8 Control Integration

120



Chapter 9

Multi User Capability

The three–tier architecture presented in Chap. 7 has not yet been fully moti-
vated. Of course the workbench serves the purpose of executing Lua/P methods
an coordinates tools. But this is not all. The existence of the middle tier is
originally motivated by the requirement to serve as a multi user environment.
In this concern the workbench is the point of reference for defining locality
and cooperation between users. This thesis is not intended to give a complete
overview of computer supported cooperative work (CSCW), though a analysis
exists ([Kru00]) how some concepts of CSCW fit into PIROL. As each CSCW
model makes some assumptions about the style of cooperation, PIROL tries to
stay more general in order to find a platform that suites software development
projects of all kinds. The fundamental concepts addressed by PIROL are

1. coordination of data access

2. user context

3. user communication

Item (1) can be subdivided into (a) issues of synchronization and change
propagation and (b) access control. In conjunction with (2) it should be pos-
sible to work in a private workspace without continuous synchronization with
other users such that only an explicit commit operation publishes data to other
users. Other changes, however, should immediately be visible to all. The user
context should further-on define the role under which the user currently oper-
ates, setup his permissions and provide local folders and settings. Item (3) calls
for fundamental services on top of which all important styles of communication
can be implemented that include, among others, automatic notifications, a mail
service, blackboards, and online communication — both textual and through
diagrams or drawings. The basic mechanism for user-to-user communication is
a second MSG channel that connects all workbenches within a project. Finally,
it should be possible to organize users in (nested) groups.
At this general level, i.e., before customizing PIROL for a concrete project or

organization, little more can and need be said about the intrinsic requirements
of multi user capability. The implementation of these requirements can best
be elaborated by simply iterating through all previous concerns and explicating
what has to be added in order to consistently fulfill these requirements.

121



Chapter 9 Multi User Capability

9.1 Multi user capability interacting with other con-
cerns

9.1.1 Meta modeling

The relationship between meta modeling and multi user aspects is twofold: TheImplementation

5 meta model comprises packages GENERAL, PROCESSES and COMMUNICATION that
define the key abstractions for the issues at hand. Secondly, (almost) each RO
should be subject to the mechanisms described here. These are the relevant
classes:

Classes for access control.

PERSON Representation of a user that registered in this installation of
PIROL. Each PERSON object also corresponds to a user account
at the operating system level.

GROUP A group of persons. This may or may not correspond to a Unix
group. If it does, it can be used to restrict access to a project to
the members of this Unix group.

ROLE This subtype of GROUP currently has no real difference to GROUP,
it was introduced only for semantical reasons in order to express,
that some groups like administration or quality assurance may
have special rights.

AGENT This common super-type of PERSON and GROUP is used according
to the composite design pattern in order to allow nesting of groups.
The above definition of groups needs to be rephrased to: a group
is a list of agents.

Classes for explicit communication.

MESSAGE This and its superclass NOTE define the elementary messages that
can be sent to a list of agents. During delivery each message is
wrapped for each recipient in an ENVELOPE. The envelope is owned
and thus writable by the recipient, while the message is not copied
and may not be writable for every recipient.

ANNOTATION An annotation can be attached to any RO regardless of ownership
and writability. This way, everybody in a project may comment
on each object he sees, without requiring write permissions for the
object. In a “normal” implementation, attaching an annotation
to an object, would require write permission. In PIROL, this op-
eration of attaching is considered an improper modification whichImproper

modifications
[p.124→]

is governed by different rules.

122



Multi user capability interacting with other concerns Section 9.1

User context.

WORKBENCH This is the central class for defining a user’s context. Attributes
owner, current group, current project setup a users permis-
sions and responsibilities. default readers and default writers
setup default permissions for newly created objects (comparable
to, but much richer than the umask environment variable in Unix).
Some FOLDERS are also contained, of which inbox, outbox and Mail delivery

[9.1.4→]tools have special meaning.

The tools folder contains (references to) all tools that can be
launched by the current user. Context menu

[11.2→]
PROJECT The common context for all members of a project. It defines several

defaults, the product under development and the process used.

Integration of multi user concepts.

ANY RO Superclass of all entities that shall be controlled by the mecha-
nisms at hand. Each ANY RO has an ATTRIBUTION which in turn
contains a PERMISSION object. Those few classes that should not
include these properties inherit from the more general class ANY
instead of ANY RO.

PERMISSION Permissions are modeled in terms of a reference to an owner (AGENT),
and a list of readers and writers respectively, i.e., agents that
are allowed to read or write the object.

Class ANY RO integrates access control for objects of all of its subclasses. On
the other hand, messages and related items of communication may refer to any
object in the repository. This way there is no need of a special concept for mail
attachments or the like, because messages may simply refer to any document
or even sub–item of a document, without the need of encoding and decoding.
More specifically, messages may contain a body which is an HTML text, that

References from
HTML to ROs
[←6.2.3];
PIROL URLs
[11.3.8→]

— through the indirection shown in Sect. 6.2.3 — refers to arbitrary ROs.

9.1.2 Persistence

H–PCTE offers sophisticated techniques concerning access control. 23 dis- Implementation

5tinct access rights exist such as NAVIGATE, READ ATTRIBUTES, DELETE LINKS
or OWNER. Furthermore each object carries an access control list (ACL), that
may grant or deny any set of rights for any user or user group. This is
more detailed than what is needed in PIROL. First the large set of rights
is grouped into owner-, read-, and write-rights. Next, PCTE functions are
wrapped by Lua/P methods of the classes PERMISSION and ANY RO. Finally,
the functionality of PCTE is tied to these meta model classes by means of
attribute guards. All attributes of PERMISSION are guarded in such a way
that, e.g., adding a PERSON to the list of writers of an ANY RO implicitly
calls ANY RO:allow read(agent). The latter function eventually leads to a

123



Chapter 9 Multi User Capability

call of Pcte object set acl entry from the PCTE API. This way for a client
it suffices to manipulate the PERMISSION object in order to achieve any desired
changes of access rights.

Care must be taken, when modifying an object’s ACL not to lose the owner
and read rights before these manipulations are complete. This requires a kind
of lazy evaluation: when withdrawing rights for an agent this agent is only
recorded in one of the lists removable writers etc. A call to commit rights is
needed in order to make all these changes effective. The methods of PERMISSION
schedule commit rights for later execution by means of a workbench internal
function eventually call. Only after the current request has returned, all per-Scheduling by

eventually call
[←7.3.1]

mission changes are made effective. Through eventually call access control
directly hooks into PIROL’s request protocol. It is important that any errors
that might occur when committing permissions can be detected in advance, be-
cause the delayed commit call cannot report errors to clients that have already
received their reply.

When presenting class ANNOTATION, the concept of improper modificationClass ANNOTATION
[←p.122] was introduced. This concept is implemented using a specific feature of PCTE.

In PCTE, each link is accompanied by a reverse link. Creating a link does not
require write permissions at the target object, but still adds the reverse link
as an implicit1 outgoing link of the target. So, when annotating an object o
by an annotation an, only the link an.target is created explicitly, and the list
o.annotations is in fact collected from all implicit reverse links of incoming
target links at o.

If this solution using reverse links had not existed, we might have been
forced to open permissions in PCTE very broadly and implement all PIROL
access control in the workbench. This would have rendered the PCTE access
control useless for PIROL and would probably cause considerable performance
penalties, because access control outside the PCTE kernel is probably much
more expensive. Instead, our solution does not discard functionality from PCTE
but instead makes an additional feature of PCTE (reverse links) partially visible
in Lua/P.

9.1.3 Granularity

Using a fine grained meta model enhances concurrent work, because conflicts inDiscussion
5 data access are less likely. Different users may manipulate different parts of the
same document as long as they don’t modify the same attribute. Ownership
can be granted at the object level which is also much finer than in file based
environments. Of course access administration contributes to the per-object
overhead that led to the introduction of term types. So it is obvious that for
very fine grained structures no detailed access control is feasible. From the
perspective of access control, terms are atomic. This is the trade–off that had
to be settled in order to balance detailed control and performance.

1implicit is the weakest link category in PCTE.

124



Multi user capability interacting with other concerns Section 9.1

ListAccess PIROL.mailspool {
remove = method (i)
local envelope = self[i]
if not (envelope.owner and

envelope.owner:eq(REPOS.workbench.owner)) then
pirol error( ERROR.WriteAccessDenied,

"Cannot remove Envelope, not owner")
end
self:raw remove(i)

end
}

Figure 9.1: Specialized access control using an attribute guard

9.1.4 Behavior

As we have seen, Lua/P methods are one step in encapsulating the access control
mechanism of PCTE in order to make it available to the environment. Methods
are even more important for communication between users.

Mail delivery

The method MESSAGE:send() does all the work of sending a MESSAGE to all of New Feature
5its recipients. Two ways of delivery exist. If a recipient is logged in to PIROL,

the method PERSON:inform is used to send a request in the workbench-to-
workbench channel that will be received only by that person’s workbench. The
MESSAGE object — wrapped in an ENVELOPE— is passed as a parameter in that
request and the receiving workbench reacts by inserting the envelope into the
user’s incoming folder, which is an attribute of class WORKBENCH. A request is
used rather than a notice so that the calling workbench can find out, whether
the request was delivered or not.
If the person is not logged in, the MESSAGE is appended to a global list

PIROL.mailspool. For this list special access control is installed. Note, that
in comparison, SMTP mail delivery requires a privileged process that appends
mails to user mailboxes. In PIROL no additional process instance is needed but
access to the mailspool list is hand-coded, such that everybody may append
items to this list, but only the owner of a mail (the recipient) may read and
remove it from the list. Such hand-coded access control benefits from two levels
of control: in PCTE this list is accessible for all users. In Lua/P, however, an at-
tribute guard restricts access to this list in the way described above (cf. Fig. 9.1).
Mails in the mailspool list are retrieved when the recipient starts the work-
bench for the next time. The workbench startup procedure WORKBENCH:load
calls check mail which will move any new mail to the users incoming folder.
Sect. 9.1.2 argued that access control should be used from PCTE and the Discussion

5workbench should not re-implement this feature. This still holds for the gen-
eral case. Attribute mailspool is a singular exception to this rule, which does
no harm to the general picture. On the other hand the guard based solution

125



Chapter 9 Multi User Capability

demonstrates how specific elements of the meta model can effectively be ad-
justed using advanced features of Lua/P.
PIROL provides five fundamental methods by which mail delivery can be

freely programmed using Lua/P.

• PERSON:inform
Try to directly notify another user, pass a String message and an arbitrary
RO as arguments.

• ENVELOPE:send
Either inform the recipient or put this envelope into the global mailspool
(this method also transfers access rights of the envelope to the recipient).

• WORKBENCH:receive
Callback method for receiving mails while the workbench is running.
Prints out a message to the console and inserts the message in the current
user’s incoming folder.

• WORKBENCH:load
This method is called by the workbench on startup. Thus it can be used
as a hook for adding more specific startup-behavior.

• WORKBENCH:check mail
A specific hook (called by WORKBENCH:load) that transfers any mail for
the current user from mailspool to his or her incoming folder. This is
how mail is received that was delivered while the recipients workbench
was not running.

These methods are all that is needed to integrate a full-blown mail service
into PIROL. Moreover, Lua/P can be used directly for implementing any special
mail handling like filtering, sorting into different folders, auto-replying etc. The
hook by which custom mail handling can be installed into PIROL is subclassing
WORKBENCH, overriding the relevant methods, and upgrading one’s workbench
object to the new class. An even lighter-weight technique would be to install
only one additional hook into class WORKBENCH, which would read a string at-
tribute mail filter script and interpret this string as a Lua/P script on each
incoming mail. This would allow customized mail handling without creating a
new Lua/P class for each case.
The implementation of any customization, be it by subclassing or by a

script attribute, has direct access to all properties of the incoming message as
well to the full context of the current workbench. Thus, mail handling can be
programmed in a much better structured way than using standard tools like
procmail, which operate mostly string-based, performing all kinds of pattern
matching.

9.1.5 Exception handling

Access control is one of the reasons why exception handling is so importantDiscussion
5 in PIROL: every operation may possibly throw an AccessException because

126



Multi user capability interacting with other concerns Section 9.1

of insufficient permissions. Obviously it is not the responsibility of client code
to check permissions in advance because this is — with few exceptions — not Performance

measurements
regarding permission
checks [14.1.1→]

related to any specific operation but cross-cuts every operation. Tool implemen-
tations must respect this. They must be able to recover from access exceptions
at every request.
The error types introduced by access control are ReadAccessDenied,

WriteAccessDenied and NotOwner. The Java library for tools maps these
errors to three exception classes with AccessException as a common super-
type. The special role of access exceptions with respect to exception handlers Exception handlers

[←7.4.5]has already been mentioned.

9.1.6 Integrity

Fine grained access control helps to reduce conflicts but also places additional Discussion
5burden on data integrity. The problem is, that PCTE simply hides inaccessible

objects and links such that these objects don’t seem to exist. This might render
a document semantically invalid if seen by a user who lacks the permission to
see some of the objects contributing to the document. There is no easy answer
to this because this user has no chance to find out, that he doesn’t see certain
objects.
As a consequence, strategies for consistent access rights are needed on top

of the mechanisms presented here, such that no object within a document has
less read rights than the document itself. This is not realized in PIROL.
We have already seen, how attribute guards guarantee that the information Implementation

5in PERMISSION objects is always consistent with the actual ACL in PCTE. Ac-
cess control, which is performed at every object access, is a critical point for the
performance of PIROL. One optimization regarding object creation is done using
additional functions from the PCTE API. The lists WORKBENCH.default readers
and WORKBENCH.default writers define the default ACL of the current PCTE
process. PCTE uses this ACL for each object created in the same process.
Again attribute guards are used to propagate the Lua/P values into the PCTE
API. This produces, however, a situation, where the initialization of PERMISSION
objects needs to setup this information without triggering the guard because in
PCTE permissions are already correctly initialized. Thus Lua/P needs to access
these attributes directly using the raw append method of lists.
Visibility of this method should preferably be removed for any scope outside Discussion

5
Static correctness
[14.2.3→]

a list guard implementation. For this reason these few cases that depend on
creating links without triggering a guard should probably be implemented in C
as to encapsulate the entire PERMISSION:initmethod into an atomic operation.
The advantage of such a solution would be to prohibit tampering with low level
operations and bypassing attribute guards. The C–Lua interface seems to be a
good encapsulation border for such purposes.

9.1.7 Client–Server Architecture

In a multi user environment additional measures have to be taken in order to
coordinate concurrent and distributed data access. The workbench accesses the

127



Chapter 9 Multi User Capability

repository via the H–PCTE client library which connects to a central repository
server using a proprietary protocol. Little is known about this protocol, but
it adds a form of distribution to PIROL. Different workbench sessions can run
on different nodes, but they need to share a common file system. This is a
restriction that nowadays might not be tolerated, but that is nothing users of
H–PCTE can decide about. The protocols between workbench and tools are
quite elaborated. In contrast, access to shared repository data from different
workbenches fully relies on PCTE mechanisms and has some deficiencies in
PIROL. This has historical and technical reasons, some of which will show up
throughout this section. First, I will, however, report on what is known about
this shared data access with respect to PIROL’s architecture. Investigating the
forces involved in this concern along with their relations, should provide an
understanding that is almost as valuable as a prototypical implementation.

Forces in designing fine grained access coordination

These are the forces, that have to be considered when designing coordinated
access to fine grained data.

Segments. H–PCTE is intended to be a high–performance implementation
of the PCTE standard. It draws its performance mainly from the fact, that it
operates as a main–memory database. The unit of data that can be loaded into
memory is called a segment . Segments can be loaded either to the H–PCTE
server or to the client process, in our case the workbench. Loading a segment
into the workbench is a significant speed improvement over accessing a segment
that is loaded to the server.
From this it seems desirable to load as much data as possible to the work-

bench but unfortunately, loading a segment to one client makes it completely
inaccessible for all other clients. So loading to the workbench is limited to data
that are guaranteed not to be needed by other users, that is, a local workspace.
Working with a local workspace in a designated segment will involve moving

objects from one segment to another. This interferes with the strategy of object
lookup, that uses the segment information encoded into the exact identifier,
because the identifier remains unchanged and may thus refer to a segment in
which the object will be unknown after moving. This is not a hard problem,
but requires an improved lookup strategy, which is already implemented: PIROL
encapsulates the move operation such that a weak link (of category reference
link) still points from the old segment to the moved object. So, if an object is
not found at the standard location2

/.segments/segment-id.known segment/oid.object on segment

it will be found on the same segment at oid.moved object.

Versioning. Several considerations hint at a possible linkage between
workspaces and versioning. Loading a segment makes all its objects inacces-

2The reference is shown in the syntax of PCTE path expressions, starting at the repository
root object denoted by “ ”.

128



Multi user capability interacting with other concerns Section 9.1

sible to all other users. So if a read-only copy should be kept for others this
fits a model of version control, where development items are checked out to a
private workspace while leaving the last saved version as a read-only copy in
the repository.
Secondly, project–wide communication traffic regarding data changes should

be reduced as compared to the flood of changedmessages on the tool–workbench
channel. The idea of an explicit and grouped commit operation has already been Commit [←p.121]
discussed. The above model of check–out to a local workspace provides for a
check–in operation that can easily play this role of publicly announcing changes
that have been made in the private workspace.
Unfortunately, versioning of fine grained data has not yet seen a solution Related Work

5that is practically useful at the user level. The GOODSTEP project [AAA+94]
has invested several efforts to this issue. In [ESW93] the authors discuss dif-
ferent duplication strategies (lazy versus eager duplication of subtrees during
creation of a new version) for versioned nodes and possibly also for reference
edges. Such issues involve very intricate design decisions and the authors con-
clude that the seemingly exclusive strategies might need to be combined a
hybrid strategy. Also [EAMP97] identified versioning as a problematic issue
in using an OODBMS for SEEs. They report on having included a versioning
mechanism in the O2 OODBMS. Unfortunately, this database has meanwhile
disappeared from the market. Most details on versioning in GOODSTEP can be
found in [SS95]. This approach in fact solves how versioning of documents can
be broken down to fine grained version relations of contained nodes. However,
due to the dominant role of documents in GOODSTEP, this approach cannot
be transfered to PIROL, where any object may belong to several documents
simultaneously. 4
One problem, that has been identified in [Grü97] relates to the versioning

of links3: usually databases only provide a mechanism for versioning objects.
There is, of course, a desire to handle links only implicitly, i.e., consider them
as part of their origin object. On the other hand it should be possible to
express that the target of a link is in fact a specific subset of the history of the
target object. A basic solution is depicted in Fig. 9.2. During the evolution
of object B, its link to object C has been changed to point to object A instead.
It is no problem to duplicate a link if a new version of the source object is
created. The issue is: how are versions from the target history selected. For
this purpose every link may carry an integer attribute v, which specifies how
many versions from that actual target participate in this relation.4 In the
example, the link B1.2→C1.2 specifies, that two versions, C1.2 and C1.1, are
legal target objects. The effect is, that this link attribute allows to regard links
as full relations in the mathematical sense, where one source may relate to a
defined set of (consecutive) versions at the target side. This clarifies that, e.g.,
B1.3 and A1.1 are not considered connected.
Two problems remain: (1) Variants within a version history would introduce

3In [ESW93]: (reference) edges.
4The link will always point to the most current legal target, i.e., the link attribute counts

from the actual target along its chain of predecessors.

129



Chapter 9 Multi User Capability

1.1 1.1 1.1

v=2

history
object A

history
object B

history
object C

1.3

1.2 1.2

1.3 1.3

1.2
v=1

v=1

Figure 9.2: Versioning of links

ambiguities into this referencing scheme. (2) The source side of a link would
require an explicit “incorporate” command, in order to accept a new version
of a target object. Consider, how object B would acknowledge the creation
of A1.3, which should have the effect of changing the link and incrementing
the link attribute. It is not perfectly clear, when such incorporate command
should be triggered and by what instance of the architecture. Implicitly using
newest versions regardless of the context of creation might render a document
inconsistent, because the context that creates A1.3 will know nothing about
the special rules of consistency in all referring contexts.
While both problems seem solvable, versioning support has not been inte-

grated into PIROL. Note, that the above schema does not cause any additional
indirections in the normal case: for most situations the link can be navigated
without additional effort. The target history will have to be search for a most
suitable version only if specific version selection rules require so.

Composition links. PCTE supports the distinction between reference
(existence) links and composition links for the purpose of performing certain
operations on compound objects with just one API call. This may be the de-
sired behavior for moving an object from one segment to another. Versioning
might require differently, because fine grained versioning should not unneces-
sarily copy complex structures if only specific elements are changed. Access
control might again require a different rule. One could fancy a compound ob-
ject representing, e.g., a class diagram. Withdrawing access to this diagram
would automatically withdraw those rights also for all contained classes includ-
ing their implementation structure. Such propagation of permission changes
seems counter intuitive.
For these reasons, efforts on exploiting composition links in PIROL have

been canceled.

Transactions. Currently the workbench runs in transactions. Requests
from tools only set checkpoints within the transaction. Uncommitted transac-

130



Multi user capability interacting with other concerns Section 9.1

tions may, however, block the workbench processes of other users, if they try
to access objects involved in the transaction. Currently, the workbench works
around this problem by committing the transaction and starting a new one
after a few seconds of idle waiting.
On the other hand, [DK95] have shown, how transaction roll–back can be

used to implement a universal undo mechanism. This requires the transaction
to remain open with only checkpoints in between. Also, [Pla99] has developed
fine grained transactions, that help to reduce the danger of conflicts and block-
ing. It seems natural that a fine grained meta model with fine grained access
control and versioning also requires a fine grained transaction model. This,
however, might require PIROL to let tools operate in distinct PCTE–processes.
While currently the workbench is the only PCTE–client in PIROL, much finer
control would be possible, if PCTE knew about each tool. As we don’t want
to modify our architecture, the workbench would have to run several PCTE–
processes as threads within one OS process, such that each tool had its own
workbench thread, that answers all its request. This way, coordination of sep-
arate tool transactions becomes a matter of coordinating the several threads of
the workbench. A multi–threaded workbench, finally, requires a multi–threaded
Lua interpreter which was not available before Lua 4.1, of which only unstable
versions where available at the time of this writing.
Thus during the development of PIROL experiments with a multi–threaded

workbench were not possible. The previous discussion demonstrates the com-
plexity and tangling of the concerns notification, segmentation, versioning, and
transactions. Each of these fields has had plenty of research and development.
Any subsequent development of a distributed, repository based environment
should tackle the integration of the findings from these fields during the early
design phase. This seems to be the major remaining challenge.

Concurrent editing

Any kind of online communication and cooperation can easier be implemented New Feature
5efficiently, if communication paths are shorter than the concepts discussed

above. For this reason, PIROL features the notion of inviting another user
to one’s session. The idea is to perform concurrent editing within the same
workbench session. All that needs to be done is:

• Give a copy of the MSG lock-file to the other user.

• Assemble a command for launching a tool, such that the other user can
launch the tool from his or her shell rather than via the workbench.

• The invited user sets an environment variable to point to the foreign
lock-file and starts the given command.

By this simple technique several users on several computers may operate
simultaneously on the same document. It might be useful to identify invited
users as guests. A guest could then be assigned restricted rights, e.g., by allow-
ing to start only a limited set of tools, or opening only a fixed set of documents.
Also marking the actual author of changes might be relevant.

131



Chapter 9 Multi User Capability

MSG has already been enhanced for PIROL with the capability for identify-
ing the client that issued a given request. Based on this distinction the work-
bench could use a restricted tool folder in order to disallow unwanted tools.Class TOOL POOL

[←8.3.1] The safest solution would of course include assigning a special password for
guests so that already the MSG server can distinguish different users/groups.
Note, that all restrictions and author markings would have to be implemented
explicitly, because in this model all modifications would be carried out in the
same workbench process. Only a multi–threaded workbench could actually run
different threads on behalf of different PCTE users.
The restrictions that should be added to this model of cooperations are

expected to be of low impact on the system. It has been shown, that concurrent
editing in this style is in fact practical. Note, that only three requirements have
to be met: (1) there must be a secure channel for copying the lock-file, (2) the
invited user must have (parts of) PIROL installed on his or her file system, and
(3) he/she must be able to connect to a socket at the machine running the MSG
server. The communication requires only low bandwidth.4

9.1.8 Control Integration

It has been shown how method PERSON:inform provides access to a second MSG
channel connecting the different workbenches within one project. The registered
callback at the other side is WORKBENCH:receive, which places the received ob-
ject into the user’s inbox folder. In analogy to tool representatives, objectsTool representatives

were introduced in
Sect. 8.2.3.

of types PERSON and WORKBENCH serve as user representative and environment
representative respectively. A user representative is an RO that allows com-
munication with the represented user. Adaptation of class WORKBENCH through
subclassing allows to adapt the environment and explicit calling methods of this
class means to use builtin functions of the environment.

Choice of notification mechanism. PIROL could make use of two
different mechanisms for delivering change notifications. H–PCTE has a noti-
fication service and MSG could be used for notifications also between different
workbenches. It might be easier to re-use the MSG notifications also between
workbenches but the H–PCTE mechanism might be more specialized for this
task. This choice is not expected to have great impact on other concerns.

9.2 Summary

Multi–user capabilities are a fairly difficult issue, because they can only be ad-
dressed, after quite some details about architecture and technology are already
defined. On the other hand, support for access control has to be integrated in
very low layers of the architecture. Difficulty is further imposed by the desired
genericity, which should leave a choice of the most appropriate cooperation
model to environment customization.
Attribute guards and exceptions are mechanisms that are sufficiently close

to the core of the system to transparently support access control. An example

132



Summary Section 9.2

application of guards concerns the hand-coded access control for mailspool.
Other low-level mechanisms that are exploited by multi–user support are de-
layed calls (eventually call) and reverse links (improper modification for at-
taching ANNOTATIONs).
Multi–user support also applies translation between different representa-

tions of entities like users and tools. The former appear as Unix user, PCTE
user and PERSON object (associated to a WORKBENCH object). The latter ap-
pear as MSG client, OS process, TOOL RO and should eventually correspond
to one PCTE process that runs in its own workbench thread. In both cases,
encapsulation of mappings happens using representative objects.

133



Chapter 9 Multi User Capability

134



Chapter 10

Logical Component Gluing
using DVCs

10.1 Striving for “logical” independence

The infrastructure presented so far enables “physical” “wiring” of tools and
repository. MSG provides for inter process communication. Term types, mar-
shaling and different language bindings allow to exchange data without loss
of structure and type information. This kind of integration has from the be-
ginning been motivated by the observation, that message passing provides for
loose coupling as compared to repository based integration due to the need to
agree upon a common data model ([Bro92]). As also pointed out in [Szy98],
this basic, technical wiring is, however, not enough. Allowing each tool to be
developed independently with its own data abstractions requires also some form
of logical pluggability responsible for dealing with mismatches between the data
models of tools and PIROL’s meta model.

10.1.1 Anticipating meta model mismatches

The repository model includes only elements that contribute to the structure
and semantics of the system under development. Classes in the PRODUCT sub-
system of the repository model are, e.g., SUBSYSTEM, CLASS, FEATURE etc.
(cf. Fig. 10.1). Different tools have, in general, their own specific abstractions.
Throughout this chapter, a concrete graphical editor for (a variant of) UML
class diagrams, called ZooEd [Nor97], will be used as an example. Its meta
model — as presented in Fig. 10.2 — defines the abstractions on which the
editor operates and which it needs to store in the repository.
Note, that the two models in Fig. 10.1 and Fig. 10.2 are completely inde-

pendent of each other. For instance, when comparing the class abstractions
in both meta models, namely CLASS in Fig. 10.1, and Class1 in Fig. 10.2,
it appears that the latter is mainly a graphical abstraction, defined in terms
of its position and appearance (appearance is determined by the attributes

1Throughout this chapter class names in all capitals refer to classes of the repository model,
while names with only an initial capital letter refer to classes of the tool model.

135



Chapter 10 Logical Component Gluing using DVCs

CLASS RELATION2 *

FEATURE

ENTITY ROUTINE

SUBSYSTEM

TYPEtype

subsystem

classes

features

name : String
is_deferred : Boolean

name : String

Figure 10.1: Extract from the repository’s meta model

Class

Package

abstract : Boolean
shrink : Boolean

ImportedClass

Attribute
type: String

Method

classes
from

attributes methods

links
GeneralClass

name : String
position : Point

Link
line : List(Point)

Figure 10.2: Meta model of a tool for UML class diagrams.

shrink, responsible for collapsed display of a symbol, and abstract, tog-
gling italic/non-italic fonts). Furthermore, a CLASS object has a single list
of features (cf. Fig. 10.1), whereas classes as seen by a UML–diagram editor
keep separate lists for Attributes and Methods, which are drawn in different
sections of a class symbol in a UML–diagram. Another difference concerns
the representation of the type of an attribute. In Fig. 10.1, the type of a
FEATURE (and its sub-classes) is represented by the class TYPE. On the contrary,
a simple string is perfect for representing the type of an Attribute within a
UML class symbol (cf. Fig. 10.2). Thus, some abstractions in a tool’s meta
model have direct correspondences to abstractions in the repository model,
e.g., name, others can be somehow derived from abstractions in the repository
model, e.g., attributes and methods, and yet others are completely new, e.g.,
the position in GeneralClass.

10.1.2 Storing shared versus tool–specific data

Given the differences in the meta models and our goal to facilitate the evolution
of the integrated environment with new tools, tool–specific abstractions, e.g., a
class diagram or any document, are not defined as part of the repository model.

136



Dynamic View Connectors Section 10.2

For this distinction we have introduced conceptual objects (CO) as a handle for CO [←1.1.1]
a document that itself is decomposed into many ROs.
This separation of intrinsic from tool–specific concerns into two distinct

repository objects, i.e., beyond compile–time, is crucial. It allows e.g., the same
CLASS object to appear at different positions and with different representations
in different documents. The idea is that (a) there might be several tool–specific
(overlapping) definitions corresponding to the same base abstraction, and (b)
the decision which one to use might depend on run–time state and/or context.
If integration of different concerns was based on compile–time weaving of

all partial definitions into one whole, as e.g., with IBM’s model of Hyperspaces
[OKK+96] or Garlan’s model of basic views [Gar87], it would be difficult to
express the fact that the same class object should appear differently depending
on whether the package being shown in an UML class diagram owns or im-
ports the class at hand. Furthermore, it would be impossible to have the same
class simultaneously displayed in as many different positions, as there are UML
documents on the display that contain the class.

Logical tool integration

Having intrinsic and tool–specific features of a tool object encapsulated within
different objects in the repository also poses the question of how and where to
(logically) integrate these two distinct feature sets to construct a single object
as seen by the tool. Stated differently, the question is how to map the features
of a tool object to respective features in the corresponding RO–CO pair in the
repository. The approach taken in the first design of PIROL was to in-line this
mapping functionality into each tool’s implementation. If this mapping was
not taken into account during a tool’s development, its source code had to be
modified at integration time. The drawbacks of this integration strategy are
discussed in [HM00].

10.2 Dynamic View Connectors

A major contribution of PIROL is the introduction of emerging programming
language concepts (most specifically: Pluggable Composite Adapters [MSL01])
into a complex integrated environment. The goal is to facilitate logical integra-
tion of independent tools into the environment. Note, that logical integration
is not simply a mechanism which can be bound to existing components, but a
new set of abstractions is introduced by which environment programmers can
express the logical relationship between a tool and the environment. From the
requirement to program this relationship using appropriate notions, a signifi-
cant extension of the language Lua/P is motivated.
The new construct, called Dynamic View Connectors (DVC), is implemented

as a special Lua/P class whose instances build a new abstraction layer between
tools and the workbench. We call this additional abstraction layer virtual repos-
itory. Each tool has its own virtual repository — a simulation of a repository
that matches the model of the tool. The virtual repository is implemented
by DVCs on top of the given design using COs. They will, however, hide COs

137



Chapter 10 Logical Component Gluing using DVCs

and provide for uniform access to RO attributes and properties in COs. In the
following, we first present a rough sketch of what kind of objects live in a vir-
tual repository (Sect. 10.2.1) before going into the details of how to define it
(Sect. 10.2.3).

10.2.1 The structure of virtual repositories

It is obviously preferable to have a repository whose model matches the model
of a tool to be integrated: the tool simply works with proxies to repository
objects responsible for bridging the language barrier between the tool and the
workbench and no adaptation is ever needed. However, in an environment where
the repository must meet the needs of many tools, adjusting the repository to all
tools would yield a bloated repository model with many redundant definitions
introducing immense consistency problems, let alone its non-cohesive structure
and name clashes.
Our solution to this trade–off is to simulate a best matching repository

for each tool — this is what we call a virtual repository. Instead of having
the structural mapping for a certain type in the tool’s model being spread
around the tool implementation, virtual repository classes (VC) are defined
that encode exactly this mapping at a single place by providing an abstract
view of underlying “real” repository abstractions (VC may also be used as an
acronym for “view class”). A VC may also add new features as they are needed
by the tool. There is a 1:1 relation between instances of the tool and virtual (or
view) objects (VOs), the latter serving to the Lua/P interpreter as “dispatchers”
for attribute accesses on the former.
For illustrating the idea, Fig. 10.3 redraws Fig. 1.1 in the presence of VOs.Implementation of

documents using
COs [←1.1.1]

Until now it was the tool’s responsibility to map each object from its data
model to an RO and a CO in the repository (this mapping was not represented
in Fig. 1.1, as it is not localized in a single place within the tool). The additional
layer in Fig. 10.3 performs exactly this mapping. Actually, only objects #c1,
#co1 and #co2 are persistent. Objects #ic2 and #c3 exist only during a user
session and merely encode a mapping function. However, for the tool they
appear to be repository objects. That is why we call them objects of a virtual
repository. A VO is identified by the ID–pair (roid x coid) referring to the
RO–CO object pair (as already seen in the old design) that is now virtually
merged into a single abstraction. Note, that this pair is not symmetrical, as
each virtual repository is realized by one CO but several ROs.
One can think of VOs as implementing roles [RS91, WdJ95] of real ROs: e.g.,

ImportedClass is a role, that any CLASS object may acquire in the context of a
UML class diagram. Acquiring a role includes the option to gain new properties
(e.g., position). Note that the same base object may play different roles in dif-
ferent contexts. For instance, #c1:CLASS in Fig. 10.3 plays an ImportedClass
role within the context of the Accounting diagram and a Class role within the
context of the Customers diagram. The acquired properties differ from one role
to the other. Other properties are shared from the base object (e.g. the name).
A base object plays a given role always with respect to a certain context —

a virtual repository as implemented by a CO— which comprises a set of col-

138



Dynamic View Connectors Section 10.2

Accounting

Account

balance : Amount

Customer
from Customers

Customer

name : String
address : Address

Documents:

manipulated by a Tool

Customers

#c3 :Class
name = "Customer"
position = (7, 20)
shrink = False
...

#ic2:ImportedClass

name = "Customer"
position = (10, 42)

mapped by a DVC

#c1 :CLASS

name = "Customer"
...

COs:

ROs: #at1:AT

#co1 : CO
name = "Accounting"
ROID
#c1
#c2
...

property
position
position

value
(10,42)
(2,4)

#co2 : CO
name = "Customers"
ROID property

position
shrink

value
(7,20)
False

#c1
...

Real Repository

VOs:
Virtual
Repos.
(#co2)

Objects:

Virtual
Repository(#co1)

Figure 10.3: A virtual repository simulates tool objects

laborating objects. The idea is that the process of creating a virtual repository
from the real repository model occurs not at the level of individual classes, but
rather at the level of collaborating classes: When following the features asso-
ciation of a CLASS RO as seen from a Class VO, all reachable ROUTINE ROs are
implicitly adapted to Method VOs. Adaptation of reachable ROs to VOs of the
corresponding roles is automated by the workbench. This mechanism is called
lifting and will be defined below. In fact, as we will see, both Class and Method
will be defined together as types participating in the same higher–level abstrac-
tion, that of a UML CLASS DIAGRAM. Techniques for grouping a graph of objects
as adaptations of some base graph of objects are being developed as Adaptive
Plug&Play Components[ML98] and Pluggable Composite Adapters[MSL01].

10.2.2 Implementing tools to virtual class graphs

With the virtual repository abstraction being part of PIROL, each tool is written
as a self–contained component to its own meta model — its functionality is
encoded in a set of collaborations between the elements in its meta model. The
latter is defined by a set of nested interfaces which is called the expected interface
of the tool. This defines the tool’s “view” of the repository, or, alternatively,
an “ideal” repository model tailored to the specific needs of the tool. Fig. 10.4
shows part of a textual representation of the model in Fig. 10.2 — this is the
expected interface to which the UML–diagram editor is implemented without

139



Chapter 10 Logical Component Gluing using DVCs

component interface GRAPH {
interface Node { position : Point }
interface Edge { line : List(Point) }

}
}
component interface UML CLASS DIAGRAM inherit GRAPH {

interface Package {
name : String
classes : List(Class)
links : List(Link)
method findClass (name: String) : Class

}
interface GeneralClass inherit Node {
name : String

}
interface Class inherit GeneralClass {
abstract : Boolean
shrink : Boolean
attributes : List(Attribute)
methods : List(Method)
creation place
method place (name: String, pos: Point)

}
...other interfaces

}
}

Figure 10.4: Expected interface for UML class diagrams.

any knowledge of the repository model.2

Integrating a tool into the environment requires to “implement” its expected
interface, by defining how elements of the tool model are composed from cor-
responding ROs and by introducing additional features that might be missing
from the repository model. This is realized via a connector class. A connector
instance is a first–class object that defines a virtual repository as an aggre-
gate of collaborating VOs (following [ML98] we could say: participant graph)
in terms of an aggregate of ROs. By being a first–class object it can be ap-
plied dynamically to perform tool integration, hence, the name dynamic view
connector .

10.2.3 Mapping constructs

Like any Lua/P class, connector classes contain feature definitions and may in-
herit from other connector classes. Furthermore, a connector class nests a set of

2The interface GRAPH introduces some general abstractions, that are used by classes in
UML CLASS DIAGRAM.

140



Dynamic View Connectors Section 10.2

CO

TOOL_A_CONNECTOR

CONNECTOR

attribute1 : t1
method1(a :t2) : t3

VC1

VC2

VC3

VC4

TOOL_B_CONNECTOR

TOOL_C_CONNECTOR

Figure 10.5: Hierarchy of connector classes

view classes, one for each interface in the tool’s expected interface. The classes
CO and CONNECTOR are predefined in the repository model with the connector
inheritance hierarchy as shown in Fig. 10.5. Connectors supersede the concep-
tual objects mentioned in Sect. 1.1.1, so in the sequel the abbreviation CO is
used for connector object.
The constructs that make up a connector definition will be illustrated by

means of the example connector UML CLASS DIAGRAM CONNECTOR in Figs. 10.6–
10.8 which implements the UML CLASS DIAGRAM tool model of Fig. 10.4 on top
of the repository model of Fig. 10.1.

Connector level definitions
Each connector class may inherit from another connector and it has attributes
and methods. Lines 7–14 in Fig. 10.6 define that a UML diagram connector is
a specialization of GRAPH CONNECTOR (i.e., each UML diagram is a graph built
from nodes and edges), and that it refers to the top-level system containing the
current diagram. It also defines a method connect which is used for creation Creation methods in

Lua/P [←4]of a new connector instance, connecting it to a SUBSYSTEM RO.
Starting at line 15, the example DVC in Fig. 10.6 defines seven view classes

(their names are put within boxes in the figure), one of which is designated
as the root of the model. The RO and VO aggregates that are mapped by a
connector both have a designated root object which is known within a CO as
root ro and root vo, resp. The root view class Package is mapped to the
repository class SUBSYSTEM.

View class definitions
Mapping view classes to repository classes is specified by means of the roclass
clause in the definitions of the view classes. At run–time this entails a transla-
tion that is called lifting. The lifting operation takes an RO and wraps it into Lifting [10.2.5→]
a VO. For each instance vo: VC, vo.co refers to the enclosing connector, while
vo.ro refers to the repository object ro: RC of which vo is a view within vo.co.
A predicate may be associated with a view class. For instance, both classes

Class and ImportedClass define views on the same RO class CLASS as defined
in the common superclass GeneralClass. Whether instances of CLASS should

141



Chapter 10 Logical Component Gluing using DVCs

1 Connector GRAPH CONNECTOR {
2 root = Node
3 class

�� ��Node { adds = {position : Point} },
4 class

�� ��Edge { adds = {line : List(Point)}}, },
5 }
6 Connector UML CLASS DIAGRAM CONNECTOR {
7 inherit = GRAPH CONNECTOR,
8 attributes = { system : SYSTEM, },
9 methods = { connect (root ro : SUBSYSTEM)
10· CONNECTOR:connect(root ro)
11 system = root ro:get system()
12 end
13 },
14 creation = connect,
15 root = Package
16 class

�� ��Package { roclass = SUBSYSTEM, /∗ . . . ∗/ },
17 class

�� ��GeneralClass { roclass = CLASS, inherit = Node, /∗ . . . ∗/ },
18 class

�� ��ImportedClass { inherit = GeneralClass,
19 predicate ()
20· return not co.root ro:eq(ro.subsystem)
21 end,
22 /∗ . . . ∗/
23 },
24 class

�� ��Class { inherit = GeneralClass,
25 predicate ()
26 return co.root ro:eq(ro.subsystem)
27 end,
28 /∗ . . . ∗/
29 },
30· class

�� ��Attribute { roclass = ENTITY, /∗ . . . ∗/ },
31 class

�� ��Method { roclass = ROUTINE, /∗ . . . ∗/ },
32 class

�� ��Link { roclass = RELATION, inherit = Edge, /∗ . . . ∗/ }
33 }

Figure 10.6: Connector for UML class diagrams — Structure.

be seen as Class, respectively ImportedClass, depends on the result of evaluat-
ing the respective class predicates (lines 19, 25) at run–time. So, when following
the association classes from a Package (cf. Fig. 10.2) within the context of a
connector, each CLASS RO contained in the underlying association (cf. Fig. 10.1)
is examined with respect to the predicate of each candidate view class Class
and ImportedClass. The view class whose predicate function returns true is
chosen for lifting.
Of course, a view class may inherit from another view class that is either

defined within the same connector (e.g. GeneralClass) or inherited from a
parent connector (here: Node and Edge).

142



Dynamic View Connectors Section 10.2

1 class
�� ��Class { inherit = GeneralClass,

2 predicate () return co.root ro:eq(ro.subsystem) end,
3 uses = { abstract = is deferred },
4 adds = { collapsed : Boolean },
5 filter = {
6 attributes : List(Attribute) = {
7 base = {features : List(FEATURE)},
8 predicate (f : FEATURE) return f:conforms(”ENTITY”) end
9 },
10· methods : List(Method) = {
11 base = {features : List(FEATURE)},
12 predicate (f : FEATURE) return f:conforms(”ROUTINE”) end
13 }
14 },
15 accept ()
16 collapsed = False
17 ro.subsystem = co.root ro
18 end
19 },
20· class

�� ��ImportedClass { inherit = GeneralClass,
21 predicate () return not co.root ro:eq(ro.subsystem) end,
22 uses = { from : Package = subsystem }
23 }

Figure 10.7: Mapping details for Class.

Feature Mappings

Details of mapping a RO class to a view class are shown in Fig. 10.7 by the
example of Class and ImportedClass.
Class and ImportedClass define two different views on the repository type

CLASS3, by making different sets of underlying CLASS attributes visible within
the context of a UML tool. For some attributes the connector declares names
and/or types that differ from those declarations in CLASS. Other attributes
are added to the view class without counterpart in the repository class. The
constructs provided for mapping features are uses, adds, filter, redirect and hide

uses. This construct is used for making features of a repository class visible
within a view class. For instance, the attribute abstract in the definition of
Class is identified with the attribute is deferred in the repository by means
of renaming. That is, the repository-level attribute is deferred is made visible
within the UML view under a different name, maintaining however the same
type. The definition of the view class ImportedClass contains an example of a
repository-level attribute that is made visible within the view under a different
name and type. The definition of the attribute from in line 22 of Fig. 10.7 is

3The mapping roclass=CLASS is inherited from GeneralClass.

143



Chapter 10 Logical Component Gluing using DVCs

to say: The repository attribute subsystem:: SUBSYSTEM (defined in CLASS) is
known within the view defined by this connector as the attribute from: Package
(declared in view class ImportedClass). So at run–time, each SUBSYSTEM RO
reached within the context of the connector via the from association, is lifted
to a VO of type Package. In a similar vein, class Package (not shown in the
figure) contains this declaration

uses = {
findClass (name: String): GeneralClass,

}
This declaration refers to a method that is adapted just like the attributes
shown above: within this connector the method result is assumed to be of
type GeneralClass, that is, each resulting object is lifted to the view class
GeneralClass. This declaration involves no renaming, so findClass is used
under the same name in both contexts.
All view classes implicitly inherit from a predefined class ANY VO. This class

contains the following uses clause, making some standard features visible to all
VOs:

uses={
name, get class, conforms, tostring;
print ro=print

}

adds. In contrast, attributes collapsed and position in Class do not
have counterparts in the core repository model. These attributes are added to
the model (Note, that position is already defined in the abstract connector
GRAPH CONNECTOR and is made available in Class by inheriting from the view
class Node). Entries in the adds clause are regular attribute declarations.

filter. This construct applies to Lists in the repository model. The outgoing
links of a Class VO — attributes and methods — are different filtered views
of the same association features from the repository model. Keyword base
creates this tie. A filter predicate decides which objects of type FEATURE con-
tained in the repository association features will be included in which of the
resulting view object lists, attributes, respectively methods. At run–time,
those repository objects of type FEATURE that pass the filter will automatically
be lifted to view objects of type Attribute, respectively Method. In this spe-
cial case the filter simply inspects the run–time type of the target RO in order
to include ENTITY objects in the attributes list and ROUTINE objects in the
methods list (see Fig. 10.7, lines 8 and 12, resp.).

redirect. Fig. 10.8 shows a situation where predefined mappings are not suf-
ficient. In the repository model (Fig. 10.1) the type of a FEATURE is represented
by a repository object of class TYPE. However, the tool (Fig. 10.2) encodes the
same information (the type of a feature) as a simple String in class Attribute
— the view class corresponding to the repository class FEATURE. DVCs provide a

144



Dynamic View Connectors Section 10.2

. . .

class
�� ��Attribute {

roclass = ENTITY,
redirect ={�� ��type : String = {

get ()
return ro.type.name

end,
assign (value : String)

local type
if value == ””then
ro.type = nil; return

end
type = co.system:find type(value)
if not type then
error(”Unknown type ”..value)

end
ro.type = type

end
}

}
}
. . .

Figure 10.8: Manual redirection of attribute type

construct to hand-code such mappings by implementing a get function and an
assign function. When going from the repository model to the tool model, the
name of the TYPE RO will do perfectly, as shown in the implementation of get in
Fig. 10.8. The other way around, translating a string representation of a type to
a TYPE RO, when the user enters the type of an attribute via the UML diagram
editor, is more tricky. It involves the system attribute of the enclosing connec-
tor: the method find type of SYSTEM is invoked to find a TYPE RO whose name
matches the string passed as a parameter to assign. Another example for the
usefulness of the redirect construct is when an association between two classes
in a connector should be mapped to a compound path between classes in the
repository model.

Technically, the redirect construct is an improved version of derived attributes.Derived attributes
were introduced in
Sect. 6.1.3 and
discussed in Sect.
8.3.6.

The get function directly corresponds to the derivation function of a derived
attribute. The assign function, however, is new, and allows for symmetrical
derived attributes that can be read and written just like ordinary attributes.
As we have seen, assign functions can be difficult to implement. Omitting the
assign function of a redirected attribute is not a static error. The attempt of
writing to a redirected attribute without assign function simply results in a
WriteAccess exception to be thrown.

145



Chapter 10 Logical Component Gluing using DVCs

hide. The opposite of uses has been introduced quite late. It was one
of those changes that required less then 10 additional lines of Lua code. The
intention is to cancel the effect of a uses clause of a parent class. This can be
important, if an attribute is to change its status. By means of hide it is, e.g.,
possible to change a used attribute to a redirect implementation.

#ic2    position   (10, 42)

#co1 : UML_CLASS_DIAGRAM_CONNECTOR

#c1 :CLASS

name = "Customer"
...

#ic2:ImportedClass
position = (10, 42)

features

#at1 : Attribute

name = "address"

{filter}

{uses}

{adds}

attributesclasses

classes

{uses}

#p1 : Package

name = "Accounting"
root_vo

#s1 :SUBSYSTEM

name = "Accounting"
...

#e1 : ENTITY

name = "address"
...

CO

VO

RO

name = "Customer"

co
ro

root_ro

co
ro

co
ro

...

ROID  property   value

Figure 10.9: Run–time relations between ROs and VOs in a Connector.

10.2.4 Repository, view, and connector objects

Fig. 10.9 illustrates the run–time structure of connector objects and the rela-
tionships between the involved VOs and ROs, by the example of the UML CLASS-
DIAGRAM CONNECTOR instance for the Accounting document in Fig. 10.3 (#co1).
The dependencies labeled {uses} and {filter} illustrate, how values are shared
between the involved VOs and their corresponding ROs. The {adds} depen-
dency shows that the added attribute position is stored in the surrounding
CO.

10.2.5 Conversions

Let us now consider how the relationships between ROs, VOs and COs, are es-
tablished and maintained. Fig. 10.10 illustrates how root ROs enter a connector
when the latter is created. As defined in Fig. 10.6 line 9, connect expects the
root RO (in this case of type SUBSYSTEM) to be passed as a parameter. In
Fig. 10.10, we assume that s1 is the RO for the Accounting subsystem (#s1 in
Fig. 10.9). The execution of the first line in Fig. 10.10, will

(a) create an instance of UML CLASS DIAGRAM CONNECTOR (#co1 in Fig. 10.9),

(b) set the root ro of #co1 to #s1,

(c) initialize the attributes of #co1 (e.g., the system is initialized with the
result of calling get system on #s1),

(d) wrap #s1 into a Package VO (#p1 in Fig. 10.9) and set this VO to be the
root vo of the connector (#co1).

146



Dynamic View Connectors Section 10.2

Of these steps, (b) is triggered by calling the inherited version of connect (line
10 in Fig. 10.6) and only (c) is explicitly specified by the programmer in the
implementation of UML CLASS DIAGRAM CONNECTOR:connect. The rest is taken
care of by the Lua/P interpreter.

. . .
co1 = UML CLASS DIAGRAM CONNECTOR:connect(s1)
ed = Workbench:get tool for document type(co1.class)
ed:show(co1.root vo)
. . .

Figure 10.10: Connector instantiation

Lifting

In Fig. 10.10, #s1 enters a connector explicitly: this is the case with root ROs.
Other ROs might enter a connector scope implicitly when they are reached via a
reference (from another already lifted RO) for which a view mapping is defined
in a uses or filter declaration. Basically, it is the type defined in this mapping
(the declared type of reference), that is used to automatically lift (wrap) an RO
to a VO. However, the actual algorithm for lifting has to consider some more
conditions.
Given an RO of dynamic type RCdyn and a reference of static type V Cstat

within the context of a connector instance of dynamic type Cdyn, the lookup
of the virtual class V Cdyn to use for lifting — this algorithm is called smart
lifting— proceeds like this:

1. Starting from (and including) V Cstat collect all sub-classes that have a
roclass to which RCdyn is conform, however, omit all classes that are
defined in a connector that is a sub-class of Cdyn.4

2. Sort this list such that all classes defined in Cdyn precede classes defined
in parents of Cdyn. Furthermore, within this sorting, sub-classes precede
super-classes.5

3. From this list, take the first class, which either has no predicate, or whose
predicate function evaluates to true for the given RO.

Lifting is finally performed by setting up a record (Lua table), consisting of the
references

ro The RO to be lifted
co The CO in which the VO shall reside
class The view class determined by the above strategy.

4Rationale: Only classes defined in Cdyn or one of its predecessors should be considered
within the context of this CO. This could be regarded as dynamic binding according to the
dynamic connector type. All other classes collected in this phase are possible views of RCdyn.
5Rationale: This is the two-level dynamic binding.

147



Chapter 10 Logical Component Gluing using DVCs

This VO is internally cached in a transient attribute of the CO, in order to
provide the same VO if the same RO is lifted again in the context of the CO and
if this VO conforms to the required static type. Note, that lifting the same RO
to a different V Cstat may very well be sound, because one RO may play several
roles even within the same CO.

Initialization

When a VO comes into being, i.e., its base RO is lifted within a given connector
for the first time, its added attributes, if any, are still uninitialized. The accept
function within the definition of a view class initializes the added attributes of
a VO (see lines 15–18 in Fig. 10.7 for an example). Invoking accept is done
automatically by the Lua/P interpreter. Accept functions are written by the
programmer just like creation methods/constructors, with the only difference,
that accept operates on a VO whose used and filtered attributes are already
available from the underlying RO and the references ro and co have been set.
Only the VO’s added attributes need to be initialized.

Lowering

The interpreter automatically converts a VO to an RO, — the lowering oper-
ation — every time a VO is passed outside the context of a connector, e.g., as
an argument to a workbench request involving a different tool. A VO–to–RO
conversion is equivalent to evaluating the expression vo.ro.

10.2.6 Tool integration with DVCs

Finally, let us briefly summarize the tool integration process in the presence
of DVCs. As far as the tool definition is concerned, the requirement holds
that the tool must be developed against an expected interface where some
middleware can be plugged in that encapsulates any underlying data storage.
Let us assume, that the interface of all persistent objects (the tool model) is
defined by means of CORBA IDL or Java interfaces. These interfaces are part of
the deliverable tool which should preferably be pre-compiled and be pre-linked
without an implementation of these interfaces. The first step in integrating
such a tool consists in providing a library of proxy classes that encapsulate all
persistent objects and in addition to delegating access requests from the tool
via middleware to the data storage, also allow to register observers for change
notifications from the middleware. This step can be automated by tools such
as an IDL compiler. In this vein, we provide a generator for PIROL proxies
(cf. Fig. 10.11). Deploying a tool is then a matter of furnishing also the set of
generated proxy classes for the chosen middleware.
The requirements so far implement what we call “physical pluggability”.

A tool that is developed according to these rules can be used with different
implementations of middleware (MSG or CORBA or . . . ) and thus with dif-
ferent repositories or other data–stores, provided the structure of proxy classes
conforms to the concrete repository model, which is very unlikely. In order
to reconcile logical incompatibilities between the structure of the proxy classes

148



DVCs interacting with other concerns Section 10.3

IDL
expected interface

repository model

deliverable tool

Workbench

generation

manual implementation

linktime  binding

communication via
middleware / IPC

textual definition

runtime process

Proxies

DVC

Repository

Tool 
implementation

Figure 10.11: Elements and tasks of integrating a tool

and the concrete repository model, the integration of tools now includes an ad-
ditional step. A dynamic view connector has to be developed (cf. Fig. 10.11),
which is the only place in the system that knows about both the tool model and
the repository model. The connector creates a specialized view of the reposi-
tory, or, a “virtual repository”, making the tool ‘believe’ it would operate on
a repository, whose schema is identical to its expected interface. The tool will,
however, never see objects of the real repository model, but only virtual objects,
which simulate the expected structure and behavior on top of the repository
model. Implementation of a dynamic view connector requires hand crafting,
but this is confined to one module, and from todays experience we expect this
to be a task of low effort.

10.3 DVCs interacting with other concerns

10.3.1 Meta Modeling

Dynamic View Connectors enhance meta modeling by introducing a second Discussion
5model level. Note, that DVCs are in fact limited to one additional level, because

each VO must actually refer to an RO as its basis, i.e., neither VOs nor DVCs can
be stacked. But already these two levels permit a powerful decoupling between
the models of the repository and its tools. Some integration tasks could not
easily be implemented if all tools were forced to be based on one common
meta model. The new capabilities relate to a-posteriori integration of tools and Tool integration

[← 10.2.6 on the
preceding page]

environment evolution. For both scenarios, Dynamic View Connectors are able

Evolution [12→]
to bridge the structural mismatch between rather different models at repository
and tool level.

149



Chapter 10 Logical Component Gluing using DVCs

Also, Dynamic View Connectors add a new structuring concept: connectors
encapsulate the objects handled by one tool instance into amodule, that again is
instantiable. Each connector instance (CO) defines a context which is populated
by VOs.
On the other hand, VOs were designed as to resemble the structures of

ROs in Lua/P as closely as possible. View classes may define the same types of
attributes, the same style of methods, creation methods and inheritance. This
was guided by the goal to make DVCs transparent for tools, i.e., to let VOs
appear just like ROs.

10.3.2 Persistence

Transparency of VOs requires persistent storage of VO attributes. This is im-Implementation

5 plemented using the said hashtable in class CO. To be precise, this is not just one
COs implement

VOs[←10.2.1] using
hashtables [←1.1.1]

hashtable but a set of differently typed tuple–lists. The choice to use tuple–lists
is motivated simply by the endeavor to manage without introducing a new type
constructor Hashtable. While several optimizations of this encoding suggest
themselves, measurements would be required in order to judge, whether this
extra effort would pay off. Each list for a given resource type X has the shape

x resources: List{
ro: ANY,
key: String,
x val:X

}
Such a list exists for each of string, integer, boolean, term and object. This
allows to directly map view attributes of the given types, covering all simple
and term types. If a view class wants to add a list attribute, this list has to be
encoded differently. The implementation depends on the element type of the
list.

basic types: Since lists of String and Integer are encoded as terms of type
STRING LIST and INT LIST respectively, added lists of these
types are stored in the term resources list.

object types: These are implemented using the object resources list and
an auxiliary RO of type LIST OBJECT. This class has only one
feature: a list

elements: List(ANY)

This indirection is hidden by the access functions that are built
for such and attribute.

tuple types: These are not implemented for VOs. In fact, defining a Lua/P
resources–list in such a generic way that it could contain tuple
lists of arbitrary tuple types would introduce considerable over-
head in PCTE. The mappings used for tuple–lists of RO classes
are not available for virtual classes, because no PCTE schemas
are generated from the definitions of virtual classes.

150



DVCs interacting with other concerns Section 10.3

Tuple lists were introduced mainly for reasons of optimization.
Since such optimization is not available for virtual classes, mo-
tivation is low or inexistent to add tuple lists in a virtual class.

Another difference between repository classes and view classes concerns the
visibility of names. Each repository class name is also a PCTE type and since
the current implementation does not use SDS prefixes in type names, class Schema definition

sets [←2.2.1]names must be globally unique — ROCM packages do not define name spaces.
Not so for view classes. View objects are never stored in the repository as such,
they only live within the workbench. So, for view classes it was easy, to let
each connector class define a name space for all contained view classes. As a
consequence, view class methods, e.g., are defined with qualified class names
like in:

function MY CONN.MY VCLASS:my method() . . .

10.3.3 Granularity

DVCs and the issue of granularity are by and large orthogonal. Except for tuple Discussion
5lists, virtual classes may have the same structure as repository classes. However,

the internals of terms can currently not be re-mapped by a DVC. This might very
well be a useful feature. Consider the example of abstract syntax trees (AST)
encoded as terms. E.g., in the ESPRESS project where Pizza was used instead
of Lua/P term types, a concept of annotation layers was developed, which in a
generic way allowed to attach annotations to nodes of the AST [BGHHm98].
Using Pizza, a great deal of polymorphism was used to attach arbitrary types of
annotations to arbitrary nodes and explicit retrieval functions were needed to
access these annotations while hiding other annotations that were not needed in
a specific context. If automatic mappings in the style of DVCs were used to also
enrich term types, different tools could in fact work with different refinements
of the same grammar simultaneously. While many concepts of DVCs could be
extended to also cover term types, the implementation of such a capability
would probably cost an effort in the same order of magnitude as implementing
DVCs as they are, because differences at the detail level would probably prohibit
reuse of any code of the DVC implementation. But this is little more than
speculation.
When linking up with the experience from traversing term structures, an

interesting combination can be thought of: In a similar vein as higher order
functions allow to express traversal separately from structure, also DVCs can
be used to implement reusable traversals in places where regular object-oriented
design would suggest the cumbersome visitor pattern [GHJV95].
Experiments have been carried out in separating a structure definition and Applications

5behavior for a simple expression language just like Fig. 3.1. In this experi-
ment, repository classes were used for the structure definition without further
methods (package EXPRESSIONs in Fig. 10.12). An abstract DVC was developed
as a generic traversal implementation (package TRAVERSE in Fig. 10.12). This
DVC was bound to the EXPRESSION package by extending it to EXPR TRAVERSE.

151



Chapter 10 Logical Component Gluing using DVCs

EXPRESSIONS

EXPR_TRAVERS

EXPR_EVAL

EXPR

NUM PROD BIN

EXPR_PRINTNode

TRAVERSE

process()

Composite
process()

run()

pre()
post()
step(i: Integer)
get_children()
   :List(Node)

Leaf

VAR_APPL PLUS MINUS

2

factors

Composite =

«adapt»

«connector»

= NUM
  process()

= [BIN, PROD]
  accumulator : Value
  post()

= VAR_APPL
  process()

«connector»

= PLUS
  step(i: int)

= MINUS
  step(i: int)

«connector»

= PROD
  pre()
  step(i: int)

= BIN
  pre()

Leaf =

Composite =

= BIN
 get_children()

= PROD
 get_children = get_factors

*

e: EXPR
conn: EXPR_TRAVERS
...
e = ...
conn = EXPR_EVAL:connect(e)
conn:run()

= EXPR

Node =

«connector»

Figure 10.12: Modular implementation of functions over composite structures

Finally, concrete DVCs (EXPR PRINT and EXPR EVAL) implemented behavior for
pretty printing and evaluating expressions. These concrete DVCs inherited from
the generic traversal DVC and thus had to fill in only small specific pieces of
code.
As an aside, this experiment demonstrated, that a DVC can also be useful

without integrating an external tool into the environment, rather, the behavior
that a DVC implements may also be seen as a tool that resides within the
workbench.
A more comprehensive experiment is needed to explore the combination of

DVC based traversals for medium grained objects while descending into the very
fine grained items using higher order functions. Technically, this is definitely
possible, the quality of the code that results from this approach should also be
good in terms of decoupling, understandability and maintainability. In praxis
this is yet to be proven.

10.3.4 Behavior

By the capability for automatic lifting, DVCs introduce a new behavior aspect:Discussion
5 VOs are usually created implicitly. The special method accept has already been
introduced, that takes over a responsibility that is similar to creation methods
for ROs. The main differences are: accept is called implicitly (precluding any
parameters to be passed to this method), on the other hand, accept is called on
a partially initialized object, since the new VO already has its references vo.ro
and vo.co set, and thus attributes from the uses clause are already available.
Another technique is needed for creating a VO for which no RO exists yet.New Feature

5 Although view classes have creation methods just like repository classes, this
Creation methods

[←4]
creation needs more context information. First, a connector class is needed to
resolve the view class name. Second, a connector instance is needed to setup

152



DVCs interacting with other concerns Section 10.3

the vo.co reference. The RO can be created according to the view class’ roclass
declaration. So, in Lua/P the syntax for creating a VO including creation of the
underlying RO is:

my vo = my co.MY VCLASS:my creation method()

The connector class is inferred as the dynamic type of the instance my co.
It is the responsibility of the VO creation method, to invoke a proper creation
method on its RO sub–object. This can be compared to invoking super within a
Java constructor, giving a hint at the equivalence of the role–of relation between
VOs and ROs and inheritance.

Delegation

Another even more decisive issue comes into focus regarding method calls that New Feature
5are delegated from a VO to an RO method. Consider self calls of an RO that are

invoked within a delegated call from a VO. It is important to note, that such
calls maintain the original self, i.e., the RO method is actually called with a VO
target. The reason behind this lies in the possibility to override RO methods.
Consider a template method RC:tmpl that calls a hook method RC:hook. In
a view class VC that imports both methods (keyword uses), it should be pos-
sible to change the behavior of tmpl by redefining hook. Redefinition is done
by implementing VC:hook. Given a vo: VC, a call vo:tmpl() uses the correct
VC:hook(), if and only if during the execution of RC:tmpl the implicit param-
eter self is still bound to the VO. Only so, dynamic dispatch is able to invoke
VC:hook (which [HOT97] call the “right outcome”). Care must be taken that
— aside from this possibility of invoking overriding VO methods — self within
RC:tmpl behaves exactly as self.ro would. All RC features are visible using
their original name (before a possible renaming in VC). Overriding works only
for methods that appear in the uses clause. Otherwise, methods of the same
name are considered unrelated. This is to protect VC from methods that are
included in RC after implementing VC, e.g.

In todays experience, complex behavior concerning VOs mostly involves
calls between different VO methods. In this case, smart lifting already provides
the desired dynamic dispatch. Overriding hook methods from RO classes is,
however, an important technique, if behavior from RO classes is to be re-used
in view classes.

10.3.5 Exception handling

Exceptions can be thrown in methods of repository classes as well as in virtual Discussion
5classes. So, exception handling and DVCs are mostly orthogonal. DVCs just add

a few exception types, that can be thrown during lifting: NoMatchingViewClass
and LiftingAmbigous. A fully elaborated type system would give warnings Static type checking

[14.2.3→]in advance regarding connector definitions that introduce any potential lifting
problems.

153



Chapter 10 Logical Component Gluing using DVCs

10.3.6 Integrity

Change propagation

An important reason for providing language support for virtual repositories
rather than hand-coding adapters in the tool relates to one mechanism for data
integrity: change propagation.
In order for VOs to be observable concerning any attribute change, VOsImplementation

5 must be tightly integrated with this mechanism. In PIROL’s architecture, where
connectors are interpreted in the workbench the workbench has all necessary
information for tracking changes from a VO to the underlying RO and — more
intricate — to track changes from an RO to all VOs that are views of this RO.
These fine points had to be observed:

• Attributes may be renamed in view classes, so translations in both direc-
tions are needed.

• Lists may be filtered leading to different sets of indices.
The latter issue is solved by recording both indices with each element of a VO
list: the local index and the index in the underlying repository list. In fact, one
direction of the translation — VO–to–RO— is already needed for implementing
the regular operations for VO list manipulation.
Computing changes in the VO list when the RO list has changed is not so

straight forward. Firstly, given a RO list index and derived from this the PCTE
link index, it must be determined, if and where (at which index position) this
effects the VO list. Also for inserting–operations, the filter predicate has to
be evaluated for the new element, in order to determine, whether it should be
visible in this view. Taking into account, that any set of indices — including the
actual PCTE indices — may need to be reorganized when inserting elements
in the middle of the list, and also considering, that each RO list must know
all VO lists, that are views of it, there is a lot of administrative information
to be maintained internally.6 While this list implementation is tangled code,
belonging to very different concerns, the mechanism of change propagation is
cleanly separated into three sub–issuesTrigger–deliver–react

[←8.2.2]
1. The workbench (especially, the list implementation that has just been dis-
cussed) is responsible for computing dependencies and generates changed
messages for every direct and indirect modification.

2. The MSG server is responsible for delivering these messages to all inter-
ested parties.

3. Each tool is responsible for properly reacting to an incoming changed
message.

The very dense implementation in the workbench seems to be typical of
infrastructure implementations at the very core of an environment. This high–
effort implementation pays off, however, because it relieves all tools of the
obligation to implement any of these translations.
6The implementation of object lists, in its three representations PCTE, RO list, VO list,

consumes already 8 percent of the total Lua code implementing the workbench.

154



DVCs interacting with other concerns Section 10.3

Predicates

Another issue in data integrity concerns both occurrences of predicates. The Discussion
5question is, whether it should be tolerated, that a predicate value might change

after evaluation. Currently, it is assumed, that all attributes used in predicates
are read–only attributes (e.g., in Java these should be marked final). At a
closer look this could be differentiated:

• Class predicates are essential for an object to be usable in its role. A
change in the value of class predicates would imply dynamic re–typing,
which is very difficult to allow in a somewhat safe manner.

• If filter predicates in VO lists would evaluate differently over time, this
would just mean, that an object might migrate from one list to another.
Using change propagation this is actually a safe operation.

The latter, currently being unimplemented, would include the following
measures:

• Each filter predicate should be setup as a derived attribute, such that
data dependencies are recorded at run–time.

• As a new mechanism, a workbench internal observer mechanism would
couple a filtered list to changes of its filter predicate concerning each
element of the underlying RO list.

• Each value change in a filter predicate might then trigger an insert or
remove event for the corresponding VO list.

• The former event would have to trigger update of the workbench internal
representation of the VO list and a changed message on the MSG channel.

To–date no examples have been encountered that would justify this effort, that
would certainly also have its impact on performance.

Derived and redirected attributes

The implementation for VO attributes that are hand coded using the redirect Implementation

5construct is actually a simple enhancement of derived attributes. The get func-
tion corresponds to a derivation function: both functions retrieve a value while
recording data dependencies for later change propagation. The assign function,
however, is new in the redirect implementation: it takes away the read–only
restriction of derived attributes.7 Note, that assign functions very smoothly fit
into the workbench implementation, where every attribute is implemented by
a pair of access functions. With assign, it’s the ROCM programmer who has
the burden of defining a correct assignment strategy, such that the following

7During the preparation of this thesis, the read–only restrictions of derived attributes has
been overcome by also admitting assign xxx methods in analogy to derive xxx methods.
The change was performed by inserting 13 lines of reflective code into the workbench — again
demonstrating the power of Lua.

155



Chapter 10 Logical Component Gluing using DVCs

commutation always holds:

vo.at = value
 value == vo.at

Guarded attributes

Despite all techniques and mechanisms for keeping data consistent, workingDiscussion
5 with different views of shared data comes with the risk of compromising the
semantical integrity of the shared data, since changes may be performed within
a view, that does not see the full shared data model nor its invariants. Lua/P’s
mechanism of guarded attributes is the place where programmers of the metaGuarded attributes

[←6.1.2] model may encode semantical constraints. It has been shown that guards have
a place in PIROL’s conceptual architecture that sits right between PCTE and
the evaluation of methods in the workbench, which guarantees, that regular
usage of ROs (without raw xxx functions) cannot bypass a guard.
Since view definitions operate as an abstraction on top of ROs, integrity

constraints as implemented by means of guards apply to repository access in-
dependent of the view from which it originates. That is, PIROL’s repository
model comes with a meta–level exclusively responsible for encoding and main-
taining constraints that ensure the semantic integrity of repository data, no
matter what views will be defined over that data and how they access it. As an
aside, note that changes on the repository caused by the execution of a policy
associated with a guarded attribute are propagated to interested tools (views)
in the same way as changes directly originating from some tool access.
Conversely, defining attribute guards for VOs is for conceptual reasons not

supported. ROs do not know about all of their views8. So, the workbench has
no chance to guarantee, that all relevant guards are triggered, if view classes
could have guards. Guards that are triggered only sometimes are not useful,
they cannot protect any invariant. This is not really a significant loss, since
guards were introduced in the beginning as a means to coordinate access to
shared data, such that no tool may compromise semantic integrity of data that
are relevant outside its own context. This simply does not apply for VOs, since
the specific facet of a VO that is not already included in an RO, is not shared
by different tools. If as an exception to this rule tools share a virtual repository
their VOs will already operate on the same abstractions.

10.3.7 Client-server architecture

RO–VO substitutability

DVCs have been designed with care to make the difference between ROs andNew Feature
5 VOs transparent as far as possible. This substitutability needs to be refined
when considering data flows between tools and the workbench, because lifting

8Change propagation seems to require differently, but at a closer look, only those views are
known, that are currently accessed by a tool of the enclosing user session. Change propagation
is active only for the VOs involved in these views.

156



DVCs interacting with other concerns Section 10.3

and lowering may be needed at this component boundary. Can the workbench
recognize for each incoming request whether it relates to a virtual repository
containing VOs (and of which CO)?
This question can be rephrased to: when is lifting and lowering to be per-

formed? In PIROL this is solved rather dynamically, because Lua/P is an inter-
preted language, which is not transformed by a compiler.
In successor models of DVC [Her02b] lifting and lowering are inserted into Related Work

5the code at compile time or at load time at the latest. This can be done due
to the availability of complete typing information. This strategy imposes some
restrictions:

• There cannot be a common super-type of role objects and base objects.
Each type must unambiguously be either a role-type or a base-type.

• No role object may be passed from one connector to another, because
that would require lowering and lifting based on run-time values, not
static analysis.

This solution was not used for Lua/P because type information is incomplete
(local variables are not typed) and is not easily accessible at run-time. At
run-time a Lua/P method is just a Lua function, its signature is stored only in
persistent meta objects.
We also wanted to gain some experience with an unspecific type OBJECT,

which is the super-type of all ROs and VOs.

Lazy lowering

One special situation exists, where an experimental concept called lazy lowering New Feature
5is quite helpful: Class WORKBENCH provides a general–purpose clipboard

selected objects: List(OBJECT)

with OBJECT denoting the super-type of ROs (class ANY), VOs (class ANY VO)
and transient objects (class TRANSIENT). Any tool may store arbitrary objects
in this list for later re-use — this is in particular useful for a copy&paste user
interaction style. In case a tool stores a VO in this list, any other tool, not
using the same connector, should only see the underlying RO, but for the case
this VO is later-on passed back to the same tool, the context information is
kept as long as possible. Firstly, it is not a problem to lower the object when
passing it to a tool, that does not use the same connector. Secondly, keeping
the VO instead of its RO helps to disambiguate in case an RO has more than
one VO within the same connector, where passing only RO and CO into the
lifting operation would not suffice. The remaining question is: How can the
workbench tell when and how to lift an object that has been requested by a
tool. Two sub-issues are relevant:

1. How to identify the connector instance to lift to?

2. How to determine the required view class for lifting?

157



Chapter 10 Logical Component Gluing using DVCs

Tools as contexts

Generally spoken, each tool will either operate on one virtual repository as
defined by one CO or will not use connectors at all. Thus, the following transla-
tion can be used: each tool has associated zero or one CO. Class TOOL INSTANCE
maintains an attribute target co where each tool instance stores the CO that
defines the virtual repository for its target document.
This instance relation is declared by an association document types of class

TOOL KIND. A DOCUMENT TYPE is described — among other properties — by the
name of the connector class to be used.
Returning to the instance level, the workbench uses the chain

OS process −→ MSG client ID −→ TOOL INSTANCE RO −→ target co
in order to lift all values to be sent to the tool within the context of the
target co. This is to say, the workbench identifies tool instances with CO
contexts which helps to keep all lifting and lowering action local to the work-
bench. A tool may use VOs without an explicit distinction while relying on the
workbench to perform lifting and lowering whenever needed.
Generally, lifting requires three input parameters: the base object (RO) the

connector (CO) and the declared type of lifting. In a single program setting an
assignment like

MyVOType myVO = wb.getSelectedObject();

would generate a lifting to type MyVOType. Now, the right hand side may be
a workbench request while the assignment takes place within a tool. Since we
want to keep the lifting operation local to the workbench9, the requested VO
type needs to be passed in the request. This is solved by introducing a field
type desc to all request messages. For each request that is issued, e.g., byGrammar MSG

[←7.3.2] a Java tool the expected return type is explicitly known. This information is
encoded in the type desc field, so that the workbench knows to which view
class the object should be lifted.

Remote VO creation

Currently, create messages are implemented slightly differently from other
requests: As shown in Sect. 10.3.4 on page 152, creation of a VO requires also
a connector instance as its context. create requests are assembled in the Java
tool library, where the current COID of the tool is also stored. Conceptually,
this does, however, not differ from the above strategy, where the workbench
manages the tool-to-CO association.

Views and replication

View objects do not yet involve replication mechanisms for minimizing remoteRelated Work
5 calls. The approach described in [MMD+99] has conceptual similarities to DVCs
while focusing on such optimizations for truly distributed systems. Strategies
for transmitting partial views of objects in bulk-messages are also subject of
[Bar02]. It is planned to exploit declarative specifications of views, such as

9There is no advantage in accessing the RO within a tool, when only the VO is of interest.

158



DVCs interacting with other concerns Section 10.3

DVCs, for transparent optimization, which takes away the burden of explicitly
choosing a strategy for parameter transmission.
Note, how smooth the idea of contexts can be mapped from OS processes up- Discussion

5to DVCs. This is, however, in conflict with a desirable optimization. Sect. 14.1.1
will report on measurements of execution time of PIROL and its tools. These
measurements urgently suggest, not to use too many OS processes running
Java. Ideally, all Java tools should in fact run in only one JVM. Due to further
problems with threads (the GUI library swing is not thread-safe), conceptually
separate tools cannot be distinguished at the technical level, if they all run in
one JVM. Currently, Java tools cannot make proper use of contexts without
sacrificing in terms of performance, or more specifically: increased time for
starting a new tool. 4

10.3.8 Control Integration

Separate extension

Sect. 8.3.1 has shown, how a tool may remotely extend an RO. This is relevant Discussion
5for the aspect of distribution or separation of OS processes. View objects are a

far more powerful concept for extending an RO without intrusive modification.
VOs and extended proxies are somewhat similar regarding overriding: both
elements may override existing methods and in both cases the overriding method
is only effective when invoked on the extended or view object. Such overriding is,
however, broken for extended proxies when used in a template–and–hook style.
Extended proxies can only forward to their RO while VOs are implemented
with true delegation with late binding of self. Also, the powerful constructs for
mapping, which are present for VOs, are not available for extended proxies.

Lifting in distributed control flows

In the previous sub-section we have discussed, which part of the system is
responsible for lifting objects that are passed to a tool. changed messages could
be a problem for the strategies discussed, because in that case the workbench
does not know, which tool will receive a given changed message. Here, the
selective multi cast protocol jumps in without further ado. changed messages
are issued separately for ROs and VOs and each tool only registers patterns for
those object identifiers that it is observing, be they ROIDs or VOIDs. Only
those cases, where the value of an observed attribute may either be an RO or a
VO reference, things would be difficult again.
The general rule for lifting and lowering is: it must conceptually be per-

formed each time a connector boundary is crossed (leaving lazy lowering aside).
These kinds of crossing connector boundaries exist:

1. Invoking a method listed in uses.

2. Accessing an attribute listed in either of uses, filter or redirect.

3. A request from a tool that operates on a virtual repository.

159



Chapter 10 Logical Component Gluing using DVCs

4. Delegating a method to a tool using tool execute, where the tool oper-
ates on a virtual repository.

5. Change propagation concerning an attribute that participates in a DVC
defined mapping.

Of these, (1) and (4) describe events in the control flow, (2) and (5) relate to
data flow, and (3) may by either control or data flow. Note, that (1)-(4) happen
explicitly, while (5) is implicit.

10.3.9 Multi User Capability

Interestingly, both DVC and multi user capability introduce a concept of contextDiscussion
5 which appear orthogonal towards each other. Aside from general considerations
about partly invisible documents, no interaction between these two concerns
have yet been observed.

10.4 Summary

Dynamic View Connectors are the most advanced feature of Lua/P. They com-
bine a language extension with properties of database views. Both issues will
be discussed more in depth in Part III.
Meta modeling is enhanced transparently by the additional layer. Connec-

tor instances are a visible extension which encapsulates the structure of COs.
Associating connector instances with tool instances helps to automate context
selection.
At the client level, Dynamic View Connectors appear orthogonal to most

other concerns. This is achieved by distinct mappings, which simulate VO prop-
erties in accordance with RO properties. For some mappings, like consistency
between lists and filtered lists, this transparency required considerable effort.
Also, mapping added attributes to persistent CO properties has its price at
implementation level.
Behavior implementation obtains a new dimension. VO–RO delegation in-

troduces object–based inheritance to an otherwise class–based language. Im-
plicit VO creation through lifting adds an initialization issue supported by accept
functions.
Lazy lowering significantly increased scattering of VO management through-

out the workbench. It even discloses the RO–VO distinction to client code,
where a more static approach establishes better transparency. Thus, the exper-
iment concerning lazy lowering has successfully demonstrated, that this feature,
though realizable, is not worth its effort.
The general reflective design of PIROL is reflected by new root classes

CONNECTOR and ANY VO, which implement several universal properties, which
subclasses may still adapt by overriding. Allocating such properties in root
classes helps to keep the core Lua/P implementation lean. A default uses clause
in ANY VO has motivated the introduction of the hide keyword in order to adapt
also inherited uses declarations.

160



Chapter 11

Common Services across
Components

Aside from implementing a technical infrastructure, an SEE framework should
provide functionality that can be re-used across tools. Considering the five
areas of integration according to the ECMA reference model, data and control Discussion of

integration [←8.1.1]integration contribute to the technical platform, while presentation, process and
framework integration can be seen as dealing with additional services.
Examples from the latter three areas will be presented here, by which the

framework is enriched.

11.1 Tool administration

When presenting the essential classes of the ROCM package TOOLS, class TOOL Package TOOLS
[←8.3.1]has been introduced as the root of a hierarchy of classes that capture configura-

tion information for tools. The main features of this hierarchie are summarized
in Fig. 11.1-11.3.
Three levels of tool attributes can be distinguished: static configuration,

launch-time configuration and dynamic properties. At the first level, classes
TOOL KIND and PROCESS MANAGER allow to configure the environment by in-
stalling tools and configuring their general capabilities. The second level deals
with launching tools, which implies to create ROs of type TOOL PROCESS and
TOOL INSTANCE, which reflect a physical view (corresponding to OS processes)
and a logical view. While these objects are created, they are connected to their
defining objects (managers and kinds) and to the enclosing workbench session.
Some properties at the third level (especially those of TOOL PROCESS) are purely
administrative and help to synchronize the external process with its represen-
tative, some properties are tool specific, but some common run-time properties
help to define common interactions between tools.
As an example, a simple observer mechanism has been implemented regard-

ing the selected objects list. Each tool that implements the notify set-
selected method may register as an observer at any other tool. This has been
used to have the focus of one tool automatically follow the selection within
another tool. Thus, two tools can be “docked” together. This is useful if two

161



Chapter 11 Common Services across Components

Class TOOL KIND
for class: String Only objects conforming to the class given here,

can be passed as target to the tool.
need vo: Boolean If set to true, only a VO can be used as target.
document types
: List(DOCUMENT TYPE)

All documents of the given document types can
be displayed by the tool (target will be the
root ro/root vo of the CO).

instance class: String Name of a subclass of TOOL INSTANCE used for cre-
ating instances of this tool.1

process manager
: PROCESS MANAGER

Link to the manager that can create processes for
tools of this kind

share process: Boolean Can tools of this kind share a common tool process?
multi window: Boolean Can one tool of this kind simultaneously display

different documents in different windows?
window size
: RESOURCES.xy2

Default size for new windows of this tool

Class JAVA TOOL KIND (subclass of TOOL KIND)

factoryClass: String Name of the Java class that implements this tool
kind

factoryMethod: String Name of the method (of the class given by facto-
ryClass), that in a running JVM creates a new tool
instance

Class PROCESS MANAGER
path: String Path of the executable for launching a tool process
args: List(String) Arguments to pass when launching a new process
tool container: Boolean Are processes containers that can host several in-

stances?
host: HOST Preferred host on which to launch the process

Class JAVA PROCESS MANAGER (subclass of PROCESS MANAGER)

classpath: String Classpath where the JVM searches class files
java args: List(String) Arguments to be passed to the Java virtual machine

Figure 11.1: Attributes for static tool configuration

tools show the same objects but with different details. When both tools are
docked, it is easy to edit different properties of the same object in different
views. Docking also helps to understand which displayed elements are based
on the same object.
At a closer look the simple observer mechanism reveals a general pattern howDiscussion

5 tools can interact although being developed independently. Classes for tool rep-
resentatives define some very basic properties. Other properties can be added
by subclassing, but is important to have a minimal set of properties that all tools

1This mimics a type parameter of class TOOL KIND.
2This term type defines two-dimensional entities by their x and y coordinates.

162



Tool administration Section 11.2

Class PROCESS MANAGER
processes: TOOL PROCESS List of all processes that have been launched

by this manager (and are still active)

Class TOOL PROCESS
manager: PROCESS MANAGER The manager that launched this process
sharable: Boolean (Setup from TOOL KIND.share process)

Can this process be shared by several tool
instances?

pid: Integer OS process ID
msg id: Integer Identification in the MSG channel
instances: TOOL INSTANCE All instances being executed within this pro-

cess
Class TOOL INSTANCE

tool kind: TOOL KIND This tool is an instance of that kind
tool process: TOOL PROCESS This tool runs in that process
session: WORKBENCH The workbench session, this tool runs in3

Figure 11.2: Features for setup during launching

Class TOOL INSTANCE
message: String The current tool status as it should be dis-

played in the tool’s statusline (if available)
target: ANY The currently displayed object
target co: CO The currently displayed document
selected objects: List(ANY) Internal selection of this tool4

connected tools
: List(TOOL INSTANCE)

Tools that observe the current selection

Figure 11.3: Dynamic tool properties

share. It is now up-to each tool, to implement, e.g., a notify set selected
method, with can be invoked remotely by a tool execute message. The tool
being observed is only responsible for keeping the list of selected objects in
the repository up-to-date. The workbench executes the observer mechanism
of method set selected. Of course this could also be an attribute guard of
selected objects, which would be more flexible as tools wouldn’t need to
invoke specific methods. Representative objects finally are responsible for de-
livering the notification to their actual running tool. No harm is done, if the
tool doesn’t listen to this notification. Everything is optional. Note, how this
separation in three responsibilities resembles the trigger-deliver-react chain of Change propagation

by
trigger–deliver–react
[←8.2.2]

change propagation. The difference to the standard observer pattern lies in the
distribution and the split identity of tools as a running process and a represen-
tative.

3This is the reverse of WORKBENCH.active tools: TOOL INSTANCE.
4This selection should not be confused with the workbench selection that is used as a

clipboard for passing objects between tools. This should be solved by a different naming.

163



Chapter 11 Common Services across Components

11.2 Workbench provided context menu

The previous section was concerned with administrative issues that more or less
operate in the background. Those services contributed to PIROL’s framework
integration. It is now time to turn to presentation integration and a central
concept concerning how users interact with multiple tools in an integrated en-
vironment. The following dilemma had to be solved:

• Tools are developed independently.

• Tools present ROs in very different ways.

• Users should be supported in building a mental model that is close to the
graph of ROs in the repository disregarding the different representations
in different tools.

• For this purpose it should be possible to perform certain operations on
an object in any tool.

This cannot be stressed enough: users should be able to (partially) recognize
ROs within their tools and documents in order to understand how different
documents relate and what the combined model is like. Working with multiple
views is only efficient if the nature of views is perceivable as something secondary
that is presented instead of the “real” underlying model. It is the hidden
commonality of different views, that must be exposed to users.
An essential step on this road is a minimal kind of uniform handling that

is ascribed to an RO, independent of the context in which it is (partially) pre-
sented. The idea is, to have a context menu, that can be invoked for any RO and
from any tool. This context menu should provide the same options throughout
all tools.
The above dilemma is solved by implementing those context menus in a

strict model-view-control style: tools are only required to display a context
menu for any RO, which they are displaying. The contents of this context
menu will be provided in a uniform way by the workbench. Finally, execution
of any option that is selected in the context menu is delegated to the workbench
that dispatches the request to the responsible unit. The common understanding
of workbench and tools concerning context menus is defined by a Lua/P class
MENU. Of this class, tools only need to know these properties:

Class{MENU;
inherit=TRANSIENT,
attributes={
title : String,
labels : List(String),
submenus : List(MENU),

},
}
–– Invoke a menu option:
function MENU:invoke(index: Integer)

164



Workbench provided context menu Section 11.2

From such (nested) descriptions, each tool should be able to construct a
menu displaying the labels and sub-menus as given by the composite data struc-
ture (sub-menus are of course displayed in their parent menu by writing their
title). The tool should expect to receive arbitrary nested structures of MENU
objects. It need not know anything about the meaning of any of these labels
and sub-menus. All it need do, is call invoke on the (sub-)menu, from which
an option was chosen by the user and pass the number of the chosen label. This
invoke call will of course go to the workbench, which knows well how to react
to this choice.
Internally, the workbench has associated with each MENU instance a list of

function closures that correspond to the menu’s labels. So, all the workbench
needs to do, is, invoke the correct function closure.
As all this is extremely generic, the question arises, as to how concrete se-

mantics will ever be filled in into this concept. The answer is twofold. Firstly,
the tool requests a menu definition for a specific RO because that’s what the
context menu is opened upon. Secondly, the workbench has a factory method
create context menu(obj: ANY), which constructs the context menu accord-
ing to a project- or even user-specific strategy. Each specific operation may
be constructed by a subclass of MENU that contains the semantics being sought
after.
Currently, operations of the following categories are implemented in the

default context menu:

• Adding objects to the workbench selection. Also clearing the selection
and printing its contents to the console are supported.

• Launching a tool with the current object as its target.

• Sending an object to a tool that is already running. This should usually
have the semantics of retargeting the tool or by some other means making
the object visible within the tool.

• Open a document that is associated with the object.

• If the object is a document or a VO, a sub-menu is opened for the under-
lying RO which recursively supports all operations being listed.

• The observer mechanism presented above can be initiated by connecting
the current tool as an observer of any running tool.

• Versioning operations where intended here, but since versioning imple-
mentation is not functional nothing can be invoked from the context menu.

• A simple workflow mechanism can be triggered by a sub-menu (see below).

• For exploring the repository a few more operations for printout are im-
plemented (print description, print ACL etc.)

This is the current state of implementation and should give an idea of what
kind of operations can be uniformly supported for (almost) all objects. Some

165



Chapter 11 Common Services across Components

of these operations will be presented with some more details below. Note, that
integrating any new operation, which is by some means invocable from Lua/P, is
a matter of adding few lines of Lua/P code to some class in the MENU inheritance
hierarchy.

11.2.1 Determination of available tools

All services related to launching tools are based on the list of available tools as
implemented by the TOOL POOL attribute of each WORKBENCH instance. This isClass TOOL POOL

[←8.3.1] the place where tools are registered for use by a given user. All tools contained
in this list implement a method can handle. The workbench calls this method
with a given target RO as parameter in order to determine the tool’s suitability
for the context menu of that object. In the standard case, can handle simply
inspects the type of the target object and checks conformance to the type
required in the tool’s for class attribute.
The service of displaying the target RO in a currently running tool relies on

the WORKBENCH’s list of active tools. It is up to sub-classes of TOOL INSTANCE
to decide how to display an RO that is sent to the tool. Alternatives are:
completely retargeting the tool, or highlighting the RO in the current view, if
the RO is found to be already visible. Also unfolding a visible object might be
an option, if it reveals the target RO.

11.2.2 Document handling and creation

When a user wants to see a given object by opening a new tool window, it might
not really be the pure RO that he or she is interested in, but very likely a docu-
ment should be opened, containing the given object, possibly as its root object.
This is reflected by two sub-menus titled “Views of name of object” and “Views
containing name of object”. The first sub-menu is generated by retrieving the
list of COs associated with the RO via the cos list declared in class ANY RO. The
second sub-menu retrieves all COs that by their list of contained objects
refer to the given RO. This retrieval uses the function get origin list forMethod

get origin list
[←4.1.1]

navigating a set of PCTE reverse links.
In both cases for each applicable document (represented by a CO) a menu

entry is generated. Each entry has the capability of launching a tool that is
associated with the type of the given document. If several such tools are foundClass DOCUMENT TYPE

[←8.3.1] a sub-menu of these tools is inserted as the menu entry of the document type.
Another possibility refers to creating a new view of a given RO. Which doc-

ument types are applicable is determined by examining all DOCUMENT TYPES in
the TOOL POOL with respect to their list of ro types. If the given RO conforms
to any of the ro types of a DOCUMENT TYPE, this document type is also consid-
ered for the sub-menu “Views of name of object”. Note, that this option will
only create documents of which the target RO will be the root.

11.2.3 User-to-user communication

This service will need further user interaction. Such interaction has to be
implemented by some tool. As an easy solution we could always rely on menu

166



Common services interacting with other concerns Section 11.3

options for launching the responsible tool. However, communicating with other
users should be considered a very fundamental service. Currently, no special
support is given for this, but it is easy to expose a designated communication
tool as to appear at top-level in the context menu. This tool could, e.g., be the
message editor MESSED [Kru00]).

11.2.4 Workflow support: document states

When presenting the behavior implemented in ROCM package PROCESSES —
responsible for process integration — we saw a finite state machine for document Class STATE and

related [←4.1.1]states within a defined workflow. As an example of how the software processes
can be integrated at the user interface, the state machine can be controlled from
the context menu, too. The “transit” sub-menu presents all state transitions
that can be fired on the target RO. This consults the STATE associated with the
RO and may, depending on concrete transition GUARDs inspect any property of
the target RO.
In addition to preventing inapplicable transitions to be fired, this sub-menu

also acts as kind of an agenda, as it only lists those transitions, which are
enabled for the current object, guiding the user to what can be done next.
Fig. 13.5 on page 190 will give some illustration to this service.

11.2.5 Lua/P scripting

Many options in the context menu relate to launching tools or sending messages
to running tools. The previous paragraphs showed how methods from the meta
model (here: package PROCESSES) can be integrated into user interaction. A
third option exists for implementing common functionality: Lua/P scripts.
Scripts have been introduced as a mechanisms to extend the behavior of class

ACTION. An attribute of this class stores a Lua/P script as string for execution
via the document state machine.
Scripts also play the role of simple non-interactive tools: A set of scripts

exists for invocation from the console. By sending a file name (and parameters)
to the workbench with a special command the workbench can be told to execute
any Lua/P script.
While console-scripts are important for simple administrative tasks for which

no interactive tool exists, embedding scripts into RO methods is more powerful
in terms of integrating common services in a way that is accessible from each
tool.

11.3 Common services interacting with other con-
cerns

11.3.1 Meta Modeling

Common services rely on common properties that are attached to all ROs via
class ANY RO. The interface of this class defines several methods that can be
applied to all objects no matter which tool is currently being used.

167



Chapter 11 Common Services across Components

Certain structures (WORKBENCH, TOOL POOL etc.) define the configuration for
common services.
Finally, class MENU and subclasses define the structure how common services

are organized, such that each tool can present the applicable services and invoke
an action that has been chosen by the user, without the tool needing to know
any details about this action.

11.3.2 Persistence

The decision of implementing the context menu by RO-classes and compiling
the context menu on demand interferes with the relative low performance of
creating a large number of persistent objects. In fact, object creation is among
the slowest operations of H–PCTE5. This example motivated the introduction
of transient classes and attributes. Class MENU inherits from TRANSIENT andTransient data

[←2.2.1] thus its objects are never stored to the repository. With persistent objects, the
context menu could not efficiently be implemented by objects in the workbench.
Transient classes provide the uniform access of ROs and objects needed tem-
porarily for common services. They realize a practical compromise of uniformity
and performance.
Framework integration also relies on persistence in the sense that tool con-

figurations are persistent in a natural way using ROs of classes from the TOOLS
package.

11.3.3 Granularity

No interaction could be identified how common services and granularity influ-
ence each other.

11.3.4 Behavior

The common services presented are partially implemented as methods of the
meta model. Some of these methods finally result in launching a tool or sending
a message to a running tool, but the integration always happens by methods of
the meta model.
Methods of class MENU and subclasses implement the selection of those ac-

tions that are applicable for a given target object. This design gives maximum
flexibility to customizing the menu not only according to an object’s class, but
also to its state, and to the current environment as defined by class WORKBENCH
and dependent objects.
All services integrated via the context menu only take one parameter: theDiscussion

5 selected RO. If more parameters where needed, the architecture would have to
be extended, because currently the menu is the only means of communication
between the user and services that are implemented in the workbench. Plans
exist, to also define standard interfaces for parameter dialogs. If the workbench

5Sect. 14.1.2 shows, that the difference between creation and other PCTE operations
(roughly factor 10) may be shadowed by a much greater difference between accessing ob-
jects on segments that are either loaded to the workbench or to the H–PCTE server (roughly
factor 100).

168



Common services interacting with other concerns Section 11.3

remains an invisible background process, also parameter dialogs need to be
realized by tools, but the workbench could request specific dialogs by providing
a dialog description, which in analogy to menu definitions would be given as a
structure of (transient) workbench objects.
This demonstrates, how the model-view-control paradigm can be pursued

consequently also for very generic and powerful user interaction.

11.3.5 Exception handling

The issue of common services is, in general, orthogonal to exception handling.
Exceptions may occur during execution of a service in they same way, as they
occur during any piece of execution in PIROL. Common services on the other
hand introduce now specific exceptions.
There is only a pattern, how exceptions can be integrated into the user

interface: each tool, by convention, reports errors that occur during a work-
bench request in its statusline. This statusline also corresponds to an attribute
message of the tool’s representative. In fact, tools use indirect modification for Indirect modification

[←8.2.3]setting their status via the workbench. This allows other tools to inspect the
current status of a tool including exceptions.

11.3.6 Integrity

With all other mechanisms in place, there is no way how common services could
specifically conflict with integrity issues. The tool docking mechanism applies
a hand-coded observer mechanism. Experiments with dynamically attaching
a guard to a class showed that it might be possible to unify different trigger
mechanisms using dynamic guards.

11.3.7 Client server architecture

The context menu is implemented in a way that translates the model–view–
control paradigm into a distributed architecture. Other issues will be discussed
together with control integration.

11.3.8 Control integration

In contrast to plugin architectures of current IDEs like eclipse [Ecl], PIROL im-
plements common services in the workbench, i.e., strictly separated from any
tool. Not all services are implemented completely in the workbench but some
are delegated to a tool. The essence remains: tools remain separate programs
while still offering common services in a uniform fashion. Thus in PIROL inte-
gration of common services always uses PIROL’s distribution mechanism MSG.
This reduces the danger of different plugins interfering with each other, because
all interaction has to go through MSG and the defined ROCM.
A gateway exists, by which PIROL can be integrated with todays most New Feature

5popular distribution technique, the world wide web. A client library exists (in
Java), by which repository contents can be accessed as a graph of HTML pages
linked by hyper references in the shape of URLs. For this purpose a special

169



Chapter 11 Common Services across Components

protocol pirol is defined, which defines access to the DESCRIPTION of ROs.
The syntax of pirol URLs is as follows:

pirol://roid [/index ]

Such a URL uniquely identifies an RO in the current repository6. If the optional
index is given, this points into the list of referenced objects. This is the
indirection, by which object references from within a description text are madeIndirect references

[←6.2.3] safe with respect to referential integrity. For clients of this Java library pirol
URLs are transparent except that a connection to a PIROL workbench must be
established. If this connection exists, references to ROs in the repository are
resolved with no visible difference when compared to http or ftp references.
All yield a stream from which the requested content can be read. References
within one page can mix all defined URL protocols without further preparation.

11.3.9 Multi User Capability

Services for user-to-user communication have been discussed above (Sect. 11.2.3 on
page 166).

11.3.10 Dynamic View Connectors

Services related to handling documents were discussed above (Sect. 11.2.2 on
page 166). This, of course, includes documents that are implemented as DVC.

11.4 User Interface Management Services

Literature on tool integration agrees on the importance of presentation inte-Related Work
5

Dimensions of
integration [←8.1.1]

gration. Several projects have developed explicit UIMS components that could
be attributed to common services. Examples are Chiron in Arcadia [TBC+88]
and a “User Interaction Manager” in UniForM [KBPO+95]. Already Wasser-
man [Was89] recognized that in addition to technical components presentation
integration needs guidelines.
Presentation integration for SEEs is very closely related to desktop integra-

tion. The open source project KDE [S+00] is a good example, which features a
combination of

• Libraries (based on QT) for standard GUI elements.

• Some common services implemented as daemon processes.

• Guidelines and conventions.

• A lightweight messaging facility.

Messaging is implemented by the Desktop Communication Protocol (DCOP
[Tib00]), a subsystem which remarkable similarities to MSG. This demonstrates
that tight presentation integration requires some support for control integra-
tion. Furthermore, a simple solution featuring send (asynchronous) and call

6Selecting a remote repository is not yet supported.

170



Summary Section 11.5

(synchronous) messages plus minimal techniques for multicast dispatching suf-
fices as a infrastructure for different components running on the same desktop.

11.5 Summary

Common services are a high-level concern that builds upon several other con-
cerns like meta modeling and behavior and the mechanism of attribute guards.
The decisive issues regard the uniformity of these services and their omnipresent
availability. Uniformity is achieved by defining important interfaces by ROCM
classes in the TOOL and MENU hierarchies. Class WORKBENCH serves as the cen-
tral agency for many configuration issues and for the run-time context. The
architecture of context menus allocates structure and behavior to the work-
bench. By only implementing presentation and user interaction in tools the
context menu still tightly integrates all services of the menu into all tools. Lo-
calizing implementation of common services in the workbench helps for a good
modularization and makes many services independent from other concerns.
An architecture with narrower interfaces or weaker control integration might

have posed greater problems for the flexible provision of common services but
PIROL’s architecture imposed no such problems. One restriction should be
mentioned: a file based environment may allow to integrate a third-party tool
for version management. In such a setting, version management is a pluggable,
common service. This is conceptually impossible for a repository based environ-
ment, unless a versioning tools was available for the chosen repository. But then
a smooth and easy integration of such a tool into PIROL seems quite unlikely.

171



Chapter 11 Common Services across Components

172



Chapter 12

Evolution of PIROL

The development of PIROL happened in a very evolutionary way. In its cur-
rent implementation it started as a stepwise extension of Lua. In this course
first MSG was integrated, than classes, than PCTE. From this development
experience exists with evolving the system without breaking its functionality.
It has always been a central goal of PIROL to provide a common basis

for very different incarnations of this generic SEE. The process of customizing
PIROL for a concrete project is a form of evolution, too.
A center piece of PIROL is its meta model (the ROCM). Extension and

evolution of the ROCM deserve special investigation.
The ultimate goal of an evolvable SEE allows for two dimensions of devel-

opment:

• Variants are derived from a generic core by customization.

• The core and all variants evolve over time and all changes should har-
monize, no maintenance should have to be applied repeatedly and every
instance should benefit from all relevant advances.

We have never reached a state, where several installations with very differ-
ent customizations live in parallel while the core still evolves. We had several
students working on different tools (and parts of the ROCM) and simultane-
ously new releases of the generic core were created, but all these installations
contained very little customization. For this reason we have little hard evi-
dence concerning the said two dimensional evolution. Still some concepts can
be discussed that should give an idea of PIROL’s properties regarding evolution.

Evolution of PIROL’s core. The core of PIROL remains a complex
piece of software. A perfect design and optimal modularity could never remove
this complexity. The source code that is specific to PIROL is in the order
of 20,000 lines of code. Half of this is C code, mostly used for integrating
existing software into PIROL. The other half is Lua code that implements the
workbench. Finally, some 4,000 lines of Lua/P code build the central parts of
the ROCM which closely interfaces to the underlying layers. This is a small
and dense system and it should be evident, that many locations within this
code don’t only implement one function but are relevant with respect to many

173



Chapter 12 Evolution of PIROL

different concerns, as they have been elaborated in this thesis. Evolution of this
core also had to pay credit to the heterogenous technique of code written in C,
Lua and Lua/P. Evolution without design decay was only possible with major
efforts in refactoring. Systematic refactoring according to Fowler [Fow99b] was
not possible mostly because the code under consideration is not object-oriented
code, except for the top layer written in Lua/P. Still the desire to maintain
good modularity of this code prevented it from becoming unmanageable. The
experience gained during this core development with respect to source code
structuring, while being valuable, is difficult to reproduce. This part of the work
was probably more of good craftsmanship than pure research. Some interesting
after thoughts will be collected in the discussion about Lua’s suitability for theDiscussion on Lua

[14.2→] tasks at hand.

12.1 Meta model evolution

Above the level of developing the PIROL core, evolution of its meta model —
the RO class model (ROCM) — is a very interesting issue, as this meta model
defines a semantical framework (on top of the technical framework of the core)
by which tools and services are integrated. There seems to be a conflict because
integration generally introduces coupling that hinders evolution. A central con-
cept for flexibility in any object-oriented meta model is inheritance. While in-
heritance can be seen as a purely additive technique — and thus imposes no
danger on existing parts — a central problem remains: if different tools operate
on different classes within an inheritance hierarchy, which class should be used
for object creation and who decides?

12.1.1 Upgrading

PIROL adds flexibility concerning the concrete type of objects by a mechanismNew Feature
5 called upgrading. The idea originated in considerations about typical workflows
in software development: During the analysis phase the central notions of the
application domain should be captured in what we call a reference glossary1.
This glossary starts without any type distinction but only contains notions
stored as ANY RO, which for this purpose carry a DESCRIPTION. During a later
phase some of these notions will be identified with classes of the system under
development, others will become methods etc. The idea is now, not to cre-
ate new objects of type CLASS, METHOD etc., but to re-use the existing objects
(maintaining their description) and to convert these objects to a more specific
type. This conversion is called upgrading and follows a special protocol.
Similar to creation methods, a class may declare a set of methods as upgradeCreation methods

[←4] methods. Just like creation methods, an upgrade method combines two tasks: it
may implement (additional) object initialization and it performs internal object
setup. In contrast to creation methods, an upgrade method has to explicitly
call a special function upgrade() which performs the actual conversion. The
intended usage will be explained by the example shown in Fig. 12.1.

1This is where PIROL draws its letter ‘R’ from.

174



Meta model evolution Section 12.2

1 Class {CLASS;
2 inherit = CLASSIFIER,
3 creation = init,
4 upgrade = from any ro,
5 . . .
6 }
7 function CLASS:from any ro (subsystem)
8 if self.class ˜= ANY RO then
9 pirol error( ERROR.UpgradeError,
10· ”Must be of exact type ANY RO in upgrade”)
11 end
12 upgrade()
13 self.is abstract = false
14 subsystem.classifiers:append(self)

–– the guard of this list also sets the self.subsystem reference
15 return self
16 end

17 local ar = ANY RO:make(“Foo”)
18 ar:print()

 Foo:ANY RO<020409 23h-3:175>
19 CLASS:from any ro(ar, my subsystem)
20· ar:print()

 Foo:CLASS<020409 23h-3:175>

Figure 12.1: An upgrade method and its usage

Lines 7–16 define a method that by line 4 is declared to be an upgrade
method. This method is to be invoked (cf. line 19) on its defining class CLASS
(this is similar to creation methods) and it receives an implicit argument2: the
object to be upgraded (this is different from creation methods, where no object
exists yet). Inside the upgrade method that additional argument appears under
the implicit name “self”. The method may now examine the type and state of
this self object. If this fails to meet some precondition, an UpgradeError may
be raised and the operation is aborted. Otherwise, a call to the special function
upgrade() (line 12), which is available only in upgrade methods, performs the
actual conversion. After conversion, the newly acquired attributes should be
initialized (cf. lines 13,14). As a result, the same object that first was of type
ANY RO (cf. reply of line 18) is now of type CLASS (line 20 and reply).

2Precisely spoken: the argument is explicit at the caller but implicit at the callee.

175



Chapter 12 Evolution of PIROL

12.2 Evolution interacting with other concerns

12.2.1 Meta Modeling

Upgrading has been introduced as a means to evolve the meta model possibly
after some ROs have already been created. With upgrading there is no longer
a single decision about an object’s type, but object classification may occur in
a chain of stepwise refinement.
Two different reason for using upgrading can be thought of:

• Within a complex meta model inheritance is used to relate concepts from
different phases or activities. Upgrading propagates an object from one
phase to the next. This is how upgrading was originally motivated.

• Inheritance can also be used for some sort of class versioning: If only com-
patible changes of existing classes are introduced — say during evolution
of a tool — a new class version can always be introduced as a sub-class of
the existing class. Thus both versions may safely co-exist within a system
and for each object upgrading can be performed at any point in time in
order to apply the new class version to the given object.

As to the second scenario, PIROL does not support explicit class versions
other than by naming convention. Versions can, e.g., be marked by postfixing
class names with version numbers, but such conventions are not enforced in any
way.

12.2.2 Persistence

We were fortunate with respect to upgrading, because PCTE supports a convert
function, which exactly matches the requirements of our upgrade special func-
tion. The rule behind both functions is, that conversion can change the type of
an object only within an inheritance hierarchy and only from a super-type to
one of its sub-types. This ensures that all contexts that still access the object
by its old type are still valid due to sub-type polymorphism.
Upgrading could be the central technique in a broader scenario of schema

evolution and class migration3. Green and Rashid have identified two central
issues in schema evolution for object-oriented databases [GR02]:

1. “Existing objects need to be adapted in some way to conform to the new
schema, so that they have the expected fields and methods. This can
either be performed:

(a) by the use of transparent view wrappers, which act as they were
instances of the corresponding class from the new schema;

(b) or by physically converting the object into an instance of the new
class, which entails dynamic reclassification.

3I.e., the technique of objects migrating from one class to another. Sometimes this is called
object migration, which in turn can be confused with the migration between different nodes
in a distributed environment. That’s why we stick to “class migration”.

176



Evolution interacting with other concerns Section 12.2

2. It may be necessary for old applications to continue to access the database
as if it still conformed to an older schema — that is, backward compati-
bility may be required.”

They argue that requirements regarding schema evolution significantly differ
across applications, which motivates a flexible infrastructure that allows to
easily adopt different policies. Item 1.(a) will be discussed below in 12.2.10.
1.(b) is partially solved by upgrading. The restriction is that upgrading does not
allow arbitrary type modifications, but only specialization. By this restriction
2. is trivial.

12.2.3 Granularity

A mechanism like upgrading is not suitable for terms, since terms are handled
with value semantics thus allowing assignment of a specialized term, which has
no side effect across references, since no references to terms exist.

12.2.4 Behavior

Firstly, upgrade methods provide a hook by which arbitrary behavior can be
associated with the event of upgrading an object. Furthermore, simple scripts
could be written, to upgrade a defined set of objects to a given new class in one
bulk operation.
A different path of evolution regards the implementation of Lua/P methods.

As long as method signatures are not changed the implementation of a Lua/P
package can be reloaded into even a running workbench process. This is valuable
during development, because turn-around times with stopping/restarting the
workbench are intolerable when only small changes are to be tested. Generally,
this may also become important for installing new tools without shutting down
a running session.

12.2.5 Exception handling

Upgrading may raise UpgradeErrors. This is in analogy to CreationErrors.
Conversely, one could imagine designated exceptions to be used as a trigger for
upgrading. Some databases detect mismatches between expected and actual
class versions as exceptions and allow to catch such exceptions in order to
perform the necessary conversion transparently on demand. This is not realized
in PIROL.

12.2.6 Integrity

During upgrading two levels of integrity can be identified. Syntactical integrity
is guaranteed by the restriction to perform reclassification only from a super-
class to one of its (indirect) sub-classes. Semantical integrity can only be en-
forced by domain specific code. In a similar vein as creation methods and
attribute guards, upgrade methods allow to implement arbitrary policies for
allowing only sound conversion.

177



Chapter 12 Evolution of PIROL

12.2.7 Client–server architecture

Decoupling tools from the workbench by means of the middleware MSG enforces
clean interfaces. Behind these interfaces evolution is without impact to the other
side. Changes in the ROCM can be reflected by newly generating the proxy
library. In this scenario, adapting a tool to a new version of the meta model
is not further supported but must be carried out manually. Below (12.2.10) we
will discuss improved scenarios using DVCs.

12.2.8 Control integration

The consistency between tool execute methods and actual tool implementa-
tion that should react to these messages is not supported by special mechanisms.
Upgrading also has impact on the protocol for change propagation. No new

message type was introduced for the event of upgrading an object, but this
change is broadcast using a regular changed message referring to the implicit
class attribute that every object has. However, usually it is very difficult for
a tool to react to an upgrading event in a meaningful way, because languages
like Java do not support class migration. It is safe anyway, to continue working
with the old proxy, to which the converted object still conforms.

12.2.9 Multi User Capability

During evolution it might be desirable to allow different users to work with
different versions of a tool. This might require to also allow different versions
of the meta model. PIROL has limited support to configure installation paths
on a per-user basis. The structure of the ROCM is of course persistent in
the repository. Lua/P methods may, however, be used in different versions by
different users.

12.2.10 Dynamic View Connectors

So far, we have seen two concepts for flexibility towards the development of
the meta model: DVCs and upgrading. Both help for certain situations of
evolution. Here we can finally discuss, how these concepts relate to each other
and to existing approaches.

Improved Maintainability

We have discussed how to use DVCs to concisely lay down the relationship be-
tween a tool and the repository in terms of bridging possible mismatches in
their meta models. DVCs confine concerns of structural mapping to explicit lin-
gual units, building a well-defined layer in the overall conceptual architecture
of the system. The separation of basic tool functionality from tool integra-
tion concerns, introduced in this way, significantly improves modularity with
the expected consequences: the system is easier to understand, maintain, and
evolve.
For illustration, let us return to our case study: the integration of the UML-

diagram editor ZooEd [Nor97] into PIROL. This is visualized in Fig. 12.2(a) as

178



Evolution interacting with other concerns Section 12.2

standalone 
Tool

integrated 
in PIROL

develop

adapt adapt again

no reuse

ZooEd.v2P

ZooEd.v2ZooEd.v1

ZooEd.v1P

(a) Broken re-use with hand-coded mapping

ZooEd.v1 ZooEd.v2

Repository.1 Repository.2

DVC.1 DVC.2 DVC.3

(b) Re-use mediated by connectors

Figure 12.2: Evolution of ZooEd

ZooEd.v1 (the original) and ZooEd.v1P (integrated into PIROL). One can envis-
age an upgrade of the UML diagram editor ZooEd.v2 that supports presenting
the symbols for inner classes à la Java [AG97] as graphically contained within
the symbol of the enclosing class. Evidently, the integration of ZooEd.v2 into
a repository could reuse much of the structural mappings of ZooEd.v1, since
the data model of ZooEd.v2 would be a “refinement” of ZooEd.v1 ’s model.
However, if the adaptation code is hand-coded into the implementation of
ZooEd.v1P, the structural mapping does not exist in one place and for this rea-
son cannot be reused. On the contrary, when using DVCs, structural mapping
is decoupled from the tool’s implementation. Hence, the structural mapping
concern can be reused with different versions of a tool. Integrating ZooEd.v2
with DVCs would be performed by defining a new connector class that inherits
from the connector class for the old ZooEd.v1 (cf. Fig. 12.2(b)).
The other way around, changes in the repository model (realized by sub-

classing and upgrading) can be absorbed by modifications in the DVCs such that
tools can continue to operate without being modified. For existing tools two al-
ternatives exist: (a) they may carry on working with the same objects, that by
means of polymorphism still match the tool’s interface; (b) the connector may
be changed to reflect the new classes. As an example of stepwise evolution con-
sider the model of our advanced UML–tool that supports inner classes as graphi-
cal containment. Here Class has an additional attribute, called inner classes.
As long as a corresponding feature does not exist in the repository model,
the connector that integrates the tool with the repository would implement
inner classes as an added attribute. Later, we might introduce JAVA CLASS
inherit CLASS with an attribute inner classes: List(JAVA CLASS) into the
repository model (upgrading existing objects to the new class) and change
inner classes to become a used attribute. For the diagram editor nothing
will change. But, now any other tool, e.g., a source code editor can share the
information about inner classes after a proper modification of its connector.
Thus in the course of maintaining the overall system, DVCs can be used

to control which changes should remain local to a tool or the repository and
which information should be sharable between tools, giving the maintainer full
flexibility with little effort.

179



Chapter 12 Evolution of PIROL

Combination, Evolution and Adaptation of Schemas

Different approaches have been developed to deal with the fact that the firstRelated Work
5 design of a data model for a system will usually not service all its possible ap-
plications later on. The goals have been flexible deployment, evolvable schemas
and runtime configurability. When to apply one or the other technique greatly
depends on the kind of system and the importance of aspects like persistence,
pluggability etc.
The development of object-oriented databases (and especially repositories

for SEEs) has brought about several techniques that allow manipulation of
schemas. View mechanisms, if dealing with persistent views, allow to assembleDatabase views

[16.1→] or combine the actual schema from different partial views. When compiling
the single view definitions into the system, they are merged, resulting in one
central schema of which all existing views are simply subsets (cf. e.g., [Gar87]).
This technique decouples the components of a system to a certain degree. It
is crucial that a technique from this category should support resolution of con-
flicts between different views (name clashes and mismatching types). It is also
necessary to control, not only by naming, which properties are to be shared
between views, in case equal names are introduced unintentionally or corre-
sponding properties are introduced by different names. Note the similarity of
view techniques for databases with the general-purpose programming techniqueAspect-oriented

software development
[16.2→]

of Subject Oriented Programming [HO93]. Such view techniques provide, how-
ever, no (dynamic) instantiability of views, i.e., they cannot use view objects
to model dynamic roles (in the sense of, e.g., [RS91]) of their base object. ThisRoles [8.1.2→]
also entails the danger of allocating huge database objects, of which only a
small slice is ever used, as each object may need to carry all attributes that are
possibly used by a view of the object, even if that view is never needed for that
object.
Using DVCs, PIROL applies a view mechanism that supports dynamical

adaptation rather than static combination of schemas. DVCs not only decouple
the system’s components (including all needed conflict resolutions) but also
allow to dynamically apply a view definition to a set of base objects. Even
multiple views of the same type may thus be created at runtime. Consider the
example of different class diagrams sharing the same class (in one diagram it
is defined, in another it is used as an imported class): both diagrams display
a symbol for the same class, however, at different positions. With DVCs it is
no problem to multiply add the position attribute (with different values at
runtime) to the same base object (resulting in distinct view objects). Many
other approaches fail in this situation.
Regarding the evolution of a system after initial deployment, two topics are

discussed: schema evolution and class migration. From the wide field of schema
evolution, we only consider one mechanism, that is interesting in terms of dy-
namic flexibility: the ability to attach transformer functions to database types
as, e.g., in [Obj98]. Transformers are client functions (i.e., they are provided
by the developers responsible for schema evolution) that are invoked when an
object is accessed that belongs to a type for which a new version is installed
into the database. At this point the DBMS is responsible for technically up-

180



Evolution interacting with other concerns Section 12.2

grading the object to the new type while passing the control to the transformer
function (if one is provided) in order to re-initialize the object as to put it into
a consistent state with respect to its new type. This technique is very similar
to DVCs’ accept function. However, schema evolution generally uses in–place
modification of the one schema, while view application leaves the central schema
untouched. This is important when considering reusability of partial schemas
across installations.
Class migration (cf. [Su91, WdJS95]), on the other hand, has been discussed

as a controlled form of schema evolution: new types may be introduced as
subtypes of existing types. Then each existing object may at any time be
upgraded to the new type (move to the new class), because this conversion
is now invoked explicitly as opposed to the automatic transformation in the
course of regular schema evolution. Another application of class migration is
late classification as introduced in this chapter. Both cases employ the same
technique, only the intention differs. In PIROL class migration is supported by
the upgrading mechanism. Note the analogy between the accept method in the
context of dynamic lifting and upgrade methods within class migration: both
allow to transform and re–initialize an object as it enters a new context and is
enriched with further properties.
We made the experience that extending classes as intrusive modification and Discussion

5class adaptation as a dynamically, multiply applicable mechanism — although
being quite similar techniques — very well supplement each other. A careful
analysis is needed to select the best means for each single case. Generally sub-
classing is more restricted because adaptations through subclassing are strictly
linear: Given a class A with subclasses B and C, an A object may only be
upgraded to either B or C and once this upgrade has taken place, it cannot be
reversed and the object may never acquire a type that is not a subtype of its
current type. Hence, class migration is restricted to linear sequences of type
refinement. It is appropriate if and only if the newly typed object completely
replaces the old one. If the type change is only valid in a specific context and
if similar adaptations starting from the same base object are to be expected,
an intrusive change of the base object is problematic. In those cases dynamic
views should be preferred over more specialized base objects.
It is also a matter of sharing information, whether the base model of a

database should be modified or adapting views should supplement it. Also
the domain of an extension should be considered: are all objects of a type to
be extended (use evolution/migration), or is only a small subset involved (use
adaptation). Matters of cardinality may also require instantiable views: it may
be difficult to have one base object play different roles within the same context
and it is impossible to have the same base object play the same role within
different contexts with different context dependent properties, unless views are
additive on the instance level rather then being manipulations of base types.
The combination of controlled class migration (upgrading) and dynamic

views (DVC) — both supplied with a mechanism for custom re-initialization
(upgrade method resp. accept) — spans a design space, that provides reusabil-
ity, pluggability and separation of concerns for a wide range of situations in
development and evolution of component based systems.

181



Chapter 12 Evolution of PIROL

12.2.11 Common services

Evolution of common services is by and large decoupled from tools by the
concept of workbench provided context menus. Conversely, integrating the
upgrade mechanism into tools in a uniform way, has been considered. This is
relevant for the scenario of passing an object from one tool to another, e.g.,
via the workbench selection. It is, however, unlikely that upgrading can be
triggered without further user interaction. In the case of ZooEd a sub-menu
has been added to the editor-specific menu: “Insert as. . . ”. Here the user can
choose a class to which the RO in the workbench selection should be upgraded
before insertion into the drawing area. Options are CLASS and ZIMOO CLASS4.
This implements the scenario from the beginning of this chapter (Sect. 12.1.1 on
page 174), where an unspecific object is refined to a CLASS thus linking existing
documentation to the class diagram under development.

12.3 Summary

Throughout this thesis, evolvability has been an implicit goal. More precisely,
modularity has been paid great attention to. This chapter showed how adding
just one more technique, upgrading, PIROL turns out to be a system with good
evolvability. At a macroscopic perspective, i.e., considering only tools and the
meta model as evolvable units, evolvability is mostly achieved by DVCs. This
technique adds to the physical decoupling using MSG a dimension of logical
pluggability, thus perfecting the decoupling between tools and the workbench.

4This special class goes back to the original intention of ZooEd : support for hybrid models
in terms of discrete and continuous behavior.

182



Chapter 13

Tools and Supported
Activities

The larger part of PIROL provides generic infrastructure for SEEs. This chapter
shows the current instantiation of PIROL with respect to the tools that are
integrated.

ESPRESS Tools. This current state does not include a tool suite that had
formerly been integrated within the ESPRESS project [BGHHm98]. This suite
was concerned with editing and analyzing specifications in the µSZ combined
notation [Web96] consisting of a statechart [Har87] view and a Z [Spi92] view.
Emphasis regarding tool integration was placed on managing a set of analyzers
and transformers. A project specific ROCM package was added that contained
the dependency management for all the different intermediated formats that
were needed to feed the specification through different tools. Control integration
was used to hide the invocation of tool chains. Users only requested certain
views of the specification and the workbench took care of transparently invoking
those tools that were needed to compute a view that was not yet stored in
the repository. Also invalidation of views caused by changes to the original
document were automatically detected and derived views were re-computed
when needed. In this architecture it was crucial to provide the option to launch
certain heavy-weight tools — such as the theorem prover Isabelle [Pau94] —
only once per session and to feed single computational tasks to the running tool
instance. As an interactive tool Statemate [HLN+90] was (partially) integrated
as well as XEmacs with a sophisticated mode for µSZ. Also a generic dialog
was developed that provided a uniform GUI for all analysis and transformation
tools.
Few projects approach the task of integrating tools for formal methods and Related Work

5existing commercial CASE tools in all aspects covered by the ESPRESS in-
stantiation of PIROL. The approach of the UniForM Workbench [KBPO+95] is
quite similar to our’s. Whereas our integration languages Java and Lua/P are
object-oriented, UniForM employs a functional language (Haskell) for this task.
Also the architecture differs: UniForM shows a greater number of general com-
ponents, called managers. We implement the functionality of these managers

183



Chapter 13 Tools and Supported Activities

by just one component, the workbench, thus reducing the number of interfaces.
Interestingly, the UniForM Workbench, just like PIROL, uses H-PCTE as its
repository.
Other approaches like the Concurrency Factory [CGL+94] or AutoFocus

[HSSS96] present more homogeneous environments, with most tools written
from scratch and less emphasis on an active repository as a component for
integration of persistent data and control.
Details about the ESPRESS tool environment can be found in [BGHHm98].

Interactive tools. Beyond the special requirements of ESPRESS the inte-
gration of tools into PIROL has a special focus on interactive tools for browsing
and editing different views of a software model.

13.1 PON — PIROL Object Navigator

This tool was originally developed by Bertram Stahl in his diploma thesis [Sta98]
and has been developed since by the author of this thesis. Basically, PON is a
generic browser for repository objects.

13.1.1 Basic capabilities of PON

The basic idea of PON is very simple: its left window pane shows the hierarchi-
cal structure of a set of ROs in a tree view. The right pane shows details about
the object that has been selected in the left pane. In contrast to file browsers,
from which PON borrows the basic idea, PON’s tree view is only a hierarchical
view of a set of interrelated objects. Within the repository the graph of objects
has no structural constraints. As to the question which inter-object-links will
be shown in the tree view, configuring PON comes into focus (see the next
section).

Hierarchical view of RO graphs

The RO graph may contain cycles. For this reason the tree view has to be
filled on demand, i.e., each node is first shown collapsed and only upon user
request all its child nodes are retrieved and displayed. As a consequence of
cycles, an RO may appear several times within the tree view, i.e., cycles are
flattened/expanded to recursive trees. Of course, multiple occurrence of one
RO can be confusing for the user. There is a simple way to find out about
an object’s identity. Objects can be selected in the tree view, which results
in highlighting this object and also displaying its details in the detail view.
Selecting a multiply visible RO highlights all its occurrences in the tree view.
This gives a clue to the user, that none of these occurrences can be edited
without effecting also the other locations referring to the same object. As an
example see the highlighted object “Pon Demo” in Fig. 13.1.
Tool specific operations in the tree view allow to modify the link structure by

common place cut, copy, insert, replace, remove actions. Pasting an object onto
a node in the tree view requires to specify which link type should be created.

184



PON — PIROL Object Navigator Section 13.1

Figure 13.1: A snapshot of PON

This is reflected by a sub-menu “insert as child” that lists the available link
types. Note, that copy-paste operations work across tool instances because the
workbench selection is used as a clipboard.
In the hierarchical view objects are listed together that are reachable from Discussion

5their parent node by different association. When moving the mouse over each
object, a “tooltip” displays the name of that association.
Another style of display has been considered that makes this structure more

obvious. A third (middle) view could be constructed that for the currently
selected object displays different lists of associated objects on different tabs of
the tabbed pane. This would raise clarity of such lists, but handling a three-
view window is not trivial because then two views could be used for navigation
and it is not clear which object should be displayed in the detail view.

Working on RO details

The detail view of PON provides different property sheets for the currently
selected RO. Configuring PON will be discussed in the next section. The general
structure of a property sheet is a list of label-value pairs. The label displays
the name of an RO attribute. The value component presents its content.
Figure 13.1 shows different field types that are supported by the detail view.

Figure 13.2 shows the structure of the corresponding RO class. All fields with
white background and the check box are editable. The red field “get object”
presents the result of a Lua/P function and the light blue field “an object” shows
the name of an associated object. Also this field is editable, but users should
be informed by the colored background that changes made in this field do not
change the link of the current object but the name of the referenced object.

185



Chapter 13 Tools and Supported Activities

Class {PONDEMO;
inherit = ANY RO,
attributes = {
a bool : Boolean,
an int : Integer,
a string: String,
a point: RESOURCES.xy,
an icon: ICON,
an object: ANY RO,
a table : List {
col1: String, col2: String, col3: String

}
}

}
function PONDEMO:get object() : ANY RO

Figure 13.2: Structure of the demo class PONDEMO

All object fields (“an icon”, “an object” and “get object”) provide the context
menu by which the given object can be further examined or manipulated. Field
“a point” demonstrates a structured value of type RESOURCES.xy. Both ele-
ments are editable. Field “a table” finally presents a list of string tuples as an
editable table. Columns are generated for each tuple component, lines for each
element in the list.
Using the detail view, PON supports editing attributes of most types in

the repository. Still there is no “save” button or menu option. By convention
edited attributes are written to the repository once “enter” is pressed in the
corresponding widget.

Remotely controlling PON

A running instance of PON understands these messages:

select Highlight a given object in the hierarchy view and display its details.

notify set selected
This has the same effect as select and hooks into the inter-tool
observer protocolTool docking

[←11.1]
retarget Use the given object as the new root for the hierarchy view and also

select the object.

new win Open a new window with a given object as root node.

fold Collapse the subtree starting at the given object.

unfold Display the direct child nodes of a given object.

186



PON — PIROL Object Navigator Section 13.1

Connecting PON to another tool using the inter-tool observer protocol al-
lows to use PON’s detail view as a universal property editor for objects being
viewed in other tools. Tool docking avoids additional efforts of using several
small tools instead of a big one and helps for an integrated impression of the
environment.

13.1.2 Configurability of PON

During the design of PON emphasis has been placed on genericity and config-
urability. For common tasks no other browser than PON is needed, because
PON is not specialized for particular object types or structures. Basically it
can display all contents of the repository. The ROCM is a very rich model in
order to capture information for different views. Therefore, it would overwhelm
the user if all information was displayed for each object. To help focus on rel-
evant information, PON does not apply a reflective technique1 for displaying
all information, but configuration objects are used to tell PON which proper-
ties to show for given RO classes. For this purpose each PON RO — sub-class of
JAVA TOOL KIND— stores a mapping of RO class names to configuration objects Class

JAVA TOOL KIND
[←11.1]

PON NODE CONFIG. The latter allow to configure for each RO class (1) which as-
sociations should be used to build the tree view and (2) which attributes should
be displayed in the detail views using which widgets.
Fig. 13.1 displays the “Configured” tab of the detail view which uses the

information stored in PON NODE CONFIG objects. There is also a “Basic” tab,
that is constructed by reflection. For this purpose, PON queries all attributes
of basic types, that are defined for the class of the current RO. A detail view
is constructed automatically containing simple text fields for these attributes.
According to the concept of providing only selected information in a custom
structured order, the “Configured” tab is preferred over the “Basic” tab. The
latter can be seen as a fallback for classes for which PON has not been config-
ured.
When working with custom configured instances of PON, it is important

that any number of such configurations can be used simultaneously. For each
configuration one instance of PON (sub-class of JAVA TOOL KIND) is created and
linked to the tools folder. The workbench handles each configuration as a
separate tool. As an example, the menu in Fig. 13.1 displays the tools “Tool
Browser” and “Workbench Browser”, which are two configurations of PON.

13.1.3 Framework design of PON

Configurability recommends a framework-style design, because the set of avail-
able widgets for the detail view should be decoupled from the general archi-
tecture. The central class in this design is DetailField which defines the
protocol how PON communicates with any widget that displays one RO at-
tribute. This abstract class already implements quite a bit of functionality like
loading, reloading, reacting to changed messages and even a context menu.
Many of these functions are implemented as template methods that rely on

1There is one exception to this rule: the “Basic” tab discussed below.

187



Chapter 13 Tools and Supported Activities

hook methods to be implemented in sub-classes. Given this general protocol,
configuration happens by storing the name of a widget class — sub-class of
DetailField — for each attribute to be shown. Constructing the detail view
in a PON instance is a matter of instantiating widgets by reflective creation
using the Java package java.lang.reflect.
Configurability by reflective creation is also a central technique of JavaRelated Work

5 Beans [Sunb]. In fact, Java Beans have been considered for the design of PON.
At the bottom line it was easy enough to rebuild this little infrastructure of
Java Beans, of which no further concepts were needed.4
PON uses two different strategies for avoiding update recursion. WhenUpdate recursion

[←8.2.3] the enter key is pressed in a detail field, the new value is remembered locally
and a roset message is sent to the workbench. When a change notification is
received, its value is compared against the stored value and in case of equality
the notification is recognized as being the acknowledgement of the fields own
request. For all operations in the tree view (cut, copy, replace, insert, remove)
indirect modification is applied as to ensure consistency with the repository.Indirect modification

[←8.2.3]

13.2 Graphical editors

13.2.1 ZooEd — ZimOO Editor for class diagrams

This tool was the major case study for DVCs . It has been developed indepen-Dynamic View
Connectors [←10] dently of PIROL by André Nordwig [Nor97]. ZooEd is intended for creating

hybrid models describing discrete and continuous behavioral aspects. ZooEd
had first been integrated into PIROL manually, i.e., solely by inserting PIROL
specific code into ZooEd’s sources. During this development two problems have
been observed: the problem of structural mismatches that was discussed in
Sect. 10 and the problem of update recursion. The former laid the ground forUpdate recursion

[←8.2.3] developing the DVC model, the latter was solved by several flags that made
the control flow explicit thus enabling different behavior depending on the orig-
inal trigger of an action: was the operation initiated by user interaction in
ZooEd or by a notification from the PIROL workbench? Integrating ZooEd
into PIROL was facilitated by ZooEd’s clean design and especially by the con-
sequent application of the command pattern for each relevant user interaction.
As “relevant” we consider a self-contained operation as opposed to the many in-
termediate steps of moving a symbol in the tool’s canvas, e.g. While the editor
needs to draw the symbol in real time, the repository should only be involved
when moving is finished, i.e., upon release of the mouse.
Aside from its special support for hybrid models, ZooEd is a classical editor

for UML class diagrams.
The distinction between Class and ImportedClass that served as an ex-

ample throughout Chap. 10 was in fact introduced only by the integration of
ZooEd into PIROL. While it represents a typical kind of mismatch between two
meta models, in our specific case neither the repository nor ZooEd draw such
a distinction. Sect. 10.2.3 focused on how the DVC uses class predicates to
decide which view object should be created for a given RO, it should now be
revealed, how this distinction is displayed by ZooEd. Both view classes under

188



Graphical editors Section 13.2

Figure 13.3: A simple class diagram being edited using ZooEd

consideration have accept functions associated, which initialize the collapsed
flag, such that regular Class VOs are presented with their details, whereas for
an ImportedClass the symbol is presented in a collapsed state. Since ZooEd
already knows how to interpret the collapsed flag, this is all that was needed
to display both kinds of classes differently.
User interaction of the integrated ZooEd falls into three categories: (1)

ZooEd specific operations are provided unchanged except for a set of operations
specific to the Smile simulation environment [KFS95] that have been removed
from the integrated ZooEd. Also (2) PIROL specific operations are accessible via
the PIROL context menu. This menu is added to ZooEd’s context menu if the
“shift” key is being pressed while the context menu is opened. It is important
that the context menu is still available in its raw ZooEd version, because it is so
frequently used that the delay imposed by the workbench context menu can not
be tolerated throughout. Finally, (3) a special menu “Insert as. . . ” is provided.
This menu has already been presented in Sect. 12.2.11. The combination of
inserting an object from the workbench selection and upgrading it to a class
usable for ZooEd is specific to the integrated version of ZooEd.

Redefining the “semantics” of ZooEd diagrams

Another experiment concerning DVCs has been carried out, by which ZooEd was
turned into an editor for finite state machines. The task was setup like this:
given the existing model of state machines as defined by RO classes STATE, Document state

machine [←4.1.1]

189



Chapter 13 Tools and Supported Activities

Figure 13.4: Editing a state machine using ZooEd

Figure 13.5: Invoking a state transition

TRANSITION etc., and without changing ZooEd, an editor should be realized for
visually editing state machines.
This task was solved by mere 360 lines of connector code which basically

maps classes and relations as seen by ZooEd to states and transitions as seen by
the repository. The given number of lines even includes the observer mechanism
by which ZooEd is used to visualize execution of the underlying state machine:
a target object can be registered such that changing the state of this object
(e.g., by use of the transit context menu) moves a highlight in ZooEd to theTransit menu

[←11.2.4] symbol representing the new active state. Fig. 13.4 shows a state machine being
edited using ZooEd. Fig. 13.5 shows a sample invocation of a state transition
using the context menu in PON. The green highlight in ZooEd automatically
follows the document state of an object that has been registered with this view
of the state machine.
The experiment shows how a given tool can be used to display and edit very

different structures of ROs just by implementing a Dynamic View Connector

190



Graphical editors Section 13.3

Figure 13.6: A sample instance of GEFTool: Collaboration diagrams

that maps specific RO classes and their relations to the classes and relations
expected by the editor. This is well in line with, e.g., the strategy by which
the UML specification [BRJ99] decouples the notation (chapter notation guide)
from the semantics as defined by the UML meta model. The connection is given
by a subsection for each diagram element, which specifies how the graphical
element is mapped to elements of the meta model.

13.2.2 GEFTool — Graphical Editor Framework

In his diploma thesis, Burkhard Weber [Web01] integrated the GEF graphical
editor framework into PIROL. This framework was selected against JHotDraw
and Drawlets. An integration layer was developed using the Mediator and
Observer design patterns [GHJV95]. The main task of this layer is to keep
proxies for ROs and the internal representation of the editor consistent. This
design is currently being improved by Florian Hacker [Hac02].

The goal is a framework by which it will be increasingly easier to create
graphical editors for PIROL. While GEF is already quite complex by itself —
the price by which powerful graphical capabilities are bought — the integrated
version should not add to that complexity.

Example instances of the GEF-PIROL integration are still at an experi-
mental state with functionality far from being complete for any one kind of
diagram. Still, in a chain of several attempts of building graphical editors
for PIROL (cf. App. B) this framework seems to provide maximum productiv-
ity during development. Simple applications can be constructed quite quickly.
Some frameworks that share this property fail at more complex requirements
unless one deliberately changes the fundamental design. With GEF, more com-
plex requirements, while requiring a deep knowledge of the framework, can
usually be implemented within the given design.

191



Chapter 13 Tools and Supported Activities

13.3 Text editors

Browsers and diagram editors naturally operate on structured data. Editors
for HTML contents were the first text editors integrated into PIROL. Three
approaches have been taken to HTML editing in PIROL. In the ToolTalk basedToolTalk as

alternative to MSG
[←7.3]

version of PIROL an integration of XEmacs has been implemented. Relying on
XEmacs’ integration of ToolTalk and the w3module for HTML display, XEmacs
was able to query HTML texts from the repository and display this text with
layout. It was easy to include resolution of pirol style URLs to enable browsingpirol URLs

[←11.3.8] HTML pages from the repository.
After replacing ToolTalk with MSG, XEmacs could no longer be integrated

with the same ease. Another gateway between XEmacs and PIROL has been
built in the ESPRESS project using a Unix pipe between XEmacs and a Java
program with workbench access. This seemed, however, impractical for HTML
editing. Instead, the pirol URL protocol was integrated in the Java framework
provided by the java.net package.
Built on this bridge and on a framework for HTML editors in Java (pack-

age javax.swing.text.html) two tools have been developed: PHED (PIROL
HTML EDitor) was developed by Doris Fähndrich at a time when the editor
framework was still quite unstable. The third tool in this sequence is MESSED,
the Message Editor developed by Ralf Kruber [Kru00], which is to be presented
here.

13.3.1 MESSED — Message Editor

MESSED has been developed as an HTML editor with a special focus on user-
to-user communication. In this setting HTML pages are understood as either
messages or comments, which users exchange by a mail mechanism or as anno-
tations.

Editing HTML

MESSED generally works in one of two modes: editing or browsing. Both modes
present a given HTML page in the same lay-outed way, but behavior differs
between both modes. During editing, menus for formatting and insertion are
active (“Font”, “Alignment”, “Insert. . . ”) and mouse clicks simply position
the cursor. In browsing mode the page can not be modified but hyper links
are active instead. In addition to following a hyper link by a left click, this
has the effect that pirol links can be used to open the PIROL context menu
regarding the referenced object. Thus a hyper link to an RO behaves in the
same way as any occurrence of an RO within a PIROL tool does. Fig. 13.7 shows
a snapshot of MESSED in browsing mode. The right mouse button has been
clicked on the link “GiroAccount”. The status line displays the target URL (in
this case a pirol URL denoted relative to the current page) and the context
menu for the referenced object is presented. The workbench sub-menu should
be familiar to the reader by now. Additionally, tool specific options are offered
whose intention is to be shown below.

192



Text editors Section 13.3

Figure 13.7: MESSED as HTML editor

Tool docking works in both directions for MESSED: MESSED can follow
the focus of selected objects within any other tool and vice versa.

Annotating documents

Menu action “make annotation . . . ” creates a new HTML page as annotation
to the selected RO. This is most useful if the context menu was invoked on a
non-link area of the current page, where the context menu refers to the currently
displayed RO instead of a referenced object (link target).
MESSED reflects the two levels of adding documentation to an RO: opening

an RO in MESSED generally means to display the text of its DESCRIPTION,
which is regarded as the HTML view of the RO. Additionally, any number of
annotations can be attached to each RO. Note, that attaching an annotation Class ANNOTATION

[←9.1.1]does not require write permissions concerning the RO. Navigating from an ob-
ject to any of its annotations should definitely be supported by MESSED, too.

193



Chapter 13 Tools and Supported Activities

This should include some visual clue whether the current page has annotations
or not. This additional navigation support is, however, not yet implemented.

Sending messages

Sending a message using MESSED happens similar to creating an annotation,
i.e., messages can be created as comment to an existing object. Also, mes-
sage creation from scratch is possible. Currently, MESSED does not support
selection of recipients of a message, but PON has to be used for this purpose
by appending recipient links to the message’s ENVELOPE object. Integration ofClass ENVELOPE

[←9.1.1] address management would be easy, if a simple address book mechanism was
included in the ROCM. It would in fact suffice to augment class WORKBENCH by
an attribute address book: GROUP, which would allow to maintain an arbitrary
hierarchical directory of groups and persons. A fictitious “add recipient” menu
in MESSED would simply present the tree structure of this “address book” for
selection. Finally, the “send” button in MESSED sends the current page to all
recipients recorded in the associated envelope using the mechanisms presented
in Sect. 9.1.4.

13.3.2 pjEdit — Source Code Editor

HTML editors were said to be the first text editors integrated in PIROL. Their
integration posed no conceptual problems aside from designing the pirol URL
protocol. HTML pages are structured in a way that is already suitable for
storing in the repository, given that no other tool needs to know about the
internal structure of each page.
The situation changes drastically when moving to program source code. For

good discussions on structure oriented versus text oriented editing and some
interesting combinations see [Rei95] and [VB00].
A first work on source code editing in PIROL has been made by Jan Peter

[Pet00]. The contribution of that thesis was mainly in designing a general meta
model for object-oriented programming languages. His example application
OOEd has been implemented from scratch and stayed at a prototypical state
that can not be compared with modern text editors.
In contrast, pjEdit (developed by Christian Mattick [Mat02]) is based on

the powerful open editor jEdit. A major contribution of pjEdit is a practical
approach to maintaining several representations of source code and supporting
their consistency during development. In the context of pjEdit these represen-
tations are used:

• PRODUCT
ROs from this package still capture the structural information about the
software under development. These classes are extended with properties
of an abstract class SOURCE PRODUCER in order to generate SOURCECODE
instances.

• SOURCECODE
This ROCM package implements the composite pattern where leaves of

194



Text editors Section 13.4

the resulting tree contain concrete pieces of source code. The tree struc-
ture represents the syntactic structure of the source code but its nodes
are not typed according to the source language grammar. Instead, nodes
are named as to reflect this grammar.

• SourceFragment
Java classes exist that build a tree parallel to the SOURCECODE tree in the
repository. Each SourceFragment is associated to a SOURCECODE RO and
stores editor internal information.

• Buffer
Within jEdit (and pjEdit) editing happens in buffers that contain the
actual sequence of characters. SourceFragments refer to positions in the
associated buffer and control the layout of the display.

Several mechanisms like observers and queues of invalidation events are used to
keep these representations consistent without disturbing the process of editing
in undue ways. Some elements can be edited in pjEdit textually and will be
parsed by Lua/P methods. Other structural elements are inserted only using
indirect modification: macros2 exist, that create elements in the repository and
textual skeletons of these elements are inserted to the editor’s buffer in response
to the changed message from the workbench.
All this results in an editor that is aware of the structure of the source code

being edited and its relation to the repository. This can be used in conjunction
with other tools as it is demonstrated by a close cooperation with PON. pjEdit
can, e.g., easily follow the focus of a specified instance of PON and highlights the
text position that corresponds to the RO that is selected in PON. Furthermore,
presentation integration was improved by integrating PON as a plugin into the
jEdit application. This integration has motivated the current structure of the
TOOLS package. As a plugin PON has to run in the same JVM as jEdit, which
also has to host the pjEdit plugin. This led to the design of TOOL PROCESSes
and TOOL PROCESS MANAGERs.
Fig. 13.8 shows a typical situation of pjEdit containing the following ele-

ments: The upper left part of the window shows an integrated instance of PON,
which shows the structural view of the class being edited. Below is a source
code text buffer. The brackets indicate that the editor is aware of the structure
of this text. It has been criticized that these brackets disturb the user and in
future versions only the delimiters of the current text block will be shown. At
the right hand side additional control elements are shown. In this section sev-
eral “lamps” signal the need of synchronization between editor and repository.
Buttons are provided for performing such updates in different ways.
In his thesis [Mat02] Mattick identifies some problems with this integra-

tion. With respect to PIROL the major problems are related to the lack of
transactions for grouping several requests of a tool. He gives good examples Discussion of tool

transactions [←9.1.7]of possible sources for inconsistencies due to this lack of transactions. Other
integration problems relate to the jEdit API and will not be discussed here.
2These macros are written in the BeanShell language and can be bound to specific key

shortcuts.

195



Chapter 13 Tools and Supported Activities

Figure 13.8: A snapshot of pjEdit

13.4 Gateways to the outside

PIROL is about integrating tools. Such tools have to be aware that they live
within an environment. Sect. 10.2.6 has discussed the preconditions that a tool
must meet in order to be integrated. A realistic approach must acknowledge
that there are techniques beyond the specialized integration mechanisms used
by the environment. In this section interfaces to two important standards are
presented: file systems and the world wide web.

13.4.1 COFS — Conceptual Object File System

It is a fundamental design decision of PIROL to store artifacts as ROs not files.
We have discussed that users should still have the impression of working on
documents. In this conflict COs mediate between both worlds and DVCs finallyObjects versus files

and documents
[←1.1]

provide a clean encapsulation of this mapping. This works fine for all tools
that are aware of PIROL. At least for one category of tools PIROL-awareness is,
however, not a realistic assumption: compilers and other sorts of translators.

196



Gateways to the outside Section 13.4

For all these tools the one and only standard interface for accessing data is
the file system. In fact the interface for accessing files as part of the POSIX
standard might be considered one of the most valuable standards of information
technology.
Nowadays, the uniqueness of this standard should be questioned in favor Discussion

5of a superset, as defined by uniform resource locators (URL). URLs unify the
access to data via different protocols like ftp and http. Libraries exist for
all relevant programming languages that resolve arbitrary URLs (as absolute
references, or relative to a given base URL, just like relative paths in a file
system) and provide a stream from which data can be read in the sequel.
Once compilers are able to read their input from arbitrary URLs it should

be easy to add new protocols to the respective library and thus feed pirol
URLs into a compiler. Given that the pirol protocol reads directly from the
repository this would enable any URL-aware compiler to read data that is
assembled on the fly from RO attributes.
Already in [BGHHm98] we have used a URL-like technique of referring to

repository contents, which is called model resource locators (MSL) in [BGHHm98].4
The conservative solution would be to use an explicit export function for

creating the files needed, e.g., by a compiler. This has several disadvantages.

• Exporting requires an extra user interaction, i.e., before starting a tool in
file system world, a PIROL tool must be used to trigger exporting.

• It might be difficult or impossible to know ahead of time all files that need
to be exported. Many tools start by reading a root file and from there
find many more files that need to be opened, too. These dependencies
might or might not be reproducible within PIROL.

• Once files have been exported they introduce redundancy and it is difficult
to maintain their validity by keeping track of dependencies between files
and ROs.

If exporting is not a preferable option and if flexibility concerning their input
is not built-in to compilers, the interface that they expect must be simulated
by the environment. The solution is to implement a virtual file system.

Technology of userfs

In PIROL we used userfs [Fit00] as a framework for arbitrary virtual file sys-
tems. userfs is limited to Linux and its architecture is as follows.
A kernel module registers the new file system type in the Linux kernel and

allows to use this type in mount system calls. The module does not implement
a specific file system but establishes a socket connection to a separate program
that runs outside the kernel, i.e., in user space. This separation is motivated by
kernel safety: while the kernel module is fairly good tested, the program that
will be responsible for a concrete file system should not compromise the kernel
in case it contains any bugs. By means of the separation the user space part
may even dump core without affecting kernel stability.

197



Chapter 13 Tools and Supported Activities

User space programs exist for examples like arcfs (providing access to files
packed in a tar archive) and ftpfs (allowing to mount remote file systems via
ftp). Some common abstractions for all user programs like inodes, directories
and files are put into a C++ library. Library classes define hooks (abstract
methods) by which a concrete file system implementation must realize virtual
files and directories.
Using a virtual file system requires a special mount command using the

muserfs utility. This utility starts the user space program and registers the
program at the kernel module using the said mount system call. Additionally,
a mount point (an empty directory in the real file system) must be given. As a
result, any file access below the mount point will be redirected within the Linux
kernel to the userfs module, which will request all information (file attributes
and file contents) through the socket connection from the user program. An
example invocation might look like this:

$ muserfs arcfs /mnt/archive some tar file.tar
$ cd /mnt/archive
$ ls
 README . . .
$ cat README
 . . .

COFS

Using the technology of userfs and PIROL, COFS provides file access to con-
ceptual objects (CO). This is how the contents of a COFS mount is deter-
mined: Each file is represented by a CO. It has registered an object of type
UNPARSER that is able to proved the file contents by invoking method get text
passing the CO’s leading RO as argument. Unparsers exist for C++ headers
and C++ source code, which flatten the RO structure to a textual represen-
tation. Directories can be created explicitly as a CO of document type “di-
rectory”. The list contained objects contains all COs that represent files in
the directory. It should also be possible to derive the list of contained files
(represented by COs) from any relation in the repository. E.g., should the list
SUBSYSTEM.classifiers: List(CLASSIFIER) setup a directory containing all
classes of a given subsystem. This is, however, not implemented.
Design and implementation of COFS have again recognized the need forDiscussion

5 tool transactions in PIROL. Problems with respect to consistency might occur
if in the middle of a compiler run (which might be a long running task) ROs
are changed that lead to invalidating and recomputing some file contents that
is currently used.
Other nice features can be realized using a virtual file system, once the file

system is made read/write. One could, e.g., easily observe write access to a .log
file that a LATEX run creates in order to pop-up a PIROL window showing the
diagnostics parsed from the log file. The basic idea is to translate file operations
to RO modifications: creating a file results in appending an object to a list of
contained objects, appending data to a file changes a “size” property of a CO

198



Small Lua/P tools Section 13.5

representing the file etc. Based on such translations, attribute guards can be
employed to use such file events as trigger for arbitrary actions within PIROL,
including parsing of the file contents into a structure of ROs.

Status and future of userfs and COFS

Unfortunately, userfs has not been updated for current Linux kernels. For one Discussion
5reason this effects the kernel module, which exists only for 2.2.x kernels. There

is another weak spots: the tool for generating (de-)serialization code for the
socket connection is highly fragile. For the sake of generating wrapper code for
all types used by a program it parses all system include files (C header files),
which is known to be a extremely difficult task.
Meanwhile, an alternative to userfs exists. It was developed by the name

podfuk and has later been renamed to uservfs. This package is derived from
the integration of samba support in the midnight-commander file manager.
The transition to uservfs has not yet been made, and therefore COFS is

currently discontinued. Also, the findings of [Mat02] should be integrated into
COFS with respect to synchronizing different data representations. Using the
hierarchical structure of SOURCECODE ROs it should be significantly easier to
create file contents on the fly.
Summarizing, COFS can be evaluated to be an promising demonstration of

how the gap between the very different worlds of files and repository objects
can be bridged. It just needs to be re-built using newer technology. 4

13.4.2 PIROLWEB — PIROL–WWW gateway

We have already seen how PIROL can be integrated with standard web tech-
nology by adding a new URL protocol. Unfortunately, this does not work with
standard browsers, unless a browser is designed for easily adding more protocols
at the client site.
The tool to be presented here, takes a different approach: ROs from the

PIROL repository are to be converted to HTML pages which are made available
on the web using a servlet. This way, PIROL web content can be viewed by any
browser using the http protocol.
A framework is currently under development, which should allow easy con-

figuration of a processing chain that starts at a set of ROs, constructs an XML
dom tree, processes this tree using an XSL stylesheet and sends the result to
the client. This chain is controlled by a servlet. Such a framework significantly
resembles a standard content management system (CMS), which in our case
is based on an object-oriented repository in contrast to the commonly used
relational databases.

13.5 Small Lua/P tools

PIROL is to a large extent a data-centric environment. Attributes are consid-
ered public properties of ROs, DVCs define class mappings largely in terms of

199



Chapter 13 Tools and Supported Activities

attribute mappings. PON can be used to browse arbitrary data, provided a
suitable configuration exists.
Compared to pure data access, generic support for providing access to the

RO behavior at the user interface is comparably difficult. The reason for this
difference lies in different method signatures which usually require a tighter
embedding into a tools user interface.
An early day browser of PIROL had offered the option to execute any defined

method on any RO presented by the tool. While selecting a method name from
a list that is generated by reflection is not a problem, we found no really useful
way of providing the arguments of methods in a generic way. Generic dialogs
created via reflection proved more or less impractical.
Creating ROs falls into the same category because it includes a call to a

creation method. In many cases, we found that creation of objects is indeed an
intrinsic duty of a specialized tool. E.g., ZooEd may create all objects relevant
to a class diagram.
Method invocation should be integrated into specific tool GUIs in cases like

a “send” button in MESSED for sending a message.
Lua/P provides another option by which data manipulation (e.g., using PON)

can be used to drive method invocation. The trick lies in attribute guards that
have been used for the following experiments.
An experimental RO class MAKER has been developed that realizes the model

of a simple RO creation dialog. This class has attributes like target name and
target class into which parameters for creation are entered. An attribute
guard of the target class attribute triggers creation of a new RO with the
given parameters and store this object in another attribute called target. A
simple configuration of PON for class MAKER defines the presentation of the said
creation dialog. Entering a class name into this dialog after other parameters
have already been set triggers the desired creation.
Another more realistic experiment concerns the list of recipients of a mes-

sage. This list is declared in Lua/P as:

recipients : List {
agent : AGENT,
message work state : MESSAGE WORK STATE,
is sent : Boolean,

}

Because entering tuples to lists like this is not supported by PON, a method
exists, that allows insertion of recipients and initializes the extra tuple compo-
nents to reasonable values. In order to allow associating new recipients to this
list by means of existing techniques, a dummy attribute

new recipient: Transient(AGENT)

is added to class MESSAGE. This attribute is transient, because it carries no
valuable information. An attribute guard, however, is attached to the at-
tribute which intercepts each assignment to the attribute and calls method
add recipient according to the above explanation. This dummy attribute
could be called an active port, that is an interface were sending a value to

200



Summary Section 13.6

triggers an action.
Data driven actions can at a small scale add to the user interface by provid-

ing a means to invoke methods or create objects within an otherwise data-centric
GUI. This should, however, not be taken to the extreme. User friendly interac-
tion is still best implemented by specialized buttons and dialogs of specialized
tools.

13.6 Summary

Some tools presented in this chapter may contribute in one way or other to other
concerns. The most obvious example might be MESSED contributing to multi-
user capability with respect to user-to-user communication. Of course, COFS
contributes to the file-versus-object issue by providing a gateway between both
worlds.
Generally, however, tools sit on top of the infrastructure and implement

little more than user interaction (in the case of interactive tools, editors that
is) or analysis and transformation of repository contents as it was the purpose
of many tools in the ESPRESS project.
The architectural idea is to have each tool “do one job good”, and only this

one job. Integration of such specialized tools is achieved by an infrastructure
that must be aware of much more than “one job”. The complexity presented and
discussed throughout this thesis can be seen as the “once-and-for-all” attempt to
cover different integrational and fundamental issues, in order to enable cleanly
specialized tools to smoothly co-operate.
It has been shown that all tools benefit from the workbench provided context

menu, ensuring some level of uniform look&feel. Also tool docking works in the
same direction.
The tools that have been integrated, both in the ESPRESS variant and in

the current state of PIROL, demonstrate for a wide range of kinds of tools that
integration is feasible and that complexity of this integration does not depend
on the number of tools already integrated, but that only one integration task
— tool-to-workbench — has to be performed for each tool. This suffices for all
tools to co-operate which is mediated effectively by the workbench.
Examples have been shown how the combined use of tools and ROCM exten-

sions facilitates a semantically meaningful and yet flexible integration. PON re-
lies on representative objects for its own configuration. ZooEd shows the useful-
ness of DVCs even for unexpected underpinning of semantics in terms of reposi-
tory classes (see the state machine example). MESSED uses the COMMUNICATION
ROCM package for creating and sending messages. The idea of address books
shows how a tiny extension to the ROCM may contribute significant value to
the environment. pjEdit and COFS demonstrate how functionality can be split
between a tool and methods of the ROCM: In the case of pjEdit, class LANGUAGE
defines an interface for small parsers that are capable of creating structured ob-
jects from a flat text. Conversely, sub-classes of SOURCE PRODUCER create tex-
tual skeletons from structured information. Similarly, COFS uses sub-classes
of UNPARSER to generate text from structured objects.

201



Chapter 13 Tools and Supported Activities

202



Chapter 14

Miscellaneous and Summary
so far

This chapter summarizes the presentation of PIROL.
At the concrete level, PIROL is evaluated with respect to run-time perfor-

mance (Sect. 14.1) and suitability of the technology used (Sect. 14.2). In a
concluding evaluation of PIROL, Lua/P is compared to related work, and the
internal structure of PIROL is discussed with respect to evolvability.
Secondly, the presentation of concerns and concern interactions is summa-

rized and some generalizations and conclusions are drawn (Sect. 14.4).

14.1 Performance
Considerations about performance have been guiding for several aspects during
the development of PIROL. While some of these discussions are evident without
measurement, other decisions require a closer look. There is no doubt, that
manipulating objects in PCTE costs more than the corresponding operations
performed solely within Lua. Concrete caching strategies, however, which avoid
repeated lookup in PCTE have to pay for this by a computational penalty and
increased memory usage. This trade-off needs detailed performance figures.
PIROL is not optimized to the last details but some measurements have been
performed with according action.

14.1.1 Profiling technique
The task of profiling PIROL is difficult because of PIROL’s heterogenous nature.
Control flow crosses several language and even process boundaries. For instru-
menting the system, different styles of meta–programming have been employed.
For the Lua part, it is easy to wrap selected functions by profiling functions,
which accumulate the times of function execution. Functions profile reset
and profile print allow to constrain the measurement to relevant sections
during execution. Tools where not patched, but an attribute guard was added
that used the attribute TOOL INSTANCE.message as a trigger for starting and
stopping measurement. Tools are expected to indicate their current state by
writing to this attribute, so that the attribute guard indeed catches relevant
points during the execution of a tool.

203



Chapter 14 Miscellaneous and Summary so far

Calls to the PCTE API were effectively wrapped by C macro technique.
Each function that is exported from C to Lua is declared by macros that map
the different disciplines of parameter and result passing. Into these macros
additional calls to Lua were inserted that record each function’s timing data.
Also this macro technique can be considered meta-programming, as it changes
the semantics of a function definition. This is instrumentation without addi-
tional tool support and without the need to manually select or even modify all
functions that should be observed.
Each measurement was performed repeatedly on a Pentium III/1000 system

with 256MB RAM, running Linux with no other activity. From these repeated
runs, the fastest run was selected. Some details of comprehensive material from
such fastest runs are collected in the discussion below. For each run the total
time, the time spent in the PCTE subsystem and detailed figures for the most
relevant functions are captured. In special cases details about actual parameters
and call chains are also collected as context for a given function. While some
measurements involved the execution of typical tool functionality, others were
implemented as Lua/P scripts. For the case of scripts, the total time spent in
Lua is computed as the difference between the total execution time and the time
spent in PCTE. Conversely, the time spent in the tool could not be measured
easily, because this would either require modification of the tool or profiling
of MSG, which both seemed not practical. However, indirect measurement of
MSG was performed.

14.1.2 Concrete measurements

The following questions were investigated by measurement:
1. Is the number of requests relevant, by which a tool obtains its data? If
this is a bottleneck, combining several requests into one should show a
considerable gain in performance.

2. How expensive is creation of many objects?

3. Is creation of dangling objects tolerable, or should linked creation be
enforced throughout?

4. Does the effort for retrieving an RO by its ROID justify a cache of ROs
by ROID?

5. Does the effort for retrieving the ROID of a given RO justify a cache of
ROIDs by RO?

6. Are keep–alive links a tolerable technique?

7. Is access control on every object access tolerable?

8. Is launching a new Java virtual machine tolerable each time a window is
opened?

Most questions regard the potential for optional optimizations. Only (6) ana-
lyzes the impact of a technique that is required for data integrity in the given
architecture. Most measurements were performed in the same version of the
system. Only for (7), it was too difficult to implement both variants in the
same version with only a runtime switch.

204



Performance Section 14.1

no folding with folding improvement
Number of requests 169 129 40 23.7%
Workbench 172 ms 3.4% 155 ms 3.0% 17 ms 0.3%
Java + MSG 4957 ms 96.6% 4595 ms 89.6% 362 ms 7.1%
Total response time 5129 ms 100.0% 4750 ms 92.6% 379 ms 7.4%

Figure 14.1: Folding list messages

Results at the interface to MSG

When reading a list of objects, a tool first reads the list of ROIDs and then has
to query detailed information for each object separately. At least the dynamic
type (attribute class) of an object is needed for creating an appropriate proxy
object. In this experiment (1) the result of querying a list was extended to be
a pair of lists: a ROID list and a list of class names. Now the JAVA library
was modified to read the type information for proxy creation from the second
list instead by separate queries. Thus, one query for each element in a list was
saved. As a test driver PON was used, and the action to be performed was
opening the base folder containing 40 objects. Thus, the interesting section
was reading this list of 40 objects. Only 3.4% of the total time of about 5
seconds was consumed by the workbench, the rest is due to MSG and the tool
itself. Tab. 14.1 shows the key data where percentages are relative to the total
time in the original version. Reducing the number of requests by 23.7% yielded
an improvement in Java plus MSG of 7.1%. Also the workbench consumes
more time, if invoked in many small requests instead of the one compound
request. This yields an overall improvement of 7.4% of the modified variant,
which should be considered significant.
A previous setting of the same experiment showed a larger difference also on

the workbench side. After changing the experiment, impact of the workbench
is now quite small. Since Java and MSG were not measured separately it can
be discussed only informally, that the tool did not behave significantly different
in both settings. The difference in timings must indeed relate to messaging —
including of course the invocation of MSG functions from Java.
The numbers further-on show, that the actual performance problem is the

tool PON. It is unclear where the actually intolerable amount of time is spent.
One might suspect the Swing framework of JTree [Suna] to have a considerable
share, but measuring PON is beyond the scope of this analysis. The important
facts are, that the workbench is already comparably fast and is further improved
by folding many messages into one.

Results at the interface to PCTE

Object creation. Creating objects in PCTE (2) was said to be an ex-
pensive task which has motivated some optimizations in the design of PIROL.
Precise measurements surprisingly revealed that an even greater performance
penalty stems not from creating PCTE objects, but from their initialization in
Lua/P. In fact, object creation spends most time in the API function pcte object get-

205



Chapter 14 Miscellaneous and Summary so far

string attribute while reading the ROID of objects. Closer analysis showed
that during each object creation some objects are accessed that reside on a
global segment that cannot be loaded to the workbench. Reading a string at-
tribute from such objects executes roughly 100 times slower than for objects
on a segment that is loaded to the workbench. This underlines the impor-
tance of loading segments to the workbench and keeping relevant objects on
such segments. For the ideal case of all objects residing on loaded segments,
only performance estimations exist. Estimation suggests that object creation
is about ten times more expensive than most other PCTE operations.

Dangling objects. The difference between linked and dangling creation
(3) was surprisingly not significant. Three experiments were performed creat-
ing a large number of objects with each style of creation. The results ranged
between a penalty caused by dangling creation of 3.8% up-to even a perfor-
mance gain of 0.89%. It should be noted, that dangling creation might cause
a significant penalty, if the graph of dangling objects and their dependencies
becomes large and complex. In that case, deleting a dangling object may re-
quire some effort in traversing that graph and deleting objects that become
unreachable. Such efforts of maintaining a complex graph of dangling objects
are not covered by these experiments and don’t seem to be typical scenarios.

Caching ROs and ROIDs. As reported, during these measurements a
large number of calls to the API function pcte get string attribute was ob-
served and could be traced back to accesses to the exact identifier attribute,
which is used as the ROID. These retrievals of ROIDs from the repository con-
sumed about half of the time of some of the experiments. By these observations
the relevance of caching ROIDs has been discovered.
Speed improvement by caching ROIDs (5) was observable, precise data,

however, are not available. ROID caching only achieved its full effect after also
RO caching was introduced, because PCTE hands out different handles to the
same RO, that can not efficiently be mapped to the same ROID. RO caching
cures this for the case of accessing objects via MSG. If an RO is reached by
different PCTE links, there is no efficient way of detecting that the same object
has already been accessed from Lua.
During experiments, caching ROs (4) saved between 6% and 32% of the

time spent in the workbench. Maintaining keep-alive links (6) costs between
0.1% and 10%. All numbers are derived from a scenario, where a large number
of objects is retrieved by a tool, which is the worst case for both questions. Once
a tool has loaded most of its objects, keep-alive links will make no significant
difference, but the gain of caching ROs will grow.

Compound change notifications. An unexpected anomaly has been
discovered during profiling: deleting all elements from a list using method
List:wipe() works unacceptably long on lists with many elements. More than
80% of that time is spent on preparing data for change propagation. More pre-
cisely, incremental change notifications are assembled element by element. The

206



Performance Section 14.1

algorithm for compacting these notifications is run for each element perform-
ing O(n2) calculations for a list of length n. This calculation calls no PCTE
functions and was therefore not considered harmful. Measuring proved this as-
sumption wrong. Compacted change notifications reduce the effort that tools
must perform in order to react to compound modifications to a list. However,
the algorithm for compacting needs further optimization especially for degen-
erate cases like wiping a list.

Access control. Although no precisely comparable figures exist for access
checking, experiments before optimization showed that about half of the time
spent in PCTE was used for checking the access to an object before actually
performing the access (7). The strategy was then changed as to try access
unchecked and catch access errors implicitly by inspecting the return code of
all access operations. This inspection is said to be implicit, because it is done
by the macro that wraps all PCTE functions for access from Lua, i.e., this
is not visible in client code. After this optimization, overall performance was
significantly better. Direct comparison was, however, not feasible due to major
restructurings in the workbench.

Java startup

Starting a Java/Swing based interactive tool (8) is one of the most expensive
operations in PIROL. To what extent this cost is simply due to Java technology
can be estimated by the following experiment: Two applications that just open
a window, one written in Java using Swing the other in C++ using the QT
toolkit. These are the figures:
language/toolkit typical time for application launch (msec.)
Java/Swing > 2000
C++/QT 360
Since this time is the lower bound for displaying a window that resides in

a separate OS process, it can be concluded, that for Java/Swing the technique
of multiple OS processes in an integrated environment is broken.

14.1.3 On the role of performance optimization

Measurements and discussion should have shown, that design and implementa-
tion choices have significant impact on the performance of PIROL. It was not the
primary goal of this development to provide a fully optimized implementation,
but in a field where some former research was canceled because of unaccept-
able performance, such issues can certainly not be ignored. Improved computer
hardware has of course made a significant difference during the development of
PIROL1, but a design completely ignorant of performance issues would still be
useless even on todays computers. During the development efforts were invested
not to repeat the same performance problems that previous projects had.
Measurements were only performed in the late phase of preparing this the-

sis. Some of the measurements confirmed previous expectations. Some mea-

1CPU speed of machines used for the development of PIROL ranged from 50 to 1000 MHz.

207



Chapter 14 Miscellaneous and Summary so far

surements revealed unexpected performance penalties. All these data are not
really suitable for comparison with other projects. The main value of profiling
was in incrementally improving the performance of PIROL. There is no easy
way, to reproduce a variant without these improvements against which precise
comparison could be performed.

Actual bottlenecks. Measurements show at an informal level, that the
main bottlenecks are Java (Fig. 14.1) and Lua/P (List:wipe()). Java is beyond
scope for evaluating the PIROL infrastructure. Lua/P is admittedly a proto-
type language, which could for a production environment be transformed into
a compiled language with many options of classical optimization. Note, that
the worst case measurement relates to an algorithmic problem and to a pro-
gramming technique, that is well explored for functional languages (type based
pattern matching). The uses of PCTE and MSG have been demonstrated to
perform well enough. Only two restrictions apply: PCTE segments not loaded
to the workbench might be a problem (factor 100) and concurrent access by
many users has not been measured. [EKS93] reports performance problems for
that kind of scenario. Lua/P has the capability to provide better results by the
use of terms, but sufficient measurements of scenarios using considerable sized
term structures are missing.

14.2 Suitability of Lua

PIROL has seen two very different implementations. The first incarnation
[Her94] was implemented mainly in Eiffel [Mey92] and used Tcl [Ous94] for
interpretation of method bodies. Tcl proved very difficult to manage because
of the lack of a real syntax. In Tcl every data is strings and every statement
is a command. This was found not to be a good starting point for the design
of a programming language. Also the language barrier between Eiffel and Tcl
(mediated of course by C) was suspected to be a bottleneck, because all con-
trol structures where interpreted in Tcl and each access to an object had to be
delegated to Eiffel, including even method calls, that via Eiffel were dispatched
back to Tcl.
Within a German Brazilian co-operation the author had the chance to di-

rectly learn from the developers of Lua [IdFC96] and discuss many language
issues with them. Early experiments with Lua for PIROL had their influence on
the transition from fallbacks to the more powerful tagmethods. The second in-
carnation of PIROL started out as integrating MSG, a simple concept of classes
and a simple Tk [Ous94] interface into Lua. This integration experiment was
very successful and after that, Lua/P evolved over time up-to the current state.
This section is now to evaluate the suitability of Lua for the tasks at hand.
Criteria to be used in this evaluation are:

• Could desirable features be implemented or did Lua impose significant
limitations on the design of PIROL?

208



Suitability of Lua Section 14.2

• Is the syntax (which by and large adheres to the general syntax of Lua)
suitable?

• Could an implementation be achieved whose structure is comprehensible
and apt to evolution?

The performance of Lua has already been discussed above. During devel-
opment of PIROL it has met the expectations, for a production environment a
compiled, optimizable language would be required.

14.2.1 Syntax

For a prototypical environment the built-in capabilities of Lua’s syntax were
quite satisfactory. The relevant constructs could be introduced without modi-
fying the Lua parser.
Associative arrays with their different syntactical variants are used to denote Syntax variants of

Lua tables
[← Fig. 1.2 on
page 24]

structure definitions of classes and grammars. Anonymous functions are used
in the t select control structure, as access functions of attribute guards, and
within a DVC for predicates, accept functions and redirect functions. In some of
these cases the original Lua syntax appeared slightly unsuited. In these cases a
simple pre-processor enhances the syntax, translating, e.g., the predicate syntax

predicate (arg) stmts end
to real Lua syntax

predicate = function (arg) stmts end
In addition to hiding the assignment in the above function definitions, method
declarations had to be simulated for some cases. While regular (named) function
definitions allow to create an implicit parameter “self” by using a colon delimiter
instead of a period, this cannot be used for anonymous functions. Also this
“self” parameter is generated by the pre-processor regarding accept functions
and access functions of attribute guards and attribute redirections.
Anonymous functions can be compared to blocks or chunks in languages

like Smalltalk [GR83]. With functions the interface between different blocks is
clearer than with blocks, but this comes for the price of a little more verbose
syntax.
The pre-processor is a simple Lua function based on regular expression

matching and substitution. Another task of this preprocessor relates to type
declarations. Plain Lua syntax would require attribute declarations of this
syntax:

attributes = {
attr name = attr type, . . .

}
In this place the equality symbol is misleading and thanks to the pre-processor a
colon can be used instead. For method definitions Lua would not allow any type
annotations to arguments and return type. Using the pre-processor, such type
annotations are possible and translate into additional function calls that are
generally ignored but the bootstrap process uses this information for building
the reflective representation of methods including typing information.

209



Chapter 14 Miscellaneous and Summary so far

To summarize, plain Lua syntax was sufficient for all requirements. Types
in method signatures would have to be annotated separately and several minor
inconveniences would have to be tolerated, that are, however, alleviated by
means of the pre-processor.2 This holds for the prototypical environment. For
a production environment, a custom parser with no such restrictions would
probably be more suitable. But during the development of Lua/P a more rigid
approach might have hindered evolution.

14.2.2 Program structure

Much of this thesis was dedicated to the question how different concerns in-
terrelate at the conceptual level. Using a flexible language like Lua with little
support for encapsulation, the resulting program structure deserves a closer
look. Can different concerns be localized in the source code? Are the existing
means for structuring, generalization and re-use powerful enough for building
complex systems? We have argued for evolvability of the ROCM and tools, but
is the workbench itself evolvable?
The following techniques of Lua have been employed.
Tagmethods perform much of the dispatching, and different tags are used for

ROs, VOs, transient objects, different types of lists and terms. Whenever the
tagmethods need meta information for dispatching, tables of access functions
are used. This has several advantages.

• The main dispatch methods are kept separated from individual strategies
that relate to specific types.

• Access methods can be implemented as function closures storing addi-
tional context data. Thus generic access functions can be customized
during initialization.

• Access methods can later-on be replaced by wrappers. Guards are an
example for this technique. Usually, the wrapper function is again a
closure that stores the original function for chaining.

Such a touch of higher-orderedness — in conjunction with the powerful
concept of meta programming with tagmethods — gives a very good separation
of certain concerns for a low price. Several changes to the workbench have been
really simple tasks thanks to this structure. For example, allowing writable
derived attributes by use of a client provided assign function was a matter of
adding a handful of lines to the workbench.
Function values play a role also for different modes, by which a Lua/P file

can be read. According to the different phases of the bootstrapping process,Bootstrapping
PIROL [←4.2] reading the same file has quite different effects. This is easily achieved by

assigning different functions to commands like Package and Class.
Lua has other reflective capabilities in addition to tagmethods.
2Lua’s openness towards semantic extensions seems to call for equivalent means for syn-

tactic extensions, like some kind of annotation technique, which is ignored by the interpreter,
but could be used via the AST by external tools. Syntactic extensions for Lua are, however,
not supported.

210



Suitability of Lua Section 14.2

• The ability to query the type and tag of each value,
• Functions for accessing data by passing variable names as strings,
• Invoking functions with explicitly constructed argument lists (encoded as
table, of course) using builtin function call.

All these capabilities were valuable for PIROL. Type inspection is used to pack
values for sending via MSG. The explicit call function can also be used for
exception handling by means of a protected mode of invocation. For generic
error handling this is valuable. This does, however, not reach the convenience
of application level support for “try-catch” blocks.
For one specific purpose, the object-oriented Template&Hook meta pattern

[Pre95] is simulated using function parameters: internal runtime structures for
the different kinds of classes for ROs, VOs and transient objects are built using
the same function (template), but the specific parts for each kind are imple-
mented by functions that are passed as parameters (hooks). This illustrates the
similarity between inheritance and parameterization.

Caveats

Lua does not provide a module concept. A very rudimentary file based module
concept has been implemented using require and provide functions, that sim-
ply ensure that each module is loaded only once, while allowing their import
at any location that depends on the given file. With Lua, the real purpose
of separation into different files can, however, not be encapsulation but just
comprehensibility.
Several aspects of a complex Lua program need very good documentation

and conventions to alleviate missing support for safety. Firstly, global vari-
ables fall in this category. Also, the flexibility of Lua tables requires cautious
documentation. Especially nested tables can easily get out of control, if docu-
mentation is lax.
After all, the amount of Lua code used for implementing the workbench3

does not require strict modules. This part of the architecture amounts to 10
KLOC spread over 31 files. This is well manageable in Lua.

Inter language working

The integration of libraries written in C is quite easy and proved to be a very
useful technique. Normal integrations of this kind simply provide an interface
by which a Lua program can invoke C functions. It is also not a problem,
to register Lua functions for a dispatcher written in C. This style is used for
registering callbacks written in Lua for MSG patterns which are dispatched in
C code.
Integrating garbage collection across this language border is more intricate,

but registering a C function as tagmethod for the gc (garbage collect) event is
a perfect hook for having both worlds co-operate also with respect to garbage

3This is obviously not counting code written in C, which is cleanly decoupled from Lua
code by the language barrier.

211



Chapter 14 Miscellaneous and Summary so far

collection. The term–library uses a simple mechanism of reference counting
for memory management. This mechanism had to be extended to count also
inter-language references. Once the Lua API for terms had been constructed
with disciplined maintenance of this reference count, the joint garbage collection
works well also in this setting.
The most intricate issue in inter language working was the implementation

of control flow of exceptions across the language border. In order to obtain aExceptional control
flow [←7.4.5] good combination of convenience and performance a set of callbacks in different

directions co-operate for catching and reporting common errors. The author
considers the given solution close to optimal, since it combines a good perfor-
mance with little burden in client code. Most of the complexity is encoded in
the generic code of the dispatcher for MSG requests, macros that wrap PCTE
functions and the Lua module error.lua.

Remaining complexity

A piece of code, which is naturally complex, no matter which language is em-
ployed, concerns the maintenance of consistency between lists that are con-
nected by the filter construct of DVCs. Difficulty arises from the one-to-many
relationship, from the fact that each of these interconnected lists may initiate a
modification, and from separate sets of indices4, not to forget renaming. Such
complexity is once more the price for requiring transparency of filtered lists.
The infrastructure solves this issue in order to unburden client code.
A difficulty, that may not be worth its benefit, regards lazy lowering and the

many places which need to check whether lifting or lowering should occur. The
experiment was quite instructive, but follow-up models work with well definedObject Teams

[17.6→] places of lifting and lowering, introducing so called externalized roles instead of
lazy lowering. Of course, such static placement of lift/lower calls requires static
program analysis, which leads to our next issue.

14.2.3 Static correctness

A major deficiency of Lua/P is of course its lack of static support for correctness.
More specifically, Lua/P has no type checker and cannot statically recognize
further errors like wrong uses of colons or periods in method calls. This is the
backside of Lua’s great support for flexible language evolution. It wouldn’t even
require a change of the language proper. A separate toolkit, providing a parser
that generates a standard AST, would help significantly. Such a toolkit should
by a clean API or even framework design enable the construction of diverse
analysis tools. I.e., a separate type checker, which would be run independently
of the interpreter, would have saved considerable efforts of debugging.
For PIROL such a tool for static analysis could also verify that only autho-

rized parts of the code access certain low-level functions like the PCTE API.
At a first glance, Lua might lack some support for scoping, leading to ex-

cessive and uncontrolled use of the global name space. Actually, tables create

4Recall, that each filtered view locally uses consecutive indices 1..n.

212



Evaluation Section 14.3

name spaces, which made implementing classes as a special kind of table rela-
tively easy. This is restricted only syntactically: Lua does not natively support
entering and leaving a name space, thus, the current object has to be applied
explicitly (self) within method bodies. It is, however, possible to simulate
local visibility of certain names by executing certain functions in a temporarily
modified global environment. Attribute guards apply this technique in order
to provide access to functions like raw assign, which are inaccessible outside
guards.
If the technique of simulating name spaces by changing the global environ-

ment would be used excessively — e.g., for accessing attributes and methods
without self — this would certainly conflict with performance.
It would have been an interesting research to combine all special language

features of Lua/P with a state-of-the-art type system including type parameters
etc. Unfortunately, most of this is meaningless without a type checker.

14.2.4 Things that could not be done with Lua

Two issues remain, where the available version of Lua imposed notable restric-
tions. A minor problem remained with the syntax of linked creation. It would
have been desirable to keep the syntax of dangling creation and only by static
analysis achieve an order of evaluation that could combine creation and as-
signment into one PCTE call. Of course the order of execution could not be
influenced in Lua. After finding out, that dangling creation is in fact tolerable,
this is not a relevant problem.
More seriously, Lua as of version 4.0 does not support multi-threading.

This rendered impossible all experiments of transaction support, in which each
tool could start a new thread in the workbench with which it communicates
directly. As discussed in Sect. 9.1.7 this would be the precondition to using
PCTE transactions for tool synchronization.

14.3 Evaluation

In the early phase of research concerning SEEs, Osterweil observed,5 that a
software environment must be broad in scope, highly flexible and extensible
and very well integrated. This illustrates a tension, in which SEEs may appear
as killer applications for technology in OODBMS and multi-dimensional sep-
aration of concerns. Both developments have largely been influenced by SEE
research.
The integrational aspect is covered by PIROL’s architecture. Both broadness

and flexibility can be applied as criteria to Lua/P.
In Chap. 2 a comprehensive list of requirements is given according to [ESW93].

From these requirements, only one has not been dealt with appropriately: ver-
sioning. Sect. 9.1.7 has unfolded the discussion and explained why versioning
issues are especially hard in the given setting. Other than that, PIROL meets
all requirements of [ESW93] and also some requirements not listed there.

5[Ost81] quoted according to [TBC+88].

213



Chapter 14 Miscellaneous and Summary so far

14.3.1 Lua/P

In previous chapters, three repository languages other than Lua/P have been
presented: Pleiades, APPL/A and GTSL. Of these, only GTSL is object-
oriented. All languages provide support for consistency management, be it
rules or event-action pairs. Guards in Lua/P roughly fall in the second category.
Deriving data is supported by APPL/A (out attributes of relations) and GTSL
(methods). Derived attributes of Lua/P improve on these techniques by auto-
matic updating and notifications. The special support for unparsing in GTSL
falls beyond general purpose language features. In PIROL such capability was
not considered a requirement needing special language support. Sect. 16.1.1
will discuss a more detailed approach to that issue.
Pleiades and GTSL distinguish aggregation and referencing, a distinction

that is also part of PCTE’s much richer concept of link categories. Efforts
to exploit this difference also in Lua/P have been started, but conceptual diffi-
culties as discussed in Sect. 9.1.7 have rendered such efforts useless. To some
extent, COs replace the containment relation of other approaches, even allowing
overlapping containment of ROs.
To the best of the author’s knowledge, no existing repository language before

Lua/P supports a combination of objects and efficient very fine grained terms.
Pizza [OW97] is related in concept and there has also been a recent discussion
about introducing tuples to Java, but the contribution of Lua/P goes beyond
mere language design as it integrates efficient persistence for this hybrid setting.
Furthermore, Dynamic View Connectors provide support for flexible views

that is unknown for other repository languages. Sect. 16.1 will give some more
details on comparison.

14.3.2 Multi-paradigm modularization and re-usability

Lua/P integrates different paradigms and programming concepts. However,
Lua/P is embedded into an even greater framework, where very different concepts
are used for different aspects of modularization and flexibility.
Different levels of encapsulation exist. The weakest level concerns the Lua

part of the workbench. Language borders provide much stricter encapsulation,
process borders, finally, strongest encapsulation.
On the other hand, many different extension points exist, most notably

by the framework-like design of large parts of the meta model. Of course,
Dynamic View Connectors and upgrading are essential facets concerning re-use
and evolution as discussed in Chap. 12.
In retrospect, the most valuable method for achieving just all the flexibility

that is needed, was the co-design of the concrete system PIROL populated with
concrete tools together with all its infrastructure. In the end, only the com-
bination of so many techniques ranging from macros, over tagmethods, all the
way up-to a three–tier component architecture made the development of PIROL
possible, which by now covers so many concerns, is a powerful and flexible plat-
form for tool integration and even after several years of development exhibits
no decay of internal structure, but preserved its maintainability through many
iterations of development.

214



Evaluation Section 14.3

14.3.3 An example maintenance task

One success story can be reported from the late phase of preparing this thesis.
This is reported here, to underline both maintainability and also the benefit of
documentation at that level that has dominated large parts of this thesis.
An outstanding bug had to be removed, which had been identified as the

invalid access to an object that had been created within a transaction, which
was later-on aborted. Rolling-back the transaction made the newly created
object invalid. Further analysis showed, that a reference to this invalid object
was still accessed via a list, i.e., the list was discovered to be unaffected by the
roll-back.
At this spot, a brute–force approach might have tried to ‘manually’ update

the list representation when aborting a request. For this task almost all needed
information is readily available because change propagation incrementally col-
lects all modifications during each request.
Further analysis revealed the reason, why the list was not updated, and,

why it exists in memory, to begin with. Lists (i.e., their index structure in-
cluding object references) are cached in the workbench for efficient access using
consecutive indices, which are not guaranteed in PCTE. Such caches are not
affected by roll-back in PCTE.
Only going back to the very nature of lists in Lua/P, which are just cached

images of underlying repository data, it became clear, that simply dropping
such inconsistent cached lists is a much cleaner solution.
Remains to be pointed out a location in the code, that identified which list

would have to be invalidated (deleted) at which time during execution. The
answer is of course: delete all lists that have been modified in a request that
is later-on being rolled-back. The location that triggers the roll-back is easily
identified, but how to detect arbitrary modifications to lists? All lists declare
all their modifications for the purpose of change propagation. Fortunately, even
the four hooks that collect update information for the list operations append,
insert, replace, delete go through just one common hook. As a result, in order
to remedy the bug, five lines of code had to be inserted to maintain a list of
dirty lists per request and four lines of code for dropping all dirty cached lists
when a request is aborted. That is nine lines of code for a quite hairy bug.
This example demonstrates two kinds of success. Firstly, a good docu-

mentation of concerns at different levels helps in finding the real cause of a
problem. In this case the caching nature of lists is not visible from looking at
the list implementation. Only from the bigger context the intention of internal
list representations can be understood as a cache of underlying repository data.
Secondly, the workbench code, which has gone through many iterations of re-
structuring, allows to identify very specific conditions with a small number of
locations in the source code. In other words, many situations during program
execution that can be expressed in simple words can be located in the source
code in very few places.
While re-structuring involves a fair amount of intuition to ‘put together

what belongs together’, maintenance tasks as the one presented here, help to
evaluate the structure that has been reached. If simple corrections would in-

215



Chapter 14 Miscellaneous and Summary so far

volve tedious modification of many parts of the code (which might only exhibit
faint similarities), the structure should be called inappropriate. If doing simple
corrections is in fact simple, the structure can be said to match the underlying
concepts. Thus, being able to correct a bug with very few lines of code, proves
the given design suitable and helps to maintain such clean design. In other
words, striving for the simplest possible solution to a problem, is not an end by
itself, but guides towards least possible pollution by work-arounds and patches.
In fact, localizing errors was in some cases quite difficult due to the number

of different techniques involved. Error correction, however, hints at a good
matching of structure and concepts.

14.3.4 Object-oriented SEEs

PIROL is an effort at building an SEE framework using the object-oriented
paradigm. There have been comparable efforts before. The following quotation
is from an article titled “Good News, Bad News: Experience Building a Software
Development Environment Using the Object-Oriented Paradigm” [HSS89]:

“Our experience has taught us that object instances provide a nat-
ural way to model program constructs, and to capture complex re-
lationships between different aspects of the software system being
constructed. The object-oriented paradigm can be efficiently im-
plemented on standard hardware and software, and does provide a
degree of extendibility without making major modifications to the
existing implementation.

Unfortunately, our experience has also demonstrated that some nat-
ural extensions to the software development environment are diffi-
cult to incorporate into the system. We argue that the lack of ex-
tendibility is due to the object-oriented paradigm’s lack of support
for providing modifications and extensions of the object-oriented
paradigm itself.”

On principle, these observations — originally referring to the much more
limited setting of programming environments — hold for PIROL, too. Object-
oriented meta modeling is in fact a good starting point, but SEEs need more
than that, they need multi-paradigm languages, like Lua/P.
With this statement, we will leave the concrete considerations concerning

PIROL and will conclude on the method of a Concern Interaction Matrix below,
using of course the experience from developing and documenting PIROL.

216



Concern interaction Section 14.4

part 1

part 2

part 3

description of intrinsic properties and features

Figure 14.2: Overview of partitioning the concern interaction matrix

14.4 Concern interaction

Throughout this thesis little pieces have been collected on how the different
concerns of PIROL interact. The chapter summaries have started to draw con-
clusions from these findings. Still the pieces remained more or less isolated.
This section is an attempt to draw a very broad overall picture of PIROL in
terms of the concerns that have structured the text. During this process, con-
stellations are compared and more fundamental patterns of concern interaction
are sought.
As a guide through the following discussion the central keywords from the

presentation of PIROL are collected into an abstract view of the concern inter-
action matrix as introduced in Sect. I.5.1. This matrix is split into three tables
Tab. 14.1–14.3. Fig. 14.2 shows the location of these parts in the global matrix.
The order of concerns is the same as it was in the previous chapters.
Cells of the matrix contain keywords prefixed by a rough classification:

B Interface to an existing base technology.

F Introduction of a new feature.

U The development of a new feature was guided by the desired uniformity
with an existing feature.

C Two features complement each other.

A One concern applies a feature from another concern.

I One concern implements a requirement from another concern.

217



Chapter 14 Miscellaneous and Summary so far

IF A new feature is implemented by the combination of two concerns.

IT A new mechanism implements transparency between two concerns.

T A specific aspect is conceptually transparent to another concern.

— Two concerns appear orthogonal.

?? A combination of concern raises a new issue.

14.4.1 Concern characteristics

We will now once more iterate through the 12 fundamental concerns but this
time from the perspective as to find out what kind of concern we have at
hand, and what its general relationship to other concerns is. This will also give
explanations to some entries of the matrix.

Meta modeling

For PIROL, meta modeling is the most fundamental design decision. Without
meta modeling there would be no PIROL. It is the basic terminology in which
many of the other concerns are spelled out. Many packages and classes of the
ROCM are dedicated to specific concerns, and the most central class ANY RO is
the pivot by which many concerns are connected. The rôle of meta modeling is
close to being a paradigm for PIROL.

Persistence

This concern comes as a requirement : (almost) all data must be persistent.
It connects the base technology PCTE to PIROL. In this connection several
mappings had to be developed. Goals of these mappings were transparent
encapsulation, uniformity and efficiency. Also, some non-standard functionality
of PCTE should be made available to higher levels of the architecture. This is,
because PCTE is more than a passive data storage, but provides many services
from schema management up-to transactional protection. Most other concerns
had to find specific translations into the world of persistent data.
Finally, having persistence also opened the choice between persistent and

transient data. In order to achieve best possible transparency of this choice,
other concerns had to be duplicated as to perform the same operations in the
same way for both kinds of data. In this respect, persistence can be considered
a multiplier.

Granularity

In principle, granularity is another fundamental requirement of PIROL but at
a closer look, it spans a scale on which many options can be picked. On this
scale, data in PIROL can be either objects, lists or terms. Also, changes and
change notifications can be of different granularity and PIROL chooses quite a
fine level of increments. In this respect, also granularity is a multiplier.

218



Concern interaction Section 14.4

m
et
a

m
o
d
el
in
g
p
er
si
st
en
ce

gr
an
u
la
ri
ty

b
eh
av
io
r

ex
ce
p
ti
on
s

in
te
gr
it
y

in
tr
in
si
c
B
:
L
ua

F
:
C
O

B
:
P
C
T
E

F
:t
er
m
s
gr
am
m
ar
s
B
:
st
an
da
rd
O
O

F
:
gu
ar
de
d
at
tr
ib
s.

F
:
de
ri
ve
d
at
tr
ib
s.

m
et
a
m
o
d
el
in
g
×

IT
:
ty
p
e
m
ap
in
gs

P
C
T
E
↔
Lu
a/
P

F
:
ob
je
ct
in
lin
in
g

F
:
re
ve
rs
e
lin
ks

F
:
tr
an
si
en
t
da
ta

U
:
sy
nt
ax

F
:
G
E
N
E
R
A
L

P
R
O
D
U
C
T

P
R
O
C
E
SS
E
S

I:
re
p
or
t
P
C
T
E

er
ro
rs

I:
m
et
a
m
od
el

se
m
an
ti
cs

p
er
si
st
en
ce
×

×
I:
pa
ck
as
co
nt
en
t
—

I:
tr
an
sa
ct
io
n

F
:
or
ph
an
ag
e

gr
an
u
la
ri
ty
×

×
×

F
:
t
se
le
ct

I:
ER
RO
R

F
:
hy
br
id
ga
rb
ag
e

co
lle
ct
or

b
eh
av
io
r
×

×
×

×
A
:
m
an
y

C
:
gu
ar
d+
m
et
ho
d

ex
ce
p
ti
on
s
×

×
×

×
×

I:
gu
ar
d
ex
ce
pt
io
n

T
ab
le
14
.1
:
C
on
ce
rn
in
te
ra
ct
io
ns
(p
ar
t1
)

219



Chapter 14 Miscellaneous and Summary so far
arch
itectu

re
con
trol
in
tegration

m
u
lti-u
ser

D
V
C

serv
ices

evolu
tion

intrinsic
F
:
3–tier

F
:
M
SG

F
:
w
b→
tool
m
essages

F
:
change

propagation
F
:
representatives

F
:
access

coordination
F
:
user
context

F
:
com
m
unication

F
:
connector,

V
O

F
:
lifting/low

ering
F
:
feature

m
apping

F
:
tool
adm
inis-

tration
F
:
context

m
enu

F
:
state

m
achine

F
:
upgrading

m
eta

m
o
d
elin
g
F
:
proxy

classes
F
:
TOOLS

IF
:
PROCESSES

IF
:
PERMISSION

IF
:
MESSAGE

et
al

U
:
V
O
'
R
O

IF
:
tw
o
level

m
eta
m
odel

I:
TOOLS
I:
MENU
I:
STATE

et
al

IF
:
tw
o
level

m
eta
m
odel

p
ersisten

ce
IT
:
R
O
ID

IF
:
represenative
as
configuration

I:
p
erm
issions

I:
annotation

T
:
m
app
ed
to

p
ersistent

C
O

I:
transient

m
enu

I:
upgrade
(convert)

gran
u
larity

F
:
p
oint-to-p

oint
m
essages

IT
:
list
op
erations

IF
:
increm

ental
change

propagation
I:
term
s
are
atom
ic

w
rt.
access

control
—

—
—

b
eh
av
ior

F
:
proxy

generator
F
:
utilize

tool
b
ehavior

IF
:
m
ail
delivery

F
:
accept

F
:
delegation

I:
throughout

F
:
upgrade–
m
ethods

ex
cep
tion
s

F
:
request=
transaction
IT
:
error

propa-
gation

IT
:
no
changed

m
essage

on
ab
ort

IT
:
AccessException

—
—

F
:
UpgradeError

in
tegrity

F
:
transaction

T
:
guards

IT
:
keep-alive-links

IT
:
distributed

G
C

IT
:
changed

for
derived

attribs.
F
:
guards

trigger
external

b
ehavior

A
:
access

control
F
:
synchronize

m
eta

data
by
guards

T
:
change

propa-
gation

R
O
↔
V
O

—
—

arch
itectu

re
×

F
:
tool-to-tool
com
m
unication

F
:
w
orkb
ench–to–w

ork-
b
ench

com
m
unication

F
:
tool=

context
F
:
distributed

im
plem
entation

of
context

m
enu

I:
proxy=

interface

T
able
14.2:

C
oncern

interactions
(part2)

220



Concern interaction Section 14.4

m
u
lt
i-
u
se
r

D
V
C

se
rv
ic
es

ev
ol
u
ti
on

co
n
tr
ol

in
te
gr
at
io
n
F
:
us
er
re
pr
es
en
ta
ti
ve

F
:
w
or
kb
en
ch
re
pr
es
en
ta
ti
ve
IT
:
lif
ti
ng
lo
ca
ti
on
??
?

??
:
co
m
pa
ti
bi
lit
y

m
u
lt
i-
u
se
r
×

—
F
:
co
m
m
un
ic
at
io
n
to
ol
—

D
V
C
×

×
F
:
do
cu
m
en
t
ha
nd
lin
g
I:
de
co
up
lin
g

se
rv
ic
es
×

×
×

I:
lo
os
e
co
up
lin
g

by
co
nt
ex
t
m
en
u

T
ab
le
14
.3
:
C
on
ce
rn
in
te
ra
ct
io
ns
(p
ar
t3
)

221



Chapter 14 Miscellaneous and Summary so far

On the other hand, granularity introduced the mechanism of terms, which
in turn helps to effectively and efficiently implement several other concerns.
Thus terms are also a facilitator for other concerns.

Behavior

In the very early days of PIROL, the author opposed to the introduction of
methods to the concept of ROs. Fortunately, his fellows Olaf Bigalk and Boris
Groth persuaded him to include behavior into the ROCM. From todays per-
spective, behavior modeling is a golden choice to include. This concern, like
no other concern, operates as a facilitator for the implementation of other con-
cerns. Methods in the ROCM are a well chosen location for implementing much
of the functionality of PIROL. Even that functionality that is not implemented
in Lua/P is mostly encapsulated as to be available in Lua/P.
Methods complement well with the mechanism of guards. Guards profit

from calling methods and extend the behavioral part of the ROCM towards
access oriented programming.
Other concerns motivated specific contributions to behavior modeling: cre-

ation, upgrade and accept methods attach behavior to different transitions in
an object’s life cycle. Terms suggested adding a touch of functional program-
ming, e.g., by means of the t select pattern matching function. Proxies extend
method accessibility across process and language boundaries. Control integra-
tion, finally, made even parts of a tool’s implementation available to behavior
execution in the workbench.

Exceptions

This concern has little life on its own. The underlying requirement is robustness,
but exceptions mediate between many more concerns and requirements. No
other concern cuts across so deeply. The more it surprises that exceptions seem
to be orthogonal to DVCs and common services.
It is yet unsolved, whether exceptions, operating within the control flow of

methods and control integration, and acting on behalf of data integrity, and
paying attention to distributed architecture and change propagation, whether
exceptions really are the fundamental concern, or whether transaction manage-
ment and related issues should be raised to the degree of a “concern”.
For the time being, an explicit concept of exception handling was a crucial

ingredient to the description of PIROL. Finally, it is a good thing to know, that
controls flows like the one shown in Fig. 7.8 on page 96 are unsurpassed in
complexity. All other mechanisms in PIROL operate in simpler ways.

Integrity

This is a very general requirement. Different interpretations of integrity where
used throughout the description, the distinction into technical and semantical
integrity being the most prominent one. Many other concerns have to pay
attention to integrity. If it were only for that unspecific requirement, integrity

222



Concern interaction Section 14.4

might have stayed at the same level as performance, which is omnipresent but
seldomly precisely explicit.
Integrity has, however, produced some mechanisms, that facilitate some

other concerns. In parts of this thesis, integrity has been identified with guarded
or derived attributes. This is of course not precise, as it mixes the requirement
with mechanisms to its solution. Still the author considers this kind of grouping
helpful for the purpose of documenting concepts, rationales and connections
thereof.

Client server architecture

This concerns is clearly another multiplier. Many mechanisms had to be ex-
tended to work not only in a local setting but also in a distributed fashion.
Yet, this architecture is a most fundamental facilitator to at least evolution.
As such, it is of very great value, because only the architecture-based interfaces
between components made the independent development of different tools for
PIROL possible. The decoupling achieved by this architecture is irreplaceable.

Control integration

Control integration has a rôle similar to that of behavior modeling. Both facil-
itators keep things going in PIROL. Not only do these two concerns resemble
each other, but also both concerns appear as a complement to a more struc-
tural concern. In much the same way as methods complement the structural
part of the meta model, does control integration complement the client server
architecture. This could be our first concern interaction pattern: concerns have
a tendency of appearing as a pair of a structural concern and a behavioral con-
cern. The experience of this thesis suggests the conclusion that identification
of such a pair of concerns is a proper hint at having found very suitable and
helpful abstractions.
Control integration hooks into the rest of the architecture mainly by the use

of representative objects of different kinds. These representatives finally allow
for a logical communication between all components of the environment, which
is much more flexible than the physical architecture by which these components
are actually interconnected. Thus, representatives introduce an additional ab-
straction layer to the system.

Multi-user capabilities

The requirement to support many co-operating users splits into a low level con-
cern and two higher level concerns. Access coordination (permissions and syn-
chronization) has to be implemented at the level of the repository. Many other
concerns need to pay attention to this requirement. The other sub-concerns,
user context and user communication, are built on top of the existing meta
model and architecture. They apply other mechanisms for completely new sce-
narios.

223



Chapter 14 Miscellaneous and Summary so far

Dynamic View Connectors

At some levels of the architecture, DVCsmultiply quite a few operations, because
ROs and VOs must internally be treated differently. New mappings are needed
and behavior is augmented by a second kind of inheritance: the delegation
between VOs and ROs. The most intricate part of implementing DVCs was the
management of different views on lists: VO lists as partial views on RO lists.
But the gain of DVCs lies in the fact that such multiplication is limited to the
core of PIROL and that outside that core, the RO-VO difference is invisible. The
uniformity of ROs and VOs decouples tools from the actual ROCM and thus is
a major gain for evolvability. DVCs achieve this evolvability by introducing an
intermediate level of abstraction.

Common services

Common services have had very little influence on the PIROL core. More so,
they expose core functionality to tools and the user interface. These services
are mostly implemented in the ROCM. A major issue for services is to reconcile
openness and extensibility. This happens by specific hooks in the meta model
that declare services in a way that allows flexible extension during environment
customization.

Evolution

This concerns is an important criterion when evaluating the quality of the
system. Meta modeling is maybe the central of PIROL. The mechanism of
upgrading allows dynamic reclassification thus permitting a very flexibly usage
of inheritance for extension of the environment after its initial deployment.
Upgrading is easily integrated in PIROL because PCTE already supports such
conversions. Only the behavioral part of Lua/P had to be extended in order
to integrate upgrade methods. Other than that, all mechanisms that helped
decoupling different parts of the environment helped for its evolvability, most
notably: DVCs.

14.4.2 Concern kinds

We can now collect a rough classification of the major concerns that have been
elaborated. These kinds are put forward also with respect to observed relations
to other concerns. A concern may belong to more than one of these kinds. The
list starts with restrictive concerns gradually moving over to enabling concerns.

paradigm Such concerns predetermine many choices throughout the sys-
tem (meta modeling).

requirement Potentially setup obligations for many other concerns (persis-
tence, integrity, evolution, performance).

multiplier Introduces an option or choice such that many concerns need to
be multiply realized with respect to these options (persistence,
granularity).

224



Concern interaction Section 14.4

projection Other concerns need to be projected, mapped or translated into
the technology of this concern.

encapsulator A concern provides restricted access to the features in another
concern (behavior).

exposure A concern makes features from other concerns available where
they otherwise would not be (common services).

layer A concern may introduce a layer both in the physical and log-
ical architectures (behavior, client server architecture, control
integration).

complement A concern may complement another concern. The effect may
be concerns occurring as pairs like metamodeling × behavior.
Also different paradigms (object-oriented, functional, access ori-
ented . . . ) may complement each other.

mediator Communicates between different concerns, possibly reifying con-
cern interaction with more than two concerns involved (excep-
tion handling).

facilitator Helps in realizing another concern.

application A concern may apply one or more other concerns as to imple-
ment its functionality (multi user capability, common services).

Two additional distinctions are possible that are not reflected by this rather
pragmatic classification. First, concerns and concern relationships could be
classified separately as it is done in Cosmos [SR02]. Second, requirements and Concern space

modeling [15.2.4→]mechanisms could be distinguished throughout.

14.4.3 Towards a meta language for concerns

The above list is a shy attempt at making the findings from the development
and description of PIROL available beyond the original context. Good docu-
mentation — be it before, during or after the actual development — requires
experience, a lot of experience. Descriptions should not satisfy, what a textbook
requires us to specify. Good descriptions provide a means to find out all you
need for understanding a given aspect of a system and find out, all that needs to
be known in order to safely change that aspect without breaking other aspects.
A very instructive field study is presented in [BM02]. The importance of this
field study lies in connecting AOSD concepts to the actual, pressing problem
of maintaining software, of which we only understand small parts. There is no
time to read huge piles of documentation, when a maintenance task is to be
performed within a tight time frame.
Documentation must enable “just-in-time competence” [WHS01]. To come

back to Concern Interaction Matrix and concern classification: The first helps

225



Chapter 14 Miscellaneous and Summary so far

to achieve completeness and high connectivity of different parts of documenta-
tion, whereas the second establishes a language by which a high-level under-
standing of concern relationships can be reached considerably faster, than by
digging through all the technical details. The title of this section speaks of a
meta language, because not only capturing each concern in isolation is needed,
but classification is needed and abstract description of interrelationships; de-
scriptions that give a high level understanding without referring to the internal
structure of all concerns.
The vision is a common concept of concern management in conjunction with

high-level classifications as part of normal language of software developers. This
given, developers can start learning about a system by descriptions at the level
as demonstrated by this summary chapter. From there, essential interrelations
are understood and after that, details are retrieved by jumping into the Con-
cern Interaction Matrix at exactly those points that are of interest for a given
maintenance task. The difficulty lies in providing structure that is obvious to
outsiders and communicating as much meaning as possible concerning what,
how and most importantly: why.
The lesson that this thesis tries to convey is: looking at concerns in isolation

only gives a thin slice of a densely populated space. Essential aspects are best
explained by focusing on the interactions between concerns. Feature interac-
tion is not a troublesome exception, it is the rule. More than that: concern
interaction is a very important origin from which system design is motivated.

226



Part III

Views

227





Chapter 15

Views in Software Engineering

The previous part of this thesis argued on two levels. The PIROL system was
presented as a multi–view software engineering environment1. Secondly, it was
discussed how such a complex system can be implemented and documented in
a modular way, which simultaneously respects many relevant concerns.
This part now tries to extract the common ideas of both levels. The concept

of views is elaborated as one of the most central notions of software engineering.
It is argued that this concept is of similar importance to software development
as abstraction and decomposition/composition. Reasons are sought, why for
views there is still less common understanding than for the other two. Some
roots of the uses of views in software are explored and the next chapter will
elaborate on selected technologies at different levels that support some notion
of views.

15.1 Views, Abstraction and Decomposition

Views are a very general concept of software engineering. In order to grasp
this concept more crisply, it is first related to two other fundamental concepts:
abstraction and decomposition.

15.1.1 Abstraction

Abstraction denotes the relationship between something conceptual and some-
thing real (concrete). Thus the inverse relationship is that of realization. The
value of such relationship lies in the fact that all properties that can be ascribed
to the abstract thing are known to also hold for the concrete thing. For this
reason, abstraction is one of the most powerful concepts in computer science
since it allows to handle a supposedly simpler — abstract — representation and
still make valid statements for the more complex — concrete — thing. Exam-
ples of this relationship are design↔implementation, type↔instance, and also
type↔sub-type.
Working with abstractions can take either direction. Communication among

developers regarding complex programs benefits from abstract descriptions of

1Cf. the title of [GHJK95] containing the phrase “a Multi–View SEE”.

229



Chapter 15 Views in Software Engineering

the existing program. Software development to a large extent tries to go the op-
posite direction: the traditional top–down development method tries to create
an abstract specification from which a concrete system is derived by stepwise
refinement/realization. The problem with top–down development lies in in-
teractions between different levels of refinement: more often than not, only
refinement reveals that decision made at an abstract level need to be revised
before refinement is feasible. Parnas stresses that top-down (or as he prefers:
outside-in) as a sequence of development steps has many problems, but a layered
structure of the resulting product should still be aspired[Par75]. For documen-
tation purposes it might well be useful to pretend that a process of stepwise
refinement had been used, but actual development — especially in the presence
of COTS components — takes different roads [PC86].
From a mathematical point of view, abstraction is a selection of information,

omitting other information that is considered irrelevant (in many situations
this means to omit almost everything). The abstraction relation is a partial
surjective function that need not be injective. It is a function, because each
origin element is mapped only once. It is partial, because it omits details from
the origin. It is surjective, because the abstract level only contains elements
that are related to the origin. It may be not injective, because one abstract
element may subsume several origin elements.

15.1.2 Decomposition and composition

If complexity needs to be handled, a more pragmatic skill as compared to ab-
straction is decomposition. Large problems are supposed to be solved according
to the ancient “divide et impera” (divide and reign — commonly changed to
divide and conquer). It is the “reign” part that suggests to look not only at de-
composition. Perhaps composition or integration of disparate parts is the larger
problem (cf. [MH01]). Decomposition and composition create a relationship of
containment which is to indicate a hierarchical tree structure (since physical
containment does not allow overlap). It should be obvious, that for complex
problems decomposition should be more than just one step from complex to
atomic parts, but rather proceeding in several steps (as with stepwise refine-
ment) should again be preferred. Already in the 1970s, this obviously yielded
a proliferation of claims of hierarchical (layered) structure of systems.2 Parnas
[Par74] has some critical thoughts on the use of the “buzzword” hierarchical
structure. He questions, whether the uses of this buzzword in computer science
actually refer to some meaningful and comparable relation. Firstly, Parnas
ridicules such statements by the observation that “any system can be repre-
sented as a hierarchical system with one level and only one part”. It is the
relation defining the hierarchical structure that must be defined. Pure con-
tainment is first of all difficult to establish for software systems, and, more
important, static containment of parts does not necessarily say anything about

2Of course, layered systems may break the tree structure. The discussion frequently uses
the concept of abstract machines to denote such layers. Still such system structure is more a
matter of decomposition than proper abstraction as can be deduced from Parnas’ critique.

230



Views, Abstraction and Decomposition Section 15.1

the behavior or functionality of software, which might follow a completely dif-
ferent structure.

Parnas points out, that decomposition into modules is of value mainly
for two reasons: division into work assignments and anticipation of change
[Par72, Par78]. Both issues require narrow and abstract interfaces, which should
be based on “assumptions believed unlikely to change” [Par78]. At least for the
data-flow based approach, Parnas argues that top-down decomposition is not
likely to achieve good interfaces in the sense given. Work on aspect-oriented
programming[KLM+97] is in part motivated by the observation, that no de-
composition hierarchy is able to prepare for changes of arbitrary nature. Only
one decomposition must be selected among different possible solutions, which
Tarr et al. call the “tyranny of the dominant decomposition” [TOHS99].

As stated above, the mathematical model behind decomposition and com-
position is hierarchical structure, and even more restrictive than that: it is a
tree.

15.1.3 Views

The range of research applying the notion of views is extremely broad. Yet
it is difficult to find a definition of what a view is. It seems that authors call
much to the intuition of readers. An attempt for a definition can be found in
[SS89]: “A view is a simplifying abstraction of a complex structure. It is useful
because it emphasizes a single aspect of the structure, suppressing information
not relevant to the current focus”. On a general level little more can be said
about views, and even the above definition might be debatable. Is a view an
abstraction? Some views seem to be even more concrete, than what is being
looked on. E.g., in the relation between an abstract syntax tree (AST) and a
source file representing the same program, the view (source file) is more concrete
than the underlying information (AST).

It is a valuable approach to define a notion not by its constituents and
properties, but in terms of why it is useful. In fact a “current focus”, which
emphasis one aspect while suppressing other information is at the heart of views.
But why is it so hard, to say more about views in general? In the light of the
claim that views are a central concept of computer science, a unified theory
of views might provide a valuable foundation for many aspects of software
engineering. Is there a mathematical model behind this notion?

Views as a concept in computer science is so problematic because it is a set
of homonyms. There is not one notion of views but quite a range of them. The
task of this section is to find the differences between different application of the
notion yet elaborating the commonalities that may still justify to see all this as
variations of a common theme or rather specimen of one concept that can only
be approximated by definitions.

Let’s have a look at who is using the term “views”, and what is the intention
behind this usage. This will only be a first iteration. Sect. 15.2 will investigate
the perspectives of different phases in the software life cycle.

231



Chapter 15 Views in Software Engineering

Requirements Engineering. At the far end, requirements engineering
tends to speak of viewpoints or perspectives of different stakeholders. Here,
the common part behind all views is a system that is still being planned and
designed. Differences between views originate from different backgrounds and
interests of stakeholders. As a general refrain of all occurrences of “views” we
identify the obligation to reconcile different views in one way or other. Regard-
ing the viewpoints of different stakeholders this is performed by negotiation.
Negotiation starts at a state of inconsistency, at which no system can be build
that conforms to the all requirements from all perspectives and should establish
a commonly agreeable view of the system, which is ready for development.
Thus, views are directly associated with the possibility to introduce in-

consistencies. Inconsistency, furthermore, does not prove any of the involved
views wrong. The requirements engineering community has reacted by per-
forming research on how to “live with inconsistencies”3. Strangely enough, this
“movement” was initiated by a quite technical paper, recently awarded as most
influential ICSE paper [Bal91]. The original work mostly dealt with database
issues in the presence of constraints that may temporarily be violated by some
data in the database. But databases will be examined further later.
In the sequel we will not follow on the issue of viewpoints of different stake-

holders but focus on more technical aspects of developing a system whose re-
quirements are put forward uniformly, i.e., after stakeholder negotiation has
taken place.

Concerns. Here we have another very important yet weakly defined notion.
Instead of trying to define “concern”, only a very pragmatic statement shall
be given: for the following discussion it suffices to regard concerns as arbitrary
mental foci, from which a complex system may be viewed at, in order to analyze
or somehow understand a specific aspect of the system. The author is well
aware, that this means to explain one notion by two even vaguer notions. The
list of concerns used for structuring the previous part of this thesis illustrates
the broad applicability of the term “concern”. The fuzziness is intended and all
that counts is, whether a prospective concern helps in structuring explanations
of what a system is like or how it should be.
Apart from a rigorous definition, concerns may be classified according to

some taxonomy, and relations between concerns can be captured. A special
value of such models is in predicting all required changes for a planned main-
tenance task (cf. [SR02]). A concern model allows to analyze how changesConcern modeling

[15.2.4→] propagate through the concern space.

Design dimensions. This notion is used deliberately for concepts that are
originally also called views: in OMT [RBP+91], design is supposed to produce a
structural view, a functional view and a behavioral view. UML has adopted and
complemented this concept to more than three different views [BRJ99]. The
intention of the original OMT views is to separately define those fundamental
aspects, which each system has. Here different views do not express the interests

3See the workshop series of this name at the ICSE conferences of the last years.

232



Views, Abstraction and Decomposition Section 15.1

of different stakeholders, but views are supposed to be orthogonal, in a way that
only a definition of all three views gives a real definition of the shape of the
system being developed. The relation between different design dimensions is
determined by the goal to blend all views into one model that can finally be
realized by software.

Documents. While developing software, views of many different kinds
end up being written down, or drawn or somehow cast into the shape of doc-
uments. Documents are no specific kind of views, but documents realize, e.g.,
the dimensions that were discussed above. When thinking about OMT views as
documents it is an easy transition to think of a technical realization, where the
blended model is stored in some repository and all views are derived from this
shared data. This is the idea of PIROL and many previous works on software
engineering environments.

Database Views. Research on software engineering environments (SEE)
has given significant momentum to the development of object-oriented databases
[AB91, EKS93, ECM90]4. Some of these OODBMS have unique facilities for
working with views for the reasons just given above. When looking at the rela-
tionship between a shared, blended model and its different views, two activities
come to mind: Merging all partial data models to the one shared (possibly
hidden) data model. Secondly, views are derived from shared data. Both op-
erations may include restructuring, but such restructuring must still allow to
store and retrieve any view without loss of information.
At this level it becomes clear, that such views do not have any direct re-

lationship but all relations are mediated by the common repository. Still con-
sistency between views is an important issue, or more precisely, consistency of
the blended model is an issue. This is where constraints of data stored in the
repository come into focus.

Model View Control. The most detailed and technical concept of views to
be presented in this list stems from the Model-View-Control “paradigm”. It is
related to the previous discussion, since different database views are commonly
presented to the user by tools which play a View–Control rôle in the overall
environment architecture. Two issues are important here: tools do not sepa-
rately store their “model”, but operate on the common model in the repository.
Secondly, changes in the repository must be reflected by updates in the tools,
which are triggered by some observer mechanism. This is the general architec-
ture of multi–view environments, as it has been discussed in depth throughout
the presentation of PIROL. We can identify the inter–view dynamics of the MVC
architecture with change propagation as discussed in Part. II.
Presentation views à la MVC extend the notion of views as discussed so

far. Only now it becomes evident, that views not only extract information.
4Interestingly, some very similar concepts have been developed under the label of artificial

intelligence or even in close cooperation of both research fields (cf., e.g., [GB80]). Knowledge
representations require structures, languages and database capabilities that seem to be quite
similar to findings in developing SEEs.

233



Chapter 15 Views in Software Engineering

Views are not pure abstractions, but they also add information which is needed
for presentation. It is this layout information and syntactical sugar that dis-
tinguishes views from abstractions. Views in MVC are to some aspect more
concrete than the data to which they relate. Similar findings might also occur
with respect to concerns and stakeholders viewpoints. Also such views might
contain information that is not important to the whole. A repository based
implementation still needs to store this information. However, presentation in-
formation should not be made available to all other tools, it should in general
be considered private data of a tool.

15.1.4 Relating different view concepts

Along the chain of view concepts there is at least pairwise overlap. Stake-
holder viewpoints define requirements for the system which can be grouped to
concerns. Some concerns may map to a specific design dimension, e.g., meta
modeling refers directly to the structural view. Design views can be realized by
documents which in turn are stored as persistent views in a database. A tool
finally presents a document, based on the database view, using the model view
architecture for presentation and updating. It should be noted, however, that
this interpretation restricts each kind of views to a very specific application.
Many different applications of and relations between views can be thought of.
As it is difficult and maybe useless to precisely define views as such, the

interaction between different views gives more information. In this case we focus
on interaction between views of the same kind, and simply collect what as been
said above. Views require reconciliation of disparate but possibly overlapping
information, which comprises:

1. Negotiation (in order to achieve consistency)

2. Propagation of changes (in order to maintain consistency)

3. Blending5(in order to achieve a common model)

4. Merging5 (in order to achieve a common meta model)

5. Deriving (in order to extract a view from shared data)

6. Change propagation (in order to update presentation views)

Please note, that items (2) and (6), though sharing a common idea, are
quite distinct, since (2) argues at a conceptual level of a concern model while
(6) relates to a technical mechanism. It is the intention of such a list to help
identify commonalities and differences between the different uses of the word
“views”.
Far remote from all precise definitions, views can now be paraphrased as

. . . something, of which multiple instances relate to some shared
whole, such that instances may overlap and inconsistencies might
occur, which need some provisions for reconciliation.

5It is not the difference between the words “blending” and “merging” that makes this point,
but the difference between the levels of model and meta model.

234



Views, Abstraction and Decomposition Section 15.1

Furthermore,

. . . mappings play an important role by which views are related
to the whole and vice versa.

Such mappings may be needed both at the type and the instance level and
may be of very different nature.

A word on terminology. Throughout this thesis, difficulties persist in
combining the terminology of different research communities without causing
undue confusion. As an example consider the notions “change” and “update”:
during software maintenance change propagation refers to modifications of one
part of software, which entail further modifications in other parts. If such
propagation is performed automatically, the MVC architecture speaks of “no-
tifications” resulting in an “update” operation to be performed in each view.
I.e., an update is a reaction to a notification and should re-establish a state of
consistency. Database terminology on the other hand calls “updates” all modi-
fications that a client program performs regarding data in the database. Thus,
an “update” (database) may, via triggers and notifications cause an “update”
(MVC). Are updates cause or effect? What is an updatable view? Is it writable,
or reactive? More examples could be given.

Towards behavior views. The commonality of all view concepts discussed
so far relates to shared data. Matters will grow considerably more complex, once
views are understood also as partial behaviors that relate to shared assets of
potential behaviors. Database views are naturally focussed on data. Dynamic
View Connectors stand on the borderline to programming models that introduce
view concepts into implementation of behavior. Follow-up research in that
direction will be mentioned below (Sect. 17.6).
Please note the difference between the behavioral view of OMT (which is

one view beside other views) and behavior views (where the behavior itself is
split into many views).

15.1.5 Relating abstraction, decomposition and views

Some differences between the three central notions of this section have already
been discussed. These differences are now further illustrated by a few exam-
ples that can be ascribed to different intersections of abstraction, decomposi-
tion/composition and views.
An example for a strong combination of all three concepts is the Façade

design pattern [GHJV95]. It is used to decompose a model into a set of classes
constituting a package, such that a single class represents the functionality of
the package. Thus, Façade is motivated by decomposition. The interface of
the Façade is internally mapped to different contained units. Thus it can be
considered a view of that internal structure. This view is at the same time an
abstraction, because in proper uses of the design pattern the Façade has no
functionality of its own but only provides selective access to internals, omitting
most of its details.

235



Chapter 15 Views in Software Engineering

Façade

Abstraction

Composition/
Decomposition

Views

OMT
views

abstract
syntax

representation
with layout

package

overlapping data views

(single)
interface

facets

Figure 15.1: Relations between abstraction, decomposition and views

In contrast, a pure package, e.g., in Java is too weak for proper abstractions,
which only motivates the use of the Façade design pattern. After all, design
patterns quite commonly pop up for situations that given a “better” language
might simply be solved by a language feature. Thus, packages give little more
help than just for decomposition of a system into sets of classes. Due to the
weak semantics of packages their actual value relates more to configuration
management than the issues discussed here.
Pure encapsulation of a class using its (single) interface is very similar to

the Façade pattern, but it is not considered a view, because there is neither
a choice between different views nor does the interface introduce any mapping
between internal and external elements. These criteria are not derived from
any definition, but relate to the intuition of the notion “views”, which seems
to imply, that either different views can be chosen from, or the view differs in
structure from the underlying entities.
Abstract syntax has already been given as an example where a corresponding

view (the actual source file) would be more concrete than the abstract syntax.
No decomposition is involved in obtaining either abstract nor concrete form.
Design dimensions like OMT views are abstractions and views, but they

involve no decomposition in terms of a containment hierarchy. Note, that within
each view decomposition may very well be used, but this does not refer to the
relation between different views. Another example in this category are facets
in the CORBA component model [OMA99]. Facets are different (abstract)
interfaces, which define alternative ways of accessing a component. The internal
component realization is not forced to strictly follow the same structure.
Overlapping data views can not clearly be associated with abstraction nor

do they relate to proper decomposition. Even clearer, view representations with
layout to not belong to either of the other concepts.
Decomposition in its strong meaning enforces a strict hierarchy of elements.

Abstractions do not make this commitment. Several abstractions may exist
side–by–side. Such abstractions may be called views like OMT’s structural,

236



Views in the Software Life Cycle Section 15.2

behavioral and functional view. This suggests to divide abstractions into hier-
archical ones (decomposition) and those that involve more than one dimension
(views). The latter case includes true orthogonality as well as any degree of
skewed interrelationships. The aspect of multi–dimensionality is captured by
the notion of perspectives. This borrows from the analogy to three-dimensional
space, where a perspective induces a two–dimensional image by abstracting
from the third dimension. Such an understanding of views stresses the fact
that certain information is omitted or hidden, just like with abstraction.

Then again, views may also be quite the contrary to abstractions. While ab-
stractions reduce a thing e.g. by discarding its concrete representation, views
may in fact add a representation to an abstract thing. In the Model–View–
Control architecture, the abstract model is invisible and only through UI ele-
ments of a view it can be represented on the screen. Regarding the concept of
views it is not an exclusive alternative, whether details are added or omitted,
but a view may at the same time ignore information of its model and adorn the
model with presentation details, not present in the model.

Obviously, from these three notions, views are defined with least precision.
Therefore, it should not surprise, that this notion is more popular in the early
phases of software development, than its sibling notions. For similar reasons
view concepts found in implementation are quite restricted versions of the gen-
eral concept.

Among the relations between the three concepts of this section, views and
decomposition seem to harmonize least. Views question the goal of decomposi-
tion without overlap. Obviously, files of source code, by which software is made
manifest in the end, cannot overlap, but it is possible to use overlapping con-
cepts as decomposition criteria. This has strong impact on interfaces between
modules, which will be more open than the highly aspired black box. In his pre-
sentation titled “why are black boxes so hard to reuse”, Kiczales argued that a
neat black box abstraction is only one possible view of a piece of software[Kic94].
Especially for the task of software reuse, a second way of looking at a module
must be provided, which Kiczales calls the “meta–interface”. His subtitle “to-
wards a new model of abstraction in the engineering of software” may be used
for assessing recent approaches and statements. Chapter 16 will present some
approaches that strive for decomposition in the vein of views. All these ap-
proaches try to escape the “tyranny of the dominant decomposition”[TOHS99].

15.2 Views in the Software Life Cycle

In order to understand why views are used in software engineering and why
they are so important, it is necessary to differentiate further. Different phases
and activities of software development have very different reasons for working
with views. Of course, managing complexity is always a driving force. Other
forces have to be analyzed in the context of specific applications of views.

237



Chapter 15 Views in Software Engineering

15.2.1 Loose coupling in the early phases.

Perspectives in requirements engineering have already been discussed. Even af-
ter the negotiation phase requirements can be defined which very little coupling.
It is a significant advantage of (possibly formal) specification over implementa-
tion, that different aspects can be described in isolation with only one kind of
relation: the model is composed as the conjunction of all predicates.

Views for Z specifications

The above statement has been made explicit by Jackson [Jac95]. He proposes
views for structuring Z specifications. His proposal is quite straight forward,
because implicit specifications in Z, which constrain the system state only by
predicates not assignments, naturally support this style of separation of con-
cerns. Actually, Jackson also discusses the two different styles of combining
views that have been identified in the previous section: a data oriented ap-
proach and one based on synchronizing operations, i.e., a behavioral approach.
The great ease of view-oriented specification lies in specifying different opera-
tions in completely disjoint ontologies and adding special inter–view invariants
that translate sharable state between different views/representations. The con-
nection between views is based on the advice to admit redundancies, such that
consistency rules for redundant data capture the relationship between views.
In a concluding criticism of Z, Jackson discusses the issue of open versus closed
specifications. In Z, new specification objects need to be created to compose
different views. He suggests that it might be far more convenient to just add
new properties to existing units in order to combine different views. This dis-
cussion follows very much the same pattern as the issue of open classes in CLOS
[Kee89] and AspectJ [KHH+01].
Structuring specification with views is feasible because an implicit specifica-

tion only defines the constraints that must be fulfilled by the system, ignoring
completely all difficulties that arise when constructing an implementation that
conforms to the specification. It may even be impossible to implement a given
specification. This doesn’t necessarily prove the specification “wrong”, but only
means that it has an empty model set. While the impossibility to implement
a specification can — within limits — be detected automatically by the aid of
verification tools, our interest lies on those specifications that can be imple-
mented, yielding, however, an implementation that is far more complex than
the specification.
It is the goal of research concerning aspect-oriented software development,

to allow developers to operate with locally restricted focus. The necessity of
paying attention to a large number of requirements during the implementation
of each single piece of code is to be reduced as far as possible.

15.2.2 Implementation: weaving separate views and aspects

In order to come to an executable program, the subjective views from the
requirements analysis have to be reconciled. Ambiguities have to be eliminated
from specifications, and also the loose coupling between views must be resolved

238



Views in the Software Life Cycle Section 15.2

into a more or less linear form. Striving for deterministic programs means to
construct chains of instructions that in a single thread of control modify data
and calculate results that fulfill all relevant requirements. This transformation
commonly destroys the independence between requirements.
Current research in generative and aspect-oriented programming strives for

automation of the last step, where different aspects are woven to instruction
chains, allowing the programmer to operate on an intermediate form, in which
independence between aspects is to be pushed to the limits. The generality of
this effort is demonstrated by the COMPOST project [ALN00] which reduces
different AOP approaches to static meta programming. The final executable
program is generated by tools from the input of source code, that exhibits better
modularity than conventional source code.
Of course not every program is a linear chain of instructions. True par-

allelism is commonly used for improving system performance. Little is known
about the usefulness of parallelism regarding semantical modularization of prob-
lems that do not naturally involve parallelism. Regardless of the difference
between true and simulated parallelism, event based programming is an alter-
native to the strict sequential paradigm using procedure calls. Communication
via events in fact helps to decouple modules [SN92].

15.2.3 Design: mediating between specification and implemen-
tation

It is the goal of design to mediate between the different preferences of specifi-
cation and implementation. As a consequence, design has few intrinsic criteria,
but development of design techniques and methods depends on a good knowl-
edge of the two adjacent phases. If seamlessness of software development is to be
improved, design techniques should closely adhere to the conditions of require-
ments engineering. The gap that results between design and implementation
should preferably be bridged by improved implementation technology, because
at this level, technology is not restricted by the needs of (communicating with)
non-experts. New formalisms and techniques for implementation have only one
grave restriction: skills and training of developers, which is, however, more a
matter of time than of anything else.
While experience concerning multi–dimensionality in source code is growing,

the transfer of these new concepts to the pure design level needs to catch up
some.
Several extensions and modifications of the UML exist for AOSD. Low level

approaches try to diagrammatically visualize e.g. AspectJ constructs [SHU02].
UMLAUT focuses more on design patterns and uses AOP techniques to per-
form weaving at the level of designs [HJPP02]. Theme/UML [CW02] and UFA
[Her02a] take a middle road. Both strive for design modules at the level of
packages, which group a set of roles and their collaboration. In contrast to
earlier work on collaboration based design [DW98], these approaches include
binding relationships, which should map to corresponding relationships in the
implementation, making use of AOSD technology for model composition.
Only through large scale aspect-oriented design, the seamlessness reached

239



Chapter 15 Views in Software Engineering

to-date can be assessed and directions for further research in programming
languages and tools can be determined.

15.2.4 Concern Modeling

It should be clear by now, that software development has to deal with different
facets. For complex systems, management of these facets is essential. As the
number of concerns rises, additional effort is needed, just to organize all concerns
and their relationships. Views as discussed throughout this chapter are just one
dimension in a larger concern space. To the best of the author’s knowledge, only
one approach has yet addressed concern modeling in all its generality: Cosmos
[SR02].
Technically, Cosmos is a data schema, providing types for concerns, relation-

ships and predicates. An initial, extensible classification starts with distinguish-
ing logical and physical concerns, and splitting relationships into categorical,
interpretive, mapping and physical. Logical concerns are sub-divided into clas-
sifications, classes, instances, properties and topics. Similar sub-divisions exist
for the other categories.
The Cosmos schema is backed by rich experience with developing complex

re-usable software. Case studies and industrial experience [Mem02] exist, that
demonstrate how a Cosmos model can be used as a “semantic hyper-index
into work products and other resources” [SR02]. More specifically, Memmert
reported [Mem02], how concern space modeling supports software evolution.
The model was used for maintaining dependencies and enabled a high-level
impact analysis which pointed out, how planned modifications of the system
would propagate through concerns and artifacts of different development stages.
A simple fixpoint analysis determined a minimal set of consistent changes.
In the future, Cosmos should be compared to our approach using a Con-

cern Interaction Matrix. The intention behind both methods is very similar.
From looking at examples, Cosmos seems to suggest finer grained concerns
that are connected in a hyper-graph. In comparison, the structure of a Con-
cern Interaction Matrix is simpler, yet connectivity between concerns is higher
in this matrix than in a Cosmos model. The concern classification presented in
Sect. 14.4.2 combines concern properties and their contribution to relationships.
In contrast, Cosmos strictly separates concern classification and relationships.
A thorough comparison would require to apply both methods to the same

case study. Such experiment has not yet been performed. It seems that both
methods represent valuable experience, which in the future should be merged
in one way or another.

240



Chapter 16

Technology for Views

Development of software engineering environments has largely motived the de-
velopment of technology for supporting views on different levels. In this chapter,
examples of such technology are presented. In the late 1980s and early 1990s
the concept of views was defined mostly with respect to database technology
for the integration of tools. Important steps on this road are

• The Ph.D. thesis of David Garlan (“views for tools in integrated environ-
ments” [Gar87])

• The standard PCTE [ECM90]

• The O2 OODBMS [SAD94]

Other OODBMSs followed with different flavors of view systems.

Programming languages have had view-like features starting from at least
1989 [SS89]. Many approaches of this field used some kind of a role concept.
Many different ideas exist on how to treat object identity in the presence of
roles [WdJ95]. Many of these approaches suffer from the lack of modules for
encapsulating sets of interacting roles, as already present in the concept of
[SS89].

Apart from roles, starting in 1993 ([HO93]) a different branch of research
transferred some experience from multi–view environments to programming in
general. Multi–dimensional separation of concerns and aspect–oriented pro-
gramming are some of today’s buzzwords in this field. Examples will be given
in Sect. 16.3.2.

Sect. 17 relates different uses of view concepts in PIROL to other approaches
discussed in this chapter and to further related work.

As an outlook of this chapter, Sect. 17.6 outlines current work by the au-
thor on a programming model that combines the lessons learned from many
approaches that are subject of this chapter.

241



Chapter 16 Technology for Views

16.1 Database related views

16.1.1 “Views for Tools in Integrated Environments”

In his Ph.D. Thesis, David Garlan elaborates what seems to be the first notable
and comprehensive technology for views [Gar87]. For the purpose of easing the
integration of new tools into an environment, he develops three concepts of
views which he calls display views, basic views and dynamic views, of which the
first has been implemented in the Genie system1. Also for basic and dynamic
views quite some details for implementation are given.

Display views

Display views serve the seemingly simple purpose of deriving screen presenta-
tions in some concrete syntax of a program that is stored using an annotated
syntax tree. Issues which complicate this task include:

• New unparsers should be created by a simple declaration of an unparsing
scheme.

• Conditional unparsing should be supported, by which a variety of context
information should determine the unparsing result.

• Whenever data in the repository is changed, views should be updated
incrementally with minimum effort.

The first two requirements are fulfilled by Garlan’s unparse language VIZ. The
third requirement led to a design of a three–phases transformation. Unpars-
ing transforms the abstract syntax tree into another tree carrying elements of
concrete syntax. On this tree, formatting is performed in a separate phase.
Finally, a tool is used for displaying the formatted view. Except for the last
step, everything happens in the repository, and display views can be cached
persistently.
The API, by which tools access a display view, has functions of two cate-

gories. The first category allows to handle a display view as a list of text lines,
while the second category reflects the internal tree structure.

Basic views

Basic views relate to how tools store their data in the repository. This is done
in an object-oriented fashion, i.e., types are defined with attributes and meth-
ods. Basic views address the issue, how different tools can share information
through a common database yet remain independent. Independence is taken to
be important for modularity (for the sake of comprehensibility) and environ-
ment evolution (in terms of integrating new tools). Basic views are grouped to
features and from these modules an environment is built by merging all desired
definitions.
1Publications on Genie seemingly don’t exist.

242



Database related views Section 16.1

Basic views roughly correspond to classes in object-oriented languages and
features are encapsulations of a set of views corresponding to, e.g., Ada pack-
ages. The importance of a feature lies in grouping a collection of types such
that all type references can be resolved.
The interesting part is the merging of different features which supports the

integration of a new tool. During merging, sharing of fields is determined by
name–equality, but renaming may also be employed to create correspondence.
Merging distinguishes three cases:

• Unshared fields remain local to one view.

• Fields that have the same type in two views may be shared.

• Fields of a collection type my share the contained references but organized
in different containers.

Garlan presents field sharing only as an optimization of a more fundamental
technique for maintaining inter–view consistency. The essence is a model where
an object is composed of different facets according to the views involved. Each
facet is an instance of a basic views. In this model some updates remain local to
a facet while for other updates events are sent to several facets. A tool always
executes in the context of a feature which selects by its contained basic views
the facet of a given object that should be operated on. For the sake of view
consistency, however, the same operation may by a single trigger be executed on
different facets, i.e., operations are merged, too. The translator that performs
view merging statically coordinates how an event is distributed to several facets.
Features can be parameterized by basic views in order to improve re-use.
This model seems to be sound (with respect to view consistency) and pow-

erful (with respect to integration of independent tools). The major restriction
lies in the fact, that all facets of an object in the database are always created
simultaneously. In other words, the flexibility of composing views and features
is available only during development of an environment. Once an environment
has been configured and a database is setup, the number and types of facets
for each object type are fixed.
Basic views assume an architecture in which all functionality is always avail-

able. A component based architecture might raise difficulties regarding the
update of a facet that needs functionality from a tool that is not currently
running.
It is also worth noting, that coordination of different views is performed in

an event–based style. Events in this concept subsume normal method calls and
predefined events like Create, Insert, which are triggered automatically when
an instance of the type is modified by a primitive operation. For any event that
is in some way shared between two views, the system kernel is said to avoid
infinite loops by triggering the event only once for each view.

Dynamic views

The third view concept introduced by Garlan, resembles a general query facil-
ity. He presents a language for dynamic view specifications that uses patterns,

243



Chapter 16 Technology for Views

predicates and selectors to compute sets of objects. The important issue here
is that dynamic views are not one-time snapshots of the database, but they are
automatically updated, whenever relevant changes in the database occur.
Technically, dynamic views are similar to display views, both perform some

derivation in order to produce a new representation of existing data. Both
concepts include a mechanism for updating. The main difference lies in the style
of the derivation specification and the structure of the resulting view. Display
views are based on transformation rules while dynamic views use patterns and
predicates, i.e., the former are constructive while the latter are selective. The
structure of a display view is a tree while dynamic views are flat collections.
Garlan compares his language for the specification of dynamic views with

some tree manipulation languages of that time. It would certainly be interesting
to repeat this comparison today against XSL. Maybe, XSL would come closer
for defining display views than dynamic views. An obvious problem of XSL
in this context is the lack of incremental processing which has been addressed
only recently [LN02].

Comparison to concepts of PIROL

Garlan’s thesis makes some fundamental contributions but it is hardly cited
in recent research. For this reason, the author learned about those concepts
only after developing the larger part of PIROL. Thus, any similarity between
Garlan’s work and PIROL is incidental, which makes comparison even more
interesting.
For the sake of display views, Garlan represents not only abstract syntax but

also concrete syntax in a tree structure. A very similar solution has also been
developed by Christian Mattick [Mat02] (cf. the class SOURCE CODE, 13.3.2).
Basic views have a capability similar to Dynamic View Connectors in PIROL.

The major difference lies in the dynamic character of DVCs. Clearly, basic views
do not require a mechanism like lifting: all facets are created simultaneously.
The more static approach has three drawbacks:

1. Facets have to be allocated even if they are never needed.

2. An object can not acquire a facet at a time later than its creation.

3. An object can not have several facets of the same type.

The result may be a bloated database (1), that is not prepared for evolution
(2). Another difference between items (1) and (2) concerns the initialization
of a facet which may not be possible with meaningful data at object creation
time. Basic views enforce all facets to be updated throughout the life-cycle of
an object. In PIROL a VO may come to life at any point in time. The accept
function may perform some delayed initializing of a newly acquired “facet”.
Also item (3) originates from the static translation scheme of basic views.

The capability of attaching several VOs of the same type to one RO is regarded
as an indispensable feature in PIROL.
The event–based coordination between different basic views can be com-

pared to PIROL’s attribute guards, which use the same concept of predefined

244



Database related views Section 16.1

events. It might also be interesting to analyze the algorithms behind event dis-
patching in basic views with PIROL’s change propagation. From the description
in [Gar87] it is not clear, how actually update recursion is avoided. Update recursion

[←8.2.3]Finally, dynamic views can be compared to derived attributes in PIROL.
Both combine properties of a database query with a mechanism for updating.
It is not clear, whether Garlan’s mechanism allows to attach observers to a
dynamic view, i.e, whether a tool can react to changes in a dynamic view.
The technique for PIROL’s derived attributes is simpler and at the same time
more powerful than dynamic views, because it relies on a full programming
language (Lua/P) rather than a specialized query language. Dynamic views,
furthermore, can have different update strategies: always, on-access and once.
A permanence modifier qualifies a dynamic view as volatile or non-volatile.
All derived attributes in PIROL are volatile and updated always. It might be
reasonable to add these choices to PIROL. Lists that are imported in a DVC using
the filter construct are a special form of (predicate-based) derived attributes.
Filtered lists can be modified directly (presuming consistence with the filter
predicate). This is not possible with dynamic views, which are strictly read-
only and can be modified only by modifying the underlying data, from which
they were derived.

16.1.2 Portable Common Tool Environment

The Portable Common Tool Environment (PCTE) plays an important role
within this thesis due to several circumstances: First, PCTE was formed as a
standard2 during the most flourishing era of SEE research. It was an impor-
tant milestone at the transition from relation databases towards object-oriented
databases. PCTE stands in the middle of this transition: it supports a notion
of objects with (simple) attributes and typed references, and also allows to
use inheritance between object types. Yet, it gives no support for attaching
methods to object types, i.e., the object model is purely static. Implied by the
devotion to objects and references (in PCTE: links) the primary access to a
PCTE object base is by navigation (along links) rather than by filtered access
to all instances of a type as it would follow from a relational understanding.
Second, as part of the object management system (OMS) of PCTE a simple

but effective view mechanism is included that is based on types or even slices
of types. This view mechanism will be described in depth in Sect. 16.1.2.
Third, PCTE is a very comprehensive standard closely related to the ECMA

reference model [ECM93] and thus covers more aspects of integration than many
other systems3.
Last but not least, an implementation of PCTE, namely H–PCTE[Kel92],

is used as the OMS for PIROL. The reasons for that choice have been given in
part II.
However, within PIROL PCTE is used in a way, that slightly deviates from

2Firstly only a European standard (ECMA-149), later-on also as an international standard
(ISO/IEC 13719-1).
3Cf. [NJB97] for an evaluation of different repositories, where PCTE is given very good

grades.

245



Chapter 16 Technology for Views

the original intention. The most obvious change is an additional architectural
layer, the PIROL workbench, that mediates between tools and the OMS. Due
to this architectural change the original view mechanism was of no use for
the implementation of PIROL. However, for completeness of this elaboration a
discussion of the mechanisms provided by PCTE may not be omitted.

Incremental Schema Definition

In Sect. 15.2.1 we have mentioned the issue of open classes. PCTE applies this
concept to database technology. PCTE allows to define types in an incremental
way. This is to say, that schema definition sets (SDS), although being the
capsule of introducing any new types, are not strictly closed: a type defined in
one SDS can be extended in any other SDS importing this type. This results
in different views of the same type, as the original SDS is not at all effected by
the extensions, that exist only in the context of the new SDS.
Obviously such distributed definitions are prone to introducing compati-

bility problems, because no single place exists where all extensions of a given
type can be seen. Here SDSs help as scoping construct in that way, that the
uniqueness of attribute types is required only within an SDS. Different SDS
may introduce equally named types with different specifications. In a context
where definitions from different SDS would induce a name clash, a qualified
name must be used that consists of an SDS name and the type name.
Aside from name clashes, extending type definitions is unproblematic, as

only additive changes are allowed. The question of when existing objects will
gain newly defined attributes has to be investigated in conjunction with PCTE’s
view mechanism of so-called working schemas. Note, that for link types this
is not an issue. Applying a link type to an object type does not by itself add
anything to objects of that type. It only yields the capability of an object to
get a link of this type attached at runtime. Instead of supporting a notion of a
void reference, links can be either present or completely absent from an object.

Type based Views

When accessing a PCTE objectbase, each process has to identify its working
context called its working schema (WS). A WS is simply a list of SDSs, whose
type definitions should be visible for the calling process. This has a twofold
impact: firstly only those types defined in one of the named SDSs are visible.
Invisibility of an object type means that any object of an invisible type is
itself invisible, unless a visible super-type of the object exists. In that case,
the object is seen as being of that super-type, which is just a special case of
polymorphism. Note, that PCTE subtypes are strictly additive, as no methods
are attached to object types that could be redefined, and also attribute and
link types cannot be redefined, either. Any link leading to an object that is
invisible within the current context, will itself be invisible within that context.
Also note, that the given definition of visibility will never render a link type
visible such that a link will point to an invisible object, as a link type cannot
be defined if the destination type is not visible in the defining SDS. However,

246



Database related views Section 16.1

object visibility also depends on access permissions. Only in that case a link
can become invisible because the target is invisible. This is one instance of the
intricate interactions between different concerns of PCTE: the view mechanism
vs. access control.
Second, for an object that is determined to be visible, the set of visible

attributes and links still depends on the active SDSs. There might be another
SDS that extended the given object type with additional properties, but if this
SDS is not listed in the current WS, these properties will not be visible.
The combination of incremental schema definitions and type based views

allows tools to add their own data model to the object base and operate only
on those values, that can be seen through the corresponding WS. For regular
tools in fact the incremental schema definition is more important than the view
mechanism, because the tool will naturally query only those properties, that it
knows about.
It is a special class of tools for which this mechanism really helps: generic

tools that retrieve their data model via the meta data API from the object
base. An example of this class is given in [DK95]. Each instance of the tool
described in that paper is defined by a WS and some additional parameters.
The WS selects the view of the repository to be visible to the tool. By means
of reflective type inquiry the tool may traverse and display object structures
of types that where not known to the tool implementor. The view mechanism
ensures that no irrelevant information clutters the presentation.
PCTE supports two concepts, which deserve comparison. Types can be

augmented either by sub-typing (child type of ...) or extension (extends
...). First of all, the use of the keyword extends seems better motivated
than its interpretation in Java, where it denotes inheritance. Second, this in-
troduces an interesting choice, as a schema developer may decide, whether a
given attribute should be applied to all instances of a given type (extends).
Alternatively, objects must be created explicitly of the new sub-type, in order
to gain the new attributes. An interesting middle road is given by the ability
to use a super-type for creation and convert to the sub-type later-on.

16.1.3 O2 views

Motivated by SEE research, the next step in database technology after PCTE
was a series of object-oriented databases, of which O2 [SAD94] will be presented
as an example. Unlike PCTE, O2 is fully object-oriented. A type in O2 defines
attributes and operations. Views in O2 are defined at three levels: virtual
schemas, virtual classes and virtual attributes.
A virtual class is defined by a query over the actual database, or relative to

an existing type by a characteristic function. Thus conceptually, the extent of
a virtual class is defined relative to the extent of a real class, although notation
differs slightly if extents are explicitly available or not4.
A virtual schema is a collection of virtual classes such that a virtual schema

applied to a real (data) base will yield a so-called virtual base, a space that is

4In O2 extents exist at the physical but not at the logical level.

247



Chapter 16 Technology for Views

dynamically populated with objects from the real base according to the defini-
tion of virtual classes.
A virtual attribute is a property of a virtual class that is specified by a

derivation function.
Virtual schemas preserve object identity, i.e., an object in a view has the

same identity as the underlying real object. Virtual schemas can be dynamically
activated and deactivated, which switches the context for object structure and
object behavior from a real base to the derived virtual base. Virtual schemas
can be nested, but only one most specific view can be active at a time.
While a virtual schema is active every object will be classified by the virtual

classes of this schema. In case of ambiguity general rules of priority are used
for resolution.
Special attention is paid to different forms of updating between a view and

the real base. Virtual attributes are re-calculated when their derivation source is
modified. Virtual objects may even be re-classified dynamically when the query
defining the virtual class yields a different result. Conversely, it is desirable
to directly modify (database jargon: update) virtual objects. This was not
realized in early versions of O2, but [AYBdS96] discusses this issue, which has
been prototypically implemented in a Master’s thesis.
An ambitious setting of database integration is mentioned in [SAD94]. A

combination of views, a-posteriori generalization and a role relationship are
claimed to allow the integration of databases with different schemas. Unfortu-
nately, essential details of this concept are explicitly ignored in the paper.

History of O2. First publications on O2 date 1991 [AB91]. In 1996,
[KR96] reports that O2 be the first and only commercial implementation of an
object-oriented view management system. The last published use of O2 is in
[EAMP97]. As of today the company that sold O2 has disappeared from the
market.

Comparing O2 and PIROL

The intention behind the view concepts of O2 and DVCs are remarkably sim-
ilar. Still the realization differs significantly. O2 is much more determined by
database concepts, while PIROL focuses on component technology and object-
oriented programming in Lua/P.
More specifically, the mapping between real classes and virtual classes in

O2 is defined by queries or characteristic functions. In PIROL navigation along
object references prevails. Within a DVC the view class to which a given RO
is lifted is determined by the static type that is expected in the DVC. In other
words, O2 focuses on mappings between classes only, while DVCs also map
associations. The type of a VO is thus determined by the path through which it
is reached. predicates that are attached to a view class in PIROL are comparable
to the characteristic function of an O2 view, but in PIROL predicates only play
a secondary role. As a result, PIROL can with greater ease admit multiple view
classes for the same base class and still resolve view classes unambiguously for
common cases.

248



Database related views Section 16.1

Virtual attributes in O2 compare to PIROL’s derived attributes. Three poli-
cies for modifying virtual attributes are presented in [AYBdS96]: (1) forbid, (2)
derive reverse function automatically, (3) let the user supply a reverse function.
Option (3) corresponds to the redirect construct in Lua/P. PIROL supports (2)
for all variants of uses and filter.
The most restricting difference is the lack of added attributes in O2 views.

All persistent data must be defined in a real schema. In contrast, Lua/P pro-
vides the adds keyword for the purpose of introducing new attributes in a view,
which are not derived from RO attributes. By means of added attributes, a
VO becomes a first class entity instead of being merely derived from underlying
data. With added attributes, it makes sense to maintain several VOs relating
to the same RO either within the same CO or in difference COs, even several
COs of the same type are very useful, as we have seen.
For virtual objects that can not add data to existing objects all this is of

little use. In fact, O2 does not supports multiple instances of view objects per
real object nor multiple view instances.

16.1.4 MultiView

The goal presented in [KR96] could not be phrased better for PIROL:

“. . . achieving interoperability by hiding the idiosyncrasies of compo-
nent systems to be integrated into one unified, yet federated system.”

Superficially, the concepts of MultiView and O2 are very similar. The first
noticeable difference is MultiView’s capability of capacity–augmenting virtual
classes. This corresponds to our criticism of O2 concerning the addition of at-
tributes. Internally, MultiView is built quite differently from O2. MultiView
creates a single inheritance hierarchy of all classes, real and virtual. Objects
are implemented using a technique of object slicing, where a conceptual object
serves as a point of reference ensuring a single unique OID. Quite similar to
PIROL’s COs a conceptual object in MultiView also groups a set of implemen-
tation objects. This allows multiple classification of objects. Feature access is
then dispatched between the different facets of an object coordinated by the
conceptual object.
Also like PIROL, MultiView supports incremental propagation of updates.

Just like O2, MultiView differs from PIROL by its focus on queries instead of
navigation. More attention is paid on automatic acquisition and dropping of
additional facets based on state changes, which are detected by view defining
queries. Instead, MultiView lacks the grouping capabilities of DVC which reify
sets of collaborating objects.
In [KR96] the deputy mechanism of [PK95] is quoted and from that com-

parison it might be a step closer to PIROL because it uses a kind of role objects
rather than unifying all classes into a global inheritance hierarchy. However,
within this thesis, the deputy mechanism is not further examined.

249



Chapter 16 Technology for Views

16.1.5 Views in Chimera

The presentation of view concepts for object-oriented database systems is con-
cluded by a presentation of a model that is not only promising in functionality
but also well-founded by a formal definition [GBCGM97]. That paper also gives
a good overview of the design dimensions of views for object-oriented databases.
The Chimera database system is based on three programming models: an

object-oriented data model, deductive rules and an active language for reactive
processing.
Views in Chimera are distinguished into object–preserving views, that con-

tain a selection of existing objects maintaining their original identity, object–
generating views that create new persistent objects and set–tuple views con-
taining transient derived data with no persistent identity.
In Chimera, just like MultiView, view classes may introduce additional non-

derived attributes. Unlike MultiView, Chimera keeps distinct inheritance hier-
archies of classes and views. Both hierarchies are connected by a view deriva-
tion hierarchy. The difference between the relationships inheritance and view
derivation is clearly stated: for inheritance, signature sub-typing must go to-
gether with forming subsets of extents. This constraint is not enforced for the
view derivation relationship.
Objects can be members of several most specific classes including view

classes, which facilitates the separation of inheritance hierarchies.
Just like classes are combined to schemas, views are combined to view

schemas. This allows applications to operate on view schemas and views with
no difference to schemas and classes. Schemas must be closed with respect to
referenced types. Closures of view schemas are obtained by including identity
views (views that map classes without modification) of (transitively) referenced
types.
For selecting the appropriate facet of an object Chimera considers the con-

text of a reference. Not only the active view schema is used, but class selection
and feature dispatch also takes into account the static type of a reference. This
allows the same object to appear in different roles, i.e., as an instance of several
views without reverting to dubious priority rules like in O2.

Comparing Chimera views to PIROL

From the models investigated in this chapter, Chimera is probably closest
to PIROL. Apart from single features, the very nature of combining different
paradigms into one model speaks of a similar spirit.
Partly shared identity between ROs and VOs, added attributes, a distinct

role-of relationship, grouping view classes to modules (DVC), lifting with re-
spected to the static type of reference, all these are PIROL concepts that corre-
spond also to Chimera views.
PIROL does not support object–generating views, although a role object that

uses no features of its base RO may simulate this concept. Transient objects
are also handled slightly different. PIROL does not require explicit schema
closure, allowing a VO to refer directly to an RO. Explicit schema closure might

250



Views and Subjectivity in Programming Section 16.2

help disambiguate some cases of lifting and lowering, but this would come for
a price of drawing an explicit border around reachable classes. Naturally all
classes in the PIROL meta model are connected and especially generic tools like
PON would suffer in flexibility if visible classes would have to be determined in
advance.
On the back side, at the time [GBCGM97] was published, some essential fea-

tures had only been planned for Chimera, with no concrete design yet. Among
these are: update propagation and the use of triggers for view coordination,
especially with respect to integrity constraints. It is unclear, whether callbacks
into the client program are supported as a means for update propagation. Up-
date propagation including notification to the client program is central in PIROL
and some form of triggers for integrity constraints exists as attribute guards. A
final decisive difference is the lack of instantiability regarding view schemas in
Chimera, which would correspond to instantiating DVCs in PIROL. It has been
underlined repeatedly that this feature is indispensable for PIROL.

16.1.6 Tolerating Inconsistency

Several techniques have been developed to explicitly tolerate inconsistency in
a database [Bal91]. Rules in GTSL [Emm96], predicates in APPL/A [SHO95],
and especially the possibility to temporarily relax predicate enforcement (sus-
pend and allow) are examples of such technology. PIROL’s primary goal is
to avoid redundancy, which could possibly lead to inconsistency. Experience
with strictly structure oriented environments showed that editing naturally
goes through many stages of inconsistency. Yet, PIROL tends to solve such
conflict already at the object level, avoiding complex consistency constraints to Managing source

code [←13.3.2]be checked across large documents.

16.2 Views and Subjectivity in Programming

Apart from database technology, SEE research has also stimulated advances in
programming languages. This also relates to views as it can be demonstrated
by the example of RPDE3. This environment framework was designed with
the goal of supporting changes concerning function, data, supported languages
and hardware/operating systems [OH90]. In an evaluation [HSS89], the authors
conclude that the object-oriented paradigm is indeed well suited for modeling
the entities of a programming environment — RPDE3 operates on an object-
oriented AST. However, to obtain the desired flexibility they add some concepts
to the object-oriented paradigm (the papers give no hint at which language was
actually used). Some of these extensions are:

1. Fragments — allowing refinement below the level of methods without
modifying original sources.

2. Structure-bound messages — these are dispatched by the run-time system
by traversing the AST up-to a node with the desired capability.

3. Roles — different interfaces for a class.

251



Chapter 16 Technology for Views

4. Envelopes — wrapper objects roughly comparable to the composition
filter approach [BAWY95].

Two authors from the RPDE3 context, Shilling and Sweeney, propose to
apply view concepts to object-oriented programming in general [SS89]. They
postulate these three steps:

1. Objects have multiple interfaces

2. For different facets visibility of instance variables is explicitly controlled
with respect to the three options hidden, read–only and read–write. Such
controlling includes resolution of name clashes.

3. Multiple copies of instance variable sets are allowed.

Step (1) should be quite familiar to the reader by now. This also connects
to current component technology à la CCM [OMA99] (facets). Step (2) trans-
fers findings regarding multiple inheritance to multiple view–base relationships.
Finally, step (3) transcends most view models from object-oriented databases
and paves the way to models that are based on distinguishable role objects.
This adds dynamics to the model, because roles may explicitly join and leave
a view.

16.2.1 Roles

The mechanism of role objects dates back to at least 1986 [Lie86]. Only a year
later Stein proved the congruence between delegation and inheritance [Ste87],
and Ungar and Smith presented their prototype based language Self [US87].
Authors from these three works have gathered in 1989 to write the “Treaty
of Orlando”[SLU89], which makes explicit the parameters of language design
concerning different mechanisms of sharing such as inheritance and delegation.
After a mostly technical discussion, the early 1990’s introduced many names

that should give meaning and intuition for the given techniques. An interest-
ing, though seldomly cited paper, is [RS91] (1991) which surprises by its title
“Aspects: extending objects to support multiple, independent roles”. This
happened clearly before the rise of AOP [KLM+97].
Other works discuss roles from the viewpoint of database technology, like

[WdJ95, WdJS95](1995), which shift the focus to issues of object identifiers
(should a role and its parent object be considered the same object?) and
database schema evolution. A good overview of roles and related concepts
can be found in [Bar98].
Role objects provide expressiveness and flexibility. Language support for

roles is easily justified by considering the extra complication that is introduced
if role concepts are simulated in classical, class based languages (cf. [Fow99a,
DBW00]). On the other hand, some new problems arise from role objects:

1. If role objects share properties of their base object, changing the base (or
parent) link might change the interface of the role object.

252



Views and Subjectivity in Programming Section 16.2

2. Different authors disagree whether roles should be allowed to modify prop-
erties of their base object or just add new properties.

3. How can a role-base relationship be qualified to have access to a special-
ization interface which is otherwise hidden to normal clients?

4. If a base object may have attached several roles, how (if at all) is naviga-
tion from a base to a specific role realized?

A solution to items (1) and (2) is, for instance, given by the programming lan-
guage Lava [Kni99]. In order to guarantee presence of a parent object to which
methods can be delegated, Lava introduces the modifier mandatory which en-
sures, that at run-time such an attribute can never become a null reference.
Modification or pure addition can be controlled by choosing either of the modi-
fiers delegatee or consultee. The former introduces a parent link that allows
overriding of methods by a role, while the latter introduces pure method for-
warding, where methods are executed in the context of the base object without
redirection of self calls. Of course, for both styles of role-base relation, the base
object when accessed directly always remains unchanged.
Item (3) is motivated in [SM95] and a conceptual solution is presented. The

author is not aware of any current implementations that truly address this issue.
The problem may, however, be more than just a technical issue. As Steyaert
and De Meuter state, object–based inheritance breaches encapsulation [SM95].
The problem might be, that some weakening of encapsulation is exactly wanted,
but we are unable to technically define, to which extent this should be allowed.
Item (4) relates to the fact, that the use of role objects may yield a prolif-

eration of identifiable objects, which adds new complexity to software designs.
[BD96] contains a discussion of secondary keys that may select roles from a
given base object. This hints at the observation, that roles discussed in isola-
tion — i.e., as single object views — are not particularly helpful for structuring
systems, but roles should always be seen as participants in a collaboration.

16.2.2 Collaborations and Subjects

Starting in 1992 [AR92], Reenskaug developed his set of methods for role mod-
eling, culminating in OORAM (1996) [Ree96]. In this concept, roles are seen as
collaborators in partial models of system behavior, which are called role mod-
els. The system is then composed of several role models, a translation that
synthesizes composite roles from elementary roles.
Role modeling can be mapped to implementation in at least three different

ways:

1. Perform the role synthesis manually and implement the final composite
roles a classes.

2. Use special language features to let a compiler or translator perform the
synthesis at compile time.

3. Use a more dynamic language such that roles exist at runtime (as role
objects according to the previous discussion).

253



Chapter 16 Technology for Views

Solution (1) is certainly cumbersome and impedes maintenance.

Static role model composition

Two approaches shall be presented that realize solution (2) of the above list:
generative programming and subject-oriented programming.

Generative programming. For some time, techniques using C++ tem-
plates [VN96, SB98] appeared as the best match to keep the structure of role
models also for the implementation. These techniques synthesis collaborations
using template parameters and classes using inheritance. The major drawback
is the lack of independence between different role models. If different role mod-
els are supposed to share methods of a common class, names and signatures
have to be identical. From this follows, that such solutions require an global
agreement on sharable features, which is contrary to the desired independence.

Subject-oriented programming. Independence is significantly improved
by subject-oriented programming [HO93] and its successor, the hyperspace ap-
proach [TOHS99, TO00]. Subjects are (partial) models that are developed
independently. Subject composition uses explicit composition rules in order
to define correspondence and combination of classes and features. Subject-
oriented programming supersedes the above generative approach by providing
means for adaptation. Adaptation is crucial if mismatches shall be anticipated
that inevitably result from independent development.
Subject-oriented programming also fixes a typing problem of the generative

approach, which detects certain typing errors only when compiling the whole
application. In contrast, each subject is declaratively complete, i.e., it has to
declare all necessary features at least as abstract methods, such that static
type checking can be performed on each subject in isolation. Composing an
application only requires to check type correctness of feature composition.
The hyperspace approach advances independence even further, by splitting

composition into two conceptual phases: first, existing modules (Java packages)
are restructured into concerns and features. This extracts and partitions ele-
ments of existing software. Second, the application is composed of these con-
cerns and features. Obviously, such on-demand re-modularization gives even
more flexibility for reuse of existing parts.
These approaches have in common that several views of a system can be

expressed, which contain a set of collaborating (partial) classes. The application
is generated at compile time by synthesizing partial classes into effective classes.
The hyperspace approach provides views not only at the level of independent
collaborations, but also as intermediate, conceptual system structure that is
defined by mapping units of implementation to concerns and features.
Partial classes can in these models be interpreted as a restricted form of

roles. The restriction lies in their static composition, which limits their use to
development time, as roles don’t exist at run-time.

254



Views and Subjectivity in Programming Section 16.2

On the notion “Subject”. In a footnote of [HO93], Harrison and Ossher
give an explanation, why they chose the term “subject”, which is reproduced
here in full:

“The term subject differs somewhat from its use by Coad and Your-
don [CY91], although both usages share the idea or reflecting a
smaller, more focussed perception of a complex shared model. We
avoided the similar term view in order to emphasize the stronger
philosophical similarity with non-classical philosophical trends that
emphasize the idea that subjective perception is more than just a
view filtering of some objective reality. The perception adds to and
transforms that reality so that the world as perceived by a body of
perceptive agents is more than the world in isolation.”

Despite this disclaimer, the notion can well be understood as a play on the
double meaning of “subject”: as an opposite to object and in the sense of topic,
the latter being close to Coad and Yourdon’s concept of grouping classes and
objects to a common theme). In this thesis, the term view is seen in a broad
interpretation which includes the ideas quoted above.

Dynamic role model composition

Implementation support that fits into category (3) of the above list is only
now emerging. In particular the work on Adaptive Plug&Play Components
[ML98] and Pluggable Composite Adapters [MSL01] has already been cited,
because these have directly influence the development of the Dynamic View
Connector model. These approaches introduce instantiable collaborations (also
called: adapters, connectors) that have the responsibility of maintaining the
relationship between separate objects that can be interpreted as role-base pairs.
In [MSL01] the notion of lifting is introduced, which refers to the context specific
retrieval of a role object for a given base object. Lifting gives an answer to the
problem of role proliferation and identification, stated above.
A successor of PCA, which is currently being developed, will be presented

briefly in Sect. 17.5.

16.2.3 Roles and collaborations in PIROL

Dynamic View Connectors define a disciplined model of roles.
View objects (VO) are implemented as role objects of their respective RO.

Import of features from the RO is controlled by the uses and filter constructs.
Therefore, a VO may share features with its base, but it need not conform to
the interface of its base class, since features may be hidden (not imported) and
renamed. VOs may have additional attributes declared by the adds construct.
Many other effects, like e.g., read-only import can be achieved by the redirect
construct. Methods are dispatched from a VO to its base using true delegation, Delegation in DVC

[←10.3.4]thus allowing a template and hook style, where a template method is shared
from the base yet overriding a hook that is called by the template method.

255



Chapter 16 Technology for Views

In Lua/P, the role-base relationship is mostly under the control of the run-
time system. The only means for attaching a role to a base is by the lifting
operation which is invoked implicitly, whenever a base object enters the scope
of a connector that has a matching role definition for the base object. The
base link of an existing role object is never changed. Still the capability of
dynamically attaching new roles to a base is of decisive importance. Note, that
no type checker exists for Lua/P, but still, conceptually, Lua/P is a statically type
safe language. The interface of an existing role object never changes.

The major difference between PCA and DVC lies in the focus on method
based composition (PCA) versus data-centric composition (DVC). Furthermore,
DVCs have the following restrictions: there is no way of staged connectors, that
is, connectors on top of connectors. Second, a DVC is meant for connecting an
external tool to the repository. Therefore, it cannot connect a collaboration
written in a separate Lua/P module to the repository. In contrast, the JADE
preprocessor for PCA [Hau00] can even combine several collaborations using a
single adapter.

Views as defined by Dynamic View Connectors

Returning to our overall theme of views, DVC as an extension of an object-
oriented programming language can now be summarized as follows.

A VO is a view of an RO, which may share, hide, rename and add proper-
ties. Method execution on a VO preserves the VO identity throughout self calls
thus supporting method overriding. Accessing a pure RO is ignorant of any
VOs that might exist. However, accessing an RO within the context of a DVC
automatically lifts the RO to the corresponding VO. Object identity of a VO
is a triple of ROID, connector ID and view class. Thus a connector defines a
compound view in the sense of providing the context that identifies role objects
for a given base object.

It has been a principle design guideline throughout, to concentrate knowl-
edge about the RO-VO binding to the connector and to leave all actual trans-
lations to the run-time system. Thus, a tool runs in the context of a view as
defined by a DVC instance without perceiving the difference between the virtual
repository, on which it operates, compared to a real repository.

Connectors can be used either for connecting a tool to the environment, or
for implementing collaborative behavior of repository objects while restructur-
ing the repository model to a collaboration model that might be more suitable
for the behavior. Also re-use of complex behavior benefits from such structure
mapping. Connector inheritance may be used to separate abstract behavior,
structure mappings and behavior refinements.

256



Towards Views for Improved Modularity of Behavior Section 16.3

16.3 Towards Views for Improved Modularity of Be-
havior

16.3.1 Implicit invocation

Another technique that has in part evolved from experience in SEE research
concerns implicit invocation. There is a common agreement that the FIELD
environment pretty much laid the grounds for connecting components using
synchronous and asynchronous messages [Rei90]. In this approach, pattern
registration is used for subscribing to certain sets of events. In 1992, Garlan,
Kaiser and Notkin suggested to generally adopt that technique for decomposi-
tion and composition of software [GKN92]. They coin the notion of “toolies” for
pieces of system function. Toolies operate on shared abstract data structures.
Operations on the data structure correspond to events to which any toolie in
the system may react. In their paper, the authors give no precise model of the
interaction between data structures and toolies. In particular, it is not perfectly
clear, how subscription to events takes place and what mechanisms are to be
provided by the run-time system.
Instead, they take on the discussion of Parnas in [Par72] concerning system

modularization, comparing his preferred solution with another one based on
toolies. Their argument is quite convincing, that toolies improve the evolvability
of a system, since they reconcile loose coupling with an effective integration that
enables an acceptable performance.
Conceptually, the work on toolies resembles later works on a tool–automaton–

material metaphor [Zül98]5. However, this metaphor is only a special style of
classical object-oriented design. In contrast, toolies extend the object-oriented
model to also include event based communication. In [GKN92], the authors
also discuss uses of observer mechanisms, e.g., in the Smalltalk-80 environment
[KP88]. They come to the conclusion, that the run-time system can cover
quite some complexity if trigger based programming is embedded into the pro-
gramming language, but the fundamental mechanisms can also be simulated
using a traditional object-oriented language. It is also a matter of encouraging
developers to apply the trigger based style, which is more likely with special
support from language and development environment. LOOPS is mentioned as
a programming language that directly supports “access oriented programming”
[SBK86], which is in fact based on events.
In the same year as the work on toolies, Sullivan and Notkin propose the

Mediator style for environment integration [SN92]. Also mediators rely on
implicit invocation using events. Still the proposed system structure differs
slightly. Toolies are suggested as direct counterparts to active data structures.
The mediators approach does not distinguish data and tools but introduces
explicit mediator components, which coordinate communication.

5The WAM metaphor, according to the German “Werkzeug, Automat, Material”, was
initially devised with “aspect” instead of “automaton” (cf. [BZ89, Her93]). Here, “aspect”
(also called “property class”) referred to interfaces that defined an abstract view of how
certain materials could be handled by tools. A concept that is also suggested by [GHJV95] as
“abstract coupling”.

257



Chapter 16 Technology for Views

Method-call interception

In [GKN92], a very decisive point has to be read “between the lines”: when
presenting an Omit toolie, which is to prevent the action performed by another
toolie, the authors imply, that an event, which is supposed to cause an action,
can also be canceled by any toolie in the system. This speaks of a very open sys-
tem design, where calls to a method can be intercepted by another component.
As recently pointed out by Lämmel [Läm02], method–call interception is the
fundamental mechanism underlying the model of aspect-oriented programming.
Another early approach to method interception originates fromMyers’ Artists

[Mye83]. According to [TBC+88], Loops [SBK86] “binds the equivalent of
artists to objects using a specialized form of inheritance called annotation”.
This underlines, how implicit invocation mediates between architecture and
multi-paradigm language design.

16.3.2 Aspects

Toolies suggest two universal views on a system: a data structure view and
a function view. Aspect-oriented programming (AOP) generalizes this to the
promise, that many different views can be modularized as aspects, that in other
approaches cut across the system structure. The most prominent language for
aspect-oriented programming is AspectJ [KHH+01]. AspectJ supports the open
class concept discussed in Sect. 15.2.1. More importantly, it features method–
call interception using the concepts of pointcuts and advice. There is a shift
in focus from prior approaches, as pointcuts abstract over certain points in the
run-time call graph of an application. By giving names to these points, it is
now possible to add pieces of code — advice — to these points.
At a first glance, AspectJ has the same capabilities as implicit invocation

with call interception. The special power of AspectJ is, however, based on
the abundant features for specifying pointcuts. A continuously growing set of
predicates and modifiers exists, by which pointcuts can be defined for different
kinds of events, for sets of classes and methods and many more conditions.
This set of features has grown according to the needs of a notable community of
AspectJ programmers. The author considers this also the weak spot of AspectJ,
since this growing set of features speaks against a clear and orthogonal language
design and has confused people who have been looking at AspectJ from time
to time.6

Instead of iterating through all those specifiers, the fundamental contribu-
tions shall be discussed. The control flow of object-oriented programs tends to
become really complex7. Being able to explicitly refer to points and situations
in this control flow is a value in its own right. The work on implicit contexts
is even more explicit concerning the history of interactions at any given point
during program execution [WM00].

6The approach of Gybels [Gyb02] seems to provide better orthogonality. He proposes logic
meta programming for specifying pointcuts.
7Unfortunately, the author lost the source of this appropriately pointed quotation: “Read-

ing the control flow of an object-oriented program is like reading a map through a straw”.

258



Towards Views for Improved Modularity of Behavior Section 16.3

More importantly, all that discussion about aspect-oriented programming
has finally lifted a large number of concerns to the level of notable problems
of design and implementation for which modularity is extremely difficult to
achieve, yet vital for system evolution. Aspects like persistence, logging, syn-
chronization, replication, security, to name only the most prominent examples,
had before AOP to be coded “between the lines” of the actual algorithms.
The presentation in Part. II may have given an idea, how some of these

aspects lead to a program structure that in no way resembles those nice text-
book examples, by which students shall learn “good” design. Such problems are
hard, and any help is welcome for improving modularity for the listed aspects.
It is an observation by several authors, that such complexity, which justifies the
use of AOP, is mostly found in infrastructure software (cf. [ACP02, GR02]).
Technically, AOP is realized using a so-called weaver, a tool that merges

code fragments from different modules into the final program, which is usually
done statically at compile time. The details of this process are, however, of
little interest for the discussion at hand. What is more important here, is
the fact, that AOP helps to identify many of concerns, which arise during
requirements elicitation, and to implement those concerns as modules with well
defined borders, which was not possible before.
And yes, these concerns are views, too (which should already be clear by

the terminology: “aspect”, the Latin aspectus translating directly to look,
sight, view). In fact, there is a rather broad understanding of the word aspect.
The term “aspect-oriented software development” [AOS02] is meant to sub-
sume also subject-oriented programming and many more approaches. A more
focussed interpretation is usually given to the notion aspect-oriented program-
ming, in which aspects more often than not refer to so-called non-functional
requirements. Any notion of “non-functional” something in software engineer-
ing is quite debatable, because many of these properties directly relate to system
functions, too. The point is, this class of aspects does not describe the main
concept of what a system is doing, but rather different facets of how this is
performed, additional properties, one could say.
Apart from this picking on words, aspects denote a third kind of views

beside data views and function/behavior views. Aspects try to make explicit
within source code, many of those properties that used to be scattered, i.e.,
spread around many different modules of the system.

16.3.3 Views need context

One way of describing a view concept is defining what makes a context that
discriminates one view from others.
In an SEE a view context can be a tool or a user role. Such a context is

comparatively static and selects a quite stable view of the repository. Objects
are identified by a tuple of view identifier and object identifier.
In the hyperspace approach, context is defined by a feature, a concern, or a

hyperslice, all of which are static perspectives.
Collaborations can be more dynamic and here a context may be a scenario

that is currently executing.

259



Chapter 16 Technology for Views

Aspect-oriented programming supports explicit referral to a control flow,
within which behavior will be different than outside that control flow.
All concepts of context share the capability to avoid explicit conditional

programming8, because the program is “aware” of its current situation. Lifting
and lowering according to PCA, DVC and Object Teams implement a styleObject Teams

[17.6→] of contextual dispatch that complements dynamic binding in standard object-
oriented programming. Active connectors (adapters, teams. . . ) determine the
choice of role, to which an object should be lifted. This gives further strength
to Meyer’s “single choice principle” [Mey97]: Any alternative that exists in a
program and can be chosen at run-time should only affect the single location
in source code, that actually decides. After this decision, the run-time system
should be responsible for executing behavior according to the choice taken. In
standard object-oriented programming the choice is in creating an instance of
a concrete class. From there on, dynamic binding will dispatch to methods
corresponding to that choice. Using DVCs or a related model, the choice is in
entering or activating a connector and subsequent dispatch to appropriate roles
is done by lifting to the context of that active connector.
Views can be made manifest in programming, by first-class entities, which

represent a context. Activation of a context has impact on the behavior of the
system. Views and explicit context in concert provide a powerful concept for
modularization beyond standard object-oriented techniques.

8Cf. [Orl01] with the wonderful sub-title “If Statement Considered Harmful”.

260



Chapter 17

Views in PIROL and beyond

Part II has presented PIROL based on those high-level views that were called
“concerns”. It is to be shown now, that also the implementation supports views
in very many ways. These views are presented according to the following two
categories:

1. Mappings and translations between different representations and “physi-
cal state” of common concepts.

2. Contexts that determine visibility, appearance and behavior of contained
elements.

17.1 Mappings and Translations

17.1.1 Inter-language working

In Sect. 14.2.2 the co-operation between parts of the system written in different
programming languages has been evaluated. In this architecture, Lua and C
have quite strong coupling. Mostly, the Lua encapsulation of H–PCTE could
be called an abstract view of that subsystem. Translations concern parame-
ter conversions and the different call disciplines (Lua passes parameters on an
explicit stack).
Marshalling is a central concept, by which interoperability is achieved, which Marshalling [←7.3.2]

is the capability to access the workbench from any programming language that
has a mapping for the intermediate representation used across MSG. For sim-
ple data, marshalling is straight forward. Transmitting, references through
marshaled data requires extra effort. Sect. 7.4.2 presented the interplay of
PCTE references, ROIDs and keep-alive links. Motivated by performance is-
sues, Sect. 14.1.2 showed, that transmitting pairs of ROID and class name is
a reasonable, though not crucial concept. Demarshalling, which is done in a
library for tool implementation, relies on reflective access to class names and
employs a proxy cache for reference resolution.
Proxies provide a transparent view on remote objects. As discussed in the Proxy classes

[←7.3.2]context of OODBMS, updatability of views is a decisive issue. Proxies can be
modified directly and react to changes in the repository. Thus, the claim of
transparency is justified.

261



Chapter 17 Views in PIROL and beyond

17.1.2 Representatives

Marshalling and proxies are standard techniques in component based systems.
The application of this technique in various directions is an architectural con-
cept, which goes beyond technical issues.
A tool representative is a local view for an external tool. Methods canTool representative

[←8.2.3] be delegated from a representative to a running tool process. It is the tool’s
responsibility to maintain consistency between the state of its representative
and its internal state, because this is a means of exporting state from the tool
to the repository. Most ROs in the repository are intrinsic objects, of which
other representations and views can be derived. A tool representative — in part
— is a view of an external entity, the tool. The restriction is to say, that some
attributes even of a representative may be intrinsic, too. Certain configuration
information is stored under the responsibility of the workbench. This leads to an
interpretation of representatives as ports for two–way communication between
workbench and tool.
Within the workbench, tool representatives refer to a higher architectural

layer. User representatives provide an interface to PCTE’s access control andUser representative
[←9.1.1, 9.1.8] to inter–workbench communication.

A WORKBENCH instance, finally, serves as an interface to the enclosing work-
bench context.
All representatives involve some kind of translations. Tools, users, groups

and workbenches are identified by different IDs at different levels. E.g., a tool
has a PCTE reference, ROID, a OS process ID, a MSG client ID, and a language
specific ID for each proxy within a client. For the sake of transaction support,
a tool should also have a PCTE process associated (cf. 9.1.7 on page 131). All
these identities have to be kept consistent in order to achieve greatest possible
consistency.

17.1.3 Derived data

Domain specific mappings can be integrated by means of derived attributes and
Dynamic View Connectors. The latter will be discussed further below. Derived
attributes can be used to perform arbitrary computations, but the example of a
routine signature implemented as a derived attribute shows that this mechanism
is well suited for translating between different representations like a structured
and a string based representation.

17.2 The Software Process as Context

User and workbench representatives gave hints at a dimension of PIROL that
tends to stand back in technical discussions. Process integration originallyProcess integration

[←8.1.1] motivated the multi–view capability of PIROL. From [GHJK95]:

“The fundamental concept of PIROL might be the concept of dis-
tinct views onto the repository.

Different project members shall . . .

262



Other representations Section 17.3

• when carrying out different activities
• incorporating different roles within the project
• using different tools
• and different tool-modes

. . . always be presented exactly that information in the most suitable
visualization as it is needed to do their job.”

Support for views in this sense is implemented — or encapsulated from other
layers — by the ROCM package PROCESSES. This comprises Package PROCESSES

[←4.1.1]
• Access control

• A generalized mail service

• Association to a current PROJECT

• A document state machine

• A customized set of available tools (via class WORKBENCH)

In this interpretation, a view is a configuration of the environment. Such
views define, what objects and documents are visible, and what can be done to
them.

17.3 Other representations

Structured data in the repository can also be translated into several external
representations.

Source code. Subclasses of SOURCE PRODUCER derive a textual soft- Class
SOURCE PRODUCER
[←13.3.2]

ware representation, which is stored in SOURCECODE instances and used for
source code editing. Maintaining consistency between structured data and
source code involves several techniques and also user interaction as presented
in Sect. Sect. 13.3.2.

ROCM. A special case of source code are different representations of
PIROL’s meta model, the ROCM. HTML documentation for the ROCM is
generated in an ad-hoc style by simple text processing of Lua/P input files us-
ing pattern matching. This could be replaced by a more structured approach,
which uses the reflective definition using ROs of type ROCM CLASS and related.
While HTML generation and export of documentation from these objects is
implemented it currently has a significant problem: comments from Lua/P files
are not stored in the repository. Thus, documentation only shows interfaces,
not comments.
This technique is, however, used for generating Java proxy classes for reposi-

tory classes. For this task, all necessary information is available in the repository
and mentioned proxygen script is a very simple yet effective proxy generator. Proxy generator

[←7.4.4]

263



Chapter 17 Views in PIROL and beyond

Virtual files. The CO file system (COFS) allows to access repository dataCOFS [←13.4.1]
as regular files. This technique is a technical mapping between two disjoint
worlds. Also the contents of virtual files requires some mapping like, e.g., the
structure to source code mapping mentioned just above.

XML and HTML representations. Work on exporting repository data
via a XML–HTML transformation has just started. As a result, Web–views willPIROLWEB

[←13.4.2] be easily generated from repository data. Supporting updates from the Web is
currently not planned.

17.4 Documents and Virtual Repositories

Conceptual objects (CO) were the first step towards reconciling fine grained
objects and documents — two fundamentally different views. Plain COs rely
on a tool to interpret its information. This is largely automated by DVCs. It
should be noted, that plain COs are still useful for certain tools. COFS is an
example that needs no sophisticated support from DVCs but works fine with
COs. A reason for using plain COs is of course performance, since COs don’t
require automatic management of view consistency, as it is performed by a DVC.

17.4.1 Dynamic View Connectors

In Chap. 10, Dynamic View Connectors have been introduced as a means to
decouple the components of PIROL. This can be seen as a first step on the road
of unifying several concepts of views.
DVCs unite ideas from database views [ECM90, Gar87, SAD94] and the

AP&PC programming model [ML98]. Due to their primary goal of tool inte-
gration in a repository based environment, DVCs put more emphasis on struc-
tural relations than AP&PCs do. But despite their data-centric nature, DVCs
exhibit the following dynamic properties:

1. Notifications propagate changes from an RO to each view it is contained
in.

2. VOs may be modified resulting in changes in the underlying ROs.

3. Views can be created at runtime creating also new scopes for added at-
tributes.

4. VO methods add new behavior to the meta model.

In comparison to some of the view concepts in database technology, DVCs
put more emphasis on navigation between objects than on queries. Query-like
capabilities are, however, included with both uses of predicates: class predicates
and filter predicates.
The expressiveness of DVCs is optimized for adaptations of mismatching

structures. Such adaptations may re-arrange class structures regarding at-
tributes and aggregations (including special treatment of lists). Also the in-
heritance structure of a model can be re-arranged in multiple ways. On class

264



LAC Section 17.5

level, these mappings may even be ambiguous, as long as ambiguity can be
resolved at runtime using either (1) the static type that is requested within
the DVC or (2) a class predicate. Concerning the expressiveness for structural
mappings, DVCs are unique among the mentioned concepts.
DVCs differ from any pure programming model by their close integration

with other properties like persistence and change propagation. This is cru-
cial for achieving connector transparency required by the concept of “virtual
repositories”.
When comparing DVCs to programming models from the field of aspect-

oriented programming, the most obvious difference is the disability of DVCs to
externallymodify the behavior of an existing implementation. While this simply
was not needed for tool integration via DVCs, inclusion of such mechanisms is
the natural next step after AP&PC and DVC.

17.5 LAC

The direct successor of Adaptive Play-and-Play Components [ML98] was As-
pectual Components as described in [LLM99]. The main advance of Aspectual
Components was to add to the AP&PC model a special style of advice weav-
ing similar to AspectJ[Asp]. Within a strict separation of base, collaboration
and connector, the main constructs are expected methods and replacements.
The declaration of expected methods guarantees that modules are declaratively
complete. Method replacements allow to override base methods by collabora- “declaratively

complete” [←16.2.2]tion methods, while only the connector knows both sides.
For Aspectual Components as described in [LLM99] no compiler has ever

been written. The experience from developing the DVC interpreter, however,
paved the road for the development of a prototypical interpreter for a variant of
Aspectual Components, that differs in its concrete syntax, because it is based
on Lua instead of Java, but semantically adheres to the model of [LLM99]. The
resulting language LAC (Lua Aspectual Components) [HM01] elaborates and
extends some issues that have only been touched marginally in [LLM99].
The new feature — as compared to DVC — is advice weaving which in its

Lua-based implementation is a small meta program: a base class and a partici-
pant class (the latter from an aspectual component) are integrated by matching
all method names of the base class against a given name pattern. Each matching
method is then replaced by the participant method given in the binding speci-
fication. An important detail concerns the ability of a replacement method to
invoke the original method which it replaces. This is further complicated by
the fact, that one replacement may replace several base methods. The solution
in Lua is, to wrap the participant method each time it replaces a base method,
using a function closure that stores a reference to the original method. By this
technique each original method is accessible only for its specific replacement
wrapper.
A special feature of LAC is its distinction of static, dynamic and singleton

connectors. Static connectors are most similar to AspectJ as they permanently
modify base classes for a given application. In such an application, base classes

265



Chapter 17 Views in PIROL and beyond

only exist in their modified versions. The other extreme, dynamic connectors,
are closer to DVCs. They keep the base unmodified, creating only a view that
incorporates the changes. Unlike DVCs, a dynamic connector in LAC can,
however, be activated. Activating a connector has the effect, that all affected
base classes are temporarily replaced by their modified version. This cannot
be achieved with DVCs, which have effect only when using VOs. Any RO
that is used as an RO is totally unaffected by and DVC. Singleton connectors,
finally, are provided for convenience. They have the same dynamic semantics as
dynamic connectors. However, dynamic connectors are a special form of classes,
that need to be instantiated prior to usage. Singleton connectors already define
exactly one instance. They neither need nor must be instantiated.
DVC and LAC base upon the technique of role objects with delegation. In

both models a role object may override any base method without the need of
declaring so. Some details of LAC can be found in [HM01].

17.6 Object Teams

After demonstrating the soundness of the Aspectual Components model using
LAC, its concepts have been reworked with the goal of a better integration with
standard object-oriented concepts. The model has been renamed to Object
Teams and is currently being integrated into Java.
Also the terminology is changed such as to reduce the usage of methodolog-

ical notions like participant and expected method in favor of a minimal set of
technical notions. Now certain classes can be used as participant classes, and
certain methods can be interpreted as expected methods, but a better orthog-
onality is achieved without notions, that already carry too much meaning. For
the integration of specific features into the Java language, a concern interaction
matrix, as proposed in this thesis, is being elaborated for analysis of interaction
between existing features of Java and those of Object Teams.
The central concepts are:

• Role-objects (declared as class R1 playedBy B1).

• Open classes/packages: incomplete units that obtain their missing parts
via object inheritance.

• Collaborations and connectors are packages with similar properties. Such
packages are subject to refinement by child–packages. The distinction
collaboration/connector is no longer explicit in the language. In Object
Teams the distinction is only of methodological value. Technically, con-
cepts can be mixed.
In Java, these packages are mapped to classes with inner classes.

• Two kinds of binding are supported: callout (delegation), callin (advice
weaving).

• Callin are further specified as one of:

– before, after, replace

266



Lessons learned and the Future Section 17.7

Object Teams support different mechanisms for extending a class. Fur-
ther analysis should, e.g., compare these mechanisms to the choice between
extending and inheritance in PCTE. Extend vs. inherit

[←16.1.2]

17.7 Lessons learned and the Future

The development of PIROL has been highly explorative. Techniques have been
developed, which are highly customized for open integrated environments. The
development of Object Teams exploits much of the experience from PIROL’s
development and from many other approaches to aspect-oriented software de-
velopment. In PIROL new features were introduced when needed without much
ado. Object Teams are a concept, which is being consolidated and will be de-
fended against such “featurism” in order to keep language design clean. Both
kinds of development are needed: Object Teams will make collaboration based
separation of concerns available to programmers and bear the potential to at-
tract a significant community of developers. PIROL had a different goal. PIROL
proved the feasibility of an SEE based on a fine grained object-oriented meta
model, supporting many different views. Development of PIROL was a value
in its own right, for all students who wrote the diploma theses in this field.
Development of PIROL served as a case study regarding managing software
complexity. Finally, the resulting document, Part II of this thesis, is a compre-
hensive documentation of concerns and forces in building an SEE, which can
be taken as a blue print for a future industrial-strength software engineering
environment, which would exploit findings from SEE research far better than
any of today’s development environments.

267



Chapter 17 Views in PIROL and beyond

268



Chapter 18

Acknowledgements

Much as all this thesis is concerned about structuring tangled concerns, also
tangled relationships to institutes and people are now untangled, which is done
within the view of contributions to this thesis. This view has abstraction prop-
erties, as it omits almost all details. Contributions are furthermore classified
into three categories.
Institutional support comprised the German Brazilian co-operation, which

funded a one-month stay in Rio de Janeiro planting the seed of Lua’s role for
PIROL. Also the ESPRESS project willingly/un-willingly supported the devel-
opment of PIROL of which it used an early prototype for its show-case devel-
opment environment. Other funding did not exist.
On the far end, personal relationships could be mentioned, which had impact

on my development. Here and now I will leave such impact implicit in this
writing. I do hope, the persons in question know better than I could express in
this place.
My honest gratitude concerns all those colleagues, supervisors and especially

students, who throughout the years — in changing constellations — supported
the PIROL project in very different ways.
Michaela Reisin stimulated the birth of PIROL by her research on reference

glossaries. Wilfried Koch established a niche for the early PIROL project to
flourish. Doris Fähndrich contributed a tool and maintained PIROLWeb pages
over some years. Stefan Jähnichen showed great patience with this long running
project far away from all hypes and fast successes. Prof. Kelter and his staff
have been helpful with the usage of H-PCTE and fixed some bugs that occurred
in no other application but PIROL. Mira Mezini saw a special value in PIROL as
a realistic case study of new technology for separation of concerns. She helped
me writing about Dynamic View Connectors and gave inspirations for exciting
research beyond PIROL. All the students listed in App. B have contributed
considerable shares by what for each of them was their one and only diploma
thesis in computer science.
Most of all, Boris Groth has never ceased to believe in PIROL. As a co-

founder of this project he contributed important ideas and inspired many stu-
dents for the work in PIROL. While he was present and during his time travelling
around, his enthusiasm for PIROL has always given strength to the little yellow
bird . . .

269



Chapter 18 Acknowledgements

270



Part IV

Appendices

271





Appendix A

Definition of Lua/P

273



Appendix A Definition of Lua/P

A.1 Syntax of Lua/P

(1) class ::= class structure method* guard*
(2) class structure ::= Class{classname;

inherit,
[creation,]
[upgrade,]
[attributes,]
[class attributes,]
[connector part]

}
(3) inherit ::= inherit = (classname | classnames)
(4) creation ::= creation = (methodname | methodnames)
(5) upgrade ::= upgrade = (methodname | methodnames)
(6) classnames ::= {classname (, classname)*}
(7) methodnames ::= {methodname (, methodname)*}
(8) attributes ::= attributes = { attr decls }
(9) attr decls ::= attr decl (, attr decl)*
(10) attr decl ::= attrname : attrtype
(11) attrtype ::= simpletype | listtype | termtype | Binary
(12) simpletype ::= basictype | classtype
(13) basictype ::= String | Integer | Boolean
(14) classtype ::= classname
(15) listtype ::= List listelemtype
(16) listelemtype ::= ( simpletype ) | tupeltype
(17) tupletype ::= { simple attr decl (, simple attr decl)* }
(18) simple attr decl ::= attrname : simpletype
(19) termtype ::= grammarname.typename
(20) class attributes ::= class attributes = { lua attr decl* }
(21) lua attr decl ::= attrname : (table | number | string)
(22) guard ::= simple guard | list guard
(23) simple guard ::= AttributeAccess classname.attrname {

[assign func,]
[get func]

}
(24) get func ::= get = method () functionbody end
(25) assign func ::= assign = method ( valueparam ) methodbody end
(26) list guard ::= ListAccess classname.attrname {

[adding func,]
[removing func,]
[list func,]

}

274



Syntax of Lua/P Section A.1

(27) adding func ::= adding = method ( indexparam, valueparam )
methodbody

end
(28) removing func ::= removing = method ( indexparam, oldvalueparam )

methodbody
end

(29) list func ::= any method overriding one of those listed in App. A.2
(30) connector part ::= root = classname, view classes,
(31) view classes ::= viewclasses = { view class (, view class)* }
(32) view class ::= classname = { roclass,

[inherit ,]
[creation ,]
[cpredicate ,]
[accept ,]
[uses ,]
[adds ,]
[filter ,]
[redirect]

}
(33) roclass ::= roclass = classname
(34) cpredicate ::= predicate = function (co, ro) bool func body end
(35) accept ::= accept = method() methodbody end
(36) uses ::= uses = { featurelist ; renamelist }
(37) featurelist ::= featurename (, featurename)*
(38) renamelist ::= attr decl = featurename
(39) adds ::= adds = { attr decls }
(40) filter ::= filter = { filter decl (, filter decl)* }
(41) filter decl ::= attr decl {

base = { attr decl},
fpredicate

}
(42) fpredicate ::= predicate (elem) bool meth body end
(43) redirect ::= redirect = { attr redir (, attr redir)*}
(44) attr redir ::= attr decl = { get func [, assign func] }
(45) method ::= function classname:methodname signature methodbody end
(46) signature ::= ( attr decl (, attr decl)* ) [: attrtype]
(47) methodbody ::= lua stmt | luap stmt
(48) luap stmt ::= methodcall | classmethodcall | creationcall | upgradecall
(49) methodcall ::= objvar:methodname ( expr (, expr)* )
(50) classmethodcall ::= classname:methodname ( expr (, expr)* )
(51) creationcall ::= varname = classname:creator ( expr (, expr)* )
(52) creator ::= New | methodname
(53) upgradecall ::= classname:methodname (objvar (, expr)*)

275



Appendix A Definition of Lua/P

A.2 Interface of builtin class List

Class List(T );
––NOTE: Lists are assumed to be indexed contiguously starting at 1.
––Instance fields are:
––1.. : The elements
––length : number of elements

• function List:valid index (i)
––Is i a valid index into this list?
––param i: Integer
––result Boolean

• function List:is element (el)
––Does this list contain an element equal to el?
––param el: T
––result Boolean

• function List:append (elem)
––Append elem at end of list.
––param elem: T

• function List:concat (other)
––Append all elements of other at end of list.
––param other: List(T )

• function List:insert (ind, elem)
––Insert elem at position, moving all elements at i >= ind up one.
––param ind: Integer
––param elem: T

• function List:first ()
––Give index and value of the first element.
––result Integer, T ; Two values! First result is always 1.

• function List:next (i)
––Give index and value of the element following index i.
––param i: Integer
––result Integer, T ; Two values!

• function List:last ()
––Give the last element.
––result T

• function List:foreach (func)
––Iterate func(i,v) over all elements or until func returns non-nil.
––Return first non-nil result of func(i,v)
––param func: function(Integer, T ) → X
––result X

276



Interface of builtin class List Section A.2

• function List:map (func)
––Map func over all elements and collect the non-nil result in a Lua table.
––Return the number of results and the result table.
––param func: function(Integer, T ) → X
––result Integer, table(X )

• function List:foldl (start, func)
––Call func for each element of the List.
––Pass as second argument the result of the previous call.
––First call uses start instead.
––param start : X
––param func : function(T , X ) → X
––result X

• function List:search (val, start)
––Search for an element equal to val.
––If start is non-nil it specifies the position, where to start searching.
––param val: T
––param start: Integer or nil
––result Integer, T

• function List:find (test func, start)
––Find an element for which test func(elem) evaluates to non-nil.
––If start is non-nil it specifies the position, where to start searching.
––param test func: function(T ) → Boolean
––param start: Integer or nil
––result Integer, T

• function List:remove (ind)
––Remove the element at position ind. Move following elements up one.
––param ind: Integer

• function List:remove first (test)
––Remove the first element satisfying function test(elem).
––param test: function(T ) → Boolean

• function List:remove all (test)
––Remove all elements satisfying function test(elem).
––param test: function(T ) → Boolean

• function List:range (from, to)
––Create a new list of elements ranging from from to to.
––param from: Integer
––param to: Integer
––result List(T )

• function List:wipe ()
––Reset this list to an empty list.

277



Appendix A Definition of Lua/P

• function List:copy (other)
––Make this list a copy of other
––param other: List(T )

• function List:tostring ()
––Convert list to String representation.
––result String

Documentation of builtin class List
Generated on Sun Nov 5 19:16:18 CET 2000
by stephan@cs.tu-berlin.de

278



Appendix B

Diploma theses related to
PIROL

Several diploma theses have been cited throughout this work. Actually, the
author started the PIROL project by his diploma thesis which was written in
coordination with diploma theses by Boris Groth and Olaf Bigalk. Over the
years, many students have contributed concepts and software to the PIROL
project. This appendix lists all relevant diploma theses in chronological order
and briefly sketches their contribution. Naturally, not all these theses have
manifested themselves in the PIROL system as it exists today. Comments are
only given were considered relevant for the state reached today. It turned out,
that a tool can very well be developed by a student provided a suitable basis
(as a framework) is available. Meta model extensions are also a realistic task.
Extending the workbench has been tried once, which was maybe a bad idea in
the beginning since dependencies are very high.

1994

Boris Groth

Project Integrating Reference Object Library (PIROL):
Concepts for Integrating an Object Oriented Generic Process Model
into a Software Development Environment

Initiated process modeling in and for PIROL.

Stephan Herrmann

Project Integrating Reference Object Library (PIROL): Develop-
ment of a Workspace for Integration of Tools into a Software Devel-
opment Environment for Consistent Object Oriented Modelling

Basic concepts, architecture and infrastructure of PIROL. This thesis also de-
scribes an implementation using Eiffel and Tcl.

279



Appendix B Diploma theses related to PIROL

1995

Olaf Bigalk

Eine plattformunabhängige wiederverwendbare objektorientierte Klassen-
bibliothek für ein mehrschichtiges Kommunikationsprotokoll in der
Software-Entwicklungsumgebung PIROL
——
A platform independent re-usable object-oriented class library for a
multi-layered communication protocol in the SEE PIROL.

Fundamentals of PIROL’s middleware. At that time implemented using ToolTalk
and by interfacing ToolTalk to Eiffel.

Stefan Brauer

Project Integrating Reference Object Library (PIROL):
Entwurf und Teilimplementierung eines Repositories für die Software-
Produktionsumgebung PIROL
——
Design an partial implementation of a repository for the SEE PIROL.

1996

Matthias Bienert (“student thesis”)

Konzeption und Prototyp-Realisierung eines graphisch orientierten
Werkzeuges zur objektorientierten Analyse in PIROL
——
Concepts and prototypical realization of a graphical tool for object-
oriented analysis in PIROL.

The first graphical tool in PIROL based on [incr tcl], an object-oriented flavor
of Tcl.

Jörg Buchwald

Ein allgemeiner Generator zur Übersetzung von Klassen der objek-
torientierten Erweiterungssprache DROSSEL in objektorientierte
Programmiersprachen.
——
A general generator for translating classes of the object-oriented ex-
tension language DROSSEL into object-oriented programming lan-
guages.

A predecessor of the proxygen script (see Sect. 7.4.4). At that time no reflexive
definition of the meta model was available in the repository.

280



Section B.0

Stefan Schuster

Project Integrating Reference Object Library (PIROL):
Eine objektorientierte Methode zur Visualisierung von Prozeßmod-
ellen im Projekt PIROL auf Basis der Analyse existierender Metho-
den.
——
An object-oriented method for visualizing process models in the
PIROL project based on the analysis of existing methods.

Elaborated on process modeling and languages.

Ronald Melster

Visualisierungstools zur Prozeßmodellierung auf Basis des PIROL-
Metamodells
——
Visualization tools for process modeling based on the PIROL meta
model

The first framework based approach to graphical tools in PIROL. Based on the
ET++ framework and applied the technique to process models.

Alexander Onnasch

Project Integrating Reference Object Library (PIROL):
Konzeption eines erweiterbaren Frameworks in PIROL und dessen
Einsatz bei der Erstellung eines Designwerkzeuges
——
Concepts for an extensible framework in PIROL and its application
for building a design tool.

Carries on the previous work.

1997

Asuman Sünbüll

Entwicklung eines Werkzeuges für die Verwendung des CORBA-
Standards in einer objektorientierten Softwareentwicklungsumgebung.
——
Development of a tool for applying the CORBA standard in an
object-oriented SEE.

Developed a gateway between PIROL and CORBA.

281



Appendix B Diploma theses related to PIROL

Patrick Grüger

Konzeption und prototypische Realisierung der Version- und Kon-
figurationsverwaltung in einer Software-Entwicklungsumgebung
——
Concepts and prototypical realization of the version and configura-
tion management in a SEE

An analysis of difficulties in versioning fine grained objects and their relations.
Devised an architecture using filters for version selection. The first thesis to
build on the new version of PIROL using Lua. Attempted to integrate function-
ality into the PIROL workbench while this already grow more complex than can
be handled in a diploma thesis.

Michael Freitag

Entwicklung einer genereischen Semantik für die Prozeßmodellierung
und deren Realisierung in einer Prozeßmaschine.
——
Development of a generic semantic for process modeling and real-
ization by a process engine.

1998

Bertram Stahl

Komponentenbasierte Entwicklung eines Browsers für das Reposi-
tory einer Softwareentwicklungsumgebung
——
Component based development of a browser for the repository of a
SEE.

Initial development of PON. Much of the functionality existed in that version.
Extensibility required quite some refactoring, though.

2000

Jan Peter

Enwicklung eines Repository–fähigen mehrsprachigen Quelltextedi-
tors für objektorientierte Programmiersprachen
——
Development of a repository-capable multi language source code ed-
itor for object-oriented programming languages

Mostly contributed a thoroughly revised ROCM package PRODUCT. The proto-
typical application only handled high level language constructs.

282



Section B.0

Frank Bilgi

Konzepte und Sprachen für die Software-Architektur:
Vergleichende Anwendung auf die Software-Entwicklungsumgebung
PIROL
——
Concepts and languages for software architecture:
comparative application to the SEE PIROL

This theoretical thesis used PIROL as a case study for architecture specification
modeling. It helped to identify some problems in PIROL’s protocols.

Ralf Kruber

Werkzeugunterstützung für prozeßmodellbasierte Kommunikation
in der Software-Entwicklungsumgebung PIROL
——
Tool support for communication based on a process model in he
SEE PIROL

Development of MESSED embedded into a larger concept of CSCW in PIROL.

2001

Burkhard Weber

Graphische Editoren für die repository-basierte Softwareentwick-
lungsumgebung PIROL durch Erweiterung eines bestehenden Frame-
works
——
Graphical editors for the repository based SEE PIROL by extending
an existing framework.

Comparison of three Java based frameworks for graphical editors and integra-
tion of the framework GEF into PIROL. Example application was an initial
version of CollEd.

Frank Tscheuschner

Einsatzmöglichkeiten eines virtuellen Dateisystems zur Werkzeu-
gunterstützung für zyklische Software-Entwicklung
——
Fields of application for a virtual file system for tool support for
cyclic software development

Prototypical implementation of COFS.

283



Appendix B Diploma theses related to PIROL

2002

Christian Mattick

Editieren von Quelltexten in einer Softwareentwicklungsumgebung
(PIROL) mit einheitlichem Repository
——
Source code editing in a SEE (PIROL) with a common repository.

Development of pjEdit.

Florian Hacker

Aspektorientiertes Entwerfen mit ”Aspectual Collaborations”-
Entwicklung eines grafischen Editors für die repository-basierte En-
twicklungsumgebung PIROL
——
Aspect-oriented design with “Aspectual Collaborations” –
Development of a graphical editor for the repository based SEE
PIROL.

284



Appendix C

List of Figures

1 Path of describing concerns and their interactions . . . . . . . . . 13

1.1 Documents are implemented as COs . . . . . . . . . . . . . . . . 22
1.2 Syntax of using Lua tables . . . . . . . . . . . . . . . . . . . . . . 24
1.3 Example of higher order functions in Lua . . . . . . . . . . . . . 26
1.4 Methods in Lua . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5 Statistic of code size in PIROL . . . . . . . . . . . . . . . . . . . . 28
1.6 Event types and signatures for tagmethods . . . . . . . . . . . . 29
1.7 Matrix of tagmethods. . . . . . . . . . . . . . . . . . . . . . . . . 29
1.8 Examples of tagmethods . . . . . . . . . . . . . . . . . . . . . . . 30
1.9 Prototype based object-oriented programming in Lua . . . . . . . 31

2.1 Structure of ANY RO (before optimization) . . . . . . . . . . . . . 39
2.2 Optimization by object inlining . . . . . . . . . . . . . . . . . . . 39
2.3 Optimized structure of ANY RO . . . . . . . . . . . . . . . . . . . 40
2.4 Implementing object lookup . . . . . . . . . . . . . . . . . . . . . 47

3.1 Grammar EXPRESSION. . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Using pattern matching for a simple pretty printer. . . . . . . . . 60

6.1 Events for attribute guards . . . . . . . . . . . . . . . . . . . . . 68
6.2 Syntax of attribute guards . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Derived attribute ROUTINE.signature . . . . . . . . . . . . . . . 70
6.4 A restrictive guard for SYSTEM.main routine . . . . . . . . . . . 72
6.5 An operational guard for ROUTINE.is abstract . . . . . . . . . . 72
6.6 A list guard for SUBSYSTEM.classifiers . . . . . . . . . . . . . 73

7.1 PIROL’s three–tier architecture . . . . . . . . . . . . . . . . . . . 84
7.2 Delayed operation using eventually call. . . . . . . . . . . . . 86
7.3 Detached request with callback. . . . . . . . . . . . . . . . . . . . 86
7.4 Grammar MSG: message types in PIROL. . . . . . . . . . . . . . . 88
7.5 Messages in PIROL (1) . . . . . . . . . . . . . . . . . . . . . . . . 89
7.6 Reading data through a point-to-point socket . . . . . . . . . . . 89
7.7 Writing data through a point-to-point socket . . . . . . . . . . . 90

285



Appendix LIST OF FIGURES

7.8 Control flow of aborting a request . . . . . . . . . . . . . . . . . 96

8.1 Messages in PIROL . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.2 Concerns and their relations . . . . . . . . . . . . . . . . . . . . . 118

9.1 Specialized access control using an attribute guard . . . . . . . . 125
9.2 Versioning of links . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10.1 Extract from the repository’s meta model . . . . . . . . . . . . . 136
10.2 Meta model of a tool for UML class diagrams. . . . . . . . . . . . 136
10.3 A virtual repository simulates tool objects . . . . . . . . . . . . . 139
10.4 Expected interface for UML class diagrams. . . . . . . . . . . . . 140
10.5 Hierarchy of connector classes . . . . . . . . . . . . . . . . . . . . 141
10.6 Connector for UML class diagrams — Structure. . . . . . . . . . 142
10.7 Mapping details for Class. . . . . . . . . . . . . . . . . . . . . . 143
10.8 Manual redirection of attribute type . . . . . . . . . . . . . . . . 145
10.9 Run–time relations between ROs and VOs in a Connector. . . . . 146
10.10Connector instantiation . . . . . . . . . . . . . . . . . . . . . . . 147
10.11Elements and tasks of integrating a tool . . . . . . . . . . . . . . 149
10.12Modular implementation of functions over composite structures . 152

11.1 Attributes for static tool configuration . . . . . . . . . . . . . . . 162
11.2 Features for setup during launching . . . . . . . . . . . . . . . . . 163
11.3 Dynamic tool properties . . . . . . . . . . . . . . . . . . . . . . . 163

12.1 An upgrade method and its usage . . . . . . . . . . . . . . . . . . 175
12.2 Evolution of ZooEd . . . . . . . . . . . . . . . . . . . . . . . . . . 179

13.1 A snapshot of PON . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.2 Structure of the demo class PONDEMO . . . . . . . . . . . . . . . . 186
13.3 A simple class diagram being edited using ZooEd . . . . . . . . . 189
13.4 Editing a state machine using ZooEd . . . . . . . . . . . . . . . . 190
13.5 Invoking a state transition . . . . . . . . . . . . . . . . . . . . . . 190
13.6 A sample instance of GEFTool: Collaboration diagrams . . . . . 191
13.7 MESSED as HTML editor . . . . . . . . . . . . . . . . . . . . . . 193
13.8 A snapshot of pjEdit . . . . . . . . . . . . . . . . . . . . . . . . . 196

14.1 Folding list messages . . . . . . . . . . . . . . . . . . . . . . . . . 205
14.2 Overview of partitioning the concern interaction matrix . . . . . 217

15.1 Relations between abstraction, decomposition and views . . . . . 236

286



Appendix D

Index

Page numbers in bold face refer to a chapter dedicated to the given notion.
Page numbers in italics refer to a definition.
Roman numbers refer to a notable use of that notion

A
a-posteriori integration . . . . . . . . . . . . . . . . . 149
abstract
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

access control . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

ANNOTATION (class) . . . . . . . . . . . . . . . . 122, 124
annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
ANY RO (class) . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
APPL/A
(repository language) . . . . . . . . . . . . 44, 78

architecture
client server . . . . . . . . . . . . . . . . . . . . . . . . .83
of PIROL . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

aspect-oriented programming . . 65, 106, 258
aspect-oriented software development19, 67,

180, 251
attribute
derived. . . . . . . . . . . .see derived attribute
guarded . . . . . . . . . . see guarded attribute
transient . . . . . . . . see transient attribute

attribute guard . . . . . . . . . . . . . . . . . . . . . . . . . . 68
attribute guards . . . . . . . . . . . . . . . . . . . . . . . . . 98
syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

B
behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 55
interaction with . . .
client-server architecture . . . . . . . . . . 94
control integration . . . . . . . . . . . . . . .112

DVC (Dynamic View Connector) .152
evolution . . . . . . . . . . . . . . . . . . . . . . . . 177
exception handling . . . . . . . . . . . . . . . .65
granularity . . . . . . . . . . . . . . . . . . . . . . . .59
integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 76
meta modeling . . . . . . . . . . . . . . . . . . . . 56
multi user capability . . . . . . . . . . . . .125
persistence . . . . . . . . . . . . . . . . . . . . . . . .58
of repository objects . . . . . . . . . . . . . 38, 55

block
in Lua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

bootstrapping process . . . . . . . . . . . . . . .57, 210
broadcast communication . . . . . . . . . . . . . . . see

communication

C
caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 97

catching
of exceptions . . . . . . . . . . . . . . . . . . . . . . . . 64

change propagation. . . . . . . . . . . . . . . . .71, 105
trigger–deliver–react . . . . . . . . . . .107, 154

changed (message type) . . . . . . . . . . . . . . . . . 87
check permissions in advance . . . . . . . . . . . 127
class
transient. . . . . . . . . . . . .see transient class

client-server architecture . . . . . . . . . . . . . . . . 83
interaction with . . .
behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 94
common services . . . . . . . . . . . . . . . . .169

287



Appendix INDEX

control integration . . . . . . . . . . . . . . .115
DVC (Dynamic View Connector) .156
evolution . . . . . . . . . . . . . . . . . . . . . . . . 178
exception handling . . . . . . . . . . . . . . . .95
granularity . . . . . . . . . . . . . . . . . . . . . . . .93
integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 98
meta modeling . . . . . . . . . . . . . . . . . . . . 91
multi user capability . . . . . . . . . . . . .127
persistence . . . . . . . . . . . . . . . . . . . . . . . .93

CO (conceptual object) . . . . . . . . . . . . . . 21, 57
implemented by hashtables . . . . . . . . . 150

COFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
COFS (Conceptual Object File System)196
commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
common services . . . . . . . . . . . 39, 45, 102, 161
interaction with . . .
client-server architecture . . . . . . . . .169
control . . . . . . . . . . . . . . . . . . . . . . . . . . 169
DVC (Dynamic View Connector) .170
error handling . . . . . . . . . . . . . . . . . . . 169
evolution . . . . . . . . . . . . . . . . . . . . . . . . 182
integrity . . . . . . . . . . . . . . . . . . . . . . . . . 169
multi user capability . . . . . . . . . . . . .170
persistence. . . . . . . . . . . . . . . . . . . . . . .168

communication
broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . 104
multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
point-to-point . . . . . . . . . . . . . . . . . . 89, 104

compound objects . . . . . . . . . . . . . . . . . . . . . . . 35
conceptual objects (CO) . . . . . . . . . . . . . . . . 137
concern interaction
enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . 81
hybrid model . . . . . . . . . . . . . . . . . . . . . . . . 53
layered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
mediator. . . . . . . . . . . . . . . . . . . . . . . . .65, 81
meta programming . . . . . . . . . . . . . . . . . . 80
orthogonal concerns . . . . . . . . . . . . . . . . . 62

Concern Interaction Matrix . . . . . . . . . . . . . . 13
concern modeling . . . . . . . . . . . . . . . . . . . . . . . 232
concerns
composition . . . . . . . . . . . . . . . . . . . . . . . . . . 5
separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

configuration
view as . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 79

consistency constraints . . . . . . . . . . . . . . . . . . 21

consistent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
consistent views . . . . . . . . . . . . . . . . . . . . . . . . . 99
contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
context . . . . . . . . . . . . . . . . . . . . . . . 138, 150, 160
context menu . . . . . . . . . . . . . . . . . . . . . . 111, 164
contextual dispatch . . . . . . . . . . . . . . . . . . . . . 260
control
interaction with . . .
common services . . . . . . . . . . . . . . . . .169

control component
(MVC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

control integration . . see integration, control
interaction with . . .
behavior . . . . . . . . . . . . . . . . . . . . . . . . .112
client-server architecture . . . . . . . . .115
DVC (Dynamic View Connector) .159
error handling . . . . . . . . . . . . . . . . . . . 113
evolution . . . . . . . . . . . . . . . . . . . . . . . . 178
granularity . . . . . . . . . . . . . . . . . . . . . . 112
integrity . . . . . . . . . . . . . . . . . . . . . . . . . 113
meta modeling . . . . . . . . . . . . . . . . . . .110
multi user capability . . . . . . . . . . . . .132
persistence. . . . . . . . . . . . . . . . . . . . . . .111

controlintegration . . . . . . . . . . . . . . . . . . . . . .101
Cosmos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
create (message type) . . . . . . . . . . . . . . .87, 87
creation
method . . . . . . . . . . . . . . . . . . . . . . . . . . 55, 92
methods. . . . . . . . . . .65, 92, 141, 152, 174

D
dangling object . . . . . . . . . . . . . . . . . . . . . . . . . . 74
data integration . . . . . . . see integration, data
data integrity . . . . . . . . . . . . . . . . . . . . . . . . 52, 64
data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
dbviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242
declaratively complete . . . . . . . . . . . . . 254, 265
decomposition
conflicts . . . . . . . . . . . . . . . . . . . . . . . . 67, 230

delegation . . . . . . . . . . . . . . . . . . . . . 30, 153, 255
Delivery and reaction . . . . . . . . . . . . . . . . . . . 114
derived attribute . . . . . . . . . . . 70, 78, 113, 145
deriving . . . . . . . . . . . . . . . . . see views, deriving
desktop integration . . . . . . . . . . . . . . . . 104, 170
distribution
impact on referential integrity . . . . . . . 75

docking

288



Index Appendix

of tools . . . . . . . . . . . . . . . . . . . . . . . .161, 186
document. . . . . . . . . . . . . . . . . . . . . . . . . .111, 196
CO (conceptual object) . . . . . . . . . . . . . 138

document state machine . . . . . . . 58, 167, 189
DOCUMENT TYPE (class) . . . . . . . . 111, 158, 166
DROSSEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
DVC (Dynamic View Connector) .20, 22, 44,

135, 140, 188
interaction with . . .
behavior . . . . . . . . . . . . . . . . . . . . . . . . .152
client-server architecture . . . . . . . . .156
common services . . . . . . . . . . . . . . . . .170
control integration . . . . . . . . . . . . . . .159
error handling . . . . . . . . . . . . . . . . . . . 153
evolution . . . . . . . . . . . . . . . . . . . . . . . . 178
granularity . . . . . . . . . . . . . . . . . . . . . . 151
integrity . . . . . . . . . . . . . . . . . . . . . . . . . 154
meta modeling . . . . . . . . . . . . . . . . . . .149
multi user capability . . . . . . . . . . . . .160
persistence. . . . . . . . . . . . . . . . . . . . . . .150

dynamic binding . . . . . . . . . . . . . . . . . . . . . 55, 59

E
ECMA reference model . . . . . . . . . . . . . . . . . 161
encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
non–strict . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
transparent . . . . . . . . . . . . . . . . . . . . . . . . . .45

encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
ENVELOPE (class) . . . . . . . . . . . . . . . . . . .122, 194
environment evolution . . . . . . . . . . . . . . . . . . 149
environment representative . . . . . . . . . . . . . .see

representative
error handling
interaction with . . .
common services . . . . . . . . . . . . . . . . .169
control integration . . . . . . . . . . . . . . .113
DVC (Dynamic View Connector) .153
evolution . . . . . . . . . . . . . . . . . . . . . . . . 177

event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
eventually call . . . . . . . . . . . . . . . . . . . . . . .124
evolution
interaction with . . .
behavior . . . . . . . . . . . . . . . . . . . . . . . . .177
client-server architecture . . . . . . . . .178
common services . . . . . . . . . . . . . . . . .182
control integration . . . . . . . . . . . . . . .178
DVC (Dynamic View Connector) .178

error handling . . . . . . . . . . . . . . . . . . . 177
granularity . . . . . . . . . . . . . . . . . . . . . . 177
integrity . . . . . . . . . . . . . . . . . . . . . . . . . 177
meta modeling . . . . . . . . . . . . . . . . . . .176
multi user capability . . . . . . . . . . . . .178
persistence. . . . . . . . . . . . . . . . . . . . . . .176
PIROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

exception
control flow. . . . . . . . . . . . . . . . . . . . .95, 212
handler . . . . . . . . . . . . . . . . . . . . . . . . . . 65, 97

exception handlers. . . . . . . . . . . . . . . . . . . . . .127
exception handling . . . . . . . . . . . . . . . . . . . . . . 63
interaction with . . .
behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 65
client-server architecture . . . . . . . . . . 95
granularity . . . . . . . . . . . . . . . . . . . . . . . .64
integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 77
meta modeling . . . . . . . . . . . . . . . . . . . . 63
multi user capability . . . . . . . . . . . . .126
persistence . . . . . . . . . . . . . . . . . . . . . . . .64

execute (message type). . . . . . . . . . . . . .87, 87
extend
in PCTE . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

external representations . . . . . . . . . . . . . . . . . 44

F
facilitator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
file/object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
files versus objects . . . . . . . . . . . . . . . . . . . . . . . 32
foldl (higher–order function). . . . . . . .61, 71
framework
Lua as a . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

framework integration . . . . . . see integration,
framework

function
closure. . . . . . . . . . . . . . . . . . . . . . . . . . .25, 41
higher order . . . . . . . . . . . . . . . . . . . . . 25, 41

functional programming . . . . . . . . . . . . . . . . . 50

G
garbage collection . . . . . . . . . . . . . . . . . . . . 76, 98
multi–level . . . . . . . . . . . . . . . . . . . . . . . . . . 98

GEFTool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
get origin list (method) . . . . . . . . . . . . . 166
GOODSTEP . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
granularity . . . . . . . . . . . . . . . . . . . . . . .20, 49, 94
3 levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

289



Appendix INDEX

interaction with . . .
behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 59
client-server architecture . . . . . . . . . . 93
control integration . . . . . . . . . . . . . . .112
DVC (Dynamic View Connector) .151
evolution . . . . . . . . . . . . . . . . . . . . . . . . 177
exception handling . . . . . . . . . . . . . . . .64
integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 75
meta modeling . . . . . . . . . . . . . . . . . . . . 51
multi user capability . . . . . . . . . . . . .124
persistence . . . . . . . . . . . . . . . . . . . . . . . .52

guard
dynamically attached . . . . . . . . . . . . . . . . 69
implementing behavior . . . . . . . . . . . . . . 77
operational . . . . . . . . . . . . . . . . . . . . . . . . . . 71
restrictive . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

guarded attribute . . . . . . . . . . . . . . . . . . .68, 156

H
H–PCTE
server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
HTML contents . . . . . . . . . . . . . . . . . . . . . . . . . 75
HTML-description . . . . . . . . . . . . . . . . . . . . . . .75

I
immutable objects . . . . . . . . . . . . . . . . . . . . . . . 59
improper modification . . . . . . . . . . . . . 122, 124
inconsistency
tolerating . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

incrementally . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
indirect modification . . . . . . . . . . 109, 169, 188
indirect reference . . . . . . . . . . . . . . . . . . . 75, 170
inheritance
multiple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

integration . . . . . . . . . . . . . . . . . . . . . . . . . 84, 101
control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
framework. . . . . . . . . . . . . . . . . . . . . . . . . .102
presentation . . . . . . . . . . . . . . . . . . . . . . . . 102
process . . . . . . . . . . . . . . . . . . . . 58, 102, 262
tool–to–user . . . . . . . . . . . . . . . . . . . . . . . . 103

integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
interaction with . . .
behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 76
client-server architecture . . . . . . . . . . 98
common services . . . . . . . . . . . . . . . . .169

control integration . . . . . . . . . . . . . . .113
DVC (Dynamic View Connector) .154
evolution . . . . . . . . . . . . . . . . . . . . . . . . 177
exception handling . . . . . . . . . . . . . . . .77
granularity . . . . . . . . . . . . . . . . . . . . . . . .75
meta modeling . . . . . . . . . . . . . . . . . . . . 71
multi user capability . . . . . . . . . . . . .127
persistence . . . . . . . . . . . . . . . . . . . . . . . .73
referential . . . . . . . . . . . . .35, 37, 71–75, 98
semantical . . . . . . . . . . . . . . . . . . . . . . . . . . .67
structural . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

J
JAVA TOOL KIND (class) . . . . . . . . . . . . . . . . . 187

K
keep–alive links . . . . . . . . . . . . . . . . . . . . . . . . . . 98

L
launching of tools . . . . . . . . . . . . . 123, 161, 165
lifting. . . . . . . . . . . . . . . . . . . . . . . . .139, 141, 147
declared type. . . . . . . . . . . . . . . . . . . . . . .158

link
categories (PCTE) . . . . . . . . . . . . . . . . . . 35
reverse. . . . . . . . . . . . . . . . . . . . . . . . . . .35, 57

List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
builtin class. . . . . . . . . . . . . . . . . . . . . . . .276
changed messages . . . . . . . . . . . . . . . . . . 112
encoded as term. . . . . . . . . . . . . . . . . . . . 112
interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
mapping to PCTE. . . . . . . . . . . . . . . . . . .36
of basic type . . . . . . . . . . . . . . . . . . . . . 37, 52
of reference type. . . . . . . . . . . . . . . . . . . . .36
of tuple type . . . . . . . . . . . . . . . . . . . . . . . . 36

local workspace. . . . . . . . . . . . . . . . . . . . . . . . .128
look&feel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Lua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
extending for OOP . . . . . . . . . . . . . . . . . . 23
suitability . . . . . . . . . . . . . . . . . . . . . . . . . . 174
tagmethods. . . . . . . . . . . . . . . . . . . . . . . . . .41

Lua/P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
classes
internal structure. . . . . . . . . . . . . . . . . .61
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

M
mail delivery. . . . . . . . . . . . . . . . . .123, 125, 194

290



Index Appendix

marshalling . . . . . . . . . . . . . . . . 86, 93, 101, 261
message
workbench-tool . . . . . . . . . . . . . . . . . . . . . . 87

message channel . . . . . . . . . . . . . . . . . . . . . . . . . 84
message pattern . . . . . . . . . . . . . . . . . . . . . . . . 104
message server . . . . . . . . . . . . . . . . . . . . . . . . . . .85
message types . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
MESSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
meta model
boot process . . . . . . . . . . . . . . . . . . . . . 61, 64
implementing the mapping Lua/P

→PCTE . . . . . . . . . . . . . . . . . . . . . . . . 41
mapping types between Lua/P and PCTE
36

meta modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 19
interaction with . . .
behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 56
client-server architecture . . . . . . . . . . 91
control integration . . . . . . . . . . . . . . .110
DVC (Dynamic View Connector) .149
evolution . . . . . . . . . . . . . . . . . . . . . . . . 176
exception handling . . . . . . . . . . . . . . . .63
granularity . . . . . . . . . . . . . . . . . . . . . . . .51
integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 71
multi user capability . . . . . . . . . . . . .122
persistence . . . . . . . . . . . . . . . . . . . . . . . .36

meta program . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
method
creation – . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101, 150
of functions . . . . . . . . . . . . . . . . . . . . . . . . . 59

MSG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
grammar . . . . . . . . . . . . . . . . . . . . . . . 87, 158

multi user capability . . . . . . . . . . . . . . . . . . . 121
interaction with . . .
behavior . . . . . . . . . . . . . . . . . . . . . . . . .125
client-server architecture . . . . . . . . .127
common services . . . . . . . . . . . . . . . . .170
control integration . . . . . . . . . . . . . . .132
DVC (Dynamic View Connector) .160
evolution . . . . . . . . . . . . . . . . . . . . . . . . 178
exception handling. . . . . . . . . . . . . . .126
granularity . . . . . . . . . . . . . . . . . . . . . . 124
integrity . . . . . . . . . . . . . . . . . . . . . . . . . 127
meta modeling . . . . . . . . . . . . . . . . . . .122
persistence. . . . . . . . . . . . . . . . . . . . . . .123

multi–threading . . . . . . . . . . . . . . . . . . . . . . . . . 80

O
O2

(OODBMS) . . . . . . . . . . . . . . . . . . . . . . . . . 44
views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

O2 (database) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
O2 (OODBMS) . . . . . . . . . . . . . . . . . . . . . . . . 247
object initialization . . . . . . . . . . . . . . . . . . . . . . 55
object inlining . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
object management system . . . . . . . . . . . . . 106
Object Teams . . . . . . . . . . . . . . . . 212, 260, 266
OODBMS (object-oriented database man-

agement system) . . . . . . . . . . . . . . . . 33
OOPL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
optimization
number of objects. . . . . . . . . . . . . . . .37, 49

orphanage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
OS processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

P
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
in Lua/P . . . . . . . . . . . . see Lua/P, packages

packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
pattern matching . . . . . . . . . . . . . . . . . . . . . . . . 59
PCTE
data model. . . . . . . . . . . . . . . . . . . . . . . . . .34
DDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
SDS . . . . . . . . . . . . . . . . . . . . . . . . . . . see SDS

performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
interaction with . . .
common services . . . . . . . . . . . . . . . . .168
interaction with . . .
behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 58
client-server architecture . . . . . . . . . . 93
control integration . . . . . . . . . . . . . . .111
DVC (Dynamic View Connector) .150
evolution . . . . . . . . . . . . . . . . . . . . . . . . 176
exception handling . . . . . . . . . . . . . . . .64
granularity . . . . . . . . . . . . . . . . . . . . . . . .52
integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 73
meta modeling . . . . . . . . . . . . . . . . . . . . 36
multi user capability . . . . . . . . . . . . .123

PERSON (class) . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
PIROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19–226

291



Appendix INDEX

architecture . . . . . . . . . . . . . . . . . . . . . . . . . 84
pirol URL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
PIROLWEB . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
pjEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
point-to-point communication . . . . . . . . . . . see

communication
PON (PIROL Object Navigator) . . . . . . . . 184
preprocessor
for Lua/P . . . . . . . . . . . . . . . . . . . . . . . . 23, 75

presentation integration . . . . see integration,
presentation

previous chapter . . . . . . . . . . . . . . . . . . . . . . . .104
process integration. .see integration, process
process programs . . . . . . . . . . . . . . . . . . . . . . . 106
PROCESSES (ROCM package). . . . . . . .20, 263
profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
prototype based languages . . . . . . . . . . . . . . . 32
proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
extended . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

proxy classes . . . . . . . . . . . . . . . . . . . . . . . . . 87, 92
proxy generator . . . . . . . . . . . . . . . . . . . . .94, 263
proxy objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Q
query
optimization for lists . . . . . . . . . . . . . . . 205

query (message type) . . . . . . . . . . . . . . . . 87, 87
options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

R
record
in Lua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

redefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
redirect (DVC construct) . . . . . . . . . . . 71, 144
redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
reference
indirect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

reference glossary . . . . . . . . . . . . . . . . . . . 19, 174
referential integrity see integrity, referential,

93
reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
repository language . . . . . . . . . . . . . . . . . . 23, 36
repository object identifier . . . . . . . see ROID
representative
environment. . . . . . . . . . . . . . . . . . . . . . . .132
tool . . . . . . . . . . . . . . . . . .107, 111, 132, 262

user . . . . . . . . . . . . . . . . . . . . . . 122, 132, 262
reverse link . . . . . . . . . . . . . . . . . . . . . . . . . . 35, 57
RO (repository object) . . . . . . . . . . . . . . . . . . . 20
ROCM (RO class model) . . . . . . . . . . . . . . . . 20
ROID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92, 93
roles . . . . . . . . . . . . . . . . . . . . . . . . . .102, 180, 252
roll-back . . . . . . . . . . . . . . . . . . . . . . . . 80, 98, 113
roset (message type) . . . . . . . . . . . 87, 87, 112
options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

rules . . . . . . . . . . . . . . . . . . . . . . . . see consistency

S
scheduling
of method calls . . . . . . . . . . . . . . . . . . . . . . 85

scripting in Lua/P . . . . . . see Lua/P, scripting
SDS (schema definition set) . . . . . . . . . 36, 151
seamlessness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
segment . . . . . . . . . . . . . . . . . 40, 43, 59, 93, 128
semantical integrity . . . . . . . . . . . . . . . . . 67, 156
separation of concerns . . . . . . . . . . . . . . . . . . . . 5
server
H–PCTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

set
in Lua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

small objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
smart lifting . . . . . . . . . . . . . . . . . . . . . . . 147, 153
software life-cycle . . . . . . . . . . . . . . . . . . . . . . . . 19
SOURCECODE (class) . . . . . . . . . . . 194, 251, 263
structural integrity . . . . . . . . . . . . . . . . . . . . . . 75
subjectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
syntax
attribute guards. . .see attribute guards,
syntax

concrete (of Lua/P) . . . . . . . . . . . . . . 23, 274
methods
in Lua . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
in Lua/P . . . . . . . . . . . . . . . . . . . . . . . . . . 56
tables in Lua . . . . . . . . . . . . . . . . . . . 24, 209
term access . . . . . . . . . . . . . . . . . . . . . . . . . . 51

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

T
table
Lua data type . . . . . . . . . . . . . . . . . . . . . . . 24

tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
tagmethods . . . . . . . . . . . . . . . . . . . . . . 28, 29, 51

292



Index Appendix

terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
tool integration . . . . . . . . . . . . . . . . . . . . . . . . . 170
tool representative . . . . . . . see representative
tool execute (message type) . . . . . . .87, 107
TOOL POOL (class) . . . . . . . . . . . . . 111, 132, 166
TOOLS (ROCM package) . . . . . . . . . . .110, 161
tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84, 183
ToolTalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
transaction . . . . . . . . . . . . . . 53, 64, 95, 98, 195
abort . . . . . . . . . . . . . . . . . . . . . . . 64, 75, 113
for requests. . . . . . . . . . . . . . . . . . . . . . . . . .64
roll-back . . . . . . . . . . . . . . . 77, see roll-back

transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
transient
attribute . . . . . . . . . . . . . . . . . . . . . . . 40, 117
restricted use . . . . . . . . . . . . . . . . . . 40, 93
class . . . . . . . . . . . . . . . . . . . . . . . . 40, 75, 168
object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

transit context menu . . . . . . . . . . . . . . . . . . . 190
traversal
hybrid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

trigger-deliver-react . . . . . . . . . . . . . . . . . . . . 163
t select (Lua/P function). . . . . . . . . . .59, 105
type constructors . . . . . . . . . . . . . . . . . . . . . . . . 50
type errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
typing
static . . . . . . . . . . 23, 71, 77, 127, 153, 212

U
unparsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
update recursion . . . . . . . . . . . . . . 108, 188, 245
upgrading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
user communication . . . . . . . . . . . . . . . . . . . . 103
user representative . . . . . . . see representative
user session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

V
value semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 51
variable
in Lua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
views
deriving . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
in databases . . . . . . . . . . . . . . . . . . 180, 242

virtual file system. . . . . . . . . . . . . . . . . . .21, 197
virtual repository . . . . . . . . . . . . . . . . . . . . . . . 137
visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

W
weak references . . . . . . . . . . . . . . . . . . . . . . . . . . 99
wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
workbench . . . . . . . . . . . . . . . . . . . . . . . . . . . 56, 84
WWW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Z
ZooEd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

293



Appendix INDEX

294



Appendix E

Bibliography

[AAA+94] S. Abiteboul, M. Adiba, J. Arlow, P. Armenise, S. Bandinelli, L. Baresi, P. Breche,
F. Buddrus, C. Collet, P. Corte, Th. Coupaye, C. Delobel, W. Emmerich, G. Fer-
ran, F. Ferrandina, A. Fuggetta, C. Ghezzi, S. Lautemann, L. Lavazza, J. Madec,
M. Phoenix, S. Sachweh, W. Schäfer, C. Santos, G. Tigg, and R. Zicari. The
GOODSTEP project: General object-oriented database for software engineering
processes. In Proc. of the 1st Asian Pacific Software Engineering Conf, pages 10–
19. IEEE Computer Society Press, 1994. 44, 129

[AB91] S. Abiteboul and A. Bonner. Objects and views. In Proc. ACM SIGMOD Confer-
ence on Management of Data, pages 238–247, 1991. 233, 248

[ACF97] V. Ambriola, R. Conradi, and A. Fuggetta. Assessing process-centered soft-
ware engineering environments. Transactions of Software Engineering Methodology
(TOSEM), 6(3):282–328, July 1997. 58

[ACP02] Proc. of Workshop on Aspects, Components, and Patterns for Infrastructure Soft-
ware, held at [AOS02]. Technical Report 2002-02, University of British Columbia,
2002. 259, 299

[AG97] K. Arnold and J. Gosling. The Java programming language. Addison Wesley, 1997.
179

[ALN00] U. Aßmann, A. Ludwig, and R. Neumann. COMPOST project home page.
http://i44w3.info.uni-karlsruhe.de/∼compost, March 2000. 239

[AOS02] Proc. of First International Conference on Aspect Oriented Software Development,
http://trese.cs.utwente.nl/aosd2002/index.php, 2002. ACM Press. 259, 295,
296, 297, 299, 300, 301, 302, 305

[AR92] E. Andersen and T. Reenskaug. System design by composing structures of interact-
ing objects. In Proc. of ECOOP’92, number 615 in LNCS, pages 133–152. Springer
Verlag, 1992. 253

[Asp] PARC Xerox. AspectJ Language Specification. available from http://aspectj.org.
265

295



Appendix BIBLIOGRAPHY

[AYBdS96] S. Amer-Yahia, S. Brèche, and C. Souza dos Santos. Object views and updates. In
Proc. of Journées Bases de Données Avanceées (BDA’96), 1996. 248, 249

[Bal91] Robert Balzer. Tolerating inconsistency. In Proc. of the 13th ICSE, pages 158–165,
Austin, Texas„ 1991. IEEE Computer Society Press. 232, 251

[Bar98] Daniel Bardou. Roles, Subjects and Aspects: How do they relate?, July 1998.
Position paper at the Aspect Oriented Programming Workshop, ECOOP’98, Brus-
sels, Belgium. Extended abstract published in ECOOP’98 Workshop Reader, Serge
Demeyer and Jan Bosch, editors, Lecture Notes in Computer Science (LNCS), vol.
1543, Springer, 418–419, December 1998. 252

[Bar02] Joachim Barheine. Strategien zur transparenten Optimierung verteilter Kompo-
nentensysteme am Beispiel von Enterprise Java Beans. Diploma thesis, Technical
University Berlin, 2002. 158

[BAWY95] L. Bergmans, M. Aksit, K. Wakita, and A. Yonezawa. An object-oriented model
for extensible concurrent systems: The composition filters approach. Dept. of
Computer Science, University of Twente, 1995. 106, 252

[BD96] D. Bardou and C. Dony. Split Objects: a Disciplined Use of Delegation within
Objects. In Proceedings of the 11th Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’96), pages 122–137, San Jose,
California, USA, October 1996. Published as ACM SIGPLAN Notices 31(10). 253

[BFW91] A. Brown, P. Feiler, and K. Wallnau. Understanding integration in a software
development environment. Technical Report 31, CMU/SEI, 1991. 103, 107

[BGHHm98] R. Buessow, W. Grieskamp, W. Heicking, and S. Herrmann. An open environment
for the integration of heterogeneous modelling techniques and tools. In Proc. of the
International Workshop on Current Trends in Applied Formal Methods, number
1641 in LNCS. Springer, October 1998. 8, 49, 89, 151, 183, 184, 197

[Bil00] Frank Bilgi. Konzepte und Sprachen für die Software-Architektur: Vergleichende
Anwendung auf die Software-Entwicklungsumgebung PIROL. Diploma thesis,
Technical University Berlin, Fachbereich Informatik, Sekr. 5-6, 2000. 113

[BM02] E. Baniassad and G. Murphy. Managing crosscutting concerns during software
evolution tasks: An inquisitive study. In AOSD’02 [AOS02], pages 120–126. 225

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1999. 191, 232

[Bro92] Alan W. Brown. Control integration through message passing in a software devel-
opment environment. Technical Report 35, CMU/SEI, 1992. 104, 135

[BZ89] R. Budde and H. Züllighoven. Software-Werkzeuge in einer Programmierwerkstatt.
PhD thesis, Technical University Berlin, D83, 1989. 257

[C#01] C# Language Specification. Microsoft Press, 2001. 69

296



BIBLIOGRAPHY Appendix

[CAB+94] D. Coleman, P. Arnold, St. Bodoff, Ch. Dollin, H. Gilchrist, F. Hayes, and P. Jere-
maes. Object–Oriented Development: The Fusion Method. Prenctice–Hall, 1994.
19

[Cag90] M. Cagan. HP SoftBench: An architecture for a new generation of software tools.
Hewlett-Packard Journal, 41(2), 1990. 104

[CGL+94] R. Cleaveland, J.N. Gada, P.M. Lewis, S.A. Smolka, O. Sokolsky, and S. Zhang. The
concurrency factory — practical tools for specification, simulation, verification, and
implementation of concurrent systems. In Proceedings of the DIMACS Workshop
on Specification of Parallel Algorithms, Princeton, NJ, May 1994. 184

[CKM+02] P. Costanza, G. Kniesel, K. Mehner, E. Pulvermüller, and A. Speck (eds.). Proc. of
2nd workshop on aspect-oriented software development. IAI-TR 2002-1, Rheinische
Friedrich-Wilhelms-Universität Bonn, 2002. 299

[Cop99] James Coplien. personal communication, 1999. 10

[CoS00] University of Wollongong, Australia. Proc. of CoSET workshop at the 22nd ICSE,
2000. 299, 306

[CRI97] R. Cerqueira, N. Rodriguez, and R. Ierusalimschy. Binding an interpreted language
to CORBA. In II Simpósio Brasileiro de Linguagens de Programação, pages 23–36,
Campinas, September 1997. 30

[CW02] S. Clarke and R. Walker. Towards a standard design language for AOSD. In
AOSD’02 [AOS02], pages 113–119. 239

[CY91] P. Coad and E. Yourdon. Object-oriented Design. Yourdon Press (Prentice Hall),
New Jersey, 1991. 19, 255

[DBW00] W. Siberski D. Bäumer, D. Riehle and M. Wulf. Pattern Languages of Program
Design 4, chapter Role Object, pages 15–32. Addison-Wesley, 2000. 252

[DK95] D. Däberitz and U. Kelter. Rapid prototyping of graphical editors in an open SEE.
In SEE’95 [SEE95], pages 61–72. 131, 247

[DoD80] Requirements for Ada programming support environments — Stoneman. Technical
report, Department of Defense, 1980. 33

[DW98] D. D’Souza and A. Wills. Objects, Components, and Frameworks with UML – The
Catalysis Approach. Addison-Wesly, 1998. 239

[EAMP97] W. Emmerich, J. Arlow, J. Madec, and M. Phoenix. Tool construction for the
British Airways SEE with the O2 OODBMS. Theory and Practice of Object Sys-
tems, 3(3), 1997. 45, 77, 105, 129, 248

[Ecl] Eclipse project home page. http://www.eclipse.org. 112, 169

[ECM90] Portable Common Tool Environment (PCTE) ECMA-149. Abstract specification,
European Computer Manufacturers Association (ECMA), June 1990. 33, 233, 241,
264

297



Appendix BIBLIOGRAPHY

[ECM93] Reference Model for Frameworks of Software Engineering Environments – ECMA
TR/55 3rd edition. Technical report, European Computer Manufacturers Associa-
tion (ECMA), June 1993. 8, 101, 102, 104, 245

[EKS93] W. Emmerich, P. Kroha, and W. Schäfer. Object-oriented database management
systems for the construction os CASE environmnets. In V. Marik, J. Lazansky,
and R. R. Wagner, editors, Proc. of the 4th Int. Conf. DEXA ’93, volume 720 of
LNCS, pages 631–642. Springer Verlag, 1993. 44, 45, 208, 233

[Emm96] Wolfgang Emmerich. Tool specification with GTSL. In Proc. 8th Int. Workshop
on Software Specification and Design, pages 26–35, Schloß Velen, Germany, 1996.
IEEE Computer Society Press. 44, 45, 68, 78, 80, 251

[ESW93] W. Emmerich, W. Schäfer, and J. Welsh. Databases for software engineering en-
vironments - the goal has not yet been attained. In I. Sommerville and M. Paul,
editors, Proc. of the 4th European Software Engineering Conference, volume 717 of
LNCS, pages 145–162. Springer, 1993. 33, 34, 45, 129, 213

[Fit00] Jeremy Fitzhardinge. userfs project home page.
http://www.goop.org/∼jeremy/userfs, 2000. 197

[Fow99a] Martin Fowler. Dealing with roles. Working draft:
http://www.martinfowler.com/apsupp/roles.pdf, April 1999. 252

[Fow99b] Martin Fowler. Refactoring: Improving the Design of existing Code. Addison-
Wesley, 1999. 174

[Fro89] B. Fromme. HP encapsulator: bridging the generation gap. Hewlett–Packard Jour-
nal, 41(3):59–68, 1989. 104

[Gar87] David Garlan. Views for Tools in Integrated Environments. PhD thesis, Carnegie
Mellon University, May 1987. 137, 180, 241, 242, 245, 264

[GB80] I. Goldstein and D. Bobrow. Extending object oriented programming in smalltalk.
In Proceedings of the Lisp Conference, Stanford, CA., 1980. 233

[GBCGM97] G. Guerrini, E. Bertino, B. Catania, and J. Garcia-Molina. A formal model of
views for object–oriented database systems. Theory and Practice of Object Systems,
3(3):157–183, 1997. 250, 251

[GHJK95] B. Groth, S. Herrmann, S. Jähnichen, and W. Koch. Project Integrating Refer-
ence Object Library (PIROL): An object–oriented multiple–view SEE. In SEE’95
[SEE95], pages 184–193. 229, 262

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements
of Reusable Object-Oriented Software. Addison Wesley, 1995. 38, 57, 87, 92, 151,
191, 235, 257

[GKN92] D. Garlan, G. Kaiser, and D. Notkin. Using tool abstraction to compose systems.
IEEE Computer, pages 30–38, June 1992. 257, 258

298



BIBLIOGRAPHY Appendix

[GR83] A. Goldberg and D. Robson. Smalltalk 80: The Language and its Implementation.
Addison–Wesley, 1983. 209

[GR02] R. Green and A. Rashid. An aspect-oriented framework for schema evolution in
object-oriented databases. In Proc. of Workshop on Aspects, Components, and
Patterns for Infrastructure Software, held at [AOS02] [ACP02]. 176, 259

[Gro94] Boris Groth. Project Integrating Reference Object Library (PIROL): Concepts for
integrating an object oriented generic process model into a software development
environment. Diploma thesis, Technical University Berlin, Fachbereich Informatik,
Sekr. 5-6, April 1994. 20, 58

[Grü97] Patrick Grüger. Konzeption und prototypische Realisierung der Version- und Kon-
figurationsverwaltung in einer Software-Entwicklungsumgebung. Diploma thesis,
Technical University Berlin, Fachbereich Informatik, Sekr. 5-6, Aug. 1997. 129

[Gyb02] Kris Gybels. Using a logic language to express cross-cutting through dynamic
joinpoints. In [CKM+02], pages 49–54, 2002. 258

[Haa] Oliver Haase. Ntt, an algebraic query language for H-PCTE.
http://pi.informatik.uni-siegen.de/ntt. 43

[Hac02] Florian Hacker. Aspektorientiertes Entwerfen mit ”Aspectual Collaborations”- En-
twicklung eines grafischen Editors für die repository-basierte Entwicklungsumge-
bung PIROL. Diploma thesis, Technical University Berlin, Fachbereich Informatik,
Sekr. 5-6, August 2002. 191

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, June 1987. 183

[Hau00] Michael Haupt. JADE: Entwurf und Implementierung eines Sprachkonstruktes zur
dynamischen Komposition wiederverwendbarer Softwaremodule als Erweiterung
der Programmiersprache Java. Diploma thesis, Universität-Gesamthochschule
Siegen, www.st.informatik.tu-darmstadt.de/projects/JADE/, December 2000. 256

[Hen95] Andreas Henrich. P-OQL: and OQL-oriented query language for PCTE. In SEE’95
[SEE95], pages 48–60. 43

[Her93] Stephan Herrmann. Objektorientierter Entwurf und Implementierung eines Sys-
tems z ur Verzeichnisverwaltung anhand der Kriterien von STEPS. Student thesis,
Technische Universität Berlin, Fachbereich Informatik, Sekr FR 5-6, February 1993.
257

[Her94] Stephan Herrmann. Project Integrating Reference Object Library (PIROL): Devel-
opment of a workspace for integration of tools into a software development environ-
ment for consistent object oriented modelling. Diploma thesis, Technical University
Berlin, Franklinstr. 28/29 D-10587 Berlin, Germany, june 1994. 23, 208

[Her00] Stephan Herrmann. Lua/P – a repository language for flexible software engineer-
ing environments. In CoSET 2000 [CoS00]. 23

299



Appendix BIBLIOGRAPHY

[Her02a] Stephan Herrmann. Composable designs with UFA. In Workshop on Aspect-
Oriented Modeling with UML at [AOS02], 2002. 239

[Her02b] Stephan Herrmann. Object teams: Improving modularity for crosscutting collabo-
rations. In Proc. Net Object Days 2002, www.netobjectdays.org, 2002. 157

[HJPP02] W.-M. Ho, J.-M. Jézéquel, F. Pennaneac’h, and N. Plouzeau. A toolkit for weaving
aspect oriented UML designs. In AOSD’02 [AOS02], pages 99–105. 239

[HLN+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. Statemate: A working environment for the devel-
opment of complex reactive systems. IEEE Transactions on Software Engineering,
16(4), April 1990. 19, 183

[HM00] S. Herrmann and M. Mezini. PIROL: A case study for multidimensional separation
of concerns in software engineering environments. In Proc. of OOPSLA 2000. ACM,
2000. 137

[HM01] S. Herrmann and M. Mezini. Combining composition styles in the evolvable lan-
guage LAC. In Proc. of ASoC workshop at the 23nd ICSE, 2001. 265, 266

[HO93] W. Harrison and H. Ossher. Subject-oriented programming: a critique of pure
objects. In Proc. of OOPSLA’93, pages 411–428. ACM, 1993. 180, 241, 254, 255

[HOT97] W. Harrison, H. Ossher, and P. Tarr. Using delegation for software and subject
composition. Technical Report RC 20946 (92722) 5AUG97, IBM Research Division,
1997. 153

[HSS89] W. Harrison, J. Shilling, and P. Sweeney. Good news, bad news: Expersience
building a software development environment using the object-oriented paradigm.
In Proc. OOPSLA ’89, pages 85–94. ACM, 1989. 216, 251

[HSSS96] F. Huber, B. Schätz, A. Schmidt, and K. Spies. AutoFocus - a tool for distributed
systems specification. In FTRTFT’96 – Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 1135 of LNCS, pages 467–470. Springer Verlag, 1996. 184

[IdFC96] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. Lua—an extensible extension
language. Software: Practice and Experience, 26(6):635–652, 1996. 23, 24, 28, 208

[Jac95] Daniel Jackson. Structuring Z specifications with views. Transactions on Software
Engineering and Methodology, 4(4):365–389, 1995. 238

[KBPO+95] B. Krieg-Brückner, J. Peleska, E.-R. Olderog, D. Balzer, and A. Baer. Universelle
Entwicklungsumgebung für Formale Methoden (UniForM Workbench). Informatik
Bericht 8/95, Universität Bremen, 1995. 170, 183

[Kee89] S. E. Keene. Object-Oriented Programming in Common LISP: A Programmer’s
Guide to CLOS. Addison–Wesley, Reading, 1989. 20, 78, 238

[Kel92] Udo Kelter. H–PCTE— a high–performance object management system for system
development environments. In Proc. COMPSAC ’92, pages 45–50, Chicago, Illinois,
September 1992. PCTE product repository. 35, 245

300



BIBLIOGRAPHY Appendix

[KFS95] M. Klose, V. Friesen, and M. Simons. Smile — a simulation environment for energy
systems. In A. Sydow, editor, Proc. of 5th International IMACS-Symposium on
Systems Analysis and Simulation (SAS’95), pages 503–506. Gordon and Breach
Publishers, 1995. 189

[KHH+01] G. Kiczales, E. Hisdale, J. Hugunin, M. Kersten, and J. Palm. An overview of
AspectJ. In Proc. of 15th ECOOP, number 2072 in LNCS, pages 327–353. Springer–
Verlag, 2001. 78, 238, 258

[Kic94] Gregor Kiczales. Why are black boxes so hard to reuse? Transcript from Presen-
tation at OOPSLA’94, 1994. 12, 237

[Kla00] Marcus Klar. A Semantical Framework for the Integration of Object-oriented Mod-
eling Languages. PhD thesis, Technical University Berlin, July 2000. 19

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M. Loingtier, and
J. Irwin. Aspect Oriented Programming. In Proceedings of ECOOP ‘97, number
1241 in LNCS, pages 220–243, 1997. 231, 252

[Kni99] Günter Kniesel. Type-safe delegation for run-time component adaptation. In Proc.
of ECOOP’99, number 1628 in LNCS, pages 351–366, 1999. 253

[KP88] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-controller
user interface paradigm in smalltalk-80. JOOP, Aug./Sept. 1988. 105, 106, 257

[KR96] J. Kuno and E. Rundensteiner. The MultiView OODB view system: Design and
implementation. Theory and Practice of Object Systems, 2(3):203–225, 1996. 248,
249

[Kru00] Ralf Kruber. Werkzeugunterstützung für prozeßmodellbasierte Kommunikation in
der Software-Entwicklungsumgebung PIROL. Diploma thesis, Technical University
Berlin, Fachbereich Informatik, Sekr. 5-6, December 2000. 121, 167, 192

[Lam94] Andreas Lampen. Attributierte Softwareobjekte als Basis zur Datenmodellierung
in Software-Entwicklungsumgebungen. Dissertation, Technische Universität Berlin,
D83, 1994. 42, 58

[Läm02] Ralf Lämmel. A semantical approach to method-call interception. In AOSD’02
[AOS02], pages 41–55. 258

[Lie86] Henry Liebermann. Using prototypical objects to implement shared behavior in
object-oriented systems. In Proc. of OOPSLA 86, pages 214–223. ACM Sigplan
Notices, 1986. 252

[LLM99] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with aspectual components.
In Technical Report, Northeastern University, April 1999. 265

[LN02] W. Löwe and M. Noga. Scenario-based connector optimization. In J. Bishop, editor,
Proc. 1st International Working Conference on Component Deployment (CD 2002),
number 2370 in LNCS, pages 170–184. Springer–Verlag, 2002. 244

301



Appendix BIBLIOGRAPHY

[Mat02] Christian Mattick. Editieren von Quelltexten in einer Softwareentwicklungsumge-
bung (PIROL) mit einheitlichem Repository. Diploma thesis, Technical University
Berlin, Fachbereich Informatik, Sekr. 5-6, July 2002. 110, 194, 195, 199, 244

[Mem02] Juri Memmert. Employing AOSD technologies in large companies. Presentation in
a session on “Early Industrial Experience With AOSD” at [AOS02], 2002. 240

[Mey92] Bertrand Meyer. Eiffel: The Language. Prentice Hall International, New York,
1992. 38, 55, 63, 77, 208

[Mey97] Bertrand Meyer. Object oriented software construction. Prentice Hall International,
New York, second edition, 1997. 9, 12, 19, 69, 260

[MH01] M. Mezini and M. Haupt. Neue Paradigmen des Softwareengineering: Integra-
tionsorientierte Programmierung. ObjektSpektrum, Feb. 2001. 230

[ML98] M. Mezini and K. Lieberherr. Adaptive Plug-and-Play Components for evolutionary
software development. In Proc. OOPSLA’98, volume 33 of SIGPLAN Notices, pages
97–116. ACM, 1998. 139, 140, 255, 264, 265

[MMD+99] H. Mili, A. Mili, J. Dargham, O. Cherkaoui, and R. Godin. View programming:
Towards a framework for decentralized development and execution of OO programs.
In Proc. of TOOLS’99, 1999. 158

[MSL01] M. Mezini, L. Seiter, and K. Lieberherr. Software Architecture and Component
Technology: State of the Art in Research and Practice, chapter Component Inte-
gration with Pluggable Composite Adapters. Kluwer Academic Publishers, 2001.
137, 139, 255

[Mye83] B. A. Myers. Incense: A system for displaying data structures. Computer Graphics,
17(3):115–125, July 1983. 106, 258

[NJB97] J. Neuhaus, W. Janzen, and A. Bäcker. A Case Study in Repository Selection
for a distributed Software Engineering Environment. In Proceedings of the 8th
Conference on Software Engineering Environments (SEE‘97), Cottbus, Germany,
April 1997. 245

[Nor97] A. Nordwig. Entwicklung einer Notation und eines grafischen Editors für den ob-
jektorientierten Entwurf hybrider Systeme. Master’s thesis, TU Berlin, 1997. 135,
178, 188

[Obj98] Object Design, Inc, Burlington, MA. ObjectStore Advanced C++ API User Guide,
March 1998. 180

[OH90] H. Ossher and W. Harrison. Support for change in RPDE3. In Proc. 4th ACM
SIGSOFT Symposium on Software Development Environments, 1990. 251

[OKK+96] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal. Specifying subject-
oriented composition. Theory and Practice of Object Systems, 2(3):179–202, 1996.
137

302



BIBLIOGRAPHY Appendix

[OM01] K. Ostermann and M. Mezini. Object-oriented composition untangled. In Proc. of
OOPSLA 2001, volume 36 of Sigplan Notices, pages 283–299. ACM, 2001. 79

[OMA99] CORBA Components – volume I, joint revised submission. OMG Document
orbos/99-07-01, Object Management Group, August 1999. 236, 252

[OMG97] The Common Object Request Broker: Architecture and Specification, revision
2.1. TC Document formal/97.9.1, OMG, 1997. url: http://www.omg.org/cgi-
bin/doclist.pl. 104

[OMG99] UML Semantics, chapter 2. OMG RTF committee,
http://www.rational.com/uml, version 1.3 edition, June 1999. 19, 68

[Orl01] Doug Orleans. Separating behavioral concerns with predicate dispatch, or, if state-
ment considered harmful. InWorkshop Advanced Separation of Concerns in Object-
oriented Systems at OOPSLA’01, 2001. 260

[Ost81] Leon J. Osterweil. Software environment research: Directions for the next five
years. IEEE Computer, 14(4):35–43, 1981. 213

[Ous94] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994. 23, 26, 208

[OW97] M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In
Proc. 24th ACM Symposium on Principles of Programming Languages, January
1997. 49, 89, 94, 214

[Par72] David L. Parnas. On the criteria to be used in decomposing systems in modules.
Communications of the ACM, 15(12), 1972. 5, 231, 257

[Par74] David L. Parnas. On a ‘buzzowrd’: Hierarchical structure. In IFIP Congress 74,
pages 336–339. North Holland Publishing Company, 1974. 230

[Par75] David L. Parnas. Use of the concept of transparency in the design of hierarchically
structured systems. CACM, 18(7):401–408, 1975. 230

[Par78] David L. Parnas. Some software engineering principles. State of the art report on
structured analysis and design, Infotech Internation, 1978. 231

[Pas89] W. Paseman. Tools on a new level. Unix Review, 7(6):68–77, June 1989. 104

[Pau96] L. C. Paulson. ML for the working programmer. Cambridge University Press, 2nd
edition edition, 1996. 61

[Pau94] L. C. Paulson. Isabelle – A Generic Theorem Prover, volume 828 of LNCS.
Springer-Verlag, 94. 183

[PC86] D. Parnas and P. Clements. A rational design process: How and why to fake it.
Transactions on Software Engineering, SE-12(2):251–257, 1986. 15, 230

[PCT95] Amendment 1 to ISO/IEC 13719-1: Fine-grain object extensions. Technical report,
International Organization for Standardization (ISO), 1995. 49

303



Appendix BIBLIOGRAPHY

[Pet00] Jan Peter. Enwicklung eines Repository–fähigen mehrsprachigen Quelltexteditors
für objektorientierte Programmiersprachen. Diploma thesis, Technical University
Berlin, Fachbereich Informatik, Sekr. 5-6, 2000. 20, 194

[PK95] Z. Peng and Y. Kambayashi. Deputy mechanisms for object-oriented databases. In
Proc. IEEE International Conference on Data Engineering, pages 333–340, 1995.
249

[Pla99] Dirk Platz. Ein Werkzeugtransaktionskonzept für Objekt-Managementsysteme als
Basis von Software-Entwicklungsumgebungen. PhD thesis, Siegen University, 1999.
131

[Pre95] Wolfgang Pree. Design patterns for object–oriented software development. Addison–
Wesley, New York, 1995. 211

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, New Jersey, 1991. 232

[Ree96] Trygve Reenskaug. Working with Objects – The OORAM Software Engineering
Method. Prentice Hall, 1996. 253

[Rei90] Steven P. Reiss. Connecting tools using message passing in the FIELD environment.
IEEE Software, 7(4):57–66, July 1990. 85, 104, 257

[Rei92] Fanny-Michaela Reisin. Kooperative Gestaltung in partizipativen Softwareprojekten,
volume 7 of XLI Informatik. Peter Lang, Frankfurt/Main; Berlin; Bern; New York;
Paris; Wien, 1992. 19

[Rei95] Steven P. Reiss. Program editing in a software development environment. Technical
report, Brown University, 1995. 194

[RIC] L. H. de Figueiredo R. Ierusalimschy and W. Celes. Reference manual of the pro-
gramming language Lua 4.0. http://www.tecgraf.puc-rio.br/lua/manual. 30

[RS91] J. Richardson and P. Schwarz. Aspects: extending objects to support multiple,
independent roles. In Proceedings of the 1991 ACM SIGMOD international con-
ference on management of data, 1991. 138, 180, 252

[RV98] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented extension to
ML. Theory And Practice of Objects Systems, 4(1):27–50, 1998. 20

[S+00] David Sweet et al. KDE 2.0 Development. Sams Publishing,
http://www.andamooka.org/index.pl?section=kde20devel, 2000. 170,
306

[SAD94] C. Santos, S. Abiteboul, and S. Delobel. Virtual schemas and bases. In Proc. of the
International Conference on Extending Database Technology, volume 779 of LNCS,
pages 81–93. Springer–Verlag, March 1994. 241, 247, 248, 264

[SB98] Y. Smaragdakis and D. Batory. Implementing layered designs with mixin layers. In
Proc. of ECOOP’98, number 1445 in LNCS, pages 550–570. Springer Verlag, 1998.
254

304



BIBLIOGRAPHY Appendix

[SBK86] M. Stefik, D. Bobrow, and K. Kahn. Integrating access-oriented programming into
a multiparadigm environment. IEEE Software, 3(1):10–18, Jan. 1986. 69, 257, 258

[SEE95] IEEE Computer Society Press. Proc. of SEE‘95, Noordwijkerhout, Holland, April
1995. Malcolm S. Verrall. 297, 298, 299, 305

[SHO95] S. Sutton, Jr., D. Heimbigner, and L. Osterweil. APPL/A: a language for software
process programming. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), 4(3):221–286, 1995. 68, 78, 251

[SHU02] D. Stein, S. Hanenberg, and R. Unland. A UML-based aspect-oriented design
notation for AspectJ. In AOSD’02 [AOS02], pages 106–112. 239

[SLU89] L. A. Stein, H. Lieberman, and D. Ungar. A shared view of sharing: The Treaty
of Orlando. In W. Kim and F. H. Lochovsky, editors, Object-Oriented Concepts,
Databases and Applications, pages 31–48. ACM Press/Addison-Wesley, Reading
(MA), USA, 1989. 252

[SM95] P. Steyaert and W. De Meuter. A marriage of class- and object-based inheritance
without unwanted children. In Proc. of ECOOP 95, number 952 in LNCS, pages
127–144. Springer Verlag, 1995. 253

[SN92] K. Sullivan and D. Notkin. Reconciling environment integration and software evolu-
tion. ACM Transactions on Software Engineering and Methodology, 1(3):229–268,
1992. 78, 239, 257

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Series in Computer Science.
Prentice Hall International, 2nd edition, 1992. 183

[SR02] S. Sutton, Jr. and I. Rouvellou. Modeling of software concerns in Cosmos. In
AOSD’02 [AOS02], pages 127–133. 225, 232, 240

[SS89] J. J. Shilling and P. F. Sweeney. Three steps to views: extending the object-oriented
paradigm. In Conference proceedings on Object-oriented programming systems, lan-
guages and applications, pages 353–361. ACM Press, 1989. 231, 241, 252

[SS95] S. Sachweh and W. Schäfer. Version management for tightly integrated software
engineering environments. In SEE’95 [SEE95], pages 21–31. 129

[Sta98] Bertram Stahl. Komponentenbasierte Entwicklung eines Browsers für das Repos-
itory einer Softwareentwicklungsumgebung. Diploma thesis, Technical University
Berlin, Fachbereich Informatik, Sekr. 5-6, Nov. 1998. 184

[Sta99] Victoria Stavridou. Integration in software intensive systems. Journal of Systems
and Software, 48(2):91–104, October 1999. 103

[Ste87] Lynn A. Stein. Delegation is inheritance. In Proc. OOPSLA’87, pages 138–146,
1987. 252

[Su91] J. Su. Dynamic constraints and object migration. In Guy M. Lohman, Amı́lcar
Sernadas, and Rafael Camps, editors, 17th International Conference on Very Large
Data Bases, September 3-6, 1991, Barcelona, Catalonia, Spain, Proceedings, pages
233–242. Morgan Kaufmann, 1991. 181

305



Appendix BIBLIOGRAPHY

[Suna] The Swing Connection. http://java.sun.com/products/jfc/tsc. 205

[Sunb] Sun Microsystems. Java-beans specification. Web Page
http://java.sun.com/beans. 188

[Sun93] SunSoft. The tooltalk service — an inter–operability solution. Technical report,
SunSoft Press and Prentice Hall, 1993. 85, 104

[Sut90] Stanley M. Sutton, Jr. APPL/A: A Prototype Language for Software-Process Pro-
gramming. PhD thesis, University of Colorado, Boulder, Aug 1990. 43, 78

[Szy98] Clemens Szyperski. Component Software, Beyond Object-Oriented Programming.
Addison-Wesley, 1998. 103, 135

[TBC+88] R. Taylor, F. Belz, L. Clarke, L. Osterweil, R. Selby, J. Wileden, A. Wolf, and
M. Young. Foundations for the Arcadia environment architecture. In Proc. of the
Software Engineering Symposium on Practical software development environments,
pages 1–13. ACM SIGSOFT/SIGPLAN, Nov. 1988. 43, 78, 106, 170, 213, 258

[TC93] P. Tarr and L. Clarke. PLEIADES: An object management system for software
engineering environments. In ACM SIGSOFT ’93 Symposium on Foundations of
Software Engineering, pages 56–70, Los Angeles, Dec. 1993. 43, 78

[Tib00] Cristian Tibirna. KDE 2.0 Development, chapter DCOP: Desktop Communication
Protocol. In [S+00], 2000. 104, 170

[TN92] I. Thomas and B.A. Nejmeh. Defintions of tool integration for environments. IEEE
Software, pages 29–35, March 1992. 103

[TO00] P. Tarr and H. Ossher. Hyper/J User and Installation Manual. IBM Corporation,
2000. 254

[TOHS99] P. Tarr, H. Ossher, W. Harrison, and S. Sutton, Jr. N degrees of separation: Multi-
dimensional separation of concerns. In Proc. of the 21st ICSE, 1999. 6, 231, 237,
254

[US87] D. Ungar and R. B. Smith. Self: The power of simplicity. In Proc. of OOPSLA’87,
1987. 20, 32, 252

[VB00] M. Van De Vanter and M. Boshernitsan. Displaying and editing source code in
software engineering environments. In CoSET 2000 [CoS00]. 194

[VN96] M. VanHilst and D. Notkin. Using role components to implement collaboration-
based designs. In Proc. of OOPSLA’96, 1996. 254

[Was89] Anthony Wasserman. Tool integration in software engineering environments. In
F. Long, editor, Software Engineering Environments, number 467 in LNCS, pages
137–149. Springer Verlag, 1989. 33, 102, 103, 104, 170

[WdJ95] R.J. Wieringa and W. de Jonge. Object identifiers, keys, and surrogates. Theory
and Practice of Object Systems, 1(2):101–114, 1995. 138, 241, 252

306



BIBLIOGRAPHY Appendix

[WdJS95] R.J. Wieringa, W. de Jonge, and P.A. Spruit. Using dynamic classes and role
classes to model object migration. Theory and Practice of Object Systems, 1(1):61–
83, 1995. 181, 252

[Web96] Matthias Weber. Combining statecharts and Z for the desgin of safety-critical
control systems. In Marie-Claude Gaudel and James Woodcock, editors, Industrial
Benefits and Advances in Formal Methods, volume 1051 of LNCS, pages 307–326.
Springer-Verlag, 1996. 183

[Web01] Burkhard Weber. Graphische Editoren für die repository-basierte Softwareen-
twicklungsumgebung PIROL durch Erweiterung eines bestehenden Frameworks.
Diploma thesis, Technical University Berlin, Fachbereich Informatik, Sekr. 5-6,
2001. 191

[WF91] K. Wallnau and P. Feiler. Tool integration and environment architectures. Technical
Report 11, CMU/SEI, 1991. 101, 102

[WHS01] K. Wallnau, S. Hissam, and R. Seacord. Building Systems from Commercial Com-
ponents. SEI Series in Software Engineering. Addison-Wesley, 2001. 225

[WM00] R. Walker and G Murphy. Implicit context: Easing software evolution and reuse.
In Procs. of FSE 2000, 2000. 258

[WWRT90] J. C. Wileden, A. L. Wolf, W. R. Rosenblatt, and P. L. Tarr. Specification level
interoperability. In Proc. of the 12th ICSE, pages 74–85. ACM press, 1990. 101

[Zül98] Heinz Züllighoven. Das objektorientierte Konstruktionshandbuch nach dem
Werkzeug & Material-Ansatz. dpunkt-Verla, Heidelberg, 1998. 257

307


	I Introduction
	I.1 Efficiently Managing Complexity
	I.2 CO5: Five Levels of Discussion
	I.3 The Software Engineering Environment PIROL
	I.3.1 Concerns and Dimensions of PIROL

	I.4 From Separated Concerns towards a Confederation of Components
	I.4.1 Dealing with Partiality
	I.4.2 Striving for Larger Modules

	I.5 Organization of this Thesis
	I.5.1 Description guided by a Concern Interaction Matrix
	I.5.2 Towards a comprehensive notion of views
	I.5.3 How to read this thesis



	II The Development of PIROL
	1 A Common Object-Oriented Meta Model for Seamlessness
	1.1 Objects versus Files and Documents
	1.1.1 Conceptual Objects

	1.2 Extending Lua for Object-Oriented Programming
	1.2.1 Imperative core
	1.2.2 Types
	1.2.3 Functions values
	1.2.4 Integration of client libraries
	1.2.5 Meta programming using tagmethods

	1.3 Summary

	2 Persistence and Object-Oriented Programming
	2.1 Basic Data Model of PCTE
	2.2 Persistence Interacts with other Concerns
	2.2.1 Meta modeling

	2.3 Implementation Issues
	2.3.1 Implementing the mapping
	2.3.2 Meta model deployment

	2.4 Other languages for persistent meta models
	2.4.1 Arcadia
	2.4.2 GOODSTEP

	2.5 Summary

	3 Model Granularity
	3.1 Structured decomposition and composition
	3.1.1 Term Grammars

	3.2 Model Granularity Interacts with other Concerns
	3.2.1 Meta modeling
	3.2.2 Persistence

	3.3 Summary

	4 Behavior Modeling
	4.1 Behavior Modeling Interacting with other Concerns
	4.1.1 Meta modeling
	4.1.2 Persistence
	4.1.3 Granularity

	4.2 PIROL's Boot Process
	4.3 Summary

	5 Exception Handling
	5.1 Exception Handling Interacting with other Concerns
	5.1.1 Meta Modeling
	5.1.2 Persistence
	5.1.3 Granularity
	5.1.4 Behavior

	5.2 Summary

	6 Data Integrity
	6.1 PIROL's Mechanisms for Data Integrity
	6.1.1 Encapsulation
	6.1.2 Towards Semantical Integrity
	6.1.3 Avoiding Redundancy
	6.1.4 Technical Integrity

	6.2 Data Integrity Interacting with other Concerns
	6.2.1 Meta modeling
	6.2.2 Persistence
	6.2.3 Granularity
	6.2.4 Behavior
	6.2.5 Exception handling

	6.3 Language Support for Consistency
	6.3.1 APPL/A
	6.3.2 GTSL

	6.4 Summary

	7 A Client--Server Architecture
	7.1 Decoupling and Integration
	7.2 A three--tier architecture for PIROL
	7.3 MSG: the communication channel
	7.3.1 Synchronization
	7.3.2 Enhancements of MSG

	7.4 Client-Server Architecture Interacting with other Concerns
	7.4.1 Meta modeling
	7.4.2 Persistence
	7.4.3 Granularity
	7.4.4 Behavior
	7.4.5 Exception handling
	7.4.6 Integrity

	7.5 Summary

	8 Control Integration
	8.1 Integration
	8.1.1 Dimensions of integration
	8.1.2 Roles of developers
	8.1.3 Pairwise integration

	8.2 Elements of Control Integration
	8.2.1 Multicast communication
	8.2.2 Change propagation for consistent views
	8.2.3 Remotely controlling tools

	8.3 Control Integration Interacting with other Concerns
	8.3.1 Meta modeling
	8.3.2 Persistence
	8.3.3 Granularity
	8.3.4 Behavior
	8.3.5 Exception handling
	8.3.6 Integrity
	8.3.7 Client-server architecture

	8.4 Summary
	8.4.1 Independence with regard to earlier chapters
	8.4.2 Concerns and their relations


	9 Multi User Capability
	9.1 Multi user capability interacting with other concerns
	9.1.1 Meta modeling
	9.1.2 Persistence
	9.1.3 Granularity
	9.1.4 Behavior
	9.1.5 Exception handling
	9.1.6 Integrity
	9.1.7 Client--Server Architecture
	9.1.8 Control Integration

	9.2 Summary

	10 Logical Component Gluing using DVCs
	10.1 Striving for ``logical'' independence
	10.1.1 Anticipating meta model mismatches
	10.1.2 Storing shared versus tool--specific data

	10.2 Dynamic View Connectors
	10.2.1 The structure of virtual repositories
	10.2.2 Implementing tools to virtual class graphs
	10.2.3 Mapping constructs
	10.2.4 Repository, view, and connector objects
	10.2.5 Conversions
	10.2.6 Tool integration with DVCs

	10.3 DVCs interacting with other concerns
	10.3.1 Meta Modeling
	10.3.2 Persistence
	10.3.3 Granularity
	10.3.4 Behavior
	10.3.5 Exception handling
	10.3.6 Integrity
	10.3.7 Client-server architecture
	10.3.8 Control Integration
	10.3.9 Multi User Capability

	10.4 Summary

	11 Common Services across Components
	11.1 Tool administration
	11.2 Workbench provided context menu
	11.2.1 Determination of available tools
	11.2.2 Document handling and creation
	11.2.3 User-to-user communication
	11.2.4 Workflow support: document states
	11.2.5 LuaP scripting

	11.3 Common services interacting with other concerns
	11.3.1 Meta Modeling
	11.3.2 Persistence
	11.3.3 Granularity
	11.3.4 Behavior
	11.3.5 Exception handling
	11.3.6 Integrity
	11.3.7 Client server architecture
	11.3.8 Control integration
	11.3.9 Multi User Capability
	11.3.10 Dynamic View Connectors

	11.4 User Interface Management Services
	11.5 Summary

	12 Evolution of PIROL
	12.1 Meta model evolution
	12.1.1 Upgrading

	12.2 Evolution interacting with other concerns
	12.2.1 Meta Modeling
	12.2.2 Persistence
	12.2.3 Granularity
	12.2.4 Behavior
	12.2.5 Exception handling
	12.2.6 Integrity
	12.2.7 Client--server architecture
	12.2.8 Control integration
	12.2.9 Multi User Capability
	12.2.10 Dynamic View Connectors
	12.2.11 Common services

	12.3 Summary

	13 Tools and Supported Activities
	13.1 PON --- PIROL Object Navigator
	13.1.1 Basic capabilities of PON
	13.1.2 Configurability of PON
	13.1.3 Framework design of PON

	13.2 Graphical editors
	13.2.1 ZooEd --- ZimOO Editor for class diagrams
	13.2.2 GEFTool --- Graphical Editor Framework

	13.3 Text editors
	13.3.1 MESSED --- Message Editor
	13.3.2 pjEdit --- Source Code Editor

	13.4 Gateways to the outside
	13.4.1 COFS --- Conceptual Object File System
	13.4.2 PIROLWEB --- PIROL--WWW gateway

	13.5 Small Lua/P tools
	13.6 Summary

	14 Miscellaneous and Summary so far
	14.1 Performance
	14.1.1 Profiling technique
	14.1.2 Concrete measurements
	14.1.3 On the role of performance optimization

	14.2 Suitability of Lua
	14.2.1 Syntax
	14.2.2 Program structure
	14.2.3 Static correctness
	14.2.4 Things that could not be done with Lua

	14.3 Evaluation
	14.3.1 Lua/P
	14.3.2 Multi-paradigm modularization and re-usability
	14.3.3 An example maintenance task
	14.3.4 Object-oriented SEEs

	14.4 Concern interaction
	14.4.1 Concern characteristics
	14.4.2 Concern kinds
	14.4.3 Towards a meta language for concerns



	III Views
	15 Views in Software Engineering
	15.1 Views, Abstraction and Decomposition
	15.1.1 Abstraction
	15.1.2 Decomposition and composition
	15.1.3 Views
	15.1.4 Relating different view concepts
	15.1.5 Relating abstraction, decomposition and views

	15.2 Views in the Software Life Cycle
	15.2.1 Loose coupling in the early phases.
	15.2.2 Implementation: weaving separate views and aspects
	15.2.3 Design: mediating between specification and implementation
	15.2.4 Concern Modeling


	16 Technology for Views
	16.1 Database related views
	16.1.1 ``Views for Tools in Integrated Environments''
	16.1.2 Portable Common Tool Environment
	16.1.3 O2 views
	16.1.4 MultiView
	16.1.5 Views in Chimera
	16.1.6 Tolerating Inconsistency

	16.2 Views and Subjectivity in Programming
	16.2.1 Roles
	16.2.2 Collaborations and Subjects
	16.2.3 Roles and collaborations in PIROL

	16.3 Towards Views for Improved Modularity of Behavior
	16.3.1 Implicit invocation
	16.3.2 Aspects
	16.3.3 Views need context


	17 Views in PIROL and beyond
	17.1 Mappings and Translations
	17.1.1 Inter-language working
	17.1.2 Representatives
	17.1.3 Derived data

	17.2 The Software Process as Context
	17.3 Other representations
	17.4 Documents and Virtual Repositories
	17.4.1 Dynamic View Connectors

	17.5 LAC
	17.6 Object Teams
	17.7 Lessons learned and the Future

	18 Acknowledgements

	IV Appendices
	A Definition of Lua/P
	A.1 Syntax of Lua/P
	A.2 Interface of builtin class List

	B Diploma theses related to PIROL
	C List of Figures
	D Index
	E Bibliography


