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We consider a mathematical model for reactive flow in a channel having a rough (periodically oscillating) boundary with
both period and amplitude ε. The ions are being transported by the convection and diffusion processes. These ions can
react at the rough boundaries and get attached to form the crystal (precipitation) and become immobile. The reverse process
of dissolution is also possible. The model involves non-linear and multi-valued rates. We provide a rigorous justification
for the upscaling process in which we define an upscaled problem defined in a simpler domain with flat boundaries. To
this aim, we use periodic unfolding techniques combined with translation estimates. Numerical experiments confirm the
theoretical predictions and illustrate a practical application of this upscaling process.

Copyright line will be provided by the publisher

1 Introduction

We consider the reactive flow through a channel having rough (periodically oscillating) boundaries. The flow carries the
ions/solutes which are transported through the channel by a combined process of diffusion and convection. The modeling
of the process therefore consists of transport and flow problems. The ions in the bulk react at the rough boundary and form
crystals (hence become immobile). The opposite process of dissolution, that is the ions dissolving in the bulk phase, is
also possible. We assume that the thickness of the crystal deposited is small enough so that we ignore the change in the
geometry that is due to the chemistry.

As the original problem is defined in a domain with rapidly oscillating boundary, solving it numerically requires resolving
these oscillations at sufficient resolution. This implies that the mesh size should be much smaller than the size of oscilla-
tions. This makes the problem computationally expensive. Alternatively, one can consider an upscaled model providing an
approximation to the original model in a domain with flat boundaries. Of course, this requires taking into account some
corrections due to this simplification, which are incorporated in modified boundary conditions. In particular, the flux at the
rough boundaries needs to be corrected if we are to simplify the boundary to a flat one. Also, the upscaling process should
contain some information from the original geometry. In this work, we justify this upscaling process in a rigorous manner.

We make a specific choice for the reaction rate in this work, describing the crystal precipitation and dissolution processes.
The rate description is defined at the boundary and hence on a lower dimensional manifold. Moreover, this rate is the net
result of two opposing processes: precipitation and dissolution. The precipitation term is described by a non-linear term
while the dissolution term is described by the Heaviside graph resulting in a multi-valued character. These kind of models
are well established in literature; for details we refer to [15–17, 41–43]. This specific choice of the reaction rate poses
mathematical difficulties and in particular the multi-valued nature of the dissolution term defined at the boundary limits the
regularity of the solution.

Homogenization techniques are widely applied for reactive flows. Compactness and 2-scale convergence arguments are
successfully employed for perforated domains like porous media, see [1,22–24,36,38–40]. Upscaling of rough boundaries
however require slightly different approaches and extensive work has been done in this respect. The elliptic equations
defined in domains with rough boundaries have been treated in [2–5, 10, 20, 37]. Also, we refer to [21] for upscaling when
geometry changes are taken into account.

Our contributions in this respect are two-fold: first, we consider a model for reactions described by a non-linear, non-
Lipschitz ODE at the rough boundary coupled with a parabolic PDE in domain; and secondly, we use periodic unfolding
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2 Kumar, van Helvoort, and Pop: Rigorous upscaling of rough boundaries

techniques for deriving effective boundary conditions. This technique has been systematically introduced by [11] (see
also [8] for similar ideas) and has been applied for homogenization problems, in particular for periodic homogenization.
Relevant references to this work are [32] and [12]. In the former, matched asymptotic techniques are employed to derive
formally an effective boundary condition for a similar problem, but in the case when the rough boundaries are also free
boundaries and hence the domain changes in time. In the latter, homogeneous boundary conditions are treated for a related
but different geometry. The use of periodic unfolding provides a natural framework to deal with upscaling problems by
mapping the integrals from ε−dependent geometries to fixed geometries thereby making the use of compactness properties
in a fairly evident manner. In this work, we use the periodic unfolding technique to obtain the upscaled problem for the
oscillating boundary case. Specifically, we consider the boundary, oscillating with amplitude and period ε. We consider
the limit of the problem as ε ↘ 0 and define this limit to be the upscaled problem. As a technical note, the idea is as
follows: the system of equations provides a priori estimates in the original domain and at the oscillating boundary. The
latter estimates are used to obtain those for the unfolded sequences of the traces. In addition to this, the non-linearities in
the reaction rate requires stronger compactness which is achieved by considering translation estimates.

This chapter is structured as follows. We present a brief introduction of the model in Section 2 followed by the definition
of upscaled problem in Section 3. The a priori estimates are stated in Section 4 and the derivation of the upscaled equations
is completed in Section 5. Note that even though the details of the proof are presented for a particular rate, the techniques
presented in this work can be used to treat other cases. We comment on this in Section 6. The numerical computations are
discussed in Section 7.

2 Geometry and modeling

First we describe the setting of the geometry in which the physical processes are observed. This will be followed by a brief
recall of the model describing the convective and diffusive transport of solutes in the fluid. The present context falls into
the general framework of reactive flows in porous media. For the particular description of dissolution and precipitation,
we refer to [14–16] for an upscaled (core scale) model. Here we adopt the pore scale counterpart discussed in [17]. The
rigorous homogenization procedure from the pore scale model to the core scale model one is proved in [30] .

2.1 Basic geometry

Let Ω := (0, 1) × (0, 1) be the homogenized domain with flat boundaries. The domain with ε−dependent oscillating
boundary is defined as follows. Let h : < 7→ [−1, 0] be a given smooth 1− periodic function and define

hε(x) = εh
(x
ε

)
.

Then Ωε ⊂ <2 with Ωε is the open, bounded set

Ωε :=
{

(x, y) ∈ <2 : x ∈ (0, 1) y ∈ (hε(x), 1)
}
.

With ∂Ωε being the boundary of Ωε, the oscillating boundary Γε(⊂ ∂Ωε) is defined as:

Γε :=
{

(x, y) : x ∈ (0, 1), y = εh
(x
ε

)}
.

Since Γε is periodic, we scale one period and define Γ

Γ := {(z, y) : z ∈ (0, 1), y = h (z)} .

The inlet and outlet boundaries of Ωε are defined as

Γi := {(x, y) : x = 0, hε(0) ≤ y ≤ 1}
Γo := {(x, y) : x = 1, hε(0) ≤ y ≤ 1}.

This particular scaling for Γε ensures that its H1 Lebesgue measure remains bounded and is of order O(1). Note that, by
construction, we have Ω ⊂ Ωε since hε ≤ 0. We take Ω ⊂ Ωε to avoid extension arguments. The geometry is sketched in
Figure 1. Also note that having fixed ε, the domain Ωε and the boundary Γε remain fixed as well.

Let T be a given time; we define

ΩT := (0, T ]× Ω, ΩεT := (0, T ]× Ωε, ΓεT := (0, T ]× Γε.
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Fig. 1 The domain Ωε, and the boundary Γε determined by the periodic function hε. Note that both remain fixed in time for a given ε.

As announced before, the solutes in the channel diffuse, are transported by the flow, and react at the rough boundary. To fix
the ideas, we assume that the flow is modeled by the Stokes system, where qε denotes the flow velocity and P ε its pressure,{

∆qε = ∇P ε in ΩεT ,
∇ · qε = 0 in ΩεT .

(1)

Without loss of generality, we have normalized the dynamic viscosity to be 1. For the boundary conditions, we pose a
parabolic profile at the inlet,

qε(y) = Q(y − hε(0))(1− y)e1 at Γi,

where Q > 0 is a positive constant and e1 is the unit vector in x−direction. For the outlet, we prescribe the pressure. For
the other boundaries, including Γε, we impose no-slip boundary conditions. The specific model for qε considered here is
not essential and the results remain valid for other situations.

Next, we consider the model for the transport of solutes which is described by the linear convection-diffusion equation.
Under assumed compatibility conditions [15, 16, 29] (e.g. electrical neutrality) it is sufficient to consider only one type of
ions. Let uε denote the concentration of the ions and vε the crystal concentration, the transport equation reads

∂tu
ε +∇ · (qεuε −∇uε) = 0, in ΩεT , (2)

and for the reactive boundary condition, we have by the conservation of mass,

−ν · ∇uε = ∂tv
ε on ΓεT . (3)

For the crystal concentration, the rate of change is the net result of two opposing processes, precipitation and dissolution.
This is given by

∂tv
ε = (r(uε)− wε) on ΓεT , (4)

where r(·) is the precipitation rate while w denotes the rate of dissolution. We assume the following structure for the
precipitation rate r(uε)

A1. r : < → [0,∞) is locally Lipschitz .

A2. There exists a unique u∗ ≥ 0, such that

r(uε) =

{
0 for uε ≤ u∗,
strictly increasing for uε ≥ u∗ with r(∞) =∞.

All the equations are considered in dimensionless form. The diffusion constant has been scaled to 1, with the extension
to positive definite tensor being straightforward. The dissolution process takes place only when the crystal precipitate is
present (i.e. if v(t, x) > 0) and it is a surface process hence proceeds with a constant rate. We normalize this rate to 1. In
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the absence of precipitate, the overall rate (precipitation minus dissolution) is either zero or positive depending upon the
amount of solute present. Further, the absence of net gain in the crystal concentration under insufficient amount of solutes
is related to the time-scale of observation. The derivation of the precipitation-dissolution is based on chemical kinetics and
the ideas of solubility product for the crystals. For further discussions and derivation of this model, we refer to [16, 29]. A
similar model leading to the dissolution fronts is given in [7].

To summarize the discussion above, the dissolution rate is

w ∈ H(v), where H(v) =

 0, if v < 0,
[0, 1] if v = 0,

1 if v > 0.
(5)

Remark 2.1 Since the precipitation rate r is monotonically increasing, under the setting above, a unique u∗ exists for
which r(u∗) = 1. If u = u∗ for all t and x, then the system is in equilibrium: no precipitation or dissolution occurs, since
the precipitation rate is balanced by the dissolution rate regardless of the presence of absence of crystals.
The system (2)-(5) is complemented by the following initial and boundary conditions, uε(0, ·) = uI , in Ωε,

vε(0, ·) = vI , on Γε,
uε = 0 on ΓTD.

(6)

Note that (4) describes reaction of ions under both equilibrium and non-equilibrium conditions. The model (2) is a simpli-
fied setting for the model considered in [13, 15–17] and we refer to the cited literatures for more details.

We emphasize here the fact that no changes in the Ωε are encountered due to the dissolution or precipitation. In other
words, the precipitate layer is very thin, so it does not change the boundary Γε. An alternative situation, when Γε and hence
Ωε evolve in time depending on the solution is considered in [31, 32, 41, 43].

2.2 Weak formulation

Since the reaction term has a multi-valued description, we do not expect sufficient regularity for the existence of strong
solutions except for in particular instances. To rectify this, we define appropriate weak solutions for the system of equations
considered here. Let (·, ·) denote the L2 inner product or duality pairing of H1, H−1. Also, we define H1

0 (Ωε) the space
with w ∈ H1 with homogeneous Dirichlet boundary condition on ∂Ωε \ Γε. The dual of H1

0 (Ωε) is the function space
H−1(Ωε). The definitions involving Ω insead of Ωε are similar.
We consider the following function spaces, where we follow the usual notations from functional analysis.

Uε := {u ∈ L2(0, T ;H1
0 (Ωε)) : ∂tu ∈ L2(0, T ;H−1(Ωε))},

Vε := H1(0, T ;L2(ΓεG)),

Wε := {w ∈ L∞(ΓεT ) : 0 ≤ w ≤ 1}.

We assume that the initial conditions (uI , vI) ∈ (H1
0 (Ωε), H1(Γε)). The definition of a weak solution is given as follows.

Definition 2.2 A triple (uε, vε, wε) ∈ Uε × Vε ×Wε is a weak solution of (2)-(6) if uε(0, ·) = uI , v
ε(0, ·) = vI and

(∂tu
ε, φ)ΩεT + (∇uε,∇φ)ΩεT − (qεuε,∇φ)ΩεT = −(∂tv

ε, φ)ΓεT ,

(∂tv
ε, θ)ΓεT = (r(uε)− wε, θ)ΓεT ,

wε ∈ H(vε) a.e. in ΓεT ,

(7)

for all (φ, θ) ∈ L2(0, T ;H1
0 (Ωε))× L2(ΓεT ).

Remark 2.3 The existence of weak solutions of (2)-(6) has been proved in [17] by fixed point arguments, after regular-
izing the Heaviside function modelling the dissolution process. This yields a solution triple which converges to a solution
to the original model when passing the regularization argument to zero. For the solutions (uε, vε, wε) constructed in this
way, the dissolution rate wε satisfies

wε =

 1 if vε > 0,
min(r(uε), 1) if vε = 0,

0 if vε < 0.
(8)
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2.3 Known results

The existence and uniqueness results derived for the pore scale model in [13, 17, 44] remain valid in the present context.
In [13, 17] the following is proved

Theorem 2.4 Under assumptions (A.1) and (A.2), there exists a weak solution in the sense of Definition 2.2. In addition,
the solution satisfies

0 ≤ uε, vε ≤M, (9)

‖uε‖2L∞(0,T ;L2(Ωε)) + ‖∇uε‖2L2(ΩεT ) + ‖∂tuε‖2L2(0,T ;H−1(Ωε))

+ ‖vε‖2L∞(0,T ;L2(Γε)) + ‖∂tvε‖2L2(ΓεT ) ≤ C, (10)

where M is a constant depending on the initial conditions, and C > 0 is a constant independent of uε, vε, wε and ε.

We note that the estimates proved in [17] include an ε factor in front of the vε norms. This is due to the fact that the
domain considered there is perforated (with periodicity ε), and the total measure of the boundaries where dissolution and
precipitation may take place is of order ε−1. Repeating the steps of the proof in the present case would lead to the estimate
in Theorem 2.4.

The above estimates are not enough to guarantee uniqueness. In the wake of nonlinearities and discontinuities present
in the reaction rate defined on a lower dimensional manifold, the L2 stability with respect to initial data is out of reach.
However, a L1 contraction is achieved in [44], where the following result has been proven.

Theorem 2.5 Assume (A.1) and (A.2) and consider two weak solutions (u(i)ε, v(i)ε, w(i)ε) ∈ Uε,Vε,Wε, i = 1, 2 of
(7) with initial values (u

(i)
I , v

(i)
I , i = 1, 2) respectively. Then for any t ∈ (0, T ] we have∫

Ωε

|u(1)ε(t, x)− u(2)ε(t, x)|dx+

∫
Γε

|v(1)ε(t, x)− v(2)ε(t, x)|dx

≤
∫
Ωε

|u(1)
I (x)− u(2)

I (x)|dx+

∫
Γε

|v(1)
I (x)− v(2)

I (x)|dx.

Note that Theorem 2.5 provides, in particular, the uniqueness of the solution.
The results above refer to the existence and uniqueness of a weak solution. For the numerical results we refer to [13],
where the convergence of an Euler implicit discretization for the pore scale model (similar to the present one) is proved.
For the core scale model, the convergence of the semi-discrete and of the fully discrete (conformal and mixed finite element)
numerical schemes have been analyzed [33, 34].
The rigorous derivation of the macro scale model from the pore scale model in the classical homogenization context is
carried out in [30]. Assuming the domain covered by a translation of a scaled unit cell with scaling parameter ε (see
[1, 22–24, 38]), there homogenization techniques are employed to derive the upscaled (core scale) equations as the limit of
ε↘ 0. For the simpler geometry of a thin strip, the 1D upscaled model is rigorously justified in [17]. The situation here is
in between, as the only oscillating part is the boundary of domain Ωε.

3 Upscaled equations

The flow equations are decoupled from the transport equation for ions. Hence, we can homogenize the velocity field
separately. Here we assume that the velocity field qε is given, satisfies L∞ bounds and a q ∈ L∞(Ω) ∩H1Ω) exists s.t.

‖qε − q‖L2(ΩT ) ↘ 0 as ε↘ 0. (11)

For the specific case of Stokes equation, in [26–28] it is proved that the homogenized equation is the Stokes equation with
Dirichlet boundary condition for the leading order term.

∇ · q = 0, in Ω,
∆q = ∇P in Ω,

q = 0 on {y = 0} ∪ {y = 1},
q = Qy(1− y)e1 on {x = 0}.

In fact, the cited references go beyond leading order terms. For the first order term, slip boundary conditions are derived.
However, for our present purposes, the Dirichlet boundary condition suffices since for the concentration term we restrict
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only to the leading order approximation. With the simple geometry Ω considered here, and under the parabolic inlet
boundary conditions, we can solve the above equations exactly. It is straightforward to check that the unique solution of
the above equations is

q = Qy(1− y)e1.

The interesting aspect here is the derivation of the upscaled equation for the reaction terms. Indeed, the main result of
this chapter is the derivation of the following result. The homogenized variables u, v, w satisfy the following system of
equations.

∂tu−∆u+ q∇u = 0 in Ω), (12)

−ν · ∇u =

∫
Γ

∂tvds on (0, T ]× (0, 1), (13)

∂tv = r(u)− w on (0, 1)× ΓT , (14)

w ∈ H(v). (15)

Note that the above equations are defined in domains where the boundaries are flat. Further, the information about the
geometry of the rough boundary Γε in the original domain is incorporated through terms defined on Γ− which is scaled
from a unit period of Γε. Performing computations on domains with flat boundaries is much cheaper compared to smaller
mesh sizes required for resolving the oscillations at Γε. This is the essential advantage of this upscaling.

The results are further consistent with intuitive arguments. Replacing the rough boundary by a flat one in a physically
consistent manner requires correcting the flux. The above upscaling result show that in each point of the flat boundary, the
normal flux (in fact its leading order approximation) is obtained by simply accounting for the flux over the entire length of
one period of the rough boundary associated with that point.

The goal of this paper is proving the convergence of the upscaling procedure. We start by defining the concept for
solution for (12)-(15).

Definition 3.1 A triple (u, v, w) ∈ L2(0, T ;H1
0 (Ω))× L2(0, T ;L2((0, 1)× Γ))× L∞((0, T )× (0, 1)× Γ) is a weak

solution of (12)-(15) if u(0, ·) = uI , v(0, ·) = vI and

−(u, ∂tφ)ΩT + (∇u,∇φ)ΩT − (qu,∇φ)ΩT + (∂tv, φ)(0,T ]×(0,1)×Γ = (uI , φ(0, x))Ω,
(∂tv, θ)(0,T ]×(0,1)×Γ − (r(u)− w, θ)(0,T ]×(0,1)×Γ = 0,

w ∈ H(v) a.e.,

for all φ ∈ H1(ΩT ), φ(T, x) = 0;φ = 0 on ΓD and θ ∈ L2(0, T ;L2((0, 1)× Γ)).
The main result of this paper is:
Theorem 3.2 Along any sequence ε ↘ 0, the solution triple (uε, vε, wε) in the sense of Definition 2.2 converges to

(u, v, w), the solution introduced in Definition 3.1.
In what follows, we prove the above Theorem 3.2. We have taken a restricted class of test function for φ (compare this

with φ in Definition 2.2) which helps in dealing with the low regularity of ∂tuε. The estimates for Ωε are easily carried
over to the estimates for Ω and the trace theorem also provides a compactness for the traces defined at the boundary Γε.
However, Γε depends on ε and therefore the estimates are defined in a ε−dependent domain. We use the unfolding opera-
tor to map the estimates and integrals from ε−dependent domains to a fixed domain. Also, the non-linearities need strong
convergence for which we use translation estimates. Further, we connect the limits from the unfolded sequence defined at
the boundary to the limits obtained from the estimates in Ω.

4 A priori estimates

In this section, we begin with estimate dealing with translation in time. Next, we deal with the periodic unfolding operator
defined for the boundaries. This is followed by the a priori estimates both for the domain and the boundary. Let us begin
with the following lemma.

Lemma 4.1 Let η > 0 and (uε, vε, wε) be a weak solution of (7) in the sense of Definition 2.2. Then the following
estimate is uniform in η,

T−η∫
0

∫
Ωε

|uε(t+ η, x)− uε(t, x)|2dxdt ≤ Cη. (16)
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P r o o f. From (7)1 and its time shifted (t becoming t+ η) variant, assuming φ = 0 whenever t > T − η one gets

T−η∫
0

(∂t(u
ε(t+ η, x)− uε(t, x)), φ) dt+

T−η∫
0

∫
Ωε

(∇uε(t+ η, x)−∇uε(t, x))∇φdxdt

−
T−η∫
0

∫
Ωε

qε(uε(t+ η, x)− uε(t, x))∇φdxdt = −
T−η∫
0

∫
Γε

∂t(v
ε(t+ η, x)− vε(t, x))φdxdt.

Choosing φ(t, x) =

t+η∫
t

uε(s, x)ds ∈ H1(0, T ;H1
0 (Ωε)) gives

T−η∫
0

∫
Ωε

|uε(t+ η, x)− uε(t, x)|2dxdt = −
∫
Ωε

(uε(η, x)− uε(0, x))

 η∫
0

uε(s, x)ds

 dx

+

∫
Ωε

(uε(T, x)− uε(T − η, x))

 T∫
T−η

uε(s, x)ds

 dx+

∫
Ωε

∣∣∣∣∣∣
T∫

T−η

∇uε(s, x)ds

∣∣∣∣∣∣
2

dxdt

−
∫
Ωε

∣∣∣∣∣∣
η∫

0

∇uε(s, x)ds

∣∣∣∣∣∣
2

dxdt−
T−η∫
0

∫
Ωε

qε(uε(t+ η, x)− uε(t, x))

∇ t+η∫
t

uε(s, x)ds

 dxdt

+

T−η∫
0

∫
Γε

∂t(v
ε(t+ η, x)− vε(t, x))

 t+η∫
t

uε(s, x)ds

 dxdt.

We treat each term on the right, denoted by Ii, i = 1, . . . , 6, separately. The L∞ estimate for uε gives for both I1 and I2

|I1| ≤ Cη, |I2| ≤ Cη.

For I3, we use Cauchy Schwarz and the estimates on the gradient in Theorem 2.4 to obtain

|I3| ≤ Cη.

Because of its sign, I4 needs no further estimate. Next, by L∞ estimates for uε,qε and the gradient estimates in Theorem
2.4, for I5 one obtains

|I5| ≤ C

∫ T−η

0

‖uε(t+ η)− uε(t)‖L2(Ωε)

∥∥∥∥∫ t+η

t

∇uε(s)ds
∥∥∥∥ dt

≤ 1

2

∫ T−η

0

‖uε(t+ η, x)− uε(t, x)‖L2(Ωε) + Cη.

Furthermore, by triangle inequality and the L2(0, T ;L2(Γε)) estimates of ∂tvε, we have

|I6| ≤ C‖∂tvε‖L2(ΓεT )η ≤ Cη

where we have again used the L∞ estimate for uε. Collecting the above computations leads to the assertion.

4.1 The boundary unfolding operator

We start with introducing the unfolding operator and describe some of its properties. For more details for the properties
and the proofs, we refer to [11] for unfolding operators in general, and to [12] for the boundary unfolding operator.

Following [12], we define the boundary unfolding operator as:
Definition 4.2 Let φε : (0, 1) × Γ 7→ Γε be defined as (x, (z, h(z))) 7→

(
ε
⌊
x
ε

⌋
+ εz, εh (z)

)
. The unfolding operator

T ε maps a function u : Γε → < to the function u ◦ φε : (0, 1)× Γ→ <.
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Note that the unfolding operator is defined here only for the boundary and not for the whole domain. For the unfolding
operator defined in the fully periodic context (classical homogenization), we refer to [8, 11] and to [36] for an application
of this technique relevant to the present context . Below, we list some simple but useful propositions.

Proposition 4.3 T ε is linear.
Proposition 4.4 Let u,v be functions Γε → <. Then T ε (uv) = T εuT εv.

The proofs for Proposition 4.3 and Proposition 4.4 are straightforward and therefore omitted.
Proposition 4.5 For u ∈ L1 (Γε), it holds that∫

(0,1)×Γ

T εu(x, (z, h(z)))dxds =

∫
Γε

u (x) dx.

P r o o f. Using the periodicity of h, a straightforward computation provides :∫
(0,1)×Γ

T εu(x, z, h(z))dxds =

∫
(0,1)×Γ

u
(
ε
(⌊x
ε

⌋
+ z
)
, εh(z)

)
dxds

=ε

1
ε−1∑
k=0

∫
Γ

u (εk + εz, εh(z)) ds

=

1
ε−1∑
k=0

(k+1)ε∫
kε

u
(
x, εh

(x
ε

))
ds =

∫
Γε

udsε,

where ds is the differential along the curve Γ and dsε the differential along Γε.

Based on the above result, we obtain the following:
Proposition 4.6 Let u ∈ L2 (Γε). Then T εu ∈ L2 ((0, 1)× Γ) and T ε is a linear isometry between L2 (Γε) and

L2 ((0, 1)× Γ).

P r o o f. Suppose that u ∈ L2 (Γε). Then |u|2 ∈ L1 (Γε). Using propositions 4.4 and 4.5 we find∫
(0,1)×Γ

|T εu|2 dx =

∫
(0,1)×Γ

T ε |u|2 dx =

∫
Γε

|u|2dx <∞.

Also ‖T εu‖L2((0,1)×Γ) = ‖u‖L2(Γε) and together with Proposition 4.3, this implies that T ε is a linear isometry between
L2 (Γε) and L2 ((0, 1)× Γ).

The above linear isometry is an important result as it provides a way to connect the unfolded sequence defined on a fixed
domain with the original variables defined on an ε−dependent domain. This makes it possible to use the estimates obtained
for Γε for the unfolded sequence directly.

4.2 Estimates in the domain Ω

In this section we refer to the solution triple introduced in Definition 2.2 and proceed with the a priori estimates in both Ω
and Γε. Since Ω ⊂ Ωε, the estimate gets carried over and we obtain the following estimate from Theorem 2.4:

‖∇uε‖2L2(0,T ;L2(Ω)) + ‖∂tvε‖2L2(0,T ;L2(Γε)) + ‖vε‖2L2(0,T ;L2(Γε)) ≤ C. (17)

The above estimate is valid in fact for the restriction of uε to Ω, which is also further denoted by uε to simplify the writing.
We have:

Lemma 4.7 Let uε be the first component of the solution triple in Definition 2.2. A u0 ∈ L2(o, T ;H1
0 (Ω)) exists s.t.

along a sequence ε↘ 0,

∇uε ⇀ ∇u0 weakly in L2(0, T ; Ω). (18)

uε →u0 strongly in L2(0, T ; ∂Ω). (19)
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P r o o f. The first part of the lemma follows from the uniform bounds of ∇uε as in (17). To prove (19), we note that
∂tu

ε ∈ L2(0, T ;H∗(Ω)) whereH∗ is the dual ofH1
0,∂Ω(Ω) withH1

0,∂Ω(Ω) referring to the space ofH1 functions with ho-
mogeneous Dirichlet boundary conditions on ∂Ω. Note the difference with previously introducedH1

0 (Ωε) orH1
0 (Ω) where

homogeneous Dirichlet boundary conditions are taken only on ∂Ωε \ Γε respectively ∂Ω \ Γ. With uε ∈ L2(0, T ;H1
0 (Ω))

and ∂tuε ∈ L2(0, T ;H∗(Ω)), we conclude that uε converges strongly in L2(0, T ;L2(Ω)).
Now consider the integral Iε

Iε :=

∫ T

0

‖uε(t)− u0(t)‖2L2(∂Ω)dt. (20)

Following the proof of the trace theorem (see [18], chapter 5.5), we have

Iε ≤
∫ T

0

C‖uε − u0‖L2(Ω)

(
‖uε − u0‖L2(Ω) + ‖∇(uε − u0)‖L2(Ω)

)
dt.

Using Cauchy Schwarz, the bounds on the gradients, and the semi-continuity of the norms, we obtain

Iε ≤ C‖uε − u0‖L2(ΩT )

from which the assertion follows.

The original equations are defined in Ωε and by construction also in Ω as Ω ⊂ Ωε. We now prove that the contributions for
the integrals in Ωε \ Ω are negligible as ε↘ 0. We achieve this by decomposing the integrals defined on Ωε. Note that by
decomposing the integrals in domains Ω and Ωε \ Ω we have the property that the measure of Ωε \ Ω becomes negligible
as ε→ 0. Also, the test functions are defined independent of ε, which we will use here. We start with the following direct
consequence of the dominated convergence theorem.

Proposition 4.8 For any function f ∈ L1(Ω), with E ⊂ Ω, it holds that
∫
E

|f | ↘ 0 as meas(E)↘ 0.

The following lemma shows that the contributions of the integrals on the set Ωε \ Ω are negligible.

Lemma 4.9 For any φ ∈ H1(ΩT ) it holds

lim
ε↘0


T∫

0

∫
Ωε\Ω

(−uε∂tφ+∇uε∇φ+ qεuε∇φ) dxdt

 = 0 (21)

P r o o f. Let us denote the integrals in (21) by Ii, i = 1, 2, 3 respectively. For I1 one has

|I1| ≤ ‖uε‖L2(0,T ;L2(Ωε\Ω))‖∂tφ‖L2(0,T ;L2(Ωε\Ω)

≤ ‖uε‖L2(0,T ;L2(Ωε))‖∂tφ‖L2(0,T ;L2(Ωε\Ω) ≤ C‖∂tφ‖L2(0,T ;L2(Ωε\Ω).

Since ∂tφ ∈ L2(0, T ;L2(Ωε)) by Proposition 4.8 we conclude that I1 ↘ 0 as ε↘ 0.
The estimates for the other integrals are similar.

4.3 The boundary estimates

By Theorem 2.4 for vε and wε one has:

‖vε‖2L∞(0,T ;L2(Γε)) + ‖∂tvε‖2L2(ΓεT ) + ‖wε‖2L2(ΓεT ) ≤ C.

The unfolding operator defined at the boundary maps these estimates to a domain that does not depend on ε. In terms of
the unfolded sequence and using the L2 isometry, the estimate above become

‖T εvε‖2L∞(0,T ;L2((0,1)×Γ)) + ‖∂tT εvε‖2L2((0,1)×Γ×(0,T )) + ‖T εwε‖2L2((0,1)×Γ×(0,T ) ≤ C. (22)

The bounds above immediately imply the following convergence result:
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Lemma 4.10 There exists (u, v, w) ∈ L2(0, T ;L2((0, 1) × Γ)) such that ∂tv ∈ L2(0, T ;L2((0, 1) × Γ)) and along a
sequence ε↘ 0 it holds

T εvε ⇀ v weakly in L2(0, T ;L2((0, 1)× Γ))

T εwε ⇀ w weakly in L2(0, T ;L2((0, 1)× Γ))

T εuε ⇀ u weakly in L2(0, T ;L2((0, 1)× Γ))

T ε∂tv
ε ⇀ ∂tv weakly in L2(0, T ;L2((0, 1)× Γ)).

Note that both the unfolded triples (T εuε, T εvε) and their limit are defined on (0, T ] × (0, 1) × Γ. Also Note that
the convergence for T εvε and T εuε is weak, which is not sufficient for passing to the limit in the non-linear terms. We
therefore need to improve the convergence. We start with the following:

Proposition 4.11 For the first component in the solution triple (uε, vε, wε) the following holds uniformly in ε:

‖uε‖2
L2(0,T ;H

1
2 (Γε))

≤ C. (23)

P r o o f. In view of (6)3, the Poincaré inequality and the trace estimate give

‖uε‖2
L2(0,T ;H

1
2 (Γε))

≤ C‖∇uε‖2L2(0,T ;L2(Ωε)).

Also, it is to be noted that the boundary is uniformly Lipschitz continuous, as

|hε(x)− hε(y)| ≤ ε|h(
x

ε
)− h(

y

ε
)| ≤ Lh|x− y|,

where Lh is the Lipschitz constant of h. Further, note that C is independent of ε (see [6] for a discussion on this issue and
also [35] P.121). Combining this with the estimates in Theorem 2.4 gives the assertion.

The strong convergence for T εuε and T εvε will be proved based on translation estimates. To achieve this the translation
along the (rough) boundary needs to be defined properly. We therefore let IC be a bounded interval in < and hC : IC 7→ <
be a Lipschitz function. Consider h̃C : < 7→ < a Lipschitz continuous extension of hC such that h̃C has compact support.
Based on these we define the curves ΓC and Γ̃C

ΓC := {(z, hC(z)) | z ∈ IC},

Γ̃C := {(z, h̃C(z)) | z ∈ <}.

The above setting facilitates in defining the smooth extension f̃ : Γ̃C 7→ < for any given function f : ΓC 7→ <, f ∈
H

1
2 (ΓC). Assume now that the extension f̃ has compact support. Next, let f̄ : < 7→ < be defined as

f̄(z) := f̃(z, h̃C(z)).

Now for any given real number η > 0, we define the translation

4η f̄(·) := f̄(·+ η)− f̄(·).

By an abuse of notation,4ηf will be often used in the above sense.
Having introduced the translation we now estimate the translation for a given function f ∈ H 1

2 (ΓC):

Lemma 4.12 Given f ∈ H 1
2 (ΓC) the following translation estimate holds

‖4ηf‖L2(Γ̃C) ≤ C|η|
1
2 .

P r o o f. The proof is straightforward in the Fourier space. Let f̃ be the extension of f as above with compact support.
For any f ∈ H 1

2 (ΓC) we have

‖f‖
H

1
2 (Γ̃C)

≤ C‖f̃‖
H

1
2 (<)

≤ C.
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Let f̂ denote the Fourier transform of f̃ . For the H
1
2 (<) semi-norm, we have the following equivalent characterization in

Fourier space

‖f̃‖
H

1
2 (<)

=

∫
<
|ω||f̂ |2dω < C, (24)

for any f̃ ∈ H 1
2 (<) with its H

1
2 norm uniformly bounded. Using the L2 isometry of the Fourier transform∫

Γ̃C

∣∣4ηf ∣∣2ds ≤ C ∫
<

∣∣4η f̃ ∣∣2dx = C

∫
<

∣∣(1− eiωη)2f̂(ω)
∣∣2dω.

The right hand side can be re-written as∫
<

(1− eiωh)2|f̂(ω)|2dω =

∫
<

(1− eiωη)2

|ηω|
|ηω||f̂(ω)|2dω ≤ C|η|

∫
<
|ω||f̂(ω)|2dω (25)

and as noted above, the last term on the right hand side is bounded because f̃ ∈ H 1
2 (<). It is straightforward to check that

(1− eiωη)2

|ωη|
≤ C.

This leads to∫
Γ̃C

∣∣4ηf ∣∣2ds ≤ C|η| (26)

where C depends on the H
1
2 norm.

Before using the translation estimate, we prove the following.
Proposition 4.13 Given uε : Γε 7→ <, the translation with respect to x commutes with the unfolding operator:

4ηx(T εuε)(x, (z, h(z))) = T ε(4ηxuε)(x, (z, h(z))). (27)

P r o o f. Note that,

4ηxT εuε := T εuε(x+ ηx, (z, h(z)))− T εuε(x, (z, h(z))) (28)

= uε
(
ε
⌊x
ε

⌋
+ kε+ εz, εh(z)

)
− uε

(
ε
⌊x
ε

⌋
+ εz, εh(z)

)
(by definition) (29)

where k = bηx+x
ε c − b

x
ε c. For the right hand side,

T ε4ηxuε = T ε (uε(x+ ηx, h
ε(x+ ηx))− uε(x, hε(x)))

= T εuε(x+ ηx, h
ε(x+ ηx))− T εuε(x, hε(x))

= uε
(
ε
⌊
x+ηx
ε

⌋
+ εz, εh(z)

)
− uε

(
ε
⌊
x
ε

⌋
+ εz, εh(z)

)
= uε

(
ε
⌊
x
ε

⌋
+ kε+ εz, εh(z)

)
− uε

(
ε
⌊
x
ε

⌋
+ εz, εh(z)

)
.

Using (29) proves the proposition.

Proposition 4.13 gives the estimate

‖4ηxT εuε‖L2((0,T )×(0,1)×Γ) = ‖T ε(4ηxuε)‖L2((0,T )×(0,1)×Γ) = ‖4ηxuε‖L2(ΓεT ), (30)

which is used to obtain the strong convergence result.
For the remaining part of the section, by ”convergence” we mean in fact the convergence along a sequence ε ↘ 0.

Moreover, when referring to a pair or a triple, the sequence ε↘ 0 should be understood as the convergent subsequence of
the previously convergent (sub)sequence.

Lemma 4.14 With u ∈ L2((0, T )× (0, 1)× Γ) being the weak limit in Lemma 4.10,

T εuε → u strongly in L2 ((0, T )× (0, 1)× Γ) .
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P r o o f. For a.e. t ∈ (0, T ),

4ηzT εuε = T εuε(x, (z + ηz, h(z + ηz)))− T εuε(x, (z, h(z)))
= uε(εbxε c+ εz + εηz, εh(z + ηz))− uε(εbxε c+ εz, εh(z))

(31)

in terms of translation for uε. Denote the right hand side by Iηz . Note that this is nothing but a translation along the curve
Γ and hence, we can use Lemma 4.12 to obtain

‖Iηz‖L2((0,T )×(0,1)×Γ ≤ C|ηz|
1
2 .

Next, we consider the translation along x. We note that

‖4ηxT εuε‖ = ‖4ηxT εuε‖ = ‖4ηxuε‖L2(Γε).

We use (30) together with the Lemma 4.12 to obtain

‖4ηxuε‖L2(ΓεT ) ≤ C|ηx|
1
2 .

Hence, we have the translations in x and z directions controlled which implies

(‖4ηx‖, ‖4ηz‖)↘ (0, 0), along a sequence (|ηx|, |ηz|)↘ (0, 0).

For the strong convergence, the time translations have to be dealt with. With ηt ∈ (0, T ), the L2−isometry of the boundary
unfolding operator gives

T−ηt∫
0

∫
Γ×(0,1)

|T εuε(t+ ηt, x, (z, h(z)))− T εuε(t, x, (z, h(z)))|2 dsdxdt

=

T−ηt∫
0

∫
Γε

|uε(t+ ηt, x)− uε(t, x)|2 dxdt.

Denote the left side by I and the translation operator by4ηt . As before, the trace theorem gives

I ≤ C
T−ηt∫
0

‖4ηtuε(t, ·)‖L2(Ωε)

(
‖4ηtuε(t, ·)‖L2(Ωε) + ‖4ηt(∇uε(t, ·))‖L2(Ωε)

)
dt,

where the right side can be estimated by using Cauchy Schwarz inequality

I ≤ C

 T−ηt∫
0

‖4ηtuε(t, ·)‖2L2(Ωε)dt


1
2
 T−ηt∫

0

‖4ηt(∇uε(t, ·))‖2L2(Ωε)dt


1
2

+ C

T−ηt∫
0

‖4ηtuε(t, ·)‖2L2(Ωε)dt.

Using the L2(0, T ;L2(Ωε)) bounds on the gradient, the above inequality reduces to

I ≤ C

 T−ηt∫
0

‖4ηtuε(t, ·)‖2L2(Ωε)dt


1
2

+ C

T−ηt∫
0

‖4ηtuε(t, ·)‖2L2(Ωε)dt.

Now we use Lemma 4.1 to obtain

I ≤ C
(
η

1
4
t + η

1
2
t

)
and with ηt ↘ 0, we conclude that the translations in time are controlled.

By Riesz-Kolmogorov compactness criterion, we conclude that T εuε converges strongly in L2((0, T )× (0, 1)×Γ).

With the strong convergence of T εuε established, we proceed to treat the non-linear terms on the boundary.
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Lemma 4.15 It holds

T εr (uε)→ r(u) strongly in L2 ((0, T )× (0, 1)× Γ) .

P r o o f. Since r is Lipschitz, Proposition 4.6 gives

‖T εr (uε) ‖2L2((0,T )×(0,1)×Γ) = ‖r (uε) ‖2L2(ΓεT ) ≤ C‖u
ε‖2L2(ΓεT ) ≤ C,

showing that the sequence T εr (uε) is bounded uniformly (w.r.t. ε) in L2 sense. Further, by Lemma 4.14, as ε↘ 0

‖T εr (uε)− r(u)‖ = ‖r (T εuε)− r(u)‖ ≤ Lr‖T εuε − u‖ → 0,

where the norms are in L2((0, T )× (0, 1)× Γ).

Next, we improve the convergence of T εvε; the convergence
Lemma 4.16 With v in Lemma 4.10,

T εvε → v strongly in L2 ((0, T )× (0, 1)× Γ) .

P r o o f. The idea is again based on translation. First, we note that wε ∈ H(vε) satisfies

wε =

 1 if vε > 0,
min(r(uε), 1) if vε = 0,
0 if vε < 0.

and with this we conclude that wε is monotonically increasing with respect to vε. We re-write the equation (7)2 by a change
of co-ordinates,

∂tT
εvε = T εr(uε)− T εwε in the sense of distributions.

Our approach is close to that used in [39]. Since, ∂tvε is in L2, the translation of T εvε in time is controlled. To obtain
equi-continuity with respect to translations in space, one needs to compare solutions from different cells and also within
one cell which means we need to control these translations with respect to x and z. The strong convergence of r(uε) to
r(u) in L2(0, T ;L2(Γ× (0, 1))) and the monotonicity of wε are essentially used to achieve this.

First, we consider the translation in x. To this aim, let ηx be a positive real number and

Qηx := {(x, z) ∈ (0, 1)× (0, 1) | dist ((x, z), ∂((0, 1)× (0, 1))) < ηx}.

Then,

1
2
d
dt‖4ηxT

εvε‖2L2(Qηx ) =

∫
Qηx

(4ηxT εvε) (4ηxT εr(uε)−4ηxT εwε) dxdz.

Using the monotonicity of T εwε with respect to T εvε, one has

(4ηxT εvε) (4ηxT εwε) ≥ 0, (32)

implying

1

2

d

dt
‖4ηxT εvε‖2L2(Ωηx ) ≤

∫
Γ×Ωηx

(4ηxT εvε) (4ηxT εr(uε)) dxdz ≤
1

2
‖4ηxT εvε‖2L2(Ωηx ) +

1

2
‖4ηxT εr(uε)‖2L2(Ωηx ).

As |ηx| ↘ 0 and due to the strong convergence of T εr(uε), the second approaches 0 uniformly with respect to ηx (IV.26
in [9]). By Gronwall’s lemma we conclude that

‖4ηxT εvε‖2L2(Ωηx ) → 0 as |ηx| → 0

uniformly. For the translation with respect to z, we can proceed similarly; we omit the details. Further, the time translations
are bounded since ∂tvε is bounded uniformly in ε. Therefore T εvε converges strongly in L2(0, T ;L2(Γ × (0, 1))) (recall
the convention referring to a subsequence).
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The only term to be considered is wε. Specifically, we have to identify its limit w as a member ofH(v). This is obtained
in the following

Lemma 4.17 With v and w being the limits of T εvε and T εwε one has w ∈ H(v) a.e.

P r o o f. The proof follows the ideas in proving Theorem 2.21 in [17], or Theorem 2.15 in [13], but now applied to the
sequence of unfolded triples (T εuε, T εvε, T εwε). We omit the details here.

4.4 Connecting the limits

In Lemma 4.7 we have obtained u0 as the limit of uε restricted to Ω. Since u0 ∈ L2(0, T ;H1(Ω)), we have the trace of u0

defined at ∂Ω. Next, we considered trace of uε defined on Γε and constructed the periodically unfolding sequence T εuε

defined at (0, T )×Γ×(0, 1). We also proved in Lemma 4.14 that T εuε converges strongly to u in L2((0, T )×(0, 1)×Γ). It
remains to connect these two limits and show that the trace of u0 coincides with u. We prove this in the following Lemma.

Lemma 4.18 It holds that∥∥u (t, x, (z, h(z)))− u0 (t, x, y = 0)
∥∥
L1(0,T ;L1((0,1)×Γ))

= 0, (33)

implying that the trace of u0 and u (obtained as limit of T εuε) coincide a.e..

P r o o f. The choice of L1 norm simplifies the computations. Let

I :=

T∫
0

1∫
0

∫
Γ

∣∣u (t, x, z)− u0 (t, x, y = 0)
∣∣dsdxdt.

By using the triangle inequality we obtain

I ≤
T∫

0

1∫
0

∫
Γ

∣∣u (t, x, (z, h(z)))− T εuε (t, x, (z, h(z)))
∣∣dsdxdt

+

T∫
0

1∫
0

∫
Γ

∣∣uε(t, ε ⌊x
ε

⌋
+ εz, εh(z))− uε(t, ε

⌊x
ε

⌋
+ εz, 0)

∣∣dsdxdt
+

T∫
0

1∫
0

∫
Γ

∣∣uε(t, ε ⌊x
ε

⌋
+ εz, 0)− uε(t, x, 0)

∣∣dsdxdt
+

T∫
0

1∫
0

∫
Γ

∣∣uε (t, x, y = 0)− u0 (t, x, y = 0)
∣∣dsdxdt.

Now we show that each of the term on the right, denoted by Ii, i = 1, . . . , 4, converge to 0. Recalling Lemma 4.14, for the
first term we have

I1 =
∥∥u (t, x, (z, h(z)))− T εuε (t, x, h(z))

∥∥
L1((0,T )×(0,1)×Γ)

→ 0.

For I2, using Cauchy-Schwarz inequality gives

I2 =

T∫
0

1∫
0

∫
Γ

∣∣ εh(z)∫
0

∂ξu
ε
∣∣ ≤ T∫

0

1∫
0

∫
Γ

ε|h| 12 εh∫
0

|∂zuε|2


1
2

≤ Cε 1
2 ‖∂zuε‖L2(ΩεT ) ≤ C

√
ε‖∇uε‖L2(ΩεT ).

The last term is bounded by Cε
1
2 because uε in L2(0, T ;H1(Ωε)). This implies that I2 ↘ 0 as ε↘ 0.

The next term is the translation of uε by εz in the x direction. Since |z| ≤ 1, Lemma 4.12 gives

I3 ≤ C|ε|
1
2 ,

approaching 0 as ε↘ 0.
For the last term we find

I4 =
∥∥uε (t, x, y = 0)− u0 (t, x, y = 0)

∥∥
L1((0,T )×(0,1)×Γ)

= |Γ|
∥∥uε (t, x, y = 0)− u0 (t, x, y = 0)

∥∥
L1((0,T )×(0,1))

.

In view of Lemma 4.7, this term converges to 0 as well, which concludes the proof.
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5 Limit equations: proof of Theorem 3.2

In this section, we establish the limit equations and hence prove Theorem 3.2. Since we have already established that the
trace of u0 is equal to u, the limit of T εuε, for notational convenience we denote both the limits u0 and u by u. From the
weak formulation, (7)1, choose for φ ∈ H1((0, T )× Ω), s.t. φ(T, x) = 0 to rewrite

−
T∫

0

∫
Ω

uε(∂tφ)dxdt+

T∫
0

∫
Ω

∇uε∇φdxdt+

T∫
0

∫
Ω

qεuε∇φdxdt+

T∫
0

∫
Γε

(∂tv
ε)φdxdt

=

∫
Ω

uIφ(x, 0)dxdt−
T∫

0

∫
Ωε\Ω

uε(∂tφ)dxdt+

∫
Ωε\Ω

uIφ(x, 0)dxdt−
T∫

0

∫
Ωε\Ω

(∇uε∇φ+ qεuε∇φ) dxdt.

All terms on the left in the above have the to desired limits: for the first two terms, this follows from Lemma 4.7; for the
third term we use (11) and the strong convergence of uε. For the boundary term we have

lim
ε↘0

T∫
0

∫
Γε

(∂tv
ε)φdxdt =

T∫
0

∫
(0,1)×Γ

(∂tv)φdxdsdt

using the weak convergence of T ε∂tvε shown in Lemma 4.10.
Furthermore, excepting the first integral, all terms on the right are integrals on Ωε \ Ω. Due to Lemma 4.9, all these

integrals vanish, giving the desired limit equation.
Next, we consider the equation (7)2. By a change of coordinate, this can be immediately rewritten as

T∫
0

∫
(0,1)×Γ

(∂tT
εvε)(T εθ)dxdsdt =

T∫
0

∫
(0,1)×Γ

(T εr(uε)− T εwε) (T εθ)dxdsdt

for all θ ∈ L2(0, T ; Γε). Lemma 4.15 provides the strong convergence of T εrε; the weak convergence of T εwε follows
from Lemma 4.10, leading to

T∫
0

∫
(0,1)×Γ

(∂tv)θdxdsdt =

T∫
0

∫
(0,1)×Γ

(r(u)− w) θdxdsdt

for all θ ∈ L2(0, T ;L2((0, 1)× Γ)).
Finally, w ∈ H(v) thanks to Lemma 4.17, which completes the proof of Theorem 3.2.

6 Extensions to different rates

In this work, we have focussed on the proof for the crystal precipitation dissolution model involving a non-Lipschitz,
possibly multi-valued rate. However, the techniques can be used to treat different reaction rates. In what follows, we
provide two more examples of non-linear rates and comment upon the scheme of the proof. We spare the full details.

6.1 Model 1

We consider the following model

∂tu
ε −∆uε + qε∇uε = 0, in ΩεT (34)

∂tv
ε = r(uε)− g(vε), on ΓεT (35)

and let us assume that r has the same structure given earlier. For g, we assume Lipschitz continuity and that it takes positive
values. Such rates are considered for example in modeling the reactive flows in porous medium [24], in biological contexts
in the diffusion of receptors in a cell [36], or in the description of sulphate attack for sewer pipes [19]. The extension to
more number of species living on the boundary or inside the domain is analogous. For the model, the derivation of a priori
estimates follows standard techniques. Since the reaction terms are Lipschitz, we obtain for ∂tuε ∈ L2(0, T ;L2(Ωε)) (see
e.g. [36]). We directly give the results and comment upon the particularities.
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Theorem 6.1 As ε↘ 0, the pair (uε, vε) converges to (u, v) and the limits satisfy the following equation defined in ΩT

(∂tu, φ)ΩT + (∇u,∇φ)ΩT − (qu,∇φ)ΩT = −(∂tv, φ)(0,1)×Γ×(0,T ),

(∂tv, θ)(0,T )×(0,1)×Γ = (r(u)− g(v), θ)(0,1)×Γ×(0,T ) (36)

for all (φ, θ) ∈ L2(0, T ;H1
0,ΓD

(Ω))× L2(0, T × (0, 1)× Γ).
Remark 6.2 Compared to the proof of Theorem 3.2, the only difference is in obtaining the strong convergence of T εvε.

We sketch briefly the steps involved in the proof for this strong convergence. We adopt the same framework as in the proof
for Lemma 4.16 and re-do some of the steps of the proof for the translation in x. Let ηx be a positive real number and Qηx
be an arbitrary compact subset of (0, 1)× (0, 1) as defined before. We have,

1
2
d
dt‖4ηx(T εvε)‖2L2(Qηx ) =

∫
Qηx

4ηx(T εvε) (4ηx(T εr(uε))−4ηx(T εg(vε))) dxdz

which leads to using Cauchy Schwarz and Young’s inequality,

1
2
d
dt‖4ηxT

εvε‖2L2(Γ×Ωηx ) ≤ ( 1
2 + Lg)‖4ηxT εvε(x)‖2L2(Ωηx ) + 1

2‖4ηxT
εr(uε)‖2L2(Ωηx )

where Lg is the Lipschitz constant of g. For the rest, the arguments remain the same. Note that as |ηx| ↘ 0, the strong con-
vergence of T εr(uε), implies that the second term goes to 0 uniformly with respect to ηx (IV.26 in [9]). Using Gronwall’s
lemma we conclude that the translations go to 0 as |ηx| ↘ 0. Similarly, the translation with respect to z is similarly treated
which together establish the strong convergence of T εvε in L2(0, T ;L2(Γ× (0, 1))) .

Remark 6.3 For the 2-scale convergence framework of periodic homogenization, the Lipschitz rate at the boundary is
treated by the periodic unfolding techniques in [36]. There it is proved that T εvε is a Cauchy sequence. Further, it is to
be noted that the above proof also works if g is not Lipschitz but is only monotonic and bounded as is the case for the
precipitation dissolution model considered here.

6.2 Model 2

We discuss another model with non-linear reaction rates that can be treated analogously.

∂tu
ε −∆uε + qε∇uε = 0, (37)

∂tv
ε = r(uε)(1− sign+(vε)) (38)

where sign+(vε) is defined as

sign+(vε) =

{
1 vε > 0,
0 vε ≤ 0.

(39)

and let us assume that r has the same structure given earlier. The model is considered in [7] describing the stiff dissolution
rates in the context of the safe disposal of nuclear waste. In the cited reference, this problem is posed on core scale in a
porous medium and analyzed numerically using the finite volume method. Here, we assume that the reactions take place
at the rough boundaries and we are concerned with the upscaling of these rough boundary. The a priori estimates are again
derived from standard techniques and we simply state the final result.

Theorem 6.4 As ε↘ 0, the pair (uε, vε) converges to (u, v) and the limits satisfy the following equation defined in ΩT

(∂tu, φ)ΩT + (∇u,∇φ)ΩT − (qu,∇φ)ΩT = −(∂tv, φ)(0,1)×Γ×(0,T ),

(∂tv, θ)(0,T )×(0,1)×Γ = (r(u)− sign+(v)r(u), θ)(0,1)×Γ×(0,T ) (40)

for all (φ, θ) ∈ L2(0, T ;H1
0,ΓD

(Ω))× L2((0, T )× (0, 1)× Γ).
Remark 6.5 Once again the steps in the proof are analogous and we skip them. Note that once we have proved the

strong convergence of T εrε and T εvε, we are able to pass to the limit as this implies, T εvε → v pointwise a.e. with v
bounded. The proof for strong convergence of T εrε is same as in the above case. We remark on the difference in the proof
for the strong convergence of T εvε. Adopting the same framework as in the proof for Lemma 4.16. Let Qηx be an arbitrary
compact subset of (0, 1)× (0, 1) and let ηx ∈ (0, dist(Qηx , ∂((0, 1)× (0, 1)))). We have,

1
2
d
dt‖4ηxT

εvε‖2L2(Qηx ) =

∫
Qηx

(4ηxT εvε)4ηx
(
T εrε(1− T εsign+(vε))

)
dxdz.
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Note that the right hand side can be rewritten as

4ηx
(
T εrε(1− T εsign+(vε))

)
= 4ηxT ε(rε)(1− T εsign+(vε))

+T εr(uε)4ηx(1− T εsign+(vε))

and by the monotonicity (monotonically decreasing) of 1− T εsign+(vε) and positivity of r, we have

T εr(uε)4ηx(1− T εsign+(vε))4ηxT εvε ≤ 0.

Using Cauchy Schwarz and Young’s inequality, this gives
d
dt‖4ηxT

εvε‖2L2(Γ×Ωηx ) ≤ ‖4ηxT
εvε‖2L2(Ωηx ) + ‖4ηxT εr(uε)‖2L2(Ωηx ).

Following the argument that as |ηx| ↘ 0, the strong convergence of T εr(uε) implies that the second term goes to 0
uniformly with respect to ηx (IV.26 in [9]). Using Gronwall’s lemma then concludes the proof.

7 Numerical simulations

To study the approximation of the upscaled equations to the original equations, we make the following choices for the
geometry. To construct Ωε, we make the following choice for Γε:

Γε = {(x, y) : x ∈ (0, 1) y = −1.1ε+ ε sin(π/2 + 2π
x

ε
)}

which makes sure that Ω ⊂ Ωε and we conduct the numerical experiments for different ε. For the flow, we solve the Stokes
equation for Ωε domain with parabolic inlet profile and for Ω we have the exact solution q = 6y(1− y)e1. For the choice
of reaction rates, we choose for precipitation,r(u) = [u]+, and for dissolution rate, we choose the regularized Heaviside
function

Hδ(v
ε) :=


1, vε > δ,
vε

δ , 0 ≤ vε ≤ δ,
0, vε < 0

(41)

and we choose for δ = 0.01. The choice of this regularized Heaviside function has been already investigated for numerical
analysis and we refer to [13] for the details.
For the computations, we use finite element method with BDF time stepping for solving the equations as implemented in
the COMSOL Multiphysics package [25].

We choose the following initial conditions:

uε(x, y, t = 0) = 1, in Ωε, vε(x, t = 0) = 0.2 on Γε;

and for u, v also we choose

u(x, y, t = 0) = 1, in Ω, v(x, t = 0) = 0.2 on y = 0, x ∈ (0, 1).

Note that for this choice of vε, v we have r(uε)−Hδ(v
ε) = r(u)−Hδ(v) = 0 and hence ∂tvε = ∂tv = 0 leading to the

equilibrium situation. According to different boundary conditions imposed at x = 0, we consider the following situations.

7.1 Dissolution fronts

We perturb the equilibrium at x = 0 by imposing the boundary condition uε = u = 0. Due to this the dissolution starts
taking place as ∂tvε, ∂tv < 0 at x = 0. This gives rise to the dissolution fronts and these fronts proceed to the right as time
progresses. We study this case for different choices of ε.

7.1.1 Concentration at the boundary

We compute the full solution for different ε and plot uε and u at the boundary Γε and y = 0 boundary of Ω respectively
at t = 0.5. The plot is shown in Figure 2. Due to the oscillations in the boundary the maximum error takes place at
the boundary itself. We compute the concentration at the oscillating boundary for given ε and then plot it against the
upscaled concentration u at y = 0. Because of the oscillating boundary, the concentration has an oscillating profile while
the upscaled concentration has a monotonic profile; however, as ε decreases, uε converges to u.
For vε, the corresponding plot is shown in Figure 3. For small ε we see that the upscaled profile provides a good approxi-
mation for the full solution. Further, as ε decreases, the vε converges to v.
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Fig. 2 Concentration profiles for dissolution process at the boundary for different ε at t = 0.5.
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Fig. 3 Precipitate concentration profiles for dissolution process at the boundary for different ε at t = 0.5.
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Fig. 4 Average concentration ū for dissolution process for different ε at t = 0.5.

7.1.2 Error at the boundary

Next, we consider the L2(Γ1),Γ1 := {(x, 0)|x ∈ (0, 1)} error at the boundary at t = 0.5. Specifically, we assume that the
error is of order εαu ,

Euε := ‖uε − u‖L2(Γ1) ≤ Cεαu .

To estimate αu, we compute the error for various values of ε and determine the ratio

αu(i) =
log(error(i))− log(error(i− 1))

log(ε(i))− log(ε(i− 1))
, i = 2, . . . , 6.
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ε 0.1000 0.0800 0.0500 0.0400 0.0200 0.0100
error 0.1118 0.0844 0.0516 0.0453 0.0218 0.0106
αu 0.9195 0.9746 1.1003 0.9588 0.9754

Table 1 Table for L2 error for the concentrations.

In Table 1 we give the values of the error as well as the convergence rate αu computed from the preceding formula. The
convergence order is close to 1.
Similarly, for vε we assume the convergence order αv and compute

Evε := ‖vε − v‖L2(Γ1) ≤ Cεαv .

The results are tabulated in Table 2. As it is seen below, the convergence order is better than 1.

ε 0.1000 0.0800 0.0500 0.0400 0.0200 0.0100
error 0.0268 0.0206 0.0125 0.0114 0.0061 0.0030
αv 1.3000 1.3725 1.4783 1.3403 1.2582

Table 2 Table for L2 error for the precipitate concentration.

We now compare the average concentration at the boundary. We define

ū(x) :=
1

ε

∫ εb xε c+
ε
2

εb xε c−
ε
2

uεds

Observe that ū provides information regarding the average concentration into one periodic unit for ε model. We compare
this with the upscaled equation in Figure 4. The agreement is very good for small εwhich indicates the quality of upscaling.

7.2 Precipitation process

Next, we again choose the same initial condition as above and we study the precipitation process by imposing the boundary
condition

uε = u = 2, at x = 0

and with this choice, note that ∂tvε, ∂tv > 0 and hence the precipitation process starts taking place. This leads to an
increase in vε, v as time progresses and for uε, u a steady state is achieved. We show the solutions for different ε and we
compute the full solution for ε = 0.1, 0.02 and plot uε and u at the boundary Γε and y = 0 boundary of Ω respectively
at t = 1. The corresponding plots for uε and vε are shown in Figure 5, respectively in 6. Again, due to the oscillations
in the boundary, we have the boundary layer and the maximum error takes place at the boundary itself. We compute the
concentration at the oscillating boundary for given ε and then plot it against the upscaled concentration u at y = 0. Because
of the oscillating boundary, the concentration has an oscillating profile while the upscaled concentration has a monotonic
profile; however, as ε decreases, uε, vε converges to u, v.

8 Conclusions

We have rigorously derived the upscaled model for the crystal precipitation dissolution model defined in a domain with
rough/oscillating boundary characterized by period and amplitude ε. The upscaled model is obtained as the limit of se-
quence ε ↘ 0. The derivation uses the homogenization arguments where we use the periodic unfolding techniques to use
the desired compactness arguments. The non-linear reaction rates in particular the multi-valued dissolution rates require
stronger convergence properties for passing to the limit which is achieved by considering translation estimates. Even though
the derivation here has been specific to the precipitation-dissolution model, similar techniques may be used for a different
kinds of reaction rates. We have given some specific examples of such rates. Moreover, we have provided numerical com-
putations to show the convergence. We see that the upscaled solutions approximate the full solution very well and hence
provide a convincing argument for the usefulness of upscaling techniques.
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Fig. 5 Concentration profiles at the boundary for different ε at t = 1 (precipitation).
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Fig. 6 Precipitate concentration at the boundary for different ε at t = 1 (precipitation).
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[23] U. Hornung and W. Jäger. Diffusion, convection, adsorption, and reaction of chemicals in porous media. J. Differential Equations,

92(2):199–225, 1991.
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