

Probability and hiding in concurrent processes

Citation for published version (APA):
Georgievska, S. (2011). Probability and hiding in concurrent processes. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR716397

DOI:
10.6100/IR716397

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR716397
https://doi.org/10.6100/IR716397
https://research.tue.nl/en/publications/ef283d2c-a150-4098-93ad-fd107733be53

Probability and Hiding

in Concurrent Processes

Sonja Georgievska

The work in this thesis has been carried out
under the auspices of the research school IPA
(Institute for Programming research and Al-
gorithmics). The author was employed at the
Eindhoven University of Technology.

c© Copyright Sonja Georgievska, 2011
IPA Dissertation Series 2011-13
Printed by Eindhoven University of Technology Press Facilities

A catalogue record is available from the
Eindhoven University of Technology Library
ISBN: 978-90-386-2640-6

Probability and Hiding

in Concurrent Processes

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op maandag 3 oktober 2011 om 16.00 uur

door

Sonja Georgievska
geboren te Strumica, Macedonië

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. J.C.M. Baeten
en
prof.dr. W.J. Fokkink

Copromotor:

dr. S. Andova

Acknowledgements

First of all, I would like to thank Jos Baeten and Suzana Andova for offer-
ing me a PhD position, and Wan Fokkink, for accepting to be my second
promotor.

Jos Baeten, my first promotor, gave me as much freedom and support to
push my limits in the search for “the truth”, as a PhD researcher could wish
for. I should be extremely lucky to have a future supervisor like Jos.

Wan Fokkink became my second promotor later in my PhD studies; nev-
ertheless, he showed deep interest in my work. His comments and the discus-
sions we had were very valuable for improving the quality and the correctness
of the thesis.

The relationship with Suzana Andova, my “daily” supervisor, was indeed
on a daily basis, and it is very difficult to summarize four exciting years in a
few words. I am very thankful to Suzana for being always there for me, for
all the good advices regarding science and papers, for the endless discussions,
for the trust and support when they were needed, and for much more.

I thank Pedro D’Argenio, Jan Friso Groote, and Catuscia Palamidessi
for accepting to be readers of my thesis, and for their useful comments, that
improved the text even further. I thank Twan Basten for accepting to take
part in the defense committee.

The first part of this thesis is largely based on joint research with Nikola
Trčka; the outcome of that research influenced the direction of my thought
for the rest of the PhD studies. I am very thankful to Nikola for the great
collaboration. I owe him a lot for teaching me valuable things when I was a
novice in formal methods and in scientific research in general.

I was also very lucky to have Jasen Markovski nearby in the first year; he
also shared his knowledge unselfishly, even though he was very busy finishing
his own PhD project. The discussions with Jasen and Nikola were always
inspiring.

Many thanks to Erik de Vink for reading my papers, for the useful com-
ments and advices, and for helping me organize my time in the last year of
my PhD studies, when I was faced with two challenges simultaneously.

v

vi

I would like to thank all members of the former Formal Methods group
and the current MDSE group for the pleasant atmosphere. I especially appre-
ciated some stimulating discussions during the Tuesday’s “lunch talks” and
the ordinary lunch chats. Special thanks to the former FM-ers and OAS-ers
with whom I spent most of the time – Astrid, Bas, Francine, Frank, Harsh,
Helle, Jing, Kees, Matthias, Meivan, Michiel, Mohammad, Paul, Pieter, Rob,
Ronald, Ruurd, Simona, Tijn, Tim, Tineke, Uzma, and my colleagues men-
tioned above – for their kind help and advices on any matter.

I thank Joost-Pieter Katoen for inviting me to present my research in the
MOVES seminar in Aachen, and Pieter Cuijpers for inviting me to give a
talk at the IPA Fall Days.

During conferences, workshops and seminars I benefited from, or had in-
teresting research discussions with: Miguel Andrés, Kostas Chatzikokolakis,
Pepijn Crouzen, Pedro D’Argenio, Holger Hermanns, Joost-Pieter Katoen,
Manuel Núñez, Peter van Rossum, Ana Sokolova, and Marielle Stoelinga. I
also met many inspirational people during scientific events with whom the
discussions may not have been on a particular research topic. It is not pos-
sible to provide a full list, but I thank them all.

I thank Ana, Biba & Dragan, Daniela, Maja, Meri & Jasen, Mile, Nataša
& Žarko, Natka, Niksa, Peni & Goce, Sandra & Ace, Vesna & Vlado for
simply being my friends – helping me resolve dilemmas, make decisions, and
enjoying life. I am especially happy to be able to call most of you “friends
for many years”.

I thank Marija, Nadežda, Simona and Suzana for their generous help with
baby-issues, which also eased the writing of this thesis.

I thank my parents Violeta and Dragi for always supporting me to follow
my dreams. I thank my sister Radmila, for always being there for me, and
making me feel a very rich person. I thank Zoki and Maja & Zo for being so
great, both as family-in-law and as friends!

Finally, I thank my husband Zvezdan and my daughter Kristina. For the
things that really matter.

Sonja Georgievska

Eindhoven, August 2011

Summary

Action hiding and probabilistic choice have independently established their
roles in process algebraic modeling and verification of concurrent systems.
While action hiding allows abstraction from unimportant details and model
reduction, and the induced nondeterminism enables modeling uncertainty in
the system behaviour, probabilistic choice allows quantification of nondeter-
minism. However, as not all of the nondeterministic behaviour has a random
nature, we are faced with the challenge to combine the above two aspects of
concurrent systems, such that one can take maximal advantage of both.

This thesis addresses two problems regarding concurrent processes that
exhibit both hidden and probabilistic behaviour, or probabilistic processes
for short. Namely, a proper reduction of a model, by elimination of the
hidden actions, requires a semantical equivalence that preserves the process
properties of interest and is a congruence for the process operators. For
non-probabilistic processes it has been shown that such an equivalence is
branching bisimilarity. However, in the presence of probabilistic choice, more
concretely in the alternating model of probabilistic processes, the intuitive
notion of branching bisimulation is not a congruence for parallel composition.
In this thesis a new branching bisimulation for this model is defined, and it
is shown that this is the coarsest congruence for parallel composition that is
included in the former. To achieve the congruence result, a hidden action
preceding directly a non-trivial probabilistic choice cannot be eliminated.
The new branching bisimulation preserves the properties expressible in the
probabilistic computation tree logic, and is decidable in polynomial time.
Similar to the non-probabilistic case, a single axiom characterizes branching
bisimilarity for finite probabilistic processes.

The previous results imply that branching bisimilarity, although poten-
tially useful for model reduction, may be in fact too strong to serve as an
equivalence relation for probabilistic processes. Another view, taken in the
may/must testing theory (as well as in the process calculus CSP), is to distin-
guish two processes only if they can be distinguished when interacting with
their environment, i.e. with another process. However, although processes

vii

that differ only in the moment an internal (nondeterministic) choice is made
are not distinguished by this theory, for probabilistic processes this is no
longer valid. The problem stems from an earlier observation that the sched-
ulers that resolve the nondeterminism in concurrent probabilistic processes
are too powerful and yield unrealistic overestimations of the probabilities
with which a process can pass a test. The power of the schedulers comes
from the fact that they allow the same choice to be resolved in different
manners in different futures. In order to restrict the schedulers and thus to
obtain the right probabilities, this thesis proposes integrating the informa-
tion, based on which a nondeterministic choice is resolved, in labels on the
nondeterministic transitions. In this way, choices using the same informa-
tion are resolved in the same way, regardless of the considered future. As
a result, the new testing preorder relation can be characterized by a proba-
bilistic ready-trace preorder, a relation that is insensitive to the moment an
internal choice is made, yet sensitive to deadlock and to action priorities. In
other words, it combines useful features of both the bisimulation-style and
the trace-style relations. The parallel composition is also generalized here to
include both interleaving and action hiding after synchronization, and it is
shown that probabilistic ready-trace preorder is a precongruence with respect
to it. Finally, the CSP-style axiomatic characterization shows that all the
distributivity laws for nondeterministic choice from CSP are preserved and
no new laws are added.

viii

Contents

1 Introduction 1

1.1 Background . 1
1.2 Motivations and the approaches 3
1.3 Contributions . 7

1.3.1 Structure of the thesis 8
1.4 Origin of the thesis . 9

I Branching-time semantics 11

2 Introduction 13

3 Compositional probabilistic branching bisimilarity 19

3.1 Probabilistic transition systems 19
3.2 Branching bisimilarity for PTS 21
3.3 Compositionality . 26
3.4 The coarsest congruence result 29

3.4.1 Weaker branching bisimilarity 29
3.4.2 Comparing the two equivalences 30
3.4.3 The coarsest congruence proof 33

4 Branching bisimilarity: Algorithm, logics, axioms 35

4.1 Decidability algorithm . 35
4.2 Colouring definition . 38
4.3 Branching bisimilarity and pCTL 40

4.3.1 pCTL . 40
4.3.2 Soundness of branching bisimilarity for pCTL 42

4.4 A complete axiomatization: Process theory pTCPτ 44
4.4.1 Process language pTCPτ 44
4.4.2 Branching bisimilarity and pTCPτ operators 48
4.4.3 Axiomatization . 49

ix

x CONTENTS

5 Concluding remarks to part I 61

5.1 Related work . 61
5.2 Concluding remarks . 63

II Testing semantics 65

6 Introduction 67

7 Probabilistic testing theory: Retaining the probabilities 75

7.1 Process graphs . 75
7.2 Unfolding and coherent labeling 78
7.3 Testing semantics . 82

7.3.1 Synchronization . 82
7.3.2 The result of testing 85
7.3.3 Testing preorder . 88

7.4 Probabilistic ready-trace preorder 89
7.4.1 Bayesian probability 89
7.4.2 The preorder relation �RT 90

7.5 The two preorders coincide . 92

8 A conservative probabilistic extension of CSP 97

8.1 Operators for choices and priority 98
8.2 Parallel composition . 100

8.2.1 Concurrency with hiding 101
8.2.2 Interleaving . 102
8.2.3 General parallel composition with hiding 104

8.3 Normal forms . 108
8.3.1 General process trees 109
8.3.2 Normal forms . 114

8.4 Congruence property for ≈RT 116
8.5 Axiomatic characterization of ≈RT 120

9 Concluding remarks to part II 125

9.1 Related work . 125
9.2 Concluding remarks . 129

9.2.1 Discussion and future work 130

Bibliography 132

Curriculum vitae 143

Chapter 1

Introduction

This chapter intends to provide a general introduction to the field
of concurrency theory, more particular to process algebras, process
semantics, and their probabilistic extensions, in order to position the
present work. It also briefly explains the motivations of the author for
conducting the research presented in the thesis, and connects the two
parts of the thesis. The contributions and the structure of the thesis
are given and the papers on which this thesis is based are stated.

Depending on the preferences, a reader may skip this chapter and pro-
ceed directly to Part I or Part II, as each part has its own introduction.

1.1 Background

Concurrent processes are processes which execute in parallel and potentially
interact with each other or share resources. Different mathematical for-
malisms have been developed for modeling and analysis of concurrent pro-
cesses, such as Petri nets, process algebras, temporal logics, etc. In process
algebras (e.g. CCS [85, 86], CSP [25, 71], ACP [10, 20]), processes are repre-
sented by so-called labeled transition systems: the process can undergo sev-
eral states while executing, and a transition from one state to another can be
made by performing actions (see e.g. Fig. 1.1). Processes can be composed
in several ways, most notably via parallel operators, that can capture various
ways of interactions: processes may synchronize on a given set of actions and
perform the rest of the actions independently [71], or may synchronize via
a handshaking mechanism that hides the synchronized action, i.e. makes it
invisible [85], or may synchronize in a general way, via a predefined commu-
nication function [10]. No matter how the parallel composition is performed,
it usually gives rise to a considerable amount of nondeterminism, which is
an essential factor that makes the analysis of concurrent processes complex.

1

2 1. Introduction

The nondeterminism causes many possible execution paths at every state
of the composed process. This makes the problem of “when to equate two
processes”, or “how to check whether the implementation conforms to the
specification”, rather complicated [58]. Namely, since two processes may have
different internal structures, but exhibit the same behaviour, the question is

“How much of the internal structure of processes can be ignored when

processes are compared?”

Up to this moment, there is no consensus on the right answer to this question
(see e.g. [88]), or the right semantical equivalence, but there are several well-
argued approaches. The bisimulation equivalence [85] relates two processes,
or states, only if they can mimic each other’s action steps by progressing
again to related sub-processes, or states. The internal branching structure is
thus preserved by related processes. An argument in favor of bisimulation is
that this approach is safe and robust to adding new process operators [60,
85]. Moreover, two states are bisimilar if and only if they satisfy the same
formulas of the well-known modal logic CTL [35] for describing properties of
the systems; in other words, bisimilarity is completely characterized by CTL
(as shown in [26]). Other approaches [25, 39] have more relaxed criteria:
processes are distinguished only if they can be distinguished when being
tested by the environment, that is, by interacting with other processes. The
internal structure plays a less significant role in this case. Yet the least strict
approach is to equate two processes only if they show the same observable
behaviour, viz. have the same sets of traces (a trace being a sequence of
performed actions) [71]1. Figure 1.1 gives several processes and relations
between them with respect to different semantical equivalences: bisimilarity,
testing equivalence [39], and trace equivalence. See [58] for an extensive
study of various process equivalences and their properties.

Even more discrepancies on which processes are equivalent occur when
taking into consideration that some actions in the system are internal (in-
visible, or hidden). Such actions occur, for example, when two actions have
synchronized and the resulting action is no longer able to synchronize with
other actions [85] and thus becomes hidden (e.g. sending and receiving of a
message). Thus, within the bisimulation approach, we have weak bisimula-
tion [85] (originally called observational equivalence), and branching bisim-
ulation [62].2 Weak bisimulation relaxes the conditions of (strong) bisimula-
tion by allowing internal τ -actions to precede or follow the observable action

1Trace equivalence stems from language equivalence in automata theory, while in con-
currency theory it is of tangential interest.

2Other types of bisimulations have been proposed, too, but those two are the most
popular.

1.2. Motivations and the approaches 3

a

����
��

��
�� a

��?
??

??
??

?

b
����
��
�� b

��/
//

//
/

b
����
��
�� b

��/
//

//
/

c
��

d
��

c
��

d
��

≈bis

≈test

≈trace

a
��

b
��

 b

��1
11

11
1

c
��

d
��

6≈bis

≈test

≈trace

a
����
��
�� a

��/
//

//
/

b
��

b
��

c
��

d
��

6≈bis

6≈test

≈trace

a
��

b
��

c
��

 d

��1
11

11
1

Figure 1.1: Several processes and relations between them w.r.t different
equivalences

when simulating an action step. By branching bisimulation, however, the
internal actions themselves must connect related states. It has been argued
that adding the latter criterium to weak bisimulation preserves the branch-
ing structure better [60, 62]. Moreover, branching bisimilarity is completely
characterized by the logic CTL without the “next” operator [40].

Originally, the focus in concurrency theory was only on modeling qualita-
tive properties of systems. Due to the presence of unreliable components, but
also because many protocols use randomization to achieve their goals, proba-
bilistic behaviour started being considered in processes [34,53,66,80,107]. In
the beginning, it was usual to assume that all nondeterminism has a random
nature [14,34,53]. However, the range of applications in this way is narrowed,
for example nondeterminism might be due to decision making (as in Markov
Decision Processes [19, 73]), and thus cannot be treated as random. When
a consensus was reached that both probabilistic and nondeterministic choice
are important for modeling concurrent processes, research was spanned on
several relevant questions: how to add probabilistic behaviour on the top of
labeled transition systems [37,66,93,97], how to define plausible operators for
composing processes [3, 37, 66, 97], and how to properly extend the existing
semantical equivalences in the new setting (see [68, 97, 108] for early work).
See [43, 102, 109] for extensive overviews of research in these topics. Yet,
there are still open questions, and in this thesis we address some of them.

1.2 Motivations and the approaches

Several models for extending labeled transition systems with probabilistic
behaviour have been proposed [37, 66, 93, 97]. One of those that gave gained
attention is the alternating model [66,68]. The probabilistic transitions in [68]

4 1. Introduction

have been added orthogonally to the action transitions: there are probabilis-
tic states, originating probabilistic transitions, in addition to the nondeter-
ministic states, originating action transitions (see e.g. Fig. 1.2). In [68] strong
probabilistic bisimilarity has been defined, based on the probabilistic bisim-
ulation defined in [80] for a more restricted model. Two states are bisimilar
by [68] if they can mimic each other’s action steps by proceeding again to
bisimilar states (in the same style as in non-probabilistic bisimulation), or if
they enter the same classes of equivalent states with the same probabilities.
The parallel composition operator extends the CCS operator, such that the
probabilistic transitions have precedence over the action transitions in paral-
lel (see e.g. the parallel composition s ‖ u of states s and u in Fig. 1.2). It has

(a) (b)

τ

1− ππ

a

τ

a

1− π

τ

a

1− π

a

a
a

π
π

t

s

u v

t‖u

s‖u
s‖v

t‖v

v‖v
u‖u v‖u

u‖v

Figure 1.2: Probabilistic systems in the alternating model: (a) equivalent
states s and t, (b) parallel composition and failure of the congruence property.

been shown that strong probabilistic bisimilarity is a congruence for parallel
composition [68], meaning that it is preserved under parallel composition.
This property is essential for equational reasoning about processes and for
compositional analysis.

Later, notions of weak bisimulation and branching bisimulation for the
alternating model were defined in [91], resp. [8]. However, although intuitive,
they turned out not to be congruence relations w.r.t. parallel composition, as
shown in [4]. For example, states s and t in Fig. 1.2 are related, but s ‖ u and
t ‖ u, their parallel compositions with state u, are not related by [8,91]. This
is because by performing action a, state s ‖ u can reach state s ‖ v, that
eventually performs action a with probability π; on the other hand, state
t ‖ u by performing action a cannot reach a state that behaves as s ‖ v.

To solve the above problem, in this thesis we propose to restrict prob-
abilistic branching bisimilarity of [8] such that it becomes a congruence for

1.2. Motivations and the approaches 5

parallel composition. Note that it is not unusual to restrict process equiva-
lences to become congruences [22, 84, 85, 97]. The relation in [8] is strength-
ened in such a way that states s and t are no longer equivalent, or, in general,
a τ -action preceding a probabilistic state with non-trivial distribution cannot
be ignored. Further, we investigate the newly defined probabilistic branch-
ing bisimilarity from other aspects. We investigate whether it can be used as
a model reduction technique, by providing a polynomial-time algorithm for
deciding probabilistic branching bisimilarity and by showing that branching
bisimilar states satisfy the same probabilistic CTL [67] formulas (without the
“next” operator). We also give an axiomatic characterization of probabilis-
tic branching bisimilarity, by which it becomes easily comparable to other
process equivalences.

Although the new branching bisimilarity has nice properties, it distin-
guishes between states s and t, which is rather counterintuitive from the
perspective of “the right process equivalence”. Another way to solve the
congruence problem discussed above is to allow states s ‖ u and t ‖ u in
Fig. 1.2 to be related, as well as states s and t. However, note that in t ‖ u
the probabilistic choice occurs before any execution of action a, while in s ‖ u
this is not always the case. This means that we have to shift our attention
to equivalences that are not sensitive to the exact moment an internal prob-
abilistic choice occurs, as originally for non-probabilistic processes in [25,39].
This, certainly, would bring us away from bisimulation-like equivalences.

It turned out, however, that finding an equivalence that has the above
property and is compositional at the same time is far from trivial. To explain
this, let us consider the following example. Player x tosses a fair coin with-
out revealing the outcome and waits. Player y waits while the coin is being
tossed, and then writes down his guess about the outcome of the flipping
without showing it to x. Then, both players agree to reveal their outcomes,
i.e. x to uncover the coin and y to show what he has written. Players x and y
are modeled in Fig. 1.3. Processes synchronize on their common actions ex-
cept on action ω reporting success, and the synchronized actions are hidden
afterwards, resulting in process x ‖ y in Fig. 1.3. Obviously, the probability
that player y guesses correctly equals 1

2
. However, this is not what is sug-

gested by process x ‖ y. From process x ‖ y it follows that, if the process
takes the left transition in the left-most nondeterministic choice and the right
transition in the right-most nondeterministic process, then ω, or success, will
always be reported, i.e. with probability 1. Note that this overestimation
of probability to report ω occurs because the nondeterministic choice that
y makes has been copied in both futures of the probabilistic choice of x in
process x ‖ y. On the other hand, the composition of processes x̄ and y
(Fig. 1.3) yields that ω is reported with probability 1

2
(or x̄ passes test y with

6 1. Introduction

x
1
2

��
�F
�F
�F 1

2

��
�X

�X
�X

w
��

w
��

r
��

r
��

h
��

t
��

y
w

��

τ
����		
		

		 τ
�� ��5

55
55

5

r
��

r
��

h
��

t
��

ω
��

ω
��

x‖y
1
2

}} }=
}=

}=
}=

1
2

!!!a
!a

!a
!a

τ
����

τ
����

τ
������
��
�� τ

�� ��/
//

//
/

τ
������
��
�� τ

�� ��/
//

//
/

τ
����

τ
����

τ
����

τ
����

τ
����

τ
����

ω
��

ω
��

x̄
w

��

r
��

1
2

�� �D
�D
�D
�D 1

2

���Z
�Z

�Z
�Z

h
��

t
��

Figure 1.3: The coin-flipper and result-guesser game

probability 1
2
), that is, this time the right answer is obtained. Thus, due to

above artefact of the parallel composition operator, processes x and x̄ cannot
be related by the probabilistic extensions [42,44,74,90,98,108] of the testing
theory of [39].3 Thus, by the probabilistic extensions of the may/must testing
theory, the moment an internal probabilistic choice is made is observable.

To solve the above problem, in this thesis we propose a labeling method.
First, the τ -transitions are enriched with labels, by which they are identified
in a parallel context. Thus, the resolution of a local nondeterministic choice is
remembered in the parallel composition. Second, as nondeterministic choices
arise due to parallel composition itself, we also propose how to properly label
the new nondeterminism: each new nondeterministic choice is labeled with
labels reflecting the information based on which it is resolved. Two choices,
thus, that use the same information, will be resolved in the same manner, no
matter where they appear in the considered process. Based on the labeling
method, we define a testing semantics for probabilistic processes in the style
of [39], aiming at obtaining realistic probabilities to pass a test, such as
1
2
for x ‖ y in Fig. 1.3 instead of 1. We then show that the new testing

preorder relation can be characterized by a probabilistic version of the ready-
trace preorder relation [13,58,92]. From this characterization it follows that
the induced equivalence relation is insensitive to the moment an internal
nondeterministic or probabilistic choice happens. We also explore how to
extend the labeling method in case of a generalized parallel composition

3Variants of this example were initially discussed in [83, 87, 97].

1.3. Contributions 7

(with both action interleaving and synchronization with hiding), to preserve
the probability information about the composed system, but also to achieve
compositionality of the ready-trace preorder. We give a CSP-style axiomatic
characterization of the ready-trace equivalence, by which it becomes easily
comparable to the other equivalences.

Remark The problem induced by using all-mighty schedulers for resolution
of global nondeterminism, as illustrated by the example with the two players,
has already been discussed from other points of view [9,31,55]. Namely, note
that by using all-mighty schedulers one cannot prove that the probability
that player y guesses correctly the outcome of coin-flipping is 1

2
. Thus, prob-

abilistic verification of composed systems becomes difficult. This problem
becomes especially apparent in the context of verifying security protocols
(see e.g. [9, 31]), where usage of all-mighty schedulers deems classical pro-
tocols, which have otherwise been proven to be secure, as insecure. Thus,
the solution proposed in this thesis can be also seen as a method to improve
probabilistic verification of systems, by restricting the schedulers in order to
obtain realistic estimates of the probabilistic behaviour of composed systems.

Remark In [56] it has been shown that the verification problem, for sys-
tems with infinite behaviour, is in general undecidable under schedulers with
restricted power. However, in [57] it has been shown that usage of restricted
schedulers allows for a more aggressive reduction of the state space than does
usage of all-mighty schedulers. Thus, indirectly, by applying standard prob-
abilistic verification (assuming all-mighty schedulers) on the reduced space,
better estimates of the probabilistic behaviour are still obtained [57].

1.3 Contributions

In this thesis the following contributions are made.

1. We propose a new definition of branching bisimilarity for the alternat-
ing model of probabilistic systems [68] that is a congruence for parallel
composition (Chapter 3);

2. We show that our probabilistic branching bisimilarity is the biggest
equivalence relation that is a congruence for parallel composition and
is included in the intuitive branching bisimilarity [8] for the same model
(Chapter 3);

3. We give a polynomial-time algorithm for deciding our probabilistic
branching bisimilarity (Chapter 4);

8 1. Introduction

4. We show that probabilistic branching bisimilar states satisfy the same
formulas of a probabilistic extension [67] of the modal logic CTL [35],
without the “next” operator (Chapter 4);

5. We give an axiomatic characterization of probabilistic branching bisim-
ilarity for finite processes for a process language in the style of
ACP [10, 11] (Chapter 4);

6. We propose a new probabilistic extension of the may/must testing pre-
order [39], that is unsensitive to the exact moment an internal proba-
bilistic or nondeterministic choice happens (Chapter 7);

7. We propose a labeling method to be applied on the alternating model
of probabilistic systems such that realistic probabilities with which a
process passes a test are obtained; the labels include the information
based on which the internal choice is resolved (Chapter 7);

8. We propose a definition of probabilistic ready-trace preorder relation
for our model (Chapter 7);

9. We show that the new probabilistic testing preorder relation and the
probabilistic ready-trace preorder coincide (Chapter 7);

10. We propose a generalized parallel composition for our model, by defin-
ing a method for labeling the internal transitions arising from paral-
lelism; inÍ this way, realistic estimates for the probabilistic behaviour
of the composition are obtained;

11. We show that probabilistic ready-trace preorder is a precongruence for
the generalized parallel composition (Chapter 8);

12. We give a CSP-style axiomatic characterization of probabilistic ready-
trace equivalence, from which it follows that the distributivity and the
idempotence properties of internal choice are preserved from CSP [71],
and no new laws regarding the interplay between the different choice
operators are added (Chapter 8).

1.3.1 Structure of the thesis

This thesis is divided into two parts, that can be read independently from
each other. The first part includes the results 1–5 stated above, while the
second part includes the results 6–12. Each part has an introductory chapter
and a concluding chapter; each concluding chapter includes also a discussion
on the related work to the research relevant to the particular part.

1.4. Origin of the thesis 9

1.4 Origin of the thesis

The results presented in this thesis appeared before in several papers. Part I
is based on papers [105], [6] and [7], while Part II is based on papers [50], [49],
and the submission [52].

The results presented in the papers [106] and [51] also contributed in shap-
ing the research presented in this thesis, although they are not included in
the thesis. The research [106] partly motivated the need for a compositional
branching bisimulation for the alternating model of probabilistic systems.
The result that deterministic tests suffice to distinguish between processes
(Chapter 7) originally did not appear in [50], but in [51], for a restricted
model.

.

10 1. Introduction

Part I

Branching-time semantics

11

Chapter 2

Introduction

One of the major benefits of process theory is the notion of abstraction and
the corresponding equivalence relations defined on labeled transition systems.
Abstraction, on the one hand, allows one to reason about systems in which
details that are unimportant for the purposes at hand have been hidden.
On the other hand, the corresponding equivalence relations allow for model
reduction, which is often the only way to analyze complex or large systems.
The efficiency of the analysis can be improved even further if this reduction
technique is applied on the system’s components before they are composed
into a whole system model. This compositional analysis is particularly useful
when the system consists of a number of interactive components.

In order to benefit from model reduction before analysis, several criteria
have to be satisfied. First, it must be guaranteed that the properties of inter-
est are preserved after the reduction. In other words, the equivalence relation
used for model reduction must be sound with respect to the property speci-
fication language. Second, for a reduction method to be useful in practice, it
is important that equivalence reduction can be performed efficiently. Finally,
in order to apply modular reduction per component, it must be guaranteed
that composition after reduction generates a model equivalent to the original
one, namely, the equivalence relation must be preserved under composition.
The compositionality, or congruence property of the equivalence is in fact
essential for equational reasoning about processes.

Branching bisimulation equivalence for labeled transition systems [18,62],
that abstracts away from internal steps, has the three properties listed above,
and a number of other desirable features (see e.g. [60, 64]). In particular,
branching bisimilarity is characterized by the logic CTL* without the “next”
operator, as shown in [40].1 While strong bisimilarity requires exact simu-

1Further on in the text the phrase “without the ‘next’ operator” is assumed implicitly

13

14 2. Introduction

lation of the action transitions between the related system states, branching
bisimilarity relaxes this condition: it allows the sequences of internal steps
that possibly precede the action transition and connect equivalent states to
be ignored. On the other hand, this relaxed condition can be seen as a
restriction on top of the definition of weak bisimilarity [85], which allows
ignorance of any sequence of internal steps that may precede the action tran-
sition. In other words, branching bisimilarity adds a branching condition to
weak bisimilarity.

To model random behavior, several probabilistic extensions of transition
systems have been proposed, that differ in the way they combine probability
with nondeterminism (see [102] for an overview). One of the models that
have attracted attention is the alternating model (see Figure 2.1), introduced
in [107]. This model makes a distinction between nondeterministic states, in
which nondeterministic choice is resolved, and probabilistic states, in which
probabilistic choice is resolved according to a given distribution. In [68] a
probabilistic process theory is defined on the alternating model, including,
among others, the notions of parallel composition and communication. The
definition of parallel composition, thereafter considered as standard, is based
on the intuition that if a process p behaves as process p′ with probability
π, and process q behaves as process q′ with probability ̺, then the parallel
composition p‖q behaves as process p′‖q′ with probability π̺. For example,
in Figure 2.1, s‖u is the result of the parallel composition of processes s and
u without communication.

The underlying semantics in [68] is based on a strong bisimulation in
the style of [80]: action transitions are exactly simulated, while the related
probabilistic states must have the same total probabilities to reach an arbi-
trary equivalence class. Abstraction and equivalence relations that abstract
away from internal behavior were later defined in [91] and [8]. Reference [91]
defines a probabilistic version of weak bisimilarity, and [8] strengthens the
definition of [91] by adding the branching condition. A basic concept used in
these definitions is the notion of a scheduler, which selects an action transi-
tion each time the process resides in a nondeterministic state, and thus yields
a fully probabilistic process. An action transition then can be simulated by a
set of scheduled paths that have a total probability one, and possibly include
internal or probabilistic steps before the action itself. A scheduler is also used
in the simulation of the probabilistic steps. Namely, the total probability to
reach an equivalence class can be simulated by a set of scheduled paths, that
have the same total probability to reach the corresponding class, and where
the paths may include internal or probabilistic steps. For example, states s

when CTL or CTL* are referred to.

15

and t in Figure 2.1a are equivalent according to [91] and [8], because they
have the same potential.

However, it has been shown later in [4] that the equivalence relations
of [91] and [8] are not preserved by the parallel composition operator of [68].
This is explained in the following example.

(a) (b)

τ

1− ππ

a

τ

a

1− π

τ

a

1− π

a

a
a

π
π

t

s

u v

t‖u

s‖u
s‖v

t‖v

v‖v
u‖u v‖u

u‖v

Figure 2.1: Probabilistic systems in the alternating model: (a) equivalent
states s and t, (b) parallel composition and failure of the congruence property.

Example 2.0.1. Even though s and t in Figure 2.1 are equivalent, states
s‖u and t‖u are neither equivalent with respect to the equivalence in [91],
nor with respect to the equivalence in [8]. Namely, note that state s‖u can
perform action a and reach state s‖v, which may deadlock with probability
1− π (via the equivalent state t‖v). Thus, in order for state t‖u to simulate
this a-transition, there must be a scheduler starting in it, that generates
a set of paths that perform action a (possibly via internal or probabilistic
steps) with total probability 1, such that the states reached afterwards are
equivalent to s‖v. Clearly, this condition is not satisfied by any of the two
schedulers, that resolve the nondeterminism in different ways at state u‖u.

There are two ways to solve the congruence problem for a given equiva-
lence. One way is to adapt the operator in question, in this case the parallel
composition operator, by changing its semantics. However, this approach is
rather radical as the current definition is well-established and natural. An-
other approach is to change the equivalence in consideration, preferably in
such a way that the obtained notion is the coarsest congruence contained
in the original, intuitive equivalence. For branching bisimulation this idea
has already been employed several times, for instance in the extensions of
non-probabilistic process theory with priorities [22] and with timing [104].

16 2. Introduction

The same approach has been taken to achieve precongruence for parallel
composition for the trace distribution inclusion relation on probabilistic au-
tomata [84, 97].

In this part we define a notion of branching bisimilarity for the alternating
model of probabilistic systems that is a congruence for parallel composition,
as well as for the rest of the standard operators in a probabilistic process
algebra [3, 68]. The idea is to sufficiently strengthen the branching bisimi-
larity of [8] to achieve the congruence property. While action transitions are
mimicked in a similar manner, by paths allowed to contain probabilistic as
well as internal transitions, a stronger condition is imposed when mimick-
ing probabilistic transitions, similar to the one for strong bisimilarity [80].
This condition implies that a probabilistic state that leads to different equiv-
alence classes cannot be related to a nondeterministic state. Accordingly,
for example, states s and t in Figure 2.1a are not branching bisimilar by
our definition. Thus, we follow a similar line of reasoning as in [22], where
non-probabilistic branching bisimilarity has been adapted to become com-
patible with action priorities. To justify our approach, we also show that
this strengthened variant of probabilistic branching bisimilarity is the coars-
est congruence contained in the equivalence of [8]. To make the comparison,
we give a definition of our branching bisimilarity that involves schedulers,
although they are not necessary in the original definition.

The branching bisimilarity defined here also has the other properties men-
tioned earlier, that make it suitable for practical implementation. We define
an algorithm for deciding branching bisimilarity of polynomial time complex-
ity O(n4) w.r.t. the number of states n of the model. We also present a prob-
abilistic extension of the CTL modal logic, which is a variant of the pCTL
logic of [23], and show that branching bisimilarity preserves all the proper-
ties expressible in this logic. To support usage of the equivalence in a pro-
cess algebraic setting, we give a complete axiomatization for finite processes,
where the process language contains a rich set of operators needed to rea-
son on concurrent probabilistic processes: alternative composition, sequential
composition, probabilistic choice, parallel composition with communication,
hiding, and encapsulation. In particular, here the sequential composition
using the termination constant is defined for the first time in a probabilistic
setting. As an intermediate result we also give an alternative definition of
branching bisimilarity based on colouring of the states [62], which shows how
the branching structure of the processes is preserved. Regarding usage for
simplification of systems, our branching bisimilarity may appear to be too
strong at first, since, in general, it eliminates fewer τ -transitions than the one
from [8]. However, the examples we provide illustrate that the equivalence

17

is still powerful enough for elimination of internal nondeterminism.

Structure of Part I In Chapter 3 we define our branching bisimilarity
(Section 3.2) and show that it is compositional w.r.t. the merge operator,
i.e. parallel composition without communication [68] (Section 3.3). We also
show that it is the coarsest congruence for this operator that is included
in the equivalence of [8] (Section 3.4). Then, in Chapter 4, we show the
other characteristics of branching bisimilarity: we define the algorithm for
partitioning the state space (Section 4.1), give the colouring definition (Sec-
tion 4.2), show soundness for pCTL (Section 4.3) and provide a complete
axiomatization (Section 4.4). Chapter 5 concludes Part I with a discussion
on related work and concluding remarks.

18 2. Introduction

Chapter 3

Compositional probabilistic

branching bisimilarity

We define a notion of branching bisimilarity for the alternating model
of probabilistic systems, compatible with parallel composition. For
a congruence result, an internal transition immediately followed by a
non-trivial probability distribution is not considered inert. A weaker,
intuitive definition of branching bisimilarity for the same model has
been defined by Andova & Willemse. Here we show that the proposed
branching bisimilarity is the coarsest congruence for parallel compo-
sition that is included in the weaker version.

3.1 Probabilistic transition systems

As semantical model we use probabilistic transition systems that are based on
the alternating model in [68], more specifically on the non-strictly alternating
regime of [91]. The execution of the system can undergo two types of states:
probabilistic and nondeterministic. In a probabilistic state a choice among
the possible next nondeterministic states is made according to some proba-
bility distribution, while in a nondeterministic state an action transition is
performed.

Given a directed graph, by s
l
−→ t we denote that there is an edge origi-

nating from a node s and ending in a node t, labeled with l; we may omit s, t,
or l from the notation to denote that they are arbitrary. Note that multiple
equally labeled edges are possible between two nodes. We presuppose a
finite set of action labels A. Internal activity, as usual, is denoted by τ , and
it is assumed that τ 6∈ A. We denote Aτ = A∪ {τ}.

19

20 3. Compositional probabilistic branching bisimilarity

Definition 3.1.1 (Probabilistic transition system). A probabilistic transi-
tion system (PTS) is a finite-state and finite-transition directed graph, such
that

(i) there are two types of states (or nodes): nondeterministic and proba-
bilistic;

(ii) there are two types of transitions (or edges): action transitions, −→,
originating from nondeterministic states and ending in arbitrary states,
and probabilistic transitions, , originating from probabilistic states
and ending in nondeterministic states;

(iii) the action transitions are labeled with actions from Aτ ;

(iv) the probabilistic transitions are labeled with scalars from (0, 1], such
that for each probabilistic state s, the sum of all the labels on the
outgoing probabilistic transitions is equal to 1; that is,

∑

s
π

π = 1.

Given a PTS, by Sn, respectively by Sp, we denote the set of non-
deterministic, respectively probabilistic states in the PTS, and we write S
for Sn ∪ Sp. A deadlock state without outgoing transitions, denoted by d,

belongs to Sn. By s 99K t we denote that either s
τ
−→ t or s t; s

(a)
−→ t

denotes that either s
a
−→ t, or s = t and a = τ .

To be able to reason about the probabilistic behaviour of a system specified
by a PTS, the non-determinism that appears in the model must be first
resolved by means of schedulers. The rest of this section is meant to give a
concise presentation of the notion of scheduler, and other related notions. In
the sequel we assume that a PTS is given.

Definition 3.1.2 (Paths). An infinite path from a state s0 ∈ S is an infinite

sequence s0 l1 s1 . . . such that si ∈ S, and si
li+1
−−→ si+1 or si

li+1
 si+1 for all

1 ≤ i. A finite path from a state s0 is a finite sequence s0 l1 s1 . . . lk sk
satisfying the same conditions as above. A path is a finite or infinite path.
The set of all finite paths that start in a state s is denoted by Pathsf (s).
The set of all finite paths is denoted by Pathsf . Let c = s0 l1 s1 . . . lk sk be
a finite path. We define last (c) = sk. The probability of c is the product of
all probability labels on it, if any, or 1 otherwise, that is,

Prob (c) =

{

∏

li∈(0,1]
li, if lj ∈ (0, 1] for some 1 ≤ j ≤ k

1, otherwise.

3.2. Branching bisimilarity for PTS 21

A scheduler resolves a nondeterministic choice in a nondeterministic state
by selecting the next action to be executed. A scheduler can also stop an
execution, which is denoted by assigning a ⊥. In fact, as we will see, for a
notion of branching bisimulation it is enough to consider only a certain type
of finite paths, which can be extracted by allowing the scheduler to stop the
execution when needed. If a path ends with a probabilistic state, a scheduler
can either schedule nothing, in which case the next state of the execution is
determined by the corresponding probability distribution, or it can schedule
⊥ and thus stop the execution.

Definition 3.1.3 (Scheduler). A scheduler is a partial function σ : Pathsf 7→
(→ ∪ {⊥}), such that, if σ (c) = s

a
−→ t for some s, t ∈ S and a ∈ Aτ , then

last (c) = s.

Definition 3.1.4 (Scheduled paths). Let σ be a scheduler. A scheduled path
by σ is a finite path s0 l1 s1 . . . sk or an infinite path s0 l1 s1 . . . , where, for

arbitrary i, si ∈ Sn implies σ (s0 l1 s1 . . . si) = si
li+1
−−→ si+1, and for arbitrary

i, if si ∈ Sp then σ (s0 l1 s1 . . . si) is not defined, unless si is the last state of
the scheduled path. A maximal scheduled path is either an infinite scheduled
path, or a finite scheduled path c for which σ (c) = ⊥. The set of all maximal
paths scheduled by σ is denoted by Pathsm (σ).

Every scheduler σ induces a probability space on the set of all maximal
scheduled paths that start in a state s. The probability measure Prob is
defined by means of path prefixes and the cones induced by them in a usual
way. The precise definitions and the measure property of the Prob function
can be found in [8, 16, 94].

3.2 Branching bisimilarity for PTS

In this section we define a branching bisimulation relation on the set of states
of a given PTS.

Recall from Fig. 2.1 that the problem with compositionality occurs when
a probabilistic state with a nontrivial distribution (as t) is related to a non-
deterministic state (as s). The parallel composition of state t with an action
state will first resolve the probabilistic choice, while the parallel composition
of state s with an action state can perform the action before resolving the
probabilistic choice. However, the problem does not occur if the considered
probabilistic state leads to equivalent states. We conclude that a nondeter-
ministic state can be related to a probabilistic one only if the latter enters
its own class with probability 1 via a probabilistic transition.

22 3. Compositional probabilistic branching bisimilarity

To formalize the above discussion, we first define a probability measure
for an arbitrary state. Given a PTS with a set of states S, function P :
S × S → [0, 1] is defined in the following way.

P (s, t) =

∑

s
π
 t
π, if s ∈ Sp,

1, if s ∈ Sn and s = t,

0, otherwise.

Thus, for a probabilistic state s, P (s, t) gives the total probability to reach
state t via one probabilistic transition, while for a nondeterministic state s,
P (s, s) = 1 and P (s, t) = 0 for t 6= s. For a set D ⊆ S, we can now measure
the total probability to reach an element in D from a given state s ∈ S by

P (s,D) =
∑

t∈D

P (s, t).

Given an equivalence relation R on a set X , we denote by X/R the par-
titioning of X induced by R, and, for an x ∈ X , we denote by [x]R the
equivalence class of x.

Definition 3.2.1 (Branching bisimulation). An equivalence relation R ⊆
S × S is a branching bisimulation iff for every (s, t) ∈ R the following two
conditions hold:

(i) if s
a
−→ s′ for a ∈ Aτ , then there exist t0, . . . , tn, t

′ ∈ S such that

– t = t0 99K t1 99K . . . 99K tn
(a)
−→ t′,

– (s, ti) ∈ R for all 0 ≤ i ≤ n, and

– (s′, t′) ∈ R,

(ii) for all D ∈ S/R, P (s,D) = P (t, D).

States s and t are branching bisimilar, denoted by s ∼b t, iff (s, t) ∈ R for
some branching bisimulation relation R.

The first condition says that, as in [62], when an action transition is
simulated, it can be preceded by a sequence of unobservable transitions that
connect equivalent states. The second condition requires that all related
states must have the same total probability to reach an equivalence class in
one P -step, including their own equivalence class. It expresses, besides the
rest, that for a probabilistic state to be related to a non-deterministic one,
it must reach its own class with probability 1. This implies that a τ -step
that is immediately followed by a nontrivial probability distribution is not
considered inert, i.e. it cannot be ignored. Thus, due to this condition, states
s and t in Fig. 2.1a cannot be related.

3.2. Branching bisimilarity for PTS 23

s

a

����
��
��
��

b

��/
//

//
//

/ u

τ

��

π

�� �C
�C
�C
�C
�C
�C

1−π

���[
�[

�[
�[

�[
�[

τ
--

a
��8

88
88

88
88

8

τ
qq

b
����

��
��

��
��

π

�� �C
�C
�C
�C
�C
�C

1−π

���[
�[

�[
�[

�[
�[τ

..

b

��

Figure 3.1: Examples of branching bisimilar states

Example 3.2.2. Figure 3.1 is an example of a PTS, where the bisimilar
states are given the same colouring pattern. It can be seen that, although
the definition of branching bisimilarity seems restrictive, probabilistic states
can be related to nondeterministic states in rather nontrivial systems.

We proceed by showing that relation ∼b is itself a branching bisimulation.
First we formally state that a probabilistic state related to a nondeterministic
state cannot escape its own class via a probabilistic transition.

Lemma 3.2.3. Let R ⊆ S × S be a branching bisimulation and let s ∈ Sp.
If, for any t ∈ Sn, (s, t) ∈ R, then P (s, [s]R) = 1.

Proof. From t ∈ Sn we have P (t, t) = 1. Therefore, P (t, [t]R) = 1. From
Def. 3.2.1 and s ∈ [t]R, we have P (s, [s]R) = P (t, [s]R) = P (t, [t]R) = 1.

The following proposition plays an essential role in the proof that ∼b is a
branching bisimulation.

Proposition 3.2.4. Let {Ri}i∈I be a set of branching bisimulations. Then,
R =

(
⋃

i∈I Ri

)∗
, the transitive closure of their union, is again a branching

bisimulation.

Proof. Since Ri, for every i ∈ I, is an equivalence relation, it follows that R
is also an equivalence relation. Let i ∈ I. By definition, if (s, t) ∈ Ri then
(s, t) ∈ R. Therefore, every class in S/Ri

is contained in some class in S/R.
Moreover, it follows that every class D ∈ S/R is a union of classes in S/Ri

,

i.e. D =
⋃

j∈Ji
Dj
i for some index set Ji, where D

j
i ∈ S/Ri

for each j ∈ Ji.
Suppose (s, t) ∈ R. Then, there is some n > 0 such that (s, t) ∈

(
⋃

i∈I Ri

)n
. By induction on n we prove that s and t satisfy the condi-

tions of Def. 3.2.1.

24 3. Compositional probabilistic branching bisimilarity

Suppose n = 1. Then (s, t) ∈
⋃

i∈I Ri. This means that there exists h ∈ I
such that (s, t) ∈ Rh.

(i) Assume that s
a
−→ s′. Then, since (s, t) ∈ Rh, there exist t1, . . . , tm

(for some m > 0) and t′, such that t 99K t1 99K . . . 99K tm
(a)
−→ t′,

(s, ti) ∈ Rh ⊆ R for all 1 ≤ i ≤ m, and (s′, t′) ∈ Rh ⊆ R.

(ii) Let D ∈ S/R. By the above discussion, D =
⋃

j∈Jh
Dj
h for some index

set Jh, where each Dj
h is a class in S/Rh

. Then,

P (s,D) =
∑

j∈Jh

P
(

s,Dj
h

)

=
∑

j∈Jh

P
(

t, Dj
h

)

= P (t, D) .

Suppose now that n > 1. We assume that for all k < n it holds that, if

(u, v) ∈
(
⋃

i∈I Ri

)k
, then

(i) if u
a
−→ u′ then there exist v0, . . . , vm (for some m > 0) and v′ such that

v = v0 99K v1 99K . . . 99K vm
(a)
−→ v′, (u, vi) ∈ R for all 0 ≤ i ≤ m, and

(u′, v′) ∈ R, and

(ii) P (u,D) = P (v,D) for all D ∈ S/R.

By assumption, (s, t) ∈
(
⋃

i∈I Ri

)n
. Then, there exists r ∈ S such that

(s, r) ∈
(
⋃

i∈I Ri

)n−1
, while (r, t) ∈ Rh for some h ∈ I.

(i) Assume s
a
−→ s′. By the inductive assumption, there exist

r0, r1, . . . , rm, r
′ such that r = r0 99K r1 99K . . . 99K rm

(a)
−→ r′,

(s, ri) ∈ R for all 0 ≤ i ≤ m, and (s′, r′) ∈ R. Now, from (r, t) ∈ Rh,
by induction on m we show that there exist t0, . . . , tl (for some l > 0)

and t′ such that t = t0 99K t1 99K . . . 99K tl
(a)
−→ t′, (r, ti) ∈ R for all

0 ≤ i ≤ l, and (r′, t′) ∈ R, which suffices.

Suppose m = 0. Then r
(a)
−→ r′. The proof follows from the facts that

(r, t) ∈ Rh, which is a branching bisimulation, and Rh ⊆ R.

Suppose now that m > 0. We distinguish two cases: when r0
τ
−→ r1 and

when r0 r1.

Assume first that r0
τ
−→ r1. Then, from (r0, t) ∈ Rh and because Rh is

a branching bisimulation, it follows that there exist t0, t1, . . . , tk such

that t = t0 99K t1 99K . . . 99K tk−1
(τ)
−→ tk, (r, ti) ∈ Rh ⊆ R for all

0 ≤ i < k and (r1, tk) ∈ Rh ⊆ R. The rest follows by the inductive
assumption, using that (r, r1) ∈ R and that R is an equivalence.

3.2. Branching bisimilarity for PTS 25

Assume now that r0 r1. There are two subcases: when t ∈ Sn
and when t ∈ Sp. In the first case, from Lemma 3.2.3 it follows that
P (r, [t]Rh

) = 1, from which it follows that (t, r1) ∈ Rh ⊆ R. The rest
follows by the inductive assumption. In the second case, when t ∈ Sp,
by the second condition of Def. 3.2.1, there must exist t1 ∈ S such
that t t1, and (r1, t1) ∈ Rh ⊆ R. The rest follows by the inductive
assumption.

(ii) It is left to show that P (s,D) = P (t, D) for all D ∈ S/R. Let D ∈ S/R.

Since (s, r) ∈
(
⋃

i∈I Ri

)n−1
, by the inductive assumption it follows that

for all D ∈ S/R it holds P (s,D) = P (r,D). On the other hand, since

(r, t) ∈ Rh, and D =
⋃

j∈Jh
Dj
h for some index set Jh, where each

Dj
h ∈ S/Rh

, we have that

P (r,D) =
∑

j∈Jh

P
(

r,Dj
h

)

=
∑

j∈Jh

P
(

t, Dj
h

)

= P (t, D) .

Therefore, P (s,D) = P (r,D) = P (t, D).

Thus, R is a branching bisimulation.

Theorem 3.2.5. Relation ∼b is a branching bisimulation.

Proof. Let {Ri}i∈I be the set of all branching bisimulations. By definition,

∼b=
⋃

i∈I

Ri. (3.1)

From Proposition 3.2.4 we have that
(
⋃

i∈I Ri

)∗
is a branching bisimulation.

Therefore,
(

⋃

i∈I

Ri

)∗

⊆∼b . (3.2)

On the other hand, we have that

⋃

i∈I

Ri ⊆

(

⋃

i∈I

Ri

)∗

. (3.3)

From (3.1), (3.2), and (3.3) we obtain that

∼b=

(

⋃

i∈I

Ri

)∗

,

i.e. ∼b is a branching bisimulation.

26 3. Compositional probabilistic branching bisimilarity

3.3 Compositionality

In this section we give the definition of the merge operator (parallel compo-
sition without communication) [68] for probabilistic transition systems, and
prove that ∼b is compositional with respect to this operator. The results
extend to a parallel composition with communication in a straightforward
way. In Section 8.1

Definition 3.3.1 (Merge). The operation merge transforms a PTS with set
of states S into a PTS with set of states S×S, whose transitions are defined
as follows (we standardly write s ‖ t instead of (s, t)):

1. s ‖ t
a
−→ u iff s, t ∈ Sn and

– there exists s′ ∈ S such that s
a
−→ s′ and u = s′ ‖ t, or

– there exists t′ ∈ S such that t
a
−→ t′ and u = s ‖ t′; and

2. for all π ∈ (0, 1], s ‖ t
π
 u iff

– t ∈ Sn, there exists s′ ∈ S such that s
π
 s′, and u = s′ ‖ t, or

– s ∈ Sn, there exists t′ ∈ S such that t
π
 t′, and u = s ‖ t′, or

– there exist π1, π2 ∈ (0, 1] and s′, t′ ∈ S, such that s
π1
 s′, t

π2
 t′,

π = π1π2, and u = s′ ‖ t′.

Example 3.3.2. As already stated, state s ‖ u in Figure 2.1 is the merge of
the states s and u. Figure 3.2 gives an example of a merge (state v) of two
probabilistic states, s and u.

The next lemma shall be needed in the proof of the congruence theorem.

Lemma 3.3.3. For all s, t, s′, t′ ∈ S, P (s ‖ t, s′ ‖ t′) = P (s, s′) · P (t, t′).

Proof. We distinguish four cases, depending on whether s and t are nonde-
terministic or probabilistic states. In case both s and t are nondeterministic,
we have P (s, s′) · P (t, t′) = 1 if s = s′ and t = t′, and P (s, s′) · P (t, t′) = 0,
otherwise. From Def. 3.3.1 we have P (s ‖ t, s′ ‖ t′) = 1 if s ‖ t = s′ ‖ t′,
that is, if s = s′ and t = t′, and P (s ‖ t, s′ ‖ t′) = 0, otherwise. In case
s is nondeterministic and t is a probabilistic state, we have P (s, s′) = 1
if s = s′, and P (s, s′) = 0, otherwise, and P (t, t′) =

∑

t
ρ
 t′

ρ. Thus,
P (s, s′) · P (t, t′) =

∑

t
ρ
 t′

ρ if s = s′, and P (s, s′) · P (t, t′) = 0, otherwise.
The case when t is nondeterministic and s is a probabilistic state is similar

3.3. Compositionality 27

s
1
2

��
�H
�H
�H
�H

1
2

��
�V

�V
�V

�V

a

��
b
��

u
1
3

��
�H
�H
�H
�H

2
3

��
�V

�V
�V

�V

c

��
d
��

v
1
6

ww w7 w7 w7 w7 w7 w7 w7 w7 w7 w7 w7

1
3�� �B

�B
�B
�B
�B
�B

1
6 ���\

�\
�\

�\
�\

�\ 1
3

'''g'g'g'g'g'g'g'g'g'g'g

a

		��
��
��
�

c

��,
,,

,,
,,

a

		��
��
��
�

d

��,
,,

,,
,,

b

		��
��
��
�

c

��,
,,

,,
,,

b

		��
��
��
�

d

��,
,,

,,
,,

c
��,

,,
,,

,,

a
		��
��
��
�

d
��,

,,
,,

,,

a
		��
��
��
�

c
��,

,,
,,

,,

b
		��
��
��
�

d
��,

,,
,,

,,

b
		��
��
��
�

Figure 3.2: State v as the merge of states s and u.

to the previous one. In case both s and t are probabilistic states, we have
P (s, s′) =

∑

s
π
 s′

π and P (t, t′) =
∑

t
ρ
 t′

ρ. Thus,

P (s, s′) · P (t, t′) =
∑

s
π
 s′

π
∑

t
ρ
 t′

ρ =
∑

s
π
 s′

∑

t
ρ
 t′

πρ.

From Def. 3.3.1 we have that

P (s ‖ t, s′ ‖ t′) =
∑

s
π
 s′

∑

t
ρ
 t′

πρ,

and thus the proof is complete.

Theorem 3.3.4 (Congruence theorem). Branching bisimilarity ∼b is a con-
gruence with respect to the merge operator, i.e. if s ∼b t and u ∼b v then
s ‖ u ∼b t ‖ v.

Proof. Let R = {(s ‖ u, t ‖ v) | s, t, u, v ∈ S, s ∼b t, u ∼b v}. We show that
R is a branching bisimulation relation. It is clearly an equivalence relation.
Let s, t, u, v ∈ S be such that (s ‖ u, t ‖ v) ∈ R.

(i) Suppose that s ‖ u
a
−→ r for some r ∈ S × S and a ∈ Aτ . Without

loss of generality, we can assume that s
a
−→ s′ for some s′ ∈ S. Then u ∈ Sn

and r = s′ ‖ u. From s ∼b t it follows that there exist t0, . . . tn, t
′ ∈ S

such that t0 = t, t ∼b ti for 0 ≤ i ≤ n, s′ ∼b t
′, and t0 99K t1 99K . . . 99K

tn
(a)
−→ t′. By induction on n we show now that there exist t̄0 = t, t̄1, . . . , t̄k,

v̄0 = v, v̄1, . . . , v̄k, and r̄ ∈ S × S, such that (t ‖ v, t̄i ‖ v̄i) ∈ R for 0 ≤ i ≤ k,

(r, r̄) ∈ R, and t̄0 ‖ v̄0 99K t̄1 ‖ v̄1 99K . . . 99K t̄k ‖ v̄k
(a)
−→ r̄. We distinguish

two cases: when v ∈ Sn and when v ∈ Sp.

28 3. Compositional probabilistic branching bisimilarity

– Assume first that v ∈ Sn. Suppose that n = 0. Then, there exists t′ ∈ S

such that t
(a)
−→ t′ and t′ ∼b s

′. From the last and from Definition 3.3.1

it follows that t ‖ v
(a)
−→ t′ ‖ v, which was enough to prove. Suppose

now that n > 0. If t0
τ
−→ t1, then we have t0 ‖ v

τ
−→ t1 ‖ v. If t0 t1,

then t0 ‖ v t1 ‖ v. The rest follows from the inductive assumption.

– Assume now that v ∈ Sp. From v ∼b u and Lemma 3.2.3, it follows that
there exists v̄ ∈ Sn such that P (v, v̄) > 0 and v ∼b v̄. Suppose that

n = 0. Then, there exists t′ ∈ S such that t
(a)
−→ t′ and t′ ∼b s

′. If t = t′,

then t ‖ v
(a)
−→ t′ ‖ v. If t 6= t′, then t ∈ Sn, and t ‖ v t ‖ v̄

(a)
−→ t′ ‖ v̄.

Suppose now that n > 0. If t0
τ
−→ t1, then t0 ‖ v t0 ‖ v̄

τ
−→ t1 ‖ v̄,

while if t0 t1, then t0 ‖ v t1 ‖ v̄. In either case, the rest follows
from the inductive assumption.

(ii) In the proof of the second condition, the most involved case is when
s ‖ u is a probabilistic state. Let p, q ∈ S and D = [p ‖ q]R. Then, using
Lemma 3.3.3, we have

P (s ‖ u,D) =
∑

p̄ ‖ q̄∈D

P (s ‖ u, p̄ ‖ q̄) =
∑

p̄ ‖ q̄∈D

P (s, p̄) · P (u, q̄). (3.4)

By the definition of R, we have

∑

p̄ ‖ q̄∈D

P (s, p̄) · P (u, q̄) =
∑

p̄∼bp,q̄∼bq

P (s, p̄) · P (u, q̄)

=

(

∑

p̄∼bp

P (s, p̄)

)

·

(

∑

q̄∼bq

P (u, q̄)

)

. (3.5)

Similarly as above, we obtain

P (t ‖ v,D) =

(

∑

p̄∼bp

P (t, p̄)

)

·

(

∑

q̄∼bq

P (v, q̄)

)

. (3.6)

From s ∼b t and u ∼b v, we have
(

∑

p̄∼bp

P (s, p̄)

)

·

(

∑

q̄∼bq

P (u, q̄)

)

=

(

∑

p̄∼bp

P (t, p̄)

)

·

(

∑

q̄∼bq

P (v, q̄)

)

. (3.7)

From equations (3.4), (3.5), (3.6) and (3.7) we obtain that P (s ‖ u,D) =
P (t ‖ v,D). Thus, the proof is complete.

3.4. The coarsest congruence result 29

3.4 The coarsest congruence result

In this subsection we present one of the main results, namely that branch-
ing bisimilarity ∼b is the coarsest congruence sub-relation of the equivalence
relation (denoted here by ↔b) defined in [8]. The comparison of the two
relations requires a characterization of ∼b in terms of schedulers. Thus, we
also give an alternative definition of ∼b.

3.4.1 Weaker branching bisimilarity

To avoid any confusion, in the sequel we refer to the branching bisimilarity
↔b of [8], discussed in Chapter 2, as a weaker branching bisimilarity or wb
bisimilarity in short. From now on, branching bisimilarity refers only to the
∼b relation (Def. 3.2.1). The major difference between ↔b and ∼b is the
following: in ↔b a one-step probabilistic transition can be simulated by a set
of internal paths, which is not the case with ∼b. As for the simulation of an
action transition, there are no essential differences, which will become clear
in the next subsection.

We introduce several abbreviations. Assume that a PTS is given and that
R is an equivalence relation on the set of states S of the PTS and D ∈ S/R.

By s0
a
⇒ D we denote a silent path that traverses states equivalent to s0

before performing an action a and reaching class D; in the case a = τ , it is
not necessary to perform the action. Formally, let c = s0 l1 s1 . . . lk sk be a
finite path such that sk ∈ D, and for all 1 ≤ i ≤ k − 1, si ∈ [s0]R and li = τ
if li ∈ Aτ . For a given a ∈ A, we say that c is of type s0

a
⇒ D if lk = a. We

say that c is of type s0
τ
⇒ D if either k = 0 or lk = τ or lk ∈ (0, 1]. For a

scheduler σ, by
Pathsm (σ)

/t
a
⇒D

,

where a ∈ Aτ , we denote the set of all paths in Pathsm (σ) , i.e. the maximal
paths scheduled by σ, that are of type t

a
⇒ D. The probability function

µR : S × S/R 7→ [0, 1] is defined as:

µR (s,D) =

{

P (s,D)
1−P (s,[s]R)

, if s ∈ Sp, D 6= [s]R, and P (s, [s]R) 6= 1

0, otherwise.

Note that, when s ∈ Sp, D 6= [s]R, and P (s, [s]R) 6= 1, µR (s,D) represents
the conditional probability with which state s reaches class D in one step,
under condition that it leaves its own class [s]R. However, in any other case
µR (s,D) is defined and equal to zero.

Definition 3.4.1 (WB bisimulation [8]). An equivalence relation R ⊆ S×S
is a wb bisimulation iff, for every (s, t) ∈ R the following two conditions hold:

30 3. Compositional probabilistic branching bisimilarity

(i) if s
a
−→ s′ for some a ∈ Aτ and s′ ∈ S, then there is a scheduler σ such

that
Prob

(

Pathsm (σ)
/t

a
⇒[s′]R

)

= 1;

(ii) if s ∈ Sp, then there is a scheduler σ such that for all D ∈ S/R \ {[s]R},

µR (s,D) = Prob
(

Pathsm (σ)
/t

τ
⇒D

)

.

s and t are wb bisimilar, denoted by s↔b t, iff there exists a wb bisimulation
relation R ⊆ S × S such that (s, t) ∈ R.

We recap the conditions of the definition. An action transition can be sim-
ulated by a set of σ-scheduled paths, for some scheduler σ, that traverse
silently through the equivalence class of the initial state before the same ac-
tion is performed, as long as the probability of the set of all such σ-scheduled
paths is 1. The probabilistic potential of a probabilistic state, to reach other
equivalence classes, can be simulated if a single scheduler can be found, which
generates silent paths through the equivalence class of the originating state
before reaching other equivalence classes – of course, the probability of en-
tering a certain equivalence class must match the corresponding probability
for the related probabilistic state.

3.4.2 Comparing the two equivalences

In order to compare the two notions of bisimulation relations, we reformulate
the definition of our branching bisimulation. The following lemma prepares
the ground for the new alternative definition. Then, Theorem 3.4.4 redefines
branching bisimulation in terms of schedulers.

Lemma 3.4.2. Let R ⊆ S × S be a branching bisimulation relation and let
s

a
−→ s′ for some a ∈ Aτ and s, s′ ∈ S. Let t ∈ S such that (s, t) ∈ R. There

exists a scheduler σ such that

Prob
(

Pathsm (σ)
/t

a
⇒[s′]R

)

= 1.

Proof. Since s
a
−→ s′ and (s, t) ∈ R, there exists at least one path of type

t
a
⇒ [s′]R. From Def. 3.2.1 it follows that all probabilistic states on this

path are related to s. Moreover, by Lemma 3.2.3 it follows that they enter
only their own class with a probabilistic step. The proof goes by induc-
tion on the maximal number of nondeterministic states that appear on a
path of type t

a
⇒ [s′]R, not counting the last state. More precisely, for a

3.4. The coarsest congruence result 31

given path c, we define Nstates (c) = {r | r ∈ Sn, r appears in c, r 6=
last (c)}, and for x ∈ S such that (x, s) ∈ R, we define maxn(x) =
max{|Nstates (c) |,where c is of type x

a
⇒ [s′]R}. The proof is by induction

on maxn(t).

Suppose maxn(t) = 0, inducing that t ∈ Sp. From (s, t) ∈ R it follows that
P (t, [s′]R) > 0 and a = τ . As s is a nondeterministic state P (s, [s]R) = 1.
Thus, from (s, t) ∈ R is follows that also P (t, [t]R) = 1. Since P (t, [s′]R) > 0,
we obtain [s′]R = [t]R. Then, the required scheduler is defined by σ (c) = ⊥
for every path c.

Suppose now that maxn(t) = m > 0. We distinguish the following two cases.

(i) t ∈ Sn. Then either t
a
−→ t′, for some t′ ∈ S such that (s′, t′) ∈ R, or

there exists t′′ ∈ S such that (t′′, t) ∈ R, t
τ
−→ t′′, and maxn(t

′′) < m.
In the first case, the required scheduler is any scheduler σ that satisfies
σ (c) = t

a
−→ t′ when last (c) = t. In the second case, by the inductive

assumption, there exists a scheduler ρ, such that

Prob
(

Pathsm (ρ)
/t′′

a
⇒[s′]R

)

= 1.

The required scheduler is now defined by

σ (c) =

{

t
τ
−→ t′′, if last (c) = t

ρ (c) , otherwise.

(ii) t ∈ Sp. Since (s, t) ∈ R and P (s, [s]R) = 1 we have P (t, [t]R) = 1.
Let U = {u | t u} be the set of all states reachable from t in one
probabilistic transition. (u, t) ∈ R for every u ∈ U . Thus, for every
u ∈ U , there exists u′ ∈ S such that either u

τ
−→ u′, (u, u′) ∈ R, and

maxn(u
′) < m, or u

a
−→ u′ and (u′, s′) ∈ R. The rest follows easily by

the inductive assumption.

Example 3.4.3. Consider state u in Figure 3.1, which is branching bisimilar
to state s. There exists a scheduler σ, such that

Prob
(

Pathsm (σ)
/u

a
⇒[t]∼b

)

= 1,

where t is the deadlock state. This scheduler, in particular, always chooses
action a between a and τ , and chooses action τ between b and τ in the states
where there is nondeterminism.

32 3. Compositional probabilistic branching bisimilarity

Theorem 3.4.4. An equivalence relation R ⊆ S × S is a branching bisimu-
lation iff for every (s, t) ∈ R the following two conditions hold:

(i) if s
a
−→ s′ for a ∈ Aτ , then there exists a scheduler σ such that

Prob
(

Pathsm (σ)
/t

a
⇒[s′]R

)

= 1;

(ii) for all D ∈ S/R, P (s,D) = P (t, D).

Proof. One direction follows immediately from Lemma 3.4.2, while the other
direction is trivial.

The following lemma, in addition to Lemma 3.4.2, is necessary to establish
that ∼b is finer than ↔b. It expresses that the second condition of Def. 3.2.1
can be stated in the form of the second condition of Def. 3.4.1.

Lemma 3.4.5. Let R ⊆ S × S be a branching bisimulation. Let (s, t) ∈ R
for s ∈ Sp and t ∈ S. Let σ be a scheduler such that σ (c) = ⊥ for all paths
c. Then, for all D ∈ S/R such that D 6= [s]R,

µR (s,D) = Prob
(

Pathsm (σ)
/t

τ
⇒D

)

.

Proof. Let D 6= [s]R. If P (s, [s]R) = 0, since (s, t) ∈ R, it follows that t ∈ Sp,
from which we have that

µR (s,D) = P (s,D) = P (t, D) = Prob
(

Pathsm (σ)
/t

τ
⇒D

)

.

If P (s, [s]R) > 0, then, since every probabilistic transition leads to a nonde-
terministic state, there exists s′ ∈ Sn, such that P (s, s′) > 0 and (s, s′) ∈ R.
Since P (s′, s′) = 1, we have P (s, [s]R) = 1. From this, µR (s,D) = 0 and
P (t, D) = P (s,D) = 0. Then

Pathsm (σ)
/t

τ
⇒D

is the empty set, from which it follows that Prob
(

Pathsm (σ)
/t

τ
⇒D

)

= 0.

Theorem 3.4.6. ∼b ⊂ ↔b.

Proof. ∼b ⊆ ↔b from Lemmas 3.4.2 and 3.4.5. The strict inclusion follows
directly from the example in Figure 2.1a, where s↔b t, whereas s 6∼b t.

3.4. The coarsest congruence result 33

3.4.3 The coarsest congruence proof

The following lemma is crucial for the coarsest congruence proof. It says that
the states that, when put in a fresh context, yield states equivalent by ↔b,
are exactly those that are related by ∼b.

Lemma 3.4.7. Let s, t ∈ S. Let x be a fresh action label, that does not
appear in any path in the PTS. Let x be a new state such that x

x
−→ d (d is

the deadlock state) and x has no other outgoing transitions. If s ‖ x ↔b t ‖ x,
then s ∼b t.

Proof. Define the equivalence relation R ⊆ S × S by

R = {(p, q) | p ‖ x↔b q ‖ x}.

We prove that R is a branching bisimulation. Let (s, t) ∈ R.

(i) Suppose that s
a
−→ s′ for some s′ ∈ S and a ∈ A. Then s ‖ x

a
−→ s′ ‖ x.

Since s ‖ x↔b t ‖ x, there exists a scheduler σ such that

Prob
(

Pathsm (σ)/t‖x a
⇒[s′‖x]↔

b

)

= 1.

Now, by induction on the maximal number of transitions in a path in the last
path set, it easily follows that there exists a path of type t

a
⇒ [s′]R as required.

(ii) Suppose now that s ∈ Sp. We show that for all D ∈ S/R,
P (s,D) = P (t, D). We distinguish the following two cases.

(1) t ∈ Sn. Since P (t, [t]R) = 1, it suffices to show that P (s, [s]R) = 1. We
have t ‖ x

x
−→ t ‖ d. From s ‖ x ↔b t ‖ x it follows that there exists a

scheduler σ such that

Prob
(

Pathsm (σ)
/s‖x

x
⇒[t‖d]↔

b

)

= 1.

Assume that P (s, [s]R) 6= 1, i.e. that there exist s′ ∈ S and π ∈ (0, 1]
such that P (s, s′) = π and s ‖ x 6↔b s

′ ‖ x. Then P (s ‖ x, s′ ‖ x) = π.
Therefore,

Prob
(

Pathsm (σ)/s‖x x
⇒[t‖d]↔

b

)

≤ 1− π

for every scheduler σ, which is not possible. We conclude that
P (s, [s]R) = 1.

34 3. Compositional probabilistic branching bisimilarity

(2) t ∈ Sp. The following two subcases are possible.

(2.1) P (s, [s]R) > 0. Then there exists s′ ∈ Sn such that P (s, s′) > 0
and s ‖ x↔b s

′ ‖ x. As s and t are related to a nondeterministic state,
similarly to the previous case, it follows that P (s, [s]R) = P (t, [s]R) =
1.

(2.2) P (s, [s]R) = 0. Assume P (t, [s]R) > 0. Then

P (t ‖ x, [s ‖ x]↔b
) > 0.

This means that there is a t′ ∈ S, t′ 6= t, such that P (t ‖ x, t′ ‖ x) > 0
and t ‖ x ↔b t

′ ‖ x. Since t′ ‖ x ∈ Sn, it follows that t
′ ‖ x

x
−→ t′ ‖ d.

From the last, and from s ‖ x ↔b t
′ ‖ x, it follows that there is a

scheduler σ such that

Prob
(

Pathsm (σ)
/s‖x

x
⇒[t′‖d]↔

b

)

= 1.

But this implies that there exists s′ ∈ S, s′ 6= s, such that
P (s ‖ x, s′ ‖ x) > 0 and s ‖ x ↔b s

′ ‖ x. From this it follows that
P (s′, s) > 0 and (s, s′) ∈ R. This contradicts the assumption that
P (s, [s]R) = 0. We conclude that P (t, [s]R) = 0.

Now, let D ∈ S/R be such that D 6= [s]R. Then µR (s,D) = P (s,D).
It easily follows that there exists a scheduler σ such that

Prob
(

Pathsm (σ)/t τ
⇒D

)

= P (s,D) .

Since P (t, [t]R) = 0, it must hold that

Prob
(

Pathsm (σ)
/t

τ
⇒D

)

= P (t, D) ,

i.e. P (s,D) = P (t, D).

We now prove that ∼b is the largest equivalence included in ↔b which is
compatible with the parallel composition operator.

Theorem 3.4.8. Let R ⊆ S×S be an equivalence relation that is congruence
with respect to the parallel composition operator. If R ⊆ ↔b, then R ⊆ ∼b.

Proof. Suppose (s, t) ∈ R. Let x be as in Lemma 3.4.7. Then (s ‖ x, t ‖ x) ∈
R because R is a congruence relation. Since R ⊆ ↔b, we have s ‖ x↔b t ‖ x.
From Lemma 3.4.7, it follows that s ∼b t.

Chapter 4

Branching bisimilarity:

Algorithm, logics, axioms

We continue studying branching bisimilarity defined in the previous
chapter, to facilitate its use as a reduction technique. Namely,
an algorithm of complexity O(n4) w.r.t. the number of states for
partitioning the state space according to branching bisimilarity is
presented. It is also shown that branching bisimilarity preserves the
properties expressible in probabilistic Computation Tree Logic. To
support usage of the equivalence in a process algebraic setting, a
complete axiomatization for finite processes is given, such that the
process language contains a rich set of operators needed to reason
on concurrent probabilistic processes. As an intermediate result, an
alternative definition of branching bisimilarity, based on coloured
traces, is given.

4.1 Decidability algorithm

In this section we present an algorithm for partitioning the state space of a
PTS according to branching bisimilarity (∼b) with time complexity O(n4) on
the number of states.

As the definition of ∼b does not need the notion of a scheduler, we take
an approach that is rather different than those taken in [91] and [8] for
the same purpose. In fact, observe that the first condition of Def. 3.2.1,
i.e. the definition of branching bisimulation, coincides with the condition of
the non-probabilistic branching bisimulation [62], if a PTS is turned into an
ordinary labeled transition system by replacing the probabilistic transitions
with internal τ -transitions. Therefore, we can use an algorithm for non-

35

36 4. Branching bisimilarity: Algorithm, logics, axioms

Π:= {{S}};

Π_f:= ∅;
while Π 6= Π_f do

Π_f := GV_standard_bb(Π);
Π := Π_f;
if exists (B, B’) = FindP_Split(Π_f)

then Π:= Refine (Π_f, B, B’)

od

return Π

Figure 4.1: Partitioning the state space according to ∼b.

probabilistic branching bisimilarity, denoted by ≃, as a step in our algorithm.
We use the algorithm defined in [64], to which we refer to as GV-standard-bb.
For a given partition Π of the set of states S of a labeled transition system,
the algorithm GV-standard-bb refines Π to the maximal non-probabilistic
branching bisimulation equivalence contained in Π. However, due to the
second condition of Def. 3.2.1, we have to refine the output partitions of
GV-standard-bb, by means of a P-splitter.

Definition 4.1.1. Given a PTS, let Π be a partition of the set of states S
and let B,B′ ∈ Π, such that B 6= B′.

– B′ is a P-splitter of B iff there exist s, t ∈ B for which P (s, B′) 6=
P (t, B′).

– Let B′ be a P-splitter of B.

- RefΠ (B,B′) = {B1, . . . , Bk} (k ≥ 2) is a minimal partition of B
such that, for all i, 1 ≤ i ≤ k, B′ is not a P-splitter of Bi.

- Refine (Π, B, B′) = Π \ {B} ∪ RefΠ (B,B′).

The algorithm, which assumes as an input a PTS and returns the quotient
set of its states by ∼b, is given in Fig. 4.1. The following lemma justifies the
algorithm.

Lemma 4.1.2. For an input PTS with a set of states S, the algorithm in
Fig. 4.1 outputs S/∼b

.

Proof. Let Π be the partitioning of S returned by the algorithm in Fig. 4.1.
Note that the loop in the algorithm ends when Π = Π f, meaning that for

4.1. Decidability algorithm 37

every class B, every pair of states (s, t) in B, and every class B′, P (s, B′) =
P (t, B′). Thus, the second condition of Def. 3.2.1 is satisfied by Π. Also, Π is
a non-probabilistic branching bisimulation, meaning that the first condition
of Def. 3.2.1 is satisfied by Π. Thus, Π defines a branching bisimulation. We
need to show that Π = S/∼b

.

Let C ∈ S/∼b
. We show that, after the n-th update of Π, a block D exists

from the current partitioning Πn such that C ⊆ D. The proof is by induction
on n.

The case n = 1 is trivial, since Π1 = {{S}}.

Suppose n > 1.

Suppose first that Πn is obtained from Πn−1 via the first step in the while-
loop, i.e. via GV-standard-bb. Then the proof follows from the fact that
GV-standard-bb yields the coarsest refinement of Πn−1 that does not break
the first condition of Def. 3.2.1.

Suppose now that Πn is obtained from Πn−1 via the second step in the while-
loop , i.e. by refining B ∈ Πn−1 further into {B1 . . . Bk} by the P-splitter B′.
If C 6⊆ B then the proof follows from the inductive assumption. Therefore,
suppose C ⊆ B. We need to show that there exists Bi ∈ {B1 . . . Bk} such that
C ⊆ Bi. Without loss of generality, assume that there exist states s, t ∈ C
such that s ∈ B1 and t ∈ B2. Then, P (s, B′) 6= P (t, B′). By the inductive
assumption, there exist B′

1, . . . B
′
m ∈ S/∼b

such that B′ = B′
1 ∪ . . . ∪ B′

m.
From this and from P (s, B′) 6= P (t, B′) it follows that there exists B′

j ∈

{B′
1, . . . B

′
m} such that P

(

s, B′
j

)

6= P
(

t, B′
j

)

, which contradicts the fact that
s ∼b t and B

′
j ∈ S/∼b

.

We calculate the time complexity of the algorithm in Fig. 4.1. Let n =
|S|, i.e. n is the number of states. The while loop can be executed at
most n times. GV-standard-bb has a worst-case time complexity O(n3)
[64], when the action set is finite. (More concretely, the time complexity
of GV-standard-bb is O(nm), where m is the number of transitions.) The
procedure FindP_Split, which finds a pair (B,B′) with B′ being a P-splitter
of B, boils down to comparing elements (rows) in the matrix representation
of P. It is easy to show that this procedure can be performed in time O(n3).
Thus, the following result holds.

Theorem 4.1.3. ∼b is decidable in time O(n4), where n is the number of
states in the PTS.

38 4. Branching bisimilarity: Algorithm, logics, axioms

4.2 Colouring definition

In [62] an alternative definition of non-probabilistic branching bisimilarity,
exploiting colouring of the states, has been given, which is easier to grasp and
reveals how branching bisimilarity indeed preserves the branching structure.
It is based on a comparison of the coloured trace sets that the states generate,
where a coloured trace is an alternating sequence of colours of the states and
actions. More precisely, two states are branching bisimilar (by [62]) if and
only if they have the same colour under some consistent colouring, where by
a consistent colouring the same colour has been given only to states that have
the same sets of coloured traces. Here, we show that a similar result holds
in the probabilistic case.1 However, for a state in a PTS a blend of colours
(rather than a single colour), representing the probability distribution of the
subsequent colours, is needed (see also [8] for use of blends).

Definition 4.2.1 (Colours, blends, coloured PTS). Let C be a finite, suf-
ficiently large set of colours. A blend is a function V : C 7→ [0, 1] such that
∑

c∈C V (c) = 1. If there exists a colour c ∈ C such that V (c) = 1, then V is
called a pure colour. A PTS is coloured if a function, which assigns a blend
to each state of the PTS, is associated to it.

Definition 4.2.2 (Coloured traces). A concrete coloured trace is a (possibly
infinite) path in the PTS, in which the probability labels have been erased
and the states have been substituted by their blends. A coloured trace is a
concrete coloured trace in which every subsequence of equal blends (possibly
separated by τ -labels) has been replaced by the blend itself.

Note that in a coloured trace there do not appear consecutive equal blends
separated by τ , i.e. it is not possible to observe τ -transitions between equal
blends. The probability labels are also irrelevant since all the necessary
probability information is contained in the blends.

Definition 4.2.3 (Consistent colouring). A colouring of the states of a PTS
is consistent iff two states have the same blend only if they have the same
sets of coloured traces.

Example 4.2.4. The colouring of the states of the PTS given in Figure 3.1
is consistent. The states coloured with “ ” have the coloured traces

{ , a , b } ,

1The colouring definition, besides being interesting on its own, also eases the proofs in
sections 4.3 and 4.4.

4.2. Colouring definition 39

while the states coloured with “ ” have the coloured traces

{ , a } .

The notion of a proper colouring of a PTS defined below is character-
istic for our branching bisimilarity. A colouring of a probabilistic state is
considered proper only if the distribution of colours in a probabilistic state
corresponds to the probability distribution of the subsequent colours. As
already established earlier, a nondeterministic state cannot be related to a
probabilistic state with a nontrivial probability distribution. Consequently,
a nondeterministic state in a proper colouring always has a pure colour.

Definition 4.2.5 (Proper colouring). A PTS with a colouring function χ is
properly coloured iff for every nondeterministic state s, χ (s) is a pure colour,
and for every probabilistic state s, χ (s) =

∑

si:s si
P (s, si) χ (si).

Example 4.2.6. The colouring of the states of the PTS given in Figure 3.1
is proper: each probabilistic state has equally coloured subsequent states and
is coloured the same as them.

For states s and t let us write s ≡c t if for some consistent, proper colour-
ing, s and t have the same blend. The following theorem gives the colouring
definition of ∼b.

Theorem 4.2.7 (Colouring definition of ∼b). Given states s and t, s ∼b t iff
s ≡c t.

Proof. The proof builds on the corresponding proof in [62]. Namely, for the
direction left-to-right, let χ be a colouring of the states of the PTS such
that two nondeterministic states have the same colour if and only if they are
branching bisimilar, and each probabilistic state has a blend that represents
the probability distribution over the colours of the subsequent nondetermin-
istic states. Clearly, two probabilistic states have the same colour if and only
if they are branching bisimilar. We need to show that the colouring χ is
consistent. Let s ∼b t and V0 c0 a1 V1 c1 a2 . . . ak Vk ck be a coloured trace
originated from s, where each Vi is a real blend, i.e. it is not a pure colour,
and may not exist in the coloured trace, and each ci is a pure colour. We
show that t also has a coloured trace V0 c0 a1 V1 c1 a2 . . . ak Vk ck, such
that Vi appears iff it appears in the coloured trace of s. We first show for
the case k = 1. Suppose s has a coloured trace V0 c0 a1 V1 c1. Assume that
V0 and V1 appear in the trace, since this is the most interesting case. Then
s ∈ Sp and therefore, since V0 is not a pure colour, t ∈ Sp, too. Since χ is a
proper colouring and s ∼b t, t has a coloured trace starting with V0 c0. Since

40 4. Branching bisimilarity: Algorithm, logics, axioms

s has a coloured trace V0 c0 a1 V1 c1, there exists a sequence of transitions
s s1 99K s2 99K . . . sn

a1−→ s′, such that χ (si) = c0 (i.e. si ∼b s1) for each
1 ≤ i ≤ n and χ (s′) = V1. From s ∼b t, by induction on n it is not hard to
show that there exists a sequence of transitions t t1 99K t2 99K . . . tm

a1−→ t′

such that χ (ti) = c0 for each 1 ≤ i ≤ m and χ (t′) = V1. Therefore,
there exists a coloured trace V0 c0 a1 V1 c1 originating from t. By applying
the same discussion k times, we can prove that if s has a coloured trace
V0 c0 a1 V1 c1 a2 . . . ak Vk ck then t has the same trace, too. Thus, colouring
χ is consistent.

For the direction right-to-left, let χ be a proper and consistent colouring
of the PTS. Let R be a relation that relates two states iff they have the same
colour by χ. It is easy to show that R is a branching bisimulation.

Corollary 4.2.8. Given a PTS, there exists a proper, consistent colouring
of its states, called canonical colouring, such that two states have the same
blend if and only if they are branching bisimilar.

4.3 Branching bisimilarity and pCTL

We show that branching bisimilar states satisfy the same pCTL formulas.
First we present our variant of pCTL, and then we show the soundness prop-
erty.

4.3.1 pCTL

We present the logic that we use to express properties of probabilistic sys-
tems. The logic we consider is a variant of the probabilistic CTL logic defined
in [23] and a simplification of the probabilistic logic of [16], both defined on
Kripke-like structures. However, we need to interpret pCTL on a PTS, tak-
ing into account that τ transitions have a special treatment. To this end, we
follow the approach in [40], where it is shown that CTL is in full agreement
with the non-probabilistic branching bisimulation of [62] by extending tran-
sition systems to doubly-labeled Kripke structures. In the latter, relations
defined on transition systems and on Kripke structures can be easily com-
pared. We thus interpret the logic over a similar extension of a PTS, called
an EPTS (Extended PTS). In fact, an EPTS is a PTS in which the states
also have labels.

Definition 4.3.1 (Translating PTS to Extended PTS). Let Φ be a PTS.
EPTS(Φ), with a state labeling function L, is constructed from Φ in the
following way:

4.3. Branching bisimilarity and pCTL 41

a)
1
3

�� �D
�D
�D
�D
�D 2

3

���[
�[

�[
�[

�[

τ
��

a
��

b) X
1
3

�� �C
�C
�C
�C
�C 2

3

���[
�[

�[
�[

�[

X

τ

��

X

a
��
a

a
��

X X

Figure 4.2: A PTS (a) and its extended version (b)

(i) every transition s
a
−→ t where a ∈ A is erased, and instead a state

(s, a, t) and the transitions s
a
−→ (s, a, t) and (s, a, t)

a
−→ t are created;

(ii) for every new state (s, a, t), L ((s, a, t)) = a, and for every old state s,
L (s) = X, where X is a new constant such that X 6∈ A.

Example 4.3.2. In Figure 4.2-a) a PTS is given, together with its extended
version in Figure 4.2-b). In the extended version, every observable action
transition is split into two and a label denoting the action itself is assigned
to the newly created state; the old states are labeled by X. Note that the
probabilistic transitions and the τ -transitions remain unchanged.

Definition 4.3.3. The syntax of pCTL is generated by the following gram-
mar:

ψ := X | a | ¬ψ | ψ ∧ ψ′ | ∃P⊲⊳p (ψUψ
′)

where ⊲⊳ ∈ {<,>,≤,≥}, p ∈ [0, 1], a ∈ A.

Note that we have not included the “next” operator [16], since we consider
branching bisimulation.

In the following definition we assume that a scheduler does not stop an
execution if there is a step that can be executed. In other words, a scheduler
can stop an execution only in a deadlock state. This is to stay inline with
the generally accepted interpretation of (non-probabilistic) CTL formulas,
based on maximal paths only, i.e. paths that are either infinite, or end with
a deadlock state [40].

Definition 4.3.4. [pCTL Semantics] For a given EPTS with a labeling func-
tion L, satisfaction of a formula ψ in a state s, s � ψ, is defined inductively:

42 4. Branching bisimilarity: Algorithm, logics, axioms

(i) s � X iff L (s) = X;

(ii) s � a iff L (s) = a;

(iii) s � ¬ψ iff s 6� ψ;

(iv) s � ψ ∧ ψ′ iff s � ψ and s � ψ′;

(v) s � ∃P⊲⊳p (ψUψ
′) iff there exists a scheduler σ such that the probability

measure of the set of all paths scheduled by σ that start in s and satisfy
formula ψUψ′ is ⊲⊳ p, where a path c = s0l1s1 . . . satisfies formula ψUψ′,
denoted by c � ψUψ′, iff there exists n ≥ 0 such that sn � ψ

′ and, for
all i < n, si � ψ.

4.3.2 Soundness of branching bisimilarity for pCTL

We proceed with proving that branching bisimilar states in an EPTS satisfy
the same pCTL formulas. It is easy to show that two states in a PTS Φ are
branching bisimilar if and only if they are branching bisimilar in EPTS(Φ)
(see [40] for the proof outline). This justifies our approach.

We need to extend the definition of branching bisimilarity for paths.

Definition 4.3.5. Paths c1 and c2 are branching bisimilar iff, given the
canonical colouring of the PTS they belong to, they induce equal coloured
traces.

Lemma 4.3.6. Let s and t be states such that s ∼b t. Let σ be a scheduler that
generates the set of paths Paths (σ, s) starting at s. There exists a scheduler
σ′ that generates a set of paths Paths (σ′, t) starting at t, such that

(i) the set of coloured traces defined by Paths (σ, s) coincides with the set
of coloured traces defined by Paths (σ′, t), and

(ii) for every finite path c, the probability measure of all paths in Paths (σ, s)
that are branching bisimilar to c is equal to the probability measure of
all paths in Paths (σ′, t) that are branching bisimilar to c.

Proof. The first part follows from Theorem 4.2.7. For the second part, we
calculate the probability measure of the set of σ-scheduled paths that are
branching bisimilar to a given finite path c, by considering the blends in
the coloured trace generated by c. Let V1,V2, . . .Vk be the non-pure-colour
blends that appear in the coloured trace of c (they all come from probabilistic

4.3. Branching bisimilarity and pCTL 43

states). Let γ1, γ2, . . . γk be the (pure colour) blends that follow V1,V2, . . .Vk
in the coloured trace generated by c, resp. Let c1, c2, . . . ck be the colours of
γ1, γ2, . . . γk, resp. Then, the probability measure of the set of σ-scheduled
paths that are branching bisimilar to c is equal to

{

1, if {Vi}i∈{1,...k} = ∅
∏k

i=1 Vi (ci) , otherwise.

Theorem 4.3.7. Branching bisimilar states in an EPTS satisfy the same
pCTL formulas.

Proof. Let s ∼b t. For the purpose of the proof, we extend the syntax of
pCTL with path formulas ψUψ′, with semantics given in Def. 4.3.4. The
proof is by induction on the structure of the formula. The nontrivial step
is for formulas of type ∃P⊲⊳p(ψUψ

′). By the semantics of the path formulas
ψUψ′ and by the inductive assumption, two branching bisimilar paths satisfy
the same formulas of type ψUψ′. Let σ be a scheduler that starts in s
and generates the set of paths Paths (σ, s). By Lemma 4.3.6, there exists a
scheduler σ′ that generates a set of paths Paths (σ′, t) starting from t, such
that the set of coloured traces defined by the paths of Paths (σ, s) coincides
with the one defined by the paths of Paths (σ′, t). Let ψUψ′ be a path
formula. Let Paths (σ, s)ψUψ′ be the subset of (finite) paths in Paths (σ, s)
that satisfy formula ψUψ′. We partition the set Paths (σ, s)ψUψ′ into classes of
branching bisimilar paths. By Lemma 4.3.6, and because branching bisimilar
paths satisfy the same formulas of type ψUψ′, every class of Paths (σ, s)ψUψ′

has a correspondent in the analog partitioning of Paths (σ′, t)ψUψ′ , and their
probability measures coincide. This completes the proof.

Note that the opposite does not hold, i.e., if two states are not branching
bisimilar they may still satisfy the same formulas, as for instance, states s
and t in Figure 2.1. However, the purpose of the result presented here is to
show that branching bisimilarity can be used for reduction of a system prior
to model checking w.r.t. a straightforward probabilistic extension of CTL.
We leave the problem of logical characterization of branching bisimilarity for
the future.

44 4. Branching bisimilarity: Algorithm, logics, axioms

4.4 A complete axiomatization: Process the-

ory pTCPτ

In this section we define the process theory pTCPτ , which extends the the-
ory TCPτ [11] with a probabilistic choice operator. Besides the latter, it also
includes the operators sequential composition, alternative composition, par-
allel composition, hiding and encapsulation, and the constants 0 (deadlock)
and 1 (termination). The semantical equivalence for pTCPτ is branching
bisimilarity, slightly adapted to become compatible for the rest of the oper-
ators.

4.4.1 Process language pTCPτ

We present the process language pTCPτ. The underlying semantics of pTCPτ
is defined by a set of operational rules by means of which each process ex-
pression can be interpreted as a process graph. The latter is used to model
probabilistic processes and is defined next.

Definition 4.4.1 (Probabilistic process graph). Given a PTS, a probabilistic
process graph or simply a process graph is the connected graph induced by
the states reachable from a particular state s, called the root of the process
graph.

A process graph is usually named by its root. We assume that a certain subset
of the nondeterministic states, denoted by ↓, is a set of terminating states,
and we write s↓ rather than s ∈ ↓. For the sake of convenience, in the rest
of this section we assume that the process graphs are root-unwound, i.e. that
they have no incoming transitions at the root. Since each strong bisimulation
class by [68] contains a root-unwound process graph, this restriction does not
cause any loss of generality.

Let γ : A× A → A be a partial commutative and associative communi-
cation function [11]. The syntax of the pTCPτ language is defined by the
following grammar:

E ::= 0 | 1 | a.E | E+E | E ·E | E ⊕π E |

E‖E | E ‖ E | E|E | ∂H (E) | τI (E) | x

where a ∈ Aτ , π∈ (0, 1), I,H ⊆ A, and x ∈ V , where V is a set of recursive
variables. The constants 0 and 1 stand for the deadlock, resp. termination
process. a.E is the action prefix, E+E stands for alternative composition,
E ·E for sequential composition, E ⊕π E for probabilistic choice, E‖E for

4.4. A complete axiomatization: Process theory pTCPτ 45

parallel composition, E ‖ E, resp. E|E are the left merge, resp. communi-
cation operator, and ∂H (E), resp. τI (E) are the encapsulation, resp. hiding
operator. We assume the following binding strengths: . > · > ‖ > +,
i.e. “.” binds strongest. Operators ‖ and | bind equally as ‖, and ⊕ binds
equally as +. pTCPτ process expressions that do not contain any variables
are called closed process expressions. To model infinite processes we allow
guarded recursive specifications [11]. A guarded recursive specification is
a finite set of equations of the form x = px (V), where x ∈ V and p is a
pTCPτ expression in which all occurrences of variables from V are prefixed
by an action from A [11]. Moreover, the only operators allowed in p
are: 0, 1, action prefix a., for a ∈ Aτ , + and ⊕π. In this way we restrict
ourselves to finitely definable processes, i.e. processes that can be rep-
resented by finite-state graphs. We refer the reader to [15,41] for more details.

1↓ a.x
a
−→ x

x
a
−→ x′, y 6

x+ y
a
−→ x′, y + x

a
−→ x′

x↓, y 6

(x+ y) ↓, (y + x) ↓

x
π
 x′, y 6

x+ y
π
 x′ + y, y + x

π
 y + x′

x
π
 x′, y

ρ
 y′

x+ y
πρ
 x′ + y′

x
ρ
 x′

x⊕π y
πρ
 x′, y ⊕π x

(1−π)ρ
 x′

x 6

x⊕π y
π
 x, y ⊕π x

1−π
 x

x↓, y↓

(x·y) ↓

x
a
−→ x′

x·y
a
−→ x′ ·y

x↓, y
a
−→ y′

x·y
a
−→ y′

x↓, y
π
 y′

x·y
π
 x·y′

x
π
 x′, x′ 6 ↓

x·y
π
 x′ ·y

x
π
 x′, y 6

x·y
π
 x′ ·y

x
π
 x′, x′↓, y

ρ
 y′

x·y
πρ
 x′ ·y′

Table 4.1: Operational semantics for the pTCPτ expressions: rules for prefix,
choice operators and sequential composition

Tables 4.1, 4.2 and 4.3 represent the operational semantics for pTCPτ .
The rules can be applied to pTCPτ process expressions, and the generated
process graph is counted as an interpretation of the process expression. Next,
we discuss briefly the semantics of the pTCPτ operators. The negative
premise x 6 that appears in several rules denotes that x does not start
with a probabilistic transition. The deadlock process 0 cannot execute any
activity, while process 1 can only terminate (Table 4.1). Process a.x per-

46 4. Branching bisimilarity: Algorithm, logics, axioms

x
a
−→ x′, y 6

x ‖ y
a
−→ x′ ‖ y, y ‖ x

a
−→ y ‖ x′

x
a
−→ x′, y

b
−→ y′, γ (a, b) = c

x ‖ y
c
−→ x′ ‖ y′

x
π
 x′, y 6

x ‖ y
π
 x′ ‖ y, y ‖ x

π
 y ‖ x′

x
π
 x′, y

ρ
 y′

x ‖ y
πρ
 x′ ‖ y′

x↓, y↓

(x ‖ y) ↓

x↓, y↓

(x | y) ↓

x
a
−→ x′, y

b
−→ y′, γ (a, b) = c

x | y
c
−→ x′ ‖ y′

x
a
−→ x′

x ‖ y
a
−→ x′ ‖ y

x
π
 x′, y 6

x ‖ y
π
 x′ ‖ y, y ‖ x

π
 y ‖ x′

x
π
 x′, y

ρ
 y′

x ‖ y
πρ
 x′ ‖ y′

x
π
 x′, y 6

x | y
π
 x′ | y, y | x

π
 y | x′

x
π
 x′, y

ρ
 y′

x | y
πρ
 x′ | y′

Table 4.2: Operational semantics for the pTCPτ expressions: rules for merge
and communication operators

forms action a and proceeds as process x. The probability distribution that
yields probability transitions of process x ⊕π y is a linear combination of
the distributions of x and y. If one of the operands, say x, is a nondeter-
ministic process, then, as expressed by the second rule for the probabilistic
choice operator (Table 4.1), process x ⊕π y behaves as x with probability
π. The probability distribution of process x+y is obtained by joining the
distributions of x and y, namely, it is a product of their individual distribu-
tions (see also [3]). The intuition behind this is that, since process x+y is
either x or y, then if process x behaves as process x′ with probability π and

x
a
−→ x′, a /∈ H

∂H (x)
a
−→ ∂H (x′)

x
π
 x′

∂H (x)
π
 ∂H (x′)

x↓

∂H (x) ↓

x
a
−→ x′, a /∈ I

τI (x)
a
−→ τI (x′)

x
a
−→ x′, a ∈ I

τI (x)
τ
−→ τI (x′)

x
π
 x′

τI (x)
π
 τI (x′)

x↓

τI (x) ↓

Table 4.3: Operational semantics for the pTCPτ expressions: rules for en-
capsulation and hiding

4.4. A complete axiomatization: Process theory pTCPτ 47

process y behaves as process y′ with probability ρ, then x+y would behave
as either x′ or y′ with probability πρ. A similar approach is taken for the
sequential composition x ·y. Namely, if process x terminates and process y
behaves as process y′ with probability π, then, as the bottom-left-most rule
in Table 4.1 expresses, process x·y behaves as process x·y′ with probability
π. The bottom-right-most rule in Table 4.1 expresses the same idea for a
more complicated case, when the terminating process is preceded by a prob-
abilistic transition. This rule imposes combining consecutive probabilistic
transitions. This definition of sequential composition, for a process language
containing the constant 1, is introduced here for the first time and extends
the definition of [11] to the probabilistic setting.

The probability distribution of the parallel composition of x and y, x ‖ y,
is a product of the individual distributions of x and y (Table 4.2) (see also
[68]). Namely, if process x behaves as process x′ with probability π and y
behaves as y′ with probability ρ, then the parallel composition, x ‖ y, behaves
as x′ ‖ y′ with probability πρ; process x′ ‖ y′ is a nondeterministic process
that can perform an action from x′ or y′, or can perform an action that is a
result of communication. The operators ‖ and | are the standard left merge
and communication operator [11]. x ‖ y is the parallel composition of x and
y, with the restriction that the first action comes from x. In x | y processes
x and y are forced to communicate first and then to proceed in parallel. The
semantics of ‖ and | has been extended for our model in the same lines as
for parallel composition. Note that these operators are, however, not needed
to define the operational semantics of parallel composition; rather they are
needed later in order to obtain a finite axiomatization of parallel composition.

For process ∂H (x) the initial probability distribution is inherited from
process x (Table 4.3), and similarly for τI (x). Applied on a nondeterministic
process, the encapsulation and hiding operators work as usual: ∂H (x) blocks
execution of any action from set H , while τI (x) renames all actions from set
I that x can perform into τ .

Remark Tables 4.1, 4.2, and 4.3 contain rules with negative premises, e.g.
y 6 . Not always specifications containing such rules are well-defined. For
example, from the rule

x 6
a
−→

x
a
−→ x′

it cannot be concluded whether a transition x
a
−→ x′ exists or not. These

issues have been studied in e.g. [24,59,65], and several techniques have been
proposed there to check whether a set of operational semantics rules is well-
defined. In [65] it has been shown that a sufficient condition for a set of

48 4. Branching bisimilarity: Algorithm, logics, axioms

operational rules to be well-defined is for it to be stratifiable. Stratification
ensures that no transition depends negatively on itself. It can be checked
by this method that the operational semantics of pTCPτ is well-defined; the
details of the proof are, however, beyond the scope of the current text.

4.4.2 Branching bisimilarity and pTCPτ operators

We present a congruence result for branching bisimilarity with respect to the
operators in pTCPτ . However, as we have included termination property of
the states, we need to adapt branching bisimilarity appropriately. Namely,
in order to achieve congruence for sequential composition, the states need
to be able to simulate each other’s termination property. While in the non-
probabilistic setting this condition suffices [62], in the probabilistic setting it
has to be strengthened. First, note that process τ.1, that can perform only a
τ -action that leads to a terminating state, cannot be related to 1. Otherwise,
when τ.1 and 1 are each composed with a non-trivial probabilistic process, say
a.0⊕0.5 b.0 sequentially, the resulting composed processes are not branching
bisimilar and thus the congruence property for sequential composition is
compromised. Thus, in the terms of PTS, a terminating state cannot be
related to a non-terminating state, even if the latter has a τ -transition to a
terminating state. Second, note that even process 1 + τ.1 cannot be related
to 1, for the same reasons as above. Thus, we must add a requirement saying
that when two terminating states are related, they must be able to simulate
each other’s τ -transitions.

We incorporate the previous discussion in the following definition.

Definition 4.4.2 (Termination-sensitive branching bisimulation). Let R
be a branching bisimulation defined on the set of states of a PTS. R is
termination-sensitive if, whenever (s, t) ∈ R and s↓, then either

– t ∈ Sp, or

– t↓ and, moreover, if s
τ
−→ s′ then t

τ
−→ t′ and (s′, t′) ∈ R.

As usual, a rooted version [5, 62] of branching bisimilarity is needed for
compatibility with alternative composition.

Definition 4.4.3 (Root condition). Process graphs s and t are rooted
termination-sensitive branching bisimilar (RTSB bisimilar for short), de-
noted by s ∼rt

b t, if and only if there exists a termination-sensitive branching
bisimulation R with (s, t) ∈ R, such that:

1. if s s′ and s′
a
−→ s′′ for some s′, s′′ ∈ S and a ∈ Aτ , then there exist

t′, t′′ ∈ S such that t t′, t′
a
−→ t′′, (s′, t′) ∈ R, and (s′′, t′′) ∈ R, and

4.4. A complete axiomatization: Process theory pTCPτ 49

2. if s
a
−→ s′ for some s′ ∈ S and a ∈ Aτ , then there exist t′ ∈ S such that

t
a
−→ t′, (s′, t′) ∈ R.

R is called RTSB bisimulation for process graphs s and t.

Essentially, the conditions for rooted bisimilarity require that the related
processes should be able to simulate exactly their first actions, i.e. the first
τ -action is not considered inert. Thus, processes τ.a.0 and a.0 are not related.
Otherwise, the alternative compositions of each of them with b.0 are not
branching bisimilar and the relation would not be a congruence for alternative
composition.

Proposition 4.4.4. ∼rt
b is an equivalence relation.

Proof. See proof of Theorem 3.2.5.

Theorem 4.4.5 (Congruence theorem). RTSB bisimilarity ∼rt
b is congru-

ence with respect to the operators in pTCPτ .

Proof. Follows the lines of the proof of Theorem 3.3.4 for the merge operator.

4.4.3 Axiomatization

We give a ground-complete axiomatization of RTSB bisimilarity, i.e. axiom-
atization for closed process expressions, for the operators in pTCPτ .

The following predicate function, defined on a subset of the process ex-
pressions, will be needed for the axiom that is typical for RTSB bisimilarity.

Definition 4.4.6. Let X be the set of pTCPτ process expressions that con-
tain only the operators ⊕, + and a. for a ∈ Aτ , and the constants 1 and
0. The boolean function ter : X 7→ {true, false} is defined inductively in the
following way:

– ter (1) = true;

– ter (0) = false;

– ter (a.x) = false;

– ter (x⊕π y) = ter (x) or ter (y);

– ter (x+ y) = ter (x) or ter (y).

50 4. Branching bisimilarity: Algorithm, logics, axioms

Basically, ter (x) is true if x with a positive probability can terminate imme-
diately, without performing any actions from Aτ .

The ground-complete axiomatization of rooted branching bisimilarity is
given in Table 4.4. Note that a condition of type x = x+ x appears several
times in the axioms. It describes processes that are not initially probabilistic
in nature (see also [4]). For example, it does not hold for x ≡ a.0 ⊕1/2 b.0,
but it applies if x ≡ a.0 + b.0 or x ≡ a.0 ⊕1/2 a.0. It can be checked that,
indeed, if x ∼rt

b x+x, then for every x′, x′′ such that x x′ and x x′′, it
holds x′ ∼b x

′′.
We briefly discuss the most notable axioms of Table 4.4. As already

noticed, axiom x+x = x is not valid in general (see also [3,5,11]). However,
this axiom still holds for processes that start with action transitions or for
x ≡ 1, captured by the axioms AA3 and EA3. Axioms P1-P5 are inherited
from the strong probabilistic bisimulation setting [3, 11]. There are three
main laws that axiomatize the parallel composition operator: PM1 and PM2,
which describe the interplay of ‖ and ⊕, and the conditional axiom M, which
states on which processes the interleaving can be performed. PM1 and PM2
express that ‖ distributes (left and right) over⊕. As long as at least one of the
two parallel processes starts with a probability distribution, these laws will be
applied. Axiom PrB characterizes RTSB bisimilarity. It is a counterpart of
the branching axiom in the nonprobabilistic setting [62]: a. (y + τ. (y + z))
= a. (y + z). Due to the conditions y = y + y and z = z + z, it removes
only a τ step that is followed by a process with a trivial (Dirac) outermost
distribution, namely y + z. On the other hand, the condition ter (y + z) =
false requires that y + z does not terminate. Thus, a τ step that precedes
a process that terminates cannot be eliminated, for the reasons explained
in Subsection 4.4.2. In order to apply axiom PrB, process expression y + z
should contain only the operators ⊕, + and a. for a ∈ Aτ , and the constants
1 and 0. The following theorem guarantees that every process expression can
be rewritten only in terms of those operators. The theorem will be also useful
later, in the proof of the completeness of the axiomatization.

Theorem 4.4.7 (Elimination theorem). Let p be a pTCPτ closed expression.
Then there is a pTCPτ expression q without the operators ‖, ‖ , |, · , τI ,
and ∂H , such that pTCPτ ⊢ p = q.

Proof. By structural induction on the structure of p (see also [11]).

The following two theorems guarantee the soundness and the complete-
ness of the axiomatization in Table 4.4 with respect to RTSB bisimilarity.

Theorem 4.4.8 (Soundness). Let p and q be closed expressions represented
by process graphs x and y, respectively. Then, pTCPτ ⊢ p = q implies x ∼rt

b y.

4.4. A complete axiomatization: Process theory pTCPτ 51

Table 4.4: Axioms of pTCPτ . a, b ∈ Aτ I,H ⊆ A, w, x, y, z ∈ V

A1 x+ y = y + x P1 x⊕π y = y ⊕1−π x

A2 (x+ y) + z = x+ (y + z) P2 x⊕π (y⊕ρz) =
(

x⊕ π
π+ρ−πρ

y
)

⊕π+ρ−πρz

AA3 a.x+ a.x = a.x P3 x⊕π x = x
EA3 1 + 1 = 1 P4 (x⊕π y)·z = x·z ⊕π y ·z
A4 x+ 0 = x P5 (x⊕π y) + z = (x+ z)⊕π (y + z)

A5 x·(y ·z) = (x·y)·z A8 x·1 = x
A6 0·x = 0 A9 1·x = x
A7 (x+ y)·z = x·z + y ·z A10 a.x·y = a. (x·y)

TI1 τI (a.x) = a.τI (x) if a6∈I D1 ∂H(a.x) = a.∂H(x) if a6∈H
TI1’ τI (a.x) = τ.τI (x) if a∈I D2 ∂H(a.x) = 0 if a ∈ H
TI2 τI (x+ y) = τI (x) + τI (y) D3 ∂H(x+ y) = ∂H(x) + ∂H(y)
TI3 τI (x·y) = τI (x)·τI (y) D4 ∂H(x·y) = ∂H(x)·∂H(y)
TI4 τI (x⊕π y) = τI (x)⊕π τI (y) D5 ∂H(x⊕π y) = ∂H(x)⊕π ∂H(y)
TI5 τI (1) = 1 D6 ∂H(1) = 1
TI6 τI (0) = 0 D7 ∂H(0) = 0

M x ‖ y = x ‖ y + y ‖ x+ x | y if x = x+ x and y = y + y

PM1 x ‖ (y ⊕π z) = (x‖y)⊕π (x‖z) PC1 x | (y ⊕π z) = (x|y)⊕π (x|z)
PM2 (x⊕π y) ‖ z = (x‖z)⊕π (y‖z) PC2 (x⊕π y) | z = (x|z)⊕π (y|z)
PL1 x ‖ (y⊕πz) =

(

x ‖ y
)

⊕π

(

x ‖ z
)

C1 x | (y + z) = x | y + x | z
PL2 (x⊕πy) ‖ z =

(

x ‖ z
)

⊕π

(

y ‖ z
)

C2 (x+ y) | z = x | z + y | z
LM1 1 ‖ x = 0 C3 1 | 1 = 1
LM2 a.x ‖ y = a. (x ‖ y) if y = y+y C4 0 | x = 0
LM3 (x+ y) ‖ z = x ‖ z + y ‖ z C5 a.x | 1 = 0
LM4 0 ‖ x = 0 C6 a.x|b.y = c. (x‖y) if γ (a, b)=c

C7 a.x|b.y = 0 if γ (a, b) undefined
C8 x | 0 = 0
C9 1 | a.x = 0

PrB a. ((y + τ. (y + z))⊕π w) = a. ((y + z)⊕π w) if y = y + y, z = z + z,
and ter (y + z) = false.

Proof. Straightforward (see [3, 4, 11]).

The proof of the following theorem is given in Subsection 4.4.3.1.

52 4. Branching bisimilarity: Algorithm, logics, axioms

Theorem 4.4.9 (Ground-completeness). Let p and q be closed
pTCPτ expressions represented by process graphs x and y, respectively.
Then, x ∼rt

b y implies pTCPτ ⊢ p = q.

4.4.3.1 Proof of Theorem 4.4.9

The proof of Theorem 4.4.9 is based on the method of process graph transfor-
mations [21] and builds on the proof of the corresponding theorem in [62]. We
define a confluent and terminating rewriting system on finite process graphs
(i.e. process graphs without infinite paths), such that every rewriting step
corresponds to an equation in the algebra. In this way, every process graph
reduces to a normal form. We prove that if two process graphs are RTSB
bisimilar, then they have the same normal forms; thus, their corresponding
process expressions can be proved equal in pTCPτ .

More precisely, we use the colouring definition of branching bisimilarity
of Section 4.2, adapted for RTSB bisimilarity. When a process graph is in
a normal form, all its states have different blends, and, given two arbitrary
states, there is at most one probabilistic transition between them.

A finite process graph is reduced to its normal form by repeating the
following steps, as long as it is possible:

– Find a pair of nondeterministic states that have equal action and ter-
minating potentials, and remove one of the states.

– Find a pair of probabilistic states that lead to the same classes with
the same probabilities and remove one of the states.

– Find a pair of different transitions s
π
 s′ and s

ρ
 s′ and merge them.

– Find a transition s
1
 t and eliminate it.

– Find a manifestly inert transition and eliminate it (a transition s
τ
−→ t,

where s is not preceded by the root or is not the root itself, and neither
s nor t terminates, is manifestly inert if all of the action transitions
originating from s, that are different from s

τ
−→ t, can also be performed

by t.)

While the first four steps correspond to axioms for strong bisimilarity, the
fifth step abstracts away from the unobservable transitions and corresponds
to axiom PrB.

We proceed with a detailed presentation of the proof. In the completeness
proof, we are going to consider only finite process graphs.

4.4. A complete axiomatization: Process theory pTCPτ 53

Definition 4.4.10 (Finite process graphs). A process graph is finite if it
does not have infinite paths.

In Section 4.2 we have defined canonical colouring of a PTS. Here we
adapt the definition for process graphs. The following two definitions facili-
tate that.

Definition 4.4.11 (Rooted colouring). Let x be a finite process graph. If
x is a nondeterministic state, then a colouring of the states of x is rooted iff
x does not have the same colour as a non-root state. If x is a probabilistic
state, then a colouring of the states of x is rooted when, if a state x′, such
that x x′, has the same colour as a state x′′, then x x′′.

Definition 4.4.12 (Termination-sensitive colouring). A colouring of a pro-
cess graph is termination-sensitive iff a terminating state does not have the
same colour as a nonterminating state, and, moreover, given two terminating
states s and t with equal blends, if s

τ
−→ s′ then t

τ
−→ t′ such that s′ and t′

have the same blends.

A colouring of a process graph that is both rooted and termination-
sensitive is called RTS colouring.

The following proposition recasts Corollary 4.2.8 in the new setting.

Proposition 4.4.13. Given a finite process graph x, there exists a proper,
consistent, RTS colouring for x, called canonical colouring, such that two
states have the same blend if and only if they are related by an RTSB auto-
bisimulation for x.

We define the subset of process graphs that are in normal form.

Definition 4.4.14 (Normal form). A finite process graph is in normal form if
and only if, given its canonical colouring, all the states have different blends,
and, given two arbitrary states, there is at most one probabilistic transition
between them.

Next, we show that every finite process graph is RTSB bisimilar to exactly
one normal form, up to isomorphism. Given a process graph x, by Sx we
denote the set of states that belong to x, and similarly for Sxn and Sxp .

Definition 4.4.15. For a given finite process graph x, graph NF (x) is de-
fined in the following way:

– The nondeterministic states are defined by the set of pure colours in
the canonical colouring χ of x, i.e. every colour c that appears in

54 4. Branching bisimilarity: Algorithm, logics, axioms

the latter defines a nondeterministic state in NF (x). NF (x) has a
transition c

a
−→ c′ (a 6= τ) iff x has a transition r

a
−→ r′, where χ (r) =

c and χ (r′) = c′. NF (x) has a transition c
τ
−→ c′ iff c 6= c′ and x has a

transition r
τ
−→ r′ where χ (r) = c and χ (r′) = c′. A state c in NF (x)

is terminating iff x has a terminating state r such that χ (r) = c.

– The probabilistic states are defined by the (non-pure colour) blends in
the canonical colouring of x. If b ∈ SNF(x) is a probabilistic state, then
NF (x) has a transition b

π
 c iff π 6= 0 and b (c) = π.

It is easy to check that NF (x) of the above definition is a process graph in a
normal form according to Def. 4.4.14.

Proposition 4.4.16. A finite process graph x is RTSB bisimilar to NF (x).

Proof. Consider the canonical colouring of x and the trivial colouring of
NF (x) induced by its construction. Then x and NF (x) have the same
coloured traces.

Thus, each class of RTSB bisimilar process graphs contains a process
graph in normal form. It is left to show that there is only one such graph,
up to isomorphism. Isomorphism of process graphs is defined next.

Definition 4.4.17 (Isomorphism). Let x and y be process graphs such that
there is at most one probabilistic transition between any two states. Process
graphs x and y are isomorphic iff there exists a bijection f : Sx 7→ Sy such
that f(x) = y, and for s, s′ ∈ Sx and a ∈ Aτ

– s
a
−→ s′ iff f (s)

a
−→ f (s′),

– s↓ iff f (s) ↓, and

– s
π
 s′ iff f (s)

π
 f (s′).

Proposition 4.4.18. Two finite process graphs in normal form are RTSB
bisimilar iff they are isomorphic.

Proof. (=⇒) Let x and y be process graphs in normal form such that x ∼rt
b y.

Let χ be the canonical colouring of the PTS induced by process graphs x and
y, and, moreover, let χ be rooted for x and for y and termination-sensitive.
Then χ is canonical colouring for process graph x and also for process graph
y. Define f : Sx 7→ Sy, such that f(x) = y iff χ(x) = χ(y). From the fact
that x and y are in normal form and from x ∼rt

b y it follows that this mapping
is well-defined and, moreover, a bijection. It is now not hard to check that
f satisfies the conditions of Definition 4.4.17 (see also [62]).

4.4. A complete axiomatization: Process theory pTCPτ 55

From Proposition 4.4.18 and Proposition 4.4.16 it follows that every
process graph has a RTSB bisimilar normal form, unique up to isomorphism.
We can thus refer to NF (x) as the normal form of x.

Next, we define double states and manifestly inert transitions.

Definition 4.4.19. Given a finite process graph x such that there is at most
one probabilistic transitions between two states,

1. A pair (s, s′) ∈ Sxn×S
x
n, where s 6= s′, x 6= s, x 6= s′, x 6 s, and x 6 s′,

is a pair of nondeterministic double states iff, for all a ∈ A and t ∈ S,

– s
a
−→ t iff s′

a
−→ t, and

– s↓ iff s′↓, and in case s↓, s
τ
−→ t iff s′

τ
−→ t.

2. A pair (s, s′) ∈ Sxp × Sxp , where s 6= s′, is a pair of probabilistic double

states iff, for all t ∈ Sn and π ∈ (0, 1], s
π
 t iff s′

π
 t.

3. A transition s
τ
−→ s′ such that s′ ∈ Sn, x 6 s, x 6= s, s 6 ↓ and s′ 6 ↓, is

manifestly inert iff, for all actions a and states t with (a, t) 6= (τ, s′), it
holds that s

a
−→ t implies s′

a
−→ t.

Proposition 4.4.20. Let x be a finite process graph without nondeterministic

or probabilistic double states, without
1
 or manifestly inert transitions, and

such that given any two probabilistic states, there is at most one probabilistic
transition between them. Then, x is in normal form.

Proof. Suppose that x is not in normal form. Then, if there is no more
than one probabilistic transitions between two states, given the canonical
colouring χ of x, there are two different states with equal blends.

Suppose first that x has two probabilistic states s and r with equal blends
and there are no nondeterministic states with equal pure colours. Then it
easily follows that if, for some t, s

π
 t then r

π
 t, and vice versa, if r

π
 t

then s
π
 t. Since there is at most one probabilistic transition between two

states, it must hold that s and r are probabilistic double states. Thus, we
obtain a contradiction.

Suppose now that there exist nondeterministic states with equal colours. If
there exist probabilistic double states then the proof is finished. Therefore,
assume that there are no probabilistic double states. We define the depth d (s)
of a nondeterministic state s to be the number of transitions in the longest
path starting from s, and the total depth of two states to be the sum of their
individual depths. Let s and r be two different nondeterministic states with

56 4. Branching bisimilarity: Algorithm, logics, axioms

equal colours, such that their total depth is minimal, i.e. if r′ and s′ are
nondeterministic states with equal colours such that d (r′) + d (s′) < d (r) +
d (s), then r′ = s′. Without loss of generality, we assume that d (s) ≤ d (r).
We prove that

(i) if r
a
−→ t and (a, t) 6= (τ, s), then s

a
−→ t, and

(ii) if s
a
−→ t, then either r

τ
−→ s or r

a
−→ t.

(iii) s↓ if and only if r↓, and if s↓, then s
τ
−→ t iff r

τ
−→ t.

From (i), (ii) and (iii) it would follow that, if there exists a transition r
τ
−→ s,

then it is manifestly inert; otherwise (r, s) is a pair of double nondeterministic
states. Either way, the proof would be completed. (Note that r and s are
both different from the root, since they are equally coloured.)

Proof of (i): Let r
a
−→ t and (a, t) 6= (τ, s). Since r and s have equal coloured

traces, either a = τ and t has the same blend as r, or s has a coloured trace
starting with (χ (r) , a, χ (t)), where χ (y) is the colour of state y with respect
to the canonical colouring χ of x. In the first case, from d (t) + d (s) <
d (r) + d (s) it follows that t = s, which contradicts our assumption. So, s
has a coloured trace (χ (r) , a, χ (t)). Suppose that s

τ
−→ u for a state u with

the same colour as s. Then, from d (s) + d (u) < d (s) + d (r), we obtain
that s = u, which is not possible since x is a finite graph. Thus, we obtain
a contradiction. So, there must exist a state u such that s

a
−→ u and the

blends of u and t are equal. If u = t, then the proof is complete. Suppose
u 6= t. We can assume that u and t are not double nondeterministic states;
otherwise, from d (u)+d (t) < d (s)+d (r) it follows that u = t and the proof
is complete. Let t′ and u′ be states with the same colour such that t t′

and u u′. Since d (t′) + d (u′) < d (r) + d (s), it follows that t′ = u′. The
last, together with the fact that u and t have equal blends, implies that u
and t are double probabilistic states, thus contradicting the assumption that
there don’t exist probabilistic double states.

A similar line of reasoning is applied to the proof of (ii).

Proof of (iii): Since r and s have the same colour, s↓ iff r↓. Assume now that
s↓. Assume first that s

τ
−→ t. We need to prove that r

τ
−→ t. If t has the same

colour as s, then from d (t) + d (r) < d (s) + d (r) it follows that t = r. But
then d (s) > d (r), and we obtain a contradiction. Therefore, χ (t) 6= χ (s).
Since s and r have equal coloured traces, r

τ
−→ t′ and χ (t) = χ (t′). From

d (t) + d (t′) < d (s) + d (r) it follows that t = t′, which we were supposed to
show. Assume now that r

τ
−→ t. If χ (t) = χ (r), then from d (s) + d (t) <

d (s) + d (r) we have that s = t. But then s
τ
−→ s′ such that χ (s) = χ (s′)

4.4. A complete axiomatization: Process theory pTCPτ 57

and s 6= s′. Then, from d (s) + d (s′) < d (r) + d (s) we obtain that s = s′,
which is not possible in a finite graph. So, χ (t) 6= χ (r). Then, s

τ
−→ t′ and

χ (t) = χ (t′). From d (t) + d (t′) < d (s) + d (r) we obtain t = t′, which
completes the proof.

From Proposition 4.4.20 it follows that, in order to obtain the normal
form of a finite graph x, we need to unify the pairs of double states, to

contract the manifestly inert transitions, to delete the
1
 transitions, and

to merge multiple probabilistic transitions between any pair of states. We
now define formally these rewriting steps that reduce a process graph to its
normal form.

Definition 4.4.21. The process graph rewriting relationNF is defined by
the following one-step reductions:

1. Unifying a pair of nondeterministic double states (s, s′): replace every

transition t
π
 s by t

π
 s′ and replace every transition t

a
−→ s by t

a
−→ s′.

2. Unifying a pair of probabilistic double states (t, t′): replace every tran-
sition s

a
−→ t by s

a
−→ t′.

3. Contracting a manifestly inert transition s
τ
−→ t: replace every transi-

tion r
a
−→ s by r

a
−→ t and replace every transition r

π
 s by r

π
 t.

4. Erasing a transition s
1
 t: replace every transition r

a
−→ s by r

a
−→ t.

5. Merging all probabilistic transitions between s and t: replace all tran-
sitions s t by a single transition s

π
 t, where π = P (s, t).

Proposition 4.4.22. For the set of finite process graphs, the rewriting rela-
tion NF satisfies the following properties:

(ii) If xNF y then x ∼rt
b y.

(iii) The relation NF is confluent and terminating.

Proof. (ii) The relation NF is terminating since in every step it decreases
the number of states or the number of transitions that belong to the process
graph. For confluence, assume that process graphs x′ and x′′ can be obtained
from x by applying NF as long as it is possible. By Proposition 4.4.20, x′

and x′′ are both in normal form. By (ii) they are branching bisimilar. So, by
Proposition 4.4.18, they are isomorphic.

58 4. Branching bisimilarity: Algorithm, logics, axioms

Next, we establish a relation between the finite process graphs and
the closed expressions. First we introduce some notation. Let {ai}

n
i=1

be a sequence of actions and {xi}
n
i=1 be a sequence of process expres-

sions. By
∑n

i=1 ai.xi we denote a process expression that has the form
a1.x1 + a2.x2 + . . . + an.xn, where the brackets “(” and “)” are omitted.

Let x be a probabilistic state and {x
πi
 xi}

n
i=1 be a sequence of all the prob-

abilistic transitions originating from x. Process graph [x] is constructed such

that a new state [x] is created and for every transition x
πi
 xi, i > 1, a

transition [x]
πi/(1−π1)
 xi is created.

Definition 4.4.23. Let x be a finite process graph. A process expression
〈x〉 is associated to x in the following way.

〈x〉 =

0 if x is a deadlock state
∑n

i=1 ai.〈xi〉 if ∃{x
ai−→ xi}

n
i=1, x 6 ↓

1 if x 6−→, x↓
∑n

i=1 ai.〈xi〉+ 1 if ∃{x
ai−→ xi}

n
i=1, x↓

〈x′〉 if x
1
 x′

x1 ⊕π1 〈[x]〉 if ∃{x
πi
 xi}

n
i=1

Note that the process expression 〈x〉 is determined modulo the axioms for
commutativity and associativity, i.e. axioms A1, A2, P1 and P2 from Table
4.4.

Proposition 4.4.24. If x and y are isomorphic graphs, then

A1,A2,P1,P2 ⊢ 〈x〉 = 〈y〉.

Proof. Straightforward (see [3]).

The following lemmas show that every process graph rewriting step can
be mimicked in the process theory pTCPτ .

Lemma 4.4.25. Suppose (s, t) is a pair of double states, either probabilistic
or nondeterministic, and a ∈ Aτ . Then,

pTCPτ ⊢ a.〈s〉 = a.〈t〉 and

pTCPτ ⊢ 〈s〉 ⊕π w = 〈t〉 ⊕π w.

Proof. See [5, 62].

Lemma 4.4.26. pTCPτ ⊢ (x⊕π x)⊕ρ w = x⊕ρ w.

4.4. A complete axiomatization: Process theory pTCPτ 59

Proof. Trivial.

Lemma 4.4.27. Let s
τ
−→ s′ be a manifestly inert transition and a ∈ Aτ .

pTCPτ ⊢ a.〈s〉 = a.〈s′〉 and

pTCPτ ⊢ a. (〈s〉 ⊕π w) = a. (〈s′〉 ⊕π w) .

Proof. Since s
τ
−→ s′ is a manifestly inert transition, we know that

A1,A2,P1,P2 ⊢ 〈s〉 = y + τ · 〈s′〉 and A1,A2,P1,P2 ⊢ 〈s′〉 = y + z

for some closed expressions y and z. Moreover, 〈s′〉 = 〈s′〉 + 〈s′〉 and
ter (〈s〉) = ter (〈s′〉) = false. Then,

pTCPτ ⊢ a.〈s〉 =a.(y + τ · 〈s′〉)

=a.(y + τ · (y + z))

=a.((y + τ · (y + z))⊕π (y + τ · (y + z)))

= (twice PrB and P3) a.(y + z)

=a.〈s′〉.

pTCPτ ⊢ a. (〈s〉 ⊕π w) =a. ((y + τ · 〈s′〉)⊕π w)

=a. ((y + τ · (y + z))⊕π w)

=a. ((y + z)⊕π w)

=a. (〈s′〉 ⊕π w) .

Lemma 4.4.28. If xNF y, then pTCPτ ⊢ 〈x〉 = 〈y〉.

Proof. By Lemmas 4.4.25, 4.4.26, and 4.4.27.

Next, we restate (the ground-completeness) Theorem 4.4.9 and give a
proof. Because of the Elimination Theorem 4.4.7, the ground-completeness
theorem can take the following form.

Theorem 4.4.9 (Ground-completeness). Let x, y be finite process graphs
such that x ∼rt

b y. Then pTCPτ ⊢ 〈x〉 = 〈y〉.

60 4. Branching bisimilarity: Algorithm, logics, axioms

Proof. Since x ∼rt
b y, if NF (x) and NF (y) are the normal forms of x and

y, respectively, then from Proposition 4.4.16 it follows that NF (x) ∼rt
b x

and y ∼rt
b NF (y). Thus, NF (x) ∼rt

b NF (y), which, according to Proposition
4.4.18, implies that NF (x) and NF (y) are isomorphic. Therefore,

pTCPτ ⊢ 〈NF (x)〉 = 〈NF (y)〉.

On the other hand, since x can be rewritten to NF (x), we have

pTCPτ ⊢ 〈x〉 = 〈NF (x)〉.

Similarly for y and NF (y). Finally,

pTCPτ ⊢ 〈x〉 = 〈NF (x)〉 = 〈NF (y)〉 = 〈y〉.

Chapter 5

Concluding remarks to part I

We discuss related work of the results presented in this part, and end with
concluding remarks.

5.1 Related work

As closely related to the results presented in Part I we consider those con-
cerning weak types of bisimulations for systems exhibiting both probabilistic
and nondeterministic behaviour. Weak and branching bisimulations for the
alternating model of probabilistic systems have been defined in [91] and [8]
respectively, and the latter equivalence has been axiomatized in [5], for a
language with sequential composition, alternative composition, probabilistic
choice, and hiding. However, as shown in [4], none of these bisimulations is
congruence for the standard parallel composition of [68]. As explained in the
introduction, this was our motivation to define a new branching bisimulation.

Recently, a branching bisimulation equivalence relation has been defined
in a model, which is inspired by the alternating model, and where the prob-
abilistic steps are timed [36] (this model can be also seen as a discrete-time
variant of the interactive Markov chains [70]). Both action and timed proba-
bilistic transitions are possible from the same state. This allows flexibility of
the parallel composition and, thus, relating e.g. states s and t in Figure 2.1
does not break the congruence property of the relation. On the other hand,
an action transition cannot be simulated by a path containing probabilistic
transitions, e.g. processes s and u in Figure 3.1a are not equivalent by the
relation of [36].

The alternating model of probabilistic systems that we consider here al-
lows full nondeterminism and probabilistic choice. A closely related model is
the non-alternating model [97], which also has the same modeling capabili-

61

62 5. Concluding remarks to part I

ties. In the latter, each probabilistic choice is guarded by an action. A pro-
cess makes a nondeterministic choice among several, possibly equal, actions,
and the execution of an action leads to a probability distribution over the
next states. Because of the similarities between the non-alternating and the
alternating model, possible translating and embedding functions have been
studied [17, 100, 102]. One can map a process in the alternating model to a
process in the non-alternating model by introducing a special, invisible action
for the probabilistic choice [100]. Alternatively, a translation can be made
by “erasing” each probabilistic state that comes between an action transition
and a probabilistic transition [17,100,102]. However, differences occur when
composing processes. For example, the first mapping is not compositional
with respect to parallel composition: the image of the parallel composition
of a. (b.0⊕π c.0) and d.0 is not equal to the parallel composition of the im-
ages of a. (b.0 ⊕π c.0) and d.0. The second mapping, as it can be anticipated,
makes differences when composing in parallel, or with a probabilistic choice,
two initially probabilistic processes (e.g. a.0 ⊕1/3 b.0 and c.0 ⊕1/2 d.0). The
reason for the differences is the fact that in the non-alternating model each
probabilistic choice requires at least a τ -action to guard it.

Weak and branching bisimulations for the non-alternating model have
been defined in [99]. Weak bisimulation has been axiomatized in [41]. For
the weak versions of bisimulation in this model to be transitive, it should
be allowed for a single transition to be simulated by a convex combination
of several transitions. A side-effect of this property is that these relations
are not decidable in polynomial time [29]. Interestingly however, processes
a.τ. (b.0⊕π c.0) and a. (b.0⊕π c.0) are neither related by our bisimulation,
nor by [99], when the second (compositional) mapping is used.

In [45] the semantics of pCTL* of [23] is extended to treat internal steps.
Behaviors, on which path formulas are interpreted, ignore states with τ steps,
together with the τ steps. With this semantics it is shown in [45] that the no-
tion of weak bisimulation of [91] is sound and complete for the presented logic.
However, this semantics implies that two non-probabilistic systems that sat-
isfy the same formulas are not necessary branching bisimilar by [62]. On the
contrary, we extend the semantics in such a way, that if two non-probabilistic
systems satisfy the same formulas, then they are branching bisimilar in the
sense of [62] (recall that CTL characterizes non-probabilistic branching bisim-
ilarity [40]). For these reasons, we built on [40], rather than on [45] or [99].

We close the discussion on related work by returning once again to the
basic problem with compositionality for the weak types of bisimulations in
the alternating model. Namely, while we have taken the conservative ap-
proach of strengthening the bisimulation in question to become compatible

5.2. Concluding remarks 63

with the standard parallel composition, there is still the more radical option
of adapting the operator to support compositionality of the bisimulation.
Indeed, reference [4] notes that parallel composition can be defined by giv-
ing priority to the internal actions [4] over the visible actions, so that the
(weak) bisimulations defined in [91] and [8] can be compositional. Note
that this approach opposes those in the bisimulation-based process algebras
as ACP [11] and CCS [86], where the internal actions and the observable
actions are treated equally when composing processes and the accent is on
preserving the branching structure of processes. In fact, the parallel com-
position in [4] is very similar to the CSP parallel composition [71], where
the underlying semantics is trace-style, i.e. linear-time, and thus the exact
moment in which the internal activity occurs cannot be determined. Part II
of the present text is dedicated to probabilistic trace-style semantics and a
process algebra in the style of CSP.

5.2 Concluding remarks

In this part, we have defined a branching bisimulation for the alternating
model of probabilistic systems that is a congruence for parallel composition,
as well as for the rest of the standard operators. For the congruence result,
an internal transition that is immediately followed by a non-trivial proba-
bilistic distribution is not considered inert, and, thus, is not eliminated by a
branching bisimulation reduction. We have shown that our branching bisim-
ulation is the coarsest congruence for parallel composition that is included
in the relation of [8], which, together with [91], are the intuitive notions
for branching, respectively, weak bisimulation for the alternating model. In
addition, we have shown that branching bisimulation preserves probabilistic
CTL formulas, and have given an algorithm that decides branching bisimi-
larity in polynomial time in the number of states. As intermediate results,
two alternative definitions of branching bisimilarity are presented: one based
on coloured traces, and another involving schedulers. Finally, a complete ax-
iomatization of branching bisimilarity has been given, that includes the oper-
ators of TCP [11] and probabilistic choice. Similarly to the non-probabilistic
case [62], only one axiom characterizes branching bisimilarity, in addition to
the axioms that are already valid in the strong bisimilarity setting.

In [6] the Concurrent Alternating Bit Protocol has been verified using the
equational theory presented in this part, and several sound recursive verifica-
tion rules. In the future it would be interesting to study whether other, more
complex protocols, can be verified using the same techniques. Also, it would
be interesting to exploit whether, indeed, branching bisimulation minimiza-

64 5. Concluding remarks to part I

tion improves the efficiency of the verification of large and complex systems.
Results in this direction have already been shown for strong probabilistic
bisimulation minimization [76].

Part II

Testing semantics

65

Chapter 6

Introduction

A central question in the theory of concurrent processes is when two pro-
cesses should be considered equivalent. Various attempts to answer this
question have led to the concepts of observational equivalence, bisimulation,
testing equivalence, failure equivalence, etc. The underlying semantics of
the may/must testing theory for concurrent processes [39, 69] considers two
processes equivalent if and only if they cannot be distinguished when inter-
acting with their environment, which is an arbitrary process itself. With
this reasoning, this theory takes the view that the exact moment an internal
(nondeterministic) choice in a process is resolved is unobservable (contrary to
bisimulation-based process theories where this moment is considered observ-
able, e.g. [11,85]). The same aspect appears as well in the failures semantics
of the language CSP [25, 71, 96], and in fact, it has been shown in [89] that
testing equivalence [39, 69] and failures equivalence [25] coincide for a broad
class of processes.

In order to capture quantitative aspects of the system behaviour, some
of the internal choices in a process may be refined by probabilistic choices.
In this case, the probability with which a certain event happens depends on
the way the remaining nondeterminism is resolved. This nondeterminism
is usually resolved by means of a scheduler, a function that, each time a
process has to make an internal choice, selects one of the alternatives. For
example, consider the process s‖u in Fig. 6.1, which has one probabilistic
choice and two internal choices (left and right, depending on the result of
the probabilistic choice). There are four possible schedulers for this process:
one scheduler selects the left τ -transition in the left internal choice and the
left τ -transition in the right internal choice; another scheduler selects the left
τ -transition in the left internal choice and the right τ -transition in the right
internal choice, etc. Application of a scheduler on a process specification
without action choices, as the above one, yields a fully probabilistic process,

67

68 6. Introduction

s
1
2

�� �B
�B
�B
�B 1

2

���\
�\

�\
�\

h
		��
��
�� t

��,
,,

,,
,

h
		��
��
�� t

��,
,,

,,
,

p
��

p
��

u
h

##
t

{{

p
��

ω
��

s‖u
1
2

�� �@
�@

�@
�@

1
2

���^
�^

�^
�^

τ
				��
��
�� τ

�� ��,
,,

,,
,

τ
				��
��
�� τ

�� ��,
,,

,,
,

τ
����

τ
����

ω
��

ω
��

s̄
h

����
��

��
� t

��9
99

99
99

1
2

		 	I
	I
	I 1

2

���V
�V

�V 1
2

		 	I
	I
	I 1

2

���V
�V

�V

p
��

p
��

Figure 6.1: The coin-flipping machine and the guessing user

which can be further analyzed using, for instance, standard Markov chain
analysis techniques. It is essential, however, that the probability of an event
to occur is relative to the particular scheduler.

Such schedulers, that resolve the nondeterminism in all possible ways,
were also employed in an extension of the may/must testing theory for the
probabilistic case [108]. However, it was soon observed that this seman-
tics yields unrealistic overestimation of the probabilistic behaviour of the
process/test synchronization, and the problem was detected exactly in the
freedom that the schedulers have [83, 87, 97]. As a result, the internal prob-
abilistic choice in this semantics is observable. We explain this phenomenon
by the following examples.

Example 6.0.1 (A gambling machine). Consider a system consisting of a
machine and a user. The machine is equipped with a menu of two buttons
head and tail via which the user interacts with the machine. The machine,
modeled by process graph s in Fig. 6.1, first makes a fair choice (i.e. flips
a fair coin), based on which it decides the winning button: in one half of
the machine runs a prize is given if head is pressed by the user, and in the
other half of the runs a prize is given if tail is pressed. The user, modeled
by process graph u in Fig. 6.1, can press any of the two buttons head or tail.
If the right button is pressed, she wins a prize, and is happy (denoted by
action ω) afterwards. Note that by no means the user is able to detect the
machine’s choice beforehand.

Let the user and the machine interact, by synchronizing on their common
actions, except on the “happy” action ω. In terms of testing theory [39], pro-
cess s is tested with test u. Considered as a simple game of chance, by means
of probability theory it can be calculated that the user wins a prize with prob-
ability 1

2
. However, most of the existing approaches for probabilistic testing,

in particular probabilistic may/must testing [42, 44, 74, 90, 98, 108], do not

69

yield probability 1
2
for action ω being reported. Let us consider the result of

synchronization of the two processes s and u, represented by process s‖u in
Fig. 6.1, where actions are hidden after synchronization, labeled by τ . By
applying the above mentioned four schedulers to s‖u, one obtains the set of
probabilities {0, 1

2
, 1} with which action ω can be reported. Therefore, since

the power of the schedulers is unrestricted, unrealistic bounds of 0 and 1 for
the probability to pass the test are obtained. In fact, when resolving the
nondeterminism in s‖u, the above mentioned may/must testing approaches
allow schedulers that correspond to strategies the user can define and de-
ploy only if she knows the result of the coin-flipping before guessing. More
concretely, such schedulers ignore the fact that both internal choices in s‖u
are resolved in the same way, regardless of the outcome of the probabilistic
choice.

Consider now process s̄ in Fig. 6.1. Process s̄ can as well represent the
behaviour of the coin-flipping machine from the view point of the user: she
cannot observe the exact moment the machine flips the coin, before or after a
button is pressed. According to the user, the machine acts as specified as long
as she is able to guess the result in half of the cases. Nevertheless, the two
schedulers defined by the probabilistic may/must testing, when applied to
process s̄‖u, yield exactly probability 1

2
of reporting action ω. Consequently,

none of the approaches in [42, 44, 74, 90, 98, 108] considers processes s and s̄
testing-equivalent: they produce different probability bounds for reporting
action ω. Note that if the probabilities are ignored, and each probabilistic
choice is treated as an internal choice, then processes s and s̄ are testing
equivalent in the (non-probabilistic) may/must testing theory [39].

Example 6.0.2 (The coin flipper – result guesser game). Consider the fol-
lowing game. Player x tosses a fair coin without revealing the outcome and
waits. Player y waits while the coin is being tossed, and then writes down
his guess about the outcome of the flipping without showing it to x. Then,
both players agree to reveal their outcomes, i.e. x to uncover the coin and
y to show what he has written. Players x and y are modeled in Fig. 6.2.
Obviously, the probability that player y guesses correctly equals 1

2
. However,

the schedulers applied to the synchronization of processes x and y give the
set of probabilities {0, 1

2
, 1} for reporting ω. This, thus, suggests that there

is a strategy for player y by which he can always guess the result correctly.
On the other hand, if process x̄ in Fig. 6.2 is synchronized with y, both
schedulers applied to the resulting process graph yield exactly probability
1
2
for action ω to happen. Hence, in probabilistic may/must testing theory,

processes x and x̄ cannot be equated. As a consequence, in this theory prefix

70 6. Introduction

x
1
2

��
�F
�F
�F 1

2

��
�X

�X
�X

w
��

w
��

r
��

r
��

h
��

t
��

y
w

��

τ
����		
		

		 τ
�� ��5

55
55

5

r
��

r
��

h
��

t
��

ω
��

ω
��

x‖y
1
2

}} }=
}=

}=
}=

1
2

!!!a
!a

!a
!a

τ
����

τ
����

τ
������
��
�� τ

�� ��/
//

//
/

τ
������
��
�� τ

�� ��/
//

//
/

τ
����

τ
����

τ
����

τ
����

τ
����

τ
����

ω
��

ω
��

x̄
w

��

r
��

1
2

�� �D
�D
�D
�D 1

2

���Z
�Z

�Z
�Z

h
��

t
��

Figure 6.2: The coin-flipper and result-guesser game

does not distribute over probabilistic choice, thus making the moment when
an internal probabilistic choice is resolved observable.1

Note that specifying the waiting action of process x with the same action
name, regardless of the outcome of the flipping, is essential for player x to
keep the outcome unknown to player y. Namely, if the coin flipper after the
flip, depending on the outcome, offers different actions for synchronization,
a and b, as shown in Fig. 6.3, then the outcome of the flip is revealed to
the other player. In this case, the guesser can surely guess the result: he
makes his guess depending on the action on which both players previously
synchronized.

It is worth noting that equating processes x and x̄ from Fig. 6.2, i.e. al-
lowing distribution of prefix over internal probabilistic choice [71], is closely
related to equating processes s and s̄ in Fig. 6.1, i.e. allowing distribution of
external action choice over internal probabilistic choice [71], from a point of
view of compositionality. Namely, if distribution of external choice over in-
ternal probabilistic choice is not allowed under a semantical equivalence, then
allowing distribution of action prefix over internal probabilistic choice breaks
the congruence property for interleaving [71] (or merge) of that equivalence.
This can be concluded from Fig. 6.4: relating processes p and q requires
relating processes p|||d and q|||d, where process d can perform only action d.2

1Variants of this example were initially discussed in [83, 87, 97].
2We refrain from giving a formal definition of interleaving at the moment, but we

emphasize that it is inherited from [71].

71

x′
1
2

��
�F
�F
�F

1
2

��
�X

�X
�X

a
��

b
��

r
��

r
��

h
��

t
��

y′

b
||

a

""

τ
����		
		

		 τ
�� ��5

55
55

5

r
��

r
��

h
��

t
��

ω
��

ω
��

Figure 6.3: The guessing game: unfair play

If we are not able to relate processes that differ only in the moment an
internal probabilistic choice is resolved, before or after an action execution,
then, for the verification of processes exhibiting external, classical internal
and internal probabilistic choice, we can rely only on equivalences that
inspect the internal structure of processes, as bisimulations and simula-
tions [58]. Indeed, it has been shown in [44,74,84] that the testing preorders

p
1
3

		 	I
	I
	I 2

3

���U
�U

�U

a
��

a
��

b
��

c
��

q
a
��

1
3

��
�H
�H
�H 2

3

��
�V

�V
�V

b
��

c
��

p|||d1
3

}} }=
}=

}=
}=

2
3

!!!a
!a

!a
!a

a
����
��
�� d

��/
//

//
/

a
����
��
�� d

��/
//

//
/

b
��
d
��/

//
//

/

a
��

c
��
d
��/

//
//

/

a
��

d
��
b
��
b
��

d
��

c
��

c
��

q|||d
a

}}{{
{{

{{
{{ d

!!C
CC

CC
CC

C

1
3

��
�G
�G
�G 2

3

��
�W

�W
�W

a
��

b
��
d
��/

//
//

/

c
��

d

��<
<<

<<
<< 1

3

��
�G
�G
�G 2

3

��
�W

�W
�W

d
��
b
��
d
��

c
��

b
��

c
��

Figure 6.4: Processes p and q, interleaved with action d

defined in [98, 108] are branching time, simulation-like relations. The most
discouraging fact is that in a parallel composition probability information
might be lost, as the previous examples show. This questions the reasons
for adding probabilities in the model to start with.

In this part we propose a testing semantics in the style of [39] for processes
exhibiting external, internal and probabilistic choices that solves the prob-
lem with overestimation of the probabilities with which a process passes a

72 6. Introduction

test, and achieves unobservability of the internal choice as originally in [39].
The unobservability of the internal choice results from a ready-trace-style
characterization of the testing preorder relation, where a ready-trace is an
alternating sequence of action menus and performed actions [13,58,92]. The
testing semantics itself is based on a novel method for labeling the internal
transitions that appear in the synchronization of a process and a test, and
thus “remembering” the same internal choices that appear in different fu-
tures, as those in the above examples. The core idea is that the labels on the
internal transitions contain all information based on which the internal choice
is resolved. For example, both internal choices in process s‖u in Fig. 6.1 are
resolved based on the menu {h, t} of action-candidates for synchronization,
and thus their labels contain exactly this information, together with the
synchronized action itself. In this way, internal choices using the same infor-
mation are resolved in the same way, regardless of the considered future. In
fact, when resolving nondeterminism in order to obtain the probabilities with
which a process passes a test, we first resolve the internal nondeterminism of
the process, as it is resolved independent of the rest of the nondeterminism,
and then we resolve the nondeterminism that results from synchronization,
as in process s‖u from Example 6.0.1, and the nondeterminism of the test,
as in Example 6.0.2.

Subsequently, we develop an algebraic probabilistic process theory based
on the induced ready-trace equivalence that also includes a general parallel
composition. This parallel composition allows processes to synchronize on a
set of actions and to interleave on the rest of the actions, as in CSP [96], and
also allows action hiding after synchronization, as in CCS [85]. The CSP-style
axiomatization of the ready-trace equivalence shows that all the distributivity
axioms for internal choice [71,96] are preserved, and no new axioms regarding
the interplay between external and internal choice are added. Thus, with this
approach we solve a problem which was open throughout the years, namely
to find a satisfactory extension of CSP with probabilistic choice w.r.t. the
verification power of the axioms.

To stay concise while presenting the ideas and the results, in this part
we assume that the processes are divergence-free, i.e. no infinite sequences of
internal and/or probabilistic transitions exist. In the conclusion to this part
we discuss the divergence of processes.

Structure of Part II In Chapter 7 we define our semantical model, the
testing preorder relation and the ready-trace preorder relation, and we prove
that both preorders coincide. More concretely, the model is defined in Sec-
tion 7.1, and in Section 7.2 we define how the internal nondeterminism in a

73

process is resolved, by first performing unfolding and appropriate relabeling.
In Section 7.3 we define the synchronization of a process and a test and the
testing preorder relation. In Section 7.4 we define the ready-trace preorder
relation, and in Section 7.5 we prove that the two preorder relations coincide.
In Chapter 8 we define our process language and give a complete axioma-
tization of the ready-trace equivalence. More concretely, in Section 8.1 we
define the choice and priority operators, in Section 8.2 we define the parallel
composition operator, in Section 8.3 we define normal forms of processes,
in Section 8.4 we give the congruence result, and finally in Section 8.5 we
present the axiomatization of the ready-trace equivalence.

74 6. Introduction

Chapter 7

Probabilistic testing theory:

Retaining the probabilities

We define a testing preorder relation, in the style of De Nicola & Hen-

nessy’s may/must testing preorders, for processes exhibiting external,

internal and probabilistic choices. The aim of our testing semantics

is to yield realistic estimates of the probability to pass a test, and in

this respect to improve the standard probabilistic may/must testing

theory. To achieve this, in our model the transitions representing an

internal choice are suitably labeled, such that the labels indicate the

information based on which the choice is resolved. We also give an

alternative characterization of our testing preorder relation in terms of

ready-traces. From this characterization it follows that the resulting

equivalence relation is insensitive to the exact moments in which the

probabilistic and the internal choices occur – a property which is in-

herent to the original De Nicola & Hennessy’s equivalence, but which

fails to be preserved by the standard probabilistic may/must testing

equivalence.

7.1 Process graphs

In this section we define our model of process graphs and operations on
them. Three kinds of choices can be modeled by the process graphs: choice
between several different actions (external choice), choice between several in-
ternal transitions (internal choice), and probabilistic choice, as a refinement
of the internal choice. However, the internal transitions in our model have
been assigned labels, local to the process to which they belong. The labels
are meant to contain information for the schedulers that resolve the internal

75

76 7. Probabilistic testing theory: Retaining the probabilities

nondeterminism, and after an appropriate unfolding and relabeling function
(defined in the next section) is applied, they represent unknown probability
distributions. Our model can be also seen as an orthogonal combination of
reactive probabilistic processes [80] (or Markov decision processes [94]) and
parametric discrete-time Markov chains [46], where the transition probabili-
ties are parameters, without a time component.

Given a directed graph r, by s
l
−→ t we denote that there exists an edge in

r originating from a node s and ending in a node t, labeled with l; we may
omit s, t, or l from the notation to denote that they are arbitrary. For a finite

index set I, by [{s
li−→ si}i∈I] we denote that there exist edges {s

li−→ si}i∈I
and s has no other outgoing edges.

We presuppose a finite set of actions A and a countable set of internal
labels L such that A ∩ L = ∅.

Definition 7.1.1 (Process graph). A process graph r, or simply process r,
is a directed, finite-state and finite-edge graph with root r, such that

– there exist three types of edges, or transitions : action (−→), internal
(։), and probabilistic ();

– there exist three types of nodes, or states : action, nondeterministic,
and probabilistic; from an action (resp. nondeterministic, probabilis-
tic) state there can originate only action (resp. internal, probabilistic)
transitions;

– the action transitions are labeled with actions from A such that no two
action transitions with the same state of origin are labeled the same;

– the internal transitions are labeled with labels from L such that

- no two internal transitions with the same state of origin are labeled
the same, and

- if s
τ1
։ and t

τ1
։, then [{s

τi
։ si}i∈I] iff [{t

τi
։ ti}i∈I], i.e. if two states

share a label on their outgoing internal transitions, then they have
the same sets of labels on all of their outgoing transitions;

– the probabilistic transitions are labeled with scalars from (0, 1], such
that

- given two states, there is at most one probabilistic transition con-
necting them, and

- for each probabilistic state s, if [{s
πi
 si}i∈I] then

∑

i∈I πi = 1,
i.e. the sum of the labels on the outgoing transitions equals one;

7.1. Process graphs 77

– all states are reachable from r.

The set of all process graphs is denoted by G. A state without outgoing
transitions, i.e. a deadlock state, is considered an action state. The deadlock
process is denoted by the constant 0. Given an action state s, by sa we
denote the state (if it exists) for which s

a
−→ sa; by I(s) we denote the set

of actions {ai}i∈I such that [{s
ai−→ si}i∈I], ∅ if s is a deadlock state. I(s) is

called the menu of s. Intuitively, I(s) is the set of actions that process s can
perform initially.

Example 7.1.2. The graphs s, u, and s̄ in Fig. 6.1, and the graphs z, v,
and r in Fig. 7.1 are process graphs.

Each process s defines a set of equations, called constraints for s. Similarly
as in parametric Markov chains [46], they restrict the values that the internal
labels in s can take, such that the values of the labels assigned to an internal
choice form a probability distribution, i.e. they are in the interval [0, 1] and
sum up to 1. The constraints are defined next and will play an essential role
throughout this part.

Definition 7.1.3 (Constraints). Let s be a process. C(s), the set of con-
straints for s, is a set of linear equations over labels in L, such that an equa-

tion is in C(s) if and only if it has the form
∑

i∈I τi = 1 with [{t
τi
։ ti}i∈I]

for some nondeterministic state t in s. A resolution of C(s) is a function as-
signing values from [0, 1] to the variables in C(s), respecting the constraints
C(s).

We define the parametric operators ⊓, �, and ⊕ on process graphs. The
operators ⊓ and � have the same intuitive meaning as the corresponding
operators in [71], i.e. ⊓i∈Iτisi is (in our case labeled) internal (nondeter-
ministic) choice among processes {si}i∈I , while �i∈I aisi is a choice among
actions {ai}i∈I , each ai prefixing process si. ⊕i∈Iπisi is a probabilistic choice
among processes {si}i∈I , each process si being chosen with probability πi.

Definition 7.1.4. Let I be a finite index set and {si}i∈I be a set of process
graphs. The parametric operators ⊕, ⊓, � on process graphs are defined as
follows:

– For {τi}i∈I ⊂ L such that {τi}i∈I do not appear in the process graphs
{si}i∈I , the process graph ⊓i∈Iτisi is constructed by creating a new
state s, a set {s′i}i∈I of disjoint copies of the process graphs {si}i∈I ,

and transitions {s
τi
։ s′i}i∈I .

78 7. Probabilistic testing theory: Retaining the probabilities

– For {ai}i∈I ⊆ A, the process graph �i∈I aisi is constructed by creating
a new state s, a set {s′i}i∈I of disjoint copies of the process graphs

{si}i∈I , and transitions {s
ai−→ s′i}i∈I .

– For {πi}i∈I ⊂ (0, 1] such that
∑

i∈I πi = 1, the process graph ⊕i∈Iπisi
is constructed by creating a new state s, a set {s′i}i∈I of disjoint copies

of the process graphs {si}i∈I , and transitions {s
πi
 s′i}i∈I .

We omit the operator sign ⊕,� or ⊓ if there is only one operand. We also
write a rather than a0.

Definition 7.1.5. A finite process graph is a process graph in which only
finite paths exist. A finite process tree is a finite process graph that has a
tree form. A divergence-free process graph is a process graph without infinite
sequences of probabilistic or internal transitions.

To simplify the technical framework, throughout this part we assume that
processes are divergence-free.

7.2 Unfolding and coherent labeling

In this section we define how to unfold a process graph up to a finite length
and relabel its internal transitions, such that two nondeterministic states have
the same label sets only if they represent the same instance of an internal
choice. Then, we define in a straightforward way how the internal nondeter-
minism in a process is resolved, by assigning probability distributions to the
internal choices.

z
τ5

~~~~}}
}}

}}
}} τ6

�� ��2
22

22
2

a
����
��
�� d

��0
00

00
0

a

��








 d
��0

00
00

0

b
��
d
��0

00
00

0

a
��
c
��
d

��4
44

44
4

a
��

d
��
b
��
b
��
d
��

c
��

c
��

≈ v
a

~~}}
}}

}}
}} d

  A
AA

AA
AA

A

τ1
������
��
�� τ2

�� ��0
00

00
0

a
��

b
��
d
��0

00
00

0

c
��
d

��4
44

44
4

τ1
������
��
�� τ2
����

d
��
b
��
d
��
c
��
b
��

c
��

� r
a

~~}}
}}

}}
}} d

  A
AA

AA
AA

A

τ1
������
��
�� τ2

�� ��0
00

00
0

a
��

b
��
d
��0

00
00

0

c
��
d

��4
44

44
4

τ3
������
��
�� τ4
����

d
��
b
��
d
��
c
��
b
��

c
��

Figure 7.1: Several processes and relations between them; processes z and
v are obtained by interleaving τ5(ab) ⊓ τ6(ac) and a(τ1b ⊓ τ2c), respectively,
with action d.



7.2. Unfolding and coherent labeling 79

The idea behind labeling the internal transitions is to be able to identify
them in a parallel context. In this way, if the same instance of an internal
choice appears in different futures, we ensure that it will be resolved in the
same way in every future. For example, as already discussed, the two internal
choices in x‖y actually represent the same choice and thus in our model they
shall be labeled the same (we defer the discussion for the exact labeling to the
next section). An even more trivial example is process v in Fig. 7.1. Namely,
it can be seen as the interleaving of process p ≡ a(τ1b ⊓ τ2c) and process
q ≡ d. Since there is no communication between p and q, the internal choice
in p cannot be influenced by action d. Consequently, both internal choices
that appear in process graph v must be resolved in the same manner, and
this is ensured by the same label sets. However, consider graph s in Fig. 7.2.
According to Definition 8.3.1, it is a process graph; however, note that there

r
τ1
����

 τ2

�� ��1
11

11
1a

..

b
��

s
τ1
����

 τ2

�� ��1
11

11
1

a
��

b
��

τ1
������
��
�� τ2

�� ��3
33

33
3

a
��

b
��

Figure 7.2: A cyclic process and a finite process

is a path with two nondeterministic states that use the label set {τ1, τ2}.
Reasonably, the same instance of an internal choice cannot happen twice
in the same future, and this is why we have to relabel the second internal
choice with new labels. Typically, graphs like s in Fig. 7.2 result when a
cyclic process graphs is unfolded: s can be seen as an unfolding of process
graph r in the same figure. Clearly, in one run, all the internal choices in
process r are resolved pairwise independently, due to their nondeterministic
nature.

We integrate the above discussion into the following recursive function
that unfolds a process up to a certain depth and relabels the internal tran-
sitions appropriately. Besides a process graph s, the function also has as
arguments a set of labels L in L and a nonnegative integer m. The set of
labels L collects the labels used in the unfolding up to the present moment
and serves to ease the definition, while the integer m is the unfolding depth,
i.e. the maximal number of observable actions that appear in a path of the



80 7. Probabilistic testing theory: Retaining the probabilities

unfolded process graph. The function returns a process graph in the form of
a finite tree.

Definition 7.2.1. The partial function U: G×2L×N 7→ G, called unfolding,
is defined as

U (s, L,m) ≡































0, if m = 0 or s ≡ 0

⊕i∈IπiU (si, L,m), if m > 0, [{s
πi
 si}i∈I ]

�i∈I aiU (si, L,m− 1), if m > 0, [{s
ai−→ si}i∈I ]

⊓i∈Iτ
n+1
i U

(

si, L ∪ {τn+1
i }i∈I , m

)

, if m > 0, [{s
τi
։ si}i∈I ],

n = max{k|τki ∈L, i∈I}

where each label τn+1
i is fresh, i.e. it hasn’t been used for labeling internal

transitions yet,1 and for a given set of non-negative numbers I, by max I we
denote the maximum of the numbers in I, if I 6= ∅, or 0, if I = ∅.

By unfolding a process graph, a finite process tree is obtained. The labels
on the internal transitions in the obtained tree are new with respect to the
labels in the original process graph. Every time a state, having outgoing
internal transitions labeled with the set {τi}i∈I , is to be unfolded, a fresh set
of labels {τn+1

i }i∈I is used for labeling the corresponding internal transitions
in the unfolded tree. This set of labels, in fact, contains implicit information,
n, about the number of times a state in the original graph with the label set
{τi}i∈I has been unfolded up to that moment.

Example 7.2.2. The result of function U(v, ∅, 3), where v is as in Fig. 7.1,
is process a(τ 01 (bd � db) ⊓ τ 02 (cd � dc)) � da(τ 01 b ⊓ τ 02 c). Thus, when v is
unfolded, both internal choices remain labeled with the same sets of labels.

Example 7.2.3. The result of function U(r, ∅, 2), where r is as in Fig. 7.2,
is process τ 01 (a(τ

1
1 a ⊓ τ 12 b)) ⊓ τ 02 b. Thus, when r is unfolded up to depth 2,

the two internal choices are relabeled with different sets of labels. The same
holds for the unfolding of process s in Fig. 7.2.

The following example reveals that assigning labels to cyclic processes
requires delicate reasoning.

Example 7.2.4. Consider the second left-most process in Fig. 7.3. By un-
folding it up to depth 2, we obtain the process τ 01 a(τ

1
1 a⊓τ

1
2 b)⊓τ

0
2 b(τ

1
1 a⊓τ

1
2 b).

Consider now the right-most process in the same figure. By unfolding it up
to depth 2, we obtain the process τ 01 a(τ

0
3 a ⊓ τ

0
4 b) ⊓ τ

0
2 b(τ

0
5 a ⊓ τ

0
6 b).

1The index n in τni is not to be confused with the nth power of τi; we would denote
the latter with (τi)

n.



7.2. Unfolding and coherent labeling 81

1
3

		 	I
	I
	I
	I
	I

2
3

���U
�U

�U
�U

�U
a

11
b

mm �

τ1

				��
��
��
��

τ2

�� ��+
++

++
++

+
a

11
b

mm ≈
τ1
������
��
�� τ2

�� ��/
//

//
/

a

��

b

��

τ3

@@ @@

τ4

LL LL

τ3

RRRR

τ4

^^^^

�
τ1
������
��
�� τ2

�� ��/
//

//
/

a

��

b

��

τ3

@@ @@

τ4

LL LL

τ5

RRRR

τ6

^^^^

Figure 7.3: Several cyclic process graphs and relations between them.

Note that, in order to express full nondeterminism in general cyclic processes,
i.e. to express that all the internal choices are resolved independently from
each other, one has to switch to infinite-state graphs. However, recall that
our present focus is on defining a testing semantics that gives reasonable
probabilities for a process to pass a test, i.e. the present focus is on finite
behaviour, where this expressivity does not play a role.

Having labeled the internal choices in an unfolded process tree in a co-
herent way, the internal nondeterminism can be resolved by assigning prob-
abilities to the internal choices. Recall from Def. 7.1.3 that C(s) denotes the
set of constraints for the labels used in process s.

Definition 7.2.5. [Resolution of a process] Let s be a process graph, m ≥ 0,
and s̄ = U(s, ∅, m). An m-resolution of s is the process graph sm obtained

when, for an arbitrary resolution λ of C(s̄), every transition t
τi
։ t′ in graph

s̄ is replaced by t
λ(τi)
 t′, if λ(τi) 6= 0, or erased, otherwise.

Thus, an m-resolution of a process s is the process that results when the
labels on the internal transitions in the unfolding of s up to depth m have
been replaced by probabilities. Note that, speaking in terms of schedulers, we
employ randomized schedulers [23,94,97], which assign arbitrary probability
distributions to the internal transitions, rather than the deterministic sched-
ulers considered in the introduction, that assign only the trivial probability
distributions. This is because the former schedulers are more powerful, and
with them, probabilistic choice can be treated as a special type of internal
choice.

Remark The unfolding function of Def. 7.2.1 takes into consideration that
a cyclic process may be a parallel composition of simpler processes; with this
reasoning, as we saw, infinite-state graphs are necessary in order to model
infinite processes where all the choices are resolved pairwise independently.



82 7. Probabilistic testing theory: Retaining the probabilities

Another way of defining the unfolding function is to assign different values
to all the internal labels of the process. This way, finite state graphs suffice.
Clearly, a compromise has to be made in this case, too: we have to assume
that the process-argument of the unfolding function is not obtained as a
parallel composition. We leave the details of this solution for the future.

7.3 Testing semantics

In this section we define our testing semantics, and a testing preorder re-
lation on processes based on it. More precisely, we define how labels are
assigned to the internal transitions that result when a process is tested, or in
other words, a synchronization operator for a process and a test. Then, we
define how the parametric probability with which a process passes a test is
calculated, simply by treating the internal choices in the synchronization as
parametric probabilistic choices. Given a value-assignment of the parametric
probabilities, we obtain a probability with which a process can pass a test.
Based on the parametric probabilities, we define the testing preorder relation
on processes.

7.3.1 Synchronization

We define the synchronization of a process and a test in our model. A test
T , as usual, is a finite process tree, such that for a symbol ω 6∈ A, there may
exist transitions s

ω
−→ for some states s in T , denoting success.2 We assume

that all the labels on internal transitions in a test belong to the set {τi}i∈I for
some index set I. Additionally, we assume that all the labels on the internal
transitions in a test are distinct (we justify this assumption below).

In the previous section we defined how the internal nondeterminism in a
process is labeled in a coherent way and resolved. Recall that submitting a
process to a test means synchronizing both of them on all common actions,
except on the success-reporting action ω. Therefore, additional nondetermin-
ism arises when a process is being tested. First, there is the nondeterminism
with respect to the action on which the process and the test synchronize, if
there are multiple candidate-actions for synchronization at one moment, i.e.
synchronization nondeterminism, and, second, there is the internal nondeter-
minism of the test. In order to determine how the synchronized transitions
should be labeled, let us recall Example 6.0.1 and the synchronization s‖u
of the coin-flipping machine s and user u. Clearly, in order to avoid the

2It has been shown that infinite tests do not increase the distinguishing power [77,98],
because infinite paths cannot report success.



7.3. Testing semantics 83

problem with overestimation of probabilities, we must ensure that both in-
ternal choices in s‖u are resolved in the same way. Thus, the resolution of
the synchronization nondeterminism should not depend on the probabilis-
tic (or, for that matter, the internal) transitions of the process or the test.
Moreover, note that the state in which the process or the test, or for that
matter their synchronization, resides at the moment, should not play a role
in the resolution of synchronization nondeterminism. In fact, in order to
keep the probability with which the user guesses the outcome of coin-flipping
to 1

2
, the resolution of synchronization nondeterminism should be based at

most on the menu that the machine offers, or, in other words, on the actions
that are candidates for synchronization. As the process and the test proceed
interacting, the entity that resolves synchronization nondeterminism (in our
example the user) may actually remember the history of synchronization and
take it into account when making the current choice. To conclude, speaking
in terms of labels, each label on a synchronized transition should represent
exactly the set of actions-candidates for synchronization at that moment, the
actual action on which the current synchronization happens, and the history
of synchronization.

Regarding the test, recall that we assume that all the labels on internal
transitions that it contains are distinct. In other words, for simplicity, we re-
strict to the subset of tests that are most powerful, as they have “full control”
over their internal choices. In fact, if two processes are not distinguished by
this subset of tests, then they should not be distinguished by the rest of the
(less powerful) tests, too. Now, to avoid underestimation of the probabilities
with which success is reported, we capture the special case when the test itself
resolves the synchronization nondeterminism (as in Example 6.0.1). There-
fore, we bear in mind that the test can also take into account the history
of resolving the synchronization nondeterminism when resolving its internal
nondeterminism. For example, consider the process 1

2
(ad � b) ⊕ 1

2
(ac) and

the test a(τ1dω ⊓ τ2cω) � bω. When testing the process, the test can choose
transition τ1 if action a was synchronized out of the candidate-actions a and
b, and the transition τ2 if a was the only candidate for synchronization. In
this way, the test can resolve its internal choices such that success is always
reported. Thus, when an internal transition originating from the test is la-
beled in the synchronization of the process and the test, the label includes
the history of synchronization.

We now formalize the above discussions, i.e. we define the synchronization
operator for a process and a test. Let G6։ ⊂ G be the set of all process graphs
that do not contain internal transitions, i.e. the set of deterministic processes.
In the following definition we assume that the process is deterministic, and
later we make a remark about the general case. We presuppose a special



84 7. Probabilistic testing theory: Retaining the probabilities

s‖u
1
2

|| |<
|<

|<
|<

|<
|<

1
2

"""b
"b

"b
"b

"b
"b

τε(h,{h,t})

������
��
��
�

τε(t,{h,t})

�� ��2
22

22
22

τε(h,{h,t})

������
��
��
�

τε(t,{h,t})

�� ��2
22

22
22

τα(p,{p})
����

τβ(p,{p})
����

ω
��

ω
��

s̄‖u
τε(t,{h,t})

||||yy
yy

yy
yy

yy τε(t,{h,t})

"" ""E
EE

EE
EE

EE
E

1
2

��
�F
�F
�F
�F 1

2

��
�X

�X
�X

�X 1
2

��
�F
�F
�F
�F 1

2

��
�X

�X
�X

�X

τα(p,{p})
����

τβ(p,{p})
����

ω
��

ω
��

Figure 7.4: The synchronization of the coin-flipping machine s and the guess-
ing user u in Fig. 6.1. α = τ ε(h,{h,t}), β = τ ε(t,{h,t}).

label ε that cannot appear in any process or test. The synchronous parallel
composition ‖l is parametrized by a label l ∈ L, equal to the last label created
for an internal transition resulting from synchronization nondeterminism, up
to the present moment. Thus, in order to pass the history of synchronization
to a newly created label l′, it is enough to incorporate l in l′ as a superscript.

Definition 7.3.1 (Synchronization). The synchronization s‖lT of a deter-
ministic process s and a test T is defined as

s‖lT =











































ω, if T
ω
−→

⊕i∈Iπi(si‖lT ), if [{s
πi
 si}i∈I ], T 6

ω
−→

⊕i∈Iπi (s‖lTi) , if [{T
πi
 Ti}i∈I ], s 6 

⊓i∈Iτ
l
i (s‖lTi), if [{T

τi
։ Ti}i∈I ], s 6 

⊓a∈Kτ
l
(a,K)

(

sa‖τ l
(a,K)

Ta

)

, for K = I (s) ∩ I (T ) 6= ∅, T 6
ω
−→

0, otherwise.

If l = ε, then we write s‖T rather than s‖ε T .

Example 7.3.2. Figure 7.4 gives the synchronization s‖u of process s and
test u, and the synchronization s̄‖u of process s̄ and test u from Fig. 6.1. Note
how both internal choices in s‖u, that result from the options to synchronize
on h or on t, are labeled with the same set of labels. Moreover, this set of
labels is also used for labeling the corresponding internal choice in s̄‖u.

Example 7.3.3. Figure 7.5 gives the synchronization x‖y of process x and
test y and the synchronization x̄‖y of process x̄ and test y from Fig. 6.2,



7.3. Testing semantics 85

x‖y
1
2

|| |<
|<

|<
|<

|<
|<

1
2

"""b
"b

"b
"b

"b
"b

τε(w,{w})
����

τε(w,{w})
����

τα1
����




τα2
�� ��1

11
11

11

τα1
����




τα2
�� ��1

11
11

11

τα(r,{r})
����
τα(r,{r})

����
τα(r,{r})

����
τα(r,{r})

����

τβ(h,{h})
����

τβ(t,{t})
����

ω
��

ω
��

x̄‖y
τε(w,{w})

����

τα1

zzzzuuu
uu

uuu
uuu

u
τα2

$$ $$I
II

III
III

II
I

τα(r,{r})
����

τα(r,{r})
����

1
2

��
�F
�F
�F
�F 1

2

��
�X

�X
�X

�X 1
2

��
�F
�F
�F
�F 1

2

��
�X

�X
�X

�X

τβ(h,{h})
����

τβ(t,{t})
����

ω
��

ω
��

Figure 7.5: Synchronized players x and y and players x̄ and y in Fig. 6.2.
α = τ ε(w,{w}), β = τα(r,{r}).

where test y in our model has been modeled as w(τ1rhω ⊓ τ2rtω). Note
how both internal choices in x‖y are labeled with the same sets of labels,
and the same set of labels has been used for the internal choice in x̄‖y. In
Figure 7.6 the synchronization x′‖y′ of process x′ and test y′ from Fig. 6.3 is
given, where test y′ in our model has been modeled as a((τ1rhω)⊓(τ2rtω)) �
b((τ3rhω)⊓(τ4rtω)) (thus satisfying our requirements that the test is a process
tree with all the labels distinct).

Remark Note that the operators defined in definitions 7.2.1 and 7.3.1 can
be merged into one operator, yielding the synchronization of an arbitrary
process with a test. We separated the definitions for clarity and because
Def. 7.2.1 is also needed in Sec. 7.4.

7.3.2 The result of testing

Having labeled all the internal transitions in the synchronization of a deter-
ministic process and a test, we can define the parametric probability with
which a deterministic process s passes a test T , i.e. with which action ω is
reported in s‖T . Namely, by treating every label set as a parametric prob-
ability distribution, the probability to report ω in the synchronization is a



86 7. Probabilistic testing theory: Retaining the probabilities

x′‖y′
1
2

zz z:
z:

z:
z:

z:
z:

z: 1
2

$$$d
$d

$d
$d

$d
$d

$d

τε(a,{a})
����

τε(b,{b})
����

τγ1

����










 τγ2

�� ��4
44

44
44

4
τδ3
����










 τδ4

�� ��4
44

44
44

4

τγ(r,{r})
����

τγ(r,{r})
����

τδ(r,{r})
����

τδ(r,{r})
����

τ γ̄(h,{h})
����

τ δ̄(t,{t})
����

ω
��

ω
��

γ = τ ε(a,{a})

δ = τ ε(b,{b})

γ̄ = τγ(r,{r})

δ̄ = τ δ(r,{r})

Figure 7.6: Synchronized players x′ and y′ in Fig. 6.3.

polynomial over the variables in L. For our convenience, we bypass the cre-
ation of the process graph representing the synchronization, and we calculate
the resulting polynomial directly. Thus, the computation of the parametric
probability with which s‖T performs action ω mimics the creation of s‖T
itself.

Denote by T the set of all tests and by P the set of all polynomials with
variable names in the label set L.

Definition 7.3.4 (Result of testing). The partial function R : G6։×T ×L 7→
P is defined as

R (s, T, l) =











































1, if T
ω
−→

∑

i∈I πi · R (si, T, l), if [{s
πi
 si}i∈I ], T 6

ω
−→

∑

i∈I πi · R (s, Ti, l), if [{T
πi
 Ti}i∈I ], s 6 

∑

i∈I τ
l
i · R (s, Ti, l), if [{T

τi
։ Ti}i∈I ], s 6 

∑

a∈K τ
l
(a,K)R

(

sa, Ta, τ
l
(a,K)

)

for K=I (s)∩I (T ) 6= ∅, T 6
ω
−→

0, otherwise.

If l = ε, then we shall write R(s, T ) rather than R(s, T, ε), and we call
R(s, T ) the result of testing s with T . Given a resolution λ of C(s‖T ) for a
deterministic process s and a test T , the value of the polynomial R(s, T ) for



7.3. Testing semantics 87

the values of its variables given by λ is denoted by Pr(s, T, λ). Intuitively,
Pr(s, T, λ) is the probability with which the deterministic process s passes
test T , given that the synchronization nondeterminism and the internal non-
determinism of T when testing process s are resolved by λ.

The following proposition says that if two processes yield the same result
when tested by a certain test, then they also yield the same constraints
when synchronized with the test. In this case, for every resolution of the
constraints, the two processes pass the test with the same probability.

Proposition 7.3.5. Let s and t be two deterministic processes and T be a
test, such that R(s, T ) = R(t, T ). Then, C(s‖T ) = C(t‖T ), and given an
arbitrary resolution λ of C(s‖T ), Pr(s, T, λ) = Pr(t, T, λ).

Proof. (Sketch) From R(s, T ) = R(t, T ), we have that s‖T and t‖T use the
same set of labels L for their internal transitions. Moreover, by Def. 7.3.4,
L can be partitioned into sets {Li}i∈J , such that for every internal choice in
s‖T there is a set Lj containing the labels assigned to that internal choice,
and the same for the internal choices in t‖T . Thus, by Def. 7.1.3, we obtain
that C(s‖T ) =

⋃

i∈J

{
∑

l∈Li
l = 1

}

= C(t‖T ). The proof of the second part is
trivial.

Example 7.3.6. Consider processes s and s̄, test u in Fig. 6.1, and the
synchronizations s‖u and s̄‖ū in Fig. 7.4. It is easy to derive that R(s, u) =
R(s̄, u), and therefore, by Proposition 7.3.5, C(s‖u) = C(s̄‖u). Moreover, for
every resolution λ of C(s‖u), we have Pr(s, u, λ) = Pr(s̄, u, λ) = 1

2
. That is,

no matter how the internal nondeterminism in the synchronization of process
s and test u is resolved, the probability with which s passes u is 1

2
, and the

same holds for process s̄ and test u. In other words, the user guesses the
outcome of the coin-flipping in either machine with probability 1

2
.

Example 7.3.7. Consider processes x and x̄ and test y in Fig. 6.2 and
the synchronizations x‖y and x̄‖y in Fig. 7.5. We have R(x, y) = R(x̄, y)
and therefore, by Proposition 7.3.5, C(x‖y) = C(x̄‖y). Moreover, for every
resolution λ of C(x‖y), we have Pr(x, y, λ) = Pr(x̄, y, λ) = 1

2
. That is, no

matter how y resolves its internal nondeterminism when synchronized with
x, the probability with which success is reported is 1

2
. In other words, no

matter how player y makes his guess, it will coincide with the outcome of coin-
flipping with probability 1

2
. The same holds for process x̄ and test y. On the

other hand, consider processes x′ and y′ in Fig. 6.3, and their synchronization
x′‖y′ in Fig. 7.6. There exists a resolution λ of C(x′‖y′), assigning value 0 to
τγ2 and τ δ3 and value 1 to all the other labels, such that Pr(x′, y′, λ) = 1. In
other words, player y′ can always guess the right outcome of the coin-flipping.



88 7. Probabilistic testing theory: Retaining the probabilities

7.3.3 Testing preorder

In the classical sense of probabilistic testing [42, 44, 74, 90, 98, 108], in order
for process s to implement process t, it is required that for every test T and
every resolution of the nondeterminism in s‖T , there exists a resolution of
the nondeterminism in t‖T that can mimic the probability to report success
in a certain way. In our setting, for the reasons explained in Chapter 6, we
move from the “compose-and-schedule” approach to “schedule-and-compose”
(see also [32] for this term). That is, in order for process s to implement
process t, we require that for every test T , no matter how s resolves its
internal nondeterminism, t can resolve its internal nondeterminism such that
T cannot distinguish between s and t.

So far, we can anticipate that a good ground on which to compare
two deterministic processes s and t when tested with test T is the func-
tion R(x, T ). Namely, assume that R(s, T ) = R(t, T ). Then, by Propo-
sition 7.3.5, C(s‖T ) = C(t‖T ), i.e. the same internal label sets appear in
both s‖T and t‖T . This means that the same options for resolving the syn-
chronization nondeterminism and the internal nondeterminism arise when
either s or t is tested by T , that is, the test cannot distinguish between s
and t based on the actions that s or t offer or have offered for synchroniza-
tion. By Proposition 7.3.5, from R(s, T ) = R(t, T ) we also have that for
an arbitrary resolution λ of C(s‖T ) (and therefore of C(t‖T )) it holds that
Pr(s, T, λ) = Pr(t, T, λ). That is, for every resolution of the nondeterminism
resulting from testing, the probabilities to report success coincide for both
s and t. In other words, even if the test repeatedly tests s and t, it cannot
make a difference between s and t based on the observed frequency with
which success is reported for a particular resolution of the synchronization
nondeterminism and the internal nondeterminism in the test. Finally, note
that the polynomial R(x, T ) is “insensitive” to the exact moments in time
at which x makes its probabilistic choices, i.e. R(s, T ) does not reveal to T
the internal structure of x. To summarize, the polynomial R(x, T ) contains
the exact information that test T can exploit in order to make a difference
between two processes.

The above discussion is formalized in the following definitions, presenting
the testing preorder relation and the induced equivalence. Given a test T ,
by length(T ) we denote the maximal number of observable actions which T
can perform before performing the success action ω. Recall from Def. 7.2.5
that an m-resolution of a process is obtained when it has been unfolded up
to length m and the internal nondeterminism has been resolved.

Definition 7.3.8 (Testing preorder). Let s and t be two processes. s im-
plements t, denoted s �T t, iff for every natural m ≥ 0, for every test T



7.4. Probabilistic ready-trace preorder 89

with length(T ) = m and for every m-resolution sm of s, there exists an
m-resolution tm of t such that R(sm, T ) = R(tm, T ).

Definition 7.3.9 (Testing equivalence). Processes s and t are testing-
equivalent, denoted s ≈T t, iff s �T t and t �T s.

Remark Recall that our testing semantics allows for scenarios where the
tested process is a machine with menus and the test is a user which resolves
the synchronization nondeterminism. In this case the test has the power to
see the history of actions-candidates for synchronization, rather than only
the history of performed actions (i.e. its local history). In other scenarios,
though (considered in the next chapter), a test would resolve its internal non-
determinism the same way the process does, by looking only into its local
history. In this case, there is no need to change the labels of the internal
transitions in a test while testing as it is done in Def. 7.3.1. It is important,
however, that the way a test resolves its internal nondeterminism has no
influence on the testing preorder relation, as we will see in Section 7.5. It
rather only influences the obtained maximal/minimal probabilities to report
success: the more power a test has, the higher/lower the obtained maxi-
mal/minimal probability (over all resolutions of the nondeterminism).

7.4 Probabilistic ready-trace preorder

In this section we define our probabilistic ready-trace preorder relation on
processes. The relation is based on the ability of a process to mimic the
probabilistic behaviour of another process under an arbitrary resolution of
the internal nondeterminism of the latter. By mimicking the probabilistic
behaviour, we mean matching the probability of an arbitrary ready-trace,
i.e. a sequence of action-menus and performed actions. As the probabil-
ity to observe a ready-trace is conditioned upon the actions that are actu-
ally performed, we employ conditional probabilities of the ready-traces. For
these reasons, we exploit the Bayesian definition of probability, defined next,
in which the probability is naturally conditioned, rather than the measure-
theoretic definition.

7.4.1 Bayesian probability

The following definitions are taken from [81]. We consider a sample space, Ω,
consisting of points called elementary events. Selection of a particular a ∈ Ω
is referred to as “a has occurred”. An event A ⊆ Ω is a set of elementary
events. A,B,C, . . . range over events. An event A has occurred iff a has



90 7. Probabilistic testing theory: Retaining the probabilities

occurred for some a ∈ A. Let A1, A2, . . . be a sequence of events and C be an
event. The members of the sequence are exclusive given C, if, whenever C
has occurred, no two of them can occur together, that is, if Ai ∩Aj ∩ C = ∅
whenever i 6= j. C is called a conditioning event. If the conditioning event
is Ω, then “given Ω” is omitted.

For certain pairs of events A and B, a real number P (A|B) is defined
and called the probability of A given B. These numbers satisfy the following
axioms:

Ax1: 0 ≤ P (A|B) ≤ 1 and P (A|A) = 1.

Ax2: If the events in {Ai}
∞
i=1 are exclusive given B, then

P

(

∞
⋃

i=1

Ai | B

)

=
∞
∑

i=1

P (Ai|B) .

Ax3: P (C|A ∩ B) · P (A|B) = P (A ∩ C|B).

For P (A|Ω) we simply write P (A).

7.4.2 The preorder relation �RT

We define a ready trace, the conditional probability of a ready trace, and the
preorder relation on processes based on the conditional probabilities.

Definition 7.4.1 (Ready-trace). A ready-trace of length n is a sequence
(M1, a1,M2, a2, . . . ,Mn−1, an−1,Mn), where Mi ⊆ A for all i ∈ {1, 2, . . . , n}
and ai ∈ Mi for all i ∈ {1, 2, . . . , n− 1} .

We assume that an observer is able to see the actions that the process per-
forms, together with the menus out of which actions are chosen. Intuitively,
a ready-trace (M1, a1,M2, a2, . . . ,Mn−1, an−1,Mn) can be observed if the ini-
tial menu is M1, then action a1 ∈ M1 is performed, then the next menu is
M2, then action a2 ∈ M2 is performed and so on, until the observation ends
at a point when the menu is Mn.

Next, given a deterministic finite process s, we define process s(M,a), that
is the process that s becomes, assuming that menu M was offered to s and
action a was performed. For example, for process s in Fig. 6.1, s({h,t},h) =
1
2
p⊕ 1

2
0. For a state s, we write shortly s

π
y sn with sn being an action state,

rather than s
π1
 s1

π2
 s2 . . .

πn
 sn for π = π1π2 · · ·πn.

Definition 7.4.2. Let s be a finite deterministic process. Let M ⊆ A,
a ∈M . The process graph s(M,a) is obtained from s in the following way:



7.4. Probabilistic ready-trace preorder 91

– if I(s) =M then s(M,a) ≡ sa;

– if {si}i∈I 6= ∅ are all the process graphs such that I(si) =M and s
πi
y si

for i ∈ I, then

s(M,a) ≡ ⊕i∈I
πi
π
sia, for π =

∑

i∈I

πi.

– in any other case, s(M,a) is undefined.

Next, for a finite deterministic process s and a ready-trace
(M1, a1, . . . ,Mn−1, an−1,Mn), we define the conditional probability to observe
menuMn in s, given that previously the sequence M1, a1, . . . ,Mn−1, an−1 was
observed. These conditional probabilities are essential for the definition of
the ready-trace preorder relation, presented afterwards.

Definition 7.4.3. Let (M1, a1, . . . ,Mn−1, an−1,Mn) be a ready-trace of
length n and s be a finite deterministic process. Functions P 1

s (M) and
P n
s (Mn|M1, a1, . . .Mn−1, an−1) (for n > 1) are defined in the following way:

P 1
s (M) =











∑

i∈I πiP
1
si
(M) if [{s

πi
 si}i∈I ],

1 if I(s) =M,

0 otherwise.

P 2
s (M2|M1, a1) =

{

P 1
s(M1,a1)

(M2) if P 1
s (M1) > 0,

undefined otherwise.

P n
s (Mn|M1,a1,...,Mn−1,an−1)=

{

P n−1
s(M1,a1)

(Mn|M2,a2, . . . ,an−1) if P 1
s (M1)>0,

undefined, otherwise.

Let the sample space consist of all the subsets of A and let s be a fi-
nite deterministic process. Function P 1

s (M) can be interpreted as the
probability that menu M is observed when process s starts executing.
Let the sample space consist of all the ready-traces of length n. Func-
tion P n

s (Mn|M1, a1, . . .Mn−1, an−1) can be interpreted as the probability
of the event {(M1, a1, . . . ,Mn−1, an−1,Mn)}, given the event {(M1, a1, . . .
Mn−1, an−1, X) | X ⊆ A}, when observing ready-traces of process s. It can
be shown that these probabilities are well defined, i.e. they satisfy axioms
Ax1-Ax3 from Subsection 7.4.1.



92 7. Probabilistic testing theory: Retaining the probabilities

Example 7.4.4. Consider process p|||d in Fig. 6.4. We have:

P 1
p|||d ({a, d}) = 1,

P 2
p|||d({b, d}|{a, d}, a) =

1

3
,

P 3
p|||d({d}|{a, d}, a, {b, d}, b) = 1.

Definition 7.4.5 (Ready-trace preorder). Let s and t be two processes. We
say s implements t w.r.t. ready-traces (notation s �RT t) if and only if for
every m ≥ 0 and every m-resolution s̄ of s, there exists an m-resolution t̄ of
t such that for all k ≤ m and for all ready-traces (M1, a1, . . . ,Mk),

– P 1
s̄ (M1) = P 1

t̄ (M1) and

– if k > 1, then P k
s̄ (Mk|M1, a1, . . .Mk−1, ak−1) is defined if and only if

P k
t̄ (Mk|M1, a1, . . . ,Mk−1, ak−1) is defined, and, in case they are both

defined, they are equal.

Informally, a process s implements a process t if and only if for every m-
resolution s̄ of the nondeterminism in s, there is an m-resolution t̄ of the non-
determinism in t, such that for every ready-trace (M1, a1, . . . ,Mk) of length
k ≤ m, the probability to observe Mk, given that previously the sequence
M1, a1, . . .Mk−1, ak−1 was observed, is defined at the same time for both s̄
and t̄, and, moreover, in case both probabilities are defined, they coincide.
In general, process s implements process t iff s contains “less” internal non-
determinism than process t.

Definition 7.4.6 (Ready-trace equivalence). Let s and t be two processes. s
and t are ready-trace-equivalent, denoted by s ≈RT t, iff s �RT t and t �RT s.

Examples Processes s and s̄ in Fig.6.1 are ready-trace equivalent, and the
same holds for the process pairs x and x̄ in Fig. 6.2, z and v in Fig. 6.4,
and s‖u and s̄‖u in Fig 7.4. Processes z and v in Fig. 7.1 are ready-trace
equivalent and they both implement process r in the same figure. Recall
that processes z and v can be actually seen as an interleaving of processes
τ5ab ⊓ τ6ac, resp. a(τ1b ⊓ τ2c), none of which can recognize action d, with
action d, while process r has “full control” over its nondeterminism. Fig. 7.3
presents relations between several cyclic processes.

7.5 The two preorders coincide

We show that the testing preorder relation �T and the ready-trace preorder
relation �RT coincide. In addition, we show that deterministic tests, i.e. tests
without internal transitions, suffice for comparison of processes.



7.5. The two preorders coincide 93

Theorem 7.5.1. Let s and t be two processes. If s �RT t, then s �T t.

Proof. Assume that s 6�T t. Then, by Def. 7.3.8 there exists a test T with
length(T ) = m, for some m ≥ 0, such that there exists an m-resolution s̄ of
s, such that for every m-resolution t̄ of t, it holds that R(s̄, T ) 6= R(t̄, T ). It
is enough to show that for s̄ and for every m-resolution t̄ of t,

– there exists a menu M ⊆ A, such that P 1
s̄ (M) 6= P 1

t̄ (M), or

– for some k ≤ m there exists a ready trace (M1, a1, . . .Mk), such that
P k
s̄ (Mk|M1, a1, . . .Mk−1, ak−1) and P k

t̄ (Mk|M1, a1, . . .Mk−1, ak−1) are
not defined at the same time, or they are both defined, but different.

We show this by induction on the structure of T . We assume that in
the states in which T can perform an ω action, no other actions can be
performed. Formally, if for some state u it holds that u

ω
−→, then I(u) = {ω}.

We can assume this without loss of generality because the other actions, if
they exist, do not change the power of the test (see Def. 7.3.4), i.e. the test
immediately reports ω each time it is able to.

Suppose that the test can perform at most one transition before perform-

ing ω. Suppose first that there exist transitions [{T
τi
։ Ti}i∈I ] such that every

Ti for i ∈ I can perform ω or deadlock. From Def. 7.3.4 it follows that T
is not able to make a difference between s and t. Similarly if [{T

πi
 Ti}i∈I ].

Therefore, suppose that [{T
ai−→ Ti}i∈I ] and every Ti for i ∈ I can perform ω or

deadlock. Let t̄ be an m-resolution of t. By assumption, R(s̄, T ) 6= R(t̄, T ).
Assume that P 1

s̄ (M) = P 1
t̄ (M) for every menu M ⊆ A. Let {Mi}i∈I be all

the menus such that P 1
s̄ (Mi) = P 1

t̄ (Mi) = πi > 0 and I(T )∩Mi 6= ∅. Denote
I(T ) ∩Mi by M

T
i . From Def. 7.3.4 we have

R (s̄, T ) =
∑

i∈I

πi
∑

a∈MT
i

τ ε(a,MT
i )
R
(

s̄(Mi,a), Ta, τ
ε

(a,MT
i )

)

, (7.1)

R (t̄, T ) =
∑

i∈I

πi
∑

a∈MT
i

τ ε
(a,MT

i )
R
(

t̄(Mi,a), Ta, τ
ε

(a,MT
i )

)

. (7.2)

Note that

R
(

t̄(Mi,a), Ta, τ
ε

(a,MT
i )

)

yields the polynomial 0 or 1 for every i ∈ I and for every a ∈MT
i , depending

only on whether Ta deadlocks or performs ω. Therefore, we obtain that
R(s̄, T ) = R(t̄, T ), which contradicts the assumption thatR(s̄, T ) 6= R(t̄, T ).



94 7. Probabilistic testing theory: Retaining the probabilities

Therefore, there must exist a menu M such that P 1
s̄ (M) 6= P 1

t̄ (M).

Suppose now that [{T
τi
։ Ti}i∈I ], such that Ti for i ∈ I are arbitrary tests.

By assumption, R(s̄, T ) 6= R(t̄, T ). By Def. 7.3.4, R(s̄, T ) =
∑

i∈I τ
ε
i R(s̄, Ti)

and R(t̄, T ) =
∑

i∈I τ
ε
i R(t̄, Ti). Therefore, R(s̄, Ti) 6= R(t̄, Ti) for some i ∈ I.

The rest follows by the inductive assumption. The case when [{T
πi
։ Ti}i∈I ],

such that the Ti for i ∈ I are arbitrary tests, is similar to the previous case.
Suppose now that there exist transitions [{T

ai−→ Ti}i∈I ], such that each
Ti is an arbitrary test. By assumption, R(s̄, T ) 6= R(t̄, T ). If there exists a
menu M such that P 1

s̄ (M) 6= P 1
t̄ (M), then we are done. Therefore, assume

that P 1
s̄ (M) = P 1

t̄ (M) for every menu M ⊆ A. Let {Mi}i∈I be all the menus
such that P 1

s̄ (Mi) = P 1
t̄ (Mi) = πi > 0 and I(T )∩Mi 6= ∅. Denote I(T )∩Mi

byMT
i . We obtain again that the equations (7.1) and (7.2) hold. Then, since

R(s̄, T ) 6= R(t̄, T ), it must be that

R
(

s̄(Mi,a), Ta, τ
ε

(a,MT
i )

)

6= R
(

t̄(Mi,a), Ta, τ
ε

(a,MT
i )

)

for some Mi and a ∈Mi. From the last, it can be easily concluded that

R
(

s̄(Mi,a), Ta
)

6= R
(

t̄(Mi,a), Ta
)

.

By the inductive assumption, there exists a menu M ⊆ A, such that

P 1
s̄(Mi,a)

(M) 6= P 1
t̄(Mi,a)

(M) ,

or there exists a ready trace (M1, a1, . . .Mk) for some k < m , such that

P k
s̄(Mi,a)

(Mk|M1, a1, . . .Mk−1, ak−1) and P k
t̄(Mi,a)

(Mk|M1, a1, . . .Mk−1, ak−1)

are not defined at the same time, or they are both defined, but different.
From P 1

s̄ (Mi) = P 1
t̄ (Mi) and from Definition 7.4.3 we have that in the first

case P 2
s̄ (M |Mi, a) 6= P 2

t̄ (M |Mi, a), while in the second case

P
(k+1)
s̄ (Mk|Mi, a,M1, a1, . . .Mk−1, ak−1) and

P
(k+1)
t̄ (Mk|Mi, a,M1, a1, . . .Mk−1, ak−1)

are not defined at the same time, or they are both defined, but different.
Therefore, the proof of the theorem is complete.

Theorem 7.5.2. Let s and t be two processes. If s �T t, then s �RT t.



7.5. The two preorders coincide 95

Proof. Assume that s 6�RT t. Then, by Def. 7.4.5, for some m ≥ 0 there
exists an m-resolution s̄ of s, such that for every m-resolution t̄ of t, it holds
that

– there exists M ⊆ A such that P 1
s̄ (M) 6= P 1

t̄ (M), or

– for some k, 1 < k ≤ m, there exists a ready trace (M1, a1, . . .Mk), such
that P k

s̄ (Mk|M1, a1, . . .Mk−1, ak−1) and P k
t̄ (Mk|M1, a1, . . .Mk−1, ak−1)

are not defined at the same time, or they are both defined, but different.

It is enough to show that there exists a test T with length(T ) = m
such that, for the given s̄, and for an arbitrary m-resolution t̄ of t, it holds
that R(s̄, T ) 6= R(t̄, T ). The proof is by induction on the minimal value ofm.

In the case m = 0 there is nothing to prove. Suppose m = 1. Then, s̄
is a 1-resolution of s, such that for every 1-resolution t̄ of t there exists a
menu Mt̄ with P

1
s̄ (Mt̄) 6= P 1

t̄ (Mt̄). Take the test T =�a∈A aω. Let t̄ be an
arbitrary 1-resolution of t. We have

R(s̄, T ) =
∑

M :P 1
s̄ (M)>0

P 1
s̄ (M)

∑

a∈M

τ ε(a,M),

R(t̄, T ) =
∑

M :P 1
t̄
(M)>0

P 1
t̄ (M)

∑

a∈M

τ ε(a,M).

Assuming that R(s̄, T ) = R(t̄, T ), we obtain that P 1
s̄ (M) = P 1

t̄ (M) for
every menu M , which contradicts our assumption that P 1

s̄ (Mt̄) 6= P 1
t̄ (Mt̄).

Therefore, R(s̄, T ) 6= R(t̄, T ).

Assume now that m > 1. Let t̄ be an arbitrary m-resolution of t. If there
exists anM ⊆ A such that P 1

s̄ (M) 6= P 1
t̄ (M), then T =�a∈A aω distinguishes

between s̄ and t̄, similar as in the case m = 1. Assume that P 1
s̄ (M) = P 1

t̄ (M)
for every menu M . Take the test T = Tm, defined inductively by

T1 = �a∈A aω,

Tn = �a∈A aTn−1 for every n > 1.

We have

R (s̄, T ) =
∑

M :P 1
s̄ (M)>0

P 1
s̄ (M)

∑

a∈M

τ ε(a,M)R
(

s̄(M,a), Ta, τ
ε
(a,M)

)

,

R (t̄, T ) =
∑

M :P 1
t̄
(M)>0

P 1
t̄ (M)

∑

a∈M

τ ε(a,M)R
(

t̄(M,a), Ta, τ
ε
(a,M)

)

.



96 7. Probabilistic testing theory: Retaining the probabilities

Assume that R(s̄, T ) = R(t̄, T ). Then, for every menu M ,

R
(

s̄(M,a), Ta, τ
ε
(a,M)

)

= R
(

t̄(M,a), Ta, τ
ε
(a,M)

)

. (7.3)

From the assumption that P k
s̄ (Mk|M1, a1, . . .Mk−1, ak−1) and

P k
t̄ (Mk|M1, a1, . . .Mk−1, ak−1) are not defined at the same time, or

they are both defined, but different, and from P 1
s̄ (M1) = P 1

t̄ (M1), we have
that

P k−1
s̄(M1,a1)

(Mk|M2, a2, . . .Mk−1, ak−1) and

P k−1
t̄(M1,a1)

(Mk|M2, a2, . . .Mk−1, ak−1)

are not defined at the same time, or they are both defined, but different.
Then, by the inductive assumption, we have that

R
(

s̄(M1,a1), Ta1 , τ
ε
(a1,M1)

)

6= R
(

t̄(M1,a1), Ta1 , τ
ε
(a1,M1)

)

.

This contradicts (7.3). Therefore, R(s̄, T ) 6= R(t̄, T ) and the proof of the
theorem is complete.

Corollary 7.5.3. Let s and t be two processes. s �T t if and only if s �RT t.

The following proposition states that tests with internal transitions have
no more distinguishing power than deterministic tests, i.e. tests without in-
ternal transitions. In other words, if two processes are not related by the
testing preorder relation, then this can be concluded by using a certain de-
terministic test.

Proposition 7.5.4. Let s and t be two processes. If s 6�T t, then there
exists a deterministic test T (without internal transitions) with length m,
such that for some m-resolution s̄ of s and for every m-resolution t̄ of t,
R(s, T ) 6= R(t, T ).

Proof. If s 6�T t, then, by Corollary 7.5.3, s 6�RT t. The rest of the proof
follows the lines of the proof of Theorem 7.5.2.



Chapter 8

A conservative probabilistic

extension of CSP

In Chapter 7 we defined synchronization with hiding of two finite prob-

abilistic processes by labeling the resulting internal transitions. The

goal was to restrict the power of the schedulers that resolve the internal

nondeterminism such that the probabilistic behaviour of the composed

system is preserved. In order to be be able to model asynchronous sys-

tems, in this chapter we generalize the parallel composition to include

an arbitrary number of processes, and to allow for action interleaving,

in addition to synchronization with hiding. The labels assigned to the

internal transitions resulting from parallelism again reflect the infor-

mation that the components use in order to resolve nondeterminism,

such that realistic estimates for the probabilistic behaviour of the sys-

tem can be obtained. The parallel composition is incorporated in a

probabilistic version of the process language CSP, that includes a gen-

eral choice operator in addition to action, internal, and probabilistic

choice, and that also includes an action priority operator. We show

that the ready-trace preorder defined in Chapter 7 is a precongruence

w.r.t. the operators of probabilistic CSP. We also give an axiomatic

characterization of ready-trace equivalence, from which it follows that

the distributivity laws for the internal choice are preserved from CSP,

and no new laws regarding the interplay between the different choice

operators are added.

97



98 8. A conservative probabilistic extension of CSP

8.1 Operators for choices and priority

In this section we present the choice and the action priority operators of
our CSP-like probabilistic process language. The parallel composition is
presented separately in the next section. We note that sequential composition
can be included in a straightforward way in line with [71, 96].

In the rest of this part, to ease the notation, we assume that every time
an index set I is used, it is finite and non-empty, and we agree that A =
{a1, a2, . . . ak} every time an indexed set {ai}i∈I ⊆ A is assumed.

Syntax We call the simple probabilistic process language SPp. The SPp
process terms are generated by the following grammar:

x ::= 0 | �i∈I aixi | x � x | ⊓i∈Iτixi | ⊕i∈I πixi | Θx

where 0 6∈ A is a new symbol, {ai}i∈I ⊆ A, {πi}i∈I ⊂ (0, 1] such that
∑

i∈I πi = 1, and {τi}i∈I ⊂ L such that the labels {τi}i∈I do not appear in
the terms {xi}i∈I . We let p, q, . . . range over SPp process terms.

We recall the operators 0, �i∈I aipi, ⊓i∈Iτipi, and ⊕i∈I πipi from the
previous chapter. The constant 0 stands for the deadlock process. The
external action choice �i∈I aipi stands for choice among the actions in {ai}i∈I
and proceeds as process pj if action aj is chosen and executed. We write ap
(prefix) rather than � ap. We write a rather than a0. The internal choice
⊓i∈Iτipi stands for labeled internal choice between processes {pi}i∈I . The
probabilistic choice ⊕i∈I πipi is process pi with probability πi for i ∈ I. The
operator p � q stands for a general external choice between processes p and
q. The priority operator Θ [12, 13] assumes a partial order > on A. For
actions a and b, we say a has higher priority than b iff a > b.

Semantics Table 8.1 represents the operational semantics of SPp process
terms. The rules can be applied to process terms, and the generated process
graph is counted as an interpretation of the process term. The negative
premises x 6 denote that x does not start with a probabilistic transition,
and similar holds for the negative premises x 6։ and x 6−→.1 Rules R1 and R3
are standard. Rule R2 states that, when several processes are composed via
an internal choice, newly introduced labels are assigned to the new internal
transitions. This is because in our model the internal transitions are labeled,
for the reasons discussed in the introduction.

1See the remark in Section 4.4 regarding rules with negative premises; a similar discus-
sion applies for the meaningfulness of the rules in this part, too.



8.1. Operators for choices and priority 99

(R1)
k ∈ I

�i∈I aipi
ak−→ pk

(R2)
k ∈ I

⊓i∈Iτipi
τk
։ pk

(R3)
k ∈ I

⊕i∈I πipi
πk
 pk

(R4)
p
a
−→ p′, q

a
−→ q′

p � q
a
−→ τnew1 p′ ⊓ τnew2 q′

(R5)
p

a
−→ p′, q 6։, q 6 , q 6

a
−→

p � q
a
−→ p′, q � p

a
−→ p′

(R6)
p

π
 p′, q 6։

p � q
π
 p′ � q

(R7)
p

π
 p′, q 6։, q 6 

q � p
π
 q � p′

(R8)
p
τ1
։ p′

p � q
τ1
։ p′ � q

(R9)
p
τ1
։ p′, q 6։

q � p
τ1
։ q � p′

(R10)
p

a
−→ p′, p 6

b
−→ for a<b

Θp
a
−→ Θp′

(R11)
p
τ1
։ p′

Θp
τ1
։ Θp′

(R12)
p

π
 p′

Θp
π
 Θp′

Table 8.1: Operational semantics for the choice operators and the priority
operator

Rule R4, similarly as in CSP [96], states that if two processes can initially
perform action a, then the external choice between them can also perform
action a; however, the choice on whether the first or the second process is
executed afterwards is nondeterministic, i.e. internal. Note that the transi-
tions of the internal choice are suitably labeled with newly introduced labels.
Rule R5 demonstrates the priority of internal and probabilistic transitions
over action transitions when bound in an external choice. This is because the
environment (the external choice) is unable to prevent the internal transitions
from occurring [96]. Rules R6 – R9 demonstrate the priority of an internal
transition over a probabilistic transition in an external choice. This is an arbi-
trary technical solution, namely, we can also give priority to the probabilistic
over the internal transitions. This freedom stems from the fact that the in-
ternal transitions are labeled with all the information they need in order to
be resolved. In fact, since probabilistic choice is a special case of the internal
choice, we argue that any ordering should lead to the same axiom set (which
will become evident later). Rules R8 and R9 (resp. R6 and R7) express that,
if both processes p and q can perform internal (resp. probabilistic) transitions
initially, then the internal (resp. probabilistic) transitions of p happen first.
This is also an arbitrary technical solution, and the freedom stems from the
fact that in [96] internal choices, one per component bound in an external



100 8. A conservative probabilistic extension of CSP

choice, are all combined into one internal choice – e.g. (a⊓b) � (c⊓d) has the
same graph representation as (a � c)⊓ (a � d)⊓ (b � c)⊓ (b � d). Similarly,
in probabilistic process algebras, probabilistic choices of the separate compo-
nents are combined into one probabilistic choice in the external choice (see
part I, and also [3,68]). Actually, there is an alternative solution, namely to
create a new internal choice that decides which process performs an internal
or probabilistic action first when external choice between two processes is
made. This solution is more complicated, since auxiliary operators would
have to be introduced and would generate larger graphs. The bottom line is,
the commutativity law for external choice remains valid with any solution.

Finally, the priority operator Θ forces the process to block actions that
have lower priority than another action in the current menu (R10). This
operator does not affect the internal and the probabilistic transitions (rules
R11 and R12).

8.2 Parallel composition

In Chapter 7, for the purposes of preserving the probabilities to pass a test,
we proposed a model with labeled internal transitions and we defined a syn-
chronization operator for a process and a test, or a concurrency operator [71],
with action hiding after synchronization. This operator sufficed for defining
the testing preorder, for which it was shown that it can be characterized by
a ready-trace preorder relation. Here, we propose an n-ary general parallel
composition operator2 that, in the fashion of CSP, allows processes to com-
municate on a set of actions and to interleave on the rest of the actions, and,
in the fashion of CCS [85], allows action hiding after synchronization. We
include action hiding after synchronization, since, as discussed in Chapter 1,
it is an important modeling feature.3 Two more types of internal nondeter-
minism arise when processes are composed in this way, in addition to the
synchronization nondeterminism discussed in Chapter 7. First, there is the
nondeterminism on whether the processes will synchronize or interleave, and
second, if they interleave, then there is the nondeterminism on which process
performs a particular action, if several processes can perform that action. In
this section, we propose how to label the internal transitions of these new
types of nondeterminism, such that the labels again reflect the information
based on which the nondeterminism is resolved. In this way, we obtain realis-
tic schedulers for the nondeterminism, and4 we also achieve compositionality
for the ready-trace equivalence, as shown in Section 8.4.

2See [32, 48] for other n-ary parallel operators.
3In the conclusion to this part we discuss the general hiding operator.



8.2. Parallel composition 101

In order to explain better the definition of the parallel composition, we
are going to introduce it gradually, by first defining an n-ary concurrency
operator, then an interleaving operator [71], and finally the general parallel
composition operator.

8.2.1 Concurrency with hiding

The SPcp process language is obtained by extending SPp with a parametrized,
n-ary concurrency operator with action hiding after synchronization:

x ::= y | ‖ln(x1, x2, . . . xn),

where y is a SPp process term, l ∈ L, n ∈ N
≥2. The parameter l keeps

information that is transferred to the labels of the newly created internal
transitions. The operational rules for ‖ln are given in Fig. 8.1, where by

(C1)
pi 6։ for i ∈ {1, . . . k−1}, pk

τk
։ p′k

‖ln(p1, . . . pk−1, pk, pk+1 . . . pn)
τk
։ ‖ln(p1, . . . pk−1, p

′
k, pk+1 . . . pn)

(C2)
pi 6։ 6 for i ∈ {1, . . . k−1}, pk

πk
 p′k

‖ln(p1, . . . pk−1, pk, pk+1 . . . pn)
πk
 ‖ln(p1, . . . pk−1, p

′
k, pk+1 . . . pn)

(C3)
pi

a
−→ pai for every i ∈ {1, . . . n}, B = ∩ni=1I(pi)

‖ln(p1, . . . pn)
τ l
(a,B)

։ ‖
τ l
(a,B)
n (pa1, p

a
2, . . . p

a
n)

Figure 8.1: Operational semantics for concurrency with hiding.

p 6։6 we denote p 6։ and p 6 . Recall that I(p) denotes the initial menu
of process p. Note that a reasoning, similar to the one that was employed in
Chapter 7 and in Section 8.1, is incorporated in the definition of the present
parallel operator. Namely, rules C1 and C2 demonstrate that internal tran-
sitions again have priority over probabilistic transitions, as in Table 8.1, and
that which process first performs the internal (or probabilistic) transitions
is irrelevant (no matter the asymmetry that is present in the rules). Note
that we leave the labels on the internal transitions intact. On the one hand,



102 8. A conservative probabilistic extension of CSP

for simple processes, i.e. processes that are not obtained as compositions,
this means that at most the local history of performed actions can have in-
fluence on the internal choices of the process. On the other hand, leaving
the labels intact ensures that, when a complex process is synchronized with
another process, the dependencies between the internal choices of the former
one are preserved (for example, when process v in Fig. 7.1 is synchronized
with process ac � dab).

Rule C3 generalizes the reasoning about the resolution of the synchroniza-
tion nondeterminism in Chapter 7 (note that all n operands are necessary to
participate in the synchronization in order for it to happen). Namely, each
label on a (hidden) synchronized action carries as information the action on
which synchronization happened, the set of action-candidates for synchro-
nization at that moment, and the synchronization history. This means that
the decision on which action to synchronize, when there is more than one
action-candidate for synchronization, can depend at most on the set of the
action-candidates for synchronization and on the synchronization history.

8.2.2 Interleaving

We extend the SPcp process language with a parametrized interleaving oper-
ator, such that there is no communication between the operands:

x ::= y | |||ψ(x1, x2, . . . xn),

where y is a SPcp process term and ψ is a function ψ : A× 2{1,...n} 7→ N. The
parameter ψ carries information that is passed to the labels of the newly
created internal nondeterminism during the course of interleaving.

Note that when several process-operands can perform the same action
at the same moment, the choice on which process offers the action to the
environment next is nondeterministic (introducing thus interleaving nonde-
terminism). We can consider this as a race among the processes, since the
processes do not communicate and thus no “intelligent” decision is being
made. The question is what affects the outcome of the race, so that we can
label the internal transitions with the appropriate information. Clearly, the
set of processes that take part in the race is important. Then, the action it-
self may also play a role, as a process may have different speeds for different
actions. Note that, in scenarios where each process has a certain probability
to win the race on a particular action among a given set of processes, this
information should suffice. However, in other scenarios, every time the same
set of processes has a race on the same action, the probability for a particular
process to win the race may take a different value, for example, the speed



8.2. Parallel composition 103

(I1)
pi 6։ for i ∈ {1, . . . k−1}, pk

τk
։ p′k

|||ψ(p1, . . . pk−1, pk, pk+1 . . . pn)
τk
։ |||ψ(p1, . . . pk−1, p

′
k, pk+1 . . . pn)

(I2)
pi 6։ 6 for i ∈ {1, . . . k−1}, pk

πk
 p′k

|||ψ(p1, . . . pk−1, pk, pk+1 . . . pn)
πk
 |||ψ(p1, . . . pk−1, p

′
k, pk+1 . . . pn)

(I3)
pi 6

a
−→6։ 6 for i 6= k, pk

a
−→ pak

|||ψ(p1, . . . , pk−1, pk, pk+1, . . . pn)
a
−→ |||ψ(p1, . . . , pk−1, p

a
k, pk+1, . . . pn)

(I4)
pi

a
−→ pai for all i ∈ I ⊆ {1, . . . n}, pi 6։ 6 6

a
−→ for i 6∈ I, ψ(a, I)=m

|||ψ(p1, . . . pn)
a
−→

d
i∈I τ

m+1
i,I,a (|||ν(p1, . . . , pi−1, p

a
i , pi+1, . . . pn)) ,

ν(a, I)=m+1, ν(b, J)=ψ(b, J) for b6=a or J 6=I

Figure 8.2: Operational semantics for interleaving

of an action may decrease by time. Thus, we can include the number of
times that the given set of processes has raced on the particular action as
information in the labels. This way we stay consistent with our reasoning
in Sec. 7.2, that the consecutive internal choices are in general independent
from each other. In general, note that the more information is included in
the label, the more power the “scheduler” has. However, we conjecture that
the exact labeling does not affect the congruence property of our preorder,
as long as the labels do not include “local” information, i.e. information that
is local to a process. We already discussed in the introduction that the local
information should not affect the resolution of the “global” nondeterminism.

The operational rules for the interleaving operator, given in Fig. 8.2 en-
compass the above discussion. Rules I1 and I2 are similar to rules C1 and C2
from Fig. 8.1, and rule I3 says that if only one process can perform action a
at the moment, then after performing a, the interleaving proceeds as usual.
Rule R4 is more involved. It says that if several processes can perform action
a at the moment, then after performing action a, there is an internal choice
on which process has actually performed the action, or “won the race”. Each
internal transition label includes as information the actual process, the set



104 8. A conservative probabilistic extension of CSP

p1
a

����
��
�� b

��0
00

00
0

e
��

|||ψ p2
a

����
��
�� c

��0
00

00
0

d
��

→
b

uukkkkkkkkkkkkkkkk

a
��

c

))TTTTTTTTTTTTTTTT

a

����
��
�� c

��2
22

22
2

τm1,{1,2},a
��
�

������
��
��
�

τm2,{1,2},a

//
//

//
/

�� ��/
//

a

����
��
�� b

��2
22

22
2

d
��

e
��

e|||νp2 p1|||
νd

Figure 8.3: An example of interleaving. m=ν(a, {1, 2})=ψ(a, {1, 2})+1,
ν(x, I) = ψ(x, I) for x6=a or I 6={1, 2}.

of processes that participated in the race, the action a, and the number of
times the same set of processes has raced on action a, incremented by one.
The parameter ψ of the interleaving operator, which keeps track of the latter
number for each pair of action and process set, is then appropriately updated.

Example 8.2.1. In Fig. 8.3 an example of interleaving of two processes is
given. Note that in the result of interleaving, after action a is performed,
there is an internal choice that decides from which process action a originated.
The labels of the internal choice contain as information the index of the
process that performed the action (1 or 2), the set {1, 2} of processes that
participated in the race, the action a, and the number of times that processes
p1 and p2 raced on action a, incremented by one, that is, m.

8.2.3 General parallel composition with hiding

The CSPp process language is generated by the following grammar:

x ::= �i∈I aix | x � x | ⊓i∈Iτix | ⊕i∈I πix | ‖ln(x1, x2, . . . xn) |

|||ψ(x1, . . . xn) | ‖ω,lA,n(x1, . . . xk) | ↓ω,lA,n (x1, . . . xn) | ⇓ω,lA,n (x1, . . . xk)

where l ∈ L, A ⊆ A, n ∈ N
≥2, 2 ≤ k ≤ n, ψ : A× 2{1,...n} 7→ N, ω : A \A ×

2{1,...n} 7→ N, and the rest is as for SPp in Section 8.1.
As already mentioned, the n-ary parallel composition operator

‖ω,lA,n(x1, . . . xk) combines features from both the generalized parallel com-
position in CSP [96] and the parallel composition in CCS [85]. The operands
synchronize on the actions from the set A, hiding the resulting action, while
they interleave on the rest of the actions. The synchronization is n-party, i.e.
n operands need to participate in order for it to happen (therefore, if k < n
then synchronization can not happen, but only interleaving). The operators
↓ω,lA,n and ⇓ω,lA,n are auxiliary operators that ease the definition of ‖ω,lA,n. In a



8.2. Parallel composition 105

(P1)
pi 6։ 6 for i ∈ {1, . . . k−1}, pk

πk
 p′k

‖ω,lA,n(p1, . . . pk−1, pk, pk+1 . . . pn)
πk
 ‖ω,lA,n(p1, . . . pk−1, p

′
k, pk+1 . . . pn)

(P2)
pi 6։ for i ∈ {1, . . . k−1}, pk

τk
։ p′k

‖ω,lA,n(p1, . . . pk−1, pk, pk+1 . . . pn)
τk
։ ‖ω,lA,n(p1, . . . pk−1, p

′
k, pk+1 . . . pn)

(P3)
B = ∩ni=1I(pi) ∩A 6= ∅, ∪ni=1I(pi) 6⊆ A

‖ω,lA,n (p1, . . . pn)
τ l,syn
B

։ ↓ω,lA,n (p1, . . . pn) , ‖
ω,l
A,n (p1, . . . pn)

τ l,asyn
B

։ ↓ω,lA,n (p1, . . . pn)

Figure 8.4: Operational semantic rules for ‖ω,lA,n, part 1

composition ↓ω,lA,n, the operands are forced to synchronize initially, proceed-

ing afterwards in parallel, while in ⇓ω,lA,n the operands initially interleave and

proceed in parallel afterwards. In all three operators ‖ω,lA,n, ↓
ω,l
A,n, and ⇓ω,lA,n,

similarly as in ‖ln and |||ψ, the parameters ω and l keep relevant information
about the history of communication/interleaving, needed to infer labels for
the internal choices that arise in the process composition.

Recall that, when processes are allowed to synchronize on a set of actions
with hiding the synchronized action, and to interleave on the rest of the
actions, several types of internal nondeterminism arise in the parallel com-
position. We have already discussed the synchronization nondeterminism
and the interleaving nondeterminism in the previous subsections. However,
hiding the synchronized action introduces a third type of nondeterminism,
namely the processes have to “decide” whether to proceed synchronously by
performing a hidden synchronized transition, or asynchronously, by perform-
ing a visible transition from one process only. The question is what affects
the decision on whether to synchronize or not, so that plausible labels on the
transitions of this nondeterministic choice can be assigned. Keeping in mind
that all processes have to take part in the synchronization, we argue that the
set of action-candidates for synchronization can influence the decision, as this
is information available to all the processes at the moment of decision. With
respect to the last, the history of synchronization, i.e. of action-candidates



106 8. A conservative probabilistic extension of CSP

(P4)
B = ∩ni=1I(pi) ∩A = ∅

‖ω,lA,n(p1, . . . pn)
τnew

։ ⇓ω,lA,n (p1, . . . pn)

(P5)
B = ∩ni=1I(pi) ∩A 6= ∅, ∪ni=1I(pi) ⊆ A

‖ω,lA,n(p1, . . . pn)
τnew

։ ↓ω,lA,n (p1, . . . pn)

(P6)
pk 6−→6։ 6 , pi −→ for every i 6= k

‖ω,lA,n(p1, . . . pn)
τnew

։ ‖ω,lA,n(p1, . . . , pk−1, pk+1, . . . pn)

(P7)
j < n

‖ω,lA,n(p1, . . . pj)
τnew

։ ⇓ω,lA,n (p1, . . . , pj)

Figure 8.5: Operational semantic rules for ‖ω,lA,n, part 2

for synchronization and the synchronized actions themselves must be also
included in the labels.

The above discussion is incorporated in rule P3 in Fig. 8.4, which, to-
gether with Fig. 8.5, Fig. 8.6, and Fig. 8.7, gives the operational semantics
for parallel composition and the auxiliary operators. Namely, rule P3 says
that, if processes are able to synchronize (condition B = ∩ni=1I(pi)∩A 6= ∅),
but also to perform actions independently (condition ∪ni=1I(pi) 6⊆ A), then
there is an internal choice on whether to synchronize or not. The labels of
the internal choice, τ l,synB and τ l,asynB , include the set B of actions-candidates
for synchronization, the history of synchronization l and the actual decision
(syn or asyn). The rest of the rules in Fig. 8.4 and Fig. 8.5 are straight-
forward: rules P1 and P2 (Fig. 8.4), similarly as before, give priority to
internal/probabilistic transitions over visible transitions, rule P4 (Fig. 8.5)
says that if processes are not able to synchronize at the moment (condition
B = ∩ni=1I(pi) ∩ A = ∅), then they proceed by performing some visible ac-
tion from one of the processes, while rule P5 (Fig. 8.5) says that, if processes
can only synchronize at the moment, then this is what they do. Rules P6
and P7 (Fig. 8.5) say that, if one of the processes has reached deadlock,
then the parallel composition can only continue asynchronously, i.e. no more



8.2. Parallel composition 107

(S1)
pi 6։ 6 for i ∈ {1, . . . k−1}, pk

πk
 p′k

↓ω,lA,n (p1, . . . pk−1, pk, pk+1 . . . pn)
πk
 ↓ω,lA,n (p1, . . . pk−1, p

′
k, pk+1 . . . pn)

(S2)
pi 6։ for i ∈ {1, . . . k−1}, pk

τk
։ p′k

↓ω,lA,n (p1, . . . pk−1, pk, pk+1 . . . pn)
τk
։ ↓ω,lA,n (p1, . . . pk−1, p

′
k, pk+1 . . . pn)

(S3)
a ∈ A, pi

a
−→ pai for every i ∈ {1, . . . n}, B = ∩ni=1I(pi) ∩A

↓ω,lA,n (p1, . . . pn)
τ l
(a,B)

։ ‖
ω,τ l

(a,B)

A,n (pa1, p
a
2, . . . p

a
n)

Figure 8.6: Operational semantics for parallel composition: rules for ↓ω,lA,n

synchronization can happen, as the synchronization is n-ary.
The rules in Fig. 8.6, resp. Fig. 8.7 are adaptations of the rules in Fig. 8.1,

resp. Fig. 8.2, such that the operands in ↓ω,lA,n synchronize on the first step and

proceed in parallel (‖ω,lA,n) afterwards, and the operands in ⇓ω,lA,n interleave on

the first step and proceed in parallel (‖ω,lA,n) afterwards. Note that, however,
in rule AS4 (Fig. 8.7), that mimics rule I4 from Fig. 8.2, we have added the
synchronization history as information to the labels of the resulting internal
choice. That is, we have taken into account that which process wins the
race may also depend on the synchronization history, which did not exist in
the interleaving operator |||ψ. The reason is that the processes may make
decisions to let a certain process win based on their previous communication.

Remark Note that our definition of parallel composition with hiding, even
when ignoring the labels on the internal transitions, is different than the
generalized parallel composition of CSP, followed by hiding. For example,
consider the processes ac � b and a given in Fig. 8.8-a. Their CSP [96]
parallel composition with synchronization on {a} yields ac � b; hiding action
a in the latter yields c⊓(c � b). On the other hand, in our setting, the parallel
composition (ac � b) ‖ω̃,ε{a},2 a yields an internal choice between actions c and

b (see Fig. 8.8-b). This difference comes from an observation that parallel
composition, followed by a hiding operator (Fig. 8.8-a), behaves differently
than parallel composition with hiding after synchronization (Fig. 8.8-b). In



108 8. A conservative probabilistic extension of CSP

(AS1)
pi 6։ 6 for i ∈ {1, . . . k−1}, pk

πk
 p′k

⇓ω,lA,n (p1, . . . pk−1, pk, pk+1 . . . pn)
πk
 ⇓ω,lA,n (p1, . . . pk−1, p

′
k, pk+1 . . . pn)

(AS2)
pi 6։ for i ∈ {1, . . . k−1}, pk

τk
։ p′k

⇓ω,lA,n (p1, . . . pk−1, pk, pk+1 . . . pn)
τk
։ ⇓ω,lA,n (p1, . . . pk−1, p

′
k, pk+1 . . . pn)

(AS3)
pi 6

a
−→6։ 6 for i 6= k, pk

a
−→ pak, a 6∈ A

⇓ω,lA,n (p1, . . . , pk−1, pk, pk+1, . . . pj)
a
−→ ‖ω,lA,n(p1, . . . , pk−1, p

a
k, pk+1, . . . pj)

(AS4)
pi

a
−→ pai for all i ∈ I ⊆ {1, . . . j}, pi 6։ 6 6

a
−→ for i6∈I, a6∈A, ω(a, I)=m

⇓ω,lA,n (p1, . . . pj)
a
−→

d
i∈I τ

l,m+1
i,I,a

(

‖φ,lA,n(p1, . . . , pi−1, p
a
i , pi+1, . . . pj)

)

,

φ(a, I)=m+1, φ(b, J)=ω(b, J) for b6=a or J 6=I

Figure 8.7: Operational semantics for parallel composition: rules for ⇓ω,lA,n

the second case, if action b is in a menu of the composite, then it is not
possible that action c is in the same menu. This is because the availability
of action c requires that action a (out of a and b in the process ac � b) was
performed. But the last means that b was excluded from further execution
at the moment of choosing a between a and b.

8.3 Normal forms

In this section we generalize the model of process graphs introduced in the
previous chapter, such that the labels on the internal transitions can be ra-
tional expressions over the label variables in the set L. This generalization
is needed in order to derive normal forms of the process graphs, that shall
play an essential role in the proofs of the congruence theorem and the com-
pleteness of the axiomatization presented in the following sections. The need
to generalize the model comes from an observation that processes such as
τ1a⊓ τ2a⊓ τ3b and τ4a⊓ τ5b are ready-trace equivalent and should have com-



8.3. Normal forms 109

a)
a
		��
��
�� b

��,
,,

,,
,

c
��

f
{a}

a
��

CSP
−−→

a
		��
��
�� b

��,
,,

,,
,

c
��

hide a
−−−→

τ
		��
��
�� b

��,
,,

,,
,

c
��

≡term
τ

����
��

��
�

τ

��9
99

99
99

c
��

c
		��
��
�� b

��,
,,

,,
,

b)
a
		��
��
�� b

��,
,,

,,
,

c
��

fω̄,ε
{a},2

a
��

CSPp
−−−→ τε,syn{a}

������
��

�� τε,asyn{a}

�� ��8
88

88
8

τε(a,{a}) ����
b
��

c
��

Figure 8.8: Differences between parallel composition followed by hiding (a)
and parallel composition with hiding the synchronized actions (b)

parable normal forms. We obtain that the normal form of the former process
is (τ1+τ2)a ⊓ τ3b, while the normal form of the latter one is τ4a ⊓ τ5b. Then,
we define two normal forms to be equivalent if they yield the same sets of
deterministic processes when the internal nondeterminism is resolved.

The reduction to normal forms follows the lines of [13]; however, as
pointed out above, the presence of probabilistic and labeled internal tran-
sitions in our setting introduces technical complications that do not exist
in [13].

8.3.1 General process trees

In order to generalize the process graphs, we shall need a subset Q of the
rational expressions over the elements of L, generated by the following gram-
mar:

ϕ ::= α | l | ϕ1 + ϕ2 | ϕ1 · ϕ2 |
ϕ1

ϕ2
,

where α ∈ (0, 1], l ∈ L, and “+”, “·”, and “ ·
·
” are ordinary algebraic addition,

multiplication and fraction, respectively.

A general-process tree differs from a process tree in that the internal
transitions are labeled with expressions in Q, rather than only with labels
in L, and there are no restrictions on the expressions labeling the internal
transitions.



110 8. A conservative probabilistic extension of CSP

Definition 8.3.1 (General-process tree). A general-process tree r, or simply
general process r, is a directed finite tree with root r, such that

– there exist three types of edges, or transitions : action (−→), internal
(։), and probabilistic ( );

– there exist three types of nodes, or states : action, nondeterministic,
and probabilistic; from an action (resp. nondeterministic, probabilis-
tic) state there can originate only action (resp. internal, probabilistic)
transitions;

– the action transitions are labeled with actions from A such that no two
action transitions with the same state of origin are labeled the same;

– the internal transitions are labeled with expressions from Q;

– the probabilistic transitions are labeled with scalars from (0, 1], such
that (i) given two states, there is at most one probabilistic transition

connecting them, and (ii) for each probabilistic state s, if [{s
πi
 si}i∈I ]

then
∑

i∈I πi = 1, i.e. the sum of the labels on the outgoing transitions
equals one;

– all states are reachable from r.

Note that every process tree is also a general-process tree.

Next, we define transformations on general-process trees that shall lead
to normal forms.

Definition 8.3.2 (General-process tree transformations). Let p be a general-
process tree. A transformation of p is called

(i) substitution if, for a state s in p, every transition s
π
 s′ is replaced by

s
π
։ s′;

(ii) erasing if, given a transition s
ϕ
։ s′ such that s has no other outgoing

transitions, states s and s′ are identified;

(iii) compressing if, for a state s such that s
ϕ
։ s′ and [{s′

ϕi

։ s′i}i∈I ], the

transitions {s′
ϕi

։ s′i}i∈I are erased, and new transitions {s
ϕϕi

։ s′i}i∈I
are created.



8.3. Normal forms 111

p
ϕ

}}}}{{
{{

{{
{{ η

!! !!C
CC

CC
CC

C

a

����
��
�� b

��2
22

22
2

a

����
��
�� b

��2
22

22
2

c
��

d
��

e
��

f
��

flipping
−−−−→ p′

ϕ+η
����

a

{{vvvvvvvvv
b

##H
HHHHHHHH

ϕ
ϕ+η

������
��
��

η
ϕ+η

�� ��2
22

22
2 ϕ

ϕ+η

������
��
��

η
ϕ+η

�� ��2
22

22
2

c
��

e
��

d
��

f
��

Figure 8.9: An example of “flipping”

(iv) flipping if, given a state s such that

s
ϕ
։ s1, s

η
։ s2, [{s1

ai−→ s1i}i∈I ], and [{s2
ai−→ s2i}i∈I ],

the transitions s
ϕ
։ s1 and s

η
։ s2 are erased, and new states s′ and

{s′i}i∈I are created, together with the transitions

s
ϕ+η
։ s′, {s′

ai−→ s′i}i∈I , {s
′
i

ϕ

ϕ+η

։ s1i}i∈I , and {s′i

η

ϕ+η

։ s2i}i∈I ;

(v) deadlocks-joining if, given a state s such that s
ϕ
։ s1, s

η
։ s2, and s1, s2

are both deadlock states, the transitions s
ϕ
։ s1 and s

η
։ s2 are erased,

and a new transition s
ϕ+η
։ s1 is created.

Example 8.3.3. Fig. 8.9 gives an example of the transformation “flipping”.

Next, we narrow down the set of general trees of interest to the set of
those that are obtained from unfolded process trees by transformations.

Definition 8.3.4 (CG process tree). A coherent general-process tree (CG

process tree) is a general-process tree that can be obtained from a pro-
cess tree, unfolded by Def. 7.2.1, by transforming it zero or more times by
Def. 8.3.2.

Note that a transformation from Def. 8.3.2 does not essentially increase
the set of constraints for a general-process tree, i.e. no new labels are added
by a transformation step and no new restrictions to the old labels are im-
posed. We formalize this statement in the following proposition. For our
convenience, we assume that a rational expression ϕ/ϕ in Q that is used for
labeling a transition in a CG process tree always has value 1, even when ϕ
evaluates to 0. Later, we will justify this assumption.



112 8. A conservative probabilistic extension of CSP

Proposition 8.3.5. Let p be a CG process tree and p′ be a CG process tree
obtained from s via a transformation step. Then, the systems of equations
C(p) and C(p) ∪ C(p′) are equivalent.

Proof. “Substitution” adds a constraint to C(p) ∪ C(p′) that is trivially sat-
isfied, while “erasing” adds no new constraints. “Compressing” adds a con-
straint

ψ1

∑

i∈I

ϕi +
∑

j∈J,j 6=1

ψj = 1,

where ψ1 = ϕ, [{s
ψj

։ sj}j∈J ], and s1 = s′. This constraint follows from the
constraints

∑

i∈I

ϕi = 1 and
∑

j∈J

ψj = 1,

which are already in C(p). “Flipping” adds a constraint ϕ
ϕ+η

+ η
ϕ+η

= 1,
which is trivially satisfied. “Deadlock-joining” adds no constraints that are
not already in C(p).

Since a transformation does not increase the set of constraints defined by
the original process tree, the CG process tree inherits the (linear) constraints
from its original (unfolded) process tree. We introduce some notation to
formalize this. Let p be a process tree, unfolded by Def. 7.2.1, and p′ be
a CG process tree obtained from p via zero or more transformation steps.
By C̃(p′) we denote C(p). Recall that a resolution of a set of constraints is
a function that assigns values in [0, 1] to the variables in the constraints,
respecting the constraints. A resolution of p′ is the process tree p̄′ obtained
when, for an arbitrary resolution λ of C̃(p′), every transition

t
ϕ
։ t′

in graph p′ is replaced by

t
λ(ϕ)
 t′,

if λ(ϕ) 6= 0, or erased otherwise, where λ(ϕ) for ϕ ∈ Q \ L is defined induc-
tively in the usual way, i.e.

λ(α) = α for α ∈ (0, 1],

λ(ϕ1 + ϕ2) = λ(ϕ1) + λ(ϕ2),

λ(ϕ1 · ϕ2) = λ(ϕ1) · λ(ϕ2),

λ(
ϕ1

ϕ2
) =

λ(ϕ1)

λ(ϕ2)
.



8.3. Normal forms 113

From now on, unless stated otherwise, we assume that the (unfolded) process
tree from which a CG process tree originates is implicitly given and we shall
omit it.

Note that the assumption that ϕ/ϕ always evaluates to 1 can be now
justified by the fact that a label ϕ/η on an internal transition in a CG process
tree originates from “flipping”. Namely, in this case there is a transition
labeled with η, preceding the transition labeled with ϕ/η (see Fig. 8.9 and
Def. 8.3.2). When λ(η) = 0, in the resolution of the CG process tree the
transition labeled with η does not appear, and thus the transition labeled
with ϕ/η does not appear, too. Because of this, our assumption that ϕ/ϕ
always evaluates to 1 in Prop. 8.3.5 has no influence on the resolution of a
CG process tree p, which is the only context in which the constraints C(p)
are used.

Having defined resolutions of CG process trees, the definition of ready-
trace equivalence for process trees (Def. 7.4.6) easily extends to CG process
trees.

Definition 8.3.6 (Ready-trace equivalence). Let s′ and t′ be CG process
trees. We say s′ implements t′ w.r.t. ready-traces, denoted by s′ �RT t′ iff,
for every resolution s̄′ of s′, there exists a resolution t̄′ of t′ such that for all
ready-traces (M1, a1, . . .Mk),

– P 1
s̄′(M1) = P 1

t̄′(M1) and

– if k > 1, then P k
s̄′(Mk|M1, a1, . . .Mk−1, ak−1) is defined if and only if

P k
t̄′ (Mk|M1, a1, . . .Mk−1, ak−1) is defined, and, in case they are both

defined, they are equal.

s′ and t′ are ready-trace equivalent, denoted by s′ ≈RT t′, iff s′ �RT t′ and
t′ �RT s

′.

Proposition 8.3.7 (Soundness of the transformations). The transformations
in Definition 8.3.2 are sound w.r.t. ≈RT when applied to CG process trees,
i.e. if p′ is obtained from p via a transformation, then p′ ≈RT p.

Proof. We give a proof sketch for “flipping”, while for the rest of the trans-
formations the proof is straightforward. Suppose p′ is obtained from p by
flipping, as in Fig. 8.9 (note that p may have other outgoing internal transi-
tions, omitted in the figure). First, note that the set of ready-traces remains
unchanged. Let λ be resolution of C(p). Then, if λ(ϕ + η) 6= 0, we obtain
that, for the resolutions p̄ and p̄′ of p, resp. p′ with respect to λ, the condi-
tional probabilities of any ready-trace of p̄ and p̄′ coincide. If λ(ϕ + η) = 0,



114 8. A conservative probabilistic extension of CSP

then p̄ and p̄′ are isomorphic, as the branches of p and p′ given in Fig. 8.9 do
not appear in p̄, resp. p̄′.

8.3.2 Normal forms

We define normal forms of CG process trees and show that ready-trace equiv-
alent CG process trees reduce to equivalent normal forms, i.e. to normal
forms that yield the same sets of deterministic processes when the internal
nondeterminism is resolved.

Definition 8.3.8 (Normal form). A CG process tree is in ready-trace normal
form (RT-normal form) if none of the transformations of Def. 8.3.2 can be
applied.

Proposition 8.3.9. Every general-process tree transformation sequence
eventually ends in RT-normal form.

Proof. A transformation of type “substitution” replaces the probabilistic
transitions by internal transitions, which is clearly terminating. A transfor-
mation of type “flipping” reduces the number of action transitions. There-
fore, there will be a moment when “flipping” will never again be applied,
because the minimal possible number of action transitions is zero, and when
“substitution” will never again be applied, because all the probabilistic tran-
sitions have been replaced by internal transitions. After that moment, only
transformations of type “erasing”, “compressing ”, or “deadlock-joining” can
be applied, each of which reduces the number of internal transitions by one
and does not increase the number of the other types of transitions. Thus,
the transformations terminate and the proof is complete.

We call an internal transition s
ϕ
։ t in a CG process tree trivial if s has

no other outgoing transitions.

Lemma 8.3.10. A CG process tree p is in normal form iff it contains no
probabilistic transitions, no consecutive internal transitions, no trivial inter-
nal transitions and, moreover, given an arbitrary nondeterministic state s of
p, if s ։ s1, s ։ s2, and I(s1) = I(s2) for some states s1 and s2, then
s1 = s2.

Proof. Directly from Definition 8.3.2 and Definition 8.3.8.

Recall that a process tree is deterministic if it does not contain internal
transitions.



8.3. Normal forms 115

Definition 8.3.11 (Isomorphism). Two finite deterministic process trees p
and q are isomorphic if there exists a bijection f , mapping the state set of p
to the one of q, such that

– f(p) = q,

– if s
a
−→ s′ for s, s′ in p, then f(s)

a
−→ f(s′), and

– if s
π
 s′ for s, s′ in p, then f(s)

π
 f(s′).

We now define the relation almost-equal on CG process trees. Two CG

process trees are almost-equal if they yield the same sets of deterministic
processes when the internal nondeterminism is resolved.

Definition 8.3.12. Two CG process trees p and q are almost-equal, denoted
p ≃ q, iff

– for every resolution p̄ of p there exists a resolution q̄ of q such that p̄
and q̄ are isomorphic, and viceversa,

– for every resolution q̄ of q there exists a resolution p̄ of p such that p̄
and q̄ are isomorphic.

The following lemma shall be needed in the proof of Prop. 8.3.14.

Lemma 8.3.13. Let p be a finite process tree, unfolded by Def. 7.2.1. Every
variable in C(p) appears in only one equation in C(p).

Proof. From Def. 8.3.1, Def. 7.2.1, and Def. 7.1.3.

Proposition 8.3.14. Let p and q be CG process trees in RT-normal form.
p ≈RT q iff p and q are almost-equal.

Proof. (⇒) The proof is by structural induction on p and using Lemma
8.3.10.

Assume first that [{p
ai−→ pi}i∈I ] for {pi}i∈I = {0}. Then, from the facts

that p ≈RT q and q is in normal form, and from Lemma 8.3.10, it must hold
that [{q

ai−→ qi}i∈I ] and {qi}i∈I = {0}. Therefore, p and q are isomorphic and

thus almost-equal. Note that the case [{p
ϕi

։ pi}i∈I ] for {pi}i∈I = {0} is not
possible, since p is in normal form.

Assume that [{p
ai−→ pi}i∈I ], where {pi}i∈I are arbitrary CG process trees.

Then, because p is in normal form and because of Lemma 8.3.10, all CG

process trees in {pi}i∈I are in normal form. On the other hand, because



116 8. A conservative probabilistic extension of CSP

p ≈RT q and q is in normal form, from Def. 8.3.6 and from Lemma 8.3.10 we
have that p and q have the same initial menus, i.e. [{q

ai−→ qi}i∈I ] for some
CG process trees {qi}i∈I , all of which are in normal form. From p ≈RT q
and from Def. 8.3.6 it easily follows that pi ≈RT qi for all i ∈ I. From the
inductive assumption, it follows that pi ≃ qi for all i ∈ I. Therefore, p ≃ q.

Assume now that [{p
ϕi

։ pi}i∈I ], where {pi}i∈I are arbitrary CG process
trees. Then, every CG process tree in {pi}i∈I is in normal form. Because q is
in normal form and p ≈RT q, from Def. 8.3.6 and from Lemma 8.3.10 it must

be that [{q
ρi
։ qi}i∈I ] for some {qi}i∈I such that I(pi) = I(qi) for every i ∈ I.

Assume that pi 6≈RT qi for some i ∈ I. Without loss of generality, we have
that there exists a resolution p̄i of pi such that for every resolution q̄i of qi
there exists a ready-trace whose conditional probabilities for p̄i and q̄i do not
match. From Def. 8.3.4, Prop. 8.3.5, and from Lemma 8.3.13, it is not hard
to show that we can extend the resolution p̄i of pi to a resolution p̄ of p (the
equations in C̃(p) do not add restrictions to the variables in C̃(pi) that are not
already in C̃(pi)), such that for every resolution q̄ of q there exists a ready-
trace whose conditional probabilities for p̄ and q̄ do not match. Thus, we
obtain that p 6≈RT q, which contradicts our assumption. Therefore, pi ≈RT qi
for every i ∈ I. Then, by the inductive assumption, it follows that pi ≃ qi
for all i ∈ I. From the fact that p ≈RT q and using the same argument as
above, it can be concluded that p ≃ q.

Proposition 8.3.15. Two CG process trees p and q reduce to almost-equal
RT-normal forms iff p and q are ready-trace equivalent.

Proof. Follows from Propositions 8.3.7, 8.3.9, and 8.3.14.

8.4 Congruence property for ≈RT

In this section we state one of our main results, namely that the probabilistic
ready-trace equivalence on CG process trees is a congruence for the operators
defined so far. We extend our grammar with the general internal choice
operator, i.e. the language of CSPg

p is generated by the grammar

x ::= y | ⊓i∈Iϕixi,

where y is a CSPp process term and ϕi are expressions in Q. The semantic
rules for the operators in CSPg

p are inherited from the rules for CSPp given in
Sections 8.1 and 8.2, by treating the internal transitions as general internal
transitions, labeled with Q-expressions, rather than only with labels in L.



8.4. Congruence property for ≈RT 117

For the congruence theorem we need compatibility of the components. We
elaborate more on compatibility afterwards.

Definition 8.4.1. Two CG process trees are compatible if they have disjoint
sets of labels in L.

Theorem 8.4.2 (Congruence). Let {pi}i∈I and {qi}i∈I be two sets of CG

process trees, such that {pi}i∈I are pairwise compatible, and the same holds
for {qi}i∈I . Let pi ≈RT qi for every i ∈ I. Then,

�i∈I aipi ≈RT �i∈I aiqi,

⊓i∈Iτipi ≈RT ⊓i∈Iτiqi,

⊕i∈Iπipi ≈RT ⊕i∈Iπiqi,

pk � pm ≈RT qk � qm,

Θpm ≈RT Θqm,

‖ln (p1 . . . pn) ≈RT ‖ln (q1 . . . qn),

|||ψ (p1 . . . pn) ≈RT |||ψ(q1 . . . qn),

‖ω,lA,n (p1 . . . pk) ≈RT ‖ω,lA,n(q1 . . . qk),

↓ω,lA,n (p1 . . . pn) ≈RT ↓ω,lA,n (q1 . . . qn), and

⇓ω,lA,n (p1 . . . pk) ≈RT ⇓ω,lA,n (q1 . . . qk) for k ≤ n.

Proof. We prove that ‖ω,lA,n (p1 . . . pk) ≈RT ‖ω,lA,n(q1 . . . qk), since this is the
most involved case, and the proof for the rest of the parallel operators follows
immediately. We present the proof for the case n = 2; the proof for an
arbitrary n is based on the same ideas. Thus, we show that

if p ≈RT q, then ‖ω,lA,2 (p, r) ≈RT ‖ω,lA,2(q, r),

where p, q, and r are CG process trees.
Because of Proposition 8.3.15, it suffices to show that

(i) if q is obtained from p by a transformation step, then ‖ω,lA,2(q, r) and

‖ω,lA,2 (p, r) are ready-trace equivalent, and

(ii) if p and q are almost-equal, then ‖ω,lA,2(p, r) and ‖ω,lA,2(q, r) are almost-
equal, too (straightforward).

(i) The most involved case is when q is obtained from p by flipping. Without
loss of generality, we can assume that state q is obtained from state p by
flipping. The proof is by induction on the maximal length, length(r), of a



118 8. A conservative probabilistic extension of CSP

p
ϕ

{{{{ww
ww

ww
ww η

$$ $$I
II

II
II

II

s
a

��		
		

	
b
��

c

��5
55

55
t

a

����
��

�
b
��

c

��5
55

55

x y z w u v

q

ϕ+η ����
q′

a

wwnnnnnnnnnnnn
b
��

c

''PPPPPPPPPPPP

ϕ

ϕ+η

}}}}{{
{{

{{ η

ϕ+η����

ϕ

ϕ+η

}}}}{{
{{

{{
η

ϕ+η

!! !!C
CC

CC
C

ϕ

ϕ+η ����

η

ϕ+η

    B
BB

BB
B

x w y u z v

r

a

||yy
yy

yy
yy

yy
y

b
����
��
��
��

c

��2
22

22
22

2

d

""E
EE

EE
EE

EE
EE

r1 r2 r3 r4

q′′ϕ

ϕ+η

zzzzuuu
uuu

uu
η

ϕ+η

%% %%KKKKKKKK

s
a
����
��
�
b��
c
��7

77
77

t
a

����
��
�

b
��

c
��7

77
7

x y z w u v

p‖r
ϕ

vvvvnnnnnnnnnnnnn
η

(( ((QQQQQQQQQQQQQQQ

s‖r
τε,syn
{a,b}

||||xx
xx

xx
x τε,asyn

{a,b}

"" ""E
EE

EE
EE

t‖r
τε,syn
{a,b}

{{{{vvv
vv

vv
v τε,asyn

{a,b}

"" ""F
FFFFFF

τε
a,{a,b}

{{{{www
ww

ww
w
τε
b,{a,b}����

c

||yy
yy

yy
yy

yy
d
##G

GGGGGG

τε
a,{a,b} ����

τε
b,{a,b}

## ##H
HH

HH
HH

H

c

��

d
""E

EE
EE

EE

x‖r1 y‖r2

τε,1p,c ����

τε,1r,c

    A
AA

AA
AA

A s‖r4 w‖r1 u‖r2

τε,1p,c ����

τε,1r,c

    @
@@

@@
@@

@ t‖r4

z‖r s‖r3 v‖r t‖r3

q‖r

ϕ+η
����

q′‖r
τε,syn
{a,b}

vvvvnnnnnnnnnnnn τε,asyn
{a,b}

(( ((PPPPPPPPPPPP

τε
a,{a,b}

zzzzuuu
uu

uu
uu

uu τε
b,{a,b}

    A
AA

AA
AA

AA
c

}}||
||

||
||

|
d
$$J

JJJJJJJ

ϕ

ϕ+η

||||yy
yy

yy
yy

y
η

ϕ+η����

ϕ

ϕ+η

������
��

��
�� η

ϕ+η

�� ��<
<<

<<
<<

<

τε,1q,c

����

τε,1r,c

�� ��=
==

==
==

= q′‖r4

x‖r1 w‖r1 y‖r2 u‖r2
ϕ

ϕ+η

������
��

��
�� η

ϕ+η

�� ��=
==

==
==

= q′‖r3

z‖r v‖r

Figure 8.10: “Flipping” and composing in parallel. A = {a, b}.



8.4. Congruence property for ≈RT 119

sequence of observable actions that process r can perform. Since the rigor-
ous proof uses heavy notation, but is actually not very difficult, it is best
presented via an example, given in Fig. 8.10. In this example, the set A on
which processes synchronize is equal to {a, b}. (For clarity, in the figure we
have omitted the parameters of the operator ‖ and we have shortened the
notation for the labels on the internal transitions determining the winner of
the race on action c.) Now, note that the “symbolic” probabilities to ob-
serve menu {c, d} are the same for both p‖r and q‖r, i.e. they are equal to
(ϕ + η)τ ε,asyn{a,b} . Note also that the “symbolic” probabilities to reach any of

the processes x‖r1, y‖r2, w‖r1, and u‖r2 are equal for both p‖r and q‖r. For
processes z‖r and v‖r, the symbolic probabilities in p‖r and q‖r, conditioned
that the sequence ({c, d}, c) was observed, are not exactly the same, how-
ever, the probabilities can be matched by considering all possible resolutions
of the internal nondeterminism. Thus, the non-trivial case is to show that
the (symbolic) conditional probabilities of any ready-trace following action
d in p‖r and q‖r are the same (and similarly for the ready-traces following
action c).

Assume first that length(r) = 1. Then, processes s‖r3 and s‖r4 are equiv-
alent to s, processes t‖r3 and t‖r4 are equivalent to t, and processes q′‖r3
and q′‖r4 are equivalent to q′. Then, it is easy to check that the symbolic
probabilities to observe menu {a, b, c} after observing menu {c, d} and action
d are the same for both p‖r and q‖r (and equal to 1), and that the probabil-
ities to observe menu {a, b, c} after observing menu {c, d} and action c can
be made equal by resolutions for both p‖r and q‖r. The symbolic probabil-
ity to observe process x, given that the sequence ({c, d}, d, {a, b, c}, a) was
observed is equal to ϕ for both p‖r and q‖r. Similarly for the rest of the
symbolic probabilities. Note that if r starts with a probabilistic or internal
transition, this transition takes precedence over the action transitions in p
or q in parallel, and the proof reduces to the one for the case when r is an
action state.

Assume now that length(r) > 1. From the inductive assumption it follows
that process q′‖r3 is ready-trace equivalent to process q

′′‖r3 (process q
′′ is also

given in Fig. 8.10), and similarly for processes q′‖r4 and q
′′‖r4. Thus, we can

replace processes q′‖r3 and q
′‖r4 in q‖r with processes q′′‖r3, resp. q

′′‖r4, and
obtain a process q′′′ which is ready-trace equivalent to q‖r. Now, it is easy
to check that the probabilities for processes s‖r3, s‖r4, t‖r3, and t‖r4 can be
matched by resolutions (if they do not coincide symbolically) for both p‖r
and q′′′. When r starts with a probabilistic or internal transition, the proof
again reduces to one for the case when r is an action state.

Remark Note that in Theorem 8.4.2 we have implicitly assumed that the



120 8. A conservative probabilistic extension of CSP

set of CG process trees is closed under the operators considered in the the-
orem. This property, however, can be easily concluded from the proof of
the theorem; namely, it can be concluded that if q is obtained from p via
transformation, then q‖ω,lA,2r can be obtained from p‖ω,lA,2r via transforma-
tions. Clearly, the general internal choice operator does not always yield CG

process trees; however, as discussed in Sec. 8.3, this operator is introduced
only for technical purposes and is not interesting on its own.

Remark The compatibility requirement in Theorem 8.4.2, that the
operands must not have common labels for the internal transitions when
they are composed, is essential. For example, take processes p1 ≡ τ1c ⊓ τ2d,
p2 ≡ τ3c ⊓ τ4d, and q ≡ τ1a ⊓ τ2b. Then, although p1 ≈RT p2, we have that
ap1 � bq 6≈RT ap2 � bq. Namely, note that there is a resolution, say ū, for pro-
cess ap2 � bq, such that P 2

ū ({c}|{a, b}, a) = 0.5 and P 2
ū ({a}|{a, b}, b) = 0.3;

on the other hand, for every resolution of process ap1 � bq, the values of
these two conditional probabilities are the same. However, in practice, this
compatibility requirement does not decrease the expressivity of the language,
since one can always rename the labels used in one process before composing.
The labels in a process can be seen as process local variables, serving to iden-
tify the internal transitions, which are local for the process, when the process
is put in a context. Thus, their exact names are irrelevant4. Furthermore,
note that process ap1 � bq given above is an unnatural construction. Namely,
since the internal choices in p1 and q are independent from each other, there
is no reasonable justification for the requirement that they should be resolved
in the same manner in the external choice between p1 and q.

Remark In this chapter the interest is on the equivalence relation ≈RT, since
in what follows we are going to axiomatize it. However, note that from the
proof of Theorem 8.4.2, it follows that the preorder relation �RT is also a
precongruence for the operators mentioned in the theorem.

8.5 Axiomatic characterization of ≈RT

In this section we give an axiomatic characterization of probabilistic ready-
trace equivalence ≈RT defined on CG process trees for the operators in CSPg

p.
The set of axioms of theory CSPg

p is given in Fig. 8.11, Fig. 8.12, and
Fig. 8.13, where x, y, ... are arbitrary CSPg

p terms, and we assume that A =
{ai}i∈N for some index set N . For clarity, we have present the axioms for the
binary parallel composition operators, and the axioms for the n-ary operators

4See [31] for a similar congruence condition.



8.5. Axiomatic characterization of ≈RT 121

(A1) x � 0 = x

(A2) 0 � x = x

(A3) (�i∈I aixi) � (�j∈J ajyj) =

(�k∈I∩J ak(τk1xk⊓τk2yk))�
(

(�i∈I\J aixi) � (�j∈J\I ajyj)
)

, if I∩J 6=∅

(A4) (�i∈I aixi) � (�i∈J aixi) =�i∈I∪J aixi, if I ∩ J = ∅

(A5) ⊕i∈I πixi = ⊓i∈Iπixi

(A6) ⊓i∈I ϕix = x

(A7) �i∈I ai ⊓j∈J ϕjxij = ⊓j∈Jϕj �i∈I aixij

(A8) (⊓i∈Iϕixi) � y = ⊓i∈Iϕi (xi � y)

(A9) y � (⊓i∈Iϕixi) = ⊓i∈Iϕi (y � xi)

(A10) ⊓i∈J ϕi(⊓k∈Kρikxik) = ⊓i∈J,k∈K(ϕiρik)xik

(A11) Θ0 = 0

(A12) Θ(⊓i∈Iτixi) = ⊓i∈IτiΘxi

(A13) Θ(⊕i∈Iπixi) = ⊕i∈IπiΘxi

(A14) Θ(ax) = aΘx

(A15) if a > b then Θ((ax � by) � z) = Θ(ax � z)

(A16) if a > b then Θ(z � (ax � by)) = Θ(z � ax)

(A17) if a > b then Θ((by � ax) � z) = Θ(ax � z)

(A18) if a > b then Θ(z � (by � ax)) = Θ(z � ax)

(A19) if {ai}i∈I are incomparable by >, then Θ(�i∈I aixi) =�i∈I aiΘxi

Figure 8.11: Axioms for choice and priority operators

are similar. For axiom A3 it is assumed that the labels of the internal choices,
τk1 and τk2, for every k, are new with respect to the labels that appear in
the rest of the terms in the axiom. Note how axiom A5 reflects the view
that probabilistic choice is a special type of internal choice. Note also the
existence of axiom A7, which is typical for the non-probabilistic CSP.

We refer to a CSPg
p term as basic term if only external action choice,

internal choice and probabilistic choice appear in the term. The next propo-
sition says that every term can be rewritten to a basic term by using the
axioms of CSPg

p.



122 8. A conservative probabilistic extension of CSP

(P1) 0‖ω,lA,20 = 0

(P2) 0 ↓ω,lA,2 0 = 0

(P3) 0 ⇓ω,lA,2 0 = 0

(P4) (�i∈I aixi) ‖
ω,l
A,20 = �j∈J aj

(

xj‖
ω,l
A,20

)

, for {aj}j∈J = {ai}i∈I \ A

(P5) 0‖ω,lA,2 (�i∈I aixi) = �j∈J aj

(

0‖ω,lA,2xj
)

, for {aj}j∈J = {ai}i∈I \ A

(P6) (�i∈I aixi) ⇓
ω,l
A,2 0 = �j∈J aj

(

xj‖
ω,l
A,20

)

, for {aj}j∈J = {ai}i∈I \ A

(P7) 0 ⇓ω,lA,2 (�i∈I aixi) = �j∈J aj

(

0‖ω,lA,2xj
)

, for {aj}j∈J = {ai}i∈I \ A

(P8) (�i∈I aixi) ↓
ω,l
A,2 0 = 0

(P9) 0‖ω,lA,2 (�i∈I aixi) = 0

(P10) (⊓i∈Iϕixi) ‖
ω,l
A,2y = ⊓i∈I ϕi

(

xi‖
ω,l
A,2y

)

(P11) y‖ω,lA,2 (⊓i∈Iϕixi) = ⊓i∈I ϕi
(

y‖ω,lA,2xi
)

(P12) (⊓i∈Iϕixi) ⇓
ω,l
A,2 y = ⊓i∈I ϕi

(

xi ⇓
ω,l
A,2 y

)

(P13) y ⇓ω,lA,2 (⊓i∈Iϕixi) = ⊓i∈I ϕi
(

y ⇓ω,lA,2 xi
)

(P14) (⊓i∈Iϕixi) ↓
ω,l
A,2 y = ⊓i∈I ϕi

(

xi ↓
ω,l
A,2 y

)

(P15) y ↓ω,lA,2 (⊓i∈Iϕixi) = ⊓i∈I ϕi
(

y ↓ω,lA,2 xi
)

Figure 8.12: Axioms for parallel composition, part I

Proposition 8.5.1 (Elimination). For a CSPg
p process term x there exists a

basic term y, such that CSPg
p ⊢ x = y.

Proof. The proof is straightforward, by structural induction.

Observe that each CG process tree can be mapped to a basic term. We
overload the notation and use the name p for a process term that represents
the CG process tree p.



8.5. Axiomatic characterization of ≈RT 123

For x ≡�i∈I aixi, y ≡�j∈J ajyj, A = {ai}i∈M ,

B = {ak}k∈K = {ai}i∈I∩J∩M , C = {ai}i∈I∪J , ω = {(ai, ni)}ai∈A\A :

(P16) x‖ω,lA,2y = τ l,synB

(

x ↓ω,lA,2 y
)

⊓ τ l,asynB

(

x ⇓ω,lA,2 y
)

, if B 6= ∅, C 6⊆ A

(P17) x‖ω,lA,2y = x ⇓ω,lA,2 y, if B = ∅

(P18) x‖ω,lA,2y = x ↓ω,lA,2 y, if C ⊆ A

(P19) x ↓ω,lA,2 y = ⊓k∈Kτ
l
(ak ,B)

(

xk‖
ω,τ l

(ak,B)
A,2 yk

)

, if B 6= ∅

(P20) x ↓ω,lA,2 y = 0, if B = ∅

(P21) x ⇓ω,lA,2 y =
(

�i∈I\(J∪M) ai

(

xi‖
ω,l
A,2y

))

�

(

�i∈J\(I∪M) ai

(

x‖ω,lA,2yi
))

�

(

�m∈(I∩J)\M am

(

τnm+1
1,am

(

xm‖
φ,l
A,2y

)

⊓ τnm+1
2,am

(

x‖φ,lA,2ym
)))

,

where φ=ω\{(am, nm)}m∈(I∩J)\K∪{(am, nm+1)}m∈(I∩J)\M , if C 6⊆ A

(P22) x ⇓ω,lA,2 y = 0, if C ⊆ A

Figure 8.13: Axioms for parallel composition, part II

Proposition 8.5.2 (Soundness). Let p and q be CG process trees. If CSPg
p ⊢

p = q, then p ≈RT q.

Proof. Straightforward.

The following theorem states that two ready-trace equivalent CG process
trees can be reduced to almost-equal process trees using the axioms of theory
CSPg

p.

Theorem 8.5.3 (Completeness). Let p and q be CG process trees such that
p ≈RT q. There exist CG process trees p′, g′, such that CSPg

p ⊢ p = p′,
CSPg

p ⊢ q = q′, and p′ ≃ q′.

Proof. By Proposition 8.3.15 and Proposition 8.5.1, it is enough to show that
each of the general-process tree transformation steps given in Definition 8.3.2



124 8. A conservative probabilistic extension of CSP

can be mimicked by the axioms A1–A10 (or, more concretely, axioms A5, A6,
A7 and A10). Steps (i) can be mimicked by axiom A5, step (ii) by axiom
A6, step (iii) by axioms A6 and A10, step (iv) by using first axiom A10 in a
right-to-left direction and then A7, while step (v) can be performed by using
first axiom A10 in a right-to-left direction and then A6.

Note that an infinite set of axioms is required in order to reduce two ready-
trace equivalent CG process trees to isomorphic CG process trees, which is
why we restrict ourselves to deriving almost-equal process trees. However,
the purpose of the present text was to obtain an algebra in which the CSP
laws are preserved under presence of probabilistic choice, and in which no
new laws regarding the interplay between the different choice operators are
added. We leave the decidability problem for the future.



Chapter 9

Concluding remarks to part II

We discuss related work to the results presented in this part, and end with
concluding remarks.

9.1 Related work

As closely related to the results presented in Part II we consider the research
reports that face the challenge of defining a satisfactory linear-time seman-
tics for concurrent systems with probabilistic and nondeterministic choice;
by linear-time here we mean allowing distribution of prefix over internal
(probabilistic) choice. In the introduction we discussed why this problem is
non-trivial. Work addressing this problem was reported in [83], [101], [97],
[87], [63], [78], [38], [30], [32], [82], [33], [47], [31], [1]. Our work is also closely
related to the research oriented towards restricting the power of the sched-
ulers for concurrent probabilistic-nondeterministic systems [9, 31, 32, 38, 55],
to achieve compositionality for trace preorders [32, 38], or to obtain realistic
probabilities for the behaviour of the system [9, 31, 55].

The report [83] defines trace-style semantical equivalences for processes
with action choice and probabilistic choice; they are extended for processes
with internal nondeterminism such that first the internal nondeterminism is
resolved using the almighty (randomized) schedulers discussed in the intro-
duction, and then the processes are compared. Not surprisingly, the equiv-
alences are not congruences, for example they do not equate processes x‖y
and x̄‖y from Example 6.0.2 in the introduction. It is interesting to note
that reference [83] is the earliest one that notes the problem discussed in this
example. Similar problems with compositionality, induced by the underlying
almighty schedulers, appear in the trace equivalences defined in [97] and [33];
the latter one characterizes the former one via a testing scenario. We note

125



126 9. Concluding remarks to part II

that the compositionality problem in [97] remains even when restricted to
processes without internal nondeterminism, as processes p|||d and q|||d from
Fig. 6.4 are not equated (although p and q are) or, in other words, action
choice does not distribute over probabilistic choice.

References [101], [82], and [47] consider processes without internal non-
determinism and define equivalences that equate two processes only if they
cannot be distinguished by the environment. However, the environment is
not a process itself (as in our case), but rather only a sequence of actions. As
a result, although [101], [82], and [47] allow distributivity of external action
choice over probabilistic choice, they also make undesirable identifications
from the point of view of process theory; for example, they equate processes
1
2
ca⊕ 1

2
cb and 1

2
c(a � b)⊕ 1

2
c.

In [87] a process is a probability distribution over standard CSP processes;
two processes are equivalent if the probability distributions are the same. In
other words, all the probabilistic choices are resolved before the execution
of the process and a resolution is a standard non-probabilistic process. By
“lifting” the probabilistic choices to the root, the nondeterministic choices
are ”pushed” downwards and replicated. As discussed in the introduction,
the replication of the nondeterministic choices leads to loss of probability
information. With this approach also the idempotence of the internal choice
is lost [87], viz. the law x = x ⊓ x does not hold, and action choice does not
distribute over probabilistic choice. Similarly, in [1] first the probabilistic
choices are resolved and the resolutions are compared under the standard
may-testing semantics of [39] (in [1], processes do not contain internal non-
determinism). Again, action choice does not distribute over probabilistic
choice, which leads to compositionality problems. The same problems also
occur in the testing equivalence of [30], defined with the unrestricted sched-
ulers, similar to the testing semantics of [108] discussed in the introduction.

The loss of idempotence for internal choice was overcome by the button-
pushing testing equivalence defined in [78]; however, here still congruence for
parallel composition could not be achieved [79], viz. action choice does not
distribute over probabilistic choice.

Reference [63] defines a ready-trace equivalence for processes given
in denotational semantics, with action choice and internal probabilistic
choice, that is, without internal nondeterminism. We conjecture that the
ready-trace equivalence of [63] coincides with the one defined here, when
restricted to processes without internal nondeterminism. However, our
definition, unlike [63], yields a black-box testing scenario in the style of [58],
with which the equivalence can be determined. Namely, in our case, if the
observer can see the action menus at every moment, then she can deduce the
conditional probability of a ready-trace via a simple statistical procedure.



9.1. Related work 127

The definition of ready-trace equivalence given in [83] does not yield a
testing scenario, since the function that computes the probability of every
ready-trace does not yield a probability measure.

The results from the above research reports indicate that mixing proba-
bilistic and nondeterministic choice in concurrent processes creates composi-
tionality problems for linear-time equivalences, no matter whether in order to
establish equivalence the internal choices are resolved first [33,83,97], or the
probabilistic choices are resolved first [1,87]. This observation, together with
the problem with overestimation of probabilities under almighty schedulers
explained in Example 6.0.2, and noted already in [83, 87, 97], led to a new
research direction, aiming to restrict the power of the schedulers that used
to resolve the nondeterminism. Work in this direction has been reported
in [31, 32, 38, 55].

Reference [38] is the first one that addresses the problem with compo-
sitionality for trace semantics [97] in probabilistic systems. The parallel
composition in [38] is synchronous – each time the composed system per-
forms a step, all the components perform a step. The states of the system
are valuations over a set of variables, and the information available to each
component can be modeled by restricting the variables it is able to read.
Reference [32] considers asynchronous systems, and restricts the power of
the schedulers in a parallel composition, also to obtain compositionality for
a trace equivalence for probabilistic systems distinguishing between input
and output actions [110]. When components are composed, the local nonde-
terminism in a component is resolved based only on the history of the com-
ponent itself; the global nondeterminism, arising from the choice on which
component will generate the next output action on which (the rest of) the
components synchronize, is resolved by the components themselves, which
pass a token one to another. A component that holds the token decides to
which component to forward the token based on its own local history. Alter-
natively, it is discussed in [32], the global nondeterminism can be resolved by
a centralized component-scheduler, which resolves the nondeterminism based
on the global history of the composition. In [55] it is observed that such a
scheduler, that resolves the global interleaving nondeterminism based on the
complete history, may be still too powerful. A restriction is added to the
interleaving scheduler in [55], such that it cannot use information from one
component in order to decide between two other components.

Comparing our approach to [38] and [32], we can conclude that a common
feature, that enables compositional reasoning under linear-time semantics, is
that the local nondeterminism in a component is resolved based on local in-
formation only. The three approaches differ in the resolution of the global



128 9. Concluding remarks to part II

nondeterminism. While the focus in [38] and [32] is on resolving nondeter-
minism in special types of concurrent systems, our focus was on deriving a
satisfactory extension of a common process language such as CSP. The result
was a ready-trace semantics, finer than trace semantics, which conservatively
extends CSP with a probabilistic choice.

It is also interesting to see how the schedulers that resolve the interleav-
ing nondeterminism in our case fit with the strongly distributed reasoning
of [55]. However, without distinguishing between input and output actions,
we cannot apply the reasoning of [55], as the strongly distributed interleaving
scheduler cannot choose between input actions. However, the focus in [54,55]
is not on devising compositionality, but on improving the probabilistic ver-
ification techniques, by obtaining as realistic estimates of probabilities as
possible. In the present work, among other things, we were interested in the
question “how much freedom can the schedulers retain such that composi-
tionality for linear-time equivalence is preserved?”.

In [27] an algorithm is proposed for computing (time-bounded) optimal
reachability probabilities with respect to the distributed schedulers of [32]
and [55]. The algorithm is based on an interpretation of the model as a
parametric Markov chain, such that each state in the latter is a path in
the original probabilistic system. The idea is that the scheduler decisions
are parameters of the parametric Markov chain, similarly as here. However,
there is a conceptual difference between the two approaches. Namely, we are
interested in integrating the schedulers in the model itself for a compositional
reasoning, and the external choice is left to be resolved by the environment;
on the other hand, in [27] the interest is on resolving all nondeterminism
in a distributed system in order to compute the bounds of the reachability
probabilities, and composing the parametric Markov chains is not an issue.
It is interesting that both papers [50] and [27], that propose integrating the
scheduler information into labels, appeared at approximately the same time.

The paper [31] takes a dual approach to the previous approaches, by intro-
ducing an explicit scheduler that communicates to processes via labels: two
sub-processes in the process are indistinguishable to a scheduler if they have
the same labels. Thus, by a suitable labeling, the modeler specifies which
internal or random choices are visible to the scheduler and which are not.
When compared to our and all other approaches, the method in [31] allows
for a greater flexibility in equating processes. For example, whether processes
x and x̄ in Fig. 6.2 are testing-equivalent depends on the labeling system.
Note that this flexibility means that more responsibility is being delegated to
the modeler. In our case, on the other hand, it is enough to ensure only that
no label appears twice before processes are composed; as the processes start
composing, the labels identify which internal choices are multiple instances



9.2. Concluding remarks 129

of the same internal choice, or in terms of [31], which random choices are
invisible to the scheduler. Moreover, new labels are automatically assigned
to the nondeterminism arising from parallelism, reflecting the information
based on which this nondeterminism is resolved, and thus serving to identify
multiple instances of an internal choice. Also, while in [31] the labels serve
to navigate the scheduler and thus the scheduler is deterministic, in our case
the labels represent unknown probabilities, yielding randomized schedulers.

The power of the schedulers for verification of security properties has
been also restricted in [9]; in this paper, tagged probabilistic automata are
defined, such that the transitions in a parallel composition are tagged with
the identifier of the component that originates the transition, or with a pair of
components if synchronization has happened. At each point of the execution,
the scheduler for the composition can see the current tags and the history
of chosen tags and performed actions. Thus, this scheduler has similarities
to the schedulers defined in Section 8.2, showing once again how approaches
with different motivations can converge independently to similar solutions.
The framework of [9] has been extended with internal nondeterminism in [2]
and corresponding process equivalences (bisimulation and completed trace
equivalence), together with a congruence result for bisimulation, have been
given in [2].

Finally, note that restricting the power of schedulers that resolve the
nondeterminism, for the purpose of realistic modeling, is a research topic in
areas other than concurrency theory itself; for example in security (e.g. [28]),
in operation research (see e.g. [103]), and in artificial intelligence (e.g. [75]).
We do not make formal comparison to work in those areas, as, reasonably,
they target either more specific, or different problems.

9.2 Concluding remarks

In this part, we have proposed a new probabilistic extension of may/must
testing theory [39] for concurrent processes. The motivation was that the
existing approaches for probabilistic may/must testing [42,44,74,90,98,108],
based on the all-mighty schedulers for resolving nondeterminism, yielded un-
realistic probabilities with which a process passes a test. As a result, they
equated too few processes when compared to [39], or, in other words, the
internal probabilistic choice was observable. We have shown that our test-
ing preorder can be characterized with a probabilistic ready-trace preorder
relation, by which the exact moment in time in which a probabilistic or an
internal choice happens is unobservable. In order to obtain realistic proba-
bilities to pass a test, in our model the internal transitions are augmented



130 9. Concluding remarks to part II

with labels. The labels represent the information based on which the inter-
nal nondeterminism is resolved and thus restrict the schedulers. For finite
processes, our model is at least as expressible as the model of probabilistic
automata [97], or the alternating model of probabilistic systems [68], since
each finite process from the latter two can be mapped in our model by giving
different labels to all internal transitions.

We have also defined a generalized parallel composition for our model,
such that processes synchronize on a set of actions and interleave on the
rest of the actions, as in CSP [96], but also the synchronized actions are
hidden, as in CCS [85]. We have shown that our ready-trace proerder is a
precongruence, that is, is preserved under parallel composition. Based on
the ready-trace equivalence and the new parallel composition, we have given
a probabilistic extension of CSP, which preserves all the nice properties of
internal choice from CSP, such as the distributivity laws and idempotence.
Thus, with our approach we have also solved another open problem, namely
to give a satisfactory probabilistic extension of CSP, that respects the original
laws.

9.2.1 Discussion and future work

The results presented here open several questions that can be addressed in
the future. Namely, by the present definition of our parallel composition,
in general finite processes are obtained, since every internal choice must be
labeled by the information based on which it is resolved, which is usually
a history of execution. Thus, it would be interesting to see whether the
unfolding could be bypassed in certain cases and whether a finite represen-
tation of infinite processes can be obtained. Also, in the present setting we
limited ourselves to processes without divergence. There are several ways to
treat divergence: one can treat it is as an error in the model (e.g. [39, 71]),
or can abstract away from it by assuming fairness (e.g. [11, 85, 95]), or can
allow it, but distinguish between processes with and without divergence (see
e.g. [61]). In the present setting, divergent processes cannot be obtained
by parallel composition; divergence in the non-composed processes could be
treated by assuming that the divergence transitions are probabilistic (im-
plying fairness). Then, cycles of probabilistic transitions are easily handled
using Markov Chain theory [72]. However, if a parallel composition that
yields cyclic processes is defined, then an internal action may be obtained by
synchronization and divergence would require a different treatment.

By now, it is clear that defining a separate hiding operator together with
probabilistic choice operator does not fit well with our goal of retaining the
probabilities: it turns external choice into internal choice and gives even more



9.2. Concluding remarks 131

(unrealistic) power to the schedulers. Technically speaking, in our model the
internal actions resulting from hiding would have to be labeled with the in-
formation based on which the corresponding nondeterminism is resolved, but
such information does not exist. However, in the non-probabilistic case the
hiding operator is useful to abstract away from unimportant information [11].
A compromise that could be made is to hide the actions before processes are
composed, to abstract away from details, and/or after the complete model
is obtained by composing, in order to reduce the model.

Another problem that needs to be addressed is the decidability of our
ready-trace equivalence. We have defined it using randomized schedulers for
the resolution of the nondeterminism, which are in general more powerful
than the deterministic schedulers, i.e. those that assign trivial probabilities
from the set {0, 1} to the alternatives. Indeed, had we defined our equivalence
by deterministic schedulers, then it would have distinguished less. For exam-
ple, processes (τ1a⊓τ2b)|||(τ3c⊓τ4d) and τ5(a|||c)⊓τ6(a|||d)⊓τ7(b|||c)⊓τ8(b|||d)
would be equivalent; by our definition, they are distinguished, as the reso-
lution of the later process such that τ5 = τ8 = 0.5 and τ6 = τ7 = 0 cannot
be mimicked by any resolution of the former process. Interestingly, if we
ignore the internal labels, those two processes are equated by the failures se-
mantics of CSP [71]. Thus, we anticipate that if we restrict to deterministic
schedulers, no new equalities w.r.t. CSP would arise. Therefore, restricting
to deterministic schedulers for decidability reasons should be reasonable.

We conclude the discussion by describing an algorithm for composing pro-
cesses, that reveals that the way we define our restricted schedulers is very
suitable for modeling a hierarchy of compositions of processes (a component
of a system is usually itself made of several simpler components). Namely,
the crucial point of our labeling system is that the labels of the internal
choices that are obtained as a result of hiding after synchronization or as a
result of parallelism include all the necessary information for resolving the
nondeterminism. Thus, when the composed process is put in parallel with
another process, the dependencies between the internal choices are automati-
cally preserved. Note that if the labels of the internal transitions of a process
are bijectively mapped to new labels, the dependencies between the internal
choices are preserved, which is all that is needed when the composed process
is run in parallel. Thus, in order to compose finite processes, all that needs
to be done is to assign different labels to the simple (not composed) pro-
cesses, compose the processes in parallel, map the label set of the composed
process into a new label set, and then compose it again in parallel with other
processes.



132 9. Concluding remarks to part II



Bibliography

[1] L. Acciai, M. Boreale, and R. De Nicola. Linear and may-testing se-
mantics in a probabilistic reactive setting. In FMOODS-FORTE’11,
LNCS 6722, pages 29–43. Springer, 2011.

[2] M. S. Alvim, M. E. Andrés, C. Palamidessi, and P. van Rossum. Safe
equivalences for security properties. In IFIP TCS’10, pages 55–70,
2010.

[3] S. Andova. Probabilistic Process Algebra. PhD thesis, Eindhoven Uni-
versity of Technology, 2002.

[4] S. Andova, J. Baeten, P. D’Argenio, and T. Willemse. A compositional
merge of probabilistic processes in the alternating model. In NWPT
’06, pages 1–4. Reykjavik, Islandia, 2006.

[5] S. Andova, J. Baeten, and T. Willemse. A complete axiomatisation
of branching bisimulation for probabilistic systems with an application
in protocol verification. In CONCUR ’06, pages 327–342. LNCS 4137,
Springer, 2006.

[6] S. Andova and S. Georgievska. On compositionality, efficiency, and
applicability of abstraction in probabilistic systems. In SOFSEM 2009,
pages 67–78. LNCS 5404, Springer, 2009.

[7] S. Andova, S. Georgievska, and N. Trčka. Branching bisimulation
congruence for probabilistic systems. Theoretical Computer Science
(2011), DOI:10.1016/j.tcs.2011.07.020.

[8] S. Andova and T. Willemse. Branching bisimulation for probabilistic
systems: characteristics and decidability. Theoretical Computer Sci-
ence, 356(3):325–355, 2006.

[9] M. E. Andrés, C. Palamidessi, P. v. Rossum, and A. Sokolova. Informa-
tion hiding in probabilistic concurrent systems. Theoretical Computer
Science, 412(28):3072–3089, 2011.

133



134 BIBLIOGRAPHY

[10] J. Baeten and W. Weijland. Process Algebra. Cambridge University
Press, 1990.

[11] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equa-
tional Theories of Communicating Processes. Cambridge University
Press, 2010.

[12] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Syntax and defining
equations for an interrupt mechanism in process algebra. Fundamenta
Informaticae, 9(2):127–168, 1986.

[13] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Ready-trace semantics
for concrete process algebra with the priority operator. The Computer
Journal, 30(6):498–506, 1987.

[14] J. C. M. Baeten, J. A. Bergstra, and S. A. Smolka. Axiomization of
probabilistic processes: ACP with generative probabililties (extended
abstract). In CONCUR’92, LNCS 630, pages 472–485. Springer, 1992.

[15] J. C. M. Baeten and M. Bravetti. A ground-complete axiomatization
of finite state processes in process algebra. In CONCUR ’05, pages
248–262. LNCS 3653, Springer, 2005.

[16] C. Baier and M. Kwiatkowska. Model checking for a probabilistic
branching time logic with fairness. Distributed Computing, 11(3):125–
155, 1998.

[17] E. Bandini and R. Segala. Axiomatizations for probabilistic bisimula-
tion. In ICALP ’01, pages 370–381. LNCS 2076, Springer, 2001.

[18] T. Basten. Branching bisimilarity is an equivalence indeed! Informa-
tion Processing Letters, 58(3):141–147, 1996.

[19] R. Bellman. A Markovian decision process. Journal of Mathematics
and Mechanics, 6, 1957.

[20] J. Bergstra and J. Klop. Process algebra for synchronous communica-
tion. Information and Control, 60(1-3):109–137, 1984.

[21] J. Bergstra and J. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37:77–121, 1985.

[22] J. Bergstra, A. Ponse, and M. van der Zwaag. Branching time and
orthogonal bisimulation equivalence. Theoretical Computer Science,
309(1):313–355, 2003.



BIBLIOGRAPHY 135

[23] A. Bianco and L. de Alfaro. Model checking of probabalistic and non-
deterministic systems. In FSTTCS ’95, pages 499–513. LNCS 1026,
Springer, 1995.

[24] R. Bol and J. F. Groote. The meaning of negative premises in transition
system specifications. Journal of the ACM, 43:863–914, 1996.

[25] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of commu-
nicating sequential processes. Journal of ACM, 31(3):560–599, 1984.

[26] M. Browne, E. Clarke, and O. Grümberg. Characterizing finite Kripke
structures in propositional temporal logic. Theoretical Computer Sci-
ence, 59(1-2):115–131, 1988.

[27] G. Calin, P. Crouzen, P. R. D’Argenio, E. M. Hahn, and L. Zhang.
Time-bounded reachability in distributed input/output interactive
probabilistic chains. In SPIN’10, LNCS 6349, pages 193–211. Springer,
2010.

[28] R. Canetti. Universally composable security: a new paradigm for cryp-
tographic protocols. In FOCS’01, pages 136–145. IEEE, 2001.

[29] S. Cattani and R. Segala. Decision algorithms for probabilistic bisim-
ulation. In CONCUR ’02, pages 371–385. LNCS 2421, Springer, 2002.

[30] D. Cazorla, F. Cuartero, V. Valero, F. L. Pelayo, and J. J. Pardo. Al-
gebraic theory of probabilistic and nondeterministic processes. Journal
of Logic and Algebraic Programming, 55(1-2):57–103, 2003.

[31] K. Chatzikokolakis and C. Palamidessi. Making random choices invis-
ible to the scheduler. Information and Computation, 208(6):694–715,
2010.

[32] L. Cheung, N. Lynch, R. Segala, and F. Vaandrager. Switched PIOA:
Parallel composition via distributed scheduling. Theoretical Computer
Science, 365(1-2):83–108, 2006.

[33] L. Cheung, M. I. A. Stoelinga, and F. W. Vaandrager. A testing sce-
nario for probabilistic processes. Journal of ACM, 54(6):29:1–29:45,
2007.

[34] I. Christoff. Testing equivalences and fully abstract models for proba-
bilistic processes. In CONCUR’90, LNCS 458, pages 126–140, 1990.



136 BIBLIOGRAPHY

[35] E. Clarke and E. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs,
Workshop, pages 52–71, London, UK, 1982. Springer.

[36] N. Coste, H. Hermanns, E. Lantreibecq, and W. Serwe. Towards perfor-
mance prediction of compositional models in industrial GALS designs.
In CAV’09, pages 204–218. LNCS 5643, Springer, 2009.

[37] P. R. D’Argenio, H. Hermanns, and J.-P. Katoen. On generative par-
allel composition. In PROBMIV’98, ENTCS 22, pages 30–54. Elsevier,
1999.

[38] L. de Alfaro, T. Henzinger, and R. Jhala. Compositional methods for
probabilistic systems. In CONCUR’01, LNCS 2154, pages 351–365.
Springer, 2001.

[39] R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83–133, 1984.

[40] R. De Nicola and F. Vaandrager. Three logics for branching bisimula-
tion. Journal of ACM, 42(2):458–487, 1995.

[41] Y. Deng, C. Palamidessi, and J. Pang. Compositional reasoning for
probabilistic finite-state behaviors. In Processes, Terms and Cycles:
Steps on the Road to Infinity, pages 309–337. LNCS 3838, Springer,
2005.

[42] Y. Deng, R. van Glabbeek, M. Hennessy, and C. Morgan. Testing
finitary probabilistic processes (extended abstract). In CONCUR’09,
LNCS 5710, pages 274–288, 2009.

[43] Y. Deng, R. van Glabbeek, M. Hennessy, C. Morgan, and C. Zhang.
Remarks on testing probabilistic processes. In Computation, Meaning,
and Logic: Articles dedicated to Gordon Plotkin, ENTCS 172, pages
359–397, 2007.

[44] Y. Deng, R. J. van Glabbeek, M. Hennessy, and C. Morgan. Char-
acterising testing preorders for finite probabilistic processes. Logical
Methods in Computer Science, 4(4:4):1–33, 2008.

[45] J. Desharnais, V. Gupta, J. R, and P. Panangaden. Weak bisimulation
is sound and complete for PCTL*. In CONCUR 2002, pages 355–370.
LNCS 2421, Springer, 2002.



BIBLIOGRAPHY 137

[46] J. L. Doob. Stochastic Processes. New York: John Wiley and Sons,
1953.

[47] L. Doyen, T. A. Henzinger, and J.-F. Raskin. Equivalence of labeled
Markov chains. International Journal of Foundations of Computer Sci-
ence, 19(3):549–563, 2008.

[48] H. Garavel and M. Sighireanu. A graphical parallel composition op-
erator for process algebras. In FORTE XII / PSTV XIX ’99, pages
185–202. Kluwer, B.V., 1999.

[49] S. Georgievska and S. Andova. Composing systems while preserving
probabilities. In EPEW 2010, pages 268–283. LNCS 6342, Springer,
2010.

[50] S. Georgievska and S. Andova. Retaining the probabilities in prob-
abilistic testing theory. In FOSSACS’10, LNCS 6014, pages 79–93,
2010.

[51] S. Georgievska and S. Andova. Testing reactive probabilistic processes.
In QAPL’10, EPTCS 28, pages 99–113, 2010.

[52] S. Georgievska and S. Andova. Probabilistic CSP: Preserving the laws
via restricted schedulers. Submitted, 2011.

[53] A. Giacalone, C.-C. Jou, and S. A. Smolka. Algebraic reasoning for
probabilistic concurrent systems. In IFIP WG 2.2/2.3 Working Con-
ference on Programming Concepts and Methods, pages 453–459. North-
Holland, 1990.

[54] S. Giro. On the automatic verification of distributed probabilistic au-
tomata with partial information. PhD thesis, Universidad Nacional de
Córdoba, 2010.

[55] S. Giro and P. D’Argenio. On the expressive power of schedulers in
distributed probabilistic systems. In QAPL’09, ENTCS 253(3), pages
45–71. Elsevier, 2009.

[56] S. Giro and P. R. D’Argenio. Quantitative model checking revisited:
neither decidable nor approximable. In FORMATS’07, LNCS 4763,
pages 179–194. Springer-Verlag, 2007.

[57] S. Giro, P. R. D’Argenio, and L. M. Ferrer Fioriti. Partial order reduc-
tion for probabilistic systems: A revision for distributed schedulers. In
CONCUR’09, LNCS 5710, pages 338–353. Springer-Verlag, 2009.



138 BIBLIOGRAPHY

[58] R. J. v. Glabbeek. The linear time – branching time spectrum I; The
semantics of concrete, sequential processes. In Handbook of Process
Algebra, chapter 1, pages 3–99. Elsevier, 2001.

[59] R. J. v. Glabbeek. The meaning of negative premises in transition
system specifications ii. Journal of Logic and Algebraic Programming,
60-61:229–258, 2004.

[60] R. v. Glabbeek. What is branching time semantics and why to use it?
In The Concurrency Column, pages 190–198. Bulletin of the EATCS
53, 1994.

[61] R. v. Glabbeek, B. Luttik, and N. Trčka. Branching bisimilarity with
explicit divergence. Fundamenta Informaticae, 93:371–392, 2009.

[62] R. v. Glabbeek and P. Weijland. Branching time and abstraction in
bisimulation semantics. Journal of ACM, 43(3):555–600, 1996.

[63] F. C. Gomez, D. De Frutos Escrig, and V. V. Ruiz. A sound and
complete proof system for probabilistic processes. In ARTS’97, LNCS
1231, pages 340–352. Springer, 1997.

[64] J. Groote and F. Vaandrager. An efficient algorithm for branching
bisimulation and stuttering equivalence. In ICALP’90, pages 626–638.
LNCS 443, Springer, 1990.

[65] J. F. Groote. Transition system specifications with negative premises.
Theoretical Computer Science, 118:263–299, 1993.

[66] H. Hansson and B. Jonsson. A calculus for communicating systems
with time and probabilities. In Real-Time Systems Symposium ’90,
pages 278 –287, 1990.

[67] H. Hansson and B. Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6:102–111, 1994.

[68] H. A. Hansson. Time and Probability in Formal Design of Distributed
Systems. Elsevier, 1994.

[69] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[70] H. Hermanns. Interactive Markov Chains: The Quest for Quantified
Quality. LNCS 2428. Springer, 2002.



BIBLIOGRAPHY 139

[71] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[72] R. Howard. Semi-Markov and Decision Processes. London: Wiley,
1971.

[73] R. A. Howard. Dynamic Programming and Markov Processes. The
M.I.T. Press, 1960.

[74] B. Jonsson and Y. Wang. Testing preorders for probabilistic processes
can be characterized by simulations. Theoretical Computer Science,
282(1):33–51, 2002.

[75] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence Journal,
101:99–134, 1998.

[76] J.-P. Katoen, T. Kemna, I. Zapreev, and D. N. Jansen. Bisimula-
tion minimisation mostly speeds up probabilistic model checking. In
TACAS’07, pages 87–101. LNCS 4424, Springer, 2007.

[77] K. N. Kumar, R. Cleaveland, and S. A. Smolka. Infinite probabilistic
and nonprobabilistic testing. In FSTTCS’98, LNCS 1530, pages 209–
220. Springer, 1998.

[78] M. Kwiatkowska and G. Norman. A testing equivalence for reactive
probabilistic processes. In EXPRESS’98, ENTCS 16(2), pages 1–19.
Elsevier, 1998.

[79] M. Z. Kwiatkowska and G. J. Norman. A fully abstract metric-space
denotational semantics for reactive probabilistic processes. In COM-
PROX ’98, ENTCS 13, pages 1–33. Elsevier, 1998.

[80] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing.
Information and Computation, 94:1–28, 1991.

[81] D. V. Lindley. Introduction to Probability and Statistics from a
Bayesian Viewpoint. Cambridge University Press, 1980.

[82] N. López, M. Núñez, and I. Rodŕıguez. Specification, testing and im-
plementation relations for symbolic-probabilistic systems. Theoretical
Computer Science, 353(1):228–248, 2006.



140 BIBLIOGRAPHY

[83] G. Lowe. Representing nondeterministic and probabilistic behaviour
in reactive processes. Technical Report PRG-TR-11-93, Oxford Uni-
versity Computing Labs, 1993.

[84] N. Lynch, R. Segala, and F. Vaandrager. Observing branching struc-
ture through probabilistic contexts. SIAM Journal on Computing,
37(4):977–1013, 2007.

[85] R. Milner. A Calculus of Communicating Systems. Springer-Verlag,
1980.

[86] R. Milner. Operational and algebraic semantics of concurrent processes.
In Handbook of Theoretical Computer Science, Volume B: Formal Mod-
els and Sematics (B), pages 1201–1242. Elsevier and MIT Press, 1990.

[87] C. Morgan, A. McIver, K. Seidel, and J. W. Sanders. Refinement-
oriented probability for CSP. Formal Aspects of Computing, 8(6):617–
647, 1996.

[88] S. Nain and M. Y. Vardi. Branching vs. linear time: Semantical per-
spective. In ATVA’07, pages 19–34. LNCS 4762, Springer, 2007.

[89] R. D. Nicola. Extensional equivalences for transition systems. Acta
Informatica, 24(2):211–237, 1987.

[90] M. C. Palmeri, R. D. Nicola, and M. Massink. Basic observables for
probabilistic may testing. In QEST ’07, pages 189–200. IEEE Com-
puter Society, 2007.

[91] A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilis-
tic systems. In CONCUR ’00, pages 334–349. LNCS 1877, Springer,
2000.

[92] A. Pnueli. Linear and branching structures in the semantics and logics
of reactive systems. In ICALP’85, LNCS 194, pages 15–32, 1985.

[93] A. Pnueli and L. Zuck. Verification of multiprocess probabilistic pro-
tocols. Distributed Computing, 1:53–72, 1986.

[94] M. L. Puterman. Markov Decision Processes. Wiley, 1994.

[95] A. Rensink and W. Vogler. Fair testing. Information and Computation,
205:125–198, 2007.



BIBLIOGRAPHY 141

[96] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1998.

[97] R. Segala. Modeling and Verification of Randomized Distributed Real-
time Systems. PhD thesis, MIT, 1995.

[98] R. Segala. Testing probabilistic automata. In CONCUR’96, LNCS
1119, pages 299–314. Springer, 1996.

[99] R. Segala and N. Lynch. Probabilistic simulations for probabilistic
processes. Nordic Journal of Computing, 2(2):250–273, 1995.

[100] R. Segala and A. Turrini. Comparative analysis of bisimulation re-
lations on alternating and non-alternating probabilistic models. In
QEST’05, pages 44–53. IEEE Computer Society, 2005.

[101] K. Seidel. Probabilistic communicating processes. Theoretical Com-
puter Science, 152:219–249, 1995.

[102] A. Sokolova and E. d. Vink. Probabilistic automata: system types,
parallel composition and comparison. In Validation of Stochastic Sys-
tems: A Guide to Current Research, pages 1–43. LNCS 2925, Springer,
2004.

[103] E. J. Sondik. The optimal control of partially observable Markov pro-
cesses. PhD thesis, Stanford University, 1971.

[104] N. Trčka. Silent Steps in Transition Systems and Markov Chains. PhD
thesis, Eindhoven University of Technology, 2007.

[105] N. Trčka and S. Georgievska. Branching bisimulation congruence for
probabilistic systems. In QAPL’08, pages 129–143. ENTCS 220(3),
Elsevier, 2008.

[106] N. Trčka, S. Georgievska, J. Markovski, S. Andova, and E. de Vink.
Performance analysis of χ models using discrete-time probabilistic re-
ward graphs. In WODES’08, pages 113 –118. IEEE XPlore, 2008.

[107] M. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In FOCS’85, pages 327–338. IEEE Computer Society Press,
1985.

[108] Y. Wang and K. G. Larsen. Testing probabilistic and nondeterministic
processes. In Proceedings of the IFIP TC6/WG6.1 Twelth Interna-
tional Symposium on Protocol Specification, Testing and Verification
XII, pages 47–61, 1992.



142 BIBLIOGRAPHY

[109] V. Wolf. Testing theory for probabilistic systems. In Model-Based
Testing of Reactive Systems, LNCS 3472, pages 233–275. 2005.

[110] S.-H. Wu, S. Smolka, and E. Stark. Composition and behaviors of
probabilistic I/O automata. Theoretical Computer Science, 176(1–2):1–
38, 1997.



Curriculum vitae

Sonja Georgievska was born on 10th of January 1979 in Strumica, Macedonia
(then Yugoslavia). She studied computer science at the Faculty of Sciences
and Mathematics within the Ss. Cyril and Methodius University in Skopje,
Macedonia, and obtained the degrees of Graduated Engineer and M.Sc. in
informatics in 2001 and in 2007, respectively. From 2001 until 2007 she
worked as a teaching/research assistant at the same institution. In June 2007
she started a PhD project in the Department of Mathematics and Computer
Science at the Eindhoven University of Technology in The Netherlands of
which the results are presented in this dissertation.

143



Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional
Proof System for Multithreaded Java
-Theory and Tool Support- . Fac-
ulty of Mathematics and Natural
Sciences, UL. 2005-01

R. Ruimerman. Modeling and
Remodeling in Bone Tissue. Fac-
ulty of Biomedical Engineering,
TU/e. 2005-02

C.N. Chong. Experiments in
Rights Control - Expression and En-
forcement. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Fac-
ulty of Mathematics and Computing
Sciences, RUG. 2005-04

H.M.A. van Beek. Specification
and Analysis of Internet Applica-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based Sys-
tem Architecting - A Systematic Ap-
proach to Developing Future-Proof
System Architectures. Faculty of
Mathematics and Computing Sci-
ences, TU/e. 2005-06

G. Lenzini. Integration of Analysis
Techniques in Security and Fault-
Tolerance. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2005-08

T. Wolle. Computational Aspects
of Treewidth - Lower Bounds and
Network Reliability. Faculty of Sci-
ence, UU. 2005-09

O. Tveretina. Decision Proce-
dures for Equality Logic with Un-
interpreted Functions. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2005-10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Envi-
ronments. Faculty of Biomedical
Engineering, TU/e. 2005-11

J. Eggermont. Data Mining using
Genetic Programming: Classifica-
tion and Symbolic Regression. Fac-
ulty of Mathematics and Natural
Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type
Error Messages. Faculty of Science,
UU. 2005-13

G.F. Frehse. Compositional Ver-
ification of Hybrid Systems using
Simulation Relations. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analy-
sis of Probabilistic Systems. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2005-16

T. Gelsema. Effective Models for
the Structure of pi-Calculus Pro-



cesses with Replication. Faculty of
Mathematics and Natural Sciences,
UL. 2005-17

P. Zoeteweij. Composing Con-
straint Solvers. Faculty of Natural
Sciences, Mathematics, and Com-
puter Science, UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing
and Rewriting. Faculty of Natural
Sciences, Mathematics, and Com-
puter Science, UvA. 2005-19

M.Valero Espada. Modal Ab-
straction and Replication of Pro-
cesses with Data. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2005-20

A. Dijkstra. Stepping through
Haskell. Faculty of Science,
UU. 2005-21

Y.W. Law. Key management and
link-layer security of wireless sen-
sor networks: energy-efficient at-
tack and defense. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Fac-
ulty of Science, UU. 2006-01

R.J. Corin. Analysis Models for
Security Protocols. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-02

P.R.A. Verbaan. The Com-
putational Complexity of Evolv-
ing Systems. Faculty of Science,
UU. 2006-03

K.L. Man and R.R.H. Schiffel-

ers. Formal Specification and Anal-
ysis of Hybrid Systems. Faculty
of Mathematics and Computer Sci-
ence and Faculty of Mechanical En-
gineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifica-
tions of UML Models: Tool Support
and Compositionality. Faculty of
Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking
Timed Automata - Techniques and
Applications. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences,
VUA. 2006-07

C.-B. Breunesse. On JML: top-
ics in tool-assisted verification of
JML programs. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2006-08

B. Markvoort. Towards Hy-
brid Molecular Simulations. Fac-
ulty of Biomedical Engineering,
TU/e. 2006-09

S.G.R. Nijssen. Mining Struc-
tured Data. Faculty of Mathematics
and Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data
Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeter-
ministic and Probabilistic Choices.



Faculty of Science, Mathematics
and Computer Science, RU. 2006-12

B. Badban. Verification tech-
niques for Extensions of Equality
Logic. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2006-13

A.J. Mooij. Constructive formal
methods and protocol standardiza-
tion. Faculty of Mathematics and
Computer Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques
for Hybrid Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-15

M.E. Warnier. Language Based
Security for Java and JML. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2006-16

V. Sundramoorthy. At Home In
Service Discovery. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2006-18

L.C.M. van Gool. Formalising
Interface Specifications. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2006-19

C.J.F. Cremers. Scyther - Se-
mantics and Verification of Secu-
rity Protocols. Faculty of Math-
ematics and Computer Science,
TU/e. 2006-20

J.V. Guillen Scholten. Mobile
Channels for Exogenous Coordina-
tion of Distributed Systems: Seman-
tics, Implementation and Composi-
tion. Faculty of Mathematics and
Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time re-
configurable Network-on-Chip for
streaming DSP applications. Fac-
ulty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous
Distributed Systems. Faculty of
Mathematics and Computing Sci-
ences, RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Alge-
bra. Faculty of Natural Sciences,
Mathematics, and Computer Sci-
ence, UvA. 2007-04

L. Brandán Briones. Theories
for Model-based Testing: Real-time
and Coverage. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-05

I. Loeb. Natural Deduction: Shar-
ing by Presentation. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2007-06

M.W.A. Streppel. Multifunc-
tional Geometric Data Structures.



Faculty of Mathematics and Com-
puter Science, TU/e. 2007-07

N. Trčka. Silent Steps in Tran-
sition Systems and Markov Chains.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-09

A. van Weelden. Putting types
to good use. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2007-10

J.A.R. Noppen. Imperfect In-
formation in Software Development
Processes. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing
Systems. Faculty of Mechanical En-
gineering, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System
Behaviour in Time. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2007-13

C.F.J. Lange. Assessing and
Improving the Quality of Model-
ing: A Series of Empirical Stud-
ies about the UML. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration
and Delivery. Faculty of Natural

Sciences, Mathematics, and Com-
puter Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evo-
lution of Software Architectures.
Faculty of Electrical Engineering,
Mathematics, and Computer Sci-
ence, TUD. 2007-16

A.H.J. Mathijssen. Logical Cal-
culi for Reasoning with Binding.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Networks.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-18

M. A. Abam. New Data Struc-
tures and Algorithms for Mobile
Data. Faculty of Mathematics and
Computer Science, TU/e. 2007-19

W. Pieters. La Volonté Machi-
nale: Understanding the Electronic
Voting Controversy. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2008-02

M. Bruntink. Renovation of
Idiomatic Crosscutting Concerns
in Embedded Systems. Faculty
of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated Sys-
tem to Manage Crosscutting Con-
cerns in Source Code. Faculty



of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Sys-
tems. Faculty of Mechanical Engi-
neering, TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Pars-
ing, and Assimilation of Language
Conglomerates. Faculty of Science,
UU. 2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal
Verification of Optimistic Fair Ex-
change Protocols. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2008-07

I.S.M. de Jong. Integration
and Test Strategies for Complex
Manufacturing Machines. Fac-
ulty of Mechanical Engineering,
TU/e. 2008-08

I. Hasuo. Tracing Anonymity
with Coalgebras. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Al-
gorithms: Two Taxonomies and
a Toolkit. Faculty of Math-
ematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking
Markov Chains: Techniques and
Tools. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2008-11

M. Farshi. A Theoretical and Ex-
perimental Study of Geometric Net-
works. Faculty of Mathematics and
Computer Science, TU/e. 2008-12

G. Gulesir. Evolvable Behav-
ior Specifications Using Context-
Sensitive Wildcards. Faculty
of Electrical Engineering, Math-
ematics & Computer Science,
UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2008-14

P. E. A. Dürr. Resource-based
Verification for Robust Composition
of Aspects. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2008-15

E.M. Bortnik. Formal Meth-
ods in Support of SMC Design.
Faculty of Mechanical Engineering,
TU/e. 2008-16

R.H. Mak. Design and Per-
formance Analysis of Data-
Independent Stream Processing Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2008-17

M. van der Horst. Scalable
Block Processing Algorithms. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2008-18

C.M. Gray. Algorithms for
Fat Objects: Decompositions and
Applications. Faculty of Math-
ematics and Computer Science,
TU/e. 2008-19



J.R. Calamé. Testing Reactive
Systems with Data - Enumerative
Methods and Constraint Solving.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and
Experimental Aspects of Pattern
Evaluation. Faculty of Mathematics
and Natural Sciences, UL. 2008-22

R. Brijder. Models of Natural
Computation: Gene Assembly and
Membrane Systems. Faculty of
Mathematics and Natural Sciences,
UL. 2008-23

A. Koprowski. Termination
of Rewriting and Its Certification.
Faculty of Mathematics and Com-
puter Science, TU/e. 2008-24

U. Khadim. Process Algebras for
Hybrid Systems: Comparison and
Development. Faculty of Math-
ematics and Computer Science,
TU/e. 2008-25

J. Markovski. Real and Stochas-
tic Time in Process Algebras for
Performance Evaluation. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-26

H. Kastenberg. Graph-Based
Software Specification and Verifica-
tion. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Appli-
cations. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2008-28

R.S. Marin-Perianu. Wire-
less Sensor Networks in Motion:
Clustering Algorithms for Ser-
vice Discovery and Provisioning.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-29

M.H.G. Verhoef. Modeling
and Validating Distributed Embed-
ded Real-Time Control Systems.
Faculty of Science, Mathematics
and Computer Science, RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof
assistant for Clean. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2009-02

M. Lormans. Managing Require-
ments Evolution. Faculty of Electri-
cal Engineering, Mathematics, and
Computer Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-
Tolerant Software Systems. Fac-
ulty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2009-05

M.J. van Weerdenburg. Effi-
cient Rewriting Techniques. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2009-06



H.H. Hansen. Coalgebraic Mod-
elling: Applications in Automata
Theory and Modal Logic. Fac-
ulty of Sciences, Division of Math-
ematics and Computer Science,
VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Ap-
plications. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2009-08

A.L. Rodriguez Yakushev. To-
wards Getting Generic Program-
ming Ready for Prime Time. Fac-
ulty of Science, UU. 2009-9

K.R. Olmos Joffré. Strategies for
Context Sensitive Program Trans-
formation. Faculty of Science,
UU. 2009-10

J.A.G.M. van den Berg. Rea-
soning about Java programs in PVS
using JML. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2009-11

M.G. Khatib. MEMS-Based
Storage Devices. Integration in
Energy-Constrained Mobile Sys-
tems. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating
Dynamic Analysis Techniques for
Program Comprehension. Faculty
of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection

Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2009-14

H.L. Jonker. Security Matters:
Privacy in Voting and Fairness
in Digital Exchange. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping
Trust Management. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2009-17

C. Kaliszyk. Correctness and
Availability: Building Computer Al-
gebra on top of Proof Assistants
and making Proof Assistants avail-
able over the Web. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness
& Completeness: Formalizing Logic
and Analysis in Type Theory. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2009-19

B. Ploeger. Improved Verifica-
tion Methods for Concurrent Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis
and Analysis of Probabilistic Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2009-21



R. Li. Mixed-Integer Evolution
Strategies for Parameter Optimiza-
tion and Their Applications to Med-
ical Image Analysis. Faculty of
Mathematics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The Com-
putational Complexity of Probabilis-
tic Networks. Faculty of Science,
UU. 2009-23

T.K. Cocx. Algorithmic Tools
for Data-Oriented Law Enforce-
ment. Faculty of Mathematics and
Natural Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers.
Faculty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access
Control for Dynamic Collaborative
Environments. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2009-26

J.F.J. Laros. Metrics and Visuali-
sation for Crime Analysis and Ge-
nomics. Faculty of Mathematics
and Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Auto-
matic Code Inspections. Faculty
of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2010-01

M.R. Neuhäußer. Model Check-
ing Nondeterministic and Randomly
Timed Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2010-02

J. Endrullis. Termination and
Productivity. Faculty of Sciences,

Division of Mathematics and Com-
puter Science, VUA. 2010-03

T. Staijen. Graph-Based Specifi-
cation and Verification for Aspect-
Oriented Languages. Faculty
of Electrical Engineering, Math-
ematics & Computer Science,
UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Sci-
ence, UvA. 2010-05

J.K. Berendsen. Abstraction,
Prices and Probability in Model
Checking Timed Automata. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2010-06

A. Nugroho. The Effects of UML
Modeling on the Quality of Software.
Faculty of Mathematics and Natural
Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2010-08

J.S. de Bruin. Service-Oriented
Discovery of Knowledge - Founda-
tions, Implementations and Appli-
cations. Faculty of Mathematics
and Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Com-
ponent Connectors. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2010-10

M.M. Jaghoori. Time at Your
Service: Schedulability Analysis of
Real-Time and Distributed Services.
Faculty of Mathematics and Natural
Sciences, UL. 2010-11



R. Bakhshi. Gossiping Mod-
els: Formal Analysis of Epidemic
Protocols. Faculty of Sciences,
Department of Computer Science,
VUA. 2011-01

B.J. Arnoldus. An Illumination
of the Template Enigma: Software
Code Generation with Templates.
Faculty of Mathematics and Com-
puter Science, TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2011-03

L. Astefanoaei. An Executable
Theory of Multi-Agent Systems Re-
finement. Faculty of Mathematics
and Natural Sciences, UL. 2011-04

J. Proença. Synchronous coor-
dination of distributed components.
Faculty of Mathematics and Natu-
ral Sciences, UL. 2011-05

A. Moralı. IT Architecture-
Based Confidentiality Risk Assess-
ment in Networks of Organizations.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2011-06

M. van der Bijl. On chang-
ing models in Model-Based Testing.
Faculty of Electrical Engineering,

Mathematics & Computer Science,
UT. 2011-07

C. Krause. Reconfigurable Com-
ponent Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-08

M.E. Andrés. Quantitative Analy-
sis of Information Leakage in Prob-
abilistic and Nondeterministic Sys-
tems. Faculty of Science, Math-
ematics and Computer Science,
RU. 2011-09

M. Atif. Formal Modeling and Ver-
ification of Distributed Failure De-
tectors. Faculty of Mathematics and
Computer Science, TU/e. 2011-10

P.J.A. van Tilburg. From
Computability to Executability – A
process-theoretic view on automata
theory. Faculty of Mathematics and
Computer Science, TU/e. 2011-11

Z. Protic. Configuration manage-
ment for models: Generic meth-
ods for model comparison and model
co-evolution. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and
Hiding in Concurrent Processes.
Faculty of Mathematics and Com-
puter Science, TU/e. 2011-13


	Introduction
	Background
	Motivations and the approaches
	Contributions
	Structure of the thesis

	Origin of the thesis

	I Branching-time semantics
	Introduction
	Compositional probabilistic branching bisimilarity
	Probabilistic transition systems
	Branching bisimilarity for PTS
	Compositionality
	The coarsest congruence result
	Weaker branching bisimilarity 
	Comparing the two equivalences
	The coarsest congruence proof


	Branching bisimilarity: Algorithm, logics, axioms
	Decidability algorithm
	Colouring definition
	Branching bisimilarity and pCTL
	pCTL
	Soundness of branching bisimilarity for pCTL

	A complete axiomatization: Process theory pTCP 
	Process language pTCP  
	Branching bisimilarity and pTCP operators
	Axiomatization


	Concluding remarks to part I
	Related work
	Concluding remarks


	II Testing semantics
	Introduction
	Probabilistic testing theory: Retaining the probabilities
	Process graphs
	Unfolding and coherent labeling
	Testing semantics
	Synchronization
	The result of testing
	Testing preorder

	Probabilistic ready-trace preorder
	Bayesian probability
	The preorder relation RT

	The two preorders coincide

	A conservative probabilistic extension of CSP
	Operators for choices and priority
	Parallel composition
	Concurrency with hiding
	Interleaving 
	General parallel composition with hiding

	Normal forms
	General process trees
	Normal forms

	Congruence property for RT
	Axiomatic characterization of RT

	Concluding remarks to part II
	Related work
	Concluding remarks
	Discussion and future work


	Bibliography
	Curriculum vitae


