

A TxQoS-aware business transaction framework

Citation for published version (APA):
Wang, T. (2011). A TxQoS-aware business transaction framework. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Industrial Engineering and Innovation Sciences]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR717753

DOI:
10.6100/IR717753

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR717753
https://doi.org/10.6100/IR717753
https://research.tue.nl/en/publications/97bc74ac-7eef-471f-b9fe-79b985af2326

A TxQoS-aware Business Transaction
Framework

Copyright c⃝ 2011 by Ting Wang. All rights reserved.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Wang, Ting
A TxQoS-aware Business Transaction Framework / by Ting Wang. - Eind-
hoven : Technische Universiteit Eindhoven, 2011. - Proefschrift -
ISBN 978-90-386-2819-6
NUR 953
Keywords: Transaction Framework / Service-Oriented Architecture / Trans-
actional Quality of Service / Business Process / Service Level Agreement

The work in this thesis has been carried out under the auspices of Beta
Research School for Operations Management and Logistics.
Beta Dissertation Series D142
Printed by University Press Facilities, Eindhoven
Cover design: Paul Verspaget

A TxQoS-aware Business
Transaction Framework

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de rector magnificus,
prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen

door het College voor Promoties in het openbaar te verdedigen
op maandag 14 november 2011 om 14.00 uur

door

Ting Wang

geboren te Jiangxi, China

Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. P.W.P.J. Grefen

Co-promotor:
dr. S. Angelov

To my parents.

vi

Contents

Acknowledgements xi

1 Introduction 1
1.1 Research Context . 1
1.2 Research Motivation . 4
1.3 Research Goal and Objectives 6
1.4 Contribution . 6
1.5 Research Approach . 7
1.6 Thesis Outline . 9

2 Related Work and Research Background 11
2.1 Introduction . 11
2.2 Concept and History of Transaction Management 12

2.2.1 Transactions for Databases 13
2.2.2 Transactions for Workflow 20
2.2.3 Transactions for Internet 22

2.3 Service-oriented Contract-driven Business Processes 26
2.3.1 SOA and SOC . 26
2.3.2 QoS and SLA . 28
2.3.3 Contract-driven Processes 29

2.4 Summary of Chapter . 30

3 Case Study on Process Reliability 33
3.1 Introduction . 33
3.2 Case Description and Modeling 34

3.2.1 Process View . 35
3.2.2 Service View . 37

3.3 Case Study: Observation and Analysis 40
3.3.1 Process View . 40
3.3.2 Service View . 41
3.3.3 Discussions and Further Elaborations 43

viii CONTENTS

3.3.4 Discussions On Case 44

3.3.5 Further Elaborations 46

3.4 Conclusions . 48

4 TxQoS Approach 51

4.1 Introduction . 51

4.2 TxQoS Overview . 52

4.2.1 TxQoS Concept . 52

4.2.2 TxQoS Scenario . 54

4.2.3 TxQoS Life Cycle . 57

4.2.4 Summary . 58

4.3 TxQoS Specification . 60

4.3.1 TxQoS Specification Attributes: FIAT 61

4.3.2 Fluency . 62

4.3.3 Alternation . 64

4.3.4 Transparency . 65

4.3.5 Interferability . 66

4.3.6 Discussion of FIAT . 67

4.4 Conclusions . 68

5 TxQoS Framework 71

5.1 Introduction . 71

5.2 TxQoS Reference Architecture 72

5.2.1 Functional Requirements 72

5.2.2 Architecture Design . 74

5.3 Contracting Model . 76

5.4 Monitoring . 78

5.5 Conclusions . 81

6 Abstract Transaction Construct 83

6.1 Introduction . 83

6.2 What are ATCs? . 86

6.2.1 ATC Concept . 86

6.2.2 ATC Features . 89

6.2.3 ATC Representation 92

6.3 How Do ATCs Work? . 98

6.3.1 ATC Lifecycle . 98

6.3.2 ATC Composition . 99

6.4 Conclusions . 103

CONTENTS ix

7 BTF: Integrating TxQoS and ATC 105
7.1 Introduction . 105
7.2 BTF Scenario . 107

7.2.1 Provider-Dominant Scenario 108
7.2.2 Provider-User Equivalent Scenario 109

7.3 BTF Life Cycle . 111
7.3.1 Business Patterns . 112
7.3.2 BTF Phases . 115

7.4 BTF Architecture . 120
7.4.1 Requirements Analysis 121
7.4.2 Architecture Design 122

7.5 Conclusions . 124

8 Case Study for Validation 127
8.1 Introduction . 127
8.2 Case Description and Analysis 129

8.2.1 Architecture . 130
8.2.2 Dual View on the Case 132
8.2.3 Observation and Analysis 139

8.3 BTF Feasibility Study . 143
8.3.1 Apply TxQoS in Epacity 144
8.3.2 Apply ATCs in Epacity 153
8.3.3 Apply the BTF Patterns in Epacity 155
8.3.4 Apply the BTF architecture in Epacity 157

8.4 Conclusions . 159

9 Conclusion 161
9.1 Research Summary . 161
9.2 Contribution . 162

9.2.1 TxQoS . 162
9.2.2 ATC . 163

9.3 Limitations and Future Work 164
9.3.1 Integration of TxQoS and ATC 164
9.3.2 Feasibility Study . 164
9.3.3 Full-blown ATC Library 165

A Fluency Specification Method 167

B Legend and Main Processes in Epacity 169
B.1 Legend Description . 169
B.2 Main Processes . 170

x CONTENTS

C Sub-processes in Epacity 179

Bibliography 187

Summary 193

Samenvatting 195

Curriculum Vitae 197

Acknowledgements

It has been a long journey to reach to this point. I cannot wait to express
my humble gratitude to those who contributed in all kinds of forms to the
completion of my PhD thesis.

First I would like to thank prof.dr.ir. Paul Grefen, my promoter and
supervisor, for the opportunity of bringing me on board at the XTC project.
He patiently guided me through the PhD process , and shaped my work with
his strict quality standard. Beyond his guidance and challenges during my
research, Paul has impressed me in many ways – fancy restaurant treatments,
his innovation on visual poems, and the funny teasers – all nice things for
which he deserves the title of a ‘super-wiser ’. I learned a lot of things from
him, among which the most important may be ‘the best chocolate in the
world’, or ‘everyone has a child inside’.

My deep gratitude goes to prof.dr.ir. Mike Papazoglou , the co-founder
of the XTC project, for his helpful insights, which benefited the quality of
the thesis. I am indebted to prof.dr.ir. Uzay Kaymak and prof.dr. Babara
Pernici, the other core committee members, for their guidance and valuable
comments. Prof.dr. YaoHua Tan and prof.dr.ir. Jos Van Hillegersberg are
thanked for accepting the invitation as the committee members.

Special thanks go to dr. Samuil Angelov, my co-promoter, who, over time,
shifted between many roles -my office mate, another ‘poor PhD student’ who
is teased by Paul, an intellectually funny friend, and the supervisor of this
thesis . Then I have to mention ‘yet another poor PhD student’, Sven, who
together with Samuil, helped me on lots of things from day one, such as
speaking English and moving furniture from Tilburg to Eindhoven. Their
witty sparks brought me lots of hilarious moments both at work and during
our spare time - we made a beautiful kite and often sneaked out of the office
to fly it; we played board games regularly during weekends; we shared with
each other the knowledge, experience, and of course, the food from our very
different cultural background; we would engage on all conversations with
persistent scientific spirit on all odd topics like, the origin of sour cabbage
dish.

xii Acknowledgements

I would extend my sincere gratitude to the colleagues in the IS group,
Ana Karla, Irene, and Mariska, who often organized girl’s activities , and
with which I had tours to some of the best spots of this country, including
the park, the museum, and the beach. Needless to say that we had fun
in the city when, for instance, going for dinners, movies, and out dancing.
Sometimes I even forgot that we were pursuing a serious career named ‘women
in science’. Off course we also had nice guys in the group. Jochem saved me
from time to time in the battles against software or hardware. Furthermore,
he shared with me his insights on my research during the stimulative XTC
discussions. Boudewijn and Remco are thanked for their tour guide during
the conferences abroad. There was a very positive and friendly atmosphere in
the group, where all colleagues were there ready for inspiring discussions and
warm help. During the years working there, I was able to explore and grow
through all kinds of ‘first time in my life’ experiences besides the research
activities, and I have truly enjoyed this process.

The thesis could have not been written without the support from the
following organizations. The XTC project was funded by NWO, the Nether-
lands Organization for Scientific Research. The research school of Beta pro-
vides an excellent academia environment and administration support. The
partner from BearingPoint, Mary Ann, immediately agreed to my proposal
when I suggested using the company’s largest project as a case study. My
manager Martin allowed me to work from home at times, so that I was able
to meet with my supervisors on campus regularly. Towards the end of the
thesis, André Vorage from Edit-Your-Work company proof-read the whole
thesis and I would like to thank his professional service as well.

One of the best things I did in my university years here, is to make
a lot of Chinese friends, most of which are from the student and scholar
community, who gave color to my life in the Netherlands. Gu Bing, Li Ping,
Zhang Shaoxian, Guo Wei, Liu Yan, Yang Jia, Liu Danqing, Zhang Yi, Sun
Chunxia, Li Jing, Tsoi Shufen, Tang Dongling, Cheng Jieyin, and Zhang
Ying have always been around me offering all what I could wish for from
friends. Also I would like to express my deepest gratitude to the friends
who nowadays have settled down in other cities or countries for their warm
friendship ever-lasting: Li Zhonggui, Guo Lan, Xiao Yan, Jia Yuping, Zhao
Jing, Wong Yuki, Wang Yue, Qiao Liang, Wang Ping, Jiang Zhouting, Han
Wei, Yuan Ming, Li Zhili, Huang Rubin, and Huang Tiezhu. I will never
forget the wonderful vacations and trips, the joyful games, the exhausted
search for good restaurants, the inspiring conversations, and many more nice
times we had together.

I would like to thank Jiang Ying and Xu Yu in China, who have been
my best friends for over 23 years. It was them who ignited my interest in

xiii

computer science and forwarded all the English test materials for studying
abroad. It was them who sent a big FedEx box and soon thereafter a big
EMS box, full of presents to help relieve me of homesickness in my first days
after arriving in the Netherlands. It is them who have been closely watching
my every move remotely and supporting me through all ups and downs.

At the end, I would like to thank my parents with great respect and
appreciation. With their constant love and support in all possible forms, I
was able to chase my dreams with lots of encouragement and freedom.

xiv Acknowledgements

Chapter 1

Introduction

This chapter provides an overview of the research leading up to this the-
sis. Section 1.1 presents the research context of the XTC (eXecution of
Transactional Contracted electronic services) project as background knowl-
edge. Section 1.2 introduces the motivation to carry out the research in the
given context. Section 1.3 presents the research goal and decomposes it into
a number of objectives. Section 1.4 summarizes the intended contribution of
our work. In order to generate a methodology for solving the problem set,
Section 1.5 explains the research method and illustrates the research process.
Finally, Section 1.6 outlines the structure of the thesis, corresponding to the
process.

1.1 Research Context

E-business, a concept first promoted by IBM at a large marketing campaign
in 1997 to raise awareness and knowledge of the new business paradigm [36],
has revolutionized the business world. According to [47], e-business is ‘the
conduct of automated business transaction, by means of electronic communi-
cations networks (e.g. via the Internet and/or possibly private networks)
end-to-end’. Backed by information technologies, such as e-mail, World
Wide Web, workflow management systems, Web services, and many more,
e-business has been widely accepted as an effective way to conduct business.
Many commercial applications, such as ERP (Enterprise Resource Planning)
and CRM (Customer Relationship Management) systems, have been devel-
oped to offer businesses new opportunities and empower business processes
with the advantage of computerized information systems.

The latest trend in information systems shows the current shift from
carefully planned designs that build information systems from scratch, to

2 Introduction

Information
System
Design

Service

Oriented

Object

Oriented

Data

Centered

TechnologyTechnologyTechnologyTechnology

PullPullPullPull

Joint

Processes

Local

Activities

BusinessBusinessBusinessBusiness

PushPushPushPush

Networked

Enterprises

Built-from-

scratch(e.g. Database) Module-based(e.g. ERP) Loosely-

coupled (e.g. ESB)
Figure 1.1: Trend of Information System Design

redesigns that build information systems based on existing application and
components [58]. The legacy information systems centered around database
applications are still in use. However, in many cases they are wrapped up as
modules or services to integrate with other systems.

The emerging research efforts from both academia and industry on ser-
vice composition using Service-Oriented Architecture (SOA), demonstrate
the trend depicted in Figure 1.1. The basic idea of SOA is that service users
discover needed services advertised by service providers through service in-
termediaries. This requires standardized approaches for service invocation
and delivery. As the major implementing technology of SOA, Web services
have evolved from standards and protocols, such as messaging (i.e. SOAP),
description (i.e. WSDL), and discovery (i.e. UDDI), to many proposals ad-
dressing advanced issues, such as composition, QoS management, security,
and transaction management. SOA, together with the business process tech-
nologies of information systems, have become an intriguing topic to address
and have resulted in many research papers and commercial applications [17].
For example, among these technologies, the approved OASIS standard WS-
BPEL(Web Service-Business Process Execution Language) is a language for
composing distributed Web services into processes.

E-business has moved from the simple automation of business applica-
tions, to the complex integration and coordination of business processes [24].
Business processes have grown to be very complex, involving miscellaneous
activities and resources. At the process level, the distributed applications
are often treated as ‘services’, so that they can invoke, as well as be invoked,
by each other, without considering the technical heterogeneity. In this dis-
sertation, we call the processes executed in SOA paradigm service-oriented
business processes. These service-oriented processes allow e-business to cross
organizational boundaries, unify applications over proprietary networks, and
offer customers comprehensive, yet easy-to-use services. In such an environ-
ment, dynamically composed activities usually have complex inter-related

1.1 Research Context 3

dependencies which make exceptions and errors prone to occur during pro-
cess execution.

Transaction management, which has been widely used in information sys-
tems for exception handling and fault tolerance, guarantees a reliable and
robust execution. However, the traditional approach of transaction manage-
ment, by locking and afterwards releasing the shared resources per access,
is not applicable in loosely-coupled, long-lasting business processes spanning
organizational boundaries. In addition, each component activity, as well as
the whole process, may differ in the need of transactional support. All these
add to the complexity of today’s transaction management and the demand
for flexibility on top of robustness. For example, a booking process in a
travel agency invokes three parallel Web services: hotel booking, car rental,
and flight booking, where each Web service demands ‘atomic’ Web service
transaction support. Furthermore, there are sequential activities like billing,
payment check, etc., which are executed one after another, and as a result
require a ‘chained’ transaction support. In addition, the whole process might
need a ‘rollback’ mechanism, in case a customer cancels the booking before
payment. In case of a cancelation after payment, the process cannot be re-
turned to the exact same state prior to payment (e.g. the customer is charged
with a fine due to late-cancel), thus the transaction mechanism of ‘forward
recovery’ is needed.

According to Merriam-Webster, an English dictionary, the word reliability
means ‘the quality or state of being reliable’ or ‘the extent to which an experi-
ment, test, or measuring procedure yields the same results on repeated trials’
[33]. Relating it to transaction management, it means the extent to which
a (transaction management) system handles exceptions and errors so that
the execution produces expected results of consistent quality. We name this
kind of reliability as ‘technical reliability’. We noticed that, while transaction
management provides technical reliability in a distributed and heterogeneous
environment, contracts provides business trustworthiness between parties in
complex processes. This kind of trustworthiness is seen by us as the business
form of reliability, where one party expects consistent, measurable results de-
livered by another party. Technical reliability focuses on the execution and
the mechanisms to guarantee the execution. Business reliability focuses on
the results and the unambiguous interpretation of the expected results.

As a legally binding agreement between parties, contracts play an impor-
tant role in regulating business relationships, especially in mission-critical
business processes. If a process execution is triggered by some form of
contract, such as an agreement between the parties or an form submitted
by a client, then we name this process as a ‘contract-driven’ process. The
traditional way of establishing and managing contracts manually is usually

4 Introduction

resource-consuming (in terms of time, cost, human effort, etc.). To enhance
efficiency and lower costs, e-contracting has been introduced to the business
world thanks to the advancements of relevant technologies. If a large amount
of dynamic business relationships are involved, e-contracting can be a pow-
erful means to guarantee business trustworthiness while meeting speed and
flexibility requirements. Working together, transaction management and e-
contracting ensure a reliable execution of complex and long-lasting collabora-
tive processes from both technical and business angles. Here and throughout
the thesis, we use the term ‘reliability’ in the context of complex business
processes indicating a smooth execution with the results unambiguously in-
terpreted by the involved parties.

This dissertation describes the research result of the XTC project funded
by NWO (Dutch Scientific Organization), and carried out in the above re-
search background. 1 More specifically, the aim of the XTC project is to
address the process reliability issues within the crossing fields of SOA, busi-
ness processes, transaction management, and e-contracting.

1.2 Research Motivation

Within the context of service-oriented business processes, there have been
many research efforts in service composition (e.g. BPEL) and Business Pro-
cess Management (BPM). However, we notice that some necessary properties
such as reliability, security, and robustness of such processes are less well ad-
dressed, with few consensuses reached, and standards met. Therefore, we
are motivated to conduct research, addressing the reliability issue within
the whole promising picture of contract-driven service-oriented business pro-
cesses.

After an extensive literature study on the effectiveness of the IT sys-
tems to address the reliability of process execution, we discover that current
transaction management solutions are insufficient to address the reliability
problem of complex processes. Taking the travel booking example, current
technologies can already solve the reliability problem of a process purely
composed of Web services in an accepted manner. However, it is a sim-
plified illustration of complicated service-oriented processes, which may be
composed of many more services and ad-hoc activities. Flexibility and com-
prehensiveness when using transaction mechanisms for such processes are
required. The existing transaction models/frameworks are not able to ad-
dress these requirements, as they are developed basically for one particular

1XTC is an abbreviation of XTraConServe, eXecution of Transactional Contracted
Electronic Services, NWO Project, No. 612.063.305.

1.2 Research Motivation 5

application domain (e.g. ACID transactions for database applications and
Web service transactions for WS applications).

We notice that on one hand, research efforts addressing the reliability
issue of automated business processes usually assess purely from a technical
perspective, which results in advancements in many different disciplines such
as transaction mechanisms and software reliability techniques. On the other
hand, the business community views reliability as a broader issue than merely
an executable process, which can include business, management, and legal
perspectives. For example, the concept of transaction is perceived differently.
In the IT world, transaction management is originally a database mechanism,
while in the business world, a transaction is a trading term for expressing
the exchange of values. These different interpretations of the same concept
or subject very often result in technology solutions which are inadequate for
business requirements. Designed to deal with the reliability issue, existing
transaction management mechanisms are widely adopted in computerized
information systems to handle exceptions and errors. However they do not
guarantee reliable business process execution to be robust, despite of the ex-
ceptions and errors. It is especially true if the process is complex, long-lasting
and full of ad-hoc activities, and is composed of services not implemented by
means of automated computer systems.

Considering the below scenario taking place in a hospital which we dis-
cover in an elaborated case study [59]: Patients suffering from heart problems
want to be treated and thus register for a particular cardiac surgery. From
the patients point of view, the hospital is a provider that offers them a curing
service by means of a treatment process lasting days or months. Within the
hospital, there are different units, which are actually independent organiza-
tions, each specialized to offer some function such as intensive care, surgery,
pre-operation screening and administration. We view each unit as a service
provider offering services either to the patients directly or to other collabo-
rating units. Obviously, this treating process is a complex and long-lasting
service-oriented business process, and is full of exceptions (i.e. emergencies).
Therefore, reliability (of both the execution and the result) is of highest
concern. However, most of the services are implemented by human beings
(e.g. surgeons, nurse practitioners, physicians, anesthetists, and staff) with
no standardized serving result. Consequently, many of mature transaction
mechanisms suitable for computers(e.g. two-phase commit) providing tech-
nical reliability are not applicable in this case.

From what we observed in cases and what we studied in the literature,
we found the research on the reliability of complex business processes, that
are typically service-oriented and contract-driven, a promising direction to
pursue. A business transaction framework to address the problem is therefore

6 Introduction

our primary interest.

1.3 Research Goal and Objectives

Motivated by the lack of a comprehensive and flexible transaction support
for service-oriented processes and the discovery of the gap between the IT
and business world, we identify the overall research goal as:

The design and development of a comprehensive yet flexible
Business Transaction Framework (BTF), that is not restricted to
a specific application domain or application environment, and that
supports explicitly specified reliability aspects of complex, contract-
driven, and service-oriented business processes.

There are a number of objectives we need to achieve in order to achieve
the research goal of the BTF:

• A problem statement and a requirements specification inspired from a
case study, which together raise the main questions the BTF design
needs to fulfill.

• The business-oriented design of the BTF components that allows for
transactional qualities to be specified in the e-contracts.

• The technology-oriented design of the BTF components that allows for
flexible composition of transactional constructs.

• The integration design of the BTF that combines the business and
technology design results from the above.

• The validation of the usability and effectiveness of the BTF through
the examination of a case study .

1.4 Contribution

What we intend to achieve from the XTC project is a Business Transac-
tion Framework, which is rooted in transaction management techniques,
yet addresses the concern on process reliability by a business-aware approach.
We develop such a BTF at conceptual level, with the concepts, scenarios,
phases throughout life cycle, reference architectures, and mechanisms pre-
sented in this thesis. The thesis focuses on design; thus the implementation
of the BTF is out of its scope.

The BTF provides comprehensive and flexible transaction support for
contract-driven service-oriented business processes. Transaction support is
indispensable for a reliable process execution and our intended BTF enhances

1.5 Research Approach 7

the reliability by means of transaction management mechanism rooting in the
IT world as well as a contractual approach reflecting the requirements from
the business world.

At the end of the thesis, we will summarize what we have achieved along
with the research on the BTF. The outcome from the XTC research, besides
the BTF, is expected to include the method and other insights in this area.

1.5 Research Approach

Throughout our research, we applied a design science method that is widely
used in research on technology fields. ‘Research in IT must address the
design tasks faced by practitioners. Real problems must be properly con-
ceptualized and represented, appropriate techniques for their solution must
be constructed, and solutions must be implemented and evaluated using ap-
propriate criteria’ [38]. In the XTC project, we have carried out a number
of real-life case studies in order to identify problems and research solutions
that address these problems. Furthermore, we use case studies to validate
our research by verifying the utility and effectiveness of our solution. The
actual research process in the XTC project is shown in Figure 1.2 below.

We started by planning, which was followed up by literature review (the-
ory) and a case study (practice) to help identify the research problems. Af-
terwards, we carried out business-oriented research and technical-oriented
research in parallel, and integrated them to develop a solution to address the
problems. Finally we validated our solution through a large scale real life
case study. Each phase of the research resulted in one chapter (including
the appendix) of the thesis as shown in the diagram. The following research
questions are answered:

1. What are the research context and relevant literature for the BTF
design? - Chapter 2

2. What do we observe from a real-life case and what are the problems
the BTF needs to address? - Chapter 3

3. What is the approach to address the business understanding of the
transaction agreement? - Chapter 4

4. How does the approach (conceptualized in the last chapter) work? -
Chapter 5

5. What is the technical approach to address the flexibility and how does
it work? - Chapter 6

6. How do the business and technology oriented approaches work to-
gether? - Chapter 7

8 Introduction

Literature
Review

Case Study

Problem
Identification

Business-
oriented
Design

Case Study
Validation

Design
Integration

Project
Planning

Summary and
Discussions

Chapter 2

Chapter 1

Chapter 3

Chapter
4, 5

Technology -
oriented
Design

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Figure 1.2: Research Process

1.6 Thesis Outline 9

7. How to verify the utility of our design (i.e. feasibility study)? - Chap-
ter 8

8. What are the conclusions and limitations of our research on BTF? -
Chapter 9

1.6 Thesis Outline

As stated in the last section, this thesis addresses the research questions
identified above. Each chapter (apart from this chapter) answers one research
question. Altogether, this thesis consists of 9 chapters, organized as follows.

Chapter 1, the current chapter, gives an overview of the research carried
out in the XTC project with the aim to develop a Business Transaction
Framework.

Chapter 2 gives the background information of the thesis and reviews the
related research effort up to date.

Chapter 3 describes a case study which we model, observe and analyze for
drawing out the statement of the research problems.

Chapter 4 presents a contractual approach to address the first problem of
unambiguous reliability agreement raised in the previous chapter.

Chapter 5 continues the design of the solution proposed in the last chapter
and presents the detailed specification method to enable the business-
driven approach.

Chapter 6 proposes approach to address the second research problem fo-
cusing on transactional flexibility following technology-oriented design.
Please note that in spite of the organization of the chapters, the research
presented in this chapter was actually conducted in parallel with the
business-oriented design carried out in the last two chapters.

Chapter 7 presents the intended business transaction framework based on
both business and technology oriented design, with an integration of
the two solutions proposed in the previous chapters.

Chapter 8 introduces a large scale real-life project, where the main proper-
ties fit exactly into our research context and interest: service-oriented,
multiple parties, automated workflows, jointly executed by heteroge-
nous applications across boundaries, and the e-contract in the form of
web specification of products/services agreed by the users to initiate
the business process.

Chapter 9 concludes the XTC project and the thesis. Also we discuss the
future work that may further extend the research output.

10 Introduction

In addition, there are appendices after the final chapter, containing sup-
porting materials for interested readers. Appendix A presents the statistical
model and relevant computation for supporting Chapter 4. Appendix B and
C show the full set of diagrams from the case study discussed in Chapter 9.

Chapter 2

Related Work and Research
Background

Transactions have been around since the Seventies to provide reliable in-
formation processing in automated information systems. Originally devel-
oped for simple database operations in centralized systems, they have moved
into much more complex application domains, including aspects like distribu-
tion, process-orientation, and loose coupling. This chapter presents a historic
overview of transaction models organized in several transaction management
eras, thereby investigating numerous transaction models ranging from the
classical flat transactions, via advanced and workflow transactions, to the
Web Services and Grid transaction models. The key concepts and techniques
with respect to transaction management are investigated. Placing well-known
research efforts in historical perspective reveals specific trends and develop-
ments in the area of transaction management. Afterwards, the research back-
ground (i.e. contract-driven service-oriented business processes) is reviewed
to clarify the basic concepts and outline the context where we carry out the
research.

2.1 Introduction

This thesis proposes a TxQoS-aware transaction framework for contract-
driven service-oriented business processes, which relates to several areas such
as transaction management, SOA, QoS management and e-contracting. In
this chapter, we review the research efforts and progress in these areas. First,
we present a historic overview of transaction models to provide a comprehen-
sive and structured overview of developments in the area. Next, we clarify the
basic concepts and review the evolution of service-oriented business processes

12 Related Work and Research Background

to outline the background of our research, which includes service-oriented
computing and architecture, service level agreement, and QoS (Quality of
Service).

The chapter is organized as follows. Section 2.2 provides a historical
overview of transaction management, covering transaction models, frame-
works, and standards developed since the 1970’s until the present day. As
the area of our research, the research and development in transaction manage-
ment are presented in a temporal perspective, so that we reveal the streams
of thought in the past as well as point out the current trend. Section 2.3
reviews the emerging research areas of service-oriented computing (SOC)
and service-oriented architecture(SOA), and introduces the research efforts
related to e-contracting in the service-oriented context (e.g. SLA and QoS
management). Section 2.4 summarizes the content of this chapter.

2.2 Concept and History of Transaction Man-

agement

This section presents an extensive survey of the research efforts on transac-
tion management from a historic perspective. The content of this section
was published first in the report [67], which later became the main part of
the paper [70]. The amount of research efforts in the area of transaction
management is huge. Thus, we do not focus on technical details of each
transaction model, protocol, or framework. Instead, we aim at bringing an
up-to-date picture by reviewing the influential work that formed the basis
for later development in this area. Furthermore, we summarize the picture
with a clear overview, to reflect on the trends by analyzing and comparing
the work in different transaction eras.

We first discuss the transaction concept. What exactly is a transaction?
The concept was invented as early as 6000 years ago, when Sumerians noted
down and scribed on clay tablets in order to keep records of the changes of
royal possessions and trades [23]. A transaction is a transformation from
one state to another. Over several thousand years, the concept has found its
way into a broad range of disciplines. For example, in the business world,
a transaction is defined as an agreement between a buyer and a seller to
exchange an asset for payment. While in the database world, the real state
of the outside world is abstracted from and modeled by a database where
the transformation of the state is modeled by an update of the database.
From this perspective, a transaction can be defined as a group of operations
executed to perform some specific functions by accessing and/or updating

2.2 Concept and History of Transaction Management 13

a database. These operations are in fact a kind of program designed to
consistently interact with a database system.

Later, with the wider use of transactional support in the IT domain, the
original definition of a database transaction was extended and generalized
by using complex structures to support a wide range of applications. In this
thesis, the term ‘transaction’ refers to a reliable and coherent process unit
interacting with one or more systems, independently of other transactions,
that provides a certain service or function for a running application. This
definition reflects the requirements for transactions that are able to capture
more complex semantics arising from a broader range of application areas
such as workflow management, Web services, and Grid computing.

2.2.1 Transactions for Databases

Originally a database concept, transactions are key mechanisms to guaran-
tee consistent database updates. Along with the increasing complexity of
databases, database transactions evolve from ACID transactions with no in-
ternal structure, to transactions designed for advanced databases.

ACID Transactions

In practice, a database is an abstract representation that models part of a
real organization and keeps its state consistent with the state of that orga-
nization. Therefore, the programs that interact with the database need to
reflect the requirements of real world. These requirements impose additional
restrictions on transaction design. From the mid 1970s, a number of papers
were published with early attempts to introduce these restrictions. These
were the groundwork for the later defined properties generally known by the
famous acronym ‘ACID’. The ACID properties proposed in [30] are the basis
for the classic form of transactions known as ‘traditional transactions’ or ‘flat
transactions’:

• Atomicity: A transaction either runs completely or has no effect at
all, which means from the outside, that a transaction completes and
appears to have no observable intermediate states or appears have never
left the initial state.

• Consistency: A transaction is a correct program and preserves all the
integrity constraints. After the execution, the new state of the database
complies with all the consistency constraints.

• Isolation: A transaction is executed as if there are no other concurrent
transactions. The effect of the concurrent transactions is the same as

14 Related Work and Research Background

the effect when the transactions are executed serially.

• Durability: A transaction completes successfully and thus makes a
permanent change to the state of the database. Consequently, the
results from a transaction must be able to be reestablished after any
possible failures.

The VCRP (Visibility; Consistency; Recovery; Permanence) can be used
to describe the transactional properties in a more general way. In [71], the
authors use these four notions to analyze and compare some transaction mod-
els such as nested transactions, sagas etc. The VCRP properties are actually
four measurements of transactions: Visibility represents the ability of an
executing transaction to see the results of other transactions. Consistency
refers to the correctness of the state of the database after a transaction is
committed. Recovery means the ability to recover the database to the pre-
vious correct state when failures occur. Permanence is the ability of a suc-
cessfully committed transaction to change the state of the database without
the loss of the results when encountering failures. By capturing the VCPR
properties of the transactions, the author provides a standard framework to
evaluate them.

We can apply VCRP to measure the traditional database transactions,
also known as flat transactions, which are characterized as having no internal
structures. The visibility is measured as ‘isolated’. The consistency is mea-
sured as ‘consistent’. The recovery is measured as ‘atomic’. The performance
is measured as ‘durable’. The database transactions are ACID transactions
measured by the VCPR framework..

The underlying transaction processing (TP) system is responsible for en-
suring the ACID properties. A TP system generally consists of a TP Monitor,
which is an application used to manage transactions. It controls access to
one or more DBMSs (Database Management System), as well as a set of
application programs containing transactions [34]. Atomicity and durability
are guaranteed by the mechanism of recovery that is usually implemented by
maintaining a log of update operations so that ’redo’ and ’undo’ actions can
be performed when required. Isolation is guaranteed by the mechanism of
concurrency control, which is usually implemented by using locks during the
transaction process. A detailed overview of concurrency control and recovery
techniques is available in [50]. Consistency is guaranteed by the integrity con-
trol mechanism usually provided by the TP system, though it is not complete
in a strict sense. There are two approaches to guarantee consistency: One
implementation is to incorporate integrity control into DBMSs presented in
[26], while another is to comply with the integrity constraints through the
effort of application designers instead of TP systems described in [23].

2.2 Concept and History of Transaction Management 15

Advanced Transactions

As stated previously, ACID transactions, though very simple and secure, lack
the ability to support long-living and/or complex transactions. Therefore, a
lot of advanced transaction models have appeared to address such needs. The
fundamental logic of advanced transaction models is to divide a transaction
into sub-transactions according to the semantics of the applications. These
sub-transactions, also referred to as component transactions, can also be
divided if necessary. The advanced transactions can perform more complex
and longer-lasting tasks. For instance, when a failure occurs during a long-
living transactional process, the system is able to restart from the middle of
the transaction instead of the very beginning.

Save Points The history of advanced transaction models can trace back to
the mechanism of save point, a mechanism first introduced in [4], which
enables a transaction to roll back to an intermediate state. The authors
suggest that during the execution of a transaction, a save point can
be marked which in turn returns a save point number for subsequent
reference. At each save point, special entries are stored containing the
state of the database context in use by the transaction and the identity
of the lock acquired most recently. When a transaction fails, it rolls
back to the recorded save point, where it restores the corresponding
context and releases locks acquired after this save point. This way,
rollback action can return the system to a previous state in case of
failure.

When applying the rollback mechanism using save points, we should be
careful about its constraints and limitations. For example, despite of
the rollback of the database to the previously recorded state, the trans-
action’s local variables are not rolled back, which means the transaction
actually follows another alternative execution path after the rollback.
Furthermore, after a rollback to one save point, the subsequently cre-
ated save points are lost. Although the idea of a persistent save point
had been proposed to overcome the deficiency, it is hard to implement
this idea in reality. For example, the database content can be rolled
back to the previous state, but the local programming language vari-
ables will be lost. Another notice is that rollback is different from
abortion. When aborted, the transaction is rolled back to the state in
which it started and the execution doesn’t continue anymore. In con-
trast, a transaction rolled back to a save point still continues execution
until it commits.

The save point mechanism led to the later development of advanced
transaction models that had emerged since the mid 1980s, i.e. dis-

16 Related Work and Research Background

tributed transactions, nested transactions, chained transactions, etc.
We will see later that a chained transaction is a variation of save points,
while the nested transaction is a generalization of save points, as they
both save middle status in the child-nodes. These models are more or
less application-specific and each of them addresses the need of some
given situation. If an organization needs to integrate several database
systems residing in different servers to perform more comprehensive
tasks in a multi-database system (MDBS), a distributed transaction
(or sometimes referred to as a multi-database transaction) is needed.
When considering complex-structured applications, a nested transac-
tion properly addresses the need. For a time-consuming application
with long-lasting transaction processes, a chained transaction is suit-
able to handle the problem. The above mentioned models are examples
of applying the idea of save point in different cases. Next, we introduce
these transaction models one by one.

Distributed and Nested Transactions Distributed transactions consist
of sub-transactions that may access multiple local database systems.
Consequently, in addition to meeting integrity constraints in local sys-
tems, a Multi-database System (MDBS) also imposes global integrity
constraints on a transaction. Furthermore, a MDBS addresses other
concerns like global atomicity and isolation. For instance, the whole
transaction is aborted if any sub-transaction fails. In [7], the most pop-
ular model at that time, the ‘base transaction model’ is introduced. The
model defines two types of transactions: local transactions and global
ones. Local transactions are executed under the control of the local
DBMS, while the MDBS is in charge of global transactions. Several
approaches to realize transaction atomicity and database consistency
are discussed. This paper also proposes the possible extensions to this
basic model and provides an overview of the most recent work in the
MDBS area. In addition, it raises some open problems for future re-
search, such as a need for the standardization of the operating system,
communication interfaces, and database systems.

In contrast to distributed transactions, which split a transaction into
sub-transactions using a bottom-up technique from a geographical point
of view, nested transactions adopt a top-down method to decompose a
complex transaction according to their functionalities into sub-transactions
or child transactions. In [39], this concept was first proposed by pro-
gramming transactions in a structured way. As it claims, nested trans-
actions overcome the shortcomings of single-level transactions by, for
example, permitting parts of a transaction to fail without necessar-

2.2 Concept and History of Transaction Management 17

ily aborting the entire transaction. The idea is that a transaction is
composed of sub-transactions in a hierarchical manner, which means a
sub-transaction can be divided into further sub-transactions if neces-
sary. Importantly, only the leaf-level sub-transactions really perform
database operations, while others function as coordinators. A child
transaction can only start after its parent starts and a parent can only
commit after all its children have been terminated. The commitment
of a child transaction is conditional on the commitment of its parents.
Each child is atomic, and can abort independently regardless of its
parent and siblings. After an aborted action, the intermediate state
of the database is inconsistent, which is only a temporary state. The
parent will take an action, such as triggering another sub-transaction,
as an alternative. Thus, the whole nested transaction still meets the
consistency requirement as if the aborted sub-transaction had never
been executed. The mechanism of the model is very powerful and has
a strong relationship with the concept of modularization in software
engineering. Nested transactions gained a lot of attention – later on,
some models appeared based on the idea.

Multilevel transactions (also called layered transactions) introduced in
[72] and their generalization, open nested transactions, are based on
the idea of nested transactions. The authors presented the concept of
a multilevel transaction as a variation of a nested transaction, where a
transaction tree has its levels corresponding to the layers of the underly-
ing system architecture. Note that the leaf nodes are all at the bottom
level, i.e. the depths of these leaves are the same. The authors introduce
the concept of pre-commit, which allows for the early commitment of a
sub-transaction before the root transaction actually commits, thereby
making it impossible to roll back in a traditional way. When a parent
transaction needs to roll back a sub-transaction, it uses a compensat-
ing sub-transaction to semantically undo the committed one instead of
using a state-based undo. Note that there are three differences from
the nested transactions. First, children are executed only sequentially,
not concurrently. Second, all the leaf-level sub-transactions are at the
same bottom level in the transaction tree. Third, the commitment of
a sub-transaction is unconditional, thereby making the result visible to
other concurrently executing sub-transactions at the same level.

Based on the multilevel transaction model, if the structure of the trans-
action tree is no longer restricted to layering, which means leaves at dif-
ferent levels are allowed, it evolves to open nested transactions. The au-
thors investigated how open nested transactions relax the ACID proper-

18 Related Work and Research Background

ties to achieve the ideal orthogonality so that each of ACID properties
can be omitted without affecting the others, to some extent. Com-
pared to the nested transactions that guarantee global level isolation,
which means the intermediate results of committed sub-transactions in
nested transactions are invisible to other concurrently executing ones,
open nested transactions relax the isolation property in the global level
to achieve a higher level of concurrency.

Chained Transactions and Sagas Although the nested transaction and
its extensions are more powerful than the classical flat transaction, they
are only fit for some specific environments like federated databases, and
are not suitable for environments requiring long-lived transactions. In
such cases, the idea of chained transactions by decomposing a long run-
ning transaction into small, sequentially-executing sub-transactions was
adopted. According to [23], the idea originates from IBM’s Information
Management System (IMS) and HP’s Allbase database products. This
idea is a variation of the save point mechanism that a sub-transaction
in the chain roughly corresponds to a save point interval. However,
the essential difference is that each sub-transaction itself is atomic,
while each interval between every two save points is only part of an
atomic transaction. In the chain, a committed sub-transaction trig-
gers the next upon commitment, one by one, until the whole chained
sub-transactions commit. When encountering a failure, the previously
committed sub-transactions would have already made durable changes
to the database so that only the results of the currently executing sub-
transaction are lost. This way the rollback only returns the system to
the beginning of the most recently-executing sub-transaction. Notably,
from the application perspective, the atomicity and isolation properties
are no longer guaranteed by the whole chain. For example, in the mid-
dle of execution, all the committed sub-transactions cannot be undone,
which leads to a problem in aborting the whole chain. Another case
is that other concurrent transactions can see the intermediate results
generated during the execution of the chain.

Based on the idea of chained transactions, Sagas were proposed in
combination with a compensation mechanism to roll back. The saga
model described in [20] is a classic transaction model used as a foun-
dation of many later transaction frameworks. Sagas divide a long last-
ing transaction into sequentially executed sub-transactions and each
sub-transaction, except the last one, has a corresponding compensat-
ing sub-transaction. All these sub-transactions are atomic with ACID
properties. When any failure arises, the committed sub-transactions are

2.2 Concept and History of Transaction Management 19

undone by those compensating sub-transactions. Unlike the non-atomic
chained transactions that cannot undo the committed sub-transactions
in the case of an abort, sagas can use compensating sub-transactions to
return the whole transaction back to the very beginning. Note that the
recovered start state is not exactly the same as the original start state
but only equivalent to it from an application point of view. In this sense,
sagas as a whole still preserve application-dependent atomicity. Simi-
lar to chained transactions, a saga transaction may be interleaved with
other concurrent transactions, thus isolation is not guaranteed. Conse-
quently, consistency in sagas is not realized by serializability, a common
technique to keep the database consistent when accessed by multiple
transactions. The saga model is an important transaction model which
attracted a lot of attention. For example, some extensions of sagas are
introduced in [15] with more recovery options.

Summary of Database Transactions

ACID transactions have proven to be very useful in traditional database
applications, where the execution time is relatively short, the number of con-
current transactions is relatively small, and the database system only resides
on one server. However, they lack the flexibility to meet the requirements
of the complex applications. For example, multi-database operations need a
certain level of transparency for the interactions with each local database; a
workflow system needs to support long-living transactions etc.

Advanced transaction models can be viewed as various extensions to flat
transactions that release one or more ACID constraints to meet with spe-
cific requirements. Two strategies have been adopted for extension purpose
to achieve different structures inside a transaction. One is to modularize a
complex transaction with hierarchies. Using these means, a large transac-
tion is divided into smaller components, which can in turn be decomposed.
This strategy has been applied in various transactions, including distributed
transactions, nested transactions, multilevel transactions, and open nested
transactions. With the modularization of a complex transaction, the struc-
ture is clearer from a semantic perspective. Another strategy is applied in
chained transactions, sagas etc, where a long-lasting transaction is decom-
posed into shorter sub-transactions. By means of splitting the long processing
time, each transaction can be divided into a sequential series of smaller com-
ponents that are operated in a shorter time, thus minimizing the work lost
during a crash.

Note that there are other works under this category. We skip the descrip-
tion of them because they do not exhibit an internal structure as typical as

20 Related Work and Research Background

the above mentioned advanced transaction models. For example, the Split-
transaction in [48] has been proposed for open ended applications where the
finish time is unknown in advance, so it has a dynamic structure (split and
join). The Flex transaction model proposed in [19] for MDBS applications
can also be viewed as an advanced transaction model. It consists of an
inexplicit hierarchy of local autonomous transactions, though it has some
characteristics of workflow transactions.

However, the abundance of the advanced models does not mean that flat
transactions have been replaced by these more powerful models. On the
contrary, because of their simple structures and easily implemented ACID
properties, flat transactions still dominate the database world.

2.2.2 Transactions for Workflow

Based on the advanced transaction models discussed in the previous section,
specific transaction models have been designed for the support of business
processes, usually identified as workflow transaction models. The concept of
transactional workflow was first introduced in [53] to clearly state the rele-
vance of transactions to workflows. Since the mid 1990s, two developments
have taken place in the area of workflow technologies. One was the develop-
ment of the transaction model supporting workflows and the other was the
development of languages for workflow specification. From a transactional
point of view, workflows are generalized extended transactions which focus on
the automation of the complex, long-lasting business processes in distributed
and heterogeneous systems. A workflow process may involve database trans-
actions or human activities, so the ACID properties would not be the ma-
jor concern anymore. Similar to the decomposition mechanism of advanced
transaction models, a workflow process can be modeled by decomposition into
some sub-processes in a hierarchical or sequential way. From this perspective,
a workflow process can be viewed as a complex transaction hierarchically or
sequentially consisting of sub-transactions and/or non-transactional tasks.

ConTract Model First proposed in [51] and finalized in [64], the ConTract
model addresses the transactional challenge for long-lasting and com-
plex computations in a formal way. It was not classified as a work-
flow transaction model. Instead, it was invented for large distributed
applications. However, we position the ConTract model here for the
consideration of 1) it uses a lot of workflow concepts like ‘step’, ‘flow’
and ‘script’; 2) its basic idea is to model control flow by programming
short ACID transactions into large applications, and guarantee relia-
bility and correctness along the execution, which corresponds to the

2.2 Concept and History of Transaction Management 21

points in the previous section.

Unlike the advanced transaction models, the ConTract model does not
extend the ACID transactions in structure but embeds them in the
application environment and provides reliable execution control over
them. It defines a unit of work as a step which has ACID properties,
but preserves only local consistency. These steps are executed accord-
ing to a script, which is an explicit control flow description. A reliable
and correct execution of the steps is called a ConTract. The ConTract
model offers control mechanisms like semantic synchronization, context
management and compensation at the script level to provide transac-
tion support to a long-lived and complex application.

WIDE Model In [29], a two-layer transaction model, known as the WIDE
transaction model, was presented. The model introduces the concept
of a safe point, which is similar to the save points in Sagas. The bot-
tom layer consists of local transactions with a nested structure that
conform to the ACID properties [6]. The upper layer is based on Sagas
that roll back the completed sub-transactions using the compensation
mechanism, thus relaxing the requirement of atomicity. The semantics
of the upper layer have been formalized using simple set and graph the-
ory [25]. The local transaction layer was designed to model low-level,
relatively short-living business processes, whilst the global transaction
was designed to model high-level, long-living business processes. The
WIDE model was adopted later in [60] to develop a more comprehen-
sive X-transaction model. Note that these two models address the
needs in different contexts. The WIDE transactional model caters for
intra-organizational workflow while the X-transaction model can deal
with specific inter-organizational workflow.

X-transaction Model The X-transaction model [60] is a three-level, com-
pensation based transaction model for inter-organizational workflow
management. It is developed in the CrossFlow project, where a con-
tracted service outsourcing paradigm was presented. The three levels
in this model are the outsourcing level, the contract level, and the
internal level, each with a different visibility to the consumer or the
provider organization. The model views an entire workflow process as
a transaction. For intra-organizational processes, they can be divided
into smaller I-steps that adhere to ACID properties. Each I-step has a
compensating step in case of failure. Similar to this idea, a contract-
level cross-organizational process is divided into X-steps, each of which
corresponds to one or more I-steps. With the components of I-steps,
X-steps and compensating steps, the X-transactional model realizes a

22 Related Work and Research Background

flexible intra- or cross- organizational rollback effect, so as to support all
the scenarios with all the combinations of rollback scopes and rollback
modes.

The authors also proposed an architecture to support this model. There
are three layers in the architecture as in the transaction model, where
a dynamically created upper layer is built on the top of the static layer,
which involves local Workflow Management Systems. Between them,
an isolation layer exists to provide portability with respect to specific
WFMSs.

Summary of Workflow Transactions

The focus of workflow applications is the control-flow, which is different from
the data-centric database applications. From the above discussion, we can see
that the transaction support for workflows is not restricted to ensure ACID
properties anymore. Workflow transactions usually leverage the traditional
transaction mechanisms for recovery and concurrency control but meanwhile
address more coordination requirement. We notice another feature of work-
flow transactions is that they are more or less platform/software dependent
and often process-specific. With the development of Internet applications,
transaction support for today’s workflow processes has also evolved, placing
more attention on the communication, distribution and coordination aspects.
Along with this trend, we discuss transaction management in the Internet
environment in the next section.

2.2.3 Transactions for Internet

Along with the growing popularity of Internet, there is a demand for a reli-
able execution of applications distributed using this medium. After the work-
flow era, the transaction management research community starts to look into
transaction solutions that work with maturing Internet protocols and stan-
dards. Next, we provide a brief overview of two types of transactions: One
for Web services and the other for Grid computing environment.

Web Services Transactions

Web services have become the mainstream implementation technology of
Service Oriented Architecture (SOA). In this section we focus on transactions;
SOA and related topics are reviewed in thereafter. From the late 1990s,
more and more attention has been placed on the area of transactions in the
loosely-coupled Web services (WS) world. Web services enable a standard

2.2 Concept and History of Transaction Management 23

communication between service parties (i.e. provider, user, intermediary), so
that the implementation of a service is hidden and irrelevant when invoking
this service.

In addition to other accepted standards such as SOAP, WSDL, UDDI etc.,
a technique to guarantee the consistency and reliability of WS applications
is needed. We introduce briefly the standardization effort in this area.

Business Transaction Protocol (BTP) BTP [12] was developed by OA-
SIS, which, as the name shows, is not exclusively designed for Web ser-
vices but also for non-Web services applications. The latest version is
Business Transaction Protocol Version 1.1, which was approved in 2004
as a Committee Draft. This is a revision of the Version 1.0 specification
approved in 2002, based on feedback and implementation experience.
BTP is an eXtensible Markup Language (XML) based protocol for
representing and seamlessly managing complex, multi-step business-to-
business (B2B) transactions over the Internet. It allows coordination
of application work between multiple participants and uses a two-phase
outcome coordination protocol to ensure a consistent result. It claims
‘ideally suited for use in a Web Services environment’, as it can coor-
dinate between services provided by different organizations. It defines
communications protocol bindings so that it can work both with Web
Services as well as other communication protocols. BTP is a light stan-
dard, focusing on interoperability while avoiding dependencies on other
standards. It defines roles and messages but does not define interfaces
to be used by programmers, which is also said to help lower the hurdle
to implementation.

Web Services Transactions (WS-Tx) WS-Tx consists of three compo-
nents –WS-Coordination (WS-C) specification in [40], WS-AtomicTransaction
(WS-AT) specification in [42], andWS-BusinessActivity (WS-BA) spec-
ification in [41]. The latest version is v1.2, which was approved in 2009.
The standardization effort was initiated by Microsoft, IBM and BEA
and the resulting specifications have been approved by OASIS as the
standards for Web Service transactions.

TheWS-C is a specification of an extensible framework that coordinates
the actions of distributed applications towards consistent outcome via
coordination protocols. The coordination framework enables existing
transaction processing, workflow, and other systems for coordination
to hide their proprietary protocols and to operate in a heterogeneous
environment. Additionally this specification describes a definition of
the structure of context and the requirements for propagating context
between cooperating services.

24 Related Work and Research Background

The WS-AT is a specification that defines the Atomic Transaction co-
ordination type to be used with the coordination framework from the
WS-Coordination. There are three specific coordination protocols for
the Atomic Transaction coordination type: completion, volatile two-
phase commit, and durable two-phase commit. These three coordina-
tion protocols can be used alone or together to build applications from
short-lived distributed activities (i.e. atomic transactions).

The WS-BA is a specification that defines two Business Activity coordi-
nation types, AtomicOutcome and MixedOutcome, which are used with
the extensible coordination framework described in the WS-C. This
specification also defines two specific Business Activity agreement co-
ordination protocols: BusinessAgreementWithParticipantCompletion,
and BusinessAgreementWithCoordinatorCompletion, which are used
to build applications that require consistent agreement on the outcome
of long-running distributed activities (i.e. business activities).

WS Composite Application Framework (WS-CAF) WS-CAF in [10]
was also under the umbrella of OASIS, initiated by a consortium con-
sisting of SUN, Oracle, Arijuna, and some other companies, with the
purpose of developing an interoperable, an easy to use and implement,
framework for composite WS applications. Similar with WS-Tx, it is
also a series of specifications consisting of WS Context [8], WS Coor-
dination Framework [9], and WS Transaction Management [11].

In [35], a comparison between BTP and WS-Tx was made to show that
these two specifications both attempt to address the problems of running
transactions with Web services. With a clear list of pros and cons, the au-
thors conducted a comparative analysis of the two competitors, using a table.
At the end, they conclude that the two specifications differ in some critical
areas such as transaction interoperability. It also concludes that BTP lacks
‘the ability to use existing enterprise infrastructures and applications and for
Web services transactions to operate as the glue between different corporate
domains’. Considering the fact that large, strongly-coupled corporate infras-
tructures exist behind those loosely-coupled Web services, the authors call
for the attention of leveraging ACID transactions, which underlying the in-
ternal corporate infrastructures, instead of replacing them with new models
to design WS transactions.

Grid Transactions

Like an electricity power grid that pools together distributed electric energy,
Grid computing is a form of distributed computing that involves coordinating

2.2 Concept and History of Transaction Management 25

and sharing computing resources across the web globally. Because of its
vision to create a worldwide network of computers that act as if they are one,
Grid computing makes the exclusive immense computing power previously
only available to a few organizations now available to everyone. This new
emerging technology has been gaining a lot of attention from its conception.
With more and more projects launched, a lot of research is available within
the areas of infrastructure and middleware. Much less effort is spent in the
area of Grid transactions however.

One of the three efforts in this area is the Grid transactions TM-RG (GGF
Transaction Management Research Group) initiated in Europe, working on
Grid transactions with the goal of investigating how to apply transaction
management (TM) techniques to Grid systems. It is stated in the char-
ter [55] that ‘a common grid transaction service would contribute a useful
building block for professional grid systems’. Another effort at Shanghai
Jiao Tong University proposed a new service-oriented Grid Transaction Pro-
cessing architecture called GridTP based on the Open Grid Services Archi-
tecture (OGSA) platform and the X/Open DTP model [49]. The authors
claimed that GridTP provides a consistent and effective way of making ex-
isting autonomously managed databases available within Grid environments.
In [56], a protocol ensuring correct executions of concurrent applications on
the global level, with the absence of a global coordinator, is proposed to real-
ize the concept of distributed, peer-to-peer grid transactions. The approach
is based on some known concepts and techniques, such as the recoverability
criterion, serialization graph testing, and partial rollback. The main idea of
the approach is that dependencies between transactions are managed by the
transactions, so globally correct executions can be achieved even without the
complete knowledge gained from communications between dependent trans-
actions and the peers they have accessed. The idea is innovative in the sense
that it combines old concepts and techniques for a new purpose.

Summary of Internet Transactions

We have been witnessing a rapidly increasing e-business, which often involves
multiple organizations all across the world dynamically establishing business
relationships over the Internet. We notice that, with the development of
IT toward a broader geographical scope and larger scale, transaction man-
agement is correspondingly following a trend to address the need for more
functionalities and better performance in the Internet environment (e.g. dis-
tributed, heterogeneous, and cross-organizational). To address this need,
the proposed Web Services transaction standards and Grid transactions in-
corporated ideas from the transaction concept, mechanisms, and models in

26 Related Work and Research Background

database and workflow environments.

2.3 Service-oriented Contract-driven Business

Processes

In the last section, we reviewed research efforts in the transaction manage-
ment area following a time thread, starting from the database era and finish-
ing with Internet era. Bearing the research goal (i.e. a transaction framework
for service-oriented, contract-driven business process) in mind, we look into
the other related areas in this section. Next, we review the research efforts
in the service and contracting areas.

2.3.1 SOA and SOC

The optimal integration of distributed IT resources to meet agile business re-
quirements has long been a challenge. Many efforts have been made towards a
cost-effective and easy-to-implement solution to address this challenge for in-
creasingly complex business processes. One popular solution is SOA (Service
Oriented Architecture), which emerged to address IT asset reuse and stan-
dardize communications between parties. The basic idea of SOA is shown in
Figure 2.1 to illustrates inter-operability among parties which interact with
each other to enable a service life cycle from publish until invocation. There
are three parties involved in the SOA: a service provider, service user, and
service intermediary. A provider designs a service to offer some kind of busi-
ness functions for users to invoke through an interface. To enable the service
discovery by the potential users, a service intermediary is often used as an
advertiser. A user searches a desired service usually from a repository of an
intermediary and then invoke through the interface of the provider.

Service
Provider

Publish

Feedback
Deli

ve
r

In
vo

ca
te

Leverage
Display

Service
Intermediary

Service
User

Figure 2.1: Basic service oriented architecture

According to [45], Service-Oriented Computing (SOC) is the computing

2.3 Service-oriented Contract-driven Business Processes 27

paradigm that utilizes services as the foundation for developing applications.
SOC covers the scope from basic service publishing to advanced service man-
agement. We see from the above Figure 2.1 that the basic SOA is limited for
complex business scenarios, which often demand extensive properties when
composing and managing services (e.g. security, management, etc.). There-
fore, an extended SOA was proposed, which is shown as a SOA pyramid
with three layers in Figure 2.2. It illustrates a broader scenario that involves
various service roles and their interactions, and the authors point out in the
paper that transaction management is a challenging topic in the composition
layer.

Figure 2.2: An extended service oriented architecture [45]

If implemented in Web service technology, the distributed applications are
published as Web services for users to invoke using Web services standards
such as SOAP[63], WSDL[13], and UDDI[57]. Web services technology has
been backed by the industry with numerous products and research efforts that
resulted in a package of maturing standards. However it is not the only way
to realize a SOA implementation. For example, Grid services is a paradigm
that utilizes Grid computing infrastructure for SOA implementation. In the
context of the XTC project, we consider service a broader concept than Web
services. Therefore, service-oriented in this thesis represents the way of how
business processes are composed, which can be implemented by any type of
services including manual services.

28 Related Work and Research Background

2.3.2 QoS and SLA

Quality of Service (QoS) and Service Level Agreement (SLA) are originally
proposed to enhance network-level reliability with regard to traffic manage-
ment, message routing, etc. Managing QoS has become increasingly critical
in SOC paradigms, as shown in the upper layers of the SOA pyramid (e.g.
service composition and management) in Figure 2.2. In this thesis we also
address QoS in the SOA context, with the focus on transaction issues. The
concept of TxQoS (Transactional Quality of Service) first appeared in [37],
in which the authors discuss the overall QoS support for Web services. These
QoS properties needed for the implementation of Web services applications
include availability, accessibility, integrity, performance, reliability, regula-
tory and security. However they only mentioned the TxQoS term very briefly
without a further explanation of how it should be defined and used. Another
research effort in a different application domain is the QoS-aware transaction
processing framework for mobile transactions proposed in [74]. The authors
propose to assign the transaction service in multiple modes, depending on
the situation of network traffic, and computing and power resources. Our
approach of using TxQoS specification is not limited to any particular type
of transactions.

As our work concerns SLAs, it has some similarities with the WSLA
(Web Service Level Agreement) framework [31], which addresses SLA issues
in a Web Services environment on SLA specification, creation and monitor-
ing. The WSLA project is aimed at unambiguous and clear specification of
SLAs that can be monitored via a distributed monitoring framework, and
an XML schema to represent WSLAs. The monitoring framework allows
provider components and third party services to perform the measurement
and supervision activities. Another standardization effort that may be used
and extended for our purpose is WS-Policy [32], a general framework to spec-
ify and communicate policies for Web services, which allows for expressing
the capabilities, requirements, and characteristics of a web service as poli-
cies through a set of extensible constructs. WS-Policy provides a model and
syntax to define a policy as a set of policy alternatives and each alterna-
tive contains a set of policy assertions. Each policy assertion describes an
individual requirement, capability, or QoS characteristics.

Within the XTC project, the other researchers also addresses transac-
tional reliability using business semantics citepapazoglou072. The motivation
of their approach is the current inadequacy of Web service transactions on
expressing application logic of common business functions. Thus, the authors
proposed a business-aware Web services transaction model with supporting
mechanisms, that allows expressing business functions in SLAs guaranteed

2.3 Service-oriented Contract-driven Business Processes 29

by the QoS criteria. Our work shares the same motivation, that transac-
tion solutions have limitations in terms of its guarantee to execute reliably
for more and more complex processes. However, we take a complementary
view of theirs, and develop the approach for general service-oriented pro-
cesses. First, we do not limit our research to Web services transactions. We
look into the widely used transaction management mechanisms instead (e.g.
ACIDity, structured composition, save point, compensation, etc.), and design
a more accommodated transaction framework. Second, we bring the trans-
actional semantics with QoS management to find out QoS that measures
transactional reliability.

2.3.3 Contract-driven Processes

In this thesis, we refine the research context of business processes as service-
oriented and contract-driven. This means our transaction framework works
for complex processes, utilizing the emerging paradigms of SOC and e-contracting.
Besides the service and contracting perspectives, we also apply layered struc-
ture to analyze complex processes. Our analysis conforms to the three-level
framework developed in [27], where business processes are specified on three
levels:

1. Internal level, where business processes are specified, including all nec-
essary (technical) details, so that they can actually be executed.

2. Conceptual level, where business processes specifications are abstrac-
tions of the internal level processes, leaving out (technical) details. This
allows conceptual reasoning about the business process for design and
analysis purposes. Multiple conceptual levels can exist, each higher
level abstracting from certain details at the lower levels.

3. External level, which represents a business process as it can be viewed
by the outside world, i.e., it does not include any technical details,
but it also does not include those elements from the conceptual levels
that the business does not want to make public to the outside world.
Cooperation between organizations takes place on the external level
processes.

Cooperation between organizations takes place on the external level pro-
cesses. Cooperation involves the connection of the external level processes
(called local processes) of the involved organizations, which leads to one large
overall process, called business network process. Besides the three-level view
of a business process, a dual view from both processes and services perspec-
tives presented in [62] serves as the basis for our research. A business process
in SOC paradigms can be viewed as a set of communicating services. Relating

30 Related Work and Research Background

the process view with the service view, we are able to specify the activities
performed by organizations with a clear order, and meanwhile reveal the
interactions between organizations.

As a legally binding agreement between partners, contracts play an im-
portant role in regulating business relationships, especially in mission-critical
business processes. The traditional way of establishing and managing con-
tracts manually is usually resource-consuming (e.g. time, cost, human). To
enhance the efficiency and lower the cost, e-contracting is introduced to deal
with business and technical collaborations with delicacy and swiftness [1].
When a large amount of dynamic business relationships are involved, e-
contracting can be a powerful means to guarantee business trustworthiness
while meeting the speed and flexibility requirements.

It is pointed out in [54] that formal XML description in the Web services
world is not directly useful to business. The notion of a service metadata
document is invented, which contains both business aspects and technical
artifacts so that the two communities work collaboratively on a common
framework. The authors proposed a service contract template for their pur-
pose of bridging the gap of the two communities. Following this thought,
we define the service contract concept as a type of contracts which combine
business clauses and SLAs and provide a contractual approach for transaction
management.

With regard to the specification language for contracts specifying transac-
tional qualities, we consider e-contracting languages and the WSLA language
as candidates. Currently there are some proposals about e-contracting lan-
guages such as [5, 1], but none is widely adopted to our best knowledge.
The WSLA language may well define normal Web services QoS, but it seems
too limited for the expression of transactional semantics. In our research,
we develop an approach to specify transactional qualities in contracts. How-
ever, our goal is to show a possible representation while a fully elaborated
contracting language is not the goal of our research.

2.4 Summary of Chapter

In Section 2.2, we reviewed the area of transaction management from a tem-
poral perspective. According to the detailed survey in [70], we distinguish
the following ‘ages’ (i.e. from the ‘early dark days’ to modern time):

Stone Age In the stone age, no explicit transaction management models
and mechanisms were available. Reliability of business processes run-
ning on (database) systems was often not yet considered an issue at all.
If it was, its support was entirely the responsibility of application logic.

2.4 Summary of Chapter 31

As this age is not too interesting from a transaction management point
of view, we do not pay attention to it.

Classic History During the classic history, people realized that reliability
of processes in multi-user, concurrent environments is an issue that
deserves explicit attention - or rather requires explicit attention, in
order to keep things running correctly. In this age, the basic transaction
model and mechanisms saw the light.

Middle Ages In the middle ages, business application grew more com-
plex and hence the requirements to transaction management rapidly
increased. Consequently, the simple models and mechanisms developed
in the classic history were not sufficient anymore. Consequently, a large
variation of advanced transaction models and mechanisms supporting
these requirements were developed for various application domains.

Modern Times In modern times, we see the emergence of new application
domains, in which the Internet usually plays a prominent role. To allow
the proper operation of business processes in this new environment,
transaction management has to be ’ported’ to the Internet as well. This
means, that the results of the previous ages of transaction management
history are made fit for application in the Internet environment.

In Section 2.3, we reviewed the work related to service-oriented contract-
driven business processes. The basic SOA and an extended SOA pyramid,
together with the research efforts in QoS and SLA have been introduced.
A three-level framework for specifying service-oriented contract-driven pro-
cesses is adopted in our research for process analysis. Meanwhile, a dual view
on process is adopted as the basis for case analysis. While transaction man-
agement provides technical reliability for business processes over distributed
and heterogeneous applications, e-contracting provides business trustworthi-
ness between partners. When working together, transaction management
and e-contracting ensure reliable execution of complex and long-lasting col-
laborative processes.

The research efforts reviewed in this chapter are comprehensive, but by
no means complete, since the emerging areas like SOA have attracted a lot
of attention from both academia and industry, and are undergoing rapid
advancements. This chapter provides the basic ingredients used as the back-
ground for the development of a new approach to guarantee transactional
reliability for service-oriented, contract-driven processes.

32 Related Work and Research Background

Chapter 3

Case Study on Process
Reliability

In this chapter, we introduce an online advertising case. We perform an
analysis on the technical elements, and examine them in the process context.
In parallel, we analyze the business elements in a service context. Based on
the process and service views on our case, we discover problems on trans-
actional reliability. One problem is the lack of an unambiguous agreement
between providers and users regarding service execution reliability (which is
the transaction support to the process in technical terms). Another problem
is the ability to accommodate changes in case of exceptions and/or errors.
These problems are common for cases with similar properties (i.e. contract
driven, service-oriented, jointly executed, and long-lasting processes). Us-
ing this case as an inspiration, we define two research problems: ‘How to
properly specify transactional reliability of a service’ and ‘How to ensure the
transaction specification works in a changing environment’.

3.1 Introduction

Long-lasting processes tend to have more errors and exceptions throughout
their execution. In addition, the growing number of parties and business
relationships makes execution more likely to be interrupted. An interesting
observation is that current approaches, which address reliability of business
processes, come from separate domains and are usually not synergetic. Trans-
action management has long been applied as the effective means to handle
exceptions and errors for running applications. Nowadays, in the emerging
service-oriented computing paradigm, transaction management has become
an important topic to address because processes tend to be long-lasting and

34 Case Study on Process Reliability

are built over distributed services that cross organizational boundaries. Busi-
ness people are usually not aware and do not understand these transaction
mechanisms at the internal level of processes. They perceive reliability in
terms of agreements or contracts between business partners to guarantee
trustworthiness of processes. Therefore, the transaction support for applica-
tions is not their concern although it is the root for reliable process execution.

The demand for reliability from the business world has pushed the IT
world for advancements in transaction management, from the original simple
ACID transactions to the recent OASIS approved Web service transaction
standard [70]. Progress in IT technology has provided opportunities to the
business world for enhancing the process execution reliability. For example,
the e-contracting paradigm emerged to provide a vision to automate contract
establishment, monitoring, and management [1]. We notice that there is an
awareness of process execution reliability gap between the IT and business
world. Consequently, we are motivated to develop a business transaction
framework to address the reliability concern from both transaction manage-
ment and e-contracting perspectives.

In this chapter, we perform a case study to identify this gap and further
refine our research goal. A real-life online advertising case is selected. Next,
in Section 3.2, we introduce the case and model it by means of process and
service models. Afterwards, in Section 3.3.3 we analyze the elements observed
in this case and discuss the findings. We conclude the chapter and elicit the
research questions in Section 3.4.

3.2 Case Description and Modeling

In [1], a case is presented on the e-advertising business of one of the largest
newspapers in the Netherlands. This department is responsible for publish-
ing advertisements on its website according to clients’s requirements, through
a feature-limited e-contracting system. We selected this case [68][69][65] be-
cause the interesting ingredients (e.g. contract, service, complexity) relevant
to our research context are present here: 1) It is an e-contracting case where
contracts are used to specify the activities, functions, and guarantees; 2) Sev-
eral parties collaborate over the process, each performing a business role with
specific functions, so that we can view it as service-oriented; 3) The whole
process lasts long and exceptions/errors are likely to happen, so that we can
analyze it from a transaction perspective.

Throughout the chapter, we use the term ‘medium’ to anonymously name
the newspaper. In this case, there are two types of clients who publish
advertisements via the medium’s website: individual clients and advertising

3.2 Case Description and Modeling 35

agencies. For individual clients, the medium asks for full payment prior to
the time the advertisements are published. For large advertising agencies, the
medium allows them to pay after the advertising period. We only present the
agency scenario because it involves more participants and therefore is more
interesting and complex.

The dual view [62] is proposed for analyzing service-oriented business
processes, and we use it as the basis for our modeling and analysis during
the case study. The basic idea of dual view is that process and service can be
used to describe the same case, with the former focusing on activity flow and
the latter focusing on interactions. Relating the process view with the service
view, we are able to specify the activities performed by organizations with a
clear order, and meanwhile, reveal the relationships between organizations for
contract-driven service-oriented processes. Our case study conforms to the
three-level framework developed in [27], where business processes are specified
on three levels: the external level for contracting purpose, the conceptual
level for reasoning purpose, and the internal level for design purpose. In
this case study we focus on the external level of business processes where
collaborations take place.

3.2.1 Process View

We first take a process-oriented view, by which the case can be modeled as
three processes: one payment process from the client to the agency, another
payment process from the agency to the medium, and the main advertising
process jointly executed by the three parties. As the payment processes
are simple and not suitable for our purpose, we discuss only the advertising
process in detail. The e-advertising process in Figure 3.1 presents our process
view on the case.

The process starts when a client decides to outsource the advertising cam-
paign to an agency. The agency negotiates with the client and analyzes its
requirements. Afterwards, a contract named CA (Client-Agency) is estab-
lished between the client and the agency, consisting of clauses about the cam-
paign design, time, cost, etc. Then, the agency negotiates with the medium,
and a contract named AM (Agency-Medium) is established. There are gen-
eral provisions stated on the website of the medium as an umbrella of all
contracts the medium offers. These general provisions include the payment
method, force majeure conditions, etc., and are maintained by the medium
without the need to inform its client if updated. As a trusted and frequent
business partner, the contract AM is rather simple compared to the contract
established directly between an individual client and the medium.

In this process, the two contracts are established and managed under the

36 Case Study on Process Reliability

Analyze requirements

MediumAgencyClient

Send requirements

Offer contract CA

Offer contract AM

Campaign design

Approve

Publish advertisement

Monitor statistics

Close campaign

Approve contract CA

Send for approval

Send requirements

Approve contract AM

Choose options

Analyze requirements

Validate contract CA

Validate contract AM

Approve

Negotiate

Inform

Send publish content

Figure 3.1: E-advertising Case: process view

3.2 Case Description and Modeling 37

support of simple e-contracting systems. Next, the agency starts to make
a campaign design, including an online version of the advertisement (e.g.
pictures with logos and text), according to the client’s requirements from
the contract CA and the medium’s regulations from the contract AM. The
campaign design has to be approved by both the client and the medium. The
client checks the overall design while the medium checks its image compliance
(e.g. format, size, etc.). Afterwards, the version approved by both parties
is sent to the medium for publishing online. The campaign can end in two
ways. One is impression due, which means enough impressions have been
made within the agreed time. The second situation is time due, which means
the agreed time is up, but not enough impressions are made in this time
frame. In the latter case, the client can choose from three options: extend
the campaign time, advertise on other websites owned by the medium, or
get back a proportional amount of money. When the campaign ends, the
advertising process ends. As the agency is delegated by various clients to
work on a lot of campaigns, the medium asks for the payment of all the
finished campaigns periodically in a sum. Therefore, a payment process with
a different life cycle from the advertising process is needed to settle the finance
matters between the agency and the medium. This way, the contract AM
is fulfilled. Likewise, a process is needed for handling the payment from the
client to the agency within the agreed time frame. In completion of this
payment process, the contract CA is fulfilled.

3.2.2 Service View

We present the service view of the case in this subsection. Here we assume
that a set of activities with a clear business function can be wrapped as a ser-
vice with a standardized interface for invocation. These services are invoked
by users by means of the requesting messages flowing into the provider side.
Service providers perform certain functions according to user requests and
the results are delivered back to the user side. Following the service view,
we assume the process can be viewed as a series of services and their interac-
tions. As shown in Figure 3.2, we identify six services along the e-advertising
process: ‘Contracting’, ‘Design’, ‘Decision’, ‘Approval’, ‘Intermediary’, and
‘Campaign’ services.

In the dual view, we see service as another side of process, which in this
case means that a service is seen as a process wrapped inside and communi-
cates with other services through interfaces. Figure 3.3 depicts the details of
the implementation activities within each service, which we call ‘Service Real-
ization’. The solid-end arrows reflect the message interactions, e.g. invoking,
configuring, or replying. When invoked, the standardized interface of a ser-

38 Case Study on Process Reliability

AgencyClient Medium

Contracting

DesignApproval Approval

CampaignIntermediaryDecision

Contracting Contracting

Figure 3.2: E-advertising Case: service view

vice triggers various internal implementations, which can be performed by a
sales representative, a Web-service application, a database application, etc.
This means that each party can host services, providing the same business
function but through different internal implementation details. For instance,
in our case, all ‘Contracting’ services provide the function of contract estab-
lishment, but their internal implementations are different. The ‘Contracting’
service residing at the medium side is provided through an e-contracting sys-
tem that allows potential consumers to submit online, while the agency and
the client implement the ‘Contracting’ service manually. The arrows going
through the interface represent messages used for interaction with other ser-
vices. Each service has at least one in-coming arrow and one out-going arrow.
Please note that the activities within a service box may appear slightly differ-
ent from the activities in the process view, as they are modeled for a different
concern of business semantics.

The service view and the process view are ‘two sides of the same coin’.
The terms ‘process’ and ‘service’ may be used interchangeably in the rest
of the chapter, depending on the context. The term ‘Process’ is habitually
used when we focus on activities or analyze transactions, and ‘service’ is used
usually when we aim to emphasize interactions and contracting relationships.

3.2 Case Description and Modeling 39

Design Service: Agency

Ask app. Send pub.

Campaign des.

Close cam.

Monitor sta.

Campaign Service: Medium

Contracting Service: Agency

Publish adv.

Validate con.Send req.

Analyze cli . req. Offer con. Analyze req. Negotiate Cli.

Inform Med.

Intermediary Service: Agency

Choose opt. Feedback

Decision Service: Client

Contracting Service: Client

Validate con.Send req.

Approve con.

Approve Validate des.

Negotiate

Approval Service: ClientContracting Service: Medium

Offer con.Analyze req.

Approve Con.

Approve Validate des.

Negotiate

Approval Service: Medium

Figure 3.3: Service Realizations

40 Case Study on Process Reliability

3.3 Case Study: Observation and Analysis

In this section, we present our observations and analysis on the entities in-
volved in the case. Here we define an entity as a generalization of a group
of observed elements that can be modeled in a class diagram. We make a
list of observed entities below, based on the process and service interaction
models and the text description in the previous section. Every element that
has appeared in the models can be mapped to one of the entities in our list
(e.g. activity, process, contract, etc.). In addition, we add to our list enti-
ties that are implicitly stated in the textual description (e.g. role, reliability
agreement, process specification, etc.). These implicit entities are not ad-
dressed in the process and service diagrams directly. For instance, we use
a swimming line to distinguish roles in Figure 3.1, and the actualization of
the ‘Role’ entity, Client, Agency and Medium, are explicitly stated. So the
entity ‘Role’ is a generalization of the elements. Furthermore, we implicitly
state that there are few words in the contracts which mention reliability. So
we abstract the element into the ‘Reliability Agreement’ entity.

3.3.1 Process View

In this section, we make observations on the process view of our case study.
Some of the explicitly stated or directly-observable elements can be general-
ized into entities. In other words, these are ‘back-end’ elements, that are too
operational to specify in a business contract. Here we perform an analysis at
a conceptual level and do not concern the detailed transactional techniques,
mechanisms and systems.

Process: A process consists of activities and flows, where activities are
connected and executed following certain logic. The e-advertising case is
depicted as a process in Figure 3.1. This process can also be seen as a service
if seen from the service view (where we identify service as an entity in the
next group of business entities). The entity ‘Process’ is very generic, in a
sense that it can be observed from most of the cases as long as there are
some activities and flows of these activities. Processes can be self-containing,
which means that processes can be decomposed into sub-processes.

Process Specification: A process specification states the process ex-
ecution logic (i.e. which step, and in what order), and can be used for
transaction design. It is a documented representation of a process abstract-
ing its attributes for deployment. For instance, in our case study, ‘Client’,
‘Medium’ and ‘Agency’ each hosts a business process respectively. A pro-
cess specification exists at each host, governing a part of the jointly-executed
global process plus (not-revealed) internal processes. Upon triggering, a pro-

3.3 Case Study: Observation and Analysis 41

cess is executed according to the process specification. The entity ‘Process
Specification’ is not explicitly seen from the model, but it is implied by the
case description where we see that some agreement on the execution path is
established.

Activity: An activity is a basic unit of a process in our modeling. The
activities in the process are the actual steps in a sequence-like chain, with
intermediate forks for parallel performing with a starting point and an end-
point. As mentioned, the activities appearing in service boxes are slightly
different in names and orders as they are used for business descriptions to
demonstrate service details. Some activities are performed by humans with
the aid of tools (e.g. ‘Send requirements’ and ‘Campaign design’). Other
activities are fully automated, such as ‘Monitor statistics’. All activities re-
sult in the changes of the states of the underlying systems either directly or
indirectly.

Flow: Flows are the logic connection of the activities. In our case, the
arrows in the process model which point from one activity to another are
flows. The simple type of flow is a timely order to indicate one activity
ends and the next starts. For example, the order from the client ‘Send
requirements’ is followed by the Medium’s order ‘Analyze requirements’. The
complex type of flow has a choice, which leads to splits and ‘OR’ joints. For
instance, depending on the outcome of the activity ‘Approve contract CA’ at
the client side, either the ‘Medium’ offer a revised contract or the contract
is accepted by the client. It is important to know the flows of the activities
in order to determine what transaction support is needed for the process.
For instance, usually a long-lasting chain-like process (i.e. our case) requires
‘Atomicity’ for activities, and ‘Compensation’ at the process level.

Host: The host is an entity abstracted from the ownership of the pro-
cesses, including activities depicted in Figure 3.1. A host in this case can be
the client or the agency where least activities (usually not long-lasting) take
place, and the medium where most of the activities (long-lasting or once-off)
take place.

3.3.2 Service View

In this section, we examine the elements observed from the service view.
They are generalized and abstracted into entities for analysis of contractual
relationships. These entities are usually found in business contracts. The
business entities listed below do not address technical issues, as those are
typically avoided in business contracts.

Service: The case can be viewed as a series of interacting services as
shown in Figure 3.2. Different services usually demand different transaction

42 Case Study on Process Reliability

support. For instance, ‘Design’ service barely requires any specific transac-
tion mechanism, as it is a human activity with few transaction semantics (e.g.
ACID). On the contrast, ‘Campaign’ service requires comprehensive trans-
action support to make sure it is either committed or consistently executing
after the start. Also note that the services addressing the same function,
but are implemented in different ways, may require different transaction sup-
port. For example, there are three ‘Contracting’ services, each owned by
each party. The one at the medium side is Web-based and supported by its
e-contracting system, while the ones hosted by the agency and the client are
manual services.

Party: There are parties involved in this case: the client, the agency,
and the medium. From Figure 3.1 and Figure 3.2, we can see which party
performs what activities and owns what services. Note that service can be
executed by humans and/or machines. For example, the ‘Intermediary’ ser-
vice is a manual service, and the ‘Campaign’ service is mainly implemented
by the software at the medium side. So the entity ‘Party’ is a generic term
to take roles and perform activities (i.e. provide/use services).

Contract: Two contracts are established in this case: contract CA
(Client-Agency) and AM (Agency-Medium). The contract is a central theme
in this e-advertising case, as it triggers the process and governs the execution
path when facing choices.

Role: We distinguish two roles a party may play: a service provider and
a service user. For each service, one party plays one role at a time. In our
case, the agency acts the role of the service provider in the contract CA,
and at the same time the service user in the contract AM. For instance, the
agency, which owns a ‘Contracting’ service and acts as a provider, invokes
the medium’s ‘Contracting’ service acting as a user.

Reliability Agreement: An reliability agreement is the terms stated
in a contract regarding execution reliability of the service one party provides
to another party. The whole process that implementing the e-advertising
service is a chained transaction that requires save points, given the process
nature is long-lasting. In this way, the exceptions and errors will not cause
the process to restart from the very beginning. The handling mechanisms of
exceptions and errors are usually not present in a business contract. However,
we do see there are some implicit statements about the reliability agreed on
contract in this case. For instance, there has been some terms in the contract
regarding the choice of the execution paths in case of not enough impressions
made within the agreed time. These agreed terms can be seen as a reliability
agreement that addresses the concern of both transactional reliability and
business trustworthiness.

As listed and explained above, the entities are the abstraction of the actual

3.3 Case Study: Observation and Analysis 43

elements observed from the case via dual view. To summarize and organize
our findings, we depict their relationships by means of a class diagram, shown
in Figure 3.4. In the next section, we discuss and further elaborate on the
findings of the case.

Service View

Process View

Party

Process

Service

Role

1 *

Contract

0..*

1..*

Activity Flow

Process Spec.

Host

Reliability Agreement

0..*

1..*

0..*1..*
0..*

1..*
*

*

1

1..*

1..* *

11..*

Figure 3.4: Dual View on E-advertising Case

3.3.3 Discussions and Further Elaborations

In Section 3.2, the global process of e-advertising is triggered by a ‘Client’ who
submits a filled-in advertising campaign agreement, and is jointly executed by
the three parties (i.e. Client, Medium, and Agency). The systems underlying
the global process execution include workflow engines, CRM applications, e-
contracting applications, and online-publishing applications. The auxiliary
applications such as specialized graphical design software and e-mail tools

44 Case Study on Process Reliability

are not our concern. From the analysis, we can see that the main process in
this case is a typical long-lasting and cross-organizational process driven by
e-contracts. The findings from the case study should not be special for this
e-advertising case only, but meaningful in general in our research context. In
this section we analyze and identify relevant research issues for the generic
case.

3.3.4 Discussions On Case

The three parties collaborate effectively on this case, considering the fact
that the medium’s e-advertising business runs smoothly on a daily basis. On
the one hand, we notice that some of the exceptions are well handled and
the solutions are clearly stated. For example, usually the campaign finishes
within the expected impressions, and in the agreed campaign duration. In
case there are not enough impressions made within the agreed time, the
‘Intermediary’ service is invoked, which allows the client to choose from three
options. One option results in a reduced cost, and directs the process to the
activity of ‘Close campaign’ in the ‘Campaign’ service. Another option results
in time extension, which directs the process back to the previous activity of
‘Publish advertisement’ in the ‘Campaign’ service. The third option results
in a continuing online campaign on other websites owned by the medium,
which is out of the scope of this investigation.

On the other hand, we also find out that some exceptions and faults
are caused by opportunistic behavior, because the corresponding transaction
mechanisms are missing. For example, negotiations may break down or the
client may decline the contract offered by the agency, thus suspending the
process. Another extreme example might be that the medium does not fulfill
its obligations because of a unexpected hack into its website. As illustrated
in Figure 3.5, all these possible exceptions and errors may lead the process
to undesired states and break the execution. From the above discussion, we
see that the presence of a reliability agreement is not adequate in this case.
This finding requires further research on the issue of transactional reliability
addressed by business agreements.

By identifying and revealing the generic entities, we have displayed their
interrelationships in the process and service views in Figure 3.4. As we
explained, the dual view means an entity in one view should have a corre-
sponding entity in the other view. In other words, the dual view presentation
is roughly a reflection, where business entities from the service view should
see their more technical counterparts in the process view.

We reveal the correspondence between the two views in Figure 3.6, which
is based on Figure 3.4 with entities ‘Role’, ‘Activity’, and ‘Flow’ removed, as

3.3 Case Study: Observation and Analysis 45

Campaign design

Approve

Send for approval

Approve

Negotiate

Inform

Send publish content

Broken!

Client MediumAgency

Close campaign

Broken! Publish advertisement

Monitor statisticsChoose options Broken!

Figure 3.5: Unexpected Exceptions and Errors in Process Execution

they are not main classes in the model. ‘Role is an association class, whereas
‘Activity’ and ‘Flow’ are children classes under the parent ‘Process’. We can
see that the entity ‘Party’ in the service view corresponds to ‘Host’ in the
process view. The entity ‘Service’, if viewed from the process perspective, is
the entity ‘Process’. However, the ‘Reliability Agreement ’ entity, does not
have a counterpart in the process view. In other words, we see an asymmetric
picture where one entity can not find its counterpart in the other view. This
asymmetry serves as an inspiration for us to deepen the analysis of the two
views.

From the above discussions, we have found out 1) the entity ‘Reliability
Agreement’ in not addressed adequately and explicitly in the case; 2) the ser-
vice view and the process view on the case are not symmetric because of the

46 Case Study on Process Reliability

Service View Process View

Party

ProcessService

Contract

0..*

1..*

Process Spec.

Host

Reliability Agreement

0..*

1..*

0..*

1..*

0..*

1..*

*

*

1

1..*

1

1..*

Figure 3.6: Mapping of Entities in Dual View

lack of a mirrored entity to ‘Reliability Agreement’. There is a need to fur-
ther elaborate on these findings with the focus on the ‘Reliability Agreement’
entity to address the reliability concern. We are encouraged to address this
problem in the inter-related areas of transaction management (i.e. reliability)
and e-contracting (agreement).

3.3.5 Further Elaborations

We have found out that ‘Reliability Agreement’ is neither adequately ad-
dressed in the case nor balanced by a mirrored entity in the dual view analysis.
This points into two directions: 1) Study ‘Reliability Agreement’ in further
detail to make it explicit and adequate; 2) Balance ‘Reliability Agreement’
by identifying the missing entity in the process view. Therefore, we propose
to use proactive agreements on transaction support shown by the grey-box
entities in the to-be scenario depicted in Figure 3.7:

Following direction 1, we propose a new entity in the service view: ‘Busi-
ness Tx Spec’. As discussed, an explicitly and adequately specified reliability
agreement is needed, and an unambiguous specification of process execution
reliability is the key. We model the ‘specification of execution reliability’ as
the entity ‘Business Tx Spec’, which specifies execution reliability in business

3.3 Case Study: Observation and Analysis 47

Service View

Process View

Party

Process

Service

Role

1 *

Contract Business Tx Spec

0..*1..*

1

*

1

*

0..*1..*

Tech Tx Spec

Activity Flow

Process Spec.

Host

Reliability Agreement

0..*

1..*

0..*1..*

Tx Support

0..*

1..*
*

*

0..*1..*

1..*

1..*
1

1..*

1..* *

1

1..*

Figure 3.7: Balanced Entities and Relationships

terms for contractual purposes, and thus makes ‘Reliability Agreement’ ex-
plicit and adequate. To balance the two views, we propose an entity named
‘Tech Tx Spec’ in the process view in order to represent the technical speci-
fication of execution reliability in correspondence to business specification.

Following direction 2, the ‘Reliability Agreement ’ entity is balanced
by an entity named ‘Tx Support’ (Transaction Support) in the process view,
which represent the technical realization of the reliability agreement (i.e.
transaction mechanisms).

The proposed entities promote the common understanding of the relia-
bility (tx support) between the service providers and users. In similar cases
(i.e. cases that are contract-driven, service-oriented, and include multiple
parties), the handling of exceptions and errors can be agreed upon before-
hand, so that the process execution is designed to be more robust and flexible.
As we see in Figure 3.7, the entities ‘Business Tx Spec’ and ‘Tech Tx Spec’
are the root elements to achieve an unambiguous reliability agreement. The
problem is such an agreement is lacking in the real-life case. As the result,
we are inspired to look more carefully at these entities.

Lacking a transaction specification which is understandable by business

48 Case Study on Process Reliability

hinders the feasibility of establishing such transactional agreement. There-
fore, we are motivated to research a contractual approach, with a focus on
the root entities ‘Business Tx Spec’ and ‘Tech Tx Spec’. We are motivated
to research ‘Business Tx Spec’, as it facilitates establishing a ‘Reliability
Agreement’ by parties in advance (i.e. before the process is executed). As a
‘mirrored’ entity of the ‘Business Tx Spec’, ‘Tech Tx Spec’ motivates us to
design an approach to provide a desired transaction support which is under-
stood by IT applications.

Furthermore, if looking at the ‘as-is’ scenario in Figure 3.4, the transaction
support in this case is not change-friendly. In case of slight changes (e.g.
when adding activities), the execution path (i.e. the ‘Flow’ entity) needs
to be adjusted. As a linked entity, the transaction support is also subject
to change. The business and technical transaction specification, reliability
agreement, and contracts need to be changed accordingly. To summarize,
we are inspired to do further research on ‘Business Tx Spec’ to find out a
business-aware approach for contractual reliability between parties, and ‘Tech
Tx Spec’ in search of a flexible mechanism that allows for comprehensive
transaction support of processes in changing environment.

3.4 Conclusions

Transaction management has long been the way to guarantee execution for
running applications. With the increasing complexity of business processes,
transaction management is vital to address the reliability concern. However,
in the business world, contracts are often related to the reliability concern. To
investigate into the interdisciplinary area of process reliability, a case study
has been developed.

In this chapter, we first introduced the case study and applied the dual
view to describe and model it. Next, we identified the main elements of the
case and listed the entities abstracted from these elements under the service
and process view, respectively. Under the service view, the list shows the en-
tities that help to analyze the business relationships. Under the process view,
the list shows the entities that help transaction analysis. These entities can
be observed from other cases, as long as the business processes showcase the
characteristics like service-oriented, contract-driven and cross-organization.

Based on the findings from the asymmetric as-is diagram, we found out
that the key to have complete and balanced views lies in a ‘Reliability Agree-
ment’. One direction to pursue is to find out a realization approach to achieve
the agreement, and another direction is to balance the views by entities from
the process side. In addition, we also found out the as-is situation is not

3.4 Conclusions 49

flexible to accommodate changes . Therefore, we proposed a more detailed
and change-friendly to-be situation which is symmetric in two views. We see
the gap between to-be and as-is as the research problem to address in the
next phases of our research.

From the above discussions, we are inspired to address the problem of the
gap by a business-aware approach that infuses transactional semantics into
contracts or agreements. We also need to address the problem of a flexible
transaction support that allows technical specification to change easily.

This raises two problems which need to be solved:

1. How to specify the proper transaction support required for a service that
is implemented by a complex process? (Problem 1 focuses on the entity
‘Business Tx Spec’)

2. How to ensure that these transaction specifications work in a changing
environment? (Problem 2 focuses on the entity ‘Tech Tx Spec’)

The first problem relates to research questions 3 and 4, as identified in
Section 1.5, in the previous chapter. It concerns the approach for business
transaction agreements, and is answered next in Chapter 4 and Chapter 5.
The second problem relates to question 5, as identified in Chapter 1.5. It
is about the mechanism for flexible transaction support, and is discussed in
Chapter 6.

50 Case Study on Process Reliability

Chapter 4

TxQoS Approach

As identified in the e-advertising case study, the first research problem, ‘How
to specify proper transaction support required for a service?’ in a business
entity in the service view is addressed in this chapter. A contractual ap-
proach is proposed to bridge the gap between providers and users in terms
of transaction awareness. FIAT (Fluency; Interferability; Alternation; and
Transparency) attributes are introduced and designed to infuse transaction
management semantics in contracts to promote the common understanding
process/service execution reliability.

4.1 Introduction

As a result of the case study presented in the previous chapter, we have
proposed a balanced and complete to-be diagram in order to address the
missing entities in the as-is diagram. From this diagram, two problems have
been identified, i.e. 1) How to specify proper transaction support required
for a service, and 2)How to ensure these transaction specification work in a
changing environment.

We focus on the entity ‘Business Tx Spec’ in this chapter. A TxQoS
(Transactional Quality of Service) approach has been developed that ad-
dresses the first problem, by means of a specification of the transactional
reliability. This is a contractual approach to enclose the business transaction
specification into e-contracts. The TxQoS approach enables the interpre-
tation of transactional reliability from a business perspective so that both
parties can understand transactional reliability and agree on a reliability
agreement.

The proposed approach conforms to the three-level framework developed
in [27]. At the external level, transactional reliability should be expressed in

52 TxQoS Approach

a way that can be understood by all parties, no matter the business or tech-
nical perspectives they hold. This way, matching between the transaction
requirements of users and offers of service providers takes place. Our pro-
posed approach works on the external level with its root in the internal level
where transaction management mechanisms are provided by the underlying
systems, such as recovery, concurrency control, and compensation.

This chapter delivers an approach, designed to address the the first prob-
lem at a conceptual level, including the concept, scenario, life cycle, and
specification method. The rest of the Chapter is organized as follows. Sec-
tion 4.2 gives an overview of the proposed approach, and is illustrated using a
scenario where all parties interact with each other by producing, exchanging,
accessing, and evaluating data objects along the three-phased life cycle. We
show the specification method in Section 4.3, where four attributes are de-
veloped to support the specification of transactional reliability. The chapter
ends with conclusions in Section 4.4.

4.2 TxQoS Overview

We name the contractual approach as ‘TxQoS’ (Transactional Quality of Ser-
vice), and define the term of TxQoS as the agreed reliability between a service
provider and a service user with regard to the transaction performance of ser-
vice execution. In other words, TxQoS is what a service provider promises to
its users, based on its transactional capabilities, or a user requests from po-
tential providers according to its transactional requirements of the regarding
service execution reliability.

4.2.1 TxQoS Concept

The concept of TxQoS first appeared in [37], where the authors discuss the
overall QoS support for Web services. These QoS properties which are re-
quired for the implementation of Web service applications include availabil-
ity, accessibility, integrity, performance, reliability, regulatory, and security.
The authors only mentioned the TxQoS term very briefly, without providing
any further explanation of how it should be defined and used. We adopt the
term with our own definition and furthermore, elaborate it into a contractual
approach for transaction management.

When a contract is established for regulating service-oriented business
processes, we call it a service contract. In our TxQoS approach, a service
contract typically consists of a set of clauses plus enclosed SLAs (Service
Level Agreements), which are agreed and signed by the two parties. These

4.2 TxQoS Overview 53

Service Contract

Party A Party B

Date.Venue.Signature

Article 1

What the provider is promising
How the provider will deliver on those promises
Who will measure delivery, and how
What happens if the provider fails promises
How the SLA will change over time
...

Article 2
Article N

 N.1 ...
SLA(s)

SLA

TxQoS specification
Measurement
Agreed penalty
Appendix
...

TxSLA

Fluency ...
Interferability ...
Alternation ...
Transparency ...
Timings and Times ...

TxQoS Specification

Figure 4.1: Contract structure

clauses are obligations and conditional rights, and are agreed for the pur-
pose of exchanging value between the two parties. The enclosed SLAs in
our setting state the non-functional agreements on the service qualities. An
SLA specifies the promised qualities from the service providers and formalizes
an agreement between the users regarding service availability, performance,
measurement, and other aspects that enforce the operational qualities during
service execution. When an SLA contains some specific components regard-
ing TxQoS (e.g., TxQoS specification, measurement, penalty, and other ap-
pendices), we name it a TxSLA. Here a TxQoS specification can specify the
TxQoS with differentiated parameters for the service users to choose from.
Only when the TxQoS specifications are agreed by both the provider and
user, TxSLAs are enclosed in a service contract and come into force.

Figure 4.1 depicts our proposed contract-SLA-TxSLA-TxQoS structure.
In this figure, the example SLA contains the content from the SLA concept
defined in [73]. The concepts of ‘Service Contract’, ‘SLA’, ‘TxSLA’, and
‘TxQoS Specification’ are the key elements of our proposed approach, which
will be introduced in detail later.

From the contract structure shown in figure 4.1, we can see that the pro-
posed service contracts can bridge the gap between the business and techni-
cal worlds by enclosing TxSLAs. The TxSLA contain a TxQoS specification
to specify the agreed transactional qualities. When enforcing the proposed
structure, contracts become a business tool that enforces execution reliability
of a service and can meanwhile be mapped for technical transaction manage-
ment mechanisms. In this way, the participating parties are aware of, and
ensured of the transactional qualities of a service.

54 TxQoS Approach

4.2.2 TxQoS Scenario

Following the TxQoS contract structure proposed above, in this section we
provide an example that illustrates our approach. Figure 4.2 shows a basic
scenario of the TxQoS. A full-fledged scenario based on this figure will be
presented in Figure 4.5 at the end of this section. There are three parties
involved, provider, user, and intermediary(s), where the intermediary(s)
is/are shown in a dashed box to indicate it is optional. There can be differ-
ent intermediaries leveraged in our approach, namely ‘Monitor’, ‘Advertiser’,
‘Reputation Registry’, and ‘Arbitrator’. Please note that this figure adopts
the SOA scenario shown in Figure 2.1. The TxSLAs are established between
the service providers and users. Then, services are invoked and delivered (i.e.
executed) with the TxSLAs enforcing the agreed TxQoS specifications. We
differentiate the communication arrows in the figure. The solid-end arrows
are present in SOA, and the remaining arrows depict the communications
specific for the TxQoS scenario.

Intermediary(s)

UserProvider

S
tore

Use Feedback

Provide

Negotiate

Customize

UseEvaluate

TxSLA

M
atch

M
on

ito
r

Figure 4.2: TxQoS Scenario

TxQoS provider A TxQoS provider offers differentiated TxQoS specifica-
tions for a particular service it publishes. Take a travel booking service
for example, where the service can be associated with different levels
of transactional reliability ensured by corresponding TxQoS specifica-
tions. One TxQoS specification offers a highly fluent service execution
(e.g. always provide compensations for every step and no interrup-
tions), which is specifically provided to its registered users. Another
TxQoS specification offers standard service execution (e.g. time-out

4.2 TxQoS Overview 55

settings that may entail a new invocation), which is provided to ran-
dom visitors.

TxQoS user A TxQoS user is a service invoker who intends to discover
a suitable service with an appropriate level of transactional reliabil-
ity according to its transactional requirements. Using the same travel
booking example, a service user with a specific travel plan that has to
be fixed within a certain time would have a number of TxQoS require-
ments.

TxQoS intermediary A TxQoS intermediary is a third party which mon-
itors the ongoing service to collect and store TxQoS statistics, an ad-
vertising service provider which publishes TxQoS advertisement for po-
tential users, a trusted reputation broker which records the past trans-
actional performance of a list of services and may predict the future
performance for users to check, or an arbitrator which settles a dispute
when the agreed TxQoS is breached. An intermediary does not pro-
vide direct business functions in contrast to service providers. It has
an auxiliary role to enable and facilitate TxQoS agreements. The en-
abling and facilitating tasks can be advertising, reputation repository,
or post-service functions such as sending statistics and feedbacks of the
actual TxQoS performance. In case a provider or a user does not trust
each other, an intermediary (i.e. the monitor) is delegated to moni-
tor the runtime TxQoS statistics. Otherwise, the monitoring task can
be performed by the authorized party, so that a monitoring intermedi-
ary is skipped. Similar with the monitor, the other intermediaries (i.e.
advertiser, reputation registry, or arbitrator) can be omitted from the
scenario in case a provider and a user are tightly coupled and sufficient
trust has been built up between them. These intermediaries can be
used before, during, or after a TxSLA is established.

There are a number of data objects (e.g. messages, documents, or agree-
ments) flowing between the parties along the TxQoS life cycle (which will be
introduced in the next sub-section). Figure 4.3 shows (by party) the types
of data objects, with a list of short descriptions below:

TxQoS Template is a base document used for the configuration, with
the values of the TxQoS attributes to be assigned. A range of the values is
given as a reference to provide differentiated offers.

TxQoS Offer is a configured TxQoS template with part or all the values
of TxQoS attributes assigned by a service provider.

Requirement Template is a base document maintained by a service
user to configure a TxQoS requirement document.

56 TxQoS Approach

Service Contract

Intermediary: Arbitrator

UserProvider

Intermediary: Monitor

TxQoS
Performance

Report

TxQoS
Template

TxQoS
Offer

TxQoS
Statistics

TxQoS
Requirement

Requirements
Template

Requirements
Template

Requirements
Template

Intermediary: Rept. Registry
Intermediary: Advertiser

TxQoS
Performance

Report

TxQoS
Reputation
Document

TxSLA

TxQoS
Spec.

TxQoS
Spec.

TxQoS
Spec.

Figure 4.3: TxQoS Objects

TxQoS Requirement is a configured template with the required TxQoS
values, and is used to search for a suitable offer.

TxSLA is an agreement for the transactional performance of a service
established between a user and a provider. Inspired from the entity class ‘Re-
liability Agreement’ in Figure 3.7, a TxSLA is an object specially developed
for the TxQoS approach.

TxQoS Specification is the main part of a TxSLA that specifies the
TxQoS attributes and their values. This object is specially developed for the
TxQoS approach, coming from the entity class ‘Business Tx Specification’ in
Figure 3.7.

TxQoS Statistics is the runtime data for the transactional performance
of a service. It is collected and recorded by the ‘Monitor’ intermediary to
monitor the execution status, and can be used by the ‘Arbitrator’ interme-
diary for arbitrating purpose.

TxQoS Performance Report is the analysis of the transactional relia-
bility of a service for the evaluation purpose based on the aggregation of the
TxQoS statistics. It can be used by all types of intermediaries.

TxQoS Reputation Report is the aggregated analysis of the transac-
tional reliability for similar services. It is used by ‘Advertiser’ and ‘Reputa-
tion Registry’ intermediaries for the evaluation purpose of multiple service
providers based on the aggregation of the TxQoS performance reports.

Service Contract is an e-contract between a service provider and a user
with regard to all the service related agreements. A service contract contains
a TxSLA.

To reveal the relationships of these data objects, we model them by a
class diagram in Figure 4.4. As we can see from the figure, a number of
‘Transactional Specifications’ are contained in a ‘TxSLA’, which in turn is
part a ‘Service Contract’. This structure conforms to the proposed contract

4.2 TxQoS Overview 57

structure shown in Figure 4.1. Note that there is no class named as ‘Article’
here, since articles specified in contracts are not relevant to our approach. In
addition, we indicate the names of entities in the to-be situation in brackets
to show the relationship of the TxQoS approach with the entities identified
as the focus of our research. A TxSLA in our approach corresponds to the
‘Reliability Agreement’ entity, and a TxQoS specification corresponds to the
‘Business Tx Specification’ entity.

TxQoS Offer Requirement Template

Performance Report

TxQoS Template TxQoS Requirement

Service Contract

TxQoS Spec (Business Tx Spec)

1

TxQoS Statistics TxSLA (Reliability Agreement)

Figure 4.4: Class Diagram: TxQoS data object

4.2.3 TxQoS Life Cycle

Our approach is designed for the service oriented computing paradigm, where
we assume that the functional aspects of services (e.g. publish, deliver, and
leverage) are fulfilled with the support of SOA. In this section, we illustrate
the life cycle of the TxQoS approach, which is designed in correlation to the
SOA life cycle. A complete TxQoS life cycle comprises of 3 phases:

1. The Design phase, during which a service provider designs a TxQoS
template of its service and offers one or more TxQoS specifications
based on a template. The design of the template is realized by map-
ping from the internal-level transaction mechanisms to the external-
level TxQoS specification. The differentiated offers are provided based
on its past TxQoS performance and the analysis of users’ requirements,
so that various user requirements can be supported. A TxQoS offer can
be pre-fixed, with every attribute configured by the provider, or user-
configurable, with some attributes customized by a potential user. Also
included in this phase is the option of a service user to design a TxQoS
requirement template for a service according to its own reliability needs.
Usually one requirement template is instantiated into one requirement
document. This is in contrast to the provider side, where one TxQoS

58 TxQoS Approach

template is instantiated into multiple offers. The reason for the dif-
ference is that a user usually has the same requirement every time it
invokes a service, while one service is usually designed by a provider
for multiple users to invoke.

2. TheContract phase, is the phase during which a TxQoS offer matches
a TxQoS requirement document, so that a TxQoS agreement (named
TxSLA) is established and enclosed in a service contract. A service user
can use an intermediary to look up the transactional performance of a
particular service. Afterwards, the user decides which service to invoke,
and which TxQoS offer to take, if the service has differentiated TxQoS
offers. Note that a TxQoS requirement document is usually not exactly
met by any of the available offers. In this case, some negotiations are
necessary. For pre-fixed TxQoS offers, a user may need to adjust its
requirement and take one that fits best. The decision making for this
adjustment is usually based on the weight of different TxQoS attributes
(i.e. the least important requirement can be relaxed first). In cases
where offers are user-configurable, an ideal offer is tailored to the user’s
requirement.

3. The Evaluate phase is where a TxSLA is monitored and managed
by both parties or a monitor intermediary. This phase encompasses
both the runtime (i.e. service execution period), during which real-time
statistics is collected and recorded, and the post-execution period, dur-
ing which the transactional performance of a service is evaluated. The
statistics of multiple running instances of a service are aggregated by
a monitor into a performance report, which describes the transactional
reliability of that service for the purpose of evaluation. Performance
reports of services are stored in a repository and updated from time to
time. These reports are available for the other parties to access, so that
potential users can search, monitor, and evaluate a service (via inter-
mediaries) according to their transactional requirements. In addition,
providers can adjust their TxQoS templates and differentiated offers
based on the reports.

4.2.4 Summary

We have introduced the TxQoS approach, where a TxQoS specification is
enclosed in a service contract to guarantee mutual understanding of trans-
actional reliability between parties. We have proposed a scenario, where
three parties interact with each other and a list of data objects at each side
is described. Figure 4.5 gives an overview of our approach containing the

4.2 TxQoS Overview 59

parties,data objects, and their interactions.

A provider offers multiple TxQoS of a service to potential users. From
available offers, a user can look up in the ‘Performance Repository’, to de-
cide which one to take. Negotiations between a provider and a user can take
place when no ready-to-agree TxQoS specification is suitable. After an of-
fer and a requirement are matched, a TxSLA is agreed. Monitoring of the
running transaction performance takes place by checking the compliance of
the runtime statistics with the TxSLA enclosed in a service contract. The
monitoring module is indispensable, and thus should be provided by at least
one party or alternatively by an intermediary (shown in a dashed module
at each party). The monitoring function is realized by accessing the ‘Per-
formance Repository’ for ‘TxQoS Performance Reports’, generated on basis
of runtime ‘TxQoS Statistics’. The other intermediaries are also shown in
dashed modules as they can be omitted from the scenario if the trust level
between a provider and a user is high enough.

The data object ‘TxSLA’ is located in the central position, with extended
relationships and objects surrounding it. This class refers to the ‘Reliability
Agreement’ class, which we identified as the focus of our research in the case
study in Chapter 3. In fact, the whole TxQoS approach we propose in this
chapter is a result from research on the ‘Reliability Agreement’, as well as

Intermediary: Arbitrator
Intermediary: Rept. Registry

Intermediary: Advertiser

User

Monitor

Provider

Monitor

Intermediary: Monitor

TxQoS
Performance

Report

Performance
Repository

TxQoS
Template

TxQoS
Offer

TxQoS
Statistics

Differentiate

Use

TxQoS
Requirement

Instantiate
Requirements

Template
Requirements

Template
Requirements

Template

Feedback

Provide

Negotiate

Customize

Use

Evaluate

TxSLA

M
atch

Intermediaries

Figure 4.5: TxQoS Approach Overview

60 TxQoS Approach

the proposed grey-box classes (e.g. ‘Business Tx Spec’), which are used to
balance the asymmetric dual view in Figure 3.7.

4.3 TxQoS Specification

A TxQoS terminology understood by both the technical and business world
is essential to enable a common understanding of transactional reliability.
In this section, we are going to develop a specification method, including a
terminology for specifying transactional reliability in service contracts.

With a technical origin, the ACIDity can be extended into some trans-
actional qualities that are more suitable for a business process or a service,
e.g., payment atomicity in [46]. Taking the e-advertising case from Chapter 3
for example, ‘Contracting’ services hosted at all the parties should be atomic
and consistent. The purpose of the TxQoS specification is to specify these
qualities in a business-friendly language that can be enclosed in contracts.

At both provider and user sides, transactional reliability is usually guar-
anteed by the technical mechanisms listed below [23]:

Recovery, also called forward recovery, is a mechanism which fixes
the exceptions and errors occurring halfway to ensure the activity or pro-
cess continues to proceed until completion. The outcome of a recovery can
be a restart or an alternative execution path. In the e-advertising case, for
example, in case of insufficient impressions within the agreed time, the con-
tinuation of the advertising campaign can be seen as a recovery mechanism
of the main process.

Concurrency Control is used to guarantee a consistent execution of
applications when they operate simultaneously on the same data. For exam-
ple, different instances of the same process may take place at the same time.
Concurrency control is vital to keep the common objects safely updated when
accessed by multiple process instances, if these instances take place one after
another. If a design needs to be modified, the concurrency control ensures
that people who access the design data do not interference with each other.

Compensation: Proposed in [20], compensation has been a very com-
mon transaction mechanism to guarantee forward execution by invoking a
compensating activity when the original one fails. In the advertising case,
imagine that the medium does not receive the requirements sent by the
agency. To enable the process to continue, the failed ‘Send requirements’
activity performed by the agency needs to be compensated by an activity
such as re-sending.

4.3 TxQoS Specification 61

4.3.1 TxQoS Specification Attributes: FIAT

In the chapter discussing the case study, we have summarized the asymmetric
as-is paradigm in Figure 3.4 regarding the transactional reliability, and found
the problem of the missing business specification. We have proposed to add
a few entities to transform the as-is into a complete and balanced to-be
paradigm in Figure 3.7. The as-is entity ‘Reliability Agreement’ is what
we aim to achieve by the TxQoS specification attributes. The to-be entity
‘Business Tx Spec’ is proposed to specify the transactional performance to
be agreed in ‘Reliability Agreement’. Interpreted in the TxQoS approach,
the idea inspired from the case study is using TxQoS specification specifies
the TxQoS in a TxSLA.

A TxQoS specification is necessary to promote common awareness and
understanding of transactional reliability by both technical and business com-
munities. When invoking a service, the users usually do not care about what
techniques and mechanisms are applied by the service providers, and how
these techniques and mechanisms work to enable transactional reliability.
What the service users consider when they choose services are the qualities
of the reliability the services can guarantee. In other words, service users
care about the results instead of the technical details of transactional man-
agement. Our design of the TxQoS specification therefore comes from a user
requirements analysis, i.e., what users expect for the reliably executed service
and how they perceive transaction management. We express the expectations
by attributes that are definable in contractual words and meanwhile measur-
able.

The requirement analysis of the specification attributes started with brain-
storming sessions, with the process/service diagrams as a foundation and a
number of ‘user desires’ as the output. These ‘user desires’ were then gen-
eralized, compared, and organized into attributes. At last, the attributes
out of the brainstorming sessions were finalized into the TxQoS attributes
that meet the following criteria: 1) A TxQoS attribute should reflect reli-
ability at service level guaranteed by transaction management mechanisms;
2) A TxQoS attribute should be understandable by the business world; 3) A
TxQoS attribute should be precisely specifiable and monitorable like other
functional attributes (e.g. time, cost, capacity etc.); 4) The use of a TxQoS
attribute should benefit both the service provider and the user.

The following transactional reliability attributes were defined: ‘Fluency’,
‘Transparency’, ‘Interferability’, and ‘Alternation’. The attribute ‘Fluency’
represents the concern for customers on the smoothness of a service. The
higher the fluency is, the less likely it is for the execution to go wrong, result-
ing in a higher user satisfaction as well as potentially raising cost. ‘Trans-

62 TxQoS Approach

parency’ specifies how much of the service execution details would be exposed
to the outside. Many services, especially Web services, are black boxes from
the user’s perspective, from the viewpoint that they either execute success-
fully or not. However, in a case of close collaboration (e.g. the design service
in the e-advertising case), service users concern themselves with the execution
details of the services they invoke. Furthermore, the service users may wish
to participate in the execution in case exceptions and errors occur. Therefore,
we design the ‘Interferability’ attribute to express the limited user power in
service execution that can be allowed and enabled by service providers. The
attribute ‘Alternation’ is designed to provide an alternative execution path
that is different from the execution path at the places where break-downs
are likely to occur. The alternative paths are not routine, so they are not
included into process/service design at the first point. This means these al-
ternatives are like compensation mechanisms that specify the paths that can
lead broken executions back into running till the end. We name the ‘Fluency’,
‘Transparency’, ‘Interferability’ and ‘Alternation’ the ‘FIAT’ attributes (an
acronym with a slightly different order than in the presentation above).

As an element analyzed in the e-advertising case and presented in the
previous Chapter, ‘Time’ is not directly related to transactional reliability
but indispensable for a TxQoS specification. Depending on the execution
time, the transaction requirement of the same service may differ. Generally
speaking, the shorter the execution time is, the less chance the execution
goes wrong. According to the users’ reliability requirement of their local
processes, the execution time can be a key factor to consider if a service
executes reliably. Here we consider time as an important factor for a TxQoS
specification but not a TxQoS attribute directly. Next, we explain the FIAT
attributes one by one.

4.3.2 Fluency

The Fluency attribute gives an indication on the smoothness of service ex-
ecution. To quantify the smoothness, we use the probability of ‘breakdown’
to define Fluency, so that the value of this attribute can be measured against
the agreement.

Definition 1: Fluency is an attribute indicated in the form of a function
or a numerical value that specifies the smoothness of the service execution by
computing the probability of the breakdowns (see Definition 1.1) happening
in the future based on the statistics (either from testing results or from past
running data).

Definition 1.1: A breakdown is the ceasing of a running service so that
the execution comes to a sudden end without delivering the intended results,

4.3 TxQoS Specification 63

and therefore requiring a fix to enable the execution to continue. We assume
the distribution of breakdowns along service execution can always fit for a
specific statistical model, which is widely adopted in the area of software
reliability.

During service execution, a monitor keeps detecting errors and failures
that prevent the ongoing execution to turn to undesired situations (e.g. dead
loops and suspended process). The monitor counts the number of breakdowns
and records their time stamps. After the execution, the smoothness indicator
(e.g. a function or a numerical computation) is recalculated to represent the
up-to-date status. The method to compute ‘Fluency‘ is enclosed in Appendix
A, where the GO NHPP model, which is widely used in software reliability
research, is adopted to compute the function f(n), which is the probability
of having n breakdowns.

Following the method, f(n) can be calculated given the testing statistics
based on the functions. Then, the provider can publish multiple TxQoS
offers with a precise ‘Fluency’ attribute to indicate the smoothness of service
execution. For instance, f(0) means the probability of having no breakdowns
during service execution and can be used to specify the maximum fluency.
Similarly, f(1) means the probability to have at most 1 breakdown during the
service execution. Usually in TxQoS offers, the provider can provide various
fluency guarantees by means of fluency function values (i.e. f(n)). For
example, assume the computation result shows that f(0) = 0.8146, f(1) =
0.9235, f(2) = 0.9992 during the tests, then the provider can confidently
publish an offer where ‘Fluency’ is specified as ‘we guarantee no more than
2 breakdowns during the execution’. While in another offer, ‘Fluency’ is
specified as ‘we guarantee no breakdowns during the execution at the cost x ’.

An agreed TxSLA is monitored by a ‘Monitor’. If, for example, in the
case of f(2) > 2 (which means there are more than 2 breakdowns detected),
the TxSLA is considered breached. As a consequence, the ‘Penalty’ clause
in the TxSLA is enforced or an ‘Arbitrator’ intermediary is appointed to
settle the dispute. After each execution, the newly-obtained data is collected,
therefore recording the statistics, and updating a performance report. Such
a real-time update enables the provider to offer the most appropriate TxQoS
offers and equips the users with the up-to-date information to make a choice
from available offers.

At design phase, ‘Fluency’ is specified by a service provider, and is based
on its testing result of an unpublished service or past statistics of a published
service. At runtime, ‘Fluency’ can be monitored by counting the number of
breakdowns. If a service is canceled by a user, it is counted as an expected
exception instead of a breakdown, and therefore belongs to the scope of
‘Interferability’ (see Section 4.3.5). While the monitoring of ‘Fluency’ is

64 TxQoS Approach

rather easy (by counting), the specification requires complicated calculation
and prediction.

4.3.3 Alternation

The alternation attribute describes the predefined alternative execution paths
in case of breakdowns happening along the service/process execution. Here
the term ‘breakdowns’ means the same type of unexpected but fixable excep-
tions defined in Definition 1.1. During the design time, the service provider
defines a set of execution graphs, including the main execution graph as well
as alternative ones. At runtime, if a breakdown occurs, which deviates from
the original execution path to an alternative path, a monitor detects the
current path and compares it with the predefined set of graphs.

Definition 2: Alternation is an attribute indicating the allowed alterna-
tive execution paths when breakdowns occur along the ongoing path.

Every pre-defined alternative path can be specified using a graph. For
example, imagine there is a service s consisting of activities A,B,C,D,E
with the order of execution as

A C

D

EB

If we use N = {nodes} ⊆ X to describe the domain of activities where X
is the domain of nodes, and E = {edges} = {⟨nodem, noden⟩ ∈ X×X} as the
domain of edges, then G = ⟨N,E⟩ is the execution graph of the activities in
the domain X. Correspondingly, in the above execution graph Gs is specified
as

Gs = ⟨{A,B,C,D,E}, {⟨A,B⟩, ⟨B,C⟩, ⟨B,D⟩, ⟨C,E⟩, ⟨D,E⟩}⟩

Here, ‘{A,B,C,D,E}’ defines five nodes in the graph that represent the
activities in this service that need to be executed, and ‘⟨node1, node2⟩(nodex ∈
{A,B,C,D,E})’ defines an edge of the graph that represents the execution
path from ‘node1’ to ‘node2’. In case a breakdown happens during the exe-
cution of the activity C or D, it is expected that an alternative activity P
or Q is executed to compensate. Therefore, the alternative paths Ga can be
specified as

Ga1 = ⟨{A,B, P,D,E}, {⟨A,B⟩, ⟨B,P ⟩, ⟨B,D⟩, ⟨P,E⟩, ⟨D,E⟩}⟩

4.3 TxQoS Specification 65

Ga2 = ⟨{A,B,C,Q,E}, {⟨A,B⟩, ⟨B,C⟩, ⟨B,Q⟩, ⟨C,E⟩, ⟨Q,E⟩}⟩
Ga3 = ⟨{A,B, P,Q,E}, {⟨A,B⟩, ⟨B,P ⟩, ⟨B,Q⟩, ⟨P,E⟩, ⟨Q,E⟩}⟩

The above example indicates that three situations might occur: Ga1 is
chosen if C cannot be committed, so that P is adopted as an alternative
node; Ga2 is chosen if D cannot be committed, so that Q is adopted as an
alternative node; Ga3 is chosen if both C and D cannot be committed, so
that P and Q are adopted respectively as the alternative nodes. This way,
the predefined graphs representing the agreed execution path and alternative
paths can be specified, which enables the later automatic monitoring on
agreed Alternation specification. If, in this example, the monitor detects,
during runtime, that the on-going path graph contains an unspecified edge
‘⟨C,D⟩’, a message is generated to notice such an error.

4.3.4 Transparency

This attribute describes the visibility of a service. There can be different
ways to indicate the ability of users when viewing a service. This is the only
attribute that needs to be specified at the design time but does not need
runtime monitoring. At the design time, a service provider specifies a specific
part of its service execution to expose to the outside, so that potential users
can learn in advance what they are allowed to inspect. At runtime, there
is no need for mechanisms to detect if a specified-as-transparent activity is
actually transparent or not. When a possible dispute arises, we assume that
the ‘Monitor’ (see Figure 4.5) keeps a log of the executing and executed
service instances for this purpose. For example, only when a user notifies
of a breach of the TxSLA; that an activity specified as transparent was not
visible. In this case the log is needed to settle the dispute. Usually this is
done by an ‘Arbitrator’ intermediary.

Definition 3: The Transparency attribute indicates the visible part of
service execution by reflecting the proportion and/or the details of this visible
part. This definition implies that when a (part of) the process is exposed,
both the activities and the flows that direct these activities are visible by the
service user.

We suggest two ways to specify transparency. In the first approach, it can
be specified as the set of activities that are visible to the users at the external
level of a process. We take the example from the previous section, where a
process has five activities and two optional compensating activities. If the
activities ‘C, D, P , Q’ are allowed to be visible, then these activities have to
be included into the external-level process. We can specify the transparency

66 TxQoS Approach

of this example by the transparency set Ntransparency is specified as

Ntransparency = {C,D, P,Q} ⊆ X X = {A,B,C,D,E, P,Q}

Note that in this example, the flows are not included as there is no con-
nection between the activities ‘C, D, P , Q’ in the execution path. In case
that flows of visible activities exist, they can be specified as a subset of the
execution graph shown in the ‘Alternation’ specification method. For in-
stance, if the activities ‘A, B’ are allowed to be visible in the aforementioned
example, then the transparency set Ntransparency can be specified as

Ntransparency = ⟨{A,B}, {⟨A,B⟩}⟩

This way of specification suits the scenario where users need to monitor
and interfere with the service execution, like in most outsourcing paradigms.

Another way to specify the Transparency attribute is the proportion of
visible activities among all activities. This way, this attribute can be defined
as a percentage, or a number between the interval [0, 1]. Taking the above
example, if activities ‘C, D, P , Q’ are allowed to be seen from the whole set
of activities ‘A, B, C, D, E, P , Q’, the Transparency can be indicated as 57%
or 4

7
. In this way, the flows between the visible activities are not specifically

identified and lost. Therefore, this type of Transparency specification only
gives users a general view of the visibility of the service. This approach suits
the scenario where users are not interested in the details of service execution
better.

4.3.5 Interferability

Interferability is an attribute that describes the control allowed from the user
side upon a service invocation. During the design time, the service provider
decides to expose part of its service to the users and lets them interfere with
the execution. During runtime, users can issue some commands that are
agreed beforehand to control (part) of the service execution [3]. Interferability
is especially suitable in outsourcing scenarios where a different level of control
is necessary [25]. Note that a user only has interferability to the activities
that are specified as transparent, which means a user must be able to see
things before being allowed to take any action.

Definition 4: Interferability is an attribute indicating the user control
by means of issuing operational commands over the execution that are au-
thorized by the provider.

This attribute can be interpreted as the set of commands from the users
to intervene an activity (viewed as a node in execution path), plus the al-

4.3 TxQoS Specification 67

lowed timings to issue these commands. The below set contains the system
functions that can be used to specify interferability:

I = {operation(time, activity)} (4.1)

operation ∈ Ot activity ∈ Nt time ∈ {Rules} (4.2)

Where Ot is the set of possible operations on certain activities such as cancel,
revise, and rollback. Nt here is the transparency set where transparent activ-
ities are specified as a node in the set. Rules is the timing rule set of time,
where times mean the timing an activity is allowed to perform. Timing rules
can be specified in two ways. One adopts absolute machine times, such as
‘before 10:00 ’, another adopts relative times, which invoke timing functions
to indicate the semantics such as ‘after the execution of activity N, but before
the execution of activity M ’. Suppose a service s consists of four transparent
nodes ‘C,D, P,Q’, where D allows user to cancel it after it has started but
before the next node E starts. In this case, ‘Interferability’ can be specified
as:

C = {cancel(getProgress(D) = 0 ∩ getProgress(E) = −1, D)} (4.3)

The above function getProgress(N) invokes the system parameters to
detect the execution status of the node N ∈ X. The parameters are set as
‘-1=not started, 1=committed, 0=started but not committed ’. There can be
other scales to indicate the execution status; here we just provide a numerical
scale as an example. In a TxSLA, this example is stated as a rule ‘the user has
the right to cancel the activity D at any time during its execution’. During
runtime, when the monitor detects a cancel command from the user at the
time when activity E has started, it judges the command as an invalid one
and generates a warning. Thus, the monitor can filter every user command
and pass it to the underlying system when it conforms with the TxSLA, and
block the invalid commands.

4.3.6 Discussion of FIAT

As the key part of a TxSLA, we have developed four TxQoS attributes
for specification and monitoring purposes: Fluency, Interferability, Trans-
parency, and Alternation. A causal-effect diagram in Figure 4.6 shows the
factors that affect TxQoS attributes and the dependencies between these at-
tributes. These causes are identified under three categories: non-system, sys-
tem, and TxQoS. The ‘non-system’ category contains the factors that belong

68 TxQoS Approach

TransparencyTransparency

SystemSystemNon-systemNon-system

TxQoSTxQoS

Compensation

Requirement

Interferability

Duration

InterferabilityInterferability

SystemSystemNon-systemNon-system

TxQoSTxQoS

RecoveryRequirement

Transparency
Fluency

AlternationAlternation

SystemSystemNon-systemNon-system

TxQoSTxQoS

Compensation

Recovery
Requirement

Complexity

Interferability

Duration

FluencyFluency

SystemSystemNon-systemNon-system

TxQoSTxQoS

Capacity
Availability

Latency
Complexity

Transparency
Interferability

Figure 4.6: FIAT: Cause and Effect

to the business domain, while the ‘system’ category contains the factors from
the technical domain. The ‘TxQoS’ category reveals the dependencies among
the TxQoS attributes. For example, we can see that the Fluency attribute is
dependent on the complexity of the service, i.e. the more complex a service,
the lower its fluency can be. Fluency also relates to the system constraints,
such as latency time due to network traffic, capacity due to the bandwidth,
and availability due to the hardware reliability. Meanwhile, Fluency can be
affected by Transparency and Interferability, and vice versa.

By means of the FIAT attributes, we aim to specify transactional relia-
bility during design time (i.e. the ‘design’ phase in the TxQoS life cycle), so
that they can be monitored at runtime and updated after the service execu-
tion (i.e. the ‘evaluate’ phase in the life cycle). A FIAT specification is the
first and foremost concept in our contractual approach.

4.4 Conclusions

We have proposed the conceptual approach to address the first research prob-
lem identified in the previous chapter – How to specify proper transaction
support required for a service? As inspired from the case study of on-line
advertising, this chapters starts the business-oriented design with a focus
on the entity ‘Business Tx Spec’, which in our approach corresponds to a
method using FIAT attributes for contract specification. In this chapter,
we design the conceptual TxQoS approach. An architecture, a contracting
model, and a monitoring mechanism will be proposed in the next chapter as

4.4 Conclusions 69

the supporting elements to implement the approach.
The FIAT attributes (Fluency, Interferability, Alternation, and Trans-

parency) enable the specification of transactional reliability in a TxSLA. A
TxSLA can be enclosed in a service contract and is understandable by both
the technical and business worlds. Because of the FIAT specification, a
TxSLA can be monitored and evaluated along the TxQoS life cycle.

These four attributes come from the transactional requirements of the
user side and cover the need for exception and error handling. Fluency mea-
sures the robustness of service execution. Interferability indicates the extent
of control from the outside during execution. Alternation represents the pos-
sible choices when encountering problems. Transparency reflects the interest
of a service user on the internal process at the provider side. Applying FIAT
through different stages of a service life cycle (i.e. design, publish, discov-
ery, execution, evaluation) enhances transactional reliability by empowering
users with more knowledge to choose reliable services. A framework to oper-
ationalize the TxQoS approach is needed to ensure things work as visioned.
This part of the design will be described in the next chapter.

70 TxQoS Approach

Chapter 5

TxQoS Framework

Following the answer to the question ’how to specify transactional reliability’
by means of introducing a contractual approach at a conceptual level, we
continue in this chapter to answer the second question: how to ensure such
an approach at an operational level. A reference architecture, a contracting
model, and a monitoring mechanism are proposed. These three components
work together as the TxQoS framework, which deepens the understanding of
the TxQoS approach and can be used as an implementation suggestion in
practice.

5.1 Introduction

We have elicited the general existing problem of the lack of agreements on
transactional reliability from a case study in Chapter 3. In Chapter 4, we have
proposed the specification of transactional reliability by means of the FIAT
attributes, which provides the conceptual solution to address the problem. In
this Chapter, we provide the operational solution to address the problem. A
TxQoS framework is developed to ensure a specified transactional reliability,
which consists of three compartments: a reference architecture, a contracting
model including matching and mapping, and a monitoring mechanism geared
into the TxQoS phases.

According to [2], a software reference architecture is a generic architec-
ture for a class of information systems that is used as a foundation for the
design of concrete architectures from this class. For our purpose of providing
an operational level solution to support the TxQoS approach, we designed
a reference architecture based on a functional consideration. The architec-
ture illustrates the modules required at each party to enable our approach.
These functional modules are placed on top of business process engines and

72 TxQoS Framework

e-contracting systems. A contracting model that describes how the approach
works across different process layers and organizational boundaries is devel-
oped to complement the understanding of the scenario. This model describes
both the horizontal matching of the TxQoS documents between the involved
organizations, and the vertical mapping from the bottom level transaction
mechanisms to the upper level of TxQoS documents for external discovery
and matching. A monitoring mechanism explains how the specified TxQoS
agreements are monitored and evaluated. This monitoring mechanism, to-
gether with the reference architecture and the contracting model, address
the operational level of the approach. We call this operationalized TxQoS
approach as a TxQoS framework.

As mentioned in Chapter 4, a TxQoS life cycle comprises three phases:
a ‘design phase’, a ‘contract phase’, and an ‘evaluate phase’. The TxQoS
framework supports the TxQoS approach along all three phases. With the
in-depth investigation of various aspects, we aim to deliver a TxQoS approach
that bridges the gap of transactional awareness between the technology and
business communities, so as to enhance execution reliability for contract-
driven, service-oriented business processes.

In the next sections, we first present the reference architecture in Sec-
tion 5.2. Then in Section 5.3, we describe how the agreements on transac-
tional reliability is realized across organizational boundaries and process lay-
ers by a contracting model. Next, the monitoring mechanisms of the TxQoS
approach is explained in Section 5.4. We conclude the chapter in Section 5.5.

5.2 TxQoS Reference Architecture

As the size and complexity of software systems increased, designing and spec-
ifying the overall system structure emerged beyond the algorithms and data
structures of the computation, which is referred as the architecture level of
design [21]. Proposed in [52], an architecture of a specific system is a col-
lection of computational components, connectors, constraints composition,
containers, and configurations. The architecture design is a blueprint work
to facilitate the understanding of a system and enable its later implementa-
tion. In this section, we design a reference architecture as a suggestion for the
TxQoS approach, according to the overview scenario depicted in Figure 4.5.

5.2.1 Functional Requirements

An architecture should address all functions of a system. A reference ar-
chitecture serves as a template for similar architectural designs. The design

5.2 TxQoS Reference Architecture 73

of our TxQoS reference architecture makes use of the typical architecture
styles. According to [21], an architecture’s style determines the vocabulary
of components and connectors, together with constraints on how they can
be combined. There are numerous styles for architectural design, such as
‘Pipes and Filters’, ’Layered Systems’, and ‘Repositories’. Each of them has
its own structural pattern and specific advantages and disadvantages. These
architecture styles and patterns can be combined, which is typically the case
for most systems.

To design a TxQoS reference architecture, we first identify the functional
requirements a TxQoS system must satisfy. Such functions include specify-
ing, matching, agreeing, and managing the TxQoS-enclosed contracts, and
are realized by the modules hosted at each party. Upon an analysis of the
involved parties, we identify the functions necessary for the three phases of
the TxQoS lifecycle:

• The Design phase is where both service providers and users design
their TxQoS documents. In this phase, the templates are defined and
configured into TxQoS offers or requirement documents. Therefore,
functions of publishing, definition, and configuration are necessary for
service providers and users. Meanwhile, intermediary functions (e.g.
Registry) may be needed as well.

• The Contract phase is where a TxSLA is agreed and enclosed in
an e-contract. In this phase, a contracting tool is necessary for both
providers and users to establish such a contract. A contracting tool at
the user side searches, matches, and negotiates with another contracting
tool at the provider side to reach an agreement. Also the contracting
tools are responsible to manage the established TxSLAs. Intermediary
functions like advertising can help to facilitate the contracting process.

• The Evaluate phase is where which the execution, according to a
TxSLA, is monitored and managed. This phase encompasses both the
runtime (i.e. service execution period), during which real-time statistics
are collected and recorded, and the post-execution period, during which
the transactional performance of a service is evaluated. Therefore, a
monitoring tool is needed. Such a tool can be hosted by either party or
by an intermediary (in this case is called a ‘Monitor’). Functions like
arbitrating may be needed when disputes arise.

Besides the above functional requirements for the architecture design,
repository tools are necessary throughout the whole lifecycle to gather TxQoS
documents for service providers and users to access. Such tools are usually
provided by an independent intermediary. In addition, a functional module

74 TxQoS Framework

managing all the above-mentioned tools and coordinating the related proce-
dures serves as the foundation for the TxQoS architecture.

5.2.2 Architecture Design

In the previous subsection, we listed the functional requirements: publish-
ing, definition, configuration, contracting, monitoring, managing, and coor-
dinating. When designing a reference architecture, we also take some non-
functional properties into account, such as security and reusability. For ser-
vice providers and users, we suggest the equivalent modules, thus forming a
symmetric architecture. Together with the modules from the intermediaries,
we design the TxQoS architecture within the SOA paradigm, considering the
context of our approach is service-oriented and contract-driven.

Internally, at the provider or user side, we adopt a ‘Heterogeneous’ de-
sign, which is a combination of ‘Layered Systems’ and ‘Event-based, Implicit
Invocation’ architecture patterns [21]. The ‘Layered Systems’ pattern al-
lows a partition of the complex TxQoS approach into incremental steps and
supports enhancement which are reusable with the TxQoS layer on top of
the process layer. The ‘Event-based, Implicit Invocation’ pattern is widely
used for integrating tools and ensuring consistency constraints in applications
where components and modules interact with each other through implicit in-
vocations. With the similar benefit of the ‘Layered Systems’ pattern, the
‘Event-based, Implicit Invocation’ pattern also provides strong support for
reuse.

An architecture of the TxQoS framework is shown in Figure 5.1, where
a service provider or user integrates a business process engine for process
control, and an e-contracting system for contract management. A ‘TxQoS
Manager’ is placed on top of the basic layer, where a business process engine
resides. The ‘TxQoS Manager’ lays the foundation for the tools (i.e. ‘Defi-
nition’, ‘Publishing’, ‘Configuration’, ‘Contracting’, and ‘Monitoring’ tools),
which are built on top of it. It is the essential component; it is in charge of all

 Business Process Engine

TxQoS Manager

Configuration
Tool

Definition
Tool

Contracting
Tool

Publishing
Tool

Monitoring
Tool

Figure 5.1: TxQoS Architecture: Provider/User

5.2 TxQoS Reference Architecture 75

TxQoS management issues, such as coordinating the derivative tools and in-
teracting with other parties. As e-contracting systems are not widely present
in organizations, they do not appear in our architecture design. In case an e-
contracting is not present, the ‘Contracting Tool’ is not needed anymore. In
addition, the ‘Monitoring Tool’ is optional since the monitoring function can
be performed by a ‘Monitor’ intermediary, instead of a provider/user itself,
as mentioned in Section 4.2.4. Therefore, ‘Contracting’ and ‘Monitoring’
tools are presented in dashed boxes.

Besides service providers and users, there are (optional) intermediaries
(i.e. ‘Monitor’, ‘Advertiser’, ‘Reputation Registry’, and ‘Arbitrator’) in-
volved in the overview scenario of the TxQoS approach. Figure 5.2 shows
that they are organized. These intermediaries provide auxiliary functions to
facilitate the TxQoS activities along the life cycle and are considered trusted
external parties. An ‘Advertiser’ advertises TxQoS offers in a indexed way
so that users can easily find and choose services according their transactional
requirements. An ‘Arbitrator’ is present when any dispute arises between the
providers and users. A ‘Reputation Registry’ keeps the relevant ranking or
indexing statistics on services from various providers, so that potential users
can approve a provider. A ‘Monitor’ is a module for runtime compliance
checking of the TxQoS specification according to the agreed TxSLA. The
TxQoS performance repository is kept here for other parties to access.

Figure 5.1 and Figure 5.2 depict the architectures of service providers,
users and intermediaries. When applied in the SOA paradigm, we get the

Reputation Registry

Registry Tool

User Interface

Arbitrator

Arbitrating Tool

User Interface

Monitor

Monitoring Tool

User Interface

TxQoS Performance
Repository

Aggregation Tool

Advertiser

Advertising Tool

User Interface

Figure 5.2: TxQoS Architecture: Intermediaries

76 TxQoS Framework

Business Process Engine

TxQoS Manager

Configuration
Tool

Business Process Engine

Arbitrator

TxQoS Manager

Definition
Tool

Provider

Intermediary(s)

Rept. Registry

Advertiser

Monitor

Configuration
Tool

Monitoring
Tool

Contracting
Tool

Definition
Tool

User

Monitoring
Tool

Contracting
Tool

Publishing
Tool

Publishing
Tool

Figure 5.3: TxQoS Reference Architecture

TxQoS reference architecture in Figure 5.3. The dashed boxes indicate the
optional components. This architecture can be used for understanding how
the TxQoS approach works, as well as a suggestion for the implementation.
Note that the TxSLA-enclosed contracts are preserved, either in the contract-
ing tool or the e-contracting system at the provider/user side. As mentioned,
due to the absence of an e-contracting system in most organizations, it is not
depicted in our diagram. Interested readers are referred to [1] for a detailed
e-contracting reference architecture design.

5.3 Contracting Model

Among the three phases in a TxQoS life cycle, the ‘Design’ and ‘Contract’
phases include a lot of interactions directly between service providers and
users, which we see as relationships at the external level. Meanwhile, within
each party, many cross-layer activities take place internally, which we see as
the vertical relationships across the three levels (i.e. internal, conceptual and
external levels conforming to [27]). The vertical relationships are developed
during the ‘Design phase’ to produce TxQoS data (i.e. offers and require-
ment documents), and the horizontal relationships are developed during the
‘Contract phase’ to reach a TxSLA. We have depicted the relationship in
Figure 4.2 in Section 4.2.2. In this section we investigate how a TxSLA is
established from the perspective of two orthogonal dimensions.

5.3 Contracting Model 77

To reach a mutually satisfactory agreement on transactional reliability, it
takes place in three steps. For this we propose a contracting model shown in
Figure 5.4 for mapping and matching. First, the provider maps the transac-
tional mechanisms of its internal level to the conceptual-level transactional
properties, and then interprets these properties into a TxQoS template, which
can be configured into multiple offers, catering various needs at the external
level. Second, the user figures out its TxQoS requirement document instan-
tiated from its requirement template. This requirement template is based
on the process reliability analysis at the conceptual level, which is rooted in
the internal level process specification. Third, the user discovers a suitable
service by matching its transactional requirement document to a provider’s
TxQoS offer, which is usually facilitated by an advertising intermediary. Note
that the first step and the second step are independent and can take place in
parallel.

From the provider’s side, it offers, at the external level, multiple TxQoS
offers of its service. This way a service user can choose a service provider with
the most suitable TxQoS offer, based on its TxQoS requirement. There are
mappings at each side between the internal level and the conceptual level, and
between the conceptual level and the external level. With the mappings, the
transaction properties (e.g. ACIDity) are translated into the external-level
TxQoS terminology. At the external level, there is a match of the TxQoS
documents, which results in an agreed TxSLA between the provider and the
user. In the contract-driven service-oriented processes, the agreed TxSLA is
included into a service contract and ensured by the contracting systems.

The TxQoS mapping (vertically) between process levels and matching
(horizontally) between the service user and provider result in a successful
fulfillment of the ‘Design’ and ‘Contract’ phase. For the mappings, the rela-

External Level

Conceptual Level

Internal Level

Provider User

Matching

TxSLA

Process
reliability

Transaction
properties

mappingmapping

Transaction
mechanisms

Process
specification

Requirement
Document

TxQoS
Offer

Figure 5.4: TxQoS Contracting Model

78 TxQoS Framework

tionships between transactional properties in technical terms (i.e. ACIDity)
and the TxQoS in business terms (i.e. FIAT attributes) are indicated in
Table 5.1:

Fluency Interferability Alternation Transparency
Atomicity ↑ ↓ X ↓
Consistency X ↓ ↓ X
Isolation ↑ ↓ X ↑
Durability X X ↓ X

Table 5.1: Mapping Indication

Here, ↑ indicates a positive correlation between a technical property and a
FIAT attribute and ↓ indicates a negative correlation. The mark ‘X’ indicates
few or unknown correlations. For instance, if the execution time of a service
is very short, this service is often supported by the transaction property of
‘Atomicity’. This ‘Atomicity’ has a positive correlation with the ‘Fluency’
attribute (i.e., high atomicity −→ high fluency) as an atomic transaction is
short-lived and has less chance of getting wrong during the execution. The
‘Atomicity’ has a negative correlation with the ‘Interferability’ attribute (i.e.,
atomic service execution means no interferability from the user side). Note
that Table 5.1 only gives a very rough indication of how to map the internal
level transactional properties to the external level TxQoS documents.

After mapping, the essential step leading up to the establishment of a
service contract is the match of a user’s requirement with the most suitable
offer from a provider’s multiple TxQoS offers at the external level. The
matching basically takes place among the FIAT specifications of the two
sides. Afterwards, a TxSLA is reached and enclosed in a contract. How
a contract is managed is out of the scope of the TxQoS approach as we
assume that the e-contracting system supports the automation of contract
fulfillment.

5.4 Monitoring

After the ‘Contract’ phase, a TxSLA is established. Consequently, the mon-
itoring loop is initiated throughout the phases. As the architecture implies,
a monitor, which monitors the agreed TxSLA at runtime, is indispensable
for a complete TxQoS framework, although it may reside at any party. For
transaction management properties (e.g. ACIDity), various transaction mon-
itoring technologies and tools are already available (e.g. database benchmark
tools). In this section, we explain how monitoring mechanism works in the
TxQoS life cycle. Here, we assume that for any service, the FIAT attributes

5.4 Monitoring 79

have been specified in the TxQoS offers. This means that the values agreed
on the TxQoS attributes in the TxSLA come into force from the time a ser-
vice provider publishes a service until the end of the service life cycle (i.e.
the time a provider updates or closes the service).

Figure 5.5 shows the monitoring mechanism throughout the TxQoS life
cycle. The objects to be monitored are the running instances of a particular
service. A ‘Monitoring Tool’ or an intermediary ‘Monitor’ is delegated to
detect if there are any inconformities with the agreed TxSLAs during run-
time. Before publishing the service, the provider usually estimates the future
possible performance according to its testing and probability computation.
After publishing, the design template of the TxQoS offers at the provider side
can be adjusted, based on the TxQoS performance report aggregated by the
runtime statistics of all monitored service instances in the past (or between
any certain time intervals). The accumulated runtime monitoring data of the
TxQoS attributes for multiple service instances are aggregated and recorded
into a TxQoS performance report, and all the TxQoS performance reports
are stored in a repository, which can be accessed by the provider and the
users, and/or other intermediary(s). A TxQoS performance report can be
updated upon the execution of one or multiple service instances.

A monitoring loop starts from the ‘Contract’ phase, goes through the
‘Evaluate’ phase, and finishes in the ‘Design’ phase. Below we summarize
the monitoring related steps (e.g. predict, specify, monitor, and evaluate)
throughout the TxQoS life cycle:

TxQoS
Offer

TxQoS
Offer

TxQoS
Offer

TxQoS
Offer

TxQoS
Offer

TxQoS
Requirement

TxQoS
Offer

TxQoS
Offer

TxQoS
Statistics

TxQoS
Performance

Report

Design
Phase

Contract
Phase

Evaluate
Phase

TxQoS
Template

Requirement
Template

TxSLATxSLATxSLA

Monitoring Loop

Figure 5.5: TxQoS monitoring

80 TxQoS Framework

Design phase A provider designs a service and runs some tests before pub-
lishing it. Based on the testing data, a TxQoS offer template is de-
signed. The information on fluency, such as the maximum, the mini-
mum, the average fluency value, and the way to compute the function
f(p) etc., is used to predict the future performance. For the other at-
tributes, the testing data can also be used to instantiate various offers
(i.e. the provider is confident to guarantee the offers). Meanwhile,
a user who looks for a suitable service also designs its requirement
template and configures it into a requirement document for potential
matching. The monitoring mechanism can results in feedbacks for both
the provider and user to adjust their documents.

Contract phase A service user chooses one of the TxQoS offers based on
its requirement document. A TxSLA is then agreed and enclosed in a
service contract. Negotiation may take place if no exact match exists,
for instance for the attributes of ‘transparency’ and ‘interferability’,
which define the control a user has for a service. The desired values
for these two attributes differ from one user to another, and are often
open for negotiation. A monitoring loop starts from this phase after a
TxSLA is agreed.

Evaluate phase The service starts to run, and a monitor who is authorized
by both parties surveys the ongoing TxQoS statistics and compares
them with the TxSLA. After the execution of this service instance, the
runtime statistics are recorded and the performance report is updated
as the latest evaluation. The updated report is then stored in a repos-
itory for future access. The service provider may accesses the report
repository to adjust its TxQoS offer template and offers. The user may
also wish to retrieve the up-to-date TxQoS performance report from
the repository for decision-making. If there is any dispute, the runtime
statistics in the report are used by the intermediary(s) as authorized
evidence to check its conformance with the agreed TxSLA.

On the one hand, the monitoring mechanism enables the provider to offer
TxQoS guarantees more confidently. On the other hand, users can compare
different service offers with objective references from an authorized monitor
for a best match, and protect their rights by means of a TxSLA agreed before
service execution. If any dispute arises during or after the service execution,
the monitor can provide the relevant statistics for a fair settlement.

5.5 Conclusions 81

5.5 Conclusions

In this Chapter, we have investigated the operational aspect of the TxQoS ap-
proach. A framework consisting of an architecture, a contracting model and
a monitoring mechanism are developed to ensure the conceptual approach.
Fist, a reference architecture is developed under functional consideration.
Modules are needed to guarantee the necessary functions, such as publish-
ing, definition, configuration, contracting, etc. In the architecture, these tools
are placed on top of business process engines. Second, a contracting model is
developed to describe the horizontal matching of the TxQoS documents that
crosses the organizational boundaries, and the vertical mapping from the bot-
tom level transaction mechanisms to the upper level of TxQoS documents for
external discovery and matching. Third, the monitoring mechanism explains
how TxQoS specifications are monitored throughout the TxQoS life cycle.

We have developed a TxQoS approach to bring together the reliability
concern from both technical and business worlds that have long been sepa-
rately addressed. The key of the TxQoS approach, a specification method
via FIAT, completes the missing part of the picture (see Figure 3.4) and
towards a balanced vision shown in Figure 3.7. So far, the business-oriented
design, which resulted in the TxQoS approach, has been proposed and ex-
plained. In the next chapter, we perform technology-oriented design, focusing
on the ‘Tech Tx Spec’ entity to address the problem of ‘how to ensure these
transaction specifications work in a changing environment’.

82 TxQoS Framework

Chapter 6

Abstract Transaction Construct

Business processes have become increasingly complex. However, no single
transaction model is comprehensive enough to accommodate the various trans-
actional properties demanded by these processes. In this chapter, we introduce
and demonstrate the concept of the Abstract Transactional Construct (ATC)
to address this problem. ATCs are abstractions of transaction models which
can be selected, configured, and deployed in a service-oriented transaction
framework according to process specifications. The reusable and extensible
templates, with parameters to indicate structure, position, and ACIDity, en-
able the ATC composition to construct a flexible and comprehensive business
transaction framework. A complex process can be decomposed into several
subprocess (i.e. process chunks), which are each in need of a different trans-
action support in order to guarantee execution reliability. However, existing
transaction models are not comprehensive enough to accommodate all these
transactional needs. Therefore, with the unique features of generalization
and abstraction of transactional qualities from the existing transaction mod-
els, ATCs allow for design time specification and runtime instantiation to
support various transactional needs of the complex processes.

6.1 Introduction

In Chapter 3, we studied the entities and relationships of an on-line ad-
vertising case. A ‘to-be’ mapping of the dual view has been proposed in
Figure 3.7, in contrast to the as-is dual view diagram. Based on the dis-
cussions on the entity of ‘Reliability Agreement’ and ‘Business Tx Support’
in the service view, we have proposed the TxQoS approach in Chapters 4
and 5. The essence of this approach is to specify transactional reliability in
business-level terminology via FIAT attributes. In this chapter, we present

84 Abstract Transaction Construct

Sales Book

Select
Hotel

Select
Flight

Select
Car

Calcul
ate

Book
Hotel

Book
Flight

Book
Car

Invoice
Payme

nt
Send
Docs

Figure 6.1: A Travel Booking Example

our research result on the entities mirrored to ‘Reliability Agreement’ and
‘Business Tx Support’ – ‘Tx Support’ and ‘Tech Tx Spec’ in the process view
shown in Figure 3.7.

This chapter presents the result from the technology-oriented design,
while the previous chapters (4 and 5) presented the result from the business-
oriented design. As introduced in the research process in Chapter 1, these
two branches of design activities took place in parallel. So the technology-
oriented design is not the consequence or follow-up, but a complement of the
business-oriented TxQoS approach.

First, we take a booking process of a travel agency (see Figure 6.1) which
consists of a series of activities. The administrative activities take place in
the agency, while three Web services (i.e. hotel booking, car rental, and
flight booking) are executed elsewhere and are invoked by the agency. These
services are composed in parallel and can be invoked in any order, according
to the requirements of the clients. In this case, each Web service demands
‘atomic’ Web service transaction support, as the clients do not need to know
how these services are implemented and where they are located. Besides the
three parallel-invoked services, there are sequential activities in this process,
such as billing, payment, etc., which are executed one by one. These sequen-
tial steps demand a ‘chained’ transaction support so that the execution does
not need to roll back to the very beginning once an activity fails to execute.
With regard to the transaction support at a global level, the entire process
requires the ‘rollback’ mechanism, in case a client cancels the booking before
the execution of the ‘payment’ activity. In an alternative case, if the process
is canceled after the ‘payment’ activity, the process can not be rolled back
to the exact same state to when it started, as the customer is fined for the
late cancelation. Thus, a transaction mechanism of ‘compensation’ is needed

6.1 Introduction 85

to invoke compensating activities to ‘undo’ the entire process. The simple
example gives an indication that transaction management in service-oriented
processes can be a complex problem to tackle, as different mechanisms are
required for different parts of a process. Furthermore, there can exist differ-
ent levels of transaction scopes (e.g. activity level, service level, and process
level), which can demand alternative transactional qualities.

As demonstrated by the example above, a multi-level complex business
process requires robust execution in every process chunk. Here, a process
chunk mean an arbitrary composition of activities that form a part of the
process, which is sometimes referred to as a ‘sub-process’. When these chunks
join together, the execution needs to be smooth at the global level, in spite of
heterogeneous underlying systems and application domains. As the example
shows, the different parts of a process, which can be called process chunks
or sub-processes, demand different transaction support and exhibit differ-
ent transaction properties. For instance, the sequentially executed process
chunk demands for transaction support suitable for long-living processes (i.e.
chained transactions). As a result, this part of the process exhibits the trans-
actional properties of non-atomicity and non-isolation (i.e. the intermediate
results are saved for roll back purpose), while the process chunk consisting
of parallel activities demands for transaction support suitable for distribute
nodes (i.e. nested transactions) that releases the ACIDity of isolation.

As the building blocks of the Business Transaction Framework (BTF),
Abstract Transaction Constructs (ATCs) play an essential role to achieve
both comprehensiveness and flexibility [66]. The basic idea of an ATC is to
analyze the existing transaction models and abstract the commonalities in
terms of transactional properties, so that they can be utilized at design time
by hiding their implementation details. Next, we demonstrate the concept of
ATCs and explain their working mechanisms. ATCs provide the foundation
for the BTF design and solve the problem generalized from the case study
in Chapter 3, by introducing extra entities to move the ‘as-is’ towards the
‘to-be’ scenario. We are going to answer the following two questions one by
one in this chapter – 1) What are ATCs? and 2) How do they work?

The rest of the chapter is organized as follows. First, we answer the
’What’ question by introducing the concept of ATC, the ATC library, and
explain the ATC features in Section 6.2. Furthermore, we define four types
of ATCs, each with a parameterizable interface for later configuration and
deployment. Second, we further explain how ATCs are designed, selected,
configured, and deployed in Section 6.3, in order to answer the ’How’ ques-
tion. Section 6.4 concludes this chapter.

86 Abstract Transaction Construct

6.2 What are ATCs?

Business applications over distributed infrastructures are developed and de-
ployed as reusable services that can be composed into a global process, as if
they were local components. These function-as-local component services are
composed in a plug-and-play manner using existing common standards (e.g.
Web service protocols). The change of service implementation details does
not affect the design. At the same time, the change of the process logic does
not necessarily require the change of service implementation. The separation
of the concern of the process design and service implementation render the
services, each providing a specific function, to form multi-functional processes
in a flexible and reusable way.

A complex business process demands execution reliability at each level of
the composition (i.e. sub-process and/or component service). This require-
ment for a transaction management that offers various transaction qualities,
is beyond what the existing transaction models can do. For example, in
the service-oriented paradigm, Web service transactions have been proposed
to meet the demands from service choreography/orchestration/composition.
However, web services cannot stand for all types of services in a broader
context. Thus, inspired by the benefit of reusability in a service-oriented
paradigm, we propose reusable transactional building blocks, which are to be
used for building complex transactions in order to address flexibility and com-
prehensiveness demanded by today’s complex processes. These transactional
building blocks are named Transaction Constructs (TCs). The general tem-
plates used for designing these constructs are named Abstract Transaction
Constructs (ATCs).

6.2.1 ATC Concept

ATCs are design-time transaction constructs in the form of general tem-
plates, with parameters that allow for specification in run-time transaction
constructs. They are organized and stored in a repository (ATC Library).
The idea of the ATC approach is to develop reusable building blocks for
the BTF that provides on-demand transaction qualities. Such on-demand
transaction design requires the ATCs to be self-contained entities, that are
ready to be selected and composed in a plug-and-play way. In other words,
ATCs are used, and can be reused, as transaction schema design constructs.
Proper ATCs can be selected to compose a transaction schema according to
a specific business process at design time, and configured accordingly at con-
figuration time, in order for the schema to be instantiated into an executable
transactional process chunk at runtime. This way, a number of ATCs can

6.2 What are ATCs? 87

be flexibly composed into a multi-level transaction scheme that guarantees
reliability along the process execution in a best-effort manner.

To design the ATC concept in detail, we investigate the existing transac-
tion models with the aim to generalize and abstract their commonalities. We
classify and abstract various existing transaction models into three classes.
A hierarchy presented in Figure 6.2 shows the classification [70]: The Flat
Transaction Model (FTxM) with a flat structure, the Choreographed Trans-
action Model (CTxM) with a sequence and a complex structure, and the
Nested Transaction Model (NTxM).

We identify these three classes according to their structure. Later we
will introduce (in Section 6.2.2) the four ATC structures specified as: flat,
sequence, complex, and tree-like. Here, the sequence and complex types are
derived from the Choreographed group in the classification. For example, the
X Transaction model proposed in [60] is a workflow transaction model, which
leverages the idea of compensation originated from Sagas (and Saga ATC is
a sequence type of ATC). In the classification according to Figure 6.2, the X
model is under ESTxM (extended Saga transaction model) within the CTxM
group. However, if it is defined in the template, the X model is specified as
having a ‘complex type’ of structure.

TxM

CTxM

ES
TxM

STxM

FTxM NTxM

PSQL

CN
TxN

SB

ON
TxM

ORA

WIDE
G

XTxM
WIDE

L

Tx
ACID

Tx
BP

Tx
LRA

WS AT

WS BA

Figure 6.2: The ATC hierarchy

Figure 6.2 shows the transaction models, which are indicated by white
and gray boxes. Models with gray boxes are specific enough to be executed

88 Abstract Transaction Construct

(and which are thus usable at least in theory and which may or may not
have an implementation) and white boxes represent transaction models that
are only abstract and super-type like, i.e., non-executable. In other words,
the gray boxes indicate the real existing transaction models and the white
boxes are the generalization of transaction models, i.e. there is no existing
transaction model called a ‘Choreographed Transaction’.

The most abstract transaction model here is the empty transaction model
called TxM (i.e., transaction model), which defines common properties of
a transaction model, like the name, structural couplings, and transaction
management events. For an example, please refer to [14, 18]. Below the most
abstract model we can identify and classify three main groups of transaction
models:

• The flat transaction model (FTxM)

• The choreographed transaction model (CTxM)

• The nested transaction model (NTxM)

The flat transaction model is the oldest, most simple and most widely used
transaction model. It adheres to the ACID properties and has extensions,
for instance the two phase commit protocol (2PC) in case of distributed flat
transactions. In a service-oriented environment, the flat transaction model
varies from, for example, WS Atomic Transactions (WS AT) to WS-CAF’s
ACID Transactions (Tx ACID).

The choreographed transaction models are used in environments that re-
quire long-lived transactions. In such cases, a choreographed transaction
decomposes a long running transaction into small, (sequentially-executing)
sub-transactions. This model can be further specialized, for example into
the saga or extended saga transaction models. The extended saga transac-
tion model can be decomposed further into workflow transaction models, like
the WIDE Global Transaction Support (WGTxM) [61] and X-Transaction
(XTxM) [60]. The Long Running Action (Tx LRA) model from WS-CAF
also fits into this category.

The nested transaction model adopts a top-down method to decompose
a complex transaction into child transactions according to the application
semantics. Nested transactions overcome the shortcomings of flat transac-
tions by permitting parts of a transaction to fail, without necessarily aborting
the entire transaction. This model can be further classified into specializa-
tions, like the open nested and the closed nested transaction model, which
can again be further specialized into, for example, the WIDE Local Transac-
tions model (WLTxM) [6]. Examples of open-nested transaction models in
a service-oriented environment are the WS Business Activity (WS BA) and
the Business Process Transaction Model (Tx BA) from WS-CAF.

6.2 What are ATCs? 89

All existing transaction models can be classified into these three main
categories of transaction models. Recently, we have seen new developments
on transaction models in the realm of workflows, web services, and grid-
computing, which have been identified as special types of the three main
classes of transaction models.

Adhering to the principles of OMG’s model driven architecture (MDA)
approach [44], our hierarchy also provides support for platform specific trans-
action model implementations, for example Oracle (ORA) or Sybase (SB).
Figure 6.2 shows a clear distinction between platform specific and platform
independent models. Platform specific models are leafs below the dotted line
that are ready to be used, and have a system which implements the higher
level transaction model. Consider, as an example, a business transaction
that intends to use a flat transaction model without specifying the concrete
platform specific implementation which should execute this transaction. The
BTF can decide then at run-time the concrete platform specific model.

ATCs are not a new type of transaction model. Instead, they are rooted
in and abstracted from the existing transaction models. The ATCs and trans-
action models are both designed to meet specific transactional requirements.
An ATC is designed based on the abstraction of a transaction model, which
means a transaction model needs to be there before a corresponding ATC can
be designed. In other words, ATCs come after the existing transaction mod-
els. It is configured and instantiated with process knowledge at configuration
time.

To summarize, an ATC is a template designed after an existing transac-
tion model for the construction of a business transaction schema. We propose
this concept to address the flexibility requirement imposed by the second re-
search problem.

6.2.2 ATC Features

In the above section, we have introduced the concept of an ATC. In this sec-
tion, we explore the features of the ATC which are used for the specification
of an ATC.

An ATC has a structure.
After an investigation of the existing transaction models as reviewed in

Chapter 2, we have identified three classes of transactions according to their
structures: Flat, Choreographed, and Nested. The choreographed transac-
tions can be distinguished further as the chained transactions or complex
workflow transactions. In total, the ATCs can specify four structure types,
as shown in Figure 6.3: Flat, Sequence, Complex, and Tree.

Among the four types of ATCs, the basic type is the flat ATC, which

90 Abstract Transaction Construct

Flat Sequence TreeComplex

Figure 6.3: ATC Structure

is a template for specifying a flat transaction. We consider the traditional
ACID transaction as a special case with a flat structure, which actually has
no structure internally. Accordingly, we have the sequence type and complex
type of ATCs, which specify transactions supporting chain-like sequential
activities or complex-structured workflows. Here, a complex type of ATC
has the internal structure of the mixed arbitrary sequences and parallels,
which corresponds to some complex workflow transaction models. The nested
transaction models can be specified by the type of ATC, with the internal
structure like a tree. Please note that the nodes of a tree have parent-child
relationships, and there is no control flow between the nodes. This means
the siblings do not form a chain, which is different from the complex type
where the children nodes connect one by one to form a chain.

When abstracting existing transaction models with various structures, we
opted for a semantic abstraction. This means we only consider the logistics of
the composition, e.g. splits, joints and flows, and the transaction properties
exhibited, e.g. ACIDity. As a result, we do not consider their implemen-
tation details, such as the underlying transaction processing engines or any
constraint from the application environment. With this semantic abstraction,
ATCs can literally compose into any hierarchy of transaction schema exhibit-
ing the needed transaction properties for supporting of similarly structured
business processes.

ATCs can be composed in a recursive manner.

In a service-oriented business process, we can view the whole process as
a complex business transaction. The sub-process (process chunks) can be
viewed as sub-transactions. Every sub-transaction is a component in the
business transaction and connects with each other horizontally or vertically.
This way, the whole business transaction can be decomposed into several
levels of processes. From the service view, this process hierarchy can be seen
as a service composition.

We propose a recursive transaction composition in correspondence to the
process composition. In our design, the ATC composition is very similar to

6.2 What are ATCs? 91

Complex ATC

Sequence ATC

An ATC at the top
transaction level

An ATC at the sub-
transaction level

Tree ATC

An ATC at the sub-
sub-transaction level

Figure 6.4: Example of ATC Recursion

the process composition. One ATC can be decomposed into sub-ATCs, and
a sub-ATC may be further decomposed into some ATCs as needed. When
viewed by multiple levels, a top-level ATC can be decomposed into several
lower-level ATCs, and the decomposition can go further into multi-levels if
necessary.

Accordingly, a business transaction can be abstracted as an ATC, while
each sub-transaction can be abstracted as a sub-ATC, which can be further
decomposed if necessary. As shown in Figure 6.4, one sub-ATC (the circle
dot with the expanded dashed box below) within the top-level ATC can be
instantiated into transaction constructs that represent another process (in
the center dashed box). This process has a chain-like structure, and thus can
be supported by a chain transaction specified by a sequence type of ATC.
If going further with this sequence ATC, one sub-ATC in the chain can be
assigned as a tree ATC (the circle dot with the expanded dashed box at the
bottom). This multi-level view of an ATC recursion allows a comprehensive
transaction scheme to be specified at the design time that supports any par-
ticular business process, which may involve a lot of distributed sub-processes
and activities.

An ATC specifies general transaction properties. Besides the fea-
tures of having a structure and the ability to be composed recursively, an
ATC has to specify the transaction properties abstracted from the trans-
action models, as these transaction properties form the foundation of the
transaction support. In other words, transaction support for a business pro-
cess means that certain transaction properties are needed to guarantee a
smooth process execution.

92 Abstract Transaction Construct

From the investigation of the transaction management history in Chapter
2, ACIDity (i.e. Atomicity, Consistency, Isolation, and Durability) is what we
know as the general transaction properties that a transaction either guaran-
tees or not. For example, the original database transaction (flat transaction)
guarantees ACIDity and hence is also called ACID transaction, while the
chain transactions release the atomicity and isolation. So an ATC needs to
specify the ACIDity to indicate what transaction properties are guaranteed
by the transaction instantiated from it. This is done at the configuration
phase upon the specific process knowledge, and by a composer who designs
the transaction schema composed of ATCs.

In the previous chapters, we have proposed transactional qualities to
be specified by the Transactional Quality of Service (TxQoS). In a service-
oriented environment, TxQoS clauses are specified as contracts and enclosed
in service agreements (i.e. TxSLAs). Table 5.1 in Section 5.3 gives an indi-
cation of the mapping between the ACIDity and the TxQoS. This mapping
of the ‘Tech Tx Spec’ (ATC) and the ‘Business Tx Spec’ (TxQoS) can be
traced back to Figure 3.7, where we propose a balanced service/process view
to address the research problem. With the feature of transaction properties
specification, recursively composed ATCs allow the instantiated transactions
to execute with required transactional qualities.

6.2.3 ATC Representation

We have introduced the ATC concept as a configurable template. ATCs are
templates abstracted from existing transaction models. A template has to be
general and extensible (what we call as ‘abstract’), where the configuration of
the parameters are left for later, once the knowledge of the particular process
and application environment is obtained. At the pre-design time, a template
is written with most of the parameters empty for later configuration.

In this section, we are going to develop an ATC representation to specify
an ATC in the form of a template. The main part of an ATC template
is the specification of the three features explored in last section: Structure,
Composition, and Transaction Properties. Next, we introduce the way to
specify them one by one in a template.

The first part of an ATC template describes the internal structure of an
ATC, which can only be one of the four values, either flat, sequence, tree, or
the complex type. Note that a flat ATC (instantiated into an ACID transac-
tion) has no value to put in within the structure section. In a general Saga
example shown at the end of this section, the number of nodes in the se-
quence needs to be set. The second part indicates the position of an ATC in
the ATC schema, which describes how it is connected with the other ATCs

6.2 What are ATCs? 93

in an hierarchy, i.e. parents, children, and siblings (i.e. ATCs in front of
or/and after it). The third part defines the transaction properties that an
instantiated ATC conforms. These parameters are set ‘true’ or ‘false’. For
instance, a flat ATC will have all ACIDity set ‘true’ later on in the configu-
ration. The last part is the transactional mechanism, which is important to
know for the ATC that have applied transactional mechanisms. For instance,
the savepoint and compensation parameters need to be configured in a saga
ATC. Note that not all ATCs specify these transaction mechanisms, which
means the existence of this part depends on the type of an ATC. In summary,
the first three parts are the compulsory sections for specifying all ATCs, and
the last part is optional.

We illustrate the basic idea of ATC specification by using a flat ATC
template for example. The first part of the parameters specify the internal
structure, which is flat. The second part of parameters specify the ATC
recursion information, such as the inbound and outbound ATCs. This part
shows the position of the ATC in the global ATC schema. The third part of
the parameters specify the transactional properties to show the conformity
of the ACIDity. The last (optional) part of the parameters specify if this flat
ATC is the savepoint in the global ATC schema and/or if it is a compensation
node. Below we use XML as the language to write a flat ATC template to
illustrate the ‘parameterizalble’ feature. The values of the parameters such
as ‘ID’, ‘NumOfParent’, ‘Atomicity’ and ‘savepoint’ will be determined later,
when the ATC composer gets the process knowledge.

<ATC class="ACID"> <!-- This is an ACID ATC template>

<parameter name="structure">

<value>structure=flat</value>

</parameter>

<parameter name="position">

<valueInput>

name="ID" type=string:s

name="NumOfParent" type=integer

name="NumOfChild" type=integer

name="NumOfFront" type=integer

name="NumOfAfter" type=integer

name="parent" type=atcIdType <!-- This is an ID for ATC>

name="child" type=atcIdType

name="front" type=atcIdType

name="after" type=atcIdType

</valueInput>

</parameter>

<parameter name="ACIDity">

<valueInput>

name="Atomicity" type=bool

name="Consistency" type=bool

94 Abstract Transaction Construct

name="Isolation" type=bool

name="Durability" type=bool

</valueInput>

</parameter>

<parameter name="Mechanism"> <!-- Optional part.>

<valueInput>

name="savepoint" type=bool

</valueInput>

<valueInput>

name="compensation" type=bool

</valueInput>

</parameter>

</ATC>

The first part of structure parameters can be set during the selection
phase, and the second part of parameters relevant to the position can be
set during the configuration phase. The third part of ACIDity parameters
can be set in either phase, as long as a TxQoS specification is ready. The
fourth part of parameters relevant to the transaction mechanisms may be set
during the deployment phase, where the integration with systems and other
applications need to be considered. The structure of the templates is defined
by the XSD (XML Schema Definition). Below we provide the main part of
the XSD:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Parameter"

minOccurs="3"

maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Structure" type="xsd:structureType">

<xsd:element name="Position" type="xsd:complexType"/>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Parent"

minOccurs="0"

maxOccurs="unbounded"

type=xsd:atcIdType>

<xsd:element name="Child" type=xsd:atcIdType>

minOccurs="0"

maxOccurs="unbounded"

type=xsd:atcIdType>

<xsd:element name="Front" type=xsd:atcIdType>

minOccurs="0"

maxOccurs="unbounded"

type=xsd:atcIdType>

<xsd:element name="After" type=xsd:atcIdType>

minOccurs="0"

6.2 What are ATCs? 95

maxOccurs="unbounded"

type=xsd:atcIdType>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="atcId">

<xsd:restriction base="xsd:string">

<xsd:length value="6">

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Mechanism" type="xsd:complexType"/>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Savepoint" type=xsd:bool>

<xsd:element name="Compensation" type=xsd:bool>

</xsd:sequence>

</xsd:complexType>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="structureType">

<xsd:restriction base="xsd:string">

<xsd:length value="20">

<xsd:enumeration value="flat"/>

<xsd:enumeration value="sequence"/>

<xsd:enumeration value="complex"/>

<xsd:enumeration value="tree"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="ACIDity">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="atomicity"/>

<xsd:enumeration value="consistency"/>

<xsd:enumeration value="isolation"/>

<xsd:enumeration value="durability"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

If comparing ATCs with traditional transaction models, we see that they
are both designed to meet specific transactional requirements. For instance, a
Saga ATC is designed to be instantiated at runtime for the chain-like process,
whereas a Saga transaction model was invented for long-living chained appli-
cations, such as updating a series of banking accounts in a row. They meet
the same requirements, such as the compensation mechanism which enables
a continuation from the execution breaking point if exceptions arise. ATCs
and existing transaction models have mapping relations, e.g. a Saga ATC
can be instantiated into, and only into, Saga transaction models. An ATC

96 Abstract Transaction Construct

is designed based on the abstraction of a transaction model, which means
a transaction model needs to be there before a corresponding ATC can be
designed. However, an ATC is designed as a generic XML template, without
considering a specific application context defining where it will be used in.
Moreover, it can only be configured and instantiated with process knowledge,
which means it needs process specifications at the configuration time. For
example, a saga transaction model is designed for a chain-like application
environment, while a Saga ATC is designed with no limit to the application
environment. Only when the application environment has a process or pro-
cess chunk (i.e. sub-process) demanding for compensation, a Saga ATC is
selected.

According to what we have designed, an ATC is a general template where
parameters still need to be specified. The XML examples are used to illus-
trate how ATCs look like according to our description. Please note that the
topic of the ATC specification language is beyond the scope of this thesis. We
develop the XML template to demonstrate the ATC concept can be realized
and there can be other languages or formalism to realize our idea. Below
we give an example of a simple Saga ATC template written according to the
above schema. Through the parameters, a composer can assign the corre-
sponding values based on the process specification. So next to the ‘unparam-
eterized’ general Saga template, we also give a configured Saga specification,
which has an additional section of the compensation mechanism configured
as true.

<ATC class="SAGA"> <!-- This is a Saga ATC template>

<parameter name="Structure">

<value>structure=sequence</value>

<valueInput>

name="NumOfNode" type=integer:nn

</valueInput>

</parameter>

<parameter name="Recursion">

<valueInput>

name="ID" type=string:s

name="NumOfParent" type=integer

name="NumOfChild" type=integer

name="NumOfFront" type=integer

name="NumOfAfter" type=integer

name="parent" type=atcIdType

name="child" type=atcIdType

name="front" type=atcIdType

name="after" type=atcIdType

</valueInput>

</parameter>

<parameter name="ACIDity">

6.2 What are ATCs? 97

<valueInput>

name="Atomicity" type=bool

name="Consistency" type=bool

name="Isolation" type=bool

name="Durability" type=bool

</valueInput>

</parameter>

<parameter name="Mechanism"> <!-- Optional part.>

<valueInput>

name="savepoint" type=bool

</valueInput>

<valueInput>

name="compensation" type=bool

</valueInput>

</parameter>

</ATC>

A configured Saga ATC:

<?xml version="1.0" ?>

<Saga xmlns="http://www.btf_atc.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.btf_atc.org/atc.xsd">

<ATC>

<Structrue name=Sequence>

<NumOfNode>10</NumofNode>

</structure>

<Position ID=sa003>

<NumOfParent>0</NumOfParent>

<NumOfChild>0</NumOfChild>

<NumOfFont>1</NumOfFront>

<NumOfAfter>1</NumOfAfter>

<Parent></Parent>

<Child></Child>

<Front>sa002</Front>

<After>sa004<After>

</Position>

<ACIDity>

<Atomicity>F</Atomicity>

<Consistency>T<Consistency>

<Isolation>F<Isolation>

<Durability>T<Durability>

</TxQoS>

<Mechanism>

<Savepoint>{nodes|1,4,10}</Savepoint>

<Compensation>T</Compensation>

</Mechanism>

</ATC>

98 Abstract Transaction Construct

6.3 How Do ATCs Work?

In the previous section, we have introduced the concept of and described
the features of the ATC to answer the question ‘What are ATCs’. Next, we
further explain the mechanisms to explain how ATCs are used in practice.

6.3.1 ATC Lifecycle

In Section 4.2.3, we have introduced the TxQoS lifecycle from the ‘Design
Phase’, through the ‘Contract Phase’, to the ‘Evaluate Phase’. If mapping
this lifecycle, the design of the ATC templates actually takes place prior to
the design phase of the TxQoS life cycle. An ATC starts its life cycle before
any process knowledge, from which a transaction schema is composed. So
herein we design a separate ATC lifecycle to illustrate.

In Figure 6.5, we show how ATCs transit from the general templates at
the beginning until the ready-to-run transaction schema at the end. There
are four phases in the cycle. The 1st phase is the pre-design time, during
which a series of general ATC templates are designed and stored in a library.
Pre-design here means this phase takes place before there is any requirement
imposed by a specific process. In order to avoid confusion with the design
time in a common sense, we name it as ‘Pre-design Phase’. The outcome of
this phase is a series of general ATC templates, which form a hierarchy stored
in the ‘ATC Library’. The 2nd phase starts from a process requiring some
transaction support, during which proper ATC templates are selected from
the ATC library. Selection is based on the information, regarding process
structure and composition. The outcome of this phase is the properly se-
lected ATCs that can be composed to roughly reflect the process transaction
requirements. The 3rd phase is the period the selected ATC templates are
configured, e.g. proper parameters are set. The last phase is the deployment
time, during which the configured ATCs are deployed in the running envi-
ronment. A number of factors need to be under consideration, such as the
application domain, the integration with existing systems, etc. The outcome
of the last phase is an exact and precise transaction schema supporting the
process (in this diagram is the process appears since Phase 2). Note that
the composition takes place from the 2nd phase. However, there is no need
specify it in the first place.

The four phases do not always all take place. For instance, the pre-
design phase can be omitted once the library is set up. Occasionally, the
library may need an update, if there is a new type of ATC. Every time
a new process arrives, or changes are required in the current process, an
ATC life cycle starts again. There are several scenarios of restarting this life

6.3 How Do ATCs Work? 99

ATC Library

General
ATC

Template

General
ATC

Template

General
ATC

Template

1. Pre-Design
Phase

2. Selection
Phase

Selected ATC Template

Selected
ATC

Template

Selected
ATC

Temptate

3. Configuration
Phase

 ATC1
 ATC2

ATC4

ATC6

ATC7

ATC5 ATC3

4. Deployment
Phase

Process

Process

Selected ATC Template

Configured
ATC

Template

Configured
ATC

Temptate

Figure 6.5: ATC Life Cycle

cycle. One scenario is when a new process arrives, it activates the ATC life
cycle from the 2nd phase. Another scenario could be that some substantial
changes have been made to the current process. In this case, parameters may
need to be reset, and therefore the life cycle starts from the 3rd phase. If
the change comes from the running environment, only the last phase of the
ATC life cycle is activated for a slight adjustment. After the four phases,
there is the process/service execution time. This is the time at which the
deployed ATC schema is instantiated into a (multi-level) running transaction
to handle exceptions and errors when they arise. It means that ATCs are
transformed into executable transactional constructs in the end. However,
the transformed ATCs are beyond the scope of this chapter. They will be
discussed in the following chapter, where a TxQoS-aware business transaction
framework built using ATCs is presented.

6.3.2 ATC Composition

The ATC library is constructed at the pre-design phase as described in the
previous section. When designing transaction support for a given process, a
composer selects one or more templates and configures the parameters us-

100 Abstract Transaction Construct

ing process knowledge, such as the structure and the TxQoS agreement etc.
Afterwards, the configured templates are deployed according to the running
environment of a process. This way, a transaction schema is composed with
the on-demand manner. The top-level (global) ATC is, in fact, a transaction
scheme for a process/service, which defines what general transaction tem-
plates will be selected and how they are composed. For each process/service,
there is one corresponding top-level (global) ATC and the parts(chunks) from
that process correspond to sub-ATCs in an ATC hierarchy.

We have defined in Chapter 4 how to specify the TxQoS and agree a
TxSLA for a service/process between the parties. According to the the
TxSLA, the composer selects proper ATCs, which guarantee some ACIDity
to realize the TxQoS specified in the agreement. For instance, if the process
demands a fluency valued 3, which means the breakdowns are allowed to
happen three times maximally, then the parameter ‘Atomicity’ in the global
ATC is set ‘F’, as this process cannot be an atomic transaction. Each (sub-
)ATC in this case, when configured and deployed, is going to be instantiated
in the process execution as a running (sub-)transaction. The other TxQoS
specifications can be reflected in ATC templates in a similar way according
to the table 5.1 in Section 5.3. Here we assume the composer has sufficient
knowledge on the process and the process execution environment, such as
process structure, running statistics, and TxQoS specifications.

S1

S3
S2

 ATC1
 ATC2

ATC4

ATC6

ATC7

ATC5 ATC3

TxSLA2 TxSLA3TxSLA1

ATC1 ATC2 ATC3

Process/Service
Composition

ATC Composition

Figure 6.6: ATC-TxQoS Correlation

6.3 How Do ATCs Work? 101

Figure 6.6 illustrates an example of ATC-TxQoS correlation. There
is one global-level service/process named S1, which consists of two sub-
service/process S2 and S3. In correspondence to the service/process com-
position schema is the ATC composition schema. In total, 7 ATCs are there,
where ATC1, ATC2 and ATC3 correspond to S1, S2 and S3. Note that, the
granularity of service/process composition is not equal to the granularity of
ATC composition. In the below diagram, ATC2 can be further decomposed
into ATC5, ATC6 and ATC7, while S2 is constructed by more than 3 steps.

For each service, it offers some TxQoS specifications for service consumer
to choose. Upon a specific requirement (which is stated in a TxSLA), the
composer needs to set the parameters in TxQoS1/2/3 accordingly. This
means for different TxSLAs, the values of TxQoS parameters need to be set
differently. After configuration of TxQoS parameters and running environ-
ment deployment, the ATC schema is instantiated into executable transac-
tions at runtime. If anything goes wrong, for instance, the breakdowns exceed
the agreed number in the TxSLA, the running transaction throws an error
to the TxQoS monitor and a warning is sent to notice the violation between
the values in the TxQoS specification and ATC schema. In this Chapter we
focus on the ATCs, and the transaction framework built on ATCs to handle
the TxQoS specification will be introduced in the next chapter.

Sales Book

Finance

Prep.
Docs

Send
Docs

Select
Car

Select

Select
Hotel

Select
Trans.

PaymentInvoice

Calc. Finance

Figure 6.7: Example Travel Agency

To illustrate the ATC concept and especially ATC composition, we use a
variation of the example of a travel agency, shown in Figure 6.7. Customers
can create a trip by selecting a hotel, transportation, and an optional rental
car (in parallel), after which the costs are calculated and the trip can be
booked. In parallel , the required documents are prepared and the financial

102 Abstract Transaction Construct

issues are dealt with (i.e., invoicing and payment checking), after which the
documents are sent to the customer. Being a small travel bureau, the finan-
cial dealings are outsourced to a specialized organization, which offers this
service as a Web Service. The interior of this service consists of invoicing
and payment activities, which in turn consist of other activities not relevant
to the example. The invocation of the Finance Web Service is represented in
the travel agency process as a gray ellipse.

The resulting ATC schema for the travel agency example is shown in
Figure 6.8. Eight ATCs are identified and named ’A’ through ’H’, which
correspond to the activities/services shown in Figure 6.7. Note that the
unnamed activities that belong to activities ‘G’ and ‘H’ are also ATCs but
not relevant here. ATCs are represented by rectangles and the dashed lines
represent encapsulation.

Assigning certain ATCs to different parts of this process will result in a
specific behavior in case of exceptions, in which the transaction management
system is involved. Assigning other ATCs, or by redividing the process over
ATCs, the transactional behavior will be different in case exceptions occur, as
explained before. For example, as the complete process (as seen by the travel
agency) is a long-running process, the entire process might best be supported
by a Saga like transaction model that comprises ‘sales’, ‘book’, ‘prep. docs’,
‘finance’ (the grayed-out one), and ‘send docs’. The selection activities can
be supported by an (variation of the) open nested transaction model, as
these tasks can be done in parallel. The Web Service needs to be executed

A = Saga with Safepoints (i.e. C)
B = Open Nested with Non Critical
C = Flat (ACID)
D = Flat (ACID)
E = Flat (ACID)
F = X-Transaction (WS based)
G = Saga
H = Saga

F

A

B

NC

C D E

F

G H

Figure 6.8: Travel Agency ATC Schema

6.4 Conclusions 103

under some Web Services transaction model, while the internals of this Web
Service, i.e., ‘invoice’ and ‘payment’ can be supported by a Saga again. As
the Web Service cannot run in isolation, the travel agency might need to
see intermediate results when its customers ask for status information, but
needs to run in an atomic fashion so that the available web service transaction
protocols (e.g., WS-BA) are not sufficient. In this case, we therefore choose a
variation of the X-transaction model [60] that is suitable for the Web Services
environment.

6.4 Conclusions

In this chapter, we proposed an ATC, which is not a newly-invented trans-
action model, but an abstraction and generalization of existing transaction
models. ATCs abstract the existing models into four parts of the template:
structure, position, ACIDity, and mechanism. A XML Definition Schema is
designed, allowing the structure, position, ACIDity, and transaction mecha-
nisms of an ATC to be specified. The ATCs transform through four phases,
from the pre-design phase during which general templates are designed, to
the selection phase where proper templates are selected on-demand, until the
configuration phase during which the parameters are set, to the deployment
phase when a specific ATC schema is fully composed and parameterized.

The proposal of an ATC concept is the outcome from the technology-
oriented design to achieve our intended transaction framework. This chapter
answers what is the outcome and explains how it ensures the design works
for our purpose. Please note that the research on ATCs has been carried out
in parallel with the research on TxQoS. Thus, the result presented in this
chapter does not relate much to the research result from the previous chapters
4 and 5. A TxQoS-aware Business Transaction Framework integrating the
TxQoS and ATC design will be presented in the next chapter to address this
issue.

104 Abstract Transaction Construct

Chapter 7

BTF: Integrating TxQoS and
ATC

In previous chapters, we have proposed the TxQoS approach as the contrac-
tual approach and the ATC approach as the technical support for reusable and
flexible transaction management for service-oriented business processes. The
TxQoS approach ensures transactional reliability via agreements between ser-
vice providers and users. The ATC approach enables flexible and comprehen-
sive transactional reliability via on-demand selection and composition. When
working together, an integrated framework is needed to coordinate various life
cycles and manage the functionalities through phases. In this chapter, we an-
alyze the possible business patterns and the corresponding scenarios that can
occur in our settings and present a Business Process Framework (BTF) that
integrates the TxQoS and ATC approaches in our settings.

7.1 Introduction

With the increasing complexity of business processes, exceptions and errors
are more and more prone to occur along execution. This poses new require-
ments on transaction management, which demands flexibility and compre-
hensiveness along with reliability. The existing transaction models have been
designed and developed for certain application domains and lack the reusabil-
ity which is a key benefit of the service-oriented processes. For example, a
chain transaction supporting a long-lasting banking account update process
requiring for the safepoint mechanism and visible intermediate results, does
not fit an on-line payment web service.

Aiming for a comprehensible and flexible transaction management frame-
work, we have proposed the TxQoS and ATCs approaches. The idea of

106 BTF: Integrating TxQoS and ATC

TxQoS is to complement the agreements/contracts with transactional clauses.
As described in Chapters 3, 4 and 5, the TxQoS framework ensures process
execution reliability via mutually agreed specification on transactional qual-
ities. The idea of ATCs is to construct a proper transaction schema by
selecting and configuring reusable transactional units (coming in the form
of templates) according to process features. In Chapter 6, we introduced
the concept and mechanism of ATCs which ensure process execution relia-
bility via flexible composition of reusable constructs. The TxQoS approach
creates business-level understanding of transactional reliability, while ATCs
technically enable transactional reliability in a flexible and comprehensive
manner.

To combine the TxQoS and ATC ideas and make them work together
to address the reliability requirements that are increasingly challenging, we
develop a Business Transaction Framework (BTF) which aims at laying a
foundation to the transactional support for contract-driven, service-oriented
processes. The basic idea of the BTF is to abstract the existing transaction
models into Abstract Transaction Constructs (ATCs) and hide their imple-
mentation details that may reside in heterogeneous infrastructures. When a
process is composed, according to the process specification, the proper ATC
templates are selected from the ATC library and configured into a transaction
schema, which is then deployed for execution. Meanwhile, for each service,
the TxQoS template is configured into one or more TxQoS offers. These of-
fers are designed based on the transactional capabilities of the BTF and are
provided to users. A user selects a TxQoS offer according its transactional re-
quirements imposed by the business process and then a TxSLA is established
between the user and the provider. With the BTF-enabled transaction sup-
port, the TxSLA is flexible for changes if the user changes its requirements or
the provider updates its service. One benefit of the integrated TxQoS-aware
BTF solution is that the impact on transaction management from frequent
changes of business processes is minimized because of the flexible ATC com-
position, therefore business agility is improved. Another benefit is that the
user side is equipped with more knowledge and bargaining power because
of the unambiguous TxQoS specification on service reliability, therefore im-
proving customer satisfaction.

To demonstrate the integration of the TxQoS framework and the ATC
mechanisms, herein the travel booking process from the previous chapters is
used as an example. The process in Figure 6.1 in Chapter 6.1 starts from
booking activities at the front office and ends with documentation. Beneath
the process is the transaction support realized by ATCs as shown in Figure 6.7
and Figure 6.8. Suppose the travel agency provides the booking process as
a service to its clients. Service reliability is guaranteed in the TxQoS offers

7.2 BTF Scenario 107

based on the statistics from service (test) execution. Assume the booking
service is published and registered for discovery and usage. In a B2B context,
a client incorporates the booking service into its own process and therefore
depends on the reliability of that service. The client does not care about
the technical details such as the ATC composition as long as the service
is guaranteed to be running robustly and smoothly at an acceptable level.
This is stated by a TxSLA agreed between the travel agency and the client,
and any violation to the agreement results in a repair and/or penalty from
the provider to the client. While in a B2C context, a client directly makes
use of the booking service and does not need to integrate it with another
process. In this case a TxSLA is not necessarily established. However, the
client still can choose another better service based on a reliability comparison
of services that provide the same function. For instance, if the client would
like to choose a booking service that allows more interaction with different
sub-service providers (i.e. hotel, transportation etc.), then a service with a
high T (Transparency in FIAT attributes) in TxQoS offers may be chosen.
Or the client would like to configure the details of its trip, then a service with
a high I(Interferability in FIAT) may be chosen. If the TxSLA needs to be
established, usually it is the that client agrees to an offer by default, before
usage.

The rest of the chapter is organized as follows. First, we present the
scenarios of integrated TxQoS and ATC approaches in Section 7.2. In this
section, the two scenarios of provider-dominant and provider-user equivalent
are introduced and analyzed respectively. Then, we illustrate the life cycles
of the BTF in Section 7.3.1, where a pattern matrix is proposed first, and
life cycles are presented for each pattern. Next, in Section 7.4, we suggest a
reference architecture. We conclude this chapter in Section 7.5.

7.2 BTF Scenario

As an integrated framework for the TxQoS and ATCs, the BTF needs to coor-
dinate and manage the scenarios and mechanisms from the two approaches.
Herein we still take the travel booking process as the example to demon-
strate what a BTF is, and how it works. What we usually see in practice
(without applying the BTF solution), a user invokes a travel (Web) service
without making any impact on the provider-side, but just accept the service
by default. It will become quite different if the BTF solution is introduced
in this scenario. Let us first look back on the TxQoS scenario depicted in
Figure 4.5 in Section 4.2.4. There are three parties interacting with each
other. Intermediaries provide only auxiliary functions and can be dismissed

108 BTF: Integrating TxQoS and ATC

in the scenario, so here we focus on the provider-user interaction. As we can
see, the provider and the user have the symmetric mechanisms to enable the
establishment of a TxSLA. It indicates that a user has the power to impose
its requirements on the agreement. If introducing the TxQoS approach, the
user side is empowered with better knowledge in selecting reliable services,
and the user can negotiate with providers on transactional qualities, for in-
stance asking for more interferability and transparency. As for ATCs, we
have designed the templates in the role of a service provider. In contrast to
the symmetric structure of TxQoS scenario and contracting model, a service
user does not need ATCs to make better use of the service. Therefore the
ATCs are from, and for the provider side. Again, taking the booking process
in the introduction as the example, we will show the BTF Scenarios from two
angles: Provider Dominant and Provider-User Equivalent. In the Provider-
User Equivalent scenario, a service user can be a provider at the same time,
invoking some services to form its own service, and afterwards provide the
service to its users. Interested readers can refer to [28] for the picture of a
global enterprise network, where services are networked and the owner of a
service can be the consumer of another service, so on and so forth.

7.2.1 Provider-Dominant Scenario

In a provider-dominant scenario, service providers implement the full BTF
framework, including the TxQoS mechanisms and ATCs. In contrast, service
users do not need to implement all parts of the BTF framework. In the
simplest form, the user is viewed just as a black box, which functions as a
service invoker without any contracting activities. However, to fully leverage
the transaction support from the provider side, some basic modules need to be
presented, such as a communication agent. In this scenario, a user is a ‘pure’
user, so we do not look at its transaction framework, which is not relevant
to its role as a user. A lot of Web services with default user agreements
can be viewed as such a ‘Provider-dominant’ scenario. For example, suppose
there is the travel booking process, as shown in the previous section, which
is implemented by the TxQoS architecture and ATCs as described in the
previous chapters. There is an individual user who makes use of the service to
book a trip. In this example, this user does not care about what ATC schema
has been designed or what techniques are applied at the provider side, as long
as the standing TxQoS offer matches to his requirement, and the process is
fluent and allows the intermediate results to be recorded. Figure 7.1 below
gives an overview of such a scenario.

Like the TxQoS scenario in Figure 4.5 in Chapter 4.2.4, intermediaries are
optional here. A TxSLA is not necessarily established in this scenario, as the

7.2 BTF Scenario 109

Intermediary

Provider

Monitor

Monitoring Module

Monitor

TxQoS
Performance

Report

Performance
Repository

TxQoS
Template

TxQoS
Offer

TxQoS
Statistics

Feedback

Evaluate

TxSLA
Process

ATC1
ATC2

ATC4

ATC6

ATC7

ATC5 ATC3

User

Invoke

Figure 7.1: BTF Provider-Dominant Scenario

user agrees with the TxQoS specification the provider offers by default when
invoking the service. Such a scenario usually presents in B2C context, where
users invoke services in a simple manner. In this case, the user side does not
incorporate the services into its own business processes and there is no need to
know the details at the provider side. Since there is little integration between
the provider and user, the user side is not able to participate in the monitoring
life cycle directly. However, the user side can still leave feedback through
intermediaries’s interface via, for instance, SOAP/HTTP communication.

7.2.2 Provider-User Equivalent Scenario

In a B2B context, a party often invokes a service from another party to com-
pose its own service and business process. Therefore, this party is a user
when invoking a service provided by another party, and at the same time, it
is a service provider when its own service is invoked by it customers. The
provider-dominant scenario is then extended to a ‘provider-User Equivalent’

110 BTF: Integrating TxQoS and ATC

scenario. We suggested a symmetric reference architecture in Figure 5.3 in
Section 5.2.2, where the user side adopts the same architecture as the provider
side. This enables the negotiation and user interference on the transaction
management at the provider side. Take the travel booking example, for in-
stance: if a company uses the booking service to build up its own process and
then provides a multi-functional web service to its clients, the transactional
quality (i.e. reliability) of the booking service becomes an important factor
to consider when composing its own service. This company may compare
different offers on the market according to its transactional requirement and
establish a TxSLA (besides other business contracts) with the booking ser-
vice provider. When mapping the ATC recursion, this means the company’s
own transactional schema is a global level ATC, which is composed of some
sub-ATCs, including the ATC abstracted from the booking process.

User

TxQoS
Requirement

Monitor

ATC11

Intermediary

Provider

Monitor

Monitoring Module

Monitor

TxQoS
Performance

Report

Performance
Repository

TxQoS
Template

TxQoS
Offer

TxQoS
Statistics

TxSLA

Process ATC1
ATC2

ATC4

ATC6

ATC7

ATC5 ATC3

Invoke

Requirement
Template

Process

ATC13ATC12 ATC14

Evaluate

Feedback

Figure 7.2: BTF Provider-User Equivalent Scenario

7.3 BTF Life Cycle 111

Figure 7.2 shows the Provider-User Equivalent scenario where the user
side also implements the BTF framework. The offered service (implemented
by the grey part of the provider process) and the corresponding ATC de-
sign (i.e. the grey part of the ATC recursion) are used by the user side to
compose its own business process and design its ATC recursion (marked by
grey parts at the user side to show the relevance). Upon any change on one
party’s process/service, only the corresponding ATC is re-configured, and its
upper-level ATC is affected. For instance, if the booking process shown in
Figure 6.7 in Chapter 6.3 has a structure change, and as a result the parallel
booking activities become sequential, the ATC structure shown in Figure 6.8
in Chapter 6.3 is accordingly adjusted. Consequently, the company which in-
vokes the service as part of its sub-process needs to update its ATC schema
to accommodate the change (i.e. only the grey parts are affected).

Today’s enterprises develop their information systems in a decentralized
manner in which processes/services are intertwined, like a net. A service
provider can meanwhile be a service user making use of another service
provider’s offering. Meanwhile a service user can take the role of a provider
at the same time. All these services interact with each other in this net. We
can conclude that the provider-dominant scenario is gradually developing
towards a provider-user equivalent scenario with the trend moving towards
networked enterprises.

7.3 BTF Life Cycle

Before discussing the life cycle of BTF, first we look at the TxQoS and ATC
life cycles. The basic idea of TxQoS is to enhance reliability via an unambigu-
ous agreement on transactional qualities between parties. Those agreements
are specified based on the provider-side offers and the user-side requirements.
The TxQoS mapping at the external level (as shown in Figure 5.4 in Section
5.3 is rooted in the internal level transaction mechanisms from the provider
side. As the building blocks of the BTF, ATCs work at the internal level
of the service provider, by building up an on-demand transaction schema.
However, the user side can also adopt the BTF to provide transaction sup-
port as the role of provider, which happens in a provider-user equivalent
scenario, as described in the above section. In this section, we first analyze
the provider-dominant scenario. The provider-user equivalent scenario is an
extension of the provider-dominant scenario. Thus, it has the same life cy-
cle with a slightly different positioning. As described in Section 4.2.3, the
TxQoS approach works from the first phase of ‘Design’, to the ‘Contract’,
and ending at the ’Evaluate’ phase. It is a cyclical structure where every

112 BTF: Integrating TxQoS and ATC

phase is necessary and in order as the figure shows. As a contrast, the ATC
life cycle described in Section 6.3.1 comprises of 4 phases, ‘Pre-design’, ‘Se-
lection’, ‘Configuration’, and ‘Deployment’ respectively, which are are not
necessarily looped. Depending on situation, the cycle can start from any of
the phase and some of the phases are optional.

When integrated to work as a package of solutions, the phases of these
two approaches run parallel, and sometimes overlap. The design of ATC
templates should take place at the very beginning, before or in parallel with
the activity of process design. After blank ATC templates are organized and
stored in the ATC library, the configuration and composition can start only
after a process has been designed. Meanwhile, the TxQoS specification is
designed also at this point of time, as it needs to collect process execution
data. ATC deployment takes place before process execution (i.e. runtime).
Meanwhile TxQoS contracting also takes place before execution. Afterwards,
the TxQoS evaluation is completed during or after the execution, by which
time the BTF has worked through a full cycle. In the next section, we
analyze the BTF life cycle of different business patterns according to the
relation between service/process providers and users.

7.3.1 Business Patterns

In the past, suppliers were tightly bound to their customers, and vice versa.
Thus, a business relation is hardly changing over time. However, in an e-
business era, when information flows much more transparently and easily,
providers can reach a much wider range of potential users from various time-
zones, locations, and industries. Meanwhile, the users are able to choose
from a lot more offers to get their desired services and products. It has led to
an increasing business agility and flexibility during the business interactions,
thanks to technology enablers such as Web services. We propose a matrix, as
shown in Figure 7.3, in order to analyze the BTF life cycle (including ATC
and TxQoS monitoring phases) in different scenarios. The business patterns
in this matrix are identified by two dimensions: provider dominance and
business dynamism.

During the past decade, we have seen the business pattern following a
trend, moving from a provider-dominant process and a static relation to
a user-involved process and a dynamic relation. The BTF can facilitate
this shift because using two approaches. The TxQoS framework supports
the trend from traditional business to e-business by differentiated TxQoS
agreements (empowered user). The ATC approach enables the flexible design
of a transaction schema to reduce the impact of changes on business processes
(enhanced dynamism). In this section, we are going to integrate the TxQoS

7.3 BTF Life Cycle 113

Pattern 1: Provider-
Dominant and Static

E.g. traditional business

Pattern 2: Provider-
Dominant and Dynamic

E.g. Web service
enabled process

Pattern 3: Provider-User
Equivalent and Static

E.g. Intra-organizational
partners; static

networked enterprises

Pattern 4: Provider-User
Equivalent and Dynamic

E.g networked
enterprises

Provider Dominance

Dynamism

Trend

Figure 7.3: Business Patterns

monitoring phases and the ATC phases, to identify phases in the BTF life
cycle. There can be a slight difference, depending on scenarios presented by
the above patterns. For instance, the starting times of the negotiation and
contract-establishment vary in different scenarios. Therefore, the life cycle
of a BTF does not match with fixed TxQoS monitoring phases. First, we
analyze the business patterns 1-4. Next, we present the BTF life cycle for
each pattern. Finally, we group the 4 slightly-different phased life cycles for
an overview.

1. Provider-Dominant and Static

The business pattern in this quadrant means providers have more bar-
gaining power than users in their interactions, and their relations are
bonded tightly with few changes over time. Traditional business usu-
ally fits in this pattern. For instance, suppose there is a branch of a big
supermarket chain which gets their goods from the mother company,
and serves its neighborhood. As long as the neighborhood is stable, the
supply chain from the mother company (the supermarket chain) to the
branch shop until the end customers is quite stable, without need for
swift changes. In this type of business, the provider side has a dominant
role, i.e. making the offers with fixed prices, while the user side takes
offers without negotiation along the process. In addition, the roles in
this case hardly change over time (e.g. a provider is always a provider

114 BTF: Integrating TxQoS and ATC

and processes rarely significantly change).

2. Provider-Dominant and Dynamic

The business pattern in this quadrant has the same provider-user bal-
ance with the above one, i.e. providers make offers with little user im-
pact. However, it differs in the tightness of the provider-user bonding.
Unlike the traditional static business relationship, in which providers
and users are bonded with fixed business partners, this pattern exhibits
flexibility and variety in the choices both providers and users have. This
means a provider may make offers to a wide variety of users and con-
trastingly, a user also may choose from a wide variety of offers. One
typical example in this pattern is Web services, e.g. a hotel-booking
service invoked by users in Internet. In this example, differentiated
room rates are set by hotels without user participation. During the
business process from a user clicking on the service until a room is
booked, there is little he/she can do on the rate offers. Thus, it is a
typical provider-dominant scenario. Meanwhile, this booking service is
not bonded to any specific user, and vice versa. The bonding is very
loose in the manner that a user can cancel at any time to close the
business relationship with the provider.

3. Provider-User Equivalent and Static

In this quadrant, a user is equipped with enough power to bargain on
the offers a provider makes. Meanwhile, the bonding between the user
and the provider is very tight. In other words, the supply chain in
this pattern is very stable, with strong user participation. A typical
example in this pattern is intra-organizational units, which are maybe
financially independent, but usually share common technical infrastruc-
tures, e.g. a business department requests the IT department to deliver
a project within a certain budget. Another typical example in this pat-
tern can be an exclusive supply chain in which a company supplies a
certain material to another company, with long-term contracts binding
their relationship, which is in fact a static networked enterprise such
as plane manufacturers. In this type of business, the user side may ask
for customized products and services with a higher level of freedom.
Sometimes providers and users even share common infrastructures and
leverage the same technologies or standards. Regarding the BTF sce-
nario, the user side in this pattern may implement the same framework
as the provider side, as the symmetrical architecture we proposed for
the TxQoS framework.

4. Provider-User Equivalent and Dynamic

The business pattern in this quadrant exhibits dynamic business rela-

7.3 BTF Life Cycle 115

tionships with strong user presence. Customer-driven is the trend of
the business, and the relationship between business partners has be-
come more and more dynamic. In the e-business era, flexible choices
and ample choices are realized without being restricted by geography,
time zones, and information accessibility. This empowers the user side,
giving them a higher bargaining power than ever before. Customiza-
tion has become a trend and providers make offers which are more
and more influenced by the user. A typical example in this pattern
is the instant virtual enterprise [28], where enterprises are organized
like a dynamic network to make business deals. In such a network,
providers and users are like nodes in a net, interacting with each other
autonomously. Business deals are made on mutual agreements in which
users may negotiate with providers for customized offers. A user is a
provider at the same time, for instance in a B2B paradigm, who incor-
porate processes/services/products from other providers into its own so
as to provide to its users. In this case, each node in this network imple-
ments common infrastructures (e.g. BTF) and therefore, a symmetric
architecture is proposed in this type of business.

7.3.2 BTF Phases

For every business pattern, we apply the ATC phases, which are shown in Fig
6.5 and described in the previous chapter, and the TxQoS monitoring phases
shown in Figure 5.5 in Section 5.4. The BTF is an integrated framework
of TxQoS and ATC approaches. Therefore, the BTF life cycle comprises
the phases from both approaches. Below we identify and analyze different
business patterns:

1. Provider-Dominant and Static

For this type of business pattern, coined ‘Provider-Dominant and Static’,
only the provider side fully implements BTF. The life cycle starts from
the design of ATC templates, which also applies to all other patterns.
In parallel with the ATC composition phase, TxQoS offers can be de-
signed and published. While the ATC deployment takes place, the
TxQoS negotiation may happen at the same time, leading to a TxSLA.
At runtime, the TxQoS performance reports may be collected for mon-
itoring, along with the execution of Transaction Constructs (i.e. in-
stantiated ATCs). Figure 7.4 below shows the integrated BTF phases,
which are made up of ATC phases and TxQoS monitoring phases. Note
that a TxSLA is not necessarily established in the provider-dominant
scenario, as explained in the previous section. So, the optional TxQoS

116 BTF: Integrating TxQoS and ATC

Composed ATC
DesignDesignDesignDesign CompositionCompositionCompositionComposition ExecutionExecutionExecutionExecutionDeploymentDeploymentDeploymentDeployment

Deployed TCATC LibraryGeneral ATC TemplateGeneral ATC TemplateATC Template
TxSLA

Running TC

BTF Phase 2
TxQoS Offer TxQoS Performance ReportATC Phase 4TxQoS Monitoring Phase 1 TxQoS Monitoring Phase 2 TxQoS Monitoring Phase 3BTF Phase 4BTF Phase 1 BTF Phase ATC Phase 1 ATC Phase 3ATC Phase 2

Figure 7.4: Provider-Dominant and Static Business Pattern

monitoring life cycle appears here to identify the BTF phases. Also
please note that only part of the artifacts from the two approaches are
depicted in all BTF life cycle diagrams. The remaining artifacts, such
as the ‘business specification’ and the ‘requirement template’, appear
in the relevant figures in previous chapters, and are not shown here
because they do not make facilitate identifying BTF phases.

2. Provider-Dominant and Dynamic

In the ‘Provider-Dominant and Dynamic Pattern’, the users do not
necessarily need all TxQoS functions. For instance, as explained in the
pattern analysis above, a user invoking a booking service can be a nat-
ural person using just a PC and Internet, and does not implement the
BTF framework. This user agrees an offer, without negotiating with
the provider. Sometimes the user even does not notice the establish-
ment of an agreement. For this type of business, the BTF life cycle
starts from the design of the ATC templates; the same as the business
pattern above. Because of dynamism in business relationships, TxQoS
offers can only be made after the composition phase, i.e. upon the com-
pletion of the process and transaction design. Figure 7.5, above, shows
the integrated BTF phases. The difference compared to Figure 7.4 is
the starting time the latter offers for making TxQoS.

3. Provider-User Equivalent and Static

The BTF life cycle for the pattern of ‘Provider-User Equivalent and

7.3 BTF Life Cycle 117

Composed ATC
DesignDesignDesignDesign CompositionCompositionCompositionComposition ExecutionExecutionExecutionExecutionDeploymentDeploymentDeploymentDeployment

Deployed TCATC LibraryGeneral ATC TemplateGeneral ATC TemplateATC Template
TxSLA

Running TC

BTF Phase 2
TxQoS Offer TxQoS Performance ReportATC Phase 4TxQoS Monitoring Phase 1 TxQoS Monitoring Phase 2 TxQoS Monitoring Phase 3BTF Phase 4BTF Phase 1 BTF Phase ATC Phase 1 ATC Phase 3ATC Phase 2

Figure 7.5: Provider-Dominant and Dynamic Business Pattern

Static’, shown in Figure 7.6, stands for a highly-trusted type of busi-
ness relationship. Noticeably, TxQoS offers are made in parallel with
the transaction design at the composition phase. Users in this type
of business are involved in, or their requirements are considered by
providers during, the services/processes design. Negotiation may be-
gin in either the composition or the deployment phase. As a result,
TxQoS agreements (TxSLAs) are established in either phase which are
depicted as positioning across the two phases.

4. Provider-User Equivalent and Dynamic

The pattern of ‘Provider-User Equivalent and Dynamic’ is the trend
in business, thanks to the development of service technologies allowing
ad-hoc integration and collaboration. In a dynamic enterprise network,
providers and users are loosely coupled and supply chains are formed
with maximized efficiency (e.g. cost-efficient and reduced effort). The
provider-User equivalent scenario requires a symmetric implementation
of BTF, in which users are allowed to make requirements that impact
the design of the provider side (i.e. it is customer-driven). As such, the
phases of the BTF life cycle differs from the above three in the timing
of TxQoS activities. As shown in Figure 7.7, TxQoS offers and the
establishment of TxSLAs may take place at either phase, which are po-

118 BTF: Integrating TxQoS and ATC

Composed ATC
DesignDesignDesignDesign CompositionCompositionCompositionComposition ExecutionExecutionExecutionExecutionDeploymentDeploymentDeploymentDeployment

Deployed TCATC LibraryGeneral ATC TemplateGeneral ATC TemplateATC Template
TxSLA

Running TC

BTF Phase 2
TxQoS Offer TxQoS Performance ReportATC Phase 4TxQoS Monitoring Phase 1 TxQoS Monitoring Phase 2 TxQoS Monitoring Phase 3BTF Phase 4BTF Phase 1 BTF Phase ATC Phase 1 ATC Phase 3ATC Phase 2

Figure 7.6: Provider-User Equivalent and Static Business Pattern

sitioned in the middle. Please note that TxQoS offers have to be made
before TxSLA establishment, although in the figure, they are positioned
both in the middle without an obvious time line. The figure implies
three possibilities: both TxQoS offers and TxSLAs are established in
the composition phase; TxQoS offers are made in the composition phase
while TxSLAs are established in the deployment phase; both TxQoS
offers and TxSLAs are established in the deployment phase. However,
the negotiation can take place already in the earlier phase, so that user
requirements do impact the provider design. This pattern exhibits the
most flexible BTF life cycle.

As classified and depicted above, the phase composition of a BTF life
cycle varies per business pattern. The BTF life cycle always starts from the
ATC template design and ends at runtime (i.e. at the execution phase). In
the first phase, the design of the ATC template is finalized, and is matched
to the ATC phase of ‘Pre-design’. During this period, an ATC library is set
up as the preparation for all possible processes. The ‘Composition’ phase
matches to the ‘Design’ phase of the TxQoS life cycle and the ‘Selection’ and
’Configuration’ phase of the ATC life cycle. In this phase, proper ATCs
are selected on demand, and are configured into a platform-independent
transaction schema (named as ‘Composed ATC’) according to the process
specification. Meanwhile, TxQoS offers are designed for user selection and

7.3 BTF Life Cycle 119

Composed ATC
DesignDesignDesignDesign CompositionCompositionCompositionComposition ExecutionExecutionExecutionExecutionDeploymentDeploymentDeploymentDeployment

Deployed TCATC LibraryGeneral ATC TemplateGeneral ATC TemplateATC Template
TxSLA

Running TC

BTF Phase 2
TxQoS Offer TxQoS Performance ReportATC Phase 4TxQoS Monitoring Phase 1&2 TxQoS Monitoring Phase 3BTF Phase 4BTF Phase 1 BTF Phase ATC Phase 1 ATC Phase 3ATC Phase 2

Figure 7.7: Provider-User Equivalent and Dynamic Business Pattern

negotiation. Depending on the business pattern, TxQoS offers can either be
made within the composition phase or until the deployment. For instance,
in a static business relationship, where parties are bonded tightly and with
highly integrated infrastructures, the design of the TxQoS offers is completed
usually after the platform information is obtained, i.e. the process is avail-
able for real-time testing. In this case, TxQoS offers are made throughout the
2nd and 3th phases. Then in the ‘Deployment’ phase, where the environment
and the platform parameters are set, the transaction schema is deployed for
execution and one or more TxSLAs are established. This phase matches the
’Deployment’ phase of the ATC life cycle. The last phase is the ‘Execution’
phase, during which the instantiated ATCs (named as TCs as they are not
abstract anymore) are executed. Also included in this phase is the generation
of performance reports through the collection of running statistics of TxQoS
(e.g. breakdowns). This phase starts after the last ATC phase, which ends
until runtime, and matches to the ‘Evaluate’ phase of the TxQoS monitoring
life cycle.

Note that we only show part of the artifacts from the TxQoS and ATC
approaches here. The big arrow at the bottom represents a full BTF life
cycle. However, as in the ATC life cycle, changes on process specifications or
platforms may result in a cycle directly starting from the 2nd or 3rd phase.
For instance, shifting to a new platform asks for a new deployment there-

120 BTF: Integrating TxQoS and ATC

fore the Transaction Constructs (TCs) are redeployed while the transaction
schema resulted from the previous phase still remains the same.

In short, we make a unified life cycle diagram for all business patterns in
Figure 7.8. As we can see, the ATC phases are matched to the BTF phases.
While the difference between the 4 patterns is reflected by different timings
of TxQoS monitoring phases. The gray box after the ATC life cycle indicates
that instantiated TCs are running in the execution phase.Phase 4

Phase 1 Phase 2 Phase 3
Phase 1 Phase 3Phase 2

Phase 2: CompsitionPhase 1&2 Phase 3Phase 4: ExecutionPhase 1: Design Phase 3: DeploymentPhase 1 Phase 2 Phase 3Phase 1 Phase 2 Phase 3Pattern 1

Pattern 2

Pattern 4

Pattern 3

ATC

TxQoS
Monitoring

BTF

TCs

Figure 7.8: BTF Life Cycle

To support the transformation through the phases, coordinating and man-
aging activities must be present. Here we depict the BTF life cycle only. The
supporting functional components of the BTF framework and a reference ar-
chitecture will be presented in the next subsection.

7.4 BTF Architecture

The basic idea to achieve a contract-driven service-oriented transaction frame-
work BTF is to leverage the contractual approach TxQoS, to ensure process
reliability via on-demand composition of reusable constructs (i.e.ATCs). So
far in this chapter, we have proposed the integrated BTF scenarios and an-
alyzed its life cycle pattern by pattern. In this section, we propose a BTF
architecture, which delivers the necessary functions (i.e. integration, coor-
dination and management) to support the BTF scenarios and phases. The
design method is similar with the TxQoS reference architecture in Chapter 5:
From various classic architecture styles (e.g. Pipes and Filters, Layered Sys-
tems, etc.), we adopt the heterogeneous style where the functional modules
and artifacts are distributed across the layers with a hierarchy-like structure.
Here we use ‘artifact’ to represent requirement templates, process specifica-
tions, transactional agreements, transaction schema, etc. It is a general term
for all things created along the TxQoS, ATC, and BTF life cycles. Next, we
identify and analyze the functions the architecture needs to deliver based on

7.4 BTF Architecture 121

the requirement analysis. Then, we propose a three-layer reference architec-
ture that satisfies the functional requirements.

7.4.1 Requirements Analysis

As described in previous sections, the BTF solution is an integration of the
TxQoS and ATC approaches. For every business pattern, we have applied
the ATC phases, as shown in Figure 6.5, and the TxQoS monitoring phases,
as shown in Figure 5.5, from which we identified the BTF phases. To make a
BTF architecture design, first we need to identify what functions are needed
to integrate and coordinate the two approaches. Next, following the hetero-
geneous style for architecture design [52], we analyze, phase by phase, the
components, connectors, and containers. Below we analyze the requirements
along the BTF phases to get a list of components supporting the required
functionality in architecture design.

1. Design Phase

In this phase, ATC templates are designed, organized, and stored in a
library for future configuration and composition. The main function-
ality from the architecture perspective is the management of the ATC
library. Therefore, an ATC library manager performing the functions of
designing, organization, and storage is the key component here. Mean-
while, auxiliary components such as a ATC repository, ATC templates
and connectors with the other components are required as well.

2. Composition Phase

After the templates are designed and stored in the ATC library in an
organized manner, proper ATCs are selected, composed and configured
into an initial transaction schema, according to specific process spec-
ifications. During this phase, a key component, a designer, must be
present to perform multiple functions including selection, composition,
configuration, etc. The designer enables the transformation from ATCs
to a ‘composed ATC schema’.

3. Deployment Phase

During this phase, the ATC schema and process specifications are de-
ployed together with platform and environment parameters. Therefore,
a component to enable the deployment is needed to transform a ’com-
posed ATC schema’ into a ‘deployed transaction’. Note that ATC is
not abstract anymore and we call the deployed ATC schema ‘deployed
transaction’, which is ready for execution.

4. Execution Phase

122 BTF: Integrating TxQoS and ATC

The execution phase means runtime during which a deployed transac-
tion consisting of TCs (Transaction Constructs, i.e. sub-transactions)
is executed. During this phase, the main functionality is to collect per-
formance reports and/or errors for monitoring purpose. As described
in Figure 5.3, the TxQoS manager contains a component for runtime
monitoring. Therefore, a component needs to be present in the archi-
tecture to interact with the TxQoS and ATC managers for monitoring
and managing purposes.

Based on the above analysis, we identify the main components of the
architecture. These components are distributed in the bottom layer, which
directly interact with the DBMS and other underlying systems (e.g. the work-
flow engine), and in the middle layer, where coordination and management
take place. On top of these functional components, a managing component
taking control to complete the phases is required, and we name it the BTF
manager.

So far we have performed a functional analysis, and have not touched
the non-functional aspects. These non-functional aspects include security,
the communication pattern (e.g. synchronous/asynchronous messaging), the
network QoS (e.g. bandwidth), and the technical error handling (e.g. hard-
ware recovery). They need to be considered as well for the architecture
design, but are beyond the scope the thesis, as our aim is to suggest an ar-
chitecture without considering the constraints from the hardware, platform,
or implementation environment.

7.4.2 Architecture Design

We have introduced the idea, presented the scenarios, and identified the
phases of the BTF. As the last step to design a comprehensive business
transaction framework at the conceptual level, an architecture design, which
is used for implementation referencing, takes place. We propose a three-
layer, cross-phase architecture, as shown in Figure 7.9. The heterogeneous
style of the architecture design separates concerns by the layered structure
and simplifies the communication by wrapping up the relevant functionality
into common modules. It is developed with the similar logic of the TxQoS
architecture design, where the heterogeneous style is also adopted.

At the top is the management layer, where managing and coordination
activities take place. At the middle layer is the function layer, where design,
composition, configuration, and monitoring activities take place. At the bot-
tom layer is the artifacts layer, where all created and generated artifacts (e.g.
specifications, constructs, templates, and documents) come into play. Among

7.4 BTF Architecture 123

Figure 7.9: BTF Architecture

all the components, the ‘BTF Manager’ is the central hub, which coordinates
and controls the lower-level modules. It serves as the hub of the framework
and takes charge of the general management issues. The real functioning
modules, which enable design, composition, configuration, database access,
and monitoring, are positioned below the BTF manager. These functional
modules create, manage, and control the artifacts along through phases,
and also communicate with the underlying systems like DBMS and WfMS
through the communication infrastructure, for instance a Enterprise Service
Bus (ESB). As a whole, these modules form an architecture to support the
idea of the TxQoS and ATC. A BTF architecture can work in a standing-
alone way or with other BTF architectures implemented over heterogeneous
IT infrastructure.

The components in the above figure can be further decomposed. We have
outlined the top-level design in Figure 7.9. Below we present a list of the
modules in the architectural components.

BTF Manager

The main component in the architecture, the BTF Manager, sits at the
top layer for the overall control and management of transactional activities
across the whole life cycle. It contains the modules for specific functionality.
A ‘Messenger’ receives and replies messages from the lower-level component,
such as the ATC manager. A ‘Coordinator’ serves as a hub for the data
exchange between the components. A ‘Controller’ monitors runtime per-
formance, detects errors, and solves conflicts. An ‘Administrator’ registers,

124 BTF: Integrating TxQoS and ATC

accesses, and updates the artifacts across all phases.
ATC Manager
The ‘ATC Manager’ works during the design phase, where creates and

organizes ATC templates, as well as manages the access to the ATC library. It
can be further decomposed into an ‘ATC Editor’, used for writing and editing
the ATC templates, and an ‘Administrator’, who manages communications
with other modules which need to access the ATC library.

BT Designer
The ‘BT Designer’ is a component for designing business transaction

schemas. As shown in Figure 7.9, it works across the composition and deploy-
ment phases, transforming original ATC templates into deployed and ready-
to-execute transactions. It consists of three modules: a ‘Composer’, a ‘Con-
figurator’, and a ‘Deployer’, allowing human designers/developers to work
with ATC templates. The ‘Composer’ interacts with the ‘ATC Manager’ to
select proper ATCs and compose them into transaction schemes according to
process specifications. The ‘Configurator’ allows the designer/developer to
configure the ATC schema, using environment parameters such as the ATC
as well as alternate execution paths. The ‘Deployer’ is to deploy the config-
ured transaction schema with platform parameters into a ready-to-execute
transaction.

TxQoS Manager
The ‘TxQoS Manager’ has been designed and introduced in Figure 5.1,

where we see it lays the foundation for a number of tools. It works during
the execution phase to manage and coordinate between parties and internal
components.

BTF Monitor
An optional monitor has been proposed in Figure 5.2 for runtime monitor-

ing of TxSLA compliance. Here the monitor module of the BTF architecture
goes beyond the TxQoS framework, since the ATC approach is integrated.
Besides a ‘TxQoS Monitor’ monitoring the TxSLA compliance, a BTF Mon-
itor also contains a ‘TC Monitor’ which signals runtime error arise from
running TCs.

7.5 Conclusions

The aim of the XTC project is to design a transaction framework for service-
oriented business processes, with flexibility and comprehensiveness as pri-
mary concern. In this chapter, we integrated the TxQoS and ATC design
to deliver such a transaction framework. We started with proposing the two
BTF scenarios, provider-dominant and provider-user equivalent respectively.

7.5 Conclusions 125

Based on this, we developed a matrix to distinguish four business patterns.
We analyzed the features and life cycles of each pattern. The BTF life cycle
consisting of four phases is identified and analyzed. Note that this life cycle
integrates the ATC and TxQoS monitoring life cycles as well. The phases of
the TxQoS monitoring life cycle vary in the segments of the BTF time line
according to the different business patterns.

As a suggestion to implement a BTF that integrates the TxQoS and ATC
approaches, as well as satisfy the functional requirements from each phase, we
proposed an architecture. Consisting of the components distributed in layers,
the architecture supports the integration of the TxQoS and ATC approaches.
Thus, we complete the design of a TxQoS-aware business transaction frame-
work. In the next chapter, we will introduce a large, real life project to
show how the BTF can be applied in complex cross-organizational business
processes that are contract-driven and service-oriented.

126 BTF: Integrating TxQoS and ATC

Chapter 8

Case Study for Validation

We have designed a TxQoS-aware business transaction framework (BTF)
built on ATCs. The BTF integrates the scenarios, phases, and architecture
components to meet the flexibility and comprehensiveness requirements in
transactional reliability. In this Chapter, we present a large, real-life integra-
tion project as the context in which we perform a case study. A telecom B2B
order-installation-billing process is selected because it is long-lasting (several
weeks or months), complex (multiple organizations and processes/services are
involved), and contract-driven (establishing contracts in forms of customer
order is the starting point of the processes). We use this case as a context
to carry out a feasibility study to demonstrate the BTF can be applied in
contract-driven service-oriented processes, which validates our BTF design
from the previous chapters.

8.1 Introduction

Today’s business processes have become increasingly complex. On the one
hand, the close collaboration of multiple parties on a business process is
very common, which brings with it many concerns on issues like contractual
bonding, application integration, and data security. On the other hand,
the structure of a business process can grow into a very large hierarchy,
which brings concerns about execution, management, and monitoring. In
the previous chapters, we have proposed ATC and TxQoS approaches to
build up a transaction framework BTF for complex business processes in
the contract-driven and services-oriented context. The BTF is developed to
support processes that may cross organizational boundaries and integrate
applications over heterogeneous systems. These processes can be seen as
a hierarchy, consisting of processes and sub-processes at all levels from the

128 Case Study for Validation

perspective of a process view. According to the service view, these processes
meanwhile can be seen as composite services with (part of) the execution
details not visible from outside.

During the design process, we carried out limited case studies to inspire
and support the concepts and ideas of the BTF. Case studies are commonly
used as a research methodology for explaining and describing a concept.
During the initial phase of the XTC project, and guided by our research
questions, we first studied a case study to further clarify the research scope
and base the initial results on the case study. In Chapter 3, we introduced an
e-advertising process (shown in Figure 3.1) where customers order commer-
cial online-advertisement from one of the biggest Web-based media company
in the Netherlands. As a starting point for our research, we identify the
problems of this case regarding transaction management. After the analysis,
we concluded that an approach for business-level understanding, to ensure
technical reliability of the process, is needed. Following this conclusion, we
continued to address the problem identified from the case study and develop
the concepts, scenarios, life cycle, and abstract architecture. This is what we
call the TxQoS framework presented in Chapter 3, 4, and 5. The approach of
TxQoS is generalized from the e-advertising case and can be applied in similar
cases (where contract-driven and service-oriented processes prevail). We go
on to address the construction of a business transaction framework in Chap-
ter 6. ATCs are proposed as reusable constructs to build such a transaction
framework which needs to be flexible and comprehensive to support today
and tomorrow’s business processes. The ATC approach is demonstrated with
a travel agency example, which is used very often used in the literature as a
mature application of Web services composition/choreography.

In this Chapter, we apply the research result from the previous chapters
(i.e. TxQoS and ATC approaches). We have conducted a case study on
e-advertising in a relatively smaller scale than this one. The basic idea of
the case study method is to analyze the observations to sort out various
relationships between the case entities and our research. The analysis in
turn can lead to findings about service/process reliability when applying our
research in the case. In the case study in Chapter 3, the analysis has led
to findings on unbalanced views, which then clarified our research problems.
In this case study, we first follow the same case practice as in Chapter 3,
by listing our observations on the case entities and analyze them from both
process view and service view. Then based on the analysis, we are able to
further study the feasibility of our research result.

Within the case study, we focus on feasibility study to examine how
the BTF can be applied in real-life business environment in the context of
contract-driven and service-oriented processes. As pointed out in the intro-

8.2 Case Description and Analysis 129

duction of the thesis, the main contribution of our research lies in design and
development of the concepts, mechanisms, life cycles, and architectures. So
in this case study, we make reasoning at a conceptual level instead of real
technical implementation. We take a large-scale telecom B2B project that in-
tegrates heterogeneous applications across organization boundaries. We only
elaborate on the most relevant part of the project for feasibility study, i.e.,
we focus on the scenarios, the business processes, the participating parties,
and the high-level architecture of the solution.

Next, we give an detailed overview of the telecom project in Section 8.2.
The case is introduced from both the process and service views, and analyzed
using a similar case study method used in Chapter 3. In Section 8.3, we
review the results from the previous chapters, and explain how they can be
applied in the project. The chapter ends with a summary of the case studies
in Section 8.4.

8.2 Case Description and Analysis

The Epacity project was delivered for one of the largest telecom companies
in Europe (hereafter, the name ‘Tele’ will be used to stand for this company).
The company Tele applies advanced technologies and products to streamline
and optimize their business processes, striving for a high operational effi-
ciency. The main focus of the Epacity project was a system, application, and
process integration to enable fully automated B2B order and billing func-
tionality.

The business process starts from business customers ordering broadband
Internet and/or telephone equipment and services via the Web. During the
order execution, specified routers and/or other equipments are installed and
configured by a third-party company. In the end, customer orders are ful-
filled, and bills are automatically processed. With rapid development of
telecommunication technologies, the telecom company has been constantly
improving the variety of their products and services to serve the customer’s
need. Therefore, the processes and applications in this case need to be up-
dated from time to time, which leads to constant new releases over the past
years. This asks for a system integration approach that is both flexible, to
allow constant changes, and extensive, to enable new products/service offers
on top of current reliability offer.

NGOSS (New Generation Operations Systems and Softwares) is a widely
used term in the Telecom industry, referring to the business support systems,
which are enabled by IT. According to the TMForum (http://www.tmforum.org),
an established thought-leader in Telecom industry, the key principles of

130 Case Study for Validation

NGOSS are: 1) Separation of Business Process from Implementation; 2)
Loose Coupling of the applications; 3) Shared Information/Data Model; 4)
Common Communications Infrastructure; and 5) Contract defined interfaces
as an extension of API (Application Programming Interface) specifications.

In the Epacity project, the desire to conform to these principles, and
because it is imposed by the requirements of flexibility and extensibility, a
SOA based integration framework CTF (Configure-To-Fit) was designed and
implemented. This project is very appealing to our research, as it exhibits
the essential properties we seek for in a case study: multiple organizations,
customer orders in the form of agreements/contracts that trigger the pro-
cess execution, hierarchical structure in process composition, service-oriented
architecture design, long-lasting execution, and heterogeneous applications.
Here we describe only part of the Epacity solution that is relevant to our
research. The purpose of the case study is to validate the general feasibility
of BTF in our research context. So here we mainly examine: 1) If the BTF
is applicable in this real-life project (which is a typical case of our research
context, i.e. contract-driven and service oriented); 2) If the application of
BTF provides a basis to enhance process reliability as it supposed to deliver.

To achieve the goal of the BTF feasibility study, our areas of focus in
this case are the processes, services, and the architecture. Parties, roles,
applications, and design requirements will be briefly explained, as they are
necessary to understand the case. The remaining elements of the project,
such as implementation, deployment, testing, and system integration may be
mentioned occasionally, but are out of the scope of this thesis.

8.2.1 Architecture

The integration project, Epacity, aims to provide an automated end-to-end
solution without human intervention during the workflow execution. It needs
to integrate applications (such as ordering, CRM, and billing) from Tele’s in-
ternal departments (e.g. business market and customer support) as well as
its external parties (e.g. company responsible for installation of routers).
It is implemented in a best-of-breed manner, which means various software,
hardware, and service vendors are chosen for their best-known products and
reputation in some domain to build solutions. Therefore, integration be-
comes vital and more complicated than the single-brand approach, which
has the internal consistence between applications. The architecture design
in this case is service oriented with the focus on integration of the functional
components. The basic idea is Configure-To-Fit (CTF) and the role of CTF

8.2 Case Description and Analysis 131

expands over years.1 As stated in the architecture design document, ”The
project evolves from pure ordering solution to a more complete integration
solution that combines the currently-in-place process with data integration
and composite application attributes”.

B WIn C o n cer t

A d ap ter s

O SS & B SS
A p p licat io n s

Workflow Engine
(iProcess)

Integration Broker
(BusinessWorks)

Adapters
(OSS&BSS

Adapter)

Applications (OSS
& BSS)

Figure 8.1: Epacity CTF Architecture

The current integration approach allows for flow control, and it supports
multiple transport protocols. A sketch of the Epacity architecture is shown
in figure 8.1, where 4 main components are connected for integration. The
workflow engine iProcess and the integration broker BusinessWorks (BW)2

orchestrate the OSS/BSS applications via adapters. OSS (Operational Sup-
port Systems) refer to telecom applications. OSS of telecom service providers
manage network services, such as maintaining inventory, provision access,
and configure components. BSS (Business Support Systems) manage daily
business operations such as ordering, billing, and customer support. These
OSS/BSS are integrated by a service bus, in this case BW, through vari-
ous adapters for messaging coordination. The BW is the core component,
which acts as the service broker as well as the message broker. It can be
further decomposed into several components, with most of them adapters as
shown in Figure 8.2. These adapters (e.g. Siebel adapter connecting BW
with CRM application Siebel, ECCO adapter connecting BW with ordering
application ECCO, etc.) ensure the communication of the data from hetero-
geneous systems, and are updated once the data structure and parameters
of an application are updated. For instance, if in the CRM application the

1CTF is a intelligent property belongs to the consulting firm that delivered the Epacity
series project. Therefore, introduction to the project refers to proprietary design docu-
mentations is not available in the references list.

2iProcess and BusinessWorks are registered brands from TIBCO Software Inc.

132 Case Study for Validation

BWBEDS

Billing CRM

ICCache

NSF

BOM Creation

WEB

BW

Common

Figure 8.2: BW architecture

structure of a customer’s account has been changed to include more fields,
then the Siebel adapter needs to be updated accordingly.

8.2.2 Dual View on the Case

In Chapter 3, we have introduced the dual view and applied it to the e-
advertising case. In this case, we continue to use the dual view to analyze the
case. We first take a process view and introduce the processes involved in this
project. Next, we take a service view and introduce the service composition.
Then, based on the observations we make, we analyze it in preparation for
the feasibility study, which is discussed in the next section.

The integrated processes allows business customers to configure their re-
quest for Internet services/equipments such as speed, timing, and capacity
by themselves, and then submit to trigger the process via an order manage-
ment application (which in this case called ECCO). Business customers here
are those organizational users who have the access to Tele’s portal. Via the
portal interface, business customers can specify and submit orders. When
receiving a customer order, the CRM sub-process is initiated to confirm the
order and create an account if it does not exist yet within the CRM appli-
cation domain. In this case, the order, using the XML format, arrives in
Siebel, which is a CRM application. Upon receiving the CRM request, rele-
vant actions are taken to ensure the customer order is fulfilled. These actions
include IP address allocation, router installation and configuration, customer

8.2 Case Description and Analysis 133

communication, as well as change management in case of exceptions. In this
case, exceptions can include a change in the order specification (such as the
date the customer wishes to shut down the old site, or desires a different
speed, etc.), or any unexpected delay along the process. In the end, when an
order is fulfilled, the billing application is set to work automatically to bill
the customer.

After the initial delivery of the project years ago, the relevant processes
and system applications have been updated constantly in order to accom-
modate the changes from the business side (e.g. new products and new
functions). Therefore, this project requires a continuous effort in mainte-
nance, and is updated or redesigned to have new releases. So there may be
a slight difference between our description (based on the 2008 release) and
its current situation. Below we introduce the case by looking at the process
view:

Process View

In this project, the integration takes place in a TIBCO environment. Here
the core is an information bus, Business Works (BW), which connects to
all other applications. There are a set of business processes executed in the
TIBCO workflow engine, iProcess, which sits next to the BW. We call the
executing processes ‘current flows’, which means they have been deployed
with platform parameters and can be triggered anytime. In comparison,
there are future flows in this case, which are updated at process level upon a
change requests, but not yet deployed and tested. The current flows include
7 main processes: ‘Create Site’, ‘Change Site’, ‘Move Site’, ‘Cancel Site’,
‘Terminate Site’, ‘Create Special Site’ and ‘Create VRF Site’. Each process
describes a scenario corresponding to a specific type of customer request.

Our documentation effort on iProcess diagrams resulted in a set of three-
level plain process models. We do not show the screen-shot of iProcess dia-
grams because they contain lots of dummy steps that have no business mean-
ings (e.g. for logistic of the flows), and are redundant in semantics. Most of
these dummy steps are placed in parallel with the other semantic steps as a
modeling technique, so that each of the semantic step can be optional. In this
chapter, we present a simplified version of the diagrams for understanding
and analysis. All dummy activities are removed. Interested readers can take
a look at the full set of current flows in this project in Appendix B and C,
depicted by the three-level processes models.

The process models are reorganized in structure, because in the display
window of iProcess, the original sub-processes are organized per domain in-
stead of per process. In addition, the bottom level NSF (Network Service

134 Case Study for Validation

Factory) activities are not shown directly in iProcess figures but in the scripts
of the activities. These NSF steps modeled our process diagrams in the same
way as we model the other levels of activities. A set of process diagrams
describing all workflows in this case and including all sub-processes, is at-
tached in Appendix A and B. Please note that those process diagrams have
been modeled on the basis of actual flows deployed and executed in the work-
flow engine iProcess, instead of the diagrams in previous chapters modeled
on basis of business processes management theory. Therefore, the processes
represented by the diagrams are not necessarily optimal in theory but more
a trade-off between the ideal business process, and environment constraints.
For instance, sequential steps are predominantly used, although according to
business semantics those steps can be modeled as parallel.

The trigger of these processes is a customer request submitted via a Web
interface in the form of contract-like order. Then, a confirmation is sent upon
an order, marking the establishment of a contract. Functional activities are
depicted as the first-level steps with the names in their natural language. In
the middle level of the model we see the decomposed application actions, in-
dicating which applications are invoked and what actions are taken to realize
the corresponding top level activities. There are four application domains
here: CRM (Customer Relationship Management), BILL (i.e. Billing), NSF
(Network Service Factory), and CORE (i.e. database applications). The
bottom level is the specific ‘NSF’ (Networked Service Factory) level for NSF
type of actions only. The middle-level steps are mandatory as they are the
decomposition of the top-level steps. However the bottom level steps are not
mandatory and exist if the application domain is NSF.

Let us take the ‘Move Site’ process, for example, to explain the process
diagrams. Figure 8.3 depicts a main process, in case a customer moves its
office/factory location and therefore, requests Tele to shut down the Inter-
net/phone services of the old site and provide services to the new site. Two
threads start upon the request. In one thread, a customer account is set
up with the service status set to active in the CRM domain. Meanwhile, a
billing account is set up with the service status set to active in the BILL
domain. VPN (Virtual Private Network) resources are prepared afterwards,
and include the access point and the router installation. Here a router is
installed by a third-party, which is shown as the step ‘Schedule CPE Install’.
In the full diagram in the Appendix B, we can see this step is supported
by a middle-level step, ‘create a TPIP (Third Party Installation Platform)
WO (Work Order)’, in the CRM domain. In this scenario, time is an im-
portant factor to consider, because the operation of the customer’s business
needs non-breaking telecommunication support, which means no down-time
interval is allowed. This is solved in reality by configuring overlapped service

8.2 Case Description and Analysis 135

Schedule
CPE
Install

Provision
Access

Provision
Radius

Provision
Edge

Set SO
state Port
Provisioned

Install
CPE

Finalize
Move
Order

Update
TPIP WO

State
"ReadyTo-

Install"

Set SO
State

"completed"

Activate
Billing

Provision
Radius
Proxy

Create
TPIP WO

CRM

NSF CRM

Set Site
Status

in service

NSF

Set Site
Status

configured

Reserve
VPN Port

Check
Access

Feasibility

Create
CRM

Account

Create
CRM

Service

Create
CRM

Service
Account

Create
CRM SO

Create
Billing

Account

Create
Billing

Service

Create
Billing
Sub-

account

Create
BW Billing

Deal

Add
Billing

Compone
nts

CRM CRM BILL BILL

GetSiteInfo
Radius

NSF
Pro

AddToProxy
Subscribers

NSF

NSF Pro

SetSite
Status

“Configured”

NSF Pro

SetSite
Status

“InService”

S
tart

Set Site to
Configured

C
ontinue 2

Sub3: Provision
Access

Sub1:
Reserve
VPN Port

Sub2:
Check
Access

Feasibility

And-Split

CRM CRM

Pending
Move

Terminate
SO

Set
Installed

Base
Pending

Move

CRM

C
ontinue 2

Deprovisi
on Radius

Proxy

Deprovisi
on Radius

Proxy

NSF

Terminate
AP WO

Release
Edge

Resources

Create
Terminate

WO

CRM

Add Extra
Charges

Add Extra
Charges

BILL

Sub4: Edge

Update
SO State

Inactive
Billing

Set SO
State

Waiting

Terminate
Billing

CRM BILL

Deprovisi
on Edge

Sub4: Edge

NSF Pro
Delete From

Proxy
Subscribers

Set SO
State

Access
Deprovision

ed

Sub5: Release
Edge Resources

Make Port
Available

Delete
Site

NSF

Inactive
(CRM
Base)

Update
SO Status

Set SO
State Move
Completed

CRM

Finalize
BEDS

Finalize
BEDS

CORE

E
nd

NSF Pro

Set Site
Status

Set
Installed

Base
Inactive

CRM

C
ontinue 1

C
ontinue 1

Figure 8.3: Epacity Process: Move Site

136 Case Study for Validation

Schedule
CPE

Install

Provision
Access

Provision
Radius

Provision
Edge

Set SO
state P ort
Provisioned

Install
CPE

Finalize
Create
Order

Add Extra
Charges

Update
TPIP WO

State
"ReadyTo-

Install"

Set SO
State

"completed"

Activate
Billing

Add Extra
Charges

Provision
Radius
Proxy

Provision
Edge

Create
TPIP WO

CRM

NS F NS F

CRM

Set Site
Status

in service

NSF B ILL

Set Site
Status

configured

Finalize
BEDS

Reserve
VPN Port

Check
Access

Feasibility

Create
CRM

Account

Create
CRM

Service

Create
CRM

Service
Account

Create
CRM SO

Create
Billing

Account

Create
Billing

Service

Create
Billing
Sub -

account

Create
BW Billing

Deal

Add
Billing

Compone
nts

CRM CRM BILL

BILL

C
o

ntinu
e

C
ontinued

GetSiteInfo
Radius

NSF
Pro

AddToProxy
Subscribers

GetSiteInfo
Edge

NSF
Pro

GetSiteInfo
BPG

GetSiteInfo
QoS

GetSiteInfo
EdgeStatic

Routes

Provisioning
Activate

Site

NS F

NSF Pro
SetSite
Status

“Configured”

NSF Pro
SetSite
Status

“InService”

Start

Set Site to
Configured

E
nd

Sub3: Provision
Access

Sub1: Reserve
VPN Port

Sub2: Check
Access

Feasibility

And-
Split

CRM

CRM CRM CRM

C
o

ntin
ue

C
o

ntin
ue

Figure 8.4: Epacity Process: Create Site

8.2 Case Description and Analysis 137

S
tart

Create CRM
Service

Create
Terminate

CRM
Service

CRM

Update SO
Status

Set SO
State (In
Progress)

CRM

Close Billing

Trigger
Billing

BILL

Deprovision
Edge

Deprovision
Edge

NSF

Deprovision
Radius
Proxy

Deprovision
Radius
Proxy

NSF

NSF Pro

DelFrom
Proxy

Subscribers

Release
Edge

Resources

GetSiteInfo
Edge

NSF
Pro

GetSiteInfo
BGP

GetSiteInfo
EdgeStatic

Routes

Provisioning
Deactivate

Site

Terminate
Decision

Point

Sub2: Terminate
Decision

Sub1: Release
Edge

Finalize
Order

Finalize
BEDS

CORE

E
nd

C
ontinue

C
ontinue

Figure 8.5: Epacity Process: Terminate Site

138 Case Study for Validation

days between the end of the old site and the start of the new site. As men-
tioned above, there are 7 main processes currently deployed in the workflow
engine. This ‘Move Site’ process actually combines the other two main pro-
cesses – ‘Create Site’ in Figure 8.4 and ‘Terminate Site’ in Figure 8.5. The
full-level and complete set of processes are attached in Appendix B and C
for interested readers.

Service View

In the past years, the role of Configure-To-Fit has expanded beyond the
original multi-step processes, and now includes data integration (for messag-
ing through all heterogeneous applications) and an integration model (which
consolidates application calls into higher-level services). The Epacity archi-
tecture covers all common integration models (i.e. process integration, data
integration, and composite application) by employing SOA. Besides flexi-
bility and vendor-independence, the SOA-based CTF also enables service
abstraction, asynchronous and autonomous messaging, and service orchestra-
tion based on common messaging bus (i.e. implemented with Rendezvous3).

Figure 8.6 gives an overview of the service architecture. We can see that
the ‘Broker Services’ box is the hub to integrate all other services. Each ser-
vice is implemented by some specific vender application(s) as indicated after
the service names. This is an overview of all services in the Epacity project,
which include both functional services and system services. We use a dashed
box to depict system services so as to distinguish from functional services, as
they do not have business semantics, and are invoked by applications instead
of humans.

Functional services are Fulfillment Services, Virtual Services, and User
Facing Services, which provide functions to meet business requirements. How-
ever, these services serve different user groups. Fulfillment services are pro-
vided by various telecom BSS/OSS systems to support Tele’s business oper-
ations. For instance, inventory service, implemented with a Cramer product,
provides a user interface specialized for storing, retrieving, and displaying in-
formation about networks. User facing services are all implemented with the
WebLogic product, providing an interface for Tele’s business customers to
enter and monitor their orders on-line. These services and their interactions
in Epacity can be seen as the service view on the case.

System services here include broker service and workflow services (referred
as CTF Core services in project documentations). These services prepare an
environment for the functional services to execute. Broker service, imple-

3Rendezvous is a registered trademark of TIBCO Software Inc.

8.2 Case Description and Analysis 139

Broker Services [BusinessWorks]

CTF Core Services

Fulfilment Services User Facing
Services

[WebLogic]

Virtual Services

Inventory [Cramer]

Provisioning [SAS] User Authentification

OrderEntry

Site Order Management

Status Monitoring

Billing [Portal]

CRM [Siebel]

BPM [iProcess] BEDS [Oracle/...]

Flow Control

Transformation Routing

Connectivity

Figure 8.6: Service View on Epacity

mented using TIBCO’s BusinessWorks product, enable a secure and robust
integration. Workflow services, implemented with TIBCO’s iProcess prod-
uct and Oracle’s product, provide logistic and database functions for the
functional services. In other words, the CTF Core services enable smooth
workflows to realize fully-automated business processes.

As introduced in the process view, if we look at the second level of the
process diagrams (all diagrams available in Appendix B and C, we can see
that each step is boxed and labeled with capital letters (which can be ‘BILL’,
‘CORE’, ‘CRM’, ‘NSF’, or ‘BEDS’). These labels indicate the service domains
in which these steps take place. For example, the ‘CRM’ box means a CRM
service that is implemented by Siebel product in Epacity. Together, the
processes and services form the dual view on this case.

8.2.3 Observation and Analysis

The Epacity project is a B2B case focusing on integrating heterogeneous
applications by employing SOA, BPM, and Web technologies. All together, 7
processes(workflows) are deployed in the workflow engine iProcess, which are
illustrated in three-level details in Appendix for interested readers. There are
three parties involved in this case: Tele, Tele’s business customers, and third

140 Case Study for Validation

parties which providing equipments and/or services to Tele. Contractual
relationships exist between Tele and its customers, as well as Tele and its
suppliers.

In this case study, we limit our study on the contracts between Tele and
its business customers, and exclude third-party contracts. The contracts
submitted by its customers trigger the business process. Such contracts are
established and submitted on-line, which in this case are called ’customer
orders’. These orders specify the Tele’s products/services (e.g. broadband
service for an office building) and the non-functional qualities (e.g. QoS). For
example, a ‘Move Site’ web order (in Dutch) is shown in Figure 8.7 (placed
under the business entity of ‘Contract’), which we can see as a contract
between Tele and a customer.

Technical Entities: Process View

First we examine the technical elements for transactional analysis.
Process: There are a number of processes investigated during the case

study (interested readers can read Appendix B and C for the whole collec-
tion). They are complex processes, designed following SOA principles and
triggered by customer order, a form of contract. So we see this case as
typical service-oriented, contract driven processes that cross organizational
boundaries.

Activity: Activities are unit actions which realize certain functions. For
example, at the first level in the process model are activities with business
semantics in Figure 8.3. Each activity has one or more actions, and each
carried out in one application domain. In this case, most activities are au-
tomated, and consequently few activities are performed by humans with the
help of applications, such as ‘Create CRM/Billing Account’. An activity
results in the change of the state of an application.

Flow: Most of the activities in the processes of this case execute in
a sequence. In fact, some activities could have been modeled as parallels,
reducing the execution time. In this case they built the workflows largely
in chains for the following reasons. First, there is hardly any demand on a
fast process execution. For instance, as long as the delivery of the new site is
ahead of the agreed date, it does not matter if the billing account and service
account are processed in parallel or in sequence. Second, the chained flows
do not require much effort in terms of control and coordination, therefore
lowering the risk of breakdowns during the execution phase.

Process Specification: A process specification specifies process execu-
tion logic (i.e. which step in what order), and can be used for transaction
design. It is a documented representation of a process abstracting its at-

8.2 Case Description and Analysis 141

tributes for deployment. In the Epacity case, a process is a workflow that is
designed for the realization of a function.

Host: A host in this case can be the Tele company and its business
customers (various companies). Tele hosts a major part of the processes,
while its customers host processes to enable web-ordering.

Business Entities: Service View

Next we examine the elements for business analysis in a service context.
Here we use ‘business’ to describe elements that do not concern the technical
details of underlying systems which appear as common elements in business
collaborations:

Party: Three parties are involved in this case: Tele, the business cus-
tomers of Tele who make orders on-line, and Tele’s partners who perform
some of the activities (i.e. router installation) as agreed beforehand.

Contract: There are two types of contracts relevant to the case. One
type is the contracts established outside the scope of the our research. For
example, most of the customers in this case are already contracted with
Tele, and already own a business account allowing for internal allocation of
network resources. In addition, Tele has a long-term relationship with third
parties, such as a company who provides a router installation service There
must be contracts for this outsourcing business. The other type of contracts
are established in the form of online-order specifications, which trigger the
processes in this case. This includes a customer-specified order submitted via
Web requesting, a Move Site service shown in Figure 8.7. As we can see from
the screen snapshot below, it is a summary of what is previously specified
before the sending action. Upon clicking the button ‘Order Versturen’, the
‘Move Site’ process starts to execute.

Service: In Figure 8.6, we see the overview of the services. The case
can be viewed as a series of interacting services integrated through a broker
service. Different services usually demand for a different transaction support.
For instance, the ‘BPM’ service handles the workflows, and it therefore re-
quires long-lasting transaction management. Meanwhile ‘BEDS’ service han-
dles the database update, and requires atomic transaction mechanisms. In a
service-oriented context, the services are implemented with various vender-
specific applications and provide only interfaces to the outside for invocation.
Thus, it enables flexibility and agility by allowing changes to be made to the
applications.

Role: There are two roles a party may play: service provider and service
user. For each service, one party plays one role at a time. For instance, Tele
provides the ‘MoveCite’ service acting as a provider, and invokes the third

142 Case Study for Validation

Figure 8.7: Move Order Contract

party’s ‘Installation’ service acting as a user. Note that Figure 8.6 only shows
the services within the boundary of Tele and does not reflect any third party
services.

Reliability Agreement: We hardly observe specific agreements regard-
ing transactional reliability. What Tele’s customers know are mainly func-
tional guarantees, such as bandwidth and the available date, which are spec-
ified in the contract.

Analysis

There are 5 types of applications: CRM, Billing, Core, BEDS, and NSF (Net-
work Inventory Management) involved in the workflows as shown in the busi-
ness process diagrams. These applications are supplied by various vendors,
or developed in-house, based on a best-of-breed strategy. They implement
the services illustrated in Figure 8.6. The SOA-based integration model fo-
cuses on information exchange across participating applications and software
components. With coordination from the BPM component (i.e. iProcess
workflow engine) and the integration component (i.e. BusinessWorks), these
heterogeneous applications work together to enable the long-lasting cross-
organizational processes triggered by web ordering, and then flow to the site
configuration until billing.

In the above subsections we have revealed the process and service entities

8.3 BTF Feasibility Study 143

in the Epacity case. They are very similar with the entities and relationships
we observed in the previous e-advertising case study shown in Figure 3.4 in
Chapter 3. We can make an assumption that the missing of unambiguously
specified reliability agreement is a common situation in long-lasting, service-
oriented, and contract-driven processes. One reason is that such processes all
have some form of agreements specified in the contracts to guarantee some
confidence in process/service reliability, although ambiguously. Another rea-
son is that the customers, or in other words, the service users, are usually in
a weak and passive position compared to the providers.

As a result of the vague reliability guarantee and the dominant posi-
tion of the provider side, the users are not able to fully integrate providers’
services/processes well into their own business processes. Therefore, we con-
tinue the feasibility study in the next section to investigate how the situation
can be improved by means of a Business Transaction Framework that helps
today’s companies move towards becoming networked enterprizes.

8.3 BTF Feasibility Study

We have introduced the architecture, provided a dual view of process service,
and elaborated on the project entities of the case in the sections above. With
a clear overview of the flows, parties, scenarios, and architecture design,
we apply the research findings from the previous chapters to the complex
real-life case. There are many other important issues in the case, such as
implementation, deployment, testing, and management. However, they are
not relevant to our research objective and will not be discussed here. What we
focus on here is the operational side of the contractual relationship between
the provider and users, and how a BTF can be applied in this context.

The processes in this case span across the boundary of Tele and reach the
interfaces of applications resided in third parties. For instance, the router
installation is not handled by Tele. A partnered company, which is delegated
by Tele, send engineers to the sites to install and configure routers. Inside
Tele, the applications involved in Epacity belong to different domains, such
as CRM, billing, etc. We can view business customers as service users of Tele
whose orders trigger the execution of Epacity processes. The company Tele
in this case acts the role as the service provider at a global level. Contrast-
ingly, at the lower level, outsourcing activities may take place. For example,
Tele acts the role of a service user, while the router installation company
acts the role as the service provider. From the perspective of Tele’s busi-
ness customers, the only concern is the reliability of the global level process.
However, from Tele’s perspective, the reliability of the third party process is

144 Case Study for Validation

important to specify the service agreement with its customers.
As a result of this case study, we demonstrate that the TxQoS-aware

business transaction framework, which is inspired by the e-advertising case,
can be used in the generic context of service-oriented, contract-driven busi-
ness processes across organizational boundaries. The research result, which
includes the problems we identified as well as the framework to address the
problems, should be applicable to the Epacity case. In other words, the
problems we identified should map the problems we observed in the case.
Furthermore, the solution framework BTF should be able to address the
problems in a real-life setting. Given the properties of our research, which
stays at the conceptual level, the case approach is to practically validate the
utility of our results (i.e. feasibility study). We start by applying the TxQoS
approach.

8.3.1 Apply TxQoS in Epacity

Offering TxQoS-enabled contracts based on its current products/services is
a benefit for both Tele as well as its customers. An enhanced customer im-
pact on process execution reliability is expected. The strengthened customer
impact can lead to a move from the current provider-dominant pattern to-
wards an equivalent one (illustrated in Figure 7.3). Tele will benefit from
the realization of a more dynamic enterprize network. In this section, we
discuss how, in this case study, the TxQoS approach can be applied in order
to enhance process execution reliability.

In Tele’s current ordering interface, as is shown by the sample order
screenshot in Figure 8.7, the network QoS is specifiable, along with a few
other service details. Through the ordering system ECCO, customers can
specify the orders in detailed figures and specifications. The specification of
an order takes place step by step, starting usually from the customer data
input until all details are specified. For instance, a screen snapshot of one
step during the order specification is shown in Figure 8.8. As the service
provider, Tele can offer different levels of quality for its consumers to choose.
Here, the differentiated offers are for its telecom products and services, for
instance the bandwidth if ordering broadband Internet service. Once submit-
ted, the agreement is established which we can see as one type of e-contract.
Both Tele and its customers can view the status of the order for monitoring
purpose during the order fulfillment (i.e. process execution).

The key finding from the e-contracting case in Chapter 3 is the lack
of unambiguous specification on transactional process quality. To address
this problem, we have proposed a TxQoS framework to ensure transactional
quality by means of establishing TxSLAs. The core of the TxQoS frame-

8.3 BTF Feasibility Study 145

work consists of the FIAT attributes used to specify process reliability at
the business-level, which supplement the technical terminology of transac-
tion management at the back end. Using the process shown in Figure 8.3,
for example, yields us with the TxQoS scenario shown in Figure 8.9.

From the above figure, we see that the TxSLA is the key when implement-
ing the TxQoS approach in the case study. Adding a TxQoS specification
page to an ECCO order can be one way to implement the idea of TxSLA.
The customers can choose from the TxQoS offerings in the same fashion as
they specify the other service requests (e.g. download speed, upload speed,
overbook rate, etc.) from the menu. Following the above scenario, where
Tele provides TxQoS offers, we assume that contracts(i.e. specified, agreed,
and submitted orders) can be established with an enclosed TxQoS specifica-

Figure 8.8: Epacity Case: Order Specification

Customer

Monitor

Tele

Monitor

TxQoS
Template

TxQoS
Offer

Differentiate
TxQoS

Requirement

Instantiate
Requirements

Template
Requirements

Template
Requirements

Template

Provide Move Site Service

Specify Order

Order Move Site Service

Contract (TxSLA
enclosed)

A
gree

Figure 8.9: Epacity Case: TxQoS Scenario

146 Case Study for Validation

tion. As stated, upon receiving a customer order, a corresponding process is
triggered to instantiate a running instance. This applies to all processes in
this case, including CreateSite, CancelSite, and the rest processes (attached
to Appendix B). These contract-driven processes can well support our idea
of specifying transactional reliability via business contracts.

Consequently, we demonstrate the TxQoS feasibility by an example of
the ‘MoveSite’ process. The logic to apply TxQoS in the other processes
in this project should be the same as this one. Besides the contract estab-
lishment, the next point of focus when applying the TxQoS approach is the
specification of the transactional quality of the ‘MoveSite’ service via FIAT
attributes. As defined in Chapter 4, Fluency, Interferability, Alternation,
and Transparency are designed to indicate the process/service reliability at a
business understanding level. We have pointed out that adding one or more
pages through the ordering system ECCO is feasible. Below, we demonstrate
what can be the options listed on the TxQoS ordering page, and how Tele
support this idea by transforming its current systems.

Fluency

In Section 4.3.2, Fluency is defined as an attribute specifying a function
or a numerical value, that measures the smoothness of service execution by
computing the probability of the breakdowns happening in the future. The
probability of future performance is based on statistics collected either from
the past, or a test. Here a breakdown is defined as ‘the ceasing of a run-
ning service so that the execution comes to a sudden end without delivering
the intended results, and therefore requiring a fix to enable the execution to
continue’. An assumption here is that the distribution of breakdowns along
service execution can always fit for a specific statistical model. Another as-
sumption is that the provider and the customer have agreed on the definition
of breakdowns.

We take the ‘Move Site’ process as an example. This process can last
for weeks, or even a month. Thus, it is likely to suspend or pause due
to a number of reasons, such as a customer request for a cancelation, or
due to exceptions/erros during the execution. From a customer’s point of
view, the top concern of the service/process is having on-time delivery with
desired quality. More precisely, in our case, it means the new site with the
VPN, network, or other services should be available before the desired date
as specified in the order. In addition, the billing of the old site should stop
before the billing of the new site starts. Therefore, the customer would like to
keep the number of breakdowns well in the safe range (i.e. for the breakdown
not to affect the delivery of the new site before the termination of the old

8.3 BTF Feasibility Study 147

one). According to the statistics of testing and/or past runs, Tele should be
able to figure out the distribution of ‘Fluency’ of its ‘Move Site’ process.

Technically it is feasible to offer fluency as one of the TxQoS indications
in contracting options. We have suggested an example of how to specify
‘Fluency’ in TxQoS offers in Section 4.3.1: assume the statistic of the number
of breakdowns during process execution exhibits a Go NHPP distribution,
where f(n) is the function to calculate the probability of having n breakdowns
using the model. For instance, f(0) is the probability of smooth execution
without any breakdowns. This way, the specification can come in the form of
‘no more than 2 breakdowns during the execution’ or ‘no breakdowns during
the execution at the cost x ’. The same methods can be applied here on Tele’s
processes/services in our case. For example, assume the provider Tele finds
out f(0) in the long-lasting process ‘Move Site’ is very close to 1, which
means it rarely breaks down. Tele can provide the maximum Fluency for
this process specified as ‘Fluent execution’. While f(0) in another long-
lasting process ‘Cancel’ is around 0.8, then Tele may provide a drop-down
style menu in the ordering page specifying various offers of ‘Fluency’ such as
‘x breakdowns allowed ’ (here n is an integer between 0 and 3).

The monitoring mechanism of the TxQoS approach can also be applied
here. In the scenario in figure 8.9, no intermediaries exist, and therefore
the monitor can be placed in the Tele and/or customer systems. After each
execution, the newly-obtained data is collected and a performance report is
updated. Such a real-time update enables the provider to offer the most ap-
propriate TxQoS offers and equips the users with the up-to-date information
to make a choice from available offers.

Transparency

Transparency has been defined in Section 4.3.4 as the visibility of service
execution as the basis for user interference. This attribute can be specified
in an absolute manner by a set of activities that are visible from outside by
the service users, or in a relative manner by a numerical value, to reflect the
proportion of visible activities against all activities.

In our case, the processes allow the customers to view some intermediate
results from the process execution. For example, the status of the order ful-
fillment at every stage of the lifecycle can be checked online after login. Here
we continue taking the ‘Move Site’ process as the example to illustrate the
feasibility of the FIAT attribute ‘Transparency’. From a customer’s perspec-
tive, Tele provides a ‘Move Site’ service on request in the form of an online
order submitted by its business customers. We specify the transparency of
this service/process by a set of visible activities, where customers are allowed

148 Case Study for Validation

to view the intermediate result. Here, we assume that during execution, cus-
tomers can access the Web interface to view the order details they submitted
in the same way they check the order fulfillment status (i.e. account estab-
lished, site ready, etc.).

TMove = ⟨{A,B,C,D,M,O, }⟩
Here the nodes in the set TMove are taken from the execution graph shown

in Figure 8.10 (i.e. the first level of the process model in Figure 8.3): ‘Create
CRM Account’(A), ‘Create CRM Service’(B), ‘Create Billing Account’(C),
‘Create Billing Service’(D), ‘Finalize Move Order’(M), and ‘Update SO (Ser-
vice Order) State’(O). With this transparency specification, the intermediate
outcome of the CRM and billing accounts, as well as the execution status of
CRM and billing services, are allowed to be seen from outside Tele’s bound-
ary. As suggested in the FIAT design, there is another way to specify the
transparency attribute, namely through the calculation of a numerical value
which discloses the proportion of visible nodes. This vague method of speci-
fying transparency is not suitable in our case, where customers need to know
exactly which steps they are allowed to control in the long-lasting execution.

The application of ‘Transparency’ in the case allows Tele’s customers
know exactly which part of the process they are allow to ‘see’. Thus, the
service/process from user perspective are more trustworthy. Meanwhile, the
possibilities to adjust the orders to better meet their current requirements
increase. The reason may be that customers see the intermediate results, and
decide to make a change.

Interferability

We have defined ‘Interferability’ in Section 4.3.3 as the indication of how
much control a user has over the process/service execution. One way to
specify this attribute is ‘a set of commands from the users to intervene in
an activity (viewed as a node in execution path), plus the allowed timings
to issue these commands’. We have used the ‘Transparency’ attribute to
specify how many nodes on an execution path can be seen from the outside.
Following the method in Section 4.3.2, we define Nt as the transparency set
containing nodes (i.e. the activities in the process diagrams) that are visible
from the outside, Ot as the operations allowed for customers, and time as
the timing of the interfering operations upon Nt.

I = {operation(time, activity)}, (8.1)

operation ∈ Ot activity ∈ Nt time ∈ {Rules}, (8.2)

8.3 BTF Feasibility Study 149

G H I J L M

E FA B C D

S
tart

K

Sub3: Provision
Access

Sub1: Reserve
VPN Port

Sub2: Check
Access Feasibility

And-
Split

N R S T

X

Sub4: Edge

And-
Join

O P Q

Sub4: Edge
Sub5: Release

Edge

U V O W

E
nd

Figure 8.10: Execution Path of Move Site Process

150 Case Study for Validation

The Interferability in our case can be specified as a set of operations on
the activities that are visible to the customers with proper timings. The
activities in the processes are executed to provide certain functional ser-
vices/products to Tele’s customers. Unlike some type of processes, where
both parties own part of activities and jointly execute the whole, our case
is a typical provider-dominant scenario where customers do not see most of
the intermediate results and have few control power on the process execu-
tion. More specifically, interferability in this case means the power of Tele’s
customers to cancel and/or revise the orders. During the execution, which
usually lasts weeks, the customers are allowed, under some conditions, to
revise part of the order specifications.

For instance, we make an assumption that the download/upload speed
is revisable before the billing in the ‘Move Site’ process. Meanwhile, let us
assume that the cancelation of the process by a customer is only allowed
before the order confirmation the in ordering process, as illustrated in Figure
8.7. This means once the order is specified, confirmed, and submitted (i.e.
the contract is established), the ‘Move Site’ process starts to execute and is
not cancelable. Referring to a ‘cancelable workflow design’, is not a paradox
in this case. The ‘cancelable workflow design’, as we have explained in the
case introduction, allows most activities in the processes to be optional by
using a parallel dummy activity (not shown in the re-organized diagrams
in Appendix B and C) for each semantic step. So in theory, a process is
cancelable at each step, from which dummy steps are executed until the
end. However, this design-enabled cancelation can only be performed by
Tele in case something goes wrong and needs human intervention, whereas
the customers have no power to leverage these ‘dummy’ steps. Below, we
can specify the attribute ‘I’ (Interferability) for the ‘Move Site’ process:

I = {CANCEL(time, activity)}, activity ∈ {ϕ} time ∈ {ϕ} (8.3)

I = {REV ISE(IFgetProgress(FinalizeMoveOrder) < 1, activity)} (8.4)
activity ∈ {SetSitetoConfigured, F inalizeMoveOrder} (8.5)

As explained in the FIAT specification method, in this environment tim-
ing rules can be specified in two ways: Absolute machine times or relevant
times indicating the semantics. The above specification adopts the semantic
time rules. Specification 8.3 specifies that a cancelation is not allowed (as the
time set is empty). However, specifications 8.4 and 8.5 specify that the com-
mand ‘REVISE’ from customers is only allowed on the activities ‘Set Site to

8.3 BTF Feasibility Study 151

Configured’ and ‘Finalize Move Order’. Note that the ‘Finalize Move Order’
is executed at after all previous activities have committed. Thus, the ‘revise’
command can only be allowed before the activity ‘Finalize Move Order’ com-
mits. The function getProgress(FinalizeMoveOrder) invokes the system
parameters to detect the execution status of the activity ‘Finalize Move Or-
der’. The parameters are set as ‘-1=not started, 1=committed, 0=started but
not committed ’. As explained, the value −1 is a numerical scale for example.

At runtime, if the system detects a ‘REVISE’ command from a customer,
the timing is judged to decide if the command is valid. Afterwards, actions
take place accordingly (reject/accept the command) to ensure the ‘Interfer-
ability’ as specified in the order (here we mean a suggested TxSLA in addition
to the order in this real-life case). The application of ‘Interferability’ can give
customers more confidence over the long-lasting execution of the Move Site
process, as they know what kind of control they have and on which part of
the process. Not much effort is needed for Tele to provide the Interferability
in a contract, as the actual process remains the same. The reliability of the
process, from a customer’s perspective, is strengthened.

Alternation

We have defined the ‘alternation’ attribute as the predefined alternative ex-
ecution paths, which are used in case of breakdowns happening along the
service/process execution. In our case, the workflow design makes each
step(activity) literally optional, which is comparable to the ‘cancelable work-
flow design’ stated previously. This implies that, for each activity, there is
always an alternative step (the dummy step). In theory we can define the
‘Alternation’ of the processes in this case as all possible combinations of
meaningful activities plus dummies (i.e. the complete subsets of the full ex-
ecution paths). Here, a full execution path contains all meaningful activities
at the first level of the process models (where we have purposely removed all
dummies).

The pre-defined alternative paths can be specified, according to the spec-
ification method of ‘Alternation’, by a set of graphs containing dummy nodes
with some meaningful nodes. Take the ‘Move Site’ process for example, the
execution path GMove can be mapped from the process diagram (shown in
Figure 8.3). The execution path of the ‘Move Site’ process is depicted in
Figure 8.10, where each main-level activity in the process is depicted as a
node in the graph.

As shown in the diagram, here we use letters A, B, ..., X to indicate
the activities: ‘Create CRM Account’ (A), ‘Create CRM Service’ (B), ...,
‘Finalize Move Order’ (M), ‘Update SO Status’ (O), ..., ‘Add Extra Charges’

152 Case Study for Validation

(X). The order fulfillment actually consists of the fulfillment of two orders
‘Create’ and ‘Terminate’. Thus, the status of the service order needs to be
updated twice to release execution status. So we see in the diagram that the
node ‘O’ (i.e. Update SO Status) is executed twice.

As explained in FIAT specification, N = {nodes} ⊆ X is the domain of
activities, and E = {edges} = {⟨nodem, noden⟩ ∈ X ×X} is the domain of
edges. Thus, G = ⟨N,E⟩ is the domain of execution graph of the activities in
the domain X. Following this method, the GMove (i.e. the execution graph
in normal times) in Figure 8.10 can be specified as:

GMOV E = ⟨{A,B, ..., Y }, {⟨A,B⟩, ⟨B,C⟩, ⟨C,D⟩, ⟨D,E⟩, ⟨E,F ⟩,
⟨F,G⟩, ⟨G, I⟩, ⟨H, I⟩, ⟨I, J⟩, ⟨J,K⟩, ⟨K,L⟩, ⟨L,M⟩, ⟨M,N⟩,
⟨N,O⟩, ⟨O,P ⟩, ⟨P,Q⟩, ⟨Q,R⟩, ⟨R, S⟩, ⟨S, T ⟩, ⟨T, U⟩, ⟨U, V ⟩,

⟨V,O⟩, ⟨O,W ⟩⟨W,X⟩, }⟩

Suppose there is an alternative execution path GAlt for the ‘Move Site’
process. The path GAlt is selected if a customer requires a revision on the
order as explained in the ‘Interferability’, which can happen at any time
ahead of the ‘Finalize Move Order’(M). The specified alternative path cor-
respondingly needs to roll back from the node Rollback (Rollback indicates
any interferable node) to the beginning of the process, and re-execute again.
The node Rollback is to be determined at runtime. It becomes known to the
system when the customer command ‘REVISE’ is issued.

The assumptions we make here are: 1) The interference is a real-time
operation, which means it always results in suspension of the on-going execu-
tion; 2) Except the meaningful (shown in our process diagrams) and dummy
activities (removed from the diagrams), no other intervention activities will
be performed. Thus, an interference of ‘REVISE’ will ask the workflow en-
gine to first roll back from the current node to the first node. We can use
preRollback to indicate the previous node of Rollback in the normal execut-
ing graph. A value-set action should be performed to determine which nodes
are Rollback and preRollback. When applying the ‘Alternation’ specification
in our case study, taking the process ‘Move Site’ for example, we can specify
the ‘Alternation’ in the TxSLA using a graph GAlt as follows:

GAlt = ⟨{A,B, ..., X}, {⟨A,B⟩, ..., ⟨preRollback,Rollback⟩, ⟨A,B⟩, ⟨B,C⟩, ⟨C,D⟩,
⟨D,E⟩, ⟨E,F ⟩, ⟨F,G⟩, ⟨G, I⟩, ⟨H, I⟩, ⟨I, J⟩, ⟨J,K⟩, ⟨K,L⟩,

⟨L,M⟩, ⟨M,N⟩, ⟨N,O⟩, ⟨O,P ⟩, ⟨P,Q⟩, ⟨Q,R⟩, ⟨R, S⟩, ⟨S, T ⟩,
⟨T, U⟩, ⟨U, V ⟩, ⟨V,O⟩, ⟨O,W ⟩, ⟨W,X⟩}⟩

8.3 BTF Feasibility Study 153

The application of ‘Alternation’, in this case, allows the customers to
understand that the process is still taken care of by an agreed execution
logic in case the normal process execution is changed. The change may be
the result of a customer interference (e.g. a revision of the order) or have
other preapproved causes. This way, customers understand their orders are
still being processed. This includes unusual cases, which also enjoy a reliable
execution because of the alternative execution graphs.

So far, we have demonstrated, through illustrations, that it is feasible to
apply the FIAT specification in Tele’s current ordering contract. We also
discussed the benefit in each attribute application example when introducing
such an extra TxQoS agreement, in addition to the current contract. The
application of a TxQoS approach does not ask Tele to technically update the
processes, architecture, or business logic. The TxQoS framework implemen-
tation, in this case, aims at extending the contract/agreement with TxQoS
specifications, and make add-on tools as suggested in the TxQoS architec-
ture. This way, from the customer’s point view, the process/services are more
reliable as they gain transparency and confidence because of the contractual
assurance.

8.3.2 Apply ATCs in Epacity

In the previous section, we have demonstrated how to specify a TxQoS-
enclosed ‘Move Site’ order. In this section we continue to apply the ATC
concept to show what ATCs can be selected, and how they can be composed
to support the order process reliability.

In Chapter 6, we have proposed the ATCs as the constructional pieces
to flexibly compose a transaction schema in support of the process execu-
tion. An ATC is an abstracted transaction model taking the form of a XML
template for a customized configuration, resulting in a configured and ready-
to-enact template following the process specification. According to the ATC
life cycle shown in Figure 6.5, the first phase is to design the templates (i.e.
to create the ‘empty’ templates). In the appendix we have given a series
of ATC templates; here we take them as the starting point for later steps.
The second phase is to select proper types of ATCs for supporting specific
process. Taking the ‘Move Site’ process as the example, according to the
process diagram and the execution graph, we can see that the activities are
largely executed in sequence, with only one parallel of ‘AND-join’ at the
beginning. Therefore, we select a chain ATC as the global ATC, with the
following detailed schema:

From the above ATC schema, we can see that the global ‘Move Site’ pro-
cess/service ‘S1’ corresponds to the global ATC, named ‘ATC1’. ‘ATC1’ is a

154 Case Study for Validation

S1

 ATC1: Sequence

 ATC2: Nest

ATC3: Sequence

S2

 ATC4: Unknown

Figure 8.11: ATC Schema in Move Site Process

compound ATC, with the internal structure as a chain. The sub-level ATC,
‘ATC2’, is the child of ‘ATC1’. Moreover, ‘ATC3’ is the child of ‘ATC2’.
According to the process structure, we specify them as a nest type of the
ATC and a sequence type of the ATC, respectively. Note that they do not
correspond to any sub service, and come into being for structuring purposes.
The service S1 invokes an external service S2 (marked as gray), which is pro-
vided by a third party requesting a router installation. For this third party,
S2 may correspond to transaction schema A4. However, the provider of S1,
Tele, is not authorized to see the details of S2. In other words, the details
inside S2 and A4 are not visible from the outside. After the schema design,
the next step is to apply the ATC approach as a template specification and
configuration, so that process chunks get the transactional support accord-
ingly. In our example above, the ATC1, ATC2 and ATC3 can be designed
from the general templates, with the knowledge from the ‘Move Site’ process.
A general chained ATC template can be configured into ATC1 and ATC3
respectively. A general nested ATC template can be configured into ATC2.
Here we only demonstrate the link between the ATCs and Tele’s processes.
A full-blown ATC library implementation, containing the complete set of
ATCs (e.g. ATC1, ATC2, ATC3, ...) for all Tele’s processes, is out of the
scope of the thesis. We assume that all these ATCs are organized in a library.
Because of the ATC library, the transaction management of Tele’s complex
processes can be designed in a plug-and-play manner to achieve flexibility
and comprehensiveness.

8.3 BTF Feasibility Study 155

8.3.3 Apply the BTF Patterns in Epacity

In the previous chapter, where we proposed a BTF to integrate the TxQoS
and ATC approaches, we analyzed two scenarios: a ‘Provider-dominant’ and
a ‘Provider-user equivalent’ one. Using these as one dimension, and crossing
them with another dimension of business dynamism, we have created a matrix
to distinguish four business patterns, and identify each of them with features
and examples. Taking the pattern matrix as the context, in this subsection
we analyze the feasibility of a BTF in the Epacity case.

The company Tele has long-term business relationships with its business
customers. The profile of the customers are companies who rely on Tele for
Internet, telephone, and other telecom services. How they establish contracts
with Tele to begin the usage of Tele’s products and services are out of the
scope of this case study. We assume that there are business contracts between
Tele and its customers regarding delivery, price, customer support, dispute
settlement, etc. The orders which trigger the business processes in the Epac-
ity case become agreements once submitted by customers on-line. We see
these agreements as the contracts which can be transaction-aware by adding
TxQoS enhancements. The business processes are quite stable, with few pe-
riodical updates which are requested by the business department in Tele over
a period of years. At the customer side, requests for products/services are
put through the ordering system via the Web interference, which is provided
by Tele. During the long-lasting execution of the processes, the customers
have few interference power. They are only allowed to change the product
specification, delivery date, etc. but do not directly have impact on Tele’s
business processes or service implementations.

From the above observations on Tele’s external relationships (i.e. with
its customers or third parties), we identify the Epacity case as an example
in the ‘provider dominant and static’ quadrant of the business pattern
matrix. In this business pattern, providers have more bargaining power than
users, and their relations are bonded tightly, with few changes over time. The
provider side has a dominant role, i.e. making offers with fixed prices, while
the user side passively accepts offers. The users in the Epacity case, which
are the business customers and collaborators of Tele, have limited bargaining
power and may implement very different technical infrastructures from Tele.
Tele’s customers and collaborators are required to use the standardized web
interface offered by Tele. We have limited insights into the implementation
details of the integration of the standardized web interface with their internal
applications.

Compared to the global picture illustrated above, the pattern is differ-
ent within the company Tele. The parties participating in these processes

156 Case Study for Validation

include customer support, IT, finance, etc. These business units and de-
partments are usually financially independent and have internal business
relationships, specifically highly trusted supplier-customer/provider-user re-
lationships. They use the same or similar infrastructures and information
resources. They collaborate in a consistent way. Although the collaboration
internally still encounters changes over time, due to a number of factors, such
as a reorganization, changes on budget, and staff movement, the partnership
between stakeholders remains tight. Therefore, we can fit the scenario of
Tele’s internal collaboration into the ‘provider-user equivalent and static’
pattern. It is a clear example of this pattern, as the relationship between
the independent parties is very close and hardly changes over time. In addi-
tion, the parties collaborate in a manner that is more open, transparent, and
communicative, compared to the relationship between external parties.

As explained in the last chapter, the benefit of using BTF can facilitate
the move of business patterns from a more rigid quadrant to a more dynamic
one, as well as moving along with the trend of increasing customer power.
Suppose the idea of a BTF is applied in this case. Tele’s customers gain more
awareness, and can directly make an impact on the processes by asking for
more favorable TxQoS offers (e.g. they can increase transparency and inter-
ferability, or change the alternative execution path). The increased customer
power results in the move from a provider-dominant to a provider-user equiv-
alent. However, as the user side does not necessarily implement BTF, a shift
from a static paradigm to a dynamic one may not happen. This implies that
we can adopt the life cycle in the ‘provider-user equivalent and static’ pattern
to analyze the phases in the scenario, provided that the BTF is applied in
the case.

As we can see in Figure 7.6 in Chapter 7, which shows the BTF life cycle
for this pattern of business, TxQoS offers are made parallel to the transaction
schema design (i.e. composing ATCs to support the business processes) at
the BTF composition phase. In this business pattern, the customers are
involved or at least their requirements are considered by providers. This
indicates that Tele specifies TxQoS terms according to its capability on the
reliability of the processes and the customers’ requirements and feedbacks.
In the same phase or thereafter, the customers can accept suitable offers or
negotiate special requests with Tele, until they reach an agreement by means
of TxSLAs. Once the TxSLAs are established and the processes/services
start to be executed, the monitoring activities over Tele’s TxQoS performance
and the TxSLA compliance start. At this phase, statistics regarding the
TxQoS performance are collected for logging and feedback purposes. In this
last phase of execution, the ATC life cycle ends as ATCs are instantiated into
running transactions. Usually this phase last from days to weeks, depending

8.3 BTF Feasibility Study 157

on the complexity of customer orders. It starts from customers specifying
their desired telecommunication equipment and services on-line, until the
equipment is properly installed, the services are delivered, and the billing
cycles start. In the exceptional case where processes may be canceled, the
TxQoS performance may still be monitored along the execution.

8.3.4 Apply the BTF architecture in Epacity

In order to illustrate the main functional modules, we have discussed, from
the design documents, the architectures of Epacity as shown in Figure 8.1,
and Figure 8.2. These figures provide an overview at the highest level, and
show how the applications are integrated. Figure 8.6 illustrates the services
provided by the applications and how they are composed in this integra-
tion project. The basic idea is to leverage an integration broker (i.e. Busi-
nessWorks) which connects to a workflow engine (i.e. iProcess) and all the
other applications (CRM, Database, Inventory, etc.) through ‘adaptors’. One
‘adaptors’ is a specific interface which communicates with an application via
the predefined XML schema as a data structure. From the SOA perspective,
we can view the integration broker as the provider of an integration service,
and the other applications as the providers of services such as CRM, Inven-
tory Management, and so on. All these services compose into a composite
service called the ‘OrderToDeliver’.

According to the duel view, which sees services and processes as two
sides of the same solution, the OrderToDeliver service provides business cus-
tomers of Tele telecommunication products and services through automated
ordering-delivery-billing processes. In other words, this service is imple-
mented by a number of business processes, and the external parties invoke it
through its web interface. Due to the unknown infrastructures and applica-
tion environment of the other parties in this case (with the exception of Tele),
we do not consider a symmetric BTF architecture design in this case. This
means we consider only the BTF architecture design at the service provider
side (i.e. Tele), whilst the user side (i.e. Tele’s customers and collaborators)
is not considered. It is not necessary for the customers to apply the BTF
design in their own services/processes. To establish TxSLAs with Tele, and
when making use of the ‘OrderToDeliver’ service, the customers only need
to update the contracting-related part of their current IT systems.

We have discussed, in Figure 7.9, a BTF architecture that sits on top of
a business process engine. As a workflow engine, iProcess is already present
in this case, and connects to various OSS and BSS applications. The key to
applying the BTF architecture design principle in Epacity is a BTF adapter.
Such an adaptor enables the communication between the BTF manager and

158 Case Study for Validation

BTF

 Epacity

BTF Manager
(Coordinator, Controller,

Administrator,
Messenger)

ATC Manager

BT Designer
(Composer,

Configurator,
Simulator)

BTF MonitorTxQoS Manager

Workflow Engine
(iProcess)

Integration Broker
(BusinessWorks)

OSS&BSS
Adapters and BTF

Adapter

Applications (OSS
& BSS)

Figure 8.12: BTF-Epacity Architecture

iProcess engine under a common XML schema via the integration broker (i.e.
BusinessWorks). The common XML schema allows the data to be forwarded
and understood by relevant applications.

As shown in Figure 8.12, the ‘BTF Manager’ is positioned at the same
level as the OSS and BSS applications in Epacity. In fact, the components
of the BTF manager (i.e. Coordinator, Controller, Administrator, and Mes-
senger) are various BTF applications, which realize the ATC and TxQoS
approaches.

When the BTF manager is taken as a whole, and interfaced by the BTF
adapter, we can take a service view on all the services choreographed in Epac-
ity. This includes the BTF service, which connects to the messaging bus in
the same way as the other services e.g. billing, CRM, and so on. The service
choreography is shown in Figure 8.13. The original figure (without BTF) is
taken from the project design document, where the Epacity relevant services
are connected to various transportation means. Herein we add the BTF as
one more service which connects to the RV transport. RV is an information
bus from the BusinessWorks (BW) solution pack, where adaptors are used
for the integration of heterogeneous data schemas of various applications.

8.4 Conclusions 159

Flow control &

Routing

RV Transport

H
TT

P
 T

ra
ns

po
rt

FTP Transport

JDBC Transport
??

??
 T

ra
ns

po
rt

J
M

S

Transformation

TIB

Billing CRM

Order
Entry

BEDS
Service

BPM

Inventory

Managem
ent

FTP-

based
service

. . .

HTTP /

SOAP
Service

???-

based
service

BTF

(The Information Bus)

...

Figure 8.13: BTF-Epacity Service Choreography

To apply the BTF architecture in this case, we introduced the BTF adap-
tor that connects BTF with Epacity. In addition to the adaptor implemen-
tation, the updates on data schemas of the BSS and OSS applications are
needed during the implementation. Thus, the Epacity systems are able to
communicate and accommodate with the BTF systems, without changing its
current design in most places when introducing the BTF into the case study.

8.4 Conclusions

In this Chapter, we presented a case study based on a real life integration
project in one of the largest telecommunication companies in Europe, named
here as ‘Tele’. Internally it has several independent business units and de-
partments which are involved in this case study. External participants are the
business customers and the collaborators. Collaborators refer to particular

160 Case Study for Validation

third parties, including an engineering company who is in charge of equip-
ment installation and configuration. The business processes are supported
by zero-touch workflows, from the order stage, to processing and billing, and
are long-lasting and cross-organizational. The workflows are implemented as
part of the Epacity integration solution. Most of the steps in the processes
are automated (i.e. without human intervention), except for the installation
of equipments.

The integration of heterogeneous applications (e.g. a CRM, the database,
the workflow engine, etc.) is based on a service-oriented architecture. These
applications, which all have a communication interface, exchange data and
information through a common messaging broker with a compatible data
structure. All these features make this case study an interesting context to
apply the BTF in.

We analyze the processes and the underlying applications using a method
developed during the case study introduced in Chapter 3. This analysis
method provides the starting point to gain an understanding of the case.
After an overview of the Epacity is presented, we start to apply the research
insights from previous chapters. To validate the feasibility of the BTF in this
real-life case, we show how our research can be applied, and what benefit the
BTF renders. In other words, we aim to demonstrate the practicality and
usefulness of the BTF design in addressing the problems we discovered in the
previous case study. We achieve this by providing illustrations and applying
the research results one by one. From the feasibility study in the Epacity
case, we conclude that the BTF solution, including the TxQoS and ATC
approaches, can be applied to a real life case, whose characteristics of the
concerned processes are long-lasting, contract-driven, and service-oriented.
The case analysis method applied to the two cases in this thesis can be used
for this type of processes.

With the increasingly complex business collaborations, the requirements
on the reliable execution of business processes asks for a more flexible and
comprehensive solution. As the business-oriented design, the TxQoS ap-
proach enforces a reliability, contracting relations between providers and
users. The key to enabling the TxQoS approach is an unambiguous spec-
ification at a business level understanding. From this case study, the FIAT
attributes have proved to be able to specify the transaction qualities in real-
life cases. The ATC approach allows the flexibility of transaction design at
the provider side. In this case study, we also see that the ATC approach
enables a flexible composition of transaction support for processes. Together
with the application of the BTF pattern analysis and architecture design, this
case study demonstrates the feasibility to implement BTF in long-lasting,
contract-driven, and service-oriented processes.

Chapter 9

Conclusion

This chapter concludes the thesis. First a summary of the conducted research
is presented, followed by a discussion explaining the contributions to our
research field. At the end, we discuss the limitations of the thesis, based
on which extensions are possible for future research activities.

9.1 Research Summary

As stated in the beginning of the thesis in Chapter 1, the research carried out
in the XTC project aims to design a flexible and comprehensive transaction
framework (BTF), in order to address the challenge of providing an increas-
ingly demanding process/service execution reliability. The research started
with a theoretical literature review, and was followed by a case study in order
to identify and define the precise research questions. First, we performed a
thorough investigation on the current state of affairs, followed by an assess-
ment of the case study. Based on our findings, we were able to define the
research problems: How to specify a proper transaction support? (focusing
on the entity ‘Business Tx Spec’) and How to ensure these transaction spec-
ifications work in a changing environment? (focusing on the entity ‘Tech
Tx Spec’). The design of the BTF thus follows two threads: one business-
oriented and the other technology-oriented. This solves the two problems
mentioned above. Afterwards a framework is developed in order to integrate
the two approaches.

A TxQoS framework was established from the results of the business-
oriented design, allowing the transactional qualities to be specified and guar-
anteed through a contractual approach. The technology-oriented design re-
sulted in the ATC approach, which enables a flexible composition of transac-
tional process chunks. Together, the TxQoS and ATC approaches form the

162 Conclusion

core concepts of the BTF that integrates these two approaches and describes
their application. In the end, we validated the feasibility of the BTF by a
feasibility study, centered around a case study of a real-life telecom project,
which consists of service-oriented and contract-driven processes and complex
business relationships.

9.2 Contribution

The main contribution of the thesis is a transaction framework, called BTF,
which integrates the TxQoS and ATC approaches in order to address the
process reliability concern. We notice that the research in transaction man-
agement often focuses on specific technical means, easily losing the overview
of the business environment. The BTF brings together two types of process
reliability (i.e. transactional reliability and business trustworthiness), which
have long been separately addressed by the IT and business worlds.

Next we elaborate on the contributions of this thesis on the research field:

9.2.1 TxQoS

The TxQoS approach enables the specification of transaction qualities in
terms of FIAT (Fluency, Interference, Alternation, and Transparency) at-
tributes. This business-friendly approach allows providers and users to agree
on transactional qualities before execution time. As a result, the customer
side is able to understand processes better, and has more power in selecting
better services. Meanwhile the guaranteed transactional reliability raises the
confidence level as well as the level of satisfaction of the customers. In ad-
dition, the statistics on data and information collected through the TxQoS
life cycle regarding its transactional capabilities help providers serve their
customer needs better.

The concepts, scenarios, life cycle, and the specification method of trans-
actional reliability have been developed as a framework to operationalize the
TxQoS approach. Research on the proposed entity ‘Business Tx Spec’ has re-
sulted in a TxQoS-TxSLA (Transactional Service Level Agreement)-contract
structure, which is used to enclose the TxQoS specification into e-contracts.
The unique feature of this approach is the interpretation of transactional reli-
ability from a business perspective, which has not been addressed by existing
research efforts.

The essential part of the TxQoS is the transaction specification, for which
we developed FIAT attributes (Fluency, Interferability, Alternation, and
Transparency). They are designed to enable a precise interpretation of trans-

9.2 Contribution 163

actional performance in a TxSLA. It is understandable by both the IT and
business communities, and can be monitored and evaluated along the TxQoS
life cycle. Fluency measures the robustness of the service execution. Inter-
ferability indicates the control power from the service user during service
execution. Alternation represents the possible choices when encountering
problems. Transparency reflects the interest of a service user on the inter-
nal process at the provider side. Applying FIAT through different stages
of a service life cycle (i.e. design, publish, discovery, execution, and eval-
uation) contributes to enhanced transactional reliability, while empowering
users with more knowledge to choose reliable services. Due to the contractual
agreement, customers gain more confidence in being able to be provided with
a reliable execution.

9.2.2 ATC

The ATC approach provides a method leveraging the existing transaction
models by abstraction and configuration. ATCs contain four parts of in-
formation: structure, position, ACIDity, and mechanism. An XML Defini-
tion Schema has been designed, allowing the structure, position, ACIDity,
and transaction mechanisms of an ATC to be specified. The ATCs trans-
form through four phases, from the pre-design phase, during which general
templates are designed, to the selection phase, where proper templates are
selected on-demand, through the configuration phase, during which the pa-
rameters are set, and finally to the deployment phase, when a specific ATC
schema is fully composed and parameterized.

The comprehensive transaction support for process execution is enabled
by an ATC schema that allows for the combination of different types of ATCs
(i.e. atomic, chains, nested, and complex). These ATCs are abstracted from
the current transaction models predominantly according to the structural
similarity. They are organized and stored in the ATC library as general
templates that can be reused and configured to meet various transaction
needs. Compared to the existing transaction models, ATCs can cover every
type of process structure, by using flexibility and comprehensiveness as a
base.

Existing research on technical transactions very often emphasize the ap-
plication environment. For instance, the ACID transaction was designed
for database and web service transactions for web applications. The unique
feature of the ATC approach is the plug-and-play logic that overcomes ap-
plication constraints. Thus, ATCs provide a more flexible way of reusing the
current transaction logic to meet various reliability needs.

164 Conclusion

9.3 Limitations and Future Work

The XTC project asks for a variety of deliverables related to the areas of
transaction management, service oriented computing, e-contracting, and en-
terprise architecture In this thesis, we have looked into the aspects relating
e-contracting with transaction management in order to realize the BTF com-
plex processes. Due to the time constraints, there are still aspects which
have not been analyzed in detail, which provide an interesting area for future
work. In this section, we go over these aspects and discuss what can be done
to improve their understanding.

9.3.1 Integration of TxQoS and ATC

The TxQoS design includes a business element, in order to balance the picture
(refer to Figure 3.4) and move towards the vision laid out in Figure 3.7. Sim-
ilarly, the ATC design complements the missing technical element to balance
the picture. We performed both designs in parallel to each other, and inte-
grated the two threads of research at the end. In this approach, we integrate
the two sets of design output, by positioning them into common scenarios
and patterns and explaining their joint operation in these settings. The re-
sult presented in Chapter 7 has demonstrated a TxQoS-aware transaction
framework, integrating the TxQoS and ATC approaches.

However, this integration is loose and we still see there is room to enrich
and improve it. For instance, the data alignment has not been addressed
in the BTF design. A common data schema for both the ATC template
specification and the TxQoS contract specification is key to realize full inte-
gration. Thus, it can be a direction to follow up in the future. In addition,
we see a possibility in specifying TxQoS information in an ATC specifica-
tion. Following this thread of research, a more tightly-integrated BTF can
be achieved.

9.3.2 Feasibility Study

Our design took place mainly at the conceptual level and is validated through
a case study instead of by means of a prototype implementation. This val-
idation approach has certain limitations. Having only one case study is not
sufficient to draw general conclusions but rather to only obtain indications
for the quality of the design. Clearly, a larger set of cases would provide a
stronger demonstration of the feasibility of our approach and design results.

A next validation step would be performing a comparison of performance
in process reliability before and after implementing the BTF in a real business

9.3 Limitations and Future Work 165

environment. To achieve this, a collaboration between industry professionals
and academia is key. Such a validation demands from the industry to provide
a technical environment and allow changes to be made to its current systems
that would deliver a quantitative demonstration for the advantages of our
approach.

9.3.3 Full-blown ATC Library

For the ATC design we used several examples of XML specification snippets
to illustrate the conceptual design. The XML-based language we used to
write the ATC specifications is a demonstration that our idea of ATCs can
be implemented. However, complex examples may prove the current ATC
specification method inadequate and it therefore needs to be extended. Due
to time constraints, we have not created a formal set of specification method
that can abstract all important transaction models.

We have performed a survey [70] on transactions in order to organize
the existing transaction models. Based on the hierarchy of transactions and
ATC specification method presented in the thesis, a full-blown ATC library
can be an interesting topic to address in future. Please note that a full-
blown ATC library indicates that both the design and implementation are
needed in order to produce a complete set of ATCs corresponding to existing
transaction models. For instance, we can start from Figure 6.2, where an
ATC organization chart is presented. By researching the features of the
models, one can find a method to capture these features by abstraction and
configuration. As an outcome, each type of transaction model can find an
ATC correspondence in the library.

166 Conclusion

Appendix A

Fluency Specification Method

Theoretically, if we assume that breakdowns happen stochastically and meet
the following two conditions: (1) No simultaneous breakdowns can happen
at any time; (2) the causes of the past breakdowns are fixed and do not affect
future execution, then we can view the service execution a NonHomogeneous
Poisson Process (NHPP). A NHPP is a generalization of a Homogeneous
Poisson Process where events occur randomly over time at an average rate
of λ events per unit time. The rate λ varies with time as determined by the
intensity function λ(t), which is an integrable function of time interval (0, t].
The cumulative intensity function Λ(t), which is interpreted as the expected
number of events from starting time 0 by time t, is defined by [16]

Λ(t) =

∫ t

0

λ(τ)d(τ), t > 0 (A.1)

Accordingly, the exact number of events occurring in the interval (a, b] is
given by

Λ(a, b] =

∫ b

a

λ(t)d(t), b > a > 0 (A.2)

Therefore, according to the above formula 4.2, the probability of exact n
events occurring in the interval (a, b] is given by

P (n) =

[∫ b

a
λ(t)d(t)

]n
e−

∫ b
a λ(t)d(t)

n!
, for n = 0, 1, . . . (A.3)

If we view each breakdown as an event, and use the available statistics
of executed service data to determine the intensity function λ(t), which in

168 Fluency Specification Method

our case means breakdown happening rate, then in theory a prediction of
the fluency in the next execution can be computed. Depending on the ser-
vice characteristics, the breakdown happening rates can vary. For example,
a few extensive NHHP models using different λ(t) computation techniques
have been proposed using different intensity function in the area of software
reliability, such as GO NHPP [22], Delayed S-shaped NHPP [75], Inflection
S-shaped NHPP [43]. It is up to the provider to choose the most appropriate
one that interprets the real testing data and can be adjusted according the
runtime statistics.

We explain below how an extensive NHPP model is used for specifying
‘Fluency’ by an example. Suppose a service that should be executed within
time T (T = max(t)), any execution not committed after T is viewed as a
failure and is excluded in the fluency statistics. Before publishing the service,
the provider made a number of testing runs. From the testing results, it shows
the breakdown rate λ(t) is a constant. According to the applicability of
above mentioned extensive NHPP models, the GO NHPP model is therefore
adopted. The mean value function of λ(t) is given by

λ(t) = m(1− e−rt), (A.4)

where λ(0) = 0. Here, m is the number of breakdowns that will be
eventually detected and r is the breakdown detection rate according to the
semantics of the GO NHPP model. These two parameters can be obtained
from the tests, thus the breakdown rate lambda is a computable number
given the time (i.e. the variable t).

If we define the fluency function f(n) as the probability of having no
more than n breakdowns during execution (i.e. within the time interval
(0, T]), according to (4.3), f(n) can be calculated as

f(n) =
∑

P (n) =
∑ [∫ T

0
m(1− e−rt)d(t)

]n
e−

∫ T
0 m(1−e−rt)d(t)

n!
(A.5)

According to the above function(4.4), we replace the λ(t) by m(1− e−rt)
to calculate function f(n) where the variables T , m and r are given by the
testing results:

f(n) =
∑ [

m(T + e−rT−1
r

)
]n
e−m(T+ e−rT−1

r
)

n!
(A.6)

Appendix B

Legend and Main Processes in
Epacity

In this appendix, the complete business processes in the Epacity project
are shown in three-level abstract diagrams. These diagrams capture the
workflows that are deployed in the TIBCO iProcess workflow engine and serve
a business-level understanding. Note that every activity of these processes
does not stand for a single workflow step in the engine. One activity shows
a meaningful workflow step or a series of workflow steps and we deleted
the dummy steps that are built up for workflow logistics. Meanwhile, the
structure of workflow set has been reorganized, as the original structure is
flat and levels are hidden in the scripts of activities and flows.

B.1 Legend Description

Throughout the case study, we draw the diagrams using the legend shown
below. The triangled ‘continue’ is used to switch from one line to the next
when the process is too long. The circle indicates a step in all three lev-
els. The square with solid line has different labels representing different
application domains: NSF (Network Service Factory), CRM (Customer Re-
lationship Management), CORE (database applications), BILL (billing ap-
plications). Sub-processes appeared in the main process diagrams are shown
by document-like symbols with names only. Full-fledged sub-processes are
depicted in the next Appendix.

170 Legend and Main Processes in Epacity

Status Point (Start; Continue; End)

Step (level = Main; Task; NSF Process)

NSF ProcessNSF
Pro

Roll Task (Roll = NSF; CRM; CORE; BILL)

Decision Point (And/Or-Split/Join)

Flow between steps

Mapping to lower level steps

Figure B.1: Legend of Process Diagrams

B.2 Main Processes

In total, there are 7 workflows designed and deployed in the Epacity project.
Over the years, they have been updated along with the changes of the re-
quirements. In this thesis, we depict these process diagrams according to the
current flows deployed in the workflow engine (i.e. iProcess) by June 2009.

B.2 Main Processes 171

Schedule
CPE

Install

Provision
Access

Provision
Radius

Provision
Edge

Set SO
state P ort
Provisioned

Install
CPE

Finalize
Create
Order

Add Extra
Charges

Update
TPIP WO

State
"ReadyTo-

Install"

Set SO
State

"completed"

Activate
Billing

Add Extra
Charges

Provision
Radius
Proxy

Provision
Edge

Create
TPIP WO

CRM

NS F NS F

CRM

Set Site
Status

in service

NSF B ILL

Set Site
Status

configured

Finalize
BEDS

Reserve
VPN Port

Check
Access

Feasibility

Create
CRM

Account

Create
CRM

Service

Create
CRM

Service
Account

Create
CRM SO

Create
Billing

Account

Create
Billing

Service

Create
Billing
Sub -

account

Create
BW Billing

Deal

Add
Billing

Compone
nts

CRM CRM BILL

BILL

C
o

ntinu
e

C
ontinued

GetSiteInfo
Radius

NSF
Pro

AddToProxy
Subscribers

GetSiteInfo
Edge

NSF
Pro

GetSiteInfo
BPG

GetSiteInfo
QoS

GetSiteInfo
EdgeStatic

Routes

Provisioning
Activate

Site

NS F

NSF Pro
SetSite
Status

“Configured”

NSF Pro
SetSite
Status

“InService”

Start

Set Site to
Configured

E
nd

Sub3: Provision
Access

Sub1: Reserve
VPN Port

Sub2: Check
Access

Feasibility

And-
Split

CRM

CRM CRM CRM

C
o

ntin
ue

C
o

ntin
ue

Figure B.2: Epacity Case: Create New Site

172 Legend and Main Processes in Epacity

Cancel
CPE
Install

Cancel
AP WO

Terminate
AP WO

Make Port
Available

Deprovision
Radius
Proxy

SetSite
Status

"MarkedFor
Deletion"

Release
Port

Installed
Base

Reactivate

Inactivate
Billing

Complete
CRM SO

Finalize
Cancel
Order

Cancel
Billing

Set
Original

SO State
"cancelled"

Finalize
BEDS

Set
Original
Installed

Base
“Active”

Deprovision
Edge

GetInfo
AP

S
tart

Create
Cancel

TPIP WO

Create
Cancel
AP WO

Create
Terminate

WO

Deprovision
Radius
Proxy

GetInfo
AP

NSF Pro
DelFrom

Proxy
Subscribers

Deprovision
Edge

GetSiteInfo
Edge

NSF
Pro

GetSiteInfo
BGP

GetSiteInfo
EdgeStatic

Routes

Provisioning
Deactivate

Site

Release
Edge

Resources

Release
Edge

NSF Pro

SetSite
Status

"Available"

NSF Pro

C
ontinued

2

C
ontinue 2

Note: During Create AP WO, the
NSF call GetInfoAP is made

E
nd

GetSiteInfo
QoS

And-Join

And-Split

CRMCRMCRM

CRM CRMBILL

NSF

NSF NSF NSF

CORE

NSF ProNSF Pro

C
ontinue 1

C
ontinued

1

Figure B.3: Epacity Case: Cancel Site

B.2 Main Processes 173

Schedule
CPE Install

Provision
Access

Provision
Radius

Provision
Edge

Install CPE
Finalize

Move Order

Reserve
VPN Port

Check
Access

Feasibility

Create
CRM

Account

Create
CRM

Service

Create
Billing

Account

Create
Billing

Service

S
tart

Set Site to
Configured

Sub3:
Provision
Access

Sub1: Reserve
VPN Port

Sub2: Check
Access

Feasibility

And-
Split

Pending
Move

Terminate
SO

Deprovision
Radius
Proxy

Terminate
AP WO

Release
Edge

Resources

Add Extra
Charges

Sub4: Edge

And-
Join

Update SO
State

Inactive
Billing

Deprovision
Edge

Sub4: Edge
Sub5: Release

Edge
Resources

Make Port
Available

Inactive
(CRM
Base)

Update SO
Status

Finalize
BEDS

E
nd

Figure B.4: Epacity Case: Move Site

174 Legend and Main Processes in Epacity

S
tart

Create CRM
Service

Create
Terminate

CRM
Service

CRM

Update SO
Status

Set SO
State (In
Progress)

CRM

Close Billing

Trigger
Billing

BILL

Deprovision
Edge

Deprovision
Edge

NSF

Deprovision
Radius
Proxy

Deprovision
Radius
Proxy

NSF

NSF Pro

DelFrom
Proxy

Subscribers

Release
Edge

Resources

GetSiteInfo
Edge

NSF
Pro

GetSiteInfo
BGP

GetSiteInfo
EdgeStatic

Routes

Provisioning
Deactivate

Site

Terminate
Decision

Point

Sub2: Terminate
Decision

Sub1: Release
Edge

Finalize
Order

Finalize
BEDS

CORE

E
nd

C
ontinue

C
ontinue

Figure B.5: Epacity Case: Terminate Site

B.2 Main Processes 175

Create
CRM

Service

Create
CRM SO

Change
Speed
(DSL)

S
tart

Change
QoS
DSL

Determine
Provisioning

Determine
Provisoning

Change
Speed
(LL)

Speed LL

Set B-Side
Move

Pending

Create B-
Side

Move WO

Update B-
Side Move

SO
PortProvisi

oned

Change
QoS (LL)

C
ontibue

C
ontibue

Change
Routes

Change
Billing

Component

Change
Billing

Component

Update
Installed

Base

Set SO
State

Completed

Finalize
Change
Order

Finalize
BEDS

E
nd

NSF Pro

Determine
Provisioning

Or-
Split

CRMNSF

Speed DSL

BILL CRM CORE

Sub1: Change
Speed DSL

Sub2: Change
QoS DSL

CRM

Or-
Split

Change QoS

No QoS Change (because B-side move is executed)

Or-
Split

QoS Change

No QoS Change

Sub3: Change
QoS LL

Sub4: Change
Routes

Sleep Until Wish
Date

Note: All steps are
optional, e.g. Change

QoS DSL can be
executed without

Change Speed DSL.

Figure B.6: Epacity Case: Change Site

176 Legend and Main Processes in Epacity

Create
CRM

Account

Create
CRM

Service

Create
CRM

Account

Create
CRM SO

Create
Billing

Account

Create
Billing

Service

Create
Billing
Sub-

account

Create
Special

BW-Billing
Deal

Add
Billing

Compo-
nents

S
tart

Create
Internal
AP WO

Create
Internal

TPIP WO

Create
Internal
Epacity

WO

Create
CSD WO

(AP)

Create
CSD WO

(TPIP)

Create
CSD WO
(internal)

Create
Special

WO Misc

Finalize
Order

Finalize
BEDS

C
ontinue

C
ontinue

Update
Service

Inventory

Create
Internal

BILL WO

Create
CSD WO
(billingl)

E
nd

Create
Service
Instance

NSF Pro

Reserve
Epacity

Service ID

And-Split
And-
Join

BILL BILL CRM CRM NSF

CRM CRM CRM

CRM CORE

Sub1: Create
Misc WO

C
ontinue

C
ontinue

Figure B.7: Epacity Case: Create Special Site

B.2 Main Processes 177

Provision
IP Edge

Provision
IP Edge

S
tart

Get VRF
Info

NSF
 Pro

Provision-
ing

Set VRF
In Service

Delete
VRF Info

E
nd

NSF

Figure B.8: Epacity Case: Create VRF Site

178 Legend and Main Processes in Epacity

Appendix C

Sub-processes in Epacity

This appendix shows the sub-processes of the processes in the previous Ap-
pendix and applies the same legend.

Set SO
State

Reserved

Reserve
Port

NSF

Reserve
Modem

NSF
 Pro

Reserve
Port

SetSiteInfo
BGP

SetSiteInfo
NAT

SetSiteInfo
QoS

SetSiteInfo
Static

Routes

CRMS
tart S

ub1

E
nd S

ub1

Figure C.1: Create New Site - Subprocess 1

Create AP
WO

Set Site
Info AP

Add PVC Order

NSF CRM

Set SO
State

Feasible

NSF

Nor-
Split

Normal Order

NSF Pro

SetSiteInfo
AP

S
tart S

ub2

E
nd S

ub2

NSF Pro

SetSiteInfo
AP

Figure C.2: Epacity Case: Create New Site - Subprocess 2

180 Sub-processes in Epacity

Access
Provisioned

(AP WO
completed)

Set SO
State
access

provisioned

Add PVC Order

CRM CRM

Set Site Info
AP

NSF

Nor-
Split

Normal Order

NSF Pro

SetSiteInfo
AP

S
tart S

ub3

E
nd S

ub3

Figure C.3: Epacity Case: Create New Site - Subprocess 3

Set SO
State

Reserved

Reserve
Port

NSF

Reserve
Modem

NSF
 Pro

Reserve
Port

SetSiteInfo
BGP

SetSiteInfo
NAT

SetSiteInfo
QoS

SetSiteInfo
Static

Routes

CRM

S
tart S

u1

E
nd S

ub1

Figure C.4: Epacity Case: Move Site - Subprocess 1

Create AP
WO

Set Site
Info AP

Add PVC Order

NSF CRM

Set SO
State

Feasible

NSF

Or-Split

Normal Order

NSF Pro

SetSiteInfo
AP

S
tart S

ub2

E
nd S

ub2

NSF Pro

SetSiteInfo
AP

Figure C.5: Epacity Case: Move Site - Subprocess 2

181

Access
Provisioned

(AP WO
completed)

Set SO
State
access

provisioned

Add PVC Order

CRM CRM

Set Site Info
AP

NSF

Or-Split

Normal Order

NSF Pro

SetSiteInfo
AP

S
tart S

ub3

E
nd S

ub3

Figure C.6: Epacity Case: Move Site - Subprocess 3

Provision
Edge

NSF

GetSiteInfo
Edge

NSF
Pro

GetSiteInfo
BPG

GetSiteInfo
QoS

GetSiteInfo
EdgeStatic

Routes

Provisioning
Activate

Site

Or-Split

S
tart S

ub4

Provision Edge

Deprovisi
on Edge

NSF

GetSiteInfo
Edge

NSF
Pro

GetSiteInfo
BPG

GetSiteInfo
QoS

GetSiteInfo
EdgeStatic

Routes

Provisioning
Deactivate

Site

Deprovision Edge

E
nd S

ub4

Figure C.7: Epacity Case: Move Site - Subprocess 4

182 Sub-processes in Epacity

Release
Edge

NSF

Update SO
to Port

Provisioned

NSF

NS Pro

Set Site
Status

Configured

Or-Split

S
tart

S
ub5

Not Configured

Site Status Configured

CRM

E
nd

S
ub5

NSF Pro

Set Site
Status

Release
Edge

Figure C.8: Epacity Case: Move Site - Subprocess 5

Release
Edge

NSF

Update SO
to Port

Provisioned

NSF

NS Pro

Set Site
Status

Configured

Or-Split

S
tart

S
ub1

Not Configured

Site Status Configured

CRM

E
nd

S
ub1

NSF Pro

Set Site
Status

Release
Edge

Figure C.9: Epacity Case: Terminate Site - Subprocess 1

183

Create
Terminate

WO

BILL

Trigger
Billing

Or-Split

S
tart

S
ub2 Terminate

CRM

E
nd

S
ub2

Release
Edge

NSF

NS Pro

Release
Edge

Set SO
State

Access
Deprovision

ed

CRM
Delete

Site
(Release

Port)

NSF

NS Pro

Set Site
Status

Set Original
SO State

Terminated

CRM

Rollback:
Edge Re-provision

Provision
Edge

NSF

GetSiteInfo
Edge

NSF
Pro

GetSiteInfo
BPG

GetSiteInfo
QoS

GetSiteInfo
EdgeStatic

Routes

Provisioning
Activate

Site

Provision
Radius
Proxy

NSF

GetSiteInfo
Radius

NSF
Pro

AddToProxy
Subscribers

Rollback:
No Edge Provision

Update SO
to Port

Provisioned

NSF

Set Site
Status

Configured

CRM

NSF Pro

Set Site
Status

NSF

Set Site
Status In
Service

NSF Pro

Set Site
Status

BILL

Reopen
Billing

Service

Create CSD
WO Billing

CRM

Set Original
SO State
Rollback

CRM

Figure C.10: Epacity Case: Terminate Site - Subprocess 2

184 Sub-processes in Epacity

S
tart

S
ub1 Or-Split

Create
CRM
Bside

Move WO

CRM

Inadequate
Or No capacity

Or-Split

Regrade
Port

Reservati
on

NSF

Inadequate or
No capacity

NSF Pro

Reserve
Regrade

Port

Update
B-Side
Chg SO

Reserved

CRM
Regrade

Port
Reservati

on

NSF

NSF Pro

Reserve
Regrade

Port

Create
AP WO

CRM

Adequate Capacity on Router

Or-Split
Set B-
Side
Move

Cancelled

CRM
No B-Side

 Move

Change
Speed
10K

NSF

Or-Split

NSF Pro

Determine
Edge

Router

Get Site
Info Edge

Provisioning
Set Site
Status

Regrade

NSF Pro

Determine
Edge

Router

Del From
Proxy

Subscribers

Get Site
Info Edge

Get Site
Info Radius

Add To
Proxy

Subscribers

Set Site
Status

Regrade

C
ontinu
e 1

Reserve
SDL Site

Move

NSF

NSF Pro

Reserve
Port

Update
CRM B-

Side
Move SO
Reserved

CRM Update
CRM

Change
SO

Reserved

CRM

Create
AP WO

CRM
Set Site

Move Info
AP

NSF

NSF Pro

Set Site
Info AP

B-Side Move

Update
CRM B-

Side
Move SO

AP

CRM
Update
CRM

Change
SO AP

CRM

C
ontinu
e 3

C
ontinue

3

Or-
Split

Provision
Edge
Speed

NSF

No SAS Provisioning

SAS

NSF Pro

Get Site
Info Edge

Get Site
Info BGP

Update
CRM B-

Side Move
SO Port

Provisioned

CRM Update
CRM

Change SO
Port

Provisioned

CRM
Change
Radius
Proxy

NSF

NSF Pro

Del From
Proxy

Subscribers

Get Site
Info Edge

Get Site
Info Radius

Add To
Proxy

Subscribers

Update
Network
Inventory

NSF

NSF Pro

Set Site
Info AP

Update B-
Side Move

SO
Completed

CRM

E
nd

Change
Speed
10K

NSF

Radius Only

Radius SAS

Execute
Site Move

NSF

NSF Pro

Get Site
Info BGP

Execute
Site Move

Set Site
Info BGP

Add New
QoS Info

NSF

NSF Pro

Set Site
Info QoS

Deprovisi
on Edge
Change
Speed

NSF

NSF Pro

Get Site
Info Edge

Get Site
Info BGP

Get Site
Info Edge

Static
Routes

Get Site
Info QoS

Provisioni
ng

Or-
Split

No SAS Deprovisioning

SAS

Determin
e Edge
Router

NSF

NSF Pro
Determine

Edge
Router
Speed

Or-Split

Set B-
Side
Move

Pending

CRM

Manual

Create
CRM B-

Side
Move SO
Pending

CRM
Cancel B-

Side
Move WO

CRM

Automated

Update
Inventory
AP Info

NSF
Set Site
Status

AccessC
onfigured

NSF

NSF Pro

Set Site
Info AP

NSF Pro

SetSite
Status

Regrade

Set SO
State

Access
Provision

ed

CRM

Loop until deadline reached

Sleep Until
Wish Date

C
ontinu
e 1

E
nd

C
ontinue

2

C
ontinue

2

Figure C.11: Epacity Case: Change Site - Subprocess 1 - Change SpeedDSL

185

Add QoS

NSF

Add QoS

NSF

NSF
 Pro

Set Site Info
QoS

Get Site Info
QoS

Get Site Info
Edge

Provisioning
Set Site

Status QoS

NSF
ProDelete From

Proxy
Subscribers

Set Site Info
QoS

Get Site Info
Radius

Add To
Proxy

Subscribers

Set Site
StatusQoS

Determine
Edge

Router

Or-Split

S
tart

S
ub2

O2D Lite (Radius Only)

O2D Traditional (SAS-Radius)

NSF

Or-Split Capacity Available

E
nd

S
ub2

Capacity Not Available (B-Side Move)

NSF Pro

Determine
Edge

Router QoS

Figure C.12: Epacity Case: Change Site - Subprocess 2 - Change QoS DSL

Add QoS

NSF

NSF
 Pro

Set Site Info
QoS

Get Site Info
QoS

Get Site Info
Edge

Provisioning Set Site
Status QoS

Determine
Edge

Router

S
tart

S
ub3

NSF

Or-Split Capacity Available

E
nd

S
ub3

Capacity Not Available (B-Side Move)

NSF Pro

Determine
Edge

Router QoS

Figure C.13: Epacity Case: Change Site - Subprocess 3 - Change QoS LL

186 Sub-processes in Epacity

Add Static
Routes

NSF

Delete
Static

Routes

NSF
 Pro

Get Site
Info Edge

Set Site
change Ip
Objects

Provisioning

NSF
 Pro

Get Site
Info Edge

Set Site
change Ip
Objects

Provisioning

NSF

S
tart

S
ub4

E
nd

S
ub4Or-Split

Add Routes

Delete Routes

Update
Static

Routes

NSF
ProGet Site

Info Edge

Set Site
change Ip
Objects

ProvisioningProvisioning

NSF

Update Routes

Or-SplitTraditional (SAS-Radius)

NSF
ProDel From

Proxy
Subscribers

Set Site
Change Ip

Objects

Get Site Info
Radius

Add To
Proxy

Subcriber

O2D Lite (Radius Only)

Or-SplitTraditional (SAS-Radius) O2D Lite (Radius Only)

NSF
ProDel From

Proxy
Subscribers

Set Site
Change Ip

Objects

Get Site Info
Radius

Add To
Proxy

Subcriber

Or-Split O2D Lite (Radius Only)

NSF
ProDel From

Proxy
Subscribers

Set Site
Change Ip

Objects

Get Site Info
Radius

Add To
Proxy

Subcriber

Traditional (SAS-Radius)

Figure C.14: Epacity Case: Change Site - Subprocess 4 - Change Routes

Bibliography

[1] S. Angelov. Foundations of B2B Electronic Contracting. PhD thesis,
Eindhoven University of Technology, 2006.

[2] S. Angelov, P. W. P. J. Grefen, and D. Greefhorst. A classification of
software reference architectures: Analyzing their success and effective-
ness. In WICSA/ECSA, pages 141–150, 2009.

[3] S. Angelov, J. Vonk, K. Vidyasankar, and P. W. P. J. Grefen. Supporting
cross-organizational process control. In PRO-VE’09, pages 415–422,
2009.

[4] M. M. Astrahan and et. al. System R: Relational approach to database
management. ACM Transactions on Database Systems (TODS),
1(2):97–137, 1976.

[5] A. Berry and Z. Milosevic. Extending choreography with business con-
tract constraints. International Journal of Cooperative Information Sys-
tems, 14(2-3):131–179, 2005.

[6] E. Boertjes, P. W. P. J. Grefen, J. Vonk, and P. M. G. Apers. An archi-
tecture for nested transaction support on standard database systems. In
Proceedings of the 9th International Conference on Database and Expert
Systems Applications, DEXA ’98, pages 448–459, London, UK, 1998.
Springer-Verlag.

[7] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of multi-
database transaction management. VLDB Journal, 1(2):181–239, 1992.

[8] D. Bunting and et. al. Web Service Context (WS-CTX), July 2003.
http://www.oasis-open.org/committees/ws-caf/.

[9] D. Bunting and et. al. Web Service Coordination Framework (WS-CF),
July 2003. http://www.oasis-open.org/committees/ws-caf/.

[10] D. Bunting and et. al. Web Services Composite Application Framework
(WS-CAF), July 2003. http://www.oasis-open.org/committees/ws-caf/.

[11] D. Bunting and et. al. Web Services Transaction Management (WS-
TXM), July 2003. http://www.oasis-open.org/committees/ws-caf/.

188 BIBLIOGRAPHY

[12] A. Ceponkus, S. Dalal, T. Fletcher, P. Furniss, A. Green, and
B. Pope. Business transaction protocol version 1.0, June 2002.
http://www.oasis-open.org/committees/business-transactions/.

[13] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
Services Description Language (WSDL) 1.1. W3C, March 2001.
http://www.w3.org/TR/wsdl.

[14] P. K. Chrysanthis and K. Ramamritham. ACTA: a framework for spec-
ifying and reasoning about transaction structure and behavior. In Pro-
ceedings of the 1990 International Conference on Management of data
(ACM SIGMOD’90), pages 194–203, New York, NY, USA, 1990. ACM
Press.

[15] P. K. Chrysanthis and K. Ramamritham. ACTA: The SAGA continues.
In Database Transaction Models for Advanced Applications, pages 349–
397. Morgan Kaufmann, 1992.

[16] E. Cinlar. Introduction to Stochastic Processes. Prentice Hall, 1975.

[17] W. M. P. Van der Aalst, F. Leymann, and W. Reisig. The role of busi-
ness processes in service oriented architectures (editorial). International
Journal of Business Process Integration and Management, 2(3):75–80,
2007.

[18] A. K. Elmagarmid, editor. Database transaction models for advanced
applications. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1992.

[19] A. K. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz. A mul-
tidatabase transaction model for interbase. In Dennis McLeod, Ron
Sacks-Davis, and Hans-Jörg Schek, editors, VLDB Conference, pages
507–518. Morgan Kaufmann, 1990.

[20] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the 1987 ACM
International Conference on Management of data, SIGMOD ’87, pages
249–259, New York, NY, USA, 1987. ACM Press.

[21] D. Garlan and M. Shaw. An introduction to software architecture. In
Advances in Software Engineering and Knowledge Engineering, pages
1–39. Publishing Company, 1993.

[22] A.L. Goel and K. Okumoto. Time-dependent error-detection rate model
for software reliability and other performance measures. IEEE Transac-
tions on Reliability, R-28(3):206–211, 1979.

[23] J. Gray and A. Reuter. Transaction processing: concepts and techniques.
Morgan Kaufmann Publishers, 1993.

[24] P. W. P. J. Grefen. Mastering e-Business. Routledge, 2010.

BIBLIOGRAPHY 189

[25] P. W. P. J. Grefen, K. Aberer, H. Ludwig, and Y. Hoffner. Crossflow:
Cross-organizational workflow management in dynamic virtual enter-
prises. International Journal of Computer Systems Science and Engi-
neering, 15:277–290, 2000.

[26] P. W. P. J. Grefen and P. M. G. Apers. Integrity control in relational
database systems - an overview. Data and Knowledge Engineering,
10:187–223, 1993.

[27] P. W. P. J. Grefen, H. Ludwig, and S. Angelov. A three-level framework
for process and data management of complex e-services. International
Journal of Cooperative Information Systems, 12(4):487–531, 2003.

[28] P. W. P. J. Grefen, N. Mehandjiev, G. Kouvas, G. Weichhart, and R. Es-
huis. Dynamic business network process management in instant virtual
enterprises. Computers in Industry, 60:86–103, 2009.

[29] P. W. P. J. Grefen, J. Vonk, E. Boertjes, and P. M.G. Apers. Two-
layer transaction management for workflow management applications.
In Database and Expert Systems Applications (DEXA), pages 430–439,
1997.

[30] T. Härder and A. Reuter. Principles of transaction-oriented database
recovery. ACM Computing Surveys, 15(4):287–317, 1983.

[31] IBM Corp. Web Service Level Agreements (WSLA) project, 2004.
http://www.research.ibm.com/wsla/.

[32] IBM Corp. Web Services Policy Framework.
http://www.ibm.com/developerworks/library/specification/ws-polfram/,
2006.

[33] Encyclopædia Britannica Inc. Merriam-Webster Dictionary Online.
http://www.merriam-webster.com/dictionary/reliability.

[34] P. M. Lewis, A. J. Bernstein, and M. Kifer. Databases and Transaction
Processing: An Application-Oriented Approach. Addison-Wesley, 2001.

[35] Mark Little. Business transaction protocol: Transactions for a new age.
Web Services Journal, 2(11):50–55, 2002.

[36] A. Mand. IBM best online and offline integrated campaign. Brandweek
Online, 1999.

[37] A. Mani and A. Nagarajan. Understanding quality of service for web
services. Technical report, IBM DeveloperWorks, 2002.

[38] Salvatore T. March and Gerald F. Smith. Design and natural science
research on information technology. Decision Support Systems, 15(4):251
– 266, 1995.

190 BIBLIOGRAPHY

[39] J. E. B. Moss. Nested transactions: an approach to reliable distributed
computing. PhD thesis, EECS Department, M. I. T., 1981.

[40] E. Newcomer, I. Robinson, M. Feingold, and R. Jeyaraman. Web Ser-
vices Coordination (WS-Coordination) Version 1.2. OASIS, February
2009. http://docs.oasis-open.org/ws-tx/wscoor/2006/06.

[41] E. Newcomer, I. Robinson, T. Freund, and M. Little. Web Services
Business Activity Framework (WS-BusinessActivity) Version 1.2. OA-
SIS, February 2009. http://docs.oasis-open.org/ws-tx/wsba/2006/06.

[42] E. Newcomer, I. Robinson, M. Little, and A. Wilkinson. Web Ser-
vices Atomic Transaction (WS-AtomicTransaction) Version 1.2. OA-
SIS, February 2009. http://docs.oasis-open.org/ws-tx/wsat/2006/06.

[43] M. Ohba. Software reliability analysis models. IBM Journal of Research
and Development, 28(4):428–443, 1984.

[44] OMG. OMG Model Driven Architecture, 2011. http://www.omg.org/mda/.

[45] M. Papazoglou and D. Georgakopoulos. Service-oriented computing.
Comunications of the ACM, 46(10):25–28, 2003.

[46] M. Papazoglou and W-J Heuvel. Service oriented architectures: Ap-
proaches, technologies and research issues. VLDB Journal, 16(3):389–
415, 2007.

[47] M. Papazoglou and P. Ribbers. E-business: Organizational and Techni-
cal Foundations. John Wiley Sons Ltd., England, 2006.

[48] C. Pu, G. E. Kaiser, and N. C. Hutchinson. Split-transactions for open-
ended activities. In F.Bancilhon and D. J. DeWitt, editors, VLDB Con-
ference, pages 26–37. Morgan Kaufmann, 1988.

[49] Z. Qi, X. Xie, B. Zhang, and J. You. Integrating x/open dtp into grid
services for grid transaction processing. In International Workshop on
Future Trends in Distributed Computing Systems (FTDCS), pages 128–
134. IEEE Computer Society, 2004.

[50] K. Ramamritham and P.K. Chrysanthis. Advances in Concurrency Con-
trol and Transaction Processing. IEEE Computer Society, 1997.

[51] A. Reuter. ConTracts: A means for extending control beyond transac-
tion boundaries. In Third International Workshop on High Performance
Transaction Systems, 1989.

[52] M. Shaw and D. Garlan. Software architecture: perspectives on an
emerging discipline. Prentice-Hall, Inc. Upper Saddle River, NJ, USA,
1996.

[53] A. P. Sheth and M. Rusinkiewicz. On transactional workflows. IEEE
Data Engineering Bulletin, 16(2):37–40, 1993.

BIBLIOGRAPHY 191

[54] A. Simon and T. Rischbeck. Service contract template. In Proceedings
of IEEE International Conference Service Computing (SCC’06), pages
574–581, Washington, DC, USA, 2006. IEEE Computer Society.

[55] T. Steinbach, J. Webber, and C. Türker. Proposed grid transaction RG
- charter. http://www.data-grid.org/tm-rg-charter.html.

[56] C. Türker, K. Haller, C. Schuler, and H.-J. Schek. How can we support
grid transactions? Towards peer-to-peer transaction processing. In Pro-
ceedings of Conference on Innovative Data Systems Research (CIDR),
pages 174–185, 2005.

[57] Universal description, discovery and integration (UDDI), 2006.
http://www.uddi.org/.

[58] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Busi-
ness process management: A survey. In Proceedings of International
Conference on Business Process Management, pages 1–12, 2003.

[59] J. Vonk and et al. An analysis of contractual and transactional aspects of
a cardiothoracic surgery proces. Technical report, Eindhoven University
of Technology, 2008.

[60] J. Vonk and P. W. P. J. Grefen. Cross-organizational transaction support
for e-services in virtual enterprises. Distributed and Parallel Databases,
14(2):137–172, 2003.

[61] J. Vonk, P. W. P. J. Grefen, E. Boertjes, and P. M. G. Apers. Distributed
global transaction support for workflow management applications. In
Proceedings of the 10th International Conference on Database and Expert
Systems Applications, DEXA ’99, pages 942–951, London, UK, 1999.
Springer-Verlag.

[62] J. Vonk, T. Wang, and P. Grefen. A dual view to facilitate trans-
actional qos. In Proceedings of 16th IEEE International Workshops
on Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE’07). IEEE Computer Society, 2007.

[63] W3C. Web Services Description Language (WSDL) 1.1, Marchh 2001.
http://www.w3.org/TR/wsdl.

[64] H. Wächter and A. Reuter. The contract model. InDatabase Transaction
Models for Advanced Applications, pages 219–263. Morgan Kaufmann,
1992.

[65] T. Wang and P. W. P. J. Grefen and. Ensuring transactional reliability
by e-contracting. In Proceedings of 20th International Conference on
Advanced Information Systems Engineering (CAiSE’08), pages 262–265.
Springer, 2008.

192 BIBLIOGRAPHY

[66] T. Wang, P. Grefen, and J. Vonk. Abstract transaction construct: Build-
ing a transaction framework for contract-driven, service-oriented busi-
ness processes. In Proceedings of 4th International Conference on Service
Oriented Computing (ICSOC’06), pages 434–439. Springer Verlag, 2006.

[67] T. Wang and P. W. P. J. Grefen. A historic survey of transaction man-
agement from flat to grid transactions. Technical report, Eindhoven
University of Technology, 2005.

[68] T. Wang, J. Vonk, and P. W. P. J. Grefen. TxQoS: A contractual
approach for transaction management. In Proceedings of 11th IEEE
International Conference on Enterprise Computing (EDOC’07), pages
327–338. IEEE Computer Society, 2007.

[69] T. Wang, J. Vonk, and P. W. P. J. Grefen. Towards a contractual
approach for transaction management. Enterprise Information Systems,
2:443–458, 2008.

[70] T. Wang, J. Vonk, B. Kratz, and P. W. P. J. Grefen. A survey on
the history of transaction management: from flat to grid transactions.
Distributed Parallel Databases, 23.

[71] J. Warne. An extensible transaction framework: Technical overview.
Technical report, ANSA Architecture for Open Distributed Systems
Project, 1993.

[72] G. Weikum and H-J Schek. Concepts and applications of multilevel
transactions and open nested transactions. In Database Transaction
Models for Advanced Applications, pages 515–553. Morgan Kaufmann,
1992.

[73] E. Wustenhoff. Sun blueprints: Service level agreement in the data
center, 2002. http://www.sun.com/blueprints/0402/sla.pdf.

[74] W. Xie, S. B. Navathe, and S.K. Prasad. Supporting qos-aware trans-
actions in a system on mobile devices (syd). In Proceedings of 23rd In-
ternational Distributed Computing Systems Workshops, pages 498– 502.
IEEE Computer Society, 2003.

[75] S. Yamada, M. Ohba, and S. Osaki. S-shaped reliability growth modeling
for software error detection. IEEE Transaction on Reliability, 32(5):475–
478, 1983.

Summary

In this thesis, we propose a transaction framework to provide comprehensive
and flexible transaction support for contract-driven, service-oriented business
processes.

The research follows the research method outlined below. Initially, a
thorough investigation on current state of affairs was made. Afterwards, we
carried out a case study, which we utilized to identify the problems that are
likely to occur during the execution of business processes. As the result of the
solution design, the concepts, scenarios, life cycles, reference architectures,
and mechanisms were proposed to address the problems. The design took
place on the conceptual level, while the coding/programming and implemen-
tation is out of the scope of this thesis. The business-oriented solution design
allows for transaction qualities to be specified and guaranteed by a contrac-
tual approach named as TxQoS (Transactional Quality of Service). The
technology-oriented design enables flexible composition of ATCs (Abstract
Transaction Constructs) as a transaction schema to support the execution of
complex processes. As the last step of research, we validated the feasibility
of our design by a utility study conducted in a large telecom project, which
has complex processes that are service-oriented and contract-driven. Finally,
we discussed the contributions and limitations of the research.

The main contribution of the thesis is the BTF (Business Transaction
Framework) that addresses process execution reliability. The TxQoS ap-
proach enables the specification of transaction qualities in terms of FIAT
(Fluency, Interference, Alternation, Transparency) properties. This business-
friendly approach allows the providers and users to agree on transaction quali-
ties before process execution time. The building blocks of the proposed frame-
work, ATCs, are reusable and configurable templates, and are abstracted
and generalized from existing transaction models. The various transaction
requirements of sub-processes and process chunks can be represented by cor-
responding ATCs, which allow for a flexible composition. Integrated, the
TxQoS and ATC approaches work together to form a TxQoS-aware business
transaction framework.

194 Summary

Samenvatting

Samenvatting

In dit proefschrift wordt een raamwerk voor transacties voorgesteld teneinde
volledige en flexibele transactie-ondersteuning te bieden aan contract-gedreven,
diensten-georiënteerde bedrijfsprocessen.

Het onderzoek volgt de onderzoeksmethode zoals hierna geschetst. In
eerste instantie is een uitgebreid onderzoek uitgevoerd naar de huidige stand
van zaken. Daarna hebben we een casus geanalyseerd, die we gebruikt hebben
om de problemen te identificeren welke met een grote waarschijnlijkheid op-
treden tijdens de uitvoering van processen. Als resultaten van een ontwerp-
proces worden concepten, scenario’s, levenscycli, referentie-architecturen en
mechanismen voorgesteld om deze problemen aan te pakken. Het ontwerp
heeft plaatsgevonden op het conceptuele niveau, waardoor codering en imple-
mentatie buiten het aandachtsgebied van dit proefschrift vallen. Het bedrijfs-
georiënteerde ontwerp van het Business Transaction Framework (BTF) maakt
het mogelijk dat transactie-karakteristieken worden gespecificeerd en gegaran-
deerd middels een contract-gebaseerde benadering met de naam TxQoS (Trans-
actional Quality of Service). Het technologie-georiënteerde ontwerp onderste-
unt flexibele compositie van ATCs (Abstract Transaction Constructs) tot een
transactieschema voor de ondersteuning van de uitvoering van complexe pro-
cessen. Als de laatste stap van het onderzoek hebben we de uitvoerbaarheid
van ons ontwerp gevalideerd middels een bruikbaarheidsstudie die is uitgevo-
erd in een groot telecom-project, waarin complexe processen voorkomen die
diensten-georiënteerd en contract-gedreven zijn. Tenslotte hebben we de bi-
jdragen en beperkingen van het onderzoek besproken.

De belangrijkste bijdrage van dit proefschrift is een raamwerk voor trans-
acties dat gericht is op de aspecten van de betrouwbaarheid van de uitvoering
van processen. Een contractuele aanpak, genaamd TxQoS, maakt het mo-
gelijk transactiekarakteristieken te specificeren in termen van de FIAT (Flu-
ency, Interference, Alternation, Transparency) eigenschappen. Deze bedrijf-
sgerichte aanpak maakt het mogelijk dat aanbieders en gebruikers overeen-
stemming bereiken over transactiekarakteristieken voordat processen worden

196 Samenvatting

uitgevoerd. De bouwblokken van het voorgestelde raamwerk, ATCs, zijn her-
bruikbare en configureerbare sjablonen die geabstraheerd en gegeneraliseerd
zijn uit bestaande transactiemodellen. De verscheidene transactievereisten
van deelprocessen en procesdelen kunnen worden gerepresenteerd door cor-
responderende ATCs, hetgeen een flexibele compositie mogelijk maakt. De
TxQoS en ATC aanpakken vormen samen een gëıntegreerd TxQoS-gebaseerd
raamwerk voor bedrijfstransacties.

Curriculum Vitae

Ting Wang was born on September 11, 1977 in Nanchang, Jiangxi Province,
People’s Republic of China. After finishing a gifted youth program combin-
ing middle and high school education at Nanchang No.10 school in 1993, she
started higher education at Nanchang University in China. In 1997, she grad-
uated with a B.Sc. degree in Information Management and Science. From
1997 to 2002, she was employed by Jiangxi Police College as a police officer,
where she lectured courses, and worked as an IT staff in the library. Ad-
ditionally, from 1999 to 2002 she attended a part-time Master program for
professionals in the department of Computer Science at Nanchang University.
She obtained all course credits and passed national qualification exams, but
then quit the thesis to study abroad. In 2002, she started a Research Master
program in CentER graduate school at Tilburg University, the Netherlands,
and graduated with a M.Sc. degree in Information Systems in 2003. From
2004 to 2008, she was employed by Eindhoven University of Technology, the
Netherlands, as a PhD student working for a NWO (The Netherlands Orga-
nization for Scientific Research) project. In 2008, she joined the Amsterdam
office of BearingPoint as a consultant in Business IT Alignment.

	Contents
	Acknowledgements
	1. Introduction
	2. Related Work and Research Background
	3. Case Study on Process Reliability
	4. TxQoS Approach
	5. TxQoS Framework
	6. Abstract Transaction Construct
	7. BTF: Integrating TxQoS and ATC
	8. Case Study for Validation
	Conclusion
	Appendices
	Bibliography
	Summary
	Samenvatting
	Curriculum Vitae

