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NOTATIONS 

Upper case letters 

E Young's modulus 

G shear modulus 

L span of the beam or length of the bar 

I second moment of area 

T total cross-sectional shear force 

M total cross-sectional bending moment 

Mt torsional moment 

M Steiner part of the bending moment 
s 

N total cross-sectional normal load 

A cross-sectional area 

B bending stiffness 

Bs bending stiffness corresponding to the Steiner part of the bending 

moment 

K 

N(x) 

N 

shear stiffness 

tensile load distribution 

tensile force 

elongation of the reinforced bar 

increment of the tensile load along a small part .C.x of the 

transfer length 

.C.N increment of the tensile load after the initiation of a crack 

Lt transfer length 

Lower case letters 

w deflection of the beam 

u deformation in the direction of the length of the beam 

h layer thickness 

zp distance between the centre-line and the reference-line 

z distance from a centre-line of a layer to a toea tion within the 

same layer 

n number of pivotal points along the length of the beam 

m number of fibres in each layer 

index of a segment 

index of a fibre 

a distance be tween the reference-line of the beam and the centre­

lines of a layer 

time 



radius 

b beam width 

h height 

Greek letters 

normal and/or bending strain 

1 shear strain 

(J normal and/or bending stress 

r shear stress 

t::..r bond stress increment in the transfer zone 

t::..x length of a small part of the transfer zone 

a distribution factor 

t::..t::..u increase of the relative displacement between the reinforcement 

and 

concrete 

increase of the elongation of the reinforced bar caused by the 

initiation of a crack 

t::..t::..u decrease of the elongation of concrete caused by the initiation of 
co 

w 

¢ 

d¢/dx 

l,2,c 

ref 

ex,in 

co,r,fc 

bc,ac 

sec 

j,i 

a crack 

rei a tive displacement between the reinforcement and concrete 

percentage of reinforcement 

creep factor 

rotation 

Subscripts 

lower face, upper face and core respectively 

reference line 

external and internal, respectively 

concrete, reinforcement and foamed concrete, respectively 

before cracking and after cracking, respectively 

secant 

index of the segment and fibre respectively 

layer 

! normal and/or bending strain 

1 shear strain 

Superscripts 

cr creep 

sh shrinkage 

d dummy restraint 



I. INTRODUCTION 

1.1 Subject 

A structural sandwich is a particular type of composed structure. The 

cross-section consists of two strong and stiff sheets (faces) connected by a 

relatively weak core of low density. At the expense of higher manufacture 

costs, compared with homogeneous structures, this arrangement combines a 

high stiffness to weight ratio with good thermal insulation. In the 

structural sense, the bending moment is carried by the stiff faces and the 

shear load by the core. The shear deformation of sandwich elements must 

emphatically be taken into account, since the transverse shear rigidity is 

provided by the relatively weak core. Bernouilli's law, of plane 

cross-sections is, therefore, no longer valid. The shear deformation of the 

weak core influences both the deflection and the stress distribution. 

The favourable stiffness to weight ratio has promoted the use of sandwich 

structures in airplanes. Although lagged behind the aircraft industry, 

sandwich elements are now generally accepted in building structures 

(Shendy-El-Barbary, 1981 ). The continually increasing costs of energy turned 

the balance. For instance, sandwich beams composed of thin profiled steel 

facing and a polyurethane core are manufactured industrially with economic 

benefits (Jungbluth, 1986 and De ising, 1988). Almost all structural sandwich 

elements are provided with a foamed plastic core, in view of proper 

thermal insulation. On the other hand, the application of foamed plastic 

cores is mainly restricted to wall and roof panels, due to the poor fire 

resistance and the poor long-term behaviour caused by creep of the core 

under permanent load. 

In this study, the advantages of sandwich elements are to be combined 

with the typical advantages of concrete by the developing of a fully 

cement-based sandwich. Particularly in concrete structures both the 

stiffness to weight ratio and the thermal insulation can be improved 

considerably. Besides, the loss of weight has an additional advantage of 

the size of columns and will make it possible to realize higher buildings 

on the same foundation. 

Little attention has been paid in research projects to the use of concrete 

sandwich elements. 



The reason for this may be attributed to the difficulties of producing a 

lightweight concrete, both technologically and economically, which can 

satisfy the desired conditions of the core (Shendy-EI-Barbary, 1981 ). 

Research on lightweight concrete was focussed on lowering the density with 

maintenance of the structural properties, by applying lightweight aggregates 

(a.o. Weigler et al. 1981, Karl 1979 and J aegermann et at. 1976). 

However, in order to achieve thermal insulation comparable to foamed 

plastics, the density must be lowered to less than 800 kg/m 3 • Only a few 

research projects were performed, using very lightweight aggregates like 

expanded perlite (Zerjeski, 1981 ), expanded polystyrene (Shendy-El-Barbary) 

or a foaming agent (see chapter 7). The application of these products 

were restricted because of at least one of the following reasons: 

(I) Non-uniform properties through the depth caused by the poor 

distribution of the lightweight aggregate or foam. 

(II) Large statistical variance among different casts. 

(III) Lack of industrial availability. 

In recent years, these problems were solved, thanks to substantial progress 

in the manufacture of foamed concrete. Foamed concrete is a cement 

based lightweight concrete which contrary to aerated autoclaved concrete, 

hardens under normal conditions. It consists of cement, water, fine sand 

and a foaming agent. The density can be decreased to about 400 kg/m 3 , 

depending on the amount of foaming agent. The recent applications of 

foamed concrete are based on a combination of good workability, low 

density, thermal insulation and durability. Besides foamed concrete can be 

cast in situ. 

Fig. 1.1 

I. reinforced concrete 
lower face 

2. concrete upper face 
3. foamed concrete core 
4. main reinforcement 
5. shear connector 

(optional) 

Reinforced concrete sandwich beam with a foamed concrete core. 
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This study will contribute to the research into the application of sandwich 

elements in building structures, particularly composed of a foamed concrete 

core and reinforced concrete faces. Shear connectors between upper and 

lower faces can be taken into account (see fig. 1.1). However, the general 

formulation of the problem is such that, with minor modifications, it can 

be extended to other kinds of core and face materials and geometries. 

1.2 Aim of the study 

The aim of this study is to analyse the structural behaviour of sandwich 

beams, particular composed at reinforced concrete faces and a foamed 

concrete core. Both short-term loading and sustained loading are taken into 

account. The deflections and the load-bearing capacity of simply supported 

sandwich beams will be studied under static and symmetric transverse 

types of load. Normal load and instability phenomena are left out of 

account. 

1.3. Research strategy 

The structural behaviour of the multi-layered elements composed of 

reinforced concrete faces and a foamed concrete core is on the one hand 

characterized by the shear deformation of the core (sandwich theory) and 

on the other hand by the typical properties of reinforced concrete and 

foamed concrete. 

A numerical approach is adopted in order to describe its structural 

behaviour. Distinction is made between a global model, describing the 

behaviour of a general sandwich beam and three specific material related 

numerical models. The global model is based on the finite difference 

analysis in which the structural sandwich behaviour is analytically described 

and numerically solved. 

The three specific models are concerned with 

(i) inhomogeneity and physical nonlinearity 

(ii) creep and shrinkage of concrete and foamed concrete 

(iii) failure criteria 

The numerical model is verified by means of experimental research on a 

restrictive number of sandwich beams. Both short-term and long-term tests 

are performed in which foamed concrete with a density of 600 kg/m 3 is 

used. 
3 



A parameter study is performed with the numerical model (SANDI 

SANdwich Displacements). 

A schematic view of the adopted approach is given in fig. 1.2. 

Experimental 

research into 1--....;::>1 

the material 

properties 

(chapter 6) 

Physical reality 

Specific material 

Global model 

sandwich theory 

(chapter 2) 

- basic equations 

for deflection 

and shear 

fq- related numerical 

models 

- finite difference 

solution procedure 

experimental research 

and verification of 

the numerical model 

(chapter 7) 

I - ---'·. 

summary and 

cone lusions 

(chapter 9) 

(chapters 3, 4 and 5) 

- inhomogeneity and 

physical nonlinearity 

- nonlinearity due to 

creep and shrinkage 

- failure criteria 

Fig. 1.2 Schematic view of the research strategy with reference to the 

chapters. 
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2. FINITE DIFFERENCE ANALYSIS 

2.1 Introduction 

The theoretical work in the direction of developing analytical methods for 

predicting the structural behaviour of sandwich beams received a great 

deal of attention in the past. Extensive reviews and bibliographies of these 

efforts have been given by the research workers mentioned in the 

references of this chapter. Basically two strategies have been used; 

(I) Extension of the ordinary theory of bending (a.o. Allen 1969, 

Hartsock 1969) 

(II) Differential equations using basic equations of elasticity or energy 

theorems (a.o. Stamm et a! 1974, Drysdale et a! 1979, Sharma et 

a! 1982 and Wiedeman 1986) 

The classical methods of analysis have led to analytical solutions of the 

governing equations only for a number of simple cases. However, these 

analytical solutions are rather cumbersome and hardly suitable for simple 

calculations (Davies, 1986). Although the problem has been solved for 

sandwich beams with linear elastic material properties by manageable 

approximations (a.o. WiHfel 1987, Aicher et al 1987 and Aicher 1987), it is 

evident that if general solutions for sandwich beams with more 

complicated material properties are to be obtained, recourse must be made 

to numerical methods of analysis such as the finite element method and 

the finite difference method. 

The literature devoted to the finite element analysis of sandwich beams is 

extensive. The most direct way to model a sandwich beam for finite 

element analysis, is to represent the faces by beam elements and to 

connect these at all nodes to suitable plane stress elements to represent 

the material properties of the core. Although such a representation allows 

accurate results, even in complex situations, it is inefficient because of 

the large number of elements involved (Davies, 1986). Therefore, typical 

sandwich beam elements have been established by several authors. 

5 



An extensive literature study was performed by Sharifi (1970). More 

recently, stiffness matrices for sandwich beams with thick faces, were 

described by Kraus [ 1974], Monforton [ 1979], Davies [ 1986] and 

Al-Quarra [ 1989]. 

In order to gain insight into the overall structural behaviour of sandwich 

beams a finite difference method was preferred in this study. 

2.2 Basic differential equations for deflection and shear 

2.2. I General 

In most of the analytical studies, the bending stiffness of the (foamed 

plastic) sandwich core is considered to be of minor importance and 

therefore neglected, except by Allen (1969), Plantema (1966) and Wiedeman 

(1986). For cases of identical skins, Allen (1969) showed that simple 

modifications permit the evaluation of stresses and deflection in sandwich 

beams with cores which make a substantial contribution to the flexural 

rigidity of the beam. Likewise, considerations by Plantema (1966) are 

restricted to sandwich beams with thin faces. Wiedeman (1986) only 

considers the core stiffness perpendicular to the faces. 

In order to obtain a proper description of the structural behaviour of 

reinforced concrete sandwich beams with foamed concrete cores it is 

necessary, besides the shear stiffness, also to take the bending stiffness of 

the core into account for three reasons: 

(i) It is not known if the bending stiffness of foamed concrete can 

be neglected; 

(ii) Failure due to the biaxial state of stress in the core (see 

chapter 5, failure mode C) cannot be calculated if the core is 

loaded in shear only. 

(iii) The influence of creep and shrinkage of the core can only be 

studied with the model described in chapter 4, if both the 

normal and bending stiffnesses of the core are taken into account. 

In this chapter generalized differential equations for sandwich beams with 

faces of unequal thickness will be derived. 

6 



2.2.2 Basic assumptions 

The following assumptions are adopted: 

1. the materials behave homogeneously and isotropic ally; 

2. prism a tic beams; 

3. the deflections are small with respect to the height of the beam; the 

first order theory is applicable; 

4. the deformation in the direction of the layer thickness is left out of 

account; 

5. there is no inter-layer slip between the faces and the core; 

6. the shear deformations of the faces are neglected; only the shear 

deformation of the core is taken into account; 

7. warping of the core is neglected. 

2.2.3 Displacement-strain relations 

The deformed shape of an infinite small part of a loaded sandwich beam 

is given in Fig. 2.1. The following kinematic equations can be derived 

from Fig. 2.1. 

The shear deformation of the core -yc can be expressed by 

1 = c1> + w' c [ 2.1 1 

The displacements of the facing and core are given in the equations [ 2.21. 

The first term of the equations describes the position of the centre-line 

of the overall beam, the second term the centre-line of each separated 

layer and the third term refers to the thickness of facing and core. 

u = u+((zp f-h )c~>-(h -zp )w•) -z w' 
1 re 1 1 1 1 

[ 2.2a 1 

u =u-((h +h -z f)cl>+(zp -h -h 1w•) -z w' z 1 c re 2 1 d 2 
[2.2b 1 

u = u- ( zp -z f) cl>+ ( z ) cl> c c re c [ 2.2c 1 

The normal strains in the deformed structure are by definition the first 

derivative of the displacements u. 

7 



Ms Nlai+Ncac+N2a2 

normal stresses shear stresses 

z,w 

Fig. 2.1 The deformed shape of a small part of a sandwich beam. 
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u'+ (a) 4>' + (zp -h)( 4>'+w") -z w" 
1 1 1 1 

(2.3a] 

(2.3b l 

~ = u'- (a l 4>'+(z ) ( 4>'+w") -z w" 
c d c c (2.3c 1 

The typical order of the terms in the equations [ 2.3) is chosen in order 

to facilitate comparison with the equations described by Stamm et a!. 

(1974). 

2.2.4 Stress-strain relations 

Linear stress-strain relations are adopted. 

u,_ = Ele (£=1,2 or c) 

rc = Gc1c 

2.2.5 Equations of equilibrium 

[ 2.41 

[ 2.51 

The differential equations of equilibrium of a small part of the sandwich 

beam are: 

N = 0 (normal load is left out of account) 

M' - T = 0 

T' + q = 0 

The cross-section forces are defined by 

N = J u dA = L J u,_dA 
A l:=l,2,c A,_ 

M J u z dA = I: u,_ zdA 
A l:=l,2,c 

T J r dA = L J r .ciA = M' + M' + b (a +a )r 
A

l- 1. Z 12C 
A t=I,2,c ,_ 

[ 2.6a 1 
[ 2.6b 1 
[ 2.6c] 

[ 2. 71 

[ 2.8] 

[ 2.9] 

Note that since warping of the core is neglected, there is no contribution 

M' of the core. c 
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2.2.6 The coupled differential equations 

The kmematic equations [ 2.3a, 2.3b, 2.3c] are substituted in the 

stress-strain relations [ 2.41 and [2.51 respectively. Substitution of the 

results in the equations of equilibrium of N [2.71 and M [2.81 and 

integration gives the equations: 

N= (E A + E A + E A ) u' + (E A a -E A a -E A a ) ~· 
11 12 CC 11122lCCC 

+ (E A (zp -h) -E A (h +h -z f-a)) (~+w") 
1 1 1 1 2 2 1 c re '!! 

with f zldA=O {l=l,2 or c) 
At 

M=(E A a -E A a -E A a )u' + (E a2 A)~'+E A a (zp -h )(~'+w") 
ll1222CCC 111 111 1r' 

-(E I)w" + (E a 2 A )~'+E A a (h +h -z -a) (~'+w")-(E I )w" 
1 1 2 2 2 2 2 2 1 c ref 2 2 2 

+ (E a 2 A ) ~'+ E I (~'+w") (E I ) w" 
c c c cc cc 

with f z~dA=Ie {l= 1,2 or c) 
A£ 

[ 2.101 

[ 2.11 1 

Substitution of the stress-strain relation [ 2.51 together with relation [ 2.1] 

in the definition of T {equation [ 2.9]) with M' = - (E I ) w"' and M' 
1 1 1 2 

- (E I ) w"' results in: 
1 2 

T=-E I w"'-E I w"'+(G b(a +a)) (~+w') 
11 22 c 1 2 

[ 2.121 

Notice that since warping is neglected, the flexural stiffness of the core 

does not affect the distribution of the shear stresses. Besides, the 

equations of N [ 2.101 and M [ 2.111 can be simplified by taking the 

centre-line of the sandwich beam as the reference line (z f=zp ) with re s 

{EAa -EAa -EAa)=O 
111 222 CCC 

This means that the second term of equation [ 2.101 and the third term 

of equation [ 2.111 can be left out of account. 

10 



Substitution of equations [2.11 and 2.12) in the equations of equilibrium 

[ 2.6b) and ( 2.6c), gives the following differential equations (see appendix 

A2-1): 

[2.13a) 

K (~'+wry- (B +B ) ( w"'~ +q=O 
1 2 

[2.14a) 

Using equation [2.1), the equations [2.13a) and [2.14b] can be written as 

(B +B ) ( 'Y" - w''~ + (R) 1" -(K)1 =0 
s c c c c 

[2.13b] 

(K)'y' - (B +B ) w'"' + q = 0 c 1 3 
[2.14b] 

with 

K = G b (a +a ) c 1 2 

B = L E~lal 
s l=l,2,c 

R = E A a (zp -h ) +E A a (h +h -zp -a ) 
111 11 222 1C SZ 

2.2.7 The uncoupled differential equations 

Equation [2.14b], the first order derivative of equation [2.13b] and the 

second order derivative of equation [ 2.14b ], yields after two times 

integration (see appendix A2-2) 

[2.15a] 

From equation ( 2.14b] and the first order derivation of the equation 

[2.13b] it yields after integration 

[2.15b] 
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2.3 Finite difference solution procedure 

2.3.1 General 

The finite difference method is a numerical integration technique for 

reducing a continuum to a system with a finite number of degrees of 

freedom. The method, extensively described in textbooks on numerical 

analysis, is based on the principle that the derivatives of a function at a 

certain point 

(pivotal point) can be approximated by an algebraic expression consisting of 

the values of the function at a pivotal point and several nearby points 

(grid points). With the finite difference method, a differential equation is 

approximated by a set of linear equations. The method has been used in 

various engineering problems among which the calculation of sandwich 

beams and reinforced concrete analysis. 

Berner [ 1978], Linke [ 1978] and Vogel [ 1983] used a central finite 

difference technique, with second order accuracy, in the analysis of sandwich 

beams. Not the differential equation, describing the deflection w of the 

beam, but instead a differential equation describing the Steiner part of the 

bending moment M (see figure 2.1), was approximated by a set of linear s 
equations, with reference to Bergfelder [ 1974]. This approach is more 

recently described in a review on German research by Jungbluth [ 1986]. 

Blaauwendraad and de Groot [ 1983] solved the governing differential 

equation for bending (Bernouilli's law), calculating the stiffness matrix of a 

reinforced concrete beam. They used the advantage of the finite difference 

equations in which the stiffness can vary along the axis of the beam. 

The finite difference method will be used solving the fourth order 

differential equation 2.15a defining the deformed shape of the sandwich 

beam. 

2.3.2 Deflection 

The beam is subdivided into a finite number of segments along the axis of 

the beam with constant spacing dx. The mesh and a schematic view of a 

linear elastic segment are given in Fig. 2.2. 
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w• = M. 
1
1B 

J= 
M == M. l 

J= 

with B = B + B + B + B 
1 ! c s 

boundary conditions 

Fig. 2.2 Mesh generation and boundary conditions of a simply supported 

beam. 

The derivatives of the deflection w in differential equation 2.15a (section 

2.2.6) at a certain point j, are approximated by the central finite 

difference expressions with first order accuracy: 

w' (wj+l - w. 
1
) I (2dx) [2.16a] 

J-
(dx2) w" (w. 1 - 2w. + w. 1) I [ 2.16b] 

J+ J j-
3 w''' (wj+2 - 2w. 

1 + 2w. 
1 

- w. 
2

) I (2dx ) (2.16c] j+ j- j- 4 
w'''' (w. 2 - 4w. 

1 + 6w. - 4w. 
1 + w. 

2
) I (dx ) [2.16d] 

J+ J+ J j- j-

After the finite difference expressions are substituted in equation [ 2.15a], 

the corresponding equation to the pivotal point j is 

I a 1 a2 a3 a2 a q 

with 

a1 

wj-2 

wj-1 
w. 

J 
wj+1 

wj+2 

b. 
J 

[2.17a] 

[2.17b] 

13 



4 (B dx 2 (B 1 + B2 +Be+ Bs) 
a2 + 

(B + B + R) K s c 
[2.17c] 

a3 
-6 (B 1 + B2) 2dx 2 

( B I + B2 + B c + B) 

K (B + B + R) 
s c 

[2.17d 1 

M. 
b. -dx4 

( (B + R) + J + B K 
s c 

[2.17e] 

Applying equation (2.17a] to the pivotal points 1, 2, 3, ....... , n-1,n 

results into a set of n linear equations. Notice that each equation contains 

five adjacent grid points. At each of the boundary points j=l and j=n, the 

applications of the central finite difference equations will involve two 

nonexistent values of the deflection w (see figure 2.2). Therefore, two 

additional equations are needed at each end to obtain a unique solution. 

These are supplied by the boundary conditions of the supports (see Fig. 

2.2). With the boundary conditions of a simply supported sandwich beam 

the following set of equations is obtained. 

0 0 1 0 0 

0 1 -2 1 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 
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0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

alj a2j a3j a2j a1j 

0 1 -2 1 0 

0 0 1 0 0 

w B 
w 

w_1 0 

"'O "f£,~ 
""1 b1 

"'2 b2 

"'3 b3 

"j-2 bj-2 

wj-1 bj-1 

"i bj 

wj+1 bj+1 .. b 
j+2 j+2 

"'n-2 bn-2 

"'n-1 bn-1 

wn bn 

"n+1 )4./B 
J=l 

"n+2 0 

[2.18] 



The stiffness terms al, a2 a,d a3 are provided with a suffix j, in view of 

physical nonlinearity to be described in chapter 3. 

The external moment distribution along the axis of the beam (M .) is 
ex,J 

calculated from the state of equilibrium of the simply supported beam. 

The centre-lines, the stiffness parameters B1, B
2

, Be, Bs, K and R are 

calculated from the material properties and the geometry of the faces and 

core. 

Notice that if a concentrated transverse load P is applied in segment j, P 

has to be distributed along the length L of a segment dx by qex,j = 
P ./dx. 

ex,J 

The deflections are calculated from this set of finite difference equations 

using Gauss with partial pivoting. 

2.3.3 Strains 

Shear strain 

The shear strain 1 . of the core is calculated from the coupled 
C,J 

[ 2.191 

differential equation [ 2.14b 1· After integration of this equation, the shear 

strain is a function of the third order derivative of the deflection, 1 . 
C,J 

f(w'"). The equation is approximated, applying the central finite difference 

expressions [ 2 .16c 1 by, 

(wj+l - 2wj+l + 2wj+l - 20wj_) + Tex,j 

2dx3 K 
[ 2.201 

Normal strain 

The normal strains E(z) in both facing and core are calculated from the 

displacement-strain relations [ 2.31 using equation [ 2.1 ], hence E(z) = 

f(u', 1', w"). 
c 

In the ordinary theory of bending (Bernouilli's law) there is no normal 

strain in the centre-line of the beam if only a transverse load is applied. 

Therefore u' equals zero. However, contrary to Bernouilli's law, the 

centre-line of a sandwich beam cross-section and the neutral-axis are not 

the same. From equations [ 2.101 it follows that with a nonsymmetric 

cross-section there is a strain unequal to zero in the centre-line of the 

sandwich beam although no normal load was applied: 
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u: rc * ( ci>: + w~ ) [2.2la] 
J J J 

with 
(EIAI (zpl-hl) -E2A2(hl+hc-zps "2)) 

[2.2lb] rc 
(ElAl+E2A2+EcAc) 

Notice that the second term of equation (2.1 0] is zero with reference to 

the centre-line (zp
5

) of the beam. With symmetric cross-sections rcj is 

zero. According to equation [2.21] the normal strain u' is a function of 

the first derivative of the shear strain and the second derivative of the 

deflection, u' f ( 1' , w"), by which the problem is reduced, solving 1' 
c c 

and w". 

The first order derivative of the shear deformation, 1' , is written as a c 
function of the fourth order derivative of the deflection, using the coupled 

differential equation [2.14b]. 

As a result of this analysis, the normal strains in the lower face, upper 

face and core are approximated from the deflection curve only, e(z) = 
f(w,~", w"); 

cl * I. 

with 1.=(1,2, or c) and 

(w. 
2

-4w. 
1
+6w.-4w. 

1
+w. 

2
) 

• j+ )+ J j- J-
dx4 

(w. 
1
-2w.+w. 

1
) 

J+ J J- [ 2.22] 

The bending stiffnesses B1 and B2 and the shear stiffness K are described 

in section 2.2.6., while rc is defined in equation [2.2lb]. 

The first order derivative of the shear deformation "/' could be approximated by using the concerning finite 

difference expression [2.16a]. However, the slope of th'e shear deformation distribution along the axis of the 

beam shows a strong curvature near the supports if a uniform load is applied, caused by the redistribution 

of shear load between the core anti the faces. A proper approximation demands for many segments in this 

areal causing an increase of computer time. 
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2.3.4. Stresses 

The shear stress in the core and the normal stress distribution in both 

facing and core are calculated from the strains using the stress-strain 

relation [2.4] and [2.5]. 

2.4. Flow-chart 

The flow-chart of the finite difference analysis is given in Fig. 2.3. 

INPUT: GEOMETRY 
MATERIAL PROPERTIES 

TERMS Blj• B2j• Bcj• Bsj• Rj AND THE 
SHEAR STIFFNESS Kj 

ASSEMBLE THE SET OF LINEAR 
FINITE DIFFERENCE EQUATIONS 

01, 02• 0 0 AND THE SHEAR STRESS 
IN THE CORE 0 c 

Fig. 2.3. The flow-chart of the finite difference analysis. 
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2.5 Numerical examples 

2.5.1 Comparison between the extended differential equations, the common 

theory of bending and the common sandwich theory 

To compare the results of the equations [ 2.15a] and [ 2.15b] presented in 

section 2.2. 7, with the ordinary sandwich theory in which the bending 

stiffness of the core is left out of account (a.o. Stamm et al, 1974) and 

the ordinary theory of bending in which the shear deformation is neglected 

(Bernouilli' s law), the sandwich beam having the geometry and material 

properties shown in Fig. 2.4 is considered. A symmetric cross-section is 

chosen in order to facilitate comparison with the theory described by 

Allen (1966). The structure is simply supported and subjected to an 

uniformly distributed load. 

Assumptions: 

-~1 h2 
(i) h h "" 25 mm 

1 2 

h 50 mm 
c 

i I (ii) E E "" 30.000 
h q 1 2 

c E is variable 

--I 
c 

LS :6-(iii) G E I 2.5 

1 hl 
I L I c c 

r--···· I (iv) L "" 2400 mm 

Fig. 2.4 Geometry and type of load of the sandwich beam. 

N/mm 

Fig. 2.5. shows the deflections at midspan for various core stiffness to 

face stiffness ratios E/Et= 1,2, calculated by means of three different 

methods. The deflections calculated with the ordinary theory of bending 

(Bernouilli's law) are set up as 100%. The deflections calculated by both 

the ordinary sandwich theory and the sandwich theory presented in this 

chapter are compared with the deflections obtained from Bernouilli's law 

(G = oo) by means of the factor k. The factor k is the ratio between the 

deflection calculated by one out of the two sandwich theories mentioned 

and the deflection calculated by the ordinary theory of bending: 

k 
w (sandwich theory) • 100% [ 2.23] w (ordinary theory of bending 

18 



10000 ! 

100 

~ 
"' ~ 
~ ~ v~ 

1000 

10 .J 
0.0000 1 0.000 1 0.00 1 0.01 0.1 1 10 100 

STIFFNESS RATIO E/Eg (b=l,2) 

Fig. 2.5 Comparison between the deflections at midspan calculated by the 

following methods: 

A ) ordinary sandwich theory (Stamm et al, 1974) 

0 ) ordinary theory of bending (Bernouilli) 

+ ) the equations presented in this chapter 

It is shown that in case of a weak core (E/Et.= 1,2 < 0,1) the deflections 

calculated by means of the ordinary sandwich theories and the extended 

theory are in close agreement. The deflections calculated by means of the 

ordinary theory of bending (G = oo) are relatively low since the shear 
c 

deformation of the core is left out of account. 

In case of a relatively stiff core (E/Et.= 1,2 > 0.1), the deflections 

calculated by means of the equations presented in this chapter are similar 

to the deflections calculated by the ordinary theory of bending (Bernouilli's 

law) since the shear deformation is of minor importance. The deflections 

calculated by means of the ordinary sandwich theory are overestimated in 

case E/Et.= 1,2 > 0.1 since the bending stiffness of the core is neglected. 
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2.5.2 Convergence of the numerical solution procedure 

In the following example, the convergence of the numerical solution 

procedure is considered with respect to the number of segments along the 

axis of the beam. Linear elastic properties for both faces and core are 

assumed. The deflection and the ultimate normal strain in the faces at 

midspan, and the shear stress in the core are numerically calculated and 

compared with well-known analytical solutions of [Allen, 1969 and Starn m 

et al, 1974]. The parameters involved are the bending stiffness of the 

faces, the stiffness of the core and the type of load. The calculations are 

performed on slender beams with symmetrical cross-sections. Details are 

given in table 2.1. 

The Figs. 2.6 and 2. 7 show both the convergence of the deflection and 

the normal strains at midspan for various types of geometry, stiffnesses of 

the core and types of loading. The deflections and strains calculated with 

well-known analytical solutions are set up as 100%. 

From this example it follows that: 

(i) the numerical solution converges fast with an increasing number 

of segments along the I eng th of the beam; 

(ii) the accuracy of the numerical solution already satisfies within 

engineering accuracy for a small number of about 10 segments; 

(iii) the deflection is overestimated while the normal strains are 

underestimated. 
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Table 2.1 

E 
Bending stiffness Stiffness of the (Gc 

c core = 2.5 ) 
of the faces weak core stiff core 

E E E E 
l z 

3125 
l z 

-- = --= -- = --= 1 
E E E E 

c c c c 

Thick faces 

I I I l 
----"1 

fh2 
+ ..6 Z:.l.. A LS 6 ' 

l...aT 2· 1 •, ~ * 
l~~t 
l- _, j. h1 0 LS c. + LS c. --- ~ 

L L ... ... ... .... 
h h = h 

l 2 c 

Thin faces 

.... I I I l 
Fj~ -h2 LS 6 'i7 LS 6 

1 a 1 2 I 

~ 
* 

T-· :1- he 

' al i 
t:::=:~ -- h 1 • LS c.. 0 LS c.. 

I L L 
h = h = To he 

... .... ... .... 
1 2 
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Nlltv-BER OF SEGMENTS 

Fig. 2.6 Convergence of the deflection at midspan. The various symbols 

refer to the different types of geometry, material properties and 

Z type of loading given in table 2.1. 
0 
!= 
:3 100 
0 
til 

....l 
<t 
u 90 
!= 
>-
....1 
<t z 80 
<t 

~ 

70 
z 
< 
~ 
til 60 
....l 

~ 
f3 50 
z 0 

- -
7 --

r 
I 
I 

I I 

I 
I 

5 10 

NUvBER OF SEGMENTS 

-

20 25 

Fig. 2.7 Convergence of the ultimate normal strain at midspan. The 

various symbols refer to the different types of geometry, material 

properties and type of loading given in table 2.1. 
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2.6 Conclusion 

The structural behaviour of sandwich beams is described by a fourth order 

differential equation in the deflection of the beam (w) and a second order 

differential equation in the shear deformation of the core ('yc). The shear 

stiffness as well as the bending stiffness of the core are taken into 

account. It is demonstrated in an example (section 2.5.1.) that in case of 

various stiffnesses of the core, the theory of plain cross-sections 

(Bernouilli's law) fades into the ordinary theory of sandwich beams (E 
c 

0) with the generalized equations presented in this chapter. 

The governing differential equation in the deflection w is approximated by 

a set of linear equations by means of the finite difference method. The 

deflections are calculated using Gauss with partial pivoting. 

The second example (section 2.5.2.) shows that the finite difference 

analysis presented: 

is suitable for a large range of both geometrical and physical input 

data, without numerical problems; 

converges fast. 
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3. INHOMOGENEITY AND PHYSICAL NONLINEARITY 

3.1. Introduction 

The deflection and the stress distribution in each cross-section for a given 

load depend on the flexural stiffness and shear stiffness of the sandwich 

beam. The stiffnesses are described in the finite difference analysis 

(chapter 2) based on homogeneous layers and linear elastic material 

properties. Since these assumptions pass by the typical properties of 

reinforced concrete and foamed concrete, the finite difference analysis is 

extended in this chapter with: 

(i) inhomogeneity due to the reinforcement of the faces; 

(ii) material nonlinearity, i.e. nonlinear stress-strain relationships, 

including a nonlinear T-'1 relationship; 

(iii) structural nonlinearity due to cracking of the reinforced concrete 

faces loaded in tension. 

3.2. Inhomogeneity and material nonlinearity 

3.2.1. Inhomogeneity. 

The first limitation of the basic differential equations for deflection and 

shear is the assumed homogeneity of each single layer. However, the 

presence of reinforcement in the concrete facing is simply taken into 

account. The strain in the reinforcement is calculated from the assumption 

of equal strains in the reinforcement and concrete at the same distance 

from the centre-line. The stresses are calculated from the stress-strain 

relationships concerned. 

3.2.2. Material nonlinearity 

The second limitation of the basic differential equations is concerned with 

the assumed material linearity. 

If linear elastic material properties are adopted, the flexural and shear 

stiffnesses are similar in each segment along the span of the sandwich 

beam. With nonlinear stress-strain relationships, the moduli of elasticity 

depend on the state of stress which in turn depends on the moduli of 

elasticity. 
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A solution is found by means of an iterative algorithm, based on the 

secant modulus of elasticity. 

The numerical algorithm is initiated with assumed Young's moduli for each 

layer and a shear modulus for the core. In order to facilitate a 

computerized calculation, faces and core are subdivided into a number of 

fibres as shown in Fig. 3 .1. 

Based on assumed moduli of elasticity, the strains and stresses are 

calculated in the mid-points of each fibre, as described in section 2.3.3 

and 2.3.4. The first assumption of the moduli of elasticity is based on the 

stiffness at a ~ 0. The stiffnesses are overestimated and therefore the 

strains are underestimated, just as the stresses calculated from the actual 

stress-strain relationships. 

The criterion set for the solution for deflections and stresses, is a 

sufficient degree of equilibrium between the internal stresses and the 

external normal load, flexural moment and shear load in each segment. 

The equations of equilibrium for segment j are: 

m 
L-1,2 (I:(a o·. *A e·> +(a t• * Ar,l))+ 

.c;; i~ 
1 

co, .. ,t,J co, ,1 r, ,J 

m 
I: (a . . * A .) 
j.,.l C,l,J C,l 

m 

N~" 
J 

0 

L_1,2 (I: (a 1 • . * A •. * z.) + (a •. * A • * z.)) + 
<F i= 1 co,-,t,J co, .. ,I J r ,<-,J r •" J 

m 
I: (a .. * A . * z.) 
i= l C,I,J C,l J 

m 

Lt=l,2,c (i~l (rt,i,j * At)J 

M~" 
J 

T~x 
J 

with m is the total number of fibres in each layer (t). 
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If there is no satisfying degree of equilibrium, the finite difference 

analysis is repeated with an improved approximation of the stiffnesses 

calculated from the quotient between the stress and strain (secant moduli 

of elasticity) in each fibre, 

E .. = a .. f E •• 
sec ,J,l J,l J,t 

G . 
sec,J 

[ 3.2a] 

[3.2b] 

The stiffness definitions given in section 2.2.6. are substituted by the 

following nonlinear and inhomogeneous stiffnesses, 

m 
B. . L ( (E • . . * I •. ) + (E • . * I .) ) 

<-,J i= 1 sec_co, .. ,J,l co, .. ,t sec_r ... ,J r ... 

(i. = I or 2) 

m 
B . L (E .. * I I.) 

c,J i=l sec,C,J,t c,..,1 

m 
B . = L: (L: (E • . . * A t . * a 2t. .) + 

S,J b=l ,2 i=l sec_co, .. ,J,l co, ,1 ,J 

R. 
J 

K. 
J 

m 

L: 
i=l 

(E •. seC_!,<-,J 

m 

* A r,t. 

L: (E .. * A . * a 2 
.) i= 1 sec,c,J,t c ,1 c,J 

((E 1 .. * A . * a 1 .) * (zp 1,J.-h 1) + sec _co, ,J,1 co, l ,t ,J 

(E 
2 

.. * A 
2 . * a

2 .) * (h
1

+h -zp .-a
2 

.)) + 
sec_co, ,J,1 co, ,1 ,J c S,J ,J 

(E . • A • a .) • zp
1 

.-h
1
) + 

sec_!, I ,J r, l I ,J ,J 

(E 2 . • A * a
2 

.) * (h
1
+h -zp .-a

2 
.) 

sec_r, ,J r ,2 ,J c S,J ,J 

(G f .) * b * (a 1 . + a2 .) 
sec_ c,C,J ,J ,J 
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A schema tic view of the physical nonlinear iterative algoritm is given in 

Fig. 3. l. 

centre-line 

stress distribution 

I 
I 

I • • --
I 

stress 

I 
I 

I 

--• • I 

strain distribution 

-strain .. 
dx 

(A) first estimation 

(B) final estimation 

~---1 .:J-- fibre 

centre-line 

§-·-·-·-

segment j 

Fig. 3.1. Schematic view of the physical nonlinear iterative algorithm and 

the subdivision of each layer into a number of fibres. 
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3.2.3. General flow-chart of the numerical calculation of the short-term 

behaviour 

MATERIAL PROPERTIES 

LOAD 

TERMS Blj• B2j, Bej• Baj• Rj AND THE 

SHEAR STIFFNESS Kj --------J 
ASSEMBLE THE SET OF LINEAR 
FINITE DIFFERENCE EQUATIONS 

ii 

CALCULATE THE SECANT 
MODULI OF ELASTICITY 

_.::::>-------tlltAND THE 
SECANT SHEAR MODULUS 
OF THE CORE 

YES 

The failure modes are described in chapter 5. 
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3.3. Structural nonlinearity due to cracking of the reinforced concrete face 

loaded in tension 

3.3.1. General 

Cracking of reinforced concrete is a local phenomenon. If reinforced 

concrete is loaded in tension, the total load in the cross-section of the 

crack is resisted by the reinforcement only. 

The bar undergoes an additional elongation due to the increase of tensile 

strain along the transfer lengths on both sides of the crack. The transfer 

length is defined as that part of the reinforced beam at which the state 

of stress is affected by the initiation of the crack. 

Since the adopted finite difference analysis of sandwich beams is not 

suitable to take discrete cracks into account, resource is made to an 

approximation by means of a smeared-out model. In the smeared-out 

model, the crack is smeared out along the segmentary length dx between 

two pivotal points, with or without taking an average contribution of the 

concrete between the cracks into account. 

In this section the results and the accuracy of the smeared-out model are 

investigated in view of: 

(i) the number of segments along the !eng th of the beam; 

(ii) the constant segmentary length dx along the length of the beam; 

(iii) the necessity to take the stiffness contribution of the concrete 

between the cracks into account. 

3.3.2. Smeared-out crack analysis 

In the smeared-out model, the reinforced concrete bar (sandwich face) is 

subdivided into an arbitrary number of segments with a constant 

segmentary size dx along the length of the bar. The principle of the 

smeared-out crack analysis is shown in Fig. 3.2. in case of a parabolically 

distributed tensile load along the length. The average stiffness contribution 

of the concrete in the vicinity of the cracks is left out of account. 
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The elongation of the bar is calculated from, 

n N. • dx 

fl.Lsmeared-out L: . I E .A + E .A 
J"' CO,J CO r,J r 

[ 3.4] 

Crack 

.-1 L cracked reinforced 
1~--------------L---~--~----------------Jl concrete bar 

.q- <J-- --!> ---!> -l> 

1
~~:'"·~~:·• dimibotion 

j n 

smeared-out crack 

II I I I I I I I t 
E A 

co co 

Fig. 3.2. Principle of the smeared-out crack analysis 

In case a sandwich beam is loaded in pure bending, the reinforced 

concrete face is loaded with a constant tensile force along the length of 

the beam. If the stochastic variations of the tensile strength are left out 

of account, all cracks arise at the same tensile load. The results obtained 

from a smeared-out analysis are therefore not affected by either the 

number of segments nor the assumption of a constant segmentary size. 

The stiffness of the cracked face and therefore the deflection is better 

approximated if the tension stiffening, i.e. the stiffness contribution of the 

concrete between the cracks, is taken into account. The tension stiffening 

is commonly taken into account by means of a fictitious stress-strain 

relationship of concrete. This relationship is calculated from either an 

experimental load-elongation relationship or from a numerically calculated 

load-elongation relationship in which discrete cracks are taken into account. 

A numerical calculation is performed in the first example at section 3.4.1. 
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Generally, a beam is loaded with a uniformly distributed load or with a 

central point load. The tensile force in the reinforced face of the 

sandwich beam is nonuniformly distributed along the length. Roughly, the 

tensile force follows the moment distribution. The numerical result depends 

on the number of segments. Generally •, the calculated elongation 

oscillates around an average value dependent on the number of segments. 

The amplitude decreases if a larger number of segments along the length 

is used. Therefore, a sufficiently large number of segments (pivotal points) 

is recommended. It is wondered if in this case the tension stiffening is a 

parameter of minor importance. An example confirming this statement is 

given in section 3.4.2. 

In order to gain insight into the numerical accuracy with respect to the 

assumption of a constant segmentary size and the influence of the 

stiffness contribution of concrete between the cracks, the results are to 

be compared with the results of a discrete crack model. Therefore, a 

generalized discrete crack model is presented in the next section. In 

section 3.4 the results of the smeared-out and discrete crack models are 

compared by means of a numerical example. 

3.3.3. Discrete crack analysis 

Although cracking of concrete is a complex and random phenomenon, 

extensive research performed by various research workers has led to a 

better understanding of the mechanism behind crack spacing, crack width 

and the stiffness of a cracked bar loaded in tension. Besides empirical 

equations described by Beeby [ 1979], Schiess! [ 1980], Hartl [ 1983], 

Riskalla [ 1984] and Schiess! [ 1986] theoretical approaches are available 

and the correctness has been proved experimentally within engineering 

accuracy. There is a common consensus that the bond between 

reinforcement and concrete has a pronounced influence on cracking induced 

by direct tension. As a result, the available theoretical works are based 

on the so-called bond theory. Two distinguished approaches are adopted. 

*) In case the crack load is reached in just a single cross-section the calculated elongation constantly 

decreases with an increasing number of segments. 
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The works of Tassios ( 1981 ] , Fehling [ 1983], Noakowski [ 1985], 

Bruggeling [1987] and Lee et al [1987] are based on a bond versus slip 

relationship while Somayaji at al [ 1979] and Shungsheng Yang et al 

( 1988] assumed a bond stress distribution in the interface between 

concrete and reinforcement. 

However, in all the studies the reinforced bar is subjected to a constant 

load. In the next sections, a generalized discrete crack model is described 

in which the reinforced bar is subjected to a nonuniformly distributed 

tensile load. 

The following assumptions are adopted: 

(i) the reinforced concrete bar is loaded in tension. Bending is not 

cons ide red; 

(ii) statistical variance of the material properties is left out of account; 

(iii) uniform cross-sections along the length of the bar; 

(iv) linear elastic material properties; this means that the analysis is 

only valid for stresses in the steel below the a0 ,2 and/or the yield 

stress. 

If an uncracked reinforced concrete bar is loaded with a nonuniformly 

distributed tensile force, the tensile force in each cross-section is resisted 

by both concrete and reinforcement (see figure 3.3). 

From the basic equation of equilibrium, 

N(x) = N (x) + N (x) 
co r 

[ 3.5] 

and the assumption of plane cross-sections before cracking, the normal 

load distribution between the reinforcement and concrete is given by, 

N r,bc 

N = co,bc l 

A 
with w = _r_ 

A 
co 

N(x) 
+ ( 1/nw) 

N(x) 
+ nw 

and n = 

(be 

E 
r 

E 
co 

[ 3.6a] 

before cracking) [3.6b] 
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The tensile load at which the ultimate concrete tensile strain capacity in 

a cross-section is exceeded is given by 

Ncrack f t * A (l+nw) co, m co [ 3. 7] 

Load-elongation relationship at the first crack 

If, for matters of simplicity, a symmetric parabolic tensile force 

distribution is considered, the first crack will arise at midspan. Within the 

crack the total tensile load N k is resisted by the reinforcement only crac 
as shown in Fig. 3.3. The local tensile force in the reinforcement is 

transferred to the concrete on both sides of the crack along the transfer 

length (Lt) by means of the bond. The elongation increment of the 

reinforced bar is caused by the load increment of the reinforcement given 

by the area contained between the markers A, B and C (see Fig. 3.3). 

9..._ ____ !-L : L ~-----'F 
1 tT t I 

~ .. X ''" "'L'" .. ... 
reinforced concrete 
bar 

Fig. 3.3. Distribution of the tensile force between concrete and 

reinforcement just before and after the first crack. 

The tensile force distribution along the transfer length is calculated from 

a bond versus slip relationship. In order to facilitate a numerical 

calculation, the transfer length is divided into a number (m) of segments 

with a sufficiently small length ax, as shown in Fig. 3.4. 

Consider a single segment from the transfer zone in detail. The normal 

load in the reinforcement increases from cross-section i to i+ l because of 

the shear transfer due to bond between concrete and reinforcement. 
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6.6-N . I r,ac,1+ ,ri 2:u * 6-x * 6.-r. 
1 

6.6-N . I = -6.6-N . (ac co,ac,I+ ,ri r,ac,1,+l,ri 
after cracking) 

and the increases of external load between the two cross-sections 

6.6-N . I r ,ac,1+ ,a 

6.6-N . I = 6.6.N1.+ l - 6.6-N . co,ac,1+ ,a r,ac,1+ I ,a 

€ • 

with a ......£.Q.,! 
€ • 
r ,1 

[ 3.8a] 

[ 3. 8b] 

[ 3.8c l 

[ 3.8d] 

[ 3.8e] 

In a crack (a=O), the increase of tensile load is taken by the 

reinforcement only, while at the end of the transfer length the tensile 

load increment is again distributed according to the equations [ 3.6a] and 

[3.6b]. 

The total tensile load in the reinforcement and the concrete of cross­

section i+ l are respectively given by 

i+ l 
N . I N b . o+ E (6.6-N . I + 6.6-N . l ) r,ac,1+ r, c,1= 

1 
r,ac,1+ ,ri r,ac,1+ ,a [ 3.9a] 

N . N. 1 - N . l co,ac,t+ 1+ r ,ac,t+ [ 3.9b] 

The computerized algorithm begins at the end of an assumed transfer 

length at which the relative displacement between the reinforcement and 

concrete 6-ui=O = 0. The bond stress between i=O and i=l is initiated by a 

typical choice of the bond versus slip relationship (Rehm, [ 1961] and 

Martin [ 1973 ]), 

6.-r. = (a + bv'6.u.) * f' 
1 1 co,cm [3.10] 

This relationship is intensionally chosen in view of the initiation of the 

algorithm although physically meaningless at i=O (6-r. af' f !). The 
1 co, m 

equation given in [ 3.10] is the best-fitting equation of the actual bond 

versus slip rei a tionship in which the slip is small up to a stress level 6.-r; 

the increase of tensile force between two succeeding cross-sections and 

the total tensile forces in both concrete and reinforcement are calculated 

from the equations 3.8 and 3.9, respectively. 
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N. 
1=m 

m *Ax 

r-----, r---, 
I I 
I I 

I I 
I I 

1 AAN . t r,ac,J+ 1 
AA . I r,ac,t+ ,Ti 

I 
I AAN . ...._____... ..... 

I 
I 
I I 

I 
L ____ l 

total load increment 

in the reinforcement 

T. I 
1 I 

I I 
L- __ J 

load increment 

due to shear 

transfer 

Fig. 3.4. Transfer of tensile load 

+ 
I 
I 

: I 
L ___ J 

load increment 

due to the 

increase of 

excternal load 

At the end of a segment Ax the relative displacement increment from 

to i+l between reinforcement and concrete is given by, 

AAu . I - AAu . I r ,1+ CO,l+ 
[3.llaJ 

with 

36 

r,ac,1 



Llllu . 
1 r ,1+ 

N .*Llx 
r,ac,t 
EA 

r r 
+ 

N .*Llx 
-_c:::.O:::.•~::a:-=c'-'-'=-1 ,---Llllu . 1 = E A 

CO,l+ CO CO 

0,5* LlllNr ac i+ 1 • Llx 

EA 
r r 

0,5* LlllN . 
1
• Llx 

+ -------=~c~o~,a~c~·=-1+~---
E A 

co co 

[3.llb] 

[3.1lc] 

as shown in Fig. 3.5. The total relative displacement between concrete and 

reinforcement in cross-section i+l is thereby 

'-~····~-+N . I .,... r ,ac,1+ 

. d>---+--t-+----r N . t • -ti~--+--...,..---+-T-..J..-T--t---,--r_._ac_,_1 . 

N b . r, c,1 

LlN . 
r ,1 

Llu . 1 r ,1+ 
! 

N(x) 

Nr,bc,i+l_ 

Nco,bc 

LlN . l r ,1+ 

N co,ac 

Fig. 3.5. Definitions of the load increments 

37 

[3.lld] 



The calculation is repeated until the concrete tensile load equals zero and 

all the tensile load is thereby transferred to the reinforcement. The 

transfer length is given as 

L = m * Ll.x 
t 

(3.12] 

However, the assumed and calculated transfer length will generally not 

coincide. Therefore an iterative algorithm is performed until the concrete 

tensile load equals zero at the position of the crack. If this condition has 

been met, the elongation of the bar at the given load is calculated from 

the normal load in the reinforcement, by 

L 

f N * dx 
Ll.L discrete ""E:--"-A-'---+___,.E,....=:..;;A_ 

0 r r co co 

2m Ll.N . *dx (Ll.N . 1-Ll.N . )dx 
+ L (< ~lA )+( {.~A rl )) 

i+ I r r r r 
[3.13a] 

with 

Ll.N . = N . - N b . (see equation 3.6 and equation 3.9) r,1 r,ac,1 r, c,1 [3.13b] 

The first term of equation [ 3.13a J gives the elongation just before the 

crack and the second term the increment caused by the initiation of the 

crack. 

Load-elongation relationship with forthcoming cracks 

If a reinforced concrete bar is loaded with a constant direct tensile force, 

the distance between two succeeding cracks is somewhere between one and 

two times the transfer length. The crack spacing is determined by the 

stochastical properties of concrete only. Generally, a crack spacing of 

1,5*Lt is assumed. However, if the tensile load is nonuniformly distributed, 

the position of the cracks is also affected by the external load 

distribution. Forthcoming cracks are located at the end of the transfer 

zone Lt of the former cracks, since the ultimate concrete tensile strain is 

first reached at this point (see Fig. 3.3). Since the external load is not 

critical at the end of the transfer length of the former crack, the next 

crack only arises with an increase of external load Ll.N(x). The transfer 

length of the former cracks, and thereby the location of the next crack, 

changes with an increase of external tensile force. 
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The tensile force is increased until the tensile load at the end of the 

transfer zone reaches the crack load N k (equation 3. 7). crac 

N(x) 

F 
reinforced concrete 
bar 

Lt,l transfer length first crack 

L 
Lt 2 transfer length second crack , 

Fig. 3.6. Forthcoming cracks 

The transfer of load from the concrete to the reinforcement in a 

transferzone, is reflected at both sides of a crack. The transfer lengths of 

two succeeding cracks overlap, as shown in Fig. 3.6. It is generally 

assumed that the transfer zones will not influence each other. The tensile 

load distribution and the elongation in encountered transfer zones is 

therefore calculated from the principle of superposition. Discrete crack 

analysis based on the assumption of a constant tensile load, has already 

shown that the tension stiffening is only of (slight) importance in the 

engineering practice in case a low percentage of reinforcement is adopted 

(large crack spacing). In case of, for instance, a parabolically distributed 

tensile force, the crack spacing is substancially smaller (Lt instead of 1.5 

Lt) since the position of the cracks is also affected by the tensile force 

distribution and therefore not only by the stochastical variance in the 

tensile strength of concrete. Therefore, it is likely that the stiffness of 

the cracked concrete may be neglected. This is illustrated in the second 

example of section 3.4. 

The flow charts of the discrete crack analyses is given in section 3.3.4. 
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3.3.4. Flow chart of the discrete crack analysis 

I= I+1 

NO 

MATERIAL PROPERTIES 

ASSUME THE LENGTH OF THE 
TRANSFER ZONE OF CRACK NO. C 
AND INITIATE THE CALCULATION 
FROM EQUATION [3.9] 

YES 

DISTRIBUTION IN THE CROSS-SECTION 
I+1 FROM EQUATION [3.7] AND 

[3.8] RESPECTIVELY 

NO 

YES 
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3.4. Numerical examples 

3.4.1. The stiffness cf a reinforced concrete bar subjected to a constant 

tensile load. 

A reinforced concrete bar is subjected to a constant tensile load along the 

length. The bond versus slip relationship is taken as 

D.r = (0.07 + 0.32 ~ ) • f' which is the best-fit mean value of co,cm 
commonly used equations in case of centre bars described by Schiess! 

[ 1976) and Martin [ 1973} (see also Noakowski [ 1978} ), respectively. 

Reinforced concrete bar 

~MI----------~~ 
The material properties are: 

(i) Eco = 32500 (N/mm 2
) 

(ii) E = 210 000 (N/mm 2) 

ER 
l 'A = 13083 (mm 2) 

co 
. A = 78.5 (mm 2) 

r 

r 
(iii) f t 1.5 (N/mm2) co, m 
(iv) f' = 25 (N/mm 2

) co,cm 
(v) f t = 800 (N/mm2) r, m 

Fig. 3. 7 Reinforced concrete bar subjected to a constant tensile load along 

the I eng th. 

The load-elongation relationship is shown in Fig. 3.8. 
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cracked 

/ ~ concrete 

\ ~ tension 
stiffening 

§v 
20 

/ ~····-~ reinforcement only 
/ I 10 v 0 

0 2 4 6 B 

ELONGATION [mm) 

I 
10 

Fig. 3.8 Load elongation relationship calculated by means of a discrete 

crack model in case of a constant tensile load distribution. 
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The fictitious stress-strain relationship for concrete calculated from the 

load-elongation relationship, is shown in Fig. 3.9. With this r:N relationship 

an average concrete stiffness is taken into account by a smeared-out 

model for cracked concrete. 

;;-' 
e 
e 
' z 

"' "' ~ 
~ 
!--

"' 

2.00 

~ oo<ool 'l"M"olo "lo!IOMhlo -
1:50 

1.00 

0.50 

0.00 
0.00 

'\ "'=- fi~titious stress-strain 

0.04 0.08 0.12 

STRAIN [-} 

relationship 

0.16 0.20 

(E-2) 

Fig. 3.9. Fictitious stress-strain relationship for concrete in case of a 

constant tensile load. 

3.4.2. The stiffness of a reinforced concrete bar subjected to a sinusoidally 

distributed tensile load. 

The same bar as described in the previous example (section 3.4. 1.) is 

subjected to a sinusoidally distributed tensile load along the length. 

~t--.----~ 
sinusoidally distributed tensile force 

t1L.. _______ _Jp ~ 
... X 

reinforced concrete bar 
L 2400 

Fig. 3.10 Reinforced concrete bar subjected to a sinusoidally tensile load. 
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The load-elongation relationship calculated by the discrete crack model 

(section 3.3.3.) is shown in Fig. 3.11. 

z .:.: 

0 
< 
0 
...l 

I-ll 
...l -Vl z 
I-ll 
..... 

25 

I 
discrete crack no. 

20 

15 ,_2 - __ ,.... 

10 

5 

0 
0.00 

-

0.50 

v 
~ 

5 
ci l 

1.00 

J 
/ 

'*" 3 1 

I I I ! 
4 2 l 

1.50 

ELONGATION [mm] 

3 5 
j l l l t"-
2 4 

2.00 2.50 

Fig. 3.11. Load-elongation relationship calculated by the discrete crack 

model. The elongations are calculated immediately after the 

initiation of a crack. 

The elongations, calculated after the initiation of each crack, are 

compared with the numerical result from the smeared-out model for 

various numbers of segments. (= number of pivotal points n in Fig. 2.2) In 

view of the smeared-out model two different calculations are performed. 

In the first calculation, denoted by the symbol (+) the stiffness 

contribution between the cracks is neglected. In the second calculation, 

denoted by the symbol (A), the tension stiffening is taken into account by 

means of the fictitious stress-strain relationships calculated from the bars 

with a constant tensile force, as shown in the previous example. 
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+ smeared-out analysis 

(without tension stiffening) 

t:. smeared-out analysis 

(with tension stiffening 

calculated from the model 

based on a constant tensile 

load, by means of a 

fictitious stress-strain 

relationship) 

--- discrete analysis 

Fig. 3.12. Elongations calculated by the smeared-out analysis of various 

tensile forces with respect to various numbers of segments. 

Comparison with the results from the discrete analysis. 
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3.5. Conclusions 

The finite difference analysis of sandwich beams is supported by a physical 

nonlinear algorithm, taking into account the inhomogeneity of the layers 

due to the reinforcement. 

The material nonlinearity of the faces and the core is calculated by 

means of an iteration by successive substitution, based on the secant 

moduli of elasticity. An onlinear r-1 relationship is included. 

Cracking of the reinforced concrete face loaded in tension is a major 

source of physical nonlinearity. Since the finite difference analysis, 

described in chapter 2, is not suitable to take discrete cracks into 

account, a smeared-out concept has been used. The numerical results of a 

smeared-out analysis depend on the number of pivotal points (segments) in 

case of a uniformly distributed load or a central point load acting on the 

beam. Generally, the numerical solution converges oscilating to a mean 

value with an increasing number of segments. In order to avoid substantial 

casual failures, a sufficient large number of pivotal points (in the order of 

magnitude n ,. L/h) is recommended. 

The application of the smeared-out concept is supported by a separated 

discrete crack analysis considering a reinforced concrete bar (the faces of 

the sandwich beam). 

Since the existing models are concerned with a constant tensile load along 

the I eng th, a generalized discrete crack model is described in this chapter 

to take a nonuniformly distributed tensile force into account. 

The tension stiffening is usually calculated from the assumption of a 

constant tensile load distribution along the length, i.e. pure bending or 

approximately a four point bending load acting on a beam. The stiffness 

contribution of the cracked concrete is only of any importance in case of 

a low percentage of reinforcement. 

In case of a parabolically distributed tensile load, i.e. approximately a 

uniformly distributed type of load acting on a beam, the tension stiffening 

is even in case of a low percentage of reinforcement of minor importance. 
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The reason for this is that the crack spacing is smaller since the position 

of the cracks is also affected by the distribution of the tensile force. 

Application of the fictitious stress-strain relationships, calculated from 

models based on a constant tensile load along the length, therefore results 

in a substantial overestimation of the stiffness of the cracked concrete 

race. 

In case of stiffness analysis based on the smeared-out model with a 

constant segmentary size, the stiffness of the cracked concrete is of 

minor importance for the engineering practice and therefore can be 

neglected. 
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CHAPTER 4. NONLINEARITY DUE TO CREEP AND SHRINKAGE 

4.1. Introduction 

When concrete is subjected to load, its response is both instantaneous and 

time-dependent. The deformation of a specimen gradually increases with 

time due to creep under sustained load and by shrinkage. The time­

dependent strains of concrete cause increase of deflection and 

redistribution of stresses at service load in simply supported sandwich 

beams composed of reinforced concrete facing and a foamed concrete 

core. In addition, the redistribution of stresses may cause cracks which in 

turn could lead to a loss of serviceability or durability failures. In order 

to predict these effects two basic prerequisites are necessary (Gilbert, 

1988 1: 

(i) Reliable data for the creep and shrinkage characteristics 

(ii) Theoretical procedures for the inclusion of the time effects in 

structural elements. 

The volume of literature devoted to the magnitude of creep and shrinkage 

strains is so vast that it is not possible to present an overview in this 

thesis. A detailed description of the time-dependent behaviour of concrete 

and the factors which affect them is given in the books by Neville 

( 1970) and Neville et al. ( 1983 1. In this chapter, references are only 

made to recent textbooks by Gilbert [ 1988), Sm&rda et al. [ 1988) and 

Rusch e t al. ( 1983 1. Contrary to concrete, very little is known about the 

long-term properties of foamed concrete. 

In view of the effects of creep and shrinkage a distinction is made 

between reinforced concrete structures and sandwich elements. 

A number of techniques are available for the time-dependent analysis of 

concrete structures, among which analytical and numerical methods. Each 

has its own simplifying assumptions, advantages and disadvantages. An 

overview of some well-known methods is given in table 4.1. The suitability 

of the models depends on the problem considered. The factors which most 

complicate any time-dependent analysis are the interdependences of 

moisture conditions, creep strain, stress history and aging properties of 

concrete. The magnitude of creep strain at a given time in a reinforced 

concrete structure depends on the previous stress history, the age of the 

concrete and the moisture content. 
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However, the stress history in turn depends on the development of creep 

and shrinkage strains. 

By far the most general method is the step-by-step method, particularly 

suitable for computerization. In this method, the time is jivided into a 

number of intervals t.t. Since the analytical integral is substituted by a 

finite sum, the method is suitable to predict behaviour due to even very 

complicated stress histories using any creep and shrinkage curves. 

Table 4.1. Characteristics of various creep and shrinkage models 

Method Type of Stress Aging of Fysical Estimation 

analysis History concrete properties with increasing 

A T N LE NLE stress history 

EMM • • + 

AAEMM • • • • (o) 

RCM • • 0 • -
IDM • • • • -1+ 
SSM • • • 0 (o) 

EMM • Effective Modulus Method 

AAEMM "" Age-Adjusted Effective Modulus Method (Trost-Bazant) 

RCM .. Rate of Creep Method (Dischinger) 

IDM Improved Dischinger Method 

SSM = Step-by-Step Method 

LE = Linear Elastic NLE = Non Linear Elastic 

A = Analytical 

(o) = exactly 

T ,. Tabels N = Numerical 

(o) approximately 

Contrary to concrete structures only a few theoretical studies have been 

found in the literature predicting the long-term behaviour of sandwich 

beams. By far the most simple approximation is described by Hartsock 

[ 1969]. The creep of the core loaded in shear is described by means of 

an effective shear modulus, analogous to Faber [I 927] with respect to 

Young • s modulus. However, this analysis is only valid in case of thin 

facing in which the stress in the core does not change due to creep since 

the cross-section is statically determined. 
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A solution for this problem was found by Wolfe! ( 1987]. In case of thin 

faces the same effective shear modulus was adopted. In case of bending 

stiff faces the method is extended similar to the age-adjusted-effective 

modulus method (see table 4.1.). Stamm et al. ( 1974] describes the creep 

of the core loaded in shear by means of a differential equation. 

Ackermann [ 1983] and Branti ( 1980] extended the equations of Stamm et 

al with creep of the facing due to normal load. Their application is 

restricted to sandwich beams with thin facing. 

The objective of this chapter is to describe a general method in which all 

of the following time-dependent strains are taken into account with 

allowance for both stress-history and aging properties: 

(i) Shrinkage of faces and core 

(ii) Creep of faces and core due to bending stresses 

(iii) Creep of the core due to shear stresses 

In view of the complexity and in order to link the approach with the 

finite difference method, the numerical step-by-step analysis has been 

adopted. 

The following assumptions have been adopted, 

(i) The short-term stress-strain relationships are constant with time 

(ii) Creep and shrinkage in cracked concrete and cracked foamed 

concrete are left out of account 

(iii) Shrinkage is constant over the depth of faces and core 

(iv) Nonlinear elastic material behaviour (a < 0,5f' ) co 

4.2. Principle of the relaxation model (RM) 

The principle and the relevant equations of the relaxation model ( Smerda, 

1988] are shown by means of a simple arrangement of a symmetrically 

reinforced column section under a constant sustained axial compressive 

load. The deformation of the reinforced column and the redistribution of 

internal stresses due to the gradual development of creep and shrinkage 

strains are examined. 
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r-1 
: I 

reinforcement 

I 
concrete 

(A) (B) (C) 

Fig. 4.1. Schematic view of an axially loaded column section 

The external compressive load Nex, fitted at t=t., is resisted by both 
1 

concrete (N ) and reinforcement (N ) as shown in Fig. 4.1-A. The co r 
instantaneous strain in both concrete and reinforcement is calculated from 

N 
t = E A + E A 

[ 4.1] 
sec,co co sec,r r 

with N 

The development of the creep and shrinkage strains with time is shown in 

Fig. 4.2. Creep due to normal load is described in terms of the creep 

coefficients ,PE, with 

t, ti 
,PE 

t,cr t=ti 
= E I E [ 4.2a] 

For an estimation of creep under variable load the principle of 

superposition is used, which means that the strains produced in concrete at 

any time t by a stress increment (positive or negative) applied at any 

time ti are independent of the effects of any stress applied either earlier 

or Ia ter than ti [McHenry, 1943]. 
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creep coefficient 

creep strain 

t. 
I 

I ---. 
I 
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time (t) 
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time (t) 
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concrete stress 

-
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!::.a I 
co 

t. 
1 

I::. a 
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co r-

I::. a 
1 ,-- i 

co load increment 

t-------1------- load decrement 

.... 
time (t) 

Fig. 4.2. The principle of superposition; the development of creep and 

shrinkage strains with time. For matters of simplicity equal time 

intervals are taken into account in this figure. 
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The time investigated is divided into a finite number of relatively short 

partial time intervals. For matters of simplicity Fig. 4.2 and the equation 

given below refer to constant time-intervals At. However, the computtH 

program also allows variable time steps in such a way that a situation is 

approximated in which Att is at the same order of magnitude for each 

time-step. This leads to the best results for any given number of 

time-steps. The stresses and strains are assumed to be constant in the 

course of an interval in this study (rectangular rule). 

The time-dependent behaviour of the reinforced column, described by 

means of the relaxation method, consists of two steps in each time 

interval. In the first step the time-dependent strains within a time interval 

are calculated. The shrinkage strain t~~h follows directly from the 

shrinkage-time relationship, whilst the creep strain is generally given by 

means of the principle of superposition as shown in figure 4.2, 

t. 
Au 

1 

L:___E_Q_ 
. t. 
1 E 1 

sec, co 

t, t. 
• tP 1 [ 4.3 1 

In the numerical calculations performed in this study, a simplification is 

made in view of the adopted creep functions (aging of concrete) by 

assuming the rate of creep law (i.e. Whitney and Dischinger). This means 

that the increment of the creep coefficient in each time interval At is 

equal for each of the creep functions as shown in Fig. 4.3, so 

t, t. 
AtP 

1 
t,t. I t,t. 2 AtP t+ = AtP t+ 

t. -I time (t) 

Fig. 4.3 The principle of Whitney and Dishinger. 
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With this simplification the creep strain at a time is preferably 

described by means of the sum of the time-dependent strain increments 

within succeeding lime intervals: 

~ct,cr = 
co 

t. 
~a I 

l::___£Q_ * 
. t. 
I E I 

sec,co 

and the ref ore, 

t-~t 
a 
co 

[ 4.4a] 

[ 4.4b 1 

[ 4.4c 1 

Notice that the creep strain within a time interval is calculated from the 

state of stress and strain at the end of the previous time interval 

(step-by-step analysis). 

The time-dependent strains are prevented by a dummy restraint acting on 

the concrete. Simultaneously, the relaxation of stresses takes place in the 

concrete. The force taken by the dummy restraint is the sum of the 

relaxation stresses, i.e. the force is 

* A co [ 4.51 

In order to restore the state of equilibrium, the reinforced column section 

is loaded by the dummy restraint with a negative sign (-Nt,d) as shown in 

figure 4.2-B. 

In the second stage of the analysis, the actual strains in the 

reinforcement tt and concrete £ t are equal. The strains are calculated 
r co 

from equation [ 4.1] by means of the external force and the dummy 

restraint (see figure 4.2-C}, i.e. by the force 

[ 4.6 I 
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The normal stress in the reinforcement is calculated from the stress-strain 

relationship. However, the normal stress in the concrete matrix is 

calculated from the sum of the strain calculated in the second step of 

the analysis and the time-dependent relaxation strain, i.e. 

[ 4. 71 

The time-dependent calculation is repeated using the improved secant 

moduli of elasticity if there is not a sufficient state of equilibrium 

between the external forces and the sum of the internal stresses. 

Notice that the accuracy of this analysis depends on: 

(I) the number of time-intervals; 

(ii) the accuracy of the adopted creep model; 

In view of the inherent inaccuracies of the adopted creep model, there is 

no sense in taking many time intervals. 

4.3. Elaboration of the relaxation model for sandwich beams 

The time-dependent model described in the previous section is elaborated 

in order to predict the long-term behaviour of sandwich beams composed 

of reinforced concrete facing and a foamed concrete core. 

Fig. 4.4. shows a small part (segment) of the sandwich beam with 

segmentary length dx as known from the finite difference analysis (see 

also chapter 3). Each layer is subdivided into a number of fibres 

corresponding to the physical nonlinear analysis described in chapter 3. The 

time-dependent strain in each layer due to shrinkage el1 ·~~ is given by 
,l,J 

means of the shrinkage-time relationship. The time-dependent strains due 

to creep are analogous to the example of the reinforced bar (section 4.2) 

given by 

t,cr 
El,i,j 

t. 
1 

t::.ul, • • 2: _l.J 
. t. 
1 E 1 •• 

sec,l,I,J 

t,t. 
* <P 1 

€ 
(l 
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The time-dependent strain due to shear creep of the core is analogous 

given by 
t. 

l:!.r 1. 
t,cr ""~ 1 c = 4-- t. 

1 G 1 . 
sec,C,J 

t, t. 
* 1/1 1 

1 
[ 4.8b I 

With the assumption of the rate of creep theory (Dishinger) the general 

equations ( 4.8a] and [ 4.8b] are written as, 

t,cr 
El,i,j 

a t,cr 
E l,i,j 

t,cr 
1c,j 

a t,cr 
1c,j 

··-----J 

dx 

L !:i.e t:c.r 
t l,l,J 

with 

t-1::!. t 
17
l,i,j • (l/lt -t-l:!.t E 

E l'. sec, ,t,J 

l: 
t 

a t,cr 
1c,j with 

t-l:i.t r 
c,j * (l/lt 

G t-l:i.t 1 
sec,c,j 

·- - ----- shrink a 
- strains -

-

-
1-
r-
1-
r-...... --- --

t,sh 
El,i,j 

1/1 t-l:!.t) 
E 

1/1 t-l:!.t) 
1 

ge 

t,cr 
El,i,j 

[ 4.9a 1 

[ 4.9b 1 

[ 4. 9c] 

[ 4.9d] 

centre-line 

shear 
creep strain 

Fig. 4.4. Time-dependent strains in a cross-section of the sandwich beam. 
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In order to provide a link to the finite difference analysis, the local 

dummy restraints of each single fibre are gathered into a global dummy 

restraint acting in the reference line (centre-line) of the sandwich beam. 

The global dummy restraints of a sandwich cross-section are: 

N~,d 
m 

( t,cr t,sh) Et L: L: + • • At' [4.10a] 
J l=l,2,c i=l 

€ l,i ,j €l,i,j sec_co,i,j ,I 

M~,d = 
m 

( t,cr t,sh) Et - L: L: + • • At' • z [4.10b] 
J l=l ,2,c i=l 

€ l,i,j €l,i,j sec_co,i,j ,1 

T~,d = - 1t,cr • G . • b • (zp2 - zpl) 
J c,j sec,C,J [4.10c] 

[ 4.10d] 

The elaboration of equation [ 4.1 Oc] is given in appendix A4-l. 

The deflection and redistribution of internal stresses of the sandwich beam 

are calculated by means of the finite difference analysis, in which the 

external load is replaced by the sum of external load and the global 

dummy restraints with a negative sign. 

M. M:x + (-M~'d) [4.1la] 
J J J 

T. T:x + (-T~'d) (see also appendix A4-I) [4.llb] 
J J J 

ex (-dT~,d /dx) [4.llc] q. q. + 
J J J 

The bending stress in each fibre of faces and core and the shear stress in 

the core are calculated from the sum of the strain in the first step of 

the analysis and the relaxation strain, by means of the stress-strain 

relationships. If there is no equilibrium between the external cross-sectional 

forces and the sum of the internal stresses, the time-dependent calculation 

is repeated by again calculating the global dummy restraints from the 

secant moduli of elasticity, as shown in the flow chart in section 4.5. 
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4.4. Numerical examples 

4.4.1. Reinforced concrete bar loaded in permanent compression 

The relaxation method presented in this chapter is illustrated by means of 

a symmetrically reinforced column section under a sustained compressive 

load. The concrete and steel strains are calculated at selected times for 

the cross-section shown in Fig. 4.5. The numerical results are compared 

with results from the analyses mentioned in table 4.1, performed by 

Gilbert (1988). 

The external load P = 1000 kN. Shrinkage is assumed to commence at t. 
1 

= 10 days. Cross-sectional and material properties are as follows: 

A = 90 000 mm 2 • A co ' r I 800 mm 2 • E = 25 000 N/mm 1 • ') co ' 
E = 200 000 N/mm 2 

s 

Table 4.2. Creep and shrinkage data . 

t-t. i ... 
1 

</!Hi 
f 

t,ti,Sh 
Eco 

0 I 

0 200.10-6 

100 

2 

400.10-6 

n--- concrete 

~ reinforcement 

Figure 4.5 Geometry of the bar. 

The results are given in table 4.3. Since the creep strain is calculated in 

the relaxation method based on the rate of creep approach, the 

comparison between RCM and the relaxation method (RM) is of special 

interest. Table 4.3. shows a close agreement among the results calculated 

by these methods. 
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Table 4.3. Comparison of the test results of the relaxation method (RM) 

by using various methods as given in table 4.1. 

Method * Duration Stress (N/mm 2) Total 

of of concrete reinforcement strain 

Analysis load (t) t t 
(J (J 

co r 
(days) ( -) 

All methods 0 9,58 76,6 383.10-6 

EMM 25 7,81 165 825.10-6 

100 6,43 234 1171.10-6 

AEMH 25 7,78 167 833.10-6 

100 6,28 241 1207.10-6 

RCM 25 7,70 170 852.10-6 

100 6,07 252 1261.l0-6 

IDM 25 8,42 135 673.10-6 

100 6,69 221 1106.10-6 

RM 25 7,63 174 868.10-6 

(relaxation 
100 6,01 255 1275.10-6 

method) 

*) The notations of the various methods are given in table 4.1. 
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4.4.2. The influence of the shear stiffness of the core on the effects of 

time-dependent strains induced by the faces 

In the following example, the influence of an arbitrarily chosen creep and 

shrinkage of the upper face is shown for various stiffness ratios between 

the faces and the core. Distinction is made between a sandwich beam 

with thick (bending stiff) faces and thin faces. In order to show the 

influence of the shear stiffness of the core, control calculations are 

pcrformc,J in which, independent of the stiffness ratio, the shear modulus 

of the core is taken as infinite (G c = oo). The geometry and material 

properties are sho·•·n in Fig. 4.5. The deflections caused by shrinkage are 

calculated from an unloaded sandwich beam (q "' 0), whereas the 

deflections due to creep are calculated from a loaded sandwich beam (q 

I N/mm 2). The numerically calculated increase of deflection 

(t.wt=IOO=wt=IOO_wt=O) at midspan is shown in table 4.2. and table 4.3. 

Material properties and assumptions 

I. El E2 = 30.000 

2. At = 2 days 

3. 25 segments, L! fihr~:s 

4 t,sh 2 0 10-5 , A ,.-5,_( ) • e2 = , . '·0,'1 iU <.ut 

q ~t 2 = 0,5+1,5 Di(t) 
f, 

LS L b. 
jooe--~·-· ~--~ ~- -- ·--~-~- ~~-t~~o~ 

5. b = 280 mm 

Fig. 4.5. Geometry, material properties and assumptions. 

Table 4.2. Increase of deflections awt=IOO= wt=IOO_ wt=O(mm) at midsr):JO 

due to creep and shrinkage in case of thin faces (t = I 00 •lavs). 

Type of strain Shear Stiffness ratio EcfEe (l= I ,2) 

stiffness 1.10-5 1.10-4 1.10-3 I. J0-2 1.10- 1
1 I 

.. 

Shrinkage G E/3 2.11 ' 2.11 2.11 1.90 0.96 0.16 

G = 00 2.11 2.11 2.11 1.90 0.96 0.16 

Crec11 G = E/3 67.7 67.1 61.5 31.0 2.9 0.06 

G = 00 67.8 67.1 61.5 31.0 2.9 0.06 
-~ 
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f . t=lOO t=lOO t=O . Table 4.3. Increase of de lect10ns ll.w .. w - w (mm) at mtdspan 

due to creep and shrinkage in case of thick faces (t .. 100 

days). 

Type of strain Shear Stiffness ratio Ec/Et (l = 1,2) 

stiffness 1.10-:> 1.10-4 1.10-3 1.10-2 1.10-l I 

Shrinkage G = E/3 2.0 2.0 2.0 2.0 2.0 1.8 

G = 00 2.0 2.0 2.0 2.0 2.0 1.8 

Creep G = E/3 0.13 0.92 2.17 2.43 2.09 0.82 

G = 00 2.52 2,52 2.52 2.47 2.09 0.82 

The tables 4.2 and 4.3 show that the increase of deflection ll.wt=lOO: 

- due to shrinkage of the upper face is not affected by the shear 

stiffness of the core; 

- due to creep of the upper face is only affected by the shear stiffness 

of the core in case of bending stiff (thick) faces. 

125 

75 I 
~ 

I • G = 00 
c 

I v I 
a G = E/3 

/ c 

v 

100 

50 

25 

0 
0.00001 0.000 1 0.001 0.01 0.1 1 10 

STIFFNESS RATIO E/Et (l=l,2) 

Fig. 4. 7. Decrease of the time-dependent deflection caused by creep of 

the core dependent on the shear stiffness of the core, in case 

of sandwich beams with thick faces. 
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The deflection caused by creep of the upper face in case of bending stiff 

faces is graphically presented in Fig. 4.7 for various stiffness ratios. The 

increase of deflectioa awt=O in case Gc = oo is set up as 100% in 

Fig. 4.7, so 

t=lOO (Gc E/3) 

k 
AW • 100 
Aw t=IOO 

(Gc oo) 

4.4.3. Creep of the core under sustained shear load 

The third example of this chapter shows the influence of the creep of the 

core under sustained shear load on the deflection of sandwich beams with 

both thick (bending stiff) and thin faces. Various stiffness ratios between 

the faces and core (E /Ee) are considered. The numerical results obtained 

from the Relaxation Method (RM) presented in this chapter, are compared 

with calculations based on the Effective Modulus Method (EMM) in case of 

sandwich beams with thin faces. The geometry, type of load and 

assumptions are given in Fig. 4.8. The numerically calculated deflections 

are given in table 4.4 and table 4.5. 

25 ;----; Assumptions: 
li 

50 I ' l. El = E2 = 30.000 
i------< 

25 L___j 2. G = E/3 

3. 25 segments 

15 fibres 

:==; 4. At 2 (days) 
I I 

.t 74 I I 5. 0,5+ 1,5 ln (t) 
I I 'Y 
'====::1 (in the order of 

Q=l (N/mm 2) magnitude of 

_!i i2 
foamed concrete) 

6. b=280 mm 

' L=2400 (mm) I I , ... ~ 

Fig. 4.8 Geometry, load and assumptions 
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Table 4.4. Deflections due to shear creep of the core in case of thin 

faces (mm) 

Duration Type of Stiffness ratio Ec/Et (t-1,2) 

of load method 

t (days) 1.10-4 1.10-3 1.10-2 1.10-1 I 

0 52.1 21.5 16.7 8.4 1.4 

8 EMM 174.5 33.7 17.9 8.5 1.4 

RM 163.7 32.6 17.8 8.5 1.4 

20 EMM 220.7 38.4 18.4 8.5 1.4 

RM 205.9 36.9 18.2 8.5 1.4 

100 EMM 302.3 46.5 19.2 8.6 1.4 

RM 280.0 44.3 19.0 8.6 1.4 

Table 4.5. Deflections due to shear creep at the core in case of thick 

faces (mm) 

Duration Type of Stiffness ratio Ec/Et (t-1,2) 

of load method 

t (days) 1.10-4 1.10-3 1.10-2 1.10-1 I 

0 10.8 2.6 0.9 0.72 0.62 

8 RM 18.8 7.6 1.6 0.79 0.63 

20 19.1 8.9 1.8 0.81 0.63 

100 19.3 10.8 2.2 0.86 0.64 

In table 4.4. (thin faces) it is shown that the results of the relaxation 

method, presented in this chapter, are in close agreement with the results 

obtained by the effective modulus method. 

The deflections of sandwich beams with thick faces caused by creep of 

the core under a sustained shear load (see table 4.5) are graphically 

presented in Fig. 4.9 by means of 
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In this example, it is shown that in case of a large stiffness of the core 

(E /Et > 0.1 ), the creep of the core under a sustained shear load is of 

minor importance. 

The influence of the shear deformation caused by creep of the core under 

a sustained shear load increases from E/Et = 0.1 to E/Et = 0.001. With 

further lowering at the stiffness ratio, the deflection increment is reduced 
. t=IOO since the beam more and more acts hke two separated faces (r ..... 0). 

c 
The loss of cooperation between the faces is shown in Fig. 4.10 by means 

of the shear stress near the supports (cross-section I-I) for t=O and t=lOO. 
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Cil 
400 

>< 
<( 
Q 

0 300. 0 

II c 
..\<: 

200. 

100~~~~~~~~~~~~~~--~----~ 

0.0000 1 0.0001 0.001 0.01 0.1 10 

STIFFNESS RATIO E/Et (~1.2) 

Fig. 4.9. Increase of deflection at midspan due to creep of the core under 

sustained shear load in case of sandwich beams with thick facing; 

k (wt=100 1 wt=O) * 100. 

0.06 

... 
0.05 e 

e ....... 
z 

0.04 
Vl t=lOO Vl r 1-4 p::: 
!-< 

0.03 
Vl 

p::: 
<( 0.02 
1-4 ::c 
Vl 

0.01 I 

o.oo 
0.00001 0.0001 0.001 0.01 0.1 1 10 

Fig. 4.1 0. Loss of sandwich action due to creep of the core shown by the 

decrease of shear stresses in cross-section 1-1. 
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4.5. Flow chart 

YES 

MATERIAL PROPERTIES 

LOAD 

CALCULATE THE BENDING STIFFNESS 

CALCULATE THE TIME DEPENDENT 
STRAINS DUE TO CREEP AND 
SHRINKAGE 

TERMS Blj• B2j, Bcj• Bsj• Rj AND THE le-----...2:-------, 
SHEAR STIFFNESS Kj 

ASSEMBLE THE SET OF LINEAR 
FINITE DIFFERENCE EQUATIONS 

CALCULATE THE BENDING STRESSES 
a1, o2 , ac AND THE SHEAR STRESS 

IN THE CORE ac 

NO 

YES 
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4.6. Discussion and conclusions 

The numerical model is extended in the fourth chapter by the time­

dependent behaviour caused by creep and shrinkage. Creep and shrinkage 

are taken into account by means of a generalized relaxation method. 

The initial strains due to creep and shrinkage are counterbalanced by 

means of dummy restraints. The so-called step-by-step analysis is based on 

the superposition principle of McHenry, and takes the stress-his tory into 

account. Although the theory is generally described, a simplification is 

made in the computer model (see the manual SANDI90, Vianen and Salet 

1990) with respect to the time-dependent creep functions (aging) by 

assuming the rate of creep law. 

This simplification is justified by the combination of the following facts. 

(i) Aging demands a tremendous amount of input data, especially with 

sandwich beams; 

(ii) The aging properties of foamed concrete are not yet known; 

(iii) The accuracy of the numerical prediction is basically affected by a 

large statistical variance in the creep and shrinkage properties and 

the type of creep and shrinkage tests; 

{iv) The rate of creep method underestimates the creep strains while 

the principle of superposition overestimates the creep strains. 

The method has the additional advantage that it provides insight into the 

problem under consideration. It is demonstrated that: 

- in case other solutions are available, the results are in close 

agreement; 

- the deflections and stress-redistribution due to shrinkage of the faces 

are not affected by the shear stiffness of the core; 

- the deflections and stress-redistribution due to creep of the faces are 

only affected by the shear stiffness of the core in case of sandwich 

beams with bending stiff faces; 

- the outcome of the creep of the core under sustained shear load 

depends on the stiffness of the core; both in case of stiff and weak 

cores the increase of deflection and redistribution of stresses are 

small. 
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5. FAILURE CRITERIA 

5.1. Introduction 

The structural behaviour of the sandwich beams is characterized by the 

deflection and the load-bearing capacity. In view of the latter, not only 

the ultimate load is of interest, but also the failure mode which 

determines the structural safety of the element. In order to judge the 

numerical calculations, suitable criteria are to be established. The following 

criteria are discussed in this chapter with reference to Fig. 5.1.: 

(i) ultimate bending moment (A-A) 

(ii) ultimate shear load (B-B) 

(iii) horizontal slip (C-C) 

B lA 
I 

ti~ 
'B lA 

r---- -~ _,...~ 

fZj i 
I 
I 

I I ----1 8 \-.... 
L-----J I 

shear bending 

Fig. 5.1. Possible failure modes. 

5.2. Ultimate bending moment 

c --il c 

horizontal slip 

The ultimate bending moment capacity of a cross-section is determined 

by the strain capacity of either the concrete face loaded in compression 

or the reinforcement loaded in tension. 
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In view of the safety of a reinforced concrete structure the following 

conditions are commonly made: 

(i) the reinforcement is capable to carry the total tensile load of the 

lower reinforced concrete face after cracking; 

(ii) yield of the reinforcement before the ultimate strain capacity in 

the concrete face loaded in compression is exceeded. 

5.3. Ultimate shear load 

Although rarely critical in traditional slabs, in this case shear failure must 

be taken into account in view of the relatively low shear (tensile) strength 

of the foamed concrete core. The ultimate shear load is determined by 

the tensile strain capacity of the core. The external load in a 

cross-section is carried by the faces and the core as shown in Fig. 2.1. 

The mutual distribution of the shear load between the faces and the core 

depends on the ratio between the shear stiffness of the core and the 

bending stiffness of the faces, i.e. (E I + E I ) I GA. * 
l l 1 1 

5.4. Horizontal slip of the reinforced concrete face loaded in tension 

A typical failure mode with respect to multi-layered elements is concerned 

with the horizontal slip in the interface between two layers. This type of 

failure has also been identified by Zerjeski [ 1982], Annamalai et al 

[ 1977], Shendy-El-Berbary [ 1981] and Parton and Shendy-EI-Barbary 

[ 1982] as a possible failure mode for sandwich beams composed of 

concrete components. As shown in Fig. 7 .l. (see chapter 7) none of these 

sandwich beams, tested by the research workers mentioned, were provided 

with either a steel bar reinforcement or with a foamed concrete core. 

In order to gain insight into the sensitivity of the sandwich beams for 

failure induced by horizontal slip, the following (simplified) model is used. 

In case of a uniformly distributed load, the load-bearing capacity with re8pect to shear ia also affected by 
the boundary conditions set for a simply support. The conditions w"=O and M=O (see section 2.3.2.) can be 

written using equation [2.11] and equation [2.1] respectively, to 1~=0. This results in a reduction of the 

ebear load in the core near a support at the expense of an increament of shear load in the face8. 
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In the following description, a uniformly distributed load is taken in mind. 

Before cracking of the foamed concrete core, the shear load between the 

faces is transferred by means of shear stresses, as assumed in the 

sandwich theory (Fig. 5.2-1). With larger loads, inevitable cracks arise in 

the foamed concrete core. The first cracks arise near midspan and their 

direction is perpendicular to the span of the beam (tensile cracks). With 

further load increments the cracked section of the core extends and the 

direction of the cracks is more and more affected by the shear stresses. 

It is assumed that the transfer of shear load is still possible in the 

cracked section of the core since the beam in reality behaves somewhere 

between an open-beam girder and a tied arch, as shown in Fig. 5.2-11. 

;: ~ ........ ....... 
='"' -- ...... E;~============================~=======·=~=;~~3 uncracked core 

r:: 211 ' t t ~ 
cracked section 

~::;<=~::::t~=========\=;§;::±~=:J::::;;:::! cracked core 

x2 

I .... 
45° 

. 'A ...,. Nx2 
1 h I +--=-t reinforcement 

XI 

Fig. 5.2. The method of shear transference in the sandwich beam and the 

numerical modelling of the horizontal slip. 

The state of stress within the cracked core is not calculated by the 

numerical model. The state of equilibrium of the uncracked section near 

the supports is considered in order to trace the sensitivity of the sandwich 

elements for failure induced by horizontal slip (Fig. 5.2-III). 

The normal load acting in the upper face Nx , i.e. 

m h
2 

[ 17! * b *­
i=l m 

1 

[ 5.1 ] 

must be carried in the foamed concrete core along the length C-C. 
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Nx is affected by the length X and by the external load. The length 
2 2 

C-C is affected by X and by the actual dispersion of the normal load 
1 

Nx in the core, as shown in Fig. 5.2. 
2 

Horizontal slip arises along section C-C if Nx exceeds the load bearing 
2 

capacity of the foamed concrete along section C-C, so 

Nx > ffc,tm • b • IC-C I 
2 

[ 5.2] 

with IC-C I is the length of section C-C. The risk that this will happen 

increases when a large percentage of reinforcement is chosen together 

with a low tensile strength ff t of the foamed concrete. c, m 

In order to allow a numerical calculation, the length of section C-C and 

the location of x
2 

are calculated from the following relationships, 

(i) X 
% 

(ii) IC-C I 

based on the direction (450) of 

the cracks in the core near a 

support •; 

in view of the dispersion of the 

normal load in the core. 

[ 5.3a] 

[ 5.3b] 

The remaining unknown parameter x
1 

is calculated from the state of 

principal stresses in the core by means of the following algorithm: 

l. Calculate the principal stresses in the fibre i=m of the core (see Fig. 

5.3) in each segment j along the span of the beam from the bending 

stress (a . . ) and the shear stress (r .): 
C,j,l=m C,j 

a . . jaZ .. - _ C,j,l=m C,j,I=m T% • 

ac,j,i - 2 ±. 4 + C,J [ 5.4] 

This assumption can be verified afterwards since the direction of the principal stresses in the core are 

also calculated by the numerical model, from tan 2Q .. = 2T ja ... 
c,J ,1 c,J c,J ,1 
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fibre i = 

= 1 

fibre m 

2 1 . : 3 f 4 
• • 

II 

• 

Fig. 5.3 Definition of the fibres in the core 

n 
• • A 

2. Check if the circle of Mohr belonging to the principal stresses u .. in 
C,J,I 

the fibres i=m in each segment j along the span of the beam exceeds 

the ultimate state of stress defined by a (linear) intrinsic curve, as 

shown in Fig. 5.4. 

intrinsic curve 

__.., u-

tension cut of criterion 

Fig. 5.4 The circle of Mohr belonging to a critical state of the principal 

stresses. 
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3. The unknown length x 1 is defined as that part of the beam in which 

the circles of Mohr belonging to principal stressel u . . do not 
C,j,I=m 

exceed the intrinsic curve, as shown in Fig. 5.5. 

Fig. 5.5. Definition of the length x1 

5.5. Discussion and conclusions 

damaged fibre 

(= the circles of Mohr 
belonging to the principal 
stresses exceed the intrincis 
curve) 

In order to describe the load-bearing capacity of the sandwich beams, 

criteria are set with respect to the ultimate bending moment and shear 

load and the horizontal slip. 

An imperfection of the numerical analysis of the sandwich beams by 

means of the finite difference analysis, is concerned with the method of 

shear transference in the cracked foamed concrete core. With an increase 

of the cracked section of the foamed concrete core, the beam behaves 

more and more somewhere between an open-beam girder and a tied arch, 

instead of a sandwich beam. 

In order to trace the sensitivity of the sandwich beams for failure induced 

by horizontal slip the state of shear stress in the section C-C (see figure 

5.1) is adapted to the actual method of shear transference (a combination 

of open-beam girder and tied arch behaviour) by means of a simplified 

model. 
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6. EXPERJMENTAL RESEARCH INTO THE STRUCTURAL PROPERTIES 

OF THE FOAMED CONCRETE CORE, CONCRETE FACES AND 

REINFORCEMENT 

6.1 Introduction 

In order to compare the experimental and numerical test results, the 

material properties of the actually constructed sandwich elements (see 

chapter 7) were determined on samples obtained from the same casts. 

Since the experimentally tested sandwich beams were manufactured in two 

different cast series, two series of control specimens were also supplied. A 

survey of the tests performed is given in table 6.1. 

Table 6.1 The type of test performed 

type of test type of material tested 

foamed concrete reinforcement 
concrete ~ upper face 

compression • • • 
0 0 0 

tension • • • 
shear (torsion) • 

0 
creep under 

0 0 0 compression load 
creep under 

0 shear load 

shrinkage 0 0 0 

• Tests on samples from cast (short-term tested sandwich beams). 

o Tests on samples from cast 2 (long-term tested sandwich beams). 

The strength and deformation response of the samples depend to a large 

extent on the type of load application system. In all tests, a uniform 

boundary displacement condition was chosen in order to simplify matters 

concerned to deformation measurements. 
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In that case a non-uniform stress distribution will emerge and only an 

average strength can be determined [van Mier, I 984]. In order to obtain 

the input for the numerical model, the test results are presented as 

stress-strain, creep and shrinkage functions. The functions are fitted from 

the actual test results using the method of least squares by Gauss. 

6.2 Foamed concrete 

6.2. I Mix proportion and manufacture 

In this study foamed concrete with a density of about 600 kgjm3 was 

chosen. For all the tests the same mix was used. Throughout all the casts 

made, cement, sand and foaming agent came from the same batch. The 

contents of cement, sand, water and foam are given in table 6.2. 

Table 6.2 Mix quantities of fresh foamed concrete. 

Mix Mass quantities {kg/m 3) Volume quantities (m 3jma) 

designation Cement Water Sand Foam Cement Water Sand Foam 

SB600 340 136 70 50 0.110 0.136 0.024 0.730 

The type of cement used was an ordinary blast-furnace cement (type A). 

Cement, water and glacial sand (0-1 mm) were mixed in a tilting type of 

concrete mixer. In view of the requirements which had to be set for the 

workability of the cement paste, a water/cement ratio of 0.40 was chosen. 

A protein foam with a density of 50 kg/m 3 was prepared and added to 

the cement slurry and mixed for 3 minutes. The foam mainly consists of 

water. Therefore the overall water/cement ratio became 0.55. As a result 

the workability of the mix was high. 

The fresh foamed concrete was poured immediately after mixing. The 

moulds were not vibrated, in order to respect the foam structure. The 

casting-surfaces were finished and covered with pvc-foil to avoid drying 

out. Two days after casting, the specimens were demoulded and stored in 

a control room at a constant relative humidity of near 100% at a 

temperature of 20° .::!:. )°C. 
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In case of surface measurements, the specimens were taken to the testing 

site one day before testing and the measuring facilities were glued to the 

surfaces. The age of the specimens at the time of testing varied between 

25 and 30 days. 

6.2.2 Compression tests 

A schematic view of a specimen is given in Fig. 6.1. The tests were 

deformation controlled. The applied deformation rate was 0.5 mm/min. The 

deformation was controlled by an LVDT (Linear Voltage Displacement 

Transducer) registrating the displacements of the jack. The tests were 

performed with a compression testing machine, type Schenck Ml600. 

The force was determined by a load cell, located between the vessel and 

the specimen. The deformations of the samples were measured with two 

LVDTs with a base of 250 mm, positioned on two opposite casting-surfaces 

(see Fig. 6.1). 

LVDT 

100 mm 

specimen 

e e 
e e 

0 0 
>1"1 0 
~ >1"1 

e 

Di! 
100 mm 
;j' " 

Fig. 6.1 Foamed concrete specimen prepared for testing 

The stress-strain relationships for both casts are plotted in Fig. 6.2. 
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Fig. 6.2 Typical stress-strain relationships of foamed concrete from both 

casts under compression load and the best fitting equations. 

6.2.3 Torsion tests 

Torsion shear tests were performed on circular samples. Contrary to 

Shendy-El-Baraby (1981) who tested solid circular cylinders of polystyrene 

lightweight concrete, hollow specimens were used in order to avoid initial 

stresses due to non-uniform shrinkage. 

The cylinders were cast in a wooden outer mould, consisting of two 

halves. The inner mould was made of an inflated cylindrical membrane, in 

order to prevent initial stresses caused by shrinkage during the first 24 

hours of hardening. The mould is shown in Fig. 6.3. The height of the 

specimens was 270 mm with an inner radius of 120 mm and an outer 

radius of 160 mm, as shown in Fig. 6.4. The top and bottom surfaces of 

the samples were rubbed with sand-paper. After removing the dust, stiff 

steel rings were glued on both ends. The samples have conical ends in 

order to prevent failure in the plane of the adhesive. This loading 

application system results in a uniform strain distribution in the major 

part of the samples between the conical ends. 
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Fig. 6.3 Mould for the hollow cucular samples of foamed concrete. 
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Fig. 6.4 SpeCimen and measuring devices of the torsion testing system. 
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The general assembly of the torsion testing-system and measuring 

equipment, developed for this torsion test are shown in Figs. 6.5 and 6.6. 

A vertical load F v is inverted into two equal and opposite horizontal 

forces Fh (torsional moment), using a flexible steel cable structure. 

1-;---:..-:... ---------;-1 
'I 'I 
,, II 

~==--~' '':====~1 

A.,..i 

1 = specimen 
2 = vessel 
3 cable structure 
4 = separated measuring 

frame 
5 LVDT 
6 load cell 
7 = pulley 

Fig. 6.5 General assembly short-term torsion testing rig. 
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Fig. 6.6. The torsion testing rig and the typical failure mode of a test 

specimen 

0.40 ..----,..----,..----,..----,..----,..----,r----, 

0.30 .. 
e 
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<r:4 Cll Cu* no. 1 
Cll r = su 1 
f.Ll Cu* no. 2 ~ r = •1s 1 1-
Cll 0.10 . 

0.00 IC------'1....------I.-----'------'-----'---_,_ _ ___, 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 

STRAIN [ o/oo) (E-2) 

Fig. 6. 7 Typical shear stress-strain relationships of foamed concrete from 

both casts loaded in shear and the best-fitted equations. 

The stresses at the outer radius are considered in this figure. 
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The loading arrangement is deformation controlled and the vertical load F v 

(see Fig. 6.5) is determined by a load cell located between the jack and 

the pulley acting on the steel cable structure. 

The deformations were measured using four LVDTs, two on opposite sides 

of the specimen as described in Fig. 6.4. The measuring length between 

two LVDTs on one side was 110 mm. The diameter between two LVDTs 

on one side and the other side of the sample 350 mm. The average 

deformation rate ~: was about 2.10-6 (rad/mm)/min. 

The shear stress-strain relationships are plotted in Fig. 6. 7 with regard to 

the stresses at the outer radius. The theory behind this is elaborated in 

Appendix A6-l if necessary, taking physical non-linearity into account. 

6.2.4 Tensile tests 

Although the tensile strength could be calculated from the torsion tests, 

there were still two reasons to perform tensile tests. The first reason was 

the verification of the results obtained from the torsion test, and the 

second to gain insight into the plastic flow (if any) of foamed concrete 

under tensile load. 

The results of deformation controlled direct tensile tests are shown in Fig. 

6.8 [Hordijk and Salet 1989] . 

.. 
e 
e ....... z 

0.3 
Cll 
Cll 
~ 
c:.:: 
f-< 
Cll 0.2 

0.1 

0.0 

0 20 40 60 80 100 120 

DEFORMATION (I0- 6
) 

Fig. 6.8 Stress-deformation relation deformation controlled direct tensile 

tests. 
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6.2.S Failure criterion for shear and normal load 

Each state of shear stress can be transformed into principal stresses. This 

is graphically represented by Mohr's circles. In Fig. 6.9 Mohr's circles are 

shown for the ultimate states of pure tension, torsion and compression. 

These values are summarized in table 6.4 (section 6.S). 

The ultimate state of stress in the core is described by an intrinsic curve. 

In Fig. 6.9 a linear intrinsic curve is assumed, similar to Sell and Zeiger 

( 1970) in research on autoclaved cellular concrete. 

L: r • -l.l2u + 0.42 

~ linear intrinsic curve 
;«, 

r-+-

tension 

+ 2.2S u 

tension compression 

tension cut off 

circle 

Fig. 6.9 Mohr's circles and the linear intrinsic curve. 
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6.2.6 Creep and shrinkage tests 

Creep and shrinkage tests were performed. Since the core is biaxially 

loaded, both creep under compression load and shear load were studied. All 

tests started 28 days after the upper, concrete face of the sandwich was 

poured (see chapter 7). The specimens w.ere stored in a control room at a 

relative humidity of 60 % and a temperature of 20°C. 

Long-term tests on prisms 

The creep and shrinkage tests were performed on prisms with the 

dimensions IOOxiOOxSOO mm,. The prisms for the creep tests were loaded 

in compression with 7500 [ N] each, being approximately 1/3 of the 

ultimate load. The prisms for the shrinkage tests were not loaded. The 

deformations were measured with a pfender gauge on two opposite casting 

surfaces with a measuring length of 300 mm. 

A schematic view of the testing rig [see Cornelissen, 1979 and Rusch, 

1960] is given in Fig. 6.1 0. The test results are plotted in Fig. 6. 11 and 

6.12. 

specimen 

Fig. 6.10 Schematic view of the creep testing rig on prisms. 
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Fig. 6.11 Shrinkage of foamed concrete measured on prisms. The shrinkage 

measured on the hollow circular cylinders is within the same 

range. 
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Fig. 6.12 Creep of foamed concrete loaded in compression, 

i.e. ¢ f == tcfr,t/ttf=o. The creep is calculated as the total time-
t, c c c 

dependent deformation minus shrinkage. 
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Long-term tests on hollow circular cilinders 

Creep tests, attended with additional shrinkage tests, were performed on 

hollow circular cylinders, from cast no. 2, described in Fig. 6.4. 

The short-term torsion testing system, shown in Fig. 6.5, was modified in 

order to perform long-term torsion tests. The general assembly of the 

long-term torsion testing system is shown in Figs. 6.13 and 6.14. Contrary 

to the loading application system used in the short-term torsion tests, no 

stiff s tee I rings were used. Stiff rings would definitely cause failure of 

the specimens due to shrinkage. Instead six small steel plates were glued 

onto the surfaces of the specimens as shown in Fig. 6.4. The torsional 

moment of 0.126 kNm, being about 1/10 of the ultimate torsional load, is 

introduced using six vertical loads of 300 N, acting on both the upper and 

lower surface with I SO N. The deformations were measured with four 

LVDTs, as described in Fig. 6.4. 

Fig. 6.13 General assembly of the long-term torsion creep testing rig. 
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Fig. 6.14 Schematic view of the long-term torsion creep testing rig. 
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The results of two tests + and & are given in Fig. 6.1 5. The results show 

a large variance. The average result is slightly higher compared with the 

creep of foamed concrete under sustained compression, as shown in Fig. 

6.12. 

I ....... 

2 
< 
~ 
:I: 
(.1.) 
'-' 

~ 
0 
..... 
u 
< 
1.1. 

p., 
~ 
~ 
~ 
u 

12 

10 
+ + 

8 .. 
~ ! 

i y 
6 

4 
/"' .. .& -

2 I 
7 

l/ 0 
0 5 10 

+ + + 
+ + + 

.... 

---------- .& .& .. -
.& .& 

t 
t/1 f = 1.4 + 2.4 l.n(t) ,, c,c 

15 20 25 30 

TIME [days] 

35 

-~. cr ,t1 t=o Fig. 6.15 Creep of foamed concrete loaded in shear, i.e. '1'
1

=1 1 . 

86 



6.3 Concrete 

6. 3.1 Mix proportions 

In order to construct sandwich beams with an upper and lower face 

thickness of about 20 mm, the maximum aggregate size chosen was 8 mm. 

The contents of cement, course aggregate, sand and water are given in 

table 6.3. For all the tests the same mix was used. 

Table 6.3 Mix quantities of the fresh concrete. 

Mix Mass quantities (kg/m 3 ) Volume quantities (m 3/m 3) 

designation Cement Water Grain Sand Cement Water Grain Sand 

C2400 340 187 1275 590 O.IIO 0.187 0.500 0.203 

Contrary to foamed concrete, an ordinary portland cement (type A) was 

used. The storing conditions of the specimens correspond with the storage 

of foamed concrete, described in chapter 6.2.1. 

6.3.2 Compression and tension tests 

All tests were performed on small prisms with the dimensions 40x40xl60 

mm 3 , as shown in Fig. 6.16. The tests were deformation controlled at a 

rate of 0.5 mm/min. 

Direct tension 

+ 
40 

Compression 

t 
40 

Fig. 6.16 Concrete compression and tension test specimens prepared for 

testing. 
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The best fitting test results for the concrete samples under compression 

are given in Fig. 6.17, the test results for the concrete samples under 

tension are given in Fig. 6.18. 
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Fig. 6.17 Typical stress-strain relationships for concrete (cast no. 1, upper 

face) under compression and the best-fitting equations. 
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Fig. 6.18 Typical stress strain relationships for concrete (cast no. l, lower 

face) under tension and the best-fitting equations. 
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6.3.3 Creep and shrinkage tests 

Creep and shrinkage tests were performed on prisms with the dimensions 

100x100x500 mm3 • Four prisms for the creep tests were loaded in 

compression with 100 kN each, being about 1/3 of the ultimate load. The 

four prisms for the shrinkage tests were not loaded. Deformations were 

measured with dial gauges with a measuring length of 300 mm. All tests 

started 28 days after casting. The specimens were stored in a control 

room at a relative humidity of 60% and a temperature of 20°C. A 

schematic view of the testing rig is shown is Fig. 6.11. 

The creep again is calculated as the total time-dependent deformation 

minus the shrinkage deformation. The test results are given in Figs. 6.19 

and 6.20. 
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Fig. 6.19 Shrinkage of the concrete faces. 
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6.4 Reinforcement 

140 

The stress-strain relation for the main reinforcement under tensile load 

was studied by means of deformation controlled tensile tests on bars with 

a length of 500 mm. The applied deformation rate was 0.5 mm/min. 

The deformations were measured with a pfender gauge with data storage 

equipment, on a measuring length of 100 mm. The stress-strain relation, 

together with the best fitting equations, are given in Fig. 6.21. 
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Fig. 6.21 Typical stress-strain relation of the reinforcement and the best 

fitting equations. 

6.5 Summary of the test results 

Values for the different parameters for the mechanical behaviour of 

foamed concrete are listed in table 6.4 and 6.5. The Young's modulus and 

the shear modulus of foamed concrete are determined by the secant 

modulus for the data points of a stress of about 1/3 of the average 

ultimate stress, being 0.075 N/mm 2 for both the torsion and deformation 

controlled direct tensile tests and 0. 75 N/mm1 for the compression tests. 

The Young's modulus of concrete is determined with linear regression 

analysis up to a stress of 10 N/mm2 for the compression tests and l 

N/mm 2 for the tension tests. 
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Table 6.4. Average structural parameters of the concrete faces and the 

foamed concrete core under short-term load. 

Type of test Parameter Foamed concrete Concrete 

Cast no.l Cast no.2 Cast no. 1 Cast no. 2 

lower face upper face lower face upper face 

Compression strength f' [ N / mm2] 2.25 (7.5) 2.22 (9.9) 33.2 (6.6) 31.8 (5.8) 34.8 ( 4.0) 29.6 (6.3) 

strain e [ mm/m] 2.40 (12.0) 2.16 (14.5 1.72 (2.3 1.61 (8.0) 1.74 (9.0) 2.0 (1.0) 

Young's E' [ N/mm2] 
1303 (3.8) 1489 (0.6) 34.934( 1.4) 34.910(3.0 33492(2.8) 32629(2.0) 

modulus 

Tension strength f [ N /mm2] 0.28
3

)(12.1) - 2.5 (14.4) 2.7 (15.0) -

strain £ [ mm/m) - 0.12 (35.0) - 0.12 (33.7) -

Young's E [ N/mm2] 1506(12.0) - 36100(6.4) - 35950 (8.3) 

modulus 

Shear strength f [ N/mm2] 0.221)(14.0 o.2olh6.1) 
( ) = statistic'!! variance in % for four 

samples 1n each test 
0.292) 0.272) I) ultimate strength inner radius of the 

hollow circular ci!inder 

G [N/mm2) 
2) ultimate strength outer radius of the 

shear 384 (14.0) 413 (9.9) hollow circular cilinder 

modulus 3) deformation controlled direct tensile tests 
Hordijk and Salet 1989 

I 

Table 6.5 Average structureal parameters of the concrete faces and the foamed 

concrete core under permanent load. 

Type of test Symbol Foamed concrete Concrete 

cast no. 2 cast no. 2 
low..r face unoer race 

/h,t=l35 4.10 -s 2.9.10-4 3.5.10-4 

Shrinkage 
c"h,t=28 2.5.10-3 1.8.10-4 2.2.10- 4 

Creep under 
¢ t=135 9 2.1 2.5 

£ 
¢ t:28 6 1.3 1.6 

compression e 

Creep 
¢ t:28 

1 

10 

under ahear 
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6.6. Discussion and conclusions 

The structural properties of the concrete faces, the foamed concrete core 

and reinforcement applied in the experimentally tested sandwich beams 

(chapter 7) are determined. A summary of the test results is given in the 

tables 6.4 and 6.5. 

With respect to the foamed concrete used in the tests, the following 

conclusions are drawn: 

Short-term behaviour 

(i) The shape of the u-e relationship is best fitted by means of the 

third order polynomial equation instead of a second order which is 

preferred for the normal concrete; 

(ii) The hollow circular cylinders loaded in torsion showed failure in 

the tensile mode. The ultimate tensile strength is found in these 

tests likewise to the tensile strength obtained from direct tensile 

test. 

Long-term behaviour 

(i) The shrinkage of the foamed concrete after 135 days of exposure 

in a control room (r.h. = 60%) is about 13 times higher compared 

with the normal concrete; 

(ii) The creep factor depends on the type of load. In case of 

compression, the creep factor is 9 after 135 days. In case of a 

shear load, the creep factor is even about 30% higher; 

(iii) The shrinkage of the prisms and hollow circular cylinders is 

similar despite the different size of the samples. 
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7. EXPERIMENTAL RESEARCH AND VERIFICATION OF THE NUMERICAL 

MODEL. 

7.1 Introduction 

Rather few sandwich elements with concrete components are described in 

the literature. All studies described were found to be experimental and 

restricted to short-term tests. A review of the literature is given in table 

7 .I. The materials of the components are given, together with the typical 

cast order and loading conditions. Details with regard to the parameters 

investigated and the results obtained, are included. 

Sandwich beams composed of both concrete facing and a lightweight 

concrete core have only been studied by Pfeifer et al (1965), Annamalai 

e t al (I 977) and Shendy el Barbary ( 1981). The main reason may be 

attributed to the difficulty of producing a lightweight concrete which can 

satisfy the recommended conditions of the core. Pfeifer et al (1965), 

Pa than (1982) and Lee et al (I 986) studied sandwich beams with concrete 

faces and polystyrene cores. Typical shear connectors were provided in at 

least one of the test series performed by Pfeifer (1965) and Lee et al. 

(1986). 

Zerjeski (1982) constructed, amongst others, hybrid faces consisting of a 

thin profiled steel upper sheet and a fibre reinforced concrete lower face. 

Various lightweight aggregate concrete cores were tested. Vogel (1983) also 

used different materials for both faces. However, the thin profiled steel 

and fibre reinforced concrete faces were connected by screws instead of 

by a lightweight aggregate concrete core. An extended survey of both 

studies has more recently been given by Jungbluth (1986). 

This chapter describes the cons true tion and testing of a new type of 

sandwich beam comprising a foamed concrete core and bar reinforced 

concrete facing. The flexural behaviour was studied, with respect to both 

short-term and long-term performance. The major parameter of the study 

was the method of shear transfer between the faces. Tests were conducted 

on sandwich beams with and without traditional full beam shear connectors. 
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Table 7 .I Experimental research on reinforced concrete sandwich beams 

Author Specimen and cast order Type of Parameters Results 
loading •• •• 

Pfeifer 2 ~ light-weight I ,2,5 a 
( 1965) I aggregate 

2 - concrete LS ~ 

Annamalai 2 ~ ferro-cement 1,2,4 a,b,c,d 
( 1977) I gas concrete 

2 ferro-cement 

~bd? ~ ! 
LS ~ 

Shendy ~ ~ ferro-cement I ,5 a,b,d,e 
( 1981) 

I ferro-cement 
I 

Parton and polystyrene 
Shendy concrete ! ! ( 1982) LS A 

Zerjeski I~ folded steel 5,1,3,7 a,b,d 
(1982) 2 plate 

3 glass fibre -
reinforced concrete 
3~ folded steel 

~ - folded steel j!! l 
Pat han !¥Y glass fibre a,b,c,d 
( 1982) reinforced 

high alumina 

~ cement ! polystyrene LS A 

Vogel 3~folded steel 2,3,4,5 a,b,d 
(1982) 2 plate 

I 
light-weight 1!! l concrete 

Lee wire 1,2,4,5 a,c,d 3 ~ bar and mesh 
( 1986) I reinforced 

2 mortar ! ! polystyrene .LS A 

*) Documentation on the works of Wright (1977) and Saglam (1979) could 

not be made available. 

**) The meaning of the designations is given on the next page. 
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designations 

parameters 

I. 

2. 

3. 

4. 

5. 

Type and/or amount 

of face reinforcement 

Type and/or amount 

of shear connectors 

Core thickness 

Face thickness 

Core material and/or 

mix proportions 

6. Face material and/or 

mix proportions 

7. Span of the beam 

results 

a. Deflection 

b. Strains/stresses 

c. Crack load and/or crack pattern 

d. Failure load and failure mode 

e. Position of the centre-line 

The experimental test results are compared with the results calculated by 

the finite difference analysis described in previous chapters. 

7.2 Specimens characteristics and manufacture 

A total of twelve concrete sandwich beams spread over two different 

casts were constructed. The eight specimens of the first cast were 

submitted to a short-term test, while the four specimens of the second 

cast were studied under permanent load. The overall length of the samples 

was 2500 mm with a width of 280 mm. Details of the beam cross-section 

are given in table 7.2. 

The main parameter of the test specimens refers to the type of 

reinforcement provided. Six samples were provided with only a main 

reinforcement (designated with MR = Main Reinforcement) in the lower 

face. The main reinforcement consisted of three ribbed steel bars, with a 

diameter of 6 mm each. The other samples were provided with a 

reinforcing cage, consisting of the same main reinforcement in the lower 

face (3 ¢! 6 mm), additional reinforcement in the upper facing (2 ¢! 6 mm) 

and shear connectors (2 ¢! 4 mm) in between (see Fig. 7. 1). 

These specimens were designated with SMR (SMR = Shear and Main 

Reinforcement). The reinforcements were placed in the centre of each 

face. 

97 



L-------------1- t~/i 7\ 
-~~-~ !!\ ---~~~ ~.._....-~~~..b..~~~ 

I I J ~~------------+--! 
' I 1 ~ 4 4 
\ I I 

(2 <P 4 mm) 

Fig. 7 .I Geometry of the samples 

Table 7.2 Details of the test specimens 

Specimen Type Series Layer Details of 

no. of designation thickness [mm] reinforcement 

testing lower core 

face 

1,2,3,4 ST MR 25 60 

9,10 LT 

5,6 ST 35 70 

7,8 ST SMR 30 60 

I I, 12 LT 

MR = Main Reinforcement ST 

SMR = Shear and Main Reinforcement L T 

upper bottom 

face face 

20 3 <P 6 

30 

30 3 <P 6 

Short Term 

Long Term 

top 

none 

2 ¢ 6 

[mm] 

shear 

connectors 

none 

2 <P 4 

Three different techniques of beam manufacture were studied in 

preliminary tests on small sandwich beams [Appendix A 7-1 ]. From the 

test results a typical cast order was preferred, with respect to the 

structural adhesion between concrete and foamed concrete. 

In the first stage, the foamed concrete core was poured and covered with 

wet cloth and foil. In case of the beams provided with shear connectors, 

the complete reinforced cage was located in the mould before casting. 

After seven days, the moulded face was rubbed with sand-paper to remove 

the closed and shining cement film. In case of the samples from the 

series MR, the main reinforcement was located at the desired cover from 

the foamed concrete. 
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The lower concrete face was poured on a moisty foamed concrete and the 

samples were covered with wet cloth and foil. After two days, the 

samples were turned round and the upper concrete layer was cast and 

stored in the same way. None of the layers was vibrated after casting, in 

order to protect the brittle cellular structure of the foamed concrete. The 

beam was demoulded after two days and stored in a control room at a 

relative humidity of near 100% and a temperature of 20°C. 

The proportions and properties of the concrete, foamed concrete and s tee! 

reinforcement used, are described in chapter 6. 

7.3 Short-term tests 

7.3.1 Test performance 

Flexural tests were conducted on simply supported beams on a free span 

of 2400 mm. Seven out of eight specimens were tested in an 

approximately uniform distributed load condition, using a ten point loading 

system. One specimen (no.4) was studied under a four point bending test. 

The load was applied to the specimens by a hydraulic jack using a 

spreader beam. The jack was displacement controlled, operated by a 

function generator. The applied displacement rate of the jack was 0.002 

mm/sec. A spherical head was placed between the rigid head of the 

testing machine and the load distribution beam. The effects of the 

horizontal thrusts were eliminated by roller bearings. At the loading and 

support points, 12 mm thick and 40 mm wide steel ribs are provided for 

an uniform load distribution. A schematic view of the testing rig and data 

acquisition system is given in Fig. 7 .2. 

The jack load was determined by means of a load cell. Deflections were 

registrated using LVDTs at several locations along the axis of the beam as 

shown in Fig. 7 .3. Besides deflections, one out of two types of strain 

measurements were performed. In the first type, designated as SR (Strain 

Readers), deformations at the outer surface of both the upper and lower 

face were recorded by means of strain readers (see Fig. 7.3). Notice that 

after cracking within the span of a strain reader, the crack width instead 

of the concrete strain was measured. The location of nine strain readers 

at the bottom face and two strain readers at the top face is shown in 

Fig. 7 .3. The second type of strain measurements designated as SG (Strain 

Gauge) consists of strain gauges glued onto the reinforcement before 

casting. 
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The location of the strain gauges is shown in Fig. 7.3. All signals were 

recorded every two seconds. 

7 .3.2 Test results and discussion 

Load-Deflection 

The jack load versus midspan deflection curves for the similar test 

specimens are plotted in Figs. 7.4 to 7. 7. 

The structural behaviour of the sandwich beams is also numerically 

calculated by means of the finite difference analysis, presented in previous 

chapters. The material properties adopted are described in chapter 6. The 

numerical results are plotted in the same figures with dotted lines. Values 

of both the crack load and ultimate load are summarized in table 7 .3. 
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Table 7.3 Details of the experimental load-deflection relationships 

Specimen Crack Ultimate Type of 
mode 

no. load moment deflection load moment deflection 
( kN 1 [kNm1 (mm] [kN1 (kNm1 ( mm 1 failure 

I 4.26 1.21 1.36 10.78 3.07 16.73 horizon-
tal slip 

2 4.79 1.37 1.34 10.16 2.90 14.50 failure 

3 3.48 0.99 0.88 ll. 77 3.35 17.83 

4 2.63 1.34 1.23 6.09 3.10 13.97 

5 6.31 1.80 0.82 ~ 18.13 ~ 5.17 ~ 30.18 yield of 
the rein-

6 7.13 2.03 0.72 ~ 18.31 ~ 5.22 ~ 28.20 force-
ment in 

7 4.80 1.37 0.65 ~ 14.74 ~ 4.20 ~ 26.94 the 
lower 

8 5.24 1.49 0.73 ~ 14.98 ~ 4.27 ~ 35.79 face 

Bending moment capacities are included in order to facilitate comparison between 

the ten point and four point bending tests. 

The experimentally tested specimens behave in an elastic manner during the early 

loading, continuing to the point of flexural cracking. In all cases cracking is 

followed by a large increase of deflection. The specimens from the same series 

behave very similar up to failure. 

All specimens exhibit considerable post-cracking strength and ductility before final 

collapse. The load-deflection curves in the post-cracking zone however, vary 

significantly between the different types of specimens, dependent on the method of 

shear transfer (with or without shear connectors). 

This difference is caused by the type of faiiure mode. In case of series MR, the 

specimens showed failure due to horizontal slip of the core, near the support. The 

full bending-moment capacity is not reached. In fact, a diagonal tension crack and 

horizontal crack developed within the foamed concrete core near the interface 

between the core and the lower face. There was no bond failure. The typical 

failure of the specimens I to 4 is shown in Fig. 7.8. 
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The final failure of the beams provided with a shear connector was never 

reached in the tests. The tests were finished with a continuing increase of 

deflection together with no substantial increase of the registrated jack 

load obtained from the x-y recorder. This typical load deflection behaviour 

was caused by yield of the main reinforcement. 

The Fig. 7 .4. to 7. 7. show that the numerically calculated load versus 

deflection rei a tionships are in close agreement with the experimental 

results. The failure mode observed in the samples provided with shear 

connectors (yield at the main reinforcement) is affirmed by the numerical 

calculation. In case of the samples without shear connectors, the failure 

due to horizontal slip is predictable by means of the simplified model 

described in chapter 5. If the slip failure had been left out of account, 

the beam would numerically fail in bending due to yield of the 

reinforcement and not by shear (see also Figs. 7.6. and 7.7.) 

Strain readers of the lower face surface 

Typical crack patterns are shown in Fig. 7.9. Details of the crack load, 

crack strain and crack width are given in Appendix A7-2, table AI to A4. 

Typical load-strain relationships are plotted in Fig. 7 .I 0. 
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Fig. 7 .8. Typical failure mode of the specimens without shear connectors 

(series MR) 
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All beams showed several cracks at regular distances, within the measuring 

zone (900 mm) of the reinforced concrete bottom face. The number of 

cracks and therefore the crack width (see appendix A 7-2) depends on the 

percentage of reinforcement of the cracked lower face. The crack spacing 

is also numerically calculated by the discrete crack model described in 

chapter 3. The number of cracks in the reinforced concrete faces is 

numerically calculated with a parabolically distributed tensile load along 

the length. The material properties are given in table 6.4 while the 

following load-versus-slip relationship is adopted, i.e . 

• 
T (0.07 + 0.32 .../Au ) f co,tm [ 7 .1] 

Comparison between the results experimentally measured and calculated 

results are presented in table 7 .4. 

Table 7 .4. The number of cracks calculated 

Specimen percentage of number of cracks 
calculated experimental 

no. reinforcement w% measuring zone total measuring zone 

l/2/3 I ,2 9 13 8 

7/8 1,0 7 II 5,6 

5/6 0,85 7 9 5,6 

The load versus strain relationships obtained from the strain readers L
1 

to 

L
9

, located at the lower face surface show that all cracks in a beam 

arose at an average concrete strain varying from 0.182 mm/m (specimen 

5) to 0.240 mm/m (specimen 2). These strains are fairly high compared 

with the ultimate tensile strain of 0.15 mm/m measured on samples from 

the same cast (see chapter 6). 

The last crack in each beam arose at less than 140% of the first crack 

load, with one exception. 

• The adopted load-versus-slip relationship is the best fitting equations of the experimental results 

presented by Martin ]1973] and Schiess! ]1976) . See also Noakowsky ]1978). 
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Strain readers upper face surface 

Typical load-strain relationships are plotted in Fig. 7 .10. 

Details of the test results from the strain readers located on the upper 

face surface are given in table A5 (Appendix A 7-2). 

Strain gauges 

A typical load-strain relation for various strain gauges is plotted in Fig. 

7 .11. A typical relation between the jack load and the tensile strain 

distribution along the main reinforcement in the lower face of the 

sandwich beam is shown in Fig. 7.12. The fluctuations in the strain 

demonstrate the origin of the cracks. No yield of the main reinforcement 

for the specimens of series MR is observed from the results. 
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Fig. 7.11 Typical load-strain relationships obtained from the strain-gauges 

of sample no. 3 (without shear connectors). 
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7 .4. Long-term tests 

7 .4.1. Test performance 

Long-term bending tests are conducted on 4 simply supported sandwich 

beams with reinforced concrete faces and a foamed concrete core. The 

dimension and the manufacture are described in section 7 .2. The sides of 

the beams are provided with an epoxy coating in order to prevent the 

core from drying up through the sides. This is done in view of realistic 

conditions in case of wide slabs. Two out of four specimens are provided 

with shear connectors. 

A ten-point loading s ys tern is U!!ed. The loading is applied by means of 8 

separated weights of 400 N each, as shown in Fig. 7.13. Twenty-eight days 

after the last concrete face was poured the beams were stored in a 

control room at a relative humidity of 60% and a temperature of 200 C 

together with the control samples described in chapter 6. Four days later 

the beams were loaded. The beams were not cracked after loading. The 

deflections were measured by means of LVDTs at midspan and at the 

supports while the shear deformation of the core was registrated using a 

digital pfender gauge. A schematic view of the tests and the measuring 

devices is shown in Fig. 7.13. The actually tested beams are shown in Fig. 

7 .14. The measurements started at the time of loading of the samples. 

_ measurement of the shear deformation LVDT 

LVDT dead load 

L=2400 
A a, 

7 ="~ ;·· -· :-aeu• 
' , I >, I o 

I ·' ' r--. r • I B-.-.--. Ar· 

(mm) --------------~ 

70 mm ... ... Detail of the shear deformation measurement 

Fig. 7.13 Schematic view of the long-term tests and the measuring devices. 
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Fig. 7.14 Long-term tested sandwich beams 

7.4.2. Test results 

The time versus deflection relationships are shown in the Figs. 7.15 and 

7.16 in case of sandwich beams without and with shear connectors 

respectively. The numerical results, obtained from the model described in 

chapter 4 and the material properties given in chapter 6, are included by 

the dotted lines. 

The actual experimental results (denoted as c in the Figs 7.15 and 7 .16) 

have been slightly adapted in order to allow comparison with the 

numerically calculated deflections. The adaptations are: 

(i) the immediate deflection (t=O) due to the dead-load of the 

beam (denoted with a in the Figs 7.15 and 7 .16) 

(ii) the increase of deflection during the first four days of 

exposure in the control room due to shrinkage and creep caused 

by the dead-load only. (denoted with b in the Figs 7.15 and 

7 .16). The adaptations have been calculated by the numerical 

model. 
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The results show that the deflections calculated are of the same order of 

magnitude as the experimental results. In case the sandwich beams are not 

provided with the shear connectors, the numerically calculated and actually 

tested time versus deflection relationships are similar in shape. The shape 

of the time versus deflection relationship corresponds to the shape of the 

creep and shrinkage curves for both concrete and foamed concrete, 

described in the previous chapter. The beams provided with a shear 

connector show an irregular behaviour in the second and third week after 

loading (t=7 until t=28 days). 

It is noticed that the deflections in case of sandwich beams provided with 

shear connectors are substantially smaller compared with the beams 

without shear connectors. This difference is caused by the following 

parameters: 

(i) the slightly different dimension of the upper and lower faces; 

(ii) the shear connector; 

(iii) the reinforcement in the upper face. 

The influence of these parameters on the deflection at midspan is 

investigated by means of the numerical model. It is shown in table 7.5 

that the different deflections are mainly caused by the dimensions of the 

faces and the shear connectors respectively. The presence of the adopted 

amount of reinforcement in the upperface is of minor importance. 

Table 7.5 The influence of the shear connectors and reinforcement in the 

upper face, calculated by the numerical model. 

Duration of Deflection at midspan (mm) 

time (days) Beam no. 9/10 Beam no. 11/12 (SMR) 

(MR) A B c D 

0 0.98 0.63 0.66 0.65 0.64 

121 4.50 2.33 3.25 3.00 2.58 

A with shear connectors and reinforcement in both faces (see section 7 .2) 

B = without shear connectors and reinforcement in the upper face 

C without shear connectors but with reinforcement in the faces 

D with shear connectors but without reinforcement in the upper face. 

The differences between the deflections in the series MR and SMR-B are 

caused by the different dimensions of the faces. 
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The calculated results given in table 7.5 show that the deflections at t=O 

are hardly affected by the presence of the shear connectors (compare A 

with C). Directly after loading, almost all the shear load T of the core s 
is carried by the foamed concrete. This means that the core is relatively 

stiff immediately after loading compared with the shear connectors that 

are used. However, the foamed concrete core shows a large creep and 

shrinkage. The creep of the foamed concrete caused by the shear load, 

causes a larger shear deformation, and therefore a larger deflection of the 

beam. In case the sandwich is provided with a shear connector, the 

increase of shear deformation is partially prevented. 

Therefore, the shear load T of the core is more and more carried by the s 
shear connector. The shear stress in the core decreases and so does the 

creep. Fig. 7.17 shows the reduction of the shear stresses in the core, 

calculated by the numerical model. It is shown that all the shear load Ts 

of the core is carried by the shear connectors after only a few days. It 

is also shown in Fig. 7.17 that in case the sandwich beams are not 

provided with a shear connector, the shear stress and therefore the creep 

in the foamed concrete core also changes due to creep. In this case the 

shear load is partially transferred to the faces. 
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Fig. 7.17 Numerically calculated shear load in the foamed concrete core. 
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In the calculated results presented in this section, it is assumed that the 

creep and shrinkage behaviour of the core is similar to the prisms and 

hollow circular specimens described in chapter 6, despite the reinforced 

concrete frames and the epoxy coating at the sides. This means that the 

concrete faces are supposed to be moisture permeable. This statement is 

affirmed by comparison between the calculated and measured shear 

deformation, given in Table 7.6. 

Table 7 .6. Comparison between the shear deformations numerically 

calculated and actually measured (mm) • 

Duration of Beams without shear connectors (MR) 

time (days) experimental numerical 

beam beam 

no.9 no. 10 

0 - - 0.01 

28 0.03 0.04 0.10 

121 0.10 0.09 0.13 

• Average result of two measurements at each beam. (see also figure 7.10). 

The comparison be tween the measured and calculated shear deformation 

shows that the creep and shrinkage of the core are not prevented but 

only delayed. 

It is noticed that the foamed concrete core showed small cracks 

perpendicular to the span of the beam 21 days after loading at regular 

distances of about 150 mm. These cracks are caused by shrinkage of the 

foamed concrete. 

7 .5. Discussion and conclusions 

Sandwich beams composed of reinforced concrete faces and a foamed 

concrete core with a density of 600 kg/m3 were constructed and tested in 

bending. Both short-term test and long-term tests were performed. 

Generally, a close resemblance is observed between the test results of 

similar specimens. 
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Short-term tests 

The samples, with an average weight reduction of 40% compared with a 

homogeneous concrete element of the same dimensions, actually showed 

composite action. The specimens behave in an elastic manner during the 

early loading continuing to the point of flexural cracking. The crack load 

was attended by a sudden increase of deflection. However, all beams 

exhibit considerable post-cracking strength and ductility before final 

collapse. The specimen provided with shear connectors, gradually failed in 

bending by yield of the main reinforcement. The specimen without shear 

connectors eventually showed failure induced by horizontal slip. This type 

of failure is marked by a horizontal crack in the foamed concrete core 

near the lower face and a large diagonal tensile-shear crack in the core. 

A number of 5 to 8 cracks are found to be evenly distributed along the 

measuring length of 900 mm round midspan, dependent on the percentage 

of reinforcement in the lower face. The increase of deflection after 

cracking is attended by an increase of all crack widths. 

The numerically calculated load-versus deflection relationships are in close 

agreement with the experimental results. Although failure induced by 

horizontal slip is well predicted by means of a simplified model, further 

research into the actual method of shear transfere in the cracked concrete 

is desirable. 

Long-term tests 

The time versus deflection relationships show an increase of deflection due 

to creep and shrinkage of the uncracked, loaded sandwich beams. In case 

the beams are provided with a shear connector, the immediate deflection 

at t=O is enlarged 2 times at t=l21 days, while this enlargement is 3 

times in case of sandwich beams without shear connectors. The difference 

is caused by both the shear connector which partially prevents the shear 

deformation, and the slightly different dimensions of the faces. 

Although final values have not yet been reached at t=l21 days, it can be 

concluded that the deflections due to creep and shrinkage are small in 

case of an uncracked beam. The results show agreement between tests and 

calculations if creep and shrinkage data from non sealed prisms and 

cilindrical samples stored at the same temperature and relative humidity 

are used. This indicates that the concrete faces do not prevent shrinkage 

of the core despite sealing with epoxy coating along four sides. Therefore 

creep and shrinkage of the core must be taken into account. 
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The numerical results agree with the experimental results within 

engineering accuracy. In case the beams are not provided with a shear 

connector, the deflection caused by creep and shrinkage is overestimated 

at each point in time by about 20%. 

In case the beams are provided with shear connectors, the numerical and 

experimental results are equal at t=l21 days. However, there is a notable 

difference during the first few weeks after loading. 
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8. STRUCTURAL PARAMETERS 

8.1. Introduction 

The influence of the following parameters on the structural behaviour of 

sandwich beams can be studied with the numerical model * described in 

chapters 2 to 5. 

a. Geometry (span; cross-sectional dimensions of faces and core, main 

reinforcement in both faces and shear connectors; cross-sectional shape 

of the faces); 

b. Type of loading; 

c. Material properties (<7-E relationships of the faces, core and 

reinforcements, r-1 relationship of the core, creep and shrinkage of the 

faces and the core including creep of the core under sustained shear 

load). 

In order to get a better understanding of the structural behaviour of a 

reinforced concrete sandwich beam, the influence of the quality of the 

foamed concrete core on the structural performance of the sandwich 

beams is analysed with respect to: 

short-term loading 

(I) load-bearing capacity and the type of failure mode; 

(II) deflection; 

sustained loading 

(iii) enlargement of the deflection caused by creep and shrinkage. 

The following assumptions are made: 

a. The geometry of the beam is kept constant, as given in Fig. 8.1. 

Distinction is made between the type and amount of reinforcement. 

*) Details of the input parameters of the numerical model are described in the manual [Salet and Vianen, 
1990] . 

121 



The sandwich beams subjected to a short-term loading are provided 

with a main reinforcement in the lower face, while in case of the 

sandwich elements under a sustained loading a reinforcement of 100 

mm 2/m in the upper face and shear connectors between the faces are 

also taken into account. 

The main reinforcements are located in the centre of the faces. The 

shear connectors are located between the reinforcements in the upper 

and lower face, along the entire span. 

2 
I ' 
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Fig. 8.1. Geometry of the sandwich beam. 

b. The beam is subjected to a uniformly distributed load. In case of the 

short-term type of loading, increments of I kN/m' are used. The 

long-term loading is taken as the sum of the dead load (2.7 kN/m'), 

based on p == 2400 kg/m 3 and pf == 600 kg/m 3 , and 50% of an co c 
arbitrarily chosen service load (0.5 * 4 kN/m ') of 2 kN/m', together 

being 4. 7 kN/m'. 

c. The material properties of the concrete faces and the steel 

reinforcements are kept constant. The material properties are given in 

the tables 8.1 and 8.2. 
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Table 8.1 Material properties of the concrete faces. 

Type of material property Face no. 

l (lower face 2 (upper face) 

stress-strain compression a 32.500 28.000 

relationship (3.5 o/oo) 
I) 

b 6.8*106 6.5*106 

Cl = ae + bc3 tension a 32.500 28.000 

(0.11 o/oo) 
1) 

b -8.9*107 -1.1*10 8 

shrinkage 2) 

sh = a • 
1000 • t 33.0*10-6 40.0*10- 5 f 1000 • t + 9.3*104 a co 

creep 2) 

t • 1000 • t 2.6 3.1 </>co = a 1000 • t + 9.3*104 a 

1) Ultimate strain capacity 

2) Dutch practical code VB74/84, R.H. = 60%, T 20° and h "' 175. m 

Table 8.2 Material properties of the steel reinforcements in the faces and 

the shear connector. 

Stress [N/mm 2 ] Strain 
(! 

[mm/m) 0 r,u ~---

vr: 0 r,y I 
(! 0 f f I r ,y r,u r,y r ,u I 

I €. 

500 550 2.5 5.0 ( € r ,y r,u 

The sandwich beam is calculated with the following structural parameters 

and parameter values: 

short-term loading 

a. The amount of main reinforcement in the lower face (see Fig. 8.1); 

A I = 300, 400, 500, 600 (mm 2); r, 
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b. The· material properties of the foamed concrete core. 

In order to reduce the weight of the structural element and in order 

to get sufficient thermal insulation, foamed concrete with a low 

density (~ 800 kg/m 3 ) is required. The structural properties of such a 

type of foamed concrete not only depend on the density but vary 

significantly due to the mix proportion, the way of manufacture, the 

type of foaming agent and the storing conditions. 

The properties of the foamed concrete with p ~ 800 kg/m 3 , chosen 

from the scarce literature and the experiments described in chapter 6, 

are given in table 8.3. 

sustained loading 

a. The amount of the cross-sectional area of the shear connectors 

between the faces (Asc>· Asc = 0, 125 and oo (mmz). Asc oo is used 

to gain insight into the order of magnitude of the shear deformation in 

the cases Asc 0 and Asc 125 (mmz). In all cases the amount of 

reinforcement in the lower face is taken as 500 mm 2 and in the upper 

face as 100 mmz. 

b. The material properties of the foamed concrete core, as given in table 

8.3. 

Table 8.3 Properties of the foamed concrete core 

Type of Designation of the foamed concrete 

property 2.0 FC2.5 FC3.0 FC3.5 

f fc,cm [N/mmz] 1.5 2.0 2.5 3.0 3.5 

short-term Ere [N/mmz] 600 900 1200 1500 1800 

f (N/mm 2 ] ff /10 fc,tm c,cm 

Gfc (N/mm 2 rad] Er/3 

Mohr's intrinsic curve T = (0.177 * ffc,cm) - 1.24 * CT 

sh 
Efc [ mm/m] -3.4*10-4 + 8.6* t0-4*ln(t) 

long-term t 0.25 1.8*ln(t) ¢de + 
' t 

¢,,rc 1.40 + 2.4*ln(t) 
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The beam is divided into 37 segments along the span and 10 fibres for 

each layer. The enlargement of the deflection under sustained load is 

calculated by the following polynomial series of the second order (in days): 

1,4,9, .... , 324,361. 

8.2. Numerical results 

Short-term loading 

The load-bearing capacity of the beam and the type of failure mode are 

given in Fig. 8.2. with respect to the amount of reinforcement in the 

lower face and the tensile strength of the foamed concrete core. 

The following notations are used: 

A-A Failure in bending due to yield of the main reinforcement 

B-B Failure due to shear 

C-C Failure due to horizontal slip 

2S 

A-A I 
~ 

s 
"--. z 20 ~ 

>< 
1-< -u 
< 
IJ.. IS < u 
D z -~ 10 < 

'if <l A .. 60 
/ r 

v.A-A ...- 1 ...-
B-B ...-

<l A - so ...- r 
~ L-

...-
I A-A - \C-C 

7 \1 <l A - 40 - r - I I-
...-

l7 A-A 
<l A - 30 -· r 

[.l.l 
IXl 

I 

0 
< 
0 s ,..l 

I 

0.15 0.20 0.25 0.30 0.35 0.40 

. TENSILE STRENGTH OF THE CORE (N/mm2) 

Fig. 8.2 The load-bearing capacity and the type of failure mode (t=O). 
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Fig. 8.2 shows that the load-bearing capacity in some cases is affected 

and in other cases is not affected (yield of the reinforcement, A-A) by 

the tensile strength of the foamed concrete core (shear failure, B-B). It is 

also shown by means of the dotted line, that the ultimate load-bearing 

capacity will not be reached in about 50% of the cases since failure is 

induced by horizontal slip, as calculated from the simplified model 

described in chapter 5. 

Failure induced by horizontal slip is likely to be avoided in case of a 

sufficiently high tensile strength of the foamed concrete core, together 

with a relatively low amount of reinforcement. 

Typical load versus deflection rei a tionships of the sandwich beams for 

different types of foamed concrete cores are given in Fig. 8.3, in case of 

A 
1 

; 500 mm 2 • The load versus deflection relationships are compared r, 
with a traditional fully concrete element and with a sandwich beam with 

a foamed plastic core. The properties of the foamed plastic core 

(polyurethane with a density of 50 kg/m3
) are given in table 8.4 [ Salet, 

1988]. In case of a fully concrete beam, the material properties of the 

'core' are taken equal to the concrete of the upper face (see table 8.2). 

Details of the crack load, dead load and service load are given in table 

8.5. The service load given in Table 8.5 is not the total service load but 

the load before cracking of the reinforced concrete lower face. 

Table 8.4 Material properties of polyurethane with p 50 kg/m 3 • 

Type of material property 

stress-strain compression 

re Ia tionships (4.0 %)1) 

(J = a< + be2 tension 

(6.7 %)1) 

r = a< + bfZ shear 

(20 mm/m*rad)l) 

a 

b 

a 

b 

a 

b 
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Fig. 8.3 Typical load versus deflection relationships t = 0 in case 

A 1 = 500 (mm 2). 
r' 

Table 8.5 Comparison of the service loads before cracking between 

different types of cores. 

Type of load Type of core 

polyurethane foamed concrete concrete 

FCI.O FC2.5 

crack load [kN/m'] 3.7 7.2 7.3 9.5 

dead load [kN/m'] 1.7 2.7 2.7 5.7 

service load [kN/m'] 2.0 4.5 4.6 3.8 

before cracking 

Sustained loading 

The enlargement of the instanteneous deflection (t=O) at midspan (see Fig. 

8.3) due to creep and shrinkage of the faces and the core after 361 days 

is given in Fig. 8.4. The structural parameters included are the shear 

modulus of the foamed concrete core and the total amount of 

cross-sectional area of the shear connectors Asc· The results of the 

traditional fully concrete beam under the same sustained load as the 

sandwich beams have been included. 
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Fig. 8.4 Enlargement of the deflection at midspan at t=361 days compared 

with the immediate deflection at t=O; k = wt"'361 1 wt=O. 

Fig. 8.4 shows that in case of an infinite stiff shear connector (A = oo), 
sc 

the enlargement of the immediate deflection wt=O after 361 days (wt=361 ) 

is not affected by the shear modulus of the core, since all the shear load 

is carried by the shear connectors. The comparison between the sandwich 

beams with A = oo and A = 0 shows that the deflection of the 
sc sc 

sandwich beam is indeed enlarged by the shear deformation of the foamed 

concrete core under a sustained shear load. 

In case of A = 125 (mm), the enlargement k increases together with the 
sc 

adopted shear modulus of the core. The reason for this is that the 

deflections after 361 days (wt""361 ) are independent of the shear modulus 

of the foamed concrete core and only depend on the shear stiffness of 

the shear connector, while the immediate deflections (wt=O decrease with 

larger shear moduli of the foamed concrete core. 
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Time versus deflection relationships of the sandwich beams with foamed 

concrete cores are plotted in Fig. 8.5. Time versus deflection relationships 

of a fully concrete element under the same load as the sandwich beams, 

being 4.7 kN/m', and a fully concrete element under the sum of actual 

dead-load (5. 7 kN/m ') and SO% of the service load (0.5•4 kN/m '), being 

7. 7 kN/m' are also included. 

The sudden enlargement of the deflection in case of a traditional fully 

concrete beam (q • 7.7 kN/m') after 121 days, is caused by cracking of 

the lower face due to the redistribution of stresses. 
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Fig. 8.5 Time versus deflection relationships 

8.3 Conclusions 

Short-term loading 

In figure 8.2 it is shown that: 

(i) failure induced by horizontal slip is not likely to happen in case 

of a sufficiently high tensile strength of the foamed concrete core 

together with a relatively low amount of reinforcement; another, 

and by far the most certain method to avoid this kind of 

unwanted failure, is the use of shear connectors. 
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In figure 8.3 and in table 8.5 it is shown that: 

(ii) the deflection of a sandwich beam with a foamed plastic 

(polyurethane) core is strongly affected by the shear deformation; 

the shear deformation is of minor importance in case of sandwich 

beams with foamed concrete cores; the stiffness of sandwich beams 

with foamed cores is within the same order of magnitude with 

fully concrete beams; 

(iii) the crack load of sandwich beams with foamed concrete cores is 

relatively low compared with fully concrete beams; however, the 

crack load will generally not be reached since the dead load of 

the beam is even more reduced by the low density of the foamed 

concrete core. 

Long-term loading 

The following conclusions can be drawn from the figures 8.4 and 8.5: 

(iv) From the comparison between sandwich beams with only a foamed 

(v) 

concrete core (A = 0) and sandwich beams with an infinite stiff 
sc 

shear connector (A .. oo), it can be concluded that the sc 
deflections are indeed enlarged by the shear deformation of the 

core due to the sustained shear load. 

The deflection of the sandwich beams with foamed concrete cores 

is therefore affected by the type of foamed concrete; 

In case the sandwich beam is provided with a shear connector (Asc 

= 125 mm2/m '), the enlargement of the deflections is mainly 

caused by creep and shrinkage of the faces only. The shear 

deformation of the core under sustained load is of minor 

importance since the shear load is transferred from the foamed 

concrete to the shear connector (see also chapter 7, section 7.4.2); 

(vi) The time-dependent deflections of a fully concrete beam are 

smaller compared with the time-dependent deflections of a 

sandwich beam with a foamed concrete core, in case of the same 

permanent loading. The deflections of the concrete beam will 

increase largely in case the actual dead-load is taken into account 

due to cracking. 
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9. SUMMARY AND CONCLUSIONS 

A structural sandwich element is a particular type of composed structure. 

The cross-section consists of two strong and stiff sheets (faces) connected 

by a weak core commonly consisting of insulation material. The favourable 

stiffness to weight ratio, combined with the good thermal insulation have 

promoted the use of sandwich elements. In a structural sense, the bending 

moment is carried by the stiff faces and the shear load by the core. The 

shear deformation of sandwich elements must emphatically be taken into 

account, since the transverse shear rigidity is provided by the rei a tively 

weak core. Bernouilli's law of plane-cross sections is therefore no longer 

valid. 

In this study, the advantages of sandwich elements are to be combined 

with the typical advantage of concrete by developing a fully cement-based 

sandwich. The aim of the study is to analyse the structural behaviour of 

sandwich beams, particularly composed of reinforced concrete faces and a 

foamed concrete core. Both short-term loading and sustained loading are 

taken into account. Foamed concrete is a very lightweight concrete, 

consisting of cement, water, fine sand and a foaming agent. Contrary to 

aerated autoclaved concrete, foamed concrete hardens under normal 

atmospherical conditions. Compared with normal concrete (p = 2400 kg/m 3
), 

the density can be lowered to about 400 kgjm 3 , depending on the amount 

of foam. The lower density considerably improves the thermal insulation 

properties but at the expense of the structural properties like strength and 

stiffness. 

The study described in this thesis is concerned with the structural 

behaviour of simply supported sandwich beams, subjected to a symmetric 

and static type of load. Normal load and instability phenomena are left 

out of account. 

The structural behaviour of fully concrete sandwich beams is affected by a 

number of effects which are not or insufficiently considered in the 

classical analysis of sandwich beams. These effects are: 
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(i) the bending stiffness of the core; 

(ii) the physical nonlinear behaviour, including cracking of reinforced 

concrete; 

(iii) the creep and shrinkage of the faces and the core, including creep 

of the core under a sustained shear load. 

After a short introduction and some explanatory notes in chapter 1, a 

numerical model is described in the chapters 2 to 5, for the calculation 

of the load versus deflection relationship and the time versus deflection 

relationship of sandwich beams. The special purpose computer program that 

has been developed, based on the numerical model, is suitable for a PC 

environment. 

In chapter 2, generalized differential equations are described, taking the 

shear stiffness as well as the bending stiffness of the core into account. 

It is demonstrated that in case of various stiffnesses of the core, the 

theory of plane cross-sections (Bernouilli, G = oo) fades into the classical c 
theory of sandwich beams (E 0) with the equations presented. The 

c 
differential equations are numerically solved by means of the finite 

difference method. 

It is demonstrated that the finite difference analysis presented: 

- is suitable for a large range of both geometrical and physical input 

data, without numerical problems; 

- converges fast. 

Physical nonlinearity, including a nonlinear r-1 relationship, is taken into 

account by means of an iterative algorithm based on the secant modulus 

method. Cracking of reinforced concrete is calculated by means of a 

smeared-out concept, since the adopted finite difference approach is not 

suitable to take discrete cracks into account. The application of the 

smeared-out concept is supported by a separated discrete crack analysis 

considering a reinforced concrete bar (the face of a sandwich beam) 

subjected to a nonuniformly distributed tensile load along the length. This 

study has shown that: 

- in case of a uniformly distributed load acting on a beam, the 

calculated deflection depends on the chosen number of segments in 

which the beam is divided in view of the finite difference analysis; a 

number of segments of about n = L/h is needed, in order to avoid 

casual failures; 
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- application of the fictitious stress versus strain relationships by which 

the tension stiffening is taken into account, can result in a 

considerable overestiiaation of the stiffness of cracked reinforced 

concrete in case the relationship is based on a reinforced concrete 

bar subjected to a uniformly distributed tensile load along the entire 

bar; 

- caused by the nature of a uniformly distributed load acting on a 

beam, cracks arise at relatively short distances compared with e.g. a 

pure bending moment; generally the tension stiffening is small and 

can be left out of account. 

The numerical model is extended in the fourth chapter by the time­

dependent behaviour caused by creep and shrinkage. Creep and shrinkage 

are taken into account by means of a generalized relaxation method, by 

which the initial strains due to creep and shrinkage are counterbalanced 'by 

means of dummy restraints. The so-called step-by-step analysis is based on 

the superposition principle of McHenry, and takes the stress-history into 

account. The method has the additional advantage that it provides insight 

into the problem under consideration. It is demonstrated that: 

- in case other solutions are available, the results are in close 

agreement; 

- the deflections and stress-redistribution due to shrinkage of the faces 

are not affected by the shear stiffness of the core; 

- the deflections and stress-redistribution due to creep of the faces are 

only affected by the shear stiffness of the core in case of sandwich 

beams with bending stiff faces; 

the outcome of the creep of the core under sustained shear load 

depends on the stiffness of the core; both in case of stiff and weak 

cores the increase of deflection and redistribution of stresses are 

small. 

T~e description of the numerical model is finished in chapter 5 by means 

of a reflection on the possible failure modes. 
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The application of the numerical model in order to predict the structural 

performances of the sandwich beams composed of reinforced concrete faces 

and a foamed concrete core, has been1 verified by means of experimental 

research described in the chapters 6 and 7. 

The experimental research into the mechanical properties of the concrete 

faces and the foamed concrete core is described in chapter 6. 

Special attention has been paid to the structural properties of the foamed 

concrete (p = 600 kg/m 3) subjected to both a short-term and a sustained 

shear load. Torsion tests have been developed for this puriJOSe. The 

properties of the foamed concrete are characterized by the low (tensile) 

strength and stiffness and the large creep and shrinkage. A summary of 

the test results is presented at the end of the chapter. Both short-term 

tests and long-term tests on sandwich beams composed of reinforced 

concrete faces and a foamed concrete core are described in chapter 7. 

One out of two beams were provided with additional shear connectors. 

Preliminary research, described in appendix 7 .I to chapter 7, showed that 

the quality of the structural adhesion between foamed concrete and normal 

concrete depends on the method of manufacture. In the sandwich beams 

tested, the concrete of the faces is poured on already hardened foamed 

concrete, ensuring a good structural adhesion. The tests on the sandwich 

beams showed: 

- actual composed action resulting in a stiff element; 

a considerable load-bearing capacity and post-cracking ductility in the 

elements with and without shear connectors; 

failure induced by a typical kind of shear failure in case of the 

sandwich beams without additional shear connectors, marked by a 

large diagonal tensile-shear crack and a horizontal crack in the 

foamed concrete core near the tower face (= horizontal slip); 

- failure induced by yield of the main reinforcement in case of the 

elements provided with additional shear connectors; 

- an enlargement of the immediate deflection by a factor 2 or 3 after 

121 days in case of elements with and without shear connectors, 

respectively; the concrete faces are not a damp-proof course; creep 

of the foamed concrete core under sustained load is not prevented, 

resulting into a contribution to the enlargement of the deflection; 

- close resemblance to the results calculated numerically. 
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The sensitiveness of the structural behaviour of the sandwich beams for 

various types of foamed concrete is traced by means of the numerical 

model (chapter 8). It is demonstrated that: 

- failu1 e induced by the so-called horizontal slip is not likely to happen 

in case of a sufficiently high tensile strength of the foamed concrete 

core together with a relatively low amount of reinforcement in the 

lower face; however, application of an additional shear connector is 

advisable for the time being with a view to safe structural failure 

mode; 

- the structural performance of the sandwich beams is comparable with 

familiar fully concrete elements; the shear deformation of the foamed 

concrete core is neglected in case of a short-term loading; in case 

of a long-term loading the enlargement of the deflection due to the 

shear deformation must be taken into account, although it does not 

affect the serviceability of the sandwich beams; generally, the crack 

load will not be reached, thanks to the low dead load. 

Supplementary research into the structural behaviour of sandwich beams 

composed of reinforced concrete faces and a foamed concrete core under 

temperature and non static types of load is recommended. 
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Appendix A2-l Elaboration of the equations [ 2.13a] and [ 2.13b] 

Expressing the centre-line of the sandwich beam as the reference-line 

[ zref - zps] (see section 2.2.6.) equation [2.11) is given by means of 

[2.11*] 

The substitution of the equations [ 2.11* and 2.12) into the equation of 

equilibrium [ 2.6b]: 

(E a 2 A ) ~" + (E A a (zp 111 111 s 

+ (E a 2 A ) ~" + ( E A a (h + h 221 2221 c 

+ (E a 2 A) ~" + (Ecic) c c c 

a>) (~" 
2 

( -E I w'" - E I w"' + (Gc b(a 1 + a 2)) (~ + w')) = 0 
1 1 2 2 

Rearranging of this equation results in: 

(E a 2 A + E a 2 A E a 2 A ) ~" 111 222 CCC 

(E1I1 + E2I2 + Ecic) w"' 

+ 

(E A a (zp h ) + E A a (h + h - zp - a ) + E I ) (~" + w"') 1 11 1- 1 2 2 2 1 c s 2 cc 
+ 

(G b (a + a >) (~ + w') 0 c 1 2 

*) with reference to the centre-line 

137 



With 

B
1 

E I · B = E I · B = E I 
1 1' 2 2 2' c c c 

the former equation can be written as, 

(B + B + B ) w"' + R (~" + w"') + B (~" + w'") 
1 2 c c 

and therefore 

(B + B ) ~" + R (~" + w'") - (K) (~ + w') = 0 s c [2.13a] 

Substitution of the equation [2.12] into the equation of equilibrium [2.6c]: 

+ q = 0 

So, with the stiffness definition given before, 

- (B
1 

+ B
2

) w"'' + (K) (~' + w") + q 0 [2.13b] 
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Appendix A2-2. Elaboration of the equations [ 2.15a] and [ 2.1 Sb] 

Rearranging equation [ 2.13n] results in: 

• 
(B + B + R) 1" - (B + B ) w..,. - (k) 1c s c c s c 0 [2.13b] 

• 
The first order derivative of equation [2.13b] is therefore given by: 

(B + B + R) 1"' - (B + B ) w'"' - (k) 1' = 0 s c s c c 

The first order derivative of the shear deformation 1~ is given by 

equation ( 2.14b]: 

,. = 
c 

w"" - 9. 
k 

The third order derivative of the shear deformation 1;• follows from the 

second order derivative of equation [2.14b]: 

w'"'" JL... 
- k 

Substitution of the former equations into the first derivative of equation 

[2.13*b] results in: 

and therefore, 

w""" w"" 

From this equation [ 2.15a) is calculated by means of two times 

integration. 
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Appendix A3-l Numerical modelling of the shear connectors 

T = 1 
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' I 

psi 

·------'---=t--
dx 

Figure AI Geometry of the shear connectors and the correlation with the 

segmentary length dx. 

In order to link on to the sandwich analysis, the shear stiff ness of the 
* shear connectors is translated into a fictitious shear modulus G .. 
sec_sc,C,J 

The fictitious shear modulus is calculated from: 

* G . 
sec_sc,C,J 

T=l 
[AI] b*(ps2-ps 1 )*1 . 

C,J 

with 

1c,J· 2*dL .*sin(a) I h SC,C,J C 
[A2] 

dL . ( dx ) I (E *A ) 
sc,C,J 2sin2(a) sec_sc,j sc 

[A3] 

E • = [ ( 1 * h ) I (2 * sin( a))] I L 
SC,C,J C C SC 

[A4] 

The normal stresses in the shear connector follow from the stress-strain 

relationship. The shear load in the shear connectors is therefore given by, 

T . 
SC,C,J 

a . *A *2sin(a) 
SC,C,J SC 

[A5] 
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Appendix A4-I Application of the relaxation method to creep of the core 

under shear load. 

In the first stage of the analysis the external shear load T~x is resisted 
J 

by both facing and core. 

ex + T. 
J t ex 

T. 
J 

t,cr ( . The creep strain of the core "' . equation ( 4.9]) is prevented by a 
d C,j 

dummy restraint T~' is given in equation [ 4.10c]. 
J 

t,d t 
T. 

J 

t,d 
T. 

J 

In the second stage of the analysis, the actual shear deformation of the 

core is calculated from the sum of the external force T~x and the 
J 

dummy restraint T .t,d (equation ( 4.11 b ]). 
J 

ex t,dl 
T. - T. 

j J 

ex t,d 
T. - T. 

J j 

The shear stress in the core is calculated from the sum of the actual 

strain calculated in the second stage of the analysis and the 

time-dependent relaxation strain, i.e. "'~,j - "'~',jr 
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Appendix A6-l Elaboration of the torsion test 

The torsional moment Mt is calculated from 

F 
v 

2cosa * D (see Fig. 6.4 and Fig. 6.5) [ 6.1 ] 

The rotation is calculated from 

del> Arctan [(d_LVDTla d_LVDTlb) + (d_LVDT2a d_LVDT2b)1 
dx = ------------::--:------------ [ 6.2] 

(see Fig. 6.4 and Fig. 6.5) 

From these test results the stress-strain relations were calculated. The 

effects of both a non-uniform stress distribution and a physical nonlinear 

response were analytically modelled. 

The basic equations are (see Fig. 6.4): 

1 = r dx (deformation-strain relation) 

(stress-strain relation) 

M = J r r dF 
F 

(equation of equilibrium) 

Substitution of equation [ 6.4] into equation (6.5] gives 

M 

so M 

del> n J E bn ( r dx ) r dF, 
F 

,.... b del> [ rn+3 ] rl 
Z1r u n dx n+3 r2 

[ 6.3 J 

(6.4 J 

(6.5 1 

[ 6.61 

If both the moment-rotation curve and the shear stress-strain are fitted by 

the nth order polynomial functions 

respectively, then bn [ 6. 7] 
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APPENDIX A 7-1 Four point bending tests on small sandwich beams 

composed of concrete faces and a foamed concrete core 

Introduction 

With a view the requirements to be set for a proper and reliable adhesion 

between concrete and foamed concrete, an experimental study was 

established. Four points bending tests were performed on sandwich beams 

composed of concrete faces (without reinforcement) and a foamed concrete 

core with a small ratio of slenderness. The parameter in this study was 

the cast order of the faces and the core. 

Specimens and material properties 

The dimensions of the specimens are shown in figure AI. 

concrete face 

foamed concrete core 
25mmO 
50 mrn · 

25 mm 
concrete face 

500 (mrn) 100 mm 

Figure A I The dimensions of the small concrete sandwich beams. 

Three series of six samples each were casted. The cast orders used are 

given in table AI. The duration of time between each cast was 48 hours. 

Table AI 

series 

Et) 
last~ 00 no. '( J 

lower concrete foamed upper 
l face concrete concrete face 

foamed lower upper 
2 concrete concrete concrete face core 

lower concrete upper concrete 
face + foamed face 3 on the fresh 
concrete 
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APPENDIX A7-l Continued 

The specimens were cover~d with foil after each cast and stored at a 

temperature of 20°C and a relative humidity of near 100%. Twenty-eight 

days after the last layer was poured, the samples were demoulded and 

tested. 

The mix proportions of both concrete and foamed concrete conform to the 

descriptions given in table 6.2 and table 6.3. The material properties 

closely correspond with the data summarized in table 6.4. 

Test performance 

A schematic view of the test is given in figure A2 and figure A3. The 

tests were deformation controlled at a rate of 0.05 mm/min measured at 

the hydraulic jack. Although the objective of the test is only concerned ' 

with the failure load, deformations were measured by means of six LVDTs. 

The deflections at midspan are compared with the numerical model (see 

chapters 2 and 3). 

I 
I 

~ 

I 

1 I 
~ 

100 mm 

500 mm 

-· 

Figure A2 Schematic view of the testing equipment. 
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APPENDIX A7-l Continued 

Test results 

The ultimate load bearing capacity is given in table A2. 

Table A2 The jack loads (P) (N) at failure. 

specimen series no. 
no. 

I 2 3 

1 0 6415 3366 
2 4922 6385 4560 
3 2926 6985 3377 
4 5292 6520 1966 
5 1988 7120 6250 
6 5110 5812 0 

mean 3373 6546 3088 
standard 
deviation 
factor 63% 7% 61% 

The samples from cast no. I and cast no. 3 showed failure caused by 

horizontal slip in the core near the lower face. A thin film of foamed 

concrete (t 1 mm) present at the separate concrete lower face, makes it 

believable that failure has been caused by a substantial shrinkage of 

foamed concrete during hardening. Since remainders of foamed concrete 

remain on the separated concrete face it is believed that the adhesion is 

sufficient. 

The samples from cast no. 2 failed in bending without any damage to the 

concrete - foamed concrete adhesion. The typical failure modes are shown 

in figure A3. 

The jack load P versus the average deflection at midspan is shown in 

. figure A4 for three typical measurements, together with the numerically 

calculated result. The linear material properties used in the numerical 

analysis are: 

E = 34.000 N/mm 2 • E co ' fc 400 N/mm 2 rad. 
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failure due to horizontal slip 

failure due to bending 

Figure A3 Typical failure modes 
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8 

• 
+ 

z 6 
numHrical alculeted 

~ deflection shear 

2 deformatio included) 

0 4 
..J 

~ 
0 
<( 
J 2. 

0~--------~--------~--------~--------~--------~ 

0.00 0.05 0.10 0.15 020 025 

DEFLECTION AT MIDSPAN [mm] 

Figure A4 Actual deflection at midspan and comparison with the numerical 

results. 

Conclusions 

From the test results, cast order no. 2 foamed concrete core => concrete 

lowerface => concrete upperface is preferred. The actual deflection 

measured shows that in case of specimens with a small ratio of 

slenderness the shear deformation contributes substantially to the total 

deflection. The numerical results are in close agreement with the 

experimentally determined deflection if the shear deformation of the core 

is taken into account. 
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APPENDIX A7-2 Details of the crack patterns 

Table AI Details crack pattern specimen no. l (without a shear connector) 

Crack Jack Moment Concrete strain Crack width Ultimate crack at mid-no. Load before cracking after cracking width 
[KN] span 

[mm/m] [mm] [mm] 
fKNml 

l 4.10 1.17 0.129 0.081 0.245 

2 4.24 1.21 0.144 0.043 0.234 

3 4.44 1.27 0.184 0.090 0.341 

4 4.61 1.33 0.247 0.091 0.337 

5 5.04 1.44 0.221 0.103 0.328 

6 5.52 1.57 0.221 0.096 0.260 
' 

7 5.75 1.64 0.363 0.068 0.230 

Remark: strain reader L5 was defective 

Table A2 Details crack pattern specimen no. 2 (without a shear connector) 

Crack Crack Concrete strain Crack width Ultimate crack 
no. Load Moment before cracking after cracking width 

[kN] [kNm] [mm/m] [mm) [mm] 

1 4.58 1.30 0.297 0.138 0.620 

2 4.70 1.34 0.287 0.061 0.307 

3 4.73 1.35 0.233 0.087 0.385 

4 4.90 1.40 0.220 0.051 0.186 

5 4.97 1.42 0.204 0.040 0.284 

6 5.01 1.43 0.221 0.092 0.391 

7 5.10 1.45 0.226 0.084 0.295 

8 5.21 1.48 0.234 0.101 0.389 
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APPENDIX A 7-2 Continued 

Table A3 Details crack pattern specimen no. S (with a shear connector) 

Crack Crack Concrete strain Crack width Ultimate crack 
no. Load Moment before cracking after cracking width 

[kN] [kNm] [mm/m] [mm) [mm] 

1 6.17 1.76 0.086 0.091 >1.003 

2 6.17 1.76 0.151 0.063 >0.699 

3 6.31 1.80 0.155 0.200 > 1.458 

4 6.71 1.91 0.191 0.190 >0.978 

s 7.86 2.24 0.221 0.140 >0.499 

6 16.27 4.63 0.289 0.300 >0.369 
' 

Remark: strain reader LS was defective 

Table A4 Details crack pattern specimen no. 6 (with a shear connector) 

Crack Crack Concrete strain Crack width Ultimate crack 
no. Load Moment before cracking after cracking width 

[kN] [kNm] [ mm/m I [mm] [mm] 

1 7.13 2.03 0.130 0.101 >1.355 

2 7.66 2.18 0.277 0.169 >1.188 

3 8.14 2.32 0.227 0.068 >0.654 

4 8.22 2.34 0.167 0.109 >1.278 

s 8.22 2.34 0.219 0.169 >2.084 

Table AS Details concrete strains upper layer surface at midspan 

Specimen Crack load Concrete strain [mm/m] 
no. [kN] 

g ultimate 

4404 - 1.154 

2 4765 - 1.317 

s 6307 - 2.028 

6 7662 - 1.736 
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SAMENV A ITING 

Een sandwich element is een samengestelde konstruktie waarvan de 

doorsnede is opgebouwd uit twee stijve huidplaten die onderling zijn 

verbonden door een slappe kern van isolatiemateriaal. Een sandwich wordt 

gekenmerkt door de bijzondere combinatie van een laag eigen gewicht en 

een hoge stijfheid, tesamen met een goede thermische isolatie. In 

konstruktieve zin wordt het buigend moment door de stijve huidplaten en 

de dwarskracht door de relatief slappe kern opgenomen. De dwarskracht 

opname door de kern gaat, gezien de geringe stijfheid van de gebruikelijke 

isolatie materialen, gepaard met dwarskracht vervormingen. Hierdoor blijft 

de doorsnede van een sandwich element niet meer vlak en is de stelling 

van Bernouilli derhalve niet meer toepasbaar. 

In deze studie worden de voordelen van sandwich elementen gecombineerd 

met de specifieke voordelen van beton konstrukties door de ontwikkeling 

van een volledig cement-gebonden sandwich element. Doel van het 

onderzoek is het beschrijven van het konstruktieve gedrag van sandwich 

elementen met gewapend betonnen huidplaten en een schuimbeton kern 

onder zowel een korteduur- als een permanente belasting. 

Schuimbeton is een extreem Iicht beton vervaardigd uit cement, water, 

zand en een schuimmiddel. Schuimbeton verhardt, in tegenstelling tot 

gasbeton, onder normale atmosferische omstandigheden. In vergelijking tot 

grindbeton (p = 2400 kg/m 3) kan de volumieke massa, afhankelijk van de 

toegepaste hoeveelheid schuim, tot ongeveer 400 kgjm 3 worden 

teruggebracht. De afname van de volumieke massa komt enerzijds ten 

goede aan de thermische isolatie waarde maar gaat anderzijds ten koste 

van de konstruktieve eigenschappen. 

Het onderzoek bescbreven in deze dissertatie beperkt zich tot bet gedrag 

van Jiggers over twee steunpunten met een statische en symmetrische 

belasting. Belasting in de richting van de overspanning en instabiliteit zijn 

niet beschouwd. 

Bij bet konstruktieve gedrag van de betonnen sandwich elementen speelt, 

naast de genoemde dwarskracht vervorming, een aantal aspecten een rol 

waarmee in de 'klassieke' sandwich theorie geen of in onvoldoende mate 

rekening wordt gehouden. Deze aspecten zijn: 



(i) de buigs tijfheid van de kern; 

(ii) fysisch niet-lineair gedrag, inclusief scheurvorming; 

(iii) krimp en kruip van de huid en de kern, inclusief kruip van de kern 

onder permanente schuiflast. 

Na een inleiding en een toelichting op de gemaakte keuze in hoofdstuk I, 

wordt in de hoofdstukken 2 tot en met S een computer programma 

beschreven, waarmee last-vervormings relaties en tijd-vervormings relaties 

van sandwich elementen bepaald kunnen worden. Het 'special purpose' 

programma is geschikt voor een pc-omgeving. 

In hoofdstuk 2 worden gegeneraliseerde differentiaal vergelijkingen 

opgesteld, waarmee naast de schuifstijfheid ook de buigstijfheid van de 

kern in rekening kan worden gebracht. De differentiaal vergelijkingen 

worden numeriek opgelost met de eindige differentie methode. 

Fysische niet-lineariteit, waaronder ook een niet-lineaire f'-1 relatie voor de 

kern, wordt in hoofdstuk 3 in rekening gebracht met een iteratief 

algoritme (successieve substitutie) gebaseerd op de secant-modulus. 

Aange zien met de eindige differentie analyse geen discrete scheuren kunnen 

worden beschouwd, is scheurvorming in rekening gebracht met een 

uitgesmeerd concept. De toepassing van het uitgesmeerde concept is met 

een afzonderlijke discrete scheur analyse, voor een gewapend be tonnen 

staaf onder een niet uniform verdeelde trek belasting, onderbouwd. 

In het vierde hoofdstuk is het model uitgebreid met de tijdsafhankelijke 

invloedsgrootheden krimp en kruip, zonder dat de differentiaalvergelijkingen 

hiervoor zijn aangepast. Hierdoor wordt een zo groot mogelijke vrijheid 

voor het invoeren van krimp en kruip relaties gewaarborgd. Het model 

waarmee krimp en kruip in rekening worden gebracht is gebaseerd op de 

relaxatiemethode, waarbij optredende initU!le vervormingen worden 

gecompenseerd door vasthoudkrachten. Hierbij wordt gebruik gemaakt van 

het superpositie beginsel van McHenry. Door middel van een 'step-by-step' 

analyse wordt rekening gehouden met de spannings historie als gevolg van 

optredende herverdelingen. Het numerieke model wordt in hoofdstuk S 

afgesloten met een bespreking van de mogelijke bezwijkvormen van de 

sandwich. 



De toepassing van het numerieke model op de betonnen sandwich 

elementen is geverifieerd met experimenteel onderzoek dat wordt 

beschreven in de hoofds tukken 6 en 7. 

In hoofdstuk 6 wordt het onderzoek naar de eigenschappen van de 

toegepaste materialen beschreven. Bijzondere aandacht is hierbij besteed 

aan de eigenschappen van het schuimbeton (p = 600 kg/m 3 ) onder zowel 

korteduur- als langeduur schuifbelasting. Hiervoor zijn torsieproeven 

ontwikkeld. 

Korteduur en langeduur proeven op de sandwich elementen samengesteld uit 

gewapend betonnen huidplaten en een schuimbeton kern zijn beschreven in 

hoofdstuk 7. Zowel elementen met als zonder een additionele dwarskracht 

wapening zijn onderzocht. De proeven tonen aan da t er daadwerkelijk 

sprake is van een goede samenwerking, resulterend in een sterk en stijf 

element. Uit de vergelijking van de proefresultaten met de resultaten van 

de numerieke berekening blijkt een goede overeenkomst. 

In hoofdstuk 8 is met het computerprogramma, aan de hand van een 

voorbeeld, de gevoeligheid van de sandwich element en voor varia ties in de 

wapening en de kwaliteit van het schuimbeton onderzocht. · 

In hoofdstuk 9 worden de conclusies, die per hoofdstuk zijn gegeven, 

samengeva t. 
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STELLING EN 
behorende bij het proefschrift 

STRUCTURAL ANALYSIS OF SANDWlCH BEAMS 
COMPOSED Of REINFORCED CONCRETE FACES 

ANO A FOAMED CONCRETE CORE 

I. Setonnen sandwich elementen met een schuimbeton kern kunnen door 
de guns tige verhouding tussen hot eigen gewicht en de stijlbeid een 
aantrekkelijk alternatief bieden voor de gangbare betonelementen bij 
toepassing in hoge gebouwen. 

2_ Toepassing van dwarskra~ht wapening leidt als gevolg van kruip van de 
kern onder een voortdurende belasting op afschuiving, tot een 

geleidelijke afname van de konstruktieve functie van het schuimbcton. 
- Dit proefschrift, hoofdstuk 7. 

3- lndien be~wijken op slip in het grensvlak tussen de kern en de huid 
wordt voorkomen zijn de konstruktieve prestaties van de sandwich 
elementen, samengesteld uit gewapend betonnen huidplaten en een 
schuimbeton kern, voor het korteduur sedrag praktisch gelijk en voor 
het langeduur gedrag bij goede benadcring gelijk aan dlc van vo!ledig 
betonnen elementen. Bezwijken op slip kan worden voorkomen door de 

combinatie van een laag wapening~ percentage en een rola(ief grote 
(reksterkte of door toepassing van e_en dwarskracht wapening. 

- Dit proefschrift, lwofdstuk 8. 

4. ToeN~~ing van fictieve spannings-rek relaties voor he( in rekening 
brengen van de tension stiffening die zijn gebaseerd op het model van 

een selijkmatig verdeelde trek lanss oen gewapend betonnen staaf, 
!elden tot ovencha !ling van de stijfheid van gewapend 

betonkonstrukties onder een gelijkmatig verdeelde belasting. 
- Dit proefschrift, hoofdstuk 3_ 

j_ De invloeden van krimp en kruip op het gedrag van de sandwicl> 
elementen met betonnen huidplaten en een schuimbeton kern, kunnen 
op een inzichtelljke wijze met behulp van het in dit proefschrift 

beschreven model in rekening worden gebracht. 

- Dit proefschrift, hoofdstuk 4. 



6. Zolang de krimp en kruip eigenschappen van beton over de volledige 
hoogte van de konstruktie gelijk worden gesteld en derhalve geen 
rekening wordt gehouden met de aanwezige vochtgradient, dienen 
nauwkeurige berekeningen en beschouwingen over krimp en kruip 
grootheden met de nodige scepsis te worden beschouwd. 

7. De krimp en kruip van een schuimbeton kern ingesloten door twee 
dunne betonnen huidplaten wordt niet verhinderd, wei vertraagd. 
- Dit proefschrift, hoofdstuk 7. 

8. De kwaliteit van de hechting tussen beton en schuimbeton is 
afhankelijk van de gekozen produktiemethode. 

Dit proefschrift, hoofds tuk 7. 

9. De term 'skating' in de langlaufsport impliceert ten onrechte een 
overeenkomst in techniek met het schaatsen en dient derhalve slechts 
als onderscheid op de traditionele diagonaal-pas te worden beschouwd. 

10. Een dee! van het toegenomen vandalisme en de daaruit voorkomende 
financH!le schade voor de samenleving, kan worden voorkomen door een 
verhoogde aandacht van de gemeentelijke politiek voor een aktief 
jongerenbeleid. 

II. De sterke toename van de wereldbevolking noopt tot de vraag of we 
niet gebaat zouden zijn bij een vervaging van de idee van 
individualite it. 
(Vrij naar Oek de Jong, cirkel in het gras) 

12. Een van de maatregelen die zouden kunnen bijdragen aan een stimulans 
voor bet reizen per openbaar vervoer (ook voor studenten), is het 
invoeren van stilte coupees in treinen (ook 2e klas). 

13. In het verhaal 'brommer op zee' van J.M.A. Biesheuvel wordt helaas 
ten onrechte gesuggereerd dat bij zorgvuldig gestuurd belasten het 
draagvermogen van water (oppervlakte spanning) onbegrensd is. 

Theo Sale t, juni 1990 




