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Ponderomotive manipulation of cold subwavelength plasmas
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Coherence and Quantum Technology (CQT), Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
(Received 25 October 2012; published 4 February 2013)

Ponderomotive forces (PFs) induced in cold subwavelength plasmas by an externally applied electromagnetic
wave are studied analytically. To this end, the plasma is modeled as a sphere with a radially varying permittivity,
and the internal electric fields are calculated by solving the macroscopic Maxwell equations using an expansion
in Debye potentials. It is found that the PF is directed opposite to the plasma density gradient, similarly to
large-scale plasmas. In the case of a uniform density profile, a residual spherically symmetric compressive PF
is found, suggesting possibilities for contactless ponderomotive manipulation of homogeneous subwavelength
objects. The presence of a surface PF on discontinuous plasma boundaries is derived. This force is essential for a
microscopic description of the radiation-plasma interaction consistent with momentum conservation. It is shown
that the PF integrated over the plasma volume is equivalent to the radiation pressure exerted on the plasma by
the incident wave. The concept of radiative acceleration of subwavelength plasmas, proposed earlier, is applied
to ultracold plasmas. It is estimated that these plasmas may be accelerated to keV ion energies, resulting in a
neutralized beam with a brightness comparable to that of current high-performance ion sources.
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I. INTRODUCTION

Finite-sized plasmas driven by electromagnetic radiation
are the subject of active studies in various research fields.
Ultracold plasmas [1], which are created by photoionization
of a cloud of laser-cooled atoms, are an exotic example of
such finite-sized plasmas. They have an electron temperature
as low as Te ∼ 10 K and an electron density in the range of
ne ∼ 1015–1016 m−3 and consist of singly ionized atoms. Ul-
tracold plasmas are routinely probed with RF and microwave
fields, enabling the observation of phenomena such as plasma
oscillations [2,3], Tonks-Dattner resonances [4], and modes
associated with nonneutral plasmas [5,6]. These observations
in turn yield valuable fundamental insights into the plasma
dynamics in the ultracold regime.

Laser-irradiated nanoplasmas [7,8] constitute another class
of finite-sized plasmas driven by electromagnetic radiation.
Laser-driven atomic clusters are utilized as novel sources of
intense pulses of electrons [9,10], ions [11], and extreme
ultraviolet [12,13] and x-ray [14] radiation. Directional proton
beams can be produced by laser-irradiation of dense sub-
micrometer-sized plasmas created from water droplets [15].
Because the plasma frequency ωp ∝ √

ne in nanoplasmas is a
factor ∼105 higher than in ultracold plasmas, nanoplasmas are
usually subjected to optical rather than RF and microwave
radiation. It is interesting that, despite the vastly different
parameter regimes, ultracold plasmas and nanoplasmas have
in common that the plasma size is smaller than the typically
applied wavelength, λ ∼ 2πc/ωp.

As long as the fields driving a finite-sized plasma are
not so large that the excursions of the oscillating plasma
electrons become comparable to the plasma size, escape of
electrons and the resulting subsequent Coulomb expansion of
the plasma are relatively unimportant [16]. In this so-called
ambipolar or quasineutral regime (usually at electric field
strengths below 1 MV/m for microwave radiation or at laser
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intensities I � 1020 W/m2 for optical frequencies), the plasma
dynamics can be described hydrodynamically. In the one-fluid
plasma model [17], the plasma dynamics is governed by two
force density contributions. The first of these is the well-known
hydrodynamic force density −∇p, with p = nekBTe the
plasma pressure and kB Boltzmann’s constant, which is present
regardless of whether an external field is applied. The other is
the ponderomotive force density,

f = −ne∇ e2E2

4meω2
≡ −ne∇φp, (1)

induced by the external field. Here, e is the elementary charge,
E the electric field strength, me the electron mass, ω the applied
frequency, and φp is the so-called ponderomotive potential.
Equation (1) was originally derived for single electrons in an
inhomogeneous ac field [18,19] and later extended to plasma
media on the basis of the plasma fluid equations [20,21].

Equation (1) is a time-averaged force density nonlinear
in the field strength and, therefore, distinctly differs from
instantaneous linear forces that dominate in driven finite-sized
plasmas under conditions of plasma resonance. The latter
situation has been studied in earlier work [2–6], emphasizing
the resonant absorption of energy and a considerable emission
of electrons from the plasma. In contrast, the focus of this
paper is on underdense plasmas where such resonant effects
are absent, and the nonlinear force Eq. (1) becomes significant.

The relative importance of the hydrodynamic and pondero-
motive forces, as is expressed in the ratio η ≡ |−∇p| / |f| ∼
kBTe/φp, differs in nanoplasmas and ultracold plasmas in
the quasineutral regime. Nanoplasmas have a temperature
of at least ∼1 keV, so η � 1 in the quasineutral regime,
and hydrodynamic forces play an important role. Neverthe-
less, is has been recognized that ponderomotive forces can
significantly modify the plasma dynamics even at relatively
low intensities of I ∼ 1019 W/m2 [22]. This reflects the
complicated macroscopic behavior of dense finite plasmas,
in which the hydrodynamic and electromagnetic effects are
intertwined and difficult to study separately. In contrast,
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hydrodynamic forces are very small in ultracold plasmas.
For ω/2π = 1 GHz and Te = 10 K, the force ratio η < 10−2

for field strengths E > 10 kV/m. In moderately to strongly
driven ultracold plasmas, therefore, hydrodynamic forces are
negligible compared to ponderomotive forces, contrary to
the case of laser-excited nanoplasmas. This makes ultracold
plasmas unique systems that can exhibit ponderomotive effects
that are obscured in high-density plasmas.

In this paper, we study the ponderomotive forces induced
in a finite-sized plasma by an applied electromagnetic wave,
which are particularly important in the dynamics of ultracold
plasmas but are relevant to finite-sized plasmas in general.
We concentrate on the typical circumstance that the plasma is
smaller than the applied wavelength. The plasma is modeled
as a sphere with a radially varying permittivity, and the electric
field distribution is calculated by solving the macroscopic
Maxwell equations in terms of an expansion in Debye
potentials. This approach is commonly used to study the
far-field scattering properties of finite objects [23–30], with
little attention for the electromagnetic fields inside the object.
An exception is a recent calculation of resonance absorption
in dense atomic clusters based on the internal fields [31].
Here, we apply the technique to describe the opto-mechanical
forces induced by the applied wave in the plasma itself. In
view of the compressibility of the plasma, these forces form
an essential part of the interaction dynamics. The following
properties are found. First, the ponderomotive force in the
plasma bulk is directed outward for natural profiles dne/dr <

0 and inward for “inverted” profiles dne/dr > 0, where r is
the radial coordinate. Although this is similar to well-studied
large-scale plasmas [20], there are also differences due to the
subwavelength character of the system. Moreover, we find a
spherically symmetric compressive ponderomotive force, even
in case of a completely uniform density. The latter suggests
possibilities for contactless ponderomotive manipulation of
subwavelength objects, which is not limited to plasmas but
extends to other media with a well-defined uniform density.
Second, we show that sharp plasma boundaries give rise
to a ponderomotive surface force in addition to the volume
force corresponding to Eq. (1). This surface force proves to
be an essential ingredient in a correct local description of
the interaction of electromagnetic waves with subwavelength
objects that is consistent with momentum conservation. Third,
we consider the total ponderomotive force integrated over the
plasma volume and show that it is equivalent to the radiation
pressure exerted on the plasma by the incident wave. In the
past, it has been proposed to accelerate subwavelength plasmas
with this radiation pressure [32,33]. Here, we assess the
feasibility of this scheme for ultracold plasmas. We estimate
that these plasmas may be accelerated to keV ion energies
thanks to their extremely low temperature and correspondingly
weak tendency to expand.

This paper is organized as follows. In order to properly
describe the effects mentioned above, the electromagnetic
fields and ponderomotive forces in the plasma are first
formulated analytically in general terms in Secs. II and III
respectively. These sections therefore have a mathematical
character. Explicit results for the derived ponderomotive forces
are summarized in Sec. III B, Eqs. (24)–(26). These results
are subsequently applied to concrete examples of plasmas

in Secs. IV to VI. In Sec. IV, a plasma with uniform
density is considered, the compressive ponderomotive force
is found, and the role of the ponderomotive surface force in
the radiation pressure on the plasma is elucidated. Section V
concerns numerically calculated ponderomotive forces in
inhomogeneous plasmas, exhibiting distinct bulk and surface
contributions. In Sec. VI, radiative acceleration of ultracold
plasmas is discussed. Section VII concludes the paper.

II. FIELDS

A. Expansion in Debye potentials

We consider a collisionless, unmagnetized, cold, spherical
plasma with radius b in interaction with an incident linearly
polarized plane wave with electric field Eext = E0ex exp(ikz −
iωt) and magnetic field cBext = E0ey exp(ikz − iωt). In this
section, we discuss the electromagnetic field distribution
in such a plasma. This field in general differs from the
externally applied field due to the presence of oscillating
plasma electrons, which act as field sources themselves.
However, it is well-known [34] that the oscillating electrons
plus the neutralizing ion background can be represented
by a harmonically varying dipole density or polarization
P. Accordingly, the plasma can be treated as a lossless
dielectric medium with relative permittivity ε = 1 − ω2

p/ω2,

where ωp(r) =
√

nee2/(meε0) is the local plasma frequency
associated with the electron density ne(r) at radius r and ε0

is the vacuum permittivity. The electromagnetic fields in the
plasma thus satisfy the homogeneous macroscopic Maxwell
equations [35]. Solution of these equations is analogous to
the classical Mie scattering problem [36], generalized to an
object with a radially varying permittivity ε = ε(r). This
generalization has been worked out previously [23,24,26,28];
we reproduce the results here because we will use them
frequently in the remainder of the paper. The fields in the
region r < b inside the plasma can be decomposed [35] into
an electric (transverse magnetic) part (E,B)e with Be

r = 0 and a
magnetic (transverse electric) part (E,B)m with Em

r = 0. These
fields can be written in terms of two scalar Debye potentials
�e,m(r) as [37]

Em = E0r × ∇�m, iωBm = ∇ × Em,
(2)

−cBe = E0r × ∇�e, − iωDe = ∇ × He,

where De = ε0εEe and He = Be/μ0 with μ0 the vacuum
permeability and factors exp(−iωt) have been suppressed.
In spherical coordinates (r,θ,ϕ), the potentials evaluate to
�e,m = ∑∞

n=1 �e,m
n with

�e,m
n = in

2n + 1

n(n + 1)
f e,m

n (r)P 1
n (cos θ )�e,m(ϕ), (3)

in which �e = cos ϕ, �m = sin ϕ, and P 1
n denotes the associ-

ated Legendre function [38]. The radial functions f e,m
n satisfy

the differential equations

Le,m
n

[
rf e,m

n

] = 0, (4)

Le,m
n ≡ d2

dr2
+ d(ln δe,m)

dr

d

dr
+ k2ε − n(n + 1)

r2
, (5)
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with δe = ε−1 and δm = 1 and the boundary conditions

f e,m
n regular at r = 0, (6)

f e,m
n (b) = [

jn + ae,m
n h(1)

n

]
r=b

, (7)

δe,m

(
rf e,m

n

)
dr

∣∣∣∣∣
r=b

= d

dr

[
rjn + ae,m

n rh(1)
n

]
r=b

. (8)

The quantities ae,m
n in Eqs. (7) and (8) are constants, and jn and

h(1)
n denote the spherical Bessel and Hankel functions of the

first kind [38] with argument kr , respectively. Equations (7)
and (8) ensure proper matching of the internal and external
fields at the plasma boundary. In Eqs. (2) and (3), each
partial potential �e,m

n with the corresponding electric field
Ee,m

n induces a particular oscillation mode of the electrons in
the plasma [36], which has a current distribution Je,m

n ∝ Ee,m
n .

The radiation emitted from the plasma by the current Je,m
n has

the form of nth-order electric (e) or magnetic (m) multipole
radiation, with an amplitude proportional to ae,m

n .

B. Quasistatic limit

In Secs. IV and V, we will calculate ponderomotive forces
for concrete examples of subwavelength plasmas, based on
the fields formulated in Sec. II A. However, for kb � 1, the
electric field inside the plasma can be approximated [36]
by the quasistatic field Eqs exp (−iωt), where Eqs is the
self-consistent field that would result in the plasma if the
applied field Eext were replaced by the static field E0ex .
Here, we therefore briefly describe this quasistatic field as
well, so the corresponding ponderomotive forces can be
compared to the forces based on the full-wave electric field
of Sec. II A. We find that both approaches often agree very
well, as expected, which makes the quasistatic description
a useful way to quickly gain an impression of the fields and
forces in a subwavelength plasma. However, we will also show
that certain important physical effects are completely missing
from the quasistatic description. One should, therefore, always
be careful when using this approximation, as the full-wave
approach is imperative to reveal all aspects of the interaction
of the plasma with the applied wave.

The field Eqs is determined by the Maxwell equations
∇ · (

εEqs
) = 0 and ∇ × Eqs = 0. Substituting in the static

Maxwell equations

Eqs = −E0∇φ (9)

results in a partial differential equation for φ that can be
separated in spherical coordinates by writing φ = ψ(r)Y (θ,ϕ).
Solutions for the angular part are the spherical harmonics, of
which only the particular harmonic Y = sin θ cos ϕ suits the
symmetry of the problem. Accordingly,

φ = ψ(r) sin θ cos ϕ, (10)

where the radial function ψ(r) is determined by the differential
equation [

d2

dr2
+

(
2

r
+ 1

ε

dε

dr

)
d

dr
− 2

r2

]
ψ = 0. (11)

The accompanying boundary conditions are that ψ be regular
at r = 0, that both ψ and εdψ/dr be continuous at r = b, and

that −E0∇φ → E0ex as r → ∞. These conditions evaluate
to

ψ(0) regular at r = 0, (12)(
ε
dψ

dr
+ 2ψ

r

)
r=b

= −3. (13)

The quasistatic solution (9)–(13) also follows directly from
the more general results of the previous section by taking the
appropriate limits. This is shown in Appendix A.

C. Real and imaginary parts of f e,m
n

Although the quasistatic field Eqs. (9)–(13) is generally a
good approximation when kb � 1, it lacks certain features
that are essential to describe a number of physical effects.
As we will show later, the latter include the presence of a
nonzero radiation pressure on the plasma and a compressive
ponderomotive force in case of a uniform density profile. The
description of these effects requires the use of the full-wave
solution of Sec. II A. In particular, the boundary conditions
Eq. (7) and (8), and, hence, the functions f e,m

n , are in general
complex valued. The presence of the nonzero imaginary parts
of f e,m

n leads to phase shifts in the corresponding fields
contributions, and these phase shifts give rise to the mentioned
physical effects. To describe these effects adequately in the
next sections, we derive here a new representation for the
functions f e,m

n in which the real and imaginary parts are
conveniently separated. Eliminating the constants ae,m

n from
Eqs. (7) and (8) gives, at r = b,

δe,m
d
(
rf e,m

n

)
dr

− d
(
rh(1)

n

)
dr

f e,m
n

h
(1)
n

= rh(1)
n

d(jn/h(1)
n )

dr
. (14)

Replacing the Bessel functions in Eq. (14) by their limiting
value for small argument [38], it is apparent that the imaginary
part of f e,m

n is very small. This suggests defining auxiliary
functions ge,m

n that, like f e,m
n , are regular solutions of the

differential equation

Le,m
n

[
rge,m

n

] = 0, (15)

but instead with a real-valued boundary condition that,
at r = b,[

δe,m d

dr
−

(
1

b
+ d

dr
ln

∣∣h(1)
n

∣∣)]
rge,m

n = − yn

kb
∣∣
h

(1)
n

∣∣2 . (16)

Here, yn denotes the spherical Bessel function of the second
kind [38] with argument kr . Equation (16) has been obtained
by replacing f e,m

n → ge,m
n in Eq. (14) and taking the real part

of the equation assuming real ge,m
n . By construction, solution

of Eqs. (15) and (16) yields real-valued functions ge,m
n that

approximate the real part of f e,m
n for small kb. The imaginary

part of f e,m
n can be extracted from ge,m

n as follows. Since f e,m
n

and ge,m
n satisfy the same differential equations but different

boundary conditions,

f e,m
n = γ e,m

n ge,m
n , (17)

where γ e,m
n are constants. To determine these constants, we

substitute Eq. (17) in Eq. (14), simplify the result by using
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Eq. (16), and solve for γ e,m
n . This gives

γ e,m
n = 1 +

(
jn − ge,m

n

) (
ge,m

n + iyn

)
y2

n + (ge,m
n )2

∣∣∣∣∣
r=b

(18)

= 1 + i
jn − ge,m

n

yn

∣∣∣∣
r=b

+ O[(kb)4n+2]. (19)

Equations (17)–(19) give the real and imaginary parts of f e,m
n

separately.

III. FORCES

A. Ponderomotive volume and surface forces

Gradients in the electric field formulated in Sec. II give
rise to a ponderomotive volume force density according to
Eq. (1). In addition to this well-known volume force, there can
also exist a ponderomotive surface force density or pressure
πp acting on the boundary of the plasma. The presence of a
surface force is easily estabished from Eq. (1). Suppose that
at r = b the plasma density changes discontinuously from a
finite value to zero, such that the permittivity discontinuously
increases to unity. Then, because of the boundary conditions
that both the perpendicular component of εE and the tan-
gential component of E be continuous at r = b, the squared
magnitude E2 in Eq. (1) must be discontinuous and ∇E2 must
behave like a δ function. This singular feature represents an
infinitely large volume force density present in a shell with
infinitesimally small volume, that is, a surface force density.
To evaluate this surface force density, we consider the total,
integrated ponderomotive force F acting on the plasma. The
integration volume V is chosen to be a sphere with radius
b+ ≡ lim�↓0(b + �) concentric with the plasma. Then, V is
split in two contributions as

F =
∫

f dV − +
∫∫ b+

b−
fr2drd�, (20)

where b− ≡ lim�↓0(b − �), the volume V − is a sphere with
radius b−, and

∫
d� denotes integration over the angular

coordinates. In this way, the singularity in the ponderomotive
force density is contained in the second integral of Eq. (20),
so this term will give the surface contribution to F, while the
first integral represents the ordinary ponderomotive volume
forces. Furthermore, f may be written as the time average of
the divergence of a tensor [21],

f =
〈
∇ ·

(
ε0εEE + 1

μ0
BB − UI

)〉
≡ 〈∇ · T〉, (21)

where I is the identity tensor, U = (ε0E
2 + μ−1

0 B2)/2, and μ0

is the vacuum permeability and angular brackets denote time
averaging. Using Eq. (21) and Gauss’s theorem for tensors
[39], the second integral of Eq. (20) may be rewritten as∫∫ b+

b−
fr2drd� =

〈 ∫
d�+ · T −

∫
d�− · T

〉
, (22)

where �± are spherical surfaces at r = b± with outward
normal. Writing out the tensors in Eq. (22), and using
the boundary conditions for the fields to express all field

components in terms of those at r = b−, gives

F = ∫
f dV − − ∫

πp d�−, (23)

in which πp = −ε0 (ε − 1)2 E2
r /4. The quantity πp represents

an additional ponderomotive pressure that acts on the surface
of a plasma with an abrupt plasma boundary. This pressure
is always negative, corresponding to a surface force density
in the outward direction. A surface force similar to Eq. (23)
has been obtained earlier for the special case of a plane wave
refracted by a plane plasma boundary [40].

To some extent, the surface force density found here
may appear to be an artifact of the ponderomotive force
expression Eq. (1). After all, in the plasma context this
expression has originally been derived from a perturbation
expansion of the equation of motion of single electrons [18,19],
and in that sense seems to be an approximate quantity.
However, the force Eq. (1) follows identically [21] from the
tensor in Eq. (21), which in turn follows strictly from the
thermodynamics of continuous media [41]. Moreover, we have
checked that integration of the arguably more fundamental
averaged Lorentz force density 〈ρE + J × B〉 gives the same
result Eq. (23). Furthermore, momentum conservation requires
that the total force Eq. (23) on the plasma balances the rate of
momentum loss from the radiation field. As we will show in
the next section, this is only the case in presence of the surface
force density. Therefore, Eq. (23) is the best that can be done
within a continuum model of the plasma medium.

B. Evaluation of the forces

In order to facilitate practical application of the derived
analytical results, we summarize the previous sections by
listing explicit expressions for the various forces used in the
remainder of the paper. Substituting the electric field Eqs. (2)
and (3) in Eq. (1), and performing all differentiations, gives the
following spherical components of the ponderomotive force
density:

fj = χε0kE2
0

∞∑
n=1

∞∑
m=1

{
Re

(
im−nγ m∗

n γ m
m

)
Rj1

nmSj1
nm

+ Re
(
im−nγ e∗

n γ e
m

)[
Rj2

nmSj2
nm + Rj3

nmSj3
nm

]
− Im

(
im−nγ e∗

n γ m
m

)
Rj4

nmSj4
nm

}
, (24)

where j = r,θ,ϕ and χ ≡ ε − 1 = −ω2
p/ω2. The functions

R = R(r) and S = S(θ,ϕ) are listed in Appendix B. Note
that the magnitude of the various contributions to the force
essentially depend on the phase of the factors γ e,m

n , which
makes the formulation of Sec. II C particularly convenient
for force calculations. Evaluation of the total ponderomotive
force Eq. (23) requires integration of Eq. (24) over the
plasma volume. The angular integrations can be performed
analytically, and most terms in Eq. (24) integrate to zero. The
Cartesian x and y components of F vanish completely in the
integration over ϕ. In the remaining z component, only terms
with particular combinations of n and m survive the integration
over θ , which is shown in Appendix B. The resulting total
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volume force is∫
f dV − = −πε0E

2
0

k2
ez

∞∑
n=1

[
Im

(
γ m∗

n γ m
n+1

)
Y 1

n

+ Im
(
γ e∗

n γ e
n+1

)(
Y 2

n + Y 3
n

) + Im
(
γ e∗

n γ m
n

)
Y 4

n

]
,

(25)

where the quantities Y 1,2,3,4
n are one-dimensional integrals over

r = 0 to b− involving the functions ge,m
n ; these integrals are

given in Eqs. (B20)–(B23). From Eq. (25) it is apparent that
only modes in the combinations (Ee

n,E
e
n+1), (Em

n ,Em
n+1), and

(Ee
n,E

m
n ) give nonzero contributions to the total ponderomotive

volume force. That is, these are the combinations that give
rise to a force density with a preferred direction. The
surface force in Eq. (23) involves only the electric (transverse
magnetic) modes Ee

n since these are the only ones having
a nonzero radial electric field component Er . Analogously
to the volume force above, in the angular integrations of
Eq. (23) all terms in E2

r vanish except for products Ee∗
n,rE

e
n+1,r ,

resulting in

−
∫

πp d�− = −πε0E
2
0

k2
ez

(ε − 1)2

ε2

∣∣∣∣
r=b−

∞∑
n=1

n(n + 1)

× (n + 2)Im
(
γ e∗

n γ e
n+1

)
ge

ng
e
n+1

∣∣∣∣
r=b−

. (26)

IV. HOMOGENEOUS PLASMA

In the previous two sections, the fields and force densities
induced by an electromagnetic wave in a spherical plasma
with arbitrary ε(r) were formulated. In the remainder of the
paper, we apply the results to a number of practical density
profiles. Here, we start with plasmas with uniform density,
which is one of the few density profiles for which analytical
expressions for the fields are available. This will enable us to
validate the results of the previous sections. In addition, the
limit of small radius allows for simple analytical expressions
for both the ponderomotive force density and the total force.
This yields some interesting new insights in the way radiation
interacts with subwavelength objects.

A. Fields

We first verify the field expressions of Sec. II. For a
uniform plasma density giving a constant relative permittivity
ε1, Eq. (4) reduces to the spherical Bessel differential equation,
and the expressions of Sec. II A reduce to the well-known
Mie results [36]. For the quasistatic case kb � 1 of Sec. II B,
Eq. (11) reduces to the Euler differential equation, and it is
found that ψ = −3r/(ε1 + 2). This gives Eqs = 3E0ex/(ε1 +
2), which is the well-known constant electric field in a
homogeneous material sphere placed in a uniform static field
[35] or the Mie solution in the Rayleigh limit kb → 0 [36].

Using the functions ge,m
n of Sec. II C to evaluate the fields

yields

ge,m
n = Ae,m

n jn(
√

ε1kr), (27)

where the constants Ae,m
n are obtained from the boundary con-

dition Eq. (16). Explicit expressions are given in Appendix C.

It is also shown there that the functions f e,m
n = γ e,m

n ge,m
n , from

which the potentials Eq. (3) are generated, are equal to

f e
n = √

ε1dnjn(
√

ε1kr), f m
n = cnjn(

√
ε1kr), (28)

where cn and dn are the coefficients of the internal field of the
Mie solution in the customary formulation [36]. Comparison
of the field definitions Eqs. (2) and (3) with those of the Mie
solution [36] indeed confirms Eq. (28). All results of Sec. II
thus correctly reduce to the Mie solution in the special case of
uniform permittivity.

B. Ponderomotive compression

For a homogeneous plasma, the ponderomotive force
density Eq. (24) is readily evaluated by substituting Eq. (27),
using the results Eqs. (C1) and (C2) for Ae,m

n and γ e,m
n . For

the general case, this gives a series of elaborate expressions
in terms of Bessel functions. A more manageable result is
obtained in the small radius limit kb � 1, where the first few
terms of the power series expansions Eqs. (C5) and (C12)
for Ae,m

n and γ e,m
n suffice. Using the latter in Eq. (24) gives,

after considerable but straightforward algebra, the following
lowest-order Cartesian components of the ponderomotive
force density:

f = −χ2
1 ε0k

2E2
0(uxex + vyey + wzez)

10(ε1 + 2)2(2ε1 + 3)2(3ε1 + 4)
+ . . . ,

u = 458 + 807ε1 + 432ε2
1 + 43ε3

1 − 15ε4
1 ,

(29)
v = 3 (2ε1 + 3)2 (18 + 13ε1) ,

w = 416 + 794ε1 + 469ε2
1 + 61ε3

1 − 15ε4
1 ,

where χ1 = ε1 − 1 and the dots represent terms of order
O(b3,r3). Interestingly, Eq. (29) shows that a ponderomotive
force density is present in the plasma which scales linearly
with position in all three (x,y,z) directions. Figure 1 shows
the corresponding three “spring constants,” dfx/dx, dfy/dy,
and dfz/dz, as function of ε1. Remarkably, the magnitude of
the force density is almost equal in all directions irrespective
of ε1. This is despite the fact that the exciting electromagnetic
wave is not at all spherically symmetric but propagates in
the z direction and is polarized in the x direction. Moreover,

df
j
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j
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ni
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FIG. 1. (Color online) Cartesian x (black solid), y (blue dashed),
and z (red dash-dotted) components of the ponderomotive force
Eq. (29), divided by the corresponding coordinate, as a function of
the permittivity of the plasma.
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the sign of each force component is opposite to that of the
corresponding coordinate. Equation (29) thus represents an
almost isotropic, compressive ponderomotive force. In Fig. 1,
the force correctly vanishes for ε1 ↑ 1, that is, in the limit
of an infinitely rarified plasma. We deliberately displayed
only underdense plasmas to avoid the complication of plasma
resonances. The latter necessitate a more detailed model of the
permittivity including damping, which is outside the scope of
this paper. However, since no assumptions about the particular
form of ε1 have been made in deriving Eq. (29), this expression
is valid as well for more detailed descriptions of the plasma
medium.

Note that any compression is completely absent in the
quasistatic description, which predicts a perfectly constant
electric field in the plasma and, hence, a vanishing pon-
deromotive force. The full-wave description of Sec. II A
is, therefore, essential to obtain Eq. (29). We also remark
that Eq. (29) has some analogy with the magnetic pinch
force familiar from stationary currents, which is due to the
self-generated magnetic field. In the case of our small driven
plasma, a representative magnitude of the current densities
present in the plasma is that of the electric dipole mode,
which is Je

1 ≈ −3iε0χ1ωE0ex/(ε1 + 2). According to the
Biot-Savart law [35], a hypothetical spherical medium carrying
a stationary current density Je

1 would generate a magnetic
field equal to μ0Je

1 × r/3. The resulting Lorentz force density
would be directed toward the x axis and would have a
magnitude of −3ε0χ

2
1 k2E2

0

√
y2 + z2/(ε1 + 2)2. The similarity

with Eq. (17) is evident, both regarding the magnitude and the
proportionality with position. The driven plasma we consider,
of course, is more complex than this crude model because the
currents are both time varying and have more structure than
Je

1. In addition, electric forces play an equally important role.
For these reasons, the ponderomotive force turns out to be
Eq. (29) rather than the force just described, that is, the force
is approximately radially compressive rather than pinching
toward a single axis.

Ponderomotive compression by means of the force Eq. (29)
seems interesting for technological applications such as
confinement of spherical subwavelength plasmas. However,
Eq. (29) is in fact the lowest-order correction to the pondero-
motive force due to the quasistatic field, which coincidentally
vanishes for the special case of a homogeneous plasma. For
other than uniform density profiles, the ponderomotive force
is dominated by the inhomogeneous quasistatic field, as we
will show in the next section. Therefore, the applicability of
Eq. (29) to practical plasmas is limited. On the other hand,
Eq. (29) is very relevant in scattering experiments where other
media with a well-defined constant density, such as water
droplets, are subjected to electromagnetic radiation [42–44]. In
addition, delicate physical processes that require contact-free
observation of levitated droplets, such as surface vibrations
[45], ice nucleation [46], and crystallization of salts [47],
may be manipulated ponderomotively by application of an
electromagnetic wave.

C. Total ponderomotive force

We next consider the total force on the plasma caused by
the interaction with the incident wave. In scattering theory, the

total force due to an incident wave is usually not formulated
in terms of force densities but rather is derived by calculating
the rate at which momentum is carried away by the scattered
radiation in the far field. This rate is identified with the total
force on the body on account of momentum conservation [48].
In terms of the scattering coefficients ae,m

n in Eqs. (7) and (8),
the force reads [23,37]

F = 2π

k2

I

c
ezRe

∞∑
n=1

[
(2n + 1)

(
ae

n + am
n

) − 2n(n + 2)

n + 1

× (
ae∗

n ae
n+1 + am∗

n am
n+1

) − 2(2n + 1)

n(n + 1)
ae∗

n am
n

]
. (30)

In the case of a small dielectric spherical scatterer with
uniform permittivity ε1 and radius b � k−1, Eq. (30) gives
the following expansion [23,37]:

F = 8πk4b6

3

χ2
1

(ε1 + 2)2

I

c
ez

×
[

1 − 120 + 34ε1 − 29ε2
1 + ε3

1

(ε1 + 2)(2ε1 + 3)
(kb)2 + . . .

]
. (31)

Although certainly correct, this derivation of Eq. (31) does not
give any information about the distribution of the force over
the scatterer. This is contrary to calculating F by integrating
force densities such as in Eq. (23), where one starts from the
force distribution itself. In particular, it becomes clear that only
part of the force is acting on the bulk, the remainder presenting
itself in the form of a surface force. To our knowledge, such a
direct analytical evaluation of the force on a scattering sphere
from the local fields has never been given, although the force
Eq. (31) has been reproduced for special cases by numerically
integrating the Maxwell stress tensor over the surface of the
sphere [49] and by adding numerically calculated forces on
a grid of dipoles representing the sphere [50]. Nevertheless,
the force integration Eq. (23) also correctly leads to Eq. (31).
Namely, substituting Eq. (27) together with the results (C5)–
(C12) in the force expressions Eqs. (25) and (26), it is found
that∫

f dV − = 8πk4b6

3

χ2
1

(ε1 + 2)2

I

c
ez

[
ε1 + 4

2ε1 + 3

− Q1

210(ε1 + 2)(2ε1 + 3)2
(kb)2 + . . .

]
, (32)

−
∫

πp d�− = 8πk4b6

3

χ2
1

(ε1 + 2)2

I

c
ez

[
χ1

2ε1 + 3

− χ1Q2

70(ε1 + 2)(2ε1 + 3)2
(kb)2 + . . .

]
, (33)

with

Q1 ≡ 6720 + 3342ε1 − 1055ε2
1 − 215ε3

1 + 28ε4
1 ,

Q2 ≡ 560 + 78ε1 − 185ε2
1 .

Adding Eqs. (32) and (33) reproduces the total ponderomotive
force Eq. (31) that was derived from momentum conservation.
This confirms the validity of Eq. (23).

In Eqs. (32) and (33), the first terms in the large braces are
dominant for small kb. Interestingly, the volume and surface
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FIG. 2. (Color online) Division of the total ponderomotive force
Eq. (23) (black solid) into the volume contribution Eq. (32) (blue
dashed) and surface contribution Eq. (33) (red dash-dotted) as a
function of the permittivity of the plasma for sufficiently small kb.

contributions to the total force act in opposite directions,
since χ1 is negative for plasmas. Furthermore, the division
of the total ponderomotive force into the volume and surface
contributions is dependent on ε1, which is shown in Fig. 2.
As before, the forces correctly vanish in the limit ε1 ↑ 1 of
an infinitely rarified plasma. The ratio of the magnitude of the
surface contribution to that of the volume contribution grows as
ε1 drops, increasing to as much as 1/4 for ε1 = 0. This shows
that the ponderomotive surface force derived in Sec. III A is
not merely a small correction to the conventional volume
ponderomotive force but rather is an essential ingredient
in a correct local description of the radiation pressure on
subwavelength objects.

Finally, we note that we have only considered the limit
kb � 1 here. It would be interesting to show analytically the
equality of Eq. (23) with the general expression Eq. (30) for
arbitrary kb. It is encouraging that the products of scattering
coefficients in the second line of Eq. (30) represent the
same combinations of modes that contribute to the integrated
ponderomotive volume force Eq. (25). On the other hand, the
single coefficients in the first line of Eq. (30) do not have an
analog in Eq. (25), which suggests that it is probably necessary
to use certain special properties as well as recurrence relations
for the Mie coefficients [51].

V. INHOMOGENEOUS PLASMAS

The homogeneous plasma considered above allowed us to
validate the analytical results of Secs. II and III. In this section,
we proceed to plasmas with radially varying density profiles.
Lacking analytical solutions to the differential equations (15)
that determine the fields, the results will be necessarily
numerical. Experimentally, nanoplasmas that are field ionized
by laser pulses usually exhibit a natural density profile in which
dne/dr < 0 everywhere. In contrast, ultracold plasmas may
be created with any desired density profile by photoionizing
an atomic cloud using imaging techniques [52]. In particular,
“inverted” profiles in which dne/dr > 0 in some range of r are
possible. Such an inverted profile also results naturally when
using sufficiently dense atomic clouds that in their central
region are optically thick for the excitation laser involved in
the ionization scheme.

A. Ponderomotive force distribution

We have calculated the distribution of the ponderomotive
force density for several density profiles by numerically
solving the boundary value problem Eqs. (15) and (16) for the
first few modes and subsequently evaluating Eq. (24) truncated
at n � 3, m � 3. We have concentrated on subwavelength
plasmas with kb ∼ 0.1, so the truncated series proved to be
sufficient to approximate the exact force density accurately. A
shooting method was used to solve Eqs. (15) and (16), in which
the numerical stability was improved by switching variables
from ge,m

n to xe,m
n = ge,m

n /(kr)n and avoiding the singular point
at r = 0 by imposing the condition dxe,m

n /dr = 0 at a finite
radius r = r0 � b. Decreasing r0 to 0.01b yielded sufficiently
converged results.

In order to test our numerical code, we have calcu-
lated the force density in a homogeneous plasma with a
smoothed edge according to the density profile ne(r) =
{1 − tanh [α (r/b − 9/10)]} n0/2 ≡ n1(r), where α is a dimen-
sionless parameter. Choosing kb = 1/9, this profile represents
a plasma with density n0, which at radius 1/(10k) drops
smoothly to zero within a small distance of about 4/(αk).
In Fig. 3(a), this profile is shown as the red dash-dotted line,
with the corresponding vertical axis on the right of the figure.
Since the calculational domain extends to r = b, the force
density is thus evaluated up to radii outside the plasma rather
than up to an arbitrary point somewhere in the edge region
r ≈ 1/(10k). The benefit of this approach over using the
simpler discontinuous profile ne(r) = n0� (r − b) is that it is
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FIG. 3. (Color online) Radial component of the ponderomotive
force density along the line y = z = 0 for a homogeneous plasma
with smoothed edge. (a) Force density in the plasma bulk according
to numerical evaluation of Eq. (24) assuming the full field (black
solid), numerical evaluation of Eq. (1) assuming the quasistatic
approximation (black dashed), and the analytical result [Eq. (29)]
(blue dots). For orientation, the plasma density (red dot-dashed line)
is shown together with the results. (b) Close-up of the edge region
indicated by the vertical dashed lines in the upper panel. The dashed
and solid curves overlap. The inset is a close-up of the horizontal axis,
showing also the force Eq. (1) assuming the field of an equivalent
electric dipole (blue dashed).
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possible to study the volume force density in the edge region,
which must tend to the surface force density in Eq. (23) as
α → ∞. In the calculations, the plasma density n0 was chosen
such that ε1 ≡ 1 − n0e

2/(ε0meω
2) = 0.19. In Fig. 3, the radial

component of the volume force density Eq. (24) along the
positive x axis is shown by the black solid line for α = 200.
We have deliberately chosen to present the x direction, which
is the polarization axis of the incident wave, because in this
direction there is a strong radial electric field component Er .
Hence, the surface force density defined in Eq. (23) is clearly
exhibited, in contrast to some other directions such as the y

axis in which the surface force vanishes.
It was derived in Sec. IV B that, in the bulk of the plasma,

the ponderomotive force density should be compressive and
proportional to r , as given by Eq. (29). The latter result
is indicated in Fig. 3(a) by the blue dots. The numerical
data closely follow the analytical result, which validates our
numerical code. The black dashed line in Fig. 3(a) shows
the force density according to the quasistatic electric field,
which is determined by Eq. (9)–(13). As expected, the linear
ponderomotive force is absent from the quasistatic description
because the latter predicts a uniform electric field in the plasma
bulk.

In Fig. 3(a) near the plasma edge at kr = 1/(10k), the
ponderomotive force density exhibits a steep positive peak.
Figure 3(b) is a close-up of the edge region, showing that this
peak is positioned just on the inner side of the plasma edge.
Note that the quasistatic field is also sufficient to correctly
describe this feature, since the solid and dashed curves overlap
perfectly. We found that for increasing values of α, the peak
becomes ever higher and narrower, but the energy density
defined by the surface area below the peak u0 = ∫

frdr stays
approximately constant. This suggests that the peak will tend to
the surface force density in Eq. (23) as α → ∞. The surface
area u1 represented by the latter is obtained by writing the
surface force density πper at position (x,y,z) = (b,0,0) as the
volume force density fp ≡ πpδ (r − b) er . Integrating fp,r , and
using the quasistatic approximation Er ≈ 3E0/(ε1 + 2), gives
for the present case

u1 =
∫ b+

b−
fp,rdr = 9ε0χ

2
1 E2

0

4(ε1 + 2)2
= 0.308ε0E

2
0 . (34)

Numerical integration of a spline interpolation of the peak
in Fig. 3(b) gives u0 = 0.307ε0E

2
0 , in excellent agreement

with Eq. (34). This confirms that the peaked volume force
is the analog of the surface force present in the limit of a
discontinuous plasma boundary.

The outward ponderomotive force in the plasma edge region
is reminiscent of a similar force that is found in case of a one-
dimensional stratified plasma layer irradiated by a plane wave
[20]. However, the latter force is usually obtained by resorting
to the Wentzel-Kramers-Brillouin approximation to find the
electric field, which is valid only when the plasma scale length
is much larger than the wavelength. This is clearly not appli-
cable for the subwavelength plasmas considered here. Further-
more, in the one-dimensional large scale length case, the force
is proportional to −∇ne [20]. This is not found in our case
either, as evidenced by the fact that the peak in Fig. 3(b) does
not coincide with the inflection point of the density at kr = 0.1.
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FIG. 4. (Color online) Radial component of the ponderomotive
force density along the line y = z = 0 for plasma density profiles
with a smoothed edge and a quadratic bulge [(a) and (b)] and dip [(c)
and (d)]. For further details, see Fig. 3.

In Fig. 3(b), at the right side of the peak the force has a small
overshoot to negative values, which is shown in the inset. The
overshoot is visible as well in Fig. 3(a). The overshoot is caused
by the inhomogeneous electric field outside the plasma, which
is approximately that of an oscillating electric dipole [35].
Since the plasma density has not yet completely vanished
around kr = 0.1014, the electric field gradient present there
leads to a small but finite negative ponderomotive force density.
The blue dashed line in the inset of Fig. 3(b) shows the
force density Eq. (1) assuming the mentioned dipole field.
The numerical result indeed approaches this line.

Figure 4 shows the ponderomotive force density for the
plasma profiles ne(r) = {3 ± [1 − 200(kr)2]}n1(r)/4, where
n1(r) was defined at the beginning of this section, again
evaluated along the positive x axis. The profile with a plus
(minus) sign represents a plasma with a quadratic bulge (dip)
of the density in the central region but with the same smoothed
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edge as in Fig. 3. The most important difference with respect
to the flat profile discussed above is that the force density in
the plasma bulk is significantly larger than the linearly varying
force density shown in Fig. 3(a). This is because, at the level
of the quasistatic approximation, the electric field strength
for the profiles of Fig. 4 is inhomogeneous, whereas in the
plasma of Fig. 3 it is constant. Therefore, the ponderomotive
force depicted in Fig. 3 consists of merely small corrections
to the vanishing contribution of the quasistatic field, whereas
in Figs. 4(a) and 4(c) the force is completely dominated by
the nonzero gradient of the quasistatic field itself. This is
confirmed by the fact that the quasistatic and exact results
in Fig. 4 overlap perfectly.

Interestingly, the direction of the ponderomotive force in
Figs. 4(a) and 4(c) depends on the type of plasma profile: For
natural profiles with dne/dr < 0, the force is directed outward;
for inverted profiles with dne/dr > 0, the force is directed
toward the plasma center. This suggests that it is possible, at
least regarding the plasma bulk, to tailor the ponderomotive
force distribution by choosing a suitable initial density profile.
For instance, it may be possible to devise a plasma in which
ponderomotive forces balance hydrodynamic forces locally,
which would mean that the plasma is stabilized rather than
disturbed by application of an electromagnetic wave. However,
the freedom to manipulate the ponderomotive force density is
much more restricted in the edge region. Regardless of the type
of density profile, at the plasma boundary the steep gradient
in the plasma density invariably leads to the strongly peaked
and outward ponderomotive force density found before, as is
illustrated by Figs. 4(b) and 4(d). Obviously, this outward force
is unfavorable for the stability of the plasma, as it will tend to
push electrons outward.

B. Total ponderomotive force

We have calculated the total ponderomotive force acting on
the plasmas considered in the previous section by numerically
evaluating the volume force integration Eq. (25) truncated
at n � 3. The resulting forces are shown in Fig. 5 as a
function of the permittivity ε1. Crosses represent the data
according to Eq. (25). As a check, the forces have been
calculated alternatively in terms of the scattered radiation by
numerically evaluating the scattering coefficients with Eq. (7)
and substituting these coefficients in Eq. (30). The resulting
forces are shown in Fig. (5) as open squares. Evidently, both
methods agree very well, confirming the validity of Eq. (25)
for arbitrary density profiles.

For a given value of ε1, the total force on the plasma with
a quadratic dip (D) is systematically smaller than that on the
homogeneous plasma (H) with the same radius, and the force
on the plasma with a quadratic bulge (B) is still smaller. This
is easily explained in terms of the radiation scattered from the
incident wave by the three plasmas. At the chosen plasma
size kb = 1/9, the electrons in the plasma move more or
less coherently, so the scattered radiation is predominantly
electric dipole radiation with the radiated power proportional
to the number N of electrons squared. By conservation
of momentum, the momentum lost from the incident wave
and, therefore, the resulting total force on the plasma are
proportional to N2 as well. For the three plasmas considered in
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FIG. 5. (Color online) Total ponderomotive force as a function
of the permittivity at the density n0, according to scattering theory
[numerical evaluation of Eq. (30), open squares], integration of the
volume force Eq. (25) (crosses), and Eq. (30) using the well-known
Mie coefficients (black solid line). Results are shown for a uniform
profile (black, “H”) and profiles with a quadratic bulge (red, “B”)
and dip (blue, “D”); these profiles were defined in Sec. V A and have
been sketched in the insets.

Fig. 5, equal ε1 implies equal densities n0, resulting in squared
numbers of electrons in the ratios N2

H :N2
D:N2

B = 1:0.64:0.49.
These ratios roughly fit the relative heights of the curves
in Fig. 5. However, the coherent model just given is not
precise, first, because both higher-order multipole moments
and directional asymmetry in the scattered radiation have been
neglected and, second, because profile dependent resonant
behavior for ε1 near 0 has been disregarded. Nevertheless,
we have numerically confirmed that the relative amplitudes of
the total force on the three considered plasmas indeed tend
to N2

H :N2
D:N2

B in the limits kb → 0 and ε1 → 1 where the
coherent model becomes exact.

VI. ACCELERATION OF ULTRACOLD PLASMAS

In the previous sections, we have carefully examined both
the distribution of ponderomotive force in an electromagnet-
ically driven subwavelength plasma and the total resultant
force derived from it by volume integration. In summary, it
was found that in the plasma bulk the ponderomotive force
is directed radially inward for inverted density profiles, that
a strongly localized outward force dominates near the very
edge of the plasma, and that the total force on the plasma
is approximately proportional to N2. We are now in the
position to assess the feasibility of practical acceleration of
subwavelength plasmas based on the total ponderomotive
force. This concept was put forward in the past by Veksler
[32] and reviewed by Motz and Watson [33]. The original
formulation [32] of the acceleration mechanism was that
subwavelength plasmas should scatter incident radiation at
an energy rate of N2 times the single electron value σT I ,
where σT = e4/(6πε2

0m
2
ec

4) is the Thomson cross section. By
conservation of momentum, this leads to a rate of momentum
transfer to (or accelerating force on) the plasma of N2σT I/c.
Indeed, the total force Eq. (30) derived from the scattered
radiation reduces to this force in the appropriate limits [33].
What we have shown in this paper is that this force is equivalent
to the integrated ponderomotive force in the plasma.
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Acceleration experiments in the 1960s based on the above
scheme have produced ions with keV energies [53,54].
However, static magnetic fields were necessary to confine the
plasma in the transverse direction, and the exact acceleration
mechanism was not very well understood [33]. Moreover, the
very large energy spread of the ions showed that the plasma
was not accelerated as a compact bunch but rather completely
dispersed over the length of the accelerator. These experiments
were, therefore, discontinued in favor of more promising
acceleration schemes. The reason why the radiative method
can at the present time be more viable is the current availability
of ultracold plasmas. Because the electron temperature of
these plasmas is extremely low (∼10 K), hydrodynamic
forces are very small, so any violent plasma expansion is
absent. Moreover, as mentioned before, the density distribution
of ultracold plasmas can easily be tailored to an inverted
profile, either by means of imaging techniques or by using
optically thick atomic clouds. As we have shown, the bulk
ponderomotive force is compressive for inverted profiles,
which could further reduce the plasma expansion.

Let us consider the velocities attainable by radiative
acceleration. For this purpose, it is important to realize that, in
practice, the plasma is not a rigid object but will, in general,
expand. Therefore not only b but also the density and, hence, ε
will vary in time. The number of particles N , on the other hand,
remains approximately fixed. The accelerating total force will,
therefore, depend on b both directly through the coherence
properties of the plasma and indirectly through its dependence
on ε(b). Figure 6 shows this dependency for three different N ,
assuming a driving frequency of ω/2π = 1.3 GHz (standard
L-band microwaves) and a uniform density profile for which
ε(b) = ε1 = 1 − 3N/(4πε0meω

2b3). Immediately apparent is
the plateau in the force at Fz/N

2 = σT I/c, indicated by
the horizontal dashed line, which corresponds to the force
proposed by Vesksler [32]. At the high kb side, the force
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FIG. 6. (Color online) Total ponderomotive force as a function of
plasma radius, when the particle number is fixed at N = 104 (black
solid line and dots), N = 107 (red dashed line and squares), and N =
5 × 1010 (blue dash-dotted line and triangles), according to Eq. (30)
using the well-known Mie coefficients (lines) and integration of the
volume force Eq. (25) (symbols). A uniform profile and a driving
frequency of ω/2π = 1.3 GHz have been assumed. The horizontal
dashed line represents the force according to coherently enhanced
Thomson scattering; the vertical dashed lines indicate the radius at
which Mie resonance occurs. The data point indicated by the arrow
is discussed in the main text.

decreases rapidly once kb � 1 because the plasma electrons
no longer scatter incident radiation coherently at such larger
plasma sizes. As this effect is a geometrical one, it is not
dependent on the number of particles. At the low kb side, each
curve in Fig. 6 strongly increases around the plasma radius bm

at which the Mie resonance ε1 = −2 occurs. This is where the
driving frequency matches the eigenfrequency of oscillations
of the whole electron cloud of the plasma in the field of the
ion cloud [8]. Since ε1 depends on N , the radius bm differs for
the three cases in Fig. 6, indicated by the vertical dashed lines.
We have also calculated the total force for the other density
profiles considered in this paper. This gives practically the
same results on the scales of Fig. 6, although minor differences
are found close to bm due to different resonance properties and
for kb � 1 due to different coherence properties. However, the
plateau in the force is exactly the same, in accordance with the
observation in Sec. V B that Fz ∝ N2 for all profiles if ε1 is
close to unity, that is, away from the Mie resonance.

Now, for acceleration purposes, the plasma size should
presumably be in the “plateau range” of Fig. 6, in order to
both have a significant acceleration and, at the same time, avoid
plasma resonances. Experimentally, the latter invariably lead
to significant electron loss and heating in both nanoplasma [8]
and ultracold plasma [2,5] experiments and should, therefore,
be avoided despite the greatly enhanced accelerating force.
Second, the number of particles N should be chosen as large as
possible to maximize Fz. However, for too-large N the plateau
range disappears as the resonance radius bm grows larger
than k−1. The dash-dotted curve in Fig. 6 represents about
the largest N that allows for a plasma that is both coherent
and nonresonant at the chosen driving frequency of 1.3 GHz.
Incidentally, the corresponding value N = 5 × 1010 is also
one of the largest numbers of atoms that have actually been
magneto-optically cooled and trapped [55]. In that experiment,
the atomic cloud consisted of sodium. Let us estimate what
energies may be attained when this particular cloud is ionized
and accelerated by 1.3-GHz microwave radiation. A suitable
plasma radius, indicated in Fig. 6 by the data point with an
arrow, would be 1.5 cm (even larger atomic clouds with sizes
up to a few centimeters have been successfully produced [56]).
Existing L-band klystrons [57] can produce microwave pulses
with length τ = 1.5 ms at a power exceeding 10 MW. At
this power and with diffraction-limited focusing, the intensity
is about I = 35 kW/cm2. The resulting electron oscillation
amplitude is still much smaller than the plasma radius, so the
plasma should still behave as a dielectric as has been assumed
in this paper. Assuming that kb remains smaller than unity
throughout the microwave pulse, the momentum transferred
to the plasma is p = τN2σT I/c. The corresponding kinetic
energy per ion is U = (p/N )2/(2mi) = 2.7 keV, where mi =
3.8 × 10−26 kg is the atomic mass of sodium. Thus, the ener-
gies reachable by radiative acceleration are quite substantial.

Although keV energies are nowhere near those attained
in conventional accelerators, it should be emphasized that
an accelerated ultracold plasma is still an object with very
special properties. First, it is an accelerated neutral beam,
whereas other acceleration methods involve charged beams.
An exception to some extent is acceleration of partially neu-
tralized ion beams from laser-irradiated foils [58]. However, in
the latter method, beam properties such as the energy spread
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are still poor (∼10%). An accelerated ultracold plasma, on
the other hand, may have remarkable beam quality. For ions
at nonrelativistic energies, such as in the field of focused
ion beams [59], beam quality is usually expressed [60] in
terms of the reduced brightness Br = eIpeak/(2π2ξ 2mic

2),
where Ipeak is the peak ion current and ξ = b

√
kBTi/(mic2)/2

is the transverse thermal emittance with Ti the ion tem-
perature. Present state-of-the-art ion beams, produced using
liquid-metal ion sources [59], have a brightness up to Br =
106 A/m2srV at a current in the picoampere to nanoampere
range. In case of our ultracold plasma, the temperature of
the ion component usually equilibrates to a few Kelvin [1],
resulting in an emittance of ξ < 1 nm. The peak ion current is
Ipeak = πb2enev = 0.06 A, where v = p/(Nmi) is the veloc-
ity of the plasma, yielding a brightness of Br > 105 A/m2srV.
The brightness of the ions of an accelerated ultracold plasma
thus may be comparable to that of existing high-performance
ion sources but at a much higher current and with the important
difference that an ultracold plasma is a neutralized beam.
This combination of properties puts an accelerated ultracold
plasma in a yet-unexplored parameter regime, which may
well enable new applications. In particular, a neutral beam
does not suffer the space charge problems usually associated
with high brightness charged particle beams. In ion milling
applications [59], a neutral beam would alleviate problems
due to charging of insulating samples.

The above estimates being encouraging, it is important to
realize that they are based on the assumption that the plasma
stays coherent throughout the ms microwave pulse, that is,
that kb � 1. However, one may expect that the low but finite
electron temperature of the plasma leads to some plasma ex-
pansion due to the hydrodynamic pressure gradient ∇nekBTe.
On the other hand, for inverted plasma density profiles in
which dne/dr > 0, this gradient can be directed inward,
leading to compression rather than expansion. Moreover, as
mentioned before, the ponderomotive force is directed inward
as well for inverted profiles, giving an additional compressive
action. To fully assess the time dependence of the plasma size,
therefore, one should study the evolution of the density profile
under the influence of the self-consistent hydrodynamic and
ponderomotive forces. Such an analysis is outside the scope
of this paper. We do note that the characteristic hydrodynamic
expansion rate of usual undriven, Gaussian ultracold plasmas
is db/dt ∼ √

kBTe/mi [1]. If the plasma considered above
would expand at this rate with Te = 10 K, it would still take
some 0.4 ms before the plasma grows larger than kb = 1.
The interaction time τ assumed above is of the same order of
magnitude and, therefore, seems reasonable.

Another assumption made above is that the plasma does
not appreciably heat up due to the microwave interaction. In
absence of plasma resonances, the most important heating
mechanism [61] is inverse Bremsstrahlung due to electron-ion
collisions. In the strong-field regime e2E2

0/(4meω
2) � kBTe

under consideration here, the electron-ion collision rate is
νei ∼ neemeω

3/(π2ε2
0E

3
0) [62], and the resulting heating rate

per electron is Pei = νeie
2E2

0/(2meω
2). In the example above,

νei ∼ 3 s−1 only, giving Pei = 10−19 W. This corresponds
to a temperature increase of only Pei/kB = 8 K/ms. The
plasma should therefore indeed remain ultracold during the
acceleration process.

Finally, we should mention the strongly peaked outward
ponderomotive near the edge of the plasma, which is, of course,
disadvantageous for the stability of the plasma. Initially, the
electrons in the edge region will probably be expelled from
the plasma by this force. However, very soon, after a sufficient
number N1 of electrons has escaped, the resulting charging of
the plasma will prevent any further electron loss. This happens
as soon as the Coulomb potential UC = N1e

2/(4πε0b) of
the plasma is larger than the kinetic energy U1 that can be
supplied to an electron by the ponderomotive force peak. The
latter equals U1 = u1/ne, where u1 is given by Eq. (34) for
a homogeneous plasma. For the plasma considered in this
section, the condition UC = U1 gives N1/N = 0.3% only.
Electron loss due to the ponderomotive force peak at the
plasma edge should, therefore, remain relatively unimportant.
Particle tracking simulations are necessary to further elucidate
the behavior of electrons near the very plasma edge.

VII. CONCLUSIONS

In this paper, we have studied the ponderomotive forces
induced in a subwavelength plasma by an externally applied
electromagnetic wave. We found that the ponderomotive force
in the plasma bulk is directed outward for natural profiles
dne/dr < 0 and inward for “inverted” profiles dne/dr > 0.
For a completely homogeneous plasma, a spherically sym-
metric compressive ponderomotive force remains, suggest-
ing possibilities for contactless ponderomotive manipulation
of homogeneous subwavelength objects. Furthermore, we
showed that the force in the plasma bulk is accompanied
by a strongly peaked outward ponderomotive force near
sharp plasma edges. In the limit that the plasma boundary
tends to a discontinuous step in the density, this force peak
tends to a ponderomotive surface force, which in turn makes
an essential contribution to the total radiation pressure on
the plasma. Finally, we have discussed the feasibility of
radiative acceleration of ultracold plasmas. Based on existing
technologies and conservative estimates, we estimated that
these plasmas may be accelerated to keV ion energies, resulting
in a neutralized beam with a brightness comparable to current
high-performance ion sources.

Subsequent fluid simulations should address the plasma
dynamics and the self-consistent evolution of the density pro-
file. Furthermore, in this paper we have adopted a continuum
model of the plasma medium, which, of course, must break
down at some point. We expect granularity effects to become
apparent first near the plasma boundary, where the Debye
length becomes comparable to the scale length of the plasma.
Adequate modeling of the behavior of particles near the very
plasma edge should, therefore, be based on particle-tracking
simulations invoking the full-wave expansion Eq. (2) and (3) of
the fields. Extension of our results to plasma sizes comparable
to or larger than the wavelength will be very interesting as
well. It is clear that ponderomotive forces play an important
role in electromagnetically driven finite-sized plasmas in
general and in ultracold plasmas in particular. A thorough
understanding of these forces will enable opportunities for
active ponderomotive plasma manipulation, including the
compression and acceleration of ultracold neutral plasmas.

023101-11



P. W. SMORENBURG, L. P. J. KAMP, AND O. J. LUITEN PHYSICAL REVIEW E 87, 023101 (2013)

ACKNOWLEDGMENTS

This work is part of the research program of FOM, which
is financially supported by NWO.

APPENDIX A: QUASISTATIC LIMIT FROM GENERAL
FIELD EXPRESSIONS

We first estimate which potential [Eq. (3)] becomes domi-
nant in the quasistatic limit. As mentioned in Sec. II C, f e,m

n ∼
(kb)n if kb � 1. Consequently, the lowest-order modes �

e,m
1

are dominant, the high-order modes being progressively
smaller. Furthermore, assuming in Eq. (2) that symbolically
∇ ∼ b−1, it follows that |Ee

n| � |Em
n |. Hence, the dominant

contribution to the electric field is the electric dipole mode,
which is equal to

E ≈ Ee
1 ≈ E0∇

[
3

2kε

d
(
rf e

1

)
dr

sin θ cos ϕ

]
. (A1)

Here, the identity

1

kε
∇ × (r × ∇�e) = −1

k
∇

[
1

ε

∂(r�e)

∂r

]
− kr�e (A2)

has been used. Comparison of Eqs. (9) and (A1) shows that
the function ξ = −(3/2kε)d(rf e

1 )/dr must reduce to ψ in the
quasistatic limit, the latter being defined by the boundary value
problem (11)–(13). This can be shown by noting that in Eq. (4)
the propagation term k2ε is much smaller than the other terms
in the quasistatic limit. Neglecting the propagation term, taking
n = 1, and multiplying Eq. (4) by d/dr + 2/r yields

0 =
[

d2

dr2
+

(
2

r
+ 1

ε

dε

dr

)
d

dr
− 2

r2

]
ξ. (A3)

Similarly, multiplying Eq. (14) by −3/kb and taking n = 1,
approximating the Bessel functions by their limiting value for
small argument, and rewriting f e

1 (b) using Eq. (4) gives

−3 =
(

ε
dξ

dr
+ 2ξ

r

)
r=b

. (A4)

From Eqs. (11), (13), (A3), and (A4), ψ and ξ satisfy the
same differential equation and the same boundary conditions,
which shows that ξ ≈ ψ when kb � 1. Hence, the general
solution for the electric field given in Sec. II A approaches the
quasistatic field given in Sec. II B.

APPENDIX B: EXPLICIT EXPRESSIONS FOR
PONDEROMOTIVE FORCES

In the ponderomotive volume force density Eq. (24),

Rr1
nm = d

(
rRθ1

nm

)
dr

= 2 − δnm

k

(
gm

n

dgm
m

dr
+ gm

m

dgm
n

dr

)
, (B1)

Rr2
nm = d

(
rRθ2

nm

)
dr

= n(n + 1)m(m + 1)
2 − δnm

(kr)3ε2

×
[
ge

n

d
(
rge

m

)
dr

+ ge
m

d(rge
n)

dr
− 2

(
2 + r

ε

dε

dr

)
ge

ng
e
m

]
,

(B2)

Rr3
nm = d

(
rRθ3

nm

)
dr

= 2 − δnm

(kr)3ε2

{
[n(n + 1) − ε(kr)2]ge

n

d
(
rge

m

)
dr

+ [m(m+1) − ε(kr)2]ge
m

d
(
rge

n

)
dr

−2
d
(
rge

n

)
dr

d
(
rge

m

)
dr

}
,

(B3)

Rr4
nm = d(rRθ4

nm)

dr
= 2

(kr)2ε

{
d
(
rge

n

)
dr

d
(
rgm

m

)
dr

− 2gm
m

d
(
rge

n

)
dr

+ [n(n + 1) − ε(kr)2]ge
ng

m
m

}
, (B4)

Rθ1
nm = Rϕ1

n,m = 2 − δnm

kr
gm

n gm
m, (B5)

Rθ2
nm = Rϕ1

n,m = n(n + 1)m(m + 1)
2 − δnm

(kr)3ε2
ge

ng
e
m, (B6)

Rθ3
nm = Rϕ1

n,m = 2 − δnm

(kr)3ε2

d(rge
n)

dr

d(rge
m)

dr
, (B7)

Rθ4
nm = Rϕ1

n,m = 2

(kr)2ε
gm

m

d(rge
n)

dr
, (B8)

Sr1
nm = (2n + 1)(2m + 1)

n(n + 1)m(m + 1)

×
(

P 1
n P 1

m

sin2 θ
cos2 ϕ + dP 1

n

dθ

dP 1
m

dθ
sin2 ϕ

)
, (B9)

Sr2
nm = (2n + 1)(2m + 1)

n(n + 1)m(m + 1)
P 1

n P 1
m cos2 ϕ, (B10)

Sr3
nm = (2n + 1)(2m + 1)

n(n + 1)m(m + 1)

×
(

dP 1
n

dθ

dP 1
m

dθ
cos2 ϕ + P 1

n P 1
m

sin2 θ
sin2 ϕ

)
, (B11)

Sr4
nm = (2n + 1)(2m + 1)

n(n + 1)m(m + 1)

×
(

dP 1
n

dθ

P 1
m

sin θ
cos2 ϕ + P 1

n

sin θ

dP 1
m

dθ
sin2 ϕ

)
, (B12)

Sθj
nm = ∂S

rj
nm

∂θ
, (B13)

Sϕj
nm = 1

sin θ

∂S
rj
nm

∂ϕ
, (B14)

where δnm is the Kronecker δ and j = 1 . . . 4. In Eqs. (B3)
and (B4), the differential equation (15) has been applied to
rewrite second derivatives.

The z component fz of Eq. (24) consists of terms that
are proportional to X

j
nm = R

rj
nmS

rj
nm cos θ − R

θj
nmS

θj
nm sin θ , with

j = 1 . . . 4. In the volume integration of fz in Eq. (23),
integrating by parts the second term of X

j
nm with respect to θ ,

and using the functional relations in Eqs. (B1)–(B4) and (B13),
transforms the angular integrations to

∫
Xj

nm d� = d
(
r3R

θj
nm

)
dr

∫
Srj

nm cos θd�. (B15)
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The remaining four integrals j = 1 . . . 4 on the right side of
Eq. (B15) are equal to [63]∫

Sr1
nm cos θd� =

{
2πq2(q+1)(q+2)2

(2q+1)(2q+3) m = n ± 1,

0 m �= n ± 1,
(B16)

∫
Sr2

nm cos θd� =
{

2πq(q+1)(q+2)
(2q+1)(2q+3) m = n ± 1,

0 m �= n ± 1,
(B17)∫

Sr3
nm cos θd� =

∫
Sr1

n,m cos θd�, (B18)∫
Sr4

nm cos θd� =
{ 2πn(n+1)

2n+1 m = n,

0 m �= n,
(B19)

with q = min(n,m). The resulting total volume force is given
in Eq. (25), in which

Y 1
n = n(n + 2)

n + 1

∫ b−

0
χ

d

dr

[
(kr)2gm

n gm
n+1

]
dr, (B20)

Y 2
n = n(n + 1)(n + 2)

∫ b−

0
χ

d

dr

[
ge

ng
e
n+1

ε2

]
dr, (B21)

Y 3
n = n(n + 2)

n + 1

∫ b−

0
χ

d

dr

[
1

ε2

d
(
rge

n

)
dr

d
(
rge

n+1

)
dr

]
dr, (B22)

Y 4
n = 2n + 1

n(n + 1)

∫ b−

0
χ

d

dr

[
krgm

n

ε

d
(
rge

n

)
dr

]
dr. (B23)

APPENDIX C: RADIAL FUNCTIONS FOR
HOMOGENEOUS SPHERE

Solving Eqs. (15) and (16) for a homogeneous sphere with
permittivity ε1 gives ge,m

n = Ae,m
n jn(

√
ε1kr), with

Ae,m
n = yn

kb
∣∣
h

(1)
n

∣∣2
G

e,m
n

,

Ge,m
n ≡ δe,m

(
nj̃n − √

ε1kbj̃n−1
)

+
(

1 + b
d

dr
ln

∣∣h(1)
n

∣∣) j̃n, (C1)

where j̃n denotes the spherical Bessel function with argument√
ε1 kb and jn,yn,h

(1)
n are spherical Bessel functions with

argument kb. Substituting ge,m
n in Eq. (18) and expanding

braces yields

γ e,m
n = kb

∣∣h(1)
n

∣∣2h(2)
n Ge,m

n

yn

[
j̃n − ikb

∣∣h(1)
n

∣∣2
G

e,m
n

] , (C2)

with h(2)
n the nth-order spherical Hankel function of the second

kind [38] and argument kb. Multiplying in Eq. (C2) the term
j̃n by the identity 1 = (jn+1yn − jnyn+1)(kb)2, and simplifying
the denominator, gives

Ae
nγ

e
n = i(kb)−2

√
ε1h

(1)
n j̃n+1 − h

(1)
n+1j̃n

, (C3)

Am
n γ m

n = i(kb)−2

h(1)
n j̃n+1√

ε1
− h

(1)
n+1j̃n + (n + 1)χ1

ε1kb
h

(1)
n j̃n

. (C4)

Eqs. (C3) and (C4) are equal to cn and
√

ε1dn, respectively,
where cn and dn are the internal Mie coefficients [36]. Taylor
expansions about kb = 0 of Eqs. (C1) and (C2) are

Ae
1 = 3

√
ε1

ε1 + 2

[
1 + χ1(ε1 + 10)

10(ε1 + 2)
(kb)2 + . . .

]
, (C5)

Ae
2 = 5

3(2ε1 + 3)

[
1 + χ1(2ε1 + 7)

14(2ε1 + 3)
(kb)2 + . . .

]
, (C6)

Ae
3 = 7ε

−1/2
1

(3ε1 + 4)

[
1 + χ1(5ε1 + 12)

30(3ε1 + 4)
(kb)2 + . . .

]
, (C7)

Am
1 = 1√

ε1

[
1 + χ1

6
(kb)2 + . . .

]
, (C8)

Am
2 = 1

ε1

[
1 + χ1

10
(kb)2 + . . .

]
, (C9)

γ e
1 = 1 + 2iχ1(kb)3

3(ε1 + 2)

[
1 + 3(ε1 − 2)

5(ε1 + 2)
(kb)2 + . . .

]
, (C10)

γ e
2 = 1 + iχ1(kb)5

15(2ε1 + 3)
+ . . . ; (C11)

γ m
1 = 1 + iχ1(kb)5

45
+ . . . . (C12)

The imaginary part of other γ e,m
n are of order O[(kb)7].
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M. Yépez, F. Scheffold, M. Nieto-Vesperinas, and J. J. Sáenz,
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