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CHAPTER 1

Introduction

1.1. Preliminary remarks

In recent years investigators who carry out experimental work became increasingly convinced
that applying statistical principles to the design and analysis of their experiments substan-
tially improves the quality and efficiency of their efforts.

Many different designs are now available in the statistical literature from which they can
choose. Steinberg and Hunter (1984) provide an excellent list of references.

One of the important principles of experimental design is the need to examine factors simul-
taneously in one experiment, in order to obtain a sound knowledge of physical and chemical
mechanisms concerned.

Because the size of an experiment increases rapidly with increasing number of levels and
factors, there is a need to reduce the number of treatments in order to save time and reduce
the cost of experimentation.

A large number of designs have therefore been constructed in which only a subset of all pos-
sible treatments has to be used. An additional advantage of these designs is that they can
be used to predict the response of a treatment which has not been used in the experiment.
A number of existing designs will be discussed in the sections 1.2, 1.3, 1.4 and 1.5. Section 1.6
reports new results on fractional replication for quantitative factors, which originated from

this research.

1.2. Main-effect designs

An important group of designs with a limnited number of treatments is the class of main-effect
designs. These designs make it possible to estimate a relatively large number of main effects
using a small number of experimental units. Interactions are ignored. These designs are very
suitable as screening designs which are used to select a limited number of factors from a large
number of candidates.

Addelman (1962a) gives many of these plans in which factors may have from two up to nine



levels.
To construct these plans use was made of Galois fields, the techniques of replacement and

collapsing. The latter two techniques are explained in Chapter 2.

Plackett and Burman (1946) developed a set of main-effect designs for factors having two
levels. These are saturated designs because the number of parameters to be estimated equals
the number of experimental units.

The number of experimental units N must be a multiple of 4. These designs can be utilized to
examine up to (N — 1) factors. The X matrices corresponding to these designs are Hadamard
matrices. A Hadamard matrix H of order h is a matrix consisting of —1’s and +1’s, such

that H'H = h 1, I being the identity matrix.

Raktoe and Federer (1973) develop a class of balanced saturated main-effect plans for the

2" factorial. They use the following notations and definitions:

(i)  In a 2" factorial experiment with n factors at two levels each, a treatment combination

is an n-tuple (z,,22,...,2z5), with z; € {0,1}.

(ii) A set of (n 4+ 1) treatment combinations arranged in arbitrary order in an (n+ 1) x n
matrix D (a row being a treatment combination) with the aim of estimating 3, the
vector of regression coefficients, consisting of the mean and the main effects (when
the assumption that all other effects are negligible is justified) is called a saturated

main-effect plan.
(iii) A balanced saturated main-effect plan of the 2" factorial is a design D such that

(a) Each unknown parameter 3 is estimated with the same variance,

(b) the covariance between the estimates of the mean g and a main effect is a constant,

and

(¢) the covariance between estiinates of two main effects is another constant.

The plans developed are characterized by properties of the D’D matrix. It is regrettable that
no examples of plans are given and that the construction of these plans, some of which are

D-optimal Hadamard designs, is left to the reader.



Teguchi (1987) strongly recommends the use of main-effect plans. He calls them orthog-
onal arrays and he uses a very extensive collection of these arrays, some of which are also
suitable to estimate selected interactions.

Taguchi gives many interesting examples but unfortunately the numerical calculations are
often difficult to understand since they do not refer to a specified model.

A very important class of main-effect designs are the Latin-, Graeco-Latin- and hyper-Graeco-
Latin squares. These are designs containing k2 experimental units suitable to examine up
to (k + 1) factors with k levels. Kempthorne (1979) shows how Galois fields can be used to
construct these squares. Boz, Hunter and Hunter (1978), Cochran and Coz (1957), Johnson
and Leone (1964), Montgomery (1976), Upperman (1974), Upperman and Dévény (1974) give
many examples of these designs. Upperman and Dévény (1974) treat an interesting applica-
tion of a main-effect design consisting of 5 orthogonal Latin squares. These squares are used
to solve a quality problem in a complicated production process.

However, main-effect designs are nbt always suitable since interactions may be important
elements of the models under consideration. We therefore discuss some designs in the next

section which allow estimation of both main effects and interactions.

1.3. Designs permitting estimation of all main effects and two-factor interactions

1.3.1. Fractions of 2" designs

Kempthorne (1979), Boz and Hunter (1961a, 1961b) and Montgomery (1976) give a sound
basis of the theory to construct fractions of 2" designs. Kempthorne (1979) and Montgomery
(1976) use linear functions for this purpose.

The books of Cochran and Coz (1957), Mclean and Anderson (1984), the Statistical Engineer-
ing Laboratory (1957} and Upperman (1974) contain many fractions of 2" designs, permitting
the estimation of all main effects and two-factor interactions.

The books of Cochran and Coz (1957), Upperman (1974) and Boz, Hunter and Hunter (1978)
contain many agricultural and industrial examples. Addelman (1961) also provides fractions
of 2™ designs. Although these designs introduce some correlations between some of the es-
timates, they permit the estimation of main effects and two-factor interactions with fewer

trials than is required with an orthogonal plan.
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It is for instance known that a ; replicate of the 27 design allows uncorrelated estimates of
all main effects and two-factor interactions. This plan therefore requires 64 trials or experi-
mental units. The plan of Addelman only requires 48 trials.

Rechtschaffner (1967) gives an algorithm to construct saturated designs for factors having
two levels.

For instance the 27 design contains 7 main effects and 21 two-factor interactions and therefore
28 effects have to be estimated apart from the mean. Rechtschaffner (1967) estimates these
effects using only 29 trials.

Many orthogonal fractional 2™ designs can be analyzed by using graphical methods as de-

scribed by Daniel (1959) and Zahn (1975).

1.3.2. Fractions of 3™ designs

Cochran and Coz (1957), Mclean and Anderson (1984) and Montgomery (1976) give a num-
ber of useful plans. Worked examples are not provided but Montgbmery (1976) gives some

exercises with fractions of 3™ designs.

1.3.3. Fractions of 2"3™ designs

Connor (1960) explains the theoretical foundation of the methods to construct fractions of
2"3™ designs. These methods were used to develop the designs given in Connor and Young
(1961). Mclean and Anderson (1984) include all the designs of Conner and Young (1961)
and those given in the Statistical Engineering Laboratory (1957). Margolin (1969b) gives a
number of plans which require far less experimental units than the corresponding designs
in Connor and Young (1961). Webb (1971) provides a list of small plans but interactions
cannot always be estimated. Upperman (1991) gives an application of a 2"3™ design to a
spot-welding experiment and other examples of the application of experimental designs to

industrial problems.

1.3.4. Other fractional designs

It is surprising that little attention has been paid to Morrison (1956). A method is described

in this article which yields a % replicate for factorials when some factors have more than



3 levels. All two-factor interactions can be estimated. A number of numerical examples is

provided. One of these consists of a % replicate of a 23 x 3 x 5 design.

1.4, Designs for quantitative factors

Many designs have been developed for quantitative factors. They are very ‘economical as
regards the number of design points needed, especially since many of these designs, such as
“some response surface plans, use 5 levels for each factor.

Articles dealing with response surfaces were written by Boz and Draper (1959, 1963), Boz
and Hunter (1957), Lucas (1974), Welch (1984) and Myers, Khuri and Carter (1988).

Boz and Behnken (1960), Hoke (1974), Mitchell and Bayne (1978) and Rechtschaffner (1967)
deal with designs for quantitative factors with three levels. The designs for 3, 4, 5, 6, 7, 9,
10, 11, 12 or 16 factors, of Box and Behnken, are frequently used in practical work.

Boz and Draper (1974) discuss designs in which each factor has four unequally spaced lev-
els,which may be a disadvantage in a practical situation.

There are several books dealing with response surface methodology such as Boz, Hunter and
Hunter (1978), Boz and Draper (1987), Cochran and Coz (1957), Montgomery (1976) and
Upperman (1974). It is mostly assumed that the response surface model can be presented by
a second degree polynomial.

Boz and Draper (1987) is especially useful since it incorporates many results given in articles

which were previously published.

1.5. D-Optimal designs

Many articles and books have appeared during the last twenty years about designs for which,
given the number of design points, the hyper volume of the joint condifence region of the #’s,
the parameters of the regression equation, is minimized. These designs are called D-optimal.
Fedorov (1972) gives an excellent treatment of the subject, St. John and Draper (1975) and
QOorschot (1974) give a good review and mention further useful literature. Mitchell (1974a,
1974b) uses a computer algorithm to construct designs which are more or less “D-optimal”.
Although the D-criterium is a very useful tool to construct designs, there are a number of

authors who have made some critical remarks as to the use of D-optimal design theory.
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Welch (1984) reports that constructing D-optimal designs may be inappropriate when the
number of observations is not large relative to the number of parameters.

Boz, Hunter and Hunter (1978) state that in recent years the study of optimal designs has
become separated from real experimentation with the predictable consequence that its limi-
tations have not been stressed, or, often even rea.liied (p. 472).

D-optimal designs do for instance very often not contain a center point, whereas such a point
is very desirable from the experimenter’s point of view.

In Chapter 5, Section 5.7, we shall see that some nearly D-optimal designs have a relatively
large variance for the parameter estimates corresponding to the quadratic terms of the regres-
sion model. Boz and Draper (1987) also voice some criticism as to the use of D-optimality
(pp. 499, 500). Firstly because the hyper volume of the confidence region for the §’s very
much depends on the range of the factor-levels chosen and secondly because D-optimality
does not take into account the possible bias due to a wrong model. There are many char-
acteristics with which a design can be judged. Two of these, D- and G-efficiency, will be
discussed in Chapter 2. Some new D-optimal designs will be developed in Chapter 3.
These designs had to be constructed to be able to calculate D-efficiencies of some new designs

developed in Chapters 4, 5 and 6.

1.6. The need for new designs with quantitative factors

Although an experimenter can choose from many designs for quantitative factors, our expe-
rience in statistical consultation has shown that available designs are not always satisfactory.

There are three reasons:

(i)  they require that all factors have the same number of levels, mostly 3 or 5,

(it)  the number of experimental units is rather large,

(iii) there are only a few designs available with a small number of experimental units.
Many experimenters only want to carry out small experiments because of time and costs
involved.

There is therefore a real need for a great variety of designs with quantitative factors having

a small number of experimental units.



The experimenter moreover wants some freedom as to the choice of the number of levels
per factor.

Especially in the preliminary stages of experimental work, for instance research concern-
ing integrated circuits, it is desirable to carry out small experiments in which a number of
quantitative factors is varied simultaneously and knowledge as regards their main effects and
two-factor interactions is required.

This thesis describes some methods which enable us to construct a particular class of rela-
tively small designs using 2" and 3™ designs as building blocks, while maintaining as much
orthogonality of the design as possible.

Three methods are discussed to construct designs for quantitative factors:
(i)  The first method constructs plans from the 2" design using the new concept of “design
generator”. See Chapters 4 and 5.

(ii) The second method also makes use of the 2" design, but uses moreover properties of

the D-optimal designs developed in Chapter 3. See Chapter 5.
(iii)) The third method, described in Chapter 6, uses orthogonal columns of some main-effect

designs.

In the Appendix more than 40 plans are given, 39 of which are new, usually with the appropri-
ate variance - covariance matrix of the parameter estimates and some additional information.
Extensive use was made of the Personal Computer Package “Math Cad” to construct and
evaluate these designs.

The designs developed in this thesis have been constructed using the following restrictions:
(i) Factors have two, three or four levels.

(ii)  The two-level factors may be qualitative or quantitative.

(iif) The three- and four-level factors are quantitative and the levels are equally spaced.

(iv)  All interactions except of the type “linear X linear” are ignored.

(v) The mathematical model of the observations is a second degree polynomial.



No special effort was made to construct D-optimal designs as described by Mitchell (1974a).
We rather used the other approach namely of constructing a number of designs, then judging
and comparing the designs as is done in Chapter 7, using a number of criteria.

These designs have three advantages over many other designs with quantitative factors.

(i)  The number of levels for each factor varies between 2 and 4 whereas many existing
designs, such as the central composite designs of Cochran and Coz (1957) and the Boz

and Behnken (1960) designs, require each factor to have the same number of levels.

(ii) Many designs contain a two-level factor which may of course be either qualitative or

quantitative.

(iil) There is a great variety of small designs to choose from.



CHAPTER 2!

Some general aspects of linear regression theory and experimental design

2.1. Introduction

Since we have to use the linear regression model and some other aspects of regression theory
and experimental design, such as D-efficiency, G-efficiency, the techniques of replacement
and collapsing, frequently in Chapters 3,...,7, we shall briefly review these in the following

sections.

2.2. The linear regression model

The major purpose of experimental work is to find mechanisms, such as biological, physical
and chemical mechanisms of products or processes.

More precisely, the effect of a number of quantitative factors or independent variables
Z1,Z3,...,Z; on a dependent variable y has to be found.

Especially when these mechanisms are unknown, it is usually assumed that the relation be-
tween y on the one and z1,z2,...,zk on the other hand can be described by a linear model,

which is written in matrix notation as
y='(x)B+¢. (2.1)

The vectors f(x) and 3 are explained below.
The linear model which we shall use will be a second degree polynomial in the variables

I1,22,...,Zk.

To estimate the vector of parameters 3 we carry out observations y1,¥2,...,yn and the

sampling model is written as
Y=XB+e¢. (2.2)

We use the following notation:

'Many points discussed in Sections 2.3 and 2.4 were obtained from Qorschot (1974).
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The number of observations y in an experiment.
The number of parameters 8 in the linear or regression model.

An N x 1 vector of observations or responses y.

x; = (i1, Zi2, .- -, Zik) is the k X 1 vector of predictor or independent variables,
where x; is the ith design point in the k-dimensional region R and =z, zi2,. .., Tik
are the levels of the variables or factors x;,z,. ..,z in the ith experiment
(i=1,2,...,N).

An N x P matrix (of rank P) of constants, with row ¢ containing f'(x;), where

'(x;) = (fi(xi), fa(xi),..., fP(x;)), in which the functions fi, f2,..., fp

are known.

Therefore we have

fl(xl) fz(xl) fP(Xl)
X = fi(x2)  fa(x2) -+ fr(x2)

Hxen) fa(xw) - fp(xn)

The transpose of X.

The P x 1 vector of parameters to be estimated.

(The model (2.1) is called linear because it is linear in the parameters f3.)

An N x 1 vector of independently and identically distributed random variables each
having mean 0 and unknown variance o2,

The elements of the vector € are the experimental errors.

The number of independent variables or quantitative factors z.

A k-dimensional experimental region in which it is feasible to perform experiments.

The elements of (X'X)™!, p,g=1,2,...,P.

The least squares estimate of 3 is

B=(X'X)'X'Y. (2.3)

The covariance of 3 is

10



Z(B) = oX(X'X)"" . (24)

At any point x € R, the predicted (or estimated) value of the “true” response is

i(x) =1'(x)B (2.5)
with variance

var (§(x)) = o2 f/(x) (X'X)™! f(x) . (2.6)
The residual sum of squares is given by

fe=Y'Y-AXY. (2.7)

Equation (2.4) is important in the search for new designs for we want an (X'X)~! matrix

with the following characteristics:

- Small diagonal elements c,, because they correspond with small variances of the B's.

- Ofl-diagonal elements which are preferably zero because they correspond to estimates which
are mutually orthogonal. In case an off-diagonal element ¢, is not zero we shall calculate
the corresponding correlation coefficient = -5 . We shall try to construct designs

p g Prq m y g

for which the p,, are small, preferably |p,,| < 0.5.

The term 8'X’Y in Equation (2.7) can very often be divided into orthogonal segments cor-

responding to 3’s or to groups of 3’s which are mutually orthogonal.

2.3. D-optimality and D-efficiency

To design an experiment it is necessary to find for each of the design points x; = (2}, Zi2, - .., Zi)’
the values of the vector elements z;1,zi2,. .., Zik.

The choice of these values has to be made in such a way that the estimators 3 have favourable
properties.

There are many criteria for such properties. One of these is D-optimality, which is achieved

11



when det (F(3)) is minimized.

This minimization is desired because (det(F(3)))!/? is proportional to the hyper volume of
the joint confidence region (an ellipsoid) of the 8’s .

From (2.4) it follows that

det (£(B)) = 0*F det (X'X)™")
or

det (B(B)) = 6*P [ det (X'X) . (2.8)
The minimization of det (£(3)) therefore corresponds with the maximization of

det (X'X) .

In the Appendix the expression |XTX]| is used for det(X'X).

DEFINITION 2.3.1
A Dp -optimum design is a group of design poinls (xq,Xz,. .. ,Xn) from R, such that det(X'X)

is @ mazimum.
We recall that
hx)  f(x) - fp(x1)

X = fl(.x2) fz(.xz) fP(.X-z)

hH(xn)  falxw) oo fp(xn)

and rank X is equal to P.

The matrix X’X can now be written as
N .
X'X =Y f(x) (%), (2.9)
1=1

where £'(x;) = (1 (x:), f2(%:), - - -, fp(x;)) is the i*" row vector of X.
In many cases we may have more than one observation in a certain design point x;. Then we

have some identical rows in X, and we can write the matrix X'X as

12



XX = 3 mf(x;) F(xi) (2.10)

=1
where n; is the number of times that design point x; is used in the design and r is equal to
T
the number of different design points (i = 1,2,...,r; n; > & Z n; = N).
=1

We now define
pi=mn; /N .

Given the definition of n; and N it follows that p; is equal to the fraction of design points

with vector
Xi = (%i1, Tizy .- - Tik) -
We may now write (2.10) as
r
X'X=NY pif(x) f(xi) . (2.11)
i=1
A fraction p; of all experiments is performed in design point x,; (: = 1,2,...,r). It stands to
reason that only an integer number of experiments can be carried out in design point x;.
When N is given we have the requirement that p; is a multiple of (1/N), (i =1,2,...,7).
We shall however drop this requirement. This simplification provides the possibility to make
statements which are independent of N and to compare experiments with different values of
N.
For instance the statement: “Perform (1/3) of the experiment in each of the design points
X1, X2 and x3”, only has a meaning, strictly speaking, if N is the multiple of 3.
However, such a statement gives for an arbitrary N > P an indication about the number of
experiments in each of the 3 design points. Moreover if we drop the above requirement we
very often shall simplify the comp:lta.tional effort considerably.
We only require that p; > 0 and Z p; = 1. We can now define an experimental design as
i=1

€= (X1,X2, .-, X5} P1,P2, -5 Pr) - (2.12)

The design is now viewed as a probability measure on R. The fact that (2.12) does not
contain N implies that the matrix X'X no longer has its central position but a matrix M

has, which is defined as
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r

M(6) =Y pif(xi) (i), (2.13)

where the symbol £ indicates the dependence of M on the choice of r different design points

x; and corresponding fractions p;. It should be noted that (2.13) does not contain N.

Note that if X’X can be written as in (2.11), then we have M(£) = X’X/N.

We can now define a D-optimal design as follows:

DEFINITION 2.3.2

An ezperimental design €0 = (x9,x9,...,x%p%,0%,...,p0) is D-optimal if and only if

det (M(£°)) = max det(M(£)) - (2.14)

DEFINITION 2.3.3
The D-efficiency of an ezperimental design £ is given by the formula

D-efficiency = 100(det (M(£)) / det (M(£°)))(1/P) | (2.15)

where P is equal to the number of parameters (3 in the regression model.

2.4. G-optimality and G-efficiency

According to equation (2.6) in Section 2.2 we found that the variance of the true response

var (§(x)) equals
var (§(x)) = o2 £(x) (X'X)~1 f(x) . (2.16)
We now formulate a theorem for an experimental design

EN = (X1, X2y ooy Xp; N1, N2, 00y By
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with design points xy,X»,...,X, in R, where nj,ns,...,n, are the numbers of observations.
T

(z ni:'Ny ’ﬂiZO)-
i=1

THEOREM 2.4.1

For the linear model Y = X3 + € and the design €N we have
a) z n; var (§(x;)) = Po? . (2.17)
=1

(In words: The weighted sum of the variances of the estimated predicted response equals P o%;

the summation takes place over the points of the ezperimental design.)
. 2
b) max var (§(x)) > Po*/N . (2.18)

The largest variance of the estimated predicted response is at least equal to Po?/N. It is to

be noted that all the points of R are-considered.

A suitable criterion for a well designed experiment could be: Choose an experimental de-
sign which minimizes the largest variance of the estimated response.

This leads to the following

DEFINITION 2.4.1
A Gn-optimal design is a group of design points Xy,Xa, ..., XN from R, chosen in such a way

that

max f'(x) (X'X)™! f(x) is a minimum .
X€ER

Since M(£) = X'X/N we have
M-I(€) = N(X'X)1. (2.19)
Using (2.16) we may write

Nvar (§(x)) = No? /(x) (X'X)™! f(x)
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or
Nvar(§(x))= o f'(x) M7}(¢) f(x) .
We define
d(x,§) = f'(x) M™'(¢) £(x) .
Using (2.20) and (2.21) we find
var (§(x)) = o? d(x,£)/N
From (2.17) and (2.22) we obtain
ZT: n; ot d(x;,€)/N = o? E pid(x;, &) =
= =
or
i} ped(xi, ) = P
From (2.18) and (2.22) we derive
max o?d(x,8)/N > Po? N
or

> .
max d(x,¢) > P

2

(2.20)

(2:21)

(2.22)

(2.23)

(2.24)

In Section 2.3 we defined D-optimality independent of N. We can now likewise define G-

optimality independent of ¥. We then have

DEFINITION 2.4.2

A design £’ = (x|,X5, ..., X P}, P4, .-, PL) is G-optimal if and only if

AN M ’
max d(x,{’) = mjn maxd(x, §) .

16



DEFINITION 2.4.3

The G-efficiency of a design £ is defined as
G-efficiency = 100( P/ max d(x,8)) . (2.25)
X

We shall how calculate the G-efficiency for a design with a particular .

According to (2.22) we may write

d(x,€) = N var (§(x))/o*

and therefore we have

G-efficiency = 100(P o?/N max var (§(x))) (2.26)
G-efficiency = 100P/(N max (F(x) (X'X)™* £(x))) . (2.27)

From (2.25) it follows that a design has a G-eﬂiéiency of 100% if max d(x,€) = P.
X

2.5. The general equivalence theorem

If we assume that p; (1 =1,2,...,7;3.7_; pi = 1) can have any value between 0 and 1, the

general equivalence theorem applies, which states that the design
&€= (x3,x3,....x%pl, 03, .00)

which is D-optimal (see (2.14)), coincides with the design
€= (X, X% -, X0 PP - Py) s

which is G-optimal.

This theorem, due to Kiefer and Wolfowitz (1960), can be summarized as follows
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THEOREM 2.5.1

(The general equivalence theorem)

The following assertions are equivalent.

det (M(&")) = max det (M(¢)) . (2.28)
max d(x,&') = mEin max d(x,§) . : (2.29)
max d(x,8)=P. (2.30)

It means that design £’ is D-optimal and G-optimal.

It is to be noted that such a design &' is, generally speaking, not exact but approximate, since

it can only be realized in pfactice, if each p; is a multiple of 1/N.

CoRroLLARY 2.5.1
We can use (2.30) to verify whether a particular design is D-optimal. If (2.30) is satisfied,
then the design is D-optimal.

Note that D-optimality is essentially a parameter estimation criterion whereas G-optimality
is a response estimation criterion. The equivalence theorem states that these two design '
criteria are identical when the design is expressed as a probability measure on R.

It is generally speaking, difficult to find a D-optimal design. In practice a certain design,
which is likely to be D-optimal, is constructed. Afterwards the value max d(x, £) is calculated.
If this value equals P, we have found a D-optimal design.

If this value is not equal to P, we add points to the design where d(x, £) obtains its maximum.
The design will then have a better D-efficiency.

As an example we shall construct a D-optimal design in the next section.

2.6. The construction of a D-optimal design with three factors

It is required to construct a D-optimal design for the linear model

¥ = PoTo + Puzl + Biz1 + B222 + B323 + Pr221%2 + Piaziza + Paszezs+e . (2.31)
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Therefore 3 factors have linear terms, all first order interactions are present and one of the 3
factors has a quadratic term.
The ranges of the z's are scaled to a common interval —1 < z; < +1 and the three-dimensional
region R is therefore a cube.

In Section 2.2 we defined

f'(xi) = (fi(xi), fa(xi), ..oy fo(x0))
the *P row of the matrix X. According to (2.31) we have
fi(x:) = fi(zi, 2i2, Ti3) = 20 = 1
fa(xi) = fa(zi, 2ig, 7i3) = o}
fa(xi) = fa(zir, Tz, 2i3) = T
fa(xi) = fa(zir, %i2, %iz) = 202 (2.32)
fs(xi) = fs(za, a2, 243) = T3
fo(xi) = fo(za, ®i2, 7i3) = zarTiz
fr(xi) = fr(2i1, %2, 2i3) = Ta T3
fa(xi) = fa(®iar,Ti2, iz) = TiaTis -

In our effort to find a D-optimal design we use an intuitive approach.

We define an experimental design by choosing levels, —1, 0 and +1 for z;, levels —1 and +1
for 2 and z3 and choose as design points the 3 x 2 X 2 factor-level combinations.

We assume that a fraction o of the observations takes place in each of the 2% design points
where the factors have the levels —1 or +1. A fraction § of the observations is carried out in
each of the four design points where z; has the level 0 and the two other factors have levels
—~1or +1.

The design matrix DM can now be written as
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fraction

[ -1 -1 —1]

T2

T

a

(2.33)

DM =

The matrix X can now be written as

fraction p;

Ti2Z43

41743

Zi3 Ti1%4)

Ti2

Ti1

(2.34)

44

Q@@

Using (2.13) we have

M(£) = > pif(xi) £'(xi) .

We find
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[8a+48 8a 0 0 0 0 0 0
8a 8a 0 0 0 0 0 0
0 0 8a 0 0 0 0 0
0 0 0 B8a+4p 0 0 o 0
M(£) = (2.35)
0 0 0 0 8ax+48 0 0 0
0 0 o0 0 0 8a 0 0
0 0 o0 0 0 0 8a 0
0 0 0 0 0 0 0 Ba+4p
Since 8a + 48 = 1 we can easily find that
det (M(£)) = (8a)* (1 - 8a) . (2.36)
This value reaches a maximum for & = 0.1 and since 8a + 43 = 1 we have § = 0.05.
Substituting a = 0.1 in (2.36) we find
max det (M(£)) = 0.08192.
We now have to prove that (2.33) is a D-optimal design.
We shall use the equivalence theorem and therefore calculate, see also (2.21)
d(x,£) = f'(x) M~1(¢€) f(x) . (2.37)
We have
f'(x) = (1,2}, 21,22, 23, 2122, 21 23, T223) . (2.38)

To find M~1(£) we first calculate M(£) by substituting a = 0.1 and § = 0.05 in (2.35).

Omitting £, we obtain
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1 08 0 00 0 0 0
08 08 0 00 0 0 0
0 0 0800 0 0 0
M| © 0 0100 00 (2.39)
0 0 001 0 0 0
0 0 0 0008 0 0
0 0 0 00 0 080
0 0 000 0 0 1
(5 5 0o 00 0 o0 0]
562 0 00 0 0 0
0 0 12500 0 0 0
M| 0 0 0 10 0 0o (2.40)
0O 0 0 01 0 0 0
0 0 0 00 125 0 0
0 0 0 00 0 1250
0o 0 0 00 0 0 1
[ 5_522 ]
-5+ 6.25z%
1.25z,
M- f(x) = 2
I3
1.25z,z4
1.25z,z3
I2T3

f'(x) M~ f(x) = 5 — 5z — 522 + 6.25z% + 1.252% + 23 + 2% + 1.252%32% + 1.252322 + z%x2
or
£(x) M~ f(x) = 5 — 8.75z2 + 6.252% + 22 + 23 + 1.252222 + 1.25z223 + 2322 . (2.41)
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The fourth degree polynomial (2.41) reaches a maximum for
z1 =22 =23==x1 butalsofor z, =0, 29 =23 ==%1.
Substituting each set of values into (2.41) we obtain

max d(x,€) = max F(x)M™(§) f(x)=8=P. (2.42)

According to the equivalence theorem we now have proved that design (2.33) is D-optimal.

Since o = 0.1 and 8 = 0.05 we can realize this design in practice when we take N = 20, be-
cause for N = 20 we have that « and § are a multiple of (1/N) since « = 2/N and § = 1/N.
The D-optimum design therefore has 2 observations in each of the 8 design points where the
factors have the levels —1 or +1 and one observation in each of the 4 design points where z,
has the level 0 and the two other factors have levels —1 or +1.

A graphical presentation of the design points in R, a 3-dimensional region, is given in Fig-

ure 2.1.
2 - 1 2
+1le 2 :.1 e
i |
.5
XB O‘; 5
H 1
: - .0 X
2.7 1 2 Lot
-Lé + i1
—Io e ..6- e '»'u-"-.l
X1

Figure 2.1. A D-optimal design with three factors.

It is interesting to know the value of the D-efficiency of the 3 x 2 x 2 factorial design if one
observation is taken in each of the 12 factor-level combinations.

We then have p; = 1/12 (1 =1,2,...,12)ora = = 1/12.

Substituting this value in (2.36) we find
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det (M) = (8/12)* (1 —8/12) = 0.0658436214 .

We found max det (M(£)) = 0.08192.
Therefore, using (2.15)

D-efficiency = 100(0.0658436214/0.08192)(1/3) = 97.31% .
To calculate the G-efficiency of the same design we first of all compute
d = f'(x) M~1(&) f(x) .
max d(x,£) = max f'(x) M~ ({) f(x)

See also (2.21) and (2.25).

To calculate M~!(£) we substitute @ = 8 = 1/12 in (2.35) and we find

(3 -3 0 00 0 0 o]
345 0 00 0 0 0
0 0 1500 0 0 0
Me@o| 0 0 0 100 00
0 0 0 01 0 0 0
0 0 0 0015 0 0
0 0 0 00 0 150
0 0 000 0 0 1]

We already know, see (2.38),
f'(x) = (1,22, 21,22, %3, 2172, 7123, T223) -

After some calculations we find

d(x,£&) = f'(x) M~1(£) {(x)

=3 —4.522 + 4.5z + 22 + 23 + 1.5(z%22 + 2223) + 2223 .

It can easily be seen that-d(x,£) reaches a maximum for z; = z2 = z3 = +1.

Substituting these values into (2.43) we find
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max d(x,£)=9.
Using (2.25) we obtain
G-efficiency = 100 x 8/9 = 88.9% .

The 3 x 2 x 2 factorial design is therefore very satisfactory, if it is used to estimate a linear

regression model, because it has a high D- and G-efficiency.

2.7. The value of d(x,£) for D-optimal designs

In the previous section we found that the value of d(x, £) was equal to P for all design points.

This is not a coincidence but stems from the following Theorem 2.7.1.

THEOREM 2.7.1

The condition mé‘}z‘ d(x,£) = P is satisfied by all the design points of ¢ D-optimal design.
X

Proof
According to (2.23) we have

}i pid(x;, €)= P.

i=1

Since }: pi = 1, we may write

=1

Yoo pid(xi,&)=P Y pi=) pP
i=1 i=1 =1

or
> pild(xi,€) - P)=0. (2.44)
i=1
Because mea% d(x,£) = P, since we have a D-optimal design, it follows that each d(x;,£) < P
X
and each value d(x;,£) — P is either negative or zero.

However, it is obvious that (2.44) can only be satisfied if for all i = 1,2,...,r, we have
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d(xi, )~ P=0
or

d(x;,6)= P q.ed.

2.8. The 2? design

Because we will use the 2™ designs for constructing other designs we first give the usual 22
design in Table 2.1. This particular design shall also be used to introduce the techniques of

replacement and collapsing.

The levels of the factors A and B have been given in three different ways as indicated in

Table 2.1.

A 1] a
A -1 +1
B T4
B 0 1
ZB
(1) | -1 0 v | ¥
b | +1 1 Y3 | ¥4

Table 2.1. The 22 design.

For the time being we assign the variables A and B to the factors A and B. These variables

take on the value ~1 or +1.
We then have the fol.lowing well known mathematical model for the observations y; which are

normally distributed mutually independent variables with common variance o2 and
E(y:) = Bozoi + B14i + B2 B + P12A: B;

or in matrix notation
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E(Y) = X8,

where
zoi Ai B AiB;
% +1 -1 -1 +1 Bo
Y= || X= |41 41 -1 -1 | , B= | 4
Y3 +1 -1 +1 -1 B2
Y4 +1 41 +1 +1 B2

Using Equation (2.3) we may write
B=(X'X)1X'Y.
In the case of a 22 design we therefore find the following estimator for 3.

Bo (n1+ 32+ 33+ v4)/4

A= i _ (~ni+y2—ys+w)/d
Ba (—nn~—v2t+yat+w)/d
Bra (n—y2—ys+va)/4

and Var (8) = ¢2(X'X)~! with

4 0 00 1/4 0 0 0
0400 0 1/4 0 0
(X'X) = and (X'X)7! = /
00 40 0 0 1/4 0
00 0 4 0 0 0 1/4
Therefore
Al [en
| L |
2 2
9z, o/4
2 2
%, at/4

The 2% design has some nice properties.
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~ The design is D- and G-optimal.
— It is efficient because all the observations are being used to estimate each parameter.

~ The matrix (X’X)~! is diagonal and that means that all the estimates 3 are uncorrelated

and have, given the numbers of observations, minimum variance.

We shall therefore always try to construct designs with a diagonal (X’X)~! matrix or if that

is not possible to obtain an (X’X)~! matrix with many off-diagonal elements equal to zero.

2.9. The technique of replacement

If we employ a 2% design, we have four treatments as shown in the preceding section. If we
use a four-level factor we also have four treatments.

We can therefore associate the treatments of the 22 design with the treatments of the four-
level factor and establish a one-to-one correspondence between them.

This correspondence is given in Table 2.2, where the four equally spaced levels of P are

indicated with zp =0, 1, 2 and 3.

A (1) a
A -1 +1
Ta 0 1
B | (1}] b [(1)| b
B -1 +1| -1]+1

B 0 1 0 1

obs. n Y3 Y2 Ya

value

ofzp | 0O 1 2 3

Table 2.2. The 22 design with four-level factor P.

The relation given in Table 2.2 has a great practical value, because it is now possible to take
two factors out of a 2" design or a fraction thereof and replace these two factors by an equally

spaced four-level factor P.
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This technique is called replacement. See Addelman (1962a, 1963).

We are now able to use a 2" design as a building block for designs with a number of quan-
titative factors having four levels. We shall develop these designs in Chapter 4 and 5. In
Section 1.6 we stipulated that the mathematical model of the observations can be described
by a second degree polynomial. We can therefore represent the effect of P with a second
degree polynomial in zp.

However, to ensure orthogonality as much as possible, which means many zeros in the X'X
matrix, we shall employ orthogonal polynomials to represent the P-effect.

The first and second degree orthogonal polynomials of an equally spaced four-level factor are
P (linear) =Pl=-3+42zp
P (quadratic) = Pg=1-3zp+2.

The values of these polynomials can be calculated from
P (linear) =Pli=-3+2p; (2.45)
P (quadratic) = Pg; =1-3zp; +25%,, (2.46)

where zp can take on the values zp; =0, 1, 2 or 3.

Since the polynomials are orthogonal we have

4
). PliPg=0.

i=1
The method to calculate these orthogonal polynomials is described in Addelman (1962a) and
Appendix 6A. This method is also applicable when the levels of P are not equally spaced or
do not occur with equal frequency.
Substituting the values zp; = 0, 1, 2 and 3 in (2.45) and (2.46) we obtain orthogonal

polynomial values for a four-level factor: See Ta.ble’2.3.
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Table 2.3. Orthogonal polynomial values for a four-level factor.

zp,

Pl;  Pg

-3 41
-1 -1
+1 -1
+3 41

Replacing the two-level factors A and B by one four-level factor is equivalent to replacing the

column vectors A, B and AB in the X matrix by the column vectors P1 and Pq of Table 2.3.

To facilitate the construction of new designs later on it is necessary to find the relation

between the elements of the set of column vectors (A, B, AB) and (Pl, Pq).

These sets are, together with zp;, again given in Table 2.4. Note that the zp; values are not

in their natural order,

zp; A
0 -1
2 41
1 -1
3 +1

Table 2.4. Values of zp; and column vectors A, B, AB, Pl and Pq.

AiB: Pl
+1 -3
-1 +1
1 -1
+1 43

Some elementary algebra gives the following relations:

Pl; = 24, + B;

Pq; = A;B;

The formulae (2.45), (2.46) and (2.47) are such that

4 4 o4
Y. Pli=3_ Pg=y_ PlPq
=1 =1 =1

=0.
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When we define:
Pl=/\1(2A+B) =/\1(—3+21:p)
Pg= )X, AB =,\2(1—3zp+x§3),

where A; and A, are constants, we still have that (2.48) is true and the set (P, Pg) still
consists of two orthogonal polynomials.

In order to compare designs later on we shall, for a number of designs, standardize the X
matrix in such a way, that the sum of squares of the elements of the columns in the X matrix
equals N, the number of experimental units in the experiment.

The diagonal elements of X’X will then be equal to N. This procedure also has the advantage
that the variances of the s are equal for an orthogonal design and nearly equal if the design
is nearly orthogonal.

Hence for the X matrix corresponding to Table 2.2 we have

4 4
> PI=Y M(2Ai+B)=4=2
i=1

i=]
or

A(32+12412+43%) =14,

hence

1

M=
T Vs

Likewise we find from

4
Y. Pg =4
i=1

that Ay = 1. We now summarize the results in Table 2.5.
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zpi Ai Bi A;B; Pli=(2A;+ B;)/vV5 Pg = AB;

0 -1 -1 +1 —3/V5 +1
1 -1 41 -1 -1/v5 -1
2 41 -1 -1 +1/v/5 -1
3 41 41 41 +3/v5 +1

Table 2.5. Values of zp; and column vectors A, B, AB, Pl and Pq.

The following relations now hold.

Pl; = (24; + B))/V5 = (-3 + 22p)/V/5 or zp; = (34 PL;/5)/2
‘ (2.49)
Pgi = AiBi = 1 - 3zp; + z};

We shall frequently use these formulae when constructing new designs.

2.10. The technique of collapsing

In the preceding section it was shown that the 2" design can be used to construct designs of
which some quantitative factors have four equally spaced levels. The factors in the 2" design .
which have not been used for replacement will still have two levels.

This replacement technique therefore generates designs with some or all quantitative factors
having four equally spaced levels and the remaining factors having two levels.

A number of these designs will be discussed in Chapter 4 and 5. It was however pointed out
in Section 1.6 that experimenters want some freedom as to the choice of the number of levels.
It is therefore logical that they may wish to have designs, in which some quantitative factors
have three levels.

This can be achieved by making use of the technique of collapsing. See Addelman (1962a,
1962b), Margolin (1969b).

This technique establishes for our purpose a correspondence between the levels of the four-
level factor and the levels of a three-level factor.

The following correspondence schemes give two methods to achieve collapsing:
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Four-level Three-level Four-level Three-level

factor factor factor factor
0 — 0 0 — 0
1 — 1 1 —_ 1
2 — 2 2 — 2
3 —_ 1 3 — 2

These two schemes are further developed in Table 2.6 and 2.7 where the values of the first
and second degree orthogonal polynomials, Pi; (linear) and Pg; (quadratic) respectively, are
given, together with the relations of these values with the column elements of the 22 design
and the levels zp = 0, 1, 2 of the three-level factor P.

In Section 5.3 we shall use a third collapsing method using the following correspondence

scheme:

Four-level Three-level
factor factor
0 —_— 0
1 — 1
2 — 1
3 —_— 2

The advantage of this procedure is that zero elements of the X’X matrix remain, for most

designs, zero after collapsing. For further details we refer to Section 5.3.
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Four-level Three-level

factor factor
z'p; zp;
0 — 0
2 — 2
1 — 1
3 — 1

+1

B;
-1
-1
+1
+1

A; B;

P

Pg;

Table 2.6. Collapsing a four-level factor to a three-level factor with relevant column

vectors.

The quantities in Table 2.6 are related as follows

Pl; = (A; — A;B:) V2

Pgi = -B;

P;

Pg; = 1 — 4zp; + 2z}, .

(=1+2zp)) V2 — zpi = 1 + Pli/ V2

(2.50)
(2.51)
(2.52)

(2.53) -

Pl; and Pg¢; are the values of the first and second degree orthogonal polynomials such that

4 4
S PE=Y Pe-d.
=1 i=1
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Four-level Three-level

factor factor

zp; zp; A; B; A;B; Pl; Py;

0 — 0 -1 -1 41 =5/y/11 +2/(2/11)
2 — 2 +1 =1 -1  43/V/11 +1/(2/11)
1 — 1 -1 41 -1 =1/V1T -4/{2/11)
3 — 2 +1 41 +1 +3/V11 +1/(2/11)

Table 2.7. Collapsing a four-level factor to a three-level factor with relevant column

vectors.

The quantities in Table 2.7 are related as follows

Pl; = (3A; + B; — A;B;)/V11 (2.54)
Pg; = (A; — 3(B; — A;B;)/2) J(2/11) (2.55)
Pl; = (=5 +4zp;)/V11 — zp; = (Pl;/114 5)/4 (2.56)
Pgi = (+2 - (23/2)zpi + (11/2)2%;) [2/11). (2.57)

Equations (2.52), (2.53), (2.56) and (2.57) have been computed using. again the method
described in Addelman (1962a) and Appendix 6A.

Again we have:

4 4
S PE=Y Pet=
=1 =1

Equations (2.48), (2.49), (2.52) and (2.53) shall be used in Chapter 4 and 5 because they will

turn out to be useful in the search for new designs.
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CHAPTER 3

The construction of D-optimal designs for an incomplete quadratic model.!

3.1. Introduction

It was stated in Chapter 1 and 2 that our regression model will be a second degree polynomial.
Since however many of the designs to be constructed have one or more factors with only two
levels, see for example Section 2.6, an incomplete quadratic model has to be considered in

the sense that d variables have linear and quadratic terms, but the other (k — d) variables
k
have only linear terms. All linear X linear interactions are however included in the

model. So we have the model

v =Po+Puzt+. ..+ Puazi+Prizi+ ...+ Przit
(3.1)
+0n2z122+ ...+ Be_1 kTh1%Tk €,

where y is the response and 1 < d < k.

For the vector of predictor variables
x = (z1,%2,...,zk),we have, -1 <z, <1, m=12,...,k.

Hence the experimental region R is a k-dimensional cube. The experiment consists of N runs

with the values of the predictor variables given by the vectors
Xi = (i1, Tizy .. ohzik) , 1=1,2,...,N.
The ith row of the matrix X yxp equals
f'(x.-) = (1,1‘?1 . ,I?d,:l:,'l, Tidye ooy Tiks Ti1 T525 -« 5 Ti km1 :L‘,',k) .

The number of elements in this row equals P, the number of 8’s in (3.1) and

k
P=1+d+k+ =1+d+ Jk(k+1).
2

"This chapter was written in cooperation with E.E.M. van Berkum, Technical University Eindhoven. See

also Van Berkum and Upperman (1991).
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In our effort to find a D-optimal design corresponding to model (3.1) we shall use an intuitive

strategy as in Section 2.6. This strategy and the relevant calculations will be explained in

the next sections.

3.2. The construction of the designs

DEeriniTION 3.2.1

We define a design £(w, 3,7) consisting of three subsets from R as follows.

1)

iii)

The 2% vertices of the k-dimensional cube with weights a. This means we choose 2F

design points where the factors have the level +1 or —1.

The d2%=" design points where one of the d quadratic variables has the value zero and
all other variables have the value —1 or +1. These points are given weights 3; the

points are in the middle of some edges, but not all edges.

d
The 2k=2 design points where two of the d quadratic variables have the value

2
zero and all other variables have the value —1 or +1; these points are given weights y

and are at the center of some two dimensional faces. If d = 1 this setl is empty.

From i), ii) and iii) above it follows that

26-3(8a + 4df + d(d - 1)y)=1. (3:2)
We define

u=2%a+ (d-1)2k 184 L(d-1) (d-2)2F2y, (d>1) (3.3)

v=2%a+(d-2)25"28+ J(d-2) (d-3)2%"2y, (d>2). (3:4)

Since iii) is empty for d = 1, we have for d = 1

253(8a +48) =1 (35)
u = 2%a (3-6)
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a=u/2k. (3.7

Combining (3.5) and (3.7) we find

B=(1-u)/2*1. | - (38)

First we consider for d > 1 the matrix M(£), see equation (2.13) of Chapter 2, equal to

A

uly

1
M(¢) = e : (3.9)

”Igd(d-n

ulg(k—a)

I%(k—d)(k—d—l) i

where

(u - ‘IJ) Iy +vJy
I, is the identity matrix of size s X s, J, is a matrix of size s X s with J;; = 1 for all 7 and j.
The determinant of M(£) is equal to
Det(M(£)) = D = udtk=4+1) o) (w — v)d-1 (u + (d — 1)v — du?) . (3.10)

The maximum value of (3.10) is determined by differentiating with respect to u and v and

putting the result equal to zero. We find
== (k-d+2)u?+(d-2)(k-d+2)uv— (d(k —d)+ 2d + 1)u>

—d=-1)(k=d+1)v2 + (dk-—d+1)+2)uv=0 (3.11)
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aa—f:u2+(d—2)uv—du3—(d+1)v2+(d+2)u2v:0. (3.12)

Eliminating v? from (3.11) and (3.12) yields an expression for v as a function of u.
This value of v is substituted into (3.12). After some algebraic calculations we find
(2k —d+3)[2k(d+ 1)+ d+ 7+ (d—1)V4k? + 12k + 17)

o = A(k + 2) (2dk — d? + 3d + 2) (3.13)

(2k —d+3)|[(4k% + 8k + 9)d + 2k — 5+ (2dk + d + 3) V4k? + 12k 4 17)

vo = 8k + 2) (2dk — &2 4 3d 1 2) - (3.14)
Solving (3.2), (3.3) and (3.4) for @, § and 7 yields
ao=2k%[(d—2)(d—1)—2d(d—2)u0+d(d—1)v0] (3.15)
Bo = 2:_1 (2 = 3) o — (d = 1) vo — (d - 2)] (3.16)
%0 = grmg (14 %0 = 2u0] (3.17)

So far we have dealt with the case for d > 1. For d = 1 we have

Tk-1)

ulxq

| I%(k—l)(k—2) |
and
D = det(M(§)) = vFt1(1 - u) .

‘fl—fz(k+1)(l—u)uk—uk+1 =0

or
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w=(k+1)/(k+2). (3.18)
Using (3.7) and (3.8) we have for d = 1

ag = ug/2* (3.19)

Bo=(1—ug)/2%". (3.20)

3.3. D-optimality of the designs

Although we have found the values of u and v for which det(M(£)) reaches a maximum, we
have not proved that the design £(«, §,7) considered in Section 3.2 is D-optimal, because it
might be possible to use other points of the experimental region R, such that det(M(¢)) will
be larger than the value we found.

We shall however prove the D-optimality of the design £{(a,B,7) through the use of the
general equivalence theorem given in Section 2.5.

We therefore shall, as in Section 2.6 calculate
d(x,€) = f'(x) M~1(¢) f(x) , (3.21)
where
f(x)= (1,232, ..., 2%, 21,22, . ., Tk, 21 T, 21 T3,y .« , D1 Tk ) -
We have to prove that
dx8 <p (3.22)
or

max d(x,{) = P, |
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where P=1+d+k+

2
Using (3.9) we find
e .
1
w L4
| PR
M- (E) = 1 . ()
Elg‘d(d—l)
= Tyge—a)
| L (k-ay(k-a-1) |
with
up+ (d— 1) v -dg ... — U
1 1 - T
A Ry s e : u0+(d_1)u0—dugld_uo—ugJ . (3.24)
Ug — Yo Uo — Yo
—Ug
For d(x,£) = f'(x) M~1(£) f(x) we obtain
u0+( ~ 1) uo + (d — 1) vo — dud — vo + u
d
(x,6) = + (d—1)vo — duf ~ (uo - o) (uo+ (d—1)vo — duf) < Z zi+
+ —2up Zd: 2_o v — ug ZZ 2,2,
zi - ziz
ug+ (d— v —duf = ™ (uo — vo) (uo + (d — 1) vo — du?) i v
. (3.25)

+—Zz+Z z?+—ZZ”J+—ZZ zizj+ 3, 3, ala)

j=d+1 Y0 T<ici<d i=1 j=d41 d+1<i<j<k

Since =1 € z,, € +1 for m = 1,2,...,k we have that the z? and :v? are at most equal to 1.

k
The maximum value of Z z? therefore equals (k — d).
_d+1

d

k—d 2

The maximum value of E E z? therefore equals = E z
i=1 j=d+1 i=1
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k—-d
The maximum value of E E :z:?:z: equals ( ) since this sum contains (
2

d+1<i<3<k
terms which are all at most equal to 1.

We therefore have

’ll.o-l-(d—l)’l)o u0+(d—1)v0—du(2,—v0+u% d 4
d ¥
(x,€) < uo + (d— 1)vg — dul * (uo — vo) (ug + (d — 1) vo — du?) E e

2’[1.0 4

_u0+(d—l)v0—du% = 2

12

k—d)

2

2 _ Y~ Y% 2,2
! (uo—vo)(u0+(d—1)v0—du%) EZ I‘IJ

k d &, k-d
+—Ez+k d)+—zz PR (3.26)
i=1 1<i<i<d o 4 2
The coefficient of E E z? :c in (3.26) equals
1<i <5<d
=202 + 2voul + ul + dugvo — wpvo — du — ugvg — dvd + V3 + dulvg
vo(uo — vo) (uo + (d — 1) vo — dud) B
B ud + uovo(d — 2) — dud — v3(d + 1) + ulvo(d + 2) —0
’U()(’ll.()— ’U())(Uo-l- (d— l)vo—du%) !
because the nominator of this expression equals (3.12).
The coefficient of E z? in (3.26) equals
i=1
o = —2ug _1_+k—d_—2u%+(k—d+1)(uo+(d—l)vo—du%)
= g+ (d — 1)wg — dul * uo u ug(uo + (d — 1) vp — du?) )

The coefficient of E z} in (3.26) equals

=1

up + (d— 1) v — dud — vo + u}
(uo — vo) (uo + (d ~ 1) vo — dud)

Cyp =

After some calculations we find

ud(k—d+2)+ (d—2) (k- d+2)ugvo — (d(k — d) + 2d + 1) u]

€1te2= uo(Uo—’l}o)(’uo-l—(d-— 1)1}0—(111(2))

_I_—(d— D(k—d+ v+ (dk-d+1)+2)uivg
’ll.()(’ll.() - ’U())(’ll.() + (d - 1)1}0 — d’ll.g)
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Using (3.11) it follows that ¢; + c; = 0 or —¢; = cz. Hence

_ k—d d
o +(d— 1) S+ (k—d)+ +a Y (sF-ad). (3.27)
2

d(x,¢) < ug + (d — 1) vo — du}

i=t
Since 0 < z2 < 1, and

o = —2ul + (k—d+1)(uo+ (d—1)vo — dud) <
! uo(uo + (d — 1) vo — dud)

0 ’

verified after some computer calculations, for all the sets (k, d, ug, vg) of Table 3.1a, it follows
d

that the maximum value of ¢; Z (z% — 21 equals zero. Hence

i=1

u0+(d—1)’llo k—d
k-d . 3.28
+(d—1)v0—dua+( )+ 9 (3-28)

d(x,£) < ”

Finally substituting the expressions (3.13) and (3.14) for ug and vg in (3.28) we obtain after

some calculations
k
d(x,6)<1+d+k+ =P, (3.29)

and we have shown that (3.22) is true for d > 1. We now have to prove that d(x,£) < P for
d=1. For d =1 we find

2 4

1 z? z z z? k
d , = — 1 — 1 1 -1 2
(XE) l—uo l—uo 1—u0+u0(1—uo)+uo+zz'+

=2

1
+u—0:1:¥ Zz3+22 1,2:1:3

k
i=2 2<i<i<k

k
k-1
An upper bound for Z z? equals (k — 1), an upper bound for Z Z zlz? is

=2 2<i<s<k
The coefficient of z? is equal to

c _[ -2 i]_—2uo+k—kuo_—uo(k+2)+k
1= 1—1[.0 Ug - ‘uo(l—ﬂo) - uo(l—uo)
but ug = (k + 1)/(k + 2) according to (3.18). Hence
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_—(k+ 1)+ E

-1

=

u(l—ug) ~ up(l —up)
Then we have
1 1 k-1
< _ 2 _ .4 k—
d(x7E) = l_uo ’uo(l*—’uo) (zl zl)+( 1)+
1
Since ———— (22 — z%) is at most equal to zero, we have
uo(l _UO) ( 1 1) q
k-1
d(x,E)_<_1 " +(k-1)+ =k+2+k-1+3(k-1)(k~2)
—ug 9

using ] =k+2.

Finally d(x,€) < $k2+ 1k +2.

For d = 1 we have
P=1+14+k+
or

P=1k"+1k+2

=2+ k+ Jk(k-1)

and d(x,§)< P for d=1 gq.ed.

We can now formulate

THEOREM 3.3.1

If ag, Bo and yg as given in (3.15), (8.16), (3.17) or in (3.19), (3.20) are posilive then the
design €(ag, Bo,v0) of Definition 3.1 is D-optimal for model (3.1).

For d = 1 we have the design £(aog, fp). We shall prove that £(aq, 8) is always D-optimal.
The formulae (3.18), (3.19) and (3.20) are applicable if d = 1.

It is easily seen from (3.18) that 0 < ug < 1ford = 1.

It is then obvious from (3.19) and (3.20) that @ > 0 and 8 > 0.
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If follows that the design £(co,Bo) is always D-optimal for d = 1 q.e.d.

The weights ag, fo and yo of (3.15), (3.16) and (3.17) are positive when 1 < d < k < 5,
k=67andd<k—-1,8<k <10and d < k — 2. See also Van Berkum and Upperman
(1991).

No weights were computed for k > 10.

In Table 3.1a and 3.1b some design characteristics for 1 < d < k < 5 are given.

k|d g vo ap Bo Yo
1]1]0.66667 | - 1/3 1/3 -
2 (1 |0.75000 - 0.187500 | 0.125000 -

2 10.74349 | 0.58316 | 0.145791 | 0.080161 | 0.096193

3| 1]0.80000 - 0.100000 | 0.050000 -
2 | 0.79699 | 0.65489 | 0.081861 | 0.035526 | 0.030451
31 0.79302 | 0.65162 | 0.071976 | 0.018953 | 0.032792

4|110.83333 - 0.052083 | 0.020833 -

0.83171 | 0.70549 | 0.049093 | 0.015777 | 0.010518
0.82969 | 0.70378 | 0.038892 | 0.010189 | 0.011100
0.82710 | 0.70158 | 0.037042 | 0.003845 | 0.011844

F- LI

5| 1/|0.85714 - 0.026786 | 0.008929 -

0.85617 | 0.74316 | 0.023224 | 0.007063 | 0.003853
0.85500 | 0.74215 | 0.020670 | 0.005045 | 0.004018
0.85358 | 0.74091 | 0.019276 | 0.002823 | 0.004219
0.85181 | 0.73938 | 0.019268 | 0.000324 | 0.004469

[ BEENC L V)

Table 3.1a. Design characteristics of D-optimal designs.
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Fraction of | Fraction of Fraction of
points with | points with | points with | Max(det(M(£)))
weigth ag weight 3o weight 4o
k| d 2%aq d2* 18y | d(d - 1)25 3y,
11 2/3 1/3 - 4/27
211 0.75000 0.2500 - 0.105469
2 0.58316 0.32064 0.09619 0.0114270
311 0.80000 0.20000 - 0.0819200
2 0.65489 0.28421 0.06090 0.00681453
3 0.57581 0.22743 0.19675 0.000578313
411 0.83333 0.16667 - 0.0669796
2 0.70549 0.25244 0.04207 0.00453077
3 0.62227 0.24453 0.13320 0.000310235
4 0.59268 0.12305 0.28427 2.157234 E-005
511 0.85714 0.14286 - 0.0566528
2| 0.74316 0.22602 0.03082 0.00323170
3 0.66143 0.24215 0.09642 0.000185864
4 0.61682 0.18068 0.20249 1.079587 E-005
5| 0.61658 0.02590 0.35752 6.34783 E-007

Table 3.1b. Design characteristics of D-optimal designs.

The case when d = 1 and k£ = 3 has already been dealt with in Section 2.6 and we saw that
this design with & = 0.1 and 8 = 0.05 can be realized in practice if N = 20 or a multiple of
20. For k = d = 1 we also have simple values for @ and §.

Since a = # = 1/3 and we can construct a 100% D-efficient design if N is a multiple of 3.

The model for £ = d = 1 is a parabola and is written as

y=Po+ Busi+ fizite. (3.30)
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According to Definiton 3.2.1 in Section 3.2 we then have three different design points namely
zy = —1,z; = 0 and 2; = +1 and because « = 8 = 1/3 the number of observations in each

point has to be equal to N/3.

In Section 2.3 we defined the D-efficiency of an arbitrary design £; as
D-efficiency = 100(det(M(¢&,))/ max(det(M(€))))/F . (3.31)

See (2.14) and (2.15).
The denominator of (3.31) has been given in Table 3.1b for 1 < k < d < 5.
Many of these values shall be used in the next chapters to calculate the D-efficiencies of the

designs to be developed.
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CHAPTER 4

The 2° design as a building block for other designs

4.1. Main-effect designs

The 2% design has a well-known structure as given in Table 4.1.

A (1) a
A -1 +1
B (1y| 6 | ()] b
B|-1|+4+1]-1]|+1
C C
ey -1 i | Y3 | Y2 | vs
¢ +1 Ys | Y7 | Y6 | ¥s

Table 4.1. 23 design.

The X matrix of column vectors corresponding to the 2° design is given in Table 4.2.

Experimental
unit zs A;r By Ci AiBy A;C; BiC; A;BC;
1 1 -1 -1 -1 +1 +1 +1 -1
2 1 41 -1 -1 -1 -1 +1 +1
3 I -1 41 -1 -1 +1 -1 +1
4 1 +1 41 -1 41 -1 -1 -1
5‘ I -1 -1 41 41 -1 -1 +1
6 1 41 -1 41 -1 +1 -1 -1
7 1 -1 41 41 -1 -1 +1 -1
8 I 41 41 +I +1 +1 +1 +1

Table 4.2. The X matrix of column vectors for the 2% design.
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The X matrix of Table 4.2 has excellent properties because X’'X is orthogonal which means
that the inner product of two different column vectors .a.lwa.ys equals zero. Each column
vector with the exception of column x, has four values —1 and four values 41. This means
that this X matrix can be used as a design matrix for experimental designs with 3, 4,...,7
two-level factors. In this way a number of small (8 experimental units) main-effect designs
for two-level factors can and have been constructed. See Addelman (1962b, 1963). In the
next section we shall investigate whether it is possible to construct a 4 X 2 x 2 design with
eight experimental units from the X matrix of Table 4.2, using the restrictions mentioned in
Section 1.6.

Such a design shall be indicated as a 4 x 2 x 2/8 design.

4.2. The 4 x 2 x 2 design in eight experimental units

The factors to be used are the following.
P: A quantitative factor with four equally spaced levels 0, 1, 2 and 3.
@Q: A two-level factor with levels @; = —1 and Q2 = +1 or 291 = 0 and zg2 = 1.

R: A two-level factor with levels Ry = —1 and Ry = 41 or 2g; = 0 and zg, = 1.

Using the orthogonal polynomials P! and Pgq as defined in Section 2.9, see (2.49), we have

the following mathematical model

¥i = Pooi + B1 Pl 4 BraQiRi + Bi1 Pgi + p2Qi + B1aPLiR; + B3 R; + P12 PLQ; + €4, (4.1)

Since (4.1) contains 8 parameters 8 it must be possible to employ an experiment with 8
experimental units to estimate these parameters.

To find the column vector elements Pl;, R;,..., Pl;Q; we use the X matrix of Table 4.2.
We use the technique of replacement as in Section 2.9 and replace the column vector elements

Ai, B; and A;B; by Pl; and Pg; using formula (2.49) namely
Pl; = (2A; + B;))/ V5

Pg; = A;B; .
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As to the choice of @; and R; from Table 4.2 we can choose two elements from the set

Cy, AiCy, BiCy, AiB;C;.

4
We therefore can construct = 6 possible designs.

These are presented in Table 4.3.

Nr. of design Column vector elements

Qi R — QiR
1 Cy A;C — A since C? = 1
2 C; B;C; — By since C? =1
3 C; A;BiC; — A;B; since C?=1
4 A;C;  B;C; —  A;B; since C,-2 =1
5 A;C; A;B,C; — B; since A?C2 =1
6 B;C; A;B;.C; — A; since B2C? =1

Table 4.3. Six possible 4 X 2 x 2/8 designs.

Designs 3 and 4 cannot be used since Q;R; = A;B; = Pg¢;. This means that ng will be

confounded with ;.

For design 1 we have
Toi = 1

Pl; = (24i + B)) V5

QiR = A;
Pg; = A;B;
Qi = Cl

PLR; = (24; + B)) (AC)/V5 = (2C; + A;BiC)/V5

50



R, = AC;

PLQ; = (24; + B;) (C:)/V5 = (24:Ci + B:C;)/V5 .

The design matrix and the X matrix of column vectors can now be derived from Table 4.2

and are presented in Table 4.4a and 4.4b.

Exp. unit Tp TQ IR Toi P, Q;R; Pg; Q: PLR; R; PlLQ;
1 [0 0 1] (1 =35 -1 1 -1 -3/v5 1 3/V5 |
2 200 1 16 1 =1 -1 —1/v/6 -1 -1/’
3 101 1 -1/v/5 -1 -1 -1 -1//5 1 1//5
4 300 1 3/v/5 1 1 -1 =3/\/5 -1 -3/\/5
5 010 1 -3/v5 -1 1 1 3//5 -1 -3/V5
6 211 1 1456 1 =1 1 15 1 1/V6
7 110 1 —-1/V/5 -1 =1 1 1/v/6 -1 —1//5
8 [ 3 1 1| 1 3vE 1 1 1 3/VE 1 3/VE |
Table 4.4a. Design Table 4.4b. X matrix of design 1.

matrix nr. 1

We can of course calculate X'X easily from the X matrix of Table 4.4b. It is, however,

more elegant and we obtain more insight into the structure of X’X when the expressions for

Pl;, Q:R;, etc. are used.

We shall also make use of the following properties of 2" designs

11

111

A= B?= A’BY = ... = A?BC? = 1.

The inner product of any two different vectors in a 2™ design equals zero, i.e.

i AiB; = (A,B) = i ACi=(A,C)=...=

=1 i=1 T

M=

(B:Ci) (AiBiCy) =
1

=(BC, ABC)=0.

The inner product of a column vector in X with the same vector equals 2™ in a 2™ design.

For a 23 design we therefore have:
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28: (i)’ =(A,A) =Y (B)* = (B, 28: A;B,C;)* = (ABC, ABC) =

i=1 i=1

The inner product of x/ with any other column vector of X equals zero.

We may now write, using the elements of the X'X matrix and known properties of vectors:

(PLPl) = ((2A + B)/v5, (2A + B)/v/5) = (1/5) {4(A,A) + 4(A,B) + (B,B)} =
=(4x8+0+8)/5=8

(PL,QR) = ((2A + B)/v5, A) = (1/V5) {2(A,A) + (A, B)} = (2 x 8+ 0)/V/5 = 16/v/5

(PL,Pq) = ((2A + B)/\5,AB) = (1/V5) {2(A,AB)+ (B,AB)} =0+ 0=0

(P1,Q) = ((2A + B)/V5,C) = (1/v/5) {2(A,C)+ (B,C)} =0+ 0=10

(PL,PIR) = ((2A + B)/V/5, (2C + ABC)/v5) = (1/5) (0+0+0+0) = 0

(PL,R) = ((2A + B)/V5,AC) = (1v/5) {2(A,AC) + (B,AC)=0+0=0

(PLPIQ) = ((2A + B)/V5, (2AC+ BC)/v/5) = (1/5) (0+0+0+0) = 0

(QR,QR) = (A,A)=8

(QR,Pq) = (A,AB) =0

(QR,Q) = (A,C)=0

(QR,PIR) = (A, (2C+ ABC)//5)=04+0=0

(QR,R) = (A,AC)=0

(QR,PIQ) = (A, (2AC+BC)/v/5)=04+0=0

(Pq,Pq) = (AB,AB) = 8

(Pq,Q) = (AB,C)=0
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(Pq,PIR) = (AB, (2C+ ABC)/v5)=0+0=0

(Pq,R) = (AB,AC) =0

(Pq,PIQ) = (AB, (2AC+BC)/V5)=0+0=0

(Q,Q)=(C,C)=8

(Q,PIR) = (C, (2C + ABC)/V5) = (1/v/5) {2(C,C) + (C,ABC)} = (2 x 8 + 0)/v/5 =
=16/v/5

(Q,R)=(C,AC)=0

(Q,P1Q)=(C, (2AC+ BC)/v5)=0+0=0

(PIR,PIR) = ((2C + ABC)/V/3, (2C + ABC)/v/3) = {4(CC) + 4(C, ABC)+

+(ABC,ABC)}/5=(4x8+0+8)/5=8

(PIR,R) = ((2C + ABC)/v5,AC) = (1/v5) (04 0) = 0‘
(PIR,PIQ) = (2C + ABC, 2AC + BC)/5=(0+ 040+ 0)/5=0
(R,R) = (AC,AC) =8
(R,PIQ) = (AC, (2AC + BC)/V5) = {2(AC,AC)}/V5=(2x 8+ 0)/V5 =
=16/v5
(P1Q,PIQ) = (2AC + BC, 2AC + BC)/5 = (4(AC, AC) + 4(AC,BC) + (BC,BC))/5 =

=(4x8+0+8)/5=8.

These calculations may seem cumbersome, but once some experience has been obtained all

necessary inner products can quickly be computed.
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We now have all the elements of X’X and we find

T Pl QiR Pg; Q: Pl;R; R; PLQ;:

ER 0 0 0 0 0 0o |
0 8 16/v/50 0 0 0 0
0 16/5 8 0 0 0 0 0
XX=1lo0 o 0 8 0 0 0 0
0 0 0 0 8 16/v/5 0 0
0 o0 0 0 16/v5 8 0 0
0 0 0 0 0 0 8 16/v5
[0 0 0 0 0 0 16/v/5 8
and
{1 0 0 0 0 0 0 0 |
0 5 =250 0 0 0 0
0 -2v5 5 0 0 0 0 0
X'X) = (1/8) 0 o0 0 1 o 0 0 0
0 0 0 0 5 =25 0 0
0 0 0 0 -2v5 5 0 0
0 0 0 0 0 0 5 25
[0 0 0 0 o0 0 -5 5 |

Although a large measure of orthogonality is maintained, because (X'X)~! contains many off-
diagonal elements equal to zero, we shall not use design nr. 1 since the non-zero off-diagonal
elements of (X’X)~! are all equal to (—=2v/5)/8 and this covariance value corresponds to a

correlation coefficient between two ﬁ’s of

_2\/5

m =-089.

This value is very high and it means that the pairs (ﬁl,ﬁzg), (ﬁz,ﬁ13) and (ﬁg,ﬁlz) are highly

correlated, which is undesirable.
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It appears that design nr. 6 leads to the same (X’'X)~! matrix and it will therefore not

be used.

We shall now explore design nr. 2 where we had the following choice

Qi=Ci Ri=Bi(;— QiRi=B;.

Using the same method as already described, we can find the design matrix and the X matrix

of column vectors. See Table 4.5a and 4.5b.

Exp. unit  zp zg zp Toi
1 ' [ 0 01 ] [ 1
2 2 01 1
3 100 1
4 3 00 1
5 010 1
6 210 1
7 111 1
8 |3 1 1] [ 1

Table 4.5a. Design

matrix nr. 2.

Using
Zoi = 1
QiR; = B;
Qi =GC;
R; = B;C;
we find

Pl; Q:R; Pg; Q; PLR; R; PLQ;
-3/v5 -1 1 -1 =3/v/5 1 3/\/5_
1/vV5 -1 -1 -1 1//5 1 —1//5
-1/vV5 1 -1 -1 1//5 -1 1/V/5
305 1 1 -1 =3/v/5 -1 -3/V5
-3/vV5 -1 1 1 3//5 -1 -3/V/5
1/v6 -1 -1 1 -1/v/5 -1 1/v5
-1/v5 1 -1 1 -1/v/6 1 —-1/v/5
35 1 1 1 3/v5 1 3/V5 |

Table 4.5b. X matrix of design 2.

Pl; = (2A; + B))/v5
Pg; = A;B;
PliR; = (2A:BiCi + Ci)[V5

PLQ;i = (2AiCi + BiC)/V5 ,
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X'X =

and

(X'X)~' = (1/8)

—

Toi

S O O o © © o o»®

1

0
0
0
0
0
0
0

Pl; Q:R; Pg; Q;

0 0 0 0

8 8/V5 0 0
8//5 8 0 0

0 0 8 0

0 0 0 8

0 0 0 8V

0 0 0 0

0 0 0 0

0 0

5/4 —(1/4)v5
—(1/4)v5  5/4

0 0

0 0

0 0

0 0

0 0

- o o O

(== N = A =

PLR;
0

0
0
0
0

5/4
-(1/4)v5
0
0

PLQ;

S o o o ©

8/v5

0
0
0
0
—(1/4)V5
5/4

0
0

O o o o ©

5/4
—-(1/4)v5

o © o o o ©

—(1/4)v5
5/4

The matrix (X’X)~! again contains many zero’s, in fact the same elements are zero as

for design nr. 1, but the correlation coefficients between two B’s within the pairs (Bl,ng),

(BZ,BIS) and (33,512) is now equal to

—(1/4) (1/8)v5

V1(1/8) (5/4) (1/8) (5/4)]

1
V5

——==-045.

This is only half the value found previously for design 1. Design nr. 2 therefore appears to

be better than design nr. 1.

When we examine (X’X)~! in more detail it appears that the estimated values 8 can be

divided into 5 groups, namely

Bo, (B1,B23), b1, (B2, Br3)s (Bs,Prz) -

2
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It is striking that all linear effects belong to different groups; B’s belonging to different groups
are orthogonal estimates and therefore uncorrelated, So.me authors call this clumpwise or-
thogonality (see Margolin, 1969b).

A large measure of orthogonality is therefore maintained.

Another important advantage of design 2 is the fact that the variances of Bl, B23, Bg, 313, 33
and [, are only (1/4)th of the corresponding variances in design nr. 1.

To examine this difference in variance and also the already mentioned decrease of the corfe-
lation coefficient in absolute value from 0.89 to 0.45, we compare the X'X matrices of both

designs.

These matrices differ only in the values of three off-diagonal elements which have the value
16/+/5 for design 1 and the value 8/+/5 for design 2.

There are in fact 6 such values but since X’X is symmetric we only have to consider three of
them.

These values are three inner products of vectors. For design 1 we have:
(P1,QR) = ((2A + B)/v5,A) = 16/V5 = 2(A, A)//5
(PIR, Q) = ((2C + ABC)/v/5,C) = 16//5 = 2(C,C)/V5
(PIQ,R) = ((2AC + BC)/v/5,AC) = 16/+/5 = 2(AC,AC)/\/5.
For design 2 we have
(PL,QR) = ((2A + B)/V5,B) = 8/v/5 = (B,B)/V5
(PIR, Q) = ((2ABC + C)/V5,C) = 8/V5 = (C,C)/V5
(P1Q,R) = ((2AC + BC,BC) = 8/v/5 = (BC,BC)/V/5 .

From these expressions we can see how the value of 16/+/5 arose. It originated from the term
2A in Pl = (2A + B)/+v/5. We also had Pq = AB. We can now formulate an important rule
Having once chosen Pl = (2A + B)/v/5 and Pq = AB it is necessary not to equate the A
and AB columns of the 2% design to any of the columns for Q,R. and QR.

Using an A column produces a high covariance of 16/4/5, while using the AB column causes
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confounding between B's.

Applying this rule indicates that, apart from design 2, only design 5, see Table 4.3, is a
suitable design. It turns out that it has the same X'X matrix as design 2.

Comparing the (X’X)~! matrices of design 1 and 2 shows that the decrease of the three off-
diagonal elements from 16/+/5 to 8/+/5 had a large effect since the three covariances decreased
by a factor 8 and the variances of ,@1, Baa, ,32, ,@13, ,@3 and By decreased by a factor 4.

The variances of §o and ,én remained unchanged.

Using the designs 2 and 5 we obtain the designs given in Table 4.6a and Table 4.6b. Table 4.6a
has also been presented in design 8.1 of the Appendix. Design 8.1 also contains X'X, (X'X)™!

and some other particulars to be explained in the next section, Chapter 5 and Chapter 7.

Exp. unit zp z¢o 2R

1 0 o0 1 \ 20 0 1
2 2 0 1 zr|0]1]0]1
3 1 0 0 zp
4 3 0 0 0 115
5 0 1 0 1 3 7
6 2 1 0 2 2|6
7 11 1 3 4 8
8 3 1 1

Design matrix Experimental design

Table 4.6a. A 4 x 2 x 2/8 design (Design nr. 2).
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Exp. unit zp zg 2R

1 0 1 0 zg 0 1
2 2 0 1 zr|0]1[0]1
3 111 op
4 3 0 0 0 5|1
5 0 0 1 1 7 3
6 2 1 0 9 216
7 1 0 0 3 4 8
8 3 1 1

Design matrix Experimental design

Table 4.6b. A 4 x 2 x 2/8 design (Design nr. 5).

Comparing the experimental designs in Table 4.6a and Table 4.6b shows that they are iden-

tical. It therefore appears that there is only one suitable 4 X 2 X 2 design in 8 runs.

4.3. A measure of nonorthogonality

It is useful and interesting to consider the matrices X'X of design 1 and 2 in more detail. If
we ignore the zero’s in X’X we see that it consists of 5 submatrices, two of which consist of

the scalar 8, whereas the remaining three have the following structure

8 8

; X% ; XipXiq . b

s s = =W.
3 XXy 3 X2 boe

i=1 =1

th column of the X matrix.

Xip and X, are elements of the ' and ¢
For design 1 we have: a = ¢ = 8, b = 16/v/5.

For design 2 we have: a = ¢ = 8, b = 8//5.

To invert X'X we simply can take the inverse of 8 twice and invert W three times.

We have
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¢/(ac—b%) —b/(ac - b?)
—b/(ac—b%) af(ac—b?)

w-! =

The correlation coefficient between X, and X, equals

(Xip - X-p) (Xiq - X.q)

8
=1

Tpg = —3

(¥ (- X7 [z (Xig = X))

i=1

8 8
where Xp =(1/8) Z Xip and Xq = (1/8) Z Xiq-
=1 i=1
In the matrices of the designs 1 and 2 we however have, ignoring column Xg, since rp, is not

defined for X;, = zy;, that X_p = X_q = 0, hence

Tpe = —3 3 =

(> Xz 3 xz)?
=1 i=1

A~
(2]

Strictly speaking we should say that r,, is not a correlation coefficient, since X, and X, are
not random. Therefore r,, is a measure of the linear dependence between X, and X,.
When we have a completely orthogonal design the X'X matrix is diagonal and the variance

of the estimated regression coefficient Bp corresponding to column X, in the X matrix equals
8
2 2 2 2
aﬁpza/z X,=0"/a.
i=1

The matrices of design 1 and 2 were however not orthogonal and the variance of Bp equals
the diagonal element in (X'X)~! corresponding to column X, of the X matrix.

In reality we therefore have
o2 =o%c¢/(ac—bY).
Bp

The variance of Bp has therefore been increased by a factor of

olc/(ac—b?) ac 1 1

ol/a " (ac - b?2) - 1-6%/ac = 1-r2°
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Marquardt (1970) called 1/(1 —r2,) the variance inflation factor (VIF) because it is the factor
by which the variance of an estimated regression coefficient is increased due to nonorthogo-

nality.
Hence
VIF = 1/(1 - rf,q) . (4.2)

When we write the correlation matrix r of X, and X, we have

Tor Trq 1 1 1 b/v/ac
r = = =
Tpg Tgq Tpe 1 b//ac 1
and
1 1/(1 - r:q) —rpe/(1 = rgq) _ VIF —7rpe/(1 = rgq)
—Tpe/ (1 — T:q) 1/(1 - Tﬁ.,) ‘qu/(l - qu) VIF

We see that the VIF of Bp therefore equals the corresponding diagonal element of the inverse
of the 2 x 2 correlation matrix r.

Brownlee (1965) has shown that
VIF =t =1/(1-12), (4.3)

where , is the multiple correlation coefficient of X,, with all other X’s and ..} is the i*h
diagonal element of the inverse of the correlation matrix r.

The expression (4.2) is therefore a special case of (4.3). From (4.3) we see that the VIF
approaches infinity when r, increases to 1 and equals 1 if 7, is zero.

Expression (4.3) clearly shows why the VIF is a measure for orthogonality because it is di-
rectly linked to r,, the multiple correlation coefficient. For this reason its value is independent
of the scaling of the X,,.

Because the VIF equals the factor by which the variance of an estimated regression coefficient
increases due to nonorthogonality, it is a useful tool to judge and to compare experimental

designs. We shall therefore calculate the VIF’s for all designs to be presented later on.

Of course it is desirable that the VIF is as close as possible to its minimum value of VIF = 1.
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Some authors prefer VIF’s smaller than 5, other allow values up to 10. It is clear that a g is
poorly estimated when the VIF is large since the variance of 3 will then be large.

In Appendix 7A we shall give a method to examine large VIF’s in more detail.

The inverse of the complete correlation matrix of design 2 has been given as r~! with de-
sign 8.1 of the Appendix. For design 1 we have, the groups (p,q) being (2,3), (5,6) and
(7.8),

and VIF = 1/(1 - 0.80) = 5.
For design 2 we find

2
2, = sx/i =020 7y =045

[o 2]

and VIF = 1/(1 - 0.20) = 1.25 (see also design 8.1).

Design 2 therefore has 6 VIF’s which are 4 times smaller than the corresponding VIF’s of
design 1 and we now also understand why the corresponding variances differed by a factor 4
as stated in the previous section.

It is because the correlation coefficient between X,, for p = 2, 3, 5, 6, 7 and 8, with all other

X’s is large for design 1 (r,q = 0.89) and small (r,, = 0.45) for design 2.

4.4. The alias structure of the 4 x 2 x 2/8 design

The model used in Section 4.2 for design 2 can be written in matrix notation as
E[Y] = X3,

where X is the matrix of column vectors and

B' = [Bo, B1, P23, B11, B2, Biz, B3, Pra] -

It might be the case that the model considered is not correct since we did not use terms such
as Pc¢; (factor P cubic), PciQi, PciR; etc.

Suppose that the true model can be written as, see Seber (1977; Chapter 6) and Draper and
Smith (1981; Chapter 2),
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E[Y|=XB+2Z~v,

where

’ 1
Y= [7111,711123,71112,71113,7112,7113,7123,’71123]: )

in which the indices 1, 2 and 3 in 4’ refer to the factors P, Q and R while Z is the matrix of

column vectors corresponding to

V11, 711123s - - -y 71123 -
Since B = (X'X)™'X'Y we have
E(8) =E[(X'X)"1X'Y]= (X'X) ' X'E(Y) =
= (X'X) 1 X/(XB+ Zv) =
= (X'X)" 1 (X'X) B + (X'X)1 X'Zy
=B+ (X'X)1X'Z .

The expression (X'X)~!X'Z~ is called the alias matrix of 8.
We shall therefore calculate (X'X)™1 X'Z.

We first determine Z. The elements of the column vectors of Z are

!One, two or three identical indices refer to a linear, quadratic or cubic effect, respectively.
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Pei = (—Ai + 2B;)/V5

PciQiR; = (- Ai + 2B:) (B)/V5 = (—AiBi + 2)/V5
PeiQi = (—Ai +2B;) (Ci)/V5 = (= AiCi + 2B:C) [ V5B
Pc;R; = (—Ai + 2B;) (BiCi)/V5 = (—A;BiC; +2C:)[V5
Pg:Q: = A;BiC;

Pg;R; = A;B;BiC; = AC;

PLQ;R; = (2A; + Bi) (Bi}/V5 = (2AiBi + 1)/ V5
Pg:QiR; = A;B:B; = A; .

We can now, using Table 4.2, construct the Z matrix of column vectors which is given in

Table 4.7.
Pe;  PeiQiR; Pc;Q; Pe;Ri PqQ; PgR; PLQR; PqgQiR;

-1/V5 1/vV5  1Yv5E -1/V5 -1 1 3/V5 -1
-3/V5 3/v5 3/ -3/V5 1 -1 -1/5 1
3/V5 3/V5 -3/v5 -3/V5 1 1 -1//5 -1
1/v5 1/vV5 —=1/vV5 -1/V5 -1 -1 3/V5 1
-1/V35 1/v/5 —1/v5  1/V/5 1 -1 3/V5 -1
-3/V5 3/v5 =3/V5  3/V5 -1 1 -1/v5 1
3/V5 3/v5  3/V5 3/V5 -1 -1 -1/V5 -1
1/V5 1/vV5  1/V5  1/V5 1 1 3/V5 1

Table 4.7. Z matrix of column vectors.

Using the expressions of design 2 we obtain
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20 = 1 Pl; = (24; + B:)/V/5
QiRi = B; Pgi = AiB;
Qi = C; PL;R; = (24, BC; + C))[V/5
R; = B;C; PLQi = (24:Ci + B.C))[V5 .
We find
[ 0 16/vF o 0 0 0
0 0 0 0 0 0
16/v5 0 0 0 0 0
0 -85 0 0 0 0
X'Z = /\/_
0 0 0 16/v5 0 0
0 0 0 0 16/\/5 0
0 0 16/v5 0 0 0
| o 0 0 0 0 16/V5
and
0 2/vV5 0 0 0
-0.5 0 0 0 0
05v5 0 0 0 0
0 -1V 0 0 0
(X'X)7'X'z= s
0 0 0 05V5 -05
0 0 0 -05 05V5
0 0 05/5 0 0
0 0 -05 0 0

We can write the complete model

E(Y) = X8 + Zv

also as
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0
0

16/v/5
0

0
0
0

0
16/v5
0
0
0
0
0
0 |
1/V/5 0
0 05V5
0 -05
2/V5 0
0 0
0 0
0 0
0 0




Rl Bo 1 [ P I yn |
Pl; b Pe;QiR; Y1123
QiRi B2a PeiQ; Y1112
E(Y) = Pg; | A N PeR; | s
Qi B2 Pg;Q; Y112
PLR; B3 Pg;R; T3
R; B3 PLQ:R; Y123
| PLQi | | Bz | | P@QiRi | | 1z |

Using E(3) = B8+ (X'X)~1 X'Z~ we may write the alias matrix as
E(Bo) = Bo + (2/V5) y1125 + (1/V5) 1123
E(B1) = B1 + (—0.5) 7111 + (0.5v/5) 1123
E(B23) = Baz + (0.5v/5) yi11 — 0.571123
E(B23) = P+ (-1/VB) 1inzs+ (2/V5) 1123
E(B2) = B2+ (0.5V5) 11113 — 057112
E(B13) = Brs + (=0.5) 11113 + (0.5v/5) 1115
E(f3) = B3+ (0.5v/5) 112 ~ 057113

E(B12) = Brz + (=0.5) 11112 + (0.5v/5) 1113 -

It is striking that each 8 is confounded with two 4’s and that each vy occurs twice in each of
the expressions above. These expressions can be useful to explain certain ambiguities in the

estimates of the 3’s.

4.5. The D- and G-efficiency of the 4 x 2 x 2/8 design

4.5.1. The calculation of the D-efficiency
Using formulae (2.14) and (2.15) of Section 2.3 we may write
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D-efficiency = 100(det(M(£))/ max det(M(£)))!/P) .

Model (3.1) may also be used for the 4 x 2 x 2/8 design. We then have d = 1 and k¥ = 3 and
from Table 3.1 we find that

max det(M(£)) = 0.0819200 . (4.4)

We should remember that (4.4) was obtained using model (3.1) and -1 < z; < 41 for
i=1,2,3.

We therefore have to calculate det(M(£)) using the scaling —1 < z; < +1 for the independent
variables z; and model (3.1).

The X'X matrix we used for the 4 x 2 x 2/8 design was, see Section 4.2,

zi Pl; QiRi Pq¢i Qi PLR; R; PLQ;

(8 o 0 0 0 0 0 0 |
0 8 8+v50 0 0 0 0
0 8vs 8 0 0 0 0 0

XiXi= 10 o 0 8 0 0 0 0
0 0 0 0 8 8/V5 0 0
0 0 0 0 8/v/5 8 0 0
0 0 0 0 0 0 8 8/V5
[0 0 0 0 0 0 8/V5 8

and
det(X'X) = det(X}X1) = 8%(4/5)% . (4.6)

From Table 4.5b we obtain
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zoi Pl QiRi Py Qi PLR; Ri PLQ;
[1 3V -1 1 -1 =3/v6 1 3/V5 ]
1 1/VB -1 -1 -1 1/4/5 1 =1/
1 =1/v/5 1 -1 -1 1,4/ -1 1//5
1 3/¥/5 1 1 -1 =3/v5 -1 -3/\/5 (4.7
1 =3/v5 -1 1 1 3/V5 -1 -3/v5 |
1 1/v/5 -1 -1 1 -1/ -1 1/\5
1 ~1/v/5 1 1 1 -1/\/8 1 —1//5
(1 3V 1 1 1 35 1 3\

Xy

If we had used the scaling —1 < z; < +1 for ¢ = 1,2,3 and the model (3.1), the X matrix

would have been

Toi Tii LT Ty T TuTH T Tl
1 -1 -1 1 -1 -1 1 1
1 1/3 -1 1/9 -1 1/3 1 -1/3
1 -1/3 1.1/9 -1 1/3 -1 1/3
Xa= |1 1 1 1 -1 -1 -1 -1 (4.8)

1 -1 -1 1 1 1 -1 -1
1 1/3 -1.1/9 1 -1/3 -1 1/3
1 -1/3 1.1/9 1 -1/3 1 -1/3
1 1 1 1 1 11 1J

From (4.7) and (4.8) it follows that

g1 = (PLiVB)/3 , zzsi = QiRi, z3; = (4/9) Pg; + (5/9) (4.92)
Z9i = Qs y T1iZ3i = (PliRi\/g)/3 (4.9b)
z3; = R; , Znz2i = (PLQ:V5)/3 . (4.9¢)

and X, = X; L, where
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(1 0 0 59

0 0 0 0
0 v5/30 0 0 0 0 0
00 1.0 0 0 0 O
L 0 0 0490 0 0 0 (4.94)
0 0 0 0 1 0 0 0
0 0 0 0 0 +53 0 0
6 0 0 0 0 0 1 0
(0 0 0 0 0 0 O v5/3 |
Therefore

det(X5X2) = det(X,X;) = det((X,L) X, L)
or

det(X5X3) = det(L'X}X; L) = det(L") det(X{X;) det(L) = (det(L))* det(X}{X,) (4.10)
since L and X} X, are square matrices.
1t is easily seen that

det(L) = 4(+/5)3/3% and (det(L))? = 42 x 53/31° . (4.11)
From (4.6), (4.10) and (4.11) it follows that

det(X5X,) = 4%(88(4/5)%) (5°/31°) = 88(4%/3'%) .
Since det(M(£)) = det((X4X2)/N) = det(X4X2)/NP we have, for N = P =8

det(M(£)) = 8% x 4°/(3'% x 8%) = 4%/31°
and

D-efficiency = 100((4°/3'°)/0.08192)(/®) = 82.4% .
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Formula (4.10) is very usefuly since it can be used to calculate the determinant of X4X; from
X1X; if the elements of X, can be written as linear functions of the elements of X;.

Since the D-efficiency found equals 82.4% we can ask ourselves whether an 4 x 2 x 2/8 design
can be found with a higher D-efficiency.

We can write the design matrix of the 4 x 2 x 2/8 design, using the variables -1 < z; < 1,
i=1,2,3, instead of zp, zg and zr. We derive this new design matrix from Table 4.5a and

find values given in Table 4.8.

Exp. L2 Ty I3

unit
1 e ! 1
2 1/3 -1 1
3 -1/3 -1 -1
4 1 -1 -1
5 -1 1 -1
6 1/3 1 -1
7 -1/3 1 1
8 1 1 1

Table 4.8. The 4 x 2 x 2/8 design.

The appropriate model for this design is (3.1) ford =1 and £ = 3.

According to Table 3.1, the D-optimal design for this model contains design points such that
80% of them are of the type £1, +1, +1 and 20% of the type 0, £1, +1. Table 4.8 does
not contain values zy = 0 but only values z, = —1/3 and z; = +1/3. We therefore have to
compromise in our effort to find a better 4 x 2 x 2/8 design.

We therefore will construct a design with

0.80 x 8 = 6 points of the type £1, 1, +1 and

0.20 x 8 = 2 points of the type £1/3, 1, +1.

We find the design given in Table 4.9.
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Exp. T

unit

w 4 O v bk W N
—
~
w

Table 4.9. A 4 x 2 x 2/8 design.

T2

z3

When we calculate det(X’'X) for the above design it appears that this value equals 0 and

(X'X) is singular.

Further efforts were made to find a better 4 x 2 x 2/8 design but none were successful.

4.5.2. The calculation of the G-efficiency

The G-efficiency is defined as

G-efficiency = 100P/(N max(f'(x) (X'X)~! £(x))) ,

see (2.27).
For the 4 x 2 x 2/8 design we had

f’(x)= (201 Pl, QR) Pq’ Q) PIR’ Rv PIQ)
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1 0 0 0
0 5/4 —(1/4)v5 ©
0 —(1/4)V5 5/4 0
xxt=qm | o
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Using (2.49) we can find that
Pg; = (5/4) (PI} - 1) .

From (4.13), (4.14) and (4.15) we find

£/(x) (X'X)7 £(x) = (1/8) (1 + (5/4)2 (P = 1)+

+(5/4) (PI?Q? + PI’R* + Q?R* + PI* + Q>+ R?) - 1.5V/5 PIQR) .

Since

0
0
0
0

5/4
~(1/4)V5

0
0

0
0
0
0
—(1/4)V5
5/4

0
0

=3/VB< PLi<3/V5, -1<Q<+1 and —1<R<+1,

o o o o o ©

5/4
~(1/4)V5

o o o o o

—(1/4)V5
5/4
(4.14)

(4.15)

(4.16)

we can easily see that max f'(x) (X'X)~! f(x) is reached when using one of the four following

design points.

Design point

BN

Substituting any of these sets (Pl;, Q;, R;) into (4.16) gives

Py

3/V5
3/V5
-3/V5
-3/V5

72

Q:

-1
+1
-1
+1

R;




max (f'(x) (X'X)™! f(x)) = 17/8 .
Using (4.12) we obtain

G-efficiency = 100 x 8/(8 x 17/8) = 47.1% .

4.6. An application of the 4 x 2 x 2/8 design

To study the light output of a particular type of lamp, it was decided to examine the effect
of three factors P, ) and R. These factors and their levels are presented in Table 4.10. The

model used is given in (4.1).

Factor Levels
P The amount of amalgam 3,5,7,9,
Q Type of gas in the lamp G1, G2
R Type of glas used I, 11

Table 4.10. Factors and levels of lamp experiment.

Only a small experiment could be carried out because the lamps were expensive and the
available time in which to carry out the experiment was limited.

It was therefore decided to carry out a half replicate of a 4 X 2 x 2 design. The results, the
light output of one lamp in each “cell”, are given in Table 4.11. This design has a structure

as given in Table 4.6a and 4.6b.
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Q: Type of gas Gl G2
zqQ 0 1

P: R: Typeofglas | 1 II I I1

Amount 0 1 0 1
of amalgam

3 0 329 | 13.9

5 1 21.7 5.0

7 2 24,2 | 14.6

9 3 24.5 15.9

Table 4.11. Data of the lamp experiment.

We can now, using Table 4.5b, write the X and Y matrix and find
zo; P,  QiR; Pgi Qi PLR; R, PLQ; Y;

1 =3/v/5 -1 1 -1 =3/v/5 1 3//5 329
1 1/V/5 -1 -1 -1 1//5 1 =1//5 242
1 —1/v5 1 -1 -1 16 -1 1/V/5 217
1 3/V5 1 1 -1 =3/v/5 -1 -3/V/5 245
1 -3/ -1 1 1 3/ -1 -3//5 139
1 1/v/5 -1 -1 1 =1//8 -1 1/v/3 146
1 -1/V5 1 -1 1 =146 1 -1/vV5 50
1 3/V5 1 1 1 3//5 1 3//5 159

Hence
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[ 1527 ]
-7.1/\/5
-185
21.7
-53.9
—56.5//5
3.3
38.3//5 |

X'Y =

Using (X'X)™! as calculated in Section 4.2 we find

_ ) -
19.08750 Bo
0.35625v/5 I3
~2.66875 Ba3
R 2.71250 3
B = (XX)X'Y = - | A
—6.65625 Bs
~0.08125v/5 Bra
~0.68125 Bs
1.09375V/5 | i B1a ]
Using equation (2.6) we have
ee=Y'Y-BX'Y. (4.17)

Because the number of observations equals the number of 8’s we have €’e = 0 and
Y'Y = 8'X'Y . (4.18)
Equation (4.18) provides a check because we can calculate Y'Y and B’X'Y separately.

We have
8

Y'Y =% 4 =329+ 2422+ ...+ 15.97 = 3423.37

i=1
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B'X'Y  =19.08750 x 152.7 + 0.35625v/5 X (—7.1/v/5) + ... + 1.09375v/5 x 38.3//5

3423.37 .

From the results of previous experiments we have an estimate of 6%, namely 5% = 16.28 with
20 degrees of freedom.

We can now obtain the analysis of variance as given in Table 4.12.

Model Sum of Degrees of Mean Calculated

component squares freedom square F-value
Bo 2914.66 1 2914.66 179.03
(81, B23) 46.84 2 23.42 1.44
Bn 58.86 1 58.86 3.61
(B2, P13) 363.36 2 181.68 11.16
(B3, B12) 39.64 2 19.82 1.22
Total 3423.36

Table 4.12. Analysis of variance for the lamp experiment.

The F-value was calculated using 62 = 16.28 in the denominator. Using a significance level

of 10% for F we have
Flooso =297  Floge=2.59.

We conclude that o, By; and the group (82, 513) are significant. In order to examine the
estimates of B in more detail we again give these estimates together with their standard
deviations and the a.ppropriate t-test.

The estimated standard deviation of 3 is obtained by multiplying the corresponding diagonal

element of (X’X)~! by 62 and taking the square root. We find
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fBo = 19.0875 1.4267 13.38
By = 0.3562v/5 15951 0.50
a3 = —2.6688  1.5051 ~1.67
By = 2.7125 1.4267 1.90
B2 = —6.6562 1.5951 417
b1z = —0.0812/5 1.5951 0.11
B3 = 0.6812 1.5951 0.42
G2 = 1.0938v5  1.5951 1.53

The 10%-point for the two sided t-value with 20 degrees of freedom equals 1.725 and we now
find that 8o, B1; and P, are significant. Although the group (8;,813) was significant it is
clear from the small -value for ,313 that (3 is not relevant. However a significant value of
B11 implies an effect of factor P. We therefore decide to use the estimate B1 as well in order
to obtain a correct measure of the P-effect.

Our estimated model therefore is
E(v:) = Bozoi + B Pli + P Pai + B4Qi - (4.19)

The estimates for fy and f11 do not change because they were not correlated with other ﬁ’s.

We found

Bo = 19.0875

By = 2.7125 .

The X’X matrix corresponding to (4.19) is diagonal with elements to be obtained from the
original X’X matrix.
Using the appropriate diagonal element of X'X and the corresponding element of XY we

find new estimates of 8, and 32, namely

—-7.1/(8V5) = —0.3969

=
Il

1

—6.7375 .

=
It

5= —53.9/8

77



The estimated model therefore is

—

E(y:) = 19.09 - 0.40PL; + 2.71Pg; — 6.74Q; . (4.20)

If we denote the levels of P and @ by zp =0,1,2,3 and zg = 0, 1, respectively, we have the

following relations between zp;, Pl;, Pg¢; and between zg; and @;.

Pl = (=3 +2zp;)/V5 (4.21)

Pg; =1 - 3zp; + z%; (4.22)
and

.Q; =-1+2zq; . (4.23)

See also formula (2.49).
Substituting (4.21), (4.22) and (4.23) in (4.20) we find

E(y:) = 29.08 — 8.49zp; + 2.712%; — 13.48z¢; . (4.24)

For the two types of gas Gl(zg; = 0) and G2(zg; = 1) we substitute zg; = 0 and zg; = 1,
respectively, in (4.24) and find

Gl(zgi = 0) : E(y) = 29.08 - 8.49zp; + 2.71z}; (4.25)
G2zgi = 1) : E(w) = 15.60 — 8.49zp; +2.712%, . (4.26)

These formulae have, together with the original observations, been plotted in Figure 4.1.
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40 r~

Light | v Gas type 1

Output 20k 2 °

? S Py Gas type G2
101 \—-—-%Zot amalgam’ ——==

0 .3 5 Z 1

zp 0 1 2 3,

Fig. 4.1. Relation between the amount of amalgam and light output for two types of gas.

Figure 4.1 is very interesting because it shows the large and constant diflerence between the
two types of gas and a minimum value of light output for zp = 1.57, equivalent to an amount
of amalgam of 6.14.

The value of zp = 1.57 was obtained by differentiating (4.25) or (4.26) and equating the
resulting formula to zero.

The highest light output is obtained for zp = 0 and gas type G1. The corresponding light
output is obtained by substituting zp = 0 in (4.25). We find

E(y) = 29.08 .

4.7. The 3 x 2 x 2 design in 8 experimental units

In order to construct a 3 X 2 x 2 design in 8 experimental units, we again employ the X

matrix of column vectors for a 2% design as presented in Table 4.13.
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Experimental

unit zo; A; By C; A;B; A;C; B;C; A;B:C;
1 1 -1 -1 -1 41 +1 +1 -1
2 1 41 -1 -1 -1 -1 +1 +1
3 1 -1 41 -1 -1 +1 -1 +1
4 1 41 41 -1 +1 -1 -1 -1
5 1 -1 -1 41 +1 -1 -1 +1
6 1 41 -1 41 -1 +1 -1 -1
7 1 -1 41 41 -1 -1 +1 -1
8 1 +1 +1 +1 41 +1 +1 +1

Table 4.13. The X matrix of column vectors for the 23 design.

The factors to be used are as follows:

P: A quantitative three-level factor with equally spaced levels 0, 1 and 2.

Q: A two-level factor with levels @; = —1 and Q2 = 41, 0or zg1 = 0 and zga = 1.

R: A two-level factor with levels Ry = ~1 and R2 = +1,0r zp; =0 and zg, = 1.

Using again orthogonal polynomials Pl and Pgq as defined in Section 2.9, we have the following

mathematical model

yi = Bozoi + P1Pli + B23QiRi + B11 Pgi + P2Qi + B13PliRi + BaRi + (12 PLiQ;i + € . (4.27)

This model is the same as (4.1) and since it contains 8 parameters 3, a design of 8 experimental
units should again be sufficient. To find the column vector elements Pl;, R;,. .., Pl;Q; we use
the X matrix of Table 4.13.

We shall employ the technique of replacement and collapsing as summarized in Table 2.6 of
Section 2.10.

We use the relations according to (2.50) and (2.51), i.e.

Pl; = (A; — AiB)/V?2
Pg;=-B;.

These equations represent the replacement of the two factors A and B with two levels each
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by a three-level factor.
The column vectors Q and R can be obtained by choosing two vectors from the set C, AC, BC, ABC,
in the matrix of Table 4.13. We can therefore, as in Section 4.2 construct 6 possible designs

as presented in Table 4.14.

Nr. of design Column vector elements

Q; R; —  QiR;

1 C; AiC; A;
2 Ci B B;
3 Ci ABiC; A;B;
4 AiCi  BiG; AiB;
5 AilC;  A;BiC; B;
6 BiC;  AiBiC; Ai

Table 4.14. Six possible 3 x 2 x 2/8 designs.

Designs 2 and 5 cannot be used since Q;R; = B; = —Pg;, which means that 23 will be
confounded with ﬁll.

When we examine the other designs by writing the relevant design matrices as in Section 4.2
and Table 4.4a we find that there are only two different designs as given in Table 4.15a and
4.15b.

zQ 0 1 %0 0 1

ap N\ er |0|1]0]1 zp zr |0 [1]0]1

0 115 0 1 5

1 413(7|8 1 413|718

2 2 6 2 216
Design 1, Q; = Ci, Ri = AiC; Design 3, Qi = C;, R; = A;B;:C;
Design 6, Q; = B;Ci, R; = A;B;C; Design 4, Q; = A;C;, R; = A;B;C;

Table 4.15a. Table 4.15b.

When we compare Table 4.15a with Table 4.15b we can easily see that they represent the

same design since the only difference between these tables is the interchange of levels 0 and
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2 of factor P. We can see this if we assign level 0 to level 2 and level 2 to level 0 of factor P
in Table 4.15b. We then obtain the design of Table 4.15a.

We now proceed to examine design 1 in more detail.

Using the same method as in Section 4.2 we may write the elements of the column vectors

of the X matrix for design 1. We find, see Table 4.16

Zgi = 1 Pl; = (A; — AiB)/ V2

QiRi = A; Pg; = —B;

Qi =C; PLR; = (C; — BiC:)[V?2

R; = AC; PLQ; = (AiC; — AiB;C)[V2

Table 4.16. Column vector elements for a 3 X 2 x 2/8 design.

As in Section 4.2 we can use these formulae to calculate X’X directly, the result being

z; Pl; Q:R; Pg; Qi PLR; R; PLQ;

[ o0 0 0 0 0 0 0 |
0 8 4/V/2 0 o 0 0 0
0 4/¥v2 8 0 0 0 0 0
XX= 10 o 0 8 0 0 0 0 (4.28)
0 0 0 0 8 4/vV2 0 0
0 0 0 0 4/vV2 8 0 0
0 o 0 0 O 0 8  4/V2
[0 0 6 0 0 0 4/v2 8

and
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/2 0 0 0 0 0 0 0
0 1 -1/v2 0 0 0 0 0
0 —-1/v2 1 0 0 0 0 0
(XX < 1 0 0 o 1/2 0 0 0 0 (429)
0 0 0 0 1 -1/vV2 o 0
0 0 0 0 -1/V2 1 0 0
0 0 0 0 0 0 1 —1M2
| 0 0 0 0 0 0 -1/v2 1

The (X’'X)~! matrix shows that there are three pairs of 3’s correlated namely (51, f23),

(B2,513) and (B3, frz)-

The relevant correlation coefficient equals

cov (B, B,) _=(1/2) (1/9)v2 _

Pro = Vvar (B,) var () VA T/) ~ ~0.71.

This correlation coefficient is fairly high and we can ask ourselves whether a better design
can be found. Design 8.2 of the Appendix gives more detail about design 1 of Table 4.15a
such as r~1, The main diagonal of this matrix contains 6 two’s meaning that 6 VIF’s equal
two which is not excessively large.

We already saw that the designs 2, 3, 4, 5 and 6 listed in Table 4.14 do not give a better
design.

The only other possibility is to find out whether a different collapsing procedure produces a
better design. To this end we consider the collapsing given in Table 2.7 which is reproduced

in Table 4.17.

Four level Three level

factor factor

z'p; zpi A; By A;B; Pl; Pg;
0 — 0 -1 -1 41 =5//11 +42/(2]11)
2 — 2 +1 -1 -1  +3/V11 +1/(2/1T)
1 — 1 -1 +1 -1 =111 -4/(3]11)

3 — 2 +1 +1  +1  +3/V/11 +1/(2]1T)

Table 4.17. Collapsing a four-level factor to a three-level factor with relevant column vectors.
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The quantities in Table 4.17 are related as follows
Pl; = (3A; + Bi — A;B))/V11
Pgi = {A; - 3(Bi — AiBi)/2} \/(2/711)
Pl = (=5 + 4zp;)/V11 — zp; = (PL; /11 4 5)/4
Pqi = {+2 - (23/2)zpi + (11/2) 23} \/(2/11).

Again we can make 6 possible choices for the pair Q; and R;, but a thorough investigation
revealed that again two of these produced designs with complete confounding between some
B’s while the remaining 4 designs were in fact identical.

We therefore examine only one of these corresponding with
Pl; = (34; + B; - A;B;)/\/l_f
Pg; = (A; - 3(Bi — AiB;)/2) V2/11
(4.30)
R; = B;C; .

We can now calculate X'X; (X'X)~! and r~! and obtain the following results

8 0 0 0o 0 0 0 0
0 8 2412 0o 0 0 0 0
0 2412 8 —5117 0 0 0 0
x| 0 0 -su7 8 0 0o 0 0
0 0 0 0 8 2412 0 0
0 0 0 0 2412 8 0 -4.364
0o 0 0 o o 0 8 2412
0o o 0 0 0 -4364 2412 8 |
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[ 0.125 0 0 0 0 0 0 0]

0 0.48 —0.075 —0.048 0 0 0 0

0 —0.075 025 0.6 0 0 0 0

o 0 —0.048 0.6 0.227 0 0 0 0

0 0 0 0 0.145 -0.065 0.012 —0.039

0 0 0 0 —0.065 0.215 —0.039  0.129

0 0 0 0 0012 —0.039 0.145 —0.065

o 0 0 0 -0.039 0129 —0.065 0.215 |
[ 1.182 -0.603 —0.386 0 0 0 0]
~0.603 2 1.279 0 0 0 0
~0.386 1.279 1.818 0 0 0 0
rl= 0 0 0 1156 —-0518 0.094 —0.311

-0.518 1.719 -0.311 1.031
0.094 -0.311 1.156 -0.518
-0.311 1.031 -0.518 1.719

[ =T ]
o o O
o o o

The correlation matrix corresponding to (X'X)~! equals

10 0 .0 0 0 0 0

1 -039 -026 0 0 0 0

1 067 0 0 0 0

_ 1 0 0 0 0
Ppa = 1 -037 008 —0.22
Omitted because 1 -0.22 0.60
of symmetry 1 -0.37

1

The ppq matrix shows that we now have 9 non-zero correlation coefficients instead of three.
Moreover two of these are fairly high namely 0.67 and 0.60, which is very close to the value
of 0.71 found earlier.

On the other hand, the matrix r~! shows that only one VIF equé.ls 2 whereas the six others

are less than 2. See also design 8.3 of the Appendix for other particulars.
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The advantages of the design corresponding with (4.30) are however not obvious and we

decide to continue with design 1 of Table 4.15a.

4.8. The alias structure of the 3 x 2 x 2/8 design.

It might be the case that the model (4.27) is not complete because 4 components should be

added, i.e.

112P¢Qi + 7113P¢i Ri + 1123 PLiQ: Ri + 11123 PgiQi R . (4.31)

Using Table 4.16 we can easily calculate

Pg;Q; = —B;C; Pg;R; = ~A;B;C;

PLQ:R; = (1 - B;)/\/i Pq;Q:R; = —A;B; .

Using the same method as in Section 4.4 gives the following results

E(fo) = Bo+ 0.57125v2 E(B:) = B2 — 12

E(f1) = B1 + 11123V2 E(13) = B1s + 112v2
E(B23) = B2z — 11123 E(s) = B3 — 11s

E(Bu) = Bu1 + 0.51123v2 E(Br2) = P12 + 0.57113v2 .

4.9. An application of the 3 x 2 x 2/8 design

A certain type of wire is produced with an oxyde layer. The la-»yer thickness is an important
quality characteristic and it is determined by means of weighing. The development depart-
ment wanted to examine the effect of three factors on oxyde layer thickness in a small scale

experiment. The factors with their levels are given in Table 4.18.

86



Factor Level

P : Theamountof gas 1,3,5 liters/minute
@ : The amount of air  3.0,4.5 liters/minute
R : Wire I II

Table 4.18. Factors and levels of wire experiment.

Design 1 of Table 4.15a was used and this design together with the data are given in Table 4.19.

@: amount 3.0 4.5
of air
\ zqQ 0 1
P: R: Wire I II I II
amount IR 0 1 0 1
of gas zp
1 0 7.61 | 7.23
3 1 5.02 | 4.72 | 6.06 | 5.76
5 2 3.04 5.40

Table 4.19. Experimental design and data of wire experiment.

From previous experiments we have an estimate of %, % = 0.1180 with 17 degrees of freedom.
From Table 4.13 and Table 4.16 we obtain Table 4.20 containing the X matrix of column

vectors and the vector of observations Y.
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Exp. unit zo;

Hence

W N AW N
—

Pl; QiR
—V2 -1
V2 1
0 -1

0 1
—v2 -1
V2 1
0 -1

0 1

Pg;

1

PLQ;

V2

V2
0

0
-2
V2
0

0

Y:

7.61
3.04
4.72
5.02
7.23
5.40
6.06
5.76

Table 4.20. X matrix and Y vector for the wire experiment.

44.84

—6.40v?2

-6.40
1.72
4.06
1.98v2
2.14

2.74/2

Using (4.29) we obtain

B=(X'X)'X'Y =

5.605
-0.800v/2
0.000
0.215
0.520
-0.0125/2
-0.150

0.4175v2
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Carrying out similar calculations as in Section 4.6 we find

8
Y'Y =Y v} =7.61743.047 + ...+ 5.76" = 265.9666

i=1
BX'Y = 5.605 x 44.84 + 2 X (—0.800) » (—6.40) + . .. + (0.4175v3) x (2.74v/3)

BX'Y = 265.9666 .

Model Sum of Degreesof Mean  Calculated

component squares freedom square F-value
Bo 251.3282 1 251.3282 2129.90
B, Bas 10.2400 2 5.12 43.39
fn 0.3698 1 0.3698 3.13
B2, Bia 2.0617 2 1.0308 8.74
B3, B2 1.9669 2 0.9834 8.33

Table 4.21. Analysis of variance for wire experiment.

For a significance level of 0.05 we have the critical F-values
Flo9s =445 and Flyg45=3.59.

We conclude that 8o and the sets (8, 8a23), (82, 513), (83, fr2) are significant.
To examine the estimates of the 8’s in more detail we, as in Section 4.6, calculate &ﬁ and the

appropriate f-test. We obtain

89



Bo = 5.605 0.1215 46.13
B = —0.800y/2  0.1718 —6.59
Bas = 0.000 0.1718  0.00
By = 0.215 0.1215  1.77
B2 = 0.520 0.1718  3.03
Bz = ~0.0125y/3 0.1718 —0.10
B3 = —0.150 0.1718 —0.87

Bia=04175v2 01718  3.44.

The 5%-point for the two sided t-value with 17 degrees of freedom equals 2.11.

We conclude that By, (1, B2 and B2 are significant, which means that we have no effect of
the factor R(wire).

However, a significant 3; means that the factor P has an effect. In order to have a better
estimate of the P-effect we shall also use f;; = 0.215, the more so since the corresponding
t-value is fairly large.

Since however the sets of estimates (ﬁl,ﬁgg), (ﬁg,ﬁlg) and (ﬁg,ﬁlg) are correlated, we have

to find new estimates for 3,, A2 and B, corresponding to the model
E(yi) = Bozoi + B1Pli + B11 Pgi + B2Qi + 12 PLQ; . (4.32)

The X'X matrix corresponding to (4.32) is diagonal with elements to be obtained from Ta-
ble 4.20 and which are all equal to 8.

Since X'X83 = X'Y we have new estimates for 8, B, and §;2, namely
Bl = (-6.40v/2)/8 = —1.1314
8, = 4.06/8 = 0.508
3, = (2.74v/2)/8 = 0.4844 .

The estimate (] has the same value as §; and the values of 3} and f), are only slightly

different from ﬁg and B2 respectively. We now have
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E’(Z.-) = 5.605 — 1.1314 P; + 0.215Pg; + 0.508Q; + 0.4844PLQ; . (4.33)
Since

Pl = (=1 + zp;) V2

Pgi = | —4zp; + 223,

Qi=—1+42zq;,

see also formulae (2.50), (2.51) and (4.23),

we obtain, after substituting these expressions in (4.33),
E(w) = 7.597 — 3.145z p; + 0.4302%, — 0.354zg; + 1.370zpizq; - (4.34)

Equation (4.34) has been presented graphically in Figure 4.2, together with the original

observations.

ok .

Layer A
thickness L
5k A A: Amount of air (4.51/m)
) ©: Amount of air (3.0 I/m)
X
5 1 3 5
ok | P: Amountlof gas .
zp 0 1 2

Fig. 4.2. Relation between amount of gas and layer thickness.

4.10. Summary of designs with 8 experimental units

The designs with 8 experimental units which have been discussed so far, have been numbered

and listed in Table 4.22.
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Design | Group Design Fraction | Largest Remarks
number | number lo|
8.1 I 4x2x2/8 1/2 0.45 Clumpwise orthogonality
(See Table 4.6a)
8.2 I 3x2x2/8 2/3 0.71 Clumpwise orthogonality
(See Table 4.15a)
8.3 I 3x2x2/8 2/3 0.67 Clumpwise orthogonality
(See Table 4.17)
8.4 I 3x2x2/8 2/3 0.71 Clumpwise orthogonality
(Identical with design 8.2)

Table 4.22. A number of fractional factorial experimental designs for quantitative factors

The designs listed in Table 4.22 form a group since their source is the first design 8.1. The

with 8 experimental units.

other designs are derived from 8.1 through collapsing.

Design 8.4 was derived from design 8.1 using a collapsing procedure to be given in Section 5.3.
Design 8.2 was also derived from design 8.1 using the collapsing procedure of Table 2.6. These

two different collapsing techniques resulted in two sets of design generators, a definition of

which will be given in Section 5.2, but the resulting designs turned out to be identical,

The D- and G-efficiencies of designs 8.2 and 8.3 were also calculated using the same method

as in Section 4.5. We found

Designs 8.1 up to and including 8.4 have been fully presented in the Appendix and will be

discussed in more detail in Chapter 7.

Design D-efficiency G-efficiency

8.2
8.3

68.4
81.3
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CHAPTER 5

Designs using 16 and 32 experimental units

5.1. The 2* design

The 24 design shall now be used to construct a variety of designs with three or four factors,
each of which has two, three or four levels.

As before we stipulate that the three- and four-level factors are quantitative and have equally
spaced levels.

We shall, as already announced in Chapter 1, use two construction methods.

The first one uses methods similar to those used in Chapter 4 and will be dealt with in the
Sections 5.2, 5.3 and 5.4.

The second method uses the properties of the D-optimal designs as discussed in Chapter 3.
Designs derived from D-optimal designs will be treated in Section 5.7.

In Chapter 4 we found that only 3 designs with factors having more than two levels could be
derived from the 23 design.

We shall see that the number of designs which can be derived from the 24 design is far greater.
Because we shall frequently make use of the X matrix of column vectors of the 24 design we

give this matrix in Table 5.1.

O . )
{
-
-
-
|
-
|
-
|
-
"
|
-
|
|
|
-
-

- e e e e e e
-
|
-
I
1
1
-

Table 5.1. The X matrix of column vectors for the 2* design.
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The X matrix of Table 5.1 has similar properties as the X matrix of the 23 design as discussed
in Section 4.1 and 4.2.

It is well known from the literature that the 2% design can be used to estimate effects of
4,5,...,15 two-level factors. For 4 and 5 factors it is possible to estimate all main effects
and two-factor interactions.

If more than 5 factors are used, only the main effects and under certain conditions some
two-factor interactions can be estimated.

In the next sections we shall construct designs, using the 2% design, with factors having
more than two levels. We shall however ignore the 4 x 2 x 2/16 design since it contains 16
experimental units. Its construction and analysis is therefore straightforward.

We shall instead try to construct a half replicate of the 4 x 4 x 2 design from the X matrix
of Table 5.1.

5.2. The 4 x 4 X 2 orthogonal design with 16 experimental units

The factors to be used are the following:

P, Q : Two quantitative factors with 4 equally spaced levels zp = 0,1,2,3and z¢g = 0,1,2,3

R : A two-level factor with levels Ry = —1 and Ry = +1orzg =0 and zgr2 = 1.

Using the restrictions as given in Section 1.6 we have the mathematical model of the obser-

vations y; as given in (5.1).

Yi = Booi + L1 Pl + P11 Pgi + BoQli 4 822Q¢: + B3Ri + 812 PLQLA
+ﬂ13PliRi+ﬂ23QliRi+€i » 1= 1)2,'--7163 (51)

where E(e) = 0 and- E(e’e) = 02I; L is the identity matrix.

Since (5.1) contains 9 parameters 3, the number of 16 experimental units is sufficient and
allows an estimate of 02 with 16 — 9 = 7 degree of freedom.
To construct the matrix of column vectors for (5.1) we employ a procedure similar to the one

used in Section 4.2,
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We find, using the column vectors A,B,..., ABCD of Table 5.1, the expressions given in
Table 5.2.

Zoi = 1

Pl; = (24 + B;)/V5

Pg; = A;B;

Qli = (2Ci + D;)/V5

Q¢ = C;D;

R; = A;B;C;D;

PLQU = (4AC; + 2A;D; + 2B;C; + B;:D;)/5

PLR; = (2B;C;D; + AiC; D))/ V5

QUiR; = (2AiBiD; + AiBiCi)[V5 .

Table 5.2. Column vector elements for the 4 x 4 x 2/16 design.

The manner in which the expressions of Table 5.2 were found will now be explained.

The expressions for Pl;, Pg;, Ql; and Qg; imply that we have used the technique of replace-
ment twice, since we assigned the column vectors A, B and AB to Pl and Pq while those
for C,D and CD were assigned to Ql and Qq.

We therefore replaced the factors A and B by the four-level factor P and the factors C and
D by the four-level factor Q. See also Section 2.9.

We therefore used 6 columns of Table 5.1 to calculate the 4 column vectors for the factors P
and Q.

We have to select one more column vector in Table 5.1 for the remaining two-level factor R.
We have in principle the choice from nine vectors, but it will appear that only one of these
is suitable.

First of all it is evident that from the choice
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Pl; = (24; + B;)/v/5 and QU = (2C; + D;)/V/5, it follows that
PLQl; = (4A;Ci + 2A;D; + 2B;C; + B;D;)/5 . (5.2)

Formula (5.2) shows that the column vector for PIQI is calculated from 4 “interaction
columns” of Table 5.1.

If we use one of these columns for the factor R, we immediately introduce a non zero off-
diagonal element in X’X and hence correlation between f’.

To avoid this we have to choose from the remaining column vectors ABC, ABD, ACD, BCD
and ABCD.

Suppose we choose R; = A;B;C;. We then have PI;R; = (2B;C; + A;C;)//5 which are terms
already in (5.2) and we again introduce non zero off-diagonal elements in X'X.

It appears that the only way to avoid this phenomenon is to choose R; = A;B:C;D; as was
done in Table 5.2.

When we examine the expressions in Table 5.2 more closely we see that all column vectors
of Table 5.1 appear only once.

It follows that all inner products of the vectors in Table 5.2 such as (xo,P1l), (P1,Pq),
(P1,Ql),..., (PIR,QIR) are equal to zero and that means that X'X corresponding to model
(5.1) is diagonal and we therefore have an orthogonal design.

The vector elements PLQl;, PL;R; and QI;R; in Table 5.2 are calculated from other vector
elements belonging to a group, which we shall call the design generators.

These are for our particular example given in Table 5.3.

Pl; = (2A; + B))/vV5 Pgi = A;B;

Qli = (2C;+ Di)/V5 Qqi=CiD; Ri= A;BC;D;

Table 5.3. Design generators for the 4 x 4 x 2/16 design.

It is extremely important to choose these generators very carefully since they determine the
structure of the X’X and therefore of the (X’X)~! matrix.
It is also stressed that the design generators not only yield some of the expressions in Table 5.2

but also enable us to calculate X'X analytically using Table 5.2.
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We find

g Pl  Pq
[ 16
16
16
XX = 16
L
and
[ 1/16
1/16
1/16
X'X)' =

all off-diagonal

elements zero.

16

1/16

16
16
16

all off-diagonal

elements zero.

1/16
1/16
1/16

QI Q¢ R PIQI PIR QIR

16

1/16

1/16 |

(5.3)

(5.4)

It appears that X’X and (X'X)~! are not only diagonal, but also have as diagonal elements

the numbers 16 and (1/16), respectively.

This was achieved by choosing the orthogonal polynomial values as given in Table 2.5. The
matrices XX and (X’'X)~! are therefore equal to the X’X and (X'X)~! of the 2* design.

Having the number 16 as diagonal elements in X’X is especially important since it facilitates

the comparison with other designs. To find the design matrix we use the equations (4.21)

and (4.23) and we write

Pl; = (—3 + 2ZP.‘)/\/5

97

(5.5)



Qli = (=3 + 20q:)/V3 (5.6)
Ri=-1+42zpg; . (5.7)

Equations (5.5) and (5.6) are relations for four-level factors, equation (5.7) is valid for a
two-level factor.

Using Table 5.2, (5.5), (5.6) and (5.7) we find

zpi = (3+ PL;v/5)/2 = (3+24; + B))/2 (5.8a)
zgi = 3+ Ql: v/5)/2 = (3+42Ci + D;)/2 (5.8b)
ori = (1+ Ri)/2 = (1+ A;B;C;D;)/2 . (5.8¢)

Substituting the values of Pl;, Ql; and R; of Table 5.2 or A;, B;, C;, D; and A;B;C;D; of
Table 5.1 into the equations (5.8) results in the design matrix for the 4 x 4 x 2/16 design,

which is given in Table 5.4.

Ip TQ 2R
0 0 1
2 0 0
1 0 0
3 0 1
0 2 0
2 2 1
1 2 1
3 2 0
0 1 0
2 1 1
1 1 1
3 1 0
0 3 1
2 3 0
1 3 0
3 3 1

Table 5.4. Design matrix for the orthogonal 4 x 4 x 2/16 design.

The whole procedure described in this section is summarized in Design 8.5 of the Appendix.
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5.3. The 4 x 3 x 2 design with 16 experimental units

In order to construct the 4 x 3 x 2 design, we shall collapse the four-level factor @ used in
the previous section to a three-level factor Q.

We shall however use a modified collapsing procedure, which will shortly be explained.

The collapsing procedure used so far, is reproduced in Table 5.5 which is identical to Table 2.6
of Section 2.10.

Four level Three level
factor factor
z'p; Zpi A; B; AjB; Pl; Pg
0 — 0 -1 -1 41 -2 +1
2 — 2 +1 -1 -1 +v2 +1
1 — 1 -1 +1 -1 0 -1
3 — 1 +1 41 41 0 -1

Table 5.5. Collapsing a four-level factor to a three-level factor with relevant column

vectors.
The quantities in Table 5.5 are related as follows
Pl; = (A; — AiB:)/V?2
Pg; = —B;

Pli=(-14zp;)V2 — zpi = 1 + Pl;/V2

Pg; 1—4zp;+22:3;‘- .

When we consider the column vectors A, B and AB we can easily see that they are equiva-
lent in a 2" design, since each of them contains an equal number of —1’s and +1’s and their

inner products are all zero.

We now ask ourselves whether we can make use of this property since the collapsing proce-

dure of Table 5.5 has the unsatisfactory aspect that the orthogonal polynomial values PI;
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and Pg; were derived from columns which are different from those used in the case when we

had a four-level factor. We then had

Pl; = (24; + B:)/ V5 (5.9)

Pq; = A;B; . (5.10)
After collapsing we have, see Table 5.5,

Pl; = (A; - A;B)/V?2 (5.11)
Pg;i = —B; . (5.12)

Note that expressions (5.10) and (5.12) can be obtained by multiplying the letter groups of
(5.9) and (5.11), respectively. Recall that A? = 1.

The comparison of equation (5.9) with equation (5.11) shows that Pl is a function of A and
B in (5.9) and a function of A and AB in (5.11), the consequence being that collapsing a
four-level factor to a three-level factor will completely change the X’X matrix.

If we could find a collapsing procedure where Pl remains a linear function of A and B and
Pq remains a linear function AB, we will have a desirable situation since zero elements of
X’X will remain zero.

This property is very desirable, because once we have a satisfactory design with a four-level
factor we can quickly change to a design with that particular factor collapsed to a three-level
factor since zero elements in X’X will remain zero.

An orthogonal design with a four-level factor can therefore quickly be changed into an or-
thogonal design with a three-level factor.

It appears that a number of possibilities exist to reach this goal. One of these is given in
Table 5.6, where Pl; = (A; + B;)/ V2.

A second possibility would have been Pl; = (A; — Bi)/v/2.
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Four-level Three-level

factor factor

Zh; Tp; A; B; A;B; Pl; Pg
0 — 0 -1 -1 41 =2 41
9 - 1 41 -1 -1 0 -1
1 — 1 -1 +1 -1 0 -1
3 — 2 +1 41 41 42 41

Table 5.6. Collapsing a four-level factor to a three-level factor with relevant column

vectors.

The quantities in Table 5.6 are related as follows
Pl = (A + Bg)/\/_ =(-14+ Ip,')\/f —rzp; =14 Pl.’/\/ﬁ
Pq; = A;B; =1-4zp; + 2112;;{ .

The formulae for the orthogonal polynomial values now are

Pl; = (Ai + B)/VZ (5.13)

Pq; = AB; (5.14)
and

4 4

S Pi2=) Pgt=4

Formulae (5.13) and (5.14) now have the same structure as (5.9) and (5.10), since P! is again
a function of A and B, whereas Pg has not even changed at all.

It is interesting to note the difference in collapsing procedure.

In Table 5.5 we only collapsed level 3 of =’ to a level 1 of zp. In Table 5.6 we collapsed two
levels namely levels 2 and 3 of z) to the levels 1 and 2 of zp, respectively.

It has now become very easy to change the 4 x 4 x 2 design into a 4 x 3 x 2 design.

We use the design generators of Table 5.3 and only change the expression for Q!; into
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Qli=(Ci+ Dy)/V2 .

The column vector elements for the 4 X 3 x 2 design are now given in Table 5.7.

T, =1

Pl; = (2A; + B)/ V5

Pg; = A;B;

QL = (Ci + D)/ V2

Qg = CiD;

R; = A;B;C;D;

PLQI; = (24iC; + 2A:D; + B;C; + B; D;)/ V10

PL;R; = (2B,C;D; + AiCiD;)/ V5

QULiR; = (A:B;D; + AiBiC)/V2

Table 5.7. Column vector elements for the 4 x 3 x 2/16 design.

For further information as regards this design we refer to the Appendix where the details of
the 4 x 3 x 2/16 design are given in Design 8.6.

The collapsing technique given in Table 5.6 was also applied to the 4 X 2 x 2/8 design of
Table 4.6a. The results are presented as Design 8.4 in the Appendix. It however appears
that the design matrices of design 8.4 and 8.2 are identical although their design generators

are different.

5.4. Other designs with 16 experimental units

Using methods described in the preceding section we derived a total of 7 designs with 16
experimental units namely designs 8.5, 8.6, 8.11, 8.12, 8.13a, 8.14a and 8.15a.

Initially we constructed a total of 20 designs with 16 experimental units, but 13 of these had
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undesirable properties, such as low D- and G-efficiencies and we modified these designs using
properties of the D-optimal designs given in Chapter 3.

These modified designs are discussed in Section 5.7.

The designs 8.11, 24 X 2 x 2 x 2/16 design, and 8.12,a 3 X 2 X 2 X 2/16 design also turned
out to be orthogonal. The designs 8.13a, 8.14a and 8.15a are clumpwise orthogonal.

To examine each design we had to do some time consuming calculations such as the com-
putation of X'X and (X’X)~!. We therefore made use of an extremely versatile personal
computer program called “MATH CAD”!. It is a program for working with formulas, num-
bers, text and graphs. It can be used to solve many mathematical problems symbolically
or numerically. We used it for the construction of the designs and for the calculation of the
design characteristics. These designs are presented in the Appendix and listed in Table 4.22
and Table 5.12.

5.56. The input and output of Math Cad for designs 8.1-8.6 and 8.11-8.15a

The input of Math Cad consists of the X matrix of column vectors for the 2% or 2% design.
See Table 4.2 and Table 5.1. The input for designs other than those given above is the design
matrix. See for instance design 8.7.

The output of Math Cad contains information as described under the headings a) to h) below.

This information is given with each of the designs above and is presented in the Appendix.

a) The design generators. See for instance Table 5.3.
b) The design matrix elements DM, ;.
¢) The design matrix given by pMmT.

In this matrix the first row refers to the first factor P.

The second row refers to the second factor @, etc.

The factors corresponding to the rows of the design matrix have 4, 3 or 2 levels, indicated by

the sets (0,1,2,3),(0,1,2) and (0, 1), respectively.

"Math Cad can be obtained from “Math Soft Inc.”. 201 Broadway, Cambridge, Massachusetts, 02139 USA.
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The elements of the design matrix DM; ; were derived using the following formulae:

For a four-level factor P with levels zp; = 0,1, 2,3 we have vector elements zp; and

zp; = (3+ PL; V5)/2.

See also (2.49).

For a three-level factor @ obtained through collapsing a four-level factor, with the levels of
Q being zq; = 0,1,2, we have vector elements zq; and zg; = 1 + Ql;/v/2. See also (2.52).
For a two-level factor R with levels zp; = 0,1, we have zp; = 0,1 and vector elements
zri = (14 Ri)/2.

Of course the factors P, @ and R may also have a number of levels other than given above,

as long as we use the formula corresponding to the correct number of levels.

d) The algebraic expressions for the X matrix of column vectors are given. The numerical
values of the elements of these vectors are omitted for reasons of space, but can be

generated by Math Cad if so desired.

e) X'X and det(X'X) are given and written as XTX and |XTX| respectively.
XTX is presented because it is important to have X’X matrices with as many zero’s as

possible, in order to have orthogonal or nearly orthogonal designs.

Det(X’X) is a measure of the hyper volume of the joint confidence region for the 3’s.
The larger det(X'X) the smaller this region and the smaller the variances of the 8’s. The
value of det(X'X) is also used to calculate the D-efficiency of a design. We shall return to

this measure in Chapter 7, where we compare the various designs.

f) (X'X)™!is presented as XTXI.
(X’X)~! is an important matrix since the diagonal elements are equal to a?; /a? and
P

thus are a measure of the variance of the .

The sum of the diagonal elements of a matrix is known as the trace of a matrix. The trace
of (X'X)~1is given as tr(XTXI).

When we divide this value by the number of terms in the model, we then obtain the average
value of agp/a'2.

Further discussion of tr(XTXI) will be done in Chapter 7.
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g) The matrices r and r~!, see Section 4.3, together with det(r) which.is written as |r| and

trace r~!, given as tr[r'].

The designs 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.11, 8.12, 8.13a, 8.14a, 8.15a have the property that

(10 0 --. o]
0
X'X=N | 0|matrix r (5.15)
| 0 ]
and
1o 0 o]
0
(X'X)_l=% 0 | matrix r—! , (5.16)
-0 -

due to the choice of scaling the columns of the X matrix.

From (5.15) it follows that
det(X'X)/NP = det(r) . (5.17)

We shall use (5.17) to calculate the D-efficiency of some designs. Complete orthogonality
of designs occurs if all correlation coefficients in r equal zero. In that case r is the identity
matrix I, det(r) = |r| = 1 and trace (r~!) = tr[r~"] equals the number of parameters in the
assumed model, excluding the intercept fo. For a non orthogonal design det(r) = |r| is less
than one and trace (r~!) exceeds the number of parameters in the assumed model.

Thus det(r) and trace (r~!) are the second and third measure of non-orthogonality, the

diagonal elements of r~!, the variance inflation factors, being the first.

h) If we assign the symbol cp, to the elements of (X'X)~!, we can define

Ppg = Cpq | vV (cop " €qq)
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p being the matrix of correlation coefficients between the estimates of the §’s, the pa-
rameters in the regression model such as given in for instance equation (5.1).

The elements py, are also given by Math Cad.

The D- and G-efficiency of each design was also computed but these design charac-

teristics will be discussed in Chapter 7.

§.6. The improvement of D- and G-efficiency by using additional design

points

It appeared to be possible to construct a 4 x 4 x 4/16 design using the design generators
Pl; = (24; + B:)/V5 Pg; = AiB;
Ql: = (2Ci + Di)/ V5 Qg = CiD;
Rl; = (2A:B:D; + A;CiD;)[/5 Rg = B:C; .

The resulting design however turned out to have a low D- and G-efficiency namely

D-efficiency = 69.7% , G-efficiency = 35.6% .

The G-efficiency has not been calculated according to the method used in Section 4.5.2,
because the calculation of f/(x) (X’X)~! f(x) yielded a complicated fourth degree poly-
nomial in the variables Pl, Q! and Rl, the maximum of which was not easily found.
We calculated instead the value of £'(x) (X'X)~! f(x) for each of the 4 x 4 x 4 = 64
candidate points.

A maximum value of £/(x) (X’X)~! f(x) = 1.757 was found for each of the following six

points
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and the G-efficiency was calculated assuming that 1.757 was indeed the maximum of
'(x) (X’X)~1 f(x) for the whole experimental region, a cube with vertices having as
coordinates the 8 combinations from the set (+1, £1, £1).

Because the maximum may be slightly higher than 1.757 it is possible that the G-
efficiency is slightly overestimated.

None of the 6 points above were design points but if we add these to the 16 design points
we increase the D-efficiency to 87.8% and the G-efficiency to 60.2%.

It is, generally speaking, an effective method to increase D- and G-efficiency by adding
design points where £(x) (X’X)~! f(x) is high; see Evans (1979). A disadvantage of

this approach is the increase in the number of design points.

5.7. The construction of designs with 16 experimental units using D-optimal
designs

The strategy outlined in the previous section is not satisfactory, because we had to
increase the size of the experimental design. We shall therefore try to find a better
4 x 4 X 4/16 design using a different approach. The appropriate model to be used for
the 4 x 4 X 4/16 design is (3.1) for k = d = 3.

Using Table 3.1 we find that for £ = d = 3 the D-optimal design consists of design

points as given in Table 5.8.

57.6% of the points are of the type +1, +1, *1
22.7% of the points are of the type 0, +1, +1
19.7% of the points are of the type 0, 0, +1

Table 5.8. Design points of the D-optimal 3 x 3 x 3 design.
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Since we only use 16 design points we can never realize the percentages of Table 5.8 in
practice and we therefore have to use approximate values.

Moreover, since we employ 4 levels, we do not have the level 0, but have to use £(1/3)
instead, remembering that levels +(1/3) will become a level 0 after collapsing.

We then set up the design of Table 5.9.

Exp. unit  z; Zo; T3
1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1
9 —1/3 -1/3 -1/3
10 1 -1 -1/3
1 -1/3 1 -1
12 1 13 -1
13 -1 -1/3 1
14 1/3 -1 1
15 -1 1 1/3

16 1/3  1/3 1/3
Table 5.9. A 4 X 4 X 4/16 design.
Examining Table 5.9 we see that
8 points = 50% are of the type £1 +1 *1,
these points form a 23 design,
6 points = 37.5% are of the type +1/3 +1 +1
2 points = 12.5% are of the type £1/3 +1/3 +1/3.
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When we compare these percentages with those in Table 5.8 we see some discrepancies
as regards the groups (£1, £1, +£1) and (0, %1, +1). .

Moreover, we used two points of the type £1/3 +1/3 +1/3 which do not occur at all
in Table 5.8, but we used these, to have two “center points” when the three four-level
factors are collapsed to three-level factors. '

These center points are however not desirable from the D-efficiency point of view because
they do not occur at all in the D-optimal design of Table 5.8. It is, on the other hand,
very often desirable to include these points in an experiment, because they represent
“normal” or “standard” operating conditions.

We nevertheless calculated the D- and G-efficiency of the design in Table 5.9.

The G-efficiency was calculated using the maximum value of f'(x) (X'X)~! f(x) in
4 X 4 x4 = 64 candidate points. We found a value of 1.084 and the G-efficiency is, using
(2.26)

G-efficiency = 100 x 10/(16 x 1.084) = 57.7% .

From design 8.7 in the Appendix we obtain

det (xl';() =1.566 x 1074 .
From Table 3.1 we obtain, fork=d =3
max det(M(£)) = 0.000578313 .
Using (2.15) we find
D-efficiency = 100(1.566 x 10~%/0.000578313)(1/10) = 87.8% .

Since both D- and G-efficiency have satisfactory values we accept the design of Table 5.9.
The levels of the three factors P, @ and R are given. as 0, 1, 2 and 3.

The relation between these levels and the values of z;, z and z3 are given with the
design matrix of design (8.7).

Other features of this design, computed by Math Cad, are also given in the Appendix

such as
XX, (X'X)7L, r71, det(r), trace ((X'X)™1), trace (r~!) and p.
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Many of these values seem satisfactory, such as large det(r) and small VIF’s. They will
be discussed in more detail in Chapter 7.

The matrix r is omitted with design (8.7) for reasons of space.

Three other designs were derived from design (8.7) by collapsing 1, 2 and 3 four-level
factors into three-level factors.

The collapsing is achieved as indicated in Table 5.10.

Four-level factor Three-level factor
Tp or :c'Q orzy xf or zj or x4 Tp OT L) OF TR T} OF &3 OF T3
0 -1 0 -1
1 -1/3 1 0
2 1/3 1 0
3 1 2 1

Table 5.10. Collapsing a four-level factor into a three-level factor.

The collapsing procedure of Table 5.10 is identical to the method used in Table 5.6.
The designs obtained through collapsing are given as design (8.8), (8.9) and (8.10) in
the Appendix.

Three other groups of designs were constructed namely

— Group Vb. A 4 x4 x2x2/16 design and two additional designs derived through

collapsing one and two four- level factors.
— Group VI. A 4x4x4x2/16 design and three other designs obtained by collapsing.

- Group VII. A 4 x 4 x 4 x 4/16 design and four other designs also constructed by

collapsing one, two, three and four factors.

The model appropriate to the 4 x 4 x 2 X 2/16 design is (3.1) for d = 2 and & = 4.
The D-optimal design for this model is obtained from Table 3.1 and is given in Table 5.11.

70.5% design points of the type £1 +1 +1 +1
25.2% design points of the type 0 +1 +1 +1
4.2% design points of the type0 0 +1 1.

Table 5.11. Design points of the D-optimal 3 X 3 x 2 X 2 design.
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The 4 x 4 X 2 X 2/16 design we eventually found is presented as design (8.13b) in the
Appendix. The 8 design points of the type +1, +1, :Iﬂ, +1 comprise 50% of the total
and form a half replicate of a 2 design with defining contrast ABC D, which means
that the half replicate contains only those treatment combinations which have the +
sign in the calculation of the four-factor interaction ABCD. The remaining points are
of the type +1/3, £1, +1, +1. Although we tried several designs with a better fit to
the D-optimal design, we were not successful and design (8.13b) was the best we could
find with D-efficiency = 84.6% and G-efficiency = 57.6%.

Design (8.13b) and the two designs (8.14b) and (8.15b) derived from it through collaps-
ing, are of the same group as the set (8.13a), (8.142) and (8.15a), which were constructed
using design generators.

These two groups will be compared in more detail in Chapter 7.

When we tried to find suitable 4 X 4 X 4 X 2/16 and 4 X 4 X 4 x 4/16 designs using
a similar approach as in the case of the 4 x 4 X 2 x 2/16 design we found designs which
were not satisfactory. Although they had a fairly high D-efficiency they had a small
G-efficiency.

We for instance found a 4 x 4 X 4 X 2/16 and a 4 X 4-x 4 X 4/16 design with D-
and G-efficiencies of 83.0%, 30.3% for the 4 X 4 x 4 x 2/16 and 89.9%, 28.8% for the
4 x4 x4 x4/16 design, respectively. These designs were also unsatisfactory because
some s corresponding to quadratic terms had high variances.

We then used a routine from the computer package SAS which uses the Mitchell (1974a)
algorithm. This algorithm selects a subset of 16 points with the maximum value of
det(X'X) from the 4 x 4 x 4 x 4 = 256 candidate points. We found a 4 x 4 x 4 x 4/16
design (8.20) with a slightly better D-efficiency of 84.9%, a much better G-efficiency of
38.3% and smaller variances for the 4’s of the quadratic terms.

When we consider the design matrix of design (8.20) in the Appendix, we see that the

levels of the fourth factor S occur

7 times for the level 0 or —1
3 times for the level 1 or —1/3
0 times for the level 2 or 1/3

6 times for the level 3 or 1.
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We can therefore easily change this factor into a two-level factor with 8 times the level
—1 and 8 times the level +1 and thus obtain a 4 x 4 x 4 x 2/16 design.

Since we already have the level —1 seven times, we have to change one of the 3 levels
with value —1/3 into a level —1 and the remaining levels —1/3 into +1. We therefore
have 3 possibilities to achieve this. We tried all three and chose the one which produced
the highest D-efficiency which had a value of 87.5%. The G-efficiency is 47.0%. This
design is presented as design (8.16) of the Appendix.

In this chapter we also find the designs (8.17), (8.18) and (8.19) derived from design
(8.16) using collapsing.

The designs (8.21), (8.22), (8.23) and (8.24) were likewise derived from design (8.20).

5.8. General remarks about designs with 16 experimental units

Since “good” designs have small or even zero values for p,y, we indicated the largest |ppq|
for each design in Table 5.12. When choosing the largest |p,q| we ignored correlation
coefficients of Jo with the other ﬁ’s because such a coefficient can easily be made zero
if we subtract the average value of the elements of a column in X from each element
in that column. The diagonal elements of (X’X)™! are also interesting since they are
proportional to ag. They, and other design characteristics, will be discussed further in
Chapter 7 where several designs will be compared.

The designs of Table 5.12 have been divided into six groups. The first group is the
simplest one since it has only three factors, two of these factors having only two levels.
Proceeding from group II to group VII shows designs of increasing complexity, since the
number of factors and the number of levels increases to the extent that a 4 x4 x 4x4/16
design was constructed, being a (1/16)th replicate of a 4* design.

From the first design in each group we derived a set of designs by collapsing one, two,
three or four four-level factors to three-level factors.

We can see that by looking at the largest p for each design that collapsing sometimes
increases this value, which is of course undesirable. Collapsing has hardly an effect
within groups III, VI and VII. We can ask ourselves whether it is necessary to collapse
at all since both the four- and the three-level factors are quantitative. Why choose three
quantitative levels and not four because the number of experimental units remains 16

anyway?
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Design Group DESIGN Fraction | Largest Remarks

number | number |p}

8.5 11 4 x4x2/16 1/2 0 Orthogonal design

8.6 4x3x2/16 2/3 0 Orthogonal design

8.7 11 4%x4x4/16 1/4 0.339 | Linear effects
orthogonal

8.8 4x4x3/16 1/3 0.394 | Linear effects
orthogonal

8.9 4% 3x%x3/16 4/9 0.404 | Linear effects
orthogonal

8.10 3x3x3/16 | 16/27 0.362 | Linear eflects
orthogonal

8.11 v 4x2x2x%x2/16 1/2 0 Orthogonal design

8.12 Ix2x2x%x2/16 2/3 0 Orthogonal design

8.13a Va |4x4x2x2/16| 1/4 0.436 | Clumpwise
orthogonality

8.14a 4% 3x2x2/16 1/3 0.667 | Clumpwise
orthogonality

8.15a 3 x3x2x2/16 4/9 0.577 | Clumpwise
orthogonality

8.13b Vb 4x4x2x2/16 1/4 0.500 | Clumpwise
orthogonality

8.14b 4 %x3%x2x2/16 1/3 0.621 | Clumpwise
orthogonality

8.15b 3x3x3x2/16 8/27 0.707 | Clumpwise
orthogonality

8.16 VI | 4xdaxax2/16| 1/8 0.445

8.17 4>x4x3x%x2/16 1/6 0.412

8.18 4x3x3x2/16 2/9 0.405

8.19 3x3x3x2/16 | 8/27 0.402

8.20 VII 4x4x4x4/16 1/16 0.385

8.21 4x4x4x3/16 | 1/12 0.395

8.22 4x4x3x3/16 1/9 0.302

8.23 4%x3x3x3/16 4/27 0.309

8.24 3x3x3x3/16 16/81 0.372

Table 5.12. A number of 23 different fractional factorial experimental designs for

quantitative factors with 16 experimental units.

There are of course quantitative factors which can be set at any desired number of levels
such as temperature, pressure, etc., but there are situations that only three quantita-
tive levels can be obtained, for instance when only three equally spaced levels of wire

diameter are available.

In such a situation one may wish to employ a design with one or more factors at three

levels, obtained through collapsing four-level factors.
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However, we shall encounter designs in Chapter 6 with three-level factors which were
not obtained through collapsing.

In Chapter 7 we shall compare some designs of Chapter 5 with those in Chapter 6 and
shall formulate recommendations as to their use.

It was stated before that if the method of design generators is used, their choice deter-
mines an experimental design. Unfortunately, efforts to find straightforward rules as to
the choice of a suitable set of design generators, have so far not been successful.

A strategy consisting of trial and error in combination with Math Cad has been used.
It took for instance 5 trials to find a suitable 4 X 4 x 2 x 2/16 design. The first four
invariably resulted in a singular X’X matrix.

A number of 10 designs in Table 5.12 have clumpwise orthogonality and 4 designs are
orthogonal.

We do not pretend that the designs listed in Table 5.12 are the best, but they will
certainly be of practical value for all those who want to derive much information from

a limited number of 16 experimental units.

5.9. Designs with 32 experimental units

The methods developed in the preceding sections have made clear how designs for quan-
titative factors with 2, 3 and 4 levels can be constructed from 2* and 2% designs.

It is therefore logical to try and construct designs derived from the 25 factorial.
However, since we already constructed 23 different designs using 16 experimental units,
it is obvious that the number of designs which can be made from the 25 design will be
much larger than 23.

We shall therefore restrict the number of designs to be made. We first of all will try
to construct a 4 X 4 X 4 X4 x 4 deéign using 2% experimental units. If we succeed we
shall derive 5 others by successively collapsing one, two, three, four and five factors into
factors with three levels.

We shall use the 32 column vectors of the 2% design. These vectors are not reproduced
here, but they are a logical extension of those in Table 5.1.

The 5 four-level factors to be used are labelled P, @, R, S and T and we try a balanced

set of design generatoré as given in Table 5.13.
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Pl; = (2A; + A;B:C;D;)]\/3 Pgi = BiC;D;

Qli = (2B: + BiC;D;E;) VB Qgi = CiD:E;
Rl; = (2C; + ACiD;E) /5 Rg; = AiD;E;
Sl; = (2D; + A;B;D;E;) [ /5 S¢; = A;B;F;
Tl; = (2E; + A;B;C:E)|V5 Tg¢; = A:BiCi

Table 5.13. Design generators for the 4 x 4 x 4 X 4 x 4/32 design.

The generators of Table 5.13 were further “processed” as described in Section 5.5, using

Math Cad.

The resulting design had clumpwise orthogonality meaning that each linear effect was
not correlated with other ﬁ’s.

However the design is not used since the D-efficiency had a low value of 61.0%.

We therefore used the approach described in Section 5.7.

The model to be used for the 4 x 4 x 4 x 4 x 4/32 design is (3.1) for k =d = 5.

From Table 3.1 we derive that the D-optimal design for k = d = 5 has design points as
given in Table 5.14.

61.6% of the points are of the type +1, +1, +1, +1, +1
2.6% of the points are of the type 0, +1, 1, +1, %1

35.8% of the points are of the type 0, 0, +1, +1, +1
Table 5.14. Design points of the D-optimal 3 X 3 x 3 x 3 x 3 design.
The design we realized had
16 or 50% of the points of the type £1, +1, +1, £1, 1.

These 16 points were a half replicate of the 2° design with defining contrast ABCDE.
We further had
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5 or 15.6% of the points of the type £1/3, £1, +1, £1, 41,

10 or 31.3% of the points of the type £1/3, +1/3, +1, +1, +1

and

one or 3.1% of the points of the type +1/3, £1/3, +1/3, +1/3, £1/3.

The choice of these points does not fit too closely with the design of Table 5.14 but
the point of the type £1/3, +1/3, £1/3, £1/3, £1/3 was deliberately chosen because
it represents standard operating conditions when all factors have been collapsed to a

three-level factor.
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i -1 ] [ -1 ] [ -1 | i -1 | { -1 ]
1 -1 -1 -1 1
-1 1 -1 -1 1
1 1 -1 -1 -1
-1 -1 1 -1 1
1 -1 1 -1 -1
-1 1 1 ~1 -1
1 1 1 -1 1
-1 -1 -1 1 1
1 -1 -1 1 -1
-1 1 -1 1 -1
1 1 -1 1 1
-1 -1 1 1 -1
1 -1 1 1 1
-1 1 1 1 1
1 1 1 1 -1

I = 2 1= 3 1= T4 1= Ty 1=
-1 -1 —.3333 -1 .3333
1 —.3333 -1 -1 —.3333
—.3333 1 -1 —.3333 -1
1 3333 -1 -1 1
—.3333 —.3333 1 -1 -1
3333 —.3333 3333 —.3333 3333
-1 1 1 —-.3333 1
3333 1 .3333 -1 -1
-1 -1 -1 .3333 —.3333
1 -1 —.3333 1 1
-1 3333 -1 .3333 1
1 3333 —.3333 1 -1
—.3333 -1 1 1 1
1 ~1 .3333 .3333 -1
-1 1 1 1 —.3333
| 3333 | 1 ] ] 1 ] L 1 ] .3333 ]

Table 5.15. A 4 X 4 x 4 X 4 x 4/32 design.

The design is given in Table 5.15 and as design (8.25) in the Appendix.
The design of Table 5.15 is closely associated with the 2° design, because the first 16
points of Table 5.15 form a half replicate of a 25 design and the distribution of minus

and plus signs in Table 5.15 is identical with the 25 design.
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The D- and G-efficiency of this design have values of 87.8% and 55.7%, respectively,
which is quite satisfactory. Five other designs were derived from design (8.25) by col-
lapsing. They are given as (8.26), (8.27), (8.28), (8.29) and (8.30) in the Appendix.

To save space we only gave the design matrix and the column vectors of the X matrix in
the Appendix. More details of these designs will be given in Chapter 7. Some particulars

of these designs are given in Table 5.16.

Design | Group Design Fraction | Largest

number | number ol

8.25 VIII |[4x4x4x4x%x4/32 1/32 0.351

8.26 4x4x4x4x3/32| 1/24 0.353
8.27 4x4x4x3x3/32 1/18 0.346
8.28 4x4x3x3x3/32 2/27 0.326
8.29 4x3x3Ix3Ix3/32| 8/81 0.319
8.30 I3x3Ix3IxIx3/32| 32/243 | 0.316

Table 5.16. A number of 6 fractional factorial designs for quantitative factors with 32

experimental units.

5.10. An application of the 3 x 3 x 3 x 3 x 3/32 design

5.10.1. Introduction and problem definition

A machine is being used to produce a material of which a certain quality characteristic
y has to meet a target value of 500 units.

It was thought that the value of this characteristic could be changed by adjusting the
settings on 5 machine dials.

We indicate the settings on these dials by the variables z,, z2, 3, £4 and zs.

Because the effect of the changes in the values of the z; on y was not exactly known
and since it was thought that interactions between the 5 variables might be possible,
management decided to carry out an experiment in order to examine the effect of the
z; on ¥ in more detail..

A working group was then formed and after a thorough discussion the participants of
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this group decided to design an experiment in such a way that

~ each variable could be examined at three levels in order to be able to estimate linear

and quadratic effects,
— linear by linear interactions could be estimated,

— a measure of experimental error could be obtained from the experimental data.

Design (8.30),a 3 X 3 x 3 X 3 X 3/32 design meets the requirements mentioned above

and the working group decided to use this plan.

5.10.2. Analysis of the ezperimental data

The three levels of each of the 5 variables are coded and are indicated by —~1, 0 and +1.
The 32 treatment combinations are given in Table 5.17 in a random order together with
the observations y;, the predicted values §; and the residuals r; = y; — #:. The values §;
and r; will be discussed later.

The data were analyzed using the software package “STATA”. The results are given
in Table 5.18, which contains the analysis of variance and the 21 estimated regression
coefficients of the second degree polynomial model, together with the relevant i-test for

each regression coefficient.

We define:

RSSp: the residual sum of squares.

N
CTSS = E(y; — 37)2 = Y'Y — ng*: The corrected total sum of squares.
i=1
_ RSSp
CTSS'

of total variation explained by regression.

R*=1

The square of the multiple correlation coefficient or the proportion

B2 = RSSp/(N — P).

=1- 5 Adj 2,
u CTSS/(N=1) Adjusted R

Both R? and R? are discussed in Chapter 2 of Draper and Smith (1981).

From the analysis of variance we obtain:
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Exp. unit  z, 2 %3 x4 zg yi i ri=yi— i

1 -1 -1 -1 1 1 39569 398.40 —-2.7T1
2 1 -1 0 1 1 44148 436.72 4.76
3 -1 0 -1 0 1 450.09 440.72 9.37
4 -1 -1 0 -1 0 451.19 464.09 -—12.90
5 -1 1 1 -1 -1 612.29 607.76 4.53
6 1 -1 1 -1 -1 540.28 540.51 -.23
7 =1 -1 -1 -1 -1 44889 44243 6.46
8 0 1 1 1 0 587,70 575.02 12.68
9 0 0 0 0 0 502.19 506.41 —4.22
10 1 0 -1 -1 1 434.68 440.72 —6.04
11 0 1 0 -1 -1 550.50 558.71 -8.21
12 -1 -1 1 1 -1 532.05 540.51 ~8.46
13 1 -1 -1 -1 1 408.94 398.40 10.54
14 1 0o -1 -1 0 464.54 462.73 1.81
15 0 0 1 -1 -1 576.65 582.83 -6.18
16 1 1 -1 1 1 465.32 465.65 ~.33
17 1 1 -1 -1 =1 49417 509.67 -—-15.50
18 1 -1 -1 1 -1 45336 442.43 10.93
19 -1 1 1 0 1 521.69 542.27 —20.58
20 1 -1 1 1 1 482.85 475.03 7.82

o
—
|
—_
)
—_
—_
I
—_
—_

466.10  475.02 —8.92

22 1 1 1 1 -—1 610.07 607.76 2.31
23 0 -1 1 1 1 469.86 475.02 —5.16
24 1 1 1 -1 1 545.16 542.28 2.88
25 ~1 1 -1 1 -1 505.67 509.67 —4.00
26 -1 1 -1 ~1 1 458.01 465.65 —7.64
27 -1 =1 -1 0 0 416.06 42041 -4.35
28 -1 1 1 1 1 555.48 542.28 13.20

I
©
|
—
—-
—
—
=}

587.69  575.02 12.67
-1 517.68 509.67 8.01

30 0 1 -1 0
31 1 -1 0 0 —1 493.72 49147 2.25
32 1 0 0 1 -1 539.06 533.79 5.27

Table 5.17. Experimental design, observations y;, predicted values 4; and residuals ;.
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. regress y x1-x5 x1x2-x5x5

(obs=32)
Source | ss df L3 Number of obs = 32
--------- E ESCRCEEL TP ERP TP LLR PR e FC20, 1) = 55.21
Model | 107775.277 20 5388.76384 Prob > F = 0.0000
Residual | 1073.75021 11 97.6136557 R-square = 0.9901
--------- R R TR Adj R-square = 0.9722
Totel | 108849.027 31 3511.25893 Root MSE = .88
veriable | Coefficient std. Error t Prob > |t| Mean
......... e m o ar e eeeeemeameseasesemeeeeseeemmem—escecmeemene
y | 499.3472
......... U P
x1 | 2.245109 2.158131 1.040 0.321 0
x2 | 32.89701 2.087531 15.759 0.000 0
x3 | 42.53926 2.16485 19.650 0.000 0
x4 | 3.053995 2.035407 1.500 0.162 0
x5 | -28.00202 2.062251 -13.578 0.000 0
x1x2 | -3.550977 2.246666 -1.581 0.142 -.0625
xD3 | 1.530184 2.234878 0.685 0.508 -.0625
x1x4 | 1.142438 2.298276 0.497 0.629 0
x1x5 | 1.451156 2.254356 0.644 0.533 -.0625
x2x3 | 4.016595 2.2827 1.760 0.106 .0625
x2x4 | 2.302004 2.298583 1.001 0.338 0
x2x5 | .0851292 2.295846 0.037 0.971 -.0625
x3x4 | .7039211 2.275196 0.309 0.763 .125
x3x5 | -5.091533 2,282576 -2.231 0.047 0
x4x5 | .5098388 2.273378 0.224 0.827 .0625
x1x1 | ~2.022752 5.639479 -0.359 0.727 .8125
x2x2 | -10.87922 5.347241 -2.035 0.067 .8125
x3x3 | 4,81365 5.333714 0.902 0.386 .8125
xbx4 | 1.94592 5.335147 0.365 0.722 .8125
x5x5 | .0070587 5.55815 0.001 0.999 .8125
cons | 503.931 6.650707  75.771 0.000 1
_________ e e e teccamtceemmcamecasmoe—acameecanmcem—namaan

Table 5.18. Regression analysis and analysis of variance using the complete model.
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. regress y x2 x3 x5 x2x2 x3x5

(obs=32)
Seurce | ss df MS Number of obs = 32
--------- R LR L E bt bt F( 5, 26) = 236.30
Model | 106505.268 5 21301.0537 Prob > F = 0.0000
Residual | 2343.75863 26 90.1445628 R-square = 0.9785
--------- L Rt A R R LA R R LR b Adj R-square = 0.9743
Total | 108849.027 31 3511.25893 Root MSE = 9.4944
variable | Coefficient std. Error t Prob > |[t] Mean
......... e m e e mm e e eeceaeememase o -msemessemememmeaas
y | 499.3472
......... #m e e me e aeemamemeosememoseememaeeseem-e=meeasmo—amecaas
x2 | 33.62368 1.874913 17.933 0.000 0
x3 | 43.67861 1.898855 23.003 0.000 0
x5 | -27.37664 1.867592  -14.659 0.000 0
x2x2 | -8.694429 4.553478  -1.909 0.067 .8125
x3x5 | =5.366259 2.117945 -2.534 0.018 0
cons | 506.4114 4.062611  124.652 0.000 1

Table 5.19. Regression analysis and analysis of variance using 6 terms in the model.

R? = 1—(1073.75021) / (108849.027) = 0.9901
1073.75021 / (32— 21)
RZ=1- =0.9722.
o To8849.027 /(32— 1) ~ 00722

The values of R? and RZ are also given in Table 5.18. Since both R? and R? are close
to unity, we find a strong relationship between y and the variables z;,z,,...,zs.

The estimate of the standard deviation of the experimental error is given as

Root MSE = 9.88.

When we examine the t-tests of the regression coefficients in Table 5.18 we see that only

6 of these are significant at the 5% level namely

Bo, P2, B3, Bsy Bas and Sz
(the t-test for Bz, nearly reaches the 5% level).
A second regression analysis was therefore carried out using only the 6 parameters,

mentioned above, in the model.

The results are given in Table 5.19.
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When we compare the results in Table 5.18 with those in Table 5.19, it is striking that
the estimates of the #’s have hardly changed. The reason for it is that design 8.30 has
excellent characteristics such as a large measure of orthogonality and small coefficients
of correlation between the estimates of the g3's.

See Table 7.3g in Chapter 7.

We moreover find small changes in R?, R? and Root MSE.

The final regression equation is obtained from Table 5.19; we find
§ = 506.41 4+ 33.62z, + 43.68z3 — 27.38z5 — 8.192% — 5.37z3z5 . (5.17)

It appears from (5.17) that no effects of z; and z4 were found.

There are many possibilities to obtain a value of § which is close to 500. One of these
is to choose 25 = +1, z3 = 0, 25 = +1.

Substituting these values in (5.17) yields: § = 503.96. Formula (5.17) is used to calculate
¢ for all the 32 design points. We then calculated the residuals r; = y; — ;.

See Table 5.17. These residuals were plotted against §; in Figure 5.1. Since no particular

patterns occur in the r;, we may conclude that the estimated model is quite adequate.
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Figure 5.1. residuals against j;
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CHAPTER 6

Designs with two and three levels

6.1. The 2 x 37 main-effect design

During the past 30 years many s¢ called main-effect plans were published. See Addelman
(19622,1962b) and Taguchi (1987).

We shall show that some of these plans can also be used to estimate linear by linear interac-
tions as well, while maintaining a large measure of orthogonality.

To illustrate our point we shall make use of the 2 x 37 orthogonal main-effect plan, of which

the design matrix is given in Table 6.1.

Twi ZTPi TQi ZTRi TS TTi TUi Tvi

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1
0 0 2 2 2 2 2 2
0 1 0 0 1 1 2 2
0 1 1 1 2 0
0 1 2 0 0 1 1

1 1 1 2 0 1 2
1 1 2 0 1 1 0
1 2 0 2 1 2 1
1 2 1 0 2 1 2
1 2 1 0 1 2 0

Table 6.1. An orthogonal 2 x 37 main-effect design.

The name “main-effect plan” is given because the matrix X’X corresponding to the main

effects is diagonal, which means orthogonal estimates of the main effects.
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In the next Section we shall make use of Table 6.1 to construct a 3 x 3 X 3 X 2 design using 18
experimental units, which means that we shall construct a 1/3 replicate of a 3% x 2 design.
6.2. The 3 X 3 X 3 X 2 design in 18 experimental units

We assign the letters P, Q and U to the three quantitative factors with equally spaced levels
zp=0,1,2, 59 =0,1,2 and zy =0,1,2.

The letter W is used for the two-level factor with levels zy = 0,1 or with levels Wy = —1
and Wy = 41,
Using the restrictions as mentioned in Section 1.6 we have the following mathematical model

of the observations y;

E(y;) = Bozoi + B1Wi + B2 Pli + B2 Pgi + B3Qli + P33Qqi + BaUl; + faalUqi+
+B12W; Pli + B1aWiQli + BraWUli + B3 PLiQL + o PLU L+
+83,QLUL; (6.1)

with var(y;) = o2

Formula (6.1) can be written as
E(y)=X3.

The elements of the column vectors of X are generated as follows, using the notation of

“Math CAD”, “X;,", instead of “X;,”. The first column is given by
Xip=z0i=1.

We now proceed to derive the other columns of X.
To ensure orthogonality of the estimates of the 3’s as much as possible, we again use orthog-
onal polynomials to represent the effect of W, P, Q and U. The first degree polynomial of a

two-level factor W is
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W=2zy-1. (6.2)

Its values are tabulated in Table 6.2.

TWi VV,
0 -1
1 +1

Table 6.2. Values of zw; and W;.

18
Again we have Z W? = 18 = N = the number of experimental units of the design.
i=1
The first and second degree orthogonal polynomial values of an equally spaced three-level

factor P are

Pl; = (1/2) (zpi = 1) V6 (6.3)
and

Pgi = ((3/2) (zpi — 1! = 1)VE = (PE - 1)V, (6.4)

respectively.
It follows from (6.3) that zp; = 14 (1/3) Pi; V6.
Substituting the values zp; = 0,1 and 2 in (6.3) and (6.4) we obtain orthogonal polynomial

values for a three-level factor. See Table 6.3.

rp; Pl.’ Pq.‘

0 -(1/2VE (1/2)V2
1 0 -2
2 +(1/2)v6 (1/2)v2

Table 6.3. Orthogonal polynomial values for a three-level factor.

18 18
We can easily verify that Z Pl = Z Pg? =N =18.

i=1 i=1
Values of QI;, Qg;, Ul; and Ug; can similarly be obtained. Using Table 6.1 and the expressions
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(6.2), (6.3) and (6.4) we can compute the column vector elements of the X matrix as given

below in Table 6.4.

Xiy1 = Zoi =1 Xig=W; =2zw; — 1
Xia= Pl; =(zpi - 1)V6/2 Xia=Pg  =(X4-1)V2
Xis = QU = (20i - 1)V6/2 Xis=Qu = (X% -1)V2
Xiz= Ul C=(zui-1)V6/2 Xig=Ug = (X} -1)V2
Xig=WiPli = XinXiga Xito = WiQli = Xi2Xis5
Xin=WUl; = XXz Xina = PLiQl; = Xi3Xis
Xigz = PLUlL; = X;3X;7 Xiya= QLUL = XisXiz

Table 6.4. Column vector elements of the 3 x 3 x 3 x 2/18 design.

The D- and G-efficiency of the 3 x 3 x 3 x 2/18 design are 80.1% and 26.9%, respectively.
Further details are given in design 8.31 of the Appendix, such as

— The design matrix obtained from the columns xw, xp,xq and xy of Table 6.1.

~ The X; j-values as given in Table 6.4,i=1,2,...,18,5=1,2,...,14.

— The X'X- and the (X'X)~'-matrix.

The matrices r and r~ 1,

The matrix p, the elements of which are the correlations between the §-estimates.

XX, (X’X) Y, r, r~! and p were calculated with the aid of Math Cad. This program was
also used to evaluate the use of the columnn vectors xg, xs, X7 and xv of Table 6.1, instead
of xy.

However, using x;; proved to be the best choice since it produced a p-matrix with many

zero's and relatively small non zero pp,-values.

6.3. The 3 x 3 x 2 x 2 design in 18 experimental units

The design to be constructed will be derived by collapsing the third three-level factor in the
3 X 3 x 3x2/18 design to a two-level factor. The factors are labelled P, Q, U and W.
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We label the factor to be collapsed with U and we can now present the collapsing procedure

as in Table 6.5.

Levels of the Levels of the
three-level factor two-level factor
zy Iy
0 0
1 — 1
2 0

Table 6.5. Collapsing a three-level factor into a two-level factor.

Since U now only has two levels we only have to find the first degree polynomial U as a
function of zy.

Using the method given in Addelman (1962a) and Appendix 6A, we have

18
U=@Bzy-1)/v2 and Y U}=N=18. (6.5)
i=1
Substituting zy = 0 and zyy = 1 into (6.5) gives the orthogonal polynomial values U; for the
two-level collapsed factor.
These values have, together with the orthogonal polynomial values U] and Ug; for a three-

level factor, see also Table 6.3, been presented in Table 6.6.

zy; Ui Ug! zy; U;

0 —(1/2)vE (1/2)v2 0 —(1/2)V2
1 0 -2 1 V2
2 (1/2)v6 (1/2)v2 0 —(1/2)V2

Table 6.6. Orthogonal polynomial values for a three-level factor and a two-level collapsed

factor.

It is interesting to note that U; = —Ug;.

A simple calculation gives the relation between zy; and zj;;. We find
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Ty; = 22y, — (zbi)z . (6.6)

Equation (6.6) enables us to generate the design matrix for the 3 x 3 x 2 x 2/18 design from
the 3 x 3 x 3 x 2/18 design, using Math Cad.

The collapsing procedure procedure also requires a new matrix X of column vectors. This
entails a small modification of Table 6.4 through the use of (6.5) and (6.6).

The column vector elements for the 3 X 3 X 2 x 2/18 design can now be calculated and are

given in Table 6.7. -

Xi1 = Xoi =1 Xiz = W; =2zw; — 1
Xig=Pli  =(@p-1)VE)/2 Xiy=Pg  =(X5-1)V2
Xis=QL  =((=oi-1)VE)/2 Xie=Qa  =(X}-1)V2
X7 =Ui = (3zyi - 1)/V2

Xig=WiPl; =X;3Xia Xig=WQli = X;2Xis
Xiwo=WU; =X2Xi71 Xin = PliQli = X;3Xis
Xin2= PLU; =Xi3Xixr Xi1z=QLUi = XisXix

Table 6.7. Column vector elements of the 3 x 3 X 2 x 2/18 design.

Math Cad was used to generate the other details of the 3 x 3 x 2x 2/18 design and the results
are given in design 8.32 of the Appendix.
This design has the desirable property that the (X‘X)~! matrix contains many zero’s and

that the few non zero p-values are, on the whole, rather small.

6.4. Other designs with 18 and 27 experimental units

Collapsing the second factor of the 3 X 3 x 2 X 2/18 design using the method described in
Section 6.3 gives the 3 X 2 X 2 x 2/18 design as given in the Appendix under number 8.33.
Three designs with 27 experimental units are constructed. They are numbered 8.34, 8.35 and
8.36.

The 3 x 3 x 3 x 3/27 design was generated using 4 of the 13 orthogonal columns of the 3'3

main-effect design with 27 experimental units.
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Design Grdup Design Fraction | Largest Remarks
number | number ]

8.31 IX 3Ix3x3x2/18 1/3 0.655 | Clumpwise
orthogonality

8.32 IX Ix3Ix2x2/18 1/2 0.655 | Clumpwise
orthogonality

8.33 IX Ix2x2x2/18 3/4 0.655 | Clumpwise
orthogonality

8.34 X 3x3x3x3/27 1/3 0.250 | Clumpwise
orthogonality

8.35 X 3x3x3x2/27 1/2 0.433 | Clumpwise
orthogonality

8.36 X Ix3Ix2x2/27 3/4 0.250 | Clumpwise
| orthogonality

Table 6.8. Six fractional factorial designs for quantitative factors with 18 and 27

experimental units.

This design was constructed using Galois fields. See Kempthorne (1979) and Addelman
(1962a).

The designs 8.35 and 8.36 were again obtained through collapsing. The 3 designs with 27
experimental units are of an excellent quality since their (X'X)~! matrices contain very few
non zero off-diagonal elements. These designs are therefore nearly orthogonal. A few details
of the designs just discussed are given in Table 6.8. Efforts were made using Math Cad, to
obtain a suitable 3 x 3 x 3x 3 x 3/27 design from 5 orthogonal columns of the 313 main-effect
design, but these have not been successful since all the matrices X'X were singular. However,

we found a 3 x 3 X 3 X 3 X 3/27 design in Mitchell and Bayne (1978) with a D-efficiency of
95.2% and a G-efficiency of 65.9%. See design 8.42 in the Appendix.

6.5. Miscellaneous designs

In order to judge and compare the designs thus far developed, we took a few designs from the

literature and calculated the usual details of each with Math Cad. These designs are listed
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in Table 6.9.

Design | Group DESIGN Fraction | Largest Remarks j
number | number ]

8.37 XI 3x3x3/15|5/9 0.077 | A Box Behnken
design, clumpwise
orthogonality

8.38 XI Ix3x3x3/27|1/3 0.333 | A Box Behnken

. design, clumpwise
orthogonality

8.39 X1 3x3x3x3/15|5/27 0.350 | A Rechtschaffner
design, a saturated
fraction

8.40 X1 Ix3Ix3Ix3Ixy/21|7/81 0.225 | A Rechtschaffner

design, a saturated

fraction with clumpwise

orthogonality
8.41 X1 I3x3x3x2/18(1/3 0.334 | A Webb design
8.42 X1 3x3x3x3x3/27|1/9 0.281 | A Mitchell

and Bayne design

Table 6.9. Six miscellaneous designs for quantitative factors with 15, 18, 21 and 27

experimental units.

The designs 8.37-8.40 all have factors with three equally spaced levels.
However, since these levels occur with unequal frequency we had to calculate special orthog-

onal polynomials for each of them in such a way that the relations
SPl=ZPg=5Q)=...=N,

were satisfied as well, N being the number of experimental units of a design.
All these orthogonal polynomial values are given in Section 6.6 and an example of the calcu-
lation of a set of orthogonal polynomials is given in Appendix 6A.

Designs 8.37 and 8.38 are taken from Boz and Behnken (1960), the designs 8.39 and 8.40
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were constructed with the generators described in Rechtschaffner (1967).

Design 8.41 is given in Webb (1971).

Design 8.42 is obtained from Mitchell and Bayne (1978).

None of the designs 8.37 to 8.42 inclusive are orthogonal but all have small p-values.

For further details of the designs we refer to Chapter 7, where the designs are compared and

to the Appendix, where the details of each design are given.

6.6. Orthogonal polynomial values for designs 8.37-8.40

In each of the Tables 6.10-6.13 we present the relevant orthogonal polynomial values and
also the frequency with which each of the levels 0, 1 and 2 occurs. These {requencies were

obtained from the designs 8.37-8.40 of the Appendix.

zp; frequency Pl; Pg;
0 4 —(1/2)/7.5 0.9354
1 7 0 —-1.0690
2 4 +(1/2)V75 0.9354

Relations: Pl; = 0.5(zp; — 1)/7.5
Pg; = (7 - 30zp; + 152%;)/v/56

15 15
Y. P}=3 P¢d=15=N.
=1

i=1

Table 6.10. Orthogonal polynomial values for the 3 X 3 x 3/15 Box Behnken design.

zp; {requency Pl Pg;
0 6 -1.5 1.1180
1 15 0 —0.8944
2 6 +1.5 1.1180

Relations: Pl; = 1.5(zp; — 1)
Pg; = (5~ 18zp; + 92%,)/v/20

27 27
Y PiI=) Pgl=27=N.
=1 =1

Table 6.11. Orthogonal polynomial values for the 3 x 3 x 3 x 3/27 Box Behnken design.
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zp; -frequency Pl; Pg;

0 5 —1.2814 0.5983
1 3 —0.1508 —1.9943
2 7 0.9799 0.4274

Relations: Pl; = (=17 + 15zp;)/V/176
Pg; = (21 - 179z p; + 882%,)/v/1232

15 15
ST PP=Y P=15=N.
i=1 i=]

Table 6.12. Orthogonal polynomial values for the 3 x 3 x 3 x 3/15 Rechtschaffner design.

zp; frequency Pl; Pyg;
0 8 —1.1660 0.5152
1 4 —-0.0530 —2.0609
2 9 1.0600 0.4580

Relations:  Pl; = (—22 + 21zp;)//356
Pg; = (18 — 179z p; + 89z%,;) \/(7/8544)

21 21
S PE=3 Pgf=21=N.
i=1 i=1

Table 6.13. Orthogonal polynomial values for the 3 x 3 x 3 X 3 x 3/21 Rechtschaffner

design.
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Appendix 6A. The calculation of orthogonal polynomials

The general formulae for the first and second degree orthogonal polynomials are

Pl = \(a+ Bzp) ,y M#0 (6.1
and

Pg = X3(7 + bzp + €2}) , A2#£0, (6.8)
respectively.

The following conditions have to be met

N N N
> Pli=) Pg=) PLiPg=0, (6.9)
i=1 =1 =1

and
N N
Y. PE=3 Pi=N, (6.10)
i=1 i=1

where N is the numnber of experiinental units of the design.

Condition (6.10) has to be met in order to have as many N’s as possible in the diagonal of
the X’X matrix. This condition enables us to compare designs with an equal or nearly equal
number of experimental units, but with a varying number of factors and levels per factor,
more easily. We shall discuss this point in more detail in Chapter 7.

We now proceed to calculate the parameters «,3,7,6,¢, A1 and A2. Conditions (6.9) can be

written as

(a+ Bzpi) =0 ‘ (6.11)

iM=

(7 + 8zpi + €3%;) = 0 (6.12)

™M=

-
|
-

(e+ Bzpi) (7 + 6zpi +£2p;) =0 . (6.13)

n

1

i

Condition (6.10) can be written as
N
MY (et Bzpi)’ = N, (6.14)

i=1
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and

N
MY (r+bepitezh)? =N, (6.15)

i=1

respectively.
As an example we shall calculate the orthogonal polynomial values of Table 6.12. We then
have N = 15.

Hence

zp; frequency a+ fzp;

0 5 a
1 3 a+ p
2 7 a+206.

We first try to meet condition (6.11); therefore,

15

> (a+Bzpi) =5a+3(a+B)+7(a+28)=15a+178=0.

i=1
There are an infinite number of sets (a, 8) which satisfy 15a+ 178 = 0, but for simplicity’s
sake we prefer the smallest integer set (a,3).

We therefore have a = —17, 8 = +15.

We can now present the numerical values of a + Bzp; and (@ + Bz p;)? in Table 6.14.

zp; frequency a+ Bzp; (a+ Bzp;)?

0 5 -17 289
1 3 -2 4
2 7 13 169

Table 6.14. Values of @ + fzp; and (a + Bzp;)?.

According to (6.14) we have
15
AP S (@4 Bzp)=15.

i=1
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Hence
A(5x 2894+ 3x4+7x169)=15,
thus
A = 1/V/176.
Formula (6.7) can now be written as
Pl = (=17 + 152p)//176 . (6.16)

Equation (6.16) has also been given in Table 6.12.
Substituting zp = 0,1 and 2 in (6.16) we find the three values of PI; given in Table 6.12.

We now proceed to calculate v,8,¢ and A2. Using (6.12) we find,

zp; frequency v+ bzp; +ezd;

0 5 v
1 3 Y+6+e
2 7 v+ 26+ 4e .

According to (6.12) we have
15
S (v+ézpitezd)=57+3(v+6+e)+T7(v+20+4) =0,

i=1

or
15y + 176+ 31 = 0 . (6.17)

According to (6.13) we have
15
> (a4 Bzpi) (v + bzpi +ezh;) = 0.

=1

Using the values a + Bz p; and their frequencies from Table 6.14, we may write
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5x (=17)7+3x(=2) (v+8+e)+7x(13) (Y+26+4¢) =0
or
1766 + 358 = 0 . (6.18)

Expressions (6.17) and (6.18) form a set of two equations in three unknowns v, & and ¢ and
we therefore have an infinite number of solutions.

However, the set with the smallest integer values, which satisfies these equations, is
v=21, §=-179 and £=288.

The numerical values of ¥ + ézp; + ez%; and (v + 6zp; + €2%.)? can now be calculated and
Pi Pi

are given in Table 6.15.

zp; frequency v+ ézp;+ezh; (7+ Szpi+ezd,;)?

0 5 21 441
1 3 =70 4900
2 7 15 225

Table 6.15. Values of ¥ + 8zp; + e2}; and (v + bzpi + £23,)%.

According to (6.15) we have,

15
A Y (v +8zpi+ezp) =15,

=1

hence
A2(5 x 441 + 3 x 4900 + 7 x 225) = 15,

thus Ay = 1/4/1232.

Equation (6.8) can now be written as

Pg = (21— 179z p + 8823) /1232 , (6.19)
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and this formula is given in Table 6.12.

Substituting zp = 0, 1 and 2 in (6.19) gives the three values for Pg as presented in Table 6.12.

It is pointed out that the orthogonal polynomials (6.16) and (6.19) basically contain 5 and
not 7 parameters. These 5 parameters have to satisfy the 5 equations (6.11),...,(6.15).

We can write (6.7) and (6.8) namely as follows

Pl=d +f'zp, (6.20)
Pg=~"+8zp+ ezt , (6.21)
in which

o =ha, f=xM0,

‘7’:/\2‘)’, 5’:/\26, 6’=/\2£.

The parameters A; and A, were only introduced for ease of calculation and presentation, since
we could now calculate a, 3,7, 6 and ¢ first and Ay and A later on.

The introduction of A; and A; also enabled us to write the polynomial coefficients with integer
numbers.

Although the choice of a,3,7,8 and ¢ was rather arbitrary, the absolute values of o', 3, 7', 8’
and ¢’ are unique.

It is namely easily seen that the sets

(—a’) _ﬂlv‘yly 6’1 EI) 3 (_a’y _ﬂla _7Ia —6’1 _5’)

and

(alvﬂ’) —717 _611 _EI)

also satisfy (6.7) and (6.8).
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CHAPTER 7

Evaluation and comparison of the designs

7.1. Introduction

To evaluate and compare the designs, we made use of the articles written by Hahn, Meeker
and Feder (1976), Lucas (1976), Marquardt (1970) and Snee (1973a,1985).
We also refer to Section 5.5 where the output of Math Cad was explained. It is given for each

design in the Appendix. It has been summarized for each design in Tables 7.3a, 7.3b,. .., 7.3j.

The variance of an estimated regression coefficient is according to Snee (1973a)
N .
o = 02/[; (Xip = X5) (1 =11, (7.1)

where rp, is the multiple correlation coefficient of X, with all other X’s.

Equation (7.1) may according to (4.3) be written as

N
%, = P VID)/ X (K= Xp)%,

where

M=

Xp=(1/N) Y Xip.

1

However, in the designs 8.1,..., 8.6, 8.11, 8.12, 8.13a, 8.14a, 8.15a, 8.31,..., 8.36 we have

X, =0, hence for those designs

= o?(VIF)/ EN: X% . (7.2)

i=1

2
%
Because the VIF is a function of the multiple correlation coefficient of X, with all other

vectors X, it is independent of the scaling of X,.

N
However, ”;23 depends on.z X,-zp, the diagonal elements of X'X and therefore depends on
4 =1

the scaling of Xp.
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This fact makes it difficult to compare o2’s of designs with a varying number of factors and

8
levels per factor, even if the number of experimental units is fixed.
We have avoided this difficulty by choosing the orthogonal polynomials for each of the designs

8.1,...,8.6,8.11, 8.12, 8.13a, 8.14a, 8.15a, 8.31,..., 8.36 in such a way that

N N
S PE=) Qi!=...=N, (7.3)
i=1 i=1
N N
ZPq?:ZQq?:...:N. (7.4)

It then however appeared that all diagonal elements of X'X were equal to N for each of these
designs. We shall therefore call such designs N-designs from now on. This fact will make the
comparison of aé’s of these designs easier, because changes in a?; within groups I, II, IV, Va,
IX and X as given in Tables 4.22, 5.12 and 6.8, will only be caused by changes in the VIF.
The reason that IXV: X,?p = N for the N-designs is caused by the fact that all these designs

=1
have been constructed from orthogonal main-effect designs, (7.3) and (7.4) apply and
N
Z X,?p = N, forall 2" designs.
i=1

The fact that we interfere with the scaling of the X, is less arbitrary than it appears at first
sight.

When for instance the factor temperature is set at the levels 230, 250 and 270 degrees centi-
grade, it is customary to “code” these levels by using —1,0 and +1.

It is obvious that we could have used the coded levels —5, 0 and +5 as well, since they are
also equally spaced.

We used the coded levels

—(1/2)v6 0 +(1/2)V6 for a three-level factor
and
-2 0 +/2 for a collapsed three-level factor derived from a four-level
factor.
Since these are also equally spaced there is no objection as to their use.
We shall prove that f: X,?p = N for two N-designs in the next section.

=1

141



N
7.2. The value of Z X,?p for the N-designs

=1
THEOREM 7.2.1.

The designs 8.1,..., 8.6, 8.11, 8.12, 8.13a, 8.14a, 8.15a, 8.31,..., 8.36 are N -designs.
Proof. We shall prove the theorem for two designs.

We first consider design 8.14a (4 x 3 X 2 X 2/16) from the Appendix.

The column vectors elements of X are obtained from design 8.14a and are given below:

Xip=z0i=1 Xi2= Pgi

Xia=Qq Xia=R;

Xis =Pl Xie = PLR;

Xir=QLS; Xis=Ql;

Xio=QLR: Xiio= PLS;

Xin = PLQlL Xi12=5; Xiia = R;S; .

We use the notation of Math Cad, “X;,” instead of “X;,”.

N
There are N = 16 values zo; = 1 and therefore Z z}, = N = 16.

=1
N
For Xi2, Xi3, Xia, Xis, Xis and X; 2 we have Z X,?_p = N since the orthogonal polyno-
=1
mials were so scaled and because (7.3) and (7.4) apply.

We now consider the next diagonal element of X'X,
N
3 (Xi6)’ = (PIR, PIR) . (7.5)
=1 .
From design (8.14a) we obtain
PLiR; = (2A; + B;) (A;BiCiD;) | V5 = (2B;C;D; + A;CiD;) | V5 .

Substituting PIR in (7.5) and using the vector notation of Section 4.2, we find
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(Xig)? =(2BCD + ACD, 2BCD + ACD)/5

M=

.
I
—

= (4(BCD, BCD) + (ACD, ACD)) /5,

since all inner products such as (BCD, ACD) vanish because the 2" design is orthogonal.

Hence

N
> (Xig)= (AN +N)[5=N .

=1

To calculate the next diagonal element of X'X we consider
QUSi = (Ci+ D) (BiCi) / V2 = (Bi + BiCiDy) | V2
and

(Xiz)* =(QIS, QIS) = (B + BCD, B + BCD) /2

M=

=1

= ((B,B) + (BCD, BCD))/2= (N + N)/2=N .

We can similarly prove that

N N
=1 =1 i=1

N N
Z (Xig)? =) (Xigo)* =) (Xin) =) (Xirz)*=N .

We have now proved Theorem 7.2.1 for design 8.14a.
Secondly we consider design 8.32 (3 x 3 X 2 x 2/18) from the Appendix.

The column vector elements of X are, see also Table 6.7,
Xi1=1 Xi2 = 2zw;—1
Xiz=(1/2) (zpi - 1)V6 Xia= (X2 -1)V2
Xis = (1/2) (z@i - DVB Xig= (X} -1)V2
Xiz = (3zui— 1)/ V2
Xig = Xi2Xi3 Xis = XioXis Xino = Xi2Xiz
Xin = X;3Xis Xite = XiaXiq Xiz=XisXiz -
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N N
Again we have E X} = N =18 and E X2, = N for p = 2,3,...,7, because the

orthogona.l polynomla.ls were scaled accordmgly

E X,S—Z X?2X33_E X% = N since X2, =1.
i=1

Slmlla.rly we have E X? 9= E X, w=N.

=1 =1

N N
2 Xiu=) XX (7.6)
i=1 =1

Because the original 2 x 37 main-effect design as given in Table 6.1 is orthogonal we have

N
3 XiaXig=0,
i=1
or
N
S (X -1)VE (X -1)Ve=o,
i=1
or
N
E (Xiz,sxiz,s‘x?,s" X.'2,5 +1)=0,
i=1
or
N
S (X3XE)-N-N+N=0,
=1
or

(Xiz,sxiz,s) =N

M

=1

and therefore using (7.6)

N
2 Xin=N. (7.7)
i=1

We could have proved (7.7) in a different way.

Because design 8.32 is derived from Table 6.1, an orthogonal design, the level combinations
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of each group of two factors occur with equal frequency.

Since the factors P and @) have three levels each, there are 9 combinations of levels. Since
there are N = 18 experimental units, there are N/9 = 18/9 = 2 experimental units for each
level combination. Table 7.1 gives the 9 level combinations and the corresponding values of

X?3X}5. Table 7.1 was constructed using Table 6.1 and equation (6.3).

Xiz=
B) (epi-1VE | -(3)V6 0 +(3)v6
X",5 = Tp 0 1 2

zQ
—-(3)v6 0 (N/9) (36/16) | (N/9)x 0 | (N/9) (36/16)
0 1 (N/9Yyx0 | (N/9)x0| (N/9x0
+(3)v6 2 (N/9) (36/16) | (N/9)x 0 | (N/9) (36/16)

Table 7.1. Values of X?; X7 for the 3 X 3 x 2 X 2/18 design.

Using Table 7.1 we calculate

N N
3o Xhh=) XEXZs=4x(N/9)(36/16)= N, qe.d.
i=1

i=1

N N

To calculate the value of Y X%, = > X?3X?; we use the method of Table 7.1 and
i=1 i=1

construct Table 7.2, making use of Table; 6.1, 6.3 and 6.6. We use Table 6.6 since X, refers

to a factor with two levels derived by collapsing a three-level factor.
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Xiz=
(3) (@pi—1)VE | —(3)VB 0 +(3)V6
Xin = zp 0 1 2
(3zyi — 1)V2

E274
-(3)v2 0 (N/9) (12/16) | (N/9)x 0 | (N/9) (12/16)
Ng) 1 (N/9Y)x3 | (N/9)x0| (N/9)x3
-(3v2 0 (N/9) (12/16) | (N/9) x 0 | (N/9) (12/16)

Table 7.2. Values of X?; X7 for the 3 X 3 X 2 x 2/18 design.

From Table 7.2 we obtain

N N
> Xhg= E X2 X2 = 4x (N/9) (12/16) + 2x (N/9)x 3= N .

=1

In a similar way we can prove that

N
> XHs3=N.
i=1

Theorem 7.2.1 therefore applies to design 8.32.

Theorem 7.2.1 can likewise be proved for the other N-designs.

7.3. Design characteristics

It was already stated in Section 7.1 that the designs 8.1, 8.2,..., 8.42 are summarized in
Tables 7.3a, 7.3b,..., 7.3}, in which a number of design characteristics have been given.

We again refer to Section 5.5 where many of these characteristics were explained.

The first characteristic of each design in Table 7.3 is the D-efficiency, which was fully ex-
plained in Chapter 2.

The second symbol in Table 7.3 is P, the number of parameters 3 in the regression model.

2
8

These variances are however dependent on the scale used for the independent variables, which

Important charcteristics of a design are the 0%’s, the variances of the S-estimates.

makes it difficult to compare the ag’s of the various designs. We solved this problem partly

by arranging the scaling for the N-designs in such a way that
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N _
S xi=N. (7:8)
=1

We then have that if values Ug change within a group of N-designs, for instance within group
I consisting of design 8.1, 8.2, 8.3 and 8.4, such a change must be due to a change in the VIF
due to collapsing.

The condition given in (7.8) has the additional advantage that the variances of the f3’s are
equal within an orthogonal design and nearly equal within a design if it is nearly orthogonal.
To compare the ag ’s in a different way we calculated these values for all the 45 designs of the

Appendix using the same scaling for x as in Chapter 3 for the D-optimal designs that is
1<z <+, m=1,2,... k.

These a%-va.lues have, without loss of generality for 2 = 1, been given in Tables 7.4a,
7.4b,..., 7.4k. However, in the Tables 7.3a, 7.3b,..., 7.3] we gave for reasons of space only

the maximum values of
2 7.2 2 7.2 2 .2
(‘76,,/‘7 ) (appq/a ) and (appp/a ).

For the N-designs and the designs 8.37, 8.38,..., 8.41 we gave two maximum values in the
Tables 7.3a...j for each of the three variances mentioned above.

The first value refers to the maximum value of (ag/az) based on the scale -1 < z,, < +1,
form=1,2,...,k.

The second value refers to the maximum value of (aé/az) for the N-designs for which
N

> XL=N.

:I=‘ll1e designs 8.37, 8.38, 8.39, 8.40 and 8.41 also have a second maximum value for (ag/az).

For these designs we have
N N

oPi=) Q=..=N
i=1

i=1

For the designs 8.7, 8.8, 8.9, 8.10, 8.13b, 8.14b, 8.15b, 8.16, 8.17,.. ., 8.30 and 8.42 we did not

use orthogonal polynomials and the ma.x(og/az)’s given are based on the scale
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~1<en <+, m=1,2,...,k.

In each of the designs 8.1, 8.2,.. ., 8.42 it is obvious whether orthogonal polynomial variables
or the variables z,, are used. '

The design characteristics given together with each design of the Appendix are calculated
from the type of variable used for that particular design and the values given in Table 7.3
are obtained from the design details in the Appendix unless otherwise stated.

For reasons of space we only gave the design matrix and the column vectors of the X matrix
for designs 8.25,..., 8.30 and 8.42. For the same reason we omitted the matrix r in the
Appendix for a number of designs. Many details of these designs can however be found in
Table 7.3g and Table 7.3;.

The value of (Trace (X'X)~!)/P is equal to the average value of (aé/az). For each design in
Table 7.3, in which we gave two values of ma,x(ag/az), we also gave two corresponding values
of (trace (X'X)~1)/P.

The determinant |r| and trace (r~!) have already been explained in Section 5.5.

All VIF’s can be found as diagonal elements of r=!.

We only listed the largest in Ta-
bles 7.3a,...,7.3j. Some designs have replicate observations.

Whenever this is the case we gave the number of degrees of freedom V associated with these
replicates, which provides an estimate of o2 and enables us to test for lack of fit in a few
cases. The expression f'(x) (X’X)~! f(x) has been explained in Section 2.4.

The value d which is given for each design is the maximum value of f'(x) (X'X)~! f(x) in
the candidate points of the complete factorial design. See also Sections 5.6 and 5.7.

The largest coefficient of correlation in absolute value between pairs of 3’s is given as |p].
g g p

The next line in Table 7.3 gives the number of experimental units of the design. It is followed
by the value of the G-efficiency of the design. We shall come back to this measure in the next
section.

The last line in the Tables 7.3a, 7.3b,..., 7.3] is reserved for remarks. We shall discuss these
when we dea] with each group of designs.

Table 7.5 gives a complete list of the D- and G-efficiencies of the 45 designs considered. The
designs for which the G-efliciency is exact are marked by an asterisk. An exact G-efficiency is
found if the exact maximum value of f'(x) (X’X)~! f(x) in the k-dimensional experimental

region R is used to compute the G-efficiency. See also Section 4.5.2.
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Design number 8.1 8.2 8.3 8.4
Group I I I 1
Design 4x2x2/8 | 3x2x2/8|3x2x2/8| 3x2x2/8
D-efficiency 82.4 68.4 81.3
P: number of parameters 8 8 8 identical with
in model design (8.2)
0.281 0.500 0.500
2 /.2
max(af /%) 0.156 0.250 0.148
max(e? /o?) 0.281 0.500 0.500
4 0.156 0.250 0.250
0.633 0.500 1.250
2 2
max(og, /%) 0.125 0.125 0.227
0.283 0.375 0.438
! -1
(brace (X'X)™1)/ P 0.149 0.219 0.184
| 0.512 0.125 0.264
trace (r~1) 8.5 13.0 10.75
largest VIF 1.25 2.0 2.0
V: degrees of freedom - - -
for replication
d = max(f’(x) (X’X)~! f(x)) 2.12 4.00 4.00
largest (p) 0.447 0.707 0.671
N: number of 8 8 8
experimental units
G-efficiency = 100 P/Nd 47.2 25.0 25.0
rernarks clumpwise | clumpwise | clumpwise
orth. orth. orth.
Table 7.3a. Design characteristics.
Design number 8.5 8.6 8.7 8.8 8.9 8.10
Group 11 1I III II1 11 111
Design 4x4x2/16 | 4x3x2/16 | 4x4x4/16 [ 4x4x3/16 | 4 x3x3/16 | 3x 3 x 3/16
D-efficiency 82.0 81.3 87.8 89.2 90.9 92.6
P: number of parameters 9 9 10 10 10 10
in model
0.113 0.125 0.084 0.089 0.091 0.089
max(73 /%) { 0.063 { 0.063
0.203 0.225 0.118 0.123 0.123 0.120
“‘“"(”:i,q/ %) { 0.063 { 0.063
2 2 0316 0.316 0.647 0.678 0.629 0.484
max(oy /%) 0.063 0.063
(trace (X'X)“)/P { g(l)zg { gég 0.308 0.288 0.268 0.249
Ir| 1.000 1.000 0.387 0.400 0.413 0.427
trace (r—!) 8.00 8.00 11.40 11.27 11.16 11.06
largest VIF 1.00 1.00 1.53 1.61 1.53 1.45
V: degrees of freedom - 4 - - - 1
for replication
d = max(f’(x) (X' X)~! f(x)) 0.902 0.953 1.084 1.131 1.091 1.021
largest (p) 0 0 0.339 0.394 0.404 0.362
N: numnber of 16 16 16 16 16 16
experiinental units
G-efficiency = 100 P/Nd 62.3 59.0 57.7 55.3 57.3 61.2
remarks orth. orth. clumpw. clumpw. clumpw. clumpw.
design design orth. orth. orth. orth.

Table 7.3b. Design characteristics.
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Design number 8.11 8.12

Group v v
Design 4x2x2x2/16 | 3x2x2x2/16
{1 D-efficiency 90.1 88.6
P: number of parameters 12 12
in model
2 4.2 0.113 0.125
max(ag /%) 0.063 0.063
2 2 0.113 0.125
max(ag, /o%) 0.063 0.063
2 2 0.316 0.250
max(og /%) 0.063 0.063
i1 0.108 0.104
(trace (X'X)71)/ P 0.063 0.063
x| 1.000 1.000
trace (r~!) 11.00 11.00
largest VIF 1.00 1.00
V: degrees of freedom - 4
for replication
d = max(f’'(x) (X'X)~! f(x)) 0.950 1.000
largest (p) 0 ]
N: number of 16 16
experimental units
G-efficiency = 100 P/Nd 78.9 75.0
remarks orth. design orth. design

Table 7.3c. Design characteristics.

Design number 8.13a 8.14a 8.15a
Group v \" v
Design 4x4x2x2/16 | 4x3x2x2/16 | 3x3x2x2/16
D-efficiency 75.2 69.0 68.1
P: number of parameters 13 13 13
in model
max(o? /o?) 0.139 0.150 0.188
B» 0.077 0.075 0.094
max(e? /a?) 0.298 0.450 0.500
Bra 0.092 0.125 0.125
2 9 0.316 0.316 0.250
max(cg, /o%) 0.063 0.063 0.063
rov—1 0.176 0.206 0.207
(trace (X'X)™1)/P 0.076 0.091 0.091
|r| 0.314 0.125 0.125
trace (r~!) 14.82 18.00 18
largest VIF 1.47 2.00 2.00
V: degrees of freedom - - 2
for replication
d = max(f'(x) (X'X)~! f(x)) 2.527 3.674 3.998
largest (p) 0.436 0.667 0.577
N: number of 16 16 16
experimental units
G-efficiency = 100 P/Nd 32.2 22.1 20.3
remarks clumpw. clumpw. clumpw.
orth. orth. orth.

Table 7.3d. (part 1) Design characteristics.
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Design number 8.13b 8.14b 8.15b

Group v \% \%

Design 4x4dx2x2/16 | 4x3x2x2/16 | 3xIx2x2/16

D-efficiency 84.6 81.1 76.4

P: number of parameters 13 13 13

in model

ma.x(ag’/az) 0.125 0.125 0.125

max(a;"/az) 0.141 0.180 0.250

max(agp;/az) 0.633 0.633 0.500

(trace (X'X)~1)/P 0.238 0.234 0.239

x| 0.192 0.101 0.044

trace (r™!) 15.95 17.88 21

largest VIF 2.00 2.00 2.25

V: degrees of freedom - - -

for replication

d = max(f’(x) (X'X)"! £(x)) 1411 1.953 2.357

largest (p) 0.500 0.621 0.707

N: number of 16 16 16

experimental units

G-efficiency = 100 P/Nd 57.6 41.6 345

remarks clumpw. clumpw. clumpw.

orth. orth. orth.
Table 7.3d. (part 2) Design characteristics.

Design number 8.16 8.17 8.18 8.19
Group VI Vi Vi VI
Design 4x4x4x2/16 | 4x4x3x2/16 | 4x3x3Ix2/16 | 3x3 x3x2/16
D-efficiency 87.5 872 86.8 87.2
P: number of parameters 14 14 14 14
in model
max(a;~ /a?) 0.110 0.109 0.109 0.108
max(o? /a?) 0.124 0.132 0.146 0.149
max(d?  /o?) 0.738 0.746 0.554 0.525
(trace (X'X)~1)/P 0.266 0.254 0.240 0.228
|r| 0.301 0.272 0.230 0.219
trace (r™!) 15.77 16.07 16.56 16.75
largest VIF 1.42 1.44 1.45 1.43
V: degrees of freedom - - - -
for replication
d = max(f'(x) (X'X) ™! £(x)) 1.862 1.948 2.272 2.228
largest (p) 0.445 0.412 0.405 0.402
N: number of 16 16 16 16
experimental units
G-efficiency = 100 P/Nd 47.0 44.9 38.5 39.3
remarks

Table 7.3e. Design characteristics.
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Design number 8.20 8.21 8.22 8.23 8.24
Group VIl VII VII VII vl
Design 4X4X4x4/16 | 4Xx4x3x3/16 | 4 x4 x3x3/16 | 4x3x3x3/16 | 3x3x3x3/16
D-efficiency 84.9 86.2 86.0 85.0 85.8
P: number of parameters 15 15 15 15 15
in model
max(o? fo?) 0.144 0.136 0.136 0.142 0.140
max(e? /o?) 0.127 0.132 0.138 0.143 0.160
max(a;" fo?) 0.836 0.714 0.714 0.634 0.661
PP
(trace (X'X)-1)/P 0.355 0.334 0.320 0.308 0.304
Ir| 0.193 0.208 0.191 0.161 0.145
trace (r~') 18.13 17.81 18.01 18.57 18.85
largest VIF 1.76 1.66 1.66 1.73 1.64
V: degrees of freedom - - - - -
for replication
d = max(f'(x) (X’ X)~? f(x)) 2.451 2.193 2.046 2.047 2.229
largest (p) 0.385 0.395 0.362 0.369 0.372
N: number of 16 16 16 16 16
experimental units
G-efficiency = 100 P/Nd 38.3 42.7 45.8 45.8 42.1
remarks
Table 7.3f. Design characteristics.

Design number 8.25 8.26 8.27
Group VI VIII VIII
Design 4x4x4x4x4/32 | 4x4x4x4x3/32 | 4x4x4x3x3/32
D-efficiency 87.8 88.1 88.8
P: number of parameters 21 21 21
in model
max(a;. Je?) 0.047 0.047 0.047

P
max(ag /%) 0.054 0.054 0.054

Pe
max(afi /o?) 0.430 0.428 0.419

PP
(trace (X'X)~1)/P 0.158 0.153 0.147
|r| 0.119 0.113 0.117
trace (r!) 25.15 25.20 25.06
largest VIF 1.66 1.65 1.64
V: degrees of freedom - - _

| for replication

d = max(f'(x) (X'X)~! f(x)) 1.178 1.197 1.175
largest (p) 0.351 0.353 0.346
N: number of 32 32 32
experimental units
G-efficiency = 100 P/Nd 55.7 54.8 55.8
remarks

Table 7.3g. (part 1) Design characteristics.
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Design number 8.28 8.29 8.30
Group Vil VI VIII
Design 4x4x3x3x3/32 | 4xIxIx3x3/32 |3 x3Ix3Ix3Ix3/32
D-efficiency 89.4 90.1 90.4
P: number of parameters 21 21 21
in model
max(a';- /%) 0.048 0.048 0.048
max(a;-' /a?) 0.054 0.054 0.054
max(ag /%) 0.409 0.416 0.326
(trace (X'X)~1)/P 0.141 0.135 0.130
|| 0.120 0.124 0.119
trace (r~!) 24.96 24.82 24.88
largest VIF 1.58 1.60 1.59
V: degrees of freedom - - -
for replication
d = max(f'(x) (X'X)"! £(x)) 1.183 1.164 1.116
largest (p) 0.326 0.319 0.316
N: number of 32 32 32
experimental units
G-efficiency = 100 P/Nd 55.5 56.4 58.8
remarks
Table 7.3g. (part 2) Design characteristics.
Design number 8.31 8.32 8.33
Group IX IX IX
Design Ix3IxIx2/18 |3 x3Ix2x2/18 |3 x2x2x2/18
D-efficiency 80.1 82.1 76.8
P: number of parameters 14 13 12
in model
max(o? /o?) 0.083 0.104 0.107
By 0.056 0.056 0.056
0.250 0.189 0.179
max(aj /%) 0.111 0.111 0.111
max(c? /a?) 0.313 0.437 0.313
By 0.069 0.097 0.069
e 7 om | (o | o
r| 0.164 0.289 0.164
trace (r=!) 18.24 15.40 16.24
largest VIF 2.00 2.00 2.00
V: degrees of freedom - - 1
for replication
d = max(f'(x) (X’X)~! £(x)) 2.892 2.571 2.310
largest (p) 0.655 0.655 0.655
N: number of 18 18 18
experimental units
G-efficiency = 100 P/Nd 26.9 28.1 28.9
remarks lin. effects lin. effects lin. effects
orthogonal orthogonal orthogonal
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Design number 8.34 8.35 8.36
Group X X X
Design I3x3x3x3/27 | Ix3Ix3Ix2/27T | 3x3Ix2x2/27
D-efficiency 87.8 84.3 85.8
P: number of parameters 15 14 13
in model

2 /.2 0.058 0.064 0.070
max(ag /o) 0.037 0.037 0.037
max(c? /a?) 0.089 0.103 0.089

Bye 0.040 0.046 0.040
max(ag /02) 0.167 0.167 0.167

By» 0.037 0.037 0.037

I =17 ] 0.117 0.110 0.090
(trace (X'X)71)/P 0.038 0.041 0.038
r| 0.824 0.536 0.824
trace (r~!) 14.40 14.38 12.40
largest VIF 1.07 1.23 1.07
V: degrees of freedom - - 3
for replication
d = max(f’(x) (X'X)"! f(x)) 1.000 1.322 1.075
largest (p) 0.250 0.433 0.250
N: number of 27 27 27
experimental units
G-efficiency = 100 P/Nd 55.6 39.2 44.8
remarks lin. and quadr. fin. and quadr. lin. and quadr.
effects orthogonal | effects orthogonal | effects orthogonal

Table 7.31. Design characteristics.
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Design number 8.37 8.38 8.39
Group XI XI XI
Design 3x3x3/15 Ix3x3x3/27 | IxIxIx3/15
Box Behnken Box Behnken Rechtschaflner
D-efficiency 68.1 51.6 80.2
P: number of parameters 10 17 15
in model
max(o? /o?) 0.125 0.083 0.139
Be 0.067 0.037 0.104
max(o? /o?) 0.250 0.250 0.139
Bra 0.071 0.049 0.085
max(o? /o?) 0.271 0.187 0.886
Ber 0.067 0.046 0.141
-1 0.227 0.189 0.364
(trace (X'X)™H)/P 0.068 0.044 0.104
Irl 0.984 0.691 0.025
trace (r~!) 9.03 17.00 23.63
largest VIF 1.01 1.25 2.11
V: degrees of freedom 2 - -
for replication
d = max(f'(x) (X’X)"! £(x)) 1.394 2.410 2.552
largest (p) 0.077 0.333 0.350
N: number of 15 27 15
experimental units
G-efficiency = 100 P/Nd 47.8 26.1 39.2
remarks lin. and int. lin. and int. -

terms orthogonal

terms orthogonal

Table 7.3j. (part 1) Design characteristics.
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Design number 8.40 8.41 8.42
Group XI XI XI
Design 3x3x3x3x3/21 |3x3IxIx2/18|3x3Ix3Ix3Ix3/27
: Rechtschaffner A Webb design | Mitchell and Bayne
D-efficiency 88.6 86.0 95.2
P: number of parameters 21 14 21
in model
0.063 0.094 0.051

max(og /0%) 0.050 0.063

2 2 0.063 0.167 0.061
max(ag /7%) 0.041 0.074

2 2 0.867 0.260 0.348
max(og /o%) 0.134 0.058
e G e g ow
x| 0.025 0.444 0.358
trace (r~!) 29.34 14.90 22.22
largest VIF 2.81 1.34 1.25
V: degrees of freedom - - -
for replication
d = max(f'(x) (X'X)~! f(x)) 1.906 1.964 1.18
largest (p) 0.225 0.334 0.281
N: number of 21 18 27
experimental units
G-efficiency = 100 P/Nd 52.5 39.6 65.9
remarks clumpwise clumpwise

orthogonal orthogonal

Table 7.3j. (part 2) Design characteristics.

Design number 8.1 8.2 8.3
Group I I I
Design 4x2x2/8|3x2x2/8|3x2x2/8
ago 0.320 0.250 0.750
o2 0.281 0.500 0.250
ot 0.156 0.250 0.188
0[253 0.156 0.250 0.188
05” 0.281 0.500 0.313
0;” 0.281 0.500 0.313
0;‘;" 0.156 0.250 0.250
ag“ 0.633 0.500 1.250
(tr(X'X)"1)/P 0.283 0.375 0.438

Table 7.4a. Values of 012? for 0% = 1.
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Design number 8.5 8.6
Group II 11
Design 4x4x2/16 | 4x3x2/16
7, 0.258 0.223
a2 0.113 0.113
o, 0.113 0.125
a5 0.063 0.063
o 0.203 0.225
ﬂlﬁ
75 0.113 0.113
13
a2 0.113 0.125
Bas
% 0.316 "0.316
T n 0.316 0.250
(tr(X'X)-1y/P 0.178 0.172

Table 7.4b. Values of (rz foro? =1.

Design number 8.7 8.8 8.9 8.10
Group 111 Il 1 111
Design 4x4x4/16 | 4x4x3/16 | 4x3x3/16 | 3x3 x3/16
a;g: 0.526 0.500 0.461 0.413
a};‘ 0.084 0.084 0.086 0.089
agz 0.084 0.087 0.091 0.089
afi’ 0.084 0.089 0.088 0.089
a2 0.118 0.118 0.115 0.120
ag: 0.118 0.123 0.123 0.120
afj” 0.118 0.116 0.120 0.120
ag“ 0.647 0.607 0.629 0.484
agn 0.647 0.678 0.511 0.484
%5 0.647 0.481 0.461 0.484
(tr(X'X)~1y/P 0.308 0.288 0.268 0.249

Table 7.4c. Values of as foro?=1.
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Design number 8.11 8.12
Group v v
Design 4x2x2x2/16 | 3x2x2x2/16
a;n 0.160 0.125
a;l 0.113 0.125
a;’ 0.063 0.063
",29‘, 0.063 0.063
a;‘ 0.063 0.063
a;“ 0.113 0.125
agu 0.113 0.125
a;.“ 0.113 0.125
a;." 0.063 0.063
a;“ 0.063 0.063
% 0.063 0.063
"5” 0.316 0.250
(tr(X"X)~1)/P 0.108 0.104

Table 7.4d. Values of 0127 for 0% = 1.

Design number 8.13a 8.14a 8.15a 8.13b 8.14b 8.15b
Group v v v \ \ Vv
Design Ax4%2x2/16 | 4x3Xx2%2/16 | 3x3x2x2/16 | 4x4x2x2/16 | 4x3x2x 2/16 | 3x3x 2x 2/16
o7 0.258 0.223 0.188 0828 0727 05625
K 0.139 0.135 0.188 0.089 0.088 0.104
o~ 0.139 0.150 0.188 0.089 0.108 0.104
A 0.063 0.063 0.063 0.063 0.064 0.063
o2 0.077 0.075 0.094 0.125 0.125 0.125
iy 0.208 0.450 0.500 0.141 0.180 0.250
A 0.139 0.203 0.188 0.100 0.132 0.167
o 0.165 0.225 0.250 0.109 0.124 0.188
A 0.139 0.225 0.188 0.100 0.119 0.167
a2 0.165 0.250 0.250 0.109 0.153 0.188
o 0.077 0.113 0.094 0.078 0.094 0.125
o 0.316 0.316 0.250 0.633 0.633 0.500
aS:: 0.316 0.250 0.250 0.633 0.500 0.500
(tr(X'X)")/P 0.176 0.206 0.207 0.238 0.234 0.239

Table 7.4e. Values of ag for o® = 1.
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Design number '8.16 8.17 8.18 8.19
Group VI VI VI VI
Design 4x4x4x2/16 | 4x4x3%x2/16 | 4x3x3x2/16 | 3x3x3x2/16
agn 0.986 0.881 0.790 0.724
agl 0.110 0.109 0.109 0.108
0'52 0.081 0.083 0.092 0.092
o? 0.089 0.102 0.106 0.110
a;: 0.076 0.080 0.083 0.086
a;n 0.110 0.108 0.109 0.108
agn 0.124 0.131 0.132 0.149
UZ 0.097 0.101 0.102 0.113
0';” 0.120 0.132 0.146 0.144
a';" 0.094 0.097 0.112 0.110
0"‘1“ 0.103 0.106 0.114 0.120
a; 0.493 0.514 0.523 0.410
0';” 0.738 0.746 0.554 0.525
0;";” 0.500 0.368 0.386 0.397
(tr(X'X)"1)/P 0.266 0.254 0.240 0.228

Table 7.4f. Values of 02 for o2 = 1.

Design number 8.20 8.21 8.22 8.23 8.24
Group VII VII VII VII VII
Design 4x4x4x4/16 | 4x4x4x3/16 | 4x4x3x3/16 | 4x3x3x3/16 | 3x3x3Ix3/16
0% 1.586 1.465 1.338 1.249 1.257
ag‘: 0.144 0.136 0.136 0.142 0.140
agz 0.087 0.085 0.088 0.097 0.094
[ 0.095 0.092 0.101 0.103 0.109
ag: 0.092 0.091 0.095 0.100 0.105
aen 0.113 0.110 0.109 0.112 0.110
' 0.127 0.127 0.133 0.133 0.160
3., 0.120 0.116 0.118 0.123 0.133
ag” 0.112 0.113 0.122 0.132 0.131
' 0.108 0.106 0.109 0.124 0.118
T e 0.126 0.132 0.138 0.143 0.158
ae“ 0.545 0.548 0.575 0.588 0.461
L 0.708 0.714 0.714 0.532 0.507
% s 0.526 0.522 0.395 0.413 0.422
T e 0.836 0.652 0.634 0.634 0.661
{(X’X)~")/P 0.355 0.334 | 0320 0.308 | 0304

Table 7.4g. Values of 0‘2 for 02 = 1.
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Design number 8.25 8.26 8.27
Group VIII VI VIl
Design 4x4x4x4x4/32 | 4x4x4x4x3/32 | 4x4x4x3x3/32
pe 0.579 0.564 0.541
agj 0.046 0.046 0.046
ot 0.042 0.042 0.042
o 0.047 0.047 0.047
o 0.040 0.040 0.042
ot 0.040 0.043 0.043
o 0.049 0.049 0.049
o 0.050 0.051 0.051
ot 0.051 0.051 0.051
o 0.048 0.050 0.050
ot 0.054 0.054 0.054
'y 0.054 0.054 0.054
s 0.052 0.053 0.053
ot 0.051 0.051 0.053
T 0.050 0.050 0.051
ot 0.052 0.053 0.053
o2 0.428 0.428 0.419
o ﬂ 0.372 0.377 0.373
ot 0.386 0.377 0.372
o2 0.389 0.388 0.297
ags 0.430 0.337 0.336
(tr(X'X)" ")/ P 0.158 0.153 0.147

Table 7.4h. (part 1) Values of 023 for 62 = 1.
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Design number | 8.28 8.29 8.30
Group VIII VIII VIII
Design 4x4x3x3x3/32|4x3xIx3Ix3/32|3xIxIx3Ix3I/32
a2 0511 0.484 0.453
A 0.046 0.046 0.048
azq 0.042 0.044 0.045
a;‘;’ 0.048 0.048 0.048
ol 0.043 0.042 0.042
035 0.043 0.043 0.044
o? 0.049 0.051 0.052
o2 0.050 0.051 0.051
ag:: 0.051 0.051 0.054
o2 0.050 0.051 0.052
%, 0.054 0.050 0.053
%, 0.054 0.053 0.054
ot 0.053 0.054 0.054
%, 0.053 0.054 0.053
a};“ 0.053 0.053 0.053
a;“ 0.053 0.053 0.053
o 0.419 0.416 0.326
o 0.374 0.291 0.293
a};” 0.291 0.293 0.291
af}“ 0.304 0.297 0.292
% 0.324 0.310 0.316
(tr(X'X)")/P 0.141 0.135 0.130

Table 7.4h. (part 2) Values of 0';‘; for 02 = 1.
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Design number 8.31 8.32 8.33
Group IX IX 1X
Design I3x3x3x2/18 | 3x3x2x2/18|3x2x2x2/18
o2 0.417 0.368 0.224
o2 0.083 0.099 0.107
o2 0.083 0.104 0.078
oy 0.083 0.063 0.078
aéi 0.056 0.064 0.075
a;“ 0.238 0.189 0.179
o} 0.238 0.142 0.179
o2 0.146 0.104 0.146
o 0.250 0.188 0.141
ol 0.143 0.099 0.107
ol 0.143 0.074 0.107
ol 0.313 0.437 0.313
ol 0.250 0.250
ol 0.250
(tr(X'X) /P 0.192 0.168 0.144
Table 7.4i. Values of U?; for 02 = 1.
Design number 8.34 8.35 8.36
Group X X X
Design Ix3Ix3Ix3/27T | IxIxIx2/27T | 3x3 x2x2/27
;0 0.333 0.264 0.195
ﬂ. 0.056 0.064 0.070
ah 0.056 0.064 0.070
o? i 0.056 0.064 0.047
aﬂ‘ 0.056 0.042 0.047
apn 0.089 0.103 0.089
ap” 0.089 0.103 0.067
ap“ 0.089 0.077 0.067
aﬂ" 0.089 0.103 0.067
aﬂ“ 0.089 0.077 0.067
o? i 0.089 0.077 0.050
ol 0.167 0.167 0.167
o} 0.167 0.167 0.167
ok 0.167 0.167
o3, 0.167
(u(x'X) n/p 0.117 0.110 0.090

Table 7.4j. Values of 0[25 for 0% = 1.
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Design number 8.37 8.38 8.39
Group XI XI XI
Design Ix3x3/15 | IxIxIx3/2T [IxIx3Ix3/15
Box Behnken Box Behnken Rechtschaffner
o5 0.333 0.407 0.529
a;‘; 0.125 0.083 0.139
1
aga 0.125 0.083 0.139
"E 0.125 0.083 0.139
3
"; 0.083 0.139
ot
ot 0.250 0.250 0.139
agu 0.250 0.250 0.139
",25 0.250 0.139
o,gl.
Bis
a;n 0.250 0.250 0.139
ag 0.250 0.139
ag?l
Pas .
ag 0.250 0.139
6234
Bas
ol
Bas
a; 0.271 0.187 0.886
1
02 0.271 0.187 0.886
22
ag 0.271 0.188 0.886
33
o 0.187 0.886
02-“
Bss
(tr(X'X)"")/P 0.227 0.189 0.364

Table 7.4k. (part 1) Values of 0123 for 0® = 1.
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Design number 8.40 8.41 8.42
Group X1 XI X1
Design Ix3x3Ix3x3/21 | Ix3Ix3Ix2/18|3x3Ix3Ix3Ix3/27
Rechtschafiner A Webb design | Mitchell and Bayne

agu 0.336 0.399 0.788
4:7"“;x 0.063 0.094 0.048
”g, 0.062 0.094 0.049
aga 0.063 0.094 0.048
ag‘ 0.062 0.056 0.050
0;15 0.063 0.051
”;n 0.063 0.167 0.055
a;“ 0.063 0.167 0.054
ag“ 0.063 0.094 0.058
agu 0.063 0.058
a;“ 0.063 0.167 0.055
a;" 0.063 0.094 0.055
agu 0.063 0.055
012?;. 0.063 0.094 0.061
”;u 0.063 0.055
a;“ 0.063 0.055
ag“ 0.867 0.260 0.348
012522 0.867 0.260 0.307
agu 0.867 0.260 0.339
a 0.867 0.282
a2 0.867 0.340
(tr(X'X)"1)/P 0.267 0.164 0.153

Table 7.4k. (part 2) Values of ‘7;2} for 02 = 1.
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Design T

ar. Design G-eff. | D-eff. Remarks

8.1 4x2x2/8 47.1% | 824 clumpw. orth.

8.2 Ix2x2/8 25.0* | 68.4 clumpw. orth.

8.3 Ix2x2/8 25.0" | 81.3 clumpw. orth.

8.4 3x2x2/8 identical with 8.2

8.5 4x4x%x2/16 62.3* | 82.0 orth. design

8.6 4x3x2/16 59.0* | 81.3 orth. design

8.7 4x4x4/16 57.7 | 87.8 clumpw. orth.

88 4x4x%x3/16 55.3 | 89.2 clumpw. orth.

8.9 4x3x3/16 57.3 | 90.9 clumpw. orth.
8.10 3x3x3/16 61.2 | 92.6 clumpw. orth.
8.11 4x2x2x2/16 78.9* | 90.1 orth. design
8.12 Ix2x2x%x2/16 75.0% | 88.6 orth. design
8.13a 4x4x2x2/16 322 | 75.2 clumpw. orth.
8.14a 4x3x2x2/16 22.1 | 69.0 clumpw. orth.
8.15a Ix3Ix2x2/16 20.3 | 68.1 clumpw. orth.
8.13b 4x4x2x2/16 57.6 | 84.6 clumpw. orth.
8.14b 4x3x2x2/16 41.6 | 8l1.1 clumpw. orth.
8.15b 3x3x2x2/16 345 | 76.4 clumpw. orth.
8.16 4x4x4x%x2/16 47.0 | 87.5

8.17 4x4x%x3x2/16 44,9 | 87.2

8.18 4%x3x3x2/16 38.5 | 86.8

8.19 3x3x3x2/16 39.3 | 87.2

8.20 4x4x4x4/16 38.3 | 84.9

8.21 4% 4x4x3/16 42.7 86.2

8.22 4x4x3x3/16 45.8 86.0

8.23 4%x3x3x3/16 45.8 | 85.8

8.24 3x3x3x3/16 42.1 85.8

825 |4x4x4x4x4/32 | 55.7 87.8

Table 7.5. (part 1) D- and G-efficiencies of 45 designs.

*} Exact value of the G-efficiency.
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Design
nr. Design G-eff. | D-eff. Remarks
826 [4x4x4x4x3/32| 54.8 88.1
827 [4x4x4x3x3/32| 55.8 | 88.8
828 [4x4x3x3x3/32| 55.5 | 89.4
829 [4x3x3x3x3/32| 56.4 90.1
830 |3x3x3x3x3/32| 58.8 | 90.4
8.31 3x3x3x2/18 26.9 | 80.1 | lin. eff. orth.
8.32 3x3x2x2/18 28.1 82.1 lin. eff. orth.
8.33 Ix2x2x2/18 28.9 | 76.8 | lin. eff. orth.
8.34 3x3x3x3/27 55.6* | 87.8 | lin. 4 quadr.
eff. orth.
8.35 3x3x3x2/27 39.2* | 84.3 | lin. + quadr.
eff. orth.
8.36 3x3x2x2/27 44.8* | 85.8 | lin. + quadr.
eff. orth.
8.37 3x3x3/15 47.8* | 68.1 | lin. + interact.
Box Behnken terms orth.
8.38 3x3x3x3/27 26.1* | 51.6 | lin. + interact.
Box Behnken terms orth.
8.39 3x3x3x3/15 39.2 | 80.2
saturated design
840 |[3x3x3x3Ix3/21| 52.5 | 88.6 clumpwise
saturated design orthogonal
8.41 3x3x3x2/18 39.6 | 86.0 clumpwise
Webb design orthogonal
842 | 3x3x3x3x3/27| 659 | 95.2
Mitchell and Bayne

Table 7.5. (part 2) D- and G-efficiencies of 45 designs.

*) Exact value of the G-efficiency.
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7.4. Judging the designs

7.4.1. Group I. Designs 8.1, 8.2, 8.3 and 8.4 of Table 7.3a

Design 8.1 has, given the limited number of points, excellent qualities. The value of |r| is
rather large, the VIF’s are small.

We also refer to Section 4.2, where design 8.1 has been discussed in detail.

The nature of the clumpwise orthogonality can be evaluated with the matrix XTXI of design
8.1 of the Appendix.

Design 8.2 and 8.3 have both been derived from 8.1 through collapsing.

We see that collapsing produces an increase in az, average az, trace(r~!), largest VIF and
the largest |p|. See also Table 7.4a. A decrease is found in |r|.

All these characteristics indicate that collapsing reduces the design quality, although designs
8.2 and 8.3 are still acceptable since their characteristics have reasonable values.

Although we used design 8.2 in Section 4.7 we see that design 8.3 has some advantages over
design 8.2 because trace(r~!) and largest |p| are smaller, whereas |r| and the D-efficiency is
larger than the same values of design 8.2, although max (azw/a2) of design 8.3 is the largest.
We tried to find a2 3 x 2 x 2/8 design with a higher D-efficiency using the method given in
Section 5.7 but we were not successful; we either found smaller D-efficiencies or we had a
singular XX matrix. For further details of the designs we refer to the Appendix.

It is again pointed out that r, r~!, VIF’s and d are independent of the scaling of the X,.

7.4.2. Group II and group IV. Designs 8.5, 8.6, 8.11 and 8.12

The design characteristics of the designs mentioned above can be found in Tables 7.3b and
7.3c.

We treat these four designs as one group since they are all orthogonal. Details of each design
can be found in the Appendix.

We have det(X'X) = N¥ because of orthogonality.
N

All variances of 4 are equal to 02/N = 02/16 = 0.06302, if the scaling > X% = Nis used.
=1

Because we choose the collapsing procedure as in Table 5.5, the designs 8.6 and 8.12 are

orthogonal. The variances of 3 in Tables 7.4b and 7.4d show that collapsing has hardly an

effect on these values. For the designs considered we have
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[r] =1, trace(r™')= P —1, VIF = 1, largest |p| = 0 .

These are the best possible values thanks to the orthogonality of the designs.

The 4 designs considered have reasonable D- and G- efficiencies.

7.4.8. Group III. Designs 8.7, 8.8, 8.9 and 8.10 of Table 7.3b

The four designs have an excellent quality with high D-efficiencies and satisfactory G-
efficiencies. The excelient quality is also evident since, trace(r~1), largest VIF, d and largest
|o| have small values, whereas |r| is fairly large. It is also striking that collapsing has
a favourable effect since the values mentioned above show an increase in D-efficiency, G-
efficiency, |r| and a decrease in trace(r~!), largest VIF and d, when comparing design 8.7
with design 8.10.

The explanation is that (8.10) is ‘closer’ to the D-optimal 3 X 3 X 3 design, since (8.10) has
only factors with 3 levels, whereas (8.7), (8.8) and (8.9) have at least one factor with four
levels.

It is also interesting to have a look at Table 7.4c. We see that collapsing hardly affects 012'3,,
and agw but decreases 012?0 and agw.

The nature of the clumpwise orthogonality is evident from the relevant (X’X)~! matrices in

the Appendix. We see that the linear effects are orthogonal to all others.

7.4.4. Group V. Designs 8.13a, 8.14a, 8.15a, 8.13b, 8.14b, 8.15b of Table 7.3d

This group of designs contains two subgroups. The a-group was obtained using the design

- generators and collapsing.

The b-group was obtained using properties of the D-optimal 3 x 3 X 2 x 2 design. See also
Section 5.7.

It is hardly possible to establish which group of designs is the best.

Although the b-group has a better D- and G-efficiency than the a-group, we see that the a-
group has better values as regards |r|, trace(r™!), largest VIF, largest |p|, and (trace(X'X)~1)/P.

Table 7.4e reveals why the latter value is smallest for the a-group. It is because a;

2 and
0

ag are for the a-group considerably smaller than for the b-group.

PP
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The comparison of the a-group and b-group clearly reveals that it is not sufficient to compare
designs using only the D- and G-efficiency.

Other design characteristics especially those giving mea..;ures of non orthogonality such as |r],
trace(r™!) and the largest VIF must also be taken into account.

Both groups of designs have clumpwise orthogonality. The nature of it can be judged by

considering the (X’X)~! matrices of the relevant designs in the Appendix.

7.4.5. Group VI. Designs 8.16, 8.17, 8.18 and 8.19 of Table 7.3e

Inspection of Table 7.3e shows that this group of designs has acceptable characteristics such
as a high D-efficiency, small VIF’s and small values for the largest [p].

Collapsing has in this case a negligable effect on the design quality, although design 8.16
appears to have slightly better characteristics than the three others especially since it has a
better G-efficiency.

Table 7.4f shows that collapsing decreases (trace(X‘X)~1!)/P. This decrease is caused by the

decrease in 0% and a% through collapsing. The decrease in 0% is understandable since
PP

Bo Bep
a parameter [, is more accurately estimated, if three instead of four levels are used in the

range —1 to +1.

7.4.6. Group VII. Designs 8.20,..., 8.24 of Table 7.3f

We again see the same pattern as in group VI, namely a high D-efficiency, small VIF’s and
small values for the largest |p|.

We also see, as in group VI a decrease in (trace(X'X)~!)/ P through collapsing.

Table 7.4g clearly shows that this decrease is caused by a decrease of aZ and o2

o Brp

7.4.7. Group VIII Designs 8.25,..., 8.30 of Table 7.3¢g

This group of designs has excellent properties with good values for D- and G-efficiency, small

VIF’s and small values for the largest |p|.

We again see a slight decrease in (trace(X'X)~!)/P, also caused by a decrease in 0% and

Bo

&?,Pp through collapsing, as Table 7.4h clearly shows.

169



7.4.8. Group IX. Designs 8.31, 8.32 and 8.33 of Table 7.5h

It is striking that the effects of collapsing are negligable. Comparing the three designs we see
that 8.32 appears to be better than 8.31 since (trace(X’X)~!)/P has decreased and so has
trace(r~!) even allowing for the fact that P for 8.32 is one less than for 8.31. The largest |p|
value has not changed and |r| of 8.32 is larger than |r| of 8.31.

Design 8.32 also has the best D-efficiency. The only negative point of design 8.32 is that
ma.x(agw/crz) has increased.

Comparing 8.31 with 8.33 we see that these designs are of equal quality since most of the
characteristics have the same value. Even the trace(r=!) values are equivalent because their
difference equals the difference in P of the designs 8.31 and 8.33.

The fact that collapsing had hardly an effect can be explained. Collapsing was namely carried
out on the factors @ and U of design 8.31.

When we examine the (X’X)~! matrix of design 8.31 in the Appendix, we see that the linear
and quadratic effects of @ and U are orthogonally estimated and that the (X'X)~? matrix
contains many zero’s.

In Table 6.6 we see that the linear effect of a collapsed two-level factor equals minus the
quadratic effect of the original three-level factor.

The linear effect of the collapsed two-level factor will therefore remain orthogonal to all other
effects. Only parts of the (X’X)~! matrix corresponding to cross-product terms, especially
cross-product terms containing the collapsed factor, will change. Summarizing we may state
that the designs 8.31, 8.32 and 8.33 have a good structure since many of their characteristics

have acceptable values.

2
B
linear effects are orthogonally estimated. It is also interesting to have a look at Table 7.4i.

For instance the g% values are small and |r| is rather large for the three designs, because all

It is difficult to find a pattern. Some variances increase, others decrease through collapsing.

7.4.9. Group X. Designs 8.34, 8.35 and 8.36 of Table 7.3

Again we find that collapsing has a very small effect.
Design 8.35 has slightly less quality than design 8.34. This is obvious when we compare the
various characteristic va.lges. Comparing 8.34 with 8.36, we see that they are of the same

quality since nearly all their characteristics have the same value. Collapsing has again a small
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effect because all the linear and quadratic effects of design 8.34 are orthogonally estimated.
This property is not affected by collapsing. See also Section 7.4.8. The designs have an
excellent quality since ”;75’ VIF’s and [p| have a small, whereas |r| has a large value.

The D- and G-efliciency have acceptable values. Inspection of Table 7.4j reveals that nearly

all 05 values decrease when we compare design (8.36) with (8.34).

7.4.10. Group XI. Miscellaneous designs 8.87,. .., 8.42 of Table 7.35

Althm]t,gh the ortllbogona.l polynomials were, except for desi%n 8.42, constructed in such a way
that 3~ PI? =) Pg} = N, we do not, for all p, have )~ X7 = N for designs 8.37-8.40
since t'1;=l}ese desigirzl—-s1 were not derived from orthogonal ma.ilil—t(leﬂ'ect designs.

Designs 8.37 and 8.38 have a good quality because their design characteristics have excellent
values i.e. a high value of |r|, the trace(r~!) is very close to its minimum value P — 1, small
VIF’s and small values of |[p|. However the D-efficiency is small since designs 8.37 and 8.38
were designed for spherical experimental regions while the D-efficiency was calculated for a
hypercube. The linear and interaction effects are orthogonally estimated.

Design 8.38 contains a fifth factor, namely blocks. It is indicated by the variable zt; in de-
sign 8.38. This variable has the value 0 for experimental units 1,2,...,9, a value | for units
10,11,...,18 and a value 2 for units 19,20,...,27. It is surprising that no orthogonal poly-
nomials were used in Boz and Behnken (1960). As a result the estimate of 8 was correlated
with the estimates Bpp.

We have avoided this correlation since the ﬁpp are only mutually correlated and not correlated
with S, [;,, and [ipq, as the matrices XTXI of design 8.37 and 8.38 clearly show.

Designs 8.39 and 8.40 appear to have acceptable properties because their VIF’s and largest
|p| are rather small. The qualities of design 8.39 are less evident when we compare it with
design 8.24, 2 3 x 3 X 3 X 3/16 design.

Design 8.40 is of a lesser quality than design 8.30, a 3 x 3 X 3 x 3 x 3/32 design, especially
since |r| and trace(r~!) of 8.30 have much better values. Further discussion of designs 8.39
and 8.40 will be done in the next section.

Design 8.41 has good properties, such as small VIF’s, trace(r=') and [p|. The only objection

to this design is the fact that a particular ﬂ is correlated with all other 3’s with the exception

of Bo and 54.
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Design 8.41 will be compared to design 8.31, also a 3 X 3 x 3 x 2/18 design, in the next section.
Design 8.42, constructed by Mitchell and Bayne (1978), has excellent properties. It will be

compared with design 8.30 and 8.40 in the next section.

7.5. Comparison between groups of designs

The designs of group I are a class by themselves because they are small designs, since they
only consist of 8 experimental units.

Since all other designs considered have at least 15 experimental units, it serves no purpose
to compare the designs of group I with the designs of other groups.

The groups I1, II1,.. ., VII all consist of designs with 16 experimental units.

We shall compare these groups by considering the “leading” design in each group. The word
“leading” is used because it refers to the first design in each group, from which all the other
designs in a group have been derived through collapsing.

The design chg.ra.cteristics of these leading designs have been given in Tables 7.5a and 7.5b.
All variances in these tables are based on the scale —1 < z,, < +1,form =1,2,...,k.

When we examine these tables we see that the 6 groups consist of two categories, namely

Category 1 with three factors: Group II, III
and

Category 2 with four factors: Group IV, V, VI, VI

The first design in each category is orthogonal and the design characteristics therefore have
excellent values.

Looking at the designs of Table 7.5 we see that the design quality decreases somewhat when
we go from group II to group III, although the D-efficiency design of 8.7 is higher than the
D-efficiency of design 8.5. .
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Design number 8.5 8.7 8.11
Group II ) I v
Design 4x4x2/16 |4x4x4/16 | 4x2x2x2/16
D-efficiency 82.0 87.8 90.1
P: number of parameters 9 10 12
in model
max(agp/az) 0.113 0.084 0.113
max(agm/a?) 0.203 0.118 0.113
max(azpp/az) 0.316 0.647 0.316
(trace(X'X)™ Y/ P 0.178 0.308 0.108
r| 1.000 0.387 1.000
trace(r~1) 8.00 11.40 11.00
largest VIF 1.00 1.53 1.00
v: degrees of {freedom - - -
for replication
d = max(f'(x) (X'X)! f(x) 0.902 1.084 0.950
largest |p| 0 0.339 0
N: number of experimental units 16 16 16
G-efficiency = 100 P/Nd 62.3 57.7 78.9
remarks orth. clumpw. orth.
design orth. design

Table 7.5a. Design characteristics of “leading” designs with 16 experimental units.
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Design number 8.13a 8.13b 8.16 8.20
Group \Y \Y VI Vil
Design 4x4x2x2/16 | 4x4x2x2/16 | 4x4x4x2/16 | 4x4x4x4/16
D-efficiency 75.2 84.6 87.5 84.9
P: number of parameters 13 13 14 15
in model
max(a;.'/a’) 0.139 0.125 0.110 0.144
max(a;."/a’) 0.298 0.141 0.124 0.127
max(o;."/a’) 0.316 0.633 0.738 0.836
(trace(X'X)~1)/P 0.176 0.238 0.266 0.355
Ir| 0.314 0.192 0.301 0.193
trace(r™!) 14.82 15.95 15.77 18.13
largest VIF 1.47 2.00 1.42 1.76
v: degrees of freedom - - - -
for replication
d = max(f'(x) (X'X)~! f(x) 2.527 1.411 1.862 2.451
largest |p| 0.436 0.500 0.445 0.385
N: number of experimental units 16 16 16 16
G-efficiency = 100 P/Nd 32.2 57.6 47.0 38.3
remarks clumpw. clumpw.

orth. orth.

Table 7.5b. Design characteristics of “leading” designs with 16 experimental units.

It is striking that in each category we see a more or less stable value of max(crf; /o%), a
P

_ decrease in ma.x(crg /o?) and an increase in ma.x(crz /o). The value of (trace(X'X)~!)/P
Pq PP

-increases within each category.

We see that |r| decreases within category 1 and fluctuates in category 2.

In each category we find increases of trace(r™!), If we ignore design 8.13a, we see that the

G-efficiency decreases within each category. Summarizing we may conclude that the design

quality within a category decreases slightly with increasing values of P. Nevertheless the

designs of Table 7.5 are very useful for practical work because af;, trace(r™!) and VIF’s are

rather small.

Considering all the designs 8.5-8.24 we have found that their quality varies a great deal.
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However, there is one other important aspect as regards designs 8.5-8.24.

We have experienced again and again that experimenters are reluctant to carry out many
experiments. These 23 designs are therefore very useful~ for practical purposes since the num-
ber of experimental units is only 16, whereas the experimenter can examine up to 4 factors
while each of these has 2, 3 or 4 levels.

Attention is again drawn to the fact the two-level factors may be quantitative or qualitative,

the factors with 3 or 4 levels are quantitative.

It is also interesting to compare the designs of group IX, 8.31, 8.32 and 8.33 with designs
having 16 experimental units and which have the same number of factors and levels.

We first compare design 8.12 with design 8.33. Although design 8.33 has 18 and design 8.12
has 16 experimental units, we prefer design 8.12 since its design characteristics have more
favourable values and because we can use it to calculate an estimate of 02. We now compare
design 8.15a and 8.15b with design 8.32. Design 8.32 appears to be slightly better because
most design characteristics have better values.

If an experimenter very much wants a design to be as small as possible design 8.15a or 8.15b
should be recommended.

When we compare design 8.19 to design 8.31 it is obvious by studying the design charac-
teristics that design 8.19 is to be preferred if only to avoid the fairly large |p| of 0.655 for
design 8.31.

Design 8.19 also has a better D- and G-efficiency than design 8.31.

We now compare design 8.34 with design 8.38. The latter design has 17 parameters in
the model, two more than design 8.34, because the effect of three blocks has been taken into
account. Although both designs are of an excellent quality, we prefer design 8.34 because 4
scale independent design characteristics, namely |r|, trace(r™!), largest VIF and largest |p|
have better values. Moreover the variances of[i of design 8.34 are much smaller than those
of design 8.38.

It was already pointed out in Section 7.4.10 that design 8.38 was constructed for a spherical
region. The small D-efficiency of 51.6% indicates that this design performs poorly for a cu-
bical experimental region.

Design 8.34 is also to be preferred from the experimenter’s point of view since it contains 5
g p
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points in the extreme vertices of the experimental region, namely (00 00), (200 2),(020 2),
(0022)and (2220). These can be very interesting for the subject which is being studied.

The next comparison to be made refers to the designs 8.10, a 3 x 3 x 3/16 design and
8.37,a 3 x 3 x 3/15 Box Behnken design.

It is obvious that design 8.10 is to be preferred to 8.37 since many of its characteristics such
as D-efficiency, G-efficiency, %5, and O on have better values than those of design 8.37.

The small D-efficiency of design 8.37 shows that this design, constructed for a spherical re-
gion, performs poorly, just as design 8.38, for a cubical region.

When we compare design 8.39 with design 8.24, we see that the latter has on the whole the
best design characteristics and it is therefore to be preferred.

Although design 8.40 has the advantage that is has a smaller number of experimental units
than design 8.30, it is clear that design 8.30 has the best design characteristics. Design 8.42
has on the whole better values for the design characteristics than design 8.30. Design 8.30
however, does have a center point which is an advantage from a practical point of view.
Design 8.41 has on the whole better characteristics than design 8.31.

A disadvantage of design 8.41, as already mentioned in Section 7.4.10, is that nearly all B’s
are mutually correlated, whereas the linear effects of 8.31 are orthogonal. However both
designs are useful for practical purposes.

It is also interesting to compare design 8.41 with design 8.19. Design 8.41 has slightly better
characteristics than design 8.19, but since their D- and G-efficiencies are nearly the same, it
is difficult to decide which of them is the best design.

Table 7.6 gives a summary of some recommended designs, if a choice from similar designs has

to be made.
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Designs Designs
compared recommended
8.10. 3x3x3/16 8.10
837 3Ix3x3/15
812 3Ix2x2x2/16 8.12
833 3x2x2x2/18
8.152 3x3Ix2x2/16
8.15b 3 x3x2x2/16
832 3Ix3x2x2/18 8.32
8.19 3Ix3x3x2/16 8.19 or 8.41
831 3Ix3x3x2/18
841 3Ix3x3x2/18
824 3x3x3x3/16 8.24
839 3x3Ix3x3/15
830 3x3x3Ix3Ix3/32]| 8.30o0r8.42
840 3Ix3x3x3x3/21
842 3 x3x3x3Ix3/27
834 3x3Ix3Ix3/2T 8.34
8.38 3Ix3x3x3/27

Table 7.6. Some recommended designs.

177




Appendix 7A

The use of eigenvalues and eigenvectors of r.

The matrix r is a real symmetric matrix.

A theorem from the matrix algebra states that
Vrv=D, (7.9)

where V is an orthonormal matrix the columns of which are the eigenvectors of r.
D is a diagonal matrix with diagonal elements equal to the eigenvalues A, of r.
Because V is an orthonormal matrix we have V'V = VV’ = I, where I is the identity matrix.

Multiplying (7.9) on the left by V and on the right by V' we obtain

r=VDV’', or
rl=VDlV/
and it follows that
T = VAN VR 4.+ Ve ABL, (7.10)

The V4 are the elements of V with p,¢=1,2,...,(P-1).
Expression (7.10) shows that r,‘,‘p‘, the p'* diagonal element of the matrix r~! and equal to
the VIF, can be written as a function of the elements of the eigenvectors and eigenvalues of

r. We shall now illustrate (7.10) with a numerical example.
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For this numerical example we make use of a 4 X 3 x 3 X 3/16 design in Table 7.7. It was
constructed using design generators but later discarded because of its low D-efficiency. To
save space we only present the design generators, the column vectors of the X matrix and
the matrix r~! in Table 7.7. We take this design because it contains a large VIF namely a
VIF equal to 13.253, the eighth diagonal element of r~!. A routine from the software package
“Turbo-Pascal” was used to calculate the eigenvectors and eigenvalues of r. See Table 7.9.
The variables of the regression equation of the 4 x 3 x 3 x 3/16 design and the corresponding

VIF’s are given in Table 7.8.

Variable VIF
Xi2=Qqi 2.467
Xia= Py 3.839
Xia= Rg; 3.715
Xis =S¢ 1.357
Xie = Ql; 5.429
Xi7= R 6.994

Xig = PLiSL;  2.091
Xio = QLRl; 13.253
Xi1w0 = Pl 2.504
Xinn =Sk 4.626
Xii2 = PLQL  2.517
Xi13 = PLRI; 3.568
Xiie = QULSL  3.098
Xiis = RI;Sl;  5.867

Table 7.8. Variables and VIF’s of the 4 x 3 x 3 x 3/16 design of Table 7.7.
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Eigenvalues /\1. = Ay = Az = Ay = As = de = Ar =
Ap 1.54211 | 2.57438 | 2.01729 | 1.04954 | 0.06205 | 0.29149 | 1.40980
Variable
Qg —0.3498 | 0.0568 | 0.2598 [ —0.2265 | —0.2849 | 0.2767 | —0.1953
Pg; 0.0195 | 0.2974 | —0.2234 | —0.2169 | —0.0985 | 0.1269 | —0.3757
Rg; 0.5469 | 0.0487 | 0.3184 | —0.0328 | 0.3903 | 0.2228 | —0.1193
S¢ 0.1559 | 0.0399 0.0136 0.7147 | —0.0347 | —0.0769 | —0.1228
QL 0.4193 | 0.1085 | 0.4580 | —0.0023 | —0.5178 | —0.2233 | —0.0691
Rl; -0.0722 | 0.4211 | ~0.1341 0.2354 | —0.1497 | —0.2260 | 0.3535
PLSI; —0.1131 | 0.3268 | 0.2411 0.1388 ( 0.0923 | 0.6228 | 0.5037
QLRI 0.0113 | 0.5253 | —0.2363 | —0.1211 0.0956 | —0.1551 0.0807
Pl; —0.3088 | 0.1092 [ 0.1844 | 0.2473 | —0.2761 0.2553 | —0.3868
Si; 0.2213 | 0.2025 | —0.0022 | -0.4460 | —-0.0236 | 0.0612 [ 0.0172
PLQIL; -0.0161 | 0.1981 0.2759 | —0.1312 | —0.2578 | —0.2932 0.2221
Pl RI; 0.2674 | 0.1984 0.0439 0.1120 0.1028 0.1722 | —0.1592
QLS 0.0099 | 0.4112 | —0.2184 | 0.0996 | 0.0891 | —0.0247 | —0.3887
RIS —0.3793 | 0.1788 0.5287 | —0.0224 0.5345 | —0.3921 | —0.1601

Table 7.9. Eigenvectors and eigenvalues of the r matrix of the 4 x 3 x 3 x 3/16 design of
Table 7.7.
(Part one)
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Eigenvalues Ag = Ag = Ao = A= A2 = Az = Ay =
Ap 0.03738 | 1.02428 | 0.93970 | 1.72300 | 0.18243 | 0.72178 | 0.42476
Variable
Qqi 0.0550 | 0.6805 | —0.0477 | 0.0036 | 0.0619 | 0.2415| 0.1704
Pg; —0.2856 | 0.0073 | 0.5320 | —0.1372 | —-0.3707 | —0.3529 | 0.0415
Rg; —0.0701 0.0124 | -0.0711 | —0.2990 | -0.0131 0.1284 | 0.5135
Sq; —0.0740 | 0.3904 | 0.0704 | 0.2499 | 0.1906 | —0.3998 | 0.1392
QL 0.0953 | 0.0004 | 0.0061 | —0.3058 | 0.0152 | —0.0505 | —0.4177
RI; —-0.4450 | 0.1085 | —0.2866 | —0.2013 | —0.3513 | 0.2686 | 0.1328
Pl;Sl; —-0.0215 | —0.0913 | 0.2141 | —0.0512 | 0.1463 | —0.1306 | —~0.2390
QLRI 0.6888 0.1227 | -0.1578 | —0.1485 0.0212 | —0.2426 0.1342
Pl; 0.0815 | —0.5180 | —0.3899 | —0.0123 | —0.1046 | —0.1368 | 0.2232
Si; —0.3658 | 0.0359 | —0.4763 | 0.4096 | 0.2198 | —0.3511 | ~0.0714
PLQIL; 0.0351 | —0.2502 0.4049 0.4167 0.1486 0.1169 0.4778
PLRI; 0.2253 | 0.0300 | —0.0134 | 0.5713 | —0.4929 | 0.3518 | —0.2532
QLS —0.1389 | —0.1224 | 0.0936 | —0.0500 | 0.5850 | 0.4390 | —0.1820
RIS —-0.1059 | 0.0331 | 0.0057 | 0.0052 | —0.1013 | —0.1344 | —0.1961

Table 7.9. Eigenvectors and eigenvalues of the r matrix of the 4 X 3 x 3 x 3/16 design of
Table 7.7.
(Part two)

The smallest eigenvalue is Ag = 0.03738. See Table 7.9, part two. The largest three elements
in absolute value of the associated eigenvector are: 0.6880, —0.4450, —0.3658 corresponding
with QI RIl;, RI; and S!;, which means that the majority of non orthogonality is being pro-

duced by these three variables.
It is interesting to calculate the large VIF = 13.253, corresponding to QI R!;, from the

eigenvector elements and eigenvalues of the matrix r.

We find, according to expression (7.10),
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res = (0.0113)%-(1.54211)~" + (0.5253)% - (2.57438) ™" + ... + (0.6888) - (0.03738) "' +
+ ... 4(0.1342)% - (0.42476) 7!
=13.256 .

We can see that rzg = 13.256 is built up as a sum of 14 elements. The eighth and largest of
these equals (0.6888)? (0.03738)" = 12.692, which shows that the eigenvector Ag = 0.03738
has a very large effect on the VIF of 323, the parameter associated with QI; Rl;. The other
VIF’s can likewise be examined.

In Table 7.10 we present the largest 5 VIF’s of the design in Table 7.7 together with the
largest element from equation (7.10).

Table 7.10 shows how the largest VIF’s are built up. It appears that both Ag and As, the
latter being the second smallest eigenvector, have a large effect on the largest 5 VIF’s.
Table 7.10 also shows that the variables involved with the largest VIF’s are related with
factors which were collapsed. These factors therefore contribute most to non orthogonality.

The only non-collapsed factor, namely P, does not occur in Table 7.10.
Variable VIF  Largest element from equation (5.14)

Xieo= QLRI 13253 V3ps)s" = (0.6888)% (0.03738)"" = 12.692

Xi7 = Rl; 6.994 V2 gA3' = (0.4450)% (0.03738)"! = 5.297
Xias = RIS, 5867 Vg oAs' = (0.5345)% (0.06205)~" = 4.604
Xis = QL 5429 V3 A5 = (0.5178)% (0.06205)~ = 4.321
Xin = Sk 4626 V2 A7' = (0.3658)% (0.03738)~! = 3.580

Table 7.10. Largest five VIF’s with largest elements from (7.10).
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SUMMARY

In this thesis nearly 40 small designs for quantitative factors are developed.
A literature review about fractional replication is presented in Chapter 1 and some arguments

are given as to why this research was undertaken, such as

'

i) Experimenters want to carry out small experiments.
il)  Scientists require freedom of choice as regards the number of levels for each factor.

ili)  The existing designs for quantitative factors usually have only 3 or 5 levels for each

factor.

General aspects of linear regression theory and experimental design such as the linear regres-
sion model, D- and G-efliciency, the techniques of replacement and collapsing are dealt with
in Chapter 2.

Chapter 3 presents methods to find D-optimal experimental designs for the incomplete
quadratic model in which d variables have linear and quadratic terms, but the other (k — d)
variables have only linear terms. All (;) linear x linear interactions are however included in
the model.

These D-optimal designs were constructed to be able to calculate the D-efficiencies of a large
number of designs developed in Chapters 4, 5 and 6.

The 23 design is used in Chapter 4 to construct a design with one four-level factor and two
two-level factors using 8 experimental units. Such a design is indicated as a 4% 2 x 2/8 design.
Moreover, two 3 X 2 X 2/8 designs were constructed in Chapter 4.

A measure of orthogonality, the variance inflation factor, is introduced.

Two applications of the designs developed, are given.

Chapter 5 deals with two methods to construct designs with 16 experimental units.

The first method uses the new concept of ‘design generator’. The second method applies
properties of D-optimal designs as developed in Chapter 3. The latter method is also used
to construct designs with 32 experimental units.

The P.C. package “MATH CAD” is introduced to calculate the various characteristics of the
new designs. An application of a 3 x 3 x 3 X 3 X 3/32 design is presented.
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In Chapter 6 some new designs with two- and three-level factors are developed using orthog-
onal columns of some main-eflect designs. The new 39 and 6 existing designs are discussed
and compared in Chapter 7, using various design characteristics such as D- and G-efficiency,
variances of parameter estimators, variance inflation factors, trace (X’'X)™1, etc. It appears
that many new designs have excellent design characteristics.

The details of all the new designs are presented in the appendix. These details facilitate a

choice if a design is to be used in a practical application.
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SAMENVATTING

In dit proefschrift worden bijna 40 kleine proefschema’s voor kwantitatieve factoren ontwik-
keld.
Een literatuuroverzicht over gedeeltelijke herhalingen wordt gegeven in Hoofdstuk 1 en enkele

redenen worden genoemd waarom dit onderzoék werd opgezet zoals

i) Onderzoekers wensen kleine proefschema’s uit te voeren.

ii) Personen werkzaam in research en ontwikkeling, wensen keuzevrijheid aangaande het

aantal te kiezen niveaus per factor.

iii)  De bestaande proefschema’s voor kwantitatieve factoren hebben meestal slechts 3 of 5

niveaus per factor.

Algemene aspecten van lineaire regressie theorie en proefopzetten, zoals het lineaire regres-
siemodel, D- en G-efficiéncy, de techniek van vervanging en inklappen, komen ter sprake in
Hoofstuk 2.

Hoofdstuk 3 behandelt methoden om D-optimale proefopzetten te vinden voor het onvolle-
dige kwadratische model waarin d variabelen lineaire en kwadratische termen hebben, maar
waarbij de andere (k — d) variabelen slechts lineaire termen hebben. Alle (’;) lineajre x line-
aire interacties zijn echter in het model opgenomen.

Deze D-optimale schema’s werden geconstrueerd om de D-efficiencies van een groot aantal
nieuwe schema’s, die in de Hoofdstukken 4, 5 en 6 werden ontwikkeld, te kunnen berekenen.
Het 23 proefschema wordt in Hoofdstuk 4 gebruikt om een proefschema van 8 experimentele
eenheden met één factor op vier niveaus en twee factoren elk op twee niveaus, te construeren.
Zo'n schema wordt aangegeven als een 4 x 2 X 2/8 proefopzet.

In Hoofdstuk 4 worden bovendien twee 3 x 2 x 2/8 proefschema’s geconstrueerd.

Een orthogonaliteitsmaat, de variantie vergrotende factor, wordt geintroduceerd. Er worden
twee toepassingen van de ontwikkelde schema’s gegeven.

Hoofdstuk 5 bevat een tweetal methoden om schema’s met 16 experimentele eenheden te
construeren.

De eerste methode gebruikt het nieuwe begrip ‘design generator’. De tweede past eigen-

schappen van de D-optimale proefopzetten toe, zoals die werden ontwikkeld in Hoofdstuk 3.
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De laatstgenoemde methode wordt ook gebruikt om enkele schema’s met 32 experimentele
eenheden te maken.

Het P.C. software pakket “MATH CAD” wordt geintroduceerd om waarden van kenmerken
der nieuwe schema’s te berekenen.

Er wordt een toepassing van een 3 X 3 X3 x3 X 3/32 schema gegeven. Enkele nieuwe schema’s
met factoren op 2 en 3 niveaus worden ontwikkeld in Hoofdstuk 6, waarbij orthogonale ko-
Jommen van een aantal hoofd-effect schema’s worden gebruikt.

De 39 nieuwe en 6 bestaande schema’s worden besproken en vergeleken in Hoofdstuk 7, waar-
bij men diverse kenmerken van proefschema’s gebruikt, zoals D- en G-efficiéncy, varianties
van parameter schatters, variantie vergrotende factoren, het spoor van {X'X)~?, enz. Het
blijkt dat veel nieuwe schema’s uitstekende kenmerken bezitten.

De bijzonderheden van alle nieuwe schema’s zijn gegeven in de appendix. Deze details ver-
gemakkelijken een keuze, indien een proefschema in een practische toepassing moet worden

gebruikt.
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APPENDIX

Designs for experiments with factors having two, three or four levels

This Appendix contains all the designs which have been mentioned in the previous chapters.
All the designs have been discussed in Chapter 7. Some of the designs have been treated in
more detail in Chapters 4, 5 and 6. Table I can be used to locate a particular design.

Design Design Page | Design Design Page
number number
8.1 4x2x2/8 Al 8.21 4x4x4x3/16 A29,30
8.2 3x2x2/8 A2 8.22 4x4x3x3/16 A31,32
8.3 3x2x2/8 A3 8.23 4x3x3x3/16 A33,34
8.4 3x2x2/8 Ad 8.24 3x3x3x3/16 A35,36
8.5 4%x4x2/16 A5 8.25 4x4x4x4x4/32 A37
8.6 4x3x2/16 A6 8.26 4x4x4x4x3/32 A38
8.7 4x4x4/16 A7 8.27 4x4x4x3x3/32 A39
8.8 4x4x%x3/16 A8 8.28 4x4x3x3x3/32 A40
8.9 4x3x3/16 A9 8.29 4x3Ix3Ix3Ix3/32 A4l
8.10 3x3x3/16 Al0 8.30 3x3x3x3x3/32 A42
8.11 4x2x2x2/16 All 8.31 3x3Ix3x2/18 A43
812 [3x2x2x2/16| Al2 8.32 Ix3Ix2x2/18 Ad4
8.13a |4x4x2x2/16 | Al13 8.33 3x2x2x2/18 A45
8.13b | 4x4x2x2/16 | Al4
8.14a | 4x3x2x2/16 Al5 8.34 3x3x3x3/27 A46
8.14b | 4x3x2x2/16 | Al6
8.15a | 3x3x2x2/16| Al7 8.35 3x3x3x2/27 A47
8.15b | 3x3x2x2/16 | Al8
8.16 4x4x4x2/16 | A19,20 8.36 3x3x2x2/27 A48
8.17 4x4x3x2/16 | A21,22 8.37 3x3x3/15 A49
(Box Behnken)
8.18 |4x3Ix3Ix2/16| A23,24 | 8.38 3x3x3x3/27 A50
(Box Behnken)
819 |3 x3Ix3Ix2/16 | A2526| 8.39 3x3x3x3/15 A51,52
(Rechtschaffner)
820 | 4x4x4x4/16| A27,28 | 8.40 3x3x3x3x3/21 | A53,54,55
(Rechtschaffner)
8.41 3x3x3x2/18 A56
(Webb)
8.42 3x3Ix3IxIx3/27 A57
(Mitchell and Bayne)

Table 1. Index to the designs.
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0.37 0.074 0.222 -2.29¢6 ©0.37  -3.706 1101 -0.444  13.333 0.
-1.556 0.222 -1.407 z.465 0,074  -1.3111 -2 -0.889 0.645 12
SNy -2.2906 2.445 0.074 PR ER] 0.37  -1.556 0,644 0.889 1
0.502 -0.737 -0.018 0.095 -0.022 0.066 0.0} 0.049
c0.048 -0.161 ~0.047 0.013 6.004 0.068 0.036 -0.008
~0.058 -0.019 0.06 -0.021 -0.038 -0.037 -0.055 -0.023
0.526 0.208 -0.003 0.003 0.044 -0.0¢9 0.023 -0.03%
0.206 0.83e 0.012 S0t 0.023 ©0.0859 -0.039 0.005
-4 <4
-0.003 0.012 0.113  -2.99¢ 10 0.01 4.553-10 -0.017 0.019
4
0.003 S0 -2.994-10 0,127 -0.001 0.007 0.02 -0.002
0.044 0.023 ~0.01 <0.001 0.12 0.007 0.015 -0.021
C &
.049  0.059 £.553 10 ¢.007 0.007 0.112  -0.002 0.002
023 -0.039 ‘0.017 0.02 0.035 -0.002 0.108 -0,01%
L6034 0.005 0.019 ~0.002 -0.021 0.002 -0.015 0.126
008 -0.126 -0.032 0.024 0.033 0.014 0.043 -0.03
-4
0.032 0.024 ©0.00% 2.64 30 0.027 -0.001 0.017 0.002
L0138 0.037 0.001 0.0t -0.023 -0.00% 0.005 0.023
.007  -0.024 0.02 -0.018 -0.008 0.01¢ ~0.01 0.018

2
x it x4

i.3 i

687 -2

074 -2.593

“1.704

074 -2

L5586 -1 11

222 -2.296

2445

L4k 0.074

L074 -1

STt 0.37

-2 “1.556

889 0,444

“45 0.689

‘4

L4k6 110
-4

0 13.333

4
0.176 9.6%94 10
0,067 S0.026
-0.12) -0.038
-b.o0o08 0.032
-0.128 0.024
r0.032 D.o0s
“4
0.024 2.66-10

0.033 0.027
0.014 0.001
0.043 0.017
~0.03 0.002
0.146 0.012
0.012 0.087
~0.004 0.004
~0.008 -0.01

XTX -6
| [ = 1.85570
16
treXTXI) = 5.325
0.014 -0.002
~0.018 0.041
-0.018 0.008
0.01) ~0.007
6.037 0.024
0.001 0.02
0.0 +0.018
-0.023 -0.008
-0.005 0,014
0.005 -0.01
0.023 0.018
-0.004 -0.008
-0.00¢4 <0.01
0.095% -0.002
~0.002 0.092]




. TA 4

[1.291 -0
-0.236 1
~0.108 -0
-0.343 -0
-1 -0.235

r - 0.063 -0
-0.02 -

0.34 -0

0.187 -0

©0.041  -0.

0.359 -0

20.146 -0

0.1 -0

0.23 0

[ 1 -0.165
<0.165 1
-0.426 -0.178
-0.549 -0.085
-0.64 -0.238

= J|-0.042 -0.19
0.212 0.05
-0.051 -0.016
0.156 0.275
0.073 0.148
0.111  -0.032
0.364 0.238
0.003 -0.119
0.035 -0.081
-0.005 0.185

.236 -0.108 -0.343 -0.235 0.
364 -0.124 -0.036 0.27 -0
124 1.248 0.441 -0.01¢ 0.
.036 0.441 1.611% 0.052 -0.
0.27 «0.014 0.052 1.189 -0
.088 0.014 -0.432 -0.003 1.
0.17 0.22 0.102 -0.107 -0
168 ~0.245 -0.265 0.005 0.
.256 0.11¢9 -0.182 -0.187 0
099 -0.165 0.021 0.195 -0.
.595 -0.041% -0.609 -0.367 0
L1911 0.179 0.124 -0.056 0
.089 -0.071 0.17¢9 0.016 0
.039 -0.041 -0.12 0.236 -0
-0.426 -0.549 -0.64 -0.042
-0.,178 -0.085 -0.238 -0.19
1 -0.095 -0.,025 0.212
-0.095 1 0.311 -0.011
~0.025 0.311 1 0.038
0.212 -0.011 0.038 1
-0.068 0.011 -0.308 -0.003
-0.129 0.17% 0.071 -0.088
-0.132 -0.201 -0.192 0.004
-0.197 0.096 -0.13 -0.154
-0.076 -0.133 0.015 0.162
-0.385 -0.028 -0.362 -0.254
-0.151 0.149 0.091 -0.047
-0.07 -0.059 0.13 0.013
0.03 -0.033 -0.087 0.197

DESIGH (8.20) COHTINUED

063

.088

014
432

.003

222

.01

066

214

019

264
.003
107
.203

0.

cooocoo©0o0—wo0oo

212

0.05

-0.
0.
- 0.
-0.

068
LR
308
003

.009

0.055S

174
L0146

0.18

0.

003

0.09
-0.168

0.02
0.17
0.22
.102
107
L0

.268
.077
167
.213
.377
.319
.268
.092

-0.
L0116 0.275
.129 -0.132
175 -0.201
.071 -0.192
-0.
-0.

Q.

0.34 0.187 -0.041
-0.168 +0.256 -0.099
-0.245 0.119 -0.165

-0.265 -0

.182 0.021

0.005 -0.187 0.195
0.066 0.214 -0.019
0.077 0.167 -0.213
1.183 -0.027 0.022

-0.027 1

.232 c0.16

0.022 c0.16 1.231
0.162 0.507 -0.328
-0.015 0.206 0.023
-0.057 0.057 0.248
0.167 -0.,117 0.204

051 0.156

088 0.004
009 0.055

1 0.063
063 1

0.133 -0.022
0,317 g.018

0.
0.

253 0.112
263 -0.013

-0.22 -0.049
-0.074 0.14

148 -0

ocooco

oooco

.073 0.
.032
197 -a.
096 -0.
L0115
162
174 -0.
L1333 -0.
.022 0.

0.359
0,595
-0.041
-0.609
0.367
0.264
0.377
0.162
0.507
-0.328

1.75%6

0.14%9

ocoocoocoooo0ooo

~0.05 -0.
-0.095 -0.

111

076
133

016
171
018

1 -0.13

-0.13

cooo

L 345 -0.
172 0.
.048 0.
.096 0.

223
ate
206
168

0.364
0.238
-0.385
-0.028
-0.362
-0.254
0.18
0.253
0.112
0.345
+0.223

0.104
-0.035
-0.065

18.13¢

L1146 201 o.zsw

L1917 -0.089 0.039

L4179 -0.071  -0.041

L1124 0.179 S0.12

.056 0.016 0.236

.003 0.107 -0.203

319 -0.268 -0.092

015  -0.057 0.167

.206 0.057 -0.117

.023 0.248 0.204

L1149 ©0.05 -0.095

163 -0.046 ~-0.138

046 1.174  -0.022

138 -0.022 1.203 |
0.003 0.035 -0.005
-0.119  -0.081 0.185
S0.151 -0.07 0.63
0.149 -0.059 ~-0.033
0.091 0.13 -0.087
-0.047 0.013 a.197
0.003 0.09 -0.168
0.263 -0.22 -0.074
S0.013  -0.049 0.14
0.172 0.048 -0.096
0.019 0.206 0.168
0.104 -0.035 -0.065

1 -0.04 -0.117

-0.04 v-0.019
S0.117  -0.019 1




6TV

XTXE

5

16
12,648
15.333
12,648

0,44k
-0.889
-0.333

0.445

0.333

0.667
c0.667

1,665
t0.206
-0.478

c0.678
-0.56

-0.018

0,092
-0.00%

o

054
0.013

o

.58
.01

o

0.016
-9.033

12.6¢4
12.049
10.568
9.679
10,333
0.%¢)
-0.491
~0.037
S0.741
0.1
0.83
-2
1.25¢9
-0.074&
-1.809

«0.20¢4
0,568
-0.095

-0.04&
-0.128

0.0&7

0.01
0.002

0.066
0.035

D.0s8
~0.029

<0.021
0.0¢

13.333
10.568
13.037
10.568
11,222
-0.938
-0.59%
-0.33%
0.938
1
1.519
0.074
0.963
~0.37
-

c0.4&78
-0.095
0.714

-0.0&5
-0.022

-0.021
-0.02

-0.03¢
~0.037

0,082

-0.100
-0.03¢%

«0.023
0.002

F2.644

9.679
10.5468
Vye.me9

9.4k
0,484
1.284
0.928
y.23%
0.407
0.92¢
-1,407

0.07¢
“D.07¢

-0

678

0,04

-0

9
0

5-295 -

cLLe9e
a

0

oo

o o

L0458

522
PREA]

10
.039

0.@5
022

.02¢%

L013
.028

. 009
.00%

o
xpl=(0

xr¥=(0

xst(o

S0.bks
0.543
-0.938
S04kt
-0.333
10.568
-0 T4
g.11)
0.593
+0.333

-1
1.259
0.074
0.222
2.333

-0.5¢6
-0.128
-0.022

0.171
652

o

-0.091
-0.0%

c0.04&7
+0.033

0.022

0137
06.018

0.037
0.0

0
xq7=(0 0 1
3
1

amemee=(8.21) A 4x4X423/16 design —-eav-—

COLUGN V5 S

DESIGN ATRIX
000011223%3%7333)
1333230000733 3)
301303020301 3)
0201122002020)

2 2
! X = % X irox2
i ’ i3 ¥
=1 x2 X = xd x3 X HEN % x4
i i i, 7 i i i,8 i
x2 xk x = x3 x4
i 1 i, i i
x1 x = %2 X 1= x3
i P13 i P14 i
-0.889 -0.333 0.&45 1 0.333
~0.691 -0.037 -0.74610 0.1 0.63
-0.593 +0.333 0.938 1 1.519
1,284 -0.926 1.23% 0.607 0.92¢6
0.778 -0.333 0.778 1 0,333
-0.741 a. 11 -0.593 -0.333 -1
679 0.63 0. kkb -1 -0.926
0.63 10.333 - 0.333 0.778
R Y Y -1 10.568 1.519 0.407
- -0.333 1.519 1M.222 0.778 N
-0.928 0,778 0.407 0.778 ALY
-0.07¢ -1.889 0.222 2.333 1.889 1
0.222 -2.333 -0.37 -1 -1.222
-1.407 1.88¢9 0.074& -1.222 -1
1.889 0.333 -y.222 0.333 c1.667
-0.018 0.092 - 8.00% 0.05¢
a.0&7 0.0 0.002 0.068
0.05 -0.021 -0.02 -0.03¢
e e
5.295 10 ch.L94 10 0.039 -0.05
0.016 ~0.091 0.0 -0.0&7
-6
0.11 0.003 -0.007 5.345 10
0.003 0.127 - 0.004 0,005
-0.007 -0.006 0.116 0.008
-6
5.345 10 0.005 0.008 0.13)
-0.008 0.018 0.01 -0.01
-4
0.017 0.008 -0.0%8 7.93 10
-0.027 0.021 0.026 0.012
-0.002 -0.001 0.023 -0.002
s
1.1464 10 0.0v2 -0,019 -0.006
0.018 -0.017 - 0.00%5 0.014

x1;=(2xp;-3)/3
x24=(2xa3-3)/3
x3=(2xr -3}/3

x4 =(x8;-1)

2
X = x3
ik 1
X = 22 -x}
i i, i
x = xé
P i
-2 0.667 -0.667
-2 1.259 ~0.074
0.07¢ 0.963 -0.37
s1.407 0.074 -0.074
0.333 0.333 -1.687
1.259 0.074 0.222
-0.074 0.222 ~1.407
-1.889 -2.333 1.889
0.222 -0.37 0.074
2.333 -t -1.222
1.889 -1.222 -1
2. 44c -0.4b4k -0.889
0.kt 13.333 0.445
-0.889 0.445 12. 4644
-0.333 1 0.33)
0.013 D.07%
0.035 -0.028
-0.037 -0.062
0.022 0,029
-0.033 0.022
-0.008 0.017
0.018 Dp.008
0.01 0.018
-4
0.0 7.93:%0
0.106 c0.013
-0.013 0.132
0.036 c0.021
0.000 0.009
0.008 6.015
0.007 0.014

0.158
0.068
0.109

-0.013
0117

0,027

p.o021
0.026

0.032
0.038

8,020

0.136
0.007

9.26%-10
-0.004

XX 6
f—1 = 2.315 1
16
Re(xrX1) = 9.008

0.011 0.0ts -0.03}
-0.029 ~0.021 0.0¢
S0.03¢ c0.023 0.002
0.028 -0.00¢9 -0.005
0.0%6 0.037 6.01

-4
0.002 1.164-10 0.018
~0.001 0.0%2 -0.017
0.023 0,019 “0.00S%
-0.002 0,006 0.014
0.009 0.008 -0.007
0.009 0.015 0.01¢

-5
0.007 9.269:10 ©0.004
0.085% -0.003 -0,009
-0.003 0.092 -0.00¢
©0.009 -0.00& 0.091
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DESIGN (8.21) CONTIWUZD

|r] = 0.208 [1]
e |r = 17.81

[ 1.299 -0.203 c0.096 -0.308 -0.234 0.0¢48 0.012 0.33 0.179 -0.132 0.366 -0.162 -0.112 0.221]]

-0.203 1.376 -0.096 -0.047 0.223 -0.091 -0.088 -0.153 S0 ~0.264 -0.527 S0.171 ~0.114 0,0t

-0.098 -0.096 1.238 0.411 0.003 -0.002 0.194 -0.249 0.112 -0.136 ~0.071 0.16 -0.048 -0.027

-0.308 -0.047 0.411 1.588 0.083 F0.44 -0.049 -0.2¢ 0,174 0.104 -0.64 0.093 0.205 0.058

-1 -0.234 0.223 0.003 0.083 1.162 0.028 -0.077 0.006 -0.088 0.167 -0.305 -0.,024 0.001 0.215

r = 0.048 -0.091 -0.002 -0, 44 0.028 1.223 -0.061 0.051 0.183 0.08 0.225 <0.013 0.128 -0.184
0.012 -0.088 0.194 -0.049 -0.077 ~0.061 1.195 0.07¢9 0.:09 S0.174 0.296 0.271 -0.219 -0.059

0.33 -0.153 0,249 -0.24 0.006 0.051 0.079 1.193 -0.106 0.008 0.13¢9 -0.021 -0.068 0.169%

0.17¢ -0 0.112 0,174 -0.088 0.183 0.109 -0.106 1.187 -0.13 0.425% 0.11 0.094 -0.087

-0.132 -0.264¢ ~0.136 0.10¢4 0.167 0.08 -0.174 0.008 ~0.13 1.241 -0.223 0.095 0.165 0.158

0.366 ~0.527 -0.071 -0.6¢6 -0.305 0.225 0.296 0.139 0.625 -0.223 1.656 0.088 0.001 -0.055

c0.162 -0.1 7 0.16 0.093 -0.024 c0,013 0.271 0.021 0.11 0.095 0.088 1.138 +0.033 -0.117

0,112 S0 114 -0.048 0.205 0.001% 0.128 -0.219 -0.068 0.09¢ 0.165 0.001 -0.033 1.14 -0.0465

L 0.221 0.01 -0.027 0.058 0.215 -0.184 -0.05% 0.169 -0.087 0.158 -0.055 S0 7 -0.045 1.173
-0.,228 0. 467  -~0.547 -0.%73  -0.044 0.213 -0.013 0.13¢ 0,033 0.171 0.355 0D.032 0.042 “0 09
1 S0.1%2 -0.076 -0.215 -0.19 0.038 0.01 0.265 0. 14 -0 10¢ 0.249 0,133 -0.092 0.179
-0.152 1 -0.074 =-0.032 0.177 ~0.07 -0.069 0.119 - 0.134 -0.202 S0.349  -0.136 S0.091 0 o008
-0.07%6 -0.07% 1 0.293 0.002 -0.002 0.1%9 0.205 0.092 011 S0.049 0.135 S0.0¢1 -0.022
-0.215 -0.032 0.293 1 0.061 -0.317 -0.035 -0.175 -0.127 0.07¢ ~0.398 0.069 0.152 0.062
-0.19 0.177 0.002 0.061 1 0.024 -0.065 0.00%5 -0.075 0.139 ~0.22 -0.02 0.001 0.18¢
0.038 -~0.07 -0,002 -0.317 0.024 1 -0.05 0.0¢2 0.152 0.069% 0.158 -0.011 0.109 -0.15¢
0.01 -0.069 0.159 -0.035 -0.065 -0.0% 1 0.066 0.091 -0.143 0.21 0.233 -0.188 ~0.05
0.265 -0.13¥9% -0.205 -0.175 0.005 0.042 0.066 1 -0.089 0.007 0.099 -0.018 0.058 0.143
0.14% -0. 134 0.092 -0.127 -0.075 0.152 0,091 -0.089 1 -0.t07 0.303 0.094 0.081 =0.073
-0 104 -0.202 ~0.1 0.07¢4 0.139 0.065 0. 143 0.007 -0.107 1 S0.155 0.08 0.139 0.131

-

0.249 ~0.3%49  -0.049% -0.395 -0.22 0.158 0.21 0.099 0.303 0. 155 L 0.06&¢ 8.301-10 -0.039
-0.133  -0.13% 0.135 0.069 -0.02 -0.011 0.233 -0.018 0.09¢4 0.08 0.06¢ 1 -0 029 0,101

-4
~0.092 -0.091 -0.041 0 152 0.001 0.109 -0.188 -0.058 0.081 0.139 8.301-10 c0.029 1 -0.039
0,179 0.008 -0 022 0.062 0.184 -0.154 -0.05 0.143 -0.073 0 131 0 039  -0.101 S0.039 1




IEV

XTx1

12.444
$3.333

o -
o
P
o

1.338
c0.21%
0,663
0,357
+0.538
-0.029
0.103
-0.006
0.02¢9
0.008
0.039

0.147
0.009

0.008

-0.047

12.
s2.
10.
9.
10.
0.

1
-0
0.

o

6.

Lhd
049
568
333
333
543

.037
.037

148

PERS

1
-2

.2%¢9
.88¢
.889

834

(00
;
xqf=(0 0
"
py
xr =(0 2
&
xst=(0 1
X IR X
LY i
X HERF S| x2
i i
X HER ¥ xh
i §
X aox!
P12 i
13.333 12 15 0. 4kd 1,333
10.568 9.333  10.333 0.543  -1.03%
13.037 10.222 1.222 0.938 S0.74)
10.222 12 9 -0.444  -1.333
11.222 9 13 -0.333 0.333
-0.938 -0.444 -0.333 10.568 -0.148
S0.74%  <1.333 0.333 -0.148 9.333
-0.333 -1 -0.333 0.111 1
1.926 1.333 1.687 -0.74%  -0.444
1 0,333 1 -0.333 0.353
1.889 1 t -0.333 -1
0.076 -1.333 0.333 1.259 0.889
0.963 0 0.333 0.074 0.444
0 0 - 0.4dd -t.333
A 1 -1 <2.333 2.333
0.215 -0.483 -0.3%7 -0.538 -0.029
0.575 -0,111 -0,033 -0.13%5 0,043 &
0. 111 0.714 -°0.0%5% ©0.01 0.055
0.033 -0.053 0.395 0.161 0,003
0,135 -0.01 0.161 0.634 0,018
0.043 0.05% 0.003 0.018 0.109
4
10 -0.026 -0.012 -0.08 -0.005
0.003 -0.021 0.034 -0.00%1 -0.00%
0.082 -0.053 -0.023 -0.047 0.003
0.029 -0.028 0.01s -0.023 -0.009
~0.03 -0.051 -0.002 0.023 0.008
0.087 -0.10% -0.013 -0.108 -0.,027
©0.03  -0.032 0.027 0.02 -0.002
0.045 0.01 0.005 0,038 -0.004
0.053 0.004 0.002 0.006 0.01%

-—-====(8.22) A 4x4X3x3/16 design -----—-
DESIuN BATRIX

0000011223333 3)
1133323000073 73 3)
1201202010201 2)
2020112200202 0)
‘ "
2 2
= x1 X = x2
i.2 t .3 i
X = x1 x3 X = x1 X&
§ i i, 8 i
x = x3 x4
i, i i
X = x2 x 1= x3
i,13 3 PR RS
-0.333 1.333 3 1
-0.037 -0.148 0.11 1
-0.333 1.926 1 1.889
-1 1.333 0.333 il
-0.333 1.667 1 1
.11 -0.741 -0.333 -0.333
1 0,444 -0.333 -1
10.333 -+0.333 -0.333 0.333
-0.333 10.222 1.889 0.333
-0.333 1.88¢9 11.222 1.667
0.333 0.353 1.667 9
-1.889 0.444 <2.333 2.333
-2.333 0 -1 -1.867
2.33) 0 “1.667 -1
0.33}3 -1.667 0.333 -1
0.103 -0.008 0.02¢9
-4
L8346 10 0.003 0.082
-0.028 -0.021Y -0.053
<0.012 0.034 -0.023
+0.08 -0.001 -0.047
-0.005% -0.,005 0.003
0.3} -0.018 0.005%
-4
-0.018 0.118 7.584 10
- &
0.00% 7.584-10 0.122
0.004 0.01 -0.0Y6
0.015 ~0.012 0.004
0.005% 0.025% 0.007
-0.006 0.023% -0.00%
0.017 -0.02% ~0.012
-4
-0.02¢4 -2.735 10 0.022

x1;=(2xp4-3)/3
x2;=(2x9;-3)/3

2
X i= x3
[ i
X 1= ox2 o xd
i P9 i i
x 1 x4
15 i
-2 0.667 0
-2 1.259 0.889
0.074 0.963 0
S1.333 0 0
9.333 0.333 -1
1.259 0.074 0.444
0.889 0.444 -1.333
<1.889 -2.333 2.333
0,444 0 0
-2.333 Sh-1.867
2.333  -1.667 1
12.444  -0.444  -1.333
S0.444  13.333 1.333
1.333 1.333 12
<0.333 1 1

0.008 0.039
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1 -0.069 -0.043 0.049 -0.098
069 1t -0.166 ~-0.014 0.032
L043  -0.166 1 -0.012 0.081
L049  -0.014 -0.012 1 -0.209
.098 0.032 0.081 -0.209 1
.089 0.15 -0.206 0.055 -0.274
238 0.036 0.23 0.015 0.29
013 0.009 0.212 -0.089 0.045
022 0.116 ~-0.327 -0.122 0.141
.21 -0.312 0.042 0.271 -0.168

171 0.
225 -0.
044 -0.
098 -0.

111 -
213 0
282 0
074 0
369 0
412 -0
546 t

201 -0,
134 -0.
057 -0.

0.087
-0.122
~0.17
-0.033
0.065
0.089
0.15
-0.206
0.05%
-0.274
1
-0.359
0,153
0.098
0.041

308 -0.276 -0.266 0.356]
308 -0.076 -0.056 0.063
124 0.218 0.006 0.004
535 0.031 0.234 0.144
0.32 -0.016 -0.027 0.256
.055 0.012 0.159 -0.435
.339 0.27 -0.431 0.056
.022 -0.11 -0.158 0.356
L6422 0.056 0.182 -0.222
546 0.201 0.134 0.057
.639 -0.055 -0.062 -0.098
055 1.214 ~0.18 -0.146
062 -0.18 1.307 -0.217
098 -0.146 -0.217 1‘355J
0.294 0.018 0.016 0.2
0.204 -0.213 -0.198 0.26
-0.216 -0.062 -0.044 0.048
-0.086 0.176 0.005 0.003
-0.329 0.022 0.161 0.097
-0.238 -0.013 -0.022 0.21
0.036 0.009 0.116 -0.312
0.23 0.212 -0.327 0.042
0.015 -0.089 -0.122 0.271
0.29 0.045 0.141 -0.168
-0.359 0.153 0.098  0.041
1 -0.039 -0,043 -0.066
-0.039 1 -0.143 -0.114
~0.043  -0.143 1 -0.163
©0.066 -0.114 -0.,163 1

1




xpT=(03 0303030
x¥=(0 03300330
xrl=(0 00033330
x6'=(0 00000003
xt°=(03 30300733

DESIGN MATRIX
30303%073
03300373
0003333
33333373
0030330

0313%31202030%17302)
013%22113%3300220073%73%)
1000323201013 273%3)
0010011023%23%3%2733)
210302301330301 2)

x1y=(2xp;-3)/3
x2;=(2xqy~3)/3
x3;=(2xry-3)/3
x45=(2x85-3)/3
x54=(2xt4-3)/3

COLUMN VECTOR X-MAT

i, 11

A37



------- (8.26) A 4x4x4x4x3/32 design --=--—-=~

DESIGN MATRIX
xp=(030303030303030%303131202030%1530 2)
qu=(o 0330033003%33%30033013%32113

W

00220073 3)
xrf=(000033%33300003333100073273
xsT=(0 0 000000333333330010011

010132373)
2323323 3)
12202011)

o o N

xtT=(O2202002200202201102012
x15=(2xp3-3)/3
x23=(2x93-3)/3
x35=(2xr;-3)/3
x43=(2xs4-3)/3
x54=(xt;-1)

COLUMN VECT0:48 OF X-MATR

2 2 2 2 2
= x1 X = x2 X = x3 X = x4 X = x5
2 i 1,3 i 1,4 i i,5 i 1,6 i
= x1 x2 X = x1 x3 X = x1 x4 X = x1 x5
7 i i i,8 i i i,9 i i i,10 i 1
= x2 x3 X = x2 x4 X = ox2 x5
, 11 i i 1,12 i i i,13 i i
= x3 x4 X = x3 x5 X = x4 x5
la 1 i 1,15 i i i, 16 i i
= x1 X = x2 X = x3 X = x4 X = x5

A38



(8.27) A 4x4x4x3x3/32

DESIGN MATRIX

xpT=(0303030303030%03073

xqT=(0 0330033003
xr'=(0 0003333000
xsT=(0 0000000222
xtT=(02202002200

3003301
0333%310
2222200
2022011

Xli=(2xpi—3 )/3
x2i=(2xqi-3)/3
x3;=(2xry-3)/3

x44=(x83-1)

x51=(xti—l)
COLUIL EQTORS Qi X-WAT
= 1
L1
2 2 2
= x1 X = x2 X = x3 X
i,2 i 1,3 i 1,4 i i
= x1 x2 X = x1 x3 X =
i, 7 i i 1,8 i i i,9
= x2 x3 X = x2 X 4 X
i, 11 i i i,12 I i i, 13
= x3 x4 X = x3 x5 X
1,14 i i 1,15 i i i, 16
= x1 X = x2 X = x3 X

A39

1.3120
321153
00323
10011
02012

203031302)
3200220073 3)
201013%273%73)
01212212 2)
012202011)

X = x5
i,6 i
X = x1 x5
1,10 i i
x5



xpr=(0 3
qu=(O 0
xrt=(0 0
xsT=(O 0
xtT=(O 2

11

(8.28) A 4x4x3x3x3/32

DESIGN MATRIX

0%20%20303030%073
32%2003%33%0033%003%73
0
0

0000022222222

0
0
02222000022221
0
1

20200220020220

x13=(2xp;-3)/3
x24=(2xqi-3)/3
x33=(xri~1)
x43=(x85-1)

X55=(xt;-1)

H O O + W

COLUMN VECTORS OF X-MATRIX

X = x3
i,4 i
xl - x3 X
i i 1,9
X2 ‘x4 X
i i i,13
x3 x5 X
i i 1,16
X = x3

A40

13120
221153
00212
10011
02012

2053
300
101
012
012

0
2
0
1
2

31%02)
20073 3)
12122)
22122)
02011)



------- (B.29) A 4x3x3x3x3/32 design ~=-=-=-

DESIGN HATRIX
xp7=(03030303030303030%13120203031302)
xq'=(0 0220022002200220121112200110022)
xr’=(00002222000022221000212101012122)
xsT=(00000000222222220010011012122122)
xt72(0220200220020220110201201220201 1)

x1;=(2xp;-3)/3

x23=(xqj-1)

x35=(xry-1)

x4 =(xs4-1)

ij_:(Xti-l)

COLUMN VECTO P X-MATR

= 1
L
2 2 2 2 2
= x1 X = x2 X = x3 X = x4 X = x5
2 i 1,3 i 1,4 i i,5 { i, 6 i
= xI x2 X = x1 x3 X = x1 x 4 X = x1 x5
7 i i i, 8 i i i,9 i i i,10 i i
= x2 x3 X = x2 x4 X = x2 x5
11 i i i,12 i i i,13 i i
= x3 x4 X = x3 x5 X = x4 x5
14 i i i, 15 i i i,16 i i
= x1 X i= ox2 X = x3 X = x4 X = x5

A4l



(8.30) A 3x3x3x3x3/32

DESIGHN MATRIX
20202020202
2002

xpl=(0 202020
x@*=(0 02200 2 2002201

xr’=(000022220000222210

x8'=(000000002222222200

xt*=(022020022002022011
x1y=(xpi-1)
x2;=(xq4~1)

x3i=(xri-l)

x4 =(x85~1)

design

——

12110102021201)
2111220011002 2)
00212101012122)
1001101212212 2)
02012012202011)

x5;=(xt4~1)
COLU#MN VI
X r= ]
1,1
2 2 2
X = x1 X = x2 X = x3 X
i,2 i 1,3 i 1,4 i i
X = x1 x2 X = x1 x3 X =
i, 7?7 i i i,8 i i i, 9
X = x2 x3 X = x2 x4 X
1,11 i i i, 12 i i i,13
X = x3 x4 X = x3 x5 X
i,14 i i i.15 i i 1,16
X = x1 X = x2 X = x3 X
i.17 i 1,18 i 1,19 i

A42

2 2
= x4 X = x5
5 i i,6 i
x1 x4 X = x1 x5
i i 1,10 i i
- x2 x5
i i
= X4 x9S
i i
= x4 b4 = x5
1,20 i 1,21 1



mmmeme= (8.31) A 3x323x2/18 design ---=---
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COLUMN VECTOR:

1

DESIGN HMATRIX

11

1

xuT = (0 0 0 0 06 0 0 0 0

[+]

[+]

xpT = (0

2

1

xqT - (0

2

1

xul = (0

16

{XTX| = 6.149-10

XTX =

- - -
= P x
~ o~ .] AS
~ - - - -
>
= > >
)
[ L
o ~ K
© = = b
- - - -
= >
(-3
- ~ ~
— - . .
—- . - -
-
' ~ = = >
. ~ -
hal o~ B .
> N — -
® =
—_— >
' !
— -
EN - =
-t - .
= e
—
co © 34 © © © © m o ocoow
o o~ p
= o
© ~
=
cc © o © © © © O © ownwo
~ 2
) <
—
(=R=] L=4 o o (-} o o o o MmN o
P
o 3
=
©© © © © © o © © © Wmoo
P
3
-
=
©c® © © o © © O © W ocOmo
— o~
)
ce o © © o © © ®w o ©oo0oN
= ~
o
-
©o©® © © © © © w o o oococo
=
©c0 © © 0o © w o © o gooo
=
[-X=1 o o (=] o (=] o (=] o cooo
=
c® © ©o w
® © © ©o o o o%oo
©c0 © m © © o o © o ooou
- ©
=
L4
co ™
X © © o o © o © o900
o®m © © © © © © o o oooo
®O © o © o © o © o oooe

Coeocoococowooo00 ~
Bl "3 —
< o —
o o o

COO000O0O00ONWYNYD

o~ IO
S oo~
cooo

0000000 QOYVNYNO

~woa
oo ~0o
oL oo
CO00O0OOO00O0OWwWNNYO
—o ooy
oooco
oooco

COVOCOOOOONWYWY NGO

LN
cocoao
oocoo

coowr00O0O0O~NOOOO®
o~ [N o
< (=] o
o o o

CO0C00OCOWVWIOOOOO
"
o
=3
CO0O00OWOOOOOOO
"
o
o
CR-X-R-E-N"-N-R-F-R-¥-F-R-Nol
n
<
o

CO0OWVWOOoOOOOOO0OO
w

<

=3
0000000 IO0OCOT
o o~ B
o o o
< (=] o

COVOVOOOOOOOOO
"
=}
o
CWOO00O0OO0O000O00
w
k=3
o
P R-R-N-R-N-RoRoNo RN RN ]
n
o
o

- 1.069

tr{XTX1)
|r| - 0.164

‘covococonocooo~
- =
- ey
o o
000000 OONOWV—~O
-
o
o
cooeoccooON~no
=N
&
- o
o
coocococcoco0o—

o~
-
o

CO00OOO0OCO~OONO
—
©
o

I-X-R-R-X-R-N-RoR-RoN-N-Fo1

—

o

o

0CO000OO~00O0O0O00

coC0O0O0O~00O000O00

[R-R-R-RR-N-ERERE

CoOO~NO0000O000O00

[-X-Ro RN RN R-R-R-X-R-3Cl

0.35

0“0 0O00OOI0O000

cooOoOwoOOON
o~

-2

00000000V NNNO
©wv 0o
-3~
—~0 0~
COO00000ORVNNO
Cwow
3~
oo
CO0O0000O0®V IV~
@~ 00
N~
o—~—o
000000003 VNVO
—~ w0
~ea
~o o~

COC0O0CO0O0~0000O00
0000040000000
OO0~ 000000O00
COCO~0O00OOO0O0O00
oconMoOOOOMOOOON

~ B

. 3

— .
(=)

-0.70

OO O0000O00000O

‘coco~ocoocownwoooo~
-

~
El

= ©
54 <

CO0O0CO0O0OCOCOONB®I~O
“w -

~o

o

-0.64

CO0O00O0OOO®N ~3
o .

-0

D000 ODO M~

o]

0.16
-0.645
0.258

Sooco0000L O~

0

-0.167
0.258
-0.64%

COOMOOOO~OOO0OW
o
o~

-0.65

=3
CO0C0OOO—~0000OO
L= R - X R-R-N- N R X=X~
©CO0O0O0O0O~0000000Q
00O ~N00OOO0000D

00O ~000O0MmMOO0OO ™~
o
~
<

-0.44

VO ~O0000000000S

0O~00000OO0O00RO

SO0 0000C00000, ~00CO00O00O0O0Q ~000000OS000RC

XTX1 -

~

]
@

A43



—=—-=== (B.32) A 3x3x2x2/18 design =------

DESIGN HMATR

(0 0 0

xwT -

VECTORS OF X-MATRIX
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——-—-—- (8.33) A 3x2x2x2/18 design ---~--=

ESIGN MATRIX

x2T - (0

2 0 0 0 1

1

xp'-(O 0o 0

0)

xq7 = (0

0)

(0
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2)
2)
2)
0)

OF X-MATRI

DESIGN MATRIX

COLUMN VECTO!

0
0

1
0

Cm———=— (8.34) & 3x3x3x3/27 design ------=
0

(0
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ASl

DESIGN MATRIX
xpT = (0 0 2 2 7 2 2 2 6 0 0 2 1
xqT = ¢0 2 0 2 2 2 0 0 2 2 0 1 2
xxT = (0 2 2 0 2 0 2 0 2 0 2 1 1
xsT = (0 2 2 2 0 0 0 2 0 2 2 1 1
X -1
i,1 COLUMN VECTORS OF X-MATRIX .
<17 + 15 xp 217 + 15-xq -17 + 15 xr
i i i
X - X - X -
1,2 1,3 1,6
h
2
217 + 15-xs 21 - 179-xp + 88 xp
L i t
X - X -
[ 1,6
lns 112;\2
2
21 - 179:xq + 88 xq 21 - 179-xr + 88-xr
1 i i
X - X -
1,7 i,8
le;\z 112 2
2
2] + 179-xs + 88 xs
i i
X - X - X =X
i,9 i,10 1.2 1,3
11232
X - X - X X = X -X X - X -X
i,11 i,2 1,4 i,12 i,2 1,5 1,13 £,3 1.4
X = X -X X =- X X
i 14 i.3 1,5 1.15 i.60 1,5
16
|XTX| = 2.764-10
XTX =
15 0 o 0 0 o 0 0 0 -1,619 -1.619
15 -1.619 -1.619 -1.619 0 -1.578 -1.578 .1 578 -0.379 -0.379
0 -1.619 15 -1.619 -1.619 -1.578 0 -1.578 .1.578 -0.379 -3.655
0 -1.619 .1.619 15 -1.619 -1.578 -1.578 0 .1.578 -3.655 -0.379
0 -1.619 -1.619 -1.619 15 -1.578 -1.578 -1.578 0 -1.655 -3.655
0 0 -1.578 -1.578 1,578 15  9.048 9,048 9.048 -0.527 -0.527
0 -1.578 0 -1.578 -1.578  9.048 15  9.068  9.048 -0.527 0.148
o -1.578 -1.578 0 -1.578 9.048  9.048 15 9 048 0.148 -0.527
0 -1.578 -1.578 -1.578 0  9.048 9.048  9.048 15  0.148 0.148
.619 -0.379 -0.379 -3.655 -3.655 -0.527 -0.527 0.148  0.148 17.664 -0.583
.619 -0.379 -3.655 -.0.379 -3.655 -0.527 0.148 .0.527 0 148 -.0.581 17.664
619 0,379 -3.655 -3,655 -0.379 .0.527 0.148 0.148 .0 527 .0.381 -.0.583
619 -3.655 -0.379 -0.379 -3.655 0.148 -0.527 -0.527  0.148 -0.583 .0.583
.619 -3.655 -0.379 -3.655 -0.379 0.148 -0.527 0.148 .0.527 -0.s583 732
619 -3.655 -3.655 -0.379 -0.379 0.148 0.148 -0.527 .0 3527 7.32 .0.583
XTXL = Cr(XTX1) ~ 1.563
[0.073 0.0l12 0.012 0.012 0.012 0.002 0.002 0.002 0.002 0.0l 0.01
0.012 ©.104 0.032 0.032 0.032 -0.012 0.012 0.012 0.012 0.007 0.007
0.012 0.032 0.104 0.032 0.032 0.012 -0.012 0,012 0.012 0.007 0.031
0.012 0,032 0.032 0,106 0.032 0,012 0.0l2 .0.012 0.012 0.031 0.007
0.012 0,032 0.032 0,032 0.106 0.012 0.012 0.012 -0.012 0.031 0.031
0.002 -0.0l2 0.012z 0.012 0.012 0.141 -0.038 -0.038 -.0.038 0.012 0.012
0.002 0.0l2 -0.012 0.012 0.012 -0.038 0.l41 -0.038 .0.038 0.012 -0 007
0.002 0.012 0.0l2 -0.012 0.012 -0.038 .0.038 0.141 -.0.038 -0.007 0.012
0.002 0.012 0.012 0.0i2 -0.012 -0.038 .0.038 -0.038 0.141 -0.007 -0.007
0.01 0.007 ©0.007 0.031 ©0.031 0.012 0.012 -0.007 -0.007 0.085 0.008
0.01 0.007 0.031 0.007 ©0.031 0.012 -0.007 0.0i2 -0,007 0.008 0.085
0.01 0.007 0,031 0.031 0,007 0.012 -0.007 -0.007 0.0l2 0.008 0.008
0.01 0.031 0.007 0.007 0.031 -0.007 0.0l2 ©0.012 -0.007 0.008 0.008
0.01 0.031 0.007 0.031 0.007 -0.007 0.0l2 -0.007 0.0l2 0.008 -0.03
0.01 ©0.031 0.031 0.007 0.007 -0.007 -0.007 ©0.012 0.012 -.0.03 0.008

—-

.619

.379
.655
.655
.379
.527
.148
148
527
583
583
.664

7.32
-0.583
-0.583
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.007
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.007
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.008
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.008
.008
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. 008

cooco
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-3.655
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1 -0.108 -0.108 -0.
-0.108 1 -0.108 -0.
-0.108 -0.108 1 -0
-0,108 -0.108 -0.108
0 .0.105 -0.105 -0.
- [-0.105 0 .0.105 -0.
-0.105 -0.105 0 -0.
-0.105 -0.105 -0.105
<0.023  -0.023 -0.226 -0.
-0.023 -0.226 -0.023 -0
-0.023 -0.226 -0.226 -0.
-0.226 -0.023 .0.023 -0.
-0.226 -0.023  -0.226 -0,
-0.226 -0,226 -0,023 .0.
lr] - 0.025
[1.563 0.481 0.481
0.481 1.563  0.481
0.481 0.481 1.563
0.48)  0.481 0,481
-1 -0.186 0,185  0.185
- | 0.185 .0.186 0.185
0.185 0.185 -0.186
0.185 0.185 0.185
0.108 ©0.108 0.505
0.108 0.505 0.108
0.108 0.505 0.505
0.505 0.108 0,108
0.505 0.108 0.505
L 0.505 ©0.505 0.108
-1
tr|r - 23 627
1 0.141 0.141  0.141
0.141 1 0.308 0.308
0.141  0.308 1 0.308
0.141 0.308 0.308 1
0.14t ©.308 0.308 0.308
0.016 -0.102 0.102 0.102
0.0l6 ©0.102 -0.102 0.102
0.016 0,102 0.102 -0.102
0.016 0,102 0.102 0.102
0.122  0.071 0.071 0,331
0.122  0.071 0.331 0.071
0.122 ©0.071 0.331  0.331
0.122  ©0.331  0.071 0.071
0.122 ©0.331  0.071  0.331
b,lzz 0.331  0.331  0.071

______ - Jesign (8.39)

108 [
108 -0.105%
108 -0.105 -
1 -0.105 -
105 1
105 0.603
105 0.603
0 0.603
226 -0.033
226 -0.033
023 -0.033
226  0.009
023 0.009 -
023 0.009
0.481 -0.186
0.481  0.185
0.481 0.185
1.563  0.185
0.185 2.114
0.185 -0.571
0.185 -0.571
-0.186 -0.571
0.505  0.199
0.505 0.199
0.108  0.199
0.505 .0.117
0.108 -0.117
0.108 -0.117
0.141  0.016
0.308 -0.102
0.308  0.102
0.308 0.102
1 0.102
0.102 1
0.102  -0.27
0.102  -0.27
-0.102  -0.27
0.331  0.112
0.331  0.112
0.071  0.112
0.331 -0.066
0.071 -0.066
0.071 -0.066

ccoocoo

COoOOO0O—~0O0OCOO0OO0OC

Continued —------
0.105 -0.105 -0.105
0 -0.105 -0.105
0.105 0 -0.105
0.105 -0.105 o -
0.603 0.603 0.603 -
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Mitchell and Bayne design - --- - --

——————— (8.42) A3 x3 X3 X3x3 /27
DESIGN MATRIX
=(2 0 1 0 0 2 01 0 1 2 2 2 2 0600 2 2 2 1 0 2 2 00 0)
=(2 0 0 0 0 2 2 0 2110 0101002 022 2 0 2 2 1)
=(2 0 2 1 0 2 1 0 010 2 0 2 2 0 2 2 01 0 2 00 2 0 2)
=(2 0 2 1 2 0 0 0 0 2 0 0 2 1 2 2 0 2 0 0 1 2 2 1 0 2 1)
=(2 2 2 2 0 0 1 1 0 0 0 2 2 1 1 2 0 0 2 0 2 0 0 0 2 2 0)
Xl' = [xp - l:l X2 = [xqg -1 X3 = xr -1
. 1 1 i i i
X4 = xs -1 x5 =[xt -1
1 1 i i ]
X =1 VECT I
i, 1
2 2 2 2 2
X = X1 X 1= X2 X := X3 X = X4 X := X5
i, 2 i i,3 i i,4 i i,5 i i,6 i
X = X1 - x2 X ;= x1 %3 X := x1 x4 X := x1 x5
i,7 i i i,s i i i,o i i i, 10 i i
X = X2 X3 X 1= X2 -X4 X = X2 -x5
i, 11 i i i, 12 i i i, 13 i i
X = X3 -X4 X = X3 -X5 X 1= X4 X5
i, 14 i i i, 15 i i i,1l6 i i
X 1= x1 X = %2 X = x3 X 1= ¥4 X 1= X5
i, 17 i i, 18 i i,1l9 i i,20 i i,21 i



Stellingen
bij het proefschrift

DESIGNS WITH A SMALL NUMBER OF RUNS.
FOR
FACTORIAL EXPERIMENTS

van

P.M. Upperman



Orthogonale “N-designs” kunnen met behulp van half-normaal waarschijnlijk-
heidspapier worden geanalyseerd.

Hoofdstuk 7 van dit proefschrift.

Daniel, C. (1959), The use of Half-Normal Plots in Interpreting Factorial Two-
Level Experiments, Technometrics 1, 311-341,

Zahn, D.A. (1975), Modifications of and Revised Critical Values for the Half-
Normal Plot, Technometrics 17, 189-200.

Het gebruik van blokindeling bij proefopzetten is niet alleen geschikt om het effect
van de experimentele fout te verkleinen, maar kan ook dienen om een onbekende
factor, die ongewenste kwaliteitsfluctuaties veroorzaakt, op te sporen.

Upperman, P.M. en Dévény, A.M. (1974), De oplossing van een kwaliteitspro-
bleem door het gebruik van proefschema’s, Statistica Neerlandica 28, 153-171.

Upperman, P.M. (1991), Aspecten, principes en toepassingen van proefopzetten,
SIGMA, No. 3, 8-12. -

De kwaliteit van een proefopzet wordt niet alleen door statische kenmerken be-
paald, maar ook door de mate waarin ze bruikbaar is voor de onderzoeker.

Boz, G.E.P., Hunter, W.G. and Hunter, J.S. (1978), Statistics for Experimenters,
John Wiley & Sons, New York.

Het construeren van proefschema’s, waarbij men sommige eerste orde interacties
wel en andere niet kan schatten, is meer een intellectuele dan een praktische bezig-
heid, omdat men doorgaans of alleen hoofdeffecten, of hoofdeffecten en alle eerste
orde interacties met een proefopzet wil schatten.

Het is aannemelijk dat de receptuur en kwaliteit van bakkerijproducten sterk
verbeterd zal worden, indien men op grote schaal de in de laatste decennia ont-
wikkelde proefopzetten voor mengsels gaat toepassen.

Cornell, J.A. (1990), Experiments with Mixtures, John Wiley & Sors, New York.



10.

Het rendement van de Nederlandse industrie kan aanmerkelijk worden verhoogd,
indien de vakken proefopzetten en variantie-analyse voor studenten in de chemie,
electrotechniek, natuurkunde en werktuigbouw tot de verplichte leerstof gaan be-
horen.

Upperman, P.M. (1985), Industrial Statistics, Statistica Neerlandica, Vol..39,
No. 2, 203-217.

Bij de uitoefening van de geodesie doen zich, met name bij de triangulatie van
grote netten, interessante statistische problemen voor inzake verwerking en ana-
lyse van waarnemingen.

Uitdrukkingen als “De temperatuur was 2 graden lager dan normaal” zoals die wel
eens in de maandelijkse weeroverzichten van het NOS-journaal worden gebezigd,
zijn voor een leek nauwelijks en voor een statisticus helemaal niet te begrijpen.

Om in een ontwikkelingsland te kunnen werken zijn verschillende vaardigheden
vereist, die tijdens een schoolopleiding niet aan de orde komen.

Het feit dat men van huisartsen en diétisten soms tegenstrijdige adviezen krijgt
inzake aard en samenstelling van het te gebruiken voedsel, doet het vermoeden
ontstaan dat de kennis inzake de biochemische mechanismen van het menselijk
lichaam, nog in de kinderschoenen staat.



