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Chapter 1 INTRODUCTION 

1.1 Introduction 

In the last few decades more and more theoretical as well as experimental attention 

has been paid to the hydrodynamic interaction between colloidal particles in a suspension. 

The growing theoretical interest in this field stems from the fact that the experimental 

research has been making considerable progress. We refer to the development of the laser, 

which can be used in light scattering experiments, and the development of the photon 

correlator. The photon correlator is an important part of the experimental apparatus in a 

light scattering experiment as it allows the intensity autocorrelation function of scattered 

laserlight to be calculated. This function is used to determine the position correlation 

function of the Brownian particles in a suspension. These developments made it possible to 

compare theoretical results with experimental data. Even theoreticians have made progress 

with the help of the technical advances of the last decades. We can think of the fast 

numerical calculations on computers and the development of a new area in computational 

physics called "Brownian dynamics", i.e. computer simulations with a system of Brownian 

particles. It js in this context that we have studied the behaviour of transport coefficients 

of suspensions. In this thesis we describe quasistatic (Stokes limit) and retarded 

hydrodynamic interactions in suspensions while special attention is paid to the effects of 

hydrodynamic interactions on transport properties like self-diffusion of the particles, 

sedimentation and effective viscosity. 

For a long time the behaviour of the transport coefficients of suspensions has been 

an area of intensive research. In the field of experimental research we can think of 

experiments where the sedimentation velocity of the particles in a dispersion, the effective 
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viscosity of a suspension as a function of shear rate or the self-diffusion coefficient of a test 

particle in the suspension etc. are measured. From all these experiments it can be 

concluded that hydrodynamic interactions between the particles play an important role. 

These effects are prominent in the case of e.g. sedimentation of neutral colloidal particles. 

This problem can also be treated theoretically and several authors have presented 

expressions to describe the effects of hydrodynamic interactions on the sedimentation 

velocity. It was not an easy task to incorporate hydrodynamic interactions as these 

interactions are long ranged. Because of this long range character of the hydrodynamic 

interactions it is not possible to determine configurational averages, which are necessary to 

obtain statistical averaged values for transport coefficients. Batchelor solved this problem 

for the sedimentation problem satisfactorily for dilute suspensions and his result is [1] 

(1.1) u = u (1-6.55cp) ' s 0 

with U the sedimentation velocity of a particle, U its velocity in an infinitely diluted 
s 0 

suspension and <p the volume fraction of suspended particles. The order <p contribution is 

completely determined by including two particle hydrodynamic interactions among the 

suspended particles only. Batchelor also obtained an expression describing the short time 

self-diffusion coefficient of particles in a dilute suspension. His famous result i~ [2] 

(1.2) Dt = D\1-1.83cp), 
s 0 

with Dt the diffusion coefficient of a particle in an infinitely diluted suspension. The two 
0 

relations described above look so simple that the theoretical problems associated with their 

derivations are easily overlooked. In the introductions to the chapters 2 and 3 of this thesis 

we present a short historical review of the theoretical developments concerning two particle 

hydrodynamic interactions. It will be obvious that this review cannot be complete. 
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Apart from the theoretical and experimental investigations a new area of research 

has been developed with the general name computational physics. Part of this area deals 

with the simulation of systems of particles. Two distinct methods are available and have 

been widely used. The first, the Monte Carlo method, was developed in the early fifties by 

Metropolis et aL [3], the other some years later by Alder and Wainwright and called the 

molecular dynamics method [4]. With these simulation techniques the properties of e.g. 

atomic and molecular liquids can be studied. These methods can, in principle, also be used 

for hard sphere dispersions with hydrodynamic interactions among the particles. Brady and 

Bossis developed an approximate method to perform this kind of simulations and called it 

Stokesian dynamics simulation [5]. With this method, which is related to the 

non-equilibrium molecular dynamics method, phenomena like ordering effects and shear 

thinning and thickening can be studied, as well as transport coefficients like diffusion, 

sedimentation and viscosity of suspensions. The results of Stokesian dynamics simulation 

are supplementary to the experimental results although they have some attractive 

advantages compared to experiments, because the parameters of the suspension can be 

controlled much better. One can think of e.g. the monodispersity of the particles in the 

suspension. 

In this thesis we present a method to study both quasistatic and retarded 

hydrodynamic interactions between spherical particles in an unbounded fluid. We start 

with a method to determine the mobility matrix of anN-particle cluster of 

hydrodynamically interacting spheres. In the past several methods to obtain the mobility 

matrix: were presented e.g. by Mazur and van Saarloos [6] and Felderhof et al. [7] for the N 

particle problem and by Jeffrey and Onishi [8] for the two particle problem. Why a new 

method? There is much to say in favour of it. In the first place we want to have a method 

to our disposal that can give us expressions of the components of the grand mobility matrix 

which are not power expansions in typical inverse interparticle distances as is the case in 

the reflection method. The convergence behaviour of these single power expansions is not 
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very good for small interparticle distances. In the two particle case this disadvantage is not 

really important but in the three particle case it is not easy to evaluate the terms of the 

single power expansion, so convergence difficulties cannot be overcome in this way. 

Another important reason for developing this method deals with its extension including 

retardation effects: i.e. hydrodynamic interactions take time to propagate and do not act 

instantaneously as assumed in the Stokes approximation. Using this approach 

hydrodynamic interactions at finite frequencies w axe considered and series expansions for 

the components of the mobility matrix for the low frequency range are obtained only [9]. 

Therefore it is necessary to express these components as a function of the interparticle 

distance R and frequency w in another way. In this thesis we present a method to 

determine the mobility matrix for a system of two particles immersed in an unbounded 

fluid described by the time dependent incompressible linearized Navier-Stokes equation in 

chapter 7 and use the results to calculate the correlation functions of Brownian particles. 

Finally we want to point out that our method has the advantage that we can obtain 

relatively easily numerical results for the mobility matrix of three and more particle 

clusters and some transport coefficients. This is possible as the N-particle problem can be 

reduced to a set of linear equations. 

1.2 Thesis overview 

In chapter 2 we describe the method to solve the problem of N particles, interacting 

hydrodynamically, in an unbounded fluid with an externally imposed flow. The results of 

this method, in the case of the two particle problem, are presented in chapter 3. Many 

results are already known and this enables us to test the convergence behaviour of our 

method. We also present some new results. An alternative approach to the calculation of 

the effective viscosity of a hard sphere suspension as function of volume fraction If/ follows 
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in chapter 4. This approach is based on ideas produced by Saito. In chapter 5 we present 

the results of a study of the three particle cluster in an unbounded fluid. Virial expansions 

of some transport coefficients, including three particle effects, are described there. Chapter 

6 deals with the problem of one particle in an externally imposed flow. The fluid motion is 

described by the time dependent incompressible linearized Navier-stokes equations. We 

present the results of a study on retarded hydrodynamic interactions between two spherical 

particles in chapter 7 and will end this thesis with a short conclusion. 

Most of the work reflected in the chapters 2,3 and 7 has been published [10,11]. The 

work conveyed in the chapters 4,5 and 6 has been or will be submitted for publication, 

although in a slightly different form. 
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Chapter2 THEORY OF QUASISTATIC HYDRODYNAMIC 

INTERACTIONS AMONG SPHERICAL PARTICLES 

2.1 Introduction 

Theoretical research on the hydrodynamic interaction among spherical particles 

immersed in an unbounded fluid started already at the beginning of this century when 

Smoluchowski treated this problem with the method of reflections [1 ]. The many particle 

problem is extremely complex. In the past much attention was already paid to the two 

particle problem. In the twenties Stimson and Jeffery solved the problem of the 

hydrodynamic interaction between two spherical particles, each with a velocity parallel to 

their line of centers, in a bipolar coordinate system [2]. One of the later efforts was the 

calculation of the components of the grand resistance matrix (or the grand mobility 

matrix) of a two particle system [3] as an expansion in powers of a/R, with a the particle 

radius and R the interparticle distance. Some researchers like Burgers [4], Batchelor [5] and 

Felderhof [6] treated the two particle problem in this way. In the case of dilute colloidal 

suspensions it is sufficient to take into account the two particle interactions only and it is 

possible to use the above mentioned results for the calculation of the transport coefficients. 

Since the hydrodynamic interactions between particles in a suspension are long ranged, one 

should extrapolate these results to more concentrated suspensions with caution. In recent 

years many attempts have been made to calculate the many particle hydrodynamic 

interactions in suspensions. Mazur and van Saarloos have developed a method to calculate 

the components of the mobility matrix taking these interactions into account [7]. Their 

method is based on the induced force formalism. 

We present in this chapter a method to solve the many particle problem using the 

6 



time independent incompressible linearized Navier-Stokes equations (in the following 

abbreviated by N.S. equations) and the boundary conditions on the surfaces of the 
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spherical particles. This study lines up with earlier studies of Felderhof et al. because we 

use their formalism of basic functions to describe the fluid velocity fields. There are several 

reasons to develop this method for the calculation of the components of the mobility matrix 

(or friction matrix) for the many particle problem, as already outlined in chapter 1. One of 

the reasons is the fact that we are able to calculate these components to a desired accuracy 

by simply solving a set of linear equations. It is not difficult to show that this method gives 

expressions for the components of the mobility matrix which are not expansions in powers 

of afR, as is the case by use of the method of reflections, but in a fraction where we can 

take down both the numerator and the denominator as expansions in powers of a/R. In 

case of the two particle problem this kind of expansions, obtained by the presented method, 

has the disadvantage that we are not able to use the results for analytical calculations like 

e.g. the determination of configurationally averaged quantities such as short time 

self-diffusion coefficients but this disadvantage is not important for the three and more 

particle problem. In that case the configurationally averaged quantities should be 

calculated numerically anyway. We are able to compare the expressions for the components 

of the mobility matrix for the two particle problem, resulting from this method, with those 

obtained by the reflection method calculated by Schmitz and Felderhof [8] and by Jones 

and Schmitz [9]. From this comparison we can conclude that, in general, this method leads 

to a faster and more systematic convergence when the two spherical particles approach 

each other, than the single expansion of the method of reflections does. We expect that this 

effect is even more important in the case of three and more particle interactions. The 

reason for this behaviour is the simultaneous calculation of the effects of the perturbations 

of the fluid velocity field, caused by the presence of the translating and rotating particles, 

on the components of the grand mobility matrix in cvntrast to the reflection method where 

this calculation is performed successively. In that case it is very difficult to obtain single 
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expansions for the components of the mobility matrix so the results of the method 

presented in this paper should be reliable. We study this reliability for two particle 

interactions in chapter 3 by comparing our results with those obtained from the reflection 

method. Apart from this comparison we present in that chapter some new results too. 

2.2 The formulation of the N-particle problem 

We consider a system of N spherical particles with radii a., i = 1,2, .. ,N, immersed in 
l 

an incompressible, unbounded fluid with an incoming fluid velocity field !o(!)· For the 

moment we assume that v (!) is arbitrary but satisfies the incompressible, linearized 
-o 

Navier-Stokes equations. The particles have velocities U. and rotational velocities 0 .. - -Their centres have position vectors R. with respect to the origin 0. The particles are of -such small size that the Reynolds number of the fluid motion induced by the particles is 

small, Re<<l. With this assumption we can neglect the non-linear term in the 

Navier-Stokes equation. The equations of motion for the fluid, the N.S. equations, have 

the following form: 

(2.1) 1]
0

\1 2_!(!)- Vp(!) = 0, 

(2.2) v. _!(!) = 0 . 

Here_!(!) is the fluid velocity, p(!) is the pressure and 1]
0 

is the shear viscosity. We suppose 

stick boundary conditions at the surface S. of particle i, 
1 

(2.3) v(r) = U. + O.x(r-R.) , with rES., ie{l, .. ,N} . 
---!.-I--I -1 

To preserve linearity we treat the position vector !!:i as independent of the time t. This 
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linearization is equivalent to omitting a term of order (.!I;· V)!(!) in the N .S. equations, 

which is justified because of the smallness of the Reynolds number. The smallness of Re 

implies that the characteristic time of particle displacement is much larger than the viscous 

time a2 fv, with v the kinematic viscosity of the fluid. There is some literature on this point 

e.g. in an article of Hauge and Martin-Lof (10] and the remarks in a review article of 

Herczynski and Pienkowska (11]. After calculation of!(!) and p(!) we are able to 

determine the pressure tensor IT(!)=p(!)I-277
0
(V!(!.)t The pressure tensor can be used to 

determine the force F., the torque T. and the stresslet S., exerted by the fluid on particle i. 
-I -'! I 

The force F. is defined as 
-1 

(2.4) !:i -J ll(~)·d.e.' 
s. 

I 

with d.e_ an infinitesimal element of surface pointing into the fluid. For a spherical particle 

with radius a., 
I 

(2.5) F. = -a 2J IT (r.)dO. , 
-I -r -1. I 

lr.!=a. 
-I I 

with dO. the element of solid angle with respect to the center of particle i and 
I 

The vector e is the radial unit vector in a spherical coordinate system. In the same way 
r 

one can obtain an expression of the torque T. exerted by the fluid on particle i. The 
--!. 

definition of the torque is 

(2.7) ~ = -J(!.i"II(~))·d.e_. 
s. 

1 

For a spherical particle, 
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(2.8) T. = -a3J( e xii (r.))dO .. 
-1 r-r-1 1 

lr.!=a. 
-1 I 

The stresslet S. is the symmetric and traceless part of the first moment of the force 
I 

distribution integrated over the surface of particle i. In the case of spherical particles we 

have the following expression: 

(2.9) S. = -a3J e II(r.)·e dO. , 
1 r-1r 1 

lr.l=a. 
-1 1 

where e II(r)·e is the traceless and symmetric part of e II(!)·e : r - r r r 

(2.10) 
I I 
e rr(!)·e = lte rr (r)+II (!)e '-*I(II (!)·e'. r r "2\r-r- -r r' a -r r' 

We are especially interested in the grand mobility matrix, the analogue of the grand 

resistance matrix defined by Happel and Brenner [3]. This mobility matrix relates the 

velocity difference between the particle and the surface averaged incoming fluid velocity 

field with the forces, torques and stresslets, exerted by the fluid on the particles, etc. This 

relation is expressed, with the shorthand notations ![=(!I_l' ... ,![N)' ~ =(~1, ... ,~N) etc., 

by the following equation: 

U-U 
- --o 

(2.11) 0-0 
- --o 
-G 

0 

where U , 0 and G are the incoming fluid velocity, vorticity and rate of strain, 
--o --o 0 

respectively, averaged over the surface of the respective particles. It is important to note 

that this relation differs from the one introduced by Schmitz and Felderhof [8], their grand 

mobility matrix is a partially inverted grand resistance matrix. The p.tt etc. are matrices 

with 



[
/!! ~ .. /!~ ~] tt • . 

J! = . . ' 
/L..t_ t /L..t_ t 
r-Nl •• 'NN 

(2.12) 

where ,1,: is a mobility tensor. The upper indices t, rand d refer to "translational", 
IJ 

"rotational" and "dipole" respectively. The dot in eq. (2.11) stands for a contraction of 

11 

tensors. It should be emphasized that in this notation for the mobility tensors no 

distinction has been made between tensors of different rank (an exception is made for 

vectors, of course). In eq. (2.11) e.g. the matrix J!tt consists of second rank tensors and the 

matrix id consists of fourth rank tensors. Finally we want to point out the following 

symmetry relations for the components of the mobility matrix, which have the same form 

as those presented by Schmitz and Felderhof [8]: 

(2.13) - tt tt tr rt td dt 
Pij,o{:J = Pji,fJa' Pij,afJ = Pji,fJa' p,ij,afJr = -p,ji,fJra' 

Our aim is the determination of the grand mobility matrix (eq. (2.11)). 

2.3 The set of basic solutions 

We present a complete set of basic solutions of the N.S. equations which is 

convenient for our problem of spherical particles in an unbounded fluid. The idea is not 

new. Lamb presented a set of basic solutions convenient for this kind of problems in his 

book [12]. We follow here an elegant method of Schmitz and Felderhof [13]. Before 

presenting their set of basic solutions we introduce the vector spherical harmonics 

~lm( O,I{J), ~zm( O,I{J) and Q1m( 0,1{}), used by Schmitz and Felderhof in their formulation of 
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the basic solutions. The vector spherical harmonics are defined in the following way: 

(2.14a) 

(2.14b) 

(2.14c) 

Y lm ( 0, cp) are the spherical harmonics and e,., e 0 and e 'P are the unit vectors in a spherical 

coordinate system. The vector functions ! 1m( O,cp), _!!1m( O,cp) and Q1m( fJ,cp) are related to the 

vector spherical harmonics X.jlm( O,cp) defined by Edmonds [14]. The relations are 

(2.15a) 

(2.15b) 

(2.15c) 

!zm( O,cp) = Jl[21+lJ Xl,"&-t,m( fJ,cp) ' 

II1m(O,cp) = v'(Z+1)(2Z+1) X.~ 1+1,m(O,cp), 
Qlm( fJ,cp) = -iv'l(1+TJ X~l,m( O,cp) ' 

with i the imaginary unit. These vector spherical harmonics constitute a complete 

orthonormal set of vector functions on the unit sphere: 

(2.16) Jv.1 (O,cp)·Y* (fJ,cp)dO = 6. 61 6 , 
-, m -pqr JP q mr 

with 6. etc. the Kronecker symbols. With this inner product we obtain the following 
'JP 

orthogonality relations for our vector spherical harmonics ! 1m( fJ,cp), Jl_1m( O,cp) and Q1m( O,cp): 

(2.17a) JA1 (O,cp)·A* (O,cp)dQ = ~2l+1)61 6 , -m -pq :p mq 

(2.17b) 
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(2.17c) J.Q1m(B,tp)·.Q:,z<B,tp)d0 = l(l+l)o1Pomq. 

* Inner products of !!_1m( O,tp) with ~q( O,tp) etc. are zero. To conclude we present a simple 

relation between the vector functions !!_
1
m(Q,tp) and J}_

1
m(B,tp) on the one hand and the solid 

spherical harmonics $t m(E) and $1m(!) on the other, where 

(2.18) f (!) = r -(/+l)y ( () 'P) . 
lm lm ' 

The relations are 

(2.19) 

We are now able to present the basic solutions, introduced by Schmitz and 

Felderhof, with respect to a coordinate system with origin 0. The basic solutions that 

behave regularly for I !.I-+ oo, are 

(2.20a) (~' l -(1+2) ( ) 
Y.lma !J = (1+1)(22+1) r Jl./m (},tp ' 

(2.20b) ( ) 1 -(1+1) (0 ) 
Y.lm/3 !. = 1{1+IJ r .Q/m ''P ' 

{2.20c) 

For these outgoing basic functions the indices land mare restricted to l?.l and I ml sl. The 

accompanying solutions for the pressure are 

(2.21) -(/+1) ( ) p1 (!) = o, p1mf3(r) = 0, p1 (E)= 'fJ ~2l-l)r Y 1 (},tp . ma - mr o m 
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This complete set of basic solutions has been chosen in such way that for alll?_1, I ml5l and 

o-E{ a:,/1,7} we have 

(2.22) 1J V2v1 (r) - Vp1 (r) = 0 , V · v1 (r \ = 0 . o -mer- mer- -mer !.l 

The incoming fluid velocity field should be expanded in terms of an alternative set 

of basic solutions, which have been introduced by Schmitz and Felderhof also [13]. These 

basic solutions behave regularly for 1!1--~0, and have the following form: 

(2.23a) 

(2.23b) 

(2.23c) w (r) = rl+l (C l+l ~)21+3)A (0 cp) + B (0 rp)] . 
-lm')' - -lm ' -lm ' 

For the pressure we have 

For these incoming basic functions the indices land mare again restricted to l?_ 1 and 

I ml5l. It is evident that this set of basic solutions satisfies the N.S. equations for each l, m 

and ue{ a:,/1,7} separately as is the case with the outgoing basic functions (see eq. (2.22)). 

Consider a system of N spherical particles in an unbounded fluid, with an externally 

imposed flow, at the positions .!!:,1, .. ,~ and an arbitrary point! in that fluid. The fluid 

velocity at the point! in the fluid is not governed by the external flow only, because theN 

particles have velocities U. and angular velocities 0. which will influence the fluid velocity 
-J -J 

at that point. The velocity field!(!) is a solution of the N.S. equations, a set of linear 
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differential equations and for that reason we can write the total velocity field as a sum of N 

velocity fields v.(r.), each separately satisfying the N.S. equations, and the incoming flow 
-1 '"'1 

field v (!.), or alternatively: 
-o 

N 
(2.25) v(r)-v (r) = B v.(r.) , with: r. = r-R. . 

-- -o - i=l-1 '"'l '"'1 - -1 

The vector r. is the position vector of the point r with respect to the origin 0., the centre of 
'"'1 - 1 

particle i. All theN velocity fields of the r.h.s. of eq. (2.25) can be expressed in terms of 

outgoing basic solutions (eqs. (2.20a)-(2.20c)) and for every velocity field v.(r.) we have a 
-1 '"'1 

set of coefficients: { ,}1 {},1 , -l1 } . Similarly we can express the incoming flow field in terms 
m, m m 

of the incoming basic functions (eqs. (2.23a)-{2.23c)), and introduce the set of expansion 

coefficients { a~m /f,m' 'Y~m}. The resulting expression for the total fluid velocity !i(!.) = , 
v(r.+R.), which is the fluid velocity defined with respect to the origin 0., is 
- '"'1 -1 1 

(2.26) ~(r.)- E (a~ w1 (r.+R.) +If, w1 ir.+R.) + 1~ w1 (r.+R.)] 
- -t ~~ 1 m-ma -t -1 m-m,.. -t -; m-mr -1 -; 

m 

= E (ai1 ! 1 (r.) + {},1 !zc...ir.) + 1,1 v1 (r.)] 
1~ 1 m ma -t m .. ..., -t m- mr -t 

m 

+ ~ !l [J, v1 (r.+R .. ) + .&, v1 Jr.+R..) + 1, v1 (r.+R .. )] , 
j=ll~ 1 m- ma -1 --IJ m- m{J'-I -IJ m- mr -t --'!J 

j#i m 

where R.. = R.-R. is the position vector of the center of particle i with respect to the 
"-tJ """! -J 

center of particle j. In an analogous way we have for the pressure field pi(r.) 
'"'1 

. • . N • 
(2.27) p1(r.)- E 'Y~ p~nc(r.+R.) = E "'(~ p1 (r.) + E E T, p1 (r.+R..) · 

-t 1~ 1 m m1 -t -I ~~ 1 m m1 -t j=ll~ 1 m m1 -t -tJ 

m m jf:i m 
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2. 4 Calculation of the mobility matrix 

The velocity field (y(!_)-Yo(!)) is a sum of theN velocity fields ~(q)· These velocity 

fields can be decomposed with the help of the set of basic solutions defined in section 2.3. If 

we want to calculate the coefficients a~m' ~m and 'Y~m fori= 1, .. ,N then it is necessary to 

evaluate the following inner products: 

(2.28) J
(vi(r.)-v (r.+R.))·A* {O.,cp.)d!l., 
-""1-o-J-1 --pq11 I 

lr.l=a. 
-J 1 

(2.29) J( v i(r.)-v (r.+R.)) · B * ( O.,cp.)d!l. , 
-""1-()-J-1 --pql1 1 

lr.l=a. 
-t 1 

(2.30) J( vi (r.)-v (r.+R.)). c* ( o.,cp.)dn. , 
-""1-o'""l.-1 --pq11 1 

lr.j=a. 
-J I 

with 

. N 
(2.31) v1(r.)-v (r.+R.) = v.(r.) + I: v.(r.+R..) . 

- ""1 -o '""!. - -'I -:1 j=l-J '""!. -lJ 

j:J: i 
We want to calculate these inner products for all i = l, .. ,N, p~ 1 and I qj ~p. This kind of 

inner products is easy to evaluate for the first part of the r.h.s. of eq. (2.31) but difficult for 

the second part. This has to do with the fact that the velocity fields v.(r.+R .. ), for j#, are 
-J -J -lJ 

decomposed in basic solutions which are defined with respect to the origin 0. instead of the 
J 

origin 0 .. We can rewrite these velocity fields, with the help of the general form of the 
1 

Hobson formula, in terms of vector functions defined with respect to the origin 0 .. The 
1 

general form of the Hobson formula expressing a solid spherical harmonic ~lm(!)• defined 

with respect to 0., in terms of the solid spherical harmonics ~+l (r.), has, according to de 
J m '""!. 



Wette and Nijboer [15], the following form: 

(2.32) "'- ( ) = ~ n st Mj i (R )"' + ( ) 
'f lm !.j 6~ o< s+t)! lm; st -ij 'f 8 t !i ' 

t 

with 

(2.33) 

(2.34) n = [ 47T ll±rn)!]i 
lm (IT-FIJ n=mJf 

and R..=(R..,{ .. ,?'/ .. ), the vector pointing from 0. to 0 .. Note that R .. =(R..,7r-{ .. ,1'/ •. +7r). 
-1J lj lJ lJ J 1 -Jl lJ lj lJ 

We see that MJ1. i t(R..)=O if I m-tl >l+s. After substitution of the general form of the m;s -1J 

Hobson formula into the equation for the velocity field t(!{) we obtain for that velocity 

field 

(2.35) !i(!.)-Yo(!{+~) = 1~ 1 
r~l[ (Z+l){2Z+1) a~mrtfizm( Oi'cpi) 

m 

. [ Jl--2) 2 ] j i ] l + (l+l)Tzm ri(!{+~)Yst( Oi'cpi)- 2{T-FIJ (!{+~j) ~~i Oi'cpi) Mlm;st · 

17 

Schmitz and Felderhof derived this kind of expressions of these basic solutions appropriate 

for the two particle cas& (16]. 
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We can calculate the inner products (eqs. (2.28)-(2.30)) by substituting first the 

r.h.s. of eq. (2.35) for vi(r.)-v (r.+R.) in these inner products. Next we can express them in 
- -'! -o -'! --1 

the translational and angular velocities of the particles by means of the boundary 

conditions. Combination of both results give us an infinite set of linear equations which we 

shall use to calculate the components of the grand mobility matrix. We shall start with the 

more difficult task, the direct calculation of the inner products with the help of the r.h.s. of 

eq. (2.35) for y_ic;:i)-Yo(!;,+!i), iE{l, .. ,N}. We do not give full details in this section but 

refer the interested reader to appendix I. There we have collected all the items necessary to 

obtain these inner products, such as special integrals and products of spherical harmonics. 

The final results are 

(2.36) 

(2.37) 

J 
i * -:Pi ( v (r.)-v (r.+R.))·A (O.,cp.)dn. = p(p+l)a. 7 

- -I -o -'! --1 -pq 1 1 1 I pq 

lr.l=a. 
-1 1 

n lN[ l ... 
+ (p+~j! ar j:l P(2p+l)1~p+1)(2Z+1) aimM1~;pq 

jfi m 

- i(2p+l) I: (lg-+-_17t11)_ &, Mj i + jpa7 I: l(2t---1 )7! Mj i 
1~ 1L(T+IJ lm lm;p-1,q 1 1~ 1 lm lm;pq 

m m 

-jp(2p+l) I: l)2l-li R:.7! Mji + {~p±l) I: (2l+2~if}l) 
~~ i2 +2p- ) lJ lm lm;pq (2P=l}1~ 1 (2 l + p-
m m 

x((lq+mp)(2(lq+mp)-(m+q))-(lp+mq)(l+p-l))T,
1
' Mj1i. , J , 
m m1p-.c;,q 

J 
i * -{P+2) i (v (r.)-v (r.+R.))·B (O.,cp.)dn. = pa. a 

--1-Q-'1--1 -pqll 1 1 pq 

lr.l=a. 
-1 1 

. n P+l N . .. 
--!p(p+1)(2p-l)a!'7

1 
+ (p+Pqjr __ll_._p+ a. I: 1: l(2~1)T,1 MJ1

1
• , 

1 pq . {2p+3J 1 j=ll~J m m,pq 

jfi m 
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(2.38) 
J 

i * -(p-+1) i ( v (r.)-v (r.+R.))·C (fJ.,cp.)dn. =a. fj 
--t-o-t-1 -pqll 1 1 pq 

lr.J=a. 
-1 1 

n pq p N [ 1 · j i . · j i J - (p+q)l a. E p ll rq::n If, M1 . +all (lq+mp)(2l-1)~ M1 . 1 . 
. Ij=l ~~ 1\., ... 1 m m;pq 1~ 1 m m,~ ,q 

jf: i m m 

In this thesis we shall present the results of studies of two special kinds of incoming 

flow fields. The first one is trivial because we assume that the fluid is at rest at infinity. 

This case can be studied by putting Yo(!)=Q in all the equations derived above and below. 

In the second case the flow field has the form: 

(2.39) v (r\ = G ·r. -o!.l o-

In this equation for the incident flow, G represents a constant rate of strain tensor. If we 
() 

define the incoming fluid velocity field with respect to the origin of particle i we obtain 

(2.40) v (r.+R) = G ·r. + G ·R. = v (r.) + U . , 
-o ""1 -1 0 ""1 0 -I -o ""1 -o1 

with U . the incoming flow at the center of particle i or equivalently the incoming fluid 
-ol 

velocity field averaged over the surface of particle i (see in this context eq. (2.11 )). We can 

expand v (r.) in terms of basic solutions (eqs. (2.23a)-(2.23c)). There are few coefficients 
-o; 

which are nonzero. These are the coefficients related to the linear basic functions, i.e. 

a~mf:O, with I mJ ~2, and tJ;mf:O, J mJ SJ. We can rewrite eq. (2.40) in the following way: 

+2 +1 
(2.41) v (r.+R) = E a~ w Jl (r.) + E tJ; w 1 f:J(r.) + U .. 

-o -t -1 m=-2 m- ma-t m=-1 m- m ; -o1 

We can now calculate the inner products (eqs. (2.28)-(2.30)) with the help ofthe 

boundary conditions as defined in section 2.2 (eq. (2.3)). These boundary conditions can be 
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rewritten with respect to the new origin 0.: 
1 

(2.42) vi(r.) = U. + O.xr. for 1!·
1
l=a.

1 
andie{l, .. ,N}. 

- -1 --1 -1 -:1 

Further we use eq. (2.41) which is determined using boundary conditions at infinity 

concerning the external flow. The first inner product (eq. (2.28)) now becomes 

{2.43) J( v i(r.)-v (r.+R.))·A * ( O.,cp.)dO. 
- -:l -o -:1 --1 -pq I I I 

lr.!=a. 
-1 I 

= (U.-U. ) ·J A* (O.,cp.)dO.- a.(0.-0. ) ·J c* (fJ.,cp.)dO. , 
--1-10 -pq11 I 1-1-10 -pq11 I 

I r . I =a. I r . I =a. 
-1 I -1 I 

where U. and 0. are the surface averaged incoming fluid velocity and vorticity 
-to -10 

* respectively. In this relation we have used the following vector equality: A ·(O.xr.) = 
-pq -1 -:l 

* r.O.·(e xA ). It is obvious that these relations are valid for all ie{l, .. ,N}. The integrals 
1-1 r -pq 

with the vector spherical harmonics can be calculated in a straightforward way a.nd we find 

(2.44) J(vi(r.)-v (r.+R.))·A* (fJ.,cp.)dO.=lo 
1
[n

11
(o 

1
-o 

1
)(U. -U.) 

- -:l -o -:l -1 -pq I 1 1 " p, q,- q, IX OlX 

lr.j=a. 
-1 I 

+in11(o 1+6 1)(U. -U . )+2n10o 0(u. -u . >)-loa.a~ 6 ", q,- q, IY OIY q, IZ OIZ 1 «.q p,.o 

(2.45) J( v i(r.)-v (r.+R.))·B* (O.,cp.)dO. = 0, 
- -:1 -o -:l -1 -pq 1 I 1 

lr.l=a. 
-1 I 

(2.46) J( v i(r.)-v (r.+R.))·C* (O.,cp.)dO. 
- -:l -o -i: --1 -pq I 1 l 

lr.j=a. 
-1 I 
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a.o 1[n11(6 -1-6 1)0. +in11(6 -1+5 1)0. +2n100 on. ]-2a.~1 0 1. 1 p, q, q, 1X q, q, 1y q, 1Z 1 q p, 

The constants n10 and n11 are special cases of nlm (eq. {2.34)). The last inner product can 

be rewritten by using the surface averaged vorticity, 

(2.47) 0 . =): I f{Vxv (r.+R.))dO. 
.-...o1 't7l" -o -1 -1 l 

lr.j=a. 
-1 1 

= s! [n1i~.-r~.t)ex-in11(~.-t+~)ey +2nt~,oe~J 

with e , e and e the unit vectors in a Cartesian coordinate system. This expression is 
X y Z 

independent of the chosen origin. Combination of eqs. (2.46) and (2.4 7) gives 

(2.48) J(vi(r.)-v (r.+R.))·C* (ll.,cp.)dO. 
-;-o-1-J. -p1J.11 1 

l!.i I =ai , 

{} ' .-...o 

= a.o 1 [n11(0 1-o 1)(0. -0 )+in11( o 1+0 1)(0. -0 )+2n106 0(0. -0 )J . 
1 p, q,- q1 IX OX q1- q, lY oy q1 lZ OZ 

Combining eqs. (2.36), (2.37) and (2.38) with eqs. (2.44), (2.45) and (2.48) respectively we 

obtain an infinite set of linear equations of the coefficients { a~m,Jf,m,1~11J with iE{l, ... ,N}. 

It is possible to solve this set of linear equations if we define an upper limit for the allowed 

values of land p, e.g. lmax=Pmax=L. With this restriction we say that all the coefficients 

a~m' Jf,m and 1lm are zero for l>L. In the simplest case we take L=t and as a consequence 

of this decision the indices m and q can take the values -1, 0 and 1 only. We have now a 

set of 9N linear equations from which we can calculate the 9N coefficients a~m' .B~m and 

1~m· We call this solution a first order solution of our set of linear equations. With the 

upper limit L we obtain 3L(L+2)N linear equations with the same number of unknown 

coefficients and we can calculate the so called Lth order solution of the set of linear 
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equations. The decision, which upper limit L we want to use, depends on some factors e.g. 

the desired numerical accuracy of the coefficients a~m etc. and the convergence behaviour 

with increasing L of the coefficients which we are interested in. We come to this point later 

on. 

With the help of this formulation it is not difficult to derive from eqs. (2.26) and 

(2.27) a relation between the force F., torque T. and stresslet S., exerted by the fluid on 
--1 --1 l 

particle i, on one hand and some of the expansion coefficients on the other hand. That is 

the aim of the next section. 

2.5 Force, torque and stresslet as function of the coefficients 

We start this section with the derivation of expressions of the force F. and torque 
--1 

T., exerted by the fluid on particle i, in terms of some coefficients. These derivations are 
-1 

relatively simple. Such a derivation for the stresslet S. requires much more space. We give 
1 

a short outline of how this result can be achieved. The derivation for the two particle case 

is presented in appendix II. It can be skipped, without consequences for the understanding 

of the sequel, if one is interested in the final result only. 

The relation between the force F. and torque T. on the one hand and the coefficients 
--1 -1 

{ a~m'~m'1'~m} on the other hand can be determined with the help of the eqs. (2.5), (2.6), 

(2.8), (2.26) and (2.27). In the first place one can calculate the total pressure tensor ni, 

which is defined in the following way: 

. N 
(2.49) IT1(r.) =IT (r.+R.) + IT.(r.) + E IT.(r.+R..). 

-1 0 -t -j 1 "'1 j=l J -l -!J 

j# i 
This definition is equivalent with the definitions of yi(~) and pi(!J The equation of the 

force is 
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(2.50) F.= -In (r.+R.)·dS. -Jn.(r.)·dS.- ~ Jn.(r.+R .. )·dS .. 
-! 0 -! -'I -1 1 -1 '-! j=l J -! -'IJ -1 

S. S. j:f:iS. 
1 I I 

The solutions (2.26) and (2.27) can be considered to exist also within the particles. Then 

the pressure tensor II.(r.) has a singularity within the surface of particle i and no 
1-! 

singularities outside the volume of particle i, for all i = l, .. ,N. The pressure tensor 

belonging to the incoming fluid velocity field has also no singularities within the surfaces of 

the particles. Thus the pressure tensors II (r.+R.) and II.(r.+R .. ) have no singularities 
0 -! -; J -! -'IJ 

within the surface S. and by using Gauss' theorem we can rewrite eq. (2.50). The result is 
1 

(2.51) F.= -lii.(r.)·dS.- Jv .. [n (r.+R.)+ ~ n.(r.+R .. )Jdv., 
-! 1 -'I -I 1 0 -I -1 j=l J -! -'IJ 1 

. v. j:f i 
1 1 

where V. is the volume within the surface of particle i. An alternative formulation of the 
1 

N.S. eq. (2.1) is: V ·II(!) = 0, which is also valid for the constituents of the pressure tensor 

because of the linearity of the N.S. equations. If R.. is a constant then V.=V .. The last term 
--IJ 1 J 

of eq. (2.51) disappears. Using eqs. {2.5) and (2.6) gives 

(2.52) F.= a?[-Jp.(r.)e d!J. + 17 (k-t]Jv.(r.)d!J. + ;oJv.[r.·v.(r.)]dn.]l 
-1 1 1 -1 r 1 o i i -1 -1 1 i 1 -1 -t -1 1 r.!a. 

1 1 

After a straightforward calculation of the integrals we obtain 

(2.53) 

Thee , e and e are the unit vectors in a Cartesian coordinate system. We can obtain an 
X y l1i 

expression for the torque T. exerted by the fluid on particle i in an analogous way: 
-; 
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(2.54) T. 
-1 1J a1~[[-.i---r1 ]Je "!·(!:.)dO.+ -r

1 Je xV[r.·v.(!:.))do.]l o ur. . r 1 1 1 • r -1 -'1 1 1 !a 
1 1 1 r. . 

1 1 

The expressions for the force F. and the torque T. are valid for all values of i=l, .. ,N and we 
--1 -1 

see that, for each particle, they depend each on three coefficients only. 

In the same way one is able to express the stresslet S., exerted by the fluid on 
1 

particle i, in terms of some coefficients, in this case the 'Y~m· The final expression is 

+.2 . 
(2.55) S. = - j'l] E 1~ a., , 

1 om=-! .om .. m 

with 

(2.56a) a.,o =- 3n87!" (I--3e e)' "'• eo z z 

(2.56b) a., 1 =- 8
71" [<e e +e e )+i(e e +e e )] =-a: 1 , 

"'• ll!l X Z Z X y Z z y .. ,-

(2.56c) a .. "= n16
7r [<e e -e e )+i(e e +e e >] = a: ... 

.o,K. _2.2 X X y y X y y X .. ,-.o 

There are N+l sources contributing to S., the incoming fluid velocity v (!:),which gives the 
1 -o 

stresslet S?, and theN velocity fields v.(r.) scattered from the particles, which uive the 
I -J-J o· 

contributions st We first determine the contribution of the incoming flow field. The 
1 

result is 

+B 
So 3 '{'I o . = 1J a lJ a,. a., . 

1 o m=-.2 .. m .. m 
(2.57) 

In an analogous way, using the expansion in basic solutions of pi(!:i) and .Y;,(!:i), we obtain: 



• 9 +! i 
(2.58) S~=--mf1 E 'Y .. CT., • 

1 om=-2 .c.m .,m 

The determination of SJ, with j#, requires more extensive calculations. First we have to 
I 

express the pressure pj(!.) and the fluid velocity !j(!.) in terms of~ (see eqs. (2.26) and 

(2.27)). The final result has the following form: 

N +! +2 . 
' 3 0 3 I 0 2' E S~ = -11 a E a2 cr2 -r;'fl E 'Ye cr2 = -8. + 1S~. 

j:l I 0 q:-2 q q 0 q=-2 q q 1 1 
(2.59) 

j:f: i 
The final form for the stresslet S., exerted by the fluid on particle i, is now 

1 

N +.! . 
(2.60) S. = S? + S~ + E sJ = -jq E 'Y~ cr2 = 48~. 

I 1 1 j=l 1 0 q=-.$ q q 1 

j:f: i 
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It may be noted that in the limit R-+m all the S~ should be zero if j#, so that eqs. (2.59) and 
1 

(2.60) lead to 

(2.61) 1 im S. =iS?, 
R I 1 

,-I(D 

where the coefficient i corresponds to the Einstein coefficient in the virlal expansion of the 

effective viscosity of hard sphere suspensions. 

2.6 Conclusion 

The main part of this chapter concerns a method for the determination of the grand 

mobility matrix for a system of N spherical particles, interacting hydrodynamically, with 

stick boundary conditions in an unbounded fluid with an externally imposed flow. We 

conclude that we are able to derive the grand mobility matrix from a set of linear equations 
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(eqs. (2.36)-(2.38)). In general, this can be done with the help of a computer programme 

for solving linear equations. In the next chapter we present the results of a comparison of 

the convergence behaviour of our method with the results obtained from the reflection 

method in the case of the two particle problem which was already intensively studied in the 

past. The aim of this comparison is not especially to show the superiority of our method 

concerning the two particle problem, because this is in the two particle problem not very 

relevant. The shown convergence behaviour is important if we study three particle 

hydrodynamic interactions because not many results are available to compare our results 

with, so it is necessary to have an idea about the convergence behaviour. Furthermore we 

shall study the reliability of this method by calculating some transport coefficients and 

comparing them with results from the literature. Finally we want to remark that the same 

procedure is followed in studying retarded hydrodynamic interactions in suspensions. The 

results are presented in chapter 7. 
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Chapter 3 THE TWO PARTICLE PROBLEM, A COMPARISON 
AND SOME NEW RESULTS 

3.1 Introduction 

We now consider a suspension where the concentration of the suspended particles is 

very smalL The volume fraction rp:: fn3n
0 
<<1, where a is the radius ofthe particles and 

n is the concentration of suspended particles. Under this circumstance the best approach 
0 

to the problem is to consider two particle hydrodynamic interactions only. Furthermore we 

assume that the fluid is at rest at infinity, viz. !o(!)=Q. We can calculate the effects of the 

two particle hydrodynamic interaction on the components of the grand mobility matrix 

using the method presented in chapter 2. Some of the resnlts are already known with great 

accuracy. We refer to the work of Jeffrey and Onishi (expansion in powers of a/R) [1], Kim 

and Mifflin (numerical calculations via a boundary collocation technique) [2], Ladd 

(numerical calculations using the induced force formalism) [3,4] and, of course, the work of 

Cichocki, Felderhof, Jones and Schmitz [5-8]. These authors express the components of the 

grand mobility matrix as an expansion in powers of a/R. In this section we can compare 

some of their results with the results obtained in chapter 2 and discuss the convergence 

behaviour of the components of the grand mobility matrix. This gives an indication of the 

reliability of our results and the usefulness of this method. This is important if we want to 

apply our method in the study of three particle hydrodynamic interactions. We further 

focus special attention on the first order virial coefficients of the short time translational 

and rotational self-diffusion coefficients Dt and Dr. On the other hand we present some 
8 s 

new results such as the second order virial coefficient of Dr and the virial expansion, to 
s 

second order in rp, of the rotational counterpart of the sedimentation velocity, 0 . We 
s 

28 
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compare these results with computer simulation results of hard sphere suspensions. 

3.2 The set oflinear equations for the two particle problem 

In the case of dilute suspensions we can modify the set of linear equations (eqs. 

(2.36)-(2.38), (2.44), (2.45) and (2.48)). First we set N=2, a1=a2=a and R12=R21=R. 

Then we put Yo{!)=Q because we assume that there is no incoming fluid velocity field. We 

can now choose the two particle centers to be situated on the z-axis of a Cartesian 

coordinate system. This configuration leads to a considerable simplification of the general 

form of the Hobson formula ( eq. {2.33)) resulting in the formula derived by Hobson [9]. In 

our notation this formula comes to 

(3.1) 
n t •. 

"'-1 (r.)=E~t MJ1
1 (R)"'+(r.), jr.j<Randi,J.E{l,2}, 

'I'm -J s?;O's+.,. m;st 'I' st -1 -1 

t 

(3.2) M21 (R) = {-I)s+t ( l+s)! R-(l+.t+l)s 
lm;st n lm ( Z-t)! m,t ' 

(3.3) 

The presence of the Kronecker symbol in the Hobson formula results in a decoupling of the 

set of linear equations for different values of the azimuthal indices (m and q). Finally we 

introduce the new set of coefficients {A~m,B~m,C~m}, appropriate for the two particle case, 

which have the following relation with the previously introduced set of coefficients: 

(3.4) 
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(3.5) 

(3.6) 

The analogue of the eqs. (2.36)-{2.38) for the two particle problem is 

- ( 2j+l) x2
P"-

1E [tp(l'l'l---l(l+p)+1)+q2(lp-2(l+p)+1)] 1 [l+p]d p(p+l ( 2p--l) ~1 r ~ (T-F'PJ 1-q lq' 

(3.8) 

where we used also eq. (2.45) and 

(3.9) 
•t..2 P+l J ~u i X i * i 2P+l 1 l+p j 

v (r.)·C (O.,<p.)dO. = B + px E n;:pi[t-PlB1 llpq - -1 -pq I I I pq ~ 1\'T.I.J qJ q 

l!i l=a 

+ qx2P+2 E (2&-1)(1+P)cj , 
~1 1-q lq 

where x = E• the ratio of the particle radius a and the interparticle distance R. This ratio 

is always less than or equal to i· Furthermore: 



[ 

(-1)p+q i=1 [ (-1)p+q i=1 [l+] (l+ ) ! 
.6.!= . .6.2= . p = - f-

1 ' i ' 1--q (l-q) ! p+q)! 
1 i=2 -1 i=2 

Finally: if i=1 then j=2 and vice versa. Combination of the eqs. (3.7)-(3.9) with the eqs. 

(2.44), (2.45) and (2.48) gives the set of linear equations which is necessary for the 

calculation of the components of the grand mobility matrix. 

3.3 The two particle mobility matrix 
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In this section we pay some attention to the components of the grand mobility 

matrix. We shall focus on the translational and rotational part of the mobility matrix only, 

so we are interested in the following relation (see eq. (2.11)): 

(3.10) [~ = -['p /Str]· [E_J . 
0 "rt rr T - ,. IS -

where !!.=(!!.1'!:[
2

) etc. For small values of the upper limit L we can calculate the 

components of the grand mobility matrix as a function of x directly and for large values of 

Lit is possible to perform the same calculations with the help of so called algebraic 

computer programmes like REDUCE. In the case of large values of L we restrict ourselves 

to numerical calculations of the components of the grand mobility matrix. We have made a 

programme for the numerical evaluation of these components, which, in principle, is 

nothing but solving a set of linear equations. This computer programme is obtainable from 

the author upon request. The calculations consist of the following steps. With the help of 

the set of linear equations with upper limit L, we first express all the coefficients A i , with 
pq 

p"?.1, B!q' with p"?_2, and C~q' with p"?_2, for both i=l and i=2 in terms ofthe coefficients 

B~m' B;m' c;m and c;m with me{l,0,-1}. In this way we have reduced the set of 6L(L+2) 
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linear equations to a set of 12linear equations. With the help of eqs. (2.53), (2.54), (3.5) 

and (3.6) we express the coefficients B~m and C~m' for me{t,0,-1} and iE{1,2}, in terms of 

the forces F. and torques T. exerted by the fluid on the two particles and substitute the 
-1 --I 

result in the set of linear equations. It is not difficult to see that we can extract the 

components of the grand mobility matrix from this just created form of the set of linear 

equations. The calculations can be simplified with the symmetry relations of the 

components of the grand mobility matrix (see eq. (2.13)) and the fact that for our two 

particle system, where the particles have the same radius, the components of the grand 

mobility matrix do not change if the particle labels are interchanged. For the present two 

particle problem we can write the grand mobility matrix in the following way: 

u tt tr 0 0 0 0 F 
-:x fJXX fJXY -:x 

{} rt rr 0 0 0 0 T 
-y fJyx fJYY -y 

u 0 0 tt tr 0 0 F 
(3.11) -y =-

fJxx -pxy -y 

{} rt rr 0 0 -pyx fJYY 0 0 T 
-:x -x 

u 0 0 0 0 tt 0 F -s fJU -z 

{} 0 0 0 0 0 rr 
L!s -s ~-'sa 

In the case L=2 we give the results of the calculation of the matrix ptt: 
zz 

(3.13) 

l£x12 _ 1!Zx'4 + ~~6 + smx's _ tx22 _ ~24 _ %2x26 _ 2HUx2s)j 

(1- 25x6 + 114xs- !!¥x'o + 9xl6 + ~x18 + ~x2o)J] ' 

lttt = ~~.tt = -1 [<lY _ x3) + [<75x7 _ 102x9 + 6732x11 _ 
,...12,zz ,...21,zz 611'7] a ;c-- 4 3D' 

0 

!V-xta _ 6xl1 _ ~xt9 + l£Mx21 + .qpx23)/ 

(1 _ 25xo + l14xs _ !!¥x1o + 9x16 + ~xiS + 2l84x20)]] . 

We can express p,
1
tt
1 

and p.t
12
t in a Taylor expansion around x=O and the resulting 

,zz ,zz 



expressions resemble the results of the reflection method (see e.g. re£.[7]) but in the case 

that x~ then the denominator differs to much from unity so that we have convergence 

problems. For that reason we cannot cut off the Taylor expansion very quickly. We meet 

with this kind of problems in the other components of the grand mobility matrix too. 

We want to compare the convergence of our results with the convergence of the 

results of Schmitz and Felderhof [7] who derived the components of the grand mobility 

matrix as an expansion in powers of x=a/R. For the comparison we use the following 

criterion: we expand onr Lth order expressions around x=O in a Taylor expansion and 

compare the coefficients of this Taylor expansion with those derived by Schmitz and 

Felderhof. Suppose our Lth order Taylor expansion for e.g. p,
1
tt
1 

(x) looks like 
,zz 

tt N 
(3.14) p,

11 
(x) = ~ a xP, x<<1 , 

,zz p=O p 

the Mth order Taylor expansion of Schmitz and Felderhof looks like 

tt M 
(3.15) p, (x) = :E b xP 

ll,zz 
0 

p 
p= 

and ap = bp for p=l, .. ,n and an+l :f. bn+l' It is clear that we can choose Nand M 

arbitrarily, so we choose N>n and M>n. Then we compare our Lth order result for 

p,t
11
t (x) with the nth order Taylor expansion of Schmitz and Felderhof. We do this for 
,zz 
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some values of L for all the ten independent components of the grand mobility matrix. In 

fig. 1 we have plotted the components of the grand mobility matrix as a function of the 

order L for two values of x=a/R and compare them with the results of Schmitz and 

Felderhof. We come to the conclusion that the results presented in this chapter are reliable 

and we see further that these results converge more systematicly if x=0.4 and for some 

components of the grand mobility matrix even for x=0.5. In fig. 1 we have plotted results 

of our method up to L=20 in order to compare these results with those obtained from the 

reflection method. To study the limiting values of the components of the mobility matrix 

in the case of (nearly) touching spheres higher order results can be taken into account, with 

L up to 150. In principle we can show the same kind of figures for 0.4<x<0.5 and the 
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compare the results of Schmitz and Felderhof {x) with our results (+ ). 
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convergence behaviour of these results is, as expected, between those shown in fig.!. We 

cannot compare most of the components of the grand mobility matrix with exact analytical 

results for the simple reason that these results are not available but Batchelor tabulated 

some exact results for mobility coefficients in the case the two particles are acted on by 

equal forces parallel to and perpendicular to the line of centers (z-a:x:is) respectively [10]. In 

table I we compare our results for some values of L with the exact values (in the rows 

· ) . I t tt tt t tt tt labeled w1th L=m . In th1s table, f.L =1 611"'11 a, f.L =p.11 +J.L12 and f.L =p.11 +p.12 · o 0 ZZ ,zz ,zz XX ,XX 1XX 

The rate of convergence is comparable to the one obtained by Ladd. He has also used a 

direct inversion method based on the theory of Mazur and van Saarloos [3]. We can also 

study the mobility coefficients in case the two particles are acted on by equal torques 

parallel to and perpendicular to the line of centers (z-a:x:is) respectively. In table II we 

compare the convergence of the mobility coefficients with increasing L with limiting values 
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TABLE I 

R/a L 11-!/ P,o 11-!xl 11-0 
R/a. L 11-!v/ p,o 11-!x/ 11-0 

2.0000 2 1.5564 1.4160 2.6749 2 1.4706 1.3032 
4 1.5503 1.4119 4 1.4662 1.3029 
6 1.5501 1.4102 ro 1.4662 1.3029 
8 1.5501 1.4089 
ro 1.5500 1.3799 3.0862 2 1.4264 1.2587 

4 1.4236 1.2586 
2.0049 2 1.5557 1.4150 ro 1.4236 1.2586 

4 1.5496 1.4109 
6 1.5494 1.4094 4.0000 2 1.3482 1.1951 
8 1.5494 1.4081 4 1.3472 1.1950 
ro 1.5494 1.4027 ro 1.3472 1.1950 

2.0907 2 1.5438 1.3972 6.0000 2 1.2428 1.1273 
4 1.5378 1.3946 4 1.2427 1.1273 
6 1.5376 1.3939 ro 1.2427 1.1273 
8 1.5376 1.3936 
ro 1.5376 1.3933 8.0000 2 1.1847 1.0947 

ro 1.1847 1.0947 
2.2553 2 1.5219 1.3661 

4 1.5161 1.3649 
6 1.5160 1.3648 
ro 1.5160 1.3648 

of the mobilities produced by our method with large values of L (in the rows labeled with 

L ) I th. t bl 1/8 3 r rr rr d r rr rr =ro · n 18 a. e, 11- = 'ff1J a ' f.!: =JJ-11 +JJ-12 an 11- =JJ-11 +JJ-12 • 0 0 ZZ 1ZZ 1ZZ XX 1XX 1XX 

We can conclude that the l I p, converge fast if L increases. The p,r I p, converge fast for 
U 0 XX 0 

increasing L if R/a~2.1 but convergence is poor if R/a<2.1. One can understand the 

convergence behaviour of p,r I p, by considering the friction forces between the two 
XX 0 

particles when they approach each other. The particles have equal angular velocities which 

are perpendicular to the z-axis. For that reason the particle surfaces in the region of 

contact move in opposite directions which is not the case when the particles move with the 

same velocities or when they rotate with the same angular velocities parallel to the z-axis. 

The more the particles approach each other the higher the gradient in the fluid velocity 

will be and consequently the bigger the friction forces. This effect is strongly marked in the 

case of touching spheres (R/a=2) where we are not able to calculate the limiting value for 
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TABLE II 

Ria L tt:z1 Jl.o tt~lt£0 Ria L Jl.:.)Jl-0 tt~ltto 

2.0000 2 1.1146 0.8709 2.6749 2 1.0511 0.9637 
4 1.1095 0.7999 4 1.0508 0.9604 
6 1.1092 0.7702 6 1.0508 0.9602 
8 1.1092 0.7530 Cll 1.0508 0.9602 
Cll 1.1092 (0.6516) 

3.0862 2 1.0337 0.9787 
2.0049 2 1.1139 0.8725 4 1.0336 0.9777 

4 1.1089 0.8042 6 1.0336 0.9776 
6 1.1086 0.7774 ro 1.0336 0.9776 
8 1.1086 0.7630 
Cll 1.1086 0.7311 4.0000 2 1.0156 0.9913 

4 1.0156 0.9911 
2.0907 2 1.1020 0.8964 ro 1.0156 0.9911 

4 1.0984 0.8591 
6 1.0982 0.8522 6.0000 2 1.0046 0.9976 
8 1.0982 0.8508 ro 1.0046 0.9976 
Cll 1.0982 0.8503 

8.0000 2 1.0020 0.9990 
2.2553 2 1.0830 0.9269 (I) 1.0020 0.9990 

4 1.0812 0.9112 
6 1.0810 0.9099 
8 1.0810 0.9098 
Cll 1.0810 0.9098 

l I J1. • The value in parentheses in table II is the calculated value for p.' Itt for L=150. 
XX 0 XX 0 

Lubrication theory, according to Jeffrey and Onishi, predicts a value 0.534 [1]. 

There is a well known problem with the results presented here (and all the results 

obtained by the reflection method) because for OS(~- 2)S10-3 there is a discrepancy with 

lubrication theory (see e.g. ref.[ll]). However, in the case of suspensions, with particle radii 

of the order of 10-6 to w-7m or less, the range where lubrication theory is valid and 

relevant is of the order of 10 Angstroms or less and in that range we cannot use 

hydrodynamic theories, neither ours nor the lubrication theory, anyway. 
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3.4 Translational and rotational self-diffusion 

With the help of the grand mobility matrix it is possible to calculate the short time 

translational self-diffusion tensor,Dtand the short time rotational self-diffusion tensor Dr 
s s 

of suspensions. These quantities can be used to describe the diffusion of a single test 

particle on a time scale in which the configuration of the particles remains nearly constant. 

These diffusion tensors are defined in the following way: 

· t kB T N tt tt 
(3.16) D = ~ < E JL:.> = kBT <p11> , 

s i=l ll c c 

(3.17) 
k T N 

Dr B '(\ rr k T rr 
= ~ <.., p .. > = B <pu> ' 

s i=l 11 c c 

where N is the number of particles in the suspension, kB is Boltzmann's constant, T is the 

absolute temperature and< .. > denotes an average over all configurations of theN 
c 

particles inside a volume V. In the case of a dilute suspension we take into account two 

particle interactions only and the average over the configuration of the particles can be 

carried out with the help of the pair distribution function g(!!) which has up to order 

tp=~'IT'8.3n the following form [12]: 
0 

0 ; 1.!!:1 <2a 

(3.18) g(!!) = 1 + <p(8- 3~ + J!(~) 3) ; 2a~ I !!J~4a, 
1 ; l!!:l>4a 

We can now write for nt 
8 

(3.19) nt = nt[I+n l(6'11Tf aJ.I.t1t1 -1)RRg(!!)dR + n J(61r17 aJ.I.t1t1 -1)(1-RR)g(R'dRJ 
8 0 0 0 ,zz - 0 0 ,xx !!./_ 

3 ma 
(I) 

= D!I[l + 
4
;n0 J [6rf10a(tt~~,zz+2J.!.~~,xx)-3]R2g(R)dR] , 

2a 

where D! = kB T /(6'11Tf
0
a), n

0 
= N/V, I is the identity tensor and g(R) = g( I!!: I). The 
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tensor RR contains the orientational configuration of the particle pair; for our calculations 

of the grand mobility matrix we have used the special configuration RR = e e . In all our 
I! I! 

calculations we have expressed the components of the grand mobility matrix as a function 

of the dimensionless parameter x=a/R and as a consequence we can write for Dt 
s 

t 
(3.20) D! = D!I[l + tp I [611"f70a(Jti~,zz(x)+2Jtii,xx(x))-3Jg;~) dx] . 

0 

The function g(x) is the pair distribution function as a function of the parameter x. For Dr 
s 

we obtain in an analogous way 

1 
2 

(3.21) D~ = D~I[ 1 + tp I [ 811"f70a3(Jt~~.zz(x)+2Jt~~.xx(x))-3 J g;~) dx J , 
0 

where Dr= kBT/(87rf7 a3). Both self-diffusion tensors can now be calculated numerically 
0 0 

as a function of the volume fraction tp, often called a virial expansion, and the resnlting 

expressions for Dt and Dr are respectively 
s s 

(3.22) 

(3.23) 

It is important to note that three particle interactions give, in the case of D\ a significant 
s 

contribution to the short time self-diffusion tensor of the order vr (see ref. [12J and chapter 

5). In the case of Dr we expect that three particle interactions are less important. We can 
s 

explain this different behaviour by comparing the following expressions for x<<i [7]: 
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Fig.2. 

c...O 
Cl 
........ 

C...Vl 
Cl 

0.2 0.4 

The short time rotational self-diffusion coefficient, normalized with D,., is 
0 

platted versus cp, the volume fraction. The solid curve represents our result, 

eq. {3.23}, and the rectangles, circles and crosses represent simulation results 

of Phillips et al. 

We see that the translational expression and thus Dt (see eq. (3.20)) will be more sensitive 
s 

to hydrodynamic interactions than their rotational counterparts. We compare our result of 

Dr (eq. (3.23)) with computer simulation results of Phillips et al. [13]. We have plotted 
s 

their results combined with our result of Dr /Dr in fig. 2. 
s 0 

We compare the results for the first order virial coefficients of the translational and 

rotational self-diffusion tensors, d~=-1.83 and d~=-D.63 respectively, with the results for 

these coefficients, d~,rf1 and d~,rfl' obtained by Cichocki and Felderhof [14] in table III and 

IV respectively. We use the same criterion as mentioned above for the comparison of the 

components of the grand mobility matrix. We can conclude that our first order virial 
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TABLE III TABLE IV 

L dt 
1 

dt 
1, rfl L dr 

1 
dr 

l,rfl 

7 -1.819 -1.809 6 -o.590 -0.544 

25 -1.831 -1.829 24 -o.628 -0.614 

50 -1.832 -1.830 49 -o .631 -0.624 

75 -1.832 -1.831 74 -o .632 -0.627 

100 -1.~32 I -
00 -1.831 

100 -o.633 -

00 - -0.630 

I I 

+ 
-1.60r- -

-1.70r-
X 

-

-+-~ ¥ 
"'0 

-1.80 + X 
- + f 

-
i f ¥ ¥ 

X 

-1.900 I I 

5 10 
order L 

Fig.3. The first order virial coefficient d; of the normalized short time translational 

self-diffusion coefficient, D/D!, is plotted versv.s order L. Again we compare 

the results of Schmitz and Felderhof (x) with our results (+ ). 
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coefficient of Dt does not converge much faster than the result of Cichocki and Felderhof 
s 

but our first order virial coefficient of Dr converges more quickly to a slightly lower value 
s 

than the result of Cichocki and Felderhof. The first order virial coefficients calculated by 

the presented method converge monotonously to their final values but if we study the 

behaviour of d~ rfl for L~lO we see that the first order virial coefficient for n! obtained by 
' 

using the reflection method has a poor convergence behaviour. See the results ford~ and 

d~,rf1 in fig. 3. This behaviour can be explained by looking at the convergence behaviour of 

tt d tt (fi ) ILu,zz an ILu,xx g.1 . 

3.5 Translational and rotational sedimentation 

Finally we will have a look at the short time effective diffusion coefficient n!rr<k) 

which describes the initial decay of the dynamic structure factor F(k,t) at t=O. The 

dynamic structure factor F(k,t) is the quantity that can be measured by inelastic light 

scattering experiments on suspensions and has the following form [15]: 

(3.24) F(k,t) = S(k)exp(-D(k,t)k2t), 

with S(k) the static structure factor which is defined as follows: 

(3.25) S(k) = 1 + n
0
J(g(.R)-l)ez!· ~!!:. 
IR3 

With the help of eq. (3.24) we can write for the short time effective diffusion coefficient 

D!rr<k) = D(k,O) [15,16] 

(3.26) Dt fk) = _::!_ 8F(k,t)l = kBT ~ d~:·~:·kexp(ik·R..)> , 
eff\ k2S(k) at tlO NS(k) i=l tJ - -tJ c 

j=l 
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where < .. > denotes again an average over all configurations of theN particles inside a c 

volume V and !. is a wavevector with direction k. If we take two particle interactions into 

account only we can write 

(3.27) 

t 
D kBT • tt • 

-
8-+--<k·p ·kcos(k·BJ> . 

S(k) S(k) 12 - c 

We are interested in the first order virial coefficient of D!Jk), which is, of course, a 

function of the magnitude of the wavevector !_. For this calculation the simplest form of the 

pair distribution function suffices namely g(B)=O if l!il <2a and g(B)=1 elsewhere. The 

static structure factor is then 

(3.28) S(k) = 1- \0 _6_[sin~2ka)- cos(2ka)J . 
k2a2 2 a 

The mobility tensor pg is known so that the configuration average can he calculated. We 

do this by splitting off the Oseen part of the mobility tensor in the following way: 

(3.29) 

The first term of the r.h.s. of eq. (3.29) into eq. (3.27) gives an integral that can be 

evaluated analytically in the way Fijnaut has suggested [17]. The remaining part of the 

r.h.s. of eq. (3.29) gives an integral that can be calculated numerically. In the limit ka-~w 

the short time effective diffusion coefficient n!rr(k) becomes the short time self-diffusion 

coefficient n! and in the limit ka....O n!rtk) becomes the short time collective diffusion 

coefficient nt. The calculation of the first order virial coefficient of Dtff(k) gives the 
c e 

following expression for D t: 
c 

(3.30) 
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In fig. 4 we have plotted Dtff(k)S(k)/Dt for three values of the volume fraction rp as a 
e o 

function of the dimensionless parameter ka. Comparison with the results of Beenakker and 

Mazur [18] shows that our results are in good agreement if ~0.1 but if rp>0.1 there are 

great discrepancies between our results and theirs, especially in the case ka~2. Thus for 

larger values of cp we have to take into account the three and more particle interactions. 

We can define the sedimentation velocity of a suspension by [18]: 

(3.31) 

+-0 
D -ro 
..X:: -

U /U =lim Dt fk)S(k)/Dt . 
so k-10 eff\ o 

t/) 0.5 
ro 

..X:: 

\.1-
\.1-

+-OJ 
CJ 

0 5 
ka 

---

10 

Fig.4. Wave vector dependence of D!J!ka}S(ka}/D! for three values of cp. The solid 

curves are our results. We have also plotted the results of Beenakker and 

Mazur for rp=0.05 and cp=0.15 (the dashed curves). 
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Up to second order in <p, by using eq. (3.18) for the pair distribution function g(!!:): 

(3.32) U /U = 1- 6.54710 + 12.51102
, s 0 

with U the sedimentation velocity of the suspension and U the sedimentation velocity of 
s 0 

a single particle in the same fluid. The first order virial coefficient is in agreement with the 

result of Batchelor [10]. The second order virial coefficient should be improved by including 

three particle hydrodynamic interactions. The improved virial expansion is presented in 

chapter 5. 

In an analogous way we can calculate the rotational counterpart 0 of the 
s 

sedimentation velocity U . We need to know Dr fk), which is the rotational counterpart of 
s eff\ 

D!Jk) (see eq. (3.27)), and obtain the following expression: 

(3.33) 

We have again used eq. (3.18) for the pair distribution function g(!!:). The second order 

virial coefficient includes two particle hydrodynamic interactions only. In chapter 5 we 

present the result of this coefficient where the three particle contribution is included. We 

can conclude from eq. (3.33) that 0 /0 = 0 if <p::; 0.52. Unfortunately there are no 
s 0 

experimental results available to compare our result of 0 with. The rotational velocities 0 
s s 

are important in the case of small magnetic colloidal particles rotating in an applied 

magnetic field. There is, however, a theoretical result available for 0 . Zuzovsky et al. 
s 

calculated this quantity for an SC lattice of rotating spheres [19]: 

(3.34) 
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Fig.5. The rotational velocity, normalized by its infinite dilution value 0 , is 
Q 

plotted versus cp. The bold solid curve represents our result, eq. {3.99), and 

the rectangles, circles and crosses represent simulation results of Phillips et 

al. The thin solid curve below the simulation results represents the linear 

part of eq. {9.99) and the upper thin solid curve is the result of Zuzovsky et 

al. (eq. {9.94)). 

They assumed that this result is also valid for disordered systems if the volume fraction cp 

is very small. If we compare our result of 0 with the result of Zuzovsky et al. of this 
s 

quantity we see a. great discrepancy. We also compare our result of 0 /0 with computer 
8 0 

simulation results of Phillips et al. [13]. We have plotted our results and the results of the 

simulations in fig. 5 and see that there also a discrepancy exists. We expect that eq. (3.33) 

will be modified by including three and more particle interactions in contrast to eq. (3.23) 

which expresses the rotational self-diffusion coefficient as a function of volume fraction. 
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We can understand this difference if we compare the behaviour of Jl
1
r
1 

and ,l
12
r , with 

,aa: ,a:t:k 

ae{ x,y ,z}, for great interparticle distances. In this situation we can use the results of Jones 

and Schmitz [7}: 

We see that p,
1
r
2
r is more sensitive to hydrodynamic interactions and so will be 0 /0 . On 
,aa s o 

the other hand we expect that the simulation results of Phillips et al. do not incorporate 

the three particle interactions completely. We come to this point in chapter 5 where we 

present the results of a study of three particle hydrodynamic interactions. This study gives 

us more insight in the way how the results presented above should be modified. 

3.6 Conclusion 

To test the presented method we solved the two particle problem and compared the 

results with some results from the literature. It is shown that our method leads to good 

results and reproduces first order virial coefficients of Dt (eq. (3.22)), Dr (eq. (3.23)), Dt 
s s c 

(eq. (3.30)) and U /U (eq. (3.32)), which are already known, with great accuracy. We s 0 

were also able to calculate some new results such as the second order virial coefficient for 

Dr (eq. (3.23)) and the virial expansion of 0 /0 to second order in I{J (eq. (3.33)). The next s s 0 

step in this study is the extension of the calculations by taking into account the three 

particle interactions. This makes calculation of the higher order virial coefficients of the 

diffusion coefficients possible. Before we come to this point we present an alternative 

approach to the calculation of the high frequency effective viscosity of hard sphere 

suspensions based on the ideas of Saito. In chapter 7 we shall use the same ideas to study 

the effect of the two particle interactions on the correlation functions of Brownian 
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particles. In that case it is necessary to extend this method and to solve the time 

dependent linear Navier-Stokes equation. 
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Chapter 4 THE EFFECTIVE VISCOSITY OF HARD SPHERE 

SUSPENSIONS 

4.1 Introduction 

In recent years several attempts have been made to calculate, on theoretical 

grounds, the high frequency effective viscosity n:ff (in the following abbreviated to effective 

viscosity) of a suspension of undeformable spherical particles, in a fluid with shear viscosity 

TJ , as function of the volume fraction rp of suspended particles. The effective viscosity of a 
0 

suspension of hard spheres can be measured experimentally by studying the behaviour of 

this suspension in an oscillating shear flow at high frequencies (see e.g. the measurements 

of van der Werff, de Kruif, Blom and Mellema [1]). At high frequencies, the effective 

viscosity n:ff will be determined by hydrodynamic interactions between the spherical 

particles only, because the effects of Brownian motion can be neglected. At lower 

frequencies Brownian motion becomes important as shown experimentally by e.g. van der 

Werff et al. [1] and theoretically by the work of e.g. Batchelor [2], who calculated n;ff' the 

steady shear limit of the effective viscosity. In the high frequency limit we can furthermore 

assume that the pair distribution function g(!!) is isotropic, because within this limit it is 

not very likely that the oscillating shear flow disturbs the equilibrium pair distribution 

function. The behaviour of 'f/:ff at low volume fraction of suspended particles is well 

understood and the virial expansion of 'f/:ff' to second order in rp, is 

(4.1) 

The first order virial coefficient C1 was already calculated by Einstein in the beginning of 

51 
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this century [3]. The value is C1=l Experiments with suspensions of spherical particles 

show that it is necessary to incorporate higher order corrections if <p>0.05. For that reason 

many attempts were made in the last few decades to calculate the second order virial 

coefficient C2 and, related to this number, the Huggins coefficient kh with kh=~ C2• This 

coefficient was studied by Peterson and Fixman, who derived the value kh=0.69 [4]. Later 

on Batchelor and Green determined C2 in an exact way [5]. Their result is C2 = 5.2 :1: 0.3. 

They came to this coefficient by taking into account two particle hydrodynamic 

interactions between suspended particles in a shear flow only. For this calculation they 

used the simplest form of the pair distribution function i.e. exclusion of particle overlap 

(hard spheres). Recently Cichocki and Felderhof determined a more accurate value for the 

term quadratic in volume fraction of 'Yf:rr C2 = 5.00 [6]. Their calculations are based upon 

a multipole expansion of the hydrodynamic interactions [7]. The difference between the 

result of Batchelor and Green on the one hand and Cichocki and Felderhof on the other can 

be explained by realizing that Cichocki et al. used more accurate hydrodynamic functions 

to evaluate C2• Russel and Gast extended the formalism of Batchelor and Green by 

including a volume fraction dependent equilibrium pair distribution function [8]. 

There exist other expressions in the literature describing the effective viscosity. One 

of the alternatives is the expression derived by Saito [9,10], which is: 

(4.2) 

Cichocki, Felderhof and Schmitz have derived a relation for 1J:rr with the help of a cluster 

expansion [11.]. Their result takes a form similar to the Saito-formula (eq. (4.2)) and is 

obtained by including the two-body approximation in the cluster expansion only. The 

expression for the effective viscosity has a. pole for <p=0.364, a. relatively low volume 

fraction. To bring into line the theoretical expression with the experimental results, they 

concluded that higher order correction terms in the cluster expansion should be taken into 
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account to shift the pole to a higher volume fraction. Beenakker obtained the effective 

viscosity using an expansion in density fluctuation correlation functions [12]. His numerical 

result, taking into account many particle hydrodynamics, is in good agreement with the 

experimental results of van der Werff et al. for cp50.45 [1]. Beenakker did not present 

results for higher volume fractions because he expected that those would be less accurate. 

The list of results for 11:ff mentioned above is not complete and could be extended by work 

of other authors [13-17]. Several authors, like Mellema and Willemse [13] and Bedeaux 

[14], treated the suspension as a mixture of two fluids with different shear viscosities. To 

describe suspensions they assumed that the viscosity of one fluid, present with volume 

fraction rp, should be infinitely large. Their result in this limit is 

(4.3) 
5rp 

00 ( ~ ). 'f/rr=TJ 1+---
e o (1 _ !rp) 

We see in this equation that the effective viscosity has a pole for rp=0.4. This seems 

contradictory to the experimental results. The same formula was earlier derived by 

Lundgren [15]. 

Finally we focus attention on some numerical results. Some years ago Brady and 

Bossis developed a method for simulating a system consisting of spherical particles in shear 

flow. They called it 11 Stokesian dynamics simulation11 (for a summary of the general 

Stokesian dynamics method we refer to a paper of Brady and Bossis [18]). In a later article 

Phillips, Brady and Bossis present computer simulation results of the effective viscosity 

[19]. We also mention here the numerical results for 11:ff of Ladd [20,21]. All these 

numerical results for the effective viscosity can be used to compare theoretical results with. 

In this article we present a method to determine the effective viscosity theoretically. 

The final result is 
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(4.4) 

and can be obtained in a way similar to Saito's way of deriving his expression for 'YI:rr ( eq. 

( 4.2)). This expression will be discussed in section 4.3. Our theoretical expression is in good 

agreement with experimental results of van der Werff et al. [1] for volume fractions up to 

0.6. This result is remarkable because we incorporated two particle hydrodynamic 

interactions only. Eq. (4.4) also agrees reasonably well with computer simulation results. It 

is important to note .that three and more particle hydrodynamic interactio~s are important 

for higher volume fractions ( 1fJ ~ 0.2) but we expect that the contributions of these higher 

order corrections are more subtle than with the commonly used expressions to describe the 

effective visc;osity (viz. eq. (4.1)). The advantage is that the final result tends faster to the 

experimental results and simulation data if many particle hydrodynamic interactions are 

included in comparison with the quadratic virial expansion, eq. (4.1). Future research 

should find out if the presented procedure can also be followed in the case of other 

problems. We can think e.g. of the steady shear limit of the effective viscosity, 'f/~ff Finally 

we want to point out that eq. ( 4.4) has a pole for cp r.:~ 0. 70, which is nearly equal to the 

maximum packing fraction of a hard sphere system. 

In this chapter we present the derivation of eq. (4.4); the result will be discussed in 

section 4.3. We end this chapter with some concluding remarks. 

4.2 The derivation of the effective viscosity 

Our study of the effective viscosity is in line with the ideas presented by Saito [9] 

because we try to find a relation for the effective viscosity 'YI:rr assuming that the bulk 

stress on the fluid remains constant independent of the number of suspended particles. We 
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can achieve this by keeping in mind a special experimental setup with which the physical 

ideas become more clear. Imagine a viscosimeter, which is an apparatus of Couette, where 

the radii of the cylinders are considered infinite compared with the distance between the 

inner and outer cylinder. We can regard the surface of the two cylinders as two parallel 

planes. We assume that the distance between the two planes is large compared to the 

particle dimensions, so we can ignore wall effects. In this viscosimeter we put a fluid, which 

is the ambient fluid of the suspension, with viscosity 11 , and we exert an oscillating torque 
0 

T on, say, the outer cylinder while the inner cylinder is kept fixed. The outer cylinder will 
-o 

rotate with an oscillating angular velocity w . Under these conditions we can conclude that, 
-o 

between the two planes, an oscillating shear flow exists, which can be described with a rate 

of strain tensor. This experimental setup is a special case because of the geometry used, but 

in general we can introduce the (oscillating) rate of strain tensor G , independent of the 
0 ' 

geometry used. In the next experiment we add some small undeformable spherical particles 

to the pure fluid creating a suspension with a volume fraction cp of dispersed particles. This 

suspension will have an effective viscosity 1/=ff' Again we exert the same oscillating torque 

T on the outer cylinder but now the oscillating angular velocity of it, w ff' is smaller than 
-o -e 

w . This is a consequence of the fluid velocity perturbations caused by the suspended 
-o 

particles. The rate of strain tensor of this system, assuming a fixed particle configuration, 

is Geff and is effectively a volume average of the rate of strain in the system. For the 

general case we can write, 

(4.5) Geff ~J(V!(!))5dV. 
The rate of strain depends also on the configuration of the suspended particles. However, if 

many particles are present in a macroscopic volume V then the configuration average and 

the volume average yield the same result. The shear forces per unit surface on the outer 

cylinder of the apparatus of Couette of the experimental setup described above, are equal 
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in both experiments so we know the following relation between G
0 

and Geff 

The calculations to determine 'fl:rr consist of two main parts, but in both the same 

numerical problem has to be solved. In the first step we express the rate of strain tensor of 

a suspension, with a volume fraction rp of dispersed particles, in terms of the mobility 

matrix and the stresslets. If the system contains N force and torque free particles, then eq 

(2.11) implies 

(4.7) 
N dd 

G . = :E p. . . :S .. 
01 j=l l J J 

We assume that the stresslets are independent of particle configuration. This seems a good 

approximation if we consider pair interactions between the particles, but at the moment it 

is an open question whether this approximation is a good one if we want to incorporate 

three and more particle interactions. Summing over i, taking the configurational average 

and using the assumption of constant stresslets, we have: 

where 

id is the pure one particle mobility, n =N /V and < · · > denotes a. configuration average. 
0 () c 

The pair correlation is simply the no-overlap condition. One should be cautious with the 

calculation of <p1~> c because the integral is conditionally convergent. We shall discuss 

this point later on. The bar of U and S indicates an average over particles: 



(4.9) 
1 N 

U=-EG .. 
N i=l 

01 
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We may identify this with eq. (4.5): <U>c=Geff' The double dot in eqs. (4.7) and (4.8) 

stands for a double contraction between the fourth rank dipole-dipole mobility tensor and 

the stresslet. 

We do not present the details of the calculation of the components of the 

dipole-dipole mobility matrix p,dd. This calculation is more or less a technical matter. The 

procedure is in principle the same as the one presented in chapter 3. An important 

difference, however, is the fact that the particles are force and torque free. This means that 

,a;m =0 and 7~m =0, with mE{-1,0,1}, which is a simple consequence of eqs. (2.53) and 

(2.54). Furthermore we express the coefficients a!!l' with p~l, P!q• with p~2, and r!q' with 

p~3 (and the accompanying allowed values for the azimuthal indices q), for i=1,2, in terms 

of the coefficients ~m' I ml ~2 and j=1,2. For more details see chapter 3. 

The dipole-dipole mobility matrix is made up of tensors of rank four, l~, and these 
lJ 

tensors have the following structure, according to Cichocki, Felderhof and Schmitz [7], if 

hydrodynamic pair interactions are included (we use a slightly different notation): 

( 4.10) 

I ~a{f) 
dd [I • • ,(p,v) ~(o{f) ~p,v)l + 2B .. (R) 8 R-R - R Ra R R 
IJ ap, {:J-V a !J p. V 

r---i Q{fJ ( oP) 
dd [ r---J(p,v) I • • ~p.v) ~ap) ~p.v)ll 

+C .. (R) 8 oa -2 o R-R. + 1 R Ra R R , lJ ap, ,.,v op. {:J-11 a ,., p. v 
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where R = R /Rand i,jE{1,2}. The symbol ,--1.af') denotes a projection onto the 
(X (X 

symmetric and traceless part in the index pair (a{3). The projected tensors in eq. (4.10) read 

explicitly, according to Cichocki et al. [7], 

(4.11) 

,...----,1( af3) 
I • • ,(pv) • • • • • • • • 
6 R..R = 1(8 R..R +8 R..R +8"' R R +8

13 
R R) ap {:r-11 ap {:r-11 all {:r-p I'P a II II a p 

Furthermore: 

(4.12) (JL~~,afjpJo = 40; a3(oaif3v + 8a}f3p -joaf38pv)6ij. 
0 

The functions A~~(R), B~~(R) and C~~(R) are the so called hydrodynamic functions, which 
lJ lJ lJ 

can be determined from the set of linear equations. The determination of these functions 

can be achieved independently because each of them belongs to a special value of the 

azimuthal index m and the set of linear equations is decoupled considering these indices. 

The A~~(R) are related to the set of linear equations for m=O, the B?~(R) to I ml =1 and 
lJ lj 

the C~~(R) to I ml =2. Consequently the set of linear equations with I ml >2is of no 
lj 

interest to us. 

The lowest order solutions (L=2, see chapter 3) of the hydrodynamic functions 

result in the following expressions: 



where x=i· Our aim is now the calculation of the configuration average of the difference 

(p.~~-(p.?~) ), using the simplest form of the pair distribution function, excluding particle 
I J 1 J 0 

overlap only, or g(!!)=g( 1:§:1)=0 if 1!!:1 <2a and g( 1!!:1)=1 if I:§: I ~2a. The configuration 

average is now defined as 

<(p.~~-(p.?~) )> = n J(p.~~-(p.?~) )dR , 
lJ lJ 0 C 0 IJ lJ 0 -

I!!: ~2a 

(4.14) 
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with n =N/V the particle density. In the following we denote a configuration average with 
0 

< · · > . This averageing procedure must be done very carefully because of the appeareance 
c 

of conditionally convergent integrals. This has to do with the terms proportional to x3 in 

the expressions for A~~(R) and B~~(R) (see eq. (4.13)). If we consider the hydrodynamic 

functions with terms up to x5 ouly we arrive at the situation already considered by Saito. 

Proper volume averageing gives the so called Saito contribution, which gives rise to the 

virial coefficient c5=-1 [9]. It is not the most elegant way to solve the problem of 

conditionally convergent integrals. However, other studies have confirmed the value of c
8

. 

This coefficient comes out in work of other authors, e.g. Felderhof reproduced it using a 

local field argument (22,23] or from a virtual overlap contribution to the two-body cluster 

integral [24]. See in this context also the work of Bedeaux, Kapral and Mazur [16]. With 

the theory of renormalized cluster expansions it is possible to avoid these unpleasant 

conditionally convergent integrals [25,26,11]. This theory confirms the value of the Saito 

coefficient c
8

. These renormalized cluster expansions has also been used in the theory of 

sedimentation [27]. This kind of conditionally convergent integrals also appears in the work 

of Batchelor and Green although in an other form [5]. For further calculations we split off 

the terms proportional to x3 and x5 without renaming the remaining parts of the 

hydrodynamic functions A~~(R) and B~~(R) (we shall see below that it is not necessary). 

To avoid misunderstanding we shalllable the remaining part of the configurational 
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averages with sr, which stands for short range part. The contribution of the terms just 

splitted off will be represented by the Saito coefficient c5. 

It is not difficult to evaluate the angular average of the short range part of eq. 

(4.14) keeping R, the interparticle distance, constant. The result is 

(4 15) <( dd _f dd ) )>sr =I( dd -( dd ) )dfl 
• p,ij,afJpv'-p,ij,a{3p.v o c,O- p,ij,afJpv p,ij,a{Jpv o 

= 
3 f.~(R)(o ofJ + o oR -jo .ao ) , 

2011'1/ a3 lJ ap v av ,.,p a,., pv 
0 

with 

(4.16) f~(R) = ~1r[A~~(R)+2B~~(R)+2C~~(R)] . 
lJ " lJ lJ lJ 

We are now able to determine the double contraction between the angular averaged 

mobility tensor and the stresslet g, 

( 4.17) <(p,~~-(p.?~) )>sr
0

:S = 3 f~(R)S. 
1 J 1 J o c, l01f1J as 1 J 

0 

The total configuration average is now 

( 4.18) 

1 
]' 

<(l~-(p.~~) )>8r:g = jcp( 3 S)I(A~~(x)+2B~~(x)+2C~~(x)Jdx, 
lJ lJ o c 201!'

17 
as lJ IJ IJ x4 

0 0 

where we have changed the variable of integration using x=a/R. Substitution of this result 

for the configuration averages in eq. ( 4.8) gives, 

( 4.19) 

1 
]' 

3 Tr[ s I 2 
[ dd dd ) dd ] dx] G ff = " 1 + c5 c,o + 0\0 E A1 .(x)+2B1 .(x +2C1 .(x) - . 

e 2011'1/ a3 j=l J J J x 4 
0 0 



61 

The integral in eq. ( 4.19) can be calculated numerically and the result is: --{).694. The final 

result is 

( 4.20) 3 G ff = (1-1.421{J)'S 
e 207r1] a3 

0 

In the second step we determine 1] ( G -Geff) in terms of the stresslet S. G is the 
0 0 0 

rate of strain in the infinitely diluted suspension and G eff is the volume averaged rate of 

strain in a suspension with a volume fraction I{J of dispersed particles. In a formal notation, 

where the tensor contractions ~~:'S are introduced as a short hand notation to describe 
I J 

the rate of strain of the scattered velocity fields around the two particles in terms of the 

stresslet 'S (in the case that pair interactions are included only), 

(4.21) 

With this relation and eq. ( 4.20) we can eliminate the stresslet 'S. Comparison of the final 

relation with eq. (4.6) gives us 1]00
ff' The determination of 17 (G -G ff)' as function of e o o e 

volume fraction I{J, is possible by studying the following quantity: 

(4.22) 

with v.(r.) a scattered velocity field defined with respect to the center of particle i (see eq. 
"-1 -J. 

(2.25)). We have introduced N scattered velocity fields because there are N particles 

present in the suspension, but we study two particle hydrodynamic interactions only. The 

tensors L\ and Ll2 will be defined below. In the first place we have to calculate the volume 

average of the l.h.s. of eq. ( 4.22). We know the rate of strain in the pure fluid case, so the 

result of the volume averageing of (Vv (!))8 is 
-o 
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(4.23) 

We also know the effective rate of strain of a suspension with volume fraction tp of 

dispersed spherical particles. We can study this rate of strain by measuring the angular 

frequency ~ff of the outer cylinder of a Couette apparatus with the same torque on the 

outer cylinder as in the pure fluid case described above. The rate of strain is G eff and is an 

volume average in the above sense (see eq. (4.23)), with Yo(!) replaced by!(!), 

(4.24) l.J(Vv(!))
8
dV = G ff. V - e 

We are also able to calculate the volume and configuration average of the r.h.s. of eq. 

( 4.22). To obtain the final result we distinguish between a quasi one-particle contribution, 

denoted by A
1

, and an excluded volume contribution, A2. It is noteworthy that we have to 

consider all scattered velocity fields, but the average of the terms in the sum of eq. ( 4.22), 

concerning the fluid velocity fields, yield the same result. For convenience we calculate the 

expressions below by using the velocity fields ! 1 (!.1) and Yi!.2) only; this makes no 

difference in the calculation of the final result. The quasi one-particle contribution can be 

determined very easily with the following relation: 

(4.25) <A1,e£?" c = -1]ono I (V!2(!.2))
8
d!_2 = inoS 

1!.21~a 

We call <A
1 

rr> a quasi one-particle contribution because the expansion coefficients of 
,e c 

the velocity field !/!.2) contain the hydrodynamic pair interactions. Our expression for the 

stresslet S follows from ( 4.20): 
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( ) '~'~' 20 s 1 G 4·26 "= a'lr'floa (1-1.42rp) eff 

and we obtain for <Al,err c 

Obviously we have not excluded the volume of the other particles to obtain eq. ( 4.27). The 

final result can be obtained by addition of the extra amount <A
2 

__ :> . This extra amount 
,etr c 

is the negative value of the integral, defined in eq. ( 4.25), within the volume occupied by 

the other particles. The extra amount <A2,err c is 

(4.28) <A2,erf>c = 17on~ Jd~ Jdrl(VY.i!.l))s • 

1R ~2al!.1 15a 
with ~ the interparticle distance. Although we did not write down the ~-dependence of 

the integrand in the equation above it should be remembered that this dependence is 

implicitly assumed in the expansion coefficients { a~m'fzm,'Y~m}. Evidently we have used 

the simplest form of the pair distribution function which excludes overlap of the two 

particles only. The integral over the volume of particle 1 can be determined easily from the 

following integral theorem for tensors (see e.g. ref.[28]): 

lA .. dV = J A.kx.n. dA -I0~ i k x.dV , IJ !Jl!: XkJ 

A r 

(4.29) 

with V the enclosed volume, A the surface enclosing V and nk a component of an outward 

unit vector. In our case this unit vector is pointing into the fluid because Vis the volume 

occupied by particle 1. Define now the symmetric and traceless tensor B with components 
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where we used the summation convention for double indices. The tensor IT is the pressure 

tensor, 

(4.31) n = pi-217 (vyy . 
0 

It is obvious that B = 217 (Vyf Combination of eqs. (4.29)-(4.31) gives, with the identity 
0 

V·ll=O, 

{4.32) 2'f/0 Jd!.1(VY.i!:1))~j= JBikxjnkdA={Si)ij' 

IE1 1~a IE1 1=a 
the stresslet exerted by the fluid velocity field y2 on particle 1. Substitution of this result 

for the integrand in eq. ( 4.28), use of eq. (1!.13) of appendix II and using the set of linear 

equations (2.36)-(2.38) to express the coefficients a!q• with p~t, tJ!q• with p~2, and 1!q• 
with p~ 9 (and the accompanying allowed values for the azimuthal indices q) in terms of the 

coefficients 1im' I ml $2, we obtain after calculation of the configuration average, 

t 
{4.33) <Ll2 r? = -cp - 3

-:S[c8 cp + jcpi i [A~~(x)+2B~~(x)+2C~~(x)J dxJ , 
,e c 20n3 j=l J J J x 4 

0 

or, by using eq. (4.20), 

(4 34) <ll. _..> - 1.42~2 G 
· 2,etr c- (1-1.4 cp) 11o eff · 

Consequently, using the constraint 1J G =1J00f'fG ff' we obtain the relation for the high o o e e 

frequency effective viscosity already presented in section 1, viz. 

( 4.35) 



Finally we express the stresslet "S as a function of tp and G only, using eqs. (4.6) 
0 

and (4.35), 

( 4.36) 
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The stresslet S is a function of volume fraction, although independent of particle 

configuration as assumed above eq. ( 4.8). This relation is an extension of an expression 

presented by Saito (ref. [9] eq. (8) with"' replaced by G and 201f'l7 a3<K.> replaced by"&). 
0 0 , 0 

The numerical coefficient 1.08 arises from the subtraction(! -1.42) and in the Saito 

expression this coefficient is: (i + c8)=!- The term of quadratic order in tp is an excluded 

volume effect and cannot be present in the Saito expression. 

4.3 Discussion 

In this section we shall compare our theoretical expression for the effective viscosity 

with experiment, other theories and results from simulation experiments and also discuss 

the limitations of our expression of 1/:rr We start with a remark on the divergent behaviour 

of our expression and the position of the pole, and see that our expression of the effective 

viscosity ( eq. 4.35) has a pole near ~0. 7 which is something higher than tp :::0.64, the 
rc 

random close packing volume fraction. Furthermore it differs not much from the maximum 

packing fraction. There are arguments that we should compare our pole with tp . One of 
rc 

these arguments is the fact that we used the isotropic pair distribution function while 

aver ageing over all possible particle configurations. In the case of maximum packed 

structures the isotropy has disappeared because there is some crystal-like structure. It is 

interesting to note that Krieger and Dougherty [29] introduced an empirical expression for 

n:ff' later derived by Ball and llichmond using a mean field argument (see eqs. (6.4)--(6.6) 
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in ref. [30]), 

(4.37) 

with kr the reciprocal of the maximum packing fraction or the reciprocal of the random 

close packing fraction {Ball and Richmond). This expression is often used to fit 

experimental data with kr as a fitting parameter (see e.g. ref. [31]). 

In fig. 1 we have plotted the effective viscosity n:rr as function of volume fraction. 

In this figure we compare our results of n:rr with results of the effective viscosity of 

monodisperse hard sphere systems, experimentally obtained by van der Werff et al. [1]. We 

have made no distinction between the measurements on monodisperse systems with 

different particle radii because the data of van der Werff et al. do not show any effect of 

particle size. This can be expected on theoretical grounds. The theoretical result 

corresponds with the experimental data up to ~0.6. This is the more remarkable because 

we used two particle hydrodynamic interactions only to derive eq. ( 4.35). At the moment it 

is not clear how three and more particle hydrodynamic interactions will change our result 

of n:rr but these interactions may shift the pole in eq. (4.35) to a slightly lower value (see 

the simulation results and numerical data discussed below). For reasons of completeness we 

have included in fig. 1 the theoretical results of Beena.kker, derived by using many particle 

hydrodynamic interactions [12], and the virial expansion of Batchelor and Green, derived 

by using two particle hydrodynamic interactions only [5]. The analytical result of Batchelor 

and Green is 

(4.38) 

where they calculated the second order virial coefficient with an accuracy of 6%. More 

recent calculations, using more accurate hydrodynamic functions, give for the second order 

virial coefficient C2=5.00 (see e.g. ref. [6] and [20]). We should obtain the same second 

order virial coefficient by expanding our result for small1p and the result is C2=4.97. This 
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The solid CU1"11e represents our result, eq. {4.95}, the dashed cu1"11e is the 

result of Batchelor and Green, eq. (4.98}, and the pl'USses represent the 

theoretical results of Beenakker. The open circles are the experimental values 

of 1J~ff obtained by van der Werff et al. for mono disperse hard sphere 

s'USpensions. 

difference may be caused by the fact that we have made the assumption of constant 

stresslets (see below eq. (4.7)) or by small numerical errors. Recently Thomas and 

Muthukumar presented results for the effective viscosity which include three particle 

hydrodynamic interactions [32]. Their expression is 

(4.39) 
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Fig.2. The high frequency effective viscosity is plotted versus volume fraction I(J. 

The solid curoe represents our result, eq. (4.35). The crosses are the 

simulation results of Phillips et al. and the open circles are the numerical 

results of Ladd. 

This expression is a poor improvement that leads to the conclusion that many higher order 

terms should be included to obtain an expression that describes the experimental results 

and simulation data reasonably well. Nevertheless we can use the third order virial 

coefficient to make an estimate of the extra. contribution to eq. ( 4.35), which is a 

combination of a pure three particle contribution and the two particle contribution, 

configurationally averaged with the I(J dependent part of the pair distribution function. We 

assume that our expression should give the same cubic virial expansion in the low I(J regime, 

but it is noteworthy to point out that this estimate gives an indication only. Supposing 

that fi(J3 is the combined three-two particle contribution, we obtain the following 
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expression: 

( 4.40) 

Low rp expansion using eq. ( 4.39) results in e~0.2. There are some other estimates of the 

third order virial coefficient e.g. by using the Krieger-Dougherty relation (eq. 4.37)) or the 

Mooney equation [33], viz. 

( 4.41) 

with kr a fitting parameter. The estimates made by Thomas and Muthukumar, based on 

the Krieger-Dougherty relation and the Mooney equation, give C 3~8.5 [32]. In this case: 

Elll-0.4. In both cases the three body coefficient E is much smaller than the coefficient of the 

term representing two body effects, viz. 1.42. As such the use of a virial expansion in the 

numerator and in the denominator of eq. ( 4.40) converges much faster than the commonly 

used virial expansions of the viscosity itself. Future research should clarify this matter. The 

above discussion does not intend to question the importance of many particle 

hydrodynamic interactions, necessary to understand the behaviour of transport coefficients 

in dense suspensions. It tries to separate the effects of many particle hydrodynamic 

interactions from the divergence of the effective viscosity which is already found if one 

considers the lower order contributions to the viscosity. 

In fig. 2 we have compared our theoretical result with simulation results of Phillips 

et al. [19] and with numerical data of Ladd [21] and we see that our theoretical result of 

n:cr is systematically somewhat lower than the numerical data for rp~0.4. This difference 

may be explained by the fact that we have ignored many particle hydrodynamic 

interactions while both numerical results of n:ff include the effect of many particle 

interactions. It is noteworthy to emphasize that our expression is not exact because we 
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have made the assumption of constant stresslets. Although our expression agrees very well 

with experimental results and numerical data it should be pointed out that an exact result 

is available, derived by Cichocki and Felderhof (see section 1 and ref. [11]). Finally we 

want to point out that Beenakker's remark about the range of validity of his theoretical 

results is also applicable to our results [12]. He derived a lower and an upper frequency 

limit and his results are valid between the two. The upper limit is determined by the 

frequency at which inertia effects become important. Below the lower frequency limit 

Brownian motion cannot be neglected. So our theoretical expression of the effective 

viscosity is thus valid between these limits. The data obtained by van der Werff et al. are 

results of measurements in this frequency range. 

4.4 Conclusion 

In this chapter we have derived an expression for the high frequency effective 

viscosity in a way similar to Saito's in the early fifties. The result is in good agreement 

with experimental data and the agreement with simulation results and numerical data is 

reasonable. It is known that many particle hydrodynamic interactions are, in general, 

important so higher order corrections to eq. ( 4.35) are to be studied, but these 

hydrodynamic interactions are likely to give small corrections to the expression derived in 

this chapter because the divergence in our expression for the effective viscosity is found if 

one considers two particle hydrodynamic interactions only. This is not the case if one 

considers the virial expansion ( 4.1), that results from the approach by Batchelor and Green 

[5]. This advantage should be exploited in future research. In the following chapter we shall 

present some results for diffusion coefficients and sedimentation (translational and 

rotational) where the effect of three particle interactions is included. The procedure 

presented in chapter 5, combined with the ideas outlined in this chapter, might give us the 
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answer to the question how eq. ( 4.35) should be corrected for three particle hydrodynamic 

interactions. 
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Chapter 5 THREE PARTICLE HYDRODYNAMIC 

INTERACTIONS IN SUSPENSIONS 

5.1 Introduction 

In this chapter we present the results of a study of three particle hydrodynamic 

interactions and the effects of these interactions on diffusion and sedimentation. The three 

particle hydrodynamic interactions are studied by using the method to determine the grand 

mobility matrix of a system of N hydrodynamically interacting spherical particles, 

immersed in an unbounded fluid in the case N=3. In chapter 2 we have presented virial 

expansions of the translational and rotational self-diffusion coefficient and the 

sedimentation velocity, where two particle hydrodynamic interactions are included only. 

We are now able to determine the corrections of these virial expansions caused by three 

particle hydrodynamic interactions. The results in this article can be compared with 

theoretical results on the one hand and with numerical and experimental data on the other 

hand. Before we present the way of obtaining our results we give a. brief historical sketch of 

the area of interest, which is not claimed to be complete. 

Recent developments in both numerical and theoretical research on the behaviour of 

suspensions made it possible to improve the understanding of the transport and bulk 

properties of suspensions. In the area of numerical research progress has been made by the 

development of methods to simulate systems of Brownian particles, called Stokesian 

dynamics. With this method, developed by Brady and Bossis [1], it became possible to 

study transport coefficients, like e.g. translational and rotational self-diffusion coefficients, 

and bulk properties, like e.g. sedimentation and effective viscosity, numerically. Some 

interesting results of Stokesian dynamics simulation, which we shall use to compare our 

73 
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results with, are presented in an article of Phillips, Brady and Bossis [2]. Many other 

authors have also presented results of simulation experiments on systems of Brownian 

particles to calculate transport coefficients of random hard sphere suspensions. Apart from 

this technique one can calculate these transport coefficients numerically and results of Ladd 

will be used in this case to compare our theoretical results with [3]. Apart from this 

numerical research great efforts have also been made with theoretical studies of systems of 

hard spheres in an ambient fluid under low Reynolds number conditions. Besides the 

hydrodynamic pair interactions between the spheres one has considered three and more 

particle hydrodynamic interactions. In the fifties Kynch used the reflection method to 

study hydrodynamic interactions between the particles of clusters of three and four spheres 

in a viscous fluid [4]. Some decades later, in the early eighties, Mazur and van Saarloos 

presented a general scheme to determine the components of the grand mobility matrix of a 

system of N spherical particles immersed in an unbounded fluid [5]. The expressions 

determined by those authors are power expansions in a/R, with a the particle radius and R 

typical interparticle distances. They derived explicit expressions for the components of the 

mobility matrix up to order a-7 and up to this order hydrodynamic interactions between 

two, three and four particles only contribute to these expressions. Beenakker has used the 

method of Mazur and van Saarloos to determine virial expansions of the short time 

self-diffusion coefficient, sedimentation and high frequency effective viscosity [6-8]. In the 

same articles he presented numerical results for the transport coefficients described above 

using an expansion in density fluctuation correlation functions. These results, taking into 

account many particle hydrodynamic interactions, correspond with experimental and 

simulation data very well. A disadvantage of these results is the fact that they are of 

numerical type instead of an expression in terms of e.g. volume fraction rp. In this way it is 

not possible to estimate the relative importance of two, three and more particle 

interactions respectively. For a concise summary we refer to a short review article of Mazur 

[9]. Felderhof [10] has given an outline how to proceed, using a method to study two 
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particle hydrodynamic interactions [11,12], to study the more general N particle problem. 

In another approach Cichocki and Felderhof presented a cluster expansion method to study 

theN particle problem, but, as far as we know, they used this method in the two-body 

approximation only [13]. Finally we want to emphasize the work of Muthukumar et al. In 

articles of Muthukumar and Freed a theory to study many particle hydrodynamic 

interactions is expounded [14,15]. Using this theory Jones, Muthukumar and Cohen were 

able to determine virial expansions of the cooperative and self friction coefficients [16]. We 

shall compare these expressions with some of our results. 

In section 2 we present a reformulated set of linear equations appropriate for 

numerical purposes. We give the results of a study concerning the behaviour of some 

components of the grand mobility matrix, in the case of two special configurations of the 

three particle cluster, in section 3. A theoretical account of obtaining the virial expansions 

of some transport coefficients will be given in the sections 4 and 5 as well as the final 

results. We end the chapter with some concluding remarks. 

5.2 Calculation of the mobility matrix 

In chapter 2 we determined a set of linear equations ( eqs. (2.36)-(2.38)) appropriate 

to describe the problem of N hydrodynamically interacting spherical particles, all with the 

same radius a, in a viscous fluid. We study this set of equations assuming N=3 and the 

fluid at rest at infinity. We have obtained this result by starting with an arbitrary 

configuration of the three particles but simplify it considerably by introducing a special 

coordinate system without affecting the generality of the set of linear equations. We 

number the particles and put particle 1 in the origin of a coordinate system, particle 2 on 

the negative z-axis and particle 3 in the xz-plane. Consequently we have: e
12

=0, 11
13

=1r 

and n
23

=7r. Furthermore we use the relations e .. =7r-e .. and 'f/ .• =1] .. +11'. This procedure is in 
J1 IJ Jl !J 



76 

principle equivalent to the one used in chapter 3, where we have put both particles on the 

z-axis to describe two particle hydrodynamic interactions. In that special case we were 

able to decouple the set of linear equations with respect to the azimuthal indices. This 

simplification is of course not possible in the three particle case. An exception shonld be 

made if the third particle is also on the z-axis. Introduce furthermore the new coefficients 

{Al:i B:l: i c:l: i } 
lm' lm' lm ' 

(5.1a) ±i_(-1)/+m i _mi :!:' ~+I· 
Aim-- -1+2 (aim+ ( 1) ai-m), A 1 = +(-1)m m. A±l n a , l,-m - m . lm' 

lm 

(5.1b) 
:l:t' __ .(-1)1+m . - m. :!:' ~+ I . B - - (r.P. + ( 1) t:P. ) B 1 == +(-1) m · B± 1 

lm- z 1+1 f.Jlm- /JI-m ' 1,-m - . lm' 
nlma ' 

c± i - (-1) l+m . 
(S.1c) lm- I ( 'fzm 

nlma 
( l)mAj ) c±i :;:: +(-1)mfttmll c:l: i < - ·r~-m ' 1,-m - m . lm 

We see from these relations that it is sufficient to use the plus coefficients, A 1 ~etc., with 

m~O and the minus coefficients, A~~ etc., with m>O only. With this new set of coefficients 

we are able to derive two simplified sets of linear equations, which are independent of each 

other. With one set we can study the components of the grand mobility matrix relating 

translations of the particles in the z- and x-direction and rotations of the particles in the 

y-direction, on the one hand, with the forces exerted by the fluid on the particles in the z

and x-direction and the torques exerted on the particles in the y-direction, on the other 

hand. In the other set the role of translations and rotations is interchanged as is the case 

with the forces and torques. We do not present the total derivation of the rewritten set of 

linear equations but the final resnlt only, which comes to: 
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+ (2j+l) E2l+2p-l~?n+ji l+p-lc+j] 
p(p+l ( 2p-1) 1 ~ 1 (2l+2F) lm;pbj lm ' 

m~O 

(5.3) 

(5.4) . (-1)P+q+l I i * q * z n v (r.)·(C (O.,rp.)-(-1) C (O.,rp.))d!l. = 2at5 i 
1
n. 

pq - -,t -pq 1 1 -p,-q 1 l I p, q, IY 

l!i l=a 

= B-i -~ [p E 1 p:ji x!:P+lB-j + E (2l-1)Q+ji x!:Pc+j]. 
pq '=l I> 1'(1+1J lm;pq 1 J lm l) 1 l m;pq 1 J l m 

J - -
jf:i m~1 m~O 

In the derivation of these equations, which can be done straightforwardly, we have used 

eqs. (2.44), (2.45) and (2.48) with the assumption of zero surface averaged incoming fluid 

velocity and vorticity. Furthermore we have introduced the following shorthand notations: 

..,:I:.. ( 1~l+P+m+q 1+ ...... 1[ .. .. ] (55) .t'.J 1 
--- R "' MJ 1 +(-l)mMJ1 

· lm;pq- p+q) ! nlm ij lm;pq- 1,-m;pq 
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rt. .. ( 1~ l+p+m+q I+ [ .. 
(56) Jl = -- n R P (lq+mp)MJ 1 

· lm;pqp+q)! lm ij lm;p-1,q 

:·· ( l)l+p+m+q l 1[[ 
(5.7) R 1 ~;P<l =- (p+q) ! n1mR1tp- ( lq+mp)[2(lq+mp)-(m+q)] 

-(lp--mq)(l+p--l)]MJ
1
'i . 11 ] ,-m,p-...,q 

It is possible to solve the set of linear equations (5.2)-(5.4) partially if we express all 

coefficients A 1~• with ~1, B~~. with ~2, and ct~, with ~2, for iE{1,2,3}, in terms of the 

coefficients B;~, C~~ and C~~· This procedure resembles the one used in chapter 3. We can 

express the remaining coefficients in terms of components of the force F. and torque T. by 
._, -1 

using eqs. (2.53) and (2.54), 

Finally we obtain the following relation between U , U and n on the one hand and F , F 
-x - --y -:x: -z 

and T on the other hand, with U =(U1 ,U2x,U
3 

) etc.: 
-'J -x X X 

u tt tt tr F -x p.xx P.xz P.xy -x 

(5.9) u tt tt tr F =- P.zx P.zz P.zy -z -z 

n rt rt rr T 
--y Pyx f.'yz p.yy --y 



In an analogous way, using the shorthand notations defined above (eqs. (5.5)-(5.7)), we 

obtain 
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(5.10) t -1 ip+q J i * q * 3. p p+)n v (r.)·(A (U.,<p.)-(-1) A (8.,<p.))d0. = I~o i p. pq - ""l -pq 1 1 -p,-q 1 1 I p, q, JY 

lEi I =a. 

+ 1 E l(21_1)p:ji x!+ll+lc-j _ (2p+1) E z~21-1) p:ji x!+p-lc-j 
~ 1?. 1 lm;pq 1j lm ~ 1~}2 +2p-1) lm;pq lj lm 

m~t ~1 

+ (2j+1) E 2l+2p-l~1 Kji l+p-lc-j] 
p(p+l (2p-1) 1 ~ 1 (2l+2FJ lm;pq~j lm ' 

m~1 

(5.11) 

(5.12) . (-l)p+q+l J i * q * ~ n v (r.)·(C (O.,<p.)+(-1) C (8.,<p.))d0. 
pq - -t -pq 1 I -p,-q 1 1 1 

I !:i I =a. 

= 2ia.5 1[o 1n. +25 0n. J p, q, lX q, IZ 

=B+i_~ [p E l p+ji x!"!"P+lB+j + E (21-1)Q-ji x!"!"Pc-j]. 
pq '=l 1> 1(l+IJ lm;pq lJ lm l> 1 lm;pq IJ lm 

J - -
j# i m~O m~1 

In the way described above we are able to solve partially this set of linear equations. Using 

the relations 
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(5.13) +i i +i c-i i 
B1o=---T.' B11=- T.' 11=-41r17aFiy' 

21r1J a 2 
lZ 41rTJ a2 IX o 

0 0 

we can present the final result in the following form: 

0 ptr rr lt T 
--:x: XX ~'u xy --:x: 

(5.14) 0 ,.,.rr ptr rt T =- ~'zy -z zx liZ -z 

u tr tr tt F 
-y P.yx ~'yz l'yy -y 

We have made a computer programme in Fortran-77 to calculate the components of 

the grand mobility matrix (represented by eqs. (5.9) and (5.14)) for arbitrary particle 

configurations. This computer programme is obtainable from the authors upon request. 

5.3 Two special configurations 

We shall now present the results of a study of the behaviour of some components of 

the grand mobility matrix in the case of two special configurations. In the first 

configuration we put the three particles on the z--axis of a coordinate system with origin at 

the center of particle 1. Particle 2 is placed between the two other particles. This is a 

suitable configuration because there are some numerical results available to compare our 

results with [17]. In the second configuration we put the three particles on the corners of an 

equilateral triangel. This configuration has the property that the three particles can touch 

each other simultaneously. There are many other configurations possible which are suitable 

to study, e.g. configurations with a very pronounced three particle contribution to the . 
components of the grand mobility matrix. However, we have to restrict ourselves and 

therefore we pay attention to the two symmetric configurations described above only. 
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We consider now the first configuration with 

(5.15) 

Use of eq. (5.15) in the set of linear equations results in a decoupling of this set concerning 

the azimuthal indices (see eq. (2.33)). This decoupling procedure is comparable to the one 

used in chapter 3. We use it to simplify the computer programme, necessary to solve the 

set of linear equations, considerably. The set of linear equations solved allows us to 

determine the components of the grand mobility matrix. Formally we have an infinite set 

of linear equations. We can avoid the problem of solving an infinite set of linear equations 

by introducing an upper limit for the allowed values of land p, i.e. ~ax=Pmax=L. With this 

upper limit it is possible to solve the set of linear equations. This restriction is nothing but 

the assumption that all the coefficients A~~~ B~~ and C~~ are zero for l>L. With the 

upper limit L we have 9L linear equations with the same number of unknown coefficients 

and can calculate the so called Lth order solution of the set of linear equations. In the 

present problem we confine ourselves to the presentation of the components of the mobility 

matrices fJ..tt and fJ..rr. Using symmetry arguments we see that fJ..u=O, Jl..tr=O, lr=O and 
zz zz zx zy zx 

lt==O (more mobility matrices are zero in this special case but they are of no significance 
zy 

to us). Using eqs. (5.9) and (5.14) we obtain respectively 

(5.16) 

where we used the shorthand notations U =(U
1 

, U2 , U
3 

) etc. We present our results in 
- z z z 

table I. The rows labeled with L=ro represent limiting values of the components of the 

mobility matrix resulting from our method. We also give the results obtained by Ladd [17]. 

We have used his limiting results only; he obtained them by a numerical implementation of 

the work of Mazur and van Saarloos [5]. In this table: J/:~ = 6'1f11 ap~~ . We can conclude 
lJ,ZZ 0 lJ,ZZ 
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TABLE I 

P3: pure three particle contribution 
Ill: limiting values obtained by our method 
Ladd: results obtained by Ladd {17} 
PE: contribution according to eqs. (5.18} 

a/R12 L -tt 
ttn,zz P3 

-tt 
J.t22,zz P3 

-tt -tt 
J.t12,zz J.t13,zz 

0.50 2 0.85835 -().03215 0.83045 0.02550 0.59764 0.48574 
4 0.77368 -().05764 0.74480 0.05572 0.62193 0.53935 
6 0.73473 -().07283 0.70957 0.06800 0.63168 0.57253 
10 0.69797 -().08893 0.68081 0.08057 0.63962 0.60479 
20 0.66855 -().10299 0.66088 0.09135 0.64531 0.63095 
50 0.65341 -().11062 0.65150 0.09698 0.64799 0.64457 
100 0.65012 -().11232 0.64955 0.09821 0.64854 0.64754 
La.dd 0.7459 0.7182 0.6292 0.5628 
PE -().07324 0.03662 

0.48 2 0.87251 -().02721 0.84181 0.02171 0.58420 0.46059 
4 0.80323 -().04544 0.76561 0.04562 0.60569 0.50060 
6 0.77649 -().05441 0.73781 0.05335 0.61363 0.52256 
10 0.75871 -().06087 0.72055 0.05873 0.61844 0.53757 
20 0.75442 -().06246 0.71651 0.06012 0.61961 0.54117 
Ill 0.75438 -().06247 0.71649 0.06013 0.61962 0.54120 
PE -().05504 0.02752 

0.45 2 0.89426 -().01998 0.86088 0.01608 0.56217 0.42167 
4 0.84857 -().02868 0.80238 0.03019 0.57818 0.44217 
6 0.83807 -().03101 0.78808 0.03219 0.58248 0.45001 
10 0.83506 -().03168 0.78383 0.03262 0.58364 0.45231 
ID 0.83494 -().03171 0.78365 0.03264 0.58370 0.45240 
PE -().03503 0.01752 

0.40 2 0.92777 -().01036 0.89514 0.00833 0.52027 0.35783 
4 0.90765 -().01187 0.86301 0.01272 0.52799 0.36064 
6 0.90597 -().01194 0.85973 0.01266 0.52910 0.36157 
m 0.90581 -().01195 0.85939 0.01262 0.52919 0.36167 
PE -().01536 0.00768 

0.25 2 0.98667 -().00049 0.97638 0.00033 0.35620 0.19793 
4 0.98542 -().00047 0.97393 0.00037 0.35630 0.19705 
Ill 0.98541 -().00047 0.97391 0.00037 0.35631 0.19704 
Ladd 0.9854 0.9739 0.3563 0.1971 
PE -().00057 0.00029 

0.125 2 0.99907 -o.ooooo 0.99826 0.00000 0.18533 0.09438 
m 0.99904 -o.ooooo 0.99821 0.00000 0.18532 0.09436 
Ladd 0.9991 0.9983 0.1853 0.0944 
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that there are differences between our results and those of Ladd in the case of touching 

spheres, I !!_12 1 =2a. The origin of this difference is the fact that Ladd used a low order 

moment approximation to determine his results. In that case it is necessary to evaluate the 

calculations with large Lin order to obtain reasonable results (in our case up to L=100). 

Furthermore we can conclude that, if I !!_
12

1 =2a, the components of p.!! tend to the same 

value, which we denote by a, and 

3 
(5.17) U. =-a E F. , iE{l,2,3}, 

IZ j=l .Jll 

where ~0.649. This approximate value is obtained by considering the numerical data up to 

L=100 and by assuming that the components of p._tt should be equal, which will be argued zz 

below. This leads to an upper and lower limit for a, 0.64854<a<0.64955. In the two 

particle problem we can see the same situation as in the case of p._tt, with ~0.7750 (see e.g. 
zz 

ref. [18], and our results in chapter 3). This can be explained as follows: if a force F, in the 

z-direction, is exerted on particle 1 that particle will translate with velocity U, in the 

z-direction too, but the second particle will also translate with this velocity U. This 

behaviour is easy to understand if the force on particle 1 is in the direction of particle 2 

because the touching particles are supposed to be hard spheres. That we find the same 

behaviour if the force is in the opposite direction, is a direct consequence of the stick 

boundary conditions ( eq. (2.3)). If the first particle tends to move away a large fluid 

velocity difference arises in a small region of space between the surfaces of the two particles 

[18J. This difference can be cancelled if the second particle translates with the first. The 

three particle case described above can be explained in the same way, but it is also 

necessary to use the symmetry relations for the mobility matrix p.u (eq. (2.13)) to zz 

understand the equivalence of the three particles although the outer particles see a different 

environment in comparison to the particle between them. The results in table I in the 

columns labelled with P3 represent the contribution of pure three particle hydrodynamic 
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interactions to p,t
1
t
1 

and ~2t . From these results we see that three particle interactions ,zz .- z ,zz 

are important, especially for small interparticle distances, and that the convergence 

behaviour is slow. Finally in tabel I, in the row denoted by PE, we have presented the pure 

three particle contributions obtained from the first term of the power expansion in inverse 

interparticle distances, which has the following form [5]: 

for p
1
t
1
t and p,

2
t 2t respectively. The last expression in both equations is the result for the 

,zz ,liZ 

special configuration described above. Furthermore: (1=cos~13, (2=~os~23 and 

(3=cos(~23-~13). We can see that the pure three particle contributions, determined with 

our method, differ significantly from the results from eqs. (5.18a) and (5.18b). It is obvious 

that these relations cannot be used to describe three particle interactions very 

satisfactorily, even at intermediate interparticle distances. We have also studied the 

numerical data of /Stt for large interparticle distances and the conclusion is that relations 

like eqs. (5.18a) and (5.18b) are valid only ifthe three interparticle distances are 

simultaneously large. There are especially different results for the pure three particle 

contributions, and convergence problems, if e.g. 1~121 >>2a, m131 >>2a but m231~2a. 

This behaviour forces us to be cautious in the case of numerical calculations like e.g. the 

calculation of configuration averages as we shall see in the next section. We have also 

studied the behaviour of p,r;. ; the results are presented in table II. To our knowledge there 
lJ,ZZ 

are no results available to compare them with. The convergence behaviour of the p,r;. is 
lJ,ZZ 

considerably faster than the convergence behaviour of the translational counterpart 

described in table I. The same is true if we consider the pure three particle contributions. 

This kind of convergence behaviour has also been shown in the two particle case ( ch. 3). 
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TABLE II 

P3: pure three particle contribution 
m: limiting values obtained by our method 

a/R12 L -rr 
IL11,zz P3 

-rr 
/L22,zz P3 

-rr 
/L12,zz 

-rr 
/L13,zz 

0.50 2 0.98767 -0.00038 0.97665 0.00046 0.12427 0.02791 
4 0.97734 -0.00049 0.95721 0.00146 0.12830 0.02594 
6 0.97404 -0.00048 0.95082 0.00167 0.13110 0.02597 
10 0.97182 -0.00048 0.94635 0.00164 0.13314 0.02632 
20 0.97057 -0.00050 0.94388 0.00165 0.13425 0.02659 
50 0.97011 -0.00050 0.94301 0.00168 0.13464 0.02669 
100 0.97003 -0.00051 0.94286 0.00169 0.13470 0.02671 

0.48 2 0.99122 -0.00020 0.98315 0.00023 0.11006 0.02257 
4 0.98510 -0.00022 0.97129 0.00058 0.11203 0.02074 
6 0.98392 -0.00020 0.96889 0.00058 0.11299 0.02053 
10 0.98361 -0.00019 0.96815 0.00053 0.11332 0.02053 
m 0.98358 -0.00019 0.96814 0.00052 0.11334 0.02053 

0.45 2 0.99483 -0.00008 0.98993 0.00008 0.09081 0.01654 
4 0.99194 -0.00007 0.98423 0.00016 0.09146 0.01533 
6 0.99161 -0.00007 0.98355 0.00015 0.09167 0.01520 
m 0.99157 -0.00006 0.98346 0.00014 0.09171 0.01519 

0.40 2 0.99801 -0.00001 0.99607 0.00001 0.06388 0.00998 
4 0.99720 -0.00001 0.99446 0.00002 0.06396 0.00954 
m 0.99715 -0.00001 0.99435 0.00002 0.06398 0.00951 

0.25 2 0.99995 -0.00000 0.99991 0.00000 0.01562 0.00200 
m 0.99995 -0.00000 0.99990 0.00000 0.01562 0.00199 

We now consider a more complicated problem with the third particle in the 

xz-plane. The decoupling of the set of linear equations disappears and it becomes more 

difficult to solve the set of linear equations for large L. In the case described above we had 

to solve 9L linear equations but in general one has to solve 9L(L+2) linear equations. It 

will be obvious that the number of linear equations to be solved increases sharply with the 

increase of L. Consequently we have a numerical upper limit for L itself. Despite this 

limitation, we are able to study the general problem reasonably well. Suppose the following 

situation: 

(5.19) 
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In table III and IV we present the results of p,t
11

t and p,
1
rr
1 

respectively, with ae{x,y,z}, 
,etet ,etet 

for several values of I ~12 1. It is not necessary to study the components of the mobility 

matrices ,P and p,rr for i=2 or 3, because they are related to those presented in both tables. 

The values in the columns labelled with P3 are again the pure three particle contributions, 

the rows labelled with L=oo represent limiting results obtained by our method and the 

values in the rows denoted by PE are determined with eq. (5.18a). This expression gives, in 

our special configuration, results for the p,t
1

t
1 

only because the relations describing the 
,zz 

three particle contribution to p,~~,xx and p,~~.YY are expressed in terms of typical inverse 

interparticle distances of order R -9 and higher. The conclusion here is that three particle 

hydrodynamic interactions cannot be accounted for by a single term. This becomes 

especially clear if we consider nearly touching spheres. Mazur and van Saarloos have 

presented some expressions for ,1,~ and J~,: (5]. These expressions have the following inverse 
lJ !J 

interparticle distance dependence, with R representing the interparticle distances, all equal 

in the present case: 

{5.20) tt = O(R ·9) tt = O(R .g) tt _ O(R -7) 
Jtii,xx ' Jtii,yy ' Jtii,zz - ' 

(5.21) 

This behaviour is not present in the tables III and IV, as we may expect, keeping in mind 

the same kind of problems in the two particle case. So it is obvious that we have to take 

into account many more terms of the power expansion in inverse interparticle distances. It 

should be noted that our method gives results which are not expressed in terms of power 

expansions. See in this context the discussion in the chapters 2 and 3. It is remarkable that 

for nearly touching spheres the rotational mobilities are more influenced by the pure three 

particle hydrodynamic interactions than the translational mobilities. In this context we 

want to point out that it could be interesting to work out these three particle problems by 
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TABLE III 

P3: pure three particle contribution 
ro: limiting values obtained by our method 
PE: contribution according to eqs. (5.18} 

a/R12 L -tt 
lkn,xx P3 

-tt 
lku,yy P3 

-tt 
lku,zz P3 

0.50 2 0.90037 0.00648 0.95015 0.00288 0.85997 0.00166 
4 0.84875 0.01425 0.92859 0.00682 0.78309 0.00675 
6 0.82770 0.01919 0.91694 0.00828 0.75298 0.01125 
10 0.80605 0.02238 0.90454 0.01081 0.72329 0.01299 
15 0.79559 0.02588 0.89658 0.01270 0.70854 0.01494 
PE -o.04349 

0.48 2 0.91302 0.00492 0.96258 0.00167 0.87316 0.00025 
4 0.87009 0.00744 0.95083 0.00258 0.80671 0.00113 
6 0.85525 0.00795 0.94741 0.00242 0.78459 0.00243 
10 0.84470 0.00686 0.94577 0.00232 0.76892 0.00149 
15 0.84271 0.00682 0.94555 0.00230 0.76587 0.00156 
PE -o.03268 

0.45 2 0.92947 0.00309 0.97605 0.00071 0.89280 -o.00095 
4 0.89899 0.00294 0.97107 0.00069 0.84430 -o.00221 
6 0.89228 0.00268 0.97039 0.00057 0.83412 -o.00199 
10 0.89008 0.00233 0.97023 0.00054 0.83076 -o.00238 
(I) 0.89001 0.00233 0.97022 0.00054 0.83063 -o.00238 
PE -o.02080 

0.40 2 0.95198 0.00124 0.98925 0.00015 0.92376 -o.00141 
4 0.93689 0.00064 0.98793 0.00010 0.89913 -o.00273 
6 0.93557 0.00055 0.98788 0.00008 0.89714 -o.00270 
(I) 0.93543 0.00052 0.98787 0.00008 0.89691 -o.00274 
PE -o.00912 

0.25 2 0.99074 0.00002 0.99951 0.00000 0.98466 -o.00019 
4 0.98973 0.00000 0.99943 0.00000 0.98301 -o.00025 
(I) 0.98972 0.00000 0.99943 0.00000 0.98300 -o.00025 
PE -o.00034 

using algabraic computer programmes. The final expressions of the components of the 

grand mobility matrix are then expressed as a fraction with both the numerator and the 

denominator described in terms of spherical harmonics and inverse typical interparticle 

distances. 

Finally we want to discuss some results for sedimentation of this system of particles 

with the special configuration introduced above. Durlofsky, Brady and Bossis [19] have 
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TABLE IV 

P3: pure three particle contribution 
oo: limiting values obtained by our method 

a/R12 L -rr 
P3 

-rr 
P3 

-rr 
P3 IL11,xx ILu,yy ILn,zz 

0.50 2 0.91508 0.00524 0.88093 0.01090 0.93872 0.00234 
4 0.81660 0.01477 0.74133 0.03185 0.86567 0.00227 
6 0.76750 0.02228 0.68414 0.06128 0.82972 0.00293 
10 0.71639 0.03427 0.60853 0.08396 0.78731 0.00016 
15 0.68213 0.04451 0.56113 0.10671 0.75835 -o.00140 

0.48 2 0.93408 0.00311 0.90936 0.00956 0.95342 0.00167 
4 0.86910 0.00618 0.82760 0.02937 0.90857 0.00254 
6 0.84631 0.00786 0.80102 0.04049 0.89320 0.00280 
10 0.83320 0.00944 0.78210 0.04468 0.88406 0.00274 
15 0.83063 0.00988 0.77823 0.04560 0.88229 0.00279 

0.45 2 0.95570 0.00131 0.94005 0.00693 0.96950 0.00092 
4 0.92074 0.00148 0.89877 0.01840 0.94658 0.00139 
6 0.91315 0.00162 0.88867 0.02026 0.94163 0.00135 
10 0.91112 0.00169 0.88557 0.02047 0.94032 0.00133 
00 0.91104 0.00170 0.88543 0.02048 0.94026 0.00133 

0.40 2 0.97852 -o.00022 0.97091 0.00326 0.98569 0.00029 
4 0.96684 -o.00002 0.95687 0.00656 0.97829 0.00039 
6 0.96569 -o.00002 0.95504 0.00650 0.97754 0.00038 
00 0.96559 -o.00002 0.95486 0.00649 0.97747 0.00037 

0.25 2 0.99880 -o.ooooo 0.99821 0.00008 0.99925 0.00000 
00 0.99860 -o.OOOOl 0.99793 0.00010 0.99912 0.00000 

discussed this problem, using also some unpublished results of Kim (1985). We consider 

sedimentation of this three particle cluster in the y-direction, being the configuration 

appropriate to compare our results with those of Durlofsky et al. We are interested in the 

drag coefficient .:\ which is defined as follows: 

(5.22) ( tt tt tt )-1 
>. = 1Lu,yy +1L12,yy +JL13,yy 

Kim was able to study the coefficient >. up to x=a/R=0.4. At smaller interparticle spacings 

the convergence behaviour of his power expansion is very slow. Kim used extrapolated 
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values for smaller interparticle spacings [20,19]. We were able to study>. up to x=0.5 and 

the results resemble those of Durlofsky et al., but it seems that at very small interparticle 

spacings our results are slightly lower than those of Durlofsky et al. (see fig. 3 ref. [19]). 

Unfortunately we cannot compare our results in further detail because they have not 

presented tabulated results. We present some results for nearly touching spheres in table V. 

In the case of touching spheres, x=0.5, we have calculated a limiting value, >.=0.556. The 

maximum value of the upper limit is L=15. Durlofsky et al. discussed the existence of a 

minimum of >. near x~0.495. This minimum of>. means that the sedimentation velocity of 

the cluster is maximal. One of their arguments is the existence of such a minimum in the 

two particle analogue, as shown by Batchelor [21]. Up to this order we were not able to 

pass around this minimum, although we too believe that this minimum of>. exists. Using 

the method presented in chapter 3, we can round this minimum in the two particle case, 

but for values £>20 only. For the maximum value of L used in our calculations, £=150, we 

have obtained correct results up to x=0.4995. The result for x=0.4995 is 0. 713( 6) with 

uncertainty in the decimal between brackets. Jeffrey and Onishi have presented expressions 

derived from lubrication theory [22]. For the two particle case, as described above, 

lubrication theory gives: 0. 713{1). We expect that also in the three particle problem it 

must be possible to round the minimum, but we have to use higher values of the upper 

limit L then. Concerning the results presented in table V we want to point out that we are 

able to determine >. in the case of small interparticle spacings in contrast with the results of 

Kim [20]. He has given two possible arguments to explain the divergence behaviour of his 

results for>.: in the first place he has pointed out that it might be inherently impossible to 

obtain results for>. in terms of a single expansion ina/Rand secondly he has not ruled out 

an error in his analysis. Our expression for >. can be expressed as a fraction of expansions in 

a/R so we cannot decide if one of the reasons of Kim is correct to explain the divergence 

behaviour. 

Furthermore it is noteworthy that the pure three particle contribution to the 
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TABLEV 

a/R12 L ,\ 

0.48 10 0.5607 
12 0.5608 
15 0.5609 

0.49 10 0.5572 
12 0.5575 
15 0.5578 

0.495 10 0.5558 
12 0.5563 
15 0.5567 

0.4975 10 0.5551 
12 0.5557 
15 0.5564 

0.5 10 0.5546 
12 0.5553 
15 0.5562 

components of the grand mobility matrix, although relatively small for large interparticle 

distances, become very important in calculating three particle configuration averages. This 

has consequences when we study the virial expansions of e.g. the translational and 

rotational short time self-diffusion coefficients Dt and Dr. In section 4 we present the 
8 8 

results of the virial expansions of the self-diffusion coefficients; in section 5 the virial 

expansions of the sedimentation velocity, U /U , and its rotational counterpart, 0 /0 . s 0 s 0 

5.4 Translational and rotational self-diffusion, three particle effects 

The study of the transport coefficients of suspensions is often aimed at the 

determination of the virial expansions of these coefficients. In chapter 3 we have explained 

how virial expansions can be derived, by using pair hydrodynamic interactions between the 

spherical particles. We have used the pair distribution function up to order I{J, the volume 



fraction of dispersed particles in the suspension. Some of the results are new and other 

results had already been obtained by others. We can think e.g. of the first order virial 

coefficients of the short time translational self-diffusion tensor and of the sedimentation 
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velocity, obtained by Batchelor [21 ], and of the first order virial coefficient of the short 

time rotational self-diffusion tensor, obtained by Cichocki and Felderhof [23]. The results 

for the translational and rotational self-diffusion tensors are 

(5.23) 

(5.24) 

where Dt=kBT/(67r1J a), Dr=kBT/(81r1J a3
), kB the Boltzmann constant and T the 

0 0 0 0 

absolute temperature. The virial expansions of the translational and rotational 

sedimentation velocities are 

(5.25) 

(5.26) 

U /U = (1-Q.55rp+12.5ltp2) , 
s 0 

0 /0 = (1-1.52tp--O. 79tp2
) ' s 0 

with U and 0 the translational and rotational sedimentation velocity of one particle in an 
0 0 

unbounded fluid respectively. Our aim in this section is to correct the second order virial 

coefficients by including three particle hydrodynamic interactions. 

The short time self-diffusion tensors Dt and Dr can be defined by means of the 
s s 

grand mobility matrix. These diffusion tensors can be used to describe the translational 

and rotational diffusion of a single test particle on a time scale in which the particle 

configuration remains nearly constant and are defined in the following way: 

(5.27) 

ScanIV
Text Box
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(5.28) 
k T N 

Dr B '{' rr k T rr 
=~<"" J.t:.> = B <l!u> ' s i::::l ll c c 

with N the number of particles in the suspension and < · · · > denotes an average over all c 

configurations of theN particles inside a volume V. The configuration average of the 

mobility tensors can be rewritten in the following form, where we restrict ourselves for the 

moment to the translational case, 

(5.29) 

where f't=l/(61f'f/ a) and <[1-'1t 1t] > denotes a configuration average of the n particle 
o o n c 

cluster. The average <[I!~~J2> cis, up to order vP, already known (see eq. (5.23)) and if we 

restrict ourselves to three particle hydrodynamic interactions only, we have to calculate 

<[l!~iJ3> c· The configuration average of the three particle cluster can be evaluated with the 

help of the following simple three particle distribution function: 

[

0, R
12

<2a or R13<2a or R23<2a 
(5·30) g(!i12'!!:1a'!!:23) :: g(R12'R13'R23) = . ' 

1, elsew1se 

with R. .=I R..j. It should be noted that R23 is a function of the interparticle distances R12 D 1 - -

and J!:13. Despite the simplicity of the three particle distribution function the configuration 

integral itself is an integral over a very complicated domain. The configuration average of 

the three particle cluster is now 

= n! !fJ RizdR12 I RiadR13 J sine13de13 [ g(R12'Rl3'R23)Tr[f'~~(!!:12'!!:13)la] ' 

where we have assumed that N>>l. Furthermore we have used rotational symmetries to 

determine the integrations over the azimuthal angles <pl2 and <p13' and over the angle el2. 

ScanIV
Text Box



93 

Beenakker has calculated the configuration average of the first term of the power expansion 

in inverse interparticle distances, eq. (5.18a). This integral was evaluated numerically 

where he used Monte Carlo techniques [7]. The average leads finally to the following three 

particle contribution of the self-diffusion tensor: 

(5.32) 

This is slightly lower than the result of an analytical determination of the configuration 

average, 

(5.33) 

In this special case there is no essential difference between eq. (5.32) and eq. (5.33) in 

contrast with the sedimentation problem where it is difficult to evaluate some kind of 

integrals because of numerical problems. The remaining part of the configuration average of 

[f.'~~] 3 will be calculated numerically which should be done very carefully, because the three 

particle contribution of the components of the mobility matrix of particle 1 is strongly 

influenced by two nearly touching spheres at a great distance from the first particle. In 

that situation there is also the problem that the components of the mobility matrix of 

particle 1 have a poor convergence behaviour with increasing L, the upper limit of our set 

of linear equations. Consequently we have to take into account this area in the numerical 

integration with great care. This can be done by considering symmetry arguments, viz. 

(5.34) 

With this relation we can rewrite the configuration integral and the result is 
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The function H(x) is the Heaviside function with H(x)=l if x>O and H(x)=O if x<O. The 

coefficients ci and 4 are the virial coefficients obtained from both configuration integrals. 

TABLE VI {IDtq/iiJ~ =[D~ ·!Dr !/[if] =[D'):) 
0 3 3' 0 $3 

L ft ft (otJ f.r f.~ 
-r 

1 2 s3 1 [Ds]3 

2 0.044 -0.604 1.25 0.218 -0.046 0.17 
3 0.235 -0.880 1.17 0.320 -O.o75 0.25 
4 0.271 -1.015 1.07 0.353 -0.086 0.27 
5 0.285 -1.085 1.01 0.366 -0.092 0.27 
6 0.293 -1.124 0.98 0.373 -0.097 0.28 
7 0.297 -1.147 0.96 0.378 -0.100 0.28 
8 0.300 -1.162 0.95 0.381 -0.102 0.28 
9 0.301 -1.171 0.94 0.384 -0.104 0.28 
10 0.302 -1.178 0.93 0.386 -0.105 0.28 

The results of these coefficients are presented in table VI where we see that f.~ is relatively 

large and shows slow convergence behaviour. Despite these numerical problems we can 

make an estimate of the pure three particle contribution of the virial expansion of Dt, 
s 

(5.36) 

which is approximately 50% lower than the value obtained by Beenakker (see in this 

context his remarks concerning the higher order corrections [6]). The final expression of the 

virial expansion of Dt is now 
s 

(5.37) 
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0 0.2 0.4 
volume fraction tp 

The short time self-diffusion coefficient, normalized with d, is plotted 
0 

versus tp, the volume fraction. The solid curve represents our result, eq. 

{5.87}, the dashed curve represents the virial expansion obtained by 

Beenakker and Mazur and the dashed-dotted curve represents the virial 

expansion obtained by Jones et al. The symbols represent experimental 

results of van Megen and Underwood {circles}, Ottewill and Williams 

(triangles) and Pusey and van Megen (squares). 

where we should take into account that the value of the second order virial coefficient 
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might be some few hundredth parts lower. It is obvious that our value of the second order 

virial coefficient is much lower than Beenakker's value, 0.88. The difference can partially 

be explained by the fact that Beenakker has used a value --().92 instead of -1.13 for the two 

particle contribution to the second order virial coefficient. Recently Jones, Muthukumar 

and Cohen have obtained a value of the second order virial coefficient which is even higher 



96 

-~ s 
'«"' -~ -rn 
6 ... -

Fig.2. 

0.5 

0 0.2 0.4 
volume fraction rp 

The short time self-diffusion coefficient, normalized with Dt, is plotted 
0 

versus tp, the volume fraction. The solid curve represents our result, eq. 

(5.37}, the dashed curve represents the virial expansion obtained by 

Beenakker and Mazur and the dashed-dotted curve represents the virial 

expansion obtained by Jones et al. The open symbols represent numerical 

results from Ladd (squares} and simulation data from Phillips et al. 

{triangles}. The plusses represent the results obtained by Beenakker and 

Mazur, which includes many particle hydrodynamic interactions. 

than Beenakker's value, 1.21 [16]. We cannot explain this difference. In fig. 1 we have 

plotted our result, Beenakker's result, the result of Jones et al. and some experimental 

results of Pusey and van Megen [24], Ottewill and Williams [25] and van Megen and 

Underwood [26]. In fig. 2 we have plotted our result, the numerical results of Ladd [3], the 

simulation data of Phillips et al. [2] and the result of Dt obtained by Beenakker and Mazur, 
s 
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0.8 

0.6 

0.2 0.4 
volume fraction rp 

Fig.3. The short time rotational self-diffusion coefficient, normalized with v:, is 

plotted versus rp, the volume fraction. The solid curve represents our result, 

eq. (5:98}, and the squares, triangles and plusses represent simulation results 

of Phillips et al. 

where they used an expansion in powers of the fluctuation in the concentration of the 

suspended particles [6]. We may conclude that our expression is reasonable up to r,tm0.4, 

especially if we compare our result with the most recent experiments of van Megen and 

Underwood, and we may hope that the contribution of four and more particle 

hydrodynamic interactions to the virial expansion will be an improvement if rp~0.4. The 

result of Jones et al. [16] seems too high as well as the virial expansion of Beenakker [6]. 

Beenakker has already made this conclusion concerning his virial expansion and developed 

a new method to include many particle hydrodynamic interactions (fig. 2). The numerical 

data of Ladd and the simulation results of Phillips et al. confirm our remarks above. 
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In the same way we can determine the virial expansion of Dr. This can completely 
8 

be achieved by numerical means. The results of the numerical integrations are, for different 

values of L, presented in table VI. The viriai expansion, including three particle 

hydrodynamic interactions, is 

(5.38) 

In chapter 3 we pointed out that the three particle contribution to the rotational 

self-diffusion coefficient would be less important than in the translational case. This is 

confirmed by considering the two contributions, 0.28<p2 for [D:]
3 

and 0.93cp2 for [D!J
3
. In fig. 

3 we have plotted our expression for the virial expansion of Dr and compare this with 
8 

computer simulation results of Phillips et al. We can conclude that eq. (5.38) corresponds 

reasonably well with the computer simulation data. Unfortunately there are no 

experimental results available. 

5.5 Translational and rotational sedimentation, 
three particle effects 

The derivation of an expression of the sedimentation velocity is more complicated. 

In chapter 3 we have used an expression of Pusey and Tough [27] of the short time effective 

diffusion coefficient to determine the virial expression of the sedimentation velocity. This 

expression has the following form: 

kBT N , tt , 
(5.39) D fk) = -- E <k·p .. ·k exp{ik·R .. )> , 

eff\ NS ( k) i=l IJ - -IJ c 
j:l 

with!, a wave vector with direction k and S(k) the static structure factor. Using eq. (5.31) 



and taking k=e we write the three particle contribution as 
II 

(5.40) 

with 

f(kR) = 2sin(kR), h(kR) = 2sin(kR) + 4cos(kR) 4sin(kR) 
kR kR k2R 2 k 3R3 
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The shorthand notation <1-'i~,!,> c is introduced for later use. The sedimentation velocity is 

now defined as: 

(5.41) 
D\r(k)S(k) 

U /U =lim e t 
s o k-+0 D 

0 

The calculation of the three particle contribution to U /U will be achieved in two steps, 
s 0 

an analytical and a numerical step. First we write the mobility tensor [J.'i~J 3 in the 

following way: 

(5.42) [J.'i~J3 = ([J.'i~la-vi2) + vi2 · 

The configuration average of v~2 , defined as in eq. (5.40), will be determined analytically 

and the same kind of configuration average of the tensor ([J.'i~J 3-vi2 ) will be calculated 

numerically. The tensor v~2 consists offour terms, which have the following form according 

to Mazur and van Saarloos [5], 
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(5.43a) 

(5.43b) 

(5.43c) 

(5.43d) 

with (
1

, (
2 

and (
3 

defined as below eq. (5.18). We shall furthermore use the special 

coordinate system introduced in section 3. The configuration average of the sum of ( v
12

)i is, 

in the limit k-+0, 

(5.44) • 
4 

t t hm E <(v12).,!> = 8.0~ tp'l. 
k-+ 0 i=l 1 c 0 

The numerical calculation of the remaining term in eq. (5.42) gives the following 

contribution: 

In table VII we present the numerical results of the virial coefficients, denoted by t:\ for 

different values of the upper limit L. This gives us some understanding of the convergence 

behaviour of the numerical coefficient in eq. (5.45). The total three particle contribution of 

the virial expansion of the sedimentation velocity is now <[J£~~]3,!>c = 7.4~!cp2, and the 

virial expansion, including the three particle contribution to the self-diffusion coefficient, is 
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0.2 
volume fraction ffJ 

0.4 

The sedimentation velocity, normalized by its infinite dilution value U , is 
0 

plotted versus rp. The bold solid curve represents our result (up to rp=0.15} 

and the thin dashed line represents the Batchelor expression. The squares 

represent numerical data of Ladd and the triangles represent the results of 

Phillips et al. 

U /U = 1--6.55rp+l9.7rp2 • 
8 0 
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We have compared this result with numerical results obtained by Ladd [3] and computer 

simulation results of Phillips, Brady and Bossis [2]. We have plotted these results in fig. 4. 

The data of Phillips et al. differ, for small rp, with our result and the results obtained by 

Ladd. This difference is caused by the insertion of a degree of periodicity into the model of 

Phillips et al. (see also ref. [2]). In fig. 4 we have plotted also the linear virial expansion 

(the Batchelor expression) and we can conclude that this expression describes 
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TABLE VII 

L et fr 

2 +0.80 -0.042 
3 -0.20 +0.040 
4 -0.40 +0.009 
5 -0.50 -0.005 
6 -0.55 -0.012 
7 -0.57 -0.015 
8 -0.59 -0.016 
9 -0.60 -0.017 
10 -0.61 -0.017 

sedimentation reasonably well up to ~0.05. Our expression (eq. (5.46)) is reasonable up to 

~0.12-{).13. Beyond this value of tp the virial expansion describes sedimentation very 

badly and it can be expected that the third order virial coefficient should be large 

(comparable with the second virial coefficient) and negative to compensate the quadratic 

term. We have not plotted experimental results in fig. 4. These results are of course 

available, but some recent experimental results from Buscall et al. [28] and Bacri et al. [29] 

resemble the numerical data of Ladd very well up to ~0.5. Recently Jones et al. [16] have 

presented results of the second order vidal coefficient and their vidal expansion has the 

following form: 

(5.47) U /U = 1-6.57rp+18.27cp2
• 

s 0 

Their virial expansion resembles ours, although the three particle contribution of this 

expression is nearly 20% lower than in our result. The difference becomes larger if we split 

off in both results the three particle contribution belonging to the self-diffusion coefficient. 

The result of Jones et al. [16] is then 4.6, which is nearly 40% lower than our result, viz. 

7.4. As is the case with the three particle contribution to the self-diffusion coefficient we 

cannot explain this difference. 

In an analogous way we have studied the virial expansion of the rotational 



Fig.5. 

0.2 
volume fraction rp 

The rotational velocity, normalized by its infinite dilution value n , is 
0 

plotted versus rp. The bold solid curve represents our result, eq. {5.51}, and 

the squares, triangles and plusses represent simulation results of PhiUips et 

al. 
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counterpart of sedimentation. The only difference is that p.tt should be replaced by p.rr in 

the equations above. Here we have to calculate one term analytically, viz. [5] 

(5.48) 

with 
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(5.50) <r112'k> = 1.17J.lrp2. - c 0 

The numerical calculation of the remaining part yields the contribution -0.02Jl rp2• In table 
0 

VII the numerical result is tabulated as a function of the upper limit L. The virial 

expansion of n /fl is 
s 0 

(5.51) n ;n = 1-L52rp+0.64rp2 • 
s 0 

In fig. 5 we have plotted this result as a function of volume fraction tp and compared the 

result with computer simulation results of Phillips et al. [2]. This virial expansion and the 

simulation results agree very well up to cp.ll0.4, which leads to the conclusion that rotational 

sedimentation can be described reasonably well by using two and three particle 

hydrodynamic interactions between the hard spheres in a suspension. 

5.6 Conclusion 

The set of linear equations derived in chapter 2 has been used to study three particle 

hydrodynamic interactions. After studying some components of the grand mobility matrix 

one important conclusion can be drawn, namely that it is necessary to include many terms 

of the power expansion in typical inverse interparticle distances to describe three particle 

hydrodynamic interactions sufficiently, even at intermediate interparticle distances. This is 

a tedious task and as far as we know there are no results available of arbitrary 

configurations of the three particle cluster. The method presented in this chapter seems 

more attractive to perform these calculations, although the final result is not in the form of 

a single power expansion. Analytical expressions can be obtained by using algebraic 

computer programmes. We have restricted ourselves to calculating these components 



105 

numerically. 

The study of the three particle contrib!ltion to the translational self-diffusion 

coefficient leads to the conclusion that the contribution calculated in section 4 ( eq. (5.36)) 

is much smaller than predicted by several other authors, but the derived expression of nt 
s 

(eq. (5.37)) is reasonable, if compared with experimental data and simulation results, up to 

~0.4 in contrast with expressions derived by Beenakker [7] and Jones et al. [17]. The 

rotational counterpart is described reasonably well using two and three particle 

hydrodynamic interactions only. This is also the case for the rotational sedimentation. At 

this moment we can compare these theoretical results with simulation data only because, 

to our knowledge, there are no experimental results available. Translational sedimentation 

cannot be described very easily in terms of a virial expansion. With the expression derived 

in this chapter (eq. (5.46)) we can extend the range where that expression is reasonable to 

higher volume fractions, up to ~0.13. For higher volume fractions we cannot use this virial 

expansion. Despite this disappointing result, which was expected, we can learn something 

different from it and also from the result of Jones et al. [17]. Both results show that it is 

dangerous to derive virial coefficients from experimental results with fitting procedures. 

There are several results of the second order virial coefficient of sedimentation available, 

obtained from experiment. Kops-Werkhoven and Fijnaut obtained the value 10=4 [30], 

which is too small, and Cheng and Schachman obtained a value of roughly 20 [31], which is 

reasonable. The same remark is also valid for other virial expansions, like the virial 

expansion of the translational self-diffusion coefficient. 
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Chapter 6 BROWNIAN MOTION AND LONG TIMET AILS 

6.1 Introduction 

The theory of Brownian motion has been and still is a field of intensive research. 

Some aspects of present day research have already been mentioned in the preceding 

chapters like the study of the self-diffusion coefficient in the chapters 3 and 5. We have 

also mentioned the effect of Brownian motion on the behaviour of the low shear rate 

effective viscosity of suspensions. In the area of computational physics a new sub-discipline 

has been developed called Brownian dynamics. In this chapter we present some results of a 

study of the correlation functions of Brownian particles in an unbounded fluid with or 

without an externally imposed shear flow and some results of a study of such particles in a 

harmonic potential. The mean square displacement of these particles can be studied, and in 

connection with it the diffusion of the Brownian particles if a diffusional regime exists. For 

the moment we assume that hydrodynamic interactions are absent. Before we come to 

these points we give a short historical review. 

In 1827 Robert Brown, a Scottish botanist, observed under the microscope the 

random motion of pollen grains. This was the starting point of the study of Brownian 

motion. In the beginning of this century some important steps in the development of the 

theory of Brownian motion were set by Einstein [1] and Langevin [2]. Einstein presented a 

relation between the diffusion coefficient D of a spherical Brownian particle and the 
0 

Stokes friction coefficient (, nowadays known as the Stokes-Einstein relation, 

(6.1) 
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where (=61fT/ a. with 11 the shear viscosity of the fluid and a the radius of the spherical 
0 0 

Brownian particle. Moreover, k
8 

is the Boltzmann constant and T is the absolute 

temperature. This relation has been derived by using thermodynamical arguments. Besides 

the above mentioned result, Einstein defined the following relation between the diffusion 

coefficient D and the velocity autocorrelation function <j>(t), although he did not use this 
0 

relation to obtain eq. (6.1 ), 

CD 

(6.2) D
0 

=lim <x2~!)> = J<l>(t)dt, 
t-+ ID 

0 

where <x2(t)> is the mean square displacement. It is obvious that the long time behaviour 

should be such that t<j>(t)-+0 if t-+m. In the same period Langevin used another method to 

study diffusion. of Brownian particles. He introduced an equation of motion for free 

Brownian particles: 

(6.3) mQ(t) = -(![(t) + B:(t) 

with m the mass of the particle, ![(t) its velocity and B:(t) is a random force exerted by the 

fluid molecules in collisions with the Brownian particle. The random force is assumed to be 

Gaussian, <B:(t)>=Q, where<··> denotes an ensemble average. Furthermore, 

(6.4) <R.(t)R.(t')> = 2(k8 T5..6(t-t') , 
I J IJ 

which means that successive collisions of fluid molecules are uncorrela.ted. With the 

Langevin equation an explicit expression for the velocity autocorrelation function can be 

derived, which, in this case, is an exponentially decaying function of time [3], 

(6.5) 
k 8 T r 

"'(t) =- exp(- it) . 
'I' m m 
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In the years following these important developments several other authors have presented 

results of studies of the behaviour of Brownian particles. We think of the work of 

Uhlenbeck and Ornstein who studied among other things the behaviour of Brownian 

particles in a harmonic potential [4]. Much work on the general theory of Brownian motion 

has been reviewed by Chandrasekhar [5] and Wang and Uhlenbeck [6]. 

In the sixties several publications concerning computer simulations to study the 

behaviour of fluid molecules were published. Both Rahman [7,8] and Alder and Wainwright 

[9-11] found in computer experiments, where they simulated the motion of a tagged 

particle in a. hard sphere fluid, that the velocity autocorrelation function of that tagged 

particle has a. long time tail, instead of showing an exponential decay, viz. 

(6.6) ~(t) r::l cc312
, t>>rB, 

with rB=(67r'f1
0
a/m)t and C a constant. Eq. (6.6) is valid in the case of a three dimensional 

hard sphere fluid. In general they obtained a long time tail behaviour t-d/2
, with d the 

dimensionality of the system. In one and two dimensional systems this long time tail leads 

to divergencies in Green-Kubo integrals like eq. (6.2). Alder and Wainwright were able to 

explain the long time tail in eq. (6.6) for three dimensional hard sphere fluids by 

considering the cooperative effect from the surrounding fluid molecules, which could be 

described by macroscopic hydrodynamics [10,11]. This explanation was also given by 

Zwanzig and Bixon [12]. Widom studied the behaviour of a. Brownian particle in a viscous 

fluid by using the generalized Langevin equation, a. Langevin equation with a memory 

kernel, viz. 

t 

(6.7) mQ(t) = -J ((t-r)U(r)dr + !!;(t). 

Apart from the different form of the Langevin equation it is important to note that the 
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collisions of the fluid molecules with the Brownian particle are correlated, and consequently 

the random force autocorrelation function is nf}t proportional to the Dirac delta function 

anymore, although the random force remains Gaussian. Widom was able to solve this 

problem analytically and showed the existence of the long time tail in the velocity 

autocorrelation function of the Brownian particle [13]. Since that time several other 

authors have studied this problem [14-18] as well as the rotational counterpart of this 

function (19-21.]. Ailawadi and Berne showed the following long time behaviour of the 

angular velocity autocorrelation function [19]: 

(6.8) ~ (t) ~ Ct-5/2 , 
r 

with, in the case of spherical particles, r~ =~r B. Finally we want to remark that these long 

time tails in correlation functions of microscopic properties have appeared in many theories 

and are accepted among statistical physicists (see for a review e.g. Pomeau and R.esibois 

[22]). 

In the sections 3 and 4 we present the results of a study of the velocity 

autocorrelation function and the mean square displacement of Brownian particles in a 

harmonic potential and in an externally imposed shear flow respectively. We shall 

concentrate on the backflow effects, which appear explicitly in the generalized Langevin 

equations, necessary to solve the problems mentioned above. In section 2 we shall review 

the problem of a free Brownian particle in an unbounded fluid, in order to introduce some 

general concepts. We shall end this chapter with a short conclusion. 
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6.2 The free Brownian particle 

We present the results of a study of a Brownian particle in an unbounded fluid at 

rest at infinity. The particle is of such a small size that the Reynolds number of the fluid 

motion induced by the Brownian particle is smalL So we can neglect the non-linear term in 

the Navier-Stokes equations. The fluid motion is then described by the linearized 

incompressible time dependent Navier-stokes equations. There are no external forces 

acting on the particle. We consider a random force !1(t) only. This problem can be reduced 

to a one dimensional problem because of isotropy. The Brownian particle has velocity U(t) 

if t>O, and is assumed to be at rest if t~O. The velocity of this particle is determined by its 

velocity at earlier times via backflow effects in the fluid; the equation of motion is 

described by the following generalized linear Langevin equation, which is called the 

Stokes-Boussinesq equation, and can be derived by solving the time dependent 

Navier-stokes equations describing the system under consideration [23,24]: 

t 

(6.9) mU(t) = -61r17 aU(t)- im0'0(t)- 6a2J7rp1J J-1- U( r)dr + R(t), 
0 0 Fr 

0 

with p the density of the fluid and m0 = tn3p the mass of the fluid displaced by the 

Brownian particle. Furthermore we introduce the effective mass M=m+!m0• The first term 

of eq. (6.9) is the ordinary Stokes' friction, the second is connected with the virtual mass of 

a sphere in an incompressible fluid, and the third is a memory term associated with the 

hydrodynamic retardation effects and related to the penetration depth of viscous unsteady 

flow around a sphere. This equation can be solved by using the theory of Laplace 

transforms. The Laplace transform of a function f(t) has the following form [25]: 

(6.10) 

CD 

f(s) = Je-stf(t)dt, Re(s)>O. 

0 
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Via the Laplace transform of eq. (6.9) we obtain, 

(6.11) 
- - -
U(s) = A(s)R(s), A(s) = 1 

, 
(Ms+z.JS+() 

with z=6n2../jj'if. .. The Laplace transform of the velocity autocorrelation function is now 
0 

- - - - - -
(6.12) <U(s)U(s')> = A(s)A(s')<R(s)R(s')> . 

Taking x(O)=O and using the fact that the position x(t) is the time integral of the velocity 

of the Brownian particle we find the position autocorrelation function: 

(6.13) <~(s)~(s')> = B(s)B(s')<R(s)R(s')> , 
- -
B(s) = A(s)/s. 

This function is used to determine the mean square displacement of the Brownian particle. 

It is obvious that it is necessary to know a relation between the Laplace transform of the 
- -

random force autocorrelation function and the function A(s) or B(s) to evaluate the 

Laplace inverse of both expressions above (eqs. (6.12) and (6.13)). We start with the 

Fourier transform of the random force autocorrelation function derived by Bedeaux and 

Mazur. They used a generalized Faxen theorem and obtaine~ [26], 

From the properties of the equation above we can conclude that the random force 

autocorrelation function has the following form: 
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The Laplace transform of equation (6.15) is (see ref. [27] p.l95), 

(6.16) <R(s)R(s')> = O(s)+O(s') 
s+s' · 

A simple relation can be derived between O(s) and A(s) (eq. (6.11)) [27], 

~ ~ ~ 

(6.17) A(s)O(s) = kBT(l- MsA(s)), 

and the Laplace transform of the velocity autocorrelation function is now, 

Inverse Laplace transformation and the use of tables of Laplace transforms [28] result in 

the following expression: 

with 

(6.20) A( t) = 1 (bexp(b2t )erfc(bJt) - aexp( a 2t )erfc( a..;t)J , 
M(b-a) 

The function erfc(z) is the complementary error function as defined in [29]. For the 

moment we assume that a#b, which means that one special ratio between the density of the 

particle and the fluid density will not be considered analytically, viz. a:: P/P # l We can 

come to an expression for the velocity autocorrelation function in that special case by 

taking the appropriate limits in eq. (6.20) or by rederiving that equation with the function 
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A(s)=M"1(Js+a)"2• We are interested in the stationary part of equation (6.19), which can 

be obtained by studying the limit t
1
-lfll, t2-lfll, but t2-t1:r~O remains finite. We can 

conclude from eq. (6.20) that A(t)-10 if t-ltll by considering its asymptotic expansion via 

(6.21) 

It should be noted that both a and b can be complex. Finally we obtain, 

where<·· >w denotes the long time limit described above. This result has been obtained 

by several authors, e.g. Widom [13] and Chow and Hermans [14]. We emphasize that 

A{0)=1/ M and consequently have 

(6.23) 

This result is in contradiction with the equipartition theorem because the particle mass m 

instead of the effective mass M would be expected in eq. (6.23). This paradox has been 

solved by Zwanzig and Bixon [16] (see in this context also ref. [15]). They have shown a 

rapid initial decrease from kB T /m to kB T /Mat very short time scales by including 

compressibility effects in the study of the velocity autocorrelation function. It is easy to 

determine the long time behaviour of the velocity autocorrelation function, using the 

asymptotic expansion of the product of the exponential function and complementary error 

function, eq. (6.21). We obtain for q{r), 
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Fig.1. Time dependent diffusion coefficient as measured by Weitz et al.. Solid line: 

experiment; dash-dotted line: theory without retardation effects (Stokes 

limit); dashed line: theory including retardation effects. 

(6.24) 

which shows the famous long time tail. 

In an analogous way one can obtain an expression for the position autocorrelation 

function. Combination of eqs. (6.13) and (6.16) and the use of a relation like eq. (6.17) 

result in 
... ... ... ... 

(6.25) <~(s)~(s')> = kBT(C(~') + cw- C(s~!~{s')- MB(s)B(s')] , 

where C(s)=B(s)/s. The inverse Laplace transform of this relation can be determined with 
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the tables of Oberhettinger and Badii [28]. We assume that t
1

-100, t
2

-100, but t2-t 1:r~O. The 

mean square displacement is 

where C( 0 )=0. D is the Stokes-Einstein diffusion coefficient, D =knT / (. This expression 
0 0 

has already been presented by Paul and Pusey [30]. Weitz et al. have presented 

measurements which support this expression [31] (see fig. 1). In the limit oflarge T we 

obtain the familiar result Ill( r)=2D r. 
0 

In the subsequent sections we use these methods, but give less details. 

6.3 A Brownian particle in a harmonic potential 

We consider a Brownian particle in a harmonic potential. This model can be used to 

describe a Brownian particle in.the equilibrium position of a potential, where small 

displacements can be assumed to be harmonic. We can think of small charged colloidal 

particles in a crystal structure. The problem of a Brownian particle confined to a restricted 

volume can also roughly be described by using a harmonic potential. The equation of 

motion of such a. Brownian particle resembles the Stokes-Boussinesq equation, but we 

introduce a force F(t)=-Kx(t). As is the case with the problem of the free Brownian 

particle we can describe the problem under consideration as a one dimensional problem 
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because there is no coupling with position and velocities of they- and z--directions. The 

equation of motion is now, assuming that the particle is at the equilibrium position x =0 if 
0 

t=O and at rest for t~O, 

t 

(6.27) MO"(t) = -6'lf''f/ aU(t)- 6a2J'lf'P'f/ J-1
- U( r)dr- Kx(t) + R{t). 

0 0 .;r::::; 
0 

The Laplace transform of this equation of motion gives, 

- - -
{6.28) U(s) = A{s)R(s) , A(s) = , 

(Ms2+zs.JS+(s+K) 

where ( and z are defined in section 2. The Laplace transform of the velocity 

autocorrelation function is, 

~ - M - W -

(6.29) <U(s)U(s')> = A(s)A(s')<R(s)R(s')> . 

The analogue of eq. (6.17) for a relation between A(s) and O(s) is: 

with the Laplace transform B(s)=A(s)/s. With this relation we can write for the velocity 

autocorrelation function, 

We consider the Laplace inverse in the situation that t
1

-+m, t
2

-+m but t2-t1:r~O is finite. We 

obtain the following velocity autocorrelation function of a Brownian particle in a harmonic 

potential, 



where the function A( r) can be determined with the help of tables of inverse Laplace 

transforms [28]. This function is 
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where the (complex) coefficients a, b, c and d can be obtained by writing the denominator 

in the expression of A(s) in the following form: 

(6.34) Ms2+.zsfs"+(s+K = M(fs"+a)(fs"+b)(fs"+c)(fs"+d). 

We assume for the moment that the coefficients a, b, c and dare all different of each other. 

If two or more coefficients are equal we can follow the procedure mentioned in section 2 

below eq. (6.20). We are now interested in the long time behaviour ofthis expression. 

Replacement of the complementary error functions in our expression of A( r) by the 

asymptotic expansion (6.21) gives, 

(6.35) 

In the derivation of this asymptotic expansion we have used the following relations between 

the coefficients a to d, which we shall not demonstrate here, 

(6.36) 
an bn en 

(a-6)(a-c)(a=i:1) + (6-a.)(b=C)(b::::a) + (c-a)(c-b)(c=i:1) 
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dn 
+ (d-a)(d-b}(d-c) = 0 , nE{-2,0,2} , 

and 

a~ b4 c4 

(a-b)(a-c)(a::{l) + (b=a}(I>=C)(b=d) + (c-a)(c-b)(c::{l) 

d-4 zM 
+ (d a)(d-b)(d-c) =- K 2 • 

Instead of an exponentially decaying velocity autocorrelation function we have obtained 

again a long time tail, although this tail has a lower power in 1/.fT in comparison to the 

free particle case, viz. r-712 versus r-312 respectively. On top ofthat this long time tail 

has a positive sign. In the Stokes limit the velocity autocorrelation function has, in the 

overdamped case ( (> >J.Kiii), a negative exponentially decaying tail. In the strongly 

overdamped case two separate time scales can be distinguished. On the smaller the particle 

does not feel the harmonic force and the behaviour of the velocity autocorrelation function 

is comparable to the free particle case, including the existence of the r-3/2 1ong time tail. 

Then, at intermediate times, it can be shown by numerical means that eq. (6.32) also has a 

negative part before the positive r - 112 tail becomes dominant. A Brownian particle in a 

colloidal crystal can be described by the overdamped case discussed above. We use some 

data of Derksen (ref. [32] p. 40,44). Consider a colloidal crystal in water built up of 

polystyrene spheres, with radii a~5x10-8m, with charge Q~I0-16C, with a lattice parameter 

~10-6m and suppose the particle is displaced by an amount A<<R, then 

(6.37) 

or 

(6.38) 
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with f=fofr~7x10-10 ( fr~so) the dielectric constant of water. The shear viscosity of water is 

17 ~10-3Pa s. In this case: (~10-9N s m -1 and JKiii~10-12N s m -1• Later we shall show that 
0 

there exists a maximum value for /j., and with the data presented above 6.max<<R. 

The position autocorrelation function can be determined in the same way. The final 

expression is, 

where C(s)=B(s)fs. The asymptotic part of the mean square displacement is 

with 

(6.41) 

Using the asymptotic expansion of eq. (6.41) we obtain, 

(6.42) 

which is the same result as obtained in the Stokes limit. At this point we can make a 

remark about the validity of eqs. (6.37) and (6.38). With the data of Derksen [32] we 

obtain at room temperature: 6.max ~ .j2D
0
(/K ~ 4><10-8 << R. From eq. (6.42) we may 

conclude that a diffusion coefficient cannot be defined, although in case of (> >JKiii a 

diffusion regime exists. As mentioned before we can distinguish two time scales. On the 

smaller the mean square displacement of the Brownian particle behaves like the one of the 
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free Brownian particle and diffusion like behaviour can be expected. At the larger time 

scale the effects of the harmonic potential become dominant and the mean square 

displacement tends to a constant value. These time scales have been discussed already in 

the context of the velocity autocorrelation function. In the Stokes limit diffusive behaviour 

can be shown over several decades of the Brownian time r 
8 

if (/ {Kiii ~ 100. This diffusive 

behaviour is shown by the expression 1/J( r)~2D r for large r, but r small enough so that the 
0 

correlation functions are not influenced by the harmonic potential. However, if we include 

backflow effects the system does not reach the diffusive regime unless (/{Kiii ~ 106• 

6.4 A Brownian particle in shear flow 

We consider a shear flow in the x-direction with a velocity gradient in the 

z-direction and write 

(6.43) !Ia = (>.z,O,O) , 

with,\ the velocity gradient. We assume that>. is very small. The total fluid velocity field, 

composed of the shear flow and the fluid motion induced by the small Brownian particle, 

will then satisfy the linear Navier-Stokes equations. We do not consider rotational motion. 

San Miguel and Sancho solved this problem in the Stokes limit [33]. They showed the 

following long time behaviour of the position auto- and cross correlation functions 

respectively: 

(6.44) 

(6.45) <x(t)z(t)> !::! D ,\t 2 • 
0 
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We see that the mean square displacement is proportional to t 3, assuming that at t=O the 

particle is in the origin. Consequently there is no diffusive behaviour in the x-direction any 

longer. As can be expected isotropy has disappeared. This behaviour can be understood as 

follows: the rms displacement 6.z is proportional to .j{, which results in rms displacement 

in the x-direction proportional to >.t6.z~>.t.j{. The mean square displacement in the 

x-direction is then proportional to >. 2t 3• Derksen has presented some results of experiments 

to measure this behaviour [32]. Bedeaux, Rubi and Perez-Madrid have studied a similar 

problem including the non-linear term in the Navier-8tokes equations [34-36]. First they 

determined the friction tensor belonging to a spherical particle in a fluid with elongational 

flow. This friction tensor is modified by terms related to the rate of elongation. 

Consequently this modified friction tensor leads, via the fluctuation-dissipation theorem, 

to a modified version of the random force autocorrelation function. They have calculated 

the velocity correlation function and the mean square displacement of a Brownian particle 

in elongational flow [35], but in the diffusive regime only. They have not presented results 

for the convective regime. This section aims at the determination of these functions in the 

convective regime for simple shear flow, but under such conditions that we can linearize the 

Navier-8tokes equations. This is possible because we linearize these equations in the 

perturbation of the fluid velocity, caused by the moving particle, and furthermore we see 

that (U • V)U (eq. (6.43)). Consequently the friction tensor remains unchanged [34]. 
--o --o 

We now present the results of a study of this problem, where we have used a 

Stokes-Boussinesq like equation of motion. Using the generalized Faxen theorem, derived 

by Bedeaux and Mazur [26], we can derive the following equation of motion of a. Brownian 

particle in shear flow: 

t 

(6.46) MO (t) = -61r17 aU (t) -6a2,J?rp1J J-1-u (r)dr 
x ox o.Jkx 

0 
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t 

+ ..\[61r7J az(t) + 6a2.}1rp7J J-1
-U (r)dr+ !moU (t)J + R (t), o o.;r=:;z z x 

0 

t 

(6.47) M(J (t) = --£11"7] aU (t) -6a2J7rp'f/ J-1 U (r)dr+ R (t), 
z o z o.;r=:;z z 

0 

In they-direction the problem can be described by using the results of the free Brownian 

particle presented in section 2. We assume that U(t)=Q. if tSO. We present the results for 

the mean square displacement only. To obtain that quantity we solve this set of equations 

by studying the Laplace transforms of both equations, which are, 

(6.48) 

- - -
(6.49) z(s) = B(s)R (s) , 

Ill 

where, 

(6.50) 
- 1 -
B(s) = , D(s) = ..\((+z./i+im0s) 

s( Ms+ z.fo+ () 

The solution of the mean square displacement in the z-direction has already been 

presented in section 2 (eq. (6.26)). Substitution of eq. (6.49) for ;(s) in eq. (6.48) gives 

(6.51) x(s) = B2(s)D(s)R (s) + B(s)R (s) 
Z X 

The position autocorrelation function <x(s)x(s')> now becomes, 

"" ... - - ... - ... -
(6.52) <x(s)x(s')> = <x(s)x(s')>, + B(s)B(s')<R (s)R (s')> , 

1\ X X 
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where the last part of this equation is again a contribution already known from section 2. 

The term <x(s)x(s')> A is the pure shear contribution and has the form 

... - ... -
(6.53) <x(s)x(s')> A BA(s)BA(s')<Rz(s)Rlli(s')>, 

with B>.(s)=B2(s)D(s). In the derivation of eq. (6.52) we have used the property of the 

random forces that cross correlations are zero [26]. Furthermore the following position cross 

correlation function can be determined, 

We know (see section 2 eq. (6.16)) that 

(6.55) <ii (s)R (s')> = O(s)+ll(s') . 
z z s+s' 

Furthermore we can derive, 

... ... "" - ... -
(6.56) BA(s)ll(s) = kBT(CA(s) MsBA(s)), C>.(s) = B{s)D(s)/s 

With both results we come to the following relation describing the shear flow depending 

part of the Laplace transform of the position autocorrelation function: 

(6.57) 

To derive the inverse Laplace transform we refer again to the review article of Fox (ref.[27] 

p. 195). In line with the derivation shown there to calculate a double Laplace transform we 
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obtain, 

m m t 2 t 1 , 

(6.58) I dt1 I dt2exp(-st1)exp(-s•t2) I dr2I dr1f(t 1-r1)g(t2-r2)5(1 r2-r11) 

0 0 0 0 

m m t 1 ~ • 

= Jdt2Jdt1exp(-st1)exp(-s•t2)J f(t)g(t+r)dt = f(s'f~~·), 
0 0 0 

where we assume that r=t2-t 1~o. The function o(t) is the Dirac delta function. The inverse 

Laplace transform of eq. (6.57) is now, 

(6.59) 

t 1 t 1 

<x(t1)x(t2)>>. = kBT[J B>.(t)C,\(t+r)dt + J B>.(t+r)C>.(t)dt- MB>.(t1)B>.(t2)] . 

0 0 

In an analogous way the Laplace transform of the position cross correlation function 

becomes 

(6.60) 

Finally, Laplace inversion gives 

t 1 t 1 

(6.61) <x(t1)z(t2)>>. = kBT[J B,\(t)dt + J B(t+r)C>.(t)dt- MB>.(t1)B(9] . 

0 0 

We have now derived some formal expressions for the position auto- and cross correlation 

functions, but must evaluate the functions B(t), B >. (t) and C>.(t). We confine ourselves to 

an outline of these derivations only. They can be obtained with the help of tables of 

Laplace transforms [28]. We know (eq. (6.50)): 

(6.62) B(s) = 1 

s(Ms+zfs'+() 



The inverse Laplace transform of B(s) is 

(6.63) B(t) = H1 + (h~a)(aexp(b2t)erfc(bv'f) bexp(a2t)erfc(a.Jt)] , 

with a and b defined below eq. (6.20). Again we assume for the moment that a#b. The 

function B A ( s) is defined as 
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Laplace inversion of the first part of eq. (6.64) gives, via B(s)/s=C(s), the function C(t) 

which is presented in eq. (6.26) and the Laplace inverse of the second part of eq. (6.64) can 

be obtained using the convolution theorem. The final result is, 

(6.65) 

t 

BA(t) = A[C(r) + (m0-m)Jd~}r) B(t-r)dr] . 

0 

The function C A ( s) is defined as 

(6.66) 

and the inverse Laplace transform is 

The position correlation functions can now be determined and the final results be evaluated 

both analytically and numerically, but we restrict ourselves to the long time behaviour of 

these correlation functions. If t
1 
=t

2
=t we have 
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t 

(6.68) <x2(t)>>. = kBT[2JB).(r)C>.(r)dr- MB~(t)J , 

0 

and 

t t 

(6.69) <x(t)z(t)> >. = kBT[JB>.(r)dr + JB(r)C>.(r)dr- MB>.(t)B(t)] . 

0 0 

In the long time limit there is no need to evaluate the functions B( t ), B >. ( t) and C >. ( t) in 

detail. These functions can be rewritten as follows 

(6.70) 

(6.71) 

(6.72) 

The long time behaviour is given by asymptotic expansions of B
1
(t), B

2
(t) and C

1
(t). The 

leading terms of these functions are O(t-3/2). Substitution of these expressions for the 

functions B(t), B>.(t) and C>.(t) in the eqs. (6.68) and (6.69) respectively gives the 

following expressions: 

(6.74) <x(t)z(t)>>. =D ..\t 2[1-~ +-?<z2-2M(+2(m0-m)()!+ 0( L)J. 
0 (.;i Jf (2 t t.[f 

These results can be compared with the expressions obtained by San Miguel and Sancho 
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[33], which are the expressions above in the Stokes limit, 

These relations can also be obtained by taking the limits m0-+0 and .HJ in eqs. (6.73) and 

(6.74). It is clear that no diffusional regime on these time scales exists. Furthermore we can 

estimate the value of r B for which the expressions of <x2(t)> >..become nearly cubic in 

time. In the Stokes limit this will take place if rB~0(10 4), but by including backflow effects 

we reach this point if rBI:j0(10 7). Finally we want to point out that the term proportional 

to t 2 in eq. (6.73) (or the term proportional tot in eq. (6.74)) disappears if a=.!iin contrast 

with the results obtained by San Miguel and Sancho (eqs. (6.75) and (6.76)). 

It is also possible to study a combination of both situations described in the sections 

3 and 4, a Brownian particle in a harmonic potential and in shear flow. In the Stokes limit 

some results are available, obtained by van den Broeck, Sancho and San Miguel [37]. With 

the methods presented in this chapter it is possible to include back:flow effects in such a 

problem. However, we refrain from such calculation because of the disproportion between 

the mathematical complexity and the modesty of new insights gained. 

6.5 Conclusion 

We have been able to extend the theory of Brownian motion, including back:flow 

effects, to the case of a Brownian particle in a harmonic potential and of a Brownian 

particle in an externally imposed shear flow. An significant point is that these two 

problems can be studied by using the same mathematical tools as used for the free 
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Brownian particle problem. These tools are also be useful for the study of a Brownian 

particle in a combined shear flow and harmonic potential, although we have not 

demonstrated this explicitly. An important conclusion from this chapter is that the mean 

square displacement, determined with the Stokes-Boussinesq equation of motion, differs 

considerably from the same function obtained in the Stokes limit, up to large values of the 

dimensionless time rB. We have seen that a Brownian particle in a harmonic potential, 

described in section 3, cannot reach the diffusive regime, while in the Stokes limit this 

diffusive regime is reached in otherwise comparable circumstances. We can also see that the 

velocity autocorrelation function of a particle in a harmonic potential shows long time tail 

behaviour, although the algebraic power of this tail is lower in comparison to the free 

particle case, viz. c 712 versus t-3/2• In the ease of shear flow the leading asymptotic terms 

of the mean square displacement functions are the same as in the Stokes limit. Other terms 

are quite different, however. Even more significant is the fact that the relaxation time in 

which the asymptotic regime is reached, is much longer if backflow effects are taken into 

account. 

In this chapter we have neglected hydrodynamic interactions. These become only 

important if the volume fraction of dispersed Brownian particles becomes large. In the next 

chapter we shall present the results of a study of the influence of retarded hydrodynamic 

interactions on transport coefficients of suspensions. 

References 

[1] A. Einstein, Ann. Phys. 17 (1905) 549. 

[2] P. Langevin, C.R. Acad. Sci. Paris 146 (1908) 530. 

[3] N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, 

Amsterdam, 1981). 



[4] G.E. Uhlenbeck and L.S. Ornstein, Phys. Rev. 36 (1930) 823. 

[5] S. Chandrasekha;, Rev. Mod. Phys. 15 (1943) 1. 

[6] M.C. Wang and G.E. Uhlenbeck, Rev. Mod. Phys. 17 (1945) 323. 

[7] A. Rahman, Phys. Rev. 136 (1964) 405. 

[8] A. Rahman, J. Chem. Phys. 45 (1966) 2585. 

[9] B.J. Alder and T.E. Wainwright, Phys. Rev. Lett. 18 (1967) 988. 

[10] B.J. Alder and T.E. Wainwright, J. Phys. Soc. Japan Suppl. 26 (1968) 267. 

[11] B.J. Alder and T.E. Wainwright, Phys. Rev. A 1 (1970) 18. 

[12] R. Zwanzig and M. Bixon, Phys. Rev. A 2 (1970) 2005. 

[13] A. Widom, Phys. Rev. A 3 (1971) 1394. 

[14] T.S. Chow and J.J. Hermans, J. Chem. Phys. 56 (1972) 3150. 

[15] T.S. Chow and J.J. Hermans, Physica 65 (1973) 156. 

[16] R. Zwanzig and M. Bixon, J. Fluid Mech. 69 (1975) 21. 

[17] E.J. Hinch, J. Fluid Mech. 72 (1975) 499. 

[18] B.U. Felderhof, Physica A 175 (1991) 114. 

[19] N.K. Ailawadi and B.J. Berne, J. Chem. Phys. 54 (1971) 3569. 

[20] R. Hocquart, C.R. Acad. Sci. Paris 294A (1977) 1421. 

[21} R. Hocquart and E.J. Hinch, J. Fluid Mech. 137 (1983) 217. 

[22} Y. Pomeau and P. Resibois, Phys. Rep. 19 (1975) 63. 

[23} J. Boussinesq, Theorie Analytique de la Chaleur, vol.II. (Paris, 1903). 

[24] L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 

1959). 

[25] G. Doetsch, Introduction to the Theory and Application of the Laplace 

Transformation (Springer-Verlag, Berlin, 1974). 

(26] D. Bedeaux and P. Mazur, Physica 76 (1974) 247. 

[27] R.F. Fox, Phys. Rep. 48 (1978) 179. 

131 



132 

[28] F. Oberhettinger and L. Ba.dii, Tables of Laplace Transforms (Springer-Verlag, 

Berlin, 1973). 

[29] M. Abramowitz and J.A. Stegnn, Handbook of Mathematical Functions (Dover, 

New York, 1965). 

[30] G.L. Paul and P.N. Pusey, J. Phys. A. 14 (1981) 3301. 

[31] D.A. Weitz, D.J. Pine, P.N. Pusey, R.J.A. Tough, Phys. Rev. Lett. 63 (1989) 1747 

[32] J.J. Derksen, Thesis T.U. Eindhoven (1991). 

[33] M. San Miguel and J.M. Sancho, Physica A 99 (1979) 357. 

[34] D. Bedeau.x and J.M. Rubi, Physica A 144 (1987) 285. 

[35] J.M. Rubi and D. Bedeau.x, J. Stat. Phys. 53 (1988) 125. 

{36] A. Perez-Madrid, J.M. Rubi and D. Bedeau.x, Physica A 163 (1990) 778. 

[37] C. van den Broeck, J.M. Sancho and M. San Miguel, Physica A 116 (1982) 448. 



Chapter 7 RETARDED HYDRODYNAMIC INTERACTIONS IN 

SUSPENSIONS 

7.1 Introduction 

In chapter 2 we presented a method to calculate the components of the grand 

mobility matrix of a system of N spherical particles in an unbounded fluid with an 

externally imposed flow. In that chapter we assumed that the fluid velocity changes slowly, 

so that the local time derivative may be neglected. This chapter is dedicated to the 

solution of the Navier-Stokes equation for a system of two particles in an unbounded fluid 

including time dependent effects. With this solution we can study the effects of the 

retarded hydrodynamic interactions on the behaviour of dilute suspensions. If we want to 

study more concentrated suspensions we have to include three and more particle 

interactions in the calculations of the grand mobility matrix. 

What is the reason to study the effects of the retarded hydrodynamic interactions 

on the behaviour of suspensions? The most important reason is the expectation that the 

retardation effects caused by a moving particle will influence neighbouring particles 

especially if the interparticle distances are small. We expect that these effects are 

significant for concentrated suspensions, and that these retarded hydrodynamic interactions 

will influence the behaviour of the velocity auto- and cross correlation functions of 

Brownian particles. These correlation functions are not changed only at time scales 

comparable with the relaxation time of the velocities of the Brownian particles, as can be 

expected, but also at larger time scales. This can be shown with the existence of long time 

tails in the correlation functions. Even in the case of a single spherical particle in an 

unbounded fluid we can demonstrate that the retardation effects influence the velocity 
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autocorrelation function. We can show this with the example of a spherical particle moving 

with velocity U(t) in an unbounded incompressible fluid at rest at infinity. Assuming that 

we can use the linearized incompressible time dependent Navier-Stokes equations (later 

abbreviated as N.S. equations) we shall describe the hydrodynamic force exerted by the 

fluid on the particle by the so called Stokes-Boussinesq equation [1, 2] 

with 

t 

1 
dU(t) 2 J l d_!!( r) 

(7.1) ~(t) = -67r17
0
aQ(t)- ~m0ar- 6a V1rP1f

0 
u-z: """(('T dr, 

yt-T 

p: the density of the fluid , 

11 : the shear viscosity of the fluid , 
0 

a: the radius of the particle , 

mo = jnap. 

The first term of eq. (7.1) is the ordinary Stokes' friction, the second is connected with the 

virtual mass of a sphere in an incompressible fluid, and the third is a memory term 

associated with the hydrodynamic retardation effects and related to the penetration depth 

of viscous unsteady flow around a sphere. We are particularly interested in this memory 

term. If the sphere has a nonconstant velocity Q(t) it will affect the fluid velocity in the 

neighbourhood of the sphere and the fluid in its turn will, a time L\t later on, affect the 

velocity of the sphere. It is not difficult to see that in case there is a second particle in the 

neighbourhood of the first particle the disturbance of the fluid velocity caused by the first 

particle will affect a time L\t later on the velocity of the second particle and vice versa. 

With the help of eq. (7.1) we can calculate the velocity autocorrelation function of a 

spherical particle in an unbounded fluid and the result shows the famous t -3/2 long time 

tail [3] and with the help of the velocity autocorrelation function ~( t) we can define the 

time dependent diffusion coefficient D( t ): 
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1. Sr--------r------,------~ 

0 1 2 
time (!J.S) 

Fig.t. Time dependent diffusion coefficient as measured by Weitz et al .. Solid line: 

experiment; dash-dotted line: theory without retardation effects {Stokes 

limit}; dashed line: theory including retardation effects. 

t 

(7.2) D(t) = I~(t')dt'' 
0 

with: lim D(t) = D , the Stokes-Einstein diffusion coefficient. Recently Weitz et al. have 
t-+ro 

0 

measured D(t) and confirmed the existence of the retardation effects (see fig.l) [4]. Finally 

we emphasize another important reason to study the retarded hydrodynamic interactions. 

If we do not include the retardation effects we are not always able to calculate 

configurationally averaged quantities, i.e. averages of quantities such as velocity correlation 

functions over all possible configurations of the Brownian particles, because of divergencies. 

Inclusion of the retardation effects removes some divergencies, but introduces some 
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conditionally convergent integrals. A carefull treatment then enables us to calculate the 

averages. 

In section 2 we introduce the set of basic solutions, in section 3 we show how one 

can calculate the set of linear equations of the coefficients, in section 4 we express the force 

and torque exerted by the fluid on the particles in terms of some coefficients, in section 5 

we derive the correlation matrix and in the sections 6 and 7 we present some results. 

7.2 The basic solutions 

We look at a system of two spherical particles immersed in an unbounded 

incompressible fluid. The fluid is at rest at infinity. The spherical particles have velocities 

Q1(t) and Q2(t) and rotational velocities g1(t) and g
2
(t) respectively. The radii of both 

particles are the same, a
1 
=a

2
=a, and the interparticle distance is R. The interparticle axis 

is the z-a.xis of our problem. The fluid velocity satisfies the N.S. equations: 

(7.3) 

(7.4) 

8v(r,t) 
1JoV2yf!:,t)- Vp(!:,t) = P-=j;-' 

v ·y{!,t) = 0 ' 

where Y.(!,t) is the fluid velocity and P(!,t) is the pressure at timet, 1J
0 

is the shear 

viscosity and pis the density of the fluid. These N.S. equations can be simplified by 

introducing the Fourier transforms 

+oo +oo 

(7.5) y(r,t) =~I Y.(!,w)e-iwtdw, p(r,t) =~I P(!,w)e-iwtdw. 

-oo -w 

The Fourier transformed N.S. equations (7.3) and (7.4) are now 
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(7.6) 'f/
0 
V2y_.(!_,w)- Vp(!_,w) = 'f/

0 
a!y(!_,w) , 

(7.7) V·y_(!_,W) = 0, 

with a = .;=~wpf 'f/
0 

, Re( a)~O. To solve the N .S. equations we need the boundary conditions 

at the surfaces of both particles. We suppose stick boundary conditions which can be stated 

in the following way: 

(7.8) y(!_,w) = _!4(w) + ~(w)x(!.-B) with:rES., i=1,2 , 
- I 

where S. is the surface of particle i. We further suppose that we look at such short time 
1 

scales that the configuration of the two particles does not change significantly. In that case 

R is not a function of w. See e.g. the short discussion and the references quoted in section -2.2. If we have determined y(!_,w) and p(!_,w) we are able to determine the force~( w) and 

torque T.(w) exerted by the fluid on the particles. In the case of spherical particles: -
F.(w) = -a2J II (r.,w)dO., T.(w) = -a3J( e xii (r.,w))dO., 
-t -r; 1 -1 r-r-1 1 

l~l=a l~l=a 

(7.9) 

with dO the element of solid angle, e the radial unit vector in a spherical coordinate r 

system and 

In the same way as in chapter 2, we define the grand mobility matrix for a two particle 

system: 

(7.11) L!I(w)] = -["'tt(w) 1-'tr(w)]. ff(w)] , with U(w) = [Ql(w)l etc. 
lQ(w) J.lrt(w) JP(w) IT(w) - Q

2
(w) 
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The grand resistance matrix is the inverse of the grand mobility matrix. Finally we want to 

note that the symmetry relations (eq. (2.13)) are still valid. 

The complete set of basic solutions of the N .S. equations which we shall use in the 

two particle problem has already been formulated by Felderhof and Jones [5]. They 

formulated their set of basic solutions, which is convenient for the problem of a spherical 

particle in an unbounded fluid, in the case of the one particle problem. One of the basic 

ingredients of the set of basic solutions is the set of vector spherical harmonics A 1m( {},tp), 

_!!1m({},tp) and Q1m(O,tp). In chapter 2 section 3 we paid much attention to the vector 

spherical harmonics. Other important ingredients are the "solid spherical harmonics" as 

defined by Felderhof and Jones. They have the following form: 

with Y1m(O,tp) the spherical harmonics. The functions gtar) and ktar) are the modified 

spherical Bessel functions with [6] 

The set of basic solutions, which behave regularly for l!l-100, in the case of a spherical 

particle with center in the origin 0 is now 

(7.14a) 
-1 - -r-(1+ 2) 

v (r w) - V"' (r\- B (0 tp) 
-lma -' - 2( ) '~'lm !J - 2( )-lm ' ' a 2l+l a 2l+1 

(7.14b) 



(7.14c) 

The indices land m satisfy the condition that 1?.1 and m~ Ill. We see that we have 

divergencies if we look at the limit a-+0. For a discussion about this point and the 

differences between this set of basic solutions and the set of basic solutions presented in 

chapter 2, we refer to the article by Felderhof and Jones [5]. The accompanying basic 

solutions for the pressure p(!_,w) are 
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With the help of the linearity of the N.S. equations, we can now express the fluid velocity 

_y(!_,w) and the pressure p(;w) as a superposition of basic solutions: 

(7.16) !(!_,w) = E [ alm(w)ylma(!.,w) + {Jlm(w)!zrJ!.•w) + 'Yzm(w).Yzm/!.•w)] ' 
~~ 1 
m 

(7.17) p(!_,w) = E a1 ( w)p1 (!_,w) , 
1~ 1 m ma 
m 

where the summation runs over all the allowed values of the indices l and m. 



140 

7.3 The set of linear equations 

The N.S. equations are linear equations and for that reason we can rewrite the fluid 

velocity Y.(!.,w) with the help of two velocity fields, one defined with respect to the center of 

particle 1 and the other defined with respect to the center of particle 2. The result is 

(7.18) with: r. = r-R., i=1,2 . 
-1 - -; 

In terms of basic solutions, 

m 
If we want to use the method of chapter 2 to determine the set of linear equations of the 

coefficients {a~m(w),fi,m(w),i,m(w)} we must express the fluid velocity y(!_,w) with respect 

to the center of particle 1, origin 0 l' and the center of particle 2, origin 0 2 respectively. As 

a consequence we have to express the basic solutions defined with respect to the origin 0
2 

in terms of basic solutions defined with respect to the origin 0
1 

and vice versa.. If we take 

into account the special configuration of the particles then this is possible by using the 

Hobson formula. [7) and a generalized Hobson formula. The Hobson formula expresses the 

solid spherical harmonic ~;m(!.2) in terms of the solid spherical harmonics ~~m(!.1) and vice 

versa: 

(7.20) 
n .. 

..~.- (r) = l: ~MJ 1 (R)"' + (r) , I r.l <Rand i,J.E{1,2} . 
'~'lm -j 8?_ 0\s+~J· lm;1t 'f 1t -i. ; 

t 

with the M{~;_iR) defined in eqs. (3.2) and (3.3) and n1m defined in eq. (2.34). The 

generalized Hobson formula expresses the "solid spherical harmonic" ¢~m(!.2) in terms of 

the "solid spherical harmonics11 ¢~ m(!1) and vice versa. These expressions are derived in 



appendix III and the shorthand notations are 

with 

[Nm(aR)]21 = E (-1}'(2p+l)k (aR)[P (Mm)] [Nm{aR)]12 = (-1)1+"[Nm{aR)]21 
z, >o 11 11 l11' z, 111 • p_ 

where P is a Legendre polynomial. For a discussion on the matrices [Nm( aR)]ji see also 
p 

141 

appendix III. Rewriting the fluid velocity y(!_,w) we obtain yi(~,w), the fluid velocity with 

respect to the origin 0.: 
I 

i [ -1 i -(1+2) 2a · 
(7.22) y(~,w) =1~1 a2(2l+1)azm(w)ri ~lm(Optp) + 'lf~Hl)~m(w)ktari)Qzm(Oi'tpi) 

m 

+ E [ -1 ~ (w) n smMji (R)r.t-lA (0 ) + 2a ai (w)[Nm(aR)]ji 
s~O a2(2 l+l) sm (s+m)! lm;11m i -~~m i'tpi 'lf(Hl)l"'sm Is 

x[g (ar.)C (O.,fP.) + 28+01
1(g 1(ar.)A (O.,fP.) -g__,_1(ar.)B (O.,tp.)]xR .. J 11 t-sm 1 1 .t- 1-11m 1 1 ., 1-11m 1 1 --'IJ 

where R12 = Re , R21 = -Re and e is the unit vector in a Cartesian coordinate system. - z- z z 

The vector functions x,m{!_,w) and '!:..,m(!_,w) are shorthand notations for long expressions. 

We give an outline of the derivation of these vector functions in appendix III. In an 

analogous way we can derive the following expression for pi(r.,w): 
-! 
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(7.23) i( ) ~ 1'/0 [ i ( )-(l+l)y (" ) p r.,w = "' l'MOT+ a1 w r. 1 u.,VJ. 
-I l~l.ti&-t-l m 1 m 1 1 

m 

+E~ (w)ts+llmm)tMJl.i· (R)r~Y (O.,~p.)]. 
1~ 0 sm . m,sm 1 11m 1 1 

To determine the relation between all the coefficients a~m( w), rljm( w) and 'Y~m( w) on 

the one hand and the velocities U.( w) and rotational velocities 0.( w) on the other it is 
--1. --1. 

necessary to calculate the following inner products: 

(7.24) Jvi(r.,w)·A*(o.,~p.)dO., 
- -I -pq l 1 1 

l!i l=a 

(7.25) 
J
v i (r.,w)·B* (O.,~p.)dO., 
--I -pq11 1 

lri l=a 

Jv i (r.,w)·C* (O.,cp.)dO .. 
- -I -pq 1 1 1 

lri l=a 

(7.26) 

We have to calculate these inner products for Vp~1, I qj $p and i=l,2. These integrals are 

not difficult to work out because we can use the boundary conditions at the sudaces of the 

spheres. We have the same boundary conditions as used in chapter 2 and therefore we can 

use the eqs. (2.44)-(2.46) with the velocities and angular velocities as functions of w, 

(7.27) 
J
vi (r.,w)·A* (O.,cp.)dO. = 
--I --pqll 1 

lril=a 

jop,1[n11[ oq,-roq,t] Uix(w)+intt[ oq,-l+oq,t] Ui/w)+2ntuDq,OUiz(w)] ' 
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(7.28) Iv i (r.,w)·B* (O.,t,o.)d11. = 0, 
- ; -pq 1 1 1 

l!i l=a 

I
v i (r.,w)·C* (O.,t,o.)d11. = 
--1 -pq11 1 

lril=a 

(7.29) 

a5p,l [ n11 [ 5q,-r5q,l] nix(w)+in11 [ 5q,-1+5q,l] 11i/w)+2n1iq,o11)w)]. 

where we put the expansion coefficients, belonging to the externally imposed flow, equal to 

zero because we have assumed that the fluid is at rest at infinity. On the other hand we 

can substitute the r.h.s. of eq. (7.22) for !i(!pw) into the eqs. (7.24)-(7.26). We do not 

calculate the inner products explicitly but we refer the interested reader to appendix IV 

where we have tabulated most of the integrals necessary to determine the inner products. 

With the help of the following shorthand notations 

(7.33) [Yq( R)]12 = (-1)1+1 2ita2R [Nq(aR)]12 a lp- 1rl( +1) lp' 



144 

(7.34) 

we can derive the following set of linear equations: 

(7.35) Jv i (r.,w)·A* (O.,rp.)dO. = 2ak 
1
(aahi (w) 

-4. -pqtl I ?rp- pq 

IE1 l=a 

(7.36) I i ( ) B* ( (} )d..., (p+ 1) i ( ) 2ak ( ) i ( ) v r.,w · .,rp. u. =- 2 +2a w + - ....._1 aa 7 w 
- -1 -pq 1 1 1 a aP pq ?I""' pq 

l!i l=a 

(7.37) Jv i (r.,w)·C* (O.,rp.)dO. = 2ak (aa)/3i (w) 
-4. -pq11 I ?rp pq 

lEi l=a 

+ g (aa)E [IYq(aR)J{i~ (w) + [Xq(aR)J1i~ (w)] . 
p ~1 p q p'""lq 

For al these equations: p~ 1, I qj ~p. If i=l then j=2 and vice versa. 

The presented infinite set of linear equations can be used to determine the grand 

mobility matrix. To attain this aim we have to introduce an upper limit for the allowed 

values of the indices land p, i.e. Zutax = Pmax = L. With this restriction we assume that all 

the coefficients a~m(w), rljm(w) and 7~m(w) are zero for l>L and as a consequence we have 

created a finite set of linear equations and the solution of the coefficients a~m(w) etc. is 

called the Lth order solution. See also chapter 3. In the next section we derive expressions 
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for the force !:_i(w) and torque ~(w) in terms of some coefficients, the last necessary step to 

determine the grand mobility matrix. 

7.4 Force and torque as functions of the coefficients 

The force F.( w), exerted by the fluid on particle i, can be determined with the help 
"""1 

of the following expression: 

(7.38) F.(w) =-I II(!,w)·dS., 
"""1 -1 

s. 
1 

with II(!_,w) the pressure tensor and d~ an infinitesimal element of surface pointing into 

the fluid. The pressure tensor has the following form: 

where s stands for symmetric part. With this expression for the pressure tensor we can 

rewrite eq. (7.6) as 

In the case of our problem of two particles in an unbounded fluid, satisfying the linearized 

N.S. equations, it is convenient to split the expression for the pressure tensor into two 

parts, one defined with respect to the centre of particle 1 and the other with respect to the 

centre of particle 2. This means 

II(r,w) = II.(r.,w) + II.(r.+R..) with: i=1, j=2 and vice versa . 
- 1 -1 J -J. -I.J 
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The tensor II.(r.,w) is a function of the basic solutions v1 (r.,w) and p1 (r.,w), with 
1-t -mq; ma-t 

ae{ a,,B,;}. If we extend the basic solutions within the surfaces of both particles, then we 

see that II.(r.,w) has only singularities within the surface S. of particle i. Thus II.(r.+R..) 
1-1 I J""'l -IJ 

has no singularities within the surfaceS .. Using Gauss' theorem and eq. (7.40) we can 
I 

rewrite eq. (7.38) as 

(7.41) F.(w) = -a2J(II.(r.,w)·e \dO.+ f/ a 2Jv .(r.+R..)dr. 
-J I -1 r' I 0 -J -'1 -Jj -'1 

I !.i I ~a 

= -a2
[ Jp.(r.,w)e dO. -l'} [-J-r - r

1
JJv.(r.,w)dO. I -'1 1' I 0 UL , "-'! ""'l I 

l I 

- f/r
0
JV(r.·v.(r.,w))d0.JI + l'J a 2Jv .(r.+R..)dr .. 

• ; -; ; 1 'a o -J ; -'lJ ; 
I L~ 

I I !.i I ~a 
A complete evaluation of this expression would require excessive space. An outline of the 

calculation is to be found in appendix V. The final result is 

+ 2n10a~.o<w)!\,] + !7rl'}0a3a2Qi(w) . 

In an analogous way we can determine the expression for the torque T.(w), exerted by the -fluid on particle i. The result is 



7.5 The derivation of the correlation matrix4J(w,w) 

The theory of Brownian motion is often based upon the Langevin equation. The 

Langevin equation for a Brownian particle in an unbounded fluid has, in the frequency 

representation, the following form [8]: 

(7.44) -iwm_!I(w) = -((w)·_!I(w) + B:tw), 
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where ((w) = -61r11
0
al(l+aa+ba?a2

) and a= ..J-twp/'f/
0 

with Re(a)~O. The vector B:tw) is 

the random force with: <B:t w)> = 0. The < .. > stands for an ensemble average. Bedeaux 

and Mazur have derived the fluctuation dissipation (F.D.) theorem for this one particle 

case. Their result is [8] 

(7.45) 

with kB the Boltzmann constant and T the absolute temperature. With the help of the 

Langevin equation (7.44) and the F.D. theorem we are able to calculate the velocity 

autocorrelation function 4J( w) of a Brownian particle. We study now the problem of two 

hydrodynamically interacting Brownian particles in an unbounded fluid. We are 

particularly interested in the effects of the hydrodynamic interaction on the velocity 

correlation functions, rotational velocity correlation functions and so on. All correlation 

functions can be summarized in the so called correlation matrix which we define as follows: 

(7.46) 

with 
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where the dagger stands for Hermitean conjugation. In the following part of this section we 

shall give an outline of the determination of the correlation matrix +< w,w') of a system of N 

particles of arbitrary form in an unbounded incompressible fluctuating fluid. The 

spontaneous fluctuations of the stress tensor causes the Brownian motion of the particles. 

For this system we use the theory of linear hydrodynamic fluctuations. The fluid velocity is 

described by the linearized stochastic Landau-Lifshitz equation of motion [2]: 

(7.47) 1]
0 

try_(!_,w) = -V • P(!_,w) , V • y_(!_,w) = 0 , 

with 

P(:sw) = II(!_,w) + o(!_,w) , 

where o(!_,w) is the random stress tensor. The components of the stochastic stress tensor 

satisfy the following stochastic properties if averaged over an equilibrium ensemble: 

(7.48) <o(!_,w)> = 0 , 

(7.49) <O'ij(!_,w)ak1(!.',w')> = 41fkB T1J
0

( 6ik6jl+6il6jk- joijt\1)6(!_-!.')o(w--w>) . 

The ensemble average of eq. (7.47) gives the N.S. equations. 

We define the following column vectors to write the equations in a more compact 

form: 

F 
1

(w) 

!!..w> = fK<w>] , :!f!..w> = f!!<w>] , x<w> = r!ir<w)] , with K<w> = i2<w) etc. 
IT(w) lQ(w) ~(w) : 

!:_N(w) 

B:t(w) is the random torque in the frequency representation with <~(w)> = 0. The 

Langevin equation for the N particle problem is now 
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(7.50) _!!(w) = -((w)·J!...w) + x(w)' 

with ((w) the grand resistance matrix. Using the method of Bedeaux and Mazur one is able 

to derive the F.D. theorem for a system of N Brownian particles of arbitrary form in an 

unbounded fluid [8]: 

(7.51) * <x(w)x (w')> = 47rkBT8(w-w')Re(((w)). 

We can rewrite the correlation matrix cl>(w,w') with the help of the compact notation 

introduced above: 

(7.52) * cl>(w,w') = <J!...w)J!!. (w')> . 

The vector J!...w) can be determined with the Langevin equation (7.50). First we have to 

express the vector .!!(w) as a function of Jf!.(w). We can do this as follows: 

(7.53) _!!(w) = rf(w)] = -iw[M·![(w)] = -iwS·J!...w), 
rr(w) N·Q(w) 

with M the mass matrix and N the moment of inertia matrix. Both are diagonal. If the 

Brownian particles are spherical particles with the same radius and the same density the 

mass matrix is: M = mi
3
N with I

3
N the 3Nx3N identity matrix. In that case the inertia 

matrix becomes: N = jma2I
3

N" We see that Sis a real6Nx6N matrix. With this expression 

for _!!(w) we can write for the Langevin equation (7.50) 

(7.54) -iwS·J!...w) = -((w)·J/!.(w) + x_(w). 
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Using the F.D. theorem (eq. (7.51)), we can now derive the following expression for the 

correlation matrix: 

(7.55) +(w,w') = 41fkBT6(w-w')Re((((w)-iwS)-1):: 21!+{w)6(w-w'). 

The matrix Sis known from eq. (7.53) and we are able to calculate the grand 

resistance matrix in the way described here. This means that we can study the effects of 

the hydrodynamic interactions on the correlation matrix and so are able to calculate the 

concentration dependence of the correlation matrix in dilute suspensions. 

7.6 Two particle hydrodynamic interactions and 

the grand mobility matrix 

In the first place we are interested in the components of the grand mobility matrix 

connected with a system of two particles in an unbounded fluid. To determine the ten 

independent components of the mobility matrix we need to express the coefficients a~m(w) 

and {3~m(w), for m=-1,0,1 and i=1,2, in terms of the force ~(w), the torque !.i(w), the 

velocity Ui(w) and the rotational velocity f!,(w). With the help of the eqs. (7.42) and (7.43) 

we obtain 

(7.56) 

(7.57) i ( ) i ( ) 2 i ( ) .S 1ra
2
a 3 

( ) a1 _ 1 w +a11 w = -;;;n-F. w + ~ U. w , 
I I ''o 11 lY 11 lY 

(7.58) i 1 47ra2a3 
a1 0( w) = - ;;--n F. ( w) + ~n U. ( w) , 

1 '/0 10 l2i ;)!110 lZ 
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(7.59) 

(7.60) 
. . 2ig1(aa) 16 a3 

{1~ -i w)+{j~ i w) = - 'TJ an T. ( w) + i 3!a g.,( aa)O. ( w) , 
I I 0 11 lY 11 "' lY 

(7.61) 
i g1(aa) 81raa3 

{11 0(w) =- 'TJ an T. (w) + '21""::---n g.,(aa)n. (w). 
I 0 1 0 lZ ,)11 1 0 ,(, lZ 

The determination of the grand mobility matrix proceeds in the same way as described in 

chapter 3. We solve the set of linear equations (7.35)-(7.37) in such a way that we can 

express the coefficients a~m(w) with l?.2, ~m(w) with l?.2, and 'Y~m(w) with l?.1 and i=1,2 in 

terms of the 12 coefficients a~m(w) and {j~m(w) with mE{-1,0,1} and i=1,2 which results in 

a set of 12linear equations connecting the remaining coefficients with the boundary 

conditions (eqs. (7.27)-(7.29)). Substitution of the eqs. (7.56)-(7.61) for the coefficients 

a~m( w) and {j~m( w) into the remaining set of linear equations and some rearrangements 

gives the final result 

(7.62) with !!_( w) = - etc. 
[

U1(w)l 
!!.iw) 

In fig.2 we show the 10 independent components of the grand mobility matrix as a function 

of the dimensionless parameter I aa I for some values of x = i· The results are based on 

calculations where we used an upper limit L=10 for the indices land p (see section 3). To 

understand these figures it is important to derive a relation between the dimensionless 

parameter I aa I and the dimensionless time r B = ( 67r'f/
0 
afro )t with m the mass of the 

spherical particle and t the ordinary time. We have: I aal = afWiifil = Vwo· We can relate 
0 

w0 with a dimensionless time r 0: 
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1 TJO 
w0 f-ir , where To= -t. 

o pa2 

The relation between the dimensionless times TB and To is: 

(7.63) 

p 
where u = Ps' the ratio between the density of the particle and the fluid density. The value 

of I aal which is related with T B = 1 is: I aal = .j(9/2u) = 0(1) if u ~ 1. We have no 

knowledge of earlier results to compare ours with. There is some theory developed by van 

Saarloos and Mazur [9] and Pienkowska [10]. Van Saarloos and Mazur derived expressions 

for some components of the grand mobility matrix and studied expansions of their 
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expressions into powers of aa and afR. The disadvantage of these power expansions is the 

limited range of validity. Pienkowska studied friction and mobility relations in the long 

time limit, whlch means that this paper concerns the hydrodynamic interactions close to 

the steady state conditions. The disadvantage of the results of Pienkowska is the limited 

range of validity, too. 

7. 7 Time dependent diffusion coefficients 

We are able to calculate the grand mobility matrix and then the correlation matrix 

as derived in section 5. We have studied the behaviour of thls correlation matrix in the 

case of dilute suspensions where the volume fraction tp = !n3n
0 
<< 1. We have to take into 

account only the two particle hydrodynamic interactions. Using the simplest form of the 

pair distribution function, 

(7.64) 
[ 

0, l!!l<2a, 
g(!!) = 

1, 1!!1 ~2a, 

we can write for the correlation matrix: 

where < .. > c denotes an average over all configurations of the N particles. eM w,w') is the 

correlation matrix for an infinitely diluted suspension and ~1( w,w') is the correction due to 

the two particle hydrodynamic interactions. In eq. (7.65) the correlation matrix is a 

function of frequency. For many applications we are more interested in the Fourier 

transform of eq. (7.65). The Fourier transform of~( w,w') is 
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+m 

(7.66) I e-iwteiw'(t+r)ljl(w,w')dwdw' 

-oo -m 

+oo I e -iwteiw'( t+r) 8( w-w')Re( ( (( w)-iwS)-1 )dwdw' 

-oo -m 

+m +oo 

= k!T Ieiw'"Re((((w)-iwS)-1)dw=J Ieiw'"+(w)dw=ljl(r). 

-oo -m 

In the last step we used the fact that Re((((w)-iwS)-1) = Re((((-w)+iwS)-1), which 

* follows from the reality condition p(-w) = p(w) . The Fourier transformation is a linear 

operation and for that reason we can write 

+m 

(7.67) I e -iwteiw'(t+r) <41( w,w')> c dwdw' 

+m 

I e-iwteiw'(t+r)(cJlo(w,w') + !pjl1(w,w'))dw4w' = ljl0(r) + ct+1(r). 

-oo -oo 

We are especially interested in some components of the correlation matrix such as 

It is possible to plot ljl .. ( r) as a function of time r for several values of u, the ratio of the 
lJ 

density of the particles and the fluid density. Then we are able to compare the veloci~y 

correlation functions for different values of the volume fraction IP· There is one drawback in 

following this procedure: the velocity correlation functions fall off to small values very 
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quickly. Instead of studying the behaviour oft( r) we can study the behaviour of D( r), the 

time dependent diffusion matrix. We define this matrix as 

(7.69) 

.,. 

D(r) = J+(r)dT'. 

0 

This integral is a linear operation and we can determine the configuration average of the 

time dependent diffusion matrix in a relatively simple way by using the configuration 

average of the correlation matrix: 

T T T 

(7. 70) <D(r)>c = J<+(r')>cdr' = Jt0(r')dr' + r,oJt1(r')dr' 

0 0 0 

We are only interested in some components of the diffusion matrix such as 
.,. 

(7.71) <D=~( r)> = J+ .. ( r')dri3 E D .. ( r)I3 . IJ C !J lJ 

0 

In fig.3 we have plotted D 
11 

( r) for several values of u and rp as a function of the 

dimensionless time r B. The time scales used in these figures are compatible with the 

assumption that the configuration of the particles remains nearly constant (see short 

discussion below eq. (7.8)). Under this condition we should formally speak of the short time 

diffusion coefficient D 
11 

( r). The compatibility can be shown by a comparison of diffusion 

displacement and particle radius. We write 

(7.72) 

and obtain 
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(7.73) 

Suppose E~0.01, then, in the case of particles with radius of 0.1J&ID. dispersed in water at 

room temperature, we obtain r B ~ 103 - 105 depending, of course, on the value of u. We 

compare the behaviour of the correlation functions for the following values of the volume 

fraction: cp = 0, 0.1, 0.2 and 0.3. Although we seem to go beyond the range of validity of 

this theory by excluding more particle hydrodynamic interactions we expect that a 

discussion on the behaviour of the correlation functions in the proposed range of cp will 

make sense because we know that, in the Stokes limit, Dt ~ D (1-1.83cp) is a reasonable 
s 0 

approximation if ~0.3 (see also eq. (5.37)). This linear behaviour of D! as a function of cp 

is confirmed by several authors with experimental evidence [11, 12]. We also refer to a 

short discussion about this remarkable point in a paper of van Veluwen et al. [13]. This 

behaviour is confirmed by Stokesian dynamics simulation results of Phillips et al. too [14]. 

With this evidence we do not conclude that up to cp ~ 0.3 one can study transport 

coefficients by including two particle hydrodynamic interactions only. There are many 

examples where this is not the case, e.g. the sedimentation problem. The conclusion is that 

in the case of the translational self-diffusion coefficient Dt the effects of three and more 
s 

particle interactions seem small if ~0.3 and the two particle hydrodynamic interactions 

are thus dominant. At this point there is no reason to expect that D
11

( r), as a function of 

cp, will behave very differently for ~0.3, so we can discuss the results for D 11 ( r) in a 

qualitative way keeping in mind that we expect that three and more particle interactions 

have small influence on D
11 

( r). However, we do expect that the three and more particle 

hydrodynamic interactions become important enough to influence D 11 ( r) at higher values 

of cp so we do not discuss these correlation functions for cp>0.3, except noting that, even for 

higher volume fractions, the order cp correction to D
11 

( r) remains important. From these 

figures (fig. 3) we learn something about the velocity autocorrelation function $11 ( r) 
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because we have (see eq. (7.71)) 

(7.74) 

thus the sign of q,
11 

( r) determines the slope of D 
11 

( r). Looking at fig. 3 we can see that in 

the case ip=0.1 and ip=0.2 the velocity autocorrelation function q,
11 

( r) is a decreasing 

function of r except in the case u=10 because then we see two inclination points, so !flu ( r) 

has then a positive local minimum and a local maximum. The case ip=0.3 is more difficult. 

In the case u=lO we can conclude that the velocity autocorrelation function q,
11 

( r) has a 

minimum, which is negative, and a local maximum, which is positive. After the local 

maximum the correlation function goes to zero. In the case q=5 we see that D11{1') has two 

inclination points, so !fl
11 

( 1') has a positive local minimum and a local maximum. After the 

last local maximum the correlation function decreases to zero. For the smaller values of q 

we see that D 
11 

( 1') has a maximum and, as a consequence, we can conclude that !flu ( 1') 

becomes negative and goes to zero after reaching a minimum. These minima occur at large 

times compared to the Brownian time, corresponding to 1' 
8

=1. Finally we study the long 

time limit 1'-ltll of the diffusion coefficients D11( 1') and D
12

( r). This long time limit should 

be read in the context of the assumptions made earlier (see eq. (7.8)) which means that we 

study the limit that r 
8
> > 1 but r B still small enough in comparison to the time needed for 

changes of particle configuration. We know (eq. (7.66)) that 

(7.75) 

-ro 

The term in square brackets is an even function of frequency and real. For that reason 

+!:( r) is an even function of rand we can write 
lJ 
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+ro ro 

(7.76) 
J 
eiwr+~~( r)d r = 2J+~~( r)cos( wr)dr = 2kBT[Re( ( ({ w)-iwS)-1)]~~ . 

~ ~ ~ 

-ro 0 

Using the relation derived above and eq. (7.71) we obtain the following expression: 

m 

(7.77) lim <D .. ( r)> = J<+~~( r')> dr' = 
r-~ 

00 
lJ c IJ c 

0 

kBT lim <[Re((((w)-iwS)-1)]~:> = kBT lim <w~:(w)> . 
w-1 0 lJ C w-1 O IJ C 

The calculation of the configurational average before taking the limit w-+0 is essential 

because in that order the screening effect, caused by the retardation of the hydrodynamic 

interactions (resulting in an order (a/R)3 instead of an order a/R contribution to the 

interactions among particles in a dilute suspension [9]), is retained and the configurational 

integral converges. The calculation of <W~~(w)> c proceeds in the same way as presented in 

chapter 3 and the result for the long time limit of D 
11 

( r) is 

(7.78) lim D
11

(r) = D
0
(1-1.83cp), 

1"100 

where D is the Stokes-Einstein diffusion coefficient. This result is equivalent to the first 
0 

order virial expansion of the short time self~ffusion coefficient already calculated by 

Batchelor [15]. In the Stokes limit D
12 

cannot be determined directly but in contrast 

<W~~(w)> c can be calculated if we write 

In this equation v
1
(w) represents that part of ll!~~(w) which gives in the Stokes limit (w-+0) 
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the so called Oseen part and dipolar part of the mobility tensor Pi;. The tensor v2( w) 

contains in the Stokes limit the remaining part of the mobility tensor pi;. We determine 

can <v
1
( w)> c analytically. We write 

[ 
k1( a:R) ] •• 

(7.80) v1(w)=-Re2A(aa) aR -2B(aa)x3 RR+ 

[ 
k1( a:R) ] •• 

Re A( aa )(k 
0
( aR) + an: ) - B( aa )x3 (I-RR) , 

with 

{7.81) 

(7.82) B(aa) = 1 _3_[ 1+aa++a2a2 ]2 
61f11oa 2a:2a2 l+aa+f( 2 o+1)a2a2 

Both terms containing the modified spherical Bessel functions can be configurationally 

averaged without problems. Using the simplest form of the pair distribution function g(!!:) 

(eq. (7.64)) we obtain 

ID 

(7.83) J
k (aR)R2dR = 4a3k1(

2
aa) o ~a~a~' 

2a 

00 

(7.84) 1 R2dR = 2a3 0 _ _!_Ei(-2aa), J
k ( a:R) k (2aa) 

a:R a2a 2 2a3 
2a 

with Ei(z) the exponential integral [6). We now obtain for <v1(w)>c 

(7.85) <v
1
(w)> = Re 8cpiA(a:a) 1 a - B(aa)n a3 g(!!:)(I-3RR) dR . 

[ 
k (2aa) J · · l 

c a o R3 -
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The second term in eq. (7.85) is a conditionally convergent integral. This integral has been 

solved in the literature (16]. The final result for <v
1 
( w)> c is 

It is not difficult to obtain the limit w-+0 (or OHO): 

{7.87) lim 61117 a<v1(w)> = -5rpl. 
w-+0 0 c 

We have calculated <v
2
(w)> c numerically. After taking the limit w-+0 we obtain 

(7.88) lim 61117 a<v2(w)> = 0.28rpl. 
w-+0 0 c 

The final result is 

(7.89) limD
12

(r)=-4.72rpD
0

• 

,-;ro 

Combination of eqs. (7. 78) and (7.89) results in the virial expansion for the sedimentation 

velocity 

u 
(7.90) rf lim (D

11
(r)+D12(r)) = (1-6.55rp)U

0
, 

o ,-;m 

with U the sedimentation velocity of a Brownian particle in an infinitely diluted 
0 

suspension. 
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7.8 Conclusion 

In this chapter we have derived the set of linear equations necessary to calculate the 

components of the grand mobility matrix of a two particle system with retarded 

hydrodynamic interactions. With the components of the mobility matrix we are able to 

study the correlation functions of the Brownian particles. From these correlation functions 

we can draw some conclusions. The presented results of the time dependent self-diffusion 

coefficient D
11

( r) gives evidence for small oscillatory behaviour of the velocity 

autocorrelation function of the Brownian particles. The oscillatory behaviour of the 

velocity autocorrelation function is a subtle effect caused by so called backscattering effects 

via the fluid molecules. In a hard sphere fluid, backscattering is the effect that the velocity 

of a tagged particle is, on the average, reversed by collisions between near neighbours. In 

the case of suspensions there are two sources contributing to the backscattering effect. First 

we have backscattering via the fluid molecules, which produce the backflow pattern. In the 

case of a Brownian particle in an infinitely diluted suspension this backflow pattern gives 

rise to the memory effects and long time tails [3,17]. Another contribution is direct 

backscattering via direct collisions of the suspended particles. This point has not been 

studied in this chapter. For a further discussion of backscattering effects and related topics 

see e.g. ref. [18]. It should be pointed out that, despite the oscillations, the velocity 

autocorrelation function is not always negative. Formally the name backscattering is 

connected with the negative part of the correlation function, but we use the term in a more 

general sense. In the case under consideration it is easy to imagine that the oscillations are 

caused by fluid backflow, induced by e.g. the time dependent motion of the first particle 

and returning to that particle after interaction with the second particle. The second 

particle is necessary for the oscillatory behaviour because in the one particle problem the 

velocity autocorrelation function does not show this behaviour. It can be compared with 

the behaviour of correlation functions of a tagged particle in a hard sphere fluid. Obviously 
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there are great differences between a hard sphere fluid and a suspension of hard spheres but 

nevertheless the correlation functions behave in a similar way. See in this context the 

simulation results of Lennard-Jones fluids (e.g. ref. [19]). It is important to note that also 

differences exist, the oscillations shown in fig. 3 are much smaller and take place on larger 

time scales. A further step would be the extension of the presented method by inclusion of 

three and more particle clusters, so that possible enhancement of the effects of retarded 

hydrodynamic interactions on the correlation functions could be investigated. 
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Chapter 8 CONCLUSIONS 

8.1 Quasistatic hydrodynamic interactions 

In this thesis a method has been described to study hydrodynamic interactions 

among spherical particles. In the quasistatic case we succeeded in reformulating the 

problem of N hydrodynamically interacting spherical particles in terms of a set of linear 

algebraic equations. The advantage of this formulation is that it can easily be solved to 

obtain results for the components of the mobility matrix. The numerical implementation is 

simple. It shows that the results converge faster and more systematically than the results 

obtained by using the reflection method (chapter 3). In line with the ideas of Saito, we 

have studied the high frequency effective viscosity, which can easily be evaluated with the 

presented method. The final result is encouraging as a comparison with experimental and 

simulation data indicates that three and more particle hydrodynamic interactions give only 

subtle corrections to our expression (eq. (4.35)). In order to confirm this conclusion it is 

necessary to study the higher order contributions. 

The advantages of our method are particularly clear if we consider three particle 

hydrodynamic interactions. The study of some special three particle configurations has 

given us some insight in the convergence behaviour of some components of the mobility 

matrix. With the described method it is not difficult to obtain these components for an 

arbitrary configuration of the three particles, even at small interparticle spacings with an 

exception of touching spheres. With these results we have been able to determine the virial 

expansions, up to rp2, of the translational and rotational self-diffusion coefficient, which are 

in agreement with experimental results and simulation data up to ~0.4 (eqs. (5.37) and 

(5.38)). The second order virial coefficient of Dt is lower than expected from the literature. 
8 

168 
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The difference from some of these literature values can be explained: only one term of the 

reflection expansion is used (Beenakker) or fitting procedures seem unreliable. The virial 

expansion of Dr is in good agreement with experimental and simulation data up to higher 
8 

volume fractions. We have also presented virial expansions for translational and rotational 

sedimentation velocities, eqs. (5.46) and (5.51). Our expression for the sedimentation 

velocity cannot be used up to large values of rp, however the expression derived by our 

method is an improvement in comparison with the Batchelor expression (eq. (1.1)). 

Furthermore we can conclude that the second order virial coefficient is much higher than 

recent estimates of fitting procedures. From our results it is obvious that virial expansions 

based on fitting procedures should not be trusted, explicit calculations are indispensable. 

The virial expansion of the rotational sedimentation velocity agrees very well with 

simulation data. 

8.2 Retarded hydrodynamic interactions 

The method presented to study the quasistatic hydrodynamic interactions has been 

extended to the problem of retarded hydrodynamic interactions among spherical particles. 

Apart from the satisfactory convergence behaviour, there is another important advantage, 

the fact namely that we have been able to obtain expressions for the components of the 

grand mobility matrix for the whole frequency domain. Some components of the grand 

mobility matrix can be used to determine the Fourier transforms of correlation functions of 

Brownian particles. With the inverse Fourier transforms of these expressions we are able to 

determine the time correlation functions including hydrodynamic pair interactions. These 

expressions can be configurationally averaged without problems because screening effects 

remove divergency problems, although in some cases conditionally convergent integrals 

must be taken into consideration. We have studied the time dependent diffusion coefficient 
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and shown the oscillatory behaviour of the velocity autocorrelation function for higher 

volume fractions in some cases (see chapter 7). For a correct description of this 

phenomenon the inclusion of three and more particle retarded hydrodynamic interactions is 

necessary. This extension is in principle possible in a similar way as in the quasistatic case. 

8.3 Final remarks 

Finally we want to point out that many more problems might be worked out with 

our method. First of all higher order hydrodynamic interactions could be studied on fast 

computers for both the quasistatic and the retarded hydrodynamic interactions between 

spherical particles. The method to determine the effective viscosity of hard sphere 

suspensions can be extended to include three particle hydrodynamic interactions. With the 

results of chapter 4 the conclusions could be decided to be correct. Besides these 

straightforward extensions a study of the problem of a one, two or three dimensional lattice 

of colloidal particles can be taken up, as the presented formulation seems suitable for that 

purpose. In the past some attention was paid to this kind of problems [1,2]. Furthermore 

the problem of hydrodynamically interacting ellipsoids can be studied by using an 

expansion in ellipsoidal harmonics (see an article by Kim [3]). It is not clear if these ideas 

can be worked out but a preliminary study might be worthwile. 
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Appendix I 

The calculation of the inner product relations in the eqs. (2.36)-(2.38) is performed 

with the help ofintegrals given below. We shall not prove these relations. First define the 

following short hand notations: 

F~~ = ~0l [n11J(p-q)(p+q+l) y11( e .. ,17 .. )o +1- ~11V(p+q)(p-q+l) lJ ,p , lJ lJ m,q 

" y1 1( e .. ,17 .. )o 1- 2n10qY1 f e .. ,17 . .)t5 J • ,- lJ lJ m,q-- ,{)\ lJ lJ m,q 

Gfj ~0l,p+1[n11J(p+q+l)(p+q+2) Y1,1(eij'11i) 0m,q+1 + n11J(p-q+f)(p-q+2) 

"Y1 1(e .. ,17 •• )o 1 + 2ntoJ(p+q+I)(p-q+I) Yt o(f.,'fl .. )o ] • 
1- IJ IJ m,q-- 1 1J 1J m,q 

.. n .. 
~ 1 = pq MJ 1 (R ) 

lm;pq (p+q)! lm;pq -ij · 

The integrals are: 

J(R..xA
1 

(U,cp))·A* (U,cp)dO = ~2p+l)R..F~~, 
"""'lJ -m -pq lJ 1J 

J * [2~]~ (R..xA1 ( U,cp)) • C ( U,cp)dO = -p 2pp+l R. .G~~ , 
"""'lJ -m -pq IJ IJ 
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I * [2 +1] 1/2 R .. Y1 (O,IP)·A (O,I{))dn =- 2t_1 R..H~!, 
-1J m -pq ., IJ 1 J 

I * [2 +1] 1/2 R..Y1 (O,f{))·B (O,rp)dfl =- ~p+ R .. G~!, 
-IJ m -pq 2V+3 IJ lJ 

JR..Y
1 

(O,f{))·C* (O,f{))dfl = -zR .. F~!, 
-lJ m -pq IJ 1J 

I( r. • R .. )A
1 

( O,rp) ·A* ( O,rp)dn 
-t -1J -m -pq 

I 
* r. R .. 

(r.·R .. )A
1 

(O,f{))·B (O,ip)dfl = 1 
lJ G~!, 

-t -lJ - m -pq J(2p+l)(2p+3) lJ 

I(r. · R.)A1 ( 0,1{)) • c* ( O,f{))dfl = ir.R .. F~!, 
-t -1J - m -pq 1 lJ 1 J 

Ir.Y
1 

( 0,1{)) ·A* ( O,rp)dfl = r.po, 6 , 
-1 m -pq 1 .,p m,q 

Ir.Y1 
(O,rp)·B* (O,rp)dfl = -r.(p+1)5, 5 , 

-t m -pq 1 .,p m,q 

Ir.Y1 
(O,rp)·C* (O,ip)dfl = 0. 

-t m -pq 

The inner products of the basic solutions v1 (r.), with aE{a,,8,7}, with the vector -moo -J 

* * * spherical harmonics A ( fJ.,ip.), B ( O.,lfJ.) and C ( O.,lfJ.) which are different from zero, are 
-pqll-pq1l -pqll 

for 

I 
. * ( ) - -{p+2) v1 (r.) B 0.,1{). dO. - pa. 5, 6 , -ma-t -pq 1 1 1 1 .,pm,q 
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Iv1 
(3(r.)·C* (O.,m.)dfl. = a~(p+l)81 8 , 

-m -I -pq 1'1'1 I I ,pm,q 

I
v1 (r.)·A* (O.,rp.)dn. = p(p+l)a?8

1 
8 , 

- m-y -I -pq I I I I ,p m,q 

Iv1 
(r.)·B* (O.,rp.)dfl. = --lp(p+1)(2p-1)a?8

1 
8 , 

-m-y -I -pq I I I L. I ,p m,q 

and for j#: 

IV (r.)·A* (0 )dfl = lpFr+l) ap-lrji 
-lma -j -pq i'cpi i (l+) 2l+1) i lm;pq' 

I . 1 s-1 j i I . v1mf3(rJ.)·A (O.,rp.)dfl. = ~1 Ea. r 1 t (R..xA t(O.,cp.))·A (O.,rp.)dfl., 
- - -pq I I I '\ '' .1. J S~ O I m;s --IJ -s I I -pq I I I 

t 

Iv (r.)·C* (0 )dn =PC11±llaPrji 
-lm(3 -J -pq i'rpi i 1(T-F1J i lm;st 

-~1 E a71rJ1.i ti(R .. xA t(O.,cp.))·C* (O.,rp.)dfl., 
'\'' ... ls~O I m;s -IJ -s I I -pq 1 1 1 

t 

I
v

1 
(rJ.)·A* (O.,rn.)dfl. = p(l+l)a~+1rJ1"i - m-y - -pq I '1'1 I I m;pq 

+ (1+1) E a~rJ1"i tJR..Y t(O.,cp.)·A* (O.,rp.)dfl. -fp(2p+1)(t-2)ar1(a~+R~.)rJ1"i s~O I m;s -IJ S I I -pq I I I I I IJ m;pq 

t 

- (t-2) E a71rJ1.i tf(r.·R..)A t(O.,cp.)·A* (O.,rp.)dfl., 
s~O I m;s -I -IJ -s I I -pq 1 1 1 

t 
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I * p+l ji v1 (r.1)·B (9.,~n.)d0. = -(p+l)(l+l)a. r 1 -m-y-., -pq 1 .,.1 1 1 m;pq 

~ ji I . + (l+l) I: a.r1 t R..Y t(9.,tp.)·B (9.,tp.)dn. 
,~ 0 1 m;' -IJ s 1 1 -pq 1 1 1 

t 

(l-2) I: a~1rl1'i tJ(r.·R .. )A t(9.,tp.)·B* (9.,tp.)d0., 
~~ 0 1 m;s -1 -'IJ -s 1 1 -pq 1 1 1 

t 

J * 8 ji J * v1 (r;)·C (O.,<p.)dn. = (l+l) E a.r1 t R .. Y t(9.,tp.)·C (O.,tp.)dO. 
- m7 -., -pq 1 1 1 8~ 0 1 m;s -'IJ s 1 1 -pq 1 1 1 

t 

- (l-2) I: a~1rr tJ(r. · R..)A t( O.,tp.)· c* ( O.,tp.)dO .. 
s?.O 1 m;s -1 -lJ -s 1 1 -pq 1 1 1 

t 

Combination of the inner product relations shown at the beginning of this appendix: with 

the inner product relations evaluated above leads to expressions like: 

n11y11( e .. ,1J .. )rJ,· i. q+1 ' , 1J lJ m;s, 

n10Y1 o(f.,n .. )rJI. i. . 
1 1J 1J m,sq 

With the definition of r{~·st and the following relations 
I 

[t l+mf} l+m-1~] l/2 

2 l +( 2 l 1 y i-Jim-1 ' 
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we obtain: 

_ 1 [2s-1J 112
(l+s-m+q)( l+s-m+q+l)rj i 

Ri}2l+2s+1) ~ .J( s+q)(s+q+ 1 ) lm;s-1,q' 

_ 1 [2s-1] 112(l+s+m-q)( l+s+m-q±l)rj i 
Ri}2l+2s+l) ~ ..J( s-q)(s-q+ 1) lm;s-t,q' 

_ 1 [2s-1] 112(l+s+m-q)(l+s-m+q)rji . 
Ripl+2s+1) ~ ..J( s+q)(s-q) lm;s-1,q 

Substitution of these results into the inner product relations of the basic solutions with the 

vector spherical harmonics leads to the eqs. (2.36)-(2.38). 
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Appendix II 

In this appendix we give an outline of the derivation of the expression of the 

stresslet S
1
, exerted by the fluid on particle 1, in terms of some coefficients, in this case the 

'Y~m· We consider two particle hydrodynamic interactions only. The expression is 

(11.1) 

with the tensors ubn as defined in chapter 2 (eqs. (2.56a)-(2.56c)). We give here a short 

outline how one can achieve this result for the stresslet S
1
. To derive eq. (11.1) we 

introduce the following integrals, which ca.n be evaluated in a straightforward way. The 

results are: 

(11.2) P[!_1m] -ia3J(er!1m(O,tp) + _!1m(O,tp)er jl(!_1m(O,tp)·e~)d0 
IE =a 

1 3 !: 
-iS- 0'2mul,2' 

with P a shorthand notation for the integral operation. It is obvious that Pis a linear 

operator. Using this notation we have 

0, P[.Q1 ] = 0, P[e xA1 ] = {ima3 u~ 61", m z -m .. m ,,.. 

with 

(IT.3) * T =-T = 0' . 
1,1 1,-1 2../5 2,1 

Furthermore we define the following linear operator (working on the fluid velocity field 
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Consequently we write for!!,.(!) (see eq. (2.6)): 

(IL5) !!r(!) = p(r)~\ + Q[y(!)] , 

and for the stresslet on particle i 

(IL6) s1 = P(!!,.(!)J = P[p(r)e~ + P[ Q[y(!)JJ . 

There are three sources contributing to S
1

, the incoming fluid velocity field Yo(!), 

which gives the stresslet S~, and the two velocity fields !.
1
(r1) and !.2(r2) scattered from 

both particles, which give Sj and Si respectively. We first calculate the contribution of the 

incoming flow field. We can write (see eq. (2.41)) 

The last term of eq. (11.7) equals zero. This is obvious because a constant velocity field is 

expanded in terms of the basic functions ~lma(!) and Q[~lma(r1 )] = 0. The final result 

for eq. (IL 7) is 

There is no contribution from the pressure p (!)because all -r, =0 (see eq. (2.24)). The o m 

contribution to the stresslet sl is 
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+2 +2 
(II.9) slo = -2'fJ !: 0:~ ~" l = , a 3 ~ 0:~ u II> • 

o m=-2 .,m .om o m=-2 .om .om 

In an analogous way, using the expansion in basic solutions of p1(!.1) and .!i!.1), we obtain: 

(ILlO) S1 = 11 E r-(l+lLl [(2&--l)P[Y e 1 + Jl±!l P[A l] 
1 o1~ 1 1 lm lm rl (21+1} -lm 

m 

In the first sum of this equation we have omitted terms which are zero (see eq. (IL2)). The 

determination of S~ requires more extensive calculations. First we have to express the 

pressure p2(!.2) and the fluid velocity !
2
(!.2) in terms of !.1· This is possible with the Hobson 

formula and the result is 

(ILll) 

(II.l2) v (r ) - E !: n pq [ l o:2 M21 rl A (IJ ) 
-2-2 -l~lp~J\p+q)! (1+1)(21+1) lm lm;pq 1 -pq l'cp1 

m q 

+ 1 
dl M21 [2'c (0 ) rP"-

1(R A (0 ))] 1{1+1} Pzm lm;pq 1-pq l'cpl - 1 -12" -pq l'cpl 

where M~!;pq' for the special configuration used in this appendix, is defined in eq. (3.2) and 
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,!!;12=Rez. Using both expressions it is not difficult to work out P[p2(r1 )e~ and P[Q[y2(!.1)]] 

although it requires much space. We restrict ourselves to presenting the final result for the 

stresslet Si. It has the following form: 

(II.13) S2 = Tf a a E E 2q M21 a2 +2 n [ l 
1 o l?_lq=-2~ lm;2q (l+1)(2l+l) lm 

m 

This relation for the stresslet S~ can be simplified considerably by comparing it with our 

set of linear equations, especially with eq. (2.36). If we write down this equation for p=2, 

multiply with -dJn
0
a2u

2
q and sum over the allowed q values we obtain a final expression that 

resembles eq. (II.13) so that we can rewrite that equation in the following compact form: 

(11.14) 

The final form for the stresslet S
1
, exerted by the fluid on particle 1, is now 

(11.15) 
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Appendix III 

In this appendix we derive the generalized Hobson formula which we use in chapter 

7 section 3. The generalized Hobson formula expresses the "solid spherical harmonic11 

1/J~m(!J, defined with respect to the origin 0, in terms of the "solid spherical harmonics" 

1/Ji m(!:'), defined with respect to the origin 0'. For the two particle problem it is sufficient 

to define the z-axis of the coordinate systems 0 and 0' parallel to the line of centers of 

both particles. Before we give an outline of the proof of the generalized Hobson formula it 

is important to note that there exists other derivations of the generalized Hobson formula 

by Danos and Maximon [1] and Felderhof and Jones [2]. These derivations result in a 

different expression for the generalized Hobson formula as the one derived in this appendix. 

Both expressions for the generalized Hobson formula should be equivalent. We discuss this 

point later on in this appendix. 

We define the operator Y 1 (.!.v) which is related to the spherical harmonics: 
ma 

with a= -./-twpf'f/
0 

, Re( a)~O. We have to prove of the following two expressions 

(III.l) 

(IIL2) 

Ylm(~V)go(ar) = Yzm(B,I{J)gz(ar)' 

Y1m(~V)kiar) = (-1)Y1m(8,1{J)k~ar). 

We do not go into the details of the proof of these relations. We only indicate the steps 

with which one can prove eq. (111.1). The implementation of the steps is straightforward. 

Show: Y 00(~V)g0( ar) = Y 00(fJ,I{J)g0( ar) ; 

Prove by induction: Y~t~V)g0(ar) = Y~JO,I{J)gtar), Vt?_t; 



Prove by induction: Y4_t~V)g0(ar) = Y
4
_tO,tp)g!oo:), V~l; 

Show: Y1+1i~V)giar) = Y1+1J9,tp)gl+ioo:), V~O; 

Show: Yl+l,-~~V)gi ar) = Y l+J,-t fJ,tp)g1+i ar), V~O; 
Prove by induction: Yzm(~V)go< ar) = Yzm( O,tp)gt ar), v~o. I ml ~~. 
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To prove some of these steps one needs recursion relations for the modified spherical Bessel 

functions gz< ar) [3] and the Legendre polynomials P7(cos0) [4]. The proof of eq. (III.2) is 

completely analogous but in that case one needs the recursion relations for the modified 

spherical Bessel functions k/ ar) [3]. 

To express the 11solid spherical harmonic11 '1/J~m(!_), defined with respect to the origin 

0, in terms of the "solid spherical harmonics" '1/Jt m(!.'), defined with respect to the origin 

0', we need only the addition theorem for Bessel functions applied to k
0
(ar) [5]. This 

addition theorem has the form 

(III.3) k0(oo:) = E (-1)11(2a+l)k (aR)P (cosO')g (ar'), 1!.'1 <R, 
·~O I 8 I 

with R the interparticle distance. Substitution of this result into the expression of '1/J~m(!.) 

gives 

where we used the equality V = V' if ,g is constant, and eq. (III.1). We can simplify this 

expression by looking at the following ~elations: 
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1) < a )·1.+ (r') = nl+l. m (l2i+H.J.+ (r') + nJ.-1. m (~~+ij·~.+ (r') 
(i(Ji• '1' lm- n + '1' 1+1 m- n + '1' l-1 m-

lm ' lm ' 

where 

m nJ.-1' m (~f+mj Mm - n/+1' m ({2z+H /?.1 
M l,l-1 n 1m +1 ' l,/+1- n 1m + ' 

and all the other elements of the matrix Mm are zero. 

With these two relations one can prove 

with P (Mm) a Legendre polynomial with as argument the matrix Mm. 
8 

The generalized Hobson formula is now 

(III.5) 

with 

In an analogous way, 

(IIL6) 



This result must be equivalent with that obtained by Felderhof and Jones [2]. The 

equivalence of both results implies (for m~O, ~m and k~m) 

(III. 7) (-1)m J(21+1)(2k+l) (1 kll [ 1 
k s] = [P (Mm)] 

0 0 OJ -m m 0 8 lk ' 
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with [~ ~ ~] and [~! ~] the 3-jsymbols ofWigner [6]. This is supported by numerical 

evidence where we used the Root-Rational-Fraction package of Stone and Wood to 

calculate the 3-j symbols of Wigner [7]. 

With the derived generalized Hobson formula it is possible to express respectively 

Vx;,'I/J~m(!) and Vx(Vx!.'I/J~m(!)), defined with respect to 0, in terms of the "solid spherical 

harmonics 11 defined with respect to 0 '. The most important steps are (V = V' if the 

interparticle radius .!1_ is constant): 

We have used here the properties of the vector spherical harmonics and the properties of 

the modified spherical Bessel functions. Furthermore, 

Vx(V><£1/I~m(!.)) = (-1)
1 
E [Nm( aR)] 1.tV'x [2k~l [ gk--i ar')Akm( 8' ,cp') -
k~O 
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We can work out the curl operation by using the properties ofthe spherical harmonics [4] 

and the properties of the modified spherical Bessel functions [3]. We give here the result 

only, the calculation is straightforward: 

with 
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Appendix IV 

In this appendix we show the inner products we need for the determination of the 

set of linear equations of the coefficients { a~m'~m''Y~m}. We give here only the results for 

the inner products. 

J
A

1 
(O,rp)·A* (O,rp)dO = ~2l+l)o, o , 

-m -pq .,p m,q 

J
(A1 (O,rp)xe )·A* (O,rp)dO = im(2l+l)o1 o , -m z -pq ,p m,q 

J(B1 ( O,rp)xe ) ·A* ( O,rp)dO = 0 , 
-m z -pq 

Jcos0!1 (O,rp)·!* (O,rp)dO = {l-l)(l+m)ni-n1
' m51 +to 

m pq lm ,p m,q 

nl 
+ ~l+m+l)n m 5, i , 

1+1, m .,p- m,q 

J * ({rz+ij n lm cos~1 (O,rp)·! (O,rp)dO =- + n--o, i , 
m pq 1+1' m .,p- m,q 

J{sin0!1 (O,rp)><e )·A* (O,rp)dO = -(1--l)(l+m{i-nl' mo
1

,_,_
1
5 

m 'P -pq lm '"' m,q 
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f
(sinOB (Orp)xe )·A* (Orp)dO =-2(l+l~~l+m+l) nlm 6 6 

-lm ' rp -pq ' ( + 3 ) n1 1 ~p--1 m,q ' + ,m 

f(A
1 

(O,rp)xe )·B* (O,rp)dO 0, J -m z -pq 

fcosOA
1 

(O,rp)·B* (O,rp)dO=-(~rriJn,_t,ms o j -m -pq + n 1m l,p+l m,q' 

+ (l+2)(l+m+ll(2l+l) nlm 6 6 ( 2 l +3 n1 1 ~p--1 m,q ' + ,m 

r(sinOA (0 ~n)xe )·B* (0 m)dO = 2{hi+ij nH • m6 ~: J -lm >Y 1(1 -pq >Y + Rlm ~p+JUm,q' 

f(sinOB (0 rp)xe )·B* (fl rp)dO = (l+l)fl+mi)2l-1) n,_t' m6 6 J -lm , rp -pq ' 2l+ . nlm l,p+1 m,q 
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I
(A

1 
(O,I{J)><e )·C* (0,1{J)d0 = (1-l)(l+mt;t' m8,.._,_

1
8 , 

- m z -pq lm .,,. ' m,q 

I(B (OI{J)xe )·C* (DI{J)dO = (Z+2)(l+m+ll(2l+l) nlm 6 6 
-lm ' z -pq ' ( 2 l +3 n1+1 , m l,p-1 m,q ' 

JcosOB1 (O,I{J)·C* (O,I{J)dO = -imo, 6 , 
-m -pq .,p m,q 

J(sinOA1 (O,I{J)xe )·C* (O,cp)dO = imlo, 6 , 
-m '{) -pq .,p m,q 

I(sin0!!,1 (O,I{J)><e )·C* (O,I{J)dO = -im(l+l)6
1 

6 , 
m '{) -pq ,p m,q 

IsinOY
1 

(O,I{J)e
9
·C* (O,cp)dO = -im6

1 
6 . 

m -pq ,p m,q 
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With the help of the inner products mentioned above and the vector functions !,
1
m(E,w) and 

~lm(!.,w) defined in appendix III (respectively eq. (ITL8) and (IIL9)) we can determine the 

following inner products: 
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AppendixV 

The calculation of the integrals needed for the determination of eqs. (7.42) and 

(7.43) for the force ,Ei(w) and torque !i(w) respectively can be performed with the help of 

the following integrals, where we show the nonzero integrals only: 

Substitution of these integrals into eq. (7.41) leads to 

+2n10-r1i J.w)e J + TJ a2 Jv .(r.+R .. ,w)dr. , 
1 3 0 -J -:J. --!j -:J. 

I !:i I ~a 
where j#. We can simplify this complicated expression by considering the following 

expression: 
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We can rewrite the r.h.s. of this expression by using the set of linear equations derived in 

section 3 of chapter 7. After rearrangement we obtain: 

2 2 

"~oa 'Ira kiaa) [ n1i r~.-iw)-r~}w))ex-in11('Y~.-1+1~}w))ey +2n10r~,0(w)ez] 

where j/i. After combination of this result with the equation of F.( w) we obtain the final 
-j 

expression (eq. (7.42)). 
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Summary 

The research presented in this thesis concernes a study of the effects of both 

quasistatic as retarded hydrodynamic interactions among spherical particles in a 

suspension, on some transport coefficients. It is a theoretical study with a numerical 

component. 

The first chapter is a short introduction without details. Some attention has been 

paid to the development of simulation experiments. Some results of these simulation 

experiments have been used to compare our findings with. In addition the underlying 

motivation for this research has been expounded. 

In chapter 2 the problem of N hydrodynamically interacting spheres, present in an 

unbounded fluid with an externally imposed flow, is studied within the quasistatic limit 

(Stokes limit). On basis of the linearity of the Navier-Stokes equations a scattered fluid 

velocity field around each sphere is introduced and that velocity field can be expanded with 

the help of a complete set of basic functions. The problem of N interacting spheres is 

reformulated in terms of a set of linear equations of the expansion coefficients. Then the 

force, torque and stresslet are expressed in terms of some expansion coefficients. The 

combination of both results leads to the determination of the components of the grand 

mobility matrix. The transport coefficients can be studied with it. In the next chapter the 

method is compared with findings from the literature concerning the two particle problem, 

which is intensively studied in the past. In the first place the convergence behaviour of the 

components of the grand mobility matrix is studied and it is shown that the presented 

method results in a faster and more systematic convergence behaviour of these components. 

This is especially important for the study of three and more particle interactions. The virial 

expansions of the translational and rotational self-diffusion coefficient and of the 

translational and rotational sedimentation velocity are determined. The result for the 

rotational sedimentation is new. 
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In the fourth chapter an alternative approach is presented to determine the effective 

viscosity of a hard sphere suspension by using a method introduced by Saito in the early 

fifties. The set of linear equations presented in chapter 2 is appropriate. The final result for 

the effective viscosity agrees very well with both experimental results and simulation data 

up to high volume fractions of dispersed particles, although binary interactions are included 

only. At high volume fractions it is necessary to include three and more particle 

hydrodynamic interactions in the expression for the effective viscosity, but this seems to 

lead to subtle corrections in contrast to the commonly used methods. 

In chapter 5 a study of three particle hydrodynamic interactions is presented. The 

results for some special configurations are compared with results available in the literature. 

From this comparison it is evident that with the presented method, three particle 

interactions can be studied very satisfactorily. On top of that the virial expansions of 

transport coefficients mentioned before are improved by including three particle 

hydrodynamic interactions. These results are new. The transport coefficients related to 

rotational properties are described very well up to ~0.4 if compared with simulation data. 

The virial expansion for the translational self-diffusion coefficient disagrees with some 

earlier expressions, but our expression resembles recent experimental results up to ~0.4. 

Sedimentation is difficult to describe with a virial expansion, but the expression presented 

in this thesis is an improvement. 

The aim of chapter 6 is twofold. In the first place it is an introduction to the theory 

of Brownian motion based on the Stokes-Boussinesq equation. The correlation functions of 

the Brownian particles are studied on basis of a generalized Langevin equation. The free 

Brownian particle is treated. The mathematical tools introduced appear to be useful also in 

two other cases: the Brownian particle in a harmonic potential and in a shear flow. The 

results are only valid in the case that hydrodynamic interactions can be neglected, thus in 

case of very low volume fraction of dispersed particles. In chapter 7 these retarded 

hydrodynamic interactions are included. It is assumed that there is no externally imposed 
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flow field. It proved to be possible to calculate the components of the grand mobility 

matrix, including two particle hydrodynamic interactions, and, with some of these 

components, the velocity autocorrelation function and time dependent diffusion coefficient 

of the Brownian particles. 

In chapter 8 the most important conclusions are summarized and some possible 

future applications of the presented method are listed. 
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Samenvatting 

Het in dit proefschrift beschreven onderzoek betreft de effecten van zowel 

quasistatische als geretardeerde hydrodynamische wisselwerking tussen bolvormige deeltjes 

in een suspensie, op een a.antal transportcoefficienten. Het is theoretisch van aard en heeft 

daarnaa.st een numerieke component. 

Het eerste hoofdstuk dient als een korte inleiding zonder details. Enige aandacht 

wordt besteed aan simulatie experimenten. Een aa.ntal resultaten van deze simulatie 

experimenten vormen belangrijk vergelijkingsmateriaal voor door ons gepresenteerde 

resultaten. Tevens wordt de onderliggende motivatie voor dit onderzoek uiteengezet. 

In hoofdstuk 2 wordt het probleem bestudeerd van N hydrodynamisch 

wisselwerkende bollen, aanwezig in een oneindig uitgestrekte vloeistof met een extern 

opgelegd stromingsveld, in de quasista.tische limiet (Stokes limiet). Vanwege de lineariteit 

van de Na.vier-Stokes vergelijkingen kan een verstrooid vloeistofveld rond iedere bol 

geintroduceerd worden en da.t vloeistofveld kan ontwikkeld worden met behulp van een 

compleet set ba.sisfuncties. Het probleem van N wisselwerkende bollen wordt 

gereformuleerd in termen van een stelsellineaire vergelijkingen voor de 

expansiecoefficienten. Daa.rna. worden de kra.cht, het kra.chtmoment en de stresslet 

uitgedrukt in termen van een aantal expansiecoefficienten. Combinatie van beide resultaten 

ma.a.kt het mogelijk om de componenten van de mobiliteitsma.trix te bepalen, wa.a.rmee de 

transportcoefficienten onderzocht kunnen worden. De methode wordt in het daarop 

volgende hoofdstuk uitgebreid vergeleken met resultaten uit de literatuur betreffende het 

twee deeltjes probleem dat reeds in het verleden intensief bestudeerd is. In eerste instantie 

wordt het convergentiegedra.g van de componenten van de mobiliteitsmatrix onderzocht en 

het blijkt dat de gepresenteerde methode tot snellere en meer systematisch 

convergentiegedrag van deze componenten leidt. Dit is vooral van belang als drie en meer 

deeltjes wisselwerking bestudeerd wordt. De viriaalontwikkelingen van de translatie en 
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rotatie zelfdiffusiecoefficient en van de translatie en rotatie sedimentatie snelheid zijn 

bepaald. Het resultaat van de rotatie sedimentatie is nieuw. 

Het vierde hoofdstuk is geheel gewijd aan een alternatieve manier om de effectieve 

viscositeit van een harde bollen suspensie te bepalen volgens een methode geintroduceerd 

door Saito in het begin van de jaren vijftig. Het in hoofdstuk 2 geformuleerde stelsel 

lineaire vergelijkingen is hiertoe geschikt. Het uiteindelijke resultaat voor de effectieve 

viscositeit komt goed overeen, tot hoge volumefracties van gedispergeerde deeltjes, met 

zowel experimentele resultaten als simulatie data, alhoewel slechts binaire wisselwerking is 

meegenomen. Bij hoge volumefracties is het noodzakelijk om drie en meer deeltjes 

wisselwerking mee te nemen in de uitdrukking voor de effectieve viscositeit, maar 

klaarblijkelijk leidt dit slechts tot subtiele correcties in tegenstelling tot de gewoonlijk 

gebruikte methodes. 

In hoofdstuk 5 is een studie naar drie deeltjes wisselwerking gepresenteerd. De 

resultaten voor een aantal Speciale configuraties zijn vergeleken met enkele resultaten uit 

de literatuur. Uit deze vergelijking blijkt dat de gepresenteerde methode goed voldoet om 

drie deeltjes wisselwerking te bestuderen. Daarnaast zijn deal eer'der genoemde resultaten 

voor viriaalontwikkelingen van een aantal transportcoefficienten gecorrigeerd door drie 

deeltjes wisselwerking mee te nemen. Deze resultaten zijn nieuw. De transportcoefficienten 

gerelateerd aan rotaties worden goed beschreven totqm0.4 als ze vergeleken worden met 

simulatie experimenten. De viriaalontwikkeling voor de translatie zelfdiffusiecoefficient 

wijkt af van eerdere uitdrukkingen, maar onze uitdrukking voldoet goed tot qm0.4 

vergeleken bij met recente experimenten. Het is moeilijk om sedimentatie te beschrijven 

met een viriaalontwikkeling maar de in dit proefschrift gepresenteerde uitdrukking is 

desondanks een verbetering. 

Het zesde hoofdstuk heeft een tweeledig doel. Ten eerste dient het als een inleiding 

in de theorie van de Brownse beweging waarbij de Stokes-Boussinesq vergelijking als basis 

dient. De correlatiefuncties van het Brownse deeltje zijn onderzocht op grond van een 
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gegeneraliseerde Langevin vergelijking. Het vrije Brownse deeltje wordt bestudeerd. De 

gebruikte wiskundige methoden blijken ook nuttig te zijn in twee andere gevallen: een 

Browns deeltje in een harmonische potentiaal en in een afschuifstrorning. Deze resultaten 

gelden alleen als de hydrodynamische wisselwerking tussen de Brownse deeltjes 

verwaarloosbaar is, d.w.z. bij zeer lage volumefracties van gedispergeerde deeltjes. In 

hoofdstuk 7 wordt deze hydrodynamische wisselwerking meegenomen. Er wordt 

aangenomen dat er geen uitwendig stromingsveld is opgelegd. Het blijkt mogelijk te zijn de 

componenten van de mobiliteits matrix te bepal.en, waarbij twee deeltjes wisselwerking is 

meegenomen, en aau de hand daarvan de snelheids autocorrelatie functie en 

tijdafhankelijke diffusiecoefficient van de Brownse deeltjes. 

In hoofdstuk 8 worden de belangrijkste conclusies samengevat en worden enige 

mogelijke toekomstige toepassingen van de gepresenteerde methode opgesomd. 
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Stellingen bij het proejschrift van H.J.H. Clercx, 22 oktober 1991. 

1 Het toepassen van lubricatietheorie in de studie van het gedrag van suspensies is niet 

relevant omdat deze theorie slechts geldig zou zijn voor deeltjesafstanden, die 

toepassing van hydrodynamische theorieen niet toelaten. 

D.J. Jeffrey en Y. Onishi, J. Fluid Mech. 1.39 {1984} £61. 

S. Kim en R.T. Mifflin, Ph.ys. Fluids 18 {1985} 1099. 

2 Het in dit proefschrift gepresenteerde stelsellineaire algebra.Ische vergelijkingen, 

noodzakelijk om de N-deeltjes mobiliteitsmatrix te bepalen, is opgebouwd uit twee 

deeltjes wisselwerkingstermen. Oplossen van dit stelselleidt tot een N-deeltjes 

weerstandsmatrix met meer deeltjes wisselwerkingstermen. Hiermee kan worden 

aangetoond dat de bewering van Durlofsky, Brady en Bossis inhoudende da.t inversie 

van hun N-deeltjes mobiliteitsmatrix, met slechts paarwisselwerkingstermen, leidt tot 

een weerstandsmatrix met meer deeltjes wisselwerkingstermen, in principe correct is. 

Dit proefschrift, hoofdstuk 2. 

L. Durlofsky, J.F. Brady en G. Bossis, J. Fluid Mech.. 1.80 {1987) £1. 

3 In een oneindig uitgestrekt collo!daal kristal, waarin ieder bolvormig deeltje zich be-, 

vindt op een roosterpunt en dezelfde omgeving ziet, is de rotatiezelfdiffusiecoefficient 

ongevoelig voor de hydrodynamische wisselwerking in het collo!daal kristal. Dit is gel

dig voor elke willekeurige roosterparameter, waarbij vanzelfsprekend wordt aangeno

men dat de roosterparameter niet kleiner kan worden dan tweemaal de deeltjesstraal. 

4 Het totale hydrodynamische N-deeltjes probleem in een oneindig uitgestrekt colloidaal 

kristal, waarin ieder bolvormig deeltje zich bevindt op een roosterpunt en dezelfde 

omgeving ziet, is te herformuleren in termen van vrije quasi-deeltjes. 



5 Om snelheidsautocorrelatiefunctie~ van Brownse deeltjes te verkrijgen die in gedrag 

lijken op deze functies verkregen m. b. v. moleculaire dynamica. berekeningen aan harde 

bollen vloeistoffen, is het essentieel om op zijn minst binaire geretardeerde 

hydrodynamische wisselwerking t"Q.Ssen de Brownse deeltjes te beschouwen. De 

zelf-interactie yan ea~ Browns deeltje via de vloeistofmoleculen is niet voldoende. 

Zie bijvo£!rbee/d: J.P. I1anse1; en Lij. McDonald, Theory of simple liquids {Academic Press, 

London, 1986}, hopfdstuk 8. 

Dit proefschrift, hPo/dst'!Lk 1. 

6 De niet-evenwicht sta.tistische oper~ttor v~tn Zubarev is bij de berekening v~tn het 

electrische gelei4ingsvermogen v~tn plasma's aileen b:rllikbaar voor stationaire velden. 

Dit wijst op een ernstige beperlchfg van de geldigheid van het Zubarev-formalisme. 

G. Hopke en F.E. Hahne, Phvs. St11.t, Spl. (b) ~()7 (1981} 6(}3. 

H.H. Brouwer en P.P.J.M. Schrll.f(11 :Physics _. 141 {1981} 589. 

7 Ret verdient aanbeveling am verr!laggevers, die op de televisie rechtstreeks 

wielerwedstrijden verslaan, tl.'lgeUjkE!rtijd met iedere ravitaillering van de wie!renners 

concentra.tieverhogende middelen toe te Q.ienen opdat de televisiekijker tot de finish 

van de wielerwedstrijd VE!rschoond bUjft van onzinnige en fouj;ieve opmerldngen van de 

verslaggevers. 

8 Zolang slechts een ldeine minderheid v~tn de huishoudens in Neded~J.D.d gebruik maakt 

van een zogenaamde anti-reclamedrukwerk~ticker zal het effect van deze sticker 

contraproductief zijn, daar milieubewuste huisl!.oudens beter in staat zijn dat 

reclamedrukwerk in het oud papier circuit te brengen dan de bezorgers ervan. Deze 

laatsten hebben nogal eens de vervelende gewoonte om het overblijvend 

reclamedrukwerk te depaneren op plaatsen waar het niet thuis hoort. 



9 Het is bevreemdend dat in ~ringen van de middenstand nogal een.s kriti~che g~uiden te 

horen zijn over de hoogte van sociale uitkeringen. De middenstanders <Henen zich te 

realiseren dat zij~ net als de personen qie eE!Il soctl!le uitkering ontvangen, 

belanghebbend zijn. 

10 In een !!Itikel van Widom wor!lt qe pewegin&svergeUj.\chtg vopr de ~nelll.flidsl!.uto

corr~atief1lnctie ~(t) van een Br~xwns deeltje ~tfgeleid m.b.v. linelloi.re re~ponsiEHheorie. 

Ten onrecfite wonj.t daru:bij de hegjnvoorwa.m:!le $(0):::::kB T /m (kB: con.~tante van 

Boltzm~t!Jll, T: absolute temperqtJrqr! m: m!J.ss;t v!!-n !let deeJtje) opg~e&d· De lil1eaire 

responsie-theorie levert zelf de beginvoorwa!lXde, en wel $(O)""kBT/(m+im0), waarin 

m0 de verphtatste vloeistofma~sa is. 

4· Wido711, Ph:11s. Jlev. 4 $ {1971,} 1394, 




