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Preface

This thesis presents author’s research in the period 1994 to 1998. It was done in Veliko
Tarnovo University, Bulgaria (June 1994 - September 1997) and in Eindhoven University
of Technology (October 1997 - September 1998) as Ph.D. student. Most of the material in
the thesis is based on the papers published during this period. In the order of appearance
as preprints they are:

1. P.G.Boyvalenkov, S.Nikova, New lower bounds for some spherical designs, Lecture
Notes in Computer Science 781, Proceedings, ed. G. Cohen, S. Litsyn, A. Lobstein,
G. Zémor, Springer-Verlag, 207-216, 1994.

2. P.G.Boyvalenkov, S.Nikova, Improvements of the lower bounds for the size of some
spherical designs, Mathematica Balkanica, vol. 11, to appear.

3. S.Nikova, On Bounds for the Size of Designs in Complex Projective Spaces, Proc.
International Workshop on Optimal Codes and Related Topics, Sozopol, May 1995, 121-
126.

4. P.G.Boyvalenkov, S.Nikova, On Lower Bounds on the Size of Designs in Compact
Symmetric Spaces of Rank 1, Archiv der Mathematik 68, 1997, 81-88.

5. P.G.Boyvalenkov, S.Nikova, Some Characterizations of Spherical Designs with small
Cardinalities, Proc. Fifth International Workshop on Algebraic and Combinatorial Cod-
ing Theory, Sozopol, June 1996, 77-80.

6. P.G.Boyvalenkov, S.Nikova, V.Nikov, Nonezistence Results for Spherical 8-Designs of
Small Cardinalities, International Symposium on Information Theory IEEE, June, 1997

7. P.G.Boyvalenkov,D.Danev, S.Nikova, Nonezistence of Certain Spherical Designs of
Odd Strengths and Cardinalities, Discrete and Computational Geometry to appear.

8. S.Nikova, V.Nikov, Necessary and sufficient conditions for improving the Delsarte
bound for T-designs, Sixth International Workshop on Algebraic and Combinatorial Cod-
ing Theory, Pskov, Russia, September 6-12, 1998.

9. S. Nikova, Ezrtremal polynomials of degree T + 2 and T + 3, preprint.

Papers (1] and [2] discuss the improvements of the lower bounds of spherical T - designs. In
[3] and [4] some new lower bounds for designs in projective spaces are given. Restrictions
for the inner products and necessary conditions for existence of spherical designs with odd
strengths and cardinalities are presented in [5], {6] and [7]. In the last two works [8] and
[9] necessary and sufficient conditions for optimality of the Delsarte bound and analytical
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expression of the extremal polynomials are given. The introduction further explain this
topics.
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Introduction

Polynomial metric spaces are finite metric spaces represented by P- and Q- polynomial
association schemes [33] as well as infinite metric spaces, which are completely classified
by Wang [75] as the real sphere, a real, complex or quaternions projective space and
the Cayley projective plane. Hamming, Johnson and Grassmann spaces are the most
important examples of finite polynomial metric spaces.

Every polynomial metric space M is characterized by its metric d(z,y), and normalized
measure gaq(.).

A basic property of a polynomial metric space M is the existence of a decomposition
of the Hilbert space £3(M, p) of complex-valued quadratic-integrable functions with the
usual inner product, into a direct sum of mutually orthogonal subspaces V; of dimension
r;. Besides, there exist real polynomials Q;(2), 1 = 0,1,..., (Qi(t) of degree i), called
zonal spherical functions, such that for all z,y € M

Ty

Qulom(d(z, ) = -3 vis(@)o ),

1 =
where {v;j(z) : 1 < j < r;} is an orthonormal basis of V; and oa(d) is a continuous,
strictly decreasing function (called substitution) such that

O'M(O) = 1, O'M(.D) =—1.

Let GG be the group of isometries of M with d(gz,gy) = d(z,y) for any z,y € M and
g € G. A connected compact metric space M is called two-point homogeneous (with
respect to G) if G acts distance-transitive on M, i.e. d(z1,y1) = d(z2,y,) implies the
existence of an isometry g € G with gz; = z3 and gy; = ys.

The only infinite spaces which are two-point homogeneous with respect to their full isom-
etry group are already mentioned above: the real sphere, a real, complex or quaternions
projective space and the Cayley projective plane.

Each infinite polynomial metric space is connected with a system of orthogonal polyno-

mials {Q:(t)}{2, and its adjacent system of orthogonal polynomials {Q%*(t)}$2,, which
we will define in Chapter 1.
Definition 1. A finite nonempty subset C C M is called a 7-design if

Zv(:c) =0

zeC
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for all v(z) € V, @ V2 @ -+ @ V;, where V;,...,V; are ordered subspaces. The maximal
integer T for which ' is a 7-design is called the strength of the design C' and is denoted
by 7(C).

Let M be a polynomial metric space and let 7 > 1 be a fixed integer. We consider the
quantity

B(M,7) =min{|C|: C C M,7(C)=T}.

Bounds for B(M, ) in different (finite and infinite) PMS have been obtained by many
authors [16, 17, 32, 33, 36, 38, 45, 22, 23, 24]. Classical lower bounds for B(M, 1) was
obtained in infinite polynomial metric spaces by Delsarte, Goethals and Seidel (for the
unit sphere S™') and Dunkl (for the projective spaces FP"~1). It can be presented as
follows [53]. For any polynomial metric spaces and for any 7

er for 7= 2e,
B(M,T) 2 R(MaT) = =0 Ql,o(_l) i
(I—Q—;—l—(t-l—)—)er for 7=2e+ 1.

=0

Spherical 7-designs were introduced by Delsarte, Goethals and Seidel in 1977. A spherical
r-design in R™ is a finite set C C S™~! with the property that for every polynomial f of
degree at most 7, the average value of f on C' equals the average value of f on S"71. A
specialization of R(M, 1) for M = S™! is as follows:

<n+e-l—1)+<n+ez2) if 7= 2¢
B(n,7) > R(n,T) = n= n-

2(””"1) if =2 +1.

The so called Delsarte bounds were obtained by using suitable polynomials of degree 7 in
the following theorem.

Theorem 2. (The Linear Programming Bound for designs [32, 36, 49]) Let M be a
polynomial metric space, let T > 1 be integer and let f(t) be a real nonzero polynomial
such that

(B1) f(¢) >0, for—1 <t <1,

(B2) the coefficients in the zonal spherical function ezpansion ft)= Ei.;o fiQ:(t) satisfy
fo>0, fi<0fori=7+1,...,k

Then, B(M,7) 2 f(1)/ fo-

In this thesis we propose a method for improving the Delsarte bound in infinite polynomial
metric spaces by means of linear programming and other arguments. We investigate some
properties of polynomials, used in the linear programming bound of Theorem 2. This
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allows us to search effectively for suitable polynomials in order to improve the Delsarte

bound.

Another approach is based on a deeper investigation of the structure of feasible designs
of relatively small cardinalities. We apply such an argument for spherical designs. This
gives many non-existence results including an asymptotic improvement of the Delsarte
bound for 7 odd and for odd cardinalities.

Overview

In Chapter 1, we define polynomial metric spaces. We give the most important examples of
finite polynomial metric space and describe the infinite ones. Some well known properties
of systems of orthogonal polynomials associated with the polynomial metric spaces are
discussed. In this chapter, we also give definitions for codes and designs in such spaces
and discuss the linear programming bound for codes and designs. In the last section, the
universal Delsarte bound for designs is presented.

In Chapter 2, we propose a method for improving the Delsarte bound for some spherical
7-designs using linear programming techniques and extremal polynomials of degree 7+ 3.
We investigate some properties of extremal polynomials, namely the number of double
zeros and the number of zero coeflicients. In Section 2.5, we present new lower bounds
for 6 <7 <11 in some dimensions.

In Chapter 3, we find new lower bounds for some 7-designs in infinite projective spaces.
Our approach is similar to the method we have used for spherical designs in Chapter 2. In
Section 3.4, we give some examples of new bounds and we present some tables to compare
our results with the Delsarte bounds.

In Chapter 4 we give necessary and sufficient conditions for improving the Delsarte bound
for 7-designs. In Section 4.3 we define test functions G.(M, Q;) with the property that
G+(M,Q;) < 0 for some j > 7 if and only if the Delsarte bound B(M,7) > RM,T)
can be improved by linear programming. Then we investigate when the Delsarte bound
is optimal. If it is not optimal in Section 4.4 we give improving polynomials of degree
7 + 2 in non-antipodal PMS and of degree 7 + 3 in antipodal PMS.

In Chapter 5, we obtain some necessary conditions for the existence of spherical 7-designs
of odd strength and cardinality. These conditions imply nonexistence results in many
cases. In Section 5.2, we derive a general nonexistence rule. It gives a bound which is
asymptotically better than the corresponding estimation based on the Delsarte-Goethals-
Seidel bound. It turns out that our approach works well in small dimensions too. In
Section 5.3 and Section 5.4, we consider in detail the strengths 7 = 3 and 7 = 5 respec-
tively. We rule out the first open cases by showing the nonexistence of 3-designs with 7
points and 5-designs with 13 points. When the nonexistence argument does not work,
we obtain (Section 5.5) bounds on the maximal inner product of a 7-design of a fixed
cardinality.
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Chapter 1

Codes and Designs in Polynomial
Metric Spaces

1.1 Introduction

In this chapter we introduce the notion of polynomial metric space. Some general def-
initions are given in Section 1.2. In Section 1.3 some general properties of orthogonal
polynomials associated with a polynomial metric space are described. In Section 1.4 we
give some definitions for codes and designs in such spaces. In the last two sections we
discuss the linear programming bounds for codes and designs and the universal Delsarte
bound for designs.

1.2 Polynomial Metric Spaces

In this section we define polynomial metric space (PMS). Finite PMS are nothing but P—
and @)— polynomial association schemes [13, 74]. The infinite ones [35, 36, 49, 53, 75] are
compact, connected, two-point homogeneous spaces and they are completely classified by
Wang [75] to be the Euclidean unit spheres, the real, the complex and the quaternionic
projective spaces and the Cayley projective plane. Let M be a compact connected, two-
point homogeneous metric space with a (finite) diameter
D = D(M) = max d(z,y).

This means that an isometry group G acts transitively on M (i.e. for any z,y € M
dg € G such that gz = y). Therefore on M there exists unique normalized invariant
measure, the Haar measure, ¢ (u(gM) = p(M) for any measurable M C M and any
g9 € G; u(M) =1).

We shall assume that oas(d) is a continuous, strictly decreasing function (called substitu-

tion) such that
om(0) =1, oum(D) = —1. (1.1)

5
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Definition 1.1 Let £L,(M, p) denote the Hilbert space of complez-valued square-integrable
functions with the usual inner product

(wo) = [ ule)ilEiuta)

Suppose that L4(M, 1) decomposes into a countable (when M is infinite) or finite (with
D + 1 members when M is finite) direct sum of mutually orthogonal finite-dimensional
subspaces

Ly M,p)y=Vo@Vi@d---.
Then M is called polynomial metric space, if there exist
a) an ordering of the spaces Vo, Vi,...(Vo is the space of constant functions), where
r; = dim(V;) and {vi;(z) : 1 < j < r;} is an orthonormal basis of Vi;
b) real polynomials Q;(t), 1 = 0,1,..., (Qi(t) of degree i), called zonal spherical
functions (ZSF),

such that for all z,y € M

Ty

Qulomld(z, ) = - 3 vila)o(v) (12)

3

i=1

The function oa(d) will be referred to as a standard substitution for M. The inverse of
om(d) will be denoted by af, i.e. o (t) = d if and only if ¢ = gr(d).

For z,y € S™ !, the real number ox(d(z,y)) € [—1,1] is called inner product of z and y.

In the interval [—1, 1] we consider the function defined by

v(t) =1~ pe™ (1)),
which increases with ¢ from v(—1) = 0 up to v(1) = p(0). It generates the Lebesgue-
Stiltjies measure v on the interval [—1, 1], which is normalized (v([-1,1]) = 1).

Relations (1.2) and (1.1) imply the orthogonality relations

Ti [_1 Qz(t)QJ(t)dl/(t) =6ij, Z,] = 0,1,..., (13)

where &;; is the Kronecker symbol and the integral is taken in the Lebesgue-Stieltjes sense.
These equalities show that the polynomials {Qi(t)}Xy, (where N = D + 1, when M is
finite and N = oo otherwise) are orthogonal in the interval [—1,1] with weight w(¢), such
that w(t)dt = dv(t) (see Theorem 1.5 below). It also follows by (1.1) and (1.2) that

Q1) =1.
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Definition 1.2 Any finite nonempty subset of M is called a code.

Definition 1.3 A code C C M is called a 7-design if

Zvij(l') =0 (1.4)

zeC

foralli =1,2,...,7 and all j = 1,2,...,r;. The mazimal integer T for whick C is a
T-design is called the strength of the design C and is denoted by 7(C).

There is no complete classification of finite PMS. We mention the most important exam-
ples [33]:

o The Hamming space H(n,r) consists of all n-tuples with components from an alphabet
of cardinality r. The metric is the Hamming distance between two points z,y € H(n,r)
which equals to the number of positions where they differ. The zonal spherical functions
are the r-ary Krawtchouk polynomials. The codes in the Hamming spaces are extensively
studied in coding theory and information theory. The designs in H(n,r) are known as
orthogonal arrays and are applied in statistics.

o The Johnson space J(n,w) consists of all w-subsets of a n-set. The distance between
z,y € J(n,w) is defined as d(z,y) = w — |z Ny|. The zonal spherical functions now are
the Hahn polynomials. The designs in the Johnson space are nothing but the classical
t — (v, k, ) designs.

o The Grassmann space J(n,w, q) is the set of all w-dimensional subspaces of the vector
space F* over the finite field of ¢ elements F;. The distance is defined by d(z,y) =
w — dim|z N y|.

The above spaces are extensively studied from the points of view of combinatorics, coding
theory and information theory. In the present work, we are mainly interested in infinite

PMS.

As we mentioned before, infinite polynomial metric spaces are completely classified [44,
75). The classical example is given by the Euclidean spheres S™!, with the usual metric
and inner product. The measure x(.) in this case is the normalized Lebesgue measure
(i.e. p(S™') =1). The standard substitution is o(d) = 1 — d®/2 and maps the distance
into the inner product. It turns out that this very familiar situation creates ample room
for investigations.

A real polynomial in n variables is called harmonic if it belongs to the kernel of the Laplace
operator

0* 9?
A:a_x:i_]_...,}__

A polynomial in n variables is called homogeneous of degree d if all monomials occurring in

it have total degree d (the total degree of the monomial #1232 ... 23" is 514 s+ -+ 5,).
The subspaces V;, ¢ = 0,1,..., consist of all homogeneous harmonic polynomials of n
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variables of total degree i. The dimension of V; is

. (™ +i—1 n+2—3
T\ n-1 n—1 )}
The weight w(t) equals (1 — ¢?)*=®)/2 The zonal spherical functions are the Gegen-

bauer polynomials {Q{™ (£)}2,, normalized by Q™ (1) = 1. They can be defined by the
recurrence relation

(G +n—2)Q () = (2 +n — 21 () — QU (1), (1.5)

for ¢ > 1, where QI (¢) = 1 and QM (1) =t.

The other examples of infinite PMS are the projective spaces FP*~!, where F is the field
R of real numbers, the field C of complex numbers, the (non-commutative) algebra H
of quaternions, or the (non-associative) algebra O of Cayley numbers (OP™~! exists only
for n = 2,3). Together with the Euclidean sphere they are all compact symmetric
spaces of rank 1 (cf. [44, 75]). We give the following model for the projective spaces
FP™1. Denote by F™ the set of vectors u = (u1,Us,...,un) over the field F. For an

element u € F* we define its conjugate @ = (%y,...,U,) and a norm |u| = v/uu. The
inner product of vectors u = (u1,Usz,...,Un),¥ = (V1,02,...,vn) € F™ is defined by

(4,v) = w1y + -+ + uB,. For the case that F = R,C H the points of the projective
space FP"~! are defined as the lines through the origin

U={u|) € F\{0}} for uePF".

The function

o(U,V) = 'l(”‘ |”)|| = cos (U, V)

does not depend on the particular choice of vectors u € U and v € V, U,V € FP", and
therefore we can define a metric on FP™ by:

d(U? V) = 2(1 -p(Uv V))
The spaces RP™1, CP™~!, HP"~!(n > 2) and OP? are polynomial with standard substi-
tution ¢(d) = 2(1 — d?/2)* — 1 (see [44, 69, 75]).

To describe the zonal spherical functions simultaneously, we denote by 2m the dimension
of Fover R,i.e. m = 1/2, 1, 2 or 4 in the different cases. Then the ZSF of F. 71 are the

Jacobi polynomials {P(a,ﬂ)( 1)}32, (normalized by P(a’ﬂ)(l) = 1), where
(a,) = (mn—m—1,m—1). (1.6)

An explicit formula for the normalized Jacobi polynomials is the following [1, Chapter 22]

P = s > () () - ()

i ) =0
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Definition 1.4 A polynomial metric space M is called antipodal if for every point
z € M there exists a point T € M such that for any point y € M we have

o(d(z,y)) + o(d(z,y)) = 0. (1.8)

It follows from (1.8) that for every point z of an antipodal space M the point T € M is
the unique point with d(z,%) = D. Indeed, by y = F in (1.8) we see that o(d(z,%)) = —1,
ie. d(z,Z7) = D. If d(z,7') = D for some Z € M then by y = 7 in (1.8) we have
o(d(z,7')) = 1, which means that T = Z'.

The most important examples of finite antipodal PMS are the binary Hamming space
H(n,2) and Johnson space J(2w,w). Among the infinite PMS only the Euclidean spheres
S™~1 are antipodal. The advantages of this fact will be seen in Chapter 5.

1.3 General Properties of Orthogonal Polynomials
Systems and Their Adjacent Systems

In the sequel, we assume that M is an infinite PMS. The corresponding ZSF constitute
an infinite system of orthogonal polynomials. In this section we collect some well known
facts about such systems.

Let the function v(t) be differentiable on the interval [—1,1] and let its corresponding
weight function w(t) = »/(t) be continuous on [—1,1] and positive inside [—1, 1]. Suppose
in addition that the Lebesgue-Stieltjes measure v on [—1, 1] corresponding to the function

v(t) is normalized, i.e.
1 1
1= / dv(t) = / w(t)dt
-1 -1

The inner product is defined as usually

1

(u(t), v(8)) = / w(t)o(t)w()dt. (1.9)

-1

The ZSF are orthogonal with respect to the inner product (1.9).
Theorem 1.5 [73] There exist a unique sequence of polynomials {Q:(¢)}2y, Qi(t) of
degree i, and a corresponding unique sequence of positive constants {r;}%2,, such that for

any 1,3,(1,5 = 0)

| QUOQDd(t) = &5, Q1) = L.

Note that Qo(t) = 1 and 7o = 1 due to the normalization of measure v.
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Any real polynomial f(¢) of degree k can be uniquely written in the form

Ft)y =" fQi(t) (1.10)

=0

(actually this is its Fourier expansion). The coeflicients fi, i =0,1,...,k, can be found
by the formula

fi=ri(Qi(t), f(1)) = 7 3 Qi(t) f(t)dw(2). (1.11)

Remark 1.6 The ZSF coefficients f;, 3 =0,1,...,k can be also computed by a triangular
system of linear equations which is obtained by comparing the coefficients of the equal
degrees of t in both sides of (1.10). It is clear that this way is more convenient for large
i, while (1.11) must be used for small i.

It is convenient to introduce the notation
1 .
b; = / t'dv(t). (1.12)
-1

By the normalization, we have by = 1. Now, the coeflicient fo, which is very important
for our investigations, can be expressed as follows

f= | ) =Y aik (1.13)

=0

where f(t) = ao + ait - + axt* = S, aitt.

Example 1.7 For M = S™ !, a straightforward calculation of the corresponding integrals
(cf. [78, p. 82], [61, Lemma 2.1], [31]; see also Lemma 2.4)

1
/ #i(1— %)™ dt
-1

yields that the numbers b;,i > 1, are given by
0 if iis odd,

b = (27 — 1)
nin+2)...(n+2j —2)

if 1=2jis even.

The next theorem gives another well known property of the orthogonal polynomials.

Theorem 1.8 Any polynomial Qi(t), i > 1, has i different simple roots inside the interval
[~1,1].
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Denote by ¢;; (j = 1,...,1) the roots of Q;(t), ¢ > 1, written in increasing order and
let t; = ¢;;. Note that by Theorem 1.8 and the normalization condition Q:i(1) =1, the
leading coefficient of the polynomial Qx(%) is positive and sign@;(—1) = (—=1)° for 7 > 1.
We write )
t) = Z Cl,'jtj
7=0
and put m; = a;;/@i41,:41. Then the following recurrence relation holds

—1Qit) = B0, ) (1.14)

T T

miQua (1) = (t+ my + =L
for ¢ > 0, where r_; =m_; =0 and Q_4(t) = 0.

For each a and b in N, one can associate with the system {Q:(t)}$2, another system
denoted by {Q*(t)}2,. These systems are called the adjacent systems of {Q:(4)}&,.
They are again systems of orthogonal polynomials with the new measure v**(¢) defined

by

(" (1)) = (1~ 1)*(1 + ) w(?).
The constant ¢*® here is chosen in such a way that the Lebesgue-Stieltjes measure of the
corresponding function v**(¢) is normalized, i.e.

/_l dl/a’b(t) = ¢ /-1(1 —t)* (1 + t)bdz/(t) =

1 1

Theorem 1.5 applies in this case as well there is a corresponding unique system of orthog-

onal polynomials {Q**(£)}22,.

Definition 1.9 The unique system {Q?’b(t) 2o of orthogonal polynomials is called ad-
Jjacent to the original system {Q;(£)}32,.

Note that the orthogonality and normalization conditions for the system
{QF b( )12, may be rewritten in the following form

1
rf’b/ Q;"b(t)Q;’b(t)du“’b(t) =&, (1.15)
-1
for 4,5 > 0, where Q¥*(1) = 1, Q2*(t) =1, r* = 1.

Example 1.10 For M = S™, the polynomials Q;°(t) are the Jacobi polynomials

n=1 n=3
P( 23 )( t) and the polynomials Q}"'(t) are the Gegenbauer polynomials Q(n“ (t). Anal-
ogously, for the infinite projective spaces we have Q5 b(t) Pa+“”@+b( t), where a and f
are given by (1.6).

Adjacent systems can be defined for all positive integers @ and b. However, we need
only the cases a,b € {0,1}. Since Q?‘O(t) = Q(t), we shall omit the upper index when
a=b=0.
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1.4 Codes and Designs in Polynomial Metric Spaces

For a code C in a PMS M we consider its minimum distance
d(C) = min{d(z,y)z,y € C,z # y}
and its mazimal inner product
5(C) = max{o(d(z,y))le,y € C,z # y}.

The number s(C) is called also a mazimal cosine of C (this is exactly the case for the
Euclidean sphere). It is clear that the minimum distance and the maximal inner product

are related by the equality s(C) = o(d(C)).

A code C C M with cardinality M = |C| and a maximal inner product s = s(C) is
referred to as an (M, M, s) code.

Let M be a PMS and let s € [—1,1) be a real number. The problem of finding bounds

on the quantity
A(M, s) = max{|C]: C C M, s(C) = s},

in different (finite and infinite) PMS has been investigated by many authors.

Relatively few exact values of A(M,s) are known. In general, different methods are
employed to find lower bounds (usually by constructions) or upper bounds (usually by
linear programming techniques) for A(M, s) (cf. [15, 20, 18, 29, 32, 33, 49, 39, 52, 53, 58,

57] and the references therein).

Let M be a PMS and let 7 > 1 be a fixed integer. We consider the quantity
B(M,7) =min{|C|: C C M,7(C) =T} (1.16)

Bounds for B(M, ) in different (finite and infinite) PMS are obtained in [16, 17, 32, 33,
36, 38, 45, 22, 23, 24] (see also references therein).

The next theorem is useful in the investigation of the cardinalities of codes and designs
in polynomial metric spaces. It was proved in different settings and terminology in [36,
49, 52). Here, we write it in the form which was given in [52].

Theorem 1.11 [52] For any code C C M and any real polynomial f(t)= Zf:o £iQ:(t)

we have

clim+ 3 flo xy))—lleoJer’ZIZvu . (1.17)

z,y€C,z#y j=1 zeC

Proof. We calculate 3, oo f(o(d(2,y))) in two ways. First, we have

Y fo(d(z,y) = Y fle(dz,2)+ D flo(dey)

z,yeC zeC z,yeCz#y

clf+ Y, flo(d(z,y))).

z,y€C, Y

Il
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On the other hand,

z f(o(d(:v,y))) = Z zfQ (0’ 73/) )

z,yelC z,y€C i=0
= Y foQo(o(d(x +Zf,2c2 (o(d(z,9)))
z,yeC z,yeC
= > fo+§2f > Zvn
z,yeC z,yeC Ti Jj=1
- 1012f0+zf12 3 (@)
i= Ti 7=1 z,yeC
= ICP +Zf’ 33 @) (S v (3)
j=1 zeC yel
= CPfo+ z 55 S )
=1 Ti i=1 zeC

0

We are now in a position to obtain the so-called linear programming bounds for codes
and designs in PMS as an immediate consequence of Theorem 1.11.

Theorem 1.12 (The Linear Programming Bound for codes [32, 36, {9]) Let M be a
PMS, let s € [—1,1) and let f(t) be a real nonzero polynomial such that

(A1) f(t) <0, for -1 <t <s,

(A2) the coefficients in the ZSF expansion f(t) = Ef:o fiQ:(t) satisfy fo >0, f; >0 for
i=1,.. .k

Then, A(M,s) < f(1)/ fo.

Proof. Consider an arbitrary (M, M, s) code C and let f(t) be any real nonzero polyno-
mial satisfying (A1) and (A2). We now apply (1.17). Because of condition (A1), the
left-hand side of (1.17) does not exceed f(1)M and, because of (A2), the right-hand side
is greater than or equal to foM?. Therefore M < f(1)/fo.

O

Theorem 1.13 (The Linear Programming Bound for designs [32, 36, {9]) Let M be a
PMS, let T > 1 be integer and let f(t) be a real nonzero polynomial such that
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(B1) f(t) >0, for -1 <t <1,

(B2) the coefficients in the ZSF expansion f(t) = E?:o £:Q:(t) satisfy fo >0, fi <0 for
i=7+1,...,k

Then, B(M,7) > f(1)/ fo.

Proof. We apply (1.17) with the polynomial f(¢) and an arbitrary 7-design C' C M.
Because of condition (B1) the left-hand side is greater than or equal to f(1)|C| and,
because of (B2), the right-hand side does not exceed fo|C|?. Therefore [C| > f(1)/ fo.

]

Remark 1.14 For a finite PMS, the conditions (A1) and (B1) re stronger than is re-
ally required. Indeed, in the finite PMS, all possible inner products form a discrete set.
Therefore, our polynomials have to be non-positive (resp. nonnegative) in the intersection
of this set with the interval [—1,s] (resp. [—1,1], which is in fact the whole set of inner
products).

Remark 1.15 For an infinite PMS, the condition fo > 0 is a trivial consequence of the
requirement f(t) Z 0 and (B1). In particular, if deg(f) < 7, then condition (B2) s
automatically satisfied.

Theorem 1.11 implies a second characterization of designs in PMS which will be crucial
for our investigations in Chapter 5.

Theorem 1.16 Let M be a PMS, let 7 > 1 be integer and let C C M be a T-design.
Then, for every point y € M and every real polynomial f(t) of degree at most T we have

> ol = folC|. (1.18)
zeC

Conversely, if (1.18) is satisfied for every point y € C' and every real polynomial of degree
at most 7, then C is a T-design.

Proof. Let C C M be a 7-design. Any polynomial f(t) can be written as f(¢) =
¥, fiQi(t). Now using (1.2) and (1.4) for i > 1 we obtain

3" Qu(om(d(z,v))) LS S o) —%Z NS vi(e) = 0.

zeC T zeC j=1 zeC

To prove the converse assertion, we use (1.17) for C and any polynomial f(t) of degree 7
with f; > 0 for every ¢ = 0,1,...,7 (for example, f(t) = >.1_, Qi(t) is such a polynomial).

The sum
S floldzv)

z,y€C,z#y
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decomposes into |C'| sums of the form (1.18), each of them equal to f5|C|— f(1). Therefore

(1.17) becomes
k T
SIS T ws@r =0
i=1 °

=1 =zeC

which implies 3 v; j(z) =0forall j =1,...,r,0=1,...,7.
0

Definition 1.17 We denote by B, the set of real polynomials which satisfy the condi-
tions (B1) and (B2) of Theorem 1.18.

Lemma 1.18 If f,g € Bum,, and o, 8 > 0 then of + Bg € B,

Proof. If f(t) > 0 and g(t) > 0 for ¢ € [-1,1] then we obviously have af(t) + Bg(t) > 0
in [~1,1], i.e. (B1) is satisfied. The coefficients in the ZSF expansion of af(t) + Bg(t)
are given by the expression af; 4 fg;, where f;’s and g;’s are the ZSF coefficients of f and
g respectively. Therefore, condition (B2) is also satisfied.

O

We consider the functional Q(f) = f(1)/ fo, which is well defined for every real polynomial
f(t) such that fo # 0. Obviously, Q(af) = Q(f) for any real a # 0.

The following notion of extremality is very important for our purposes.

Definition 1.19 A polynomial f(t) € Bm,, is called B, -extremal if

Uf) = max{Q(g) : g(t) € Bm,r, deg(g) < deg(f)}.

The next lemma, although trivial again, plays an important role in the investigations of
extremality properties of polynomials used for obtaining linear programming bounds for
codes and designs.

Lemma 1.20 Let f(t) and g(t) € Bum,r and Q(f) < Q(g). Then Q(af+Bg) € (U f),U9))
for arbitrary positive reals o and B, provided all functions are well defined.

Proof. We obviously have
af(1) +Bg(1)
afo+Bg

Then it is easy to check that the inequalities Q(f) < Q(af + Bg) and Q(af + Bg) < Q(g)
are equivalent to the assumption Q(f) < Q(g).

Qaf + Bg) =
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O

To conclude this section we write the linear programming bound for antipodal designs in
antipodal spaces. A code C in an antipodal PMS M is called antipodal if C' = C. This
shows that equality (1.18) is an identity for odd polynomial functions. Therefore, the
strength 7(C) is an odd number, and we need not to pay attention to the ZSF coefficients
with odd indices. This is expressed in the following assertion.

Theorem 1.21 Let M be an antipodal PMS, let 7 = 2e + 1 > 1 be odd integer and let
f(t) be a real nonzero polynomial such that

(B1) f(t) >0, for—1<t <1,

(B2') the coefficients in the ZSF expansion f(t) = Z?:o fiQ:(t) satisfy fo >0, fi <0 for
all even 1 > 2e + 2.

Then, any antipodal T-design C C M satisfies

1)
ICl > o

0

1.5 The Delsarte Bound for Designs in PMS

The classical lower bounds for B(M, ) were obtained in the finite PMS for 7 = 2k by
Delsarte [32, 33] and for 7 = 2k + 1 by Dunkl [38]. In the case of infinite PMS they were
proved by Delsarte, Goethals and Seidel in [36] for the Euclidean sphere and by Dunkl [38]
(see also Bannai-Hoggar [11]) for the projective spaces. Each of these bounds is commonly
called the Delsarte bound. The following presentation of the Delsarte bound is due to
Levenshtein [53].

Theorem 1.22 For any PMS and for any 7

er © for T =2e,
B(M,7) > RM,7) = { ™= e (1.19)
m)er for T =2e+1.

=0

Proof. We apply Theorem 1.13 with the polynomial (Q}°(t))* for 7 = 2e, and with
the polynomial (¢ + 1)(QL*(t))? for 7 = 2¢ + 1. Obviously, these two polynomials are
nonnegative in the interval [—1,1], i.e. (B1) is satisfied. Since their degrees are exactly
7, condition (B2) is also satisfied. Therefore, both polynomials belong to B,,. Without
repeating the calculations of Levenshtein we quote

QL) = Do
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and

A+ @M = (1 — LD HYr

Qe+1 =0

a

The specializations of the Delsarte bounds for the Euclidean spheres and the infinite
projective spaces are given in the next two chapters respectively.

A classical result by Schoenberg and Szegd [69] shows that the polynomials (Q1°(t))?

and (QL'(t))*(t + 1) are Bu,,-extremal for the corresponding values of 7. Therefore,
improvements of the Delsarte bound by means of the pure linear programming approach
could possibly already be obtained by using polynomials of degree at least 7+ 1. We shall
find such polynomials in the next two chapters, for the Euclidean spheres and the infinite
projective spaces, respectively.

Definition 1.23 Designs which attain the bound (1.19) are called tight.

The most general necessary conditions for the existence of tight designs follow from the
proofs of Theorem 1.13 and Theorem 1.22.

Theorem 1.24 Let C C M be a tight 7-design. If (z,y) = « for some z,y € C,z # v,
then Q1°(a) = 0 for 7 = 2e (resp. (a+1)Q} () =0 for 7 =2e+1).

Conversely, if Q1°(a) = 0 for 7 = 2¢ (resp. (a +1)QY () = 0 for 7 = 2e + 1), then
there exist z,y € C, such that (z,y) = a.

In particular, it follows that any tight (2k+ 1)-design C in an antipodal PMS is antipodal,
ie. C=C.

The following assertion is known as a Lloyd-type theorem since its analog in the Hamming
space was first proved by Lloyd during investigations of perfect codes. Lloyd’s Theorem for
tight designs in PMS was proved by Delsarte [32, 33] for finite PMS, by Bannai-Damerell
[9, 10] for the Euclidean sphere and by Bannai-Hoggar [11, 12] for the infinite projective
spaces (see also [60]).

Theorem 1.25 Let C C M be a tight T-design and let (z,y) = a for some z,y € C.
Then « is a rational number.

From Theorem 1.25 and the converse assertion of Theorem 1.24 it follows that if C is
a tight 7-design, then all roots of the polynomials Q1(¢) for 7 = 2e (resp. QL(¢) for
T = 2e + 1) are rational numbers. This turns out to be a very strong restriction. It was
used by Delsarte (32, 33], Bannai-Damerell [9, 10] and by Bannai-Hoggar [11, 12] to prove
nonexistence of tight designs in many cases.

Other nonexistence results can be obtained by computing the distance distribution of
tight designs [21].
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Chapter 2

Linear Programming Bound for
Spherical Designs

2.1 Introduction

In this chapter we give a method for finding new lower bounds for some spherical 7-designs
using pure linear programming. This method is similar to the method for obtaining upper
bounds for spherical codes proposed by Boyvalenkov [20] (see also [18]). Here, we use
Bgn-1 -extremal polynomials of degree 7 + 3, in combination with Theorem 1.13.

In Section 2.5 we give improvements of the Delsarte bound for 7 = 6 (4 < n < 10, Table
2.1),for 7 =7 (5 <n <7, Table 2.2 ), for 7 = 8 (4 < n < 17, Table 2.3), for 7 = 9
(4 <n < 14, Table 2.4), for 7 = 10 (4 < n < 26, Table 2.5) and for 7 = 11 (4 < n < 23,
Table 2.6). The chapter is based on [22] and [23].

2.2 Spherical Harmonics and Spherical 7-designs

In the beginning of this section we will give some definitions and properties of spherical
harmonics and spherical 7-designs following [36], [29, Chapter 3.2] and [71].

Let us denote by Pol,,(R™) the linear space of real polynomials in n variables of degree
at most m. Then Hom,(R") and Harm,(R") are the subspaces of the homogeneous,
and of the homogeneous harmonic polynomials of degree m, respectively (see the defi-
nitions in Section 1.2). If we consider the linear space F(M) consisting of real-valued
functions defined over a set M, and a given subset NV of M, we shall denote by F(N)
the homomorphic image of F(M) obtained by restricting all functions in F(M) to the
domain N. In particular, we shall need the spaces Hom,,(S*!) and Pol,,(S*!) which
are the restrictions of Hom,,(R™) and Pol,,(R"™) to the unit sphere.

19
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The inner product which we use is the usual one:

(f,9) = f(z)g(z)du(z),

Sn—1

for f,g € Pol,(R"). We have the following well known direct sum decomposition of
Pol,,(R™)

Pol,(R™) = zm: ®Hom;(R™).
=0
Now the following decomposition theorem holds.
Theorem 2.1 [37] For any integer m, one has the direct sum decomposition
Pol,(S*") = Homm(S"_l) @ Homp_1(S™1).

Proof. On the sphere we have (z,z) = 1 and therefore the inclusions
Homm—2i(S™Y) & (z,z) Homm—2(S""") C Hom,,,(S™1)

Homp_2-1(8"") & (, :c)iHomm_zi_l(S"'l) C Homp_1(S™).

The orthogonality holds since the integral of an odd function over S™~1 vanishes.

The dimensions of these spaces are as follows:

dim Hom,(S™1) = dim Homn(R") (“ J;Tf N 1),
since f(tz) = t™f(z),

dim Polm(sn-—l) _ (n+m— 1) n (n+m—2>

n—1 n—1

n+m-—1 n+m-—3
n—1 n—1 '
The last equation holds because the space Harmg,(R") is the kernel and the space

Homy,_2(S™1) is the image of the Laplace operator, when applied to Hom.,,,(S™1).
Hence, we obtain

by Theorem 2.1, and

dim Harm,,(R")

Homp,(S™™) & Harmn,(R") @ Homy,_5(S™7).
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The elements of Harm,,(R") are called the spherical harmonics of degree m for the sphere
SnL

Let H := Harm,,(R™) be a linear space provided with a non—degeneratAe inner product
(,). For any linear functional L(h) defined on H there exist an element L € H such that

L(k) = (L, 1),

for h € H. If we fix { € S"! and define a linear functional on H by h — h(€), for
any h € H, then there exist a unique é € H such that (f, k) = Rh(¢). This polynomial
¢, also written as Qn(&,-), is called the m** 20nal spherical harmonic with pole £. The
polynomial @((,-)) is constant on the parallels which are perpendicular to ¢, so that
@n{(&,n)) depends on the value of the inner product (¢,7) only (so @ ((£,7)) = Qm(t),
where t = (¢, 7)).

It is well known [44, 71] that @, (¢) is a Gegenbauer polynomial. The Gegenbauer polyno-
mials constitute a family of polynomials in one variable ¢ which is orthogonal with respect

to the weight function
w(t) = en(1 = %)/,

where

e = (/_1(1 — ) ) = %’1‘1—(1__%)7 (2.1)

where I'(z) is the Gamma function.

A three-terms recurrence relation for the Gegenbauer polynomials was given in (1.5) (see
also (1.14)). The next lemma is well known [1, Chapter 22].

Lemma 2.2 The polynomials Qg:ll(t) (respectively Qg’:)(t)) are odd (respectively even)
functions and their nonzero coefficients alternate in sign.

Proof. By induction, using the recurrence relation.

We will denote . .
Q) =P+ o

i,0—=2
where the last term is a;o for ¢ even, and a;;t for 7 odd.

Spherical designs were introduced by Delsarte, Goethals and Seidel in 1977 [36]. Just
as the classical t-designs are a special class of constant weight codes, so the spherical
7-designs are a special class of spherical codes. The original motivation for studying these
objects came from the numerical evaluation of multi-dimensional integrals. The integral
of a polynomial function over the sphere may be approximated by its average value at the
code points; if the code is spherical 7-design the approximation is exact for all polynomials
of degree at most 7.
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Definition 2.3 A finite subset C is a spherical T-design on S™™" if and only if the equality

[ f@)iuta) = 1 3 fte)

zeC

holds for all polynomials f(z) of degree at most T.

The equivalence between definition 1.3 and 2.3 follows by the fact that
Jsnos f(z)dp(z) = 0 for harmonic polynomials. We recall that the measure p is the
normahzed Lebesgue measure, i.e. u(S™1) = 1.

It follows by Definition 2.3 that spherical designs can be considered as a set of nodes for
the Tchebichev-type quadrature formulas (i.e. formulas with equal weights and distinct
nodes) with algebraic precision 7. This explains the attention which was paid to the
spherical designs from a point of view of the numerical analysis (2, 3, 40, 62].

The strength 7(C) is the maximum value of 7 for which C is a spherical 7-design. A
spherical 1-design is any subset C of S"~! which has its center of mass in the center of the
sphere, so in 0. A spherical 2-design is what Schléffli calls a eutectic star which essentially
is the projection into R™ of |C| mutually orthogonal vectors [30].

2.3 Bounds for Spherical Designs

We abbreviate B(S®1,7) and Bgna-1, to B(n,7) and B, ., respectively (see Definition
1.17).

There is no upper bound on the number of points of a spherical 7-design, since the union
of two disjoint 7-designs with r and s points respectively again is a 7-design (withr 4 s
points). Upper bounds on B(n,T) are normally obtained by explicit constructions [2, 42]
(see the end of this section).

The Delsarte bound for spherical designs specializes to the following bound for B(n, 7).
This bound was proved by Delsarte, Goethals and Seidel [36, Theorems 5.11, 5.12] who
in the same paper introduced the notion of spherical designs.

n— —
B(n,7) 2 R(n,7) =9 /0o (2.2)
2( ] ) it 7=2e+1.
n —

A spherical design is called tight if it attains the above bound. It is clear that a tight
7-design can not be a (1 + 1)-design.

We shall now present all known examples of tight 7-designs. For n = 2 and any 7, a tlght
7-design is nothing but a regular (7 + 1)-gon. Any pair of antipodal points on S™!

a tight 1-design. The n + 1 vertices of a regular simplex in R™ provide a tight 2- des1gn
The 2n vertices of the cross polytope form a tight 3-design on 5™~ L
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For 7 > 4 and n > 3, exactly eight examples of tight 7-designs are known. All of them
are unique up to isometry [29, Chapter 14].

Tight spherical 4-designs are constructed by Delsarte, Goethals and Seidel for n = 6 and
n = 22. Tight spherical 5-designs are known to exist for n = 3,7,23. In general, if a tight
spherical 4-design on 8™~ exists then n = m? — 3, and if a tight 5-design on S exists
then n = m? — 2. Moreover, a tight spherical 4-design on $™ ~* exists if and only if a
tight spherical 5-design on S™ =3 exists (see [21, 50]). In both cases the number m must
be odd [21, 50]. Examples are known for m = 3 and m = 5 only. Tight 7-designs can
only exist in dimension n = 3m? — 4. Examples are known for m = 2 and m = 3 only.
The only possible tight 11-design is realized by the minimal norm vectors in the famous
Leech lattice [29]. All these designs are unique up to isometry [29, Chapter 14].

On the other hand, Bannai and Damerell [9, 10] proved that for n > 3 tight spherical
7-designs on 8"' do not exist if 7 = 2¢ and e > 3 (the case ¢ = 3 was already considered
in [36]) or 7 = 2e + 1 and e > 4 except for the case 7 = 11, n = 24 (this is the Leech
lattice).

Seymour and Zaslavsky [70] proved the existence of spherical 7-designs on S™~! for all
values of n and 7, provided |C] is sufficiently large. Since spherical designs can be used
for numerical integration, it is of interest to give explicit constructions.

Mimura [59] gave a construction for 7 = 2 in all dimensions and all cardinalities |C] > ng
for some positive integer ny. General constructions of 7-designs were given by Bajnok
[2, 3, 4, 5]. Hardin and Sloane [42] constructed 4-designs for the following values of |C|
and n > 3: |C| = 12,14,> 16 for n = 3; |C| > 20 for k = 4; |C] > 29 for n = 5;
|C]=27,36,> 39 for n = 6; |[C| > 53 for n = 7; and |C]| > 69 for n = 8.

In three dimensions, Reznick [67] and Hardin-Sloane [43] showed that 5-designs exist for
IC| = 12,16,18,20,> 22. In [43] it is shown that 6-designs exist for |C| = 24,26, > 28;
7-designs for |C'| = 24,30, 32,34, > 36; 8-designs for |C| = 36,40,42,> 44; 9-designs for
IC| = 48,50,52,> 54; 10-designs for |C| = 60,62, > 64; 11-designs for |C| = 70,72, > 74
and 12-designs for |C] = 84, > 86. '

Some of the known polytopes in dimensions n > 4 are known to be spherical designs
of large strengths [40]. For example, the 600-cell in R* (with 120 vertices) is spherical
11-design (see also the end of this chapter).

The above can be sumnmarized by the following:
B2, 71)=71+1,
B(n,1) =2,B(n,2) =n+1,B(n,3) = 2n,
B(3,4) < 12, B(4,4) < 20, B(5,4) < 29, B(6,4) = 21,
B(7,4) < 53, B(8,4) < 69, B(22,4) = 275,
B(3,5) = 12, B(7,5) = 56, B(23,5) = 552,
B(3,6) < 24, B(3,7) < 24, B(8,7) = 240, B(23,7) = 4600,
B(3,8) < 36, B(3,9) < 48, B(3,10) < 60,
B(3,11) < 70, B(4,11) < 120, B(24,11) = 196960.
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2.4 A Method for Obtaining New Lower Bounds on
B(n,T)

In this section, we improve the lower bounds in (2.2) in some cases. Our method proposes
suitable polynomials for applying in Theorem 1.13.

Delsarte, Goethals, and Seidel [36, Theorems 5.11, 5.12] obtain bound (2.2) by using
Theorem 1.13 with B, ,-extremal polynomials (see Definition 1.17) of degree 7. Our
polynomials have degree 7 + 3. It can be proved (see [20, Theorem 5.3]) that they are
also B, -extremal.

By formula (1.13), in the context of this chapter, the coefficient fo in the Gegenbauer
expansion

k
£ =Y 1000
can be computed by )
fo= cn/ F@E)(1 =) dt > 0, (2.3)
-1

where ¢, is given by (2.1).

The calculation of the numbers b;, i > 0, (see (1.12) and (1.13)) in the next lemma gives
a useful expression of fy in the coefficients of f(t).

Lemma 2.4 Let

ok k
@)= at' = £QM ()
=0 =0
be a real polynomial. Then
asg 3(14 :
_ az 2.4
fo = aottoom oyt (2:4)
R (2i — 1)!ay;

— n(n4+2)---(n+2—-2) (2:5)

Proof. We have to compute the numbers b; in (1.13). Obviously
1
byiy1 = cn/ (1 = 2)"5dt = 0.
-1

For the even case we have [61]

1
by = cn/ 121 — 13" dt
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I(n—1)T(E+ %)
2T (35HT(E+ 5)
(2t =11
n(n+2)---(n+2i-—2)'

[}

In particular, it follows from Lemma 2.4 that if the coefficients of f(t) are rational func-
tions of several variables, then f(1)/fo is also a rational function of the same variables
and the dimension n. This allows us to use the standard way (by calculating partial
derivatives) for the investigation of the function f(1)/fo.

To investigate B, ,-extremal polynomials, we study two of their properties, which turn
out to be very important for our purposes. First, we obtain a lower bound on the number
of double zeros of extremal polynomials and, secondly, we find sufficient conditions for
fi = 0 for some 1 > 7.

The next theorem gives lower bounds on the number of double zeros of the extremal
polynomials. By double zero we mean a zero of multiplicity two. So we shall count a zero
of multiplicity four as two double zeros, etc.

Theorem 2.5 Let f(t) be a B, ,-extremal polynomial (n > 3, 7 > 4) of degree k > 7 +3.

(i) If 7 is odd or if T is even and —1 is a zero of f(t) of an even multiplicity, then f(t)
has at least [7/2] + 1 double zeros in [—1,1].

(ii) If 7 is even and —1 is a zero of f(t) of an odd multiplicity, then f(t) has at least /2
double zeros in [—1,1].

Proof. By (B1) in Theorem 1.13 any B, ,-extremal polynomial can be written as f(¢) =
A*(t)G(t), where 2deg(A) < 7, G(t) > 0 for —1 <t < 1, G(1) > 0, A(t) has deg(A) zeros
in [—1,1]. Note that this includes the case A(t) = const as well.

Assume that G(t) has no double zeros in the interval [—1,1]. Then, it is clear that
G(t) = 0 is possible only for ¢ = —1. We shall consider two cases.

Case 1. G(—1) > 0.

We have G(t) > 0 for t € [-1,1]. Then there exists € > 0 such that G(t) > & > 0 for
t € [-1,1]. Let us consider the polynomial

P() = f(t)—eA’(t)
A(t)(G(t) — &).

Then, P.(t) > 0 for —1 <t <1 so condition (B1) is satisfied by P.(t). This also implies
fo(P:) > 0 (see Remark 1.15).



26 Chapter 2. Linear Programming Bound for Spherical Designs

Write f(t) = Zf:o fngn)(t) and

k
P() = D APIRIW)
1—};0 2deg(A)
= Y AePm - 3 A4,

It follows from the last representation of P.(t) that fi(F.) = fi for 1 > 2deg(A)+1. In
particular, f;(P.) = f; <0 for i > 7+ 1> 2deg(A) + 1. Thus P.(t) € B, ;.

Since A%(t) € By, (see Remark 1.15) we have Q(A?) < Q(f). But one can easily check

that this inequality is equivalent to

_RO) _ S =A%) ()
fo(Pe) fo—efo(A?) Jo

a contradiction. This proves the theorem in the case when —1 is an even zero of f(t).

Case 2. G(-1) = 0.

Now, we have f(t) = A%(t)(t + 1)G1(t), where G1(t) > 0 for =1 < t < 1 (otherwise
G1(=1) = 0 and —1 would be a double zero of G(t)). As above, there exists ¢ > 0 such
that G1(t) > & >0 for t € [-1,1].

If 7 is odd and B(t) = A%(t)(t + 1), then we have deg(B) = 2deg(A) + 1 < 7. Therefore

B(t) € By ;. Continuing in the same way as in Case I one obtains a contradiction.

Q(P.) =Qf),

If 7 is even and deg(A) < 7/2 — 1 we get a contradiction by a similar argument.

The next lemma gives further information in the case 7 = 2e + 1.

Lemma 2.6 If 7 =2 +1 and f(t) is a By -extremal polynomial of degree 2e + 4, then
f(=1)=0.

Proof. By Theorem 2.5 (i) the polynomial f(t) has at least e+1 double zeros. In fact, their
number must be exactly e+ 1, otherwise f(t) would be a square and its leading coefficient
in the Gegenbauer expansion would be positive, contradicting (B2) in Theorem 1.13.
Therefore, f(t) = A?(t)G(t) where G(t) is a second degree polynomial.

Obviously, G(t) could vanish in [—1,1] only for t = —1. Assume that G(-1) > 0 and
let ¢ > 0 be such that G(t) > & for t € [~1,1]. Then we consider the polynomial
P.(t) = A%(t)(G(t) —¢). Since P.(t) > 0 for —1 < t < 1, condition (B1) is satisfied
by P.(t). Moreover, we have fo(P.) > 0, fi(F:) = fi <0 for i = 2e + 3,2¢ + 4 and
faes2(P.) = faets — €fae42(A?) <0, s0 (B2) is also satisfied by P.. However, we have

CR() _ e S
WP~ Jo-ehan ~ g
which contradicts the extremality of f(t). Therefore G(—1) = f(—1) = 0.

F)
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[}

We restrict ourselves to extremal polynomials of degree 7 + 3. These polynomials can
have the following form

{ Az(t)[q(t+l)+l—t] if 7= 2e
fi¢) =

(2.6)
AAW[gt+ 1)+ 1~ +1) fr=2e+1

where deg(A) = e+ 1 and 0 < ¢ < 1. The polynomial
A() =t fagt® + - + aeit + a.

has e + 1 zeros in [—1,1]. Indeed, it follows from Theorem 2.5 that for 7 = 2e we have to
consider two cases. Namely, we may have deg(A) = e+ 1 or deg(A) = e but A(—1) = 0.
Our numerical experiments in the second case did not give any good results. Thus, we
shall be looking for polynomials of degree 2e + 3 with e + 1 double zeros.

Equation (2.6) shows that (B1) is already satisfied for our polynomials. It also implies
fo > 0 (see Remark 1.15).

In order to reach condition (B2), we have to require f; < 0 fors =74+ 1,7 +2,7 + 3.
The inequality f.43 < 0 is equivalent to ¢ < 1. The next theorem shows that we can take
fr+1 = 0 without loss of generality.

Theorem 2.7 Let f(t) be a B, ,-extremal polynomial (n > 3, 7 > 4) of degree k > 7+1.
IfQ(f) < R(n,7 + 1) then f,11 =0 in the Gegenbauer ezpansion f(t) = Ef:o szfn)(t)

Proof. Let us suppose that fry; < 0 under the assumptions of the Theorem. In [36],
Delsarte, Goethals, and Seidel introduced the polynomial C,, . (t) = (Q}°(t))? for 7 = 2¢
and Cy,(t) = (¢ + 1)(QL'(¢))? for 7 = 2e + 1. They used this polynomial to obtain the
bound

B(n,7 +1) > R(n,7 +1).

Note that C', ;41(t) has degree 7+1 and that c,41 > 0 (see Remark 1.6) in the Gegenbauer
expansion Cp ,4+1(t).= Y120 Q™).

Since fri1 < 0, there exist positive numbers ¢ and n, such that f,11 + nerpr < 0. We
consider the polynomial H(t) = £f(t) + nCpre1(t). It is easy to see (as in Lemma 1.18),
that H(t) belongs to the set B, . and deg(H) < deg(f) = k. By Lemma 1.20, the number
Q(H) = H(1)/ fo(H) lies between the numbers Q(f) and R(n,7+ 1) = Q(Cp r41), i-e. we

have

Q) < Q(H) < R(n, T+ 1),

a contradiction with the extremality of the polynomial f(t).



28 Chapter 2. Linear Programming Bound for Spherical Designs

The number R(n, 7 + 1) is relatively large with respect to R(n, )+ 1. Therefore, without
loss of generality, one can search for improvements of (2.2), assuming fr41 =0 (otherwise
we would have B(n,7) > R(n,7 + 1) which is rather good bound). In particular, if
extremal polynomials of degree 7 + 1 do exist they would give quite nice bounds.

One can use some polynomials of degree 7 + 3 to obtain assertions that are similar to
Theorem 2.7 and concern the coefficient f,4,. Such polynomials have fr,; = 0 and
friz > 0. As before, the number Q(f) is large with respect to R(n,7). We may conclude
in the same way that, without loss of generality, f-+, = 0 must hold for any B, .-extremal
polynomial of degree at least 7 4- 3.

We use the equalities fr41 = fr+2 = 0 as equations with respect to the first two unknown
coeficients a; and ay of A(t). As we shall see in Section 2.5, it is easy to express them as
functions of ¢ and n. What remains to be done is to find ¢ and the remaining coefficients
of A(t) in order to maximize the rational function

_ 2qA%(1)

F(q>a37"'7ae>=9(f) fO

Equating to zero the partial derivatives

29A(1)-2fo — 2¢A°(1)(fo)s,

F! =
D fg
for i = 3,...,e, we obtain 2fs = (fo),,A(1). This gives us the following system of linear
equations with respect to the unknowns as, ..., .

(fo)oy — (fo)o, =0
(fo)oy — (fo)oy =0

(fo)ly = (o, =0
2fo = A()(fol, = 0.

In fact, the last equation is not linear as it stands. However, it becomes linear by replacing
the parameters ag, ..., a. by the corresponding functions of az by means of the first € —3
equations.

Therefore, one can resolve the system (2.7) with respect to the parameters as, as, . . ., de.
Of course, they are rational functions of still unknown parameter ¢ and the dimension n.
It does not seem possible to apply further analytical methods in order to find the optimal
values of ¢ € (0,1). We use a computer and a simple numerical method to find good
approximations of the extremal polynomials. Of course, only the integer part of the final
result is important.

The lower bounds we have obtained are better than (2.2) in the cases, that extremal
polynomials of degree T + 3 exist, which satisfy the requirements fr41 = fr42 =0 and
which have [7/2] + 1 double zeros.
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2.5 Examples of New Lower Bounds

Casel. T =4.

We shall improve bound (2.2) in dimensions 3, 4 and 5 by one. It is well known (see [9])
that (2.2) can not be attained in these dimensions. Thus we shall not obtain new bounds.
However, it is easier to give a detailed explanation of our approach in this small case.

We must consider polynomials of degree 7 having the following form
fit) = (B 4at? +bt+c)?gt+1)+1—1
7

> £QM(2)

=0

where fs = fo = 0 and 0 < ¢ < 1 (the last implies fz < 0). By fs = fs = 0 one can
express (see Remark 1.6)

¢ = 4F1
2(1—q)’

b — §a_2_ 21
2 2(n+10)
3(g+1)? 21

41—q)2 2(n + 10)°

Using (2.3) we obtain

fO = f0(67Q)n) 1
(g+1) + ~[2be(g = 1) + (b* + 2ac)(1 + g)]

+m[(2ab +2¢)(g — 1) + (a® + 2b)(1 + q)]
B a62+13c+«-y7
where
o = (]24-17 ;
B = ;[a(q+l)+(q—1)( —=)|
¥ = %{lﬁ(q-l—l)%—ni_}_‘?[Qab(q_1)+(a2+2b)(q+l)]}’

In order to determine ¢ as a function of ¢ and n, we have to consider the function

f()

F(C, q’ n) - fo(c7 q) n) .
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By the equality F! = 0 we obtain the following equation
20— (fo)i(l+a+b+¢c)=0. (2.8)

From (2.8) one can express
_2y—p(l4a+d)
- 2a(l+a+b)—,6‘

C

Finally, for fixed n, we have to find ¢ € (0,1) maximizing f(1)/fo. The best polynomials
we have obtained in dimensions 3, 4 and 5 give bounds 10, 15, and 21 respectively while
(2.2) gives 9, 14, and 21. The smallest values for which 4-designs in these dimensions
have been found by Hardin and Sloane [42] are 12, 20, and 29 respectively. Therefore,
10 < B(3,4) < 12,15 < B(4,4) < 20 and 21 < B(5,4) < 29.

Case 2. 7 =5.

For 7 = 5 we found B, s-extremal polynomials of degree 7. Their form led us to the
polynomial
I 2
t+1)°(2-t
= R(n,5) = n(n + 1), i.e. we rediscover the
> R(n,5).

fly ="~

which has fr < 0, f¢ = 0 and f(1)/fo
Delsarte, Goethals, Seidel bound B(n,5)

Case 3. T = 6.

n

We consider polynomials of degree 9 of the following form

F) = (" +at® +bot* +ct+d)*[q(t+1)+1—1]
Zszgn)(t)s

=0

where fr = fse=0and 0 < g < 1.

Similarly to Case 1, we express a, b, ¢ and d as functions of ¢ and n. The new bounds
we have obtained are given in Table 2.1. Delsarte, Goethals and Seidel proved in [36,
Theorem 7.7], that (2.2) can not be attained for 7 = 6 and n > 3 (see also [10, Theorem
1]). Therefore, only improvements by more than one of the bound (2.2) are really of
interest. We obtain such improvements in dimensions 4 < n < 10.

Cased. T =1.

In this case we work with polynomials of degree 10 of the form
f) = (4 at® + bt + et + )t + 1)+ 1 —t](t+ 1)
10
= YR,

2=0

where fs = fo =0, 0 < ¢ < 1. One can express the coefficients a, b, ¢ and d as functions
of ¢ and n. Maximizing, we obtain new bounds in dimensions 5, 6 and 7. The results are
given in Table 2.2.
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n | B(n,7)+1 | New bounds
4 31 32
5 51 54
6 78 84
7 113 121
8 157 167
9 211 221
10 276 283

n | R(n,7)+ 1 | New bounds
5 71 73
6 113 116
7 169 172

Table 2.1: New lower bounds for the cardinality of spherical 6-designs on S™71,4 < n < 10.

Table 2.2: New lower bounds for the cardinality of spherical 7-designs on "1 '5 <n < 7.

Case 5. 7 = 8.
We use polynomials of the form
f(t) = (ff +at* + bt° + ct? + dt +e)?q(t + 1) + 1 — ¢
= Z QM)
i=0

(fo = fio =0 and 0 < ¢ < 1) to obtain new lower bounds improving (2.2) by more than
1 in dimensions 4 < n < 7. The results are given in Table 2.3.

Case 6. 7 =9.
We consider polynomials of degree 12 having the following form:
ft) = (i +at* + bt + et +dt +e)[q(t+ 1)+ 1 —t](t + 1)
= Y "),

1=0

where fio = fi1 =0 and 0 < ¢ < 1. The new lower bounds are presented in Table 2.4.
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n | R(n,7) +1 | New bounds
4 56 59
5 106 115
6 183 203
7 295 332
8 451 511
9 661 750
10 936 1060
11 1288 1450
12 1730 1930
13 2276 2507
14 2941 3191
15 3741 3989
16 4693 4908
17 5815 5951

Table 2.3: New lower bounds for the cardinality of spherical 8-designs on §"~', 4 < n < 17.

n | R(n,7)+1 | New bounds
4 71 73
5 141 149
6 253 272
7 421 458
8 661 724
9 991 1087
10 1431 1565
11 2003 2173
12 2731 2924
13 3641 3828
14 4761 4892

Table 2.4: New lower bounds on the size of the spherical 9-designs on ™!, 4 <n < 14.

Case 7. 7 =10.
Now using polynomials of degree 13 of the form

ft) = (1152 tat’ + bttt otP 4 dtt +et+ f)P gt +1)+1—1]
3 RQM),

=0

where fi; = fiz = 0 and 0 < ¢ < 1, we express a and b by the equations fi1 = fi2 = 0.
Further, we follow the above described method and obtain improvements for the classical
bound for dimensions 4 < n < 26. They are listed in Table 2.5 below. In some cases the
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improvements are almost 20 percent.

n | R(n,7)+1 | New bounds
4 92 97
5 197 215
6 379 424
7 673 770
8 1123 1305
9 1783 2097
10 2718 3222
11 4005 4771
12 5734 6845
13 8009 9556
14 10949 13028
15 14689 17394
16 19381 22798
17 25195 29392
18 32320 37332
19 40965 46784
20 51360 57916
21 63757 70900
22 78431 85908
23 95681 103113
24 115831 122689
25 139231 144805
26 166258 169626

Table 2.5: New lower bounds on the size of the spherical 10-designs on S™7!, 4 < n < 26.

Case 8. 7 =11.

In this case we use polynomials of degree 14 of the form
f) = (+at® +ot* +ct®+dt* +et+ ) gt +1)+1—t](t+1)
14
= Y QM)
=0
where fi3 = fia = 0 and 0 < ¢ < 1. The new bounds in dimensions 4 < n < 23 are
presented in Table 2.6.

We note that the regular polytope (3,3,5) in R* is an 11-design with 120 points [36]. So,
in this case our new bound 117 (instead of the Delsarte’s bound 112) seems reasonably
tight.

For n = 24 we obtain the bound (2.2) again. As we aiready mentioned this bound is
attained by the 11-design formed by the minimum norm vectors in the Leech lattice [36].
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n | R(n,7)+ 1 | New bounds
4 112 117

5 252 270

6 504 552

7 924 1035

8 1584 1808

9 2574 2985
10 4004 4701
11 6006 7117
12 8736 10413
13 12376 14790
14 17136 20464
15 23256 27664
16 31008 36623
17 40698 47574
18 52668 60744
19 67298 76344
20 85008 94566
21 106260 115577
22 131560 139514
23 161460 166483

Table 2.6: New lower bounds on the cardinality of the spherical 11-designs on S™7*,
4 <n <23

Our result by a polynomial of degree 14 implies the following characterization of the Leech
lattice which seems to be new.

Definition 2.8 A spherical code C C S™! is said to have index k if

f (z) f(z
1 T = 17 5
holds for all homogeneous polynomials f(z) = f(z1,...,2x) of degree k.

In this context, a spherical 7-design is nothing but a code with indices 1,2,...,7. The
examination of the possible indices of a spherical code is interesting from a point of view

of the numerical analysis.

Theorem 2.9 The unique tight spherical 11-design in 8*° has indez 14.

Proof. By our polynomial of degree 14 in (1.17) we obtain

Z ’U141j(112') = 0

zeC
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for all j = 1,2,...,714. This is equivalent to the required property (see the remark
following Definition 2.3).



36

Chapter 2. Linear Programming Bound for Spherical Designs




Chapter 3

Linear Programming Bounds for
Designs in Projective Spaces

3.1 Introduction

In this chapter we consider 7-designs in infinite projective spaces and improve the Delsarte
bound in some cases. In Section 3.3 we explain our approach which is similar to the method
we have used for spherical designs in Chapter 2. In Section 3.4 we give some examples of
new bounds and compare our results with the classical bounds in tables. This chapter is
based on [24].

3.2 Designs in Infinite Projective Spaces

We consider 7-designs in the projective space FP™~! consisting of the lines through the
origin in *. Here I denotes the real numbers R, the complex numbers C, the quaternions
H, or the Cayley octonions Q. Together with the Euclidean spheres S®~!, they constitute
all connected compact symmetric spaces of rank 1. A model of these spaces is described
in Chapter 1. V

As we mentioned in Section 1.2, the spaces RP™~!, CP*~!, HP™! (n > 2) and QP™"!
(n = 2,3) are polynomial with standard substitution

dZ

o(d) =2(1- T - 1.

For ¢+ = 0,1,... we have

L Zidas el (*T(H)
T vl ()

where r; is the dimension of the subspace V; and (o, 8) = (mn—m — 1,m - 1).

37



38 Chapter 3. Linear Programming Bounds for Designs in Projective Spaces

In this context, the zonal spherical functions are the normalized Jacobi polynomials [45].
They can be written explicitly by (1.7).

Any real polynomial

is associated with its Jacobi expansion
k
f6) = 1RO
=0

for well-defined Jacobi coefficients fi. The coefficient f, is the most interesting for our
investigation. One can compute it by the following formula

fo /:(1 — t)a(l + t)ﬁ dt = /—11 f(t)(l _ t)a(l + t)ﬁdt. (3'1)

Following the notation of (1.13) we have
fo= zk:aibi, (3:2)
i=0
where (see 1.12)
b /11(1 — )X (1 +t)fdt = /l1 (1 —1)*(1 +t)Pdt.

For another way of calculating the Jacobi coefficients see Remark 1.6. It will be used in
the proof of Theorem 3.4 and Corrolary 3.5.

Seymour and Zaslavsky [70] have shown the existence of 7-designs in FP™! for any 7, F,
and n provided |C] is sufficiently large. So, we are interested in the lower bounds for the
minimum possible size of T-designs. We write B(m,n,7), Bpq,r and R(m,n,T) instead
of B(FP*',7), Bgpn-1, and R(FP™!,n,7) , respectively.

Lower bounds on B(m,n,T) were obtained by linear programming techniques (cf. Dunkl
[38], Hoggar [45]). The explicit form of the Delsarte bounds is [11, 36, 38]

(mn)e - (mn —m + 1),

ORL. for 7 = 2e,
B(m,n, ) > R(m,n,7) = e el (33)
(mn)ets - (mn —m + 1). for 7 = 2e + 1,

(M)es1 - €l

where (p)e = p(p+1)---(p+a—1) for a € N, and (p)o = 1.

The theory of tight designs in infinite projective spaces has been developed by Bannai
and Hoggar [11, 12, 45, 47, 46]. They showed that tight 7-designs in projective spaces do
not exist for 7 = 4 and 7 > 6 in dimensions # > 3. In particular, in these cases the bound
(3.3) can be increased by one.

In the next section we shall obtain further improvements by substituting suitable poly-
nomials of degree 7 + 2 in Theorem 1.13.
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3.3 A Method for Obtaining New Lower Bounds on
Cardinality of Designs in FP*!

To obtain the classical bound (3.3) one can use the polynomials

Fnr(t) = {(ing(t)):(f’?“’ﬁ(t)f for 7 = %,
- QU (1)t + 1) = (PETYAH ()2t 4+ 1) for 7= 2e + 1,

of degree 7, as in the spherical case (cf. [11, 12]).

In general, it is not known which polynomials are the optimal choices for Theorem 1.13.
However, it is known [38, 69] that the polynomials f,, . (t) are By, .-extremal. In this
chapter, we propose a method for improving bound (3.3) in some cases by using good
polynomials of degree 7 + 2. This approach is similar to our approach in the previous
chapter where we wanted to obtain new bounds for spherical designs.

While searching for good polynomials f(t) of degree k > 7+ 2, we require f,;; = 0 in the
Jacobi expansion of f(t). A more general setting for this situation is given by the following
assertion which suggests how to find indices of zero coefficients in Jacobi expansions of
B, . r-extremal polynomials.

Theorem 3.1 Let j > 7 be an integer and let f;(t) be a real polynomial such that

(1) fi(t) 20 for -1 <t <1,

1) the coefficients in the Jacobi expanston f;(t) = ’.c_ f; -P-(a’ﬁ) t) satisfy fi; <0 for
7 =0 J %1+ ¢ W —
t#£jandT+1<i<k, and f;; > 0.

Then, any B . -extremal polynomial f(t) of degree ky > k such that f(1)/fo < f;(1)/ fo;

satisfies f; = 0 in its Jacobi expansion.

Proof. Suppose that f; < 0 under the assumptions of the theorem. It is easy to see that
there exist linear combinations

k1
Gen(t) = EF(t) + 0 fi(t) = > g:POO(t)
1=0
with £ and 7 positive, such that g; < 0. Asin Lemma 1.18 we check that such polynomials

belong to the set By, ... However, by Lemma 1.20, the number g, (1)/go lies in the interval
(f(1)/ fo, fi(1)/ fo,;), a contradiction, because f(t) is B n -extremal.

The next assertion is a projective analog of Lemma 2.7.

Corollary 3.2 Let f(t) be a By, » r-extremal polynomial of degree k > 7+2. If f(1)/fo <
R(m,n,T +1) then fr41 =0 in the Jacobi ezpansion f(t) = Y5 FiPEP).
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Proof. Apply Theorem 3.1 to the polynomial frn,r41(t) (With j =7+1 = deg(frnn,ri1))-

0

Corollary 3.3 No extremal polynomials of degree k = 7 + 1 will satisfy fY/fo <
R(m,n,7+1).

0

We conclude that when, looking for improvements of (3.3) which are not greater than
R(m,n, + 1), one can assume f,41 = 0 without loss of generality.

Another important problem, which concerns the form of extremal polynomials, deals with
their number of double zeros. Polynomials fix,-(t) have [7/2] double zeros. The following
theorem shows that the higher degree extremal polynomials must have one double zero
more for 7 odd. It is the projective analog of Theorem 2.5.

Theorem 3.4 Let f(t) be a By -extremal polynomial of degree k > 7+ 2.

a) If 7 is odd then f(t) has at least (T +1)/2 double zeros in the interval [-1,1].

b) If 7 is even then f(t) has at least 7/2 double zeros in the interval [—1,1].

Proof. We can write f(t) = A*(t)G(t), where G(t) > 0 for =1 <t <1, A(t) has deg(A)
zeros in [—1, 1], and G(t) has no double zeros in [~1,1]. Thus G(t) = 0 is possible only
for t = —1. We consider two cases.

Case 1. G(-1) >

Suppose that 2deg(A) < 7—1 contradlctmg the assertion. Then, there exists ¢ > 0 such
that G(t) > e > 0 for all t € [~1,1]. We consider the nonzero polynomial

R.(t) = f(t) — eA%(t) = AX(1)(G(t) o).

Then R.(t) > 0 for —1 < ¢ < 1 so condition (B1) is satisfied by R.(t)). This also implies
fo(R.) > 0 (see Remark 1.15).

Write £(t) = 328, fiP™P(t) and

R(t) = Zfz R)PO(1)
=0
2deg(A)
= Zsz(“"” )—e > K(ANPEO).
=0 =0

It follows that we have fi(R.) = f; for ¢ > 2deg(A) + 1. In particular, fi(Re) = fi <0
for i > 7+ 1 (since 7 > 2deg(A) + 1). Therefore R.(t) € Bmn,r-
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Since A(t) € Bpn,r and deg(A?) < 7 — 1 we have A%(1)/fo(A2) < R(m,n,7) < F()/ fo.
But one can easily check that this inequality is equivalent to

R() _ ) —eA ) )

fo(Re) — fo—efo(A?) fo’

a contradiction.

Case 2. G(—-1) = 0.

We set f(t) = A*(t)(t + 1)G1(t), where G1(t) > 0 for —1 <t < 1. If 7 is odd and
2deg(A) < 7—1, then we apply the same argument as in Case 1 with A%(t)(t+1) € Bopr

instead of A*(t). If 7 is even, then the weaker assumption 2deg(A) < 7 — 2 ensures a
contradiction by our argument.

a

For even 7, Theorem 3.4 gives no more double zeros. However, in this case a useful
consequence for degree 7+ 2 follows. It is the projective analog of Lemma, 2.6.

Corollary 3.5 If7 is even and f(t) is a B --extremal polynomial of degree T+ 2, then
F(=1) =0.

Proof. By Theorem 3.4 the polynomial f(t) has at least 7/2 double zeros. In fact,
their number must be exactly 7/2, otherwise f(¢) would be a square and its leading
Jacobi coefficient would be positive (see Remark 1.6), contradicting (B2) in Theorem
1.13. Therefore f(t) = A*(¢t)G(t) where G(t) is a second degree polynomial. Obviously,
G(t) could vanish in [—1,1] only for ¢ = —1. However, the assumption G(—1) > 0 leads
to a contradiction as in the proof of Theorem 3.4. Therefore G(—1) = 0.

]

We now search for good polynomials of degree 7 + 2. Theorem 3.4 and Corollary 3.5
determine the form of the extremal polynomials of degree 7 + 2, i.e. we must take

) = A6
= (P4 at’ +- -+ aport + a,)°G(2)
where deg(A) = p = [(7 + 1)/2], and

Gt) = g+ 1) +1—1t if 7 is odd,
[gt+1)+1—1¢](t+1) if 7 iseven.

Here 0 < ¢ < 1 ensures f(¢) > 0 for —1 < ¢ <1 and f,45 < 0 simultaneously. From
the condition f,11 = 0 (see Corollary 3.2) it follows that we can express coeflicient a; =
ar{q,n) of A(t) as a function of the parameter ¢ and the dimension n.
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We can now consider F = f(1)/fo as a function of the unknown coefficients as, ..., ap,
q, and n. Just as in (2.7) one can use the equations obtained by equating the partial
derivatives of F to zero, to express the coefficients a,, ..., a, as functions of ¢ and n. The
denominator fo is given by the formula (3.2) as function of a1, as,...,a,,9, and n.

It does not seem possible to use further analytical methods. So we have searched for
g € (0,1) in order to maximize the ratio f(1)/fo by means of a computer using simple
numerical method. It turns out that usually, new bounds can be found in some range
ni(t) < n < no(t).

3.4 Some Examples of New Bounds

3.4.1 Bounds in Complex Projective Space

In complex projective space we can improve the classical bound (3.3) for 7= 5,6 and 7.
The parameters o and 3 for C P"~! are respectively « =n —2 and =0 by (1.6).

Casel. 7 =5.

As follows from the previous section, we have to work with polynomials of degree 7 having
three double zeros:

ft) = B+at?+bt+c)’lgt+1)+1-1]
= Y LRI,

=0

Using the equation fs = 0 we express (see Remark 1.6)

_lfars 144
a_2<a7,7+1—¢1)’
("""2v0)

where P; (t) = argt” + argt® + - + aro.
Next, we examine the function

f(1) 2¢(1+a+b+c)?

F(a,b,(bn) = fO - fu(a,b7Q)n)

in the usual way. The equalities
Fbl(b7 ¢, q,n) = Fc,(b> G, q;n) =0

give (after some simplifications) a system of two equations which are linear with respect
to b and c. Therefore, we can express these parameters as functions of ¢ and n.
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Finally, for fixed dimension n, we search for ¢ € (0,1) maximizing the function F by
means of a computer. The new bounds we have obtained are in dimensions 3 < n < 11.
They are presented in Table 3.1.

Case 2. 7 = 6.
In this case we use polynomials of degree 8 of the form
f@t) = (B+at? +bt+c)lglt+1) +1 -8t +1)
- 28: FP20 ).
=0

where f =0 and 0 < ¢ < 1. By the equation f; = 0 we obtain

1 /asy q
“"2(%@+1—q’

where Pg(n—z’o)(t) = agg)t® + agst’ + - + agp.

Next, we use the partial derivatives of F(g, b, ¢) to express the parameters b and c. Finally,
we fix n and search for ¢ € (0,1) in order to maximize the ratio f(1)/fo. We obtain

improvements of the Delsarte bound in dimensions 3 < n < 16. The results are listed in
Table 3.2.

Case 3. 7 =1.

Using polynomials of degree 9, with fs = 0 and the same arguments, as above, we obtain
new lower bounds in dimensions 3 < n < 23. They are presented in Table 3.3.

n | R(1,n,5) | New bounds
3 60 63

4 200 218

5 525 591

6 1176 1350

7 2352 2720

8 4320 4966

9 7425 8380

10 12100 13252

11 18876 19848

Table 3.1: New lower bounds on B(1,n,5),3 <n < 11.
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R(1,n,6) | New bounds

n

3 100 102

4 400 427

5 1225 1365
6 3136 3619
T 7056 8362
8 14400 17363
9 | 27225 33101
10 | 48400 58818
11 81796 98515

12 | 132496 156855
13| 207025 238990
14 | 313600 350306
15 | 462400 496134
16 | 665856 681473

Table 3.2: New lower bounds on B(1,n,6),3 <n <16

R(1,n,7) | New bounds

n
3 150 158
4 700 778
5 2450 2885
6 7056 8749
7 17640 22858
8 39600 53193
9 81675 112845

10 | 157300 221884

11| 286286 409391

12 | 496860 715479

13| 828100 1193093
14 | 1332800 1909363
15 | 2080800 2946241
16 | 3162816 4400228
17| 4694805 6381021
18 | 6822900 9009106
19 | 9728950 12412451
20 | 13636700 | 16722740
21 | 18818646 | 22071790
22 | 25603600 | 28588951
23 | 34385000 | 36400275

Table 3.3: New lower bounds on B(1,7,7),3 <n <23
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3.4.2 Bounds in Quaternionic Projective Space

We have applied our method for 7 = 5, 6 and 7 to the quaternionic projective space. New
lower bounds were found in dimensions 3 <n < 5for7 =5,4 < n < 6 for = 6, and
3 <n <11 for 7 = 7. The corresponding results are given in Tables 3.4 and 3.5.

n | R(2,n,5) | New bound
3 210 221
4 840 903
) 2475 2613

Table 3.4: New lower bounds on B(2,n,5),3 <n < 5.

n | R(2,n,6) | New bound
4 2520 2562

5 9075 9359

6 26026 26474

Table 3.5: New lower bounds on B(2,n,6),4 <n <6.

n | R(2,n,7) | New bound
3 882 962

4 5544 6571

5 23595 29671

6 78078 101403

7 216580 283258

8 527136 678399

9 | 1159893 1438197
10 | 2355430 2760958
11 | 4480630 4883694

Table 3.6: New lower bounds on B(2,n,7), 3 <n < 11.

3.4.3 Bounds in the Cayley plane

Projective spaces over the non-associative algebra of the Cayley octonions exist only for
n = 2 and n = 3 (the so-called Cayley line and plane). An appropriate model for
OP™1 can be found in [45, Section 1]. In this case we obtained only one new bound,

D(7,3,D) > 7060 instead of D(7,3,D) > 6435 by (3).



46 Chapter 3. Linear Programming Bounds for Designs in Projective Spaces

3.4.4 Bounds in Real Projective Space

In this case, bound (3.3) can be written as

—1
B(%,n,T) > R(%,nﬂ') = (n—{-'r >

n—1

In the real projective space we use a modification of the method we have applied in
the Chapter 2 for estimating the size of spherical designs. Indeed, there is a one-to-one
correspondence between the 7-designs in R P! and the antipodal spherical (27 + 1)-
designs on S™! [53, Theorem 9.2]. Therefore we can search for linear programming
bounds for spherical designs as in Chapter 2 paying attention to the antipodality. This is
expressed by the following theorem, which is, in some sense, a specialization of Theorem
1.21.

Theorem 3.6 Let f(t) be a nonzero real polynomial such that

(B1) f(t) >0 for—1<t<1,

(B2') the coefficients in the Gegenbauer ezpansion ft) = S e fngn)(t) satisfy f2; <0
for 2r +1 < 25 < k =deg(f).

Then, B(1/2,n,7) > f(1)/2fo.

Proof. I C C R P™! is a 7-design, then its realization C" on S~ is an antipodal spherical
(27+1)-design. We have |C"| = 2|C| and |C’| > f(1)/ fo by the linear programming bound
(Theorem 1.21) for antipodal spherical designs.

0

We now can apply the method from the previous chapter for obtaining linear program-
ming bounds for spherical (27 + 1)-designs with polynomials of degree 27 + 4 without
consideration of the coefficient far43 (it can be arbitrarily chosen by Theorem 1.21).

We considered the cases 7 = 3, 4, and 5. The new bounds we have obtained are in
dimensions4§n§7for~r=3,4§n§llfor7‘=4,and3§n§23forr=5.
Examples are presented in Tables 3.6, 3.7 and 3.8.

Reznick [67, Section 4] has shown the nonexistence of antipodal spherical 5-designs with
n{n + 1) + 2 points. This implies that B(1/2,n,2) = R(1/2,n, 2)+2=n{n+1)/2+2
for n > 3. We are not aware of other improvements of (3.3) by more than one.
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n | R(1/2,n,3) | New bound
) 35 37
6 56 58
7 84 86

Table 3.7: New lower bounds on B(1/2,n,3),5 <n < 7.

n | R(1/2,n,4) | New bound
4 35 37
5 70 75
6 126 137
7 210 231
8 330 365
9 445 549
10 715 789
11 1001 1094
12 1365 1470
13 1820 1922
14 2380 2451

Table 3.8: New lower bounds on B(1/2,n,4), 4 <n < 14.
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n | R(1/2,n,5) | New bound
4 56 59
5 126 136
6 252 279
7 462 524
8 792 918
9 1287 1517
10 2002 2393
11 3003 3624
12 4368 5302
13 6188 7528
14 8568 10409
15 11628 14056
16 15504 18583
17 20349 24104
18 26334 30724
19 33649 38545
20 42504 47655
21 53130 58130
22 65780 70031
23 80730 83404

Table 3.9: New lower bounds on B(1/2,n,5),3 <n < 23.



Chapter 4

Necessary and sufficient conditions
for optimality of the Delsarte bound

4.1 Introduction

In this chapter are summarized the last investigations which were done during the last
months of the research period. The results are rather new and this work is still in process.
We give necessary and sufficient conditions for improving the Delsarte bound for r-designs.
We define test functions G,(M,Q;) with the property that G,(M,Q;) < 0 for some
J > 7 if and only if the Delsarte bound B(M,7) > R(M, 1) can be improved by linear
programming. Then we investigate when the Delsarte bound is optimal. If it is not
optimal we obtain some polynomials of degree 7 4+ 2 in non-antipodal PMS and of degree
7+ 3 in antipodal PMS, which improve the Delsarte bound. This chapter is based on [64]
and [65].

4.2 Preliminaries

First we will recall some definitions and notations. Let M be a polynomial metric space
with metric d(z,y) and standard substitution o(d(z,y)). Any finite nonempty subset C
of M is called a code. A code for which o(d(z,y)) < o(d), where d is the minimum
distance of C we call an (M, |C|, s)-code.

For each a and b € IV, one can associate the ZSF with their adjacent systems of orthogonal
polynomials {Q%*(¢)}22,. These polynomials are orthogonal with respect to the measure
v*t(t) defined by dv*b(t) = c**(1—1)*(14+1)® dv(t) (c** is a constant).

The most important properties of these systems of orthogonal polynomials and the corre-
sponding adjacent systems were given in Section 1.3. In this section we present without
proofs some additional properties of the systems Q¥°(t) [1, 53, 56, 73].

Denote by th, ¢+ =1,...,k, the roots of polynomial Q;*b(t), k > 0, ordered in increasing

49
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a,b

order and by tZ’b the greatest zero ¢, of the polynomial QZ’b(t). Note that by Lemma
1.8 and the normalization Q%°(1) = 1 the leading coefficient aZ:i of polynomials Q3*(t) is

positive and sgnQ2*(—1) = (—1)* for &£ > 0. Note also that Q¥ (t)=1and r§® = 1. We

introduce the notation i

Py = apit
1=0

When a = b = 0 we omit the upper indices.

Lemma 4.1 (Christoffel-Darbouz formulae) For any integer k, and reals z and y we have

k . Qr+1(2)Qi(y) — Qu(2)Qr41(y) if o4
Y rQue)Qiy) =4 " vy v
P Qs (2)Qu(@) — Q(@)Qena(2)) i z=1y.

Corollary 4.2 (monotonicity) For any k the ratio Qr1(t)/ Qx(t) increases with t in every
interval which does not contain zero(s) of the denominator.

Corollary 4.3 (separation of roots) For any k and j, if 1 <7 < k
ety < e < Tetrgete

Corollary 4.4 Let t,_y <t < ty, with k > 1. Then Qx(t) < 0 and Qi(t) > 0 for any 7,
i=0,l,...,k—— 1. Ift Z tk, then Qk(t) Z 0.
Let us consider the symmetric function

k

Ti(z,y) = Z"'iQi(m)Qi(y)- (4.1)

=0

Introduce in addition the function

Ri(2,y,2) = Te1(z,9)Qu(2) — Tr-1(y, 2)Qr()

for k> 1.

The next theorem gives a connection between the parameters of the adjacent system of
orthogonal polynomials and the original system when a,b € {0,1} (which are in fact all
cases we need to consider).

Theorem 4.5 [53] For any nonnegative integer k

0,1 = Tu(t,-1) 01 _ (T(1,~1))? .
k (t) = TR(1,-1) Tk = TOTrmrQe(=1)Qrs1 (1)’
1,0 f) = Ty (t,1) 1,0 _ (T (1,1))? .

k ( = T(1a)y Tk AOrm Qi (1)Qr+1(1))
Vi) = Rppa(=1,1) 11 _ i1 (B (=1,1,1))2

k = B (L1 kT —4chIT(1,~1)Te4a(1-1)
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or more general,

T,?bxy Z aanb(x ab( )

=0
@b+l T b( 1) atip Tlg’b(ta 1)
k (t) a,b 9 k (t) = a,b
T,°(1,-1) T,"(1,1)

The next lemmas concern the separation of adjacent polynomials roots [53].

Lemma 4.6 Foranyjandk, 1 <j<k+1
thio1 <ty <ty <0 <tr,
in all cases when the corresponding entries are defined.
Lemma 4.7 For anyjand k, 1 <j<k-1
by <00, <l <t <thin.
Lemma 4.8 For any integer k > 1
11

1,1 10 _ 1,1
b, <t <ty (ty =—o0).

Lemma 4.9 The functions

Q(t) Q1) Q')
ONRFORN 0

increase with t in every interval which does not contain zero(s) of the denominator,

Lemma 4.10 The functions

() QL) Q1)
Qr(t) 7 Qu(t) 7 Qx(t)

decrease with t in every interval which does not contain zero(s) of the denominator.

The universal upper (resp. lower) bounds Lok_14(c) (resp. R(M, 7)) for the cardinality
of an (M, |C], o)-code (resp. a 7-design) can be presented in the following form [53, 36):

k—1+¢
O] € Lakrselo) = (1 - Qko‘:{())) 3 (42)
k \O 1=0 »
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wheree =0if )", <o <t;’ande=1ift,° <o < 1", resp.

k
IC| > R(M, ) =277 ", (4.3)

=0

where 6 € {0,1} and 7 = 2k + 6. Bound (4.2) can be obtained by using the polynomial
FOE) = (= o)t + 1) (T4 (¢, 0))7,
and bound (4.3) can be obtained by using the polynomial

FO) = ¢+ 1@ (1)
in Theorem 1.12 (resp. Theorem 1.13).

4.3 Test functions

First we will give a modification of the Gauss-Jacobi formula due to Levenshtein [56] .

Theorem 4.11 For any o, —1 <o <1, and € € {0,1}, the polynomial

(t — o)t 4+ 1) T (t,0) has k + ¢ szmple roots Bo < By < -+ < Brte-1, where Brpe1 =0
and By > —1. Moreover o = —1 if and only ife=1 ore=0 and o = tk 1- Further, for
any polynomial f(t) of degree 2k — 14 ¢

1 k+e—1 .
fo= Eﬁﬁ + Z Pg' '1(8)),

i=1

()

where coefficients p;’ are positive for j > 1 and p((f) > 0 with equality if and only if

41,0
o=1.

Using Theorem 4.11 Boyvalenkov, Danev and Bumova [18] (see also [19]) obtained neces-

sary and sufficient conditions for the optimality of @ (t) over Am,, * without restriction

on their degree. To describe this result they introduced the following linear functional
k+e—1

7+ > A fB: (4.4)

=0

Go(M, f) =

L2k 1+c
The next theorem is similar to Theorem 4.11 for 7-designs.

Theorem 4.12 Let the zeros of Q}C'e(t) be denoted by o;, 1 < k and let agye = —1 for
0 = 1. Then for any polynomial f(t) of degree at most 7 = 2k 4 0 the following equality
holds

k+6
h=watst S o7 fle (4.5)
=0
where pg 7 are positive numbers s.t. Ektg gT) =1

1 Ao is the set of real polynomials which satisfy the conditions (A1) and (A2) of the Theorem 1.12
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Proof. Let g(t) = (t — 1)(¢t 4+ 1)°Q}’(t) with k + 1 + 8 simple roots:

“l<ap<am<...<a<l,aq=1, if 0=1a,9=-1.

For g(t) we consider the Lagrange polynomials l;(g;t), j = 0,1,...,k + 6. They are
polynomials of degree k + 6 with the property that have a value 0 for ¢ = oy, Vi except
for ¢ = a; when I;(g; ;) = 1, i.e. (g5 4) = 65 (6 is the Kronecker symbol). We have

t-1)Q°®)
-2Q,"(-1)
t+1)(t = DT ()
(a5 + 1) — DT (05, 07)
(t+1)°Q°(1)

leto(g;t) = for 0=1,

for j=1,... )k

li(g;t) =

lo(g;t) = for j=0;
20Q,°(1)
For any polynomial f(¢) of degree at most 7 the polynomial
E+0
— Y fle)li(g;t) (4.6)
j=0

equals zero at all (simple) roots of g(t) and hence it can be represented as

k+6

F&) =" Fay)ligst) = g(t)h(t), (4.7)

=0

where h(t) is a polynomial of degree at most k — 1. Using the orthogonality relation for
the system of orthogonal polynomials {Q}°(¢)} we can calculate

/_11 g(t)h(t) dv(2) /h V) dv™i(t) =

This gives:
k+6 k40
fo= [ s0) an )= st [ et vty =3 g 1),

It remains to prove the two properties of p;. That they are positive follows from the
following three arguments:

Prto = /j levo(g;t) dv(t) = 1 w dv(t)

1 -1 —2Q;°(=1)
1 1,0 _
= 1.0 :ll,l / TI;,O(t, ) dl/lyo(t) = _10 1,01 >0
2c10QM (1) J_y THO(1, —1) 2e10T(—1, —1)
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Analogously, we have

1 1
pi= o) 10 = e T e
and L 1
o= lo(g;t) dv(t) = PRI 1)
Since

k
2L = 2D i = RM, ).
1=0

It follows that 1

"R

Finally, from p; = f_ll I;(g;t) dv(t) we conclude that

k40 1 k46 1
Se= [ et dvl) = [ Lo =1
7=0 -1 7=0 -1

(we use that Ef:g 1i(g; ;) = 1 for every o; whence Efiol Li(g;t) =1).

Theorem 4.13 [56, 69] For any v =2k +6, 6 € {0,1},
R(M, 1) = max§)(f), (4.8)

where the mazimum is taken over the class of polynomials f(t) € B, of degree at most
7. The magimum in (4.8) is realized if and only if f(t) is proportional to f7(t).

Proof. Theorem 4.12 states that

k0
f(1) = RIM,7)fo — R(M,7) ijf(aj)
Hence i
o) = 2 = rmt,m - RS p(e) < A7),

where equality holds if and only if f(a;) = 0 for j = 1,...,k + 0. Therefore f(¢) is
divisible by (¢ +1)? i‘g(t). f(t) must be positive in [—1,1] hence f(t) = const.f7(t).
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We present a second proof which illustrates in a good way our approach in the next
section.

Alternative Proof. It follows from Lukdcs Theorem [73, p.4] that every nonnegative poly-
nomial of degree 7 in [—1, 1] can be represented in the following way:

(Ak(®))® + (Be-1(8))*(1 — ?) if 7=2k
(t) = { , (4.9)
(Ap()2(t+ 1)+ (1 —t)(Be(t))*  if 7=2k+1,
where deg(Ay) = deg(By) = k.
We now need to distinguish between the case that 7 is even or odd.
Case 1. T = 2k. Putting .
ao= [ (At antt)
Bo= [ (a1 =) ().
we obtain A2 A(1))?
() = LAE < CeOF _ g4,
Case 2. 7 =2k + 1. Putting
Ao = / (Ap(®))*(1 + ) du(t)
&—LW&D@4MW)
we get ) ,
() = ZELE 2P (a4 1),
Hence we have to consider polynomials of the following form:
(Ax(t))? if r =2k
ﬂﬂ={ T (4.10)
(A2t +1) if T=2k+1

e, (1) = (¢4 /(A1)
Let Ak(t) = E?:o ff’eQ?’e(t) (the expansion of Ax(t) in terms of the adjacent system of
polynomials). Then Ag(1) = Zf:o f?’e and

fo [5mawu+t =09/<& 2 309 1)

— coo[— ZfOGQOB dyoe()

=0
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1 ['¢
= 5 [ Y e eet v

i,§=0

1k
= a7 [ U@y

k 0,0
1 ()
= 23 2 _F?ﬁ . (4.11)

Hence

k ,0
ﬂ(f) — 2900,9(2520 f¢0 )2 .
Zk (%)
=0 ,'.:_),5

Now we use the Cauchy inequality

<3,

=0 1=0 =0

where equality holds if and only if f; and r; are proportional. Applying this to Q(f) we

obtain
k

Q(f) <2 " r? = R(M, 7).
=0

Equality holds if and only if

k
Ai(t) = const. Zr?’gQ?’g(t) = const.Q}y’(1).

=0
i.e. f(t) is proportional to (¢ + 1?(QL(¢))2.
i
Analogously to the definition (4.4) of G, (M, f) we consider the following linear functional

k+6

(M, ) = E{A(T”—) £ 7 f () (4.12)

=1
where o, pET) are defined as in Theorem 4.12.

This linear functional maps the set of real polynomials to the set of real numbers. The
reader should be careful with the notations G,(M, f) and G,(M, f). The subscripts &
(=1 < o < 1) and 7 (7 > 2 - integer) refer to the case of a (M, |C|, 5)-code and a 7-design,
respectively. As we may expect the duality between the optimal choice of polynomials and
resulting bound for codes and this polynomials with the resulting bound for designs can
be extended to duality between the corresponding test functions for codes and designs.

This duality follows from the fact that G.(M, f) can be obtained from Gq(M, f) by
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taking o = ti’e. By Theorem 4.12, we have —1 < G.(M, f) <1 and G,(M, f) = f, for
any polynomial f(t) of degree at most 7. Also G.(M, f) = f(1)/R(M, 1) if f(t) vanishes
at the zeros of f(7)(2).

Lemma 4.14 Let f(t) = g(t)q(t) + r(t), where g(t) = (¢t — 1)(t + l)gQ}c’g(t). Then
Go(M, f) = [, r(t)du(t).

Proof. Using the definition of G, (M, f) we have

k+6 1 k+6 1
)= /Zug, (eddv(t) = [ (vt

1

The polynomial (t) is of degree k+6 and r(o;) = f(o;) fori = 0,. .., k+60. This uniquely
determines r(t). It must be the remainder of the division of f(t) by g(¢).

]

Now we will prove necessary and sufficient conditions for an improvement of the Delsarte
bound. Later on we will investigate some properties of the test functions, which turns
out to be very useful.

Theorem 4.15 The bound R(M,7) can be improved by a polynomial f(t) € Bum, of
degree at least T + 1, if and only if G.(M,Q,) < 0 for some j > v + 1. Moreover, if
G, (M,Q;) <0 for some j > 7+ 1, then R(M,T) can be improved by a polynomial in
Buar of degree j.

Proof. Suppose that G,(M,Q;) > 0 for all j > 7+ 1. Consider a polynomial f(¢) € B,
of degree m > 7 + 1. We write

F&)=g(t) + Z £:Qi(t) = §(t) + F(2), - (4.13)

=741
where deg(§) < 7. Then Theorem 4.12 applied to § and relations (4.12), (4.13) imply
fo=Go=GM,§) = G, (M,f)—-G,(M,F)

fQ1) fQ)
> W G(M,F) > BM.7)
fo

Therefore R(M, 1) ) e, f(t) does not improve the bound in (4.3).

Conversely, let G(M, Q;) < 0 for some fixed j > 7+ 1 and —Q;(t) = f(t)a(t) + b(¢).
Consider f(t) = f(0(t)(a(t) + ¢) = —Q;(t) + cf)(t) — b(t), where ¢ = —min{a(t) : ¢ €
[—1,1]}. This choice of ¢ ensures that f,41 = ... = fj_1 =0, f; = =1 and f(¢t) > 0
in [-1,1]. On the other hand we have fo = G.(M, f) — G,(—Q;) < R—{%?T—), i.e we have

improved the Delsarte bound.
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0

Let us recall that among the infinite PMS only the Euclidean spheres S"~1 are antipodal.

Theorem 4.16 Let M be antipodal. If T and j are odd, then G-(M,Q;) =0

Proof. We use the notations introduced in Theorem 4.12. The zeros of Q;c"H)(t) =Q.'(t)
are symmetric with respect to the origin, i.e. a; = —ag1-5, forj=1,..., |k/2] and for

koddaL—O(le 01sarooton("+2()).

On the other hand by Q("+2)( t) = (-1)° Q£”+2)(t) and
T (—ay, —ay) = L rt QU (—ay) = T rb Q8 () = T (e, ) we
have

o0 = !
! (1 = o) T2 (o, @)
_ 1
(1= ad g )T (—aksa—js —ke1-5)
= . = F’;:)l
chi(l - aiﬂ_,')Tz:’_ll (k14> Ck415) e
Therefore .
> QM (es) =0
i=1
For py (") and ,okJr1 we have
. 1 .
o) = ——— = p7) (4.14)

R(M,r) ~ Pk
and Q.(-1) = (-1)°.

]

We recall that the ZST for infinite PMS are Jacobi polynomials Pf"ﬁ(t). They are defined
by the recurrence formula

(t+ms + ¢ = 1)Qi(t) = miQisa(t) + ciQi-a(8), (4.15)
for 7 > 0, where r_; = m_y =0, m; = a,::j:“ LG = Ti“:?"‘ and Q_1(t) =0, Qo(t) =1
n—3

For antipodal spaces we have a = = *5=.

The parameters m; and ¢; can be written as follows:
20+a+ )i+ a+f+1)
(2i+a+B+D)(2n+a+8+2)
2i(z 4+ f)
i = - - 4.16
“ 7 Qitatphitathtl) (4.16)

m;




4.3. Test functions 59
Let us introduce
aa,b aa,b
ab _ Tii—-1 ~ab _ Yig-2
nt= s W= (4.17)
1,0 1,0
Lemma 4.17 With the notations introduced above we have
a)
1 Qri1,741
G’T(M?QT+1) - 1610 1,6 5
Ty, (a’k,k)
b)
Ar42,742 1,0
Gr(M, Q) = W - 1aT [rsz+1 =0 =" — ]
i (a kk)
c)
1 argar ~1,0 1,0 1,002
e, 10 (:139)1; [frys — Ry — " + (ny ) +1
~1,0 1,0_1,0 1,0 1,0
Gr(M, Qres) = § =Ty — migy + . m — miimi) for =2k
P L1111
1 Hrt frgs + 1 =0y — 2] forT=2k+1

[

7 yg:k-y (ol ’a )2

Proof. Let e be positive integer. By Lemma 4.14 we have

1

GT('M7 QT+€) = / T(t)d’/(t)a Q-r-l—e(t) = g(t)q(t> + T(t))

-1
where g(¢) = (t — 1)(¢ + 1)°Q}°(t). On the other hand

/_ 11 Qree(t)dr(?) / ol (t)dw(t) + /_ 11 r(t)du(t)
0= cle/ Q' dv“’+/_11r(t)du(t)

Hence,

1,6
G‘)’(M7QT+€ - 19/ Q dylg fk (337

1,6
Ty

We will omit the technical details further and we will prove only b) when 7 is even.

2k42,2k+2 2k+1
Qr+2(t) = aokia,26428 TP 4+ agppgon T 4L
1,04k 1,0 k
9(t) = a3t + (g _akk)t +oe
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Hence ‘o 1o
. agk+2,2k42 (08 k—1 = %%'x)
2k+2,2k+1 — O
A2k+2,2k+2 L k+1 ! 2k k
(I(t) = 1,0 t + 1,0 .
Ak A i
and
1,0 1,0
100 (1)) = 1 a2k+2,2k+2(ak,k_1 - ak,k) Q2k+4+2,2k+2 1,0
2 (g(t) = g |G2k+2,2k+1 — 10 ~ 10 Opt1,k
Ok A Ot 1,k+1

The following relations hold (by Theorem 4.5 and (4.15)):

1,0
ny® =ng +ck, nepr =g+ (e +my—1)

. . .1,0 . Tk-2 -
firer = Mg +ngp(ce + my — 1) + axme_y,  Ryy; =+ =12 + cxfig—1. (4.18)
k

For antipodal PMS

0 10 k k+n-—2
N = = = _———— mp = ————————
B e TR T P %k tn -2

o K(k+1) a1 _ KE+D)
1T 02k +n—2) 17T 22k +n)

(4.19)

Corollary 4.18 Let M be antipodal PMS. Then

>0’ fOT‘T=2k
GT(M,QT+2){ =0, fort=2k+1.

Now we investigate the asymptotical behavior of the test functions for designs.

Theorem 4.19 Let M be PMS. Then the following limits hold

s for T even
lim G M, Q = I P(r
o0 ( 3) { W/%A,_f) + (—1)Jp/$€+)1 for T odd,

(Pﬁ)l = ﬁ(ﬁl,t—ﬂ) for M- antipodal)
For 7 odd we take the limit for j odd/even separately.

All limits are nonnegative numbers.
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Proof. Note that for e large enough we have Q.(t) ~ 0, ¢t € (—1,1). The assertion now
follows from (4.14) and Q.(1) = 1.

a

As we can see for M and 7 fixed, there exists a constant jo = jo(M,7) such that
Gr(M,Q;) > 0 for all j > jo. That means that, for fixed M and 7, we can not ex-
pect to obtain better bounds when we use polynomials of very high degree.

As we mentioned before, the test functions for codes were introduced and investigated
by Boyvalenkov, Danev and Bumova in [18] (for M = S"7!) and by Boyvalenkov and
Danev [19] (in the general case). In particular, Theorem 4.9 from [18] implies the following
result about the possibility for improving the Delsarte-Goethals-Seidel bound for spherical
(2k)-designs.

Corollary 4.20 If 1 =2k and 2 <n < k* 41, then G,(S™ !, Qr13) < 0.

In obtaining the complete understanding where it is possible to improve the Delsarte
bound we have to examine the sign of G (FP"!,Q,+,) and G,(S®"?,Q,43). Using (4.18),
(4.19) and Lemma 4.17 ‘we got the following results.

Corollary 4.21 If 7 =2k +1 and 2 <n < k? — 2, then G, (S™},Q,43) < 0.
Corollary 4.22 Let M =FP"'. Then G,(FP™!,Q,12) < 0 in the following cases:

a) F=R and
2<n< -2

b) F=C and
2<n<2k2+2k -1, ifr=2k+1

3<n < |2 +1/24+Vak* =12k =8k +1/2|, if T =2k and k > 3
n=4,5 i 7 =4.

c) F=H and
2<n <k +k-1,ifr=2k+1
3<n< K2+ 1/24Vk* —6k* —6k/2], if T =2k and k > 4
n=4,56,ifr=6.
For 7 = 4 the test function is positive.

d) F=0, n=3 and

k>3 ifr=2k+1
kE>5 o r=2k.



62 Necessary and sufficient conditions for optimality of the Delsarte bound

4.4 Extremal polynomials of degree 7 +2 and 7+ 3

In the previous section we obtained necessary and sufficient conditions for improving the
Delsarte bound by using linear programming. The investigations of the test functions
for designs show that the smallest possible degree of an improving polynomial in non-
antipodal PMS is 7 4 2 and for antipodal and is 7 + 3 (see Lemma 4.17 and Corollary
4.18).

Theorem 4.23 Let M be non-antipodal PMS. Then, up to multiplication with a positive
constant, any B ,-extremal polynomial of degree T + 2 has the form

[Th-1(t, 1) + fi(A)Qk(t) + frrr(A)Qrta (1)]?

" +(1 = ) fier(B)QiL1 (1) + fu(B)QY (1)) if =2k,
RO
(14 )2 T (2, 1) + fr(A)QR (1) + fir (A) Qs ()]
F(1 = O)[f(B)QY(E) + frrn(B)Qri (D] if T =2k + (1i "

where the coefficients fi. are defined below by (4.23), (4.24), (4.36).
Proof. By Lukécs Theorem [73, p.4] f(t) must have the following form:

_ (A ()2 + (1 = ) (Bi())? when deg(f) =2k +2,
ft)= { (1 ]:t)(Ak+1(t))2 + (1 —]‘ct)(BkH(t))z when deg(f) = 2k + 3, (4.21)

where the indices show the degrees of the corresponding polynomials.

For our purposes we need to introduce some notation. We will first distinguish between
the case that 7 is even or 7 is odd and after that we can introduce a unified notation
which generalizes both of them.

Casel. 7 =2k
Now let us express A41(t) and Byy1(t) in terms of suitable adjacent systems of orthogonal

polynomials. This will be helpful to surmount the main difficulty, namely to calculate fo.

k+1

App(t) = Z fi(A)Qi(t)

k
Bi(t) = Y H(B)QY ().

=0
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Now using (4.11) we obtain

o) = £

(i (A
s M e T, U

=0 1,1
T’

Let
2k+2

t) = Z fiQi(t). (4.22)

be the ZSF expansion of f(¢).

Comparing the coefficients of t**+? and ¢?**! in the representations (4.22) and (4.21) and
using the conditions f;4; = 0 and f,42 < 0 we obtain the following restrictions

(frr1(A))? < (fu(B))*. ("&>

Qht1,k+1

A2k+2,2k
(Frs1(A))? (20841 k41 0k1,6 — (Bhgt ) it
A2k+2,2k+2
+ 2 k41(A) fe(A)artr k105 k
A2k+2,2k
+ (fe(B)) l(app)* =22 —2apiap% 4]
A2k42,2k+2
— 2fx(B) fim1(B)arayt 4y =0
In this case we introduce the following notations:
z; = fi(A), i=0,...,k+1,
yz'-{-l:fi(B); i=0,...,k,
az—r., i:O,...,k+l,
ﬂz+1 11 117 i=0,...,k,
An = 2ak+1,k+1ak+1,k - (ak+1,k+1)2%§:—:§:_:, (4.23)

A = 2ak+1 k410K ks

— 2%2k42.2k+1 o 1,1 11
By, = (ak k)  Papypants 2ap 0y

By = 2akka'k 1,k—1>
— ( a’kk )2
Ak41,k+1

Case2. 1 =2k +1

As in the previous case we take the expansion of Agy1(t) and Byyy(t) in terms of Q¥ (¢)
and Q; ’O(t), respectively.



64 Necessary and sufficient conditions for optimality of the Delsarte bound

k+1

Apa(t) Zfz (A)QM(t)

k+1

Bin(t) = Efz B)QI°().

Then by (4.11) we have

f)
fo

o) =

AT ( )?
- 01 Ek—H [f,gA))Z + L Zk-}-l gf,gBW

1=0

The corresponding ZSF expansion is f(t) = 222:33 Fi(HQa(t).

As in the previous case we have the conditions

(fen(A)) < (f(B)V (5= k+1 el )2

k+1 k41

0, 0,1 0,1 A2k+3,2k+2
(fk+1(A))Z[Zakil—l,k+lak+1,k + (ak+1,k+1)2(1 T aramoran
2k+3,2k+3
+ 2frn (A)fk(A)akH k+1a2 }c
, A2k+3,2k+2 1,0 1,0
+ (fk+1(B))2[(a’k+l,k+l)2(l + =) = 205 g Y )

A2k+43,2k+3
1,0 0
- 2fk+1(B)fk(B)ak,-}-l,k+la’i,k =0

Here we introduce similar notations as in the previous case.

= fi(A) 1=0,...,k+1
v = fi(B) i=0,...k+1
& = o i=0,...,k+1

e 0,... k+1

— (01 201 _ 92k432k42 0,1 0,1

An = (a1 ) (1 agk_‘,ra,ma) + 2051 g1 %1k
_ 9,01 8

Ap = Za{Cgl’kHak’k L »
— ) 2 @2k+3,2k+2 \ _ s R

By = (ak+1 k+1) (14 228250 = 20841 k41 hr e

1,0
By; = ‘1‘2%4-1 k+19% K
a

C = (Ztrkt1)2

(ak+1,k+1 )

(4.24)
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Now we are ready to prove the assertion of the theorem. We unify the notations of
the two cases above by putting 7 = 2k + 6, § € {0,1}. Later on we will abbreviate

z = (2o,--+,%k41) and y = (ys,...,yr+1). We have to solve the following optimization
problem.
Maximize the function -
2
F(&,g) — (Zz:O xl) (425)

k+1 o k+1 2
Ei:O a’x’i + Ei:ﬁ ﬁiyi
under the conditions:

2 2
Ti < Cyigy

4.26
Gz, g) = A11$;2¢+1 + Anpzppizy + Bny;%_,_l + Biayr+1yx =0 ( )

The coefficients oy, f; are positive. Hence F(z, y) > 0. We solve this optimization problem
by means of the Lagrange multiplier method as follows. We consider the function

F(:caya/\) = F(ﬁaﬂ) - )‘G(ﬁay_)

and maximize it for z, y. A necessary condition for this is the vanishing of the first
derivatives of F'. We denote

k+1 z;

0
s 1 :
2izo ol + 30, Bt

We have to consider only the case y # 0, because otherwise we obtain min F(z, y) =0.
After simplification of the derivatives we obtain

H:

;= for :=0,...,k-1
pei
y;=0 for 1=0,...,k—1 (4.27)
(2ular) = + (AAy2) Tpp1 = 24 (4.28)
(Mi2) . + (2Parg +20y) T = 2p
(262B) we + (AB12) Yrpqr = 0 (4.29)
(ABi2) wr + (20*Bk41 +2)Bu1) yrr1 = 0
A11$2+1 + Anazrpzs + BnyZﬂ + Biooyrs1ye =0 (4.30)

The system (4.29) must have nonzero solutions because of the inequality in (4.26). There-
fore

2#25k ABy,

=0 4.31
ABiy  2p2Bri1 + 2AByy ’ (431)
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whence
A= u?l,

where

- ﬂkBll + \/(B 1B + ﬂk+1B122)5k.

B},
Solving (4.29) we obtain

_ —ABp _ — B
YT B, U T Top, UM

By (4.28) we can express zj and Tr41

l 40{]c+1 + 4—5\A11 - 25\A12

T = = =
k W dagogyr + 4rapAn — AZA%Z

1 4oy, — 22 A1z

Tr+1 = — 3 T
Hiapary + 4 ap A1 — )\ZA%Z

Now from (4.30) and (4.33) we find

-2
Yke1 = i\/_——ﬁk"_—(Allxz.‘.l + A12Tk412k)

2B: By — AB%,

(4.32)

(4.33)

(4.34)

(4.35)

Replacing our solution in F(z,y) and using the homogeneity of F(z,y) we can cancel
in the numerator and denominator. Hence our solutions actually do not depend on u. We

can chose ¢ = 1 and )\ to be positive.

Finally, we arrive at the following solution

zg = —, for i=0,...,k—1
y; = 0, for ¢=0,...,k—1
dapys +40An — 20 A
dapoger + ddap Ay — 5\2A¥2
4oy — 22 Ay
4ok + 45\0%1411 - XZA%Q

T =

Tt =

=
Yet1 = i\/jﬂ—éﬁr—‘[A11$ﬁ+1+A12$k+1$k]v

28, B1; — A\B%,

_ ~\Bia
Ye = 2ﬂk Yet1

(4.36)
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where

5 ZﬂkBu + /Br[BrB2, + Brr1BE)]
BY,

[m]

Note that the inequality in (4.26) exclude the possibility the polynomial f(")(¢) to be a
solution of our optimization problem.

Corollary 4.24 Let M be a non-antipodal PMS and let T be an integer. Then

B(M,7) > S(M,7) = R(M,7 —2) + o1 + 2141 = Q(f*).

As we mentioned before, for antipodal PMS the corresponding By ,-extremal polynomial
is of degree 7 + 3. We can prove in a similar way analogous theorem for the form of this
polynomials.

Theorem 4.25 Let M be antipodal PMS. Then, up to multiplication with a positive
constant, any B, -extremal polynomial of degree T + 3 has the form

(14 {2 T (4,1) + frima (A)QY L (2) + fr(A)QY(2)
+ e (A)Qu (1 + (1 — ) { fima (B)QR5 (t)
+/(B)QL(t) + fen(B)Qpi () if T =2k,

{Ti-a(t, 1) + fr(A)Qr(t) + fra1(A)Qrsa(2)
+fr2(A)Qraa ()} + (1 = ){ ica (B)Q,(2)
+f(B)QR (1) + frsr(B)QLt (1)} if T =2k + (14 -

@) =

where the coefficients fi, are defined in the proof.
The proof is similar to the proof of the previous theorem and we present it in the Appendix.

Corollary 4.26 Let M be an antipodal PMS and let T be an integer. Then
B(M,7) > S(M,7) = R(M, 7 = 3) + 21 + Tp1 + Tpz = L),

where T, Tpi1, Thio are defined in the proof of the Theorem 4.25.

Summary of Chapter 4: The investigations in this chapter are a natural continuation of
the results from the previous two chapters. First of all we proved necessary and sufficient
conditions for optimality of the Delsarte bound (see Theorem 4.15). In Corollary 4.22 we
present for every M and 7 precise intervals for the dimension n, where the test function
is negative. As a consequence of the above we obtain that the smallest possible degree of
the B, -extremal polynomials is 7 + 2 for non-antipodal spaces and 7 + 3 for antipodal
PMS. In Theorems 4.23 and 4.25 we proved the analytical form for these polynomials.
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This allows us to give analytical expression for new lower bound S(M, 7). Unfortunately
these expressions are too complicated to be compared with the Delsarte bound in general.

We compared by computer the results in Chapter 3 and Chapter 2 and the bounds from
Corollary 4.24 and 4.26. We also compared the polynomials, which we use for obtaining
new bounds in Chapter 2 and Chapter 3, and the polynomials described in (4.20) and
(4.37). This investigation showed the coincidence between the corresponding polynomials
and coincidence between the corresponding bounds. Our next goal will be to simplify the
expressions of S(M,7).



Chapter 5

Non-existence of Certain Spherical
Designs

5.1 Introduction

In this chapter we obtain some necessary conditions for the existence of spherical 7-
designs of odd strengths and odd cardinalities. These conditions imply non-existence
results in many cases. In Section 5.2 we derive a general non-existence rule. It gives a
bound which is asymptotically better than the corresponding estimation based on the
Delsarte-Goethals-Seidel bound.

It turns out that our approach works in small dimensions as well. In Section 5.3 and
Section 5.4 we consider in detail the strengths 7 = 3 and 7 = 5 respectively. We rule out
the first open cases by showing the non-existence of 3-designs with 7 points and 5-designs
with 13 points. For large odd cardinalities, when the non-existence argument does not
work, we obtain in Section 5.5 bounds on the maximal inner product of a 7-design of a
fixed cardinality. This chapter is based on [27].

5.2 Necessary Conditions for the Existence of Sphe-
rical Designs

In Chapter 1 and Chapter 2, we gave some definitions for the spherical designs. We shall

now proceed with a more detailed investigation of the structure of spherical 7-designs

with odd 7. It is natural to study the distribution of the inner products of the points of
a T-design.

Let C C S™! be a 7-design and y € C. We shall study the multi-set

I(y) = {(z,y) 1z € C,z # y},

69
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i.e. we also count the multiplicities. Without loss of generality we may assume that
I(y) = {tl, tz, ceey tlcl_l},

where
—1<t; <t < Sty < 1

Then, Equality (1.18) becomes

jel-1

> () =1C1fo - £(1) (5.1)

=1
and we use it in this form.

Our approach will be the following. We shall use some polynomials in (5.1) to obtain
bounds on the smallest inner product ¢;. Then, for odd 7 and |C|, we shall conclude that
the same bound is satisfied for the second smallest inner product t, for at least one point
y € C. The last information already implies a strong necessary condition for the existence
of spherical designs of odd strengths and odd cardinalities.

The characterization (1.18) given by Theorem 1.16 was used in [39] for obtaining bounds
on the minimum distance and the covering radius of 7-designs in polynomial metric spaces.
In [25], Equation (5.1) was already used for obtaining results for the distribution of the
inner products of spherical 7-designs on the interval [—1, 1].

Let 7 = 2¢ + 1 be odd, let C C §*! be a 7-design of cardinality |C| = R(n,T) + k, and
let y € C. We first derive an upper bound on the least inner product ¢; € I(y). We set

g(t) = [QU(t))
and

R(”? 7)

b= " R(n,7)+2k <

0.

Theorem 5.1 With the above definitions, t; < 6.

Proof. As we already mentioned (cf. Section 2.5), bound (2.2) for 7 = 2e + 1 was
obtained [36, Theorem 5.12] by substituting the polynomial (¢ + 1)g(¢) in Theorem 1.13.
Since g(t) is an even function, (2.3) shows that the first coefficients in the Gegenbauer
expansions of (¢ + 1)g(t) and g(t) coincide. We denote this common coefficient by go (in

fact, 29(1)/go = 2/g0 = R(n,7)).
We set
f(t) = (t —t)g(t) = (t+ Dg(t) — (t1 + 1)g(2)

in (5.1). Then the left-hand side of (5.1) is nonnegative, and the right-hand side is
folCl - f(l) = ——tlgg(R(n, T) + k) -1+ 1
which implies t; < —R(n,7)/(R(n,7) + 2k) = 6.
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O

Remark 5.2 In fact, an upper bound for the smallest inner product was proved in [25,
Corollary 2.3], but unstressed there. However, the idea for using such bounds for obtaining
nonezistence results for odd cardinalities came later [26, 27].

We recall (see (1.12) and Lemma 2.4) that the first coefficients in the Gegenbauer expan-
sion of t* are denoted by b;. In fact, in Lemma 2.3 we computed the exact values of the
b;’s which are relevant for Theorem 5.4 below.

Definition 5.3 For ¢ € [—1,0), we say that a point x is e-near antipodal to y, if (z,y) <
€.

For ¢ = —1, Definition 5.3 gives, of course, the usual antipodality.

Theorem 5.4 Letn >3, 1 =2e+12>3, and k> 1 be such that

bae[R(n,7) + k] — 1 < 28%°. (5.2)
Then, each point of C has a unique §-near antipode from C. In particular, k must be
even.
Proof. If t; < 6 for some y € C, then substituting f(¢) = % in (5.1) yields

|C]-1
be| Gl — 1= > 42 > 43 4 43 > 212° > 287, (5.3)

=1
which contradicts (5.2). Therefore
tl S ) < t27

for all y € C. We conclude that each point y € C has a unique §-near antipode z € C.
Therefore, the points of C' can be divided into disjoint pairs, so [C] is even. Since R(n,T)
is even for 7 odd, the number k& = |C| — R(n,7) must be even.

Theorem 5.4 gives the following non-existence rule.

Corollary 5.5 If n > 3 and the odd numbers 7 = 2e +1 > 3 and k > 1 are such that
(5.2) is satisfied, then there exist no spherical T-designs on S™~! with R(n,T) + k points.

0
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Substituting suitable polynomials in (5.1) and using the estimation from Theorem 5.1
one can obtain better non-existence results for (2e + 1)-designs with odd cardinalities. In
the next two sections the cases e = 1 and e = 2 will be considered in detail. Before we
do so we shall derive another universal non-existence rule. We do this by improving the
argument of Theorem 5.4 in general.

We recall that (see Theorem 1.8 and the subsequent paragraph) the smallest zero of the
Gegenbauer polynomial Qirt?) (t) = QL(t) is denoted by tﬁﬁ“). Obviously, tgﬁ“) is the
least zero of g(t) as well.

Theorem 5.6 If n > 3 and the odd numbers 7 = 2¢ + 1 > 3 and k > 1 satisfy the

conditions
§ <t (5.4)

and
—26g(6) > 1 (5.5)

then no 7-designs exist with R(n,) + k points on S™ 1.

Proof. Assume that.t, < § for some y € C. Since g(1) = (Q£n+z)(1))2 =1and g =
29(1)/R(n,7) = 2/R(n, ), we have by the definition of § and (5.1) for y and g(¢)

1 R(n,7)+2k _ 2|C|— R(n,T)

) R(n,T) R(n,7)
(Cl-1
= lCl-g(1) =} _ g(t:).

The non-negative even function g(t) decreases in the interval (—oo, tg;“)]. Therefore, the
last sum can be bounded from bellow by

[c]-1

> g(t) = g(t) + g(ta) = 29(t2) > 29(6)

i=1

(for the last estimation, we use (5.4)), which contradicts (5.5). Hencet; > 6 for ally € C
and we can repeat the non-existence argument in the proof of Theorem 5.4.

Lemma 5.7 Let k and 7 be fized. Then tf;;“’ tends to zero for n — oo.

Proof. By the recurrence relation (1.5) for the Gegenbauer polynomials, one has

QM) =% 1Q, (1),

whence an)(t) 2% t¢ and our claim follows.
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]
We now discuss the non-existence results ensured by Theorem 5.6 for 7 fixed and n — oo.

Theorem 5.8 For fized 7 = 2e + 1 > 3 and every positive p < po = (2V/7 — 1)/e! there
exists a constant ng = no(p) such that for n > no 7-designs with cardinality R(n, ) + k
do not exist on 8™ for all odd positive k < pn®.

Proof. Since k < 2pn®, we have
f<_— fmr)
~  R(n,7) +2pne

However, A1) ,
n, v n—00

—
R(n,7) + 2pne 1 + pe!
because R(n,7) =2(n +e—1)---(n+ 1)n/e! ~ 2n°/e! as n — oo. Therefore, we have

>0

6 < — <0

1+ pe!
for all large enough n. This and Lemma 5.7 imply that condition (5.4) is satisfied for
large enough n.

It remains to check (5.5). It follows from (5.4) that g(¢) is decreasing in (—c0, §] (in fact,
this is the sense of this requirement). Thus, we obtain

2R(n,7) ( R(n,7) )
R(n,7) + 2pn° R(n,T) + 2pn° 2
T v |4 ()]

As in the proof of Lemma 5.7 we see that the right-hand side of the last expression tends
to

—269(6)

2 1 2

(1 + pe!) ’ (1 +peh)2e (14 peh)”

when n — oco. Therefore,
2
> =
(I +peh)™ ™ (14 poel)y

for all large enough n. This completes the proof.

—8g(8) >

Corollary 5.9 For fized T =2e+1 >3 and n — oo, we have
14247

Bodd(n,r) 2 n-.

e!

The above approach can be further refined and improved. We show this in the next two
sections.
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5.3 Non-existence of Certain 3-designs

Bajnok [5] has constructed spherical 3-designs of all possible even cardinalities. So only
odd cardinalities are interesting for us.

For 7 = 3, we have R(n,3) = 2n, g(t) = t?, § = —n/(n + k), and tf:lw) = 0. Let
C C S ! be a 3-design with |C| = R(n,3) + k = 2n + k points and y € C. We set
C ={y,z1,%2,...,Tontk-1} and (z;,y) =t;for 1 <i < In+k—1, where -1 <t; <t <
-++ < tynyp-1- By Corollary 5.5 we obtain the following:

Theorem 5.10 For odd k < (21/3 — 1)n = 0.26n there ezists no spherical 3-design on
S~ with 2n + k points.

Proof. For 7 = 2e + 1 = 3, (5.2) is equivalent to k < (213 — D)n.

a

Example 5.11 By Theorem 5.10, we obtain that there exist no 3-designs with 2n + 1
points (k = 1) in dimensions n > 4, no 3-designs with 2n+3 points (k = 3) in dimensions
n > 12, ete.

Notice that Theorem 5.6 gives the same result because Qg"“)(t) =1 (and tgﬁ”) =0 >
§=-n/(n+k))

To obtain further non-existence results for spherical 3-designs we need better estimations.
As a simple consequence, we shall prove the non-existence of spherical 3-designs on S?
with 7 points which solves the first open case.

Lemma 5.12 For every real a,

t; < F(a) < tontk-1,

where

na? +2(n + k)a +n hi(a)

Fla)= " n(2n+k—1)a® +2na+n+k - ha(a)

Proof. Set f(t) = (t —a)?(t —t;), where i = 1 or 2n+k—1, in (5.1). The left-hand side of

(5.1) is non-negative for ¢ = 1 and non-positive for ¢ = 2n + k — 1. By (2.4), we compute
1
fo= (I,zii - ——(2!1 + ti).
n

Solving the inequalities fo|C|— f(1) > 0 fori =1and fo|C|— f(1) < Ofori=2n+k—1,
leads to the claimed estimations.
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The argument in Theorem 5.1 corresponds to a = 0 in Lemma 5.12. Now we investigate
the function F'(a) to obtain better estimations for ¢;. The equation F’(a) = 0 is equivalent
to

hi(a)ha(a) — hi(a)hy(a) = 0,
which gives the quadratic equation

n(n+k—1a*+n(n—-1)a—k=0. (5.7)

Let a; and a; be the positive and the negative root of (5.7) respectively, i.e.

—n(n —1) £/n?(n — 1) + dnk(n + k — 1)
2nin+k—1)

a2 =

Lemma 5.13 With the above definitions
tl SF(G1)202<0

and
tontk-1 = Fa2) = a3 > 0.

Proof. The function F(a) has its maximum for @ = a, and its minimum for @ = a;. Since
F'(a1) = 0, we have
_ hi(e)  —nay—(n+k)
Fla) = Ry(ar) n(@n+k—1)a;+n’

To check the identity F'(a;) = ag, we apply the Vite formulae in its equivalent equality
n(a1 + a2) + n(2n + k — 1)ajay = —(n + k).
Analogously, one obtains F'(as) = a;.

]

We now obtain a necessary condition for the existence of 3-designs which in fact refines

(5.2) and Theorem 5.6.

Theorem 5.14 If k is odd, then

S 2n® + (5k — T)n? + (4k* — 15k +5)n + k(k — 1)(k — 5)
= 2n[2n2 4 (k — 5)n + 3(1 — k)]

. (5.8)

ay

Proof. If t3 > a5 for all y € C we can apply the non-existence argument from Corollary
5.5. So, we can assume that ¢, < ay for some y € C.
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For this point y, we set f(t) = (t —a)? in (5.1) assuming a > az. We have (computing fo
by (2.4))

2n+k—1

fICI-fA) = > (ti—a)

=1

> (ty—a)? + (b2 —a)? > 2(t; — a)® > 2(az — a)?

n+k

n

(2n +k —1)a® + 2a +

(for the last inequality, one has to use t; < ay < a). This gives the quadratic inequality

k
(@n+ k- 3)a® + 2(1 + 2a5)a + % ~ 242 > 0.

The quadratic function in a on the left-hand side has its minimum at the point

1+2a2
on+k—-3

ag =

which is grater than or equal to az. The value of this minimum equals

2 5 1 (n+k)(2n+k-3)
_2n+k_3((2n+k——1)a2+2az+§— = .

Since the minimum must be non-negative, we obtain

k k-
(2n+k—1)a§+20«2+%§ (n )(22’;+ 3,

Since a; is a root of (5.7), we express

2 kE—n(n—1)ay
27 n(n+k-1)

from (5.7) to obtain a linear inequality with respect to a; which is equivalent to (5.8).

]

Theorem 5.15 There ezists no spherical 8-design with T points on S2.

Proof. In this case (5.8) is violated since a; = —(1 +14/2)/3 ~ —0.804 while the right-hand
side of (5.8) is equal to —1/2.

O

Example 5.11 and Theorem 5.15 complete the case k = 1, i.e. we have shown the non-
existence of spherical 3-designs on S™! with 2n + 1 points (this is the first possible
cardinality of a non-tight 3-design) in all dimensions n > 3. The precise investigation
of condition (5.8) implies the following result, which slightly improves Theorem 5.8 for
T=3.
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Corollary 5.16 No spherical 3-design on S™! exists with R(n,3) + k = 2n + k points
forn > 3, where k is any positive odd integer < n(2'/3 — 1) 4 p, and where p = 2(14 —
5.21/% — £.2%/3)/9 ~ 0.30018. In other words,

B.ai(n,3) (1+2"3n+p (5.9)

>
~ (142Y%)n +0.30018. (5.10)
Proof. We are interested in the pairs (n, k) for which » > 3 and £ > 1. In what follows
we shall take only such pairs under consideration. After a routine calculation (which we
made using Maple V), inequality (5.8) takes the form

0 < ha(n,k) =k +4(2n — 3)k* +2(13n* — 39n + 23)k*
+2(21n® — 93n® + 112n — 30)k°
+(31n* — 186n® + 349n? — 210n + 25)k>
+2n(2n* — 2502 + 7Tn? — 82n + 28)k
—n?(4n* 4 20n° — 33n® 4 22n — 5).

The constant p was ”conjectured” by setting k = (21/°—1)n+p, forgetting the small (with
respect to the degrees of n) terms and resolving a linear (with respect to p) equation. In
this case we get a polynomial in the variable n of degree five with a leading coefficient
which is equal to

6(1 + 2V°%)2p 4 4(4 — 5.21/3).

Since this coefficient must be non-positive, we see that the largest p which can be used is
exactly 2(14 — 5.21/% — 4,22/3) /9.

We have
ha(n,n(2Y® —1) + p) < —15n* + 49n° — 32n® + 5n + 1 < 0,

whenever n > 3. The standard investigation of hs(n, k) shows that it is an increasing
function of the variable k in the interval [1,+00). Thus, for every positive integer k such
that k& < n(2'/® — 1) + p, we have ha(n, k) < hs(n,n(2'/2 — 1) + p) < 0. In this case,
condition (5.8) is violated, which completes the proof.

]

Remark 5.17 Bajnok [5] has constructed 3-designs on S™* for all odd cardinalities
greater than or equal to R(n,3)+n/2 =5n/2 forn > 6, for cardinality 11 when n = 3,4,
and for cardinality 15 when n =5, and for all possible even cardinalities (see Table {.1).
Thus, Corollary 5.16 shows that all possible cardinalities of 3-designs on S"~! are already
known for n = 4,6 and only one open case remains in each of the dimensions n = 3,5,
and T < n < 14. The situation is explained also in Table 5.3 below. Our non-ezistence
results are given in the second column, where the asterisk (x) show non-ezistence and the
last entry gives the bound from Theorem 5.10.
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n | Non-existence? | Constructions(Bajnok {5])
3 9 > 11

4 9* > 11

5 11%,13 > 15

6 13* >15
>T7 > 2.26n >5n/2 =2.5n

Table 5.1: Spherical 3-designs with odd cardinalities.

5.4 Non-existence of Certain 5-designs

Let C C S™! be a 5-design with |C| = R(n,5) + k = n® +n + k points and y € C. We
set C = {y, 21,22, ., Tp2qnik-1} and (z;,y) = t; for i = 1,2, ...,nt4+n+k—1, where
—1<t; <ty <--- <tp2ynik-1- Theorem 5.1 gives

n(n+1)

m. (5.1].)

t1<6="‘

Inequality (5.2) is equivalent to

n?+n+2k ,[2n2+n+3k

n{n+1) . 2n(n +2) <l

G(n, k) =

Theorem 5.18 Let n > 3 and let k be an odd integer such that
G(n, k) < 1.

Then there exists no spherical 5-design on S™™ with n® + n + k points.

Remark 5.19 For k = 1, a simple analysis of the function G(n,1) implies the non-
existence of spherical 5-designs with n? +n + 1 points in all dimensions n > 7. Similarly,
for k = 3, one obtains the non-ezistence of spherical 5-designs with n® 4+ n + 3 points in
all dimensions n > 20. In three dimensions, Theorem 5.18 provides no information.

We now discuss the non-existence results guaranteed by Theorem 5.6 when 7 = 5. It
already gives better results (not as in the case 7 = 3). We have

(n+2)t? -1

12
m——} (5.12)

g(t) =

Theorem 5.20 Forn > 3 and any odd positive k < n(n+1)(v/n +2—1)/2, there exists
no spherical 5-design on S™' if

(n + 1)(n? 4 n + 2k)° < 2n[n*(n + 1)° — 4k(n® +n + k)% (5.13)
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Proof. Since
PA(@) = (n+2)8 = 1)/(n+1)

(i.e. tgﬁ“) = —1/+/n +2), condition (5.4) is equivalent to inequality
n+1l)(vVn+2-1)
5 .

k<n(

A little algebra (use (5.11) and (5.12)) shows that (5.5) is equivalent to (5.13).

a

Remark 5.21 For k = 1, inequality (5.13) implies the non-ezistence of 5-designs with
n® +n+1 points in all dimensions n > 4 (in fact, after Remark 5.19, we need to check
(5.18) for n = 4,5 and 6 only).

Analogously, for k = 3, one obtains the non-ezistence of spherical 5-designs with n?+n+3
points in all dimensions n > 7.

A careful analysis of condition (5.13) leads to the following asymptotic result.
Corollary 5.22 For n > 3, there exists no spherical 5-design on S™™! with n? +n + k

points for all odd positive k < pon® + pin, where py = (215 —1)/2 ~ 0.074349 and
p1 = (=5 + 7.21/5 —2.93/5)/10 ~ 0.00095. In other words,

1 21/5
Boaa(n, 5) +2 n? + (1 +pi)n (5.14)
142175
~ 22T 1.00095m. (5.15)

Proof. Using Maple V again (as in Corollary 5.16), we found that inequality (5.13) is
equivalent to

0 < hs(n, k) =—32(n+ 1)k* — 16(5n% + 10n + 3)nk*
— 16n%(n+1)(5n® + 10n + 1)E®
— 8n®(n+1)%(5n% 4+ 12n + 3)k* — 2n*(n 4+ 1)*(5n + 13)k + n°(n + 1)°.
It is obvious that for every fixed positive number n, the function hs(n, k) in the variable

k is decreasing on (0, +oc). Constant p; was found in the same way as in the case 7 = 3
(cf. Corollary 5.16). We now substitute & with pon® + pin in hs(n, k) and obtain

hs(n,k) > hs(n,pon® + pn)
> n®+4n® 460" +3n° >0
for k € [1,pon? + pin) and for every positive n. Thus (5.13) is satisfied for every positive
k < pon® + pin.

To complete the proof we check the other necessary condition in Theorem 5.20 by seeing
that k£ < pon? + pin <n(n +1)(v/n +2 —1)/2 for every n > 3.
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i

We have to mention that neither of the constants py nor p; can be made larger by our
method. Indeed, if we try to increase some of them, a negative coefficient will appear in
the front of the highest power of n in hs(n, pon®+ pin). In this case hs(n, pon® + pin) will
be negative for large enough n.

Using Maple in a slightly more complicated way, one can prove that

1+ 21/5
Boaa(n,5) 2 — n® + (14 p1)n + pa (5.16)
1 1/5 :
~ +22 n? + 1.00095n + 0.0428 (5.17)

instead of B,ga(n,5) > n*+n+1 by (2.2). In this case, the function hs(n, pon? + pin+p2)
is a polynomial which vanishes at n = 3 and is positive for all n > 3.

To refine our approach we follow the argument from the previous section. We have to
consider in (5.1) the polynomials

fl (t) = (t2 + at + b)z(t — tl)
and
folt) = (& + at + Bt ~ i)

for the best choices of the parameters a and b. The following lemma is analogous to
Lemma 5.12 and can be proved in the same way.

Lemma 5.28 For cvery real a and b
131 S F(aw b) S tn2+n+k——1>

where

n(l+a+b)?—2a(n?+n+k)(b+ 25)

F(a,b) = — .
(a,5) (n? +n+k)(a? + nb? + 20+ 25) — n(l + a+ b)?

m}

We now describe a simple algorithm for proving further non-existence results for 5-designs.
Given n > 3 and odd k > 1, we first use Lemma 5.23 to obtain some bounds ¢; < b, and
tn24nik-1 = b2. Then, we search for polynomials

F&) = (¢t~ c)*(t — )%,
where b; < ¢ < d < by. The non-existence argument will hold if
folCl = f(1) <2f(c) + f(d).

Of course, it is enough to find just one pair (c,d) for which the last inequality holds. The
above technique works well enough to rule out the first open case.
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Theorem 5.24 There exists no spherical 5-design with 13 points on SZ.

Proof. We obtain the bounds ¢; < —0.898 = b; and t;, > 0.489 = by by using the
pairs (a,b) = (—0.148,—0.167) and (1.24,0.307) respectively. Then the pair (¢, d) =
(—0.341, by) works.

[m

The above technique works in other cases where (5.13) does not give non-existence results.
For example, one can prove the non-existence of 5-designs with 45 = R(6,5) 4+ 3 points
on S® (in some sense, this is the next case after Theorem 5.24).

5.5 Bounds on the Maximal Inner Product of De-
signs with odd Strengths and Cardinalities

The non-existence argument from Theorem 5.4 does not work for very large odd cardi-
nalities. In this case we are able to obtain a lower bound on the maximal inner product
s(C) (equivalently, an upper bound on the minimum distance d(C') = 1/2(1 — s(C))) of
all (2e + 1)-designs C' C S™! with fixed odd cardinality R(n,2e + 1) + k.

Theorem 5.25 Let T =2e+1>3, k>3 be odd, n >3, and C C 8" ! be a 7-design
with R(n,7) + k points. Then

s(C) > 261
and

d(C) < 2V1— 6.

Proof. There exists a point y € C such that ¢, < é. Let the acute angle ¢ be such that
cos ¢ = —§. Then the angle between the vectors z; and z2 does not exceed 2. Thus, we

have
5(C) > (z1,22) > cos2p = 2cos’ p — 1 = 26% — 1.

The bound for d(C) is obtained by d(C) = +/2(1 — s(C)).

[

An universal bound on the maximal possible cardinality A(n,s) = A(S™',s) of an
(S*~1, M, s) code is the so-called Levenshtein bound [51, 52, 53].
Lye—v(n,s) for < g < gl

< ) -1 e 5.18

Aln,s) < {LZe(n,s) for t10 < s <l (5:18)

where

2e+n—3 PU(s)— P(s)

nel (1= 9)R)

e—1 ’

Loea(n,s) = (e +n-— 3)
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and

e+n— 2) {26+n——1 _ (1 +S)(Pe(n)(5) —Pe(i)l('s))

Lgen,S: )
(n,5) ( n—1 (1 — $)(P™M(s) + P (s))

e
a=1 a1
The numbers 1! and 10 are the greatest zeros of the Jacobi polynomials Pl )(t) =
n=1 n=3

Qgﬂ“)(t) and P77 )(t), respectively. The Levenshtein bound has been obtained by
the linear programming approach using Theorem 1.12.

We proceed with a short explanation of the logic of the bounds (5.18). The real numbers
{tl1yee  (set tg" = —1) and {¢1°}%2, divide the interval [—1,1) into consecutive closed
non-overlapping intervals {I,,}°_,. For each positive integer m and all s € I, one has
A(n, 8) < Ly(n,s).

In the common boundary points of I, and I,,4+1 we have

Loe_1(n,t1°) = Loy(n, t10) = (n +e— 1) n (n +e— 2) = R(n,2¢),

n—1 n—1
and
n+e—1

n—1 ):R(n,Qe-i—l).

LZe('nﬂtin) = L2€+l(n’ tgla’l) = 2(

Using these relations between the Levenshtein bounds and the Delsarte-Goethals-Seidel
bound, one obtains bounds on the maximal possible inner product of a spherical 7-design
of a fixed cardinality. What we give below is a reformulation of (a part of) Theorem 1 in

[39].
Theorem 5.26 [39] For any spherical (2e + 1)-design C C 8™,
s(C) = t*) (resp. d(C) < 4/2(1 — &), (5.19)

We recall (see Theorem 1.8 and the subsequent paragraph) that £+ = t1! is the greatest

zero of the Gegenbauer polynomial Q£n+2)(t).

To describe the asymptotic form of the bound (5.19), we need the Hermite polynomials
and their greatest zeros. The Hermite polynomials can be defined [1, Chapter 22] by

Ho(t) = 1, Hy(t) = 2t, Hipy(t) = 2Hi(t) — 2 Hiy(8), i > 1.

Let h. is the greatest zero of the polynomial H(t). Then hy =0, hy = 1/V?2, ha = +/3/2
and h, = v/2e + O(e™1/%) as e — co.

Corollary 5.27 [89, Theorem 4]

s(C) > \/ghe + O(n_g/z) as n — 00. (5.20)
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For 7 fixed, the right-hand side of (5.20) tends to zero as n tends to co. For odd |C/|, we
obtain a positive lower bound on s(C') that does not depend (explicitly) on n.

Theorem 5.28 Let 7 =2e+ 1, k = yn® be odd, and
@2V —1)/el <y < (V2 =1)/el.

Then for any spherical T-design C C S™! with odd cardinality |C| = R(n,7) + k and as
n — oo,
1 — 2vel — 42(e!)? 2
C)> h(y) = = — 1.
s(0) 2 h(7) (14 veh)? (14 yel)?

Proof. For large enough n, we have R(n,7) =~ 2n¢/e! and Theorem 5.25 implies the
assertion.

a

The function k(y) is strictly decreasing for v > 0. Since ~((v/2 — 1)/e!) = 0, we have
h(y) > 0 for all (2V/7 —1)/e! < 4 < (v/2 — 1)/e!. Therefore, Theorem 5.28 gives better
results than (5.19) for all large enough n.

Finally, we show some improvements of the bound (5.19) by Theorem 5.25. In other
words, our technique works well in small cases also.

Example 5.29 For 7 = k = 3 and n = 8,9,10, bound (5.19) gives s(C) > 0, while
Theorem 5.25 implies s(C) > 7/121,1/8,31/169 respectively. For r =5, k =3, and n =
7,8,(5.13) gives s(C) > 1/3,1//10 while our Theorem 5.25 gives s(C) > 607/961,119/169
respectively.
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Appendix

Tables with values of parameters of the B, -extremal

polynomials

n a b c d q

4 | 0.6774 | -0.3116 | -0.1926 | -0.0106 | 0.1506
5 10.6711 | -0.2718 | -0.1748 | -0.0088 | 0.1461
6 | 0.6648 | -0.2371 | -0.1586 | -0.0079 | 0.1415
7 1 0.6585 | -0.2067 | -0.1442 | -0.0073 | 0.1368
8 [0.6524 | -0.1796 | -0.1317 | -0.0070 | 0.1323
9 | 0.6467 | -0.1553 | -0.1207 | -0.0069 | 0.1279
10 | 0.6413 | -0.1332 | -0.1110 | -0.0068 | 0.1238

Table 1.Values of the parameters a, b, ¢, d, ¢ of the B, g-extremal polynomial

n a b c d q

51 0.1731 | -0.3533 | -0.057 | 0.0029 | 0.1476
6 | 0.1659 | -0.3155 | -0.0498 | 0.0019 | 0.1423
7 10.1590 | -0.2813 | -0.0433 | 0.0010 | 0.1372

Table 2. Values of the parameters a, b, ¢, d, ¢ of the B, 7-extremal polynomial.
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n a b ¢ d e q

4 10.6833 | -0.5497 | -0.3436 | 0.0187 | 0.0146 | 0.1549
5 | 0.6802 | -0.5016 | -0.3177 | 0.0157 | 0.0130 | 0.1527
6 | 0.6768 | -0.4587 { -0.2937 | 0.0126 | 0.0113 | 0.1503
7 | 0.6730 | -0.4205 | -0.2720 | 0.0098 | 0.0098 | 0.1475
8 | 0.6689 | -0.3865 | -0.2525 | 0.0073 | 0.0085 | 0.1445
9 | 0.6646 | -0.3560 | -0.2350 | 0.0052 | 0.0074 | 0.1413
10 | 0.6601 | -0.3285 | -0.2194 | 0.0034 | 0.0065 | 0.1380
11 | 0.6556 | -0.3035 | -0.2053 | 0.0019 | 0.0057 | 0.1346
12 | 0.6511 | -0.2807 | -0.1926 | 0.0006 | 0.0050 | 0.1313
13 | 0.6467 | -0.2597 | -0.1812 | -0.0006 | 0.0045 | 0.1280
14 | 0.6425 | -0.2401 | -0.1709 | -0.0017 | 0.0040 | 0.1247
15| 0.6385 | -0.2219 | -0.1615 | -0.0025 | 0.0036 | 0.1216
16 | 0.6346 | -0.2048 | -0.1529 | -0.0034 | 0.0032 | 0.1186
17 | 0.6309 | -0.1886 | -0.1451 | -0.0041 | 0.0029 | 0.1158

Table3. Values of the parameters a,b, ¢, d, e, q of the By s-extremal polynomial.

n a b c d € q

4 10.1852 | -0.6384 | -0.1110 | 0.0519 | 0.0069 | 0.1582
5 | 0.1807 | -0.5903 | -0.0986 | 0.0452 | 0.0055 | 0.1530
6 | 0.1757 | -0.5470 | -0.0879 | 0.0390 | 0.0044 | 0.1496
7 10.1707 { -0.5078 | -0.0788 | 0.0336 | 0.0036 | 0.1458
8 | 0.1654 | -0.4722 | -0.0709 | 0.0288 | 0.0030 | 0.1419
9 | 0.1600 | -0.4396 | -0.0640 | 0.0245 | 0.0025 | 0.1379
10 | 0.1546 | -0.4096 | -0.0580 | 0.0208 | 0.0021 | 0.1339
11 | 0.1493 | -0.3817 | -0.0527 | 0.0175 | 0.0018 | 0.1299
12 1 0.1443 | -0.3557 | -0.0481 | 0.0146 | 0.0015 | 0.1261
13| 0.1396 | -0.3312 | -0.0441 | 0.0120 | 0.0013 | 0.1225
14 | 0.1352 | -0.3080 | -0.0406 | 0.0097 | 0.0011 | 0.1191

Table 4 Values of the parameters a, b, ¢, d, e, g of the B, g-extremal polynomial.
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a

b

C

d

[

f

NeRNo IEN Bife NINS: SN I}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0.6872
0.6867
0.6860
0.6846
0.6827
0.6803
0.6774
0.6743
0.6709
0.6673

0.6637.

0.6600
0.6563
0.6526
0.6490
0.6454
0.6419
0.6386
0.6353
0.6322
0.6292
0.6263
0.6236

-0.7916
-0.7371
-0.6871
-0.6417
-0.6008
-0.5639
-0.5304
-0.4999
-0.4720
-0.4463
-0.4227
-0.4007
-0.3803
-0.3612
-0.3433
-0.3264
-0.3105
-0.2953
-0.2809
-0.2672
-0.2540
-0.2413
-0.2292

-0.5039
-0.4727
-0.4435
-0.4164
-0.3915
-0.3686
-0.3477
-0.3285
-0.3109
-0.2948
-0.2800
-0.2664
-0.2538
-0.2422
-0.2315
-0.2215
-0.2122
-0.2036
-0.1956
-0.1881
-0.1811
-0.1745
-0.1684

0.1000
0.0874
0.0757
0.0654
0.0566
0.0491
0.0426
0.0371
-0.0323
0.0282
0.0245
0.0213
0.0185
0.0160
0.0137
0.0117
0.0098
0.0082
0.0066
0.0052
0.0039
0.0027
0.0016

0.0601
0.0535
0.0473
0.0418
0.0369
0.0327
0.0291
0.0260
0.0234
0.0210
0.0190
0.0172
0.0157
0.0143
0.0131
0.0121
0.0111
0.0102
0.0095
0.0088
0.0082
0.0076
0.0071

0.0016
0.0010
0.0007
0.0005
0.0004
0.0004
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002

q
0.1577
0.1573
0.1568
0.1559
0.1545
0.1527
0.1507
0.1484
0.1459
0.1433
0.1406
0.1379
0.1351
0.1324
0.1296
0.1269
0.1243
0.1217
0.1192
0.1168
0.1144
0.1122
0.1100

Table 5. Values of the parameters a, b, ¢, d, €, f, ¢ of the B, jp-extremal polynomial.
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n a b c d e f q

4 10.1885 | -0.8831 | -0.1571 | 0.1549 | 0.0236 | -0.0019 | 0.1586
5 10.1865 | -0.8304 | -0.1434 | 0.1382 | 0.0196 | -0.0019 | 0.1572
6 | 0.1840 | -0.7819 | -0.1314 | 0.1231 | 0.0164 | 0.0017 | 0.1554
7 | 0.1811 | -0.7374 | -0.1207 | 0.1096 | 0.0139 | -0.0015 | 0.1533
8 10.1778 | -0.6967 | -0.1111 | 0.0977 | 0.0119 | 0.0013 | 0.1509
9 | 0.1741 | -0.6593 | -0.1024 | 0.0872 | 0.0102 | -0.0011 | 0.1483
10 | 0.1701 | -0.6248 | -0.0945 | 0.0780 | 0.0089 | -0.0009 | 0.1453
11{0.1658 | -0.5929 | -0.0873 | 0.0700 | 0.0077 | -0.0008 | 0.1422
121 0.1614 | -0.5634 | -0.0807 | 0.0628 | 0.0067 | -0.0007 | 0.1390
13 1 0.1570 | -0.5358 | -0.0747 | 0.0564 | 0.0059 | -0.0006 | 0.1357
14 | 0.1525 | -0.5101 | -0.0693 | 0.0507 | 0.0052 | -0.0005 | 0.1323
15 | 0.1480 | -0.4858 | -0.0643 | 0.0456 | 0.0046 | -0.0004 | 0.1289
16 | 0.1436 | -0.4630 | -0.0598 | 0.0410 | 0.0041 | -0.0003 | 0.1256
17 1 0.1393 | -0.4414 | -0.0558 | 0.0369 | 0.0036 | -0.0003 | 0.1223
18 | 0.1352 | -0.4208 | -0.0520 | 0.0331 | 0.0032 | -0.0002 | 0.1191
19 | 0.1312 | -0.4011 | -0.0486 | 0.0296 | 0.0029 | -0.0002 | 0.1160
20 | 0.1275 | -0.3822 | -0.0455 | 0.0264 | 0.0026 | -0.0001 | 0.1131
21 | 0.1241 | -0.3640 | -0.0428 | 0.0234 | 0.0024 | -0.0001 | 0.1104
22 | 0.1209 | -0.3463 | -0.0403 | 0.0206 | 0.0022 | -0.0001 | 0.1078
23 1 0.1180 | -0.3292 | -0.0381 | 0.0181 | 0.0020 | -0.0000 | 0.1055

Table 6. Values of the parameters a, b, ¢, d, e, f, q of the B, 11-extremal polynomial.

Table 7. Values of the parameters a, b, ¢, g of the B , s-extremal polynomial.

I
200w aao ote w3

1.2061
1.3891
1.5477
1.6853
1.8056
1.9120
2.0076
2.0946
2.1749

0.0898
0.3334
0.5477
0.7392
0.9121
1.0699
1.2153
1.3508
1.4784

-0.1375
-0.0767
-0.0170
0.0412
0.0974
0.1514
0.2035
0.2537
0.3024

q
0.3210
0.3111
0.3007
0.2895
0.2777
0.2658
0.2543
0.2435
0.2339
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a b c q
0.7168 | -0.2238 | -0.1024 | 0.3250
0.9218 | -0.0391 | -0.0896 | 0.3231
1.1006 | 0.1337 | -0.0667 | 0.3193
1.2559 | 0.2956 | -0.0375 | 0.3131
1.3914 | 0.4467 | -0.0047 | 0.3051
1.5105 | 0.5875 | 0.0299 | 0.2956
1.6162 | 0.7186 | 0.0653 | 0.2851
10 | 1.7108 | 0.8409 | 0.1008 | 0.2740
11 1 1.7963 | 0.9555 | 0.1360 | 0.2627
12 | 1.8743 | 1.0634 | 0.1707 | 0.2514
13 | 1.9461 | 1.1655 | 0.2049 | 0.2404
14 | 2.0129 | 1.2628 | 0.2385 | 0.2299
15 1 2.0756 | 1.3561 | 0.2717 | 0.2203
16 | 2.1350 | 1.4462 | 0.3046 | 0.2116

NoRNeHEN Sl IS T I ICY B

Table 8. Values of the parameters a, b, ¢, g of the By, ¢-extremal polynomial.

a b c d q
0.9534 | -0.2850 | -0.2995 | -0.0069 | 0.4552
1.2787 | 0.0787 | -0.2667 | -0.0361 | 0.4008
1.5375 | 0.4269 | -0.1773 | -0.0480 | 0.3707
1.7463 | 0.7450 | -0.0605 | -0.0469 | 0.3520
1.9193 | 1.0327 | 0.0678 | -0.0371 | 0.3382
2.0662 | 1.2937 | 0.1996 | -0.0217 | 0.3265
2.1935 | 1.5317 | 0.3309 | -0.0028 | 0.3158
10 | 2.3058 | 1.7504 | 0.4597 | 0.0185 | 0.3053
11 | 2.4059 | 1.9522 | 0.5850 | -0.0413 | 0.2948
12 1 2.4962 | 2.1396 | 0.7064 | 0.0649 | 0.2843
13 12.5783 | 2.3144 | 0.8237 | 0.0851 | 0.2738
14 | 2.6535 | 2.4782 | 0.9370 | 0.1135 | 0.2633
15 1 2.7229 | 2.6324 | 1.0466 | 0.1380 | 0.2530
16 | 2.7875 | 2.7783 | 1.1526 | 0.1625 | 0.2429
17 | 2.8479 | 2.9171 | 1.2556 | 0.1869 | 0.2331
18 | 2.9048 | 3.0497 | 1.3558 | 0.2112 | 0.2237
19 | 2.9588 | 3.1772 | 1.4536 | 0.2355 | 0.2150
20 | 3.0103 | 3.3004 | 1.5496 | 0.2597 | 0.2069
21 | 3.0598 | 3.4201 | 1.6441 | 0.2840 | 0.1997
22 | 3.1077 | 3.5371 | 1.7376 | 0.3083 | 0.1933
23 | 3.1543 | 3.6519 | 1.8304 | 0.3328 | 0.1880

© 00~ G w3

Table 9. Values of the parameters a, b, ¢, d, g of the By, 7-extremal polynomial.
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a b c q
1.3249 | 0.2833 | -0.0667 | 0.3036
1.5928 | 0.6298 | 0.0209 | 0.2820
1.8133 | 0.9308 | 0.1108 | 0.2640

O W3

Table 10. Values of the parameters a, b, ¢, d, ¢ of the B, s-extremal polynomial.

a b c q
1.1423 | 0.2231 | -0.0353 | 0.2933
1.3835 | 0.4716 | 0.0134 | 0.2772
1.5805 | 0.6982 | 0.0690 | 0.5691

o O3

Table 11 Values of the parameters a, b, ¢, g of the Bs ,¢-extremal polynomial.

n a b c d q

3 {1.3597 | 0.2034 | -0.2196 | -0.0361 | 0.3106
4 | 1.6761 | 0.6812 | -0.0528 | -0.0376 | 0.2988
5 | 1.9406 | 1.1169 | 0.1426 | -0.0207 | 0.2868
6 |2.1614 | 1.5113 | 0.3492 | 0.0075 | 0.2731
7 12.3482 | 1.8678 | 0.5571 | 0.0424 | 0.2582
8 |2.5090 | 2.1920 | 0.7614 | 0.0815 | 0.2433
9 | 2.6502 | 2.4895 | 0.9605 | 0.1230 | 0.2291
10 | 2.7768 | 2.7662 | 1.1546 | 0.1662 | 0.2168
11 | 2.8925 | 3.0270 | 1.3447 | 0.2106 | 0.2069

Table 12. Values of the parameters a, b, c, d, q of the Bs , r-extremal polynomial.

n a b c d q
3 | 1.5469 | 0.5414 | -0.0596 | -0.0259 | 0.2878

Table 13. Values of the parameters a,b, ¢, d, g of the By s r-extremal polynomial.

a b c d q
0.0000 | -0.3520 | 0.0000 | 0.0027 | 0.1799
0.0000 | -0.3145 | 0.0000 | 0.0018 | 0.1724
0.0000 | -0.2308 | 0.0000 | 0.0009 | 0.1649

-~ o 3

Table 14.Values of the parameters a, b, ¢, d, q of the By, 3-extremal polynomial.
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Table 15.

Table 16.

Values of the parameters a,b,c,d, e, q of the By, , 4-extremal polynomial.

a

b

c

d

€

q

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
10 | 0.0000
11 | 0.0000
12 ] 0.0000
13 | 0.0000
14 | 0.0000

WO e~ S U3

-0.6356
-0.5872
-0.5437
-0.5047
-0.4693
-0.4371
-0.4074
-0.3800
-0.3544
-0.3303
-0.3075

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0509
0.0442
0.0381
0.0327
0.0280
0.0239
0.0203
0.0172
0.0144
0.0119
0.0096

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1931
0.1889
0.1840
0.1787
0.1731
0.1673
0.1615
0.1558
0.1503
0.1451
0.1402

a

b

q

© 00~ O Ut

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.0000 | -0.8795
0.0000 | -0.8260
0.0000 | -0.7770
0.0000 | -0.7324
0.0000 | -0.6917
0.0000 | -0.6544
0.0000 | -0.6202
0.0000 | -0.5886
0.0000 | -0.5593
0.0000 | -0.5321
0.0000 | -0.5066
0.0000 | -0.4828
0.0000 | -0.4603
0.0000 | -0.4390
0.0000 | -0.4187
0.0000 | -0.3994
0.0000 | -0.3808
0.0000 | -0.3630
0.0000 | -0.3457
0.0000 | -0.3282

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
-0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
-0.0000
0.0000
0.0000

0.1527
0.1358
0.1207
0.1073
0.0956
0.0853
0.0763
0.0684
0.0614
0.0552
0.0497
0.0448
0.0403
0.0363
0.0326
0.0292
0.0261
0.0232
0.0205
0.0180

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

-0.0017 | 0.1971
-0.0017 | 0.1955
-0.0016 | 0.1933
-0.0014 | 0.1905
0.0012 | 0.1871
-0.0010 | 0.1833
-0.0009 | 0.1790
-0.0007 | 0.1745
-0.0006 | 0.1698
-0.0005 | 0.1650
-0.0004 | 0.1602
-0.0004 | 0.1553
-0.0003 | 0.1505
-0.0002 | 0.1459
-0.0002 | 0.1413
-0.0002 | 0.1370
-0.0001 | 0.1329
-0.0001 | 0.1290
-0.0001 | 0.1255
0.0000 | 0.1222

Values of the parameters a, b,c, d, ¢, f, q of the By /3, 5-extremal polynomial.
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Proof of the Theorem 4.25
Using Lukacs Theorem [73, p.4] f(t) must have the following form:

sty = { A+ D(Aen ) + (L =1)(Bra(1))* when deg(f) = 2k +3,
(Appa())? + (1 — t3)(Br41(t))? when deg(f) =2k +4,
where the indices coincide with the degrees of the corresponding polynomials.

Casel. 7 = 2k

Now let
k+1 k+1
Arr(t) =Y FAQYNE), Brnl() Zf,(B )Q:°(2)-
=0
Then

Q) _ 2(Lidy fi(A)’
QUf) = o I Zk+1 (f,(A))2 + _1_Zk+1 (F:(B))?

&0 Lai=0 " T
;

The ZSF expansion is f(t) = 23:3'3 fi(£)Qi(t). We will denote by

zipr = fi(4) i=0,...,k+1
yir1 = fi(B) i=0,...,k+1

1 y —
Oli+1=mr Z—O,...,]C+1

ﬂH—l 21010 i=07~"7k+1

0,1 2 0,1 0,1 0,1 0,1 _ 0,1 2 %2k+43,2k+1
A = (ak-H k=1 ) +2a3)y, k+1alc+1 ko1 F 2080 g1k — (G p4a) PR
01 01
Az = 2% = 1ak+1 k1 + 2% KOsk T 20110100 ki

Ay = 2% 1,k— 1ak+1 k+1

2
Az = (a3}
_ 10 1,0 1,0 10 2
B = (ak+1 k)’ 2‘%Hl A+ Gy o1 T 2C‘k+1 k+1ak+1,k + (a331,041)°7
By = 2ak,ka'lc+1,k+1 2ak,k—1ak+1,k+1 2% Okt k
Bz = —2%01 E—1%k41, k41
By = —(ak k)’
0,1 0,1
Cn = (ak+1 ki)’ T 2000 k1 e
Cho = 2a2 am
12 = 40 k%k41,k41
2
Dy = 2ak+1 1%k T (ak+1 k+1)
Dyy = 02% £ Q41 k41
G-

E — k-ll-1 Jk+1 )2
. TR, k+1
f = fr+2aT+2,r+2

Case2. 7=2k+1

Now

B2 E+1

Ak+z Z fz z By (t) = Z fi(B

=0 =0
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Then

) - 10 L)

fo Ef+o2 Lhtaie cll ijol (fZ(lBl

i

In terms of ZSF we have the expansion f(¢) = Z%‘H fiQi(t). Let us denote by

z; = fi(A) i=0,...,
Yiy1 = fi(B) 1=0,...
@ = i=0,...,
Biy1 = CTl‘Tﬁ 1 =0,.
Apn = (Gk+2 +1)? + 2ak42 k4200125 — (ke k+2)2%

Aty = 20k41,80k42,6+2 T 20k41 ft10k42 k+1
A1z = Gk kOk2 k42
Ay = (ak+1 k+1)

_ 2 1,1 1,1 1,1 20k44,k42
By, = (ak+1 1)’ = (ak+1 k) = 20371 o1 @pr o1 Ok o) ke kis
By, = —9gMgll  _9 1,1
12 = ak kak+1 k “k k 1941 k1

Bis = 2% 1,k— lak+1 k+1
By = —(a L,}c)z

Ci1 = 28542, k420042541
Ci2 = 2U'k+1,k+1ak+2,k+2

— )1 1,
Dy = _Zak+1 J1%%41 k
Dz = 2% ROk k1
— k+1,k+1\2
E - (ak+2 k42 )

f = f7+2a7+2,7+2

In general we can unified the notations for 7 = 2k+6 and will abbreviate z = (21, . . .

k42
Je+1
k+2
k41

) $k+2)

and y = (y1,...,Yr+2). Now we have to solve the following optimization problem :

Maximize the function

k+2 9
N z;
F(Z,y) - — (Zz_l [ )k+2
T Xhise ol + 00 Bt
under the conditions: !.
234y < Byl
Gi(z,y) = Anziy, + ArarpaTip + AsTriati + Asazly,
+B11yi s + Buayrsayrsr + Bisyrrayr + Baayly, =0 3
Ga(z,y) = Ouﬁ?i“ + CroZryotryr + Dllyz-(-z + DiaYra¥rsr — f =0

The coeflicients «;, B; are positive. Hence F(z,y) > 0. We solve the problem by means

of the Lagrange multiplier method as follows. We consider the function

IThe conditions were obtained equating the coefficients in front of 7+1, ¢7+2 ¢7+3 in ZSF expansion

of f(t) and using the antipodality of the PMS (see Lemma 2.2)
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F(z,y, i, 02) = Flz,y) — MGi(z,y) — 2aGa(z, y)
and maximize it for z, y. A necessary condition is the first derivatives of F to be zero.

We denote .
i i
Ft2 %
itig it} + Yk Biy?
and consider only the case p # 0, because otherwise we obtain
min F(z,y) = 0. After the simplification of the derivatives we have

1

o
y; =0, for i=1,...,k=1

H:

for 1=1-60,...,k—1

T; =

A1 Asz ZTry2 + + 2uay z = 24
(MAz + A2Ch2) Thyz + (2A1Ax + 2ulag1) Tryt = 2u
(2A2C11 + 2M Ayt + 2utogts) Teez + (MAz+ ACi2) Tk + MAi oz = 2p

A1Bis Yey2 + + 2uB; y = 0
(M Biz + A2 D12) Ybtz + (2M B2 + 20%Br1) Vit =0
(2X2 D11 + 2\ By + 24 Brs2) ykez +  (MBiz+AD1a)  Yen + MBiz oy = 0

Gi(z, Q) = A11$;%+2 + A1aTryoThr + ArsTreaTs + Azzxiﬂ
+  Buyli, + Biayrs2¥isr + Bisyrsayr + Baayi, =0 3
Gaz,y) = Cntiyy + CraZriaTir + Duyiis + Dizyrsaypn — f =0
The second linear system must have nonzero solution, hence the determinant A
)\1313 0 2ﬂ2ak
A= )\1B12 + /\2D12 2/\1322 + 2[1,2ak+1 0 =0.

2202 D11 + 2XBiy + 24 Breyz MBiz+ADia MiBis

Now solving the same system we obtain

g = b
2u2fy, 7

Y41 = — M By + daDry Ykt2-
21 Bag + 2042 Bt

From the first linear system we can express zj and zg41 and Zx4o. Substituting 2, Zpe:
Tiiz, Yr and yr4r in Gi(z,y) = 0 we obtain yiys. Now we do the same with zg, Tr1,

Ty, Yk Yht1 and Yete in Go(z,y) = 0. Then we solve the obtained equation together
with the equation A = 0 as a nonlinear system with respect to A; and A,.

Using the same arguments as in Theorem 4.23 we can chose u = 1.
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STATEMENTS

accompanying the dissertation

Bounds for Designs in
Infinite Polynomial Metric Spaces

Svetla Iordanova Nikova

1.For any polynomial metric space M and for any 7-design C

0] > R(M, ) = 270 3" 122, (1)

=0
where 7 = 2e + 0, 6 € {0,1}. For definitions of ¢®? and 7"’ see Chapter 1 of this thesis.

[1] P.Delsarte, An Algebraic Approach to Association Schemes in Coding Theory, Philips
Research Reports Suppl., 10, 1973.

[2] P.Delsarte, J.-M.Goethals, J.J.Seidel, Spherical codes and designs, Geom. Dedicata 6,
1977, 363-388.

[3] C.F.Dunkl, Discrete quadrature and bounds on t-designs, Michigan Math. J. 26, 1979,

81-102.
[4] V.I.Levenshtein, Designs as maximum codes in polynomial metric spaces, Acta Appli-
candae Math. 25, 1992, 1-82.

2.For any 7 =2¢+ 6, 6 € {0,1},
R(M, 7) = maxf)(f), )

where the maximum is taken over the class of polynomials f(¢) € Bag,, of degree at
most 7. The maximum in (2) is realized if and only if f(t) is proportional to f()(t) =
(t+1)°((Q°(1))*

For definitions of Q(f) and B4, see p.15 of this thesis.

[1] I.Schoenberg, G.Szegd, An extremum problem for polynomials, Comp. Math. 14,
1960, 260-268.

[2] V.I.Levenshtein, Universal bounds for codes and designs, Chapter in Handbook of
Coding Theory, V.Pless, W.C.Huffman, and R.A.Brualdi, Eds. Amsterdam: Elsevier, to
appear.

3. The bound R(M, 1) can be improved by a polynomial f(¢) € B, of degree at least
7+ 1, if and only if G.(M, Q;) < 0 for some j > 7 + 1. Moreover, if G,(M, Q;) < 0 for
somej > 7 + 1, then R(M,7) can be improved by a polynomial in By, of degree j.

1



The linear functional G,(M, Q;) is defined on p.56 of this thesis.
Chapter 4 of this Ph.D. Thesis.

4. If C is a 2e-design on the unit sphere in R™, which contains an antipodal pair then
e—
] 2<”:_1 1).
[1] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, London, Chapter 16, p.346.
5.Let C C S™' be a 7-design and y € C. We consider the multi-set
I(y) ={(z,y) : 2 € Ciz # y} = {tr, b2, ..., oj-1 ),
Let 7 = 2e+ 1 and |C| = R(n,7) + k. Then the smallest inner product #; satisfy

R(n,7)
-2/
"= R ) + 2k

Chapter 5 of this Ph.D. Thesis.

6. For fixed 7 = 2e¢ + 1 > 3 and n — oo, we have

1_|_21/'r .
n-.

Boga(n, ) > "

Chapter 5 of this Ph.D. Thesis.

7. The number of people who can understand simple mathematical ideas is not smaller
than the number of those who are commonly called musical.

8. The best way to learn mathematics is to do mathematics.
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