

Design of large scale applications of secure multiparty
computation : secure linear programming
Citation for published version (APA):
Hoogh, de, S. J. A. (2012). Design of large scale applications of secure multiparty computation : secure linear
programming. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science].
Technische Universiteit Eindhoven. https://doi.org/10.6100/IR735328

DOI:
10.6100/IR735328

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR735328
https://doi.org/10.6100/IR735328
https://research.tue.nl/en/publications/b2072523-9b36-4355-8da4-a1815d15d3fa

Design of large scale applications of secure multiparty
computation : secure linear programming
de Hoogh, S.J.A.

DOI:
10.6100/IR735328

Published: 01/01/2012

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Aug. 2018

https://doi.org/10.6100/IR735328
https://research.tue.nl/en/publications/design-of-large-scale-applications-of-secure-multiparty-computation--secure-linear-programming(b2072523-9b36-4355-8da4-a1815d15d3fa).html

Design of Large Scale Applications of Secure
Multiparty Computation: Secure Linear

Programming

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

c© 2012 by Sebastiaan de Hoogh.

Design of Large Scale Applications of Secure Multiparty Computation: Secure Linear Pro-
gramming / door Sebastiaan de Hoogh. – Eindhoven: Technische Universiteit Eindhoven,
2012.
Proefschrift. – ISBN 978-90-386-3203-2
NUR 919
Subject headings: Cryptology, multiparty computation, cryptographic protocols, linear
programming, algorithms.

Printed by Printservice TU/e.
Cover: Het Paleis. Design by Brigitte Gedike

Design of Large Scale Applications of Secure
Multiparty Computation: Secure Linear

Programming

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op donderdag 30 augustus 2012 om 16.00 uur

door

Sebastiaan Jacobus Antonius de Hoogh

geboren te Dongen

Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. H.C.A. van Tilborg

Copromotor:
dr.ir. L.A.M. Schoenmakers

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-3203-2

Design of Large Scale Applications of Secure Multiparty
Computation: Secure Linear Programming

Summary

Secure multiparty computation is a basic concept of growing interest in modern cryp-
tography. It allows a set of mutually distrusting parties to perform a computation on their
private information in such a way that as little as possible is revealed about each private
input. The early results of multiparty computation have only theoretical significance since
they are not able to solve computationally complex functions in a reasonable amount of
time. Nowadays, efficiency of secure multiparty computation is an important topic of
cryptographic research.

As a case study we apply multiparty computation to solve the problem of secure lin-
ear programming. The results enable, for example in the context of the EU-FP7 project
SecureSCM, collaborative supply chain management. Collaborative supply chain manage-
ment is about the optimization of the supply and demand configuration of a supply chain.
In order to optimize the total benefit of the entire chain, parties should collaborate by
pooling their sensitive data.

With the focus on efficiency we design protocols that securely solve any linear program
using the simplex algorithm. The simplex algorithm is well studied and there are many
variants of the simplex algorithm providing a simple and efficient solution to solving linear
programs in practice. However, the cryptographic layer on top of any variant of the
simplex algorithm imposes restrictions and new complexity measures. For example, hiding
the number of iterations of the simplex algorithm has the consequence that the secure
implementations have a worst case number of iterations. Then, since the simplex algorithm
has exponentially many iterations in the worst case, the secure implementations have
exponentially many iterations in all cases.

To give a basis for understanding the restrictions, we review the basic theory behind the
simplex algorithm and we provide a set of cryptographic building blocks used to implement
secure protocols evaluating basic variants of the simplex algorithm. We show how to
balance between privacy and efficiency; some protocols reveal data about the internal
state of the simplex algorithm, such as the number of iterations, in order to improve the
expected running times.

For the sake of simplicity and efficiency, the protocols are based on Shamir’s secret
sharing scheme. We combine and use the results from the literature on secure random
number generation, secure circuit evaluation, secure comparison, and secret indexing to
construct efficient building blocks for secure simplex.

The solutions for secure linear programming in this thesis can be split into two categories.
On the one hand, some protocols evaluate the classical variants of the simplex algorithm
in which numbers are truncated, while the other protocols evaluate the variants of the
simplex algorithms in which truncation is avoided. On the other hand, the protocols can
be separated by the size of the tableaus. Theoretically there is no clear winner that has
both the best security properties and the best performance.

The rounding errors due to truncations may cause the simplex algorithm to become
unstable leading to incorrect results. To securely determine correctness of the output of
the protocols we show how to extract a certificate from the output and how to securely
prove correctness of the result given this certificate. The protocols for extracting and
verifying the certificates are, compared to protocols evaluating the simplex algorithm,
very efficient.

We extend and generalize the ideas of using certificates to build efficient universally
verifiable protocols, i.e., protocols allowing anyone to check correctness of the output
without revealing the private results. Examples of universally verifiable protocols are,
typically, relatively expensive protocols in which every transmitted message is accompanied
by a noninteractive zero-knowledge proof. If the protocol evaluates a function of which a
certificate of correctness can be efficiently extracted, then the protocol will be universally
verifiable if the validation of the certificate is universally verifiable.

In addition to the case study on secure linear programming we discuss proofs of re-
stricted shuffles. The scenario is as follows: given a list of encrypted data, some party
permutes the list in such a way that nobody learns the permutation applied to the list.
Then, the party proves in zero-knowledge that the resulting list consists of encryptions
of the same list where the entries are permuted. The party proves in addition that the
applied permutation satisfies some restrictions. We apply a result from the literature that
provides zero-knowledge protocols for any permutation group represented as an automor-
phism group of some graph. In order to instantiate the protocols we provide hypergraphs
of which the automorphism group is represented by either a rotation, an affine transfor-
mation, or a Möbius transformation.

Contents

Summary v

Contents vii

1 Introduction 1

2 Cryptographic Primitives 9

2.1 Basic Primitives . 9

2.1.1 Indistinguishability . 10

2.1.2 Secret Sharing . 10

2.1.3 Commitment Schemes . 13

2.2 Zero-Knowledge Proofs . 13

2.2.1 Σ-protocols . 14

2.2.2 Noninteractive zero-knowledge proofs 18

2.3 Multiparty Computation Model . 20

2.3.1 Real Model . 20

2.3.2 Ideal Model . 21

2.3.3 Hybrid Model . 22

2.3.4 Multiparty Computation from Shamir Secret Sharing 23

3 Linear Optimization 27

3.1 Linear Programming . 27

3.1.1 Simplex Algorithm . 29

3.1.2 Interior Point Methods . 35

3.1.3 Initial Feasible Solution . 38

3.1.4 Verification of the Result . 40

3.2 Implementations of the Simplex Iterations 43

3.2.1 Large Tableau Simplex . 44

3.2.2 Small Tableau Simplex . 54

3.2.3 Revised Simplex . 55

3.3 Implementations of the Simplex Initializations 58

3.3.1 Standard two-phase Simplex . 59

3.3.2 Two-Phase Simplex with One Artificial Variable 67

3.3.3 Big-M Method . 69

vii

viii Contents

4 Building Blocks for Secure Linear Programming 75

4.1 Statistical Security . 76

4.2 Efficient Primitives for Shamir Secret Sharing 78

4.2.1 Encoding Signed Integers as Prime Field Elements 78

4.2.2 Noninteractive Random Number Generation 79

4.2.3 Efficient Arithmetic for Shamir Secret Sharing 83

4.3 Arithmetic Circuits for Prefix and k-ary Operations 86

4.3.1 Multiplication . 88

4.3.2 Prefix-Or . 90

4.3.3 Bitwise Comparison . 90

4.3.4 Bitwise Addition . 93

4.3.5 Bit Decomposition . 95

4.4 Integer Comparison . 96

4.4.1 Equality Tests . 96

4.4.2 Less Than Zero Tests . 98

4.5 Fixed Point Arithmetic . 99

4.5.1 Truncation . 101

4.5.2 Division . 101

4.6 Secret Indexing . 104

5 Secure Linear Programming 107

5.1 Secure Simplex Iterations . 108

5.1.1 Large Tableau Simplex . 108

5.1.2 Small Tableau Simplex . 115

5.1.3 Revised Simplex . 118

5.2 Secure Simplex Initialization . 121

5.2.1 Standard two-phase Simplex . 121

5.2.2 Two-Phase Simplex with One Artificial Variable 127

5.2.3 Big-M Method . 134

5.3 Secure Simplex Verification . 135

5.3.1 Verification of Optimality . 136

5.3.2 Verification of Infeasibility . 137

5.3.3 Verification of Unboundedness . 140

5.4 Performance Comparison . 141

6 Universal Verifiability 145

6.1 Universally Verifiable Secure Computation 145

6.1.1 Multiparty Σ-protocols . 147

6.1.2 Non-interactive Multiparty Σ-proofs 149

6.2 Efficient Universally Verifiable Computation from Certificate Validation . . 151

7 Restricted Shuffling 155

7.1 Proofs of Restricted Shuffles . 155

7.2 Rotation and Rescaling . 157

7.3 Affine Transformations . 158

7.4 Möbius Transforms . 160

7.5 Other Permutation groups . 162

Contents ix

8 Conclusions 163

Bibliography 165

A Secure Simplex Protocols 173
A.1 Simplex Iteration . 173

A.1.1 Large Tableau Simplex . 174
A.1.2 Small Tableau Simplex . 176
A.1.3 Revised Simplex . 177

A.2 Simplex Initialization . 179
A.2.1 Standard two-phase Simplex . 180
A.2.2 Two-Phase Simplex with One Artificial Variable 186
A.2.3 Big-M Method . 195
A.2.4 Output Solution . 197
A.2.5 Alternative Iterations . 198

A.3 Simplex Verification . 201
A.3.1 Large Tableau Simplex . 201
A.3.2 Small Tableau Simplex . 203
A.3.3 Revised Simplex . 205

Index 209

List of symbols 211

List of Protocols 213

Acknowledgements 217

Curriculum Vitae 219

x Contents

Chapter 1

Introduction

Secure multiparty computation is a basic concept of growing interest in modern cryp-
tography. It allows a set of mutually distrusting parties to perform a computation on
their private information in such a way that as little as possible is revealed about each
private input. Such interactive computations are typically described by protocols which
are step-by-step descriptions of each action to be performed by each party. An adversary
controlling some of the parties is neither able to prevent the correct result to be computed
nor to gain additional information, even by making parties deviate from the protocol. In
the 1980s it was proven that secure multiparty computation is feasible for any computable
function [Yao82, Yao86, GMW87, BGW88].

Secure multiparty computation involves many different aspects. This makes defining
security and designing protocols complicated. For example, a protocol can be designed to
be secure against adversaries of some special type. The parties controlled by an adversary
are usually called corrupt parties. An adversary is passive or semi-honest if the corrupt
parties follow the protocol specification, but try to learn as much as possible from the
data collected. An active adversary makes the corrupt parties to behave arbitrarily. In
addition to those two properties, an adversary is static if the set of parties it is going to
corrupt is decided at the start of the protocol and is fixed during the protocol execution.
The adversary is adaptive if the parties are corrupted during protocol execution.

There are many ways of formally defining security of protocols [MR91, Bea91, Gol02].
Commonly, security against some adversary means that all information gained by the
adversary can be simulated efficiently using only information that the adversary is allowed
to know. Simulation usually means that an adversary communicates with some simulator
that computes messages on behalf of the parties that are not corrupt. In other words, the
protocol is said to be secure if the messages computed by the simulator are such that the
adversary cannot distinguish them from messages it would have received from the parties
that are not corrupt during protocol execution.

The definitions of security also depend on the environment in which a protocol is exe-
cuted. A protocol can be secure in the stand-alone setting, where composition and inter-
action with other protocols is not considered. More general environments are considered
in [Can00]. Ultimately, the environment allows any type of composition [Can01, PW01],
which is also known as universal composability.

Another important aspect of secure multiparty computation is the model of communi-
cation, that describes how messages are transmitted among parties and what an adversary
is allowed to observe. For example, in the cryptographic setting [Gol02] the parties com-
municate via a broadcast channel, where the adversary sees all communicated messages.
Typically, security in this setting is based on a complexity assumption restricting the
computing power of the adversary to be polynomial time. Examples of protocols in the

1

2

cryptographic setting are [FH96, JJ00, CDN01, DN03]. On the other hand, in the informa-
tion theoretic setting, parties are connected via private channels allowing parties to send
each other messages that are not visible to the adversary, if both parties are not corrupt.
Security in this setting is unconditional, meaning that no restriction with respect to the
computing power of the adversary is assumed. Examples of protocols in the information
theoretic setting are [BGW88, CCD88].

The early protocols have only theoretical significance since they are not able to solve
complex functions in a reasonable amount of time. However, conceptually they are able
to solve practical problems such as electronic voting, secure data mining and secure col-
laborative supply chain management. Nowadays, efficiency of secure multiparty compu-
tation is an important topic of cryptographic research. Next to electronic voting schemes,
in [BCD+09], a real life application of secure multiparty computation is presented, where
some 1200 Danish farmers participated in a secure multiparty computation protocol to
determine the market price of their sugarbeets. The protocol took roughly 30 minutes to
complete.

This thesis is mostly about efficient multiparty computation. As a case study, we address
the problem of secure linear programming to solve the problem of secure collaborative sup-
ply chain management by secure multiparty computation. We focus on communication
complexity, i.e., the total number of communicated bits by each party, and round com-
plexity. The latter counts the total number of interactive rounds, where in each successive
round parties are sending messages that are dependent on received messages in earlier
rounds.

In addition to efficiency, we address the issue in secure computation that the protocols
guarantee nothing if none of the parties is honest. This is unacceptable in, for example,
voting schemes and cloud computing.

In voting schemes voters send an encrypted vote to a group of talliers. The talliers
engage in a protocol to compute the election result. It is unacceptable if nothing can be
guaranteed if all talliers are corrupt. The notion of universal verifiability ensures that even
if all talliers are corrupt, correctness of the election result can be verified.

In cloud computing, a group of computationally weak parties wish to evaluate some
function on their private inputs. Instead of participating in a multiparty protocol, the
parties provide encryptions of their private inputs to computationally strong servers that
perform the computation. In this setting it is required that the validity of the computed
results can always be checked.

In this thesis, we will show how to design protocols that guarantee a correct result, even
if all parties are corrupt. This property will be called universal verifiability using the same
terminology as commonly used in voting schemes. Precisely, we show how universally
verifiability can be defined to ensure that correctness of the result of a protocol can always
be verified by anyone. We show how to achieve universal verifiable multiparty computation
from the protocols of [CDN01].

In addition, we show how universal verifiability can be efficiently achieved if there exists
a certificate of correctness for the result of the function that can be validated at relative
low computational costs. For example, we will show that computing an optimal solution
to a linear program is a computationally expensive task, while validating whether the
solution is indeed optimal to the given linear program is a computationally cheap task.
We show that if a protocol that computes a solution to a linear program is extended by a
universally verifiable protocol that validates whether the solution is indeed optimal, then

1. Introduction 3

the whole protocol will be universally verifiable.

Secure Linear Programming

Optimization is essential in every day life, science, and industry. When traveling, for
example, one wants to know the shortest, fastest, or most scenic route. Many physical
systems converge to a state of minimal energy. Hence, optimization is required to study
those systems. In industry, companies optimize their production numbers and selling prices
for the best revenue; and construction processes are scheduled to optimize the throughput.

Optimization involves a broad collection of methods and techniques to solve all sorts of
optimization problems. An optimization problem contains a function called the objective.
The goal of optimization is to assign values to the variables such that the objective is
optimized. These values may be constrained. In this case the optimization problem
is called a constrained optimization problem. If the objective and the constraints can
be written as linear functions we speak of linear optimization or linear programming,
abbreviated as LP.

Linear programming has been subject of extensive research since George Dantzig used
it to model the Air Force planning process during World War II in 1947. Development of
the field of linear programming was due to the observation that the model also applies to
a large number of economic, industrial and financial systems. In 1947 Dantzig proposed
the simplex algorithm, the first practical method solving linear programs [DT97].

The simplex algorithm is iterative, where the total number of iterations depends on
the choices made within each iteration. Although one can show that in the worst case it
requires exponentially many iterations, in practice the method finishes almost always in a
linear number of iterations [BT97, NW99].

Trying to solve linear programming problems as efficiently as possible, many variants of
the simplex algorithms have been proposed and many completely new iterative methods
have been developed. In 1979 Leonid Khachiyan showed that the linear programming
problem is solvable in polynomial time, but a larger theoretical and practical breakthrough
in the field came in 1984 when Narendra Karmarkar introduced a new interior point method
for solving linear programming problems.

Nowadays, the simplex methods are still competitive to the interior point methods,
where the interior point methods beat the simplex methods usually on some classes of
very large problem instances [Mur05, Mil00].

At the time Dantzig invented the simplex algorithm there was no computer to run
it. Thus, real life applications could not be solved because of their complexity. With
this argument he persuaded the Pentagon to fund the development of computers. Their
introduction has lead to a revolutionary treatment of planning processes [DT97]. The
evolution of planning processes is still going on. The availability of fast computer networks
and the desire of centralization lead to optimization problems involving many different
parties sharing their data. This leads to new type of problems when some parties need to
share data that they don’t want to share.

For example, companies are often part of a supply chain, i.e., the collection of parties
involved to provide customers with their needs. As a simple example, consider a customer
buying some good from a warehouse. This warehouse most likely bought the good from
distributors who are stocked by the manufacturers. The manufacturers may have bought
raw materials from different suppliers in order to produce the good. The warehouses,

4

distributors, manufacturers and the suppliers of the raw materials are all part of the
supply chain.

The process of optimizing the benefit of the supply chain is called supply chain man-
agement. It is well known that the best results are obtained by collaborative supply
chain management, i.e., a process where all parties from the supply chain collaboratively
compute the optimal configuration (stock quantities, prices, etc.) for the whole supply
chain [AR93, CS60, LPG02, LB93]. In other words, if parties collaborate in optimizing
the configuration of the supply chain, then the total benefit of the whole chain is opti-
mized. This does not mean that the resulting configuration is best to all parties. However,
when the benefit is properly shared among the parties then all parties will benefit.

In order to be able to collaboratively compute the optimal configuration of a supply
chain, the parties need to share confidential data such as stocking costs, production ca-
pacities, shipping costs, prices and current sales data. Sharing this data implies risks on,
for example, bargaining power. Indeed, if the exact costs of a supplier are public, cus-
tomers can use this knowledge to obtain better prices. A solution to this problem is a
system computing the desired optimum of the supply chain, where every party learns their
part of the result and nothing more.

Solutions using multiparty computation are, for example, [Tof09] and [LA06]. Both so-
lutions prove security using standard cryptographic techniques. Unfortunately they are
able to solve only a sub-class of linear programs. Moreover, their performance allows solv-
ing very small problem instances only. Follow-ups to these solutions are [DK09, CH10b],
focused on improving the performance.

While these solutions securely perform each step of an algorithm solving linear programs,
other solutions such as [Vai09a, Vai09b, Du01, DK11, WRW11] apply a completely different
approach: transform the given LP to a random LP securely, reveal it to all parties and
solve the transformed LP publicly. In terms of efficiency, these solutions are clear winners.
One only needs cryptographic primitives for the transformations, while the hard work
—solving the actual LP— can be done without cryptography. But in terms of security
it is unclear what can be guaranteed [BBR09]. A major issue is that the distribution of
the transformations is unclear and certainly not uniform. Therefore, these solutions fall
outside the scope of this thesis.

With the focus on secure implementations of Dantzig’s simplex algorithm, this thesis
provides

(i) an unified and rigorous description of relevant basic literature on linear programming
and

(ii) describes efficient secure protocols for secure linear programming.

The description of the protocols will be such that any model of secure multiparty compu-
tation is applicable. However for the sake of simplicity and efficiency we will instantiate
the protocols in the information theoretic setting in the presence of a passive adversary.

With respect to (i), we will describe the basic ideas behind the simplex algorithm. We
show that its efficiency depends on several implementation choices. We point out what
those choices are and what impact those will have in the corresponding secure protocols.
For example, there are three classical implementations of the simplex algorithms of which
the one known as the revised simplex is the most popular due to its efficiency. We show
that, on the contrary, the secure protocols for the revised simplex algorithm will not be
favorable.

1. Introduction 5

With respect to (ii) we review and design efficient secure protocols for basic operations
required by secure linear programming protocols. With respect to basic operations we
provide an unified overview of secure protocols for integer arithmetic and for efficient
generation of random numbers. We show how to apply these protocols to be able to per-
form secure arithmetic over truncated integers being represented by fixed point numbers.
With respect to secure linear programming we show how to design efficient secure proto-
cols from the implementations described in (i). For example, we show how to efficiently
perform linear operations in a matrix without revealing the positions that are involved.

Roadmap of this Thesis

This thesis aims to be complete. We aim at providing every detail of the described pro-
tocols to provide full understanding that enables one to easily implement the protocols.
Therefore, we will review existing tools of every protocol that is applied.

Below, we present an overview of the structure and contributions of this thesis.

Chapter 2: Preliminaries

This chapter introduces basic concepts of the cryptographic tools that are used in this
thesis; with respect to the linear programming protocols our results are based on threshold
linear secret sharing schemes.

Special attention will be paid to Σ-protocols and Σ-proofs that play an important role
in Chapters 6 and 7. As a small contribution we present a proof that any Σ-protocol that
is α-special sound, meaning that at least α accepting conversations are required to extract
the secret, is a proof of knowledge by extending a proof from [Dam10] for the case α = 2.

Chapter 3: Linear Optimization

This chapter discusses the problem of linear programming by a rigorous and unified de-
scription of the classic simplex algorithm that will form the basis for the secure implemen-
tations.

For linear programming problems on m constraints and n variables, we review the sim-
plex iterations of the classical simplex algorithm, that updates an (n+m+ 1)× (m+ 1)
matrix over Q. In addition, we discuss extensions to the classical algorithm where the
matrix updates are over Z and where smaller matrices are updated. We contribute a sim-
ple proof of an upper-bound of the values in the simplex tableaus needed to instantiate a
cryptographic system.

Second, we present techniques to initialize the simplex iterations. Basically, this boils
down to solving yet another linear program of which the iterations can be simply initialized.
We will review two variants of algorithms for the two-phase simplex and big-M method.
The classical algorithms for two-phase simplex and the big-M method require the addition
of n columns to the simplex matrix. More advanced solutions show that in fact only one
additional column suffices.

Finally, we show basic techniques to validate the results returned by the simplex algo-
rithm. This will be important in secure simplex, since one may have good reasons to doubt
validity of the result. The elegance of these techniques formed an inspiration to efficient
universal verifiable protocols in Chapter 6.

6

Chapter 4: Building Blocks for Secure Linear Programming

This chapter provides an overview of efficient protocols with respect to Shamir’s secret
sharing scheme that forms a basis for the protocols in Chapter 5. We will focus on
efficiency, but ensure security to be either perfect or statistical. This is joint work with
Octavian Catrina [CH10a, Sec09].

First, we will show how to combine some properties of Shamir’s secret sharing scheme
with the multiplication protocol of [BGW88] to optimize performance. More precisely,
we review the noninteractive generation of secret random numbers from [CDI05, DT08]
for Shamir shared values, which are very efficient if the number of participating parties is
limited. Based on [BGW88, CDI05], we will contribute an inner product protocol that has
same round complexity and communication complexity as a single multiplication. This
will play a central role in secure linear programming.

Second, given an associative binary operator �, we review techniques to do efficient

• k-ary operation: y = x1 � · · · � xk = �ki=1xi, and

• prefix operation: yj = �ji=1xi for each j = 1, . . . , k.

We will give generic protocol descriptions of logarithmic rounds for any associative binary
operator. For important tools such as multiplication and prefix-or we contribute more
efficient implementations based on descriptions in the literature.

Third, we consider the problem of integer comparison following the approach of [ST06].
To balance between round an communication complexity we present protocols to securely
compute the result of comparisons of the form x ≤ y from both [VB10] having logarithmic
round complexity and [Rei09] having constant round complexity. We contribute a new
protocol for securely computing the result of an equality comparison that has log∗ round
complexity, where log∗(k) = min{i| logi(k) ≤ 1}.

To enable implementation of the simplex algorithm on a matrix over Q we review basic
protocols for fixed point arithmetic based on [CS10]. We contribute an improved protocol
for division [CH10b].

Finally, we discuss the technique of hiding entries in a matrix by means of secret index-
ing [Tof09] and its applications with respect to linear programming.

Chapter 5: Secure Linear Programming

This chapter shows how to build secure multiparty protocols from the simplex algorithms
described in Chapter 3 using the tools described in Chapter 4. Our approach follows the
ideas of Toft [Tof09]. This is joint work with Octavian Catrina [Sec10].

First, we will describe how to build secure protocols for the simplex iterations. We
contribute a full set of protocols evaluating each variant of the simplex algorithm with
both integer tableaus and rational tableaus [CH10b]. We focus on efficiency; we will show
several ideas and tricks to minimize the communication complexity and even improving
the ideas from [CH10b, Sec10].

Second, we contribute a full set of protocols for initializing the simplex algorithms. We
show what additional problems arise when securely connecting the phases of the two-phase
simplex algorithms. We will show how to efficiently and securely implement the two-phase
simplex algorithms and the big-M methods. We discuss that the choice between those
implementations depends on how one balances between security and efficiency.

1. Introduction 7

Finally, we contribute very efficient protocols for validating the result of the simplex
protocol. We show how to extract a certificate that proves correctness of the result.

Chapter 6: Universal Verifiability

This chapter shows how to convert the protocols of [CDN01] into universally verifiable
protocols. This is joint work with Berry Schoenmakers.

First we will define universal verifiability. Then, we will show how to make the pro-
tocols of [CDN01] universally verifiable by means of transforming interactive Σ-protocols
into noninteractive Σ-proofs in such a way that the security of the original protocols are
maintained in the random oracle model.

Second, we show that universal verifiability in secure circuit evaluation in general does
not require every gate of a circuit that is evaluated to be universal verifiable. For univer-
sally verifiable secure linear programming, for example, just gates computing the result of
the validation of the certificate of correctness need to be universally verifiable.

Chapter 7: Verifiable Restricted Shuffling

This chapter shows how to apply [TW10] to prove correctness of a restricted shuffle as an
alternative to [HSSV09]. This is joint work with Berry Schoenmakers, Boris Skoric and
José Villegas.

To apply [TW10] we need to find (hyper)graphs of which the automorphism group is
exactly the permutation group of the restricted shuffle. We show how to find such hy-
pergraphs for the following restricted shuffles: rotation, affine transformation and Möbius
transformation. We contribute simple graphs and proofs showing the desired properties.

8

Chapter 2

Cryptographic Primitives

This chapter presents cryptographic primitives and tools that form the basis for the re-
sults in the thesis. In addition, we will introduce terminology and notation that is used
throughout the thesis.

We review secure multiparty computation based on Shamir’s secret sharing [Sha79]. The
replicated secret sharing scheme of [ISN87] is also discussed, which allows very efficient
generation of Shamir shares of random values if the number of participating parties is
small [CDI05].

Special attention will be paid to Σ-protocols and Σ-proofs that play an important role
in Chapters 6 and 7. As a small contribution we present a proof that any Σ-protocol that
is α-special sound, meaning that at least α accepting conversations are required to extract
the secret, is a proof of knowledge by extending a proof from [Dam10] for the case α = 2.

2.1 Basic Primitives

This section discusses the basic notations, assumptions and cryptographic schemes.

Vector Notation

We let Z denote the set of integers and we use Zp as a shorthand notation of the set Z/pZ.

For any setM we use bold lowercase letters to denote a vector v ∈Mn of length n. By
vi we denote the i-th entry of v. We use bold uppercase letters to denote a two dimensional
matrix M ∈Mn×m of n rows and m columns. By mi we denote the i-th row of M and by
Mj we denote the j-th column of M. Finally, mij denotes the entry in row i and column
j of M.

Hardness Assumptions

We will give three basic hardness assumptions in the discrete log setting. Consider a cyclic
group G = 〈g〉 of order prime p. The discrete log (DL) assumption is that it is infeasible
given h ∈ G to compute α ∈ Zp such that h = gα. A potentially stronger assumption
based on the DL assumption is the Diffie-Hellman (DH) assumption saying that given
gα and gβ, it is infeasible to compute h = gαβ. Lastly, the Decisional Diffie-Hellman
(DDH) assumption is that it is infeasible given (gα, gβ, h) to distinguish between h that is
uniformly random and h that equals gαβ.

We also give three assumptions in the RSA-setting. Consider a composite N having
two prime factors p and q. The factorization assumption is that it is infeasible to find p
and q given N . The (strong) RSA assumption is that given modulus N and c ∈ Z∗N it is

9

10 2.1. Basic Primitives

infeasible to find m and e > 1 that satisfies c = me mod N . The Decisional Composite
Residue (DCR) assumption says that given y ∈ ZN2 it is infeasible to decide whether an
x ∈ ZN2 exists such that y = xN mod N2.

2.1.1 Indistinguishability

A distribution ensemble is a set X = {Xi}i∈I , where Xi is a random variable and I an
index set. We only consider random variables from a finite set.

Definition 2.1 (Statistical Distance). Let X and Y be two random variables, both taking
values in some finite set V . The statistical distance between X and Y is defined as

∆(X;Y) =
1

2

∑
v∈V
|P [X = v]− P [Y = v] |. (2.1)

Definition 2.2 (Negligible). A nonnegative function δ : N→ R is called negligible if for
every positive polynomial p there exists a k0 ∈ N such that δ(k) ≤ 1/p(k) for all k ≥ k0.

Definition 2.3. Let X and Y be two distribution ensembles indexed by I. Suppose that
the sizes satisfy |Xi| = |Yi| for i ∈ I and all sizes are polynomial in |i|. Then, X and Y
are said to be

perfectly indistinguishable if ∆(Xi;Yi) = 0 for all i ∈ I. We write X d
= Y.

statistically indistinguishable if for all i ∈ I, ∆(Xi;Yi) is negligible as a function of
|i|. We will write X s

= Y.

computationally indistinguishable if for all p.p.t. algorithms D and for all i ∈ I

|P [D(Xi) = 1]− P [D(Yi) = 1] |

is negligible as a function of |i|. We will write X c
= Y.

2.1.2 Secret Sharing

In a secret sharing scheme parties P1, . . . , Pn share their inputs among all parties in such
a way that some agreed subset of parties, called qualified set, can reconstruct the secret,
while any subset of parties that is not a qualified set cannot learn anything about the
secret. The party sharing its secret among the other parties is called the dealer. A secret
sharing scheme with n parties is called a (t, n)-secret sharing scheme, if any subset of t < n
parties is not a qualified set but any subset of t+ 1 parties is.

Typically, a secret sharing scheme consists of three phases. In the share generation phase,
the dealer generates shares of some secret s for each party. Then, the dealer provides each
party Pk his share of s, denoted by [s]k, in the share distribution phase. Let [s] denote
the collection of all shares of s. Finally, in the reconstruction phase, the parties compute
s from pooling their shares.

We will present Shamir’s secret sharing scheme, the standard additive secret sharing
scheme and the replicated secret sharing scheme. In the following, if S is a set, then a
uniformly random draw from S resulting in s is denoted by s ∈R S. All arithmetic in this
section is over some finite field Fq.

The (t, n)-Shamir secret sharing scheme (Protocol 2.1 and Protocol 2.2) is as follows:

2. Cryptographic Primitives 11

1. Share Generation: To share s ∈ Fq, the dealer generates random α1, . . . , αt ∈ Fq
and puts p(x) = s+ α1x+ · · ·+ αtx

t. Then the dealer computes [s]i = p(i).

2. Share Distribution: For each i ∈ {1, . . . , n}, the dealer sends [s]i to party Pi.

3. Secret Reconstruction: Let D ⊂ {1, . . . , n} be a set of size t + 1. Each party Pi for
i ∈ D sends his share [s]i to all parties. Then, each party reconstructs the secret via
Lagrange interpolation:

Protocol 2.1: [s]← SShare(i, t, s)

for party Pi do1

pick α1, . . . , αt ∈R Ftq;2

foreach j = 1, . . . , n do3

[s]j ← s+
∑t

`=1 α`j
`;4

send [s]j to party Pj ;5

return [s]6

Protocol 2.2: [s]← SOpen(D, [s])
foreach party Pi ∈ S do send [s]i to all parties;1

s =
∑
i∈D

[s]i
∏

j∈D,j 6=i

−j
i− j

;
2

return s3

Additive secret sharing (Protocol 2.3 and Protocol 2.4) is as follows:

1. Share Generation: To share s ∈ Fq, the dealer generates random n−1 random values
s1, . . . , sn−1 and computes sn = s−

∑n−1
i=1 si.

2. Share Distribution: The dealer sends share [s]Ai = si to each party Pi.

3. Secret Reconstruction: Each party Pi sends his share [s]i to all other parties. The
parties compute s =

∑n
i=1[s]i.

It follows that only the collection of all parties can reconstruct the secret by adding their
shares, while any other collection of parties misses at least one share and will learn nothing
about s.

Protocol 2.3: [s]← AShare(i, s)

for party Pi do1

pick [s]A1 , . . . , [s]
A
n−1 ∈R Fn−1q ;2

foreach j = 1, . . . , n do3

send [s]Aj to party Pj ;4

return [s]A5

12 2.1. Basic Primitives

Protocol 2.4: [s]← AOpen([s]A)

foreach party Pi do send [s]i to all parties;1

s =

n∑
i=1

[s]Ai ;
2

return s3

Replicated secret sharing may be viewed as a generalization of additive secret sharing.
The idea is to allow any qualified set of parties to reconstruct the secret by adding (some of)
their shares. In our applications we will use replicated secret sharing to noninteractively
compute random Shamir shares.

Let T = {T1, . . . , Tw} be the collection of all possible subsets of parties of size t, where
w =

(
n
t

)
. The (t, n)-replicated secret sharing scheme is as follows:

1. Share Generation: To share s, the dealer generates w−1 random values s1, . . . , sw−1
and computes sw = s−

∑w−1
i=1 si.

2. Share Distribution: The dealer sends [s]Ri = si to each party not in Ti.

3. Secret Reconstruction: Let D ⊂ {1, . . . , n} be a set of size t + 1. All parties Pi for
i ∈ D pool their shares and reconstruct s by s =

∑w
i=1[s]i.

It follows that since any subset of at most t parties is a subset of at least one Tj , they
miss at least one share of s. By construction, each set of t + 1 parties can reconstruct s,
see Protocol 2.6, while any set of at most t parties learn nothing about s.

Protocol 2.5: [s]← RShare(i, T , s)
w ← |T |;1

for party Pi do2

pick [s]R1 , . . . , [s]
R
w−1 ∈R Fw−1q ;3

foreach j = 1, . . . , n do4

send [s]Rj to each party Pj 6∈ Tj ;5

return [s]R6

Protocol 2.6: [s]← ROpen(D, T , [s]R)

w ← |T |;1

foreach party Pi ∈ D do2

foreach j s.t. Pi 6∈ Tj do3

send [s]Rj to all parties;4

s =
w∑
k=1

[s]Rk ;
5

return s6

2. Cryptographic Primitives 13

2.1.3 Commitment Schemes

In a commitment scheme, a committer C and a receiver R run the following scheme that
consists of two-phases. In the committing phase, C chooses some random number and
commits to x by sending c = b(x, r) to R, for some function b. In the opening phase, C
sends x and r to R who accepts only if c = b(x, r).

A commitment scheme satisfies the following properties: hiding and binding. Informally,
we say that a commitment scheme is hiding if no information about the committed value
x is revealed by b(x, r), and we say that it is binding if no committer can compute values
x, x′ and randomness r, r′ such that b(x, r) = b(x′, r′).

A classic example of a commitment scheme in the discrete log setting is Pedersen’s
commitment scheme. Suppose that G = 〈g〉 is a group of prime order p and h ∈ G from
which logg(h) is unknown. The Pedersen’s commitment scheme is as follows:

Pedersen’s Commitment:

1. Commitment: To commit on value x ∈ Zp, C picks a uniform random r ∈ Zp
and sends

c = b(x, r) := gxhr

to R.

2. Opening: To open commitment c the sender sends x and r to R. Upon reception
of x′ and r′ from C, R accepts if c = gx

′
hr
′
.

This scheme is perfectly hiding, since for any x the distribution of b(x, r) for a uniformly
random r is uniform over G. On the other hand the scheme is computationally binding
under the DL assumption. Indeed, if C is able to compute x, x′ and r, r′, then from

gxhr = gx
′
hr
′

it follows that h = g
x−x′
r′−r .

A commitment scheme is called a trapdoor commitment scheme if the binding property
is only satisfied if some trapdoor remains unknown. This property is useful for example
to enable simulation of multiparty Σ-protocols used in for example [CDN01].

Pedersen’s commitment scheme has a trapdoor on the binding property, namely s =
logg h. Knowing s a committer can open any commitment c = gxhr arbitrarily. Indeed,
given s ∈ Zp such that h = gs, using the relation x+ sr = x′ + sr′, one computes x, x′, r
and r′ such that c = gxhr = gx

′
hr
′
.

2.2 Zero-Knowledge Proofs

Let R be an NP relation. That is, R = {(x;w)} ⊂ {0, 1}∗ × {0, 1}∗ is a binary relation
and it can be verified in polynomial time in |x| whether (x;w) belongs to R. The language
induced by R is the set LR = {x | ∃w : (x;w) ∈ R}.

A zero-knowledge proof for relation R is a two party scheme between a prover P and a
verifier V , where both have input x. The aim of such a scheme is that P convinces V that
he knows a witness w such that (x,w) ∈ R, without revealing any information about w.

14 2.2. Zero-Knowledge Proofs

2.2.1 Σ-protocols

Classical examples of zero-knowledge proofs are Σ-protocols. A Σ-protocol is a 3-round
protocol, where the prover sends the first message a. The verifier responds with some
random challenge c from which the prover computes the third message r based on his
first message, the challenge and the witness. More precisely, a Σ-protocol is of the form
as outlined in Figure 2.1 and is defined in the following definition, see also [Sch12]. The
transcript of the protocol is denoted by (a, c, r) and is also known as a conversation. A
conversation (a, c, r) is called accepting if the verifier accepts on input (a, c, r).

Prover Common input: Verifier
(knows w s.t. (x;w) ∈ R), x

u ∈R {0, 1}t
a← A(x,w, u)

−−−−−−
a
−−−−−−→

c ∈R {0, 1}k

←−−−−−−
c
−−−−−−

r ← B(x,w, u, c)

−−−−−−
r
−−−−−−→

C(x, a, c, r)
?
= 1

Figure 2.1: Σ-protocol for relation R, where A,B,C are p.p.t. algorithms

Definition 2.4 (Σ-protocol). A 3-round protocol of the form shown in Figure 2.1 is a
Σ-protocol for relation R if the following three properties are satisfied:

Completeness: If P and V are honest, then V always accepts.

Special soundness: There exists a probabilistic polynomial time (p.p.t.) extractor E
that on input x and two accepting conversations (a, c, r) and (a, c′, r′), where c 6= c′,
computes a witness w such that (x;w) ∈ R.

Special honest verifier zero-knowledge: There exists a p.p.t. simulator S that on in-
put any x ∈ {0, 1}∗ and any c computes accepting conversations (a, c, r). If x ∈ LR,
then the conversations returned by S have the same probability distribution as the
conversations between honest P and honest V have on input x and c, where P uses
any valid witness w such that (x;w) ∈ R.

The special soundness property implies that, if any prover is able to provide two ac-
cepting conversations with the same initial message and two different challenges, a valid
witness can be computed in polynomial time. One can prove, see for example [Dam10],
that the special soundness property implies knowledge soundness [BG92] with knowledge
error 2−k.

Definition 2.5. Let the knowledge error be given by the function κ : {0, 1}∗ → [0, 1]. A
protocol between P and V is a proof of knowledge for relation R if the following is satisfied.

Completeness: If P and V are honest, then V always accepts.

2. Cryptographic Primitives 15

Knowledge soundness: For any prover P ∗, where ε(x) > κ(x) denotes the probability
that V accepts on input x, there exists a probabilistic algorithm M that on input x
and rewindable black-box access to P ∗ computes w such that (x;w) ∈ R in expected
time

|x|c

ε(x)− κ(x)
,

where c is some constant. Any access to P ∗ is counted as one unit of time.

Hence, every corrupted prover P ∗ not knowing a valid witness has essentially a proba-
bility of 2−k to let the verifier accept.

As a slight generalization, we show that a weaker special soundness requirement on
Σ-protocols also suffices to achieve knowledge soundness.

Definition 2.6 (α-sound Σ-protocol). A 3-round protocol of the form shown in Figure 2.1
is an α-sound Σ-protocol for relation R if it satisfies the completeness and special honest
verifier zero-knowledge properties of Definition 2.4 and also with respect to soundness
satisfies

α-Special soundness: There exists a p.p.t. extractor E that on input x and α ≥ 2 ac-
cepting conversations (a, c1, r1), . . . , (a, cα, rα), where ci 6= cj for all 1 ≤ i < j ≤ α,
computes a witness w such that (x;w) ∈ R.

The following theorem shows that for any constant α the knowledge error is exponentially
small in the security parameter k.

Theorem 2.7. An α-special sound Σ-protocol for relation R with challenge length t bits
is a proof of knowledge with knowledge error (α− 1)2−k.

Proof. We extend the proof of [Dam10], which covers the basic case of α = 2.

To prove knowledge soundness with knowledge error (α−1)2−k, consider any prover P ∗

with success probability ε > (α − 1)2−k. Let H be the binary matrix having one row for
each possible random choice u of P ∗ and one column for each possible challenge c, where
each entry hu,c equals 1 if and only if for these random choices of P ∗ and challenge c the
verifier accepts. Running P ∗ as a black-box and choosing a challenge at random, we can
probe a random entry in H. By rewinding P ∗ we can probe H in the same row since P ∗

will use the same randomness as before.

Our goal is to find α ones in a single row, as the corresponding accepting conversations
allow us to extract a witness w in polynomial time using the α-special soundness extractor
E.

To this end, we use algorithm M which runs the following two algorithms, named M1

and M2, in parallel.

Algorithm M1:

1. Probe H until a 1 is found (first hit) in, say row u.

2. Probe a random entry in row u. If α ones are found in row u, return the α
corresponding accepting conversations and stop.

16 2.2. Zero-Knowledge Proofs

3. Pick r ∈R {1, 2, . . . , 4α3}. If r = 1, probe H randomly and if a 1 is found go to
Step 1.

4. Go to Step 2.

Algorithm M2:

1. Probe H until a 1 is found (first hit) in row u, say.

2. Search row u for α − 1 other 1 entries. If success, return the α corresponding
accepting conversations and stop.

3. Go to Step 1.

We will complete the proof by showing that M runs in expected time

O

(
1

ε− (α− 1)2−k

)
.

We distinguish two cases.

Case I: ε ≥ α2

α−12−k. In this case we show that the expected runtime of M1 (and therefore
of M) is O(1/ε), which is sufficient.

We call a row of H heavy if it contains at least a fraction of α−1
α ε ones. We will show

(i) that the probability that a first hit in Step 1 of M1 is in a heavy row is at least 1/α,
(ii) that the expected time M1 spends in Steps 2 and 3 after a first hit is O(1/ε), and (iii)
that if the first hit is in a heavy row then with probability at least 1/4, M1 will terminate
in this row. Since α is constant this will imply that the expected runtime of M1 is indeed
O(1/ε).

(i) We show that all heavy rows together contain at least a fraction of 1
α of all ones in

H. Let H′ be the sub-matrix consisting of non-heavy rows of H and let vh′ denote the
number of entries in H′ and similarly vh denote the number of entries in H. The number
of ones in the heavy rows g satisfies

g > vhε− vh′
α− 1

α
ε ≥ vhε− vh

α− 1

α
ε =

vhε

α
. (2.2)

By the assumption on ε the number of ones in a heavy row is at least α−1
α ε2k ≥ α.

(ii) By construction the expected time M1 spends in a row does not exceed 4α3

ε = O(1/ε).
(iii) Let T denote the expected time to find α− 1 ones after the first hit (not counting

the time spent in Step 3). We show that if the first hit is in a heavy row, then with
probability at least 1/2, M1 terminates within time 2T , and further that with probability
at least 1/2, M1 will not return to Step 1 within time 2T .

First, let τ denote the number of probes to find α− 1 ones in the same row of the first
hit. From Markov’s inequality we get that

P [τ > 2T] ≤ T/(2T) = 1/2.

2. Cryptographic Primitives 17

Hence, the probability that M1 requires less than 2T probes to find α − 1 distinct ones
when the first hit is in a heavy row is larger than 1/2.

To show that M1 will not return to Step 1 within time 2T we need to compute a bound
on T explicitly. To this end, suppose that i < α ones have been found in a heavy row.
Then, there are at least α−1

α ε2k − i ≥ α − i > 0 ones left in this row. Therefore, the
expected number of probes, Ti, to find the (i+ 1)-st distinct 1 in this row satisfies

Ti =
2k

(α− 1)/α · 2kε− i
≤ α2

ε
, (2.3)

for each i = 1, . . . , α− 1.

It follows that the expected number of probes to find α− 1 ones when the first hit is in
a heavy row satisfies

T =
α−1∑
i=1

Ti ≤
α3

ε
.

Let Bi denote the event that at the i-th invocation of Step 3 after the last first hit
M1 returns to Step 1. From the union bound we have the following inequality for the
probability that M1 requires more than 2T probes before it returns to Step 1:

1− P

[
2T⋃
i=1

Bi

]
≥ 1− 2T

ε

4α3
≥ 1− 2

α3

ε

ε

4α3
=

1

2
.

Case II: ε < α2

α−12−k. In this case we show that the expected runtime of M2 (and therefore

of M) is O(1/(ε− (α− 1)2−k)).

Let δ > 0 be such that ε = (1 + δ)(α− 1)2−k. Then

0 < δ <
α2

α− 1
.

Observe that H has 2k+t entries from which at least (1 + δ)(α− 1)2t are equal to 1. At
most (α − 1)2t of these ones can be in rows having at most (α − 1) ones. Thus, at least
δ(α− 1)2t of the ones are in rows having at least α ones. We call a row that has at least
α ones semi-heavy.

Note that the fraction of ones in semi-heavy rows is at least

δ(α− 1)2t

(1 + δ)(α− 1)2t
=

δ

δ + 1

among all ones in H and
δ(α− 1)2t

2t+k
=
δ(α− 1)

2k

among all entries in H.

Hence, the probability that the first hit is in a semi-heavy row is δ/(1 + δ). For each
first hit M2 requires 2k probes to search the entire row. Therefore, we expect to need
(1 + δ)/δ2k probes in total for probing the entire row after each first hit. In addition to
find a first hit in a semi-heavy row requires ((α− 1)δ)−12k probes.

18 2.2. Zero-Knowledge Proofs

In conclusion, the expected runtime of M2 is equal to

2k
(

1

(α− 1)δ
+
δ + 1

δ

)
= O

(
2k

(α− 1)δ

)
.

This is nothing more than the time allowed:

1

ε− (α− 1)2−k
=

1

(1 + δ)(α− 1)2−k − (α− 1)2−k
=

2k

(α− 1)δ

2.2.2 Noninteractive zero-knowledge proofs

Noninteractive zero-knowledge proof systems (NIZK) are introduced in [BFM88]. A non-
interactive proof system is a proof system where the only interaction between P and V is
that P sends a message σ to V and V decides whether he accepts or rejects σ.

In this section we consider noninteractive versions of any Σ-protocol of the form given in
Figure 2.1 by means of the Fiat-Shamir transform [FS86] and its generalized form [AABN02].

In [FS86] it is observed that interaction with an honest verifier can be removed in the
random oracle model using a cryptographic hash function H : {0, 1}∗ → {0, 1}k with
security parameter k to compute a random challenge as follows. Let a be the first message
of the Σ-protocol, then the prover computes a random challenge himself by H(a).

If H is public accessible, then if P broadcasts (a, c = H(a), r) anyone can check whether
P knows a witness w such that (v, w) ∈ R, by checking whether (a, c, r) is accepting and
that c = H(a); see also Protocol 2.7. This protocol is also known as a Σ-proof.

Security follows in the random oracle model [BR93]. However, in contrast to a real
honest verifier H(a) is a fixed value, meaning that the oracle will return the same result
each time it is queried on a. Therefore, it is not straightforward to show that the special
soundness property from the underlying Σ-protocol implies knowledge soundness with
respect to the Σ-proof. The problem is that rewinding a prover will not lead to two
accepting conversations of the form (a, c, r) and (a, c′, r′), where c 6= c′ since the random
oracle H has a fixed output on input a.

Protocol 2.7: σ ← FS(Σ = (A,B),H, x, w, t)
u ∈R {0, 1}t;1

a← A(x,w, u);2

c← H(a);3

r ← B(x,w, u, c);4

return (a, c, r);5

In [PS00] Pointcheval and Stern show how to produce two accepting proofs (a, c, r) and
(a, c′, r′) from a prover P ∗ that provides accepting proofs of Protocol 2.7 with probability
ε in time O(1/ε). Their result is also known as the Forking Lemma.

Theorem 2.8 (Forking Lemma (simplified version)). Consider the Σ-protocol 2.7. Let
P ∗ be a p.p.t. prover that can query the random oracle at most Q times. Suppose that P ∗

produces an accepting proof (a, c, r) with probability ε ≥ 7Q/2k. Then there exists a p.p.t.
M that controls P ∗ and produces two accepting conversations (a, c, r) and (a, c′, r′) such
that c 6= c′ in expected time O(Q/ε), where each invocation of P ∗ counts a single step.

2. Cryptographic Primitives 19

Proof. This is a direct consequence of [PS00, Theorem 1] by considering the special case,
where m = ∅.

A sketch of the proof is as follows. Firstly, one shows that if P ∗ provides an accepting
proof (a, c, r), then with overwhelming probability P ∗ has queried H on input a. In other
words, let q1, . . . , qQ denote the sequence of queries made by P ∗ to the random oracle H,
then with overwhelming probability there exists an i ∈ {1, . . . , Q} such that qi = a.

Secondly, suppose that P ∗ provides an accepting proof (a, c, r), while having queried H
on q1, . . . , qQ, where qi = a. Let H′ be a random oracle such that H′(qj) = H(qj) for all
j < i and H′(qi) 6= H(qi). Then one shows that after O(Q/ε) replays of P ∗ with oracle
H′ the prover P ∗ provides a second accepting proof (a, c′, r′) with c′ = H′(a) 6= H(a) = c
with some constant probability. A replay of P ∗ means that the prover is rewound to its
starting position.

The sequences H(q1), . . . ,H(qQ) and H′(q1), . . . ,H′(qQ), where H′(qj) = H(qj) for all
j < i and H′(qi) 6= H(qi) are called a fork. A fork is called successful if P ∗ provides two
accepting proofs (a, c, r) and (a, c′, r′), where c 6= c′ after some integer N replays. This
integer N is defined so that the total expected runtime is O(Q/ε).

In conclusion, let Nj be some integers. Then, M is on a high level defined by

1. Initialize ` = 0.

2. Set ` = `+1 and run P ∗ until it provides an accepting proof (a, c, r). Let the queries
made by P ∗ in the last run be denoted by q1, . . . , qQ.

3. Let i be such that qi = a. If no such i exists, then return to 2, else pick a new
random oracle H′ such that H′(qj) = H(qj) for all j < i and H′(qi) 6= H(a).

4. Replay P ∗ N` times. If the fork is successful then return the two accepting conver-
sations, else return to 2.

Observe that Theorem 2.8 implies that the Σ-proof of Protocol 2.7 is a proof of knowledge
with knowledge error κ = 7Q/2k. Indeed, one can run M to let P ∗ produce two accepting
proofs (a, c, r) and (a, c′, r′) in time O(Q/ε). Then one runs the extractor E of the Σ-
protocol of Definition 2.4 to obtain a witness in an additional polynomial time.

In [AABN02] Abdalla et al. provide a different method to get a non-interactive Σ-proof,
which they call the Generalized Fiat-Shamir Transform. Instead of computing the random
challenge by H(a) one generates a random bit string z and computes the challenge by
H(z, a). The resulting Σ-proof is given by Protocol 2.8.

Protocol 2.8: σ ← GFS(Σ = (A,B),H, x, w, t, s)
u ∈R {0, 1}t;1

a← A(x,w, u);2

z ∈R {0, 1}s;3

c← H(z, a);4

r ← B(x,w, u, c);5

σ ← (z, a, c, r);6

return σ;7

20 2.3. Multiparty Computation Model

One can show that the Σ-proof of Protocol 2.8 is also a proof of knowledge in the random
oracle model.

Theorem 2.9. Protocol 2.8 is a proof of knowledge.

Proof. Abdalla et al. show in [AABN02] that if some prover P ∗ has non-negligible prob-
ability to forge accepting proofs, then one can use P ∗ to forge accepting conversations in
the corresponding Σ-protocol of Figure 2.1 with non-negligible probability.

Thus, by Theorem 2.7 it follows that a witness can be extracted.

2.3 Multiparty Computation Model

There are many ways to define security of cryptographic protocols. Most of them use
the simulation paradigm which roughly states that if an adversary’s view from a protocol
execution can be generated from everything it is allowed to know, then the protocol is se-
cure. Intuitively, this makes sense since if everything the adversaries observes in a protocol
execution can be generated by himself, he learns nothing from the protocol execution.

Often, these models contain two worlds: the ideal world and the real world. In both
worlds there are n parties P1, . . . , Pn. The parties wish to jointly compute the result of
some function f , while revealing nothing about the private inputs and private outputs.
In the real world the parties execute a protocol π in the presence of an adversary A. In
the ideal world, on the other hand, the parties send their inputs via a secure connection
to a trusted party that replies with the desired result. The ideal world is such that any
adversary S, also called simulator, learns only public data and private data of the corrupted
parties. If there exists an S that runs in expected polynomially time in the ideal world
that generates views that are indistinguishable from the views by executing π, then one
concludes that π securely evaluates f .

Canetti provides in [Can00] a model based on the simulation paradigm, that allows
modular composition of protocols, i.e., the design of protocols, where simpler protocols
are invoked as subroutines. We will discuss in this section this model, since it is simple
and sufficient for the remainder of this thesis.

The model of [Can00] captures secure circuit evaluation. Circuit evaluation means that
the computation of a function f is done by constructing an arithmetic circuit. The modular
composition theorem of [Can00] states that if the circuit is secure under the assumption
that the gates are secure and if all gates are secure, then the circuit is secure.

We will now present the real model and the ideal model for a static adversary, i.e., an
adversary that starts with a set of parties it is going to corrupt and sticks to that set C.
In our setting, the adversary is allowed to corrupt a minority of the participants.

2.3.1 Real Model

In the real model there are n parties P1, . . . , Pn running a protocol π and an adversary A.
Each party Pi starts with its private input xsi ∈ {0, 1}∗ his public input xpi ∈ {0, 1}∗ and
random input ri ∈ {0, 1}∗. All parties have agreed upon some security parameter k ∈ N.
It is assumed that every two parties are connected via a private channel.

There is an adversary A that is t-limited, i.e., can corrupt up to t parties. The adversary
A starts with some auxiliary input z ∈ {0, 1}∗, random input rA ∈ {0, 1}∗ and the set of

2. Cryptographic Primitives 21

identities of corrupted parties C ⊂ {1, . . . , n}. Each party Pi, where i ∈ C will be controlled
by A.

The protocol is executed in interactive rounds. In each round the honest parties generate
their messages. The adversary learns all messages that are addressed to corrupt parties,
before it is going to generate and send the messages on behalf of the corrupt parties. This
is called rushing. If the adversary is passive it generates messages on behalf of the corrupt
parties as described by protocol π. But if A is active it will generate messages in an
arbitrary way. Finally, the honest parties receive messages from the corrupt parties.

When the computation is finished, the parties and adversary generate locally their out-
puts as follows. The honest parties output whatever is specified by π. The corrupt parties
output a special symbol ⊥ and the adversary outputs its entire view. The view of A
consists of its inputs (z, rA), all public inputs (xp), the private and random inputs of the
corrupt parties, and all messages send and received by the corrupt parties.

Let πA(k,xs,xp, z, r, rA)i denote the output of party Pi in the real model and, sim-
ilarly, let πA(k,xs,xp, z, r, rA)A denote the output of the adversary. Furthermore, let
πA(k,xs,xp, z, r, rA) denote the collection of all outputs from all parties and the adver-
sary, and let πA(k,xs,xp, z) denote the probability distribution of πA(k,xs,xp, z, r, rA),
where r and rA are chosen uniformly at random. Finally, let πA denote the distribution
ensemble over all k ∈ N and xs,xp, z ∈ {0, 1}∗.

2.3.2 Ideal Model

In the ideal model there are the n parties P1, . . . , Pn, a trusted party T and an adversary
S. Each party Pi has private input xsi ∈ {0, 1}∗ and public input xpi ∈ {0, 1}∗. All parties
have agreed upon some security parameter k ∈ N.

The trusted party T has an n-party function f : N× ({0, 1}∗)2n × {0, 1}∗ → ({0, 1}∗)n,
where f(k,xs,xp, rf)i denotes the i-th result of f on input security parameter k, private
inputs xs, public inputs xp and some random input rf .

The adversary S starts with some auxiliary input z ∈ {0, 1}∗, random input rS ∈ {0, 1}∗
and the set of identities of corrupted parties C ⊂ {1, . . . , n}.

In the ideal model the computation proceeds as follows. First, the adversary S learns
all private inputs of all corrupted parties Pi, where i ∈ C. In addition it learns all public
inputs xp of all parties. If S is active it may modify the inputs (xsi , x

p
i) to (ysi , y

p
i). If S is

passive then no substitution is made.

Secondly, all parties hand their inputs to the trusted party T . Let ys,yp denote the
inputs T receives from all parties. Observe that (ysi , y

p
i) = (xsi , x

p
i) if Pi is honest and

(ys,yp) = (xs,xp) if S is passive. Further T draws uniformly random rf and sends
f(k,ys,yp, rf)i to party Pi.

Finally, all parties locally generate their output. Each honest Pi outputs f(k,ys,yp, rf)i,
while each corrupt Pi outputs ⊥. The adversary S outputs an arbitrary function of its
current view. This view consists of its input, all public inputs, the private inputs and
outputs of the corrupted parties.

Let If,S(k,xs,xp, rf , rS)i denote the output of party Pi in the ideal model and, sim-
ilarly, let If,S(k,xs,xp, rf , rS)S denote the output of the adversary. Furthermore, let
If,S(k,xs,xp, z, rf , rS) denote the collection of all outputs from all parties and the adver-
sary, and let If,S(k,xs,xp, z) denote the probability distribution of If,S(k,xs,xp, z, rf , rS),
where rf and rS are chosen uniformly at random. Finally, let If,S denote the distribution

22 2.3. Multiparty Computation Model

ensemble over all k ∈ N and xs,xp, z ∈ {0, 1}∗.

Definition 2.10. Let f be a function and π an n-party protocol. Then π is said to
t-securely evaluate f if for any static t-limited adversary A, there exists a static ideal
adversary S, having a runtime that is (expected) polynomial in the runtime of A, such
that

If,S
d
= πA.

Definition 2.10 provides perfect security. The definition can also be used to define

statistical security or computational security, by replacing
d
= with

s
= or

c
= respectively.

2.3.3 Hybrid Model

To allow modular composition, a third model is introduced that allows certain subroutine
calls to be replaced by calls to a trusted ideal party. More precisely, in the (g1, . . . , g`)-
hybrid model one considers a protocol π in which all parties have access to a trusted party
T for computing the results of functions g1, . . . , g`.

In the (g1, . . . , g`)-hybrid model we have n parties P1, . . . , Pn running protocol π, a
trusted party T that acts as an oracle to the function g1, . . . , g` and a real life adversary
A. The protocol proceeds in interactive rounds as described in the real model. However,
each time some gi is evaluated one proceeds as in the ideal model.

We denote by π(g1,...,g`) that protocol π is evaluated, where function calls of g1, . . . , g`
are via a trusted party in the ideal model. Similar to πA and IS , we define π

(g1,...,g`)
A to

be the distribution ensemble over all inputs of the outputs of all parties and A, where the
random inputs are taken uniformly random.

Definition 2.11. Let f be a function and π be an n-party protocol. Then π(g1,...,g`) is
said to t-securely evaluate f in the (g1, . . . , g`)-hybrid model if for any static t-limited
(g1, . . . , g`)-hybrid adversary A there exist a static adversary S which has runtime that is
polynomial in the runtime of A such that

If,S
d
= π

(g1,...,g`)
A .

Again, Definition 2.11 provides perfect security. The definition can also be used to define

statistical security or computational security, by replacing
d
= with

s
= or

c
= respectively.

In [Can00] it is shown that modular composition of protocols are security preserving;
if ρ1, . . . , ρ` are n-party protocols that t-securely evaluate the n-party functions g1, . . . , g`
respectively and if π t securely evaluates the n party function f in the (g1, . . . , g`)-hybrid
model, then π t-securely evaluates f .

Theorem 2.12 (Composition Theorem). Let t < n and ` ∈ N and let g1, . . . , g` and f
be n-party functions. Let π(g1,...,g`) be an n party protocol that t-securely evaluates f in
the (g1, . . . , g`)-hybrid model, where no more that one ideal evaluation call is made each
round. Let ρ1, . . . , ρ` be n party protocols, where each ρi t-securely evaluates gi. Let π be
the protocol composed from π(g1,...,g`), where each call to evaluate gi is replaced by ρi. Then
π t-securely evaluates f .

This Composition Theorem also applies when security is statistical or computational, but

one needs to be careful. For statistical security for example, suppose that ∆(π
(g1,...,g`)
A ; If,S) =

2. Cryptographic Primitives 23

δ and ∆(ρi,A; Igi,S) = δi. Suppose furthermore that π has νi subroutine calls to ρi. Then

the total statistical difference ∆(πA; If,S) is at most δ +
∑`

i=1 νiδi.

In practice, Theorem 2.12 is applied as follows. To prove that π is secure, one proves
firstly that ρ1, . . . , ρ` are secure. Let Sgi denote the ideal model adversary constructed in
those proofs. Secondly, one constructs S, where each time ρi is run as a subroutine, by
running the corresponding simulation Sgi . See [CDN01] as an example.

2.3.4 Multiparty Computation from Shamir Secret Sharing

We will show that Shamir Secret Sharing allows for secure multiparty computation in
the model of [Can00]. Let f be an n party function and let C be the arithmetic circuit
evaluating f .

We assume that in the first round, all parties share their private inputs using Shamir
secret sharing. In the last round all results are opened using the recombination protocol
for Shamir shares. For the sake of simplicity, we take f to be deterministic, having only
private inputs of the parties and returning a single value, i.e., f : ({0, 1}∗)n → {0, 1}∗.
Furthermore, we assume that all parties may learn the result y = f(x1, . . . , xn), where xi
is party Pi’s private input. By using private opening gates as described in [CDN01] the
following result can be extended to the case where each party has private output yi.

Addition and subtraction of secrets: [x ± y] is locally computed by each party Pi
from [x] and [y] by [x± y]i = [x]i ± [y]i.

Adding and subtraction of secret with a public constant: [x± a] is locally com-
puted by each party Pi by [x± a]i = [x]i ± a.

Multiplication with a public constant: Multiplication of [x] by a constant b is also
done locally by each party Pi by [bx] = b[x]i.

Multiplication of secrets: Computing shares of [xy] given [x] and [y] requires an
interactive protocol. Although f(x)g(x) = (fg)(x) for any polynomials f and g, so each
party could compute a share of xy by computing [x]i[y]i, this is not a correct share in the
sense that if f and g are uniformly random t-degree polynomials then fg is a 2t-degree
polynomial and not uniformly random. The multiplication protocol of [BGW88] computes
interactively a new random t-degree polynomial h, where h(0) = xy if 2t < n. Precisely,
it performs the following steps, where we assume w.l.o.g. that the first 2t+ 1 parties will
do the interactive computations.

Protocol 2.9: [c]← Mul([x], [y])

foreach party i = 1, . . . , 2t+ 1 do1

mi ← [x]i[y]i;2

[mi]← SShare(mi, t, n);3

[c]←
∑2t+1

i=1

(
[mi]

∏2t+1
j=1,j 6=i

−j
i−j

)
;4

return [c]5

24 2.3. Multiparty Computation Model

Theorem 2.13. Let t < n/2. Let f : (Zp)n → Zp be an n-party function. Let π be an n-
party protocol evaluating circuit C consisting of arithmetic gates, i.e., addition, subtraction
and multiplication gates, based on Shamir secret sharing. Suppose that C is such that in
the first round all parties share their inputs and in the last round all parties learn their
output by Shamir reconstruction. Then, π t-securely evaluates f .

Proof. We need to give a simulator S in the ideal model that simulates transcripts and
outputs of the parties and the view of the adversary. The simulator S is given the set C
of identities of the corrupted parties of size t.

Recall that the model assumes a network with rushing, so the simulator S needs to act
first every round before getting input from A on behalf of the corrupted parties.

In the first round, when all parties share their inputs, simulator S does the following.

• Pick a random value r ∈ Zp.

• For each honest party Pi, i 6∈ C, share r using Shamir secret sharing scheme. Let pi
denote the polynomial that is used to share r on behalf of honest party Pi.

• For each honest party Pj record [r]j = pi(j) for later use and for each corrupted
party Pk, k ∈ C, send [r]k = pi(k) to the adversary A.

• Receive shares [xj]i from A, where i 6∈ C and j ∈ C.

• Reconstruct xj for each corrupted party using the Lagrange interpolation. This is
possible since A is passive and S receives n− t ≥ n/2 ≥ t+ 1 shares of each [xj].

• Send xj for j ∈ C to the trusted party T to receive y = f(x1, . . . , xn).

In the next rounds the arithmetic gates are evaluated. We show what the simulator does
depending on the gate.

Addition/Subtraction: To compute a consistent sharing for [x+y], S takes the shares it
recorded for the honest parties of [x] and [y]. Then it computes and stores [x±y]i =
[x]i ± [y]i as the result for each honest party Pi. If the computation is done with a
public value a then S sets [x+ a]i to be equal to [x]i + a.

Multiplication by a constant: To compute a consistent sharing for [xb], S takes the
shares it recorded for the honest parties of [x]. Then, it computes and stores [xb]i =
[x]ib.

Multiplication: Simulator S just runs the multiplication protocol on behalf of the honest
parties:

• Let M denote the set of parties that is assigned to perform the computation
and let λ denote the corresponding length 2t + 1 reconstruction vector. Then
for honest Pi, where i ∈ M it takes its stored shares [x]i and [y]i, and Shamir
shares mi = [x]i[y]i. Concretely, for each honest Pi , where i ∈M, S generates
a uniformly random polynomial hi(x) restricted to hi(0) = mi and sends hi(j)
to A for each j ∈ C and stores hi(k) for each k 6∈ C.
• Upon reception of all shares of A on behalf of each Pj , where j ∈ C

⋂
M,

it computes and stores the resulting shares of the honest parties by [xy]i =∑
j∈M λj [mj]i.

2. Cryptographic Primitives 25

When opening the result y the parties are going to open [y′] in the last round. Observe
that S has stored a consistent sharing of each input and output of each gate. It follows
that the shares S has recorded are such that S could compute the shares the corrupting
parties should have. This is necessary for the reconstruction part.

In the last round S needs to simulate reconstruction to y. However, since S does not
know the real inputs of the honest parties and has simulated the inputs, most likely the
value that corresponds to the shares that are opened will not be equal to y. The simulator
S proceeds as follows to provide correct views:

• Let D be the size t+ 1 set of parties that open the result.

• If D
⋂
C = ∅, then S returns y obtained from T in the first round.

• Else, let λ denote the reconstruction vector and let [y′]i be the shares S has on which
the reconstruction will be done. From these shares S reconstructs y′. Then S picks
i ∈ D, where Pi is honest and sets zi = λ−1i (y − y′) + [y′]i. For every other honest
Pj , where j ∈ D, it sets zj = [y′]j . S sends zk to A, where k ∈ D, k 6∈ C.

Next, we show that the views of S and A are indistinguishable.
In the simulation of the first round, the view of A consist of the inputs and all shares

of each corrupt party. And with respect to the honest parties it has computed a random
sharing of some random element on behalf of the hones parties. In the real protocol
execution A sees all inputs and shares of the inputs of each corrupted party and t shares
of the inputs of the honest parties. However, these t shares are perfectly indistinguishable
to t uniformly randomly drawn numbers. Hence the views of S andA are indistinguishable.

Similarly, in the last round S sees nothing except for what it has learned in the past,
while A learns y at this moment. Since having at most t shares, any opening to any
value is equally likely. It follows that the simulated views of the last round is perfectly
indistinguishable with the views of the last round of A in the real execution.

The simulated views of S during the circuit evaluation are by construction indistinguish-
able from the view of A corresponding real protocol executions. Indeed, S just follows the
protocol in all steps. Moreover, since all shares are consistent, S can open each sharing to
learn the shares held by the corrupt parties.

26 2.3. Multiparty Computation Model

Chapter 3

Linear Optimization

This chapter introduces linear programming with the focus on the implementation details.
We provide an unified and rigorous description of the elementary simplex algorithms on
which the secure variants of Chapter 5 are based.

In the first section we discuss, following [BT97] and [Lue73], basic definitions and the-
orems of linear programming leading to the simplex algorithm and to efficient validation
of any solution. In addition, we address several issues with the simplex algorithm. For
example, we show that the simplex algorithm by Dantzig [DT97] may not terminate, us-
ing [KM72], and how to enforce termination by using Bland’s extension [Bla77]. Another
important issue is that initialization of simplex is not trivial. Generally, it boils down
to solving yet another linear program using the simplex algorithm, but where the linear
program is such that initialization of the simplex algorithm is trivial.

The second section discusses how to implement the simplex iterations. While the sim-
plex algorithm is defined over Q, following [Ros05], we show how to modify the simplex
algorithm so that all computations are over Z. We provide a simple proof of the fact
that these modifications are correct. We will also provide an upper bound on the size of
the values that appear in these computations, which are needed to be able to initialize
the cryptosystems used for secure linear programming. In addition, we describe three
elementary implementations of the simplex algorithm: the original large tableau simplex
algorithm, the small tableau or condensed tableau simplex and the popular revised simplex
algorithm.

The third section describes methods to initialize the simplex iterations. We show two ba-
sic algorithms, the two-phase simplex algorithms and the algorithm for the Big-M method.
Both algorithms add extra variables to the (original) linear program resulting in an ar-
tificial linear program on which any simplex algorithm can be easily initialized. The
two-phase simplex algorithm first solves the artificial linear program and uses the optimal
result to initialize the simplex algorithm to solve the original linear program. The big-M
method on the other hand uses an extended implementation of the simplex algorithm to
find the solution for the original linear program directly. We show the issues that arise
when applying these techniques on the modified simplex algorithm that is defined over Z.

3.1 Linear Programming

A linear programming problem is an optimization problem where the objective function
is linear in the unknowns and the constraints are linear equalities and linear inequalities.

27

28 3.1. Linear Programming

Any linear program can be written down in the following form [Lue73]:

min c1x1 + c2x2 + · · · + cnxn,
subject to a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm,

and x1 ≥ 0, x2 ≥ 0, · · · , xn ≥ 0

where x1, . . . , xn are the unknowns.
Using vector notation, the linear program is written as

min cx,
subject to Ax = b,

x ≥ 0,
(3.1)

where x ∈ Rn, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. The vector x will be called a solution to
the linear program. If x satisfies all constraints it will be called a feasible solution. The
vector xopt denotes the feasible solution where cx is minimal.

In the remainder of this chapter we will call any linear program to be in standard form
if it satisfies Eq. (3.1).

The theory of linear programming is closely related to convexity theory. Consider a linear
program in standard form. The solutions to the constraints define a convex polyhedron K,
i.e.,

K = {x ≥ 0|Ax = b} .

By linearity of the objective function and the convexity ofK one can prove that the optimal
value of the objective is attained at one of the extreme points of K, i.e., a vector in K that
cannot be written as a convex combination of two other vectors in K [Lue73, BT97].

Figure 3.1: Three possible shapes of the polyhedra

Figure 3.1 shows three possible shapes of the polyhedron. From left to right they describe
the following possibilities: if the polyhedron is closed and nonempty, then solutions exist,
and the corresponding linear program will called feasible. But if the polyhedron is empty,
then no feasible solution exists, and the corresponding linear program is called infeasible.
Lastly, if the polyhedron is not bounded in a direction improving the objective of the
corresponding linear program, then no bound exists on the optimum. In that case the
linear program is called unbounded.

3. Linear Optimization 29

A naive method would be to compute cx for all extreme points in K and output the one
minimizing cx. This method is impractical as there may be exponentially many extreme
points (see for example [KM72]).

The simplex algorithm, on the one hand, exploits the linearity and convexity properties
of the LP to perform a more efficient search on the extreme points. It iteratively moves
from one extreme point to an adjacent one improving the objective and stops if no such
point exists. One can show that an extreme point that has no adjacent extreme point
with better value for the objective, is optimal to the LP [BT97, Lue73]. Unfortunately,
one can show that the simplex method may visit all extreme points. Hence exponentially
many iterations are required [KM72].

Interior point methods, on the other hand, exploit the linearity and convexity properties
of the LP to perform an efficient search in the interior of the polyhedron. They require only
polynomially many iterations in the worst case. However, each iteration of any interior
point method is expensive compared to the simplex algorithm.

We will discuss both methods in more detail in the next sections.

3.1.1 Simplex Algorithm

The simplex algorithm iteratively moves on the boundary of the polyhedron. Precisely,
in each iteration, the simplex algorithm moves from one extreme point (vertex) to an
adjacent vertex of the polyhedron that has improved costs. If no such vertex exists then
the current vertex corresponds to an optimal solution.

First, we show how to define vertices of the polyhedra. Second, we show how to define
directions to move between adjacent vertices. Then we will prove three basic theorems
needed to present the basic simplex algorithm.

A solution x is vertex of the corresponding polyhedron if and only if it is a basic feasible
solution to the linear program [Lue73, BT97]. For any matrix V ∈ Rp×n we write

Vs = (Vsi . . .Vsm) ,

where s = (s1, . . . , sm) ∈ {1, . . . , n}m. We will write s ∈ s if s = sj for some j.

Definition 3.1. Suppose that a linear program is given in standard form. Let s =
(s1, . . . , sm) ∈ {1, . . . , n}m and

B = As = (As1 . . .Asm) .

Then, s is called a basis if B is invertible. If s is a basis then B is called a basis matrix.
The tuple u = (u1, . . . , un−m) ∈ {1, . . . , n}n−m is called a co-basis if no ui ∈ s.

For any length n vector v, vi is called basic if i ∈ s and co-basic otherwise.
The vector x ∈ Rn is called a solution if Ax = b. If, furthermore, x ≥ 0 it is called

a feasible solution. Let y = B−1b. A solution x is called basic solution with respect to
basis s if

xi =

{
yj , if i = sj ,
0, if i ∈ u,

in other words, if

xs = B−1b,

xu = 0.

If y ≥ 0 then x is called basic feasible solution with respect to basis s.

30 3.1. Linear Programming

Remark 3.2. Observe that if the rank of A is less than m, then any m columns are linearly
dependent. It follows that no basic feasible solution exists. Therefore, only linear programs
are considered, where n ≥ m and the rows of A are linearly independent1. �

The simplex algorithm is based on the following theorem, from which follows that an
optimal solution, if it exists, is always in an extreme point of the corresponding polyhedron.

Theorem 3.3 (Fundamental Theorem of Linear Programming). Consider an LP in stan-
dard form, where A is an m× n matrix of rank m. Then,

1. if there is a feasible solution, then there is a basic feasible solution, and

2. if there is an optimal feasible solution, then there is an optimal basic feasible solution.

Definition 3.4. Let x be a basic feasible solution with respect to basis s and y be a basic
feasible solution with respect to basis s′. If si = s′i for all except one i ∈ {1, . . . ,m}, then
x and y are called adjacent.

Definition 3.5. Consider an LP in standard form. Suppose that x is a basic solution
with respect to basis s and co-basis u. A length n vector d is called a

• valid direction at x if for all θ > 0, the equality constraints A(x + θd) = b are
satisfied.

• feasible direction at x if x + θd is a feasible solution for some θ > 0.

• `-th basic direction at x if dj = 0 for all j ∈ u, j 6= `, where ` 6∈ s and if d` = 1.
The `-th basic direction is often denoted by d`.

Lemma 3.6. Suppose that x is a basic feasible solution to an LP in standard form with
respect to basis s. Let B be the basis matrix. Then,

(i) Ad = 0 for any valid direction d,

(ii) any feasible direction at x is a valid direction at x, and

(iii) the `-th basic feasible direction d` is unique and satisfies

d`s = −B−1A`. (3.2)

Proof. (i) Let d be a valid direction at x. Then

A (x + θd) = b, (3.3)

for all θ > 0. Since x is feasible it follows that Ax = b. Hence

θAd = 0,

for all θ > 0. Hence Ad = 0.
(ii) Let d be a basic feasible direction at x. Since x + θd is a feasible solution for some

θ > 0 Eq. (3.3) holds for some θ > 0. Again from the feasibility of x and θ being nonzero
it follows that Ad = 0 so Eq. (3.3) holds for all θ > 0. Hence d is a valid direction.

1If n = m and rank(A) = m, then there exists only one basic solution, so there is nothing to optimize.

3. Linear Optimization 31

(iii) Let d be an `-th basic feasible direction at x. Since d is valid we have by (i) that
Ad = 0. Since all nonbasic entries in d are equal to zero, except for d` which is equal to
one,

Ad = Bds + A`.

Hence Eq. (3.2) follows and ds is uniquely determined. By Definition 3.5 it follows that
all entries of d are uniquely determined.

The simplex algorithm iteratively moves from one basic feasible solution to an adjacent
one that improves the objective until no such adjacent basic feasible solution exists. In
other words, every iteration, the simplex algorithm being at solution x, searches a valid
basic direction d` such that

(i) d` is cost-improving: cd` < 0,

(ii) d` is a feasible direction at x: for some θ > 0, x + θd` is feasible,

(iii) d` leads to an adjacent vertex: x′ = x + θd` is basic feasible for some θ > 0.

The following three theorems summarize the ideas behind the simplex algorithm. For
more details about the background of the simplex algorithm see [BT97, Lue73, DT97].

Theorem 3.7 ([BT97]). Suppose that x is a basic feasible solution to an LP in standard
form with respect to basis s and co-basis u. If no cost-improving valid basic direction exists
at x, then x is a optimal solution.

Proof. By Lemma 3.6 any basic feasible direction d` satisfies

d`s = −B−1A`.

For each `-th basic feasible direction at x the changes in costs are computed by

c` = cd` = csd
`
s + c`d` = c` − csB

−1A`. (3.4)

Since d` is not cost improving it follows that c` ≥ 0.

Suppose that y 6= x is a feasible solution to the linear program. Let v = y − x. Since
both x and y are feasible it follows that Ax = Ay = b and, therefore, Av = 0. Hence

Av = Bvs +
∑
i∈u

Aivi = 0.

It follows that

vs = −
∑
i∈u

B−1Aivi

and the cost difference between x and y is given by

c(y − x) = cv = cuvu + csvs =
∑
i∈u

(
ci − csB

−1Ai

)
vi =

∑
i∈u

civi ≥ 0,

since vu ≥ 0. Indeed, yi ≥ 0 and xi = 0 for all i ∈ u by the feasibility of y.

Hence cx ≤ cy and, therefore, x is optimal.

32 3.1. Linear Programming

Notice that Eq. (3.4) implies that d` is cost-improving if and only if c` < 0. The vector
c is often called the cost-reduced vector, which is defined as follows.

Definition 3.8. Consider a linear program in standard form. Let s be a basis. Then,

c = c− csA
−1
s A

is called the cost-reduced vector with respect to basis s.

Lemma 3.9. Consider a linear program in standard form. Let s be a basis. Then any
basic feasible direction di is cost-improving if and only if the cost-reduced vector c with
respect to s satisfies ci < 0. Furthermore, cj = 0 for any j ∈ s.

Proof. Let B = As be the basis matrix, c be the cost-reduced vector with respect to basis
s, and di be the i-th basic feasible direction with respect to basis s.

Suppose that di is cost improving. Then by Eq. (3.2)

ci = ci − csB
−1Ai = cid

i
i + csd

i
s = cdi.

Hence di is cost improving if and only if ci < 0.

Next, let j ∈ s. Then sk = j for some k and

cj = cj − csB
−1Aj = csk − csB

−1Bk = csk − csek = 0.

Theorem 3.10. Suppose that x is a feasible solution to an LP in standard form. If d
is a cost-improving feasible direction at x having nonnegative entries only, then the LP is
unbounded.

Proof. Suppose that d is a cost-improving feasible direction at x having nonnegative entries
only. Being a feasible direction it will also be a valid direction. Hence for all θ > 0 the
equality constraints are satisfied. Moreover, from d ≥ 0 it follows that x + θd ≥ 0 for all
θ > 0. Hence for all θ > 0 the solution x + θd is feasible.

Since d is cost-improving

cd < 0,

and thus

c(x + θd) = cx + θcd

is unbounded since θ is unbounded.

Theorem 3.11. Suppose that x is a basic feasible solution to an LP in standard form
corresponding to basis s. Let d be the `-th cost-improving valid basic direction at x with
at least one negative entry. Then for any 0 ≤ θ ≤ θ∗ the solution x′ = x + θd is feasible
where

θ∗ = min

{
−xi
di

∣∣∣∣ di < 0 and i ∈ s

}
. (3.5)

Moreover, if θ = θ∗ then x′ is basic feasible.

3. Linear Optimization 33

Proof. Since d is a valid direction and x a solution it follows for all θ ≥ 0 that x′ is a
solution.

Let 0 ≤ θ < θ∗. Suppose that j and k are such that θ∗ = −xj/dj and j = sk. Then, all
co-basic entries of x′ satisfy x′i = xi + θdi = 0, if i 6= `, and x′` = θ. All basic entries of x′

satisfy x′i ≥ 0, if di ≥ 0, but also if di < 0:

x′i = xi + θdi ≥ xi −
xj
dj
di ≥ xi −

xi
di
di = 0.

Hence x′ is feasible.
If θ = θ∗ then x′j = 0 and x′` = θ ≥ 0 then x’ is basic with basis

s′ = (s1, . . . , sk−1, `, sk+1, . . . , sm).

Remark 3.12. Note that θ∗ can be equal to zero if for some j both dj < 0 and xj = 0.
In such a case d is called a degenerate direction and changing the basis does not result
in a new solution. But since the valid basic directions depend on the current basis (see
Eq. (3.2)) changing the basis may lead to new directions where θ∗ > 0. �

Definition 3.13. Consider a linear program in standard form. Let s be a basis corre-
sponding to basic feasible solution x. Suppose that d is a basic feasible cost-improving
direction, where dj < 0. If xj = 0, then d is called a degenerate direction at x and the
linear program is called degenerate.

In conclusion, given a basic feasible solution x with respect to basis s the simplex method
performs the following steps during each iteration.

Basic Simplex.

Entering-Variable: Let s be a basis and B = As the corresponding basis matrix.
Pick a cost-improving basic feasible direction d, or equivalently (Lemma 3.9),
pick ` such that c` < 0. From the proof of Theorem 3.11 it follows that x` will
become basic. If no such ` exist, then output current solution being optimal.

Leaving-Variable: Compute θ from Eq. (3.5) and pick k that minimizes θ. Again
by Theorem 3.11 it follows that xk will become co-basic. If no such k exist then
stop while reporting that the LP is unbounded.

Update the Basis Replace sk by ` in s.

In the first two steps of the algorithm there is some freedom in how to implement the
algorithm: if multiple entries of c are negative then one can choose freely among them,
and if there are multiple values for k that minimize θ then again one is free to choose
among them. A rule restricting the choice of ` and k is called a pivoting rule.

The performance due to pivoting rules strongly depends on the problem instance itself.
To illustrate this, we describe two well known pivoting rules: Dantzig’s original pivoting
rule and Bland’s pivoting rule [Bla77].

34 3.1. Linear Programming

Let basic feasible solution x and basis s be given at the start of an iteration of the
simplex algorithm. Consider the following restrictions on the choice of the variable to
become basic and the variable to become co-basic.

Dantzig’s Original Pivoting Rule: With respect to the entering variable, choose `
such that

` = argmin {ci|ci < 0} , (3.6)

where argmin(x) = i if and only if xi = min(x).

Bland’s Pivoting Rule [Bla77]: With respect to the entering variable, choose ` such
that

` = min {i|ci < 0} . (3.7)

Let d` be the corresponding basic feasible direction. With respect to the leaving
variable, choose k such that

k = argmin

{
si

∣∣∣∣d`i < 0 and − xsi
dsi

= min

{
−
xsj
dsj

∣∣∣∣ d`sj < 0

}}
. (3.8)

Remark 3.14. One easily verifies that the problem instances given by [KM72] require
exponentially many iterations if Dantzig’s original pivoting rule is applied, where Bland’s
rule requires just one iteration.

More importantly, Beale provides in [Bea55] an example of a linear program on which
the simplex algorithm with Dantzig’s original pivoting rule will never terminate. This is
due to the fact that at some stage Dantzig’s pivoting rule selects only degenerate basic
feasible directions in such a way that the corresponding basis updates yields a sequence of
bases that is repeated over and over. This is called cycling, see Definition 3.15. �

Definition 3.15. Suppose that the simplex algorithm is applied to solve a linear program
in standard form. We say that the simplex algorithm cycles between bases s1, . . . , sp if si

will be updated by the simplex algorithm to si+1, for all i = 1, . . . , p, where sp+1 = s1.

Bland’s pivoting rule is designed to be a very simple rule so that cycling cannot oc-
cur [Bla77]. It uses the fact that the simplex can cycle only if the linear program is
degenerate.

Lemma 3.16. Consider a linear program in standard form. If the simplex algorithm
cycles, then the linear program is degenerate.

Proof. Suppose that the simplex algorithm cycles between the bases s1, . . . , sp. Let xi be
the basic feasible solution corresponding to basis si. Observe that the costs should remain
constant during the cycle. Indeed by construction of the simplex algorithm cx1 ≤ · · · ≤
cxp ≤ cxp+1 = cx1.

Next, suppose that d is a cost improving basic feasible direction such that xi+1 = xi+θd
for some positive θ. Suppose furthermore that si+1 is obtained from si by replacing sik by
`. Since d is cost-improving cd < 0. By cxi = cxi+1 = c(xi + θd) it follows that θ = 0.

Since d is a basic feasible direction and ` enters the basis replacing sik, d` = 1 and
dsk < 0. Furthermore, from θ = 0 we have by Eq. (3.5) that xsk = 0.

Theorem 3.17 (Bland’s anti-cycling rule:). Consider a linear program in standard form.
The simplex algorithm using Bland’s pivoting rule will not cycle.

3. Linear Optimization 35

Proof. Suppose on the contrary, that the simplex algorithm under Bland’s pivoting rule
cycles given a linear program in standard form. Suppose that the simplex algorithm cycles
successively between the bases s1, . . . , sp with corresponding co-bases u1, . . . ,up. Let T
be the set of indices that leave and enter the basis at some iteration in the cycle, i.e.,

T = {i | ∃(j, k) : i ∈ sj ∧ i ∈ uk}

Next, suppose that q = max T . We will show that due to cycling, at some iteration q
should enter the basis and at some other iteration q should leave the basis, resulting in a
contradiction to the choice of the pivot element.

Suppose that q enters basis si and leaves basis sj , where i, j ∈ {1, . . . , p} and i 6= j. Let
c be the cost-reduced vector with respect to basis si and let c′ be the cost-reduced vector
with respect to basis sj . Since q enters the basis si by Bland’s pivoting rule, cj ≥ 0, for
all j < q, and cq < 0.

Suppose that basis sj+1 is obtained from sj by replacing sjr = q with t. Hence t ∈ T
and t 6= q. Let dt be the basic feasible direction with respect to basis sj . By Lemma 3.6
Adt = 0 and dt

sj
= −A−1

sj
At. Since c is a cost-reduced vector with respect to basis si and

dt the t-th basic feasible direction with respect to basis sj , we have

cdt =
(
c− csiA

−1
si A

)
dt = cdt = ct − csjA

−1
sj At = c′t < 0.

Hence there should be a k such that ckd
t
k < 0. Since ck 6= 0 it follows from Lemma 3.9

that k is not in the basis si. By dtk 6= 0 then either k is in the basis sj or k = t. If
k = t 6= q, then ckd

t
k < 0 and dtt = 1 implies that ck = ct < 0. But since t ∈ T and t 6= q

implies t < q, which is a contradiction to the fact that ct ≥ 0. So k is in the basis sj . And
hence k ∈ T , since it is not in the basis si.

Since k ∈ T we have by Lemma 3.9 that xk = 0. Furthermore, cq < 0 and dtsr = dtq < 0
so cqd

t
q > 0, but ckd

t
k < 0. Hence k 6= q. By the choice of q it follows that k < q,

contradicting the fact that q leaves basis sj .

3.1.2 Interior Point Methods

The interior point methods are theoretically more efficient than the simplex methods, since
their worst case running time is polynomial. In practice, however, it is not all clear which
performs best. We will briefly discuss the main ideas behind the interior point methods
and show a simple example.

The interior point methods iteratively move between feasible solutions x, where x > 0.
The idea is that within the interior of the polyhedron one has more freedom in choosing
a feasible direction than on the boundary. In particular one can move into the direction
where the cost improves the most, i.e., −c. This direction is also called the direction of
steepest descent. If one is at the center of the polyhedron, then moving into this direction
will typically result in significant progress.

However, when x is not at all in the center of the polyhedron, then moving into the
direction of steepest descent typically results in moving towards the boundary. Being
close to the boundary limits the choice of the next direction, limiting progression to the
optimum.

This observation is exploited in Karmarkar’s method [Kar84] and Dikin’s method [Dik74].
Their approach is to transform the polyhedron each iteration so that the transformed so-
lution is in the center of the polyhedron and makes a significant improvement on the

36 3.1. Linear Programming

transformed costs by going into the direction of steepest descent. If the improvement of
the costs in the original program is very small, one can show that one is close to the
optimum.

The claims by Karmarkar of his method being faster than the simplex methods stim-
ulated new improvements to the simplex methods but also the development of numerous
alternative interior point methods. For example, instead of going into the direction of
steepest descent leading to costly transformations, one could define a central path, i.e., a
(typically nonlinear) path through the center of the polyhedron that hits the boundary
in the optimal solution. Being close to the central path one can make a significant im-
provement towards the solution by going in the direction of the path. In those methods,
in every iteration, one tries to decide whether the current solution is close to the central
path. If so, the direction of the path is followed, otherwise, one tries to move to a new
solution close to the central path. For more details about these path following methods we
refer to [NW99, Chapter 14].

The following primal affine algorithm illustrates an interior point method. It is Dikin’s
Method [Dik74] based on the description in [DT97]. Let x be an interior feasible point.
We note that A has again full row rank.

Algorithm 3.1 (Dikin’s Primal Affine Method).

Centering First, the LP is transformed to an equivalent LP by letting xt = D−1x = 1,
where

D =

 x1 · · · 0
. . .

0 · · · xn

 .

Note that D has an inverse since x is an interior point, i.e., x > 0. With At = AD
and ct = Dc, the transformed equivalent LP becomes

min ctx,
subject to Atx = b,

x ≥ 0.

The current solution is xt = 1.

Compute direction of steepest descent: The direction of steepest descent is −ct, but
since most likely Atct 6= 0 it will not be a valid direction and, therefore, it will not
be a feasible direction (cf. Lemma 3.6). Its projection onto the null space of At will
result in a feasible direction of steepest descent. Let

Pt = I−At
T (AtAt

T)−1At

be the n × n projection matrix onto the null space of At, which can be computed
since At has full row rank. Compute

d = −Ptct.

Move to the new interior point Compute the new solution

x′t = e +
α

θ
d,

3. Linear Optimization 37

where

θ = −min {dj |j ∈ {1, . . . , n}}

and 0 < α < 1. Hence x′t > 0 is an interior feasible point. If θ < 0, then d has
no negative entries. Hence, by Theorem 3.10 it follows that the LP is unbounded.
Compute the corresponding solution of the original LP by x′ = Dx′t.

Check termination condition Terminate if x ≈ x′, where some stopping criterium is
defined.

Remark 3.18. The computational expensive part is the computation of the direction of
steepest descent. One way of doing this step more efficiently is by computing d directly
using a Cholesky decomposition or a QR decomposition as follows. Write

d = −ct −AT
t v,

where v is the solution to

AtA
T
t v = −Atct. (3.9)

Hence,

v = −(AtA
T
t)−1Atct

and

d =
(
I−AT

t (AtA
T
t)−1At

)
(−ct) = −Ptct.

To solve Eq. (3.9) efficiently, one computes y = −Atct and decomposes AtA
T
t for example

as LLT (Cholesky decomposition), where L is a lower triangular matrix. If A has rank m
and x > 0 then AtA

T
t is a symmetric positive definite matrix and, therefore, the Cholesky

decomposition is applicable. One solves

Lu = y

and

LTv = u

to find v. �

The most recent interior point methods are based on path following techniques and use
nonlinear optimization techniques such as the Newton’s method and the Barrier method.
The hardest computational part of these algorithms is solving one or more systems of linear
equations like in the given example. While the simplex algorithm is exact in principle,
the interior point methods reach the optimal solution in the limit. On the other hand,
the interior point methods are applicable to more general optimization problems such as
semidefinite programming.

With respect to performance it is hard to decide whether the interior point methods will
do better than the simplex methods [Mur05, Mil00, DT97, DT03]. Furthermore, since the
optimum is on the boundary of the polyhedron, the interior point methods will reach the
optimum only in its limit [NW99, DT97].

Due to simplicity, exact computations, and practical performance we will focus on the
simplex algorithm.

38 3.1. Linear Programming

3.1.3 Initial Feasible Solution

Both the simplex methods and the interior point methods move iteratively between feasible
points in the polyhedron corresponding to the LP in standard form. In order to setup the
methods one needs to identify a feasible solution. This is usually done by solving yet
another LP; the artificial LP.

Consider the following artificial LP:

min
∑m

i=1 yi,
subject to Ax + y = b,

(x,y) ≥ 0,
(3.10)

where y ∈ Rm is called the vector of artificial variables. If b ≥ 0, then LP (3.10) is
initialized by y = b. We will assume without loss of generality that b ≥ 0. One can easily
modify the equality constraints in the original LP in standard form so that all equations
hold where the righthand side is nonnegative.

Theorem 3.19 shows that solving LP (3.10) yields either a feasible solution to the original
LP in standard form or the conclusion that the original LP has no feasible solutions at all.

Theorem 3.19. Suppose that LP in standard form is given, where b ≥ 0. Consider
its corresponding artificial LP (3.10). Let (xopt,yopt) denote the optimal solution to the
artificial LP. Then

(i) the artificial LP is bounded and has at least one feasible solution,

(ii) if
∑m

i=1 yi = 0 then xopt is a feasible solution to the given LP,

(iii) if
∑m

i=1 yi > 0 then the given LP has no feasible solution.

Proof. (i) From the nonnegativity constraints y ≥ 0 it follows that min
∑m

i=1 yi is bounded
from below by zero. And from b ≥ 0 it follows that y = b is a feasible solution to the
artificial LP.

(ii) Let (xopt,yopt) be the optimal solution of the artificial LP. Suppose firstly that
yopt = 0. Then,

Axopt = b

such xopt is feasible to the given LP.
(iii) Next suppose that yopt 6= 0. Let x∗ be a feasible solution to the given LP. From

Ax∗ = b and x∗ ≥ 0 it follows that (x∗,0) is feasible to the artificial LP contradicting
the optimality of (xopt,yopt).

Theorem 3.20 generalizes Theorem 3.19 by considering a more general artificial linear
program.

Theorem 3.20. Suppose that an LP in standard form is given. Consider the following
artificial LP

min
∑p

i=1 yi,
subject to Ax + Cy = b,

(x,y) ≥ 0,
(3.11)

where C ∈ Rm×p for 1 ≤ p ≤ m. Suppose that it has a feasible solution. Let (xopt,yopt)
denote the optimal solution to the artificial LP (3.11). Then

3. Linear Optimization 39

(i) the linear program (3.11) is bounded,

(ii) if
∑p

i=1 yi = 0 then xopt is a feasible solution to the given LP,

(iii) if
∑p

i=1 yi > 0, then the given LP has no feasible solution.

Proof. (i) From the nonnegativity constraints y ≥ 0 it follows that min
∑p

i=1 yi is bounded
from below by zero.

(ii) Let (xopt,yopt) be the optimal solution of the artificial LP. Suppose firstly that
yopt = 0. Then,

Axopt = b.

This xopt is feasible to the given LP.

(iii) Next, suppose that yopt 6= 0. Let x∗ be a feasible solution to the given LP. From
Ax∗ = b and x∗ ≥ 0 it follows that (x∗,0) is feasible to the artificial LP, contradicting
the optimality of (xopt,yopt).

Theorem 3.21 shows a nice property of the simplex algorithm when applied to any
artificial linear program. It shows that if the cost-reduced vector has negative entries only
at positions of the artificial variables, then the corresponding basic feasible solution is
already optimal, or the given linear program has no feasible solution at all. It means that
the simplex iterations do not need to compute the cost-reduced entries for the artificial
variables.

Theorem 3.21. Consider the general artificial LP (3.11) corresponding to a given LP
in standard form. Let (x,y) be a basic feasible solution with respect to basis s. If the
corresponding cost-reduced vector c satisfies ci ≥ 0 for all 1 ≤ i ≤ n, then the current
solution is either optimal or the given LP is infeasible.

Proof. For the sake of simplicity we will write z = (x,y). Hence zi = xi, if 1 ≤ i ≤ n, and
zi = yi−n, if n+ 1 ≤ i ≤ n+ p. Let c denote the cost vector corresponding to the artificial
LP. Hence cz =

∑p
i=1 yi.

Suppose that c has only nonnegative entries in the first n positions and at least one
negative entry in the next p positions. Let

D = {d1, . . . , dq} = {s1, . . . , sm} ∩ {n+ 1, . . . , n+ p}

denote the set of basic artificial variables in the current solution z.

We will show that from z a feasible and optimal solution to another artificial linear
program, with respect to the original LP, can be computed so that by Theorem 3.20 one
can conclude that either the original LP is infeasible or x′ is a feasible solution to the
original LP.

Consider the linear program that is obtained by removing the co-basic artificial variables
from the artificial LP, i.e., consider

min c′v =
∑q

i=n+1 vi,
subject to

(
A Cd1−n . . . Cdq−n

)
v = b,

v ≥ 0,
(3.12)

where v ∈ Rn+q and q < p.

40 3.1. Linear Programming

By construction v = x1, . . . , xn, yd1−n, . . . , ydq−n is a basic feasible solution to LP (3.12)
with basis s′, where

s′i =

{
si, if si ≤ n,

n+ k, if si = dk.

Let B =
(

A C
)
s

be the basis matrix corresponding to solution z to the artificial

LP (3.11). And let B′ =
(

A Cd1−n . . . Cdq−n
)
s′

be the basis matrix corresponding
to solution v to the artificial LP (3.12). Observe that

Bi = Asi = As′i
= B′i,

if si ≤ n, and

Bi = Csi−n = Cdk−n = B′i,

if si = dk > n. Hence, B = B′.

Similarly, the cost reduced-vector c′ with respect to v, satisfies, for i ≤ n, using c′s′ = cs

c′i = −c′s′B
′−1Ai = −csB

−1Ai = ci ≥ 0.

And if i = n+ k ≤ n+ q then it satisfies

c′i = 1− c′s′B
′−1Cdk = 1− csB

−1Cdk = cdk = 0,

by Lemma 3.9 since dk is basic with respect to s.

Therefore, c′ ≥ 0 and, therefore, v is optimal to Eq. (3.12). The theorem follows from
Theorem 3.20 since LP (3.12) is an artificial LP of the same form and corresponds to the
given LP.

3.1.4 Verification of the Result

This section shows how the result can be verified very efficiently using certificates. Our
definitions are based on the definitions used in complexity theory (see [Hro01]).

Definition 3.22. Let S1 and S2 be some sets and X ⊆ S1. A polynomial time computable
function g : S1 × S2 → {0, 1} is called a validating function for X , if

X = {w ∈ S1| ∃c ∈ S2 : g(w, c) = 1} .

If g is a validating function for X and g(w, c) = 1, then c is called a certificate of the fact
w ∈ X .

Let x be a boolean expression. We will write |x|b to denote the boolean evaluation of
the expression x. For example let x ∈ {0, 1} and y ∈ {0, 1}, then |x ∧ y|b = 1 if and only
if x = 1 and y = 1.

Let U = (Rm×n×Rm×Rn) be the set representing all linear programs in standard form,
i.e., (A,b, c) ∈ U corresponds to an LP in standard form. For the sake of simplicity we
will call any tuple (A,b, c) ∈ U an LP if we mean the LP to be represented by (A,b, c).

Example 3.23 (Certificate of Feasibility). Let

X = {(A,b, c) ∈ U|LP (A,b, c) is feasible}

3. Linear Optimization 41

be the set of feasible linear programs in standard form. By definition (A,b, c) ∈ U is
feasible if and only if there exists an x ∈ Rn such that

Ax = b ∧ x ≥ 0.

Hence g : U × Rn → {0, 1} defined by

g ((A,b, c),x) = |Ax = b ∧ x ≥ 0|b

is a validating function for X and x is a certificate of the fact that (A,b, c) ∈ X , i.e., x is
a certificate of feasibility of the LP (A,b, c). �

It follows from Example 3.23 that if a solution x is a certificate of feasibility, then the
given LP is feasible, but in particular that x is a feasible solution. Similarly, we use
a certificate of optimality to prove that a given result xopt is indeed optimal. Such a
certificate typically requires the dual of the given LP, which we will introduce next.

3.1.4.1 Certificate of Optimality

To validate optimality of a solution efficiently one considers the dual of a linear program.
Here we will introduce the dual linear program and its relation to a given linear program
in standard form. Then we show how these relations are used to provide a certificate of
optimality.

Given an LP in standard form, its dual LP is given by

max pb,
subject to pA ≤ c,

(3.13)

where the p ∈ Rm are the unknowns (Lagrange multipliers). The given linear program is
called the primal linear program corresponding to the dual linear program Eq. (3.13).

The following theorems, which we will prove for the primal LP in standard form, will
form the basis for validating an optimal solution.

Theorem 3.24 (Weak Duality). Let x be a feasible solution to the primal LP in standard
form and let p be a feasible solution to the corresponding dual LP. Then,

pb ≤ cx.

Proof. Since x is feasible to the primal LP it satisfies Ax = b and x ≥ 0. The feasibility
of p implies that pA ≤ c. Thus,

pb = pAx ≤ cx.

Theorem 3.25. Let x be a feasible solution to the primal LP in standard form and p be a
feasible solution to the corresponding dual LP. If pb = cx, then both x and p are optimal.

Proof. Let x′ be any feasible solution to the primal LP. Then from Theorem 3.24 it follows
that

cx = pb ≤ cx′,

42 3.1. Linear Programming

thus proving the optimality of x.

Similarly, let p′ be any feasible solution to the dual LP. Then, by Theorem 3.24 again,
we have

pb = cx ≥ p′b,

thus proving the optimality of p.

Theorem 3.26 (Strong Duality). If the primal LP in standard form has an optimal
solution, then so does the corresponding dual LP, and the optimal costs are equal.

Proof. Suppose that the primal LP has an optimal solution. By the fundamental theorem
of linear programming (Theorem 3.3) there is a basic optimal solution x with respect to
some basis matrix B. From Theorem 3.7 it follows that the corresponding cost-reduced
vector satisfies c ≥ 0. Hence by Definition 3.8

c− csB
−1A ≥ 0,

and, therefore,

csB
−1A ≤ c.

Therefore, the vector

p = csB
−1 (3.14)

is feasible to the dual LP. Moreover,

pb = csB
−1b = csxs = cx.

Hence by Theorem 3.25 it follows that p is optimal.

It follows from Theorem 3.25 that if x is feasible to the primal LP and p is feasible to
the corresponding dual LP, then pb = cx if and only if both x and p are optimal. Hence
a certificate of optimality for the given LP in standard form is the tuple (x,p).

3.1.4.2 Certificate of Infeasibility

Note that by Theorem 3.19 the artificial LP (3.10) with respect to an LP in standard form
has an optimal solution and by the strong duality theorem (Theorem 3.26) also its dual
has. Therefore, a certificate of optimality exists for the artificial LP. From this certificate
we can derive a certificate for infeasibility using Farkas’ lemma.

Theorem 3.27 (Farkas’ Lemma). Let A ∈ Rm×n and b ∈ Rm. Then, exactly one of the
following holds:

(i) there exists some x ≥ 0 such that Ax = b, or

(ii) there exists some p such that pA ≤ 0 and pb > 0.

Proof. (i) and (ii) cannot hold both since they would imply that

0 < pb = pAx ≤ 0x = 0.

3. Linear Optimization 43

Suppose (i) does not hold. Given A and b consider the LP in standard form, where c is
chosen arbitrarily. Let p be the optimal solution to the dual linear program corresponding
to the artificial LP (3.10), which can be derived from Eq. (3.13) as follows:

max pb,
subject to p[A|I] ≤ [0|1],

where 0 denotes a length n vector consisting of zeros and 1 a length m vector consisting
of ones.

By Theorem 3.25 it follows that the optimal costs for the dual linear program and the
artificial linear program are equal. By Theorem 3.19 it follows that the optimal costs
of the artificial linear program are positive by the infeasibility of the original LP. Hence
pb > 0.

Observe that from the dual feasibility of p that pA ≤ 0, hence (ii) holds.

From Theorem 3.27 it follows that any p satisfying (ii) provides a proof that the given
LP is infeasible. It follows that a certificate of infeasibility is given by p.

3.1.4.3 Certificate of Unboundedness

From Theorem 3.10 it follows that if x is a feasible solution and some direction d ≥ 0 is a
feasible direction at x improving the costs, then the LP is unbounded. Hence a certificate
of unboundedness is given by (x,d).

3.2 Implementations of the Simplex Iterations

Recall from Section 3.1.1 that the simplex algorithm performs the following steps during
each iteration given an LP in standard form and a basic feasible solution x, with basis s
and basis matrix B = As:

1. Entering Variable: Pick ` such that c` < 0, where

c = c− csB
−1A.

If no such ` exists then output current solution, where xs = B−1b, being the opti-
mum.

2. Leaving Variable: Compute

θ = min

{
−xsi
dsi

∣∣∣∣ di < 0

}
,

where ds = −B−1A`, and xsi = B−1b. Let k be the index such that θ = −xk
dk

. If
no such k exists, then exit and report “unbounded LP”.

3. Update Basis: Replace sk by ` in s and update B by replacing the k-th column of
B by A`.

Naively, to compute c and d one needs to compute B−1 at each iteration. We will show
in the remainder of this section how to avoid computing these matrix inverses.

A precise rule to select ` and k is called a pivoting rule, see Remark 3.14. In this Section,
for simplicity, we will give the algorithms where Dantzig’s original pivoting rule is applied.

44 3.2. Implementations of the Simplex Iterations

3.2.1 Large Tableau Simplex

This section shows how all data used in the simplex method can be represented by a
matrix and that each iteration reduces to elementary row operations, i.e., adding rows
and multiplying the rows by a scalar. Then, observing that the values in the matrix will
be rational even if the inputs are integer, we show how to avoid computing with fractions.
Lastly an upper bound on the size of the values in the representation will be derived.

3.2.1.1 The Simplex Tableau

Let T be an (m+ 1)× (n+ 1) matrix as follows

a′11 . . . a′1n b′1
...

...
...

a′m1 . . . a′mn b′m
c1 . . . cn −z

, (3.15)

Definition 3.28. For any LP in standard form, let x be a basic feasible solution with
respect to basis s and let B = As be the basis matrix. Let T be given by Eq. (3.15). If

T =

(
B−1 0
−csB

−1 1

)(
A b
c 0

)
(3.16)

then T is called the simplex tableau corresponding to basis s.

The following proposition shows that by elementary row operations on T one can trans-
form T to tableau T′ corresponding to the new basis s′ after one simplex iteration. In
the following, let Im denote the m×m identity matrix and ei the i-th column of Im. The
vector ei is also know as the i-th unity vector.

Theorem 3.29. Let T be the tableau corresponding to basis s. Let

T′ = QT,

where Q is the matrix corresponding to row reduction, or pivot, on element tk` 6= 0, where
1 ≤ k ≤ m and 1 ≤ ` ≤ n, i.e.,

t′ij = tij −
ti`tkj
tk`

if i 6= k (3.17)

t′kj =
tkj
tk`
. (3.18)

Then T′ is the tableau corresponding to basis s′ = (s1, . . . , sk−1, `, sk+1, . . . , sm).

Proof. Let T be a tableau corresponding to basis s. Let k ∈ {1, . . . ,m} and ` ∈ {1, . . . , n}.
Suppose tk` 6= 0 and let T′ = QT satisfy Eq. (3.17) and Eq. (3.18). We will show that T′

satisfies Definition 3.28, i.e.,

T′ =

(
B′−1 0

−cs′B
′−1 1

)(
A b
c 0

)
, (3.19)

where s′ = (s1, . . . , sk−1, `, sk+1, . . . , sm) and B′ = As′ .

3. Linear Optimization 45

Since T is a tableau with basis s it holds that

T =

(
B−1 0
−csB

−1 1

)(
A b
c 0

)
=

(
A′ b′

c −z

)
,

where B = As, A′ = B−1A, b′ = B−1b, c = c− csB
−1A, and z = csB

−1b.

From Eq. (3.17) and Eq. (3.18) it follows that Q ∈ R(m+1)×(m+1) is equal to

1 0 − a′i`
a′k`

0 . . . 0

. . .
...

...
...

0 1 −
a′
(k−1)`

a′k`
0 . . . 0

0 0 1
a′k`

0 0

0 . . . 0 −
a′
(k+1)`

a′k`
1 0

...
...

...
. . .

0 . . . 0 − c`
a′k`

0 1

. (3.20)

Let

QT = Q

(
B−1 0
−csB

−1 1

)(
A b
c 0

)
=

(
Q′A′ Q′b′

c′ −z′
)
, (3.21)

where Q′ ∈ Rm×m consists of the first m rows and columns of Q.

We will show that

(i)

Q′B−1 = B′
−1

(3.22)

implying Q′A′ = B′−1A and Q′b′ = B′−1b, and,

(ii) c′ = c− cs′B
′−1A and −z′ = −cs′B

′−1b, implying that QT satisfies Eq. (3.19).

(i) We have

(Q′A′j)i = a′ij −
a′i`
a′k`

a′kj , (3.23)

for i 6= k and

(Q′A′j)k =
a′kj
a′k`

. (3.24)

First observe that

Q′B−1B′ = Q′
(
B−1B′1, . . . ,B

−1B′m
)

= Q′
(
B−1As1 , . . . ,B

−1Ask−1
,B−1A`,B

−1Ask+1
, . . . ,B−1Asm

)
= Q′

(
e1, . . . , ek−1,A

′
`, ek+1, . . . , em

)
. (3.25)

For i 6= k we have Q′ei = Q′i = ei. And Eqs. (3.23) and (3.24) imply Q′A` = ek. Hence
by Eq. (3.25)

Q′B−1B′ = Im.

46 3.2. Implementations of the Simplex Iterations

(ii) From Eq. (3.20) it follows that

c′j = cj −
c`a
′
kj

a′k`

=
(
cj − csB

−1Aj

)
−
a′kj
(
c` − csB

−1A`

)
a′k`

= cj −
∑
i∈s

ci

(
a′ij −

a′kja
′i`

a′k`

)
− c`

a′kj
a′k`

= cj −
∑
i∈s′

ciQ
′A′i

= cj − cs′B
′−1Aj , (3.26)

for j = 1, . . . n, where we used the identities from Eq. (3.23), Eq. (3.24), and Eq. (3.22).

Similarly,

− z′ = −z −
c`b
′
k

a′k`
= · · · = −cs′B

′−1b. (3.27)

Notice that in the tableau, the values c are present in the last row and the valid basic
directions are easily extracted from the columns of A′, indeed by Eq. (3.2)

dis = −B−1Ai = −A′i.

With the tableau representation, the simplex method becomes:

1. Entering Variable: Pick ` such that t(m+1)` < 0. If no such ` ≤ n exists then the
output is the current solution which is optimal, i.e.,

xsi = ti,n+1,

for all i = 1, . . . ,m and xj = 0 for j 6∈ s.

2. Leaving Variable: Compute

θ = min

{
ti(n+1)

ti`

∣∣∣∣ ti` > 0 and i ∈ {1, . . . ,m}
}
. (3.28)

Let k be the index such that θ =
tk(n+1)

tk`
. If no such k exists, then exit and report

“unbounded LP”.

3. Update Basis and Tableau: Replace sk by ` in s and compute T′ from T by
using Eqs. (3.17) and (3.18) in Theorem 3.29.

3. Linear Optimization 47

The following algorithms provide precisely each step of the simplex iterations.

Algorithm 3.1: (T, s, pred)← IterateLT,RP(T, s)

Input: T, s.
Output: T, s, pred.
(`, k)← FindPivotElement(T);1

if ` = 0 then2

return (T, s,Optimal) ;3

else if k = 0 then4

return (T, s,UnboundedLP);5

T← PivotRP(T, `, k);6

sk ← `;7

return IterateRP(T, s);8

Algorithm 3.2: (`, k)← FindPivotElement(T)

Input: T.
Output: `, k.
`← argmin

{
t(m+1)i

∣∣ i ∈ {1, . . . , n}};1

if t(m+1)` ≥ 0 then2

return (0, 0);3

foreach i ∈ {1, . . . ,m} do4

if ti` > 0 then ri ←
ti(n+1)

ti`
;5

else ri ←∞;6

k ← argmin(r1, . . . , rm);7

if rk =∞ then8

return (`, 0);9

return (`, k);10

Algorithm 3.3: T′ ← PivotRP(T, k, `)

Input: T, `, k.
Output: T′.
foreach i ∈ {1, . . . , n+ 1} do1

foreach j ∈ {1, . . . ,m+ 1} do2

if i 6= k then3

t′ij ← tij −
ti`tkj
tk`

;4

else5

t′ij ←
tij
tk`

;6

return T′;7

3.2.1.2 Integer Pivoting

Observe that row reduction is defined over Q, even if all inputs are integer. Many cryp-
tographic tools, however, are able to deal with integers –or rather field elements– only.
The results of [Ros05] and [AP01] describe a way to change the pivoting procedure in
the simplex algorithm so that in each iteration the tableau contains integer values only.

48 3.2. Implementations of the Simplex Iterations

These tableaux differ only in a constant factor from the rational tableaux containing the
correct values. The following proposition extends their approach by making sure that the
integer tableau is a positive multiple of the corresponding rational tableau. In addition,
we provide a simple and complete proof of correctness.

Theorem 3.30. Suppose that an LP is given in standard form, where all coefficients A, c
and b are integer. Let T be its tableau corresponding to basis s and basis matrix B. Let
T̃ = |det(B)|T. Then all values in T̃ are integer.

Proof. Let α := sgn(det(B)).
By the definition of a determinant it follows that every square submatrix of A has an

integer determinant. Hence det(B) and det(B′) are integer as well as adj(B) and adj(B′).
From linear algebra we know that

adj(M) = det(M)M−1

for any invertible square matrix M ∈ Rn×n.
Observe that by Definition 3.28

T̃ = |det(B)|T = α

(
adj(B) 0
−csadj(B) det(B)

)(
A b
c 0

)
, (3.29)

being a product of two integer matrices. Therefore, T̃ is integer.

Theorem 3.31 (Integer Pivoting). Suppose that an LP is given in standard form, where
all coefficients are integer. Let T be its tableau corresponding to basis s at the beginning of
an iteration of the simplex algorithm. Suppose that the basis is updated, where ` enters the
basis and sk leaves the basis. Let tableau T′ = QT be the resulting tableau corresponding
to basis s′. Let T̃ = | det(B)|T and T̃′ = | det(B′)|T′, where B = As and B′ = As′. Then

t̃′ij =
t̃`k t̃ij − t̃i`t̃kj
|det(B)|

if i 6= k (3.30)

t̃′kj = t̃kj , (3.31)

Proof. Let α := sgn(det(B)). Let A′ = B−1A and Ã′ = | det(B)|A′ and, similarly,

A′′ = B′−1A and Ã′′ = | det(B′)|A′′. We show that the entries Ã′ can be written as a
determinant depending on B.

ã′ij = α det(B)a′ij

= α det(B) det
(
e1, . . . , ei−1,A

′
j , ei+1, . . . , em

)
= α det(B) det

(
B−1 (B1, . . . ,Bi−1,Aj ,Bi+1, . . . ,Bm)

)
= α det(B) det(B−1) det

(
As1 , . . . ,Asi−1 ,Aj ,Asi+1 , . . . ,Asm

)
,

hence, using det(B) 6= 0,

ã′ij = α det
(
As1 , . . . ,Asi−1 ,Aj ,Asi+1 , . . . ,Asm

)
. (3.32)

Hence, From Eq. (3.32) it follows that

ã′k` = α det(B′). (3.33)

3. Linear Optimization 49

Observe that from the pivot row selection Eq. (3.28) we have a′k` > 0. Hence ã′k` =
| det(B)|a′k` > 0, and from Eq. (3.33) it follows that sgn(B′) = α and hence

ã′k` = | det(B′)|,

which equals the value of the current pivot element t̃k`.

Theorem 3.29 implies that T′ = QT satisfies Eqs. (3.17) and (3.18). Hence, using
Eqs. (3.29) and (3.33),

t̃′ij = |det(B′)|t′ij

=
t̃k`

| det(B)|

(
t̃ij t̃k` − t̃i`t̃kj

t̃k`

)

=
t̃ij t̃k` − t̃i`t̃kj
| det(B)|

,

if i 6= k. Also,

t̃′kj = | det(B′)|t′kj

= t̃k`
t̃kj

t̃k`

= t̃kj .

Since all entries in T̃ have the same sign as the entries in T one can run Algorithm 3.9 to
select the pivot element. With respect to Algorithm 3.1 only the updating part is different.
Algorithm 3.4 shows precisely each step of the simplex algorithm keeping all values in the
tableau integer.

Algorithm 3.4: (T, s, pred, q)← IterateLT,IP(T, s, q)

Input: T, q, s.
Output: T, q, s, pred.
(`, k)← FindPivotElement(T);1

if ` = 0 then2

return (T, s,Optimal, q);3

else if k = 0 then4

return (T, s,UnboundedLP, q);5

(T, q)← PivotIP(T, `, k, q);6

sk ← `;7

return IterateIP(T, s, q);8

3.2.1.3 Size of the Numbers in the Tableau

The efficiency of simplex using integer pivoting will be dominated by the size of the
numbers in the tableau.

50 3.2. Implementations of the Simplex Iterations

Algorithm 3.5: (T′, q)← PivotIP(T, k, `, q)

Input: T, `, k.
Output: T′.
q′ = tk`;1

foreach i ∈ {1, . . . ,m+ 1} do2

foreach j ∈ {1, . . . , n+ 1} do3

if i 6= k then4

t′ij ←
tijtk`−ti`tkj

q ;5

else6

t′ij = tij ;7

return (T′, q′);8

Remark 3.32. The solution of Li and Atallah [LA06] keeps its tableau integer valued by
pivoting using Eqs. (3.30) and (3.31) where the (proper) division by |det(B)| is omitted. It
follows that in their solution the size of the numbers in the tableau doubles each iteration,
i.e., grows exponentially fast. �

By applying the division in Eq. (3.30) the size of the numbers in the tableau is bounded
if the inputs are bounded [Tof07]. Actually, we follow the result of [Goe94], which gives
an upper bound on the size of the output only, to derive an improved upper bound for all
values in the tableau using the results in the proof of Theorem 3.31.

For any vector v let ‖v‖ denote its Euclidian norm. Theorem 3.34 provides an upper
bound on the values in any integer tableau T̃.

Lemma 3.33 (Hadamard’s Inequality [Had93]). For any square matrix X ∈ Rn×n, we
have

det(X) ≤
n∏
i=1

‖Xi‖.

Theorem 3.34. Given an LP in standard form, where the bit size of the coefficients A,
b, and c is bounded by some positive integer N . Let x be a basic feasible solution x with
basis s and basis matrix B. Then its corresponding tableau T satisfies

|det(B)tij | < 2L,

where

L = (m+ 1)N +
m

2
log(m) + log(m+ 1). (3.34)

Proof. We consider the four parts of the tableau

T =

(
A′ b′

c −z

)
,

where A′ = B−1A, b′ = B−1b, c = c− csB
−1A and z = csB

−1b.

Let T̃ = | det(B)|T.

3. Linear Optimization 51

From Eq. (3.32) and Hadamard’s Inequality it follows that

|ãij | = |det(B)||a′ij |
=
∣∣det

(
As1 , . . . ,Asi−1 ,Aj ,Asi+1 , . . . ,Asm

)∣∣
≤ ‖Aj‖

m∏
k=1,k 6=i

‖Ask‖

≤
m∏
k=1

√√√√ m∑
`=1

(2N)2

= mm/22mN , (3.35)

Similarly,

|̃bi(n+1)| = |det(B)||bij |
=
∣∣det

(
As1 , . . . ,Asi−1 ,b,Asi+1 , . . . ,Asm

)∣∣
≤ ‖b‖

m∏
k=1,k 6=i

‖Asi‖

≤ mm/22mN . (3.36)

Finally, since B is a square submatrix of A of size m, by Eq. (3.35) the determinant of B
satisfies |det(B)| ≤ mm/22mN . Hence

|c̃j(m+1)j | = | det(B)||cj |

=
∣∣det(B)cj − cs

(
det(B)B−1Aj

)∣∣
≤
∣∣∣det(B)cj |+ |cs

(
Ã′j

)∣∣∣
≤ mm/22(m+1)N +m2N

(
mm/22mN

)
= (m+ 1)mm/2(2(m+1)N), (3.37)

and, similarly, by Eq. (3.36) it follows that

|−̃z(m+1)(n+1)| =
∣∣−csdet(B)B−1b

∣∣
≤ m2N

(
mm/22mN

)
.

Hence all entries in T̃ satisfy Eq. (3.37), i.e.,

|t̃ij | ≤ 2(m+1)N+m
2
logm+log(m+1) = 2L,

where L satisfies Eq. (3.34).

If A has sparse columns, i.e., the columns of A contain lots of zeros, then |det(B)| will
be smaller. Also, the values in T̃ will be smaller. Theorem 3.35 presents an upper bound
on the values in any tableau if every column of A contains at most s nonzero elements.

52 3.2. Implementations of the Simplex Iterations

Theorem 3.35. Given an LP in standard form, where the bit size of the coefficients A,
b, and c is bounded by some positive integer N . Suppose furthermore that every column
of A contains at most γ nonzero entries. Let x be a basic feasible solution x with basis s
and basis matrix B. Then its corresponding tableau T satisfies

|det(B)tij | < 2L,

where

L =

{
(m+ 1)N + m

2 log(γ) + log(m+ 1), if γ ≥ m3

(m+1)2
,

(m+ 1)N + m−1
2 log(γ) + 3

2 log(m), otherwise.
(3.38)

Proof. We consider again the four parts of the tableau

T =

(
A′ b′

c −z

)
,

where A′ = B−1A, b′ = B−1b, c = c− csB
−1A and z = csB

−1b.
Let T̃ = | det(B)|T.

|ã′ij | = | det(B)||a′ij |

≤ ‖Aj‖
m∏

k=1,k 6=i
‖Ask‖

= γm/22mN . (3.39)

Similarly,

|b̃′i| = | det(B)||bij |

≤ ‖b‖
m∏

k=1,k 6=i
‖Asi‖

≤ m1/2γ(m−1)/22mN . (3.40)

Furthermore, | det(B)| ≤ γm/22mN by Eq. (3.39). Hence

|c̃j | = |det(B)||cj |
=
∣∣det(B)cj − cs

(
det(B)B−1Aj

)∣∣
≤ γm/22(m+1)N +m2N

(
γm/22mN

)
= (m+ 1)γm/2(2(m+1)N), (3.41)

and, similarly, by Eq. (3.40) we have

|t̃(m+1)(n+1)| =
∣∣−csdet(B)B−1b

∣∣
≤ m3/2γ(m−1)/22(m+1)N . (3.42)

An upper bound on all values of T̃ is given by either Eq. (3.41) or Eq. (3.42). Note that
this bound is given by Eq. (3.41) if and only if

(m+ 1)γm/2(2(m+1)N) ≥ m3/2γ(m−1)/22(m+1)N ,

3. Linear Optimization 53

i.e.,

m+ 1 ≥
√
m

γ
m,

so,

γ ≥
(

m

m+ 1

)2

m.

Hence, all entries in T̃ satisfy Eq. (3.38).

Algorithm 3.1, and Algorithm 3.4 when integer computations are required, are known
as large tableau simplex (LT) algorithms. Algorithm 3.1 runs the simplex algorithm on
the large tableau simplex with rational pivoting and is called LT-RP, while Algorithm 3.4
runs simplex on the large tableau with integer pivoting and is called LT-IP.

Remark 3.36. One would expect that the absolute value of the numbers with respect to
integer pivoting will be larger than the absolute value of the numbers with respect to
integer pivoting, since during the tableau updates the division with the pivot element is
postponed to the next iteration.

However, below we provide an LP, where there exists a basis s such that the tableaus
with respect to both integer pivoting and rational pivoting are equally large. Furthermore
it has an entry tij , where log(|tij |) is close to L, the bound on the bit size of the numbers
with respect to integer pivoting.

Consider the following LP

min 7x1 − 7x2 + 7x3,
subject to 5x1 + 7x2 − 7x3 ≤ 7,

2x1 − 7x2 − 3x3 ≤ 1,
and x1 ≥ 0, x2 ≥ 0, , x3 ≥ 0.

Note that the absolute value of each coefficient is smaller than 8 = 23. It follows that

L = (m+ 1)N +m/2 logm+ log(m+ 1) = 9 + 1 + log 3.

Let s = (1, 3), then

B = As =

(
5 −7
2 −3

)
.

Observe that

B−1 =

(
3 −7
2 −5

)
.

The tableau T with respect to s is given by

ZT0 =

 3 −7 0
2 −5 0
−35 84 1

 5 7 −7 1 0 7
2 −7 −3 0 1 1
−7 −7 7 0 0 0

=

 1 70 0 3 −7 14
0 49 1 2 −5 9
0 −840 0 −35 84 −161

 .

Since det(B) = −1 it holds that T̃ = T, where we have for the largest value

dlog(| − 840|)e = 10.

�

54 3.2. Implementations of the Simplex Iterations

The next sections will show how to derive from Propositions 3.29 and 3.31 variants,
where the tableaus will be smaller.

3.2.2 Small Tableau Simplex

The small tableau simplex (ST) algorithms improve the efficiency of the large tableau
simplex algorithms by using the following properties of T.

Lemma 3.37. Given an LP in standard form, let T be as defined in Definition 3.28
corresponding to basis s. Then

(i)

Ts =

1 0 . . . 0
0 1 . . . 0

. . .

0 0 . . . 1
0 0 . . . 0

 . (3.43)

(ii) Let T′ be the tableau after one iteration of the simplex method with basis s′ =
(s1, . . . , sk−1, `, sk+1, . . . , sm) using rational pivoting. Then

T′s =

1 0 . . . − t1`
tk`

. . . 0

0 1 . . . − t2`
tk`

. . . 0
. . .

1
tk`

. . .

0 0 . . . − tm`
tk`

. . . 1

0 0 . . . − t(m+1)`

tk`
. . . 0

. (3.44)

(iii) Let T̃′ be the tableau after one iteration of the simplex method with basis s′ =
(s1, . . . , sk−1, `, sk+1, . . . , sm) using integer pivoting. Then,

T̃′s =

t̃k` 0 . . . −t̃1` . . . 0

0 t̃k` . . . −t̃2` . . . 0
. . .

| det(As)|
. . .

0 0 . . . −t̃m` . . . t̃k`
0 0 . . . −t̃(m+1)` . . . 0

. (3.45)

Proof. (i) Let B = As be the basis matrix. By definition

T =

(
B−1 0
−csB

−1 1

)(
A b
c 0

)
.

Hence

Ts =

(
B−1 0
−csB

−1 1

)(
As

cs

)
=

(
B−1B

cs − csB
−1B

)
=

(
Im
0

)
.

3. Linear Optimization 55

(ii) Theorem 3.29 implies

T′s = (QT)s = QTs.

Applying (i) to Ts yields

T′s = Q

(
Im
0

)
= (Q1 . . .Qm) .

Then Eq. (3.20) in the proof Theorem 3.29 implies Eq. (3.44).

(iii) Theorem 3.31 implies that

T̃′ = det(As′)T
′ = t̃k`T

′.

Hence (ii) applied to T′ provides Eq. (3.45).

It follows that (ts)m+1 = cs = 0 and, therefore, no ` ∈ s will be selected for pivoting.
Furthermore, when a pivot element tk` is selected, then pivoting yields T′si = Tsi , T′` =
Tsk , and T′sk = Q′k, which can be computed independently from Ts. Hence one can
remove the columns Ts from consideration. Similarly, in the next iteration the columns
T′s′ can be removed from consideration.

Definition 3.38. Let T be the tableau corresponding to an LP in standard form and basis
s. Let u be the co-basis. Then

T(u,n+1) =
(
Tu1 . . .Tun−mTn+1

)
(3.46)

is called the condensed tableau or small tableau.

Small tableau simplex iterates using Algorithm 3.1 or Algorithm 3.4 on tableau T(u,n+1)

with the following two additions: (i) that after each pivoting the `-th column of T(u,n+1)

is replaced by Q′k and (ii) the basis and co-basis are updated by swapping sk with u`.
Small tableau simplex using rational pivoting is called ST-RP and small tableau simplex
using integer pivoting is called .

Algorithm 3.6 gives a precise description of the small tableau simplex iterations.

3.2.3 Revised Simplex

The revised simplex is based on the observation that by Definition 3.28 any tableau T, with
respect to basis s, can be written as the product of two matrices, where one is invariant
during all iterations.

Lemma 3.39. Let an LP in standard form be given. Let

T0 =

(
A b
c 0

)
and

D =

(
B−1 0
−csB

−1 1

)
.

56 3.2. Implementations of the Simplex Iterations

Algorithm 3.6: (T, s, pred,u, q)← IterateST,VAR(T, s,u, q)

Input: T, s, u, q.
Output: T, s, u, q, pred.

(`, k)← FindPivotElement(T);1

if ` = 0 then2

return (T, s,Optimal,u, q);3

else if k = 0 then4

return (T, s,UnboundedLP,u, q);5

(T′, q′)← PivotVAR(T, `, k, q);6

VAR = RP :
7a foreach i ∈ {1, . . . ,m+ 1} do

8a t′i` = − ti`
tk`

;

9a t′k` = 1
t`

;

VAR = IP :
7b foreach i ∈ {1, . . . ,m+ 1} do
8b t′i` = −ti`;
9b t′k` = q;

sk ↔ u`;10

return IterateSTVAR(T′, s,u, q′);11

Suppose that T = DT0 is the corresponding tableau with respect to basis s at the beginning
of an iteration of the simplex algorithm and that the basis is updated, where ` enters the
basis and sk leaves the basis. Let T′ = QT be the tableau with respect to basis s′ =
(s1, . . . , sk−1, `, sk+1, . . . , sm). Then, T′ = D′T0, where

D′ = QD. (3.47)

Proof. From Theorem 3.29 it follows that the tableau with respect to basis s′ is given by
T′ = QT, so

T′ = QDT0 = D′T0.

Next, let z = (z1, . . . , zm+1) be such that (T0)z is invertible, then

T′z = QD(T0)z = D′(T0)z

and thus that multiplying by the inverse of (T0)z results in Eq. (3.47).
Such z exists if T0 has full row rank. So suppose that T0 has not full row rank. Hence

the rows of T0 are linearly dependent. Since a basis exists it follows that A has full row
rank. Hence, there exist (λ1, . . . , λm) ∈ Rm such that

m∑
i=1

λiai = c

and
m∑
i=1

λibi = 0.

3. Linear Optimization 57

Thus, for all feasible x it holds that

cx =
m∑
i=1

λiaix =
m∑
i=1

λibi = 0.

The revised simplex updates D only, instead of tableau T. By remark 3.2 it follows that
m ≤ n. In practice, n� m and, therefore, updating D is more efficient than updating T
instead. On the other hand, values required each simplex iteration such as c need to be
computed each iteration from D and T0.

The revised simplex algorithm using rational pivoting is called RS-RP and the revised
simplex algorithm using integer pivoting is called RS-IP. The following algorithms specify
the revised simplex iterations.

Algorithm 3.7: D′ ← PivotRS,RP(D, k, `,T0)

Input: D, v, `, k.
Output: D′.
v← DT0

` ;1

foreach i ∈ {1, . . . ,m+ 1} do2

foreach j ∈ {1, . . . ,m+ 1} do3

if i 6= k then4

d′ij ← dij −
dkjvi
vk

;5

else6

d′kj ←
dkj
vk

;7

return D′;8

Algorithm 3.8: (D, s, pred, q)← IterateRS,VAR(D, s,T0, q)

Input: D,T0, s, q.
Output: D, s, pred.

(`, k,v)← FindPivotElementRS(D,T0);1

if ` = 0 then2

return (D, s,Optimal);3

else if k = 0 then4

return (D, s,UnboundedLP);5

VAR = RP :
6a D← PivotRS,RP(D, `, k,T0);

VAR = IP :
6b (D, q)← PivotRS,IP(D, `, k,T0q);

sk ← `;7

return IterateRSVAR(D, s,T0, q);8

58 3.3. Implementations of the Simplex Initializations

Algorithm 3.9: (`, k,v)← FindPivotElementRS(D,T0)

Input: D, T0.
Output: `, k, v.
c← dm+1 ·T0;1

`← argmin {ci| i ∈ {1, . . . , n}};2

if c` ≥ 0 then3

return (0, 0);4

v← DT0
` ;5

b← DT0
n+1;6

foreach i ∈ {1, . . . ,m} do7

if vi > 0 then ri ← bi
vi

;8

else ri ←∞;9

R← (r1, . . . , rm);10

k ← argmin(R);11

if rk =∞ then12

return (`, 0);13

return (`, k);14

Algorithm 3.10: (D, q)← PivotRS,IP(D, k, `,T0, q)

Input: D, v, `, k, q.
Output: D, q.
v← DT0

` ;1

foreach i ∈ {1, . . . ,m+ 1} do2

foreach j ∈ {1, . . . ,m+ 1} do3

if i 6= k then4

d′ij ←
dijvk−dkjvi

q ;5

else6

d′kj ← vj ;7

q = vk;8

return (D′, q);9

3.3 Implementations of the Simplex Initializations

The previous section presented how to implement the simplex iterations. This section
presents how to initialize the iterations of the simplex algorithm.

In Section 3.1.3 we showed how to find an initial feasible solution to a given LP in
standard form. The simplex algorithm, however, requires the solution to be basic. This
section presents the following algorithms to find an initial basic feasible solution given any
LP in standard form, the two-phase simplex algorithm and the big-M method.

The two-phase simplex algorithm runs in two-phases. In the first phase it solves an
artificial LP from which it initializes the second phase to solve the original LP. Special
attention will be given to the initialization of the two-phases, since the iterations can be
done by the algorithms from the previous sections.

3. Linear Optimization 59

The big-M method, on the other hand, merges the artificial LP and the original LP into
a new linear program where the optimum is either a proof that the given LP is infeasible,
or it is optimal the given LP as well. We show that the iterations can in some cases also
be done by the algorithms described in previous sections, or they require some extension.

3.3.1 Standard two-phase Simplex

Suppose that an LP is given in standard form and suppose that b ≥ 0. In this section we
consider the following artificial LP:

min c′x =
∑m

i=1 xn+i,
subject to

(
A Im

)
x = b,

x ≥ 0,
(3.48)

where xn+1, . . . , xn+m are the artificial variables.
The two-phase simplex algorithm is as follows:

Phase I: Given any LP in standard form solve the corresponding artificial LP. Decide
whether the given LP is feasible; if not return “infeasible LP” else goto phase II.

Phase II: Given the optimal solution and basis of the artificial LP, compute a basic
feasible solution to the original LP and a corresponding basis. Then solve the original
LP using simplex.

With respect to phase I, we will show how to initialize any simplex algorithm of the
previous sections to solve the artificial LP. Then, if the original LP is feasible, we show
how to use the result of phase I to initialize phase II. The latter consists of transforming
the optimal basis for the artificial LP into a basis corresponding to a feasible solution for
the original LP and computing a corresponding tableau.

Note that in the previous sections we required that A has full row rank m. The artificial
LP has by definition full row rank m since the last columns form Im. Hence we could drop
the assumption on A to have full row rank. We show how to find and remove redundant
constraints of the original LP from the result of phase I and compute a consistent tableau
corresponding the LP where those constraints are removed.

More precisely, we need to show how to transform the tableau T returned by phase I
into a tableau T′ that corresponds to a basic feasible solution for the original LP. We show
that the basis transformations can be done by pivot operations. Next, we show how to
modify T so that the redundant constraints are removed. Then we show how to delete
the columns of T′ corresponding the artificial variables. Lastly, we show how to compute
the last row of T′ so that in the end T′ is a tableau for the original LP by Definition 3.28,
which will, together with the modified basis s′, be the input for phase II.

Initializing Phase I

To initialize phase I, observe that s = (n+ 1, . . . , n+m) is a basis and u = (1, . . . , n) is a
co-basis. Hence the vector x satisfying

xs = (Im)−1b = b

and xu = 0 is a basic feasible solution with respect to basis s.

60 3.3. Implementations of the Simplex Initializations

Algorithm 3.11: (x, pred)← TwoPhaseSimplexVAR1,VAR2(A,b, c)

Input: A, b, c
Output: x, pred
(T,T0, s,u, q)← InitializePhaseIVAR1,VAR2(A,b);1

(T, s,pred,u, q)← IterateVAR1,VAR2(T, s,T
0,u, q);2

VAR1 = LT,ST :
3a t← tm+1,n+1;

VAR1 = RS :
3b t← tm+1T

0
n+1;

if t < 0 then4

return (0,pred);5

(T,T0, s,u, q)← InitializePhaseIIVAR1,VAR2(T, s, c,T
0,u, q);6

(T, s,pred,u, q)← IterateVAR1,VAR2(T, s,T
0,u, q);7

return (GetSolutionVAR1,VAR2(T, s,T
0, q),pred)8

With respect to the costs, observe that c′s = 1, the all-one vector. Hence

T =

(
Im 0
−1 1

)(
A Im b
0 1 0

)
is the tableau corresponding to basis s, from which any simplex variant of Section 3.2 can
be initialized. Algorithm 3.12 presents how to initialize phase I.

Basis Transformations

If cycling is avoided, then by Theorem 3.19 a basic optimal solution x and a basis s is
returned by phase I. If c′x = 0, the solution x1, . . . , xn is feasible to the original LP.
However, s may be not a basis to the original LP. We show how to compute a new basis
s′ that corresponds to x and is also a basis to the original LP using Theorem 3.42.

Remark 3.40. Note that by construction, the artificial LP (3.48) has full rank. Hence,
two-phase simplex will be able to solve any feasible and bounded LP even if A is not of
full rank.

Lemma 3.41. Let B ∈ Rm×m be an invertible matrix. If Bk = ej then (B−1)j = ek.

Proof. Suppose that Bk = ej . From B−1B = Im it follows that

(B−1)j = B−1ej = B−1Bk = ek.

Theorem 3.42. Consider an LP in standard form, where b ≥ 0, and its corresponding
artificial LP. Suppose that phase I returns a basic optimal solution x with basis s, where
c′x = 0. Let D be the set of indices in the basis of value larger than n, i.e.,

D = {n+ 1, . . . , n+m} ∩ {s1, . . . , sm}.

If D = ∅, then x̂ = (x1, . . . , xn) is basic to the original LP with basis s. If D 6= ∅, then for
any sk ∈ D either

3. Linear Optimization 61

Algorithm 3.12: (T, s,T0,u, q)← InitializePhaseIVAR1,VAR2(A,b)

Input: A, b
Output: T, s, T0, u, q.

T0 ←
(

A Im b
0 1 0

)
;

1

D←
(

Im 0
−1 1

)
;

2

s← (n+ 1, . . . , n+m);3

VAR2 = IP :
4a q = 1;

VAR1 = LT :
5a T← DT0;
6a return (T, s, q);

VAR1 = ST :
5b u← (1, . . . , n);
6b T← DT0

(u,n+m+1);

7b return (T, s,u, q);

VAR1 = RS :
5c T← D;
6c return (T, s,T0, q);

(i) there exists an ` ∈ {1, . . . , n} such that s′ = (s1, . . . , sk−1, `, sk+1, . . . , sm) is also a
basis for x, or

(ii) the (sk − n)’th constraint is redundant in the original LP.

Proof. Let x̂ = (x1, . . . , xn). Observe that x satisfies

A′x = b,

where
A′ =

(
A Im

)
.

If D = ∅, then
A′x = A′sxs = Asx̂s.

Hence x̂ is a basic feasible solution with basis s ∈ {1, . . . , n}m to the original LP.
If D 6= ∅, then let sk ∈ D and B = A′s.
(i) Suppose that (B−1A)k` 6= 0 for some ` ∈ {1, . . . , n}. Then,

s′ = (s1, . . . , sk−1, `, sk+1, . . . , sm)

is a basis. Indeed from

B−1A′s′ =
(

e1 . . . ek−1 B−1A` ek+1 . . . em
)

(3.49)

it follows that A′s′ is invertible.

62 3.3. Implementations of the Simplex Initializations

Let T be the tableau corresponding basis s and T′ be the tableau corresponding to basis
s′. Then by Theorem 3.29 T′ = QT and

A′s′
−1

= Q′B−1,

where Q′ is obtained from Q by removing the last row and column.
Since x is optimal to the artificial LP and c′x = 0, it follows that

∑m
j=1 xn+j = 0. Hence

x ≥ 0 implies that xsk = 0.
Recall that Q′i = ei if i 6= k. Let x′ be the basic feasible solution corresponding to basis

s′. Then
x′s′ = A′s′

−1
b = Q′B−1b = Q′xs = xs + Q′kxsk = xs.

Hence, x′ = x and s′ is a basis for x.
(ii) If (B−1A)k` = 0 for all ` ∈ {1, . . . , n}, then the k’th row of B−1A = 0. Let

j = sk − n. Then
Bk = A′sk = An+j = ej .

By Lemma 3.41 it follows that the j-th column of B−1 is equal to ek. Let λ be the k-th
row of B−1. It follows that λj = 1. From λA = 0 and λb = x′sk = 0 it follows that
the constraint ajx = bj is linearly dependent of the other constraints aix = bi or, simply,
redundant.

Algorithm 3.13 presents how to transform the result of phase I into a tableau and basis
initializing phase II using Theorem 3.42. Note that these basis transformations can include
pivoting on a negative entry. By Theorem 3.29 this can be implemented by a simple pivot
operation when the standard pivoting operations are applied (RP variants).

However for the integer pivoting simplex variants, we need to be careful. It follows from
Theorem 3.31 that if the pivot element is negative after the pivot operation the tableau
is multiplied by −1. Theorem 3.43 shows that to avoid this one could ensure that the
whole tableau is multiplied by the sign of the pivot element. This can be done simply by
multiplying the pivot row with the sign of the pivot element before pivoting.

Indeed, consider integer pivoting in tableau T on element tk`. Let α be the sign of tk`.
Then integer pivoting in T on tk` implies that every entry tij outside the pivot row is
updated by (tijtk` − ti`tkj)/q. However, if row k is multiplied with α first, then updating
tij becomes

tijαtk` − ti`αtkj
q

= α
tijtk` − ti`tkj

q
.

Theorem 3.43. Suppose that an LP in standard form is given, where all coefficients are
integer. Let T be the tableau corresponding to basis s. Consider basis

s′ = (s1, . . . , sk−1, `, sk+1, . . . , sm).

Let tableau T′ be the tableau corresponding to basis s′. Let T̃ = | det(B)|T and T̃′ =
| det(B′)|T′, where B = As and B′ = As′ and let α = sgn(t̃k`). Then

t̃′ij = α
t̃`k t̃ij − t̃i`t̃kj
|det(B)|

, if i 6= k, (3.50)

t̃′kj = αt̃kj , (3.51)

3. Linear Optimization 63

Algorithm 3.13: (T, s,T0,u, q)← InitializePhaseIIVAR1,VAR2(T, s, c,T
0,u, q)

Input: T, c, T0, s, u, q
Output: T, T0, s, u, q

for k = m down to 1 do1

if sk > n then
`← 0;2

α← 1;3

repeat4

`← `+ 1;5

Var1 = ST :
6a α← u` ≤ n;

VAR1 = RS :
6b tk` ← tkT

0
` ;

t← αtk`;7

until t 6= 0 or ` = n ;
if ` = 0 then8

(T, s,T0)← DeleteRowAndColumnVar1(T, s, k,T
0);9

else10

VAR2 = IP:
tk ← sgn(tk`)tk;11

(T, s,u, q)← PivotVAR1,VAR2(T, s,T
0,u, q);12

(T,T0,u)← DeleteColumnVAR1(T, sk,T
0,u);13

(T,T0)← ChangeCostReducedRowVAR1,VAR2(T, c,T
0, s,u);14

return T, s,T0,u, q;

64 3.3. Implementations of the Simplex Initializations

Proof. Let α := sgn(t̃k`).

Recall from Eq. (3.33) in the proof of Theorem 3.31 that

t̃k` = α′ det(B′) 6= 0,

where α′ = sgn(det(B)). Observe that

α = α′sgn(det(B′)).

Hence applying Eq. (3.50) and Eq. (3.51) to T̃ and using the result of Theorem 3.29 to
T and T′ we get

t̃′ij = α
t̃ij t̃k` − t̃i`t̃kj
| det(B)|

= αt̃k`

(
tij −

ti`tkj
tk`

)
= α′sgn(det(B′))α′ det(B′)t′ij

= | det(B′)|t′ij ,

for all i 6= k and

t̃′kj = αt̃kj

= αt̃k`
tij
tk`

= | det(B′)|t′kj .

Hence T̃′ = | det(B′)|T′ as required.

Removing Redundant Constraints

Theorem 3.44 shows how deletion of redundant constraints translates in deletion of rows
and columns in tableau T and entries in s. The resulting tableau T′ will be a tableau for the
equivalent linear program, where the redundant constraints are removed, corresponding
to basis s′.

Theorem 3.44. Suppose that the given LP in standard form is redundant and feasible.
Let T be a tableau for the corresponding artificial LP with respect to basis s and optimal
solution x. Let s be such that a minimal number of artificial variables are basic. Then

(i) tj = en+j for some j ∈ {1, . . . ,m},

(ii) n+ k = sj for some k ∈ {1, . . . ,m}, and

(iii) if T′ is equal to T where row j and column n + k are removed and s′ is equal to s
where n+k is removed, then T′ is a tableau corresponding to the artificial LP where
the j-th constraint is removed with respect to basis s′.

Proof. Let A, b and c be the coefficients of the given LP in standard form. Suppose that
A has rank v < m.

3. Linear Optimization 65

(i) Let B be the basis matrix corresponding T. Observe that since B is invertible it
contains at most v columns of A. Hence by minimality of the number of basic artificial
variables, it contains precisely v columns of A. Assume without loss of generality that
s = (1, . . . , v, n+ v + 1, . . . , n+m). Hence

B =
(

A1 · · · Av ev+1 · · · em
)
.

For i = 1, . . . ,m− v let λi be the (v + i)-th row of B−1. Then by BB−1 = Im for all i
it follows that λiAj = 0 for all j = 1, . . . , v. The rank of the first v columns of A is equal
to the rank of A. Hence, for all i

λiA = 0. (3.52)

Since the original LP is feasible c′sxs = 0, where c′ denotes the cost vector of the
artificial LP. Hence

c′sB
−1b =

m−v∑
i=1

λibi = 0. (3.53)

By x ≥ 0 we have B−1b ≥ 0. So, by Eq. (3.53) λib = 0 for all i = 1, . . . ,m− v.
Let T be the tableau corresponding to basis s with respect to the artificial LP. Then

T =

(
B−1 0
−c′sB

−1 1

)(
A Im b
0 1 0

)
.

Hence for i = v+1, . . . ,m each row i satisfies ti = en+i. Observe that in addition n+i ∈ s,
so (ii) follows.

(iii) Let

D =

(
B−1 0
−csB

−1 1

)
and

T0 =

(
A Im b
0 1 0

)
.

Let furthermore D′ be equal to B where the m-th row and column is removed and T′0 be
equal to T0 where the m-th column is removed. Then T′ = D′T′0 is equal to T where the
m-th row and (n+m)-th column is removed. Furthermore it is a tableau for the following
linear program

min
∑n+m−1

i=n+1 xi,
subject to

(
A′ Im−1

)
x = b′,

x ≥ 0,

(3.54)

where A′ is the matrix obtained from A by deleting row m and b′ is obtained from b by
deleting entry m. The corresponding basis is s′ = (1, . . . , v, n+ v + 1, . . . , n+m− 1).

Algorithm 3.14 shows how to delete a redundant constraint based on Theorem 3.44.

Finishing the Transformation

If there are no redundant constraints and phase I returns a tableau T and a basis cor-
responding to a basic feasible solution to the original LP, the Lemma 3.45 shows how to
transform T to a tableau corresponding to the original LP.

66 3.3. Implementations of the Simplex Initializations

Algorithm 3.14: (T, s,T0)← DeleteRowAndColumnVar1(T, s, k,T
0)

Input: T, s, k, T0

Output: T, s, T0

s′ ← (s1, . . . , sk−1, sk+1, . . . , sm′);1

j ← sk − n;2

VAR1 = LT :
3a T′ ← DeleteRow(T, k);
4a T′′ ← DeleteColumn(T′, n+ j);

VAR1 = ST :
3b T′ ← DeleteRow(T, k);

VAR1 = RS :
3c T′ ← DeleteRow(T, k);
4c T′′ ← DeleteColumn(T′, j);
5c T0′ ← DeleteRow(T0, j);
6c T0′′ ← DeleteColumn(T0′, n+ j);

return (T′′, s′,T0′′)3

Lemma 3.45. Consider the artificial LP given a feasible LP in standard form having
coefficients A,b and c. Let T be the tableau with respect to basis s corresponding to an
optimal solution x where no artificial variable is basic. Let B = As be the basis matrix.
Then T′ is a tableau corresponding to s for the original LP if T′ is equal to T where

(i) the columns n+ 1, . . . , n+m are removed and

(ii) the last row is replaced with t where ti = ci and tm+1 = −csB
−1b.

Proof. Observe that

T =

((
A Im

)−1
s

0

−c′s
(

A Im
)−1
s

1

)(
A Im b
0 1 0

)
is the tableau corresponding to basis s of the artificial LP with cost vector c′. If no artificial
variable is basic, then Theorem 3.42 implies that s is a basis for the original LP as well.
The corresponding basis matrices are the same since(

A Im
)
s

= As = B.

Hence,

T =

(
B−1 0
−c′sB

−1 1

)(
A Im b
0 1 0

)
=

(
B−1A B−1 B−1b
−c′sB

−1A 1− c′sB
−1 0

)
.

Furthermore,

T′ =

(
A−1s 0
−csA

−1
s 1

)(
A b
c 0

)
=

(
B−1A B−1b

c− csB
−1A −c′sB

−1b

)
is a tableau corresponding to basis s for the original LP. Hence T′ is equal to T where
the columns n+ 1, . . . , n+m are removed and where the last row is replaced according to
(ii).

3. Linear Optimization 67

Algorithm 3.15 shows how to remove a non-basic column corresponding to an artificial
variable based on Lemma 3.45.

Finally, Algorithm 3.16 shows how to compute the last row of the tableau corresponding
to the costs of the original LP.

Algorithm 3.15: (T,T0,u)← DeleteColumnVar1(T, k,T
0,u)

Input: T, k, T0, u
Output: T, T0, u

VAR1 = LT :
1a T′ ← DeleteColumn(T, k);

VAR1 = RS :

1b T0′ ← DeleteColumn(T0, k);

VAR1 = ST :
1c findj :uj = k;
2c u = (u1, . . . , uj−1, uj+1, un′−m′);
3c T′ ← DeleteColumn(T, j);

return (T′,T0′,u′)4

Algorithm 3.16: (T,T0)← ChangeCostReducedRowVAR1,VAR2(T, c,T
0, s,u, q)

Input: T, c, T0, s, u, q
Output: T, T0

v← cs;1

VAR2 = IP :
c← qc;2

T← DeleteRow(T,m+ 1);3

VAR1 = LT :
4a foreach i ∈ {1, . . . , n+ 1} do
5a t(m+1)i ← ci − vTi;

VAR1 = ST :
4b foreach i ∈ {1, . . . , n−m+ 1} do
5b t(m+1)i ← cui − vTi;

VAR1 = RS :
4c t0m+1 ← (c, 0);
5c foreach i ∈ {1, . . . ,m} do
6c t(m+1)i ← −vTi;
7c t(m+1)(m+1) ← 1;

return (T,T0);8

3.3.2 Two-Phase Simplex with One Artificial Variable

In order to improve the performance of the two-phase simplex algorithm we consider a
different well known artificial LP using only one artificial variable. This way the corre-
sponding tableau has only one extra column compared to the tableau corresponding to

68 3.3. Implementations of the Simplex Initializations

the original LP and initializing phase II has to take care of just one artificial variable.
Given an LP in standard form, this section considers the following artificial LP.

min c′x = xn+1,

subject to

 A

−1
...
−1

x = b,

x ≥ 0.

(3.55)

Observe that in contrast with the standard two-phase simplex algorithm, a basic feasible
solution to this artificial LP is not obvious. We show that given a basic solution to the
original LP, one can derive a basic feasible solution for this artificial LP easily. However,
a basic solution to this artificial LP exists only if we require that A of the original LP has
full row rank.

With respect to phase II, we note that, except with respect to redundancy, the theorems
of previous section also apply to this artificial LP, and thus that initializing phase II
proceeds as discussed in the previous section. Since A has full row rank, redundancy is
not an issue.

In the next lemma we show that since A has full row rank we may assume without loss
af generality that the original LP is in canonical form, i.e.,

min cx,
subject to

(
A′ Im

)
x = b,

x ≥ 0,
(3.56)

where A′ is an m× (n−m) matrix.

Lemma 3.46. Consider an LP in standard form. Suppose that A is of rank m and that
s ∈ {1, . . . , n}m is a basis and u a co-basis. Then, the given LP is equivalent to LP (3.56),
where A′ = A−1s Au and b′ = A−1s b.

Proof. Without loss of generality s = (n−m+ 1, . . . , n) and u = (1, . . . , n−m). From

A−1s Ax = A−1s b

we have
A−1s A = A−1s

(
Au As

)
=
(

A′ Im
)
,

and thus we conclude that the constraints are equivalent. Hence, the given LP is equivalent
to LP (3.56).

The following theorem shows how to initialize phase I when the original LP is in canonical
form.

Theorem 3.47. Consider an LP in canonical form and the corresponding artificial LP.
Let

β := argmin(b′).

If bβ ≥ 0, then the basic solution x′ corresponding to basis s = (n−m+1, . . . , n) is a basic
feasible solution to the original LP. Otherwise, if bβ < 0 then x satisfying

xi =

bj − bβ, if i = n−m+ j,
−bβ if i = n+ 1,

0 otherwise,
(3.57)

3. Linear Optimization 69

for i = 1, . . . , n + 1, is a basic feasible solution to the artificial LP with respect to basis
s′ = (s1, . . . , sβ−1, n+ 1, sβ+1, . . . , sm).

Proof. Note that by construction s = (n−m+1, . . . , n) is a basis for the original LP, since
it is in canonical form. Hence As = Im.

Let x′ be the basic solution corresponding to basis s.

If bβ ≥ 0 it follows that b′ = x′s ≥ 0 and thus that x′ is basic feasible to the original LP.

Suppose bβ < 0. Then s′ = (s1, . . . , sβ−1, n+ 1, sβ+1, . . . , sm) is a basis, since

B =

 A′ Im

−1
...
−1

s′

= (e1, . . . , eβ−1,−1, eβ+1, . . . , em)

has an inverse

B−1 =

e1 − eβ
...

eβ−1 − eβ
−eβ

eβ+1 − eβ
...

em − eβ

.

The corresponding basic solution satisfies

xs′ = B−1b′ =

b′1 − b′β
...

b′β−1 − b′β
−b′β

b′β+1 − b′β
...

b′m − b′β

.

Observe that bβ = min(b) and, therefore, x ≥ 0. Hence it is a basic feasible solution to
the artificial LP.

Algorithm 3.17 shows ho to initialize phase I with respect to the alternative artificial
LP (3.55).

3.3.3 Big-M Method

Instead of solving an LP in standard form in two-phases, the Big-M method solves both
LPs simultaneously by solving similar to the standard two-phase simplex algorithm either

min cx +M
∑m

i=1 xn+i,
subject to

(
A Im

)
x = b,

x ≥ 0,
(3.58)

70 3.3. Implementations of the Simplex Initializations

Algorithm 3.17: (T, s, pred,T0,u, q)← InitializePhaseI1ArtVAR1,VAR2(A,b)

Input: A, b
Output: T, s, pred, T0, u, q
s← (n−m+ 1, . . . , n);1

T0 ←
(

A −1 b
0 1 0

)
;

2

D←
(

Im 0
0 1

)
;

3

α← 1;4

VAR2 = IP :
5a q ← 1;
6a α← −1;

β := argmin(b);7

VAR1 = LT :
8a T← DT0;
9a if bβ ≥ 0 then return (T, s,FeasibleO, q);

10a tβ ← αtβ;
11a (T, q)← PivotLT,VAR2(T, β, n+ 1, q);
12a sβ ← n+ 1;
13a return (T, s,FeasibleA, q);

VAR1 = ST :
8b u← (1, . . . , n−m,n+ 1);
9b T← DT0

(u,n+2);

10b if bβ ≥ 0 then return (T, s,FeasibleO,u, q);
11b tβ ← αtβ;
12b (T, q)← PivotST,VAR2(T, β, n−m+ 1, q);
13b un−m+1 ↔ sβ;
14b return (T, s,FeasibleA,u, q);

VAR1 = RS :
8c T← D;
9c if bβ ≥ 0 then return (T, s,FeasibleO,T0, q);

10c tβ ← αtβ;
11c (T, q)← PivotRS,VAR2(T, β, n+ 1,T0, q);
12c sβ ← n+ 1;
13c return (T, s,FeasibleA,T0, q);

3. Linear Optimization 71

or, similar to the two-phase simplex algorithm with one artificial variable,

min cx +Mxn+1,

subject to

 A

−1
...
−1

x = b,

x ≥ 0,

(3.59)

where M is a “very big number”.

Suppose that M =∞, where

∞x =

∞, if x > 0,
0, if x = 0,
−∞, if x < 0.

Initializing any simplex variant to solve these linear programs can be done using the
algorithms initializing phase I, where the cost vectors of the corresponding artificial LPs are
replaced by respectively (c,M1) with respect to the standard two-phase simplex algorithm
or (c,M) with respect to the two-phase simplex algorithm with one artificial variable.

We will show that the resulting optimum is either the optimum of the original LP or a
proof that the original LP is infeasible. While Lemma 3.48 proves this fact for LP (3.58),
we note that following the same lines of the proof the lemma also holds for LP (3.59). It
follows that running phase I suffices to solve the original LP.

Lemma 3.48. Let x be an optimal basic feasible solution to the artificial LP (3.58). If
the corresponding costs are equal to ∞, then the original LP is infeasible. But if the
corresponding costs are less than ∞, then x1, · · · , xn is optimal to the original LP.

Proof. Firstly, suppose that x has cost ∞. Suppose furthermore that x′ is a feasible
solution to the original LP. It follows that (x′,0) is feasible to LP (3.58) having cost
cx′ <∞, contradicting the optimality of x.

Next, suppose that x has cost less than ∞. It follows that all artificial values are set
to zero. Hence x̂ = (x1, . . . , xn) is (basic) feasible to the original LP. Let x′ be a feasible
solution to the original LP such that cx′ < cx̂. It follows that (x′,0) is feasible to LP (3.58)
having cost cx′ < cx̂, contradicting the optimality of x. Hence x̂ is optimal to the original
LP.

When implementing the big-M method one has to choose a finite number M so that
any feasible solution to the original LP has lower cost than any feasible solution to the
corresponding artificial problem where one artificial variable is nonzero. Lemma 3.49 shows
how to choose M given that the coefficients of the original LP are bounded.

Lemma 3.49. Consider an LP in standard form, where the absolute value of all coeffi-
cients is bounded. If M > 22L+1, where L satisfies Theorem 3.34, then the optimal costs
of both LP (3.58) and (3.59) are larger than 2L if and only if the original LP is infeasible.

Proof. By Theorem 3.34 it follows that the size of the numbers in the tableau T are
represented by integers bounded by 2L. Suppose that T is a tableau corresponding to an
optimal solution x to LP (3.58) or to LP (3.59). Let the basis be s, and let q = | det(As)|.

72 3.3. Implementations of the Simplex Initializations

Then by Theorem 3.34

|cx| = |t(n+1)(n+m+1)| < 2L. (3.60)

Theorem 3.34 shows that for any nonzero xi one has 1 ≤ |x̃i| = q|xi| < 2L, where
1 ≤ q < 2L. It follows that 1

2L
< |xi| < 2L.

If at least one artificial variable is nonzero, then

|M
m∑
i=1

xn+i| > 22L+1 1

2L
= 2L+1

and this it follows from Eq. (3.60) that

cx +M
m∑
i=1

xn+i > −2L + 2L+1 = 2L. (3.61)

On the other hand if all artificial variables are equal to zero, then

cx +M
m∑
i=1

xn+i = cx < 2L.

Remark 3.50. Instead of making the numbers larger to accommodate M , we could also
represent the numbers in tuples. For example, let a = a1 + a2M , where 2−L < ai < 2L.
Note that M only appears in the costs, and therefore, in the last row of any tableau T only.
Indeed a pivot operation is never done on the last row, so all updates are independent to
M , except for the last row.

Thus, only the last row of the tableau would contain numbers as tuples. This means
that the existence of M only affects the column selection and updating the last row, since
those are the only parts where the last row of T is touched. Let t denote the last row

of T. Suppose that the i-th entry of the last row is given by (ti, t
(M)
i) and represents the

value ti +Mt
(M)
i .

With respect to the column selection note that by the definition of M

ti +Mt
(M)
i < 0⇔ t

(M)
i < 0 ∨

(
t
(M)
i = 0 ∧ ti < 0

)
.

And with respect to pivoting on tk` note that

t′i +Mt
′(M)
i = ti +Mt

(M)
i −

(t` +Mt
(M)
`)tki

tk`

and thus

t′i = ti −
t`tki
tk`

and

t
′(M)
i = t

(M)
i −

t
(M)
` tki
tk`

.

�

3. Linear Optimization 73

Remark 3.51. One would expect that the big-M method requires less iterations in total,
since it runs a simplex variant only once. Nabli provides in [Nab09] experimental results
in terms of the number of iterations of the two-phase simplex and the big-M method. It
seems that there is no big difference between the total number of iterations.

Therefore, the Big-M method seems to be less efficient than the two-phase simplex
method since every iteration of the big-M method is more expensive due to either Lemma 3.49
or Remark 3.50. Moreover, while initializing phase II, the two-phase simplex switches to
a smaller tableau without the artificial variables, while the Big-M has the larger tableau
including columns with respect to the artificial variables in all its iterations. �

74 3.3. Implementations of the Simplex Initializations

Chapter 4

Building Blocks for Secure Linear
Programming

In this chapter we review and build protocols for the basic operations used by the linear
programming protocols in Chapter 5.

In the first section we review the security properties of the protocols presented in this
chapter. The protocols are given as arithmetic circuits. Therefore, they will be statistically
secure by Theorem 2.13. The statistical security is due to the fact that random numbers
dependent on some secret values are opened during protocol execution. Basic results on
statistical distance are discussed which are used to prove statistical security.

The second section exploits features of Shamir’s secret sharing scheme to be able to non-
interactively generate random numbers, following [CDI05, DT08]. In addition, we provide
a protocol, following [BGW88, CDI05], that securely computes an inner product that has
the same complexity with respect to communication as the multiplication protocol.

The third section shows how to build efficient arithmetic circuits for evaluating k-ary
and prefix operations for any binary associative operator �, which are defined on any x
by

• k-ary operation: y = x1 � · · · � xk = �ki=1xi, and

• prefix operation: yj = �ji=1xi for each j = 1, . . . , k.

For important tools with respect to linear programming, we compare the circuits of loga-
rithmic depth with circuits of constant depth from the literature. In some cases we improve
the performance of the protocols in the literature by slight modifications.

The fourth section shows how to apply those building blocks to build efficient circuits for
integer comparison following the approach of [ST06, GSV07]. With respect to comparisons
of the form x ≤ y, we compare the logarithmic depth circuit of [GSV07] with the constant
depth circuit of [Rei09]. We present a new circuit for comparisons of the form x = y that
has log∗ depth, where log∗(k) = min{i| logi(k) ≤ 1}.

To accommodate computation in Q, we present in the fifth section protocols for fixed
point arithmetic following [CS10, CH10b]. Special attention will be paid to an improved
protocol for division [CH10b].

The last section shows techniques to hide entries in a matrix by means of secret indexing
following [Tof09]. We present protocols that securely modifies matrices based on secret
indices that will be used in the linear programming protocols.

75

76 4.1. Statistical Security

Efficiency Measures

We focus on communication complexity, i.e., the total number of communicated bits by
each party, and round complexity. The latter counts the total number of interactive
rounds, where in each successive round parties are sending messages that are dependent
on received messages in earlier rounds.

We call the amount of data send by each party in a multiplication protocol (see Protocol
2.9) an invocation, which is abbreviated as inv. We will also count the number of interactive
rounds, which is abbreviated as rnd.

4.1 Statistical Security

The protocols in this chapter will satisfy the requirements of the composition theorem
of [Can00] and, therefore, any modular composition of those protocol will be secure (see
Theorem 2.13).

However, during some of the protocols the parties need to reveal some non-uniform
random number x+ U that depends on some secret x, where U is a random variable. By
the following lemmas it follows that statistically, the opened values, in the protocols in
this chapter, reveal nothing about the secret. Precisely, it follows that for any secret x
and random variable U , the distribution of U will be such that the statistical difference
between x+ U and U will be negligible.

We first show that if U is uniform on some finite set then the statistical distance between
X+U and U , where X is some random variable of unknown distribution, can be bounded
by the size of the domain of U .

Lemma 4.1. Let M and K be positive integers with M ≤ K. Let X ∈ {0, . . . ,M − 1}
and U ∈ {0, . . . ,K − 1} be random variables, where U is uniformly distributed. Then
∆(U ;X + U) ≤ (M − 1)/K and this bound is tight.

Proof. This is Lemma 1 in [ST06, Appendix A].

In Theorem 4.4 we show that this holds even if U is not uniform, but a sum of uniform
distributions. For this we will use the following lemmas. See for example [Sho05] for their
proofs.

Lemma 4.2. Let X and Y be random variable taking values in some finite set V and let
f : V → V ′ be some function mapping to some finite set V ′. Then

∆(f(X); f(Y)) ≤ ∆(X;Y). (4.1)

Lemma 4.3. Let X,Y and Z be random values, where X and Z are independent and Y
and Z are independent. Then

∆((X,Z); (Y,Z)) = ∆(X;Y). (4.2)

Theorem 4.4. Let X ∈ {0, . . . , 2k − 1} and U be random variables, where U =
∑n

i=1 Ui
for some finite n, where each Ui is independent and uniform in {0, . . . , 2k+κ − 1}. Then:

∆(X + U ;U) < 2−κ. (4.3)

4. Building Blocks for Secure Linear Programming 77

Proof. Let f be defined by f(x, y) := x+ y. It follows that

∆(X + U ;U) = ∆(X +
n∑
i=1

Ui;
n∑
i=1

Ui)

= ∆(X +

n−1∑
i=1

Ui + Un;

n−1∑
i=1

Ui + Un)

= ∆(f(

n−1∑
i=1

Ui, X + Un); f(

n−1∑
i=1

Ui, Un))

Lemma 4.2 ≤ ∆((
n−1∑
i=1

Ui, X + Un); (
n−1∑
i=1

Ui, Un))

Lemma 4.3 = ∆(X + Un;Un)

Lemma 4.1 ≤
2k − 1

2k+κ
< 2−κ.

Theorem 4.5. Let X ∈ {0, . . . , 2k − 1} and U be random variables and let U = U ′ +
2k
∑n

i=1 U
′
i , where U ′ is a uniform random variable in {0, . . . , 2k − 1} and each U ′i is

uniform and independent in {0, . . . , 2κ − 1}. Then

∆(X + U ;U) < 2−κ. (4.4)

Proof. Let f be defined by f(x, y) := x + y. Using the same method as in the proof of
Theorem 4.4 we obtain:

∆(X + U ;U) = ∆(X +
n∑
i=1

Ui;
n∑
i=1

Ui)

= ∆(X +

n−1∑
i=1

Ui + Un;

n−1∑
i=1

Ui + Un)

= ∆(f(

n−1∑
i=1

Ui, X + Un); f(

n−1∑
i=1

Ui, Un))

Lemma 4.2 ≤ ∆((
n−1∑
i=1

Ui, X + Un); (
n−1∑
i=1

Ui, Un))

Lemma 4.3 = ∆(X + Un;Un)

= ∆(X + U ′ + 2kU ′n;U ′ + 2kU ′n)

Lemma 4.1 ≤
2k − 1

2k+κ
< 2−κ.

78 4.2. Efficient Primitives for Shamir Secret Sharing

4.2 Efficient Primitives for Shamir Secret Sharing

We consider (t, n)-Shamir secret sharing, where we require t < n/2. Recall that this
scheme is defined over some finite field Fq. In our protocols we will take Fq = Zq, where
q is some prime number. We let κ denote the security parameter with respect to the
statistical distances.

The simplex algorithm that performs integer pivoting is defined over Z if the inputs are
from Z. Hence, we need some transformations to be able to use Shamir secret sharing to
perform the evaluations.

4.2.1 Encoding Signed Integers as Prime Field Elements

Consider the set of k-bit signed integers

Z〈k〉 =
{
x ∈ Z

∣∣∣−2k−1 < x ≤ 2k−1
}
.

Let � ∈ {+,−, ·}. We wish to find q and an injective map φ : Z〈k〉 → Zq such that
φ(x)� φ(y) = φ(z) for all x, y ∈ Z〈k〉, where x� y = z ∈ Z〈k〉.

The classical solution is to take q > 2k and φ : Z〈k〉 → Zq, where

φ(x) := x mod q.

Its inverse map φ−1 : Zq → Z〈k〉 is given by

φ−1(x) :=

{
x, if x < q/2,

x− q, otherwise,

where we view x ∈ Zq as an integer being the least nonnegative representative of x mod q.

Lemma 4.6. Let � ∈ {+,−, ·}. If x ∈ Z〈k〉, y ∈ Z〈k〉 and x� y ∈ Z〈k〉. Then

x� y = φ−1(φ(x)� φ(y)).

Moreover, if y divides x then

x

y
= φ−1

(
φ(x)� φ(y)−1

)
.

Proof. First, note that for all x ∈ Z〈k〉 it follows that φ−1(φ(x)) = x. Suppose that
x ∈ Z〈k〉, y ∈ Z〈k〉 and x� y ∈ Z〈k〉. Then,

φ−1 (φ(x)� φ(y)) = φ−1 ((x+ α1q)� (y + α2q))

= φ−1(x� y + βq) ≡ φ−1(φ(x� y))

= x� y,

where

β =

α1 + α2, if � = +,
α1 − α2, if � = −,

xα1 + yα2 + α1α2q, if � = ·.

4. Building Blocks for Secure Linear Programming 79

If y divides x, then x
y mod q = xy−1 mod q, where y−1 ∈ Zq denotes the multiplicative

inverse of y mod q. Hence for all x ∈ Z〈k〉 and y ∈ Z〈k〉 where y|x, we have x
y ∈ Z〈k〉 and

x

y
= φ−1

(
φ(x)� φ(y)−1

)
.

Unless stated otherwise, the numbers x in the remainder of this chapter are k+1 signed
bit numbers, i.e., x ∈ Z〈k+1〉. We say that y is a k bit number if 0 ≤ y < 2k.

4.2.2 Noninteractive Random Number Generation

In this section we review some basic techniques to efficiently generate Shamir shares of
random field elements. The protocols that we will discuss are efficient since they require
one interactive setup protocol. In the setup protocol each party secretly shares one random
field element. Given those shares the parties can generate fresh random shares by local
computation only.

We apply the result of [CDI05] to use replicated secret sharing to noninteractively gen-
erate Shamir shares of uniformly random field elements. We remark here that since repli-
cated secret sharing is used with threshold t ≈ n/2, in which

(
n
t

)
shares are computed,

this noninteractive generation is only efficient if n is small.

Given replicated shares [r]R of some r ∈ F, we will show how the parties can locally
evaluate some function on their shares to get a consistent replicated sharing of some new
secret r′. This r′ will be uniformly random. We show how to convert the replicated shares
into consistent Shamir shares.

Let T = {T1, . . . , Tw} denote the set of all size t subsets of {1, . . . , n}.

Setup:

The parties generate a replicated sharing of some uniformly random k ∈ F as follows.
First every party Pi draws ki ∈R F and shares it among all parties using replicated secret
sharing with threshold t. Then, all parties locally compute a consistent replicated sharing
of k =

∑n
i=1 ki. Precisely, each party Pi locally computes [k]Rj =

∑n
i=1[ki]j , where j is

such that i 6∈ Tj .
The local addition of replicated shares [x]R and [y]R resulting in replicated shares [x+y]R

is denoted simply by [x]R + [y]R.

Protocol 4.1: [k]R ← SetupRandRSS(F)

foreach party i = 1, . . . , n do1

pick ki ∈R F;2

[ki]
R ← RShare(ki, n, t);3

[k]R ←
∑n

i=1[ki]
n;4

return [k]R5

80 4.2. Efficient Primitives for Shamir Secret Sharing

Noninteractive Pseudo-Random Share Generation:

Suppose that the parties have replicated shares of k. Let H : F × N → F be a pseudo
random function. Suppose that the parties have agreed upon a c ∈ N. Then each party Pi
computes [r′]Rj = H([k]j , c) for all j such that i 6∈ Tj . It follows that [r′]R is a consistent
replicated sharing and from

r′ =

w∑
i=1

H([k]i, c)

it follows that indeed r′ is uniformly random.

Protocol 4.2: [r]R ← PRandRSS(F)

static ctr ← 0;1

static [k]R ← SetupRandRSS(F);2

foreach party i = 1, . . . , n do3

foreach j s.t. i 6∈ Tj do4

[r]Rj ← H([k]j , ctr);5

ctr + +;6

return [r]R7

Conversion of Replicated Shares into Shamir Shares:

The conversion of replicated shares into Shamir shares is based on the following lemma:

Lemma 4.7. Consider the (t, n)-replicated secret sharing among parties P1, . . . , Pn and
let [r]R be the (replicated) sharing of r ∈ F. Let T = {T1, . . . , Tw} denote the collection of
all size t subsets of {1, . . . , n}. The function p(x) =

∑w
i=1[r]

R
i pi(x), where

pi(x) =
∏
j∈Ti

j − x
j

is a polynomial of degree t that satisfies p(0) = r. Moreover each party Pi can compute
p(i) locally.

Proof. Observe, firstly, that p`(0) = 1 for all ` = 1, . . . , w and thus that

p(0) =
w∑
`=1

[r]R` p`(0) =
w∑
`=1

[r]R` = r.

Secondly, since p`(j) = 0 for all j ∈ T`, the polynomial p satisfies

p(i) =
w∑

`=1,i 6∈T`

[r]R` p`(j).

Hence p(i) can be computed from the shares [r]Rj , where i 6∈ Tj , i.e., all replicated shares
held by party Pi.

4. Building Blocks for Secure Linear Programming 81

Protocol 4.3: [r]← RSSToShamir([r]R)

foreach party i = 1, . . . , n do1

[r]i ←
w∑

j=1,i 6∈Tj

[r]Rj
∏
`∈Tj

`− i
`

;
2

return [r]3

In conclusion, Protocol 4.6 generates Shamir shares of uniformly random field elements.

Protocol 4.4: [r]← PRandFld(F)

[r]R ← PRandRSS(F);1

[r]← RSSToShamir([r]R);2

return [r]3

Noninteractive Pseudo-Random Integer Share Generation:

Similarly to generating replicated shares of an uniformly random field element we change
the pseudo random function to output a uniformly randomly chosen integer of fixed bit
size. It follows that, repeating the procedure of above, the resulting secret is not uniformly
random distributed, but its distribution is equal to the distribution of the sum of w uniform
random integers.

Here, we assume that F = Zp is the field to represent Z〈k〉.
Suppose that parties have [k]R. Let 0 < α < k and Hα : Zp × N→ {0, 1}α be a pseudo

random function. Suppose that the parties have agreed upon a c ∈ N. Then each party Pi
computes [r′]Rj = Hα([k]j , c) for all j such that i 6∈ Tj . It follows that [r′]R is a consistent
replicated sharing and from

r′ =
w∑
i=1

Hα([k]i, c)

it follows that indeed r′ has bit size α+ log(w) and its distribution is equal to the sum of
w uniformly random numbers.

Protocol 4.5: [r]R ← PRandRISS(Zp, α)

static ctr ← 0;1

static [k]R ← SetupRandRSS(Zp);2

foreach party i = 1, . . . , n do3

foreach j s.t. i 6∈ Tj do4

[r]Rj ← Hα([k]j , ctr);5

ctr + +;6

return [r]R7

Hence, to noninteractively generate a Shamir sharing of some random r′ with bounded
bit size, we run the following protocol.

82 4.2. Efficient Primitives for Shamir Secret Sharing

Protocol 4.6: [r]← PRandInt(Zp, α)

[r]R ← PRandRISS(Zp, α);1

[r]← RSSToShamir([r]R);2

return [r]3

Noninteractive Pseudo Random Zero Sharing:

To noninteractively generate shares of zero, we apply the protocol PRZS from [CDI05].
The goal is to generate consistent shares of a uniformly random 2t-degree polynomial
z(x). While we show how to noninteractively generate Shamir shares on a degree 2t
random polynomial, we remark that instead of 2t+ 1 parties any t+ 1 parties will be able
to reconstruct z(x) due to the underlying replicated secret sharing scheme with threshold
t.

The idea is to use the polynomials pi(x) from Lemma 4.7 as follows.

Theorem 4.8. Consider the (t, n)-replicated secret sharing among parties P1, . . . , Pn and
let [r]R be a random (replicated) sharing of r ∈R Ft. Let T = {T1, . . . , Tw} denote the
collection of all size t subsets of {1, . . . , n}. Then z(x), which is defined by

z(x) =
w∑
i=1

pi(x)
(
[r1]

R
i x+ . . . , [rt]

R
i x

t
)
,

is a 2t degree uniformly random polynomial with the restriction z(0) = 0. In addition, any
party Pi can locally compute z(i).

Proof. Similarly to Lemma 4.7 observe that from pi(j) = 0 if j ∈ Ti, then

z(j) =
w∑

i=1,j 6∈Ti

pi(j)
(
[r1]

R
i j + · · ·+ [rt]

R
i j

t
)
,

which can be computed by Pj since it has all replicated shares [r]i when j 6∈ Ti.
Observe that z(x) can be written as z(x) =

∑2t
i=1 αix

i. We need to show that the vector
α = (α1, . . . , α2t) is uniformly random in F2t. Note that α can be computed by solving
the system

z(1)
z(2)
z(3)

...
z(2t)

 =

1 1 1 · · · 1
2 22 23 · · · 22t

3 32 33 · · · 32t

. . .

2t (2t)2 (2t)3 · · · (2t)2t

α1

α2

α3
...
α2t

 . (4.5)

Let u and v be such that Tu = {1, . . . , t} and Tv = {t+ 1, . . . , 2t}. Then let

βk =

w∑
i=1,i 6=v,k 6∈Ti

pi(k)
(
[r1]

R
i k + . . . , [rt]

R
i k

t
)
,

4. Building Blocks for Secure Linear Programming 83

for all k = 1, . . . , t, and

γk =

w∑
i=1,i 6=u,k 6∈Ti

pi(k + t)
(
[r1]

R
i (k + t) + . . . , [rt]

R
i (k + t)t

)
.

Then

z(1)
...

z(t)
z(t+ 1)

...
z(2t)

=

β1
...
βt
γ1
...
γ2t

+

1 · · · 1t

. . .

t · · · tt

t+ 1 · · · (t+ 1)t

. . .

2t · · · (2t)t

pv(1)[r1]
R
v

...
pv(t)[rt]

R
v

pu(t+ 1)[r1]
R
u

...
pu(2t)[rt]

R
u

. (4.6)

From Eq. (4.5) it follows that α is uniformly random if z(1), . . . , z(2t) is uniformly
random. Since (β,γ) is independent on [r]Rv and [r]Ru , which are uniformly random and
independent, we have by Eq. (4.6) that (z(1), . . . , z(2t)) is uniformly random.

Protocol 4.7: (z1, . . . , zn)← PRandZero(F)

foreach i = 1, . . . , t do1

[ri]
R ← PRandRSS(F);2

foreach party j = 1, . . . , n do3

zj =

w∑
i=1,j 6∈Ti

pi(j)
(
[r1]

R
i j + · · ·+ [rt]

R
i j

t
)
;

4

return zj ;5

4.2.3 Efficient Arithmetic for Shamir Secret Sharing

This section provides efficient protocols for securely computing inner products. In ad-
dition we will use the noninteractive random number generation to efficiently perform a
multiplication or inner product, where the result is opened.

Inner Products

Let x = x1, . . . , xm and y = y1, . . . , ym be vectors in Fmq . Let [x] denote the vector
where each entry is (Shamir) secret shared, i.e., [x] = [x1], . . . , [xm] and let the vector
[x]k = [x1]k, . . . , [xm]k denote party Pk’s shares of x.

Naively, to compute an inner product securely one could run the multiplication protocol
to compute each product [xiyi] and compute the result by

∑m
i=1[xiyi]. The following lemma

84 4.2. Efficient Primitives for Shamir Secret Sharing

shows how to extend the multiplication protocol of [BGW88] to be able to compute any
inner product by adding local computations only. Actually, we will show how to extend
the multiplication protocol to be able to compute any generalized inner product by adding
local computations only.

Lemma 4.9. Suppose that [x] and [y] are length m vectors that are (t, n)-Shamir shared
among parties P1, . . . , Pn. Let α1, . . . , αm ∈ Fn and mk =

∑m
i=1 αi[xi]k[yi]k for i =

1, . . . ,m and k = 1, . . . , n. Let {r1, . . . , r2t+1} ∈ {1, . . . , n}2t and λ1, . . . , λ2t+1 denote
the Lagrange coefficients for reconstruction of parties Pr1 , . . . , Pr2t+1. Then

2t+1∑
j=1

λjmrj =

m∑
i=1

αixiyi.

Proof. Let fi and gi be the polynomials over F of degree t such that fi(j) = [xi]j and
gi(j) = [yi]j for i = 1, . . . ,m and j = 1, . . . , n. Then

mk =

m∑
i=1

αi[xi]k[yi]k =

m∑
i=1

αifi(k)gi(k).

It follows that each (k,mk) is on the polynomial h =
∑m

i=1 αifigi, which is a 2t degree
polynomial. Furthermore, we have by construction that

h(0) = (

m∑
i=1

αifigi)(0) =

m∑
i=1

αifi(0)gi(0) =

m∑
i=1

αixiyi

and by Lagrange interpolation

h(0) =
2t+1∑
j=1

λjh(rj) =
2t+1∑
j=1

λj

(
m∑
i=1

αifi(rj)gi(rj)

)
=

2t+1∑
j=1

λjmrj .

In conclusion, given [x] and [y], the parties securely compute shares for the generalized
inner product between x and y as follows:

Protocol 4.8: [c]← Inner([x], [y])

foreach party i = 1, . . . , 2t+ 1 do1

mi ← [x]i[y]i;2

[mi]← SShare(mi, t, n);3

[c]←
∑2t+1

i=1

(
[mi]

∏2t+1
j=1,j 6=i

−j
i−j

)
;4

return [c]5

Security is immediate by similarity to the multiplication protocol (Protocol 2.9).

4. Building Blocks for Secure Linear Programming 85

Multiplication with Public Result

If the parties wish to compute and reveal ab from [a] and [b], then they can run [c] ←
Mul([a], [b]) followed by ab← Open([c]). This takes 2 interactive rounds and 2 invocations.

To remove one round of interaction, observe that in the second phase of Mul the parties
secretly share their shares [a]i[b]i and then compute shares of ab locally using the recon-
struction formula. Naively, if ab may be revealed then the reconstruction can be done from
the shares [a]i[b]i. However, the 2t shares [a]i[b]i are not uniformly random and depend on
a and b. Hence a simulator not knowing a and b may not provide indistinguishable views.

To fix this problem one noninteractively generates shares on a random 2t-degree poly-
nomial z(x), where z(0) = 0 and use mi = [a]i[b]i + z(i) as reconstruction shares. Hence it
follows that any set of 2t values of mi is uniformly random and does not depend on a and
b anymore. This results in the following protocol, which is proven to be secure in [CDI05]
using the framework of [Can00].

Protocol 4.9: c← MulPub([a], [b])

(z1, . . . , zn)← PRandZero(F);1

foreach party i = 1, . . . , 2t+ 1 do2

mi ← [x]i[y]i + zi;3

send mi to all parties ; // 1 rnd, 1 inv.4

c←
∑2t+1

i=1

(
mi
∏2t+1
j=1,j 6=i

−j
i−j

)
;5

return c6

And similarly with respect to inner products the following protocol is executed.

Protocol 4.10: c← InnerPub([a], [b])

(z1, . . . , zn)← PRandZero(F);1

foreach party i = 1, . . . , 2t+ 1 do2

mi ← [x]i · [y]i + zi;3

send mi to all parties ; // 1 rnd, 1 inv.4

c←
∑2t+1

i=1

(
mi
∏2t+1
j=1,j 6=i

−j
i−j

)
;5

return c6

Computing the Field Inverse

Given [x], where x ∈ F∗, suppose that the parties wish to compute [y], where y = x−1. The
parties first generate [r], where r is uniformly random. Then, they compute and reveal
z = xr, which is uniformly random. If z 6= 0, then they compute the result locally by
z−1[r]. Otherwise, they try again.

The probability that a uniformly random z ∈ F is equal to zero is 1/|F|, which is usually
negligible.

86 4.3. Arithmetic Circuits for Prefix and k-ary Operations

Protocol 4.11: [y]← Inv([x])

do1

[r]← PRandFld(F);2

z ← MulPub([x], [r]) ; // 1 rnd, 1 inv.3

while z = 0 ;4

[y]← z−1[r];5

return [y]6

Random Bit Generation

Protocol 4.12 generates random bits. Here we assume that q = 3 mod 4.

Protocol 4.12: [b]← PRandBit(Zq)
do1

[r]← PRandFld(Zq);2

u← MulPub([r], [r]) ; // 1 rnd, 1 inv.3

while u = 0 ;4

v ← u−(q+1)/4 mod q;5

[b]← (v[r] + 1)(2−1 mod q);6

return [b]7

For convenience we specify the protocol for generating multiple bits.

Protocol 4.13: [b]← PRandBits(Zq,m)

foreach i = 1, . . . ,m do parallel1

[bi]← PRandBit(Zq);2

return [b]3

We will use the notation given in Table 4.1(a) to denote invocation of the correspond-
ing protocols. Table 4.1(b) presents the efficiency and security of the protocols that are
discussed in this section.

4.3 Arithmetic Circuits for Prefix and k-ary Operations

Let S be a set and � : S × S → S be an associative binary operator. We denote [x]� [y]
as the secure evaluation of x� y with secret inputs and output. This section considers the
following operations (note that we start counting from 0 in this section)

• k-ary operation: A k-ary operation computes y = x0 � · · · � xk−1 = �k−1i=0 xi, and

• prefix operation: A prefix operation computes yj = �ji=0xi for j = 0, . . . , k − 1.

This section shows how to construct arithmetic circuits of logarithmic depth to perform
k-ary and prefix operations in general for any associative binary operator. In addition,

4. Building Blocks for Secure Linear Programming 87

Notation Protocol

[c]← [x][y] [c]← Mul([x], [y])
c← [x][y] c← MulPub([x], [y])

[c]← [x][y] [c]← Inner([x], [y])
c← [x][y] [c]← InnerPub([x], [y])

(a) Shorthand notation

Protocol Rounds Invocations Security

PRandFld 0 0 N.A.
PRandInt 0 0 N.A.
PRandBit 1 1 Perfect

Inner 1 1 Perfect
MulPub 1 1 Perfect
InnerPub 1 1 Perfect

Inv 1 1 Perfect

(b) Complexity and security

Table 4.1: Efficient protocols based on Shamir sharing

we will give optimized circuits for important building blocks such as k-ary and prefix
multiplication, prefix-or, bitwise comparison and binary addition.

We aim for the best performance. To minimize network delays we minimize the number
of communication rounds, which in turn is minimized by minimizing the depth of the
circuit. On the other hand, the communication complexity is minimized by minimizing
the number of invocations, which is done by minimizing the number of (interactive) gates
in the circuit. Typically reducing the number of rounds results in more gates to be executed
in parallel and vice versa. Hence we need to balance between the number of rounds and
the number of gates.

Assuming that k − 1 is the minimal number of invocations of �, the communication
complexity of both the k-ary and prefix operations is minimized by the straightforward k
round circuit that computes yj+1 = yjxj+1 for j = 0, . . . , k − 2, where y0 = x0. However,
in our applications a linear amount of rounds is undesirable.

Figure 4.1 shows arithmetic circuits with depth log k, where k is a power of 2. Note that
with respect to k-ary operations the circuit is optimal in the sense that only k−1 gates are
evaluated. On the other hand with respect to prefix operations, the circuit requires more
gates: k/2 log(k). There are more circuits for prefix operations requiring O(log k) rounds
and less gates, however with hidden constant larger than 1. For the sake of simplicity we
apply the circuit given in Figure 4.1(b)

Protocol 4.14 implements the k-ary logarithmic depth circuit of Figure 4.1(a) on any
k > 1. Suppose that op is an interactive protocol with α rounds and β invocations. Then
Protocol 4.14 requires exactly αdlog ke rounds and β(k − 1) invocations.

Protocol 4.14: [y]← KOpL([x], op)

k ← Len([x]);1

if k = 1 then2

return [x];3

else4

[a]← KOpL([x0], . . . , [xbk/2c−1]);5

[b]← KOpL([xbk/2c], . . . , [xk−1]);6

return op([a], [b])7

88 4.3. Arithmetic Circuits for Prefix and k-ary Operations

(a) k-ary (b) Prefix

Figure 4.1: Logarithmic circuits for k-ary and prefix operations

Protocol 4.15 implements the prefix logarithmic depth circuit of Figure 4.1(b) on any
k > 1. The number of rounds is exactly αdlog ke. Note that there is not a nice formula to
count the number of gates when k is not a power of two. However, observe that an upper
bound to the number of gates is equal to βdk/2edlog ke.

Protocol 4.15: [y]← PreOpL([x], op)

k ← len([x]);1

for i = 1, . . . , dlog ke do2

foreach j ∈ {1, . . . , dk/2ie} do parallel3

`1 ← 2i−1 + (j − 1)2i − 1;4

`2 ← min{2i−1, k − `1 − 1};5

if `2 > 0 then6

foreach z ∈ {1, . . . , `2} do parallel7

[x`1+z]← op([x`1], [x`1+z]);8

return [x]9

4.3.1 Multiplication

The k-ary multiplication [y] =
∏k−1
i=0 [xi] can be done via KOpL([x],Mul) requiring log k

rounds and k − 1 invocations. We present a well known protocol by Bar-Ilan and Beaver
[BB89] to create a circuit of constant depth for the computation of [y], if xi is invertible
for all i.

The idea is to generate nonzero random values [r0], . . . , [rk−1] and compute their inverses
[r−10], . . . , [r−1k−1]. Then, compute and openm0 = x0r0 andmi = r−1i−1xiri for i = 1, . . . , k−1.
Since xi 6= 0 and ri are uniformly random and independent all values mi are uniformly

4. Building Blocks for Secure Linear Programming 89

random and independent. Moreover,

z =

k−1∏
i=0

mi = rk−1

k−1∏
i=0

xi,

so that [y] = z[r−1k−1].

Protocol 4.16: [y]← KMulC([x])

foreach i ∈ {0, . . . , k − 1} do parallel1

do2

[ri]← PRandFld(F);3

[si]← PRandFld(F);4

ui ← [ri][si] ; // 1 rnd, k inv5

while ui = 0 ;6

foreach i ∈ {1, . . . , k − 1} do parallel [vi]← [ri][si−1] ; // k − 1 inv.7

[w0]← [r0];8

foreach i ∈ {1, . . . , k − 1} do [wi]← [vi]u
−1
i−1;9

foreach i ∈ {0, . . . , k − 1} do parallel mi ← [xi][wi] ; // 1 rnd, k inv.10

[y]← [sk−1]u
−1
k−1

∏k−1
j=0 mj ;11

return [y]12

Protocol 4.17: [y]← PreMulC([x])

foreach i ∈ {0, . . . , k − 1} do parallel1

do2

[ri]← PRandFld(F);3

[si]← PRandFld(F);4

ui ← [ri][si] ; // 1 rnd, k inv5

while ui = 0 ;6

foreach i ∈ {1, . . . , k − 1} do parallel [vi]← [ri][si−1] ; // k − 1 inv.7

[w0]← [r0];8

foreach i ∈ {1, . . . , k − 1} do [wi]← [vi]u
−1
i−1;9

foreach i ∈ {0, . . . , k − 1} do parallel mi ← [xi][wi] ; // 1 rnd, k inv.10

[y0]← [x0];11

foreach i ∈ {1, . . . , k − 1} do [yi]← [si]u
−1
i

∏i
j=1mj ;12

return [y]13

Protocol 4.17 is an extension of Protocol 4.16 for computing the prefix products [yi] =∏i
j=0 xj for i = 0 . . . , k − 1, without extra communication costs. Indeed,

i∏
j=0

mj = ri

i∏
j=0

xj

for all i = 0, . . . , k − 1. The inversion of ri can be computed by siu
−1
i .

Observe that Protocol 4.17 is very efficient and, while having constant rounds, its com-
munication cost is very competitive to the logarithmic rounds protocol PreOpL. Indeed,

90 4.3. Arithmetic Circuits for Prefix and k-ary Operations

the latter requires k/2 log k invocations, while the constant rounds protocol requires 3k−1
invocations. Hence, for vectors of length larger than 26 = 64 the constant rounds solution
for prefix multiplication has both less rounds and less invocations.

4.3.2 Prefix-Or

Consider [b], where b ∈ {0, 1}k. We wish to compute

i∨
j=0

[bj],

for all i = 0, . . . , k − 1. This can be done via the logarithmic circuit of Figure 4.1(b) via
PreOpL([b],Or) in dlog ke rounds and dk/2edlog ke invocations, where

Or([x], [y]) = [x] + [y]− [x][y].

Protocol 4.18 has constant rounds and is based on the observation that x∨ y = 1 if and
only if (1+x)(1+y) is even. Note that any positive integer k is even if the least significant
bit of k is equal to zero, i.e., LSB(k) = 0. The protocol for securely computing the least
significant bit is described in the next section.

Protocol 4.18: [x]← PreOrC([b])

([z0], . . . , [zk−1])← PreMulC([b0] + 1, . . . , [bk−1] + 1) ; // 2 rnd, 3k − 1 inv.1

[z0]← [b0];2

foreach i ∈ {1, . . . , k − 1} do parallel3

[xi]← 1− LSB([zi]) ; // 1 rnd, 2k − 2 inv.4

With respect to efficiency observe that PreOpL has worse round complexity if k > 24 = 16
and worse communication complexity if k > 210 = 1024.

4.3.3 Bitwise Comparison

Let x ∈ Z+
〈k〉 be a positive integer. We denote the bitwise sharing of x by [x]B, i.e.,

[x]B = [xk−1], . . . , [x0],

where the xi ∈ {0, 1} for i = 0, . . . , k − 1 are such that x =
∑k−1

i=0 xi2
i. We also write

x = xk−1 . . . x0.
This section shows how to efficiently compare secretly shared bitwise numbers [x]B and

[y]B. More precisely we will describe how to efficiently compute [|x < y|b].
An important tool for these protocols is the extraction of the least significant bit.

Protocol 4.19 is from Schoenmakers and Tuyls [ST06]. Suppose that F = Zq, where
q > 2k+κ+logn.

Protocol 4.19: [b]← LSB([x])

[r0]← PRandBit(Zq) ; // 1 rnd, 1 inv.1

[r′]← PRandInt(Zq, k + κ− 1);2

c← Open([x] + [r0] + 2[r′] ; // 1 rnd, 1 inv3

[b]← c0 + [r0]− 2c0[r0];4

return b.5

4. Building Blocks for Secure Linear Programming 91

Figure 4.2: Circuit of BitLTL. Each circle corresponds to evaluating Eq. (4.7) and each
double circle to evaluating in addition Eq. (4.8). Similarly, the squares correspond to
evaluating Eq. (4.9) and Eq. (4.10).

4.3.3.1 Logarithmic Depth Circuit

We will present the result of [GSV07] to compute recursively the result of [|x < y|b] given
shares of the bits of [x]B and [y]B. Suppose that x is the concatenation X1||X0 and suppose
that y is the concatenation Y1||Y0. Observe that

|x < y|b = |X1 < Y1|b + |X1 = Y1|b |X0 < Y0|b (4.7)

and
|X = Y |b = |X1 = Y1|b |X0 = Y0|b . (4.8)

Note that when x and y are bits, then

|x < y|b = y(1− x) (4.9)

and
|x = y|b = 1− (x− y)2. (4.10)

This leads to a circuit of the form of an k-ary operation given in Figure 4.1(a). Figure 4.2
shows the corresponding circuit for the case [x]B and [y]B are represented by 8 bits.

Protocol 4.20: [z]← BitLTL([x]B, [y]B)

k ← len([x]B);1

if k = 1 then2

[c]← [x0][y0] ; // 1 rnd, 1 inv.3

return ([y0]− [c])4

else5

k′ ← dk/2e;6

([`1], [`2])← LTEQ([xk−1], . . . , [xk′], [yk−1], . . . , [yk′]);7

[r]← BitLTL([xk′−1], . . . , [x0], [yk′−1], . . . , [y0]);8

[c1]← [`1] + [r][`2] ; // 1 rnd, 1 inv.9

return [c1]10

92 4.3. Arithmetic Circuits for Prefix and k-ary Operations

Protocol 4.21: ([u], [v])← LTEQ([x]B, [y]B)

k ← len([x]B);1

if k = 1 then2

[c]← [x0][y0] ; // 1 rnd, 1 inv.3

return ([y0]− [c], 1− [x0]− [y0] + 2[c])4

else5

k′ ← dk/2e;6

([`1], [`2])← LTEQ([xk−1], . . . , [xk′], [yk−1], . . . , [yk′]);7

([r1], [r2])← LTEQ([xk′−1], . . . , [x0], [yk′−1], . . . , [y0]);8

[c1]← [`1] + [r1][`2] ; // 1 rnd, 1 inv.9

[c2]← [`2][r2] ; // 1 inv.10

return ([c1], [c2])11

Remark 4.10. Notice that BitLTL requires k secure multiplications and 1 round less if
x is public. Indeed, the k secure multiplications on the leafs to evaluate Eq. (4.9) and
Eq. (4.10) are replaced by local multiplications. �

4.3.3.2 Constant Depth Circuit

Reistad provides in [Rei09] a constant depth circuit evaluating [|x < y|b] provided [x]B
and [y]B. The idea is to find the position of most significants bits that are different, i.e.,
compute 0 < i ≤ k so that xi 6= yi but xj = yj for all j = i + 1, . . . , k − 1. Once the
position is located, the result is given by xi < yi.

Lemma 4.11. Let

ej = yj(1− xj)pj , (4.11)

where

pi = 2
∑k−1

j=i+1 xj⊕yj .

Then
∑k−1

i=0 ei is odd if and only if x < y.

Proof. Let i be the position of the most significant differing bits. For all j > i it follows
that pj = 1 and yj(1−xj) = 0, so ej = 0. For all j < i, on the other hand, pj is a positive
power of 2 and, therefore, ej is either equal to zero or to a power of 2. Finally, since pi = 1,

ei = |xi < yi|b = |x < y|b .

Hence E =
∑k−1

i=0 ei is odd if and only if x < y.

It follows that from E the result can be computed by

|x < y|b = LSB(E).

To compute pj observe first that

xi ⊕ yi = xi + yi − 2xiyi,

4. Building Blocks for Secure Linear Programming 93

and second

pi = 2
∑k−1

j=i+1 xj⊕yj =
k−1∏
j=i+1

(xi ⊕ yi + 1) .

Hence (pk−1, . . . , p0) can be computed by a prefix multiplication.
As a slight optimization with respect to [Rei09] we observe that yi(1−xi) = (xi⊕yi)(1−

xi). Hence
ei = (xi ⊕ yi)(1− xi)pi. (4.12)

While this expression seems to be less efficient than Eq. (4.11) this representation saves k
secure multiplications with respect to [Rei09] if x is public.

Indeed, let di = xi ⊕ yi. Then

si = pi − pi+1

= 2
∑k

j=i+1 dj + 2
∑k

j=i+2 dj

= 2
∑k

j=2+1 dj
(

2di − 1
)

= pi+1di.

It follows by Eq. (4.12) that
ei = si(1− xi).

While the expression [ei] ← [yi](1 − xi)[pi] requires 1 secure multiplication we observe
that [si]← [pi]− [pi+1] can be computed locally as well as [ei]← [si](1− xi).

Protocol 4.22 evaluates [|x < y|b] given [x]B and [y]B.

Protocol 4.22: [b]← BitLTC([x]B, [y]B)

foreach i = 0, . . . , k − 1 do parallel1

[di]← [xi] + [yi]− 2[xi][yi] ; // 1 rnd, k inv.2

([pk−1], . . . , [p0])← PreMulC([dk−1] + 1, . . . , [d0] + 1) ; // 2 rnd, 3k − 1 inv.3

foreach i = 0, . . . , k − 2 do [si]← [pi]− [pi+1];4

[sk−1]← [pk−1]− 1;5

[E]←
∑k−1

i=0 [si](1− [xi]) ; // 1 rnd, k inv.6

[b]← LSB([E]) ; // 1 rnd, 2 inv.7

return [b].8

4.3.4 Bitwise Addition

Given [x]B and [y]B we wish to compute [s]B = [x + y]B using a binary addition circuit.
We will use the same ideas from [GSV07] to build a circuit of logarithmic depth similar
to Figure 4.1(b).

An addition circuit computes the bits si by

si = xi + yi + ci−1 − 2ci, (4.13)

where bits ci, known as the carry bits, satisfy

ci = xiyi + ci−1 (xi + y + i− 2xiyi) (4.14)

94 4.3. Arithmetic Circuits for Prefix and k-ary Operations

Figure 4.3: Circuit of PreCarry. Each circle corresponds to evaluating Eq. (4.15) and each
double circle to evaluating in addition Eq. (4.16). Similarly the squares correspond to
evaluating Eq. (4.17) and Eq. (4.18).

and c−1 = 0.

Let ck = carry(xk−1 . . . x0, yk−1 . . . y0) denote the final carry when computing x + y.
Suppose that x is the concatenation X1||X0 and suppose that y is the concatenation
Y1||Y0, where X1 and Y1 are ` bits. Then

carry(x, y) = carry(X1, Y1) +
∣∣∣X1 + Y1 = 2` − 1

∣∣∣
b

carry(X0, Y0) (4.15)

and ∣∣∣X + Y = 2k − 1
∣∣∣
b

=
∣∣∣X1 + Y1 = 2` − 1

∣∣∣
b

∣∣∣X0 + Y0 = 2k−` − 1
∣∣∣
b
. (4.16)

Note that when x and y are bits, then

carry(x, y) = xy (4.17)

and

|x+ y = 1|b = x⊕ y = x+ y − 2xy. (4.18)

Observe that ∣∣∣a+ b = 2k−1
∣∣∣
b

=

k−1∏
i=0

|ai ⊕ bi|b ,

for any k bits a and b, i.e., a+ b = 2k − 1 if and only if they differ in all bits.

A circuit of the form of a prefix operation given in Figure 4.1(b) is used to compute all
carries ci = carry(xi . . . x0, yi . . . y0) for all i = 0 . . . k−1. Figure 4.3 shows the correspond-
ing circuit for the case [x]B and [y]B are represented by 8 bits. This circuit is slightly more
optimal than the one suggested in [CH10a], saving k invocations.

Remark 4.12. Notice that AddBitwise requires k invocations and 1 round less if x is public.
Indeed, the k invocations on the leafs to evaluate Eq. (4.13) and Eq. (4.14) are replaced
by local computations. �

As an application we will use the addition circuit to decompose [x] into its binary
representation [x]B.

4. Building Blocks for Secure Linear Programming 95

Protocol 4.23: [y]← PreCarry([x]B, [yB])

k ← len([xB]);1

foreach i = 0, . . . , k − 1 do2

[ci]← [xi][yi] ; // 1 rnd, k inv.3

[di]← [xi] + [yi]− 2[ci];4

for i = 1, . . . , dlog ke do5

foreach j ∈ {1, . . . , dk/2ie} do parallel6

`1 ← 2i−1 + (j − 1)2i − 1;7

`2 ← min{2i−1, k − `1 − 1};8

if `2 > 0 then9

foreach z ∈ {1, . . . , `2} do parallel10

[c`1+z]← [c`1+z] + [d`1+z][c`1] ; // 1 rnd, `2 inv.11

if j 6= 1 then [d`1+z]← [d`1+z][d`1] ; // `2 inv.12

return ([ck], . . . , [c0])13

Protocol 4.24: [s]← AddBitwise([x]B, [y]B)

c−1 ← 0;1

([ck], . . . , [c0])← PreCarry([x]B, [y]B) ; // dlog ke rnd, k(dlog ke − 1) inv.2

foreach i ∈ {0, . . . , k − 1} do [si]← [xi] + [yi] + [ci−1]− 2[ci];3

[sk]← [ck];4

return [s]B5

4.3.5 Bit Decomposition

We use the result of [ST06] to apply the LSBs protocol to decompose [x] into [x]B. This
protocol requires q > 2k+κ+logn to provide statical security.

The LSBs gate compute the bits of x as follows. Let r0, . . . , rk−1 be k uniformly random
bits and let r′ ∈R {0, . . . , 2κ+logn − 1}. Let c = 2k+1 + x− r + 2kr′. Then 0 < c < q and
c′ = c mod 2k = x − r mod 2k. It follows that c′ = x − r + α2k, where α ∈ {0, 1}. Hence
c′ + r = x+ α2k is a k + 1 bit number where the k least significant bits are the bits of x.

Protocol 4.25: [x]B ← BitDec([x], k)

foreach i ∈ {0, . . . , k − 1} do parallel1

[ri]← PRandBit(Zq) ; // 1 rnd, k inv.2

[r′]← PRandInt(Zq, κ);3

c← Open(2k+1 + [x]−
∑k−1

i=0 [ri]2
i + 2k[r′]) ; // 1 rnd, 1 inv.4

[x]B ← AddBitwise((ck−1, . . . , c0), ([rk−1], . . . , [r0]));5

// dlog ke rnd, k(dlog ke − 1) inv.

return [x]B6

Remark 4.13. Reistad and Toft give in [RT09b] a constant rounds bit decomposition
protocol requiring 12 rounds and over 39.5k invocations. Hence their solution is more
efficient with respect to the number of rounds if k > 212 = 4096 and with respect to the
number of invocations if k > 281. It follows that their bit-decomposition protocol may be
more efficient for values of bit size of at least 4096.

96 4.4. Integer Comparison

Protocol Rounds Invocations Security

Op([x], [y]) α β Perfect
KOpL([x],Op) α log(k) β(k − 1) Perfect

PerOpL([x],Op) α log(k) βk/2 log(k) Perfect

KMulC([x]) 2 3k − 2 Perfect
after preproc. 1 2k − 2
PreMulC([x]) 2 3k − 1 Perfect
after preproc. 1 k

LSB([x]) 2 2 Statistical
after preproc. 1 1

PreOrC([x]) 3 5k − 3 Statistical
after preproc. 2 3k − 2

BitLTL([x], [y]) log(k) + 1 3k − log k − 2 Perfect
BitLTL(x, [y]) log k 2k − log k − 2 Perfect

BitLTC([x], [y]) 4 5k + 1 Statistical
after preproc. 3 3k + 2
BitLTC(x, [y]) 3 3k + 1 Statistical
after preproc. 2 k + 2

AddBitwise([x]B, [y]B) log(k) + 1 k log(k) Perfect
AddBitwise(x, [y]B) log(k) k(log(k)− 1) Perfect

BitDec([x], k) log(k) + 2 k log(k) + 1 Statistical
after preproc. log(k) + 1 k(log(k)− 1) + 1

Table 4.2: Complexity and security of the k-ary and prefix protocols

Since we need bit decomposition of numbers that are much smaller, the presented log-
arithmic protocol is in our applications more efficient in both round and communication
complexity. �

Table 4.2 list the protocols with their complexities and security. Note that the interactive
generation of random bits can be preprocessed.

4.4 Integer Comparison

This section shows how to apply the previously discussed protocols to compute the result
of comparing [x] and [y]. Actually we will discuss protocols that compare a secret shared
number with zero. This is sufficient as x− y ≤ 0 if and only if x ≤ y.

Overall the idea is from [ST06] where x ∈ Z〈k+1〉 is masked with some large random

integer r so that 0 < x+ 2k + r < q is statistically close to the distribution of r. Then one
can use the bit representation of [r] and c = x+ r to complete the computation.

4.4.1 Equality Tests

This section discusses two variants of equality comparison protocols. The first protocol
will securely evaluate [|x = 0|b], while the second protocol evaluates |x = 0|b in the clear.

4. Building Blocks for Secure Linear Programming 97

4.4.1.1 Equality with Secret Result

To compute [|x = 0|b] we present a new log∗(k) rounds protocol. The idea is basically to

compute an k-ary Or on the bits of x, i.e., |x = 0|b = 1 −
∨k−1
i=0 xi. Viewing the bits as

integers, observe that
k−1∨
i=0

xi = 0⇔
k−1∑
i=0

xi = 0,

which is again an integer consisting of at most log k bits. Thus, we could add those bits
again resulting in an integer consisting of at most log log k bits. If we continue, then at
some stage we will be left with just one bit, which will be equal to |x = 0|b.

Lemma 4.14. Let x be a k-bit integer. Consider the sequence

d(i) =

dlog d(i−1)e−1∑
j=0

d
(i)
j ,

where d
(i)
j denotes the j-th bit of d(i) and

d(1) =

dlog ke−1∑
j=0

xj .

Then |x = 0|b = d(`), where ` = log∗(k).

Proof. Notice that

x = 0⇔ d(1) = 0⇔
dlog(k)e−1∑

i=0

d
(1)
i = 0.

Let l(x) = dlog(x)e and let li(x) denote that l is i times applied on x. For example,

l2(x) = l(l(x)). Let d(i) =
∑li(k)

j=0 d
(i−1)
j . If

` = min{` ∈ N|li(k) = 1},

then

|x = 0|b =
∣∣∣d(1) = 0

∣∣∣
b

= · · · = d(`).

Let c = x+2k +r, then x = 0 if and only if ci = ri for all i = 0, . . . k−1 or, equivalently,∑k−1
j=0(ci ⊕ ri) = 0.

With respect to the round complexity, note that all the random bits can be generated
in one round. Hence EQZ requires log∗(k) + 1 rounds. We require log∗(k) + 1 openings
and less than log∗(k) log(k) secure multiplications for the random bit generation.

98 4.4. Integer Comparison

Protocol 4.26: [b]← EQZ([x], k)

if k = 1 then return [x] else1

([r0], . . . , [rk−1])← PRandBits(Zq, k) ; // 1 rnd, k inv.2

[r′]← PRandInt(F, κ+ 1);3

c← Open([x] +
∑k−1

i=0 [ri]2
i + 2k[r′] ; // 1 rnd, 1 inv.4

[d]←
∑k−1

i=0 (ci + [ri]− 2ci[ri]);5

return EQZ([d], dlog ke)6

4.4.1.2 Equality with Public Result

If the result of the comparison is public we apply the comparison protocol by Franklin and
Haber in [FH96]. The idea is simply to observe that x = 0 if and only if xr = 0, where
r 6= 0. If r is uniformly random in Z∗q then xr is uniformly random in Zq which hides x
perfectly if it is nonzero.

Protocol 4.27: b← EQZPub([x])

do1

[r]← PRandFld(Zq);2

[s]← PRandFld(Zq);3

z ← [r][s] ; // 1 rnd, 1 inv4

while z = 0 ;5

u← [r][x] ; // 1 rnd, 1 inv.6

return |u = 0|b7

4.4.2 Less Than Zero Tests

To compute |x < 0|b, we use the ideas from [ST06] and [RT09b]. Consider

b =
(

(x mod 2k)− x
)

2−k.

Observe that if x < 0, then (x mod 2k) = x+ 2k. Hence b = |x < 0|b.
Let c = 2k + x+ r. Then 0 < c < q and x mod 2k satisfies

x mod 2k = (c− r) mod 2k = (c mod 2k)− (r mod 2k) + 2i
∣∣∣(c mod 2k) < (r mod 2k)

∣∣∣
b
.

To compute
∣∣(c mod 2i) < (r mod 2i)

∣∣
b

a binary circuit of Section 4.3.3 is used.

Protocol 4.28: [b]← LTZ([x])

[z]← Mod2m([x], k, k) ; // Protocol 4.291

[b]← ([z]− [x])2k);2

return [b]3

4. Building Blocks for Secure Linear Programming 99

Notation Protocol

[c]← [x] < [y] [c]← LTZ([x]− [y])
[c]← [x] ≤ [y] [c]← 1− LTZ([y]− [x])
[c]← [x] > [y] [c]← 1− LTZ([x]− [y])
[c]← [x] ≥ [y] [c]← LTZ([y]− [x])
[c]← [x] = [y] [c]← EQZ([x]− [y])
c← [x] = [y] [c]← EQZPub([x]− [y])

(a) Shorthand notation

Protocol Rounds Invocations Security

EQZ([x]) log∗(k) + 1 < log(k) log∗(k) Statistical
after preproc. log∗(k) log∗(k)

EQZPub([x]) 2 2 Perfect
after preproc. 1 1

LTZ([x]) Log: log(k) + 3 4k − log k − 1 Statistical
after preproc. log(k) + 2 3k − log k − 1

LTZ([x]) Const: 4 4k + 2 Statistical
after preproc. 3 k + 3

(b) Complexity and security

Table 4.3: Integer comparison protocols

Protocol 4.29: [b]← Mod2m([x], k,m)

[r]← PRandBits(Zq,m) ; // 1 rnd, m inv.1

[r′]← PRandInt(Zq, κ+ k −m);2

c← Open
(
2k + [x] +

∑m
i=1[ri]2

i−1 + 2m[r′]
)

; // 1 rnd, 1 inv.3

c′ ← c mod 2m;4

[b]← BitLT(c′, [rm], . . . , [r1]) ; // Protocol 4.20 or Protocol 4.22.5

[x′]← c′ −
∑m

i=1[ri]2
i−1 + 2m[b];6

return [x′]7

We will use the notation given in Table 4.3(a) to denote invocation of the correspond-
ing protocols. Table 4.3(b) presents the efficiency and security of the protocols that are
discussed in this section.

From Table 4.3(b) it follows that the constant rounds solution for inequality comparison
is almost as efficient with respect to communication complexity as the logarithmic version.
Furthermore the constant round inequality allows more efficiency gain by preprocessing.

4.5 Fixed Point Arithmetic

In this section we consider the following set of numbers:

Q〈k,f〉 =
{
x ∈ Q

∣∣∣x = x̄2−f , x̄ ∈ Z〈k〉
}
,

100 4.5. Fixed Point Arithmetic

where f is called the resolution and e = k − f is called the range of the fixed point
representation.

For all y ∈ Q〈k,f〉 note that 2fy ∈ Z〈k〉. Therefore, we can use the mapping φ : Z〈k〉 → ZQ
from Section 4.2.1 to map elements from Q〈k,f〉 into elements of Zq in such a way that the
arithmetic operations of the simplex algorithm are preserved.

We will show how to apply arithmetic over Zq over representations of both Z〈k〉 and
Q〈k,f〉.

Addition and subtraction of fixed point numbers Let x, y ∈ Q〈k,f〉. Then

z = φ(2fx)± φ(2fy) = φ(2f (x± y)),

so 2−fφ−1(z) = x± y.

Multiplication of a fixed point number with an integer Let x ∈ Qlrak,f and
y ∈ Z〈k〉. Then

z = 2fφ(x)φ(y) = φ(2fxy),

so 2−fφ−1(z) = xy.

Addition and subtraction of a fixed point number with an integer Let x ∈ Q〈k,f〉
and y ∈ Z〈k〉. Then,

z = φ(2fx)± φ(2fy) = φ(2fx± 2fy),

so 2−fφ−1(z) = x± y.

Multiplication of fixed point numbers Multiplication of fixed point numbers is not
straightforward. Indeed, let x, y ∈ Q〈k,f〉, then

z = φ(2fx)φ(2fy) = φ(22fxy),

so a = 2−fφ−1(z) = 2fxy. The absolute error of a satisfies

|a− xy| < 2−f .

The multiplication of x and y is performed as follows. First, compute

z = φ(2fx)φ(2fy) = φ(22fxy).

Second, compute

a =

⌊
φ−1(z)

2f

⌋
+ u,

where u ∈ [0, 1] is chosen depending on the rounding.
For any x ∈ Q〈k,f〉 we denote with [x] the Shamir share of the value 2fx ∈ Z〈k〉.

Protocol 4.30: [z]← MulFP([x], [y])

[z]← [x][y] ; // 1 rnd, 1 inv.1

[z]← TruncPr([z], k + f, f) ; // 2 rnd, f inv.2

return [z]3

Table 4.4 presents the complexity and absolute error of protocols for fixed point arith-
metic.

4. Building Blocks for Secure Linear Programming 101

x y Operation Protocol complexity error

Q〈k,f〉 Q〈k,f〉 + [x] + [y] N.A 0

Q〈k,f〉 Z〈k〉 + [x] + 2f [y] N.A. 0

Q〈k,f〉 Z〈k〉 · [x][y] N.A. 0

Q〈k,f〉 Q〈k,f〉 · FPMul([x], [y]) 2 rnd, 2 inv. δ < 2−f

Table 4.4: Complexity and error of basic protocols for fixed point arithmetic

4.5.1 Truncation

To truncate the f least significant bits of x one computes d = x mod 2f so that x− d is a
multiple of 2f . Moreover (x− d)2−f = b2−fxc. This shows correctness of Protocol 4.31.

Protocol 4.31: [y]← Trunc([x], k, f)

[d]← Mod2m([x], k, f) ; // 4 rnd, 4f + 2 inv.1

[y]← ([x]− [d])2−f ;2

return [y].3

Protocol 4.32 improves the efficiency by allowing probabilistic rounding by removing the
call to BitLT in Mod2m. Let r be a uniformly random f bit value and r′ a random value
in {0, . . . , 2κ+k+log(n)−f} and c = 2k−1 + x+ r + 2fr′. Then

c′ = c mod 2f = x+ r mod 2f = x mod 2f + r − u2f ,

where u =
∣∣(x mod 2f) + r ≥ 2f

∣∣
b
.

Hence
(x− c′ + r)2−f = (x− (x mod 2f))2−f + u = b2−fxc+ u.

Note that the value of u ∈ {0, 1} depends on r and is, therefore, random. It satisfies

P [u = 1] = P
[
(x mod 2f) + r ≥ 2f

]
= P

[
r ≥ 2f − (x mod 2f)

]
.

Protocol 4.32: [y]← TruncPr([x], k, f)

[r]← PRandBits(Zq, f) ; // 1 rnd, f inv.1

[r′]← PRandInt(Zq, κ+ k + 1− f);2

c← Open
(

2k + [x] +
∑f−1

i=0 ([ri]2
i) + 2f [r′]

)
; // 1 rnd, 1 inv.3

c′ ← c mod 2f ;4

[d]← ([x]− c′ +
∑m

i=1[ri]2
i−1)2−f ;5

return [d]6

4.5.2 Division

This section shows how to compute the division of x and y using the Newton-Raphson
method. We will first discuss the Newton-Raphson method. Then, we will provide and
analyze protocols that securely computes a ≈ x/y.

102 4.5. Fixed Point Arithmetic

Newton-Raphson

Given a differentiable function f : R → R the Newton-Raphson method iteratively ap-
proximates a zero z of f as follows. Let z0 be an initial approximation of z, then the
sequence

zi+1 = zi −
f(zi)

f ′(zi)

is computed. If the initial approximation z0 is close enough to z then zi converges to z
quadratically.

We will first provide a function f that has 1/y as a zero and show that the Newton-
Raphson method converges quadratically to 1/y. Then, we will show how to initialize the
Newton-Raphson method.

To compute z = 1/y consider the function f(z) = y − 1/z. Indeed f(z) = 0 implies
that y = 1/z or, equivalently, z = 1/y. From f ′(z) = 1/z2 it follows that the recurrence
relation becomes

zi+1 = zi −
y − 1/zi

1/z2i
= zi(2− ziy). (4.19)

Let εi = z − zi be the absolute error for i = 0, 1, 2, Then from Eq. (4.19) we get that

zi+1 = z − εi+1 = (z − εi)(2− (z − εi)y) = z − ε2i .

Hence εi+1 = ε2i = ε2
i

0 , implying that the error decreases quadratically if |ε0| < 1.

The hard part is to find a good initial approximation. The classical approach is to
normalize y into c so that c ∈ [1/2, 1). It follows that c = y2−blog yc−1 and 1/c ∈ (1, 2].
Therefore, z0 = 3/2 has error ε0 ≤ 1/2 (1 exact bit) so after iteration i the relative error
is at most ε2

i

0 < 2−2
i

(implying 2i exact bits). Hence, after θ = dlog(k + 1)e iterations we
have k + 1 exact bits of 1/c.

A better initial approximation is suggested by [EL03], which sets z0 = 2.9142− 2c, with
relative error ε0 < 0.08578 (at least log(ε0) = 3.5 exact bits). Hence, k+1 bits are obtained
after θ = dlog k+1

3.5 e iterations.

Computing x/y

Protocol 4.33 computes the reciprocal of [x], where x ∈ Q〈k+1,k〉 and 1/2 ≤ x < 1. It uses
the Newton-Raphson method being initialized following [EL03]. The number of iterations
θ is computed so that the absolute error is bounded by 2−k.

Since we use integer arithmetic and all values are in Q〈k+1,k〉, all values are multiplied

by 2k. Hence after each iteration we need to truncate 22k bits.

Protocol 4.33: [y]← RecItNR([x], k)

θ ← dlog k+1
3.5 e;1

[y]← 2.9142 · 2k − 2[x];2

foreach i = 1, . . . , θ do3

[y]← [y](2 · 22k − [y][x]) ; // 2 rnd, 2 inv.4

[y]← TruncPr([y], 3k + 1, 2k) ; // 2 rnd, 2k + 1 inv.5

return [z];6

4. Building Blocks for Secure Linear Programming 103

Let x ∈ Q〈k−f,f〉 and y ∈ Q〈k,f〉. In the following we will show how to compute a ≈ x/y.
Then we will compute the absolute error.

To compute a ≈ x/y one computes a ≈ 1/y first. To use the Newton-Raphson method
we need to normalize y, i.e., compute v so that 1/2 ≤ v′y < 1. Let m be such that
2m−1 ≤ 2fy < 2m. Then v′ = 2f−m. Observe that 2k−1 ≤ 2k+f−my < 2k is integer. Let
c = v′y. Then c ∈ Q〈k+1,k〉 and 1/2 ≤ c < 1.

Let v be such that 2kc = 2fyv. Then v is called the normalization factor. Note that in
this case v = 2k−m.

Let a ≈ 1/c. So a ≈ 1/(v′y) and, therefore, v′a = 2f−ma ≈ 1/y. Hence, ax2f−m ≈ x/y.

With respect to the truncation in Protocol 4.35, we have from a ∈ Q〈k+1,k〉 and x ∈
Q〈k−f,f〉 that

ax2f−m2f = 2ka2fx2k−m2−(2k−f)

and 2ka2fxv < 23k. Hence axv ∈ Q〈3k,2k−f〉.
With respect to the error, let 1/y − a = δ < 2−k. We compute a bound on the absolute

error by

x/y − ax2f−m = (1/y − a)x2f−m = δx2f−m < 2−k+k−2f+f−m < 2−f−m < 2−f .

Protocol 4.34: [z]← DivNR([x], [y], k, f)

[c]← Rec([y], k);1

[z]← [x][c];2

[z]← TruncPr([z], 3k, 2k − f);3

return [z];4

Protocol 4.35: [x]← Rec([x], k)

([c], [v])← Norm([x], k);1

[a]← RecItNR([c], k);2

[z]← [a][v];3

return [z]4

Normalization

To normalize y ∈ Z〈k〉 we compute c and v so that 2k−1 ≤ c < 2k and c = yv. Note that

v = 2k−(blog yc+1).

Let y be decomposed in k bits yk−1 . . . y0. Then v is equal to 2k−i, where i is the largest
index such that yi 6= 0.

104 4.6. Secret Indexing

Protocol Rounds Invocations Security error

TrunPr([x], f) 2 f + 1 Statistical < 2−f

after preproc. 1 1
Rec([y], k) O(log(k)) O(k log k) Statistical < 2−k+m

Div([x], [y], k, f) O(log(k)) O(k log k) Statistical < 2−f

Table 4.5: Complexity, security and error of protocols for truncation and division

Protocol 4.36: ([c], [v])← Norm([x], k)

[x]B ← BitDec([x], k) ; // dlog ke rnd, k(dlog ke) + 1 inv.1

([dk−1], . . . , [d0])← PreOrC([x]B) ; // 3 rnd, 5k − 3 inv.2

[bk−1]← [dk−1];3

foreach i = 0, . . . , k − 2 do4

[bi]← [di]− [di+1];5

[v]←
∑k−1

i=0 [bk−1−i]2
i;6

[c]← [x][v] ; // 1 rnd, 1 inv.7

return ([c], [v])8

Table 4.5 lists the protocols with respect to fixed point arithmetic with their complexity,
security and absolute errors, where m denotes the smallest integer such that 2k−1 ≤ 2mx <
2k.

4.6 Secret Indexing

In this section we discuss methods to obliviously perform operations in multiple dimen-
sional arrays. Basically, the idea is to represent an index as an unary array of the right
length, where every entry is shared [Tof09]. Let i denote the i-th length n unary array,
i.e., ij = |i = j|b for all j = 1, . . . , n. We call [i] the secret index representing i.

Let [i] be a secret index representing i. Then, from the shared list [x] = [x1], . . . , [xn]
the i-th entry is obliviously selected by computing the inner product [xi] = [x][i].

To write a shared value [α] at position [i] in array [x] we execute Protocol 4.37 that for
each entry computes

[xj]← [ij][α] + (1− [ij])[xj]. (4.20)

Indeed, since i is a secret index representing i Eq. (4.20) implies that [xj] ← [xj] for all
j 6= i and [xi]← [α].

Protocol 4.37: [x]←WriteAtPosition([x], [i], [α])

foreach j = 1, . . . , n do1

[xj]← [xj] + ([α]− [xj])[ij];2

return [x].3

A more advanced operation is to obliviously add or delete an element from or to a
shared list [x]. Let [T] be a matrix and suppose we wish to securely delete column k being

4. Building Blocks for Secure Linear Programming 105

represented by the secret index [k]. Let T′ be the resulting tableau. Then

T′j =

{
Tj , if j < k,

Tj+1, if j ≥ k.

Protocol 4.38 shows how to securely delete a column from T given secret index k using
the observation that |j ≥ k|b =

∑j
i=1 kj .

Protocol 4.38: [T]← DelCol([T], [k])

[x]1 ← [k1];1

for i = 2, . . . , n+ 1 do2

[xi]← [xi−1] + [k]i;3

foreach i = 1, . . . , n do parallel4

[T′i]← (1− [x]i)[Ti] + [xi][Ti+1] ; // 1 rnd, n(m+ 1) inv.5

return [T′].6

To remove m columns one could apply Protocol 4.38 m times successively. However,
this would lead to m interactive rounds. We propose an alternative solution, where the m
columns are deleted in log∗ rounds (Protocol 4.39)

Protocol 4.39: [T]← DelCols([T], [w])

Input: [T]← Zm+1×m+n+1
〈k〉 , [w] ∈ {0, 1}n+m+1.

Output: [T]← Zm+1×n+1
〈k〉 .

[v]← 1− [w];1

[d0]← [0];2

for i = 1, . . . , n+m do3

[di]← [di−1] + [vi];4

foreach i ∈ {1, . . . , n+m} do parallel5

[xi]← [vi][di] ; // 1 rnd, n+m+ 1 inv.6

foreach i ∈ {1, . . . ,m} do parallel7

foreach j ∈ {1, . . . , n+m} do parallel8

[yij]← [xj = i] ; // log∗(m) rnd, m2(n+m) logm inv.9

[T′i] = [T]yi ; // 1 rnd, m inv.10

return T′11

To convert a shared number [i] into a secret index [i] of length n, we execute Protocol
4.40. The idea to locally compute coefficients of a n−1 degree polynomial pi : {1, . . . , n} →
{0, 1}, where

pi(j) =

{
1, if i = j,
0, otherwise.

106 4.6. Secret Indexing

Note that for all i = 1, . . . , n

pi(x) =
n∏

j=1,j 6=i

x− j
i− j

= ai0 +
n−1∑
j=1

aijx
j

= ai · (1, x, x2, . . . , xn−1),

where the coefficients ai can be computed using local computations only.

Protocol 4.40: [i]← ConvertUnary([i], n)

[I]← (1, [i], . . . , [i]);1

[v] = (1, i, i2, . . . , in−1)← PreMulC([I]) ; // 2 rnd, 3n− 2 inv.2

foreach j = 1, . . . , n do3

[ij]← aj [v];4

return [v]5

Chapter 5

Secure Linear Programming

This chapter discusses secure implementations of the simplex algorithm following the ap-
proach of [Tof07, CH10b]. We provide a secure protocol for each simplex variant presented
in Chapter 3. The building blocks of the previous chapter will be used extensively. We
follow the same structure as in Chapter 3.

The first section discusses the secure implementation of the simplex iterations. We
provide a complete overview of efficient secure protocols implementing each variant that
is presented in Section 3.2. To this end, we present several ideas to efficiently select the
pivot column and pivot row, and how to update the tableaus. We show the balances
between security and efficiency. For example, hiding the number of iterations of the
simplex algorithm has the consequence that the secure implementations have a worst case
number of iterations. Hence these implementations would require an exponential number
of iterations.

The second section discusses the secure implementation of the simplex initialization. We
provide a complete overview of efficient secure protocols implementing each variant that
is presented in Section 3.3. We address issues that arise when securely implementing the
initialization of phase II in the two-phase simplex algorithm. In addition, we show that
to solve security issues we have to change the artificial linear program with one artificial
variable.

The third section presents the secure validation of the results returned by the simplex
algorithm. We show how to extract a certificate of either optimality, non-feasibility, or
unboundedness from the simplex tableau and (co-)basis returned by the simplex algorithm.
Then, we show how to securely validate the certificates.

Finally, the last section provides a comparison between all variants with respect to
security and efficiency. We show that there is no variant that is best with respect to both
security and efficiency.

This chapter will present descriptions of how to build the secure protocols. The detailed
protocols are presented in Appendix A.

Representing the Linear Program

In Chapter 3 we considered linear programs in standard form:

min cx,
subject to Ax = b,

x ≥ 0.
(5.1)

The simplex algorithm requires that A has full row rank. We showed that this require-
ment may be dropped if one applies the standard two-phase simplex algorithm, or the
corresponding big-M method.

107

108 5.1. Secure Simplex Iterations

To avoid issues due to the rank of A we consider in this chapter linear programs in the
following form

min cx,
subject to A′x ≤ b,

x ≥ 0,
(5.2)

where A′ ∈ Zm×n, c ∈ Zn and b ∈ Zm, and x ∈ Qn. Indeed, any pair of numbers x, y,
satisfies that x ≤ y if and only if there exists some a ≥ 0 such that x = y + a. Hence, LP
(5.2) can be written in standard form by

min cx,

subject to
(

A′ Im
)(x

xs

)
= b,

x,xs ≥ 0,

(5.3)

where xs are called the slack variables and

A :=
(

A′ Im
)

has rank m. By construction A is in canonical form and the algorithms with respect to
solving the artificial LP with one artificial variable can be applied (see Section 3.3.2).

In this chapter a linear program is in standard form if it is of the form Eq. (5.3).

5.1 Secure Simplex Iterations

Consider an LP in standard form. Let T be a tableau corresponding to basis s. Recall
that the basis matrix B = As is invertible and T can be written as

T =

(
B−1 0
−csB

−1 1

)(
A b
c 0

)
.

A corresponding co-basis is equal to u = (u1, . . . , un), where ui 6∈ s for each i. A basic
feasible solution x satisfies xu = 0 and xs = B−1b.

Recall furthermore that with respect to integer pivoting the tableau T can be written
as

T = |det(B)|
(

B−1 0
−csB

−1 1

)(
A b
c 0

)
.

With respect to security, a secure implementation of the simplex algorithm should hide
the fact whether the current solution is optimal at the beginning of every iteration. Unfor-
tunately, we showed in Chapter 3 that the simplex algorithm requires exponentially many
iterations in the worst case. Therefore, revealing no data about the number of iterations
implies that the protocol should have worst case running time implying exponentially
many iterations. This makes the protocol infeasible in practice. To avoid exponentially
many iteration we choose to reveal the number of iterations.

5.1.1 Large Tableau Simplex

In Section 3.2 we showed that the large tableau simplex algorithm consists of the following
three steps in each iteration, where q = det(B):

5. Secure Linear Programming 109

1. Column step: Find an ` ∈ {1, . . . , n + m} such that tm+1,j < 0. If no such ` exists,
then output the current solution being the optimum.

2. Row step: Find a k ∈ {1, . . . ,m} such that

k = argmin

{
ti,n+m+1

ti,`

∣∣∣∣ ti,` > 0, and i ∈ {1, . . . ,m}
}
.

If tk` ≤ 0 for all k ∈ {1, . . . ,m}, then stop and report that the LP is unbounded.

3. Update tableau and basis: In case of rational pivoting, pivot on tk` by updating T
according to:

tij =

{
tij − ti`tkj/tk`, if i 6= k,

tij/tk`, if i = k.

Otherwise, in case of integer pivoting, pivot on tk` by updating T according to:

tij =

{
(tijtk` − ti`tkj) /q, if i 6= k,

tij , if i = k.

The basis is updated by replacing sk with `.

We will describe how to efficiently and securely implement each step. The detailed proto-
cols can be found in Appendix A.1.1.

5.1.1.1 Column Step

Given tableau T this step selects the pivot column T`, where ` ∈ {1, . . . , n+m} for which
t(m+1)` < 0. If no such ` exists, then the simplex algorithm stops reporting that the
current solution corresponding to T is optimal.

We describe protocols for both Dantzig’s original pivoting rule as Bland’s pivoting rule.

Dantzig’s original pivoting rule is to take ` ∈ {1, . . . ,m+ n} such that

t(m+1)` = min
{
t(m+1)j |t(m+1)j < 0 and j ∈ {1, . . . , n+m}

}
.

Consider Protocol 5.1, which is due to Toft in [Tof07]. It returns the secret index [`] and
the corresponding minimal entry [µ] = [t(m+1)`] on input [t(m+1)1], . . . , [t(m+1)(m+n)] and
g = LTZ.

110 5.1. Secure Simplex Iterations

Protocol 5.1: ([m], [i])← FindMin(X, g)

Input: [X] ∈ Zp×n〈k〉 , g ∈ {LTZ,FracLTZ,BlandFracLTZ}.
Output: [m] ∈ Zq, [i] ∈ {0, 1}n
if n = 1 then1

return ([x1], [1]);2

foreach j ∈ {1, . . . , bn/2c} do parallel3

[tj]← g([x2j], [x2j−1]);4

[x′j]← [x2j−1] + [tj]([x2j]− [x2j−1]) ; // 1 rnd, pbn/2c inv5

if n is odd then6

[x′(n+1)/2]← [xn];7

([m], [i′])← FindMin(x′, g);8

foreach j ∈ {1, . . . , bn/2c} do parallel9

[s]← [tj][i
′
j] ; // 1 rnd, bn/2c inv10

[i2j−1]← [s];11

[i2j]← [i′j]− [s];12

if n is odd then13

[in]← [i′(n+1)/2];14

return ([m], [i])15

According to Bland’s rule ` is computed by

` = min
{
i ∈ {1, . . . , n+m}| t(m+1)i < 0

}
.

Consider Protocol 5.2. By construction FirstNeg returns [0] if no ` ∈ {1, . . . , n+m} exists
such that t(m+1)` < 0. Hence, without interaction, one can compute the bit [d] by

[d]←
n∑
i=1

[`i].

Protocol 5.2: [`]← FirstNeg([t])

Input: [t] ∈ Zn〈k〉
Output: [`] ∈ {0, 1}n
foreach i ∈ {1, . . . , n} do parallel1

[zi]← [ti] < 0 ; // 4 rnd, n(4k + 2) inv2

[v]← PrefixOr([z]) ; // 3 rnd, 5n− 1 inv3

[`1]← [v1];4

foreach i ∈ {2, . . . , n} do5

[`i]← [vi]− [vi−1];6

return ([`])7

In conclusion the pivot column is securely selected as follows:

1. Let [t] = ([t(m+1)1], . . . , [t(m+1)(n+m)]).

Dantzig’ Pivoting Rule: Compute ([min], [`]) = FindMin([t], LTZ) and compute
[d] = [min < 0].

5. Secure Linear Programming 111

Bland’s Pivoting Rule: Compute [`] = FirstNeg([t]) and [d] =
∑n+m

i=1 [`i].

2. Reveal the bit d.

3. If d = 1, then return the pivot column [pc] = [T][`] and the index [`]. If d = 0, then
output the current solution being the optimal.

5.1.1.2 Row Step

Given tableau T and the index of the pivot column `, this step selects the pivot row tk,
where k ∈ {1, . . . ,m} for which tk(n+m+1)/tk` = min(W), where

W =

{
ti(n+m+1)

ti`

∣∣∣∣ ti` > 0, and i ∈ {1, . . . ,m}
}
. (5.4)

If tk` ≤ 0 for all k ∈ {1, . . . ,m}, then the simplex algorithm stops and reports that the LP
is unbounded.

In Chapter 3 we showed that k is the minimum of the list W∗ = {w∗1, . . . , w∗m}, where

w∗i =

{
ti(n+m+1)

ti`
, if ti` > 0,

∞, otherwise.

Observe that min(W∗) = ∞ if and only if tk` ≤ 0 for all k ∈ {1, . . . ,m} and that
argmin(W∗) = argmin(W) otherwise.

We encounter two problems for a secure implementation: (i) ∞ 6∈ Z〈k〉 and (ii)
ti(n+1)

ti`
6∈

Z〈k〉.
In [Tof09] one replaces ∞ by 2k−1 − 1. Furthermore, it is observed that if c > 0 and

d > 0 then
a

c
≤ b

d
⇔ ad ≤ bc, (5.5)

and, therefore, comparing the fractions in W (and W∗, where ∞ = ∞
1) can be replaced

by comparing integers. Indeed, by construction, the entries in W and W∗ have strictly
positive denominators.

To securely compute the pivot row one proceeds as follows.

1. For i = 1, . . . ,m do

(a) [βi]← [ti` > 0].

(b) [wi1]← 2k−1 − 1 + [βi]([t(n+m+1)i]− 2k−1 − 1).

(c) [wi2]← 1 + [βi]([t`i]− 1).

(d) [wi]← (wi1, wi2).

2. ([min], [k])← FindMin([W],FracLTZ).

3. If min = 2k−1 − 1 stop and return unbounded LP.

If Bland’s rule is applied, one should select k such that k = argmin(W) and in addition
sk < si for all i = argmin(W), see Protocol 5.4. To select the pivot row using Bland’s rule
one proceeds as before, where wi = (wi1, wi2, wi3) and where wi1 and wi2 are computed as
before and wi3 = si. Finally, ([m], [k]) is computed by FindMin([w],BlandFracLTZ).

112 5.1. Secure Simplex Iterations

Protocol 5.3: [b]← FracLTZ([a], [b])

Input: [a] ∈ Z2
〈k〉, [b] ∈ Z2

〈k〉.

Output: [b] ∈ {0, 1}.
[a′]← [a1][b2] ; // 1 rnd, 1 inv1

[b]′ ← [a2][b1] ; // 1 inv2

[β]← [a′] ≤ [b′] ; // 4 rnd, (4k + 2) inv3

return [β];4

Protocol 5.4: [b]← BlandFracLTZ([a], [b])

Input: [a] ∈ Z3
〈k〉, [b] ∈ Z3

〈k〉.

Output: [b] ∈ {0, 1}.
[a′]← [a1][b2] ; // 1 rnd, 1 inv.1

[b]′ ← [a2][b1] ; // 1 inv.2

[γ]← [a′] = [b′] ; // max{log∗(k), 4} rnd, log∗(k) log k inv.3

[β]← [a′] ≤ [b′] ; // (4k + 2) inv.4

[α]← [a3] ≤ [b3] ; // (4k + 2) inv.5

[δ]← β + γ(α− β) ; // 1 rnd, 1 inv.6

return [δ];7

We will present a more efficient solution by exploiting the nonnegativity constraints.
The following solution saves m secure multiplications and one equality comparison. This
is based on the following lemma.

Lemma 5.1. Consider a tableau T. Let βi = |ti` ≤ 0|b and

W+ =

{
ti(n+m+1) + βi

ti`

∣∣∣∣ i ∈ {1, . . . ,m}} . (5.6)

Suppose v1
v2
∈ W+ and w1

w2
∈ W+ and

v1
v2

@
w1

w2
⇔ v1w2 ≤ w1v2.

Then, W 6= ∅ implies that argmin(W+) = argmin(W), and W = ∅ implies that d =∑m
i=1(1− βi) = 0.

Proof. Consider integers a, b, c, d, where a ≥ 0 and b ≥ 0. If c > 0 and d > 0, then

ad ≤ bc⇔ a

c
≤ b

d
,

but if d ≤ 0 and c > 0 then |ad ≤ (b+ 1)c|b = 1. If d > 0, c ≤ 0 and a 6= 0, then
|a(d+ 1) ≤ bc|b = 0.

We show that these three rules imply that the ordering @ on W+ yields the desired
result.

Let T be a tableau with respect to some basis s. From the nonnegativity constraints we
have xs = Tn+m+1 ≥ 0. Hence ti(n+m+1) + βi > 0 if ti` ≤ 0.

5. Secure Linear Programming 113

The above three rules imply

∣∣(ti(n+m+1) + βi)tj` ≤ (tj(n+m+1) + βj)ti`
∣∣
b

=

∣∣∣ ti(n+m+1)

ti`
≤ tj(n+m+1)

tj`

∣∣∣
b
, if ti` > 0 and tj` > 0,

1, if ti` > 0 and tj` ≤ 0,
0, if ti` ≤ 0 and tj` > 0,
γ, otherwise,

for some γ ∈ {0, 1}, which is not relevant in the following.
It follows that @ orders W+ in such a way that all entries with a positive denominator

are considered smaller than entries with nonpositive denominators and, moreover, the
entries with a positive denominator are ordered normally, i.e., according to <.

Hence ifW 6= ∅, then argmin(W+) = argmin(W), but ifW = ∅ then d =
∑m

i=1(1−βi) =
0.

In conclusion, the pivot row is securely selected as follows given pivot column [pc] and
pivot column index [`]:

1. Compute the bits [βi] = [pci ≤ 0] for all i ∈ {1, . . . ,m}.

2. Reveal the bit d =
∑m

i=1(1−[βi]). If d = 0 stop and report that the LP is unbounded.

Dantzig’ Pivoting Rule: (a) Compute the list [W] where

([ti(n+m+1)] + [βi], [p
c
i]) = [wi]

for all i = 1, . . . ,m.

(b) Compute ([min], [k]) = FindMin([W],FracLTZ).

Bland’s Pivoting Rule: (a) Compute the list [W] where

([ti(n+m+1)] + [βi], [p
c
i], [si]) = [wi],

for all i = 1, . . . ,m.

(b) Compute ([min], [k]) = FindMin([W],BlandFracLTZ).

3. Compute the pivot row [pr]← [k][T].

5.1.1.3 Update Tableau and Basis

This step computes the new tableau T′ and basis s′, given tableau T, basis s, pivot column
pc with index `, pivot row pr with index k.

In Chapter 3 we showed that T is updated as follows

t′ij =
tijtk`−ti`tkj

q1
, if i 6= k,

t′kj =
tkj
q2
,

(5.7)

where (q1, q2) is equal to either (tk`, tk`) if rational pivoting is applied, or to (q, 1) if integer
pivoting is applied.

Note that the computation of t′ij depends on the value of i. To hide the value for i we

introduce two vectors v ∈ Zm+1
〈k〉 and w ∈ Zm+1

〈k〉 so that Eq. (5.7) is equivalent to

t′ij = tijvi − prjwi,

114 5.1. Secure Simplex Iterations

which is independent to i. For example, v defined by vi = tk`
q1

for all i 6= k and vk = 1
q2

and w defined by wi = ti`
q1

for all i 6= k and wk = 0 suffices.
Let the pivot column [pc] = [T`], the pivot row [pr] = [tk], and the pivot element [tk`]

be given in addition to [q−11] and [q−12]. Then one securely computes

[v]←WriteAtPosition(1[tk`][q
−1
1], [k], [q−12])

using m+ 2 secure multiplications and

[w]←WriteAtPosition([q−11][pc], [k], 0)

using 2m+2 secure multiplications. Observe that [v] and [w] are computed in 2 interactive
rounds. Note that for the RP variants [tk`][q

−1
1] = 1 is public knowledge requiring no secure

multiplication at all.
A more efficient choice for v and w is given by v = tk`

q1
1 and w = 1

q1
pc − k

q2
. Indeed,

[v] = [tk`][q
−1
1]1

can securely be computed using 1 secure multiplication, and

[w] = [q−11][pc]− [q−12][k]

using m+ 1 secure multiplications using the fact that q2 = 1 or q2 = q1.
Lemma 5.2 shows that this choice for v and w is also correct.

Lemma 5.2. Let row k denote the pivot row. For all i, j the entries of T satisfy

t′ij = tijv − wiprj ,

where v = tk`
q1

and w = 1
q1

pc − k
q2

, satisfies Eq. (5.7).

Proof. Indeed, let δij = |i = j|b denote Kronecker’s delta. We have

t′ij = tijv − wiprj

= tij
tk`
q1
− tkj

(
pci
q1
− δik
q2

)
=
tijtk` − ti`tkj

q1
+ δik

tkj
q2

= (1− δik)
tijtk` − ti`tkj

q1
+ δik

tkj
q2
,

where the last equality holds since tijtk` − ti`tkj = 0 if i = k.

In conclusion, the tableau and basis are securely updated as follows, given [T], [s], [`],
[k], [pc], [pr], and [q] if the IP variant is considered,

1. With respect to rational pivoting let v ← 1 and compute [w] ← [tk`]
−1 ([pc]− [k]).

With respect to integer pivoting, compute [v] = [q−1][tk`] and [w]← [q−1][pc]− [k].

2. For all i, j compute [t′ij]← [tij][v]− [wi][p
r
j].

3. Update the basis by [s]′ ←WriteAtPosition([s], [k],
∑n+m

i=1 [`i]i).

5. Secure Linear Programming 115

5.1.2 Small Tableau Simplex

Let T be a tableau corresponding to basis s and co-basis u. In this section, we write T
for the corresponding condensed tableau (Tu,n+m+1) as introduced in Definition 3.38 in
Section 3.2.2.

In Section 3.2 we showed that the small tableau simplex algorithm consists of the fol-
lowing three steps in each iteration:

1. Column step: Find an ` ∈ {1, . . . , n} such that t(m+1)` < 0. If no such ` exists, then
output the current solution being the optimum.

2. Row step: Find a k ∈ {1, . . . ,m} such that

k = argmin

{
ti(n+m+1)

ti,`

∣∣∣∣ ti` > 0, and i ∈ {1, . . . ,m}
}
.

If tk` ≤ 0 for all k ∈ {1, . . . ,m}, then stop and report that the LP is unbounded.

3. Update tableau and basis: In case of rational pivoting, pivot on tk` by updating T
according to:

tij =

{
tij − ti`tkj/tk`, if i 6= k,

tij/tk` if i = k.

Replace the column corresponding to the variable entering the basis (`) with the
column corresponding the variable leaving the basis (sk) by computing for all i

ti` =

{
− ti`
tk`
, if i 6= k,

1
tk`
, otherwise.

In case of integer pivoting, pivot on tk` by updating T according to:

tij =

{
(tijtk` − ti`tkj) /q, if i 6= k,

tij , if i = k.

Replace the column corresponding to the variable that enters the basis (`) with the
column corresponding the variable leaving the basis (sk) by computing for all i

ti` =

{
−ti`, if i 6= k,
q, otherwise.

The basis is updated by swapping sk with u`.

The detailed protocols can be found in Appendix A.1.2.

5.1.2.1 Column Step

The column step for the small tableau simplex algorithm with Dantzig’s original pivoting
rule is exactly the same as for the large tableau simplex algorithm. Indeed, Dantzig’s
original pivoting rule selects an ` based solely on the value of t(m+1)`. Bland’s pivoting
rule, on the other hand, selects an ` for which the corresponding column index (u`) is the
smallest value where t(m+1)` < 0. Hence for Dantzig’s original pivoting rule we can reuse

116 5.1. Secure Simplex Iterations

the protocols for large tableau simplex when selecting the pivot column, but for Bland’s
pivoting rule we need to be careful.

According to Bland’s rule one has to compute ` in the condensed tableau by

` = argmin
{
ui ∈ {1, . . . , n+m}| t(m+1)i < 0

}
, (5.8)

which cannot be computed securely via FirstNeg (Protocol 5.2), since the entries in u are
not ordered normally.

Observe that Eq. (5.8) is very similar to k = argmin(W): the equation to select the
pivot row, where W is defined by Eq. (5.4). A secure implementation of the selection of `
according to Bland’s rule is as follows (see also Protocol 5.5).

1. For all i = 1, . . . , n do

(a) compute the bits [βi]← [t(m+1)i < 0],

(b) compute [vi] = [ui] + (1− [βi])(n+m+ 1).

2. ([min], `)← FindMin([v], LTZ).

3. If
∑n

i=1[βi] = 0 then stop and return the optimal solution.

Since u ∈ {1, . . . , n+m}n is a co-basis the minimum of u is unique and if some t(m+1)i < 0
then argmin(u) is equal to ` computed by Eq. (5.8). Otherwise, if no t(m+1)i < 0 then∑n

i=1 βi = 0 and the simplex algorithm stops reporting that the current solution is optimal.

Protocol 5.5: [`]← FirstNegST([t], [u])

Input: [t] ∈ Zn〈k〉
Output: [`] ∈ {0, 1}n
foreach i ∈ {1, . . . , n} do parallel1

[βi]← [ti] ≥ 0 ; // 4 rnd, n(4k + 2) inv2

[vi]← [ui] + [βi](n+m+ 1);3

([min], [`])← FindMin([v], LTZ) ; // dlog ne(4 + 2) rnd, (n− 1)((4k + 2) + 2) inv.4

d←
∑n

i=1[βi];5

if d = 1 then6

` = 0;7

return ([`])8

In conclusion, the pivot column is securely selected for the small tableau simplex algo-
rithm as follows:

1. Let [t] = ([t(m+1)1], . . . , [t(m+1)n+m]).

Dantzig’s Pivoting Rule: (a) Compute [`] by FindMin([t], LTZ).

(b) Compute and reveal the bit [d]← [t(m+1)` < 0].

Bland’s Pivoting Rule: (a) Compute [`] by FirstNegST([t], [u]).

(b) Compute and reveal the bit d←
∑n

i=1[`i].

2. If d = 1, then return the pivot column [pc] = [T][`] and index [`]. If d = 0, then
output the current solution being the optimal.

5. Secure Linear Programming 117

5.1.2.2 Row Step

The row step for small tableau simplex is completely the same as the row step for large
tableau simplex since all operations of this step are independent to the co-basis. See also
Section 3.2.2.

5.1.2.3 Update Tableau and Basis

This step computes the new (condensed) tableau T′ and basis s′, given (condensed) tableau
T, basis s, co-basis u, pivot column index `, and pivot row index k.

In Section 3.2.2 we showed that small tableau simplex performs the following three
operations when updating the tableau and basis, when column ` is selected as pivot column
and k is selected as pivot row: (i) pivot on element tk` in T, (ii) replace column ` by the
result of updating column ek after pivoting, and (iii) swap sk with u`.

Similarly to the large tableau simplex we show how to simultaneously and obliviously
perform both operation (i) and operation (ii). Depending on the fact whether rational
pivoting or integer pivoting is applied, the two vectors v and w are given. In addition, a
new vector r is introduced where each entry of the (condensed) tableau T being updated
by

t′ij = tijv − rjwi.

Then T′ is the new condensed tableau corresponding basis s′ and co-basis u′.

Observe that by Lemma 3.37 the updated condensed tableau is computed according to

t′ij =
tijtk`−ti`tkj

q1
, if i 6= k and j 6= `,

t′kj =
tkj
q2
, if j 6= `,

t′i` = − ti`
q2
, if i 6= k,

t′k` = q1
q22
,

(5.9)

where (q1, q2) is equal to either (tk`, tk`) if rational pivoting is applied, or to (q, 1) if integer
pivoting is applied.

Lemma 5.3 shows that replacing pr with r = pr + q1
q2
` in Lemma 5.2 yields the updated

condensed tableau. So the column replacement is for free when rational pivoting is applied
and requires n+ 1 secure multiplications if integer pivoting is applied.

Lemma 5.3. If row k is the pivot row and column ` the pivot column, then

t′ij = tijv − wirj

satisfies Eq. (5.9) for all i, j, where v = tk`
q1

, w = 1
q1

pc − k
q2

and r = pr + q1
q2
`.

Proof. Observe that rj = prj for all j 6= ` and that, by Lemma 5.2,

t′ij = tijv − wirj

satisfies Eq. (5.9) for all i = 1, . . . ,m+ 1, j = 1, . . . , n+ 1, where j 6= `.

118 5.1. Secure Simplex Iterations

Let δij = |i = j|b denote Kronecker’s delta. If j = `, then

t′i` = ti`v − wir`
= ti`v − wi(tk` + q1/q2)

= ti`
tk`
q1
− (tk` + q1/q2)

(
pci
q1
− δik
q2

)
=
ti`tk` − ti`tk`

q1
− pci
q2

+ δik

(
tk`
q2

+
q1
q22

)
= − ti`

q2
+ δik

(
tk`
q2

+
q1
q22

)
= (1− δik)(−

ti`
q2

) + δik
q1
q22
.

In conclusion, in small tableau simplex the tableau and basis are securely updated as
follows, given [T], [s], [`], [k], [pc], [pr], and [q]:

1. With respect to the RP variant set v ← 1 and compute [w] ← [tk`]
−1 ([pc]− [k])

and r = pr + `. With respect to the IP variant, compute [v] = [q−1][tk`], [w] ←
[q−1][pc]− [k] and [r] = [pr] + [q][`].

2. For all i, j compute [t′ij]← [tij][v]− [wi][rj].

3. Update the basis by [s]′ ←WriteAtPosition([s], [k], [u][`]) and the co-basis by [u]′ ←
WriteAtPosition([u], [`], [s][k]).

5.1.3 Revised Simplex

Let

T0 =

(
A Im b
c 0 0

)
and

D =

(
B−1 0
−csB

−1 1

)
.

Then T = DT0 is a tableau with respect to basis s and basis matrix B = As.
We showed in Chapter 3 that the revised simplex algorithm consists of the following

three steps in each iteration given D and basis s:

1. Column step: Compute the last row of T by tm+1 = dm+1T. Find an ` ∈ {1, . . . , n+
m} such that t(m+1)` < 0. If no such ` exists, then output the current solution being
the optimum.

2. Row step: Compute the pivot column by T` = DT0
` and the last column of T by

Tm+n+1 = DT0
m+n+1. Find a k ∈ {1, . . . ,m} such that

k = argmin

{
ti(n+m+1)

ti,`

∣∣∣∣ ti` > 0, and i ∈ {1, . . . ,m}
}
.

If tk` ≤ 0 for all k ∈ {1, . . . ,m}, then stop and report that the LP is unbounded.

5. Secure Linear Programming 119

3. Update tableau and basis: In case of rational pivoting, pivot on tk` by updating D
by Eqs. (3.17) and (3.18):

dij =

{
dij − ti`dkj/tk`, if i 6= k,

dij/tk`, if i = k.

Otherwise, in case of integer pivoting, pivot on tk` by updating D by Eqs. (3.30)
and (3.31):

dij =

{
(dijtk` − ti`dkj) /q, if i 6= k,

dij , if i = k.

The basis is updated by replacing sk with `.

The detailed protocols can be found in Appendix A.1.3.

5.1.3.1 Column Step

Given tableau T this step selects an ` ∈ {1, . . . , n + m} where t(m+1)` < 0. If no such `
exists, then the simplex algorithm stops reporting that the current solution corresponding
to T is optimal.

The only difference between the revised simplex and the large tableau simplex is that
the last row of the tableau needs to be computed.

In conclusion in revised simplex the pivot column is securely selected as follows:

1. Compute [t]← ([dm+1][T
0
1], . . . , [dm+1][T

0
m+n]).

Dantzig’ Pivoting Rule: Compute ([min], [`]) = FindMin([t], LTZ) and compute
[d] = [min < 0].

Bland’s Pivoting Rule: Compute [`] = FirstNeg([t]) and [d] =
∑n+m

i=1 [`i].

2. Reveal the bit d.

3. If d = 1, then return the pivot column [pc] = [D][T0][`] and the index [`]. If d = 0,
then output the current solution being the optimal.

5.1.3.2 Row Step

Like the column step, the row step is the same as that of the large tableau simplex,
except for the fact that the pivot column and the last column of the tableau T need to be
computed.

In revised simplex the pivot row is securely selected as follows given the pivot column
[pc] and pivot column index `,

1. Compute the bits [βi] = [pci ≤ 0] for all i ∈ {1, . . . ,m}.

2. Reveal the bit d =
∑m

i=1(1 − [βi]). If d = 0 we stop and report that the LP is
unbounded.

3. Compute the last column of T, i.e., t = DT0
n+m+1.

120 5.1. Secure Simplex Iterations

Dantzig’ Pivoting Rule: (a) Compute the list [W], where

([ti] + [βi], [p
c
i]) = [wi]

for all i = 1, . . . ,m.

(b) Compute ([min], [k]) = FindMin([W],FracLTZ).

Bland’s Pivoting Rule: (a) Compute the list [W] where

([ti] + [βi], [p
c
i], [si]) = [wi],

for all i = 1, . . . ,m.

(b) Compute ([min], [k]) = FindMin([W],BlandFracLTZ).

4. Compute the pivot row [pr]← [k][D].

5.1.3.3 Update Tableau and Basis

This step computes D′ and basis s′, given D, basis s, pivot column index `, pivot row
index k.

Observe that by Lemma 3.39 the updated D is computed using the same row operations
as the pivot operation applied in large tableau simplex, i.e., one computes D′ by

d′ij =
dijtk`−ti`dkj

q1
if i 6= k

d′kj =
dkj
q2

(5.10)

where (q1, q2) is equal to either (tk`, tk`) if rational pivoting is applied, or to (q, 1) if integer
pivoting is applied.

We apply v and w defined in Section 5.1.1 to compute Eq. (5.10) as follows.

Lemma 5.4. If row k is the pivot row, then

d′ij = dijv − wiprj ,

where v = tk`
q1

and w = 1
q1

pc − k
q2

, satisfies Eq. (5.10) for all i, j.

Proof. Indeed, let δij = |i = j|b denote Kronecker’s delta. Then

d′ij = dijv − wiprj

= dij
tk`
q1
− dkj

(
pci
q1
− δik
q2

)
=
dijtk` − ti`dkj

q1
+ δik

dkj
q2

= (1− δik)
dijtk` − ti`dkj

q1
+ δik

dkj
q2
.

In conclusion, the tableau and basis are securely updated as follows, given [D], [s], [`],
[k], [pc] = [T`], [pr] = [dk], and [q]:

1. With respect to the RP variant let v ← 1 and compute [w] ← [tk`]
−1 ([pc]− [k]).

With respect to the IP variant, compute [v] = [q−1][tk`] and [w]← [q−1][pc]− [k].

2. For all i, j compute [d′ij]← [dij][v]− [wi][p
r
j].

3. Update the basis by [s]′ ←WriteAtPosition([s], [k],
∑n+m

i=1 [`i]i).

5. Secure Linear Programming 121

5.2 Secure Simplex Initialization

This section presents how to securely and efficiently initialize the simplex algorithm via
both the two-phase simplex algorithm and the big-M method.

Recall that in this chapter, we consider any LP in standard form:

min cx,
subject to Ax ≤ b,

x ≥ 0.

Observe that if b ≥ 0, then x = 0 is feasible. Hence, if x ≥ 0 we can initialize simplex
directly with tableau

T =

(
A Im b
c 0 0

)
and basis s = (n+1, . . . , n+m) after introducing m slack variables to transform the linear
programming in the standard form of Chapter 3.

If b 6≥ 0, then x = 0 is not a feasible solution and we apply the techniques discussed in
Section 3.3 to solve the linear program by using artificial variables. For efficiency reasons
one could try to avoid applying either the two-phase simplex or the big-M method by
computing and revealing the bit |b ≥ 0|b. If it is equal to one, then one initializes the
simplex iterations with basis s = (n+ 1, . . . , n+m).

In this section we assume that the bit b ≥ 0 is unknown and kept secret.

5.2.1 Standard two-phase Simplex

Recall that the standard two-phase simplex solves the corresponding artificial linear pro-
gram:

min
∑m

i=1 xn+m+i,

subject to
(

A Im
)(x

y

)
= b,

x ≥ 0.

(5.11)

In slightly more detail, recall that the two-phase simplex consists of the following steps:

phase I

1. Initialize phase I: Given a linear program in standard form and its correspond-
ing artificial linear program, compute a tableau [T] corresponding to a basis [s]
with respect to a feasible solution [x] to the artificial linear program.

2. Iterate on [T] and [s] using one of the simplex variants until an optimal solution
is found. If the optimum has zero costs, then continue, else stop and report
that the original linear program is infeasible.

phase II

1. Initialize phase II: Given the tableau [T] and basis [s] from the result of phase
one, compute a tableau [T′] and basis [s′] so that [T′] is a tableau corresponding
to basis [s′] with respect to a feasible solution to the original linear program.

2. Iterate on [T′] and [s′] until either a solution is found, or the simplex algorithm
reports that the linear program is unbounded.

122 5.2. Secure Simplex Initialization

In the remainder of this section we will show to securely initialize both phase I and
phase II. The detailed protocols are presented in Appendix A.2.1.

5.2.1.1 Initialize Phase I

We will show how to efficiently compute a tableau initializing simplex for solving the
artificial LP. Secondly, we apply the result of Theorem 3.21 implying that we don’t need
to add the m columns with respect to the artificial variables to the tableau T.

Consider again the artificial linear program. It has the obvious feasible solution xu = 0
and xs = b if b ≥ 0, where s = (n+m+ 1, . . . , n+ 2m) and u = (1, . . . , n+m).

In general, however, b might have negative entries. We will show how to securely
transform the linear program in standard from into an equivalent linear program that has
as corresponding artificial LP the following:

min
∑m

i=1 xn+m+i,
subject to

(
A′ Im

)
x = b′,
x ≥ 0,

(5.12)

where xs = b′ ≥ 0 is a basic feasible solution corresponding to basis s = (n+m+1, . . . , n+
2m).

Let β = (β1, . . . , βm) and 1 − 2 |bi < 0|b. It follows that b′ = diag(β)b ≥ 0, where
diag(·) denotes the diagonal matrix with · on its diagonal.

The linear program
min cx,

subject to Ax ≤ b,
x ≥ 0,

is equivalent to
min cx,

subject to
(

A Im
)
x = b,
x ≥ 0,

which is equivalent to
min cx,

subject to A′x = b′,
x ≥ 0,

where b′ = diag(β)b ≥ 0 and A′ = diag(β)
(

A Im
)
. Hence LP (5.12) is a correspond-

ing artificial LP.

Finally, observe that the last row of T corresponding to basis

s = (n+m+ 1, . . . , n+ 2m)

is equal to

c− cs
(

A′ b′
)

= −1
(

A′ b′
)

after deletion of the columns n+m+ 1, . . . , n+ 2m, i.e., the columns with respect to the
artificial variables.

In conclusion, given an LP in standard form, the following steps are performed to ini-
tialize phase I:

5. Secure Linear Programming 123

1. Compute [βi]← 1− 2[bi < 0] for i = 1, . . . ,m.

2. Compute [A′] = diag([β])
(

[A] Im
)

and [b′]← diag([β])[b].

3. Set [s]← (n+m+ 1, . . . , n+ 2m) and

Large Tableau Simplex: compute the entries of the last row of the tableau by
[c′]← −

∑m
i=1[a

′
i] and [z]←

∑m
i=1[b

′
i]. Set

[T]←
(

[A′] [b′]
[c′] −[z]

)
.

Small Tableau Simplex: set [u] ← (1, . . . , n + m). Compute the entries of the
last row of the tableau by [c′]← −

∑m
i=1[a

′
i] and [z]←

∑m
i=1[b

′
i]. Set

[T]←
(

[A′] [b′]
[c′] −[z]

)
.

Revised Simplex: set

[T0]←
(

[A] Im [b]
[0] 0 0

)
and

[D]←
(

[diag(β)] [0]
−[β] 1

)
.

Remark 5.5 (Small Tableau Simplex). Observe that the tableaus with respect to the large
tableau simplex algorithm and the small tableau simplex algorithm are initially the same.
The reason is that initially only artificial variables are basic, therefore, the condensed
tableau contains all columns with respect to the non artificial variables.

Observe, furthermore, that a column with respect to an artificial variable is swapped into
the tableau after each iteration of the small tableau simplex, where an artificial variable
becomes co-basic and a non artificial variable basic. Theorem 3.21 implies that we could
remove this column, but this results in shrinking the tableau leaking information.

With respect to small tableau simplex, we will not delete any columns. For efficiency
reasons we use the result of Theorem 3.21 by making sure that no artificial variable will
ever be selected to become basic. This can be done securely using the following extension
to the column selection step.

Initially we set s = ((n + m + 1, 0), . . . , (n + 2m, 0)) and u = ((1, 1), . . . , (n + m, 1)).
That is, to each (co-) basis entry we add a bit which equals 0 if the value of the entry
is larger than n + m, i.e., when it corresponds to an artificial variable. Then, instead of
choosing a column `, where t(m+1)` < 0, pick an `, where t(m+1)`u`2 < 0. Indeed, observe
that t(m+1)`u`2 < 0 if and only if u`1 ≤ n+m and t(m+1)` < 0. �

5.2.1.2 Initialize Phase II

The result of phase I is used to check whether the original LP has a feasible solution. If
so, then from the tableau and basis returned by phase I, a tableau and basis are computed
corresponding a basic feasible solution. Recall that in this step the artificial variables are
removed from the basis and all rows with respect to redundant constraints are removed

124 5.2. Secure Simplex Initialization

from the tableau. However, by construction the any standard form LP is canonical having
no redundant constraints.

In Section 3.3 we showed that phase II is initialized as follows:

1. If T is a tableau with respect to basis s for the artificial LP, where the corresponding
basic feasible solution is a basic feasible solution to the original LP, then perform
the following steps else stop and report that the original LP is infeasible.

2. Remove all artificial variables from s; this results in a basis s′ for the original LP.

3. Delete all columns with respect to the artificial variables from T resulting in T′.

4. Compute the last row of T′ so that T′ is a tableau with respect to s′ for the original
LP.

Note that by construction, the large tableau simplex algorithm and the revised simplex
algorithm did not initialize phase I with columns for the artificial variables. Hence only
for small tableau simplex algorithm we need to consider secure column deletion.

Removing Artificial Variables from the Basis

To hide the fact whether the j-th basic variable is an artificial variable all operations on
each row should be the same. Naively, to securely remove the artificial variables from the
basis one could proceed as follows. For each j ∈ {1, . . . ,m} compute the secret [`] index
of a nonzero entry in the first n+m entries in the j-th row of the tableau. Then, securely
pivot on entry tj`. This results in (n + m)m secure comparisons and m2(n + m) secure
multiplications.

Lemma 5.6 shows that one can use the structure of LP (5.3), which is in standard form
and equivalent to Eq. (5.2), to remove the artificial variables from the basis very efficiently,
i.e., using no secure comparison and no expensive tableau updates.

Lemma 5.6. Consider an LP in standard form, where b ≥ 0, and the corresponding
artificial LP (5.12). Suppose that phase I, that does not allow artificial variables to become
basic, returns tableau T with basis s and co-basis u. If xn+m+k is basic then Tun+k

=
Tn+k = ±ek.

Proof. Let T and s be the tableau and basis returned by phase I. Let B be the corre-
sponding basis matrix.

Recall that phase I is initialized with basis (n+m+1, . . . , n+2m). Since, by construction,
an artificial variable cannot become basic when it is co-basic at some iteration, it follows
that xn+m+k is basic during all iterations in phase I and sk = n+m+ k.

Furthermore, Bk = ek. Since A′n+k = ±ek = ±Bk the slack variable xn+k has to be
co-basic during all iterations in phase I. Hence un+k = n+ k.

Lemma 3.41 implies B−1ek = ek, and, therefore,

Tn+k = B−1A′n+k = B−1(±ek) = ±B−1Bk = ±ek.

5. Secure Linear Programming 125

It follows that if xn+m+k is basic then sk = n + m + k and xn+k is co-basic. For small
tableau simplex un+k = n+k. Furthermore, Theorem 3.42 implies that we can update the
basis without changing the solution by replacing sk with un+k = n+ k. From Lemma 5.6
we conclude that the updated tableau is obtained by just multiplying row k of T by
tn+k = ±1.

In conclusion, to remove the artificial variables from the basis securely, we perform the
following steps in each variant of simplex using rational pivoting:

1. Compute the locations of artificial variables in the basis securely: compute [γi] ←
[si = n + m + i]. This equality comparison is sufficient as yi is basic if and only if
si = n+m+ i. Otherwise, yi has been selected to enter the basis at some step.

2. Update basis: [si]← [γi](n+ i) + (1− [γi])[si].

3. Compute the row multipliers [w] and update co-basis [u]:

Large Tableau Simplex: [wi]← [γi][ti(n+i)] + (1− [γi]).

Small Tableau Simplex: [wi]← [γi][ti(n+i)] + (1− [γi]) and [un+i]← [γi](n+m+
i) + (1− [γi])[un+i].

Revised Simplex: [wi]← [γi][t
0
i(n+i)] + (1− [γi])

4. Update tableau: [t′i]← [wi][ti].

We do have to be careful when integer pivoting is applied, since the pivot elements ti(n+i)
can be negative. In Theorem 3.43 we showed that we need to multiply the tableau with
minus one to keep the tableau consistent. Lemma 5.7 shows how to efficiently perform the
pivots with respect to integer pivoting, taking care of negative pivots.

Lemma 5.7. Let tableau T, basis s and q be returned by phase I corresponding to solution
x where integer pivoting is applied. Let γk = |sk = n+m+ k|b and T′ be such that
t′kj = tkj(γktk(n+k)/q + (1− γk)) and t′ij = tij if k 6= i.

Then T′ is the tableau corresponding to basic solution x where all artificial variables are
co-basic.

Proof. Let tableau T, basis s and q be returned by phase I where integer pivoting is
applied.

Let xn+m+k be an artificial variable which is basic. Hence γk = 1. To remove artificial
xn+m+k from the basis the tableau T is updated by pivoting on tk(n+k) as a consequence
of Lemma 5.6. The corresponding solution remains the same by Theorem 3.42.

Column n + k of T satisfies Tn+k = ±qek by applying Lemma 5.6 with respect to
integer pivoting. Hence pivoting on tk(n+k) results in xn+m+k becoming co-basic and xn+k
becoming basic.

By Theorem 3.43 the tableau is updated by

t′ij = α
tk(n+k)tij − ti(n+k)tkj

q
= α

αqtij − 0

q
= tij , if i 6= k,

t′kj = αtkj ,

where α denotes the sign of tk(n+k). Observe that since |ti(n+i)| = q it follows that

α =
tk(n+k)

q .

126 5.2. Secure Simplex Initialization

Note that if xn+m+k is co-basic, then γi = 0 and t′kj = tkj as required since no pivot
operation is applied.

In conclusion, to remove the artificial variables from the basis securely, we perform the
following steps in each variant of simplex using integer pivoting:

1. Compute the locations of artificial variables in the basis securely: compute [γi] ←
[si = n + m + i]. This equality comparison is sufficient as yi is basic if and only if
si = n+m+ i. Otherwise, yi has been selected to enter the basis at some step.

2. Update basis: [si]← [γi](n+ i) + (1− [γi])[si].

3. Compute inverse of q: [q′]← [q−1].

4. Compute the row multipliers [w] and update co-basis [u]:

Large Tableau Simplex: [wi]← [γi][q
′][ti(n+i)] + (1− [γi]).

Small Tableau Simplex: [wi] ← [γi][q
′][ti(n+i)] + (1 − [γi]) and [un+i] ← [γi](n +

m+ i) + (1− [γi])[un+i].

Revised Simplex: [wi]← [γi][t
0
i(n+i)] + (1− [γi])

5. Update tableau: [t′i]← [wi][ti].

Secure Column Deletion

When the artificial variables are removed from the basis, their corresponding columns need
to be removed. However, we showed in Remark 5.5 that this only applies to small tableau
simplex, as the large tableau and revised simplex did not add columns with respect to the
artificial variables when initializing phase I.

Suppose that the small tableau simplex algorithm for phase one is implemented using
the extension suggested in Remark 5.5. Then the co-basis is given by U, where u2i =
|ui ≥ n+m|b. It follows that u2i is equal to one if and only if the corresponding column
corresponds to an artificial variable.

We apply DelCols(T,u2), (Protocol 4.39), to compute securely delete the columns of
T corresponding the artificial variables. In addition we apply DelCols(u1,u2) to securely
compute a corresponding co-basis.

Note that a DelCols needs to be executed only once by adding u1 as a row to T.

Finalizing the Tableau

As a last step the last row of the tableau needs to be changed to be consistent to the cost
of the original linear program. Recall that the last row of T should be equal to

t = (c− csB
−1A′,−csB

−1b′).

Consider a tableau T corresponding to basis s for the artificial LP such that no artificial
variable is basic. Then T, after deleting the columns for the artificial LP is equal to

T =

(
B−1 0
−csB

−1 1

)(
A′ b′

0 0

)
,

5. Secure Linear Programming 127

where B = A′s. Observe that the first m rows of T are equal to

(B−1A′,B−1b′).

Hence

t = (c, 0)− cs

 t1
...

tm

 .

It remains to show how to compute the vector cs. By converting each si into a secret
index σi it follows that csi = cσi. In other words cs is computed as follows

• For each i = 1, . . . ,m compute

1. Compute [σi]← ConvertUnary([si], n+m).

2. Compute [vi] = [σi][c].

• Set [cs] = [v].

5.2.2 Two-Phase Simplex with One Artificial Variable

Recall that the two-phase simplex with one artificial variable considers the following arti-
ficial linear program:

min xn+m+1,
subject to

(
A Im

)
x− xn+m+1 = b,
x ≥ 0.

(5.13)

The two-phase simplex with one artificial variable consists of the same steps as the
standard two-phase simplex. We will discuss how to securely initialize phase I and phase
II. The detailed protocols are presented in Appendix A.2.2.

5.2.2.1 Initialize Phase I

Recall that by construction the linear program in standard form is equivalent to

min cx,
subject to

(
A Im

)
x = b,

x ≥ 0,

by adding m slack variables to x and Im to A.
Observe furthermore that the latter linear program is in canonical form and we could

apply the result of Theorem 3.47 to compute an initial feasible solution directly. However,
it also follows by construction that if b ≥ 0 then phase I is skipped and phase II is
initialized immediately. This reveals the fact that b ≥ 0.

In order to hide the fact that b ≥ 0, we consider yet another artificial LP with one
artificial variable:

min xn+m+1,
subject to

(
A Im

)
x + βxn+m+1 = b,

x ≥ 0,
(5.14)

128 5.2. Secure Simplex Initialization

where β = 2 |b ≥ 0|b − 1.
The following Lemma shows how to securely find an initial basic feasible solution to

Eq. (5.14).

Lemma 5.8. Consider LP (5.14). Let k = argmin(b). Then the basis s = (n+ 1, . . . , n+
k − 1, n+m+ 1, n+ k + 1, . . . , n+m) corresponds to basic feasible solution x, where

xi =

bj − bk, if i = n+ j,

βbk, if i = n+m+ 1,
0, otherwise.

Proof. If bk < 0 then β = −1 and the lemma follows from Theorem 3.47.
Suppose that bk ≥ 0, then b ≥ 0 and β = 1. Observe that from the proof of Theo-

rem 3.47 it also follows that s is a basis since the basis matrix

B =
(

A Im β1
)
s

= (e1, . . . , ek−1,1, ek+1, . . . , em)

has an inverse

B−1 =

e1 − ek
...

ek−1 − ek
ek

ek+1 − ek
...

em − ek

.

The corresponding basic feasible solution x satisfies

xs = B−1b =

b1 − bk
...

bk−1 − bk
bk

bk+1 − bk
...

bm − bk

.

Hence the lemma follows from the fact that by the choice of k the solution satisfies x ≥
0.

The basic solution x of Lemma 5.8 can be computed from basic solution x′ corresponding
to basis (n + 1, . . . , n + m) by a pivot operation. The following three lemmas show that
this pivot operation can be done efficiently in case of respectively the large tableau simplex
algorithm, the small tableau simplex algorithm and the revised simplex algorithm.

Lemma 5.9. Consider the linear program Eq. (5.14). Let T be the large tableau corre-
sponding to basis (n+ 1, . . . , n+m). The computation

t′ij = tij − ritkj ,

where r = 1− βek + (β − 1)em+1, corresponds to pivoting on element tk(n+m+1).

5. Secure Linear Programming 129

Proof. Observe that β ∈ {−1, 1} satisfies 1/β = β = sgn(β) and β2 = 1. Furthermore,
column Tn+m+1 = (β1, 1). Let δij = |i = j|b denote Kronecker’s delta. Then for i =
1, . . . ,m

t′ij = tij − ritkj
= tij − (1− βδik)tkj
= (1− δik) (tij − tkj) + δik (tkj − (1− β)tkj)

= (1− δik)
(
tij −

tkjβ

β

)
+ δik

(
tkj
β

)
= (1− δik)

(
tij −

tkjti(n+m+1)

tk(n+m+1)

)
+ δik

(
tkj

tk(n+m+1)

)
and

t′(m+1)j = t(m+1)j − rm+1tkj

= t(m+1)j − (β)tkj

= t(m+1)j −
tkj
β

= t(m+1)j −
t(m+1)(n+m+1)tkj

tk(n+m+1)
.

These are precisely the equations describing rational pivoting on tk(n+m+1) in tableau T;
see Theorem 3.29.

With respect to integer pivoting β might be negative. Observe furthermore that the basis
matrix with respect to basis (n+ 1, . . . , n+m) is equal to Im. Hence |det(Im)|T = T, so
the tableaus with respect to basis (n + 1, . . . , n + m) are equal in both simplex methods
using either integer or rational pivoting.

Observe that for i = 1, . . . ,m

t′ij = tij − ritkj
= (1− δik) (tij − tkj) + δik (tkj − (1− β)tkj)

= (1− δik)β (tijβ − tkjβ) + δikβ (tkj)

= (1− δik)sgn(tk(n+m+1))
tijtk(n+m+1) − tkjti(n+m+1)

1
+ δiksgn(tk(n+m+1))tkj

and

t′(m+1)j = t(m+1)j − rm+1tkj

= t(m+1)j −
tkj
β

= β
(
t(m+1)jβ − tkj

)
= sgn(tk(n+m+1))

t(m+1)jtk(m+n+1) − t(m+1)(m+n+1)tkj

1
.

These are precisely the equations describing integer pivoting on tk(n+m+1) in tableau T of
Theorem 3.43.

130 5.2. Secure Simplex Initialization

Lemma 5.10. Consider the linear program Eq. (5.14). Let T be the condensed tableau
corresponding to basis (n+1, . . . , n+m) and co-basis (1, . . . , n, n+m+1). The computation

t′ij = tij − riwj ,

where r = 1− βek + (β − 1)em+1 and w = tk + en+1, corresponds to pivoting on element
tk(n+m+1).

Proof. From Lemma 5.9 it follows that if j 6= n+m, then t′ij = tij − riwj will correspond
to both rational pivoting and integer pivoting on tk(n+m+1) in tableau T.

If j = n+ 1 and i 6= m+ 1,

t′i(n+1) = ti(n+1) − riwn+1

= ti(n+1) − (1− βδik)(tk(n+1) + 1)

= β − (1− βδik)(β + 1)

= −(1− δik) + δikβ

= (1− δik)
−ti(n+1)

tk(n+1)
+ δik

1

tk(n+1)

and

t′(m+1)(n+1) = t(m+1)(n+1) − rm+1wn+1

= t(m+1)(n+1) − (tk(n+1) + 1)

= −β

= −
t(m+1)(n+1)

tk(n+1)
.

Note that these equations correspond to the column replacement with respect to rational
pivoting; see Lemma 3.37.

Observe that the basis B matrix is equal to Im and thus that |det B| = 1. Hence

t′i(n+1) = ti(n+1) − riwn+1

= −(1− δik) + δikβ

= (1− δik)
(
−β2

)
+ δikβ

= (1− δik)
(
−sgn(tk(n+1))ti(n+1)

)
+ δiksgn(tk(n+1))| det B|,

for i = 1, . . . ,m, and

t′(m+1)(n+1) = t(m+1)(n+1) − rm+1wn+1

= −β
= −sgn(tk(n+1))t(m+1)(n+1).

Note that these equations correspond to the column replacement with respect to integer
pivoting taking negative pivoting into account; see Lemma 3.37 and Theorem 3.43.

5. Secure Linear Programming 131

Lemma 5.11. Consider the linear program Eq. (5.14). Let D be the revised tableau
corresponding to basis (n+ 1, . . . , n+m). The computation

d′ij = dij − ri(ek)j ,

where r = 1− βek + (β − 1)em+1, corresponds to pivoting on element tk(n+m+1).

Proof. Observe that the pivot row dk = ek. So the statement can be reformulated as

d′ij = dij − ridkj .

The proof that this equation is equivalent to pivoting is analogous to the proof of Lemma 5.9.

To initialize phase I, we apply Theorem 3.21 again to exclude the columns corresponding
to the artificial variable in the tableau T. By Remark 5.5 we will not delete this column
in small tableau simplex.

In conclusion, given LP (5.2), the following steps are performed to initialize phase I:

1. Let s← (n+ 1, . . . , n+m).

2. Compute ([b], [k])← FindMin([b], LTZ) for i = 1, . . . ,m.

3. Compute [β]← 2[b ≥ 0]− 1.

4. Set [s]←WriteAtPosition(s, [k], n+m+ 1) and do the following:

Large Tableau Simplex: (a) Let

[T]←
(

[A] [Im] [b]
[0] [0] [0]

)
be the tableau corresponding to basis (n + 1, . . . , n + m), where column
n+m+ 1 is deleted.

(b) Compute the pivot row by [pr]← [T][k].

(c) Compute [r]← 1− [β][k] + ([β]− 1)em+1.

(d) Compute [T′] corresponding to [s] by

[t′ij]← [tij]− [ri][p
r
j].

Small Tableau Simplex: (a) Let u← (1, . . . , n, n+m+ 1).

(b) Let

[T]←

 [A]

[β]
...

[β]

[b]

[0] [1] [0]

be the condensed tableau corresponding to basis (n + 1, . . . , n + m) and
co-basis (1, . . . , n, n+ 1).

(c) Compute [w]← [T][k] + en+1.

(d) Compute [r]← 1− [β][k] + ([β]− 1)em+1.

132 5.2. Secure Simplex Initialization

(e) Compute [T′] corresponding to [s] by

[t′ij]← [tij]− [ri][wj].

(f) Compute [u]←WriteAtPosition([u], n+ 1,
∑m

i=1[ki]i).

Revised Simplex: (a) Let

[D]←
(

[Im] 0
[0] [1]

)
and

[T0]←
(

[A] [Im] [b]
[0] [0] [0]

)
be such that T = DT0, the tableau corresponding basis (n+1, . . . , n+m),
where column n+m+ 1 is deleted

(b) Compute [r]← 1− [β][k] + ([β]− 1)em+1.

(c) Compute [D′] corresponding to [s] by

[d′ij]← [dij]− [ri][kj].

5.2.2.2 Initialize Phase II

Similarly to Section 5.2.1 we will show how to remove the artificial variable from the basis
while we hide its position in the basis. For the small tableau simplex algorithm, we show
next how to securely delete the column with respect to the artificial variable. Lastly, we
observe that computing the last row of the tableau for the original LP is exactly the same
as for the standard two-phase simplex algorithm.

Removing the Artificial Variable from the Basis

Unfortunately, we cannot assign directly a nonzero pivot entry in the tableau to remove
xn+m+i from the basis, similar to the standard two-phase simplex. We show that still it
is not necessary to search the whole row for the large tableau simplex algorithm and the
revised simplex algorithm to find a nonzero element in Lemma 5.12.

Lemma 5.12. Consider an LP in standard form and the corresponding artificial LP (5.14).
Suppose that phase 1, that does not allow the artificial variable to become basic, returns
tableau T with basis s and co-basis u. If sj = n + m + 1 for some j ∈ {1, . . . ,m} then
tj(n+i) 6= 0, for some i ∈ {1, . . . ,m}.

Proof. Consider an LP in standard form and the corresponding artificial LP with one
artificial variable Eq. (5.14). Let T with basis s be the tableau and basis returned by
phase I corresponding to solution (x, y). Let B be the corresponding basis matrix. Let
k ∈ {1, . . . ,m} = argmin(b). Then column A′n+i = ei, where A′ =

(
A Im

)
.

Recall that phase I is initialized with basis (n + 1, . . . , n + k − 1, n + m + 1, n + k +
1, . . . , n + m). If y is basic then sk = n + m + 1, because, by construction, an artificial
variable cannot become basic when it is co-basic at some iteration. Since B is invertible,
the k-th row of B−1 is not equal to 0. Hence, there should be an i ∈ {1, . . . ,m} where

tk(n+i) =
(
B−1ei

)
=
(
B−1i

)
k
6= 0.

5. Secure Linear Programming 133

Unfortunately, since the columns in the small tableau simplex algorithm are shuffled,
it is unknown which columns correspond to the slack variables. Hence, we cannot use
Lemma 5.12 to avoid searching the whole row to find a nonzero element.

Recall that, with respect to integer pivoting, we need to include the sign of the nonzero
pivot element in the calculations.

In conclusion, to remove the artificial variables from the basis securely, we perform the
following steps in each variant of simplex using rational pivoting. Let [k] be the secret
index of the minimum of [b], computed when initializing phase I.

1. Compute the location of the artificial variable in the basis securely: compute [γ]←
[s][k] = n + m + 1. This equality comparison is sufficient as xn+m+1 is basic if and
only if sk = n + m + 1. Otherwise, xn+m+1 has been selected to enter the basis at
some step.

2. Update tableau and basis by using Lemma’s 5.2, 5.3 and 5.4:

Large Tableau Simplex: (a) Compute pivot row: [pr]← [k][T]

(b) Compute the secret index [`] of the first nonzero element in [pr], the pivot
column [pc]← [T][`] and pivot element [p]← [pr][`].

(c) Update basis: [s]←WriteAtPosition([s], [k],
∑n+m

i=1 [`i]i).

Small Tableau Simplex: (a) Compute pivot row: [pr]← [k][T]

(b) Compute the secret index [`] of the first nonzero element in [pr], the pivot
column [pc]← [T][`] and the pivot element [p]← [pr][`].

(c) Update basis: [s′]←WriteAtPosition([s], [k], [u][`]).

(d) Update co-basis [u′]←WriteAtPosition([u], [`], [s][k]).

Revised Simplex: (a) Compute pivot row of T by [t]← [k][D][T0] and the pivot
row of D by [pr]← [k][D].

(b) Compute the secret index [`] of the first nonzero element in [t], the pivot
column [pc]← [D][T0][`] and the pivot element [p]← [pr][`].

(c) Update basis: [s]←WriteAtPosition([s], [k],
∑n+m

i=1 [`i]i).

3. Compute [v], [w] and [r] of Lemma 5.2, 5.3 or 5.4.

4. If integer pivoting is applied then [v] ← (1 − 2[p < 0])[v] and computing [w] ←
(1− 2[p < 0])[w].

5. Prepare the real or dummy pivot by computing [v] ← (1 − [γ]) + [γ][v] and [w] ←
[γ][w].

6. Update tableau by [t′ij] = [tij][v]− [wi][rj].

Secure Column Deletion

When the artificial variable is removed from the basis, its corresponding columns need
to be removed. However, as we showed in the previous section this only applies to small
tableau simplex, as the large tableau and revised simplex did not add columns with respect
to the artificial variables when initializing phase I. We show how to securely delete one
column with respect to the artificial variable for small tableau simplex.

134 5.2. Secure Simplex Initialization

Suppose that the small tableau simplex algorithm for phase one is implemented using
the extension suggested in Remark 5.5. Then the co-basis is given by U, where u2i =
|ui ≥ n+m|b. It follows that u2i is equal to 1 if and only if the corresponding column
corresponds to an artificial variable.

In conclusion, we apply DelCol(T,u2), Protocol 4.38, to securely delete the columns of
T corresponding the artificial variables. In addition we apply DelCol(u1,u2) to securely
compute a corresponding co-basis.

Note that a DelCol needs to be executed only once by adding u1 as a row to T.

5.2.3 Big-M Method

This section shows how to implement the big-M method discussed in Section 3.3.3. The
detailed protocols are presented in Appendix A.2.3.

The big-M method may be seen as phase I of the two-phase simplex that solves essentially
the same artificial linear program, with a different cost function. Initialization of the big-M
method is, therefore, equivalent to initializing phase I of the two-phase simplex algorithm.

The remaining issue is to accommodate M in the simplex tableaus. We discussed in
Section 3.3.3 two different ways: one where M is represented by some large enough value,
and one where M is a hypothetic value (Remark 3.50).

First of all, consider a linear program in standard form. The Big-M method solves a
linear program of the form

min cx +M
∑p

i=1 yi,
subject to Q

(
A Im

)
x + Cy = Qb,

x,y ≥ 0,
(5.15)

where we use the general representation of the artificial linear program.
If p = m, Q = diag(β) and C = Im, then we have the constraints of the artificial linear

program that is solved by the standard two-phase simplex. But if p = 1, Q = Im, and
C = β1, then we have the constraints of the artificial linear program that is solved by the
two-phase simplex based on one artificial variable.

We limit the choices for p, Q, and C to the two choices suggested above. If p = m,
Q = diag(β), and C = Im, we use the protocols described in Section 5.2.1 to initialize
the big-M method. And if p = 1, Q = Im, and C = β1, we use the protocols described in
Section 5.2.2 to initialize the big-M method.

With respect to computing the last row of an initial tableau for the big-M method,
observe the following. Suppose that T is an initial tableau with respect to phase I of the
two-phase algorithm. An initial tableau T for the big-M method is derived as follows. If
M is represented as a large value, then the last row of T is updated by

tm+1 ←Mtm+1 + c.

And if M is hypothetical (see Remark 3.50), then the last row of T is given by

t(m+1)i ← (ci, t(m+1)i)

and thus T has one extra row.
Suppose M ∈ Z〈k〉 satisfies the conditions of Lemma 3.49. Then the big-M method

performs the following steps:

5. Secure Linear Programming 135

1. Run the protocols of Section 5.2.1 or 5.2.2 to find a tableau and (co-)basis initializing
phase I, without the columns with respect to the artificial variables.

2. Replace the last row of [T] by

Large Tableau Simplex: [tm+1]←M [tm+1] + [c].

Small Tableau Simplex: [tm+1]←M [tm+1] + [c].

Revised Simplex: [t0m+1]← [c], and [dm+1]←M [dm+1].

3. Run the corresponding simplex iterations using protocols of Section 5.1

4. Output the result.

If M is hypothetical then the big-M method performs the following steps:

1. Run the protocols of Section 5.2.1 or 5.2.2 to find a tableau [T] and (co-)basis [s]
and [u] initializing phase I.

2. Replace the last row of [T] by two rows, where

Large Tableau Simplex: [t(m+2)i]← [t(m+1)i] and [t(m+1)i]← [ci].

Small Tableau Simplex: [t(m+2)i]← [t(m+1)i] and [t(m+1)i]← [ci].

Revised Simplex: [t0(m+2)i] ← [t0(m+1)i] and [t0(m+1)i] ← [ci], [d(m+2)i] ← [d(m+1)i],

and [d(m+1)i]← 0.

3. Run the corresponding simplex iterations using protocols of Section 5.1, with the
following changes:

• Column Selection: Select [`] such that

t(m+2)` < 0 ∨
(
t(m+2)` = 0 ∧ t(m+1)` < 0

)
,

which can be surely computed by

[t(m+2)` < 0] + [t(m+2)` = 0][t(m+1)` < 0].

• Update tableau: Update row m+ 2 as well.

4. Output the result.

5.3 Secure Simplex Verification

In Section 3.1.4 we showed how to compute a certificate of correctness and how to use
it to check the validity of the result returned by simplex. In this section we show how
to extract and check such a certificate securely. We will discuss how to securely extract
and check a certificate when simplex reports that the optimal has been found, the linear
program is infeasible, and the linear program is unbounded. The detailed protocols are
presented in Appendix A.3.

136 5.3. Secure Simplex Verification

5.3.1 Verification of Optimality

Suppose that T, s, and x are returned being the optimal tableau, basis, and solution of
a given LP in standard form. If small tableau simplex is applied, suppose that also the
co-basis u is returned.

We will show how to extract a p from T such that (x,p) is a certificate of optimality if
the simplex tableau T is indeed the tableau corresponding to basis s and solution x.

We showed in Section 3.1.4.1 that p should be the solution of the dual linear program.
Similarly to the discussion in Section 3.1.4 one observes that the dual of an LP in standard
form is given by

max pb,
subject to pA ≤ c,

p ≤ 0.
(5.16)

By Theorem 3.25 it follows that x is optimal to the primal LP if and only if (i) x is
feasible, and (ii) p is feasible to the corresponding dual linear program and cx = pb.

Hence, to verify the output of simplex reporting the result to be optimal, we need to
extract such p from T, s, and u. Lemma 5.13 shows that if the simplex output is correct,
how such p can be easily extracted from T.

Lemma 5.13. Consider a tableau T with respect to basis s and solution x. Then (x,p)
is a certificate of optimality, where

p = −(t(m+1)(n+1), . . . , t(m+1)(n+m)).

Proof. Suppose that x is a solution to with respect to tableau T corresponding to basis s.
Let B be the corresponding basis matrix.

We have by Theorem 3.7 that x is optimal if and only if no cost improving basic feasible
directions exist at x, i.e., from Lemma 3.9 it follows that x is optimal if and only if
(t(m+1)1, . . . , t(m+1)(n+m)) = c ≥ 0.

Recall that the tableau T satisfies by definition

T =

(
B−1 0
−csB

−1 1

)(
A Im b
c 0 0

)
.

Therefore, p = −(t(m+1)(n+1), . . . , t(m+1)(n+m)) = csB
−1.

Since x is optimal we have by Theorem 3.7 and Lemma 3.9

c− csB
−1A = c− pA ≥ 0

and

−csB
−1Im ≥ 0.

Hence p is feasible to the dual LP (5.16).

Finally,‘

cx = csxs = csB
−1b = pb.

Hence p is optimal by Theorem 3.24.

Hence (x,p) is a certificate of optimality.

5. Secure Linear Programming 137

It follows that to verify the output of simplex we need to verify whether x is feasible to
the given LP, p is feasible to its dual, and pb = cx. If all tests pass then, since (x,p) is
a certificate of optimality, we know for sure that x is optimal.

To verify optimality securely, let tableau [T], basis [s], solution [x], and [q] be returned by
the simplex protocols. In case of small tableau simplex let [u] be the co-basis returned by
simplex and in case of revised simplex let [D] be the revised tableau returned by simplex.

To securely extract and verify a certificate of optimality, we perform the following steps:

1. Extract dual solution:

Large Tableau Simplex: Set [p]← −([t(m+1)(n+1)], . . . , [t(m+1)(n+m)]).

Small Tableau Simplex: (a) Compute the last row t of the corresponding large
tableau from the condensed tableau [T] and co-basis [u] by: [tui]← [t(m+1)i].

(b) Set [p]← −([t(m+1)(n+1)], . . . , [t(m+1)(n+m)]).

Revised Simplex: Set [p]← ([d(m+1)1], . . . , [d(m+1)m]).

2. Verify Certificate:

Rational Pivoting: Set [q]← 1 and [χ]← 1.

Integer Pivoting: Verify positivity of q by [χ]← [q] > 0.

(a) Verify feasibility of primal solution: [α]← [A][x] ≤ [q][b], and [α′]← [x] ≥ 0.

(b) Verify feasibility of dual solution: [β]← [p][A] ≤ [q][c], and [β′]← [p] ≤ 0.

(c) Verify equal costs: [γ]← [x][c] = [p][b].

(d) Compute result:

δ ← EQZ

[χ̄] + [γ̄] +
m∑
i=1

(
[ᾱi] + [β̄′i]

)
+

n∑
j=1

(
[ᾱ′j] + [β̄j]

) , (5.17)

where b̄ = 1− b for any b ∈ {0, 1}.

In the last step we verify whether all tests have been passed and open the result. Naively,
one would multiply all results of the tests with each other and conclude correctness if δ
is equal to one. However, observe that if x ≥ 0 and y ≥ 0 then x + y = 0 if and only if
x = y = 0. Hence δ = 0 if and only if all bits in the sum are equal to zero, and, therefore,
all tests should have been passed.

5.3.2 Verification of Infeasibility

To show that a linear program is infeasible, we need to show that no solution exists
satisfying the constraints. In Section 3.1.4.2 we showed Farkas’ lemma, which states that
the system Ax = b has no solution x ≥ 0 if and only if there exists some p such that
pA ≤ 0 and pb > 0.

We will show how to apply Farkas’ lemma to extract a p from T and s so that they are
a certificate of infeasibility of the linear program Eq. (5.2).

The tableau T that simplex returns while reporting that the linear program is infeasible
depends heavily on what variant of simplex is applied, being either

138 5.3. Secure Simplex Verification

• standard two-phase simplex, or

• two-phase simplex with one artificial variable, or

• the big-M method with m artificial variables, or

• the big-M method with 1 artificial variable.

Each variant solves a different linear program, and therefore, has different tableaus. For
the sake of simplicity, we can generalize those four linear program as follows

min γcx + (1− γ + γM)
∑p

i=1 yi,
subject to Q

(
A Im

)
x + Cy = Qb,

x,y ≥ 0,
(5.18)

where in case of

standard two-phase simplex γ = 0, p = m, C = Im and Q = diag(β), where βi =
1− 2(bi < 0), or

two-phase simplex with one artificial variable γ = 0, p = 1, C = β1, where β =
1− 2(min(b) < 0) and Q = Im, or

the big-M method with m artificial variables γ = 1, p = m, C = Im and Q =
diag(β), where βi = 1− 2(bi < 0), or

the big-M method with 1 artificial variable γ = 1, p = 1, C = β1, where β =
1− 2(min(b) < 0) and Q = Im.

Lemma 5.14 shows how to extract such p from the tableau returned by the simplex
algorithm while reporting that the linear program is infeasible.

Lemma 5.14. Suppose that an LP in standard from is given. Consider tableau T for
LP (5.18) with respect to basis s and some optimal solution (x,y). If yi > 0 for some i,
then p is a certificate of infeasibility with respect to the given LP, where

p = −(t(m+1)(n+1), . . . , t(m+1)(n+m)).

Proof. Observe firstly that Ax ≤ b if and only if there exists some xs ≥ 0 such that
Ax + xs = b. Applying Farkas’ lemma to the latter yields that Ax + xs = b has no
solution (x,xs) ≥ 0 if and only if there exists some p such that p

(
A Im

)
≤ 0 and

pb > 0.
In conclusion, the linear given LP has no feasible solution if and only if there exists some

p ≤ 0 such that pA ≤ 0 and pb > 0.
Suppose that T is a tableau with respect to Eq. (5.18) corresponding to basis s and

optimal solution (x,y). Let B be the basis matrix and

c′ = (γc,0, (1− γ + γM)1)

denote the corresponding cost coefficients. We will show that if y 6= 0, then

p = −(t(m+1)(n+1), . . . , t(m+1)(n+m))

5. Secure Linear Programming 139

proves infeasibility of Eq. (5.18).
The tableau T can by definition be written as

T =

(
B−1 0
−c′sB

−1 1

)(
QA Q C Qb
γc 0 (1− γ + γM)1 0

)
.

First, observe that

−p = (t(m+1)(n+1), . . . , t(m+1)(n+m)) = −c′sB
−1Q.

Since the tableau corresponds to an optimal solution,

(t(m+1)(n+1), . . . , t(m+1)(n+m)) ≥ 0

and

t(m+1)j = −c′sB
−1QAj ≥ 0

for j ≤ n. Hence p ≤ 0 and pA ≤ 0.
Finally, y 6= 0 implies

c′

 x
xs

y

 = γcx + (1− γ + γM)y > 0.

Indeed if the two-phase simplex is applied, then γ = 0 and c′

 x
xs

y

 =
∑p

i=1 yi > 0.

On the other hand if the big-M method is applied then γ = 1 and by construction cx <
M
∑p

i=1 yi.
It follows that

0 < c′

 x
xs

y

 = −t(m+1)(n+m+p+1) = c′sB
−1Qb = pb.

Let tableau [T], basis [s], and solution [x] be returned by the simplex protocols. In case
of small tableau simplex let [u] be the co-basis returned by simplex and in case of revised
simplex let [D] be the revised tableau returned by simplex.

In conclusion, to securely extract and verify a certificate of infeasibility we perform the
following steps:

1. Extract p:

Large Tableau Simplex: Set [p]← −([t(m+1)(n+1)], . . . , [t(m+1)(n+m)]).

Small Tableau Simplex: (a) Compute the last row t of the corresponding large
tableau from the condensed tableau [T] and co-basis [u] by: [tui]← [t(m+1)i].

(b) Set [p]← −([t(m+1)(n+1)], . . . , [t(m+1)(n+m)]).

Revised Simplex: Set [p]← ([d(m+1)1], . . . , [d(m+1)m]).

140 5.3. Secure Simplex Verification

2. Verify Certificate:

(a) Verify nonpositivity of [p]: [α]← [p] ≤ [0].

(b) Verify nonpositivity of [pA]: [β]← [p][A] ≤ 0.

(c) Verify positivity of pb: [γ]← [p][b] > 0.

(d) Compute result:

δ ← EQZ

[γ̄] +

m∑
i=1

[ᾱi] +

n∑
j=1

[β̄j]

 ,

where b̄ = 1− b for any b ∈ {0, 1}.

5.3.3 Verification of Unboundedness

To prove that a linear program is unbounded, we need to find a solution x that has a
cost-improving feasible direction d that is nonnegative (Theorem 3.10).

Lemma 5.15 shows how to extract such direction from T if simplex returns tableau T
and basis s reporting that the linear program Eq. (5.2) is unbounded.

Lemma 5.15. Consider tableau T for a given LP in standard form with respect to basis s
and feasible solution x. If the i-th cost-improving basic feasible direction di is nonnegative,
then (x,di) is a certificate of unboundedness with respect to the given LP, where di =
−(t1i, . . . , tmi).

Proof. From Theorem 3.10 it follows that the given LP is unbounded if there exists some
cost-improving feasible direction having nonnegative entries at some feasible solution. We
show that if T is a tableau with respect to basis s and feasible solution x, where the i-th
cost-improving basic feasible direction di is nonnegative, then the i-th column of T proves
unboundedness.

Suppose that T is a tableau with respect to basis s and feasible solution x. Suppose
furthermore that the i-th cost-improving basic feasible direction di is nonnegative. Let B
be the basis matrix and A′ =

(
A Im

)
.

Recall that from A′(x + di) = b it follows that dis = −csB
−1Ai. By definition dii = 1

and the remaining co-basic entries are equal to zero.
Since

T =

(
B−1 0
−csB

−1 1

)(
A Im b
c 0 0

)
we conclude that dis = −(t1i, . . . , tmi) ≥ 0.

Let tableau [T], basis [s], pivot column index [`], and solution [x] be returned by the
simplex protocols. In case of small tableau simplex let [u] be the co-basis returned by
simplex and in case of revised simplex let [D] be the revised tableau returned by simplex.

In conclusion, to securely extract and verify a certificate of unboundedness we perform
the following steps:

1. Extract d:

Set [d]← 0.

Large Tableau Simplex: Set [ds]← −([t1`], . . . , [tm`]) and [d`]← 1.

5. Secure Linear Programming 141

Small Tableau Simplex: Set [ds]← −([t1`], . . . , [tm`]) and [du`]← 1.

Revised Simplex: Set [ds]← −([d1], . . . , [dm])[T`] and [d`]← 1.

2. Verify Certificate:

Rational Pivoting: Set [q]← 1 and [χ]← 1.

Integer Pivoting: Verify positivity of [χ]← [q] > 0.

(a) Verify feasibility of primal solution: [α]← [A][x] ≤ [q][b], and [α′]← [x] ≥ 0.

(b) Verify d is cost-improving: [γ]← [c(x + d)] < [cx].

(c) Verify feasibility of [d]: [β] ← [Ad] = 0. (Note that if d ≥ 0 and d is a valid
direction then d is feasible direction.)

(d) Verify nonnegativity of [d]: [β′]← [d] ≥ 0.

(e) Compute result:

δ ← EQZ

[χ̄] + [γ̄] +

n∑
j=1

(
[β̄j] + [β̄′j] + [ᾱ′j]

)
+

m∑
i=1

[ᾱi]

 ,

where b̄ = 1− b for any b ∈ {0, 1}.

5.4 Performance Comparison

This section summarizes the security properties and performance of the secure simplex
variants. We evaluate on a high level the differences by the tableau representation, pivoting
rule, number representation, and the simplex initialization algorithm. The analysis in this
section will be theoretical. In Chapter 8 we will present a brief analysis based on practical
experience.

There is no best choice of the simplex variant in general; it depends on the problem
instance what variant of the simplex algorithm will be most efficient. The desired security
properties may restrict applicability of some variants as well as the desired precision of
the results.

In this section we consider solving a linear program in standard form Eq. (5.2) using n to
denote the number of variables and m the number of constraints. We let the numbers for
the simplex variants with integer pivoting (IP) be represented by Z〈kI〉 and the numbers
for the simplex variants with rational pivoting (RP) by Q〈kR,f〉.

Secure Simplex Iterations

Table 5.1 shows the efficiency of each variant counting the number of secure compar-
isons, secure multiplications, and interactive rounds. We assume that the constant round
protocol for the secure comparisons is applied, i.e., Protocol 4.28 using Protocol 4.22.

Overall, large tableau simplex has worst performance. The small tableau simplex al-
gorithm has best round complexity and the least number of comparisons. The revised
simplex algorithm has the least number of multiplications if n� m. However, we showed
in Chapter 4 that each comparison gate, cf. Protocol 4.28, is equivalent to evaluating
O(k) secure multiplications where k denotes the bit size of the numbers to be compared.

142 5.4. Performance Comparison

IP/RP pivot rule tableau comparison multiplication round

IP Dantzig LT n+ 3m− 1 O(m(n+m)) O(log(m(n+m)))
ST n+ 2m− 1 O(nm) O(log(nm))
RS n+ 3m− 1 O(m2) O(log(m(n+m)))

IP Bland LT n+ 5m− 3 O(m(n+m)) O(logm)
ST n+ 4m− 3 O(nm) O(logm)
RS n+ 5m− 3 O(m2) O(logm)

RP Dantzig LT n+ 3m− 1 O(f(n+m)) O(log(kRm(n+m)))
ST n+ 2m− 1 O(fnm) O(log(kRnm))
RS n+ 3m− 1 O(fm2) O(log(kRm(n+m)))

RP Bland LT n+ 5m− 3 O(fm(n+m)) O(log(kRm))
ST n+ 4m− 3 O(fnm) O(log(kRm))
RS n+ 5m− 3 O(fm2) O(log(kRm))

Table 5.1: Performance overview per iteration

It follows that the revised simplex has better communication complexity than the small
tableau simplex if n� k +m.

In all cases, the simplex variants using Blands pivoting rule require 2m − 2 additional
secure comparisons, but less rounds compared to the simplex variants using Dantzig’s
pivoting rule. On the other hand, Bland’s pivoting rule ensures termination as opposed
to Dantzig’s pivoting rule.

Lastly, the simplex variants with integer pivoting require less rounds and less multi-
plications than the simplex variants with rational pivoting due to the expensive division
protocol. However, if kI � kR, then the difference in the complexities of the secure com-
parisons will outweigh the additional costs for the divisions. Hence the simplex variants
with rational pivoting will be more efficient.

A major drawback of simplex with rational pivoting is that due to truncation, the
solution will not be exact. Another consequence of rounding errors may cause the simplex
algorithm to become unstable. This typically happens when a value that is very close
to zero is assigned to be the next pivot element. It follows that division leads to a large
number that cannot be represented by QkR,f anymore.

Simplex Initialization

Initializing the simplex algorithm is done by executing the simplex iterations on an artificial
LP that has, compared to the given LP, the same amount of constraints but additional
variables. These artificial variables would imply that the tableaus for the artificial LP
have more columns than the tableaus for the given LP, but we showed that this is not
necessary for LT and RS.

The two-phase simplex and the big-M method are essentially the same. The difference
is that the big-M method solves an artificial LP with the property that the result of phase
I is an optimum to the given LP if it is feasible. Since only numbers in the last row of the
tableaus will depend on M , it will be more efficient to split the last row into two parts,
instead of doubling the size of all numbers in the tableau, cf. Remark 3.50.

It follows that the performance differences of the iterations between the simplex initial-

5. Secure Linear Programming 143

Algorithm artificial var. tableau comparison

Two-phase m LT n+m
ST n+m
RS n+m

two-phase 1 LT n+m
ST n+ 1
RS n+m

Big-M m LT 2n+ 2m
ST 2n+ 2m
RS 2n+ 2m

Big-M 1 LT 2n+ 2m
ST 2n+ 2
RS 2n+ 2m

Table 5.2: Comparisons required for column selection in phase I

ization algorithms are dominated by the comparisons required for the column selection.
Table 5.2 shows the number of comparisons required for the column selection.

Overall, the two-phase simplex with one artificial variable based on ST has the best
performance and the big-M method based on m variables has the worst performance.
However, the big-M method reveals only the total number of iterations, while the two-
phase simplex reveals the number of iterations it requires for both phases.

By construction, the given LP will be in canonical form. Therefore, the two-phase
simplex and the big-M method with one artificial variable are easily initialized. When the
given LP is not canonical, then the initialization may be equivalent to securely computing
the rank of a matrix, which may outweigh the efficiency gain.

In conclusion, selecting the most suitable variant to securely solve a given linear program
depends on many aspects. In Chapter 8, we discuss heuristic choices made in tests by
SecureSCM [Sec08].

144 5.4. Performance Comparison

Chapter 6

Universal Verifiability

In this chapter we address the issue in secure computation that the protocols break down
if none of the parties is honest. The security properties of the protocols are formulated
in terms of an adversary limited to corrupting proper subsets of parties. Nothing is
guaranteed in case an adversary is capable of corrupting parties beyond the stated limit,
and, in particular, if the adversary is capable of corrupting all parties.

While this seems reasonable, the lack of any security guarantee for secure computations
performed by corrupt parties only is actually unacceptable in many cases. Consider, for
instance, cryptographic schemes for electronic voting. In such voting schemes the election
result is determined by a secure computation executed by so-called talliers. While it cannot
be prevented that the talliers learn all votes if they all collude, it would be unacceptable if
the talliers are also able to announce a fabricated election result without anyone noticing.
Indeed, many cryptographic voting schemes guarantee that false election results will never
be accepted. Similarly, in secure cloud computing, where computations are outsourced,
one generally requires a means to check the validity of the computed results.

In this chapter we construct protocols for which the correctness of the output is guar-
anteed even if all parties in the protocol collude. More precisely, we will require that
correctness of the output can be verified, so that a false result will never be accepted
even if all parties collude. Protocols satisfying this property will be called universally
verifiable, using the same terminology as commonly used in voting schemes. We will in-
troduce universal verifiability for secure computation based on threshold homomorphic
cryptosystems [CDN01].

Intuitively, a protocol is universally verifiable if all messages sent by each party are
accompanied by a noninteractive zero-knowledge proof of correctness. This implies that
the protocol of [CDN01] will be universally verifiable if all the zero-knowledge proofs
are made noninteractive by, for example, the Fiat-Shamir transform. However, applying
the Fiat-Shamir transform to the zero-knowledge proofs leads to complications in the
security proof of the overall protocol of [CDN01]. We will show how to transform the
zero-knowledge proofs to achieve universal verifiability so that the original security proof
still applies.

6.1 Universally Verifiable Secure Computation

In [GMW87] the basic observation was made that any protocol for secure multiparty
computation that is secure against passive adversaries can be made secure against active
adversaries by requiring all parties to prove correctness for each message they sent. Note,
however, that even if all these proofs pass verification, correctness cannot be guaranteed in

145

146 6.1. Universally Verifiable Secure Computation

general. For instance, if interactive zero-knowledge proofs are used, an adversary control-
ling all parties is able to generate protocol runs with incorrect output, using zero-knowledge
simulators for the respective proofs.

The protocol of [CDN01] follows the same structure as [GMW87]. We will show how
to transform the interactive zero-knowledge proofs into noninteractive proofs, so that
correctness can be guaranteed and security is maintained.

We will restrict our treatment of universal verifiability to admissible protocols defined
as follows.

Definition 6.1. A protocol π is called admissible if every publicly transmitted bit is either
part of a zero-knowledge proof or not.

The protocol of [CDN01] can easily be seen to be admissible. We will now define what
we mean by universal verifiability in Definition 6.3. But first we define the tools required
in the following definition.

Definition 6.2. Let π be an admissible n-party protocol that securely evaluates f . Let
trπ(x, r) denote the collection of all publicly transmitted messages during an execution of
π on input x using randomness r. By trπ,σ(x, r) we denote the collection of all transmitted
bits that belong to a zero-knowledge proof and by trπ,f (x, r) = trπ(x, r)\trπ,σ(x, r) we denote
the collection of remaining transmitted bits. Finally, let trhπ(x, r) denote the collection of
all publicly transmitted bits during an execution of π on input x using randomness r in
the absence of any adversary.

Definition 6.3. Let π be an admissible n-party protocol that securely evaluates f and let
y = π(x, r) denote the public output of π on input x and randomness r. Then, we say
that π is universally verifiable if trπ,σ(x, r) is a noninteractive zero-knowledge proof of the
fact that y = f(x).

Evidently, following the observation of [GMW87], it holds that any protocol for secure
multiparty computation that is secure against passive adversaries can be made univer-
sally verifiable by requiring that all parties send a noninteractive zero-knowledge proof of
correctness for each message they sent.

Lemma 6.4. Let π be an admissible n-party protocol that securely evaluates f and let π′

be the n-party protocol derived from π by removing all zero-knowledge proofs. If trπ,σ(x, r)
is a noninteractive zero-knowledge proof of the fact that trπ,f (x, r) ∈ LRf

, where

Rf = {(tr; x, r)|tr = trhπ′(x, r)},

then π is universally verifiable.

In [CDN01] Σ-protocols are used to enforce honest behavior of the parties. It follows
by Lemma 6.4 that the protocol of [CDN01] will be universally verifiable if all multiparty
Σ-protocols are noninteractive zero-knowledge proofs. The following sections show how
to transform the interactive multiparty Σ-protocols into noninteractive zero-knowledge
proofs in the random oracle model.

6. Universal Verifiability 147

6.1.1 Multiparty Σ-protocols

First, we introduce a multiparty proof of knowledge of [CDN01], called multiparty Σ-
protocols, and we prove that these are indeed Σ-protocols, if the collection of all parties
acting as a verifier is considered as one entity. With this result we can turn these proofs
into noninteractive zero-knowledge proofs using the techniques described in Section 2.2.2.

Second, we present the simulator Smpc for the multiparty Σ-protocols that is used
by [CDN01] to prove security of the overall protocol. Based on this simulator we are
able to easily give a simulator of our noninteractive multiparty Σ-protocols that can be
used to prove security of the overall protocol of [CDN01].

The Multiparty Σ-protocol

In a multiparty Σ-protocol there are n parties, where one party plays the role of a prover
and the remaining parties play the role of the verifier.

Consider a two-party Σ-protocol Σ1. Let A,B and C be the p.p.t. algorithms used in
Σ1, see Section 2.2.1. The transformation from [CDN01] in which a Σ-protocol Σ1 for
an NP-relation R is transformed into a multiparty Σ-protocol for relation R is given by
Protocol 6.1. The number τ is chosen such that if a majority of the parties is honest, then
at least κ bits are uniformly random for security parameter κ. We refer to [CDN01] for
the details on the choice of τ .

Protocol 6.1: v← Σmpc(Σ1,x,w, k)

foreach party i = 1, . . . , n do1

pick ui ∈R {0, 1}k;2

pick zi ∈R {0, 1}k;3

ai ← A(xi, wi, ui);4

ei ← bi(ai, zi);5

broadcast ei;6

foreach party i = 1, . . . , n do7

pick ci ∈R {0, 1}τ ;8

broadcast ci;9

c← c1|| . . . ||cn;10

foreach party i = 1, . . . , n do11

ri ← B(xi, wi, ui, c);12

broadcast (ai, zi, ri);13

foreach i = 1, . . . , n do14

vi ← C(xi, ai, c, ri) = 1 ∧ ei = bi(ai, zi);15

return v;16

Lemma 6.5. If Σ1 is a Σ-protocol and bi are perfectly hiding commitment functions for
i = 1, . . . , n, then the n-party Σ-protocol 6.1 is complete, special sound, and special honest-
verifier zero-knowledge.

Proof. For completeness observe that if the parties follow the protocol, then ei = bi(ai, zi).
Hence completeness follows by completeness of Σ1.

148 6.1. Universally Verifiable Secure Computation

For special soundness, suppose that for all i = 1, . . . , n a common input xi and two
accepting conversations (ei, ai, zi, c, ri) and (ei, a

′
i, z
′
i, c
′, r′i), where c 6= c′, are given. Then

ai = a′i by the binding property of bi.

It follows that (ai, c, ri) and (ai, c
′, r′i) are accepting conversations for Σ1. Hence, we can

run the extractor E for Σ1 to compute a witness wi such that (xi;wi) ∈ R.

Lastly, given c and xi, let S1 be the simulator for Σ1 that provides accepting triples
(a, c, r) that are indistinguishable from real conversations if xi ∈ LR. The simulator S
is then defined as follows: run S1 several times to get (ai, c, ri) for all i and compute
commitment ei = bi(ai, zi) by generating a random zi.

Since Σ1 is special honest-verifier zero-knowledge and bi is perfectly hiding it follows
that the simulated transcripts (ei, ai, c, ri) are perfectly indistinguishable from real con-
versations.

Observe that Σmpc
1 is a proof of knowledge with knowledge error 2−κ if a majority of the

parties is honest. If all parties are corrupt, then it is certainly not a proof of knowledge.
Indeed, the collusion of all parties could first generate the random c and then simulate
accepting transcripts using the simulator for Σ1.

The Simulator

The security proof of [CDN01] requires an ideal world simulator Smpc1 for Σmpc
1 with the

following properties.

• Smpc1 runs in expected polynomial time and provides views that are perfectly indis-
tinguishable from the outputs of a real protocol execution using trapdoors of the
commitment scheme for the honest parties.

• Smpc1 outputs in addition valid witnesses for each corrupted parties providing accept-
ing conversations.

Let ti be the trapdoor with respect to bi for party Pi. Let A denote the adversary.
Then, it is proven in [CDN01, full version, pp.15–17] that the following algorithm for Smpc1

satisfies both properties:

1. For each honest Pi, use trapdoor ti to compute a commitment ei that can be opened
arbitrarily and give ei to A. For each corrupted Pi get ei from A.

2. For each honest Pi generate τ random bits ci and send those to A and receive ci
from A on behalf of all corrupted Pi. Compute c = c1|| . . . ||cn.

3. For each party Pi, in which A may choose the order, do:

• If Pi is honest, run the simulator for Σ1 on input c to get an accepting conver-
sation ai, c, ri. Use the trapdoor ti to compute zi so that ei = bi(ai, zi). Send
(zi, ai, ri) to A.

• If Pi is corrupted, then receive (zi, ai, ri) from A.

4. For each corrupted party Pi for which (zi, ai, ri) is accepting then do:

(a) Rewind A to just before the state where the challenge is computed.

6. Universal Verifiability 149

(b) Generate fresh random values on behalf of the honest parties. This results in a
new challenge c′.

(c) Generate accepting proofs on behalf of the honest parties using the challenge c′

and receive (z′i, a
′
i, r
′
i) from the adversary. If the proof is not accepting return

to 4(a).

(d) If a′i 6= ai compute a valid witness wi using the extractor from Σ1, else stop and
return (ei, ai, a

′
i, zi, z

′
i) as a break of the commitment scheme.

6.1.2 Non-interactive Multiparty Σ-proofs

This section shows how to transform the multiparty Σ-protocols from [CDN01] into a
noninteractive zero-knowledge proof. We discuss two alternatives:

(i) using the Fiat-Shamir transform,

(ii) using the Generalized Fiat-Shamir transform.

Observe that both heuristics act on a Σ-protocol between two parties. In Figure 6.1 we
present a Σ-protocol that is derived from Protocol 6.1, where all provers are considered
as one party P communicating with some verifier V . Clearly by symmetry it follows from
Lemma 6.5 that the protocol of Figure 6.1 satisfies all properties of a Σ-protocol.

Prover Common input: Verifier
for i = 1, . . . , n do:

ui ∈R {0, 1}k
zi ∈R {0, 1}k

ai ← A(xi, wi, ui)
ei ← bi(ai, zi)

−−
e1, . . . , en
−−−−−−−−−→

c ∈R {0, 1}κ

←−−−−−−
c
−−−−−−

for i = 1, . . . , n do:
ri ← B(x1, wi, ui, c)

−−
r1, . . . , rn
−−−−−−−−−→

for i = 1, . . . , n do:

C(xi, ai, c, ri)
?
= 1

Figure 6.1: Σ-protocol for relation R using perfectly hiding commitment functions bi

We can apply the Fiat-Shamir transform and the generalized Fiat-Shamir transform
to the protocol of Figure 6.1, turning it into a noninteractive zero-knowledge proof, cf.
Theorem 2.8 and Theorem 2.9 respectively. Note that noninteractive means here that
P generates a proof on its own without interacting with V . However, in this context
P = {P1, . . . , Pn} and interaction between the parties P1, . . . , Pn may be necessary to
generate a proof.

150 6.1. Universally Verifiable Secure Computation

Consider the protocol of [CDN01]. The protocol consists of multiple interactive rounds,
where in each round one multiparty Σ-proof is executed to prove knowledge and correctness
of all transmitted messages in that particular round. Note that the security proofs of the
Fiat-Shamir transform and the generalized Fiat-Shamir transform are in the stand-alone
situation. To avoid complications due to composition of the protocols, in each round we
apply one noninteractive proof and we use a different random oracle.

Let Hi : {0, 1}∗ → {0, 1}κ be a random oracle for round i. Note that given a random
oracle H : {0, 1}∗ → {0, 1}κ one can define Hi(m) := H(i,m). Protocol 6.2 shows how to
apply both heuristics to the protocol of Figure 6.1 and, therefore, shows how to transform
the multiparty Σ-protocols of [CDN01] into noninteractive zero-knowledge proofs.

Protocol 6.2: σ ← Σmpc
VAR(Σ1,x,w, k, rnd)

Input: Σ1,x,w, k, rnd
Output: σ
foreach party i = 1, . . . , n do1

pick ui ∈R {0, 1}k;2

pick zi ∈R {0, 1}k;3

ai ← A(xi, wi, ui);4

ei ← bi(ai, zi);5

broadcast (ei);6

VAR = Fiat− Shamir
7a c← H(rnd||e1|| . . . ||en);

VAR = GeneralizedFiat− Shamir
7b foreach party i = 1, . . . , n do
8b pick ci ∈R {0, 1}τ ;
9b broadcast (ci);

10b c← H(rnd||c1|| . . . ||cn||e1|| . . . ||en);

foreach party i = 1, . . . , n do11

ri ← B(xi, wi, ui, c);12

broadcast (ai, zi, ri);13

σi ← (ei, ai, c, zi, ri);14

return σ;15

It remains to show that if the multiparty Σ-protocols of [CDN01] are replaced by Protocol
6.2 the overall protocol of [CDN01] remains secure. Let ti denote the trapdoor of bi. We
define a simulator Smpcj for round j as follows:

1. For each honest Pi, use trapdoor ti to compute a commitment ei that can be opened
arbitrarily and give ei to A. For each corrupted Pi get ei from A.

2′. Fiat-Shamir: Compute c = H(j||e1|| . . . ||en).

Generalized Fiat-Shamir: For each honest Pi generate τ random bits ci and send
those to A and receive ci from A on behalf of all corrupted Pi. Compute
c = H(j||c1|| . . . ||cn||e1|| . . . ||en).

3. For each party Pi, in which A may choose the order, do:

6. Universal Verifiability 151

• If Pi is honest, run the simulator for Σ1 on input c to get an accepting conver-
sation ai, c, ri. Use the trapdoor ti to compute zi such that ei = bi(ai, zi). Send
(zi, ai, ri) to A.

• If Pi is corrupted, then receive (zi, ai, ri) from A.

4′. For each corrupted party Pi for which (zi, ai, ri) is accepting then do:

Fiat-Shamir: Run the extractor of the forking lemma to get an accepting conver-
sation (ei, z

′
i, c
′
i, a
′
i, r
′
i), where c′i 6= ci.

Generalized Fiat-Shamir:

(a) Rewind the adversary to just before the state the challenge is computed.

(b) Generate fresh random values on behalf of the honest parties. This results
in a new challenge c′.

(c) Generate accepting proofs on behalf of the honest parties using the chal-
lenge c′ and receive (z′i, a

′
i, r
′
i) from the adversary. If the proof is not ac-

cepting return to 4(a).

If a′i 6= ai compute a valid witness wi using the extractor from Σ1, else stop and
return (ei, ai, a

′
i, zi, z

′
i) as a break of the commitment scheme.

Note that the only difference between Smpc and Smpcj is the generation of the random
challenge in step 2 and the extraction of the witnesses for each corrupt party providing an
accepting proof in this round.

The random challenges are in both the simulated and protocol uniformly random by
the random oracle. The runtime of the witness extraction is O(1/εi), where εi is the
probability that the adversary provides an accepting proof on behalf of the corrupt party
Pi. Since with probability εi the simulator Smpcj is going to extract a witness for party Pj
the expected runtime for step 4 is O(1).

It follows that the security of the overall protocol of [CDN01] is maintained.

6.2 Efficient Universally Verifiable Computation from Cer-
tificate Validation

In Section 3.1.4 we showed how to validate an optimal solution for a given linear pro-
gram, or the fact that the given linear program is unbounded, or infeasible. Compared to
computing a result, the validation of a result turned out to be some relatively simple com-
putations on a certificate of correctness. In Chapter 5 we provided protocols for solving
linear programs, extraction of a certificate, and validation of the certificate.

Linear programming is just one example of a problem where any solution can be effi-
ciently validated. Table 6.1 provides other examples. Actually observe that any function
solving an NP problem can be efficiently validated.

Observe that if the protocols for verification of the certificate are universally verifiable,
then the overall protocol is universally verifiable. Indeed, if anyone can check that the
validation is correct, then correctness of the outputs can be verified by anyone using the
result of the validation.

More precisely, the following lemma shows that if there exists a validating function g for
some function f , then a protocol that evaluates f and g successively, where the encryptions

152 6.2. Efficient Universally Verifiable Computation from Certificate Validation

Problem Input Output Verification

n-th root x y = n
√
x yn

?
= x

field inverse x y = 1
x yx

?
= 1

division with remainder (y = αx+ β) (x, y) (α, β)
y

?
= αx+ β

0 ≤ β
?
< x

roots of f f y f(y)
?
= 0

extended gcd of x and y (x, y) (α, β, d)

αx+ βy
?
= d

d|x
d|y
d > 0

bit decomposition x x0, . . . , x`
∑`

i=0 2ixi
?
= x

matrix inverse A B = A−1 AB
?
= I

eigenvalue A (λ, v) Av
?
= λv

Table 6.1: Examples of problems where the solution can be efficiently validated

of the inputs g are public before g is evaluated and the evaluation of g is universal verifiable,
is universal verifiable. We denote by [[x]] a probabilistic homomorphic encryption of x.

Lemma 6.6. Suppose that πf is a protocol that securely evaluates function f . Suppose
that πf returns (y, c) on input x. Suppose further that c is a certificate of the fact that
y = f(x), with validating function g (see Definition 3.22). If πg universally verifiably
evaluates g, then the following protocol universally verifiably evaluates f :

1. The parties execute protocol πf .

2. All parties broadcast an encryption of their inputs [[x]] and outputs [[y]] and [[c]].

3. The parties execute πg on input [[x]], [[y]], and [[c]].

4. The parties accept y as the correct solution if all proofs in πg are accepting and if
the output of πg is equal to 1.

Proof. Let b be the output of πg. Since πg is universally verifiable and is executed on inputs
[[x]], [[y]], and [[c]], Definition 6.3 implies that trπg ,σ is a noninteractive zero-knowledge proof
of the fact that b = g(x, y, c).

Since g is a validating function, see Definition 3.22, b = 1 if and only if y = f(x). Hence
trπg ,σ is a noninteractive proof of the fact that y = f(x).

Next, we will show how to apply this lemma to build protocols that solve linear programs
universally verifiably.

Universally Verifiable Linear Programming

We will show universally verifiable protocols solving linear programs without enforcing
honest behavior in each step of the computation using Lemma 6.6. To give a precise

6. Universal Verifiability 153

example, we apply [CDN01] with Paillier’s homomorphic cryptosystem. We note that for
other cryptosystems similar protocols can be applied.

From Lemma 6.6 it follows that the following protocol is universally verifiable, where
only the protocol of [CDN01] with one of the transformations of previous section is applied
to the certificate validation part, cf. Section 5.3. Suppose that parties wish to solve a linear
program with coefficients A, b and c.

1. All parties execute one of the protocols described in Chapter 3.

2. Upon reception of the solution pred ∈ {Optimal,UnboundedLP, InfeasibleLP}, the
parties run the protocols of Section 5.3 to extract a certificate [v].

3. The parties convert [v] into homomorphic encryptions [[v]] for the protocol of [CDN01].

4. All parties Pi broadcast encryptions of their inputs [[A]], [[b]] and [[c]], certificate [[v]]
and solution pred.

5. The parties use [CDN01] and one of the transformations of the previous section to
universally verifiably validate the certificate of pred on input [[A]], [[b]], [[c]], and [[v]].

It remains to provide protocols for transforming Shamir shares into homomorphic en-
cryptions. The next section provides protocols that securely convert Shamir shares into
Paillier encryptions.

Conversion of Shamir Shares into Paillier Encryptions

To convert Shamir shares into Paillier encryptions, we use the protocol from Algesheimer et
al. [ACS02] that converts additive shares over any prime field into additive shares over the
integers. They prove that their protocol is statistically secure against any static t-limited
adversary in the model of [Can00].

Let [x]A be an additive sharing over Zq of x ∈ Z〈k〉, Protocol 6.3 shows how to con-

vert [x]A into (z1, . . . , zn) the additive sharing of x over Z. For the simulator we refer
to [ACS02].

To convert Shamir shares [x] into Paillier encryptions we proceed as follows:

1. The parties compute the reconstruction vector λ1, . . . , λn.

2. Each party Pi computes his additive share of x by [x]Ai = λi[x]i.

3. The parties run Protocol 6.3 resulting in each party having zi an additive share of x
over Z〈k+κ+logn〉.

4. The parties broadcast [[zi]] and the result is computes as [[z]] =
∏n
i=1[[zi]].

154 6.2. Efficient Universally Verifiable Computation from Certificate Validation

Protocol 6.3: (z1, . . . , zn)← ConvertZQ2Z([x]A, q)

t← κ+ k + 2;1

foreach party i = 1, . . . , n do2

ai ←
⌊
[x]Ai
2t

⌋
;3

broadcast ai;4

`←
⌈

2t
∑n

i=1 ai
q

⌋
;

5

α← −sgn(`);6

foreach party i = 1, . . . , n do7

[bi]
A ← AShare(0,Z〈log(q)+κ〉);8

[0]A =
∑n

i=1[bi]
A;9

foreach party i = 1, . . . , n do10

if i ≤ |`| then11

zi ← [x]Ai + [0]Ai + αq;12

else13

zi ← [x]Ai + [0]Ai ;14

Protocol 6.4: [[z]]← ShamirToPaillier([x], q,N)

foreach party i = 1 . . . , n do1

[x]Ai ← [x]i
∏n
j=1,j 6=i

−j
i−j ;2

(z1, . . . , zn)← ConvertZQ2Z([x]A, q);3

foreach party i = 1, . . . , n do4

pick ri ∈R ZN ;5

[[zi]]← (1 +N)zirNi ;6

broadcast [[zi]];7

[[z]]←
∏n
i=1[[zi]];8

return [[z]]9

Chapter 7

Restricted Shuffling

A basic primitive in many secure multiparty computation protocols is shuffling. A shuffle
is an operation on a list of encrypted messages that produces a new list of encrypted
messages with the property that after decryption both lists are identical except for the
order of the messages.

Secure shuffling is applied in, for example, the protocol of [LA06] for linear programming.
To hide the pivot element the rows and columns of the tableau are shuffled. The Mix
and Match protocol from [JJ00] involves shuffling of truth tables of boolean gates to
hide information that can be extracted from the position of the match. Furthermore, in
many protocols for secure integer comparison [BK04, ABFL06, GSV07, RT09a], shuffling
is applied to hide the position of a certain specific value in the list.

This chapter discusses proofs of restricted shuffles. Given two lists of (homomorphic)
encrypted messages [[x]] and [[y]], one proves in zero-knowledge that yi = xπ(i) for each
entry, where π is a permutation that satisfies some properties.

In [HSSV09] the design of zero-knowledge protocols for rotation is discussed. This result
can be applied to design zero-knowledge protocols with respect to any of the following
restricted shuffles: rotation, affine transformation and Möbius transform [VB10]. The
idea is to decompose any such restricted shuffle into multiple successive rotations to which
the approach of [HSSV09] is applied.

More general constructions are considered in [TW10, Kel11], providing zero-knowledge
protocols for broad classes of restricted shuffles. We show how to instantiate the protocols
of [TW10] so that the resulting protocol is a zero-knowledge protocol with respect to any
of the following restricted shuffles: rotation, affine transformation and Möbius transfor-
mation.

This chapter is organized as follows: first we will discuss the protocol from [TW10] and
the successive sections will show how to instantiate the protocol to prove correctness of a
rotation, affine transformation, and Möbius Transformation.

7.1 Proofs of Restricted Shuffles

This section introduces the main ideas behind the protocol of [TW10].

Suppose that given two lists of homomorphic encryptions [[x1]], . . . , [[xk]] and [[y1]], . . . , [[yk]]
one wishes to prove in zero-knowledge that yi = xπ(i), where π is a permutation from some
set of permutations.

The protocol of Terelius and Wikström is a 5 move zero-knowledge proof of knowledge
in which the prover proves knowledge of a matrix M , such that y = Mx. The matrix M
is a permutation matrix of some permutation π ∈ P ⊆ Sk, where P is a permutation group

155

156 7.1. Proofs of Restricted Shuffles

and Sk the group of all permutations acting on k elements.
Let d ≥ 1 be some positive integer. The idea is to apply a polynomial pP : Zkdq → Zq,

that is invariant under the permutation group P, i.e., π ∈ P if and only if p(z1, . . . zd) =
p(z′1, . . . , z

′
d), where z′ji = zjπ(i) for all i = 1, . . . k and all j = 1, . . . d.

The protocol of [TW10] is as follows. Suppose that a permutation group P, a polynomial
pP , and the inputs [[x]] and [[y]] are given. The prover P proves that x is permuted into y
according to a permutation π ∈ P by

(i) proving knowledge of a matrix M ∈ Zk×kq such that y = Mx, and

(ii) proving that M is such that pP(Me1, . . . ,Med) = pP(e1, . . . , ed), where ei ∈R Zkq
are uniformly random challenges from the verifier.

This chapter shows given P how to find a polynomial p that is invariant under P. The
results are based on (hyper)graphs.

Let G = (V,A) denote a directed hypergraph on vertices V and arcs A ⊆ 2V , where 2V

denotes the power set of V . The hypergraph G is called u-uniform, with u ≥ 1, if every
arc in A contains exactly u vertices. If u = 2, then G is simply called a directed graph.

Definition 7.1. Let G = (V,A) be a u-uniform hypergraph on n vertices. Permutation
π ∈ Sn is an automorphism of G if and only if

a = (v1, . . . , vu) ∈ A⇐⇒ (π(v1), . . . , π(vu)) ∈ A

for all a ∈ A.

It is well-known that if π ∈ Sn is an automorphism ofG then π−1 is also an automorphism
of G and, moreover, if σ ∈ Sn is an automorphism of G then π ◦σ is also an automorphism
of G, where π ◦ σ(x) = π(σ(x)). Hence the collection of all automorphisms of G (say P)
and the operation ◦ form a group. This group is called the automorphism group of G.

In [TW10] it is observed that the automorphism group of any graph G is the permutation
group P if and only if the polynomial

p(v1, . . . ,vu) =
∑

(i1,...,iu)∈A

u∏
i=1

viu . (7.1)

is invariant under P.
To instantiate the protocol of [TW10] given permutation group P, we wish to find a

polynomial given by Eq. (7.1) that is invariant under P. Recall that the invariance test
by [TW10] is done by computing

p(v1, . . . ,vu)
?
= p(Mv1, . . . ,Mvu),

where M is a k × k permutation matrix. Furthermore, M is used to prove the fact that
the secret inputs x and y of the protocol satisfy y = Mx.

Given permutation group P, we can find such polynomial if we can find a hypergraph
GP = (VP , AP) that satisfies |VP | = k, and

π ∈ P ⇐⇒ [(v1, . . . , vu) ∈ AP ⇐⇒ (π(v1), . . . , π(vu)) ∈ AP] (7.2)

for all v1, . . . , vu ∈ VP .
The following sections discusses (hyper)graphs, where the automorphism group is either

the group of rotations, affine transformations, or Möbius transformations.

7. Restricted Shuffling 157

(a) Rotation Invariant Graph (b) Rescaling Invariant Graph

Figure 7.1: Cyclic graphs

Remark 7.2 (Cayley Graphs). In 1939 Frucht proved that for any finite permutation group
P there exists a finite undirected graph that has P as the group of automorphisms [Fru39].
The proof is based on the Cayley graph corresponding to P. The nice property of the
Cayley graph of P is that its vertices are identified by the elements of P and the group of
automorphisms is (isomorphic) to P.

Consider two lists x and y that are indexed by elements from P. To prove in zero-
knowledge that for each π ∈ P the entry yπ satisfies yπ = xπ◦π′ for some π′ ∈ P one could
apply [TW10] by constructing the Cayley Graph for P.

Note that for the Cayley graph the order of the automorphism group is equal to the
number of vertices. Frucht’s theorem follows by adding vertices and edges to the Cayley
graph in such a way that the automorphism group is preserved after removing all colors
and directions. Hence, if we wish to find a graph on a number of vertices that is smaller
than the order of the group of automorphisms we cannot simply build a Cayley graph.

This chapter discusses two cases where we wish to find a graph, where the number
of vertices is smaller than the order of the group of automorphisms. For example, let
p be prime, we show how to find a 3-uniform hypergraph, where the elements of Zp
are its vertices and where the group of automorphisms is exactly the group of affine
transformations. Note that the group of affine transformations on Zp has order p2 − p. �

7.2 Rotation and Rescaling

Rotation

Let R be the set of all rotations of a list of n elements. Hence

π ∈ R ⇐⇒ ∃0≤r<n∀x∈Zn : π(x) = x+ r mod n. (7.3)

Let VR = Zn and AR = {(i, i+ 1 mod n)|i ∈ Zn}. The graphGR = (VR, AR) is depicted
in Figure 7.1(a).

Theorem 7.3. π ∈ Sn is an automorphism of GR if and only if π ∈ R.

Proof. Observe first that by rotating the vertices of the graph, the neighbors of each vertex
remain the same in the same order. Hence rotation is indeed an automorphism of GR.

158 7.3. Affine Transformations

For the other direction, suppose π ∈ Sn is an automorphism of GR. Then (π(i), π(i +
1)) ∈ AR). Hence

π(i+ 1 mod n) = π(i) + 1 mod n

for all i = 0, . . . , n− 1.
Define π(0) =: r, then 0 ≤ r < n and π(1) = π(0) + 1 mod n = r + 1 mod n. Next

assume π(i) = i+ r mod n then by induction

π(i+ 1 mod n) = π(i) + 1 mod n = (i+ 1) + r mod n.

Hence π ∈ R by Eq. (7.3).

Rescaling

Let p be a prime and let S be the set of the permutations on Z∗p that is defined by:

π ∈ S ⇐⇒ ∃1≤a<p∀x∈Z∗p : π(x) = ax mod p, (7.4)

Let VS = Z∗p be generated by g. Let AS =
{

(i, gi mod p)|i ∈ Z∗p
}

. Then GS = (VR, AR)
is given in Figure 7.1(b).

Theorem 7.4. π ∈ Sp is an automorphism of GS if and only if π ∈ S.

Proof. Observe that (Z∗n, ·) is isomorphic to (Zn−1,+). Indeed, the map φ : Z∗n → Zn−1
defined by

φ(x) := logg x

is an isomorphism.
Hence, the theorem follows from Theorem 7.3.

7.3 Affine Transformations

This section discusses how to find a graph with p vertices such that its automorphism group
is the set of affine transformations on Zp. We will first show that this is impossible on
normal graphs and that we have to switch to hypergraphs. Then, we will give an example
of a hypergraph where the group of automorphisms are the affine transformations.

Let p be prime. Suppose A is the set of the permutations on Zp defined by:

π ∈ A ⇐⇒ ∃a∈Z∗p,b∈Zp∀x∈Zp : π(x) = ax+ b mod p. (7.5)

Theorem 7.5 (Impossibility Result). There exists no directed graph G = (Zp, A),
where A ⊂ Z2

p, whose automorphism group are precisely the affine transformations on Zp.

Proof. We will show that if all affine transformations on Zp are an automorphism of G,
then G has to be the complete graph Kp. This implies that all permutations on Zp are
an automorphism of G contradicting the fact that the group of automorphisms consists of
only the affine transformations.

Suppose G = (V,A) has as automorphism group A consisting only of affine transforma-
tions.

If A is the empty set or consists of self loops only then by Definition 7.1 all permutations
belong to the automorphism group of G.

7. Restricted Shuffling 159

Let (x, y) ∈ A, where x 6= y. Now consider (x′, y′) for x′ 6= y′. Observe that a = x′−y′
x−y

mod p exists and is not equal to zero. Moreover from

x′ − x′ − y′

x− y
x = y′ − x′ − y′

x− y
y mod p (=: b)

it follows that {
x′ = ax+ b,
y′ = ay + b.

Hence π(x) := ax+b, where a ∈ Z∗p and b ∈ Zp. Hence π ∈ A. Since π is an automorphism
of G it follows that (x′, y′) ∈ A.

Extending to Hypergraphs

From the impossibility result it follows that since one relation x′ = π(x) does not fix π ∈ A
at all, we get the complete graph. It also follows from the two relations x′ = π(x) and
y′ = π(y) that π is fixed to a specific permutation in A. So intuitively one could guess
that in order to restrict π to being an element of A giving a third independent relation
z′ = π(z) suffices. So, we should at least consider A being a subset of all possible (directed)
triples (x, y, z), for x, y, z ∈ V .

Suppose VA = Zp, and g generating Z∗p. We will show that the group of automorphisms
of GA = (VA, AA), where

AA = {(b, a+ b, ga+ b)|1 ≤ a < p, 0 ≤ b < p},

is given by A.

Theorem 7.6. π ∈ Sp is an automorphism of GA if and only if π ∈ A.

Proof. Let (X1, X2, X3) ∈ AA and let a ∈ Z∗p and b ∈ Zp be such that

(X1, X2, X3) = (b, a+ b, ga+ b).

Hence

(π(X1), π(X2), π(X3)) = (aπb+ bπ, aπ(a+ b) + bπ, aπ(ga+ b) + bπ) = (b′, a′ + b′, ga′ + b′),

where a′ = aπa ∈ Z∗p and b′ = aπb+ bπ ∈ Zp. It follows that (π(X1), π(X2), π(X3)) ∈ AA.
Second, suppose that π ∈ Sp is an automorphism of GA. Hence

(π(b), π(a+ b), π(ga+ b)) ∈ AA

for all a ∈ Z∗p and b ∈ Zp.
If b = 0 and a = 1 then there exists a′ ∈ Z∗p and b′ ∈ Zp such that

(π(0), π(1), π(g)) =
(
b′, a′ + b′, ga′ + b′

)
.

Assume that π(gi) = gia′ + b′. Then, if b = 0 and a = gi(
π(0), π(gi), π(gi+1)

)
=
(
b′, gia′ + b′, g(gia′) + b′

)
=
(
b′, gia′ + b′, gi+1a′ + b′

)
.

By induction, it follows that π(x) = a′x+ b′ for all x ∈ Zp. Hence π ∈ A.

160 7.4. Möbius Transforms

7.4 Möbius Transforms

Let p be prime. Given a, b, c, d ∈ Zp, the Möbius transform π : Zp → Zp is defined by

π(x) :=
ax+ b

cx+ d
, (7.6)

where ad 6= bc and Zp = Zp ∪ {∞}.
Let a ∈ Zp. The following rules apply in Zp:

• a+ b and ab are computed as in the field Zp for any b ∈ Zp,

• a+∞ =∞,

• a∞ =∞,

• a/0 =∞ if a 6= 0,

• a/∞ = 0 if a 6= 0, and

• ∞/∞ = 1.

It is well-known that any three different evaluations of π fixes a permutation represented
by a certain Möbius transform. It follows that the hypergraphs used in previous sections
are not sufficient anymore since we would again get the complete 3-uniform hypergraph
under the assumption that all Möbius transforms are representing an automorphism of
the hypergraph.

Möbius transformations are an important primitive in projective geometry, i.e., they
form the group PG(2,F) of projective transformations of the projective line P1(F) for any
field F. Note that P1(F) = Zp for F = Zp.

We give some well known results for the Möbius transformations in projective geometry.
Proofs of the following theorems can be found for example in [FL12].

Definition 7.7. Let z1, z2, z3, z4 be any four distinct points from Zp. Then, their cross-
ratio is defined by

[z1, z2, z3, z4] :=
z1 − z3
z2 − z3

· z2 − z4
z1 − z4

.

Let M be the collection of the following permutations:

π ∈M⇐⇒ ∃a,b,c,d∈Zp∀x ∈ Zp : π(x) =
ax+ b

cx+ d
, ad− bc 6= 0. (7.7)

Then M is a subgroup of Sp+1, the group of all permutations on p+ 1 elements.

Theorem 7.8 ([FL12]). Let z1, z2, z3, z4 be any four distinct points from Zp and let π :
Zp → Zp be an injective map. Then π is a Möbius transformation if and only if it the
cross-ratio is invariant under π. In other words, π ∈M if and only if

[z1, z2, z3, z4] = [π(z1), π(z2), π(z3), π(z4)] .

�

7. Restricted Shuffling 161

Let GM = (VM, AM) be defined by

VM = Zp =
{

0, g0, g1, . . . , gn−1,∞
}

and

AM =
{

(z1, z2, z3, z4)| z1, z2, z3, z4 ∈ Zp are distinct and [z1, z2, z3, z4] = g
}

Theorem 7.9. π ∈ Sp+1 is an automorphism of GM if and only if π ∈M.

Proof. This is a direct consequence of Theorem 7.8.

The following lemma provides an alternative definition of AM.

Lemma 7.10. Let A′M be given by

A′M =

{(
a

c
,
b

d
,
a+ b

c+ d
,
ga+ b

gc+ d

)∣∣∣∣ a, b, c, d ∈ Zp, ad 6= bc

}
.

Then A′M = AM.

Proof. Let (z1, z2, z3, z4) ∈ AM. Consider the function

f(z) :=
z − z2
z3 − z2

· z3 − z1
z − z1

.

Then f(z1) =∞, f(z2) = 0 and f(z3) = 1. Moreover f(z4) = [z1, z2, z3, z4] = g and

[f(z1), f(z2), f(z3), f(z4)] =
f(z1)− f(z3)

f(z2)− f(z3)
· f(z2)− f(z4)

f(z1)− f(z4)

=
f(z1)− f(z3)

f(z1)− f(z4)
· f(z2)− f(z4)

f(z2)− f(z3)

= 1 · 0− g
0− 1

= g.

Hence f(z) is a Möbius transformation and thus π(z) := f−1(z) exists and is also a Möbius
transformation. Therefore, there exists a, b, c, d ∈ Zp, where ad−bc 6= 0, such that π(∞) =
a/c = z1, π(0) = b/d = z2, π(1) = (a+ b)/(c+ d) = z3, and π(g) = (ga+ b)/(gc+ d) = z4.

Next, let (z1, z2, z3, z4) ∈ A′M. By definition there exist a, b, c, d ∈ Zp, where ad−bc 6= 0,
and where

(z1, z2, z3, z4) =

(
a

c
,
b

d
,
a+ b

c+ d
,
ga+ b

gc+ d

)
.

The cross-ratio is computed as follows

[z1, z2, z3, z4] =
z1 − z3
z2 − z3

· z2 − z4
z1 − z4

=
a
c −

a+b
c+d

b
d −

a+b
c+d

·
b
d −

ga+b
gc+d

a
c −

ga+b
gc+d

=
ad− bc
c(c+ d)

· d(c+ b)

bc− ad
· g(cb− ab)
d(gc+ d)

· c(gc+ d)

ad− bc
= g.

162 7.5. Other Permutation groups

7.5 Other Permutation groups

Let P ⊂ Sn be a permutation group acting on n elements, where P is represented by a ro-
tation, rescaling, affine transformation, or Möbius transformation. The previous sections
discussed u-uniform hypergraphs on n vertices satisfying the property that its group of
automorphisms is precisely P. We used the following property of P: given only u evalu-
ations of some permutation π, one can decide wether π ∈ P and, if so, one can uniquely
determine π.

It is well-known that there are finitely many permutation groups acting on n elements
satisfying the property that, given some fixed u < n evaluations of some permutation π, one
can decide whether some permutation π belongs to the group and, if so, uniquely determine
π. Furthermore, these groups have been classified and it turned out that there are just
a few groups with this property (see for example [Pas91]). Let P be such permutation
group. We conjecture that there exists a u-uniform hypergraph on n vertices such that
the group of automorphisms is precisely P.

Note that for the trivial permutation groups, the symmetric group Sn and the alternating
group An, such hypergraphs are also trivial. Indeed for Sn one could take the n-uniform
hypergraph G = (V,A) with |V | = n, where the arcs are the n! permutations of Sn applied
to V . Similarly for An one could take the (n − 1)-uniform hypergraph G′ = (V,A′) with
|V | = n, where the arcs are the n!/2 permutations of An applied to some fixed subset of
V of length n− 1.

If we drop the restriction that the graph should have n vertices if P ⊂ Sn, then for any
permutation group P we can find an arc-colored directed 2-uniform graph, such that its
group of automorphisms is precisely P. Indeed the Cayley graph of P has the desired
properties.

Definition 7.11 (Cayley graph). Let P = 〈S〉 be a permutation group with generating set
S ⊆ P. The Cayley graph of P is an arc-colored directed graph G(V,A) with color set C,
where V = P and C = {cs|s ∈ S}. The arc with color cs are given by

Acs = {(π, π ◦ s)|π ∈ P}

for each s ∈ S. And A =
⋃
s∈S Acs.

Observe that the graphs for rotation and rescaling in Section 7.2 are the Cayley graphs
of the cyclic groups (Zn,+), generated by 1, and (Z∗p,×), generated by g.

Example 7.12. A more advanced example is the permutation π represented by a translation
over Fq, where q = pm for some prime p and m > 1, i.e., π(x) = x + r for some fixed
r ∈ Fq.

Note that with respect to addition Fq is isomorphic to Zmp , which is generated by the m
unity vectors e1, . . . , em.

Let the colors be given by C = {c1, . . . , cm}. Then the Cayley graph of Zmp is given by
G = (V,A), where V = Zmp and A =

⋃m
i=1Aci , where

Aci = {(v,v + ei)|v ∈ V } .

�

Chapter 8

Conclusions

In this thesis, we have considered secure linear programming as a case study in secure
multiparty computation. To this end, we have discussed in detail how to implement the
simplex algorithm securely.

Our protocols have been tested during the EU-FP7 project SecureSCM [Sec08]. The
performance due to choices between the tableau representations, pivoting rules, and num-
ber representations is compared. It turned out that small tableau simplex with Dantzig’s
pivoting rule performed best in the test cases. Furthermore, rational pivoting turned out
to be advantageous over integer pivoting: the running time for solving linear programs
with about 150 constraints and 150 variables were a few minutes for small tableau simplex
using rational pivoting and about 1 hour for small tableau simplex using integer pivoting.

In addition, we have implemented our protocols using VIFF (Virtually Ideal Framework
Functionality, see [Gei10, VIF08]). Our protocols required about 1 day of computation
on an ordinary Windows 7 PC to solve linear programs with about 300 variables and 200
constraints.

In conclusion, our protocols are able to solve problem instances way beyond toy exam-
ples. However, it will still be practically infeasible to solve linear programming problems
having over millions of variables and constraints, which are quite reasonable in practice.

To be able to solve practical problems securely via multiparty computation the cryp-
tographic tools need to be optimized further. In our experience, it turned out that the
protocols spend most of the time in the protocols for comparison and, more specifically,
generation of random bits. Improving these primitives would increase the efficiency of our
protocols significantly.

With respect to secure optimization as a whole, it would be interesting to have efficient
secure protocols for interior point methods. When solving more general optimization
problems securely such as quadratic programming and semi-definite programming one is
limited to the interior point methods. But also with respect to linear programming current
research is improving the interior point methods so that at some stage they will perform
better in general than the simplex algorithm.

In addition to solving linear programs securely, we addressed the problem of secure
validation of a result. We showed how to extract a certificate from the outputs of the
protocols for linear programming that can be used to validate the outputs very efficiently.

We showed that this idea can be used to design in an efficient way universally verifiable
protocols, i.e., protocols with the property that the outputs can be validated by anyone.
Indeed, if a protocol outputs a solution and a corresponding certificate proving correctness,
then one just needs an universally verifiable protocol to check the certificate. It follows that
any protocol solving an NP-problem is universally verifiable if validation of the certificate
can be verified universally.

163

164

We showed how to transform the protocol of [CDN01] into an universally verifiable
protocol by turning the interactive Σ-protocols into noninteractive zero-knowledge proofs.
While the protocol of [CDN01] provides security under modular composition, see [Can00],
we note that our transformations can also be applied to the protocol of [DN03] to achieve
security under any composition, see for example [Can01].

Since universally verifiability is an important issue in practical applications of secure
multiparty computation such as electronic voting and cloud computing, it would be in-
teresting to have more efficient protocols than [CDN01] that enable universally verifiable
computation.

Bibliography

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From
identification to signatures via the fiat-shamir transform: Minimizing assump-
tions for security and forward-security. In EUROCRYPT, pages 418–433, 2002.
(Cited on pages 18, 19, and 20).

[ABFL06] M. Atallah, M. Blanton, K. Frikken, and J. Li. Efficient Correlated Action
Selection. In Proc. 10th Financial Cryptography and Data Security Conference.
Anguilla, British West Indies, 2006. (Cited on page 155).

[ACS02] J. Algesheimer, J. Camenish, and V. Shoup. Efficient computation modulo a
shared secret with application to the generation of shared safe-prime products.
In CRYPTO 2002, volume 2442 of LNCS, pages 417–432. Springer-Verlag,
2002. (Cited on page 153).

[AP01] D. Azulay and J. Pique. A revised simplex method with integer Q-matrices.
ACM Trans. Math. Softw., 27:350–360, September 2001. (Cited on page 47).

[AR93] S. Axsater and K. Rosling. Notes: installation vs. echelon stock policies for
multilevel inventory control. In Manegement Science 39, volume 10, 1993.
(Cited on page 4).

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a
constant number of rounds of interaction. In Proc. 8th annual ACM Sympo-
sium on Principles of distributed computing, pages 201–209. ACM Press, 1989.
(Cited on page 88).

[BBR09] Alice Bednarz, Nigel Bean, and Matthew Roughan. Hiccups on the road to
privacy-preserving linear programming. In Proceedings of the 8th ACM work-
shop on Privacy in the electronic society, WPES ’09, pages 117–120, 2009.
ISBN 978-1-60558-783-7. (Cited on page 4).

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,
Thomas P. Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft.
Secure multiparty computation goes live. In Financial Cryptography, volume
5628 of Lecture Notes in Computer Science, pages 325–343. Springer, 2009.
(Cited on page 2).

[Bea55] E. M. L. Beale. Cycling in the dual simplex algorithm. Naval Research Logistics
Quarterly, 2(4):269–275, 1955. (Cited on page 34).

165

166 Bibliography

[Bea91] Donald Beaver. Foundations of secure interactive computing. In CRYPTO,
volume 576 of Lecture Notes in Computer Science, pages 377–391. Springer,
1991. (Cited on page 1).

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications. In Proceedings of the twentieth annual ACM symposium
on Theory of computing, STOC ’88, pages 103–112. ACM, New York, NY,
USA, 1988. ISBN 0-89791-264-0. (Cited on page 18).

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
CRYPTO, pages 390–420, 1992. (Cited on page 14).

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault tolerant distributed computation. In Proc. of 20th ACM
Symposium on Theory of Computing (STOC), pages 1–10, 1988. (Cited on
pages 1, 2, 6, 23, 75, and 84).

[BK04] I. Blake and V. Kolesnikov. Strong conditional oblivious transfer and comput-
ing on intervals. In Advances in cryptology - ASIACRYPT’04, volume 3329 of
LNCS, pages 515–529. Springer-Verlag, 2004. (Cited on page 155).

[Bla77] Robert G. Bland. New Finite Pivoting Rules for the Simplex Method. Math-
ematics of Operations Research, 2:103–107, 1977. (Cited on pages 27, 33,
and 34).

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. In Proceedings of the 1st ACM conference on
Computer and communications security, CCS ’93, pages 62–73. ACM, New
York, NY, USA, 1993. ISBN 0-89791-629-8. (Cited on page 18).

[BT97] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, Belmont, Massachusetts, 1997. ISBN 1-886529-19-1. (Cited on
pages 3, 27, 28, 29, and 31).

[Can00] R. Canetti. Security and composition of multi-party cryptographic protocols.
Journal of Cryptology, 13(1), 2000. (Cited on pages 1, 20, 22, 23, 76, 85, 153,
and 164).

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.
(Cited on pages 1 and 164).

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncondition-
ally secure protocols (extended abstract). In STOC, pages 11–19. ACM, 1988.
(Cited on page 2).

[CDI05] R. Cramer, I. Damg̊ard, and Y. Ishai. Share conversion, pseudorandom secret-
sharing and applications to secure computation. In Proc. of 2nd Theory of
Cryptography Conference (TCC’05), pages 342–362, 2005. (Cited on pages 6,
9, 75, 79, 82, and 85).

Bibliography 167

[CDN01] R. Cramer, I. Damg̊ard, and J.B. Nielsen. Multiparty computation from thresh-
old homomorphic encryption. In EUROCRYPT 2001, volume 2045 of LNCS,
pages 280–300. Springer-Verlag, 2001.
Full version (Oct 2000): http://eprint.iacr.org/2000/055. (Cited on pages 2, 7,
13, 23, 145, 146, 147, 148, 149, 150, 151, 153, and 164).

[CH10a] Octavian Catrina and Sebastiaan de Hoogh. Improved Primitives for Secure
Multiparty Integer Computation. In SCN, pages 182–199, 2010. (Cited on
pages 6 and 94).

[CH10b] Octavian Catrina and Sebastiaan de Hoogh. Secure multiparty linear program-
ming using fixed-point arithmetic. In Proceedings of the 15th European con-
ference on Research in computer security, ESORICS’10, pages 134–150, 2010.
ISBN 3-642-15496-4, 978-3-642-15496-6. (Cited on pages 4, 6, 75, and 107).

[CS60] A. Clark and H. Scarf. Optimal policies for a multi-echelon inventory problem.
In Manegement Science 6, 1960. (Cited on page 4).

[CS10] Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point
numbers. In Financial Cryptography and Data Security, pages 35–50, 2010.
(Cited on pages 6 and 75).

[Dam10] Ivan Damg̊ard. On Sigma Protocols, 2010. (Cited on pages 5, 9, 14, and 15).

[Dik74] I.I. Dikin. On the Convergence of an Iterative Process. Upravlyaemye Sistemi,
12:54–60, 1974. (Cited on pages 35 and 36).

[DK09] Rafael Deitos and Florian Kerschbaum. Parallelizing secure linear program-
ming. Concurr. Comput. : Pract. Exper., 21(10):1321–1350, 2009. ISSN 1532-
0626. (Cited on page 4).

[DK11] Jannik Dreier and Florian Kerschbaum. Practical secure and efficient multi-
party linear programming based on problem transformation. Cryptology ePrint
Archive, Report 2011/108, 2011. (Cited on page 4).

[DN03] I. Damg̊ard and J.B. Nielsen. Universally composable efficient multiparty com-
putation from threshold homomorphic encryption. In CRYPTO 2003, vol-
ume 2729 of LNCS, pages 247–264. Springer-Verlag, 2003. (Cited on pages 2
and 164).

[DT97] George B. Dantzig and Mukund N. Thapa. Linear programming 1: intro-
duction. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997. ISBN
0-387-94833-3. (Cited on pages 3, 27, 31, 36, and 37).

[DT03] George B. Dantzig and Mukund N. Thapa. Linear Programming 2: Theory
and Extensions. Springer, 2003. ISBN 0-387-98613-8. (Cited on page 37).

[DT08] Ivan Damg̊ard and Rune Thorbek. Efficient conversion of secret-shared values
between different fields. IACR Cryptology ePrint Archive, 2008. (Cited on
pages 6 and 75).

168 Bibliography

[Du01] Wenliang Du. A study of several specific secure two-party computation prob-
lems. Ph.D. thesis, West Lafayette, IN, USA, 2001. AAI3043719. (Cited on
page 4).

[EL03] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann, 2003.
(Cited on page 102).

[FH96] M. Franklin and S. Haber. Joint encryption and message-efficient secure com-
putation. Journal of Cryptology, 9(4):217–232, 1996. (Cited on pages 2 and 98).

[FL12] H. Finkelnberg and M. Lübke. Projectieve Meetkunde, 2012. (Cited on
page 160).

[Fru39] R. Frucht. Herstellung von Graphen mit vorgegebener abstrakter Gruppe.
Compositio Math., 6:239–250, 1939. (Cited on page 157).

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to iden-
tification and signature problems. In Proceedings on Advances in cryptology–
CRYPTO ’86, pages 186–194. Springer-Verlag, London, UK, 1986. (Cited on
page 18).

[Gei10] Martin Geisler. Cryptographic Protocols: Theory and Implementation. PhD
dissertation, University of Aarhus, Denmark, Department of Computer Science,
2010. (Cited on page 163).

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In Proc. of 19th ACM
Symposium on Theory of Computing (STOC), pages 218–229, 1987. (Cited on
pages 1, 145, and 146).

[Goe94] M. Goemans. Linear programming. Course Notes, Octobre 1994. URL http:

//www-math.mit.edu/~goemans/notes-lp.ps. (Cited on page 50).

[Gol02] O. Goldreich. Secure Multi-party Computation.
http://www.wisdom.weizmann.ac.il/∼oded/pp.html, 2002. (Cited on page 1).

[GSV07] J. Garay, B. Schoenmakers, and J. Villegas. Practical and secure solutions
for integer comparison. In PKC # 07, volume 4450 of LNCS, pages 330–342.
Springer-Verlag, Berlin, 2007. (Cited on pages 75, 91, 93, and 155).

[Had93] J. Hadamard. Résolution d’une question relative aux déterminantes. Bull. des
sciences Math, 2(17):240–248, 1893. (Cited on page 50).

[Hro01] Juraj Hromkovič. Algorithmics for hard problems: introduction to combina-
torial optimization, randomization, approximation, and heuristics. Springer-
Verlag New York, Inc., New York, NY, USA, 2001. ISBN 3-540-66860-8. (Cited
on page 40).

[HSSV09] Sebastiaan de Hoogh, Berry Schoenmakers, Boris Skoric, and José Villegas.
Verifiable Rotation of Homomorphic Encryptions. In Public Key Cryptography,
pages 393–410, 2009. (Cited on pages 7 and 155).

Bibliography 169

[ISN87] M. Itoh, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general
access structure. In IEEE Globecom, pages 99–102, 1987. (Cited on page 9).

[JJ00] M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via
ciphertexts. In ASIACRYPT 2000, volume 1976 of LNCS, pages 162–177.
Springer-Verlag, 2000. (Cited on pages 2 and 155).

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Combinatorica, Vol. 4, pages 373–395, 1984. (Cited on page 35).

[Kel11] Marcel Keller. Theory and Practice of Cryptographic Protocols -or- Cryptog-
raphy: Will It Blend? PhD dissertation, University of Aarhus, Denmark,
Department of Computer Science, 2011. (Cited on page 155).

[KM72] Victor Klee and George J. Minty. How good is the simplex algorithm? In
O. Shisha, editor, Inequalities, volume III, pages 159–175. Academic Press,
New York, 1972. (Cited on pages 27, 29, and 34).

[LA06] J. Li and M. Atallah. Secure and Private Collaborative Linear Programming. In
Proc. 2nd International Conference on Collaborative Computing: Networking,
Applications and Worksharing (ColaborateCom 2006), pages 19–26. Atlanta,
USA, 2006. (Cited on pages 4, 50, and 155).

[LB93] H. Lee and C. Billington. Material management in decentralized supply chains.
In Operations research 41, volume 5, 1993. (Cited on page 4).

[LPG02] Ch. Haehling von Lanzenhauer and K. Pilz-Glombik. Coordinating supply
chain decisions: an optimization model. In OR Spectrum 24, volume 1, 2002.
(Cited on page 4).

[Lue73] D. G. Luenberger. Introduction to Linear and Nonlinear Programming.
Addison-Wesley, 1973. ISBN 0-201-04347-5. (Cited on pages 27, 28, 29, and 31).

[Mil00] Ronald E. Miller. Optimization: foundations and applications. John Wiley and
Sons, Inc., 2000. ISBN 0-471-35169-5. (Cited on pages 3 and 37).

[MR91] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In
CRYPTO, volume 576 of Lecture Notes in Computer Science, pages 392–404.
Springer, 1991. (Cited on page 1).

[Mur05] Katta G. Murty. A gravitational interior point method for LP. Opsearch, 42
(1):28–36, 2005. ISSN 0030-3887. (Cited on pages 3 and 37).

[Nab09] H. Nabli. An overview on the simplex algorithm. Applied Mathematics and
Computation 210, pages 479–489, 2009. (Cited on page 73).

[NW99] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer, 1999.
ISBN 0387987932. (Cited on pages 3, 36, and 37).

[Pas91] Antonio Pasini. Diagram Geometries for Sharply n-Transitive Sets of Permu-
tations or of Mappings. Des. Codes Cryptography, 1(4):275–297, 1991. (Cited
on page 162).

170 Bibliography

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. J. Cryptology, 13(3):361–396, 2000. (Cited on pages 18
and 19).

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive sys-
tems and its application to secure message transmission. In IEEE Symposium
on Security and Privacy, 2001. (Cited on page 1).

[Rei09] Tord Ingolf Reistad. Multiparty comparison - an improved multiparty protocol
for comparison of secret-shared values. In SECRYPT, pages 325–330. INSTICC
Press, 2009. (Cited on pages 6, 75, 92, and 93).

[Ros05] G. Rosenberg. Enumeration of All Extreme Equilibria of Bimatrix Games
with Integer Pivoting and Improved Degeneracy Check. Research Report LSE-
CDAM-2005-18, London School of Economics and Political Science, Depart-
ment of Mathematics, 2005. www.cdam.lse.ac.uk/Reports/Files/cdam-2005-
18.pdf. (Cited on pages 27 and 47).

[RT09a] T.I. Reistad and T. Toft. Information theoretic security. chapter Secret Sharing
Comparison by Transformation and Rotation, pages 169–180. Springer-Verlag,
Berlin, Heidelberg, 2009. ISBN 978-3-642-10229-5. (Cited on page 155).

[RT09b] Tord Reistad and Tomas Toft. Linear, constant-rounds bit-decomposition. In
ICISC, pages 245–257, 2009. (Cited on pages 95 and 98).

[Sch12] Berry Schoenmakers. Lecture Notes Part 1 Cryptographic Protocols, 2012.
(Cited on page 14).

[Sec08] SecureSCM. SecureSCM Project: Secure Supply Chain Management, 2008.
(Cited on pages 143 and 163).

[Sec09] SecureSCM. Security Analysis. Deliverable D9.2, EU FP7 Project Secure
Supply Chain Management (SecureSCM), 2009. (Cited on page 6).

[Sec10] SecureSCM. Security Analysis. Deliverable D3.2, EU FP7 Project Secure
Supply Chain Management (SecureSCM), 2010. (Cited on page 6).

[Sha79] A. Shamir. How to share a secret. In Communications of the ACM, 22(11),
pages 612–613, 1979. (Cited on page 9).

[Sho05] V. Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, 2005. ISBN 0-521516-44-7. (Cited on page 76).

[ST06] B. Schoenmakers and P. Tuyls. Efficient Binary Conversion for Paillier Encryp-
tions. In EUROCRYPT 2006, volume 4004 of LNCS, pages 522–537. Springer-
Verlag, 2006. (Cited on pages 6, 75, 76, 90, 95, 96, and 98).

[Tof07] Tomas Toft. Primitives and Applications for Multi-party Computation. PhD
dissertation, University of Aarhus, Denmark, BRICS, Department of Computer
Science, 2007. (Cited on pages 50, 107, and 109).

Bibliography 171

[Tof09] Tomas Toft. Solving linear programs using multiparty computation. In Finan-
cial Cryptography, pages 90–107, 2009. (Cited on pages 4, 6, 75, 104, and 111).

[TW10] Björn Terelius and Douglas Wikström. Proofs of Restricted Shuffles. In
AFRICACRYPT, pages 100–113, 2010. (Cited on pages 7, 155, 156, and 157).

[Vai09a] Jaideep Vaidya. Privacy-preserving linear programming. In Proceedings of the
2009 ACM symposium on Applied Computing, SAC ’09, pages 2002–2007, 2009.
ISBN 978-1-60558-166-8. (Cited on page 4).

[Vai09b] Jaideep Vaidya. A secure revised simplex algorithm for privacy-preserving lin-
ear programming. In Proceedings of the 2009 International Conference on Ad-
vanced Information Networking and Applications, pages 347–354, 2009. ISBN
978-0-7695-3638-5. (Cited on page 4).

[VB10] José Antonio Villegas Bautista. Design of Advanced Primitives for Secure Mul-
tiplarty Computation: Special Shuffles and Integer Comparison. Ph.D. thesis,
Eindhoven, The Netherlands, 2010. NUR919. (Cited on pages 6 and 155).

[VIF08] VIFF Development Team. Virtually Ideal Functionality Framework, 2008.
(Cited on page 163).

[WRW11] C. Wang, K. Ren, and J. Wang. Secure and practical outsourcing of linear
programming in cloud computing. In Proceedings of IEEE INFOCOM, 2011.
(Cited on page 4).

[Yao82] A. C. Yao. Protocols for secure computations. In Proc. of the 23th IEEE
Symposium on Foundations of Computer Science (FOCS ’82), pages 160–164.
IEEE Computer Society, 1982. (Cited on page 1).

[Yao86] A. C. Yao. How to generate and exchange secrets. In Proc. of the 27th IEEE
Symposium on Foundations of Computer Science, pages 162–167, 1986. (Cited
on page 1).

172 Bibliography

Appendix A

Secure Simplex Protocols

Here we list the protocols corresponding to Chapter 5.

A.1 Simplex Iteration

Protocol A.1:
([T], [s], pred, [u], [q])← IterateVAR1,VAR2([T], [s], [T0], [u], [q])

Input: T ∈ Z(m+1)×(n′+1)
〈k〉 , s ∈ {1, . . . , n+m}m,

T0 ∈ Z(m+1)×(n+m+1)
〈k〉 ,u ∈ {1, . . . , n}n, q ∈ Z〈k〉.

Output: T ∈ Z(m+1)×(n+1)
〈k〉 , s ∈ {1, . . . , n}m,pred ∈ {UnboundedLP,Optimal},

u ∈ {1, . . . , n}n, q ∈ Z〈k〉.
(d, [`], [pc])← GetPivotColumnVAR1([T], [T0]);1

// LT: Prot. A.2, ST: Prot. A.6 or RS: Prot. A.10

if d = 0 then2

return ([T], [s],Optimal, [u], [q]) ;3

(d, [k], [pr])← GetPivotRowVAR1(T,p
c,T0);4

// LT Prot. A.3, ST: Prot. A.7 or RS: Prot. A.11

if d = 0 then5

return (T, s,UnboundedLP, [u], [q]);6

([T], [s], [u], [q])← UpdateVAR1,VAR2([T], [s], [k], [pc], [pr], [T0], [u], [q]);7

// LT-RP: Prot. A.5, LT-IP: Prot. A.4, ST-RP: Prot. A.9, ST-IP: Prot. A.8, or

, RS-IP: Prot. A.12

return IterateVAR1,VAR2([T], [s], [u], [q]);8

173

174 A.1. Simplex Iteration

A.1.1 Large Tableau Simplex

Protocol A.2: (d, [`], [pc])← GetPivotColumnLT([T])

Input: [T] ∈ Z(m+1)×(n+m+1)
〈k〉

Output: d ∈ {0, 1}, [`] ∈ {0, 1}n+m, [pc] ∈ Zm+1
〈k〉

[t] = ([t(m+1)1], . . . , [t(m+1)(n+m)]);1

PIVOTRULE = DANTZIG :
2a ([`], [min])← FindMin([t], LTZ) ; // 8dlog(n+m)e rnd, (n+m− 1)(4k + 4) inv

3a [d]← [min] < 0 ; // 6 rnd, (4k + 2) inv

PIVOTRULE = BLAND :
2b [`]← FirstNeg([t]) ; // 9 rnd, (n+m)(4k + 7)− 1 inv

3b [d]←
∑n

i=1[`i];

d← Open([d]) ; // 1 rnd, 1 inv.4

if d = 0 then return (0, [`],0);5

[pc] = [T][`] ; // 1 rnd, m+ 1 inv.6

return (1, [`], [pc])7

Protocol A.3: (d, [k], [pr])← GetPivotRowLT([T], [pc])

Input: [T] ∈ Z(m+1)×(n+m+1)
〈k〉 , [pc] ∈ Zm+1

〈k〉 .

Output: d ∈ {0, 1}, [k] ∈ {0, 1}m, [pr] ∈ Zn+m+1
〈k〉

[t] = ([t1(n+m+1)], . . . , [tm(n+m+1)]);1

foreach i ∈ {1, . . . ,m} do parallel2

[βi]← [pci] ≤ 0 ; // 6 rnd, m(4k + 2) inv.3

d←
∑m

i=1[βi] = m ; // 1 rnd, 1 inv.4

if d = 1 then return (0, [0],0);5

[t]← [t] + [β];6

PIVOTRULE = DANTZIG :
7a ([k], [min])← FindMin(([t1], [p

c
1]), . . . , ([tm], [pcm]),FracLTZ) ; // dlogme(6 + 3) rnd,

(m− 1)((4k + 2) + 5) inv.

PIVOTRULE = BLAND :

7b ([k], [min])← FindMin(([t1], [p
c
1], [s1]), . . . , ([tm], [pcm], [sm]),BlandFracLTZ) ;

// dlogme(max{6, log∗(k)}+ 4) rnd, (m− 1)(8k + log∗(k) log k + 11) inv.

[pr] = [k][T] ; // 1 rnd, n+m+ 1 inv.8

return (1, [k], [pr])9

A. Secure Simplex Protocols 175

Protocol A.4:
([T′], [s], [q])← UpdateLT,IP([T], [s], [`], [k], [pc], [pr], [q])

Input: [T] ∈ Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [`] ∈ {0, 1}n+m, [k] ∈ {0, 1}m,

[pc] ∈ Zm+1
〈k〉 , [pr] ∈ Zn+m+1

〈k〉 , [q] ∈ Z〈k〉.

Output: [T′] ∈ Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [q] ∈ Z〈k〉.

[p]← [pc][k] ; // 1 rnd, 1 inv.1

[t]← Inv([q]) ; // 1 rnd, 1 inv.2

[w]← [t][p]c − [k] // 1 rnd, m+ 1 inv.3

[v]← [t][p] ; // 1 inv.4

foreach i ∈ {1, . . . , n′ + 1} do5

foreach j ∈ {1, . . . ,m+ 1} do6

[t′ij]← ([tij], [rj]) · ([v],−[wi]) ; // 1 rnd, (n′ + 1)(m+ 1) inv.7

[`]←
∑n+m

j=1 [`j];8

[s]←WriteAtPosition([s], [k], [`]) ; // 1 rnd, m inv.9

return ([T′], [s], [u], [p]);10

Protocol A.5:
([T′], [s])← UpdateLT,RP([T], [s], [`], [k], [pc], [pr])

Input: [T] ∈ Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [`] ∈ {0, 1}n+m, [k] ∈ {0, 1}m,

[pc] ∈ Zm+1
〈k〉 , [pr] ∈ Zn+m+1

〈k〉 .

Output: [T′] ∈ Z(m+1)×(n′+1)
〈k〉 , [s] ∈ {1, . . . , n}m.

[p]← [pc][k] ; // 1 rnd, 1 inv.1

[t]← Rec([p], k);2

[w]← [t]([pc]− 2f [k] ; // 1 rnd, m+ 1 inv.3

[r]← [pr];4

foreach i ∈ {1, . . . , n+m+ 1} do5

foreach j ∈ {1, . . . ,m+ 1} do6

[t′ij]← [tij]− TruncPr([rj][wi], 3k, 2k) ; // 2 rnd, 2(n+m+ 1)(m+ 1) inv.7

[`]←
∑n′′

j=1[`j];8

[s]←WriteAtPosition([s], [k], [`]) ; // 1 rnd, m inv.9

return ([T′], [s], [u], [p]);10

176 A.1. Simplex Iteration

A.1.2 Small Tableau Simplex

Protocol A.6: (d, [`], [pc])← GetPivotColumnST([T])

Input: [T] ∈ Z(m+1)×(n+1)
〈k〉

Output: d ∈ {0, 1}, [`] ∈ {0, 1}n, [pc] ∈ Zm+1
〈k〉

[t] = ([t(m+1)1], . . . , [t(m+1)n]);1

PIVOTRULE = DANTZIG :
2a ([`], [min])← FindMin([t], LTZ) ; // dlog ne(6 + 2) rnd, (n− 1)((4k + 2) + 2) inv

3a [d]← [min] < 0 ; // 6 rnd, (4k + 2) inv

PIVOTRULE = BLAND :
2b [`]← FirstNeg([t]) ; // (6 + 3) rnd, n((4k + 2) + 5)− 1 inv

3b [d]←
∑n

i=1[`i];

d← Open([d]) ; // 1 rnd, 1 inv.4

if d = 0 then return (0, [`],0);5

[pc] = [T][`] ; // 1 rnd, m+ 1 inv.6

return (1, [`], [pc])7

Protocol A.7: (d, [k], [pr])← GetPivotRowST([T], [pc])

Input: [T] ∈ Z(m+1)×(n+1)
〈k〉 , [pc] ∈ Zm+1

〈k〉 .

Output: d ∈ {0, 1}, [k] ∈ {0, 1}m, [pr] ∈ Zn+1
〈k〉

return GetPivotRowLT([T], [pc])1

Protocol A.8:
([T′], [s], [u], [q])← UpdateST,IP([T], [s], [`], [k], [pc], [pr], [u], [q])

Input: [T] ∈ Z(m+1)×(n+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [`] ∈ {0, 1}n, [k] ∈ {0, 1}m,

[pc] ∈ Zm+1
〈k〉 , [pr] ∈ Zn+1

〈k〉 , [u] ∈ {1, . . . , n}n, [q] ∈ Z〈k〉.

Output: [T′] ∈ Z(m+1)×(n+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [u] ∈ {1, . . . , n}n, [q] ∈ Z〈k〉.

[p]← [pc][k] ; // 1 rnd, 1 inv.1

[t]← Inv([q]) ; // 2 rnd, 2 inv.2

[w]← [[t][p]c]− [k] ; // 1 rnd, m+ 1 inv.3

[v]← [t][p] // 1 inv.4

r← r + [q][`] ; // 1 rnd, n inv.5

foreach i ∈ {1, . . . , n′ + 1} do6

foreach j ∈ {1, . . . ,m+ 1} do7

[t′ij]← ([tij], [rj]) · ([v],−[wi]) ; // 1 rnd, (n′ + 1)(m+ 1) inv.8

[`′]← [u][`] ; // 1 rnd, 1 inv.9

[k′]← [s][k] ; // 1 inv10

[s]←WriteAtPosition([s], [k], [`′]) ; // 1 rnd, m inv.11

[u]←WriteAtPosition([u], [`], [k′]) ; // n inv.12

return ([T′], [s], [u], [p]);13

A. Secure Simplex Protocols 177

Protocol A.9:
([T′], [s], [u], [q])← UpdateST,RP([T], [s], [`], [k], [pc], [pr], [u], [q])

Input: [T] ∈ Z(m+1)×(n+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [`] ∈ {0, 1}n, [k] ∈ {0, 1}m,

[pc] ∈ Zm+1
〈k〉 , [pr] ∈ Zn+1

〈k〉 , [u] ∈ {1, . . . , n}n, [q] ∈ Z〈k〉.

Output: [T′] ∈ Z(m+1)×(n+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [u] ∈ {1, . . . , n}n, [q] ∈ Z〈k〉.

[p]← [pc][k] ; // 1 rnd, 1 inv.1

[t]← Rec([p], k);2

[w]← [t]([p]c − 2f [k]) ; // 1 rnd, m+ 1 inv.3

[r]← [pr];4

r← r + 2f [`];5

foreach i ∈ {1, . . . , n′ + 1} do6

foreach j ∈ {1, . . . ,m+ 1} do7

[t′ij]← [tij]− TruncPr([rj][wi], 3k, 2k) ; // 2 rnd, 2(n′ + 1)(m+ 1) inv.8

[`′]← [u][`] ; // 1 rnd, 1 inv.9

[k′]← [s][k] ; // 1 inv10

[s]←WriteAtPosition([s], [k], [`′]) ; // 1 rnd, m inv.11

[u]←WriteAtPosition([u], [`], [k′]) ; // n inv.12

return ([T′], [s], [u], [p]);13

A.1.3 Revised Simplex

Protocol A.11: (d, [k], [pr])← GetPivotRowRS([D], [T0], [pc])

Input: [D] ∈ Z(m+1)×(m+1)
〈k〉 , [T0] ∈ Z(m+1)×(n+m+1)

〈k〉 , [pc] ∈ Zm+1
〈k〉 .

Output: d ∈ {0, 1}, [k] ∈ {0, 1}m, [pr] ∈ Zm+1
〈k〉

[t] =
(
[d1][T

0
n+m+1], . . . , [dm][T0

n+m+1]
)

; // 1 rnd, m inv.1

foreach i ∈ {1, . . . ,m} do parallel2

[βi]← [pci] ≤ 0 ; // 6 rnd, m(4k + 2) inv.3

d←
∑m

i=1[βi] = m ; // 1 rnd, 1 inv.4

if d = 1 then return (0, [`],0);5

[t]← [t] + [β];6

PIVOTRULE = DANTZIG :
7a ([k], [min])← FindMin(([t1], [p

c
1]), . . . , ([tm], [pcm]),FracLTZ) ; // dlogme(6 + 3) rnd,

(m− 1)((4k + 2) + 5) inv.

PIVOTRULE = BLAND :

7b ([k], [min])← FindMin(([t1], [p
c
1], [s1]), . . . , ([tm], [pcm], [sm]),BlandFracLTZ) ;

// dlogme(max{6, log∗(k)}+ 4) rnd, (m− 1)(8k + log∗(k) log k + 11) inv.

[pr] = [k][D] ; // 1 rnd, n+m+ 1 inv.8

return (1, [k], [pr])9

178 A.1. Simplex Iteration

Protocol A.10: (d, [`], [pc])← GetPivotColumnRS([D], [T0])

Input: [D] ∈ Z(m+1)×(m+1)
〈k〉 , [T0] ∈ Z(m+1)×(n+m+1)

〈k〉
Output: d ∈ {0, 1}, [`] ∈ {0, 1}n+m, [pc] ∈ Zm+1

〈k〉
[t] = dm+1[T

0
(1,...,n+m)] ; // 1 rnd, n+m inv.1

PIVOTRULE = DANTZIG :
2 ([`], [min])← FindMin([t], LTZ) ; // dlog ne(6 + 2) rnd, (n− 1)((4k + 2) + 2) inv

3 [d]← [min] < 0 ; // 6 rnd, (4k + 2) inv

PIVOTRULE = BLAND :
1a [`]← FirstNeg([t]) ; // (6 + 3) rnd, n((4k + 2) + 5)− 1 inv

2a [d]←
∑n

i=1[`i];

d← Open([d]) ; // 1 rnd, 1 inv.3

if d = 0 then return (0, [`],0);4

[pc] = [D]([T][`]) ; // 2 rnd, 2m+ 2 inv.5

return (1, [`], [pc])6

Protocol A.12:
([D′], [s], [q])← UpdateRS,IP([D], [s], [`], [k], [pc], [pr], [q])

Input: [D] ∈ Z(m+1)×(m+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [`] ∈ {0, 1}n, [k] ∈ {0, 1}m,

[pc] ∈ Zm+1
〈k〉 , [pr] ∈ Zm+1

〈k〉 , [u] ∈ {1, . . . , n}n, [q] ∈ Z〈k〉.

Output: [T′] ∈ Z(m+1)×(n′+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [u] ∈ {1, . . . , n}n, [q] ∈ Z〈k〉.

return UpdateLT,IP([D], [s], [`], [k], [pc], [pr], [q])1

Protocol A.13:
([D′], [s], [q])← UpdateRS,IP([D], [s], [`], [k], [pc], [pr], [q])

Input: [D] ∈ Z(m+1)×(m+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [`] ∈ {0, 1}n, [k] ∈ {0, 1}m,

[pc] ∈ Zm+1
〈k〉 , [pr] ∈ Zm+1

〈k〉 , [u] ∈ {1, . . . , n}n, [q] ∈ Z〈k〉.

Output: [T′] ∈ Z(m+1)×(n′+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [u] ∈ {1, . . . , n}n, [q] ∈ Z〈k〉.

return UpdateLT,RP([D], [s], [`], [k], [pc], [pr], [q])1

A. Secure Simplex Protocols 179

A.2 Simplex Initialization

A.2.0.1 Zero Feasible Simplex

Protocol A.14: ([x], pred)← ZeroFeasSimplexLT,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ (Z)m〈k〉, [c] ∈ Zn〈k〉
Output: [x] ∈ Zn〈k〉, pred ∈ {UnboundedLP,Optimal}
[s]← ([n+ 1], . . . , [n+m]);1

[T]←
(

[A] [Im] [b]
[c] [0] [0]

)
;

2

([T], [s],pred, [q])← IterateLT,VAR([T], [s], [q]) ; // Prot. A.13

if pred = Optimal then4

([x], [q])← GetSolutionLT,VAR([T], [s], [q]) ; // Prot. A.495

return ([x], pred)6

Protocol A.15: ([x], pred)← ZeroFeasSimplexST,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ (Z)m〈k〉, [c] ∈ Zn〈k〉
Output: [x] ∈ Zn〈k〉, pred ∈ {UnboundedLP,Optimal}
[s]← ([n+ 1], . . . , [n+m]);1

[u]← ([1], . . . , [n]);2

[T]←
(

[A] [b]
[c] [0]

)
;

3

([T], [s],pred, [u], [q])← IterateST,VAR([T], [s], [u], [q]) ; // Prot. A.14

if pred = Optimal then5

([x], [q])← GetSolutionST,VAR([T], [s], [q]) ; // Prot. A.506

return ([x], pred)7

Protocol A.16: ([x], pred)← ZeroFeasSimplexRS,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ (Z)m〈k〉, [c] ∈ Zn〈k〉
Output: [x] ∈ Zn〈k〉, pred ∈ {UnboundedLP,Optimal}
[s]← ([n+ 1], . . . , [n+m]);1

[T0]←
(

[A] [Im] [b]
[c] [0] [0]

)
;

2

[T]←

 [Im] [0]
[0]
[1]

;
3

([T], [s],pred, [q])← IterateRS,VAR([T], [s], [T0], [q]) ; // Prot. A.14

if pred = Optimal then5

([x], [q])← GetSolutionRS,VAR([D], [s], [T0], [q]) ; // Prot. A.516

return ([x], pred)7

180 A.2. Simplex Initialization

A.2.1 Standard two-phase Simplex

A.2.1.1 Large Tableau Simplex

Protocol A.17: ([x], pred)← TwoPhaseSimplexLT,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ (Z)m〈k〉, [c] ∈ Zn〈k〉
Output: [x] ∈ Zn〈k〉, pred ∈ {InfeasibleLP,UnboundedLP,Optimal}
([T], [s], [q])← InitializePhaseILT,VAR([A], [b]) ; // Prot. A.181

([T], [s],pred, [q])← IterateLT,VAR([T], [s], [q]) ; // Prot. A.12

t← Open([tm+1,n+m+1]) ; // 1 rnd, 1 inv.3

if t! = 0 then4

return (0,pred);5

([T], [s])← InitializePhaseIILT,VAR([T], [s], [c], [q]) ; // Prot. A.196

([T], [s], pred, [q])← IterateLT,VAR([T], [s], [q]) ; // Prot. A.17

[x]← GetSolutionLT,VAR([T], [s], [q]) ; // Prot. A.49

return ([x], pred)8

Protocol A.18: ([T], [s], [q])← InitializePhaseILT,VAR([A], [b])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉.

Output: [T] ∈ Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n+ 2m}m, [q] ∈ Z〈k〉.

[s]← ([n+m+ 1], . . . , [n+ 2m]);1

VAR = IP :
[q]← [1];2

foreach i ∈ {1, . . . ,m} do parallel3

[βi]← 1− 2([bi] < 0) ; // 6 rnd, m(4k + 2) inv4

[b′i]← [βi][bi] ; // 1 rnd, m inv.5

[a′i]← [ai][βi] ; // m(n+m) inv.6

[T]←
(

[A′] [Diag(β)] [b′]
−
∑m

i=1[a
′
i] [β] [0]

)
;

7

return ([T], [s])8

A. Secure Simplex Protocols 181

Protocol A.19: ([T], [s])← InitializePhaseIILT,VAR([T], [s], [c], [q])

Input: [T] ∈ Zm+1×n+m+1
〈k〉 , [c] ∈ Zn〈k〉, [s] ∈ {1, . . . , n+ 2m}m, [q] ∈ Z〈k〉

Output: [T] ∈ Zm+1×n+m+1
〈k〉 , [s] ∈ {1, . . . , n+m}m.

VAR = IP :
[q′]← Invert(q);

foreach i ∈ {1, . . . ,m} do1

[γi]← [si] = n+m+ i ; // log∗(n+ 2m) rnd, m(4k + 2)= inv.2

VAR = RP :
3a [wi]← [γi][ti(n+i)] + (1− [γi]) ; // 1 rnd, m inv.

VAR = IP :
3b [wi]← [γi][q

′][ti(n+i)] + (1− [γi]) ; // 2 rnd, 2m inv.

[si]← [γi](n+ i) + (1− [γi])[si] ; // m inv.4

[ti]← [wi][ti] ; // 1 rnd, m(n+m+ 1) inv5

[T]← ChangeCostReducedRowLT,VAR([T], [c], [s]) ; // Prot. A.206

return ([T], [s]);7

Protocol A.20: [T]← ChangeCostReducedRowLT,VAR([T], [c], [s])

Input: [T] ∈ Zm+1×n+m+1
〈k〉 , [c] ∈ Zn〈k〉, s ∈ {1, . . . , n+m}m

Output: [T] ∈ Zm+1×n+m+1
〈k〉

foreach i = 1, . . . ,m do1

[σi]← ConvertUnary([si], n+m) ; // Prot. 4.402

[vi]← [c][σi] ; // 1 rnd, m inv.3

foreach j = 1, . . . , n+m+ 1 do4

VAR = RP :
5a [t(m+1)j]← TruncPR([cj]− [v][Ti], k + f, f);

VAR = IP :
5b [t(m+1)j]← [q][cj]− [v][Ti];

return [T]6

182 A.2. Simplex Initialization

A.2.1.2 Small Tableau Simplex

Protocol A.21: ([x], pred)← TwoPhaseSimplexST,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ (Z)m〈k〉, [c] ∈ Zn〈k〉
Output: [x] ∈ Zn〈k〉, pred ∈ {InfeasibleLP,UnboundedLP,Optimal}
([T], [S], [U], [q])← InitializePhaseIVAR1,VAR2([A], [b]) ; // Prot. A.221

([T], [S], pred, [U], [q])← IteratePhaseISTST,VAR([T], [S], [U], [q]) ; // Prot. A.522

t← Open([tm+1,n+1]) ; // 1 rnd, 1 inv.3

if t < 0 then4

return (0,pred);5

([T], [s], [u])← InitializePhaseIIST,VAR([T], [S], [c], [U], [q]) ; // Prot. A.236

([T], [s], pred, [u], [q])← IterateST,VAR([T], [s], [u], [q]) ; // Prot. A.17

([x], [q])← GetSolutionST,VAR([T], [s], [q]) ; // Prot. A.50

return ([x],pred)8

Protocol A.22: ([T], [s], [u], [q])← InitializePhaseIST,VAR([A], [b])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉.

Output: [T] ∈ Z(m+1)×(n+1)
〈k〉 , [s] ∈ {1, . . . , n+ 2m}m, [u] ∈ {1, . . . , n+ 2m}n+m,

[q] ∈ Z〈k〉
[s1]← ([n+m+ 1], . . . , [n+ 2m]);1

[s2]← 1;2

[u1]← ([1], . . . , [n+m]);3

[u2]← 0;4

VAR = IP :
[q] = [1];5

foreach i ∈ {1, . . . ,m} do parallel6

[βi]← 1− 2([bi] < 0) ; // 6 rnd, m(4k + 2) inv7

[b′i]← [βi][bi] ; // 1 rnd, m inv.8

[a′i]← [ai][βi] ; // m(n+m) inv.9

[T]←
(

[A′] [Diag(β)] [b′]
−
∑m

i=1[a
′
i] [β] [0]

)
;

10

[u]← ([1], . . . , [n+m]);11

return ([T], [S], [U], [q])12

A. Secure Simplex Protocols 183

Protocol A.23: ([T], [s], [u])← InitializePhaseIIST,VAR([T], [s], [c], [u], [q])

Input: [T] ∈ Zm+1×n+m+1
〈k〉 , [c] ∈ Zn〈k〉, [s] ∈ {1, . . . , n+ 2m}m,

[u] ∈ {1, . . . , n+ 2m}n+m, [q] ∈ Z〈k〉
Output: [T] ∈ Zm+1×n+1

〈k〉 , [s] ∈ {1, . . . , n+m}m, [u] ∈ {1, . . . , n+m}n.

VAR = IP :
[q]′ ← Invert(q) ; // 2 rnd, 2 inv.1

foreach i ∈ {1, . . . ,m} do2

[γi]← [si] = n+m+ i ; // log∗(n+ 2m) rnd, m log∗(k) log k inv.3

VAR = RP :
4 [wi]← [γi][ti(n+i)] + (1− [γi]) ; // 1 rnd, m inv.

VAR = IP :
1a [wi]← [γi][q

′][ti(n+i)] + (1− [γi]) ; // 2 rnd, 2m inv.

[s1i]← [γi](n+ i) + (1− [γi])[s1i] ; // m inv.2

[u1(n+i)]← [γi](n+m+ i) + (1− γi)[u1(n+i)] ; // m inv.3

[u2(n+i)]← [γi] + (1− γi)[u2(n+i)] ; // m inv.4

[ti]← [wi][ti] ; // 1 rnd, m(n+ 1) inv5

([T], [u1])← DelCols(([T], [u1]), [u2]) ; // Prot. 4.396

[T]← ChangeCostReducedRowST,IP([T], [c], [s1], [u1]) ; // Prot. A.247

return ([T], [s1], [u2];8

Protocol A.24: [T]← ChangeCostReducedRowST,VAR([T], [c], [s], [q])

Input: [T] ∈ Zm+1×n+m+1
〈k〉 , [c] ∈ Zn〈k〉, s ∈ {1, . . . , n+m}m

Output: [T] ∈ Zm+1×n+m+1
〈k〉

foreach i = 1, . . . ,m do1

[σi]← ConvertUnary([si], n+m) ; // Prot. 4.402

[vi]← [c][σi] ; // 1 rnd, m inv.3

foreach j = 1, . . . , n+ 1 do4

[υj]← ConvertUnary([uj], n+m) ; // Prot. 4.405

VAR = RP :
6a [t(m+1)j]← TruncPr([c][υj]− [v][T][υj], k + f, f) ; // 2 rnd, m+ 4 inv.

VAR = IP :
6b [t(m+1)j]← [q][c][υj]− [v][T][υj] ; // 2 rnd, m+ 4 inv.

return [T]7

184 A.2. Simplex Initialization

A.2.1.3 Revised Simplex

Protocol A.25: ([x], pred)← TwoPhaseSimplexRS,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ (Z)m〈k〉, [c] ∈ Zn〈k〉
Output: [x] ∈ Zn〈k〉, pred ∈ {InfeasibleLP,UnboundedLP,Optimal}
([D], [T0], [s], [q])← InitializePhaseIRS,VAR([A], [b]) ; // Prot. A.261

([D], [s],pred, [q])← IterateRS,VAR([D], [s], [T0], [q]) ; // Prot. A.12

[T]← [dm+1][T
0
n+m+1] ; // 1 rnd, 1 inv3

t← Open([t]) ; // 1 rnd, 1 inv.4

if t < 0 then5

return (0,pred);6

([D], [T0], [s])← InitializePhaseIIRS([D], [s], [c], [T0], [q]) ; // Prot. A.277

([D], [s], pred, [q])← IterateRS,VAR([D], [s], [T0], [q]) ; // Prot. A.18

([x], [q])← GetSolutionRS,VAR([D], [s], [T0], [q]) ; // Prot. A.51

return ([x], pred)9

Protocol A.26: ([T], [T0], [s], [q])← InitializePhaseIRS,VAR([A], [b])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉.

Output: [D] ∈ Z(m+1)×(m+1)
〈k〉 , [T0] ∈ Z(m+1)×(n+1)

〈k〉 , [s] ∈ {1, . . . , n+ 2m}m, [q] ∈ Z〈k〉
[s]← ([n+m+ 1], . . . , [n+ 2m]);1

VAR = IP :
[q] = [1];2

foreach i ∈ {1, . . . ,m} do parallel3

[βi]← 1− 2([bi] < 0) ; // 6 rnd, m(4k + 2) inv4

[b′i]← [βi][bi] ; // 1 rnd, m inv.5

[a′i]← [ai][βi] ; // m(n+m) inv.6

T0 ←
(

[A′] [Diag(β)] [b′]
[0] [1] [0]

)
;

7

D←
(

[Im] [0]
[−1] [1]

)
;

8

return ([D], [T0], [s], [q])9

A. Secure Simplex Protocols 185

Protocol A.27: ([D], [s], [T0])← InitializePhaseIIRS([D], [s], [c], [T0], [q])

Input: [D] ∈ Zm+1×m+1
〈k〉 , [c] ∈ Zn〈k〉, [T0] ∈ Zm+1×n+m+1

〈k〉 , [s] ∈ {1, . . . , n+ 2m}m,

[q] ∈ Z〈k〉
Output: [D] ∈ Zm+1×m+1

〈k〉 , [T0] ∈ Zm+1×n+m+1
〈k〉 , [s] ∈ {1, . . . , n}m.

foreach i ∈ {1, . . . ,m} do1

[γi]← [si] = n+m+ i ; // log∗(n+ 2m) rnd, m log∗(n+ 2m) log(n+ 2m) inv.2

3 [vi]← [γi][t
0
i(n+i)] + (1− [γi]) ; // 1 rnd, m inv.

4 [si]← [γi](n+ i) + (1− [γi])[si] ; // m inv.

foreach i ∈ {1, . . . ,m} do5

[di]← [vi][di] ; // 1 rnd, m(m+ 1) inv6

([D], [T0])← ChangeCostReducedRowRS([D], [c], [T0], [s]) ; // Prot. A.287

return ([D], [s], [T0]);8

Protocol A.28: ([D], [T0])← ChangeCostReducedRowRS([D], [c], [s])

Input: [D] ∈ Zm+1×m+1
〈k〉 , [c] ∈ Zn〈k〉, s ∈ {1, . . . , n+m}m

Output: [D] ∈ Zm+1×m+1
〈k〉 , [T0] ∈ Zm+1×n+m+1

〈k〉
foreach i = 1, . . . ,m do1

[σi]← ConvertUnary([si], n+m) ; // Prot. 4.402

[vi]← [c][σi] ; // 1 rnd, m inv.3

[t0(m+1)]← [c];4

[dm+1]← (−[v], 1)[D] ; // 1 rnd, m+ 1 inv.5

return ([D], [T0])6

186 A.2. Simplex Initialization

A.2.2 Two-Phase Simplex with One Artificial Variable

A.2.2.1 Large Tableau Simplex

Protocol A.29: ([x], pred)← TwoPhaseSimplexLT,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ (Z)m〈k〉, [c] ∈ Zn〈k〉
Output: [x] ∈ Zn〈k〉, pred ∈ {InfeasibleLP,UnboundedLP,Optimal}
([T], [s], [q])← InitializePhaseILT,VAR([A], [b]) ; // Prot. A.301

([T], [s],pred, [q])← IterateLT,VAR([T], [s], [q]) ; // Prot. A.12

t← Open([tm+1,n+m+1]) ; // 1 rnd, 1 inv.3

if t! = 0 then4

return (0,pred);5

([T], [s], [q])← InitializePhaseIILT,VAR([T], [s], [c], [q]);6

// Prot. A.31 or Prot. A.32

([T], [s], pred, [q])← IterateLT,VAR([T], [s], [q]) ; // Prot. A.17

([x], [q])← GetSolutionLT,VAR([T], [s], [q]) ; // Prot. A.49

return ([x], pred)8

Protocol A.30: ([T], [s], [k], [q])← InitializePhaseILT,VAR([A], [b])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉.

Output: [T] ∈ Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n+m+ 1}m, [q] ∈ Z〈k〉

VAR = IP :
[q] = [1];1

([b], [k])← FindMin([b], LTZ) ; // dlogme(6 + 2) rnd, (m− 1)((4k + 2) + 2) inv.2

[β]← 2([b] ≥ 0)− 1 ; // 6 rnd, (4k + 2) inv.3

[s]←WriteAtPosition ((n+ 1, . . . , n+m), [k], n+ 1);4

[T]←
(

[A] [Im] [b]
[0] [0] [0]

)
;

5

[r]← 1− [β]k + (1− [β])em+1 ; // 1 rnd, m inv.6

[w]← [k][T] ; // n+m+ 1 inv.7

foreach i ∈ {1, . . . ,m+ 1} do8

foreach j ∈ {1, . . . , n+m+ 1} do9

[t′ij]← [tij]− [ri][wj] ; // 1 rnd, (m+ 1)(n+m+ 1) inv.10

return ([T′], [s], [k], [q])11

A. Secure Simplex Protocols 187

Protocol A.31: ([T], [s])← InitializePhaseIILT,RP([T], [s], [k], [c])

Input: [T]← Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n+m+ 1}m, [k] ∈ {0, 1}m, [c] ∈ Zn〈k〉.

Output: [T]← Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n+m}m.

[s]← [s][k] ; // 1 rnd, 1 inv.1

[γ]← [s] = n+m+ 1 ; // log∗(n+m+ 1) rnd, log∗(n+m+ 1) log(n+m+ 1) inv.2

[r]← [k][T] ; // n+m+ 1 inv.3

[`′]← FindFirst([r(n+1,...,n+m)], 1− EQZ(·));4

[`]← (0, [`′]) ; // Add n zero’s to `.5

[s]←WriteAtPosition([s], [k], [γ](
∑n+m

i=1 [`i]) + (1− [γ])[s]);6

// 2 rnd, m+ 2 inv.

[p′]← Rec([r][`], k);7

[v]← 1;8

[w]← [p′]([T][`]− 2f [k]);9

[w]← [γ][w] ; // 1 rnd, m+ 1 inv.10

foreach i ∈ {1, . . . ,m+ 1} do11

foreach j ∈ {1, . . . , n+m+ 1} do12

[t′ij]← TruncPr([tij][v]− [wi][rj], 3k, 2k) ; // 1 rnd, (m+ 1)(n+m+ 1) inv.13

[T]← ChangeCostReducedRowLT,RP([T], [c], [s]) ; // Prot. A.2014

return ([T′], [s])

188 A.2. Simplex Initialization

Protocol A.32: ([T], [s], [q])← InitializePhaseIILT,IP([T], [s], [k], [c], [q])

Input: [T]← Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n+m+ 1}m, [k] ∈ {0, 1}m, [c] ∈ Zn〈k〉,

[q] ∈ Z〈k〉.
Output: [T]← Z(m+1)×(n+m+1)

〈k〉 , [s] ∈ {1, . . . , n+m}m, [q] ∈ Z〈k〉.
[s]← [s][k] ; // 1 rnd, 1 inv.1

[γ]← [s] = n+m+ 1 ; // log∗(n+m+ 1) rnd, log∗(n+m+ 1) log(n+m+ 1) inv.2

[r]← [k][T] ; // n+m+ 1 inv.3

[`′]← FindFirst([r(n+1,...,n+m)], 1− EQZ(·));4

[`]← (0, [`′]) ; // Add n zero’s to `.5

[s]←WriteAtPosition([s], [k], [γ](
∑n+m

i=1 [`i]) + (1− [γ])[s]) ; // 1 rnd, m inv.6

[q′]← Invert([q]);7

[p]← [r][`];8

[α]← 1− 2([p] ≤ 0);9

[v]← [α][q′][p];10

[v]← [γ][v] + (1− [γ]);11

[w]← [α] ([q′][T][`]− [k]);12

[w]← [γ][w] ; // 1 rnd, m+ 1 inv.13

foreach i ∈ {1, . . . ,m+ 1} do14

foreach j ∈ {1, . . . , n+m+ 1} do15

[t′ij]← [tij][v]− [wi][rj] ; // 1 rnd, (m+ 1)(n+m+ 1) inv.16

[q]← [γ][α][p] + (1− [γ])[q] ; // 2 rnd, 3 inv.17

[T]← ChangeCostReducedRowLT,IP([T], [c], [s], [q]) ; // Prot. A.2018

return ([T′], [s])

A. Secure Simplex Protocols 189

A.2.2.2 Small Tableau Simplex

Protocol A.33: ([x], pred)← TwoPhaseSimplexST,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ (Z)m〈k〉, [c] ∈ Zn〈k〉
Output: [x] ∈ Zn〈k〉, pred ∈ {InfeasibleLP,UnboundedLP,Optimal}
([T], [S], [U], [q])← InitializePhaseIVAR1,VAR2([A], [b]) ; // Prot. A.341

([T], [S], pred, [U], [q])← IteratePhaseISTST,VAR([T], [S], [U], [q]) ; // Prot. A.522

t← Open([tm+1,n+1]) ; // 1 rnd, 1 inv.3

if t < 0 then4

return (0,pred);5

([T], [s], [u], [q])← InitializePhaseIIST,VAR([T], [S], [c], [U], [q]);6

// Prot. A.35 or Prot. A.36

([T], [s], pred, [u], [q])← IterateST,VAR([T], [s], [u], [q]) ; // Prot. A.17

([x], [q])← GetSolutionST,VAR([T], [s], [q]) ; // Prot. A.50

return ([x], pred)8

Protocol A.34: ([T], [S], [k], [U], [q])← InitializePhaseIST,VAR([A], [b])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉.

Output: [T] ∈ Z(m+1)×(n+2)
〈k〉 , [s] ∈ {1, . . . , n+m+ 1}m, [u] ∈ {1, . . . , n+m+ 1}n+1,

[q] ∈ Z〈k〉
VAR = IP :

[q] = [1];1

([b], [k])← FindMin([b], LTZ) ; // dlogme(6 + 2) rnd, (m− 1)((4k + 2) + 2) inv.2

[β]← 2([m] ≥ 0)− 1 ; // 6 rnd, (4k + 2) inv.3

[s1]←WriteAtPosition ((n+ 1, . . . , n+m), [k], n+m+ 1);4

[s2]←WriteAtPosition ((0, . . . , 0), [k], 1);5

[u1]← (1, . . . , n,
∑m

i=1[ki]i);6

[u2]← 0;7

T←
(

[A] [β1] [b]
[0] [1] [0]

)
;

8

[r]← 1− [β]k + (1− [β])em+1 ; // 1 rnd, m inv.9

VAR = RP :
10a [w]← [k][T] + 2fen+1 ; // 1 rnd, n+ 1 inv.

VAR = IP :
10b [w]← [k][T] + en+1 ; // 1 rnd, n+ 1 inv.

foreach i ∈ {1, . . . ,m} do11

foreach i ∈ {1, . . . ,m} do12

[t′ij]← [tij]− [ri][wj] ; // 1 rnd, (m+ 1)(n+m+ 1) inv.13

return ([T′], [S], [k], [U], [q])14

190 A.2. Simplex Initialization

Protocol A.35: ([T], [s], [u])← InitializePhaseIIST,RP([T], [S], [k], [c], [U])

Input: [T]← Z(m+1)×(n+2)
〈k〉 , [s] ∈ {1, . . . , n+m+ 1}m, [k] ∈ {0, 1}m, [c] ∈ Zn〈k〉,

[u] ∈ {1, . . . , n+m+ 1}n+1.

Output: [T]← Z(m+1)×(n+1)
〈k〉 , [s] ∈ {1, . . . , n+m}m, [u] ∈ {1, . . . , n+m}n.

[s]← [s1][k] ; // 1 rnd, 1 inv.1

[γ]← [s] = n+m+ 1 ; // log∗(n+m+ 1) rnd, log∗(n+m+ 1) log(n+m+ 1) inv.2

[r]← [k][T] ; // n+m+ 1 inv.3

[`]← FindFirst([r], 1− EQZ(·));4

[`′]← [γ][U][`] + (1− [γ])[S][k] ; // 2 rnd, 6 inv.5

[k′]← [γ][S][k] + (1− [γ])[U][`] ; // 6 inv6

[s1]←WriteAtPosition([s1], [k], [`′1]) ; // 1 rnd, m inv.7

[u1]←WriteAtPosition([u1], [`], [k
′
1]) ; // n inv.8

[u2]←WriteAtPosition([u2], [`], [k
′
2]) ; // n inv.9

[p′]← Rec([r][`], k);10

[v]← 1;11

[w]← [p′]([T][`]− 2f [k]);12

[w]← [γ][w] ; // 1 rnd, m+ 1 inv.13

[r]← [r] + 2f [`];14

foreach i ∈ {1, . . . ,m+ 1} do15

foreach j ∈ {1, . . . , n+m+ 1} do16

[t′ij]← TruncPr([tij][v]− [wi][rj], 3k, 2k) ; // 1 rnd, (m+ 1)(n+m+ 1) inv.17

[T]← DelCol([T], [u2]);18

[u1]← DelCol([u1], [u2]);19

[T′]← ChangeCostReducedRowST,RP([T′], [c], [s1], [u1]) ; // Prot. A.2420

return ([T′], [s1], [u1])

A. Secure Simplex Protocols 191

Protocol A.36: ([T], [s], [u], [q])← InitializePhaseIIST,IP([T], [S], [k], [c], [U], [q])

Input: [T]← Z(m+1)×(n+2)
〈k〉 , [s] ∈ {1, . . . , n+m+ 1}m, [k] ∈ {0, 1}m, [c] ∈ Zn〈k〉,

[u] ∈ {1, . . . , n+m+ 1}n+1, [q] ∈ Z〈k〉.
Output: [T]← Z(m+1)×(n+1)

〈k〉 , [s] ∈ {1, . . . , n+m}m, [u] ∈ {1, . . . , n+m}n, [q] ∈ Z〈k〉.
[s]← [s1][k] ; // 1 rnd, 1 inv.1

[γ]← [s] = n+m+ 1 ; // log∗(n+m+ 1) rnd, log∗(n+m+ 1) log(n+m+ 1) inv.2

[r]← [k][T] ; // n+m+ 1 inv.3

[`]← FindFirst([r], 1− EQZ(·));4

[`′]← [γ][U][`] + (1− [γ])[S][k] ; // 2 rnd, 6 inv.5

[k′]← [γ][S][k] + (1− [γ])[U][`];6

; // 6 inv

[s1]←WriteAtPosition([s1], [k], [`′1]) ; // 1 rnd, m inv.7

[u1]←WriteAtPosition([u1], [`], [k
′
1]) ; // n inv.8

[u2]←WriteAtPosition([u2], [`], [k
′
2]) ; // n inv.9

[q′]← Invert([q]);10

[p]← [r][`];11

[α]← 1− 2([p] ≤ 0);12

[v]← [α][p][q′];13

[w]← [α] ([p′][T][`]− [k]);14

[v]← [γ][v] + (1 + [γ]);15

[w]← [γ][w];16

[r]← [r] + [q][`] ; // 1 rnd, n inv.17

foreach i ∈ {1, . . . ,m+ 1} do18

foreach j ∈ {1, . . . , n+m+ 1} do19

[t′ij]← [tij][v]− [wi][rj] ; // 1 rnd, (m+ 1)(n+m+ 1) inv.20

([T], [u])← DelCol([T], [u2]);21

([u1])← DelCol([u1], [u2]);22

[q]← [γ][α][p] + (1− [γ])[q] ; // 2 rnd, 3 inv.23

[T′]← ChangeCostReducedRowST,IP([T′], [c], [s], [u], [q]) ; // Prot. A.2424

return ([T′], [s1], [u1], [q])

192 A.2. Simplex Initialization

A.2.2.3 Revised Simplex

Protocol A.37: ([x], pred)← TwoPhaseSimplexRS,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ (Z)m〈k〉, [c] ∈ Zn〈k〉
Output: [x] ∈ Zn〈k〉, pred ∈ {InfeasibleLP,UnboundedLP,Optimal}
([D], [T0], [s], [q])← InitializePhaseIRS,VAR([A], [b]) ; // Prot. A.381

([D], [s],pred, [q])← IterateRS,VAR([D], [s], [T0], [q]) ; // Prot. A.12

[T]← [dm+1][T
0
n+m+1] ; // 1 rnd, 1 inv3

t← Open([t]) ; // 1 rnd, 1 inv.4

if t < 0 then5

return (0,pred);6

([D], [T0], [s], [q])← InitializePhaseIIRS([D], [s], [c], [T0], [q]);7

// Prot. A.39 or Prot. A.40

([D], [s], pred, [q])← IterateRS,VAR([D], [s], [T0], [q]) ; // Prot. A.18

[x]← GetSolutionRS,VAR([D], [s], [T0], [q]) ; // Prot. A.51

return ([x], pred)9

Protocol A.38: ([D], [s], [k], [T0], [q])← InitializePhaseIRS,VAR([A], [b])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉.

Output: [D] ∈ Z(m+1)×(m+1)
〈k〉 , [s] ∈ {1, . . . , n+m+ 1}m, [T0] ∈ Z(m+1)×(n+m+1)

〈k〉 ,

[q] ∈ Z〈k〉
VAR = IP :

[q] = [1];1

([b], [k])← FindMin([b], LTZ) ; // dlogme(6 + 2) rnd, (m− 1)((4k + 2) + 2) inv.2

[β]← 2([b] ≥ 0)− 1 ; // 6 rnd, (4k + 2) inv.3

[s]←WriteAtPosition ((n+ 1, . . . , n+m), [k], n+ 1);4

[T0]←
(

[A] [Im] [b]
[0] [0] [0]

)
;

5

[D]←
(

[Im] [0]
[0] [1]

)
;

6

[r]← 1− [β]k + (1− [β])em+1 ; // 1 rnd, m inv.7

foreach i ∈ {1, . . . ,m+ 1} do8

foreach j ∈ {1, . . . , n+m+ 1} do9

[dij]← [dij]− [ri][kj] ; // 1 rnd, (m+ 1)(m+ 1) inv.10

return ([D], [s], [k], [T0], [q])11

A. Secure Simplex Protocols 193

Protocol A.39: ([D], [s], [T0])← InitializePhaseIIRS,RP([D], [s], [k], [c], [T0])

Input: [D]← Z(m+1)×(m+1)
〈k〉 , [s] ∈ {1, . . . , n+m+ 1}m, [k] ∈ {0, 1}m, [c] ∈ Zn〈k〉,

[T0]← Z(m+1)×(n+m+1)
〈k〉 .

Output: [D]← Z(m+1)×(m+1)
〈k〉 , [s] ∈ {1, . . . , n+m}m, [T0]← Z(m+1)×(n+m+1)

〈k〉 .

[s]← [s][k] ; // 1 rnd, 1 inv.1

[γ]← [s] = n+m+ 1 ; // log∗(n+m+ 1) rnd, log∗(n+m+ 1) log(n+m+ 1) inv.2

[r]← [k][D] ; // m+ 1 inv.3

[r′]← [r][T0
(n+1,...,n+m)] ; // m inv.4

[`′]← FindFirst([r′], 1− EQZ(·));5

[`]← (0, [`′]) ; // Add n zero’s to `.6

[s]←WriteAtPosition([s], [k], [γ](
∑n+m

i=1 [`i]) + (1− [γ])[s]) ; // 1 rnd, m inv.7

[p′]← Rec([r][`], k);8

[v]← 1;9

[w]← [p′]([D][T0][`]− 2f [k]);10

[w]← [γ][w] ; // 1 rnd, m+ 1 inv.11

foreach i ∈ {1, . . . ,m+ 1} do12

foreach j ∈ {1, . . . , n+m+ 1} do13

[t′ij]← TruncPr([tij][v]− [wi][rj], 3k, 2k) ; // 1 rnd, (m+ 1)(n+m+ 1) inv.14

([D′], [T0])← ChangeCostReducedRowLT,RP([D′], [c], [s], [T0]) ; // Prot. A.2815

return ([D′], [s])16

194 A.2. Simplex Initialization

Protocol A.40: ([D], [s], [T0], [q])← InitializePhaseIIRS,IP([D], [s], [k], [c], [T0], [q])

Input: [D]← Z(m+1)×(m+1)
〈k〉 , [s] ∈ {1, . . . , n+m+ 1}m, [k] ∈ {0, 1}m,

[c] ∈ Zn〈k〉,[T
0]← Z(m+1)×(n+m+1)

〈k〉 , [q] ∈ Z〈k〉.

Output: [D]← Z(m+1)×(m+1)
〈k〉 , [s] ∈ {1, . . . , n+m}m, [T0]← Z(m+1)×(n+m+1)

〈k〉 ,

[q] ∈ Z〈k〉.
[s]← [s][k] ; // 1 rnd, 1 inv.1

[γ]← [s] = n+m+ 1 ; // log∗(n+m+ 1) rnd, log∗(n+m+ 1) log(n+m+ 1) inv.2

[r]← [k][D] ; // m+ 1 inv.3

[r′]← [r][T0
(n+1,...,n+m)] ; // m inv.4

[`′]← FindFirst([r′], 1− EQZ(·));5

[`]← (0, [`′]) ; // Add n zero’s to `.6

[s]←WriteAtPosition([s], [k],
∑n+m

i=1 [`i]) ; // 1 rnd, m inv.7

[q′]← Invert([q]);8

[p]← [r′][`′];9

[α]← 1− 2([p] ≤ 0);10

[v]← [α][p][q′];11

[w]← [α]
(
[p′][D][T0][`]− [k]

)
;12

[v]← [γ][v] + (1− [γ]);13

[w]← [w];14

foreach i ∈ {1, . . . ,m+ 1} do15

foreach j ∈ {1, . . . ,m+ 1} do16

[d′ij]← [dij][v]− [wi][rj] ; // 1 rnd, (m+ 1)2 inv.17

[q]← [γ][α][p] + (1− [γ])[q];18

([D′], [T0])← ChangeCostReducedRowLT,RP([D′], [c], [s], [T0], [q]);19

// Prot. A.28

return ([D′], [s], [q])20

A. Secure Simplex Protocols 195

A.2.3 Big-M Method

A.2.3.1 Large valued M

Protocol A.41: ([x], pred)← BigMSimplexVAR1,VAR2([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ (Z)m〈k〉, [c] ∈ Zn〈k〉
Output: [x] ∈ Zn〈k〉, pred ∈ {InfeasibleLP,UnboundedLP,Optimal}
([T], [s], [q])← InitializeBigMVAR1,VAR2([A], [b], [c]) // Prot. A.42, Prot. A.43 or1

Prot. A.44

([T], [s],pred, [q])← IterateVAR1,VAR2([T], [s], [q]) ; // Prot. A.12

t← Open(−[tm+1,n+m+1] > 2L) ; // 1 rnd, 1 inv.3

if t = 1 then4

return (0, Infeasible);5

([x], [q])← GetSolutionVAR1,VAR2([T], [s], [q]) ; // Prot. A.49, A.50, or A.51

return ([x], pred)6

Protocol A.42: ([T], [s], [q])← InitializeBigMLT,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉.

Output: [T] ∈ Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n+ 2m}m, [q] ∈ Z〈k〉.

([T], [s], [q])← InitializePhaseILT,VAR([A], [b]) // Prot. A.18 or Prot. A.301

[tm+1]←M [tm+1] + [c];2

return ([T], [s], [q])3

Protocol A.43: ([T], [s], [u], [q])← InitializeBigMST,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉.

Output: [T] ∈ Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n+ 2m}m, [u] ∈ {1, . . . , n+ 2m}n+m,

[q] ∈ Z〈k〉.
([T], [s], [u], [q])← InitializePhaseIST,VAR([A], [b]);1

// Prot. A.18 or Prot. A.30

[tm+1]←M [tm+1] + [c];2

return ([T], [s], [u], [q])3

Protocol A.44: ([D], [s], [T0], [q])← InitializeBigMRS,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉.

Output: [D] ∈ Z(m+1)×(m+1)
〈k〉 , [s] ∈ {1, . . . , n+ 2m}m, [T0] ∈ Z(m+1)×(n+m+1)

〈k〉 ,

[q] ∈ Z〈k〉.
([D], [s], [T0], [q])← InitializePhaseIRS,VAR([A], [b]);1

// Prot. A.18 or Prot. A.30

[t0m+1]← [c];2

[dm+1]←M [dm+1];3

return ([D], [s], [T0], [q])4

196 A.2. Simplex Initialization

A.2.3.2 Alternative

Protocol A.45: ([x], pred)← BigMSimplexAltVAR1,VAR2([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ (Z)m〈k〉, [c] ∈ Zn〈k〉
Output: [x] ∈ Zn〈k〉, pred ∈ {InfeasibleLP,UnboundedLP,Optimal}
([T], [s], [q])← InitializeBigMAltVAR1,VAR2([A], [b], [c]) // Prot. A.46, Prot. A.47 or1

Prot. A.48

([T], [s],pred, [q])← IterateBigMAltVAR1,VAR2([T], [s], [q]) ; // Prot. A.552

t← Open([tm+2,n+m+1] = 0) ; // 1 rnd, 1 inv.3

if t = 0 then4

return (0, Infeasible);5

([x], [q])← GetSolutionVAR1,VAR2([T], [s], [q]) ; // Prot. A.49, A.50, or A.51

return ([x], pred)6

Protocol A.46: ([T], [s], [q])← InitializeBigMAltLT,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉.

Output: [T] ∈ Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n+ 2m}m, [q] ∈ Z〈k〉.

([T], [s], [q])← InitializePhaseILT,VAR([A], [b]);1

// Prot. A.18 or Prot. A.30

[tm+2]← [tm+1];2

[tm+1]← [c];3

return ([T], [s], [q])4

Protocol A.47: ([T], [s], [u], [q])← InitializeBigMAltST,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉.

Output: [T] ∈ Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n+ 2m}m, [u] ∈ {1, . . . , n+ 2m}n+m,

[q] ∈ Z〈k〉.
([T], [s], [u], [q])← InitializePhaseIST,VAR([A], [b]);1

// Prot. A.18 or Prot. A.30

[tm+2]← [tm+1];2

[tm+1]← [c];3

return ([T], [s], [u], [q])4

A. Secure Simplex Protocols 197

Protocol A.48: ([D], [s], [T0], [q])← InitializeBigMAltRS,VAR([A], [b], [c])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉.

Output: [D] ∈ Z(m+1)×(m+1)
〈k〉 , [s] ∈ {1, . . . , n+ 2m}m, [T0] ∈ Z(m+1)×(n+m+1)

〈k〉 ,

[q] ∈ Z〈k〉.
([D], [s], [T0], [q])← InitializePhaseIRS,VAR([A], [b]);1

// Prot. A.18 or Prot. A.30

[t0m+2]← [t0m+1];2

[t0m+1]← [c];3

[dm+2]← dm+1;4

[dm+1]← 0;5

return ([D], [s], [T0], [q])6

A.2.4 Output Solution

Protocol A.49: ([x], [q])← GetSolutionLT,VAR([T], [s], [q])

Input: [T] ∈ Z(m+1)×(n+m+1)
〈k〉 , [s] ∈ {1, . . . , n+m}m, [q] ∈ Z〈k〉.

Output: [x] ∈ Zn〈k〉, [q] ∈ Z〈k〉.
[x]← 0;
foreach i ∈ {1, . . . ,m} do

[σi]← ConvertUnary([si], n);1

[x]←WriteAtPosition([x], [σi], [ti(n+m+1)]);2

return ([x], [q])3

Protocol A.50: ([x], [q])← GetSolutionST,VAR([T], [s], [q])

Input: [T] ∈ Z(m+1)×(n+1)
〈k〉 , [s] ∈ {1, . . . , n+m}m, [q] ∈ Z〈k〉.

Output: [x] ∈ Zn〈k〉, [q] ∈ Z〈k〉.
return GetSolutionLT,VAR([T], [s], [q])1

Protocol A.51: ([x], [q])← GetSolutionRS,VAR([D], [s], [T0], [q])

Input: [D] ∈ Z(m+1)×(m+1)
〈k〉 , [s] ∈ {1, . . . , n+m}m, [T0] ∈ Z(m+1)×(n+m+1)

〈k〉 , [q] ∈ Z〈k〉.
Output: [x] ∈ Zn〈k〉, [q] ∈ Z〈k〉.
[x]← 0;
[t]← [D][T0

n+m+1];
foreach i ∈ {1, . . . ,m} do

[σi]← ConvertUnary([si], n);1

[x]←WriteAtPosition([x], [σi], [ti]);2

return ([x], [q])3

198 A.2. Simplex Initialization

A.2.5 Alternative Iterations

A.2.5.1 Phase I Small Tableau Simplex

Protocol A.52:
([T], [s], pred, [u], [q])← IteratePhaseISTVAR([T], [s], [T0], [u], [q])

Input: T ∈ Z(m+1)×(n+m+1)
〈k〉 , S ∈ {1, . . . , n+ 2m}m × {0, 1}m,

U ∈ {1, . . . , n+ 2m}n+m × {0, 1}n+m, q ∈ Z〈k〉.
Output: T ∈ Z(m+1)×(n+1)

〈k〉 , S ∈ {1, . . . , n+ 2m}m × {0, 1}m,

pred ∈ {UnboundedLP,Optimal}, U ∈ {1, . . . , n+ 2m}n+m × {0, 1}n+m,
q ∈ Z〈k〉.

(d, [`], [pc])← GetPivotColumnPhaseIST([T],1− [u2]) ; // Protocol A.531

if d = 0 then2

return ([T], [S],Optimal, [U], [q]) ;3

(d, [k], [pr])← GetPivotRowST(T,pc) ; // Protocol A.74

if d = 0 then5

return (T,S,UnboundedLP, [U], [q]);6

([T], [S], [U], [q])← UpdatePhaseISTVAR([T], [S], [k], [pc], [pr], [U], [q]) ;7

// Protocol A.54

return IteratePhaseISTVAR([T], [S], [U], [q]);8

Protocol A.53: (d, [`], [pc])← GetPivotColumnPhaseIST([T], [v])

Input: [T] ∈ Z(m+1)×(n+1)
〈k〉

Output: d ∈ {0, 1}, [`] ∈ {0, 1}n, [pc] ∈ Zm+1
〈k〉

[t] =
(
[v1][t(m+1)1], . . . , [vn+m][t(m+1)(n+m)]

)
;1

PIVOTRULE = DANTZIG :
2a ([`], [min])← FindMin([t], LTZ) ; // dlog ne(6 + 2) rnd, (n− 1)((4k + 2) + 2) inv

3a [d]← [min] < 0 ; // 6 rnd, (4k + 2) inv

PIVOTRULE = BLAND :
2b [`]← FirstNeg([t]) ; // (6 + 3) rnd, n((4k + 2) + 5)− 1 inv

3b [d]←
∑n

i=1[`i];

d← Open([d]) ; // 1 rnd, 1 inv.4

if d = 0 then return (0, [`],0);5

[pc] = [T][`] ; // 1 rnd, m+ 1 inv.6

return (1, [`], [pc])7

A. Secure Simplex Protocols 199

Protocol A.54:
([T′], [s], [u], [q])← UpdatePhaseISTVAR([T], [s], [`], [k], [pc], [pr], [u], [q])

Input: [T] ∈ Z(m+1)×(n+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [`] ∈ {0, 1}n, [k] ∈ {0, 1}m,

[pc] ∈ Zm+1
〈k〉 , [pr] ∈ Zn+1

〈k〉 , [u] ∈ {1, . . . , n}n, [q] ∈ Z〈k〉.

Output: [T′] ∈ Z(m+1)×(n+1)
〈k〉 , [s] ∈ {1, . . . , n}m, [u] ∈ {1, . . . , n}n, [q] ∈ Z〈k〉.

([T′], [s1], [u1], [q])← UpdateST,VAR([T], [s1], [`], [k], [pc], [pr], [u1], [q]) ; // Prot. A.8

[`′]← [u2][`] ; // 1 rnd, 1 inv.1

[k′]← [s2][k] ; // 1 inv2

[s2]←WriteAtPosition([s2], [k], [`′]) ; // 1 rnd, m inv.3

[u2]←WriteAtPosition([u2], [`], [k
′]) ; // n inv.4

return ([T′], [S], [U], [p]);5

A.2.5.2 Big-M Alternative

Protocol A.55:
([T], [s], pred, [u], [q])← IterateBigMAltVAR1,VAR2([T], [s], [T0], [u], [q])

Input: T ∈ Z(m+1)×(n′+1)
〈k〉 , s ∈ {1, . . . , n+m}m,

T0 ∈ Z(m+1)×(n+m+1)
〈k〉 ,u ∈ {1, . . . , n}n, q ∈ Z〈k〉.

Output: T ∈ R(m+1)×(n+1), s ∈ {1, . . . , n}m,pred ∈ {UnboundedLP,Optimal},
u ∈ {1, . . . , n}n, q ∈ Z〈k〉.

(d, [`], [pc])← GetPivotColumnBigMAltVAR1([T], [T0]) ; // Prot. A.561

if d = 0 then2

return ([T], [s],Optimal, [u], [q]) ;3

(d, [k], [pr])← GetPivotRowVAR1(T,p
c,T0) ; // Prot. A.3, A.7, or A.11.4

if d = 0 then5

return (T, s,UnboundedLP, [u], [q]);6

([T], [s], [u], [q])← UpdateVAR1,VAR2([T], [s], [k], [pc], [pr], [T0], [u], [q]);7

// Prot. A.4, A.5,A.8,A.9,A.12,A.13

return IterateVAR1,VAR2([T], [s], [u], [q]);8

200 A.2. Simplex Initialization

Protocol A.56: (d, [`], [pc])← GetPivotColumnBigMAltVAR([T])

Input: [T] ∈ Z(m+1)×(n+m+1)
〈k〉

Output: d ∈ {0, 1}, [`] ∈ {0, 1}n+m, [pc] ∈ Zm+1
〈k〉

VAR = LT, ST
1a [t1] = ([t(m+1)1], . . . , [t(m+1)(n+m)]);
2a [t2] = ([t(m+2)1], . . . , [t(m+2)(n+m)]);

VAR = RS
1b [t1] = [dm+1]([T

0
1], . . . , [T

0
(n+m)]);

2b [t2] = [dm+2]([T
0
1], . . . , [T

0
(n+m)]);

PIVOTRULE = DANTZIG :
3a ([`], [min])← FindMin(([t1], [t2]),BigMLT) ; // dlog n+me(6 + 2) rnd,

3(n+m− 1)((4k + 2) + 2) inv

4a [d]← [min] < 0 ; // 6 rnd, (4k + 2) inv

PIVOTRULE = BLAND :
3b [`]← FindFirst(([t1], [t2]),BigMLTZ) ; // (6 + 3) rnd, (n+m)((4k + 2) + 5)− 1 inv

4b [d]←
∑n

i=1[`i];

d← Open([d]) ; // 1 rnd, 1 inv.5

if d = 0 then return (0, [`],0);6

[pc] = [T][`] ; // 1 rnd, m+ 2 inv.7

return (1, [`], [pc])8

Protocol A.57: [b]← BigMLTZ([x], [y])

[α]← [y] < 0;1

[β]← [y] = 0;2

[γ]← [x] ≤ 0;3

[b]← [α] + (1− α)βγ ; // 2 rnd, 2 inv.4

return [b]5

Protocol A.58: [b]← BigMLT(([x1], [x2]), ([y1], [y2]))

[d1]← [x1]− [x2];1

[d2]← [y1]− [y2];2

[b]← BigMLTZ([d1], [d2]);3

return [b]4

A. Secure Simplex Protocols 201

A.3 Simplex Verification

Protocol A.59: δ ← VerifySolutionVAR1,VAR2([A], [b], [c], [T], [s], [x], [q], pred, [i])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉, [T]← Z(m+1)×(n+m+p+1)
〈k〉 ,

[s] ∈ {1, . . . , n+m+ p}m, [x] ∈ Zn〈k〉, [q] ∈ Z〈k〉,
pred ∈ {Optimal, Infeasible,Unbounded}, [i] ∈ {0, 1}n+m.

Output: δ ∈ {0, 1}.
if pred = Optimal then1

return VerifyOptimalVAR1,VAR2([A], [b], [c], [T], [s], [x], [q],u,T0).2

if pred = Infeasible then3

return VerifyInfeasibleVAR1,VAR2([A], [b], [T], [s], [u], [T0]).4

if pred = Unbounded then5

return VerifyUnboundedVAR1,VAR2([A], [b], [c], [T], [s], [x], [q], [i]).6

A.3.1 Large Tableau Simplex

Protocol A.60: δ ← VerifyOptimalLT,RP([A], [b], [c], [T], [s], [x])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉, [T]← Z(m+1)×(n+m+p+1)
〈k〉 ,

[s] ∈ {1, . . . , n+m+ p}m, [x] ∈ Zn〈k〉.
Output: δ ∈ {0, 1}.
[p]← −([t(m+1)(n+1)], . . . , [t(m+1)(n+m)]);1

[α′]← 1− ([x] ≥ 0);2

[β′]← 1− ([p] ≤ 0);3

[γ]← 1− ([p][b] = [c][x]);4

[α]← 1− ([A][x] ≤ [b]);5

[β]← 1− ([p][A] ≤ [c]);6

δ ← EQZ
(

[γ] +
∑m

i=1 ([αi] + [β′i]) +
∑n

j=1

(
[α′j] + [βj]

))
;7

return [δ]8

Protocol A.61: δ ← VerifyInfeasibleLT([A], [b], [T], [s])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [T]← Z(m+1)×(n+m+p+1)
〈k〉 , [s] ∈ {1, . . . , n+m+ p}m.

Output: δ ∈ {0, 1}.
[p]← −([t(m+1)(n+1)], . . . , [t(m+1)(n+m)]);1

[γ]← 1− ([p][b] > 0);2

[α]← 1− ([p] ≤ [0]);3

[β]← 1− ([p][A] ≤ [0]);4

δ ← EQZ
(

[γ] +
∑m

i=1[αi]
∑n

j=1[βj]
)

;5

[δ]6

202 A.3. Simplex Verification

Protocol A.62: δ ← VerifyOptimalLT,IP([A], [b], [c], [T], [s], [x], [q])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉, [T]← Z(m+1)×(n+m+p+1)
〈k〉 ,

[s] ∈ {1, . . . , n+m+ p}m, [x] ∈ Zn〈k〉, [q] ∈ Z〈k〉.
Output: δ ∈ {0, 1}.
[p]← −([t(m+1)(n+1)], . . . , [t(m+1)(n+m)]);1

[α′]← 1− ([x] ≥ 0);2

[β′]← 1− ([p] ≤ 0);3

[γ]← 1− ([p][b] = [c][x]);4

[α]← 1− ([A][x] ≤ [q][b]);5

[β]← 1− ([p][A] ≤ [q][c]);6

[χ]← 1− ([q] > 0);7

δ ← EQZ
(

[χ] + [γ] +
∑m

i=1 ([αi] + [β′i]) +
∑n

j=1

(
[α′j] + [βj]

))
;8

return [δ]9

Protocol A.63: δ ← VerifyUnboundedLT,RP([A], [b], [c], [T], [s], [i])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉, [T]← Z(m+1)×(n+m+p+1)
〈k〉 ,

[s] ∈ {1, . . . , n+m+ p}m, [i] ∈ {0, 1}n+m.
Output: δ ∈ {0, 1}.
[t]← [T][i];1

[d]← 0;
foreach j ∈ {1, . . . ,m} do

[σi]← ConvertUnary([si], n+m);2

[d]←WriteAtPosition([d], [σi],−[tj]);3

[d]←WriteAtPosition([d], [i], 1);4

[α′]← 1− ([x] ≥ 0);5

[β′]← 1− ([d] ≥ 0);6

[α]← 1− ([A][x] ≤ [b]);7

[β]← 1− ([Ad] = 0);8

[γ]← [c]([x] + [d]) < [c][x];9

δ ← EQZ
(

[γ] +
∑m

i=1 ([αi] + [βi]) +
∑n

j=1

(
[α′j] + [β′j]

))
;10

return [δ]11

A. Secure Simplex Protocols 203

Protocol A.64: δ ← VerifyUnboundedLT,IP([A], [b], [c], [T], [s], [i], [q])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉, [T]← Z(m+1)×(n+m+p+1)
〈k〉 ,

[s] ∈ {1, . . . , n+m+ p}m, [i] ∈ {0, 1}n+m, [q] ∈ Z〈k〉.
Output: δ ∈ {0, 1}.
[t]← [T][i];1

[d]← 0;
foreach j ∈ {1, . . . ,m} do

[σi]← ConvertUnary([si], n+m);2

[d]←WriteAtPosition([d], [σi],−[tj]);3

[d]←WriteAtPosition([d], [i], 1);4

[α′]← 1− ([x] ≥ 0);5

[β′]← 1− ([d] ≥ 0);6

[α]← 1− ([A][x] ≤ [q][b]);7

[β]← 1− ([A]([x] + [d]) ≤ [q][b]);8

[χ]← 1− ([q] > 0);9

[γ]← [c]([x] + [d]) < [c][x];10

δ ← EQZ
(

[γ] + [χ] +
∑m

i=1 ([αi] + [βi]) +
∑n

j=1

(
[α′j] + [β′j]

))
;11

return [δ]12

A.3.2 Small Tableau Simplex

Protocol A.65: δ ← VerifyOptimalST,RP([A], [b], [c], [T], [s], [x], [u])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉, [T]← Z(m+1)×(n+p+1)
〈k〉 ,

[s] ∈ {1, . . . , n+m+ p}m, [x] ∈ Zn〈k〉, [u] ∈ {1, . . . , n+m+ p}n+p.
Output: δ ∈ {0, 1}.
[t]← 0;1

foreach i = 1, . . . , n do2

[υi]← ConvertUnary([ui], n+m);3

[t]←WriteAtPosition([t], [υi],−[t(m+1)i]);4

[p]← ([tn+1], . . . , [tn+m]);5

[α′]← 1− ([x] ≥ 0);6

[β′]← 1− ([p] ≤ 0);7

[γ]← 1− ([p][b] = [c][x]);8

[α]← 1− ([A][x] ≤ [b]);9

[β]← 1− ([p][A] ≤ [c]);10

δ ← EQZ
(

[γ] +
∑m

i=1 ([αi] + [β′i]) +
∑n

j=1

(
[α′j] + [βj]

))
;11

return [δ]12

204 A.3. Simplex Verification

Protocol A.66: δ ← VerifyOptimalST,IP([A], [b], [c], [T], [s], [x], [u], [q])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉, [T]← Z(m+1)×(n+p+1)
〈k〉 ,

[s] ∈ {1, . . . , n+m+ p}m, [x] ∈ Zn〈k〉, [u] ∈ {1, . . . , n+m+ p}n+p, [q] ∈ Z〈k〉.
Output: δ ∈ {0, 1}.
[t]← 0;1

foreach i = 1, . . . , n do2

[υi]← ConvertUnary([ui], n+m);3

[t]←WriteAtPosition([t], [υi],−[t(m+1)i]);4

[p]← ([tn+1], . . . , [tn+m]);5

[α′]← 1− ([x] ≥ 0);6

[β′]← 1− ([p] ≤ 0);7

[γ]← 1− ([p][b] = [c][x]);8

[α]← 1− ([A][x] ≤ [q][b]);9

[β]← 1− ([p][A] ≤ [q][c]);10

[χ]← 1− ([q] > 0);11

δ ← EQZ
(

[χ] + [γ] +
∑m

i=1 ([αi] + [β′i]) +
∑n

j=1

(
[α′j] + [βj]

))
;12

return [δ]13

Protocol A.67: δ ← VerifyInfeasibleST([A], [b], [T], [s], [u])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [T]← Z(m+1)×(n+p+1)
〈k〉 , [s] ∈ {1, . . . , n+m+ p}m,

[u] ∈ {1, . . . , n+m+ p}n+p.
Output: δ ∈ {0, 1}.
[t]← 0;1

foreach i = 1, . . . , n do2

[υi]← ConvertUnary([ui], n+m);3

[t]←WriteAtPosition([t], [υi],−[t(m+1)i]);4

[p]← ([tn+1], . . . , [tn+m]);5

[γ]← 1− ([p][b] > 0);6

[α]← 1− ([p] ≤ [0]);7

[β]← 1− ([p][A] ≤ [0]);8

δ ← EQZ
(

[γ] +
∑m

i=1[αi]
∑n

j=1[βj]
)

;9

return [δ]10

A. Secure Simplex Protocols 205

Protocol A.68: δ ← VerifyUnboundedST,VAR([A], [b], [T], [s], [q], [i])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉, [T]← Z(m+1)×(n+p+1)
〈k〉 ,

[s] ∈ {1, . . . , n+m+ p}m, [q] ∈ Z〈k〉, [i] ∈ {0, 1}n+m.
Output: δ ∈ {0, 1}.
return VerifyUnboundedLT,VAR([A], [b], [T], [s], [q], [i])

A.3.3 Revised Simplex

Protocol A.69: δ ← VerifyOptimalRS,RP([A], [b], [c], [D], [s], [x])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉, [D]← Z(m+1)×(m+1)
〈k〉 ,

[s] ∈ {1, . . . , n+m+ p}m, [x] ∈ Zn〈k〉.
Output: δ ∈ {0, 1}.
[p]← −([d(m+1)1], . . . , [d(m+1)n]);1

[α′]← 1− ([x] ≥ 0);2

[β′]← 1− ([p] ≤ 0);3

[γ]← 1− ([p][b] = [c][x]);4

[α]← 1− ([A][x] ≤ [b]);5

[β]← 1− ([p][A] ≤ [c]);6

δ ← EQZ
(

[γ] +
∑m

i=1 ([αi] + [β′i]) +
∑n

j=1

(
[α′j] + [βj]

))
;7

return Open([δ])8

Protocol A.70: δ ← VerifyOptimalRS,IP([A], [b], [c], [D], [s], [x], [q])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉, [D]← Z(m+1)×(m+1)
〈k〉 ,

[s] ∈ {1, . . . , n+m+ p}m, [x] ∈ Zn〈k〉, [q] ∈ Z〈k〉.
Output: δ ∈ {0, 1}.
[p]← −([d(m+1)1], . . . , [d(m+1)n]);1

[α′]← 1− ([x] ≥ 0);2

[β′]← 1− ([p] ≤ 0);3

[γ]← 1− ([p][b] = [c][x]);4

[α]← 1− ([A][x] ≤ [q][b]);5

[β]← 1− ([p][A] ≤ [q][c]);6

[χ]← 1− ([q] > 0);7

δ ← EQZ
(

[χ] + [γ] +
∑m

i=1 ([αi] + [β′i]) +
∑n

j=1

(
[α′j] + [βj]

))
;8

return Open([δ])9

206 A.3. Simplex Verification

Protocol A.71: δ ← VerifyInfeasibleRS([A], [b], [D], [s], []T 0)

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [D]← Z(m+1)×(m+1)
〈k〉 , [s] ∈ {1, . . . , n+m+ p}m,

[T0]← Z(m+1)×(n+p+m+1)
〈k〉 .

Output: δ ∈ {0, 1}.
[p]← −[dm+1]([T

0
n+1], . . . , [T

0
n+m]);1

[γ]← 1− ([p][b] > 0);2

[α]← 1− ([p] ≤ [0]);3

[β]← 1− ([p][A] ≤ [0]);4

δ ← EQZ
(

[γ] +
∑m

i=1[αi]
∑n

j=1[βj]
)

;5

[δ]6

Protocol A.72: δ ← VerifyUnboundedRS,RP([A], [b], [c], [T], [s], [q], [i])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉, [T]← Z(m+1)×(n+m+p+1)
〈k〉 ,

[s] ∈ {1, . . . , n+m+ p}m, [q] ∈ Z〈k〉, [i] ∈ {0, 1}n+m.
Output: δ ∈ {0, 1}.
[t]← [D][T0

i];1

[d]← 0;2

foreach j ∈ {1, . . . ,m} do
[σi]← ConvertUnary([si], n+m);3

[d]←WriteAtPosition([d], [σi],−[tj]);4

[d]←WriteAtPosition([d], [i], 1);5

[α′]← 1− ([x] ≥ 0);6

[β′]← 1− ([d] ≥ 0);7

[α]← 1− ([A][x] ≤ [b]);8

[β]← 1− ([A]([x] + [d]) ≤ [b]);9

[γ]← [c]([x] + [d]) < [c][x];10

δ ← EQZ
(

[γ] +
∑m

i=1 ([αi] + [βi]) +
∑n

j=1

(
[α′j] + [β′j]

))
;11

return [δ]12

A. Secure Simplex Protocols 207

Protocol A.73: δ ← VerifyUnboundedRS,RP([A], [b], [c], [T], [s], [q], [i])

Input: [A] ∈ Zm×n〈k〉 , [b] ∈ Zm〈k〉, [c] ∈ Zn〈k〉, [T]← Z(m+1)×(n+m+p+1)
〈k〉 ,

[s] ∈ {1, . . . , n+m+ p}m, [q] ∈ Z〈k〉, [i] ∈ {0, 1}n+m.
Output: δ ∈ {0, 1}.
[t]← [D][T0

i];1

[d]← 0;2

foreach j ∈ {1, . . . ,m} do
[σi]← ConvertUnary([si], n+m);3

[d]←WriteAtPosition([d], [σi],−[tj]);4

[d]←WriteAtPosition([d], [i], 1);5

[α′]← 1− ([x] ≥ 0);6

[β′]← 1− ([d] ≥ 0);7

[α]← 1− ([A][x] ≤ [q][b]);8

[β]← 1− ([A]([x] + [d]) ≤ [q][b]);9

[γ]← [c]([x] + [d]) < [c][x];10

[χ]← 1− ([q] > 0);11

δ ← EQZ
(

[χ] + [γ] +
∑m

i=1 ([αi] + [βi]) +
∑n

j=1

(
[α′j] + [β′j]

))
;12

return [δ]13

208 A.3. Simplex Verification

Index

Σ-proof, 18
Σ-protocol, 14, 20
α-special soundness, 15
k-ary operation, 75

additive secret sharing, 11
admissible, 146
adversary, 1

active, 1
adaptive, 1
passive, 1
static, 1

arithmetic circuit, 20
artificial LP, 38, 134
artificial variable, 59, 124
automorphism, 156
automorphism group, 156

basic feasible direction, 30
basic feasible solution, 29
basic solution, 29
big-M method, 59, 69, 134

canonical LP, 68
Cayley graph, 157, 162
certificate, 40
certificate of correctness, 151
certificate of feasibility, 41
certificate of infeasibility, 43, 137
certificate of optimality, 42, 136
certificate of unboundedness, 43, 140
collaborative supply chain management,

4
commitment scheme, 13
communication model, 1

cryptographic, 1
information theoretic, 2

complexity measures
communication, 2, 76

invocation, 76
round, 2, 76

condensed tableau, 55
convex polyhedron, 28
cost-reduced vector, 32
cross-ratio, 160
cycling, 34

DCR assunmption, 10
DDH assumption, 9
degenerate direction, 33
degenerate LP, 33
DH assumption, 9
distribution ensamble, 10
DL assumption, 9
dual LP, 41

factorization assumption, 9
Farkas’ lemma, 42
feasible direction, 30
Fiat-Shamir transform, 18, 149
fixed point arithmetic, 100
fixed point representation, 100
forking lemma, 18

generalized Fiat-Shamir transform, 19, 149
generalized inner product, 84

Hadamard’s inequality, 50
hypergraph, 156

u-uniform, 156
directed, 156

indistinguishable, 10
integer pivot, 48
interior point method, 3, 29, 35

Dikin, 35
Karmarmar, 35

knowledge soundness, 14

209

210 Index

large tableau simplex, 44, 108
linear program, 27

canonical LP, 68
degenerate LP, 33
feasible, 28
infeasible, 28
unbounded, 28, 32, 111

linear programming, 3
basic feasible solution, 29
basic solution, 29
basis, 29
basis matrix, 29
co-basis, 29
fundamental theorem, 30
solution, 29

Möbius transform, 160
MPC, 1

composition theorem, 22
hybrid model, 22
ideal-real model, 22

multiparty Σ-protocol, 147

negligible, 10
Newton-Rhapson method, 101
NIZK, 18
normalization factor, 103
NP language, 13
NP relation, 13

optimal solution, 2, 31

permutation, 155
permutation group, 155
permutation matrix, 155
pivot, 44
pivoting rule, 33

Bland, 34, 111, 116, 120
Dantzig, 34, 110, 116, 120

prefix multiplication, 90
prefix operation, 75
primal LP, 41
proof of knowledge, 14
protocol, 1

range, 100
reciprocal, 102
redundant constraint, 64

replicated secret sharing, 11
resolution, 100
restricted shuffles, 155
revised simplex, 55, 118
RSA assumption, 9

secret index, 104
secret sharing, 10
Shamir’s secret sharing, 10
shuffle, 155
simplex algorithm, 3, 29, 33, 43, 108

LT-IP, 53
LT-RP, 53
RS-IP, 57
RS-RP, 57
ST-IP, 55
ST-RP, 55

simplex tableau, 44
simulation paradigm, 20
slack variable, 108
small tableau simplex, 54, 115
statistical distance, 10
statistical security, 76
strong duality, 42
supply chain, 3
supply chain management, 4

trapdoor commitment scheme, 13
two-phase simplex, 58, 59, 121

universal verifiability, 2
universal verifiable, 145, 146

valid direction, 30
validating function, 40

weak duality, 41

zero-knowledge proof, 13
prover, 13
verifier, 13
witness, 13

List of Symbols

v vector, (defined on page 9)

vi i-th entry of v, (defined on page 9)

M two dimensional matrix, (defined on page 9)

Mj j-th row of M, (defined on page 9)

mi i-th row of M, (defined on page 9)

mij entry in row i and column j of M, (defined on page 9)

Vs (Vsi . . .Vsm), where s = (s1, . . . , sm), (defined on page 29)

ei i-th unity vector, (defined on page 44)

Im m×m identity matrix, (defined on page 44)

‖ v ‖ Euclidian norm of v, (defined on page 50)

diag(x) diagonal matrix where column i equals xiei, (defined on page 122)

argmin(x) index of a minimum of x, (defined on page 34)

b̄ negation of the bit b, (defined on page 137)

|x|b boolean evaluation of x, (defined on page 40)

x ∈R X a uniformly random draw from the set X resulting in x, (defined
on page 10)

[s]k Shamir share of s held by party Pk, (defined on page 10)

[s] collection of all Shamir shares of s, (defined on page 10)

[s]Ai additive share of s held by party Pi, (defined on page 11)

[s]A collection of all additive shares of s, (defined on page 11)

[s]Rk replicated share of s held by each party Pi not in the k-th unqual-
ified set, (defined on page 12)

[s]R collection of all replicated shares of s, (defined on page 12)

211

212 List of Symbols

x = xk−1 . . . x0 bit-decomposition of x starting with the most significant bit, (de-
fined on page 90)

[x]B bitwise sharing of x, (defined on page 90)

[[x]] probabilistic homomorphic encryption of x, (defined on page 152)

G = (V,A) directed hypergraph on vertices V and arcsA, (defined on page 156)

Z set of all integers, (defined on page 9)

Zp set of integers modulo p, (defined on page 9)

Q set of all rationals, (defined on page 47)

Fq a finite field of order q, (defined on page 10)

Z〈k〉 set of k-bit signed integers, (defined on page 78)

Q〈k,f〉 set of k bit signed fixed point numbers with range f , (defined on
page 99)

Sk the group of all permutations acting on k elements, (defined on
page 156)

Linear Programming

m number of constraints, excluding nonnegativity, (defined on page 28)

n number of unknowns, (defined on page 28)

A coefficients of the constraints, (defined on page 28)

c coefficients of the objective, (defined on page 28)

b constants of the constraints, (defined on page 28)

x primal solution, (defined on page 28)

p dual solution, (defined on page 41)

s basis, (defined on page 29)

B basis matrix, (defined on page 29)

u co-basis, (defined on page 29)

d direction, (defined on page 30)

d` `-th basic direction, (defined on page 30)

c cost-reduced vector, (defined on page 32)

y artificial variables, (defined on page 38)

T simplex tableau, (defined on page 44)

List of Protocols

2.1 SShare . 11
2.2 SOpen . 11
2.3 AShare . 11
2.4 AOpen . 12
2.5 RShare . 12
2.6 ROpen . 12
2.7 FS . 18
2.8 GFS . 19
2.9 Mul . 23
3.1 IterateLT,RP . 47
3.2 FindPivotElement . 47
3.3 PivotRP . 47
3.4 IterateLT,IP . 49
3.5 PivotIP . 50
3.6 IterateST,VAR . 56
3.7 PivotRS,RP . 57
3.8 IterateRS,VAR . 57
3.9 FindPivotElementRS . 58
3.10 PivotRS,IP . 58
3.11 TwoPhaseSimplexVAR1,VAR2 . 60
3.12 InitializePhaseIVAR1,VAR2 . 61
3.13 InitializePhaseIIVAR1,VAR2 . 63
3.14 DeleteRowAndColumnVar1 . 66
3.15 DeleteColumnVar1 . 67
3.16 ChangeCostReducedRowVAR1,VAR2 . 67
3.17 InitializePhaseI1ArtVAR1,VAR2 . 70
4.1 SetupRandRSS . 79
4.2 PRandRSS . 80
4.3 RSSToShamir . 81
4.4 PRandFld . 81
4.5 PRandRISS . 81
4.6 PRandInt . 82
4.7 PRandZero . 83
4.8 Inner . 84
4.9 MulPub . 85
4.10 InnerPub . 85
4.11 Inv . 86

213

214 List of Protocols

4.12 PRandBit . 86
4.13 PRandBits . 86
4.14 KOpL . 87
4.15 PreOpL . 88
4.16 KMulC . 89
4.17 PreMulC . 89
4.18 PreOrC . 90
4.19 LSB . 90
4.20 BitLTL . 91
4.21 LTEQ . 92
4.22 BitLTC . 93
4.23 PreCarry . 95
4.24 AddBitwise . 95
4.25 BitDec . 95
4.26 EQZ . 98
4.27 EQZPub . 98
4.28 LTZ . 98
4.29 Mod2m . 99
4.30 MulFP . 100
4.31 Trunc . 101
4.32 TruncPr . 101
4.33 RecItNR . 102
4.34 DivNR . 103
4.35 Rec . 103
4.36 Norm . 104
4.37 WriteAtPosition . 104
4.38 DelCol . 105
4.39 DelCols . 105
4.40 ConvertUnary . 106
5.1 FindMin . 110
5.2 FirstNeg . 110
5.3 FracLTZ . 112
5.4 BlandFracLTZ . 112
5.5 FirstNegST . 116
6.1 Σmpc . 147
6.2 Σmpc

VAR . 150
6.3 ConvertZQ2Z . 154
6.4 ShamirToPaillier . 154
A.1 IterateVAR1,VAR2 . 173
A.2 GetPivotColumnLT . 174
A.3 GetPivotRowLT . 174
A.4 UpdateLT,IP . 175
A.5 UpdateLT,RP . 175
A.6 GetPivotColumnST . 176
A.7 GetPivotRowST . 176
A.8 UpdateST,IP . 176
A.9 UpdateST,RP . 177

List of Protocols 215

A.11 GetPivotRowRS . 177
A.10 GetPivotColumnRS . 178
A.12 UpdateRS,IP . 178
A.13 UpdateRS,IP . 178
A.14 ZeroFeasSimplexLT,VAR . 179
A.15 ZeroFeasSimplexST,VAR . 179
A.16 ZeroFeasSimplexRS,VAR . 179
A.17 TwoPhaseSimplexLT,VAR . 180
A.18 InitializePhaseILT,VAR . 180
A.19 InitializePhaseIILT,VAR . 181
A.20 ChangeCostReducedRowLT,VAR . 181
A.21 TwoPhaseSimplexST,VAR . 182
A.22 InitializePhaseIST,VAR . 182
A.23 InitializePhaseIIST,VAR . 183
A.24 ChangeCostReducedRowST,VAR . 183
A.25 TwoPhaseSimplexRS,VAR . 184
A.26 InitializePhaseIRS,VAR . 184
A.27 InitializePhaseIIRS . 185
A.28 ChangeCostReducedRowRS . 185
A.29 TwoPhaseSimplexLT,VAR . 186
A.30 InitializePhaseILT,VAR . 186
A.31 InitializePhaseIILT,RP . 187
A.32 InitializePhaseIILT,IP . 188
A.33 TwoPhaseSimplexST,VAR . 189
A.34 InitializePhaseIST,VAR . 189
A.35 InitializePhaseIIST,RP . 190
A.36 InitializePhaseIIST,IP . 191
A.37 TwoPhaseSimplexRS,VAR . 192
A.38 InitializePhaseIRS,VAR . 192
A.39 InitializePhaseIIRS,RP . 193
A.40 InitializePhaseIIRS,IP . 194
A.41 BigMSimplexVAR1,VAR2 . 195
A.42 InitializeBigMLT,VAR . 195
A.43 InitializeBigMST,VAR . 195
A.44 InitializeBigMRS,VAR . 195
A.45 BigMSimplexAltVAR1,VAR2 . 196
A.46 InitializeBigMAltLT,VAR . 196
A.47 InitializeBigMAltST,VAR . 196
A.48 InitializeBigMAltRS,VAR . 197
A.49 GetSolutionLT,VAR . 197
A.50 GetSolutionST,VAR . 197
A.51 GetSolutionRS,VAR . 197
A.52 IteratePhaseISTVAR . 198
A.53 GetPivotColumnPhaseIST . 198
A.54 UpdatePhaseISTVAR . 199
A.55 IterateBigMAltVAR1,VAR2 . 199
A.56 GetPivotColumnBigMAltVAR . 200

216 List of Protocols

A.57 BigMLTZ . 200
A.58 BigMLT . 200
A.59 VerifySolutionVAR1,VAR2 . 201
A.60 VerifyOptimalLT,RP . 201
A.61 VerifyInfeasibleLT . 201
A.62 VerifyOptimalLT,IP . 202
A.63 VerifyUnboundedLT,RP . 202
A.64 VerifyUnboundedLT,IP . 203
A.65 VerifyOptimalST,RP . 203
A.66 VerifyOptimalST,IP . 204
A.67 VerifyInfeasibleST . 204
A.68 VerifyUnboundedST,VAR . 205
A.69 VerifyOptimalRS,RP . 205
A.70 VerifyOptimalRS,IP . 205
A.71 VerifyInfeasibleRS . 206
A.72 VerifyUnboundedRS,RP . 206
A.73 VerifyUnboundedRS,RP . 207

Acknowledgements

This thesis is the result of four years of study and research at the Crypto and Coding group
at the Eindhoven University of Technology. It would not have been possible without the
help of many people.

First of all, I wish to thank my supervisor Berry Schoenmakers for creating the possibility
to start as a Ph.D. student. Once started, due to his enthusiasm, perseverance and many
useful insights, he turned out to be a very stimulating supervisor. I’m also very grateful for
his sense of humor that created a nice working atmosphere. Together with my promotor
Henk van Tilborg he improved my writing skills significantly. Also, I wish to thank Henk
van Tilborg for being my promotor.

My Ph.D. studies were part of the EU-funded project SecureSCM. Eindhoven Univer-
sity of Technology completed an enthusiastic consortium working on Secure Supply Chain
Management together with SAP, University of Mannheim, University of Milan, European
Business School, Zaragoza Logistics Center, and DHITech Technological District in Puglia.
I wish to thank Octavian Catrina, Florian Kerschbaum, Richard Pibernik, Ernesto Dami-
ani, Axel Schroepfer, and the other members of the consortium for the nice discussions
that gave direction to the research. Most of all, I wish to thank Octavian Catrina for the
nice cooperation during the project. I very much enjoyed the many technical and personal
discussions. Chapters 4 and 5 are the result of our intense cooperation.

I wish to express my gratitude to Onno Boxma, Andries Brouwer, Ronald Cramer, Jesper
Buus-Nielsen, Milan Petkovic, and Alexander Schrijver for agreeing to be a member of my
Ph.D committee and reading my thesis. Special thanks go to Andries Brouwer for his
useful comments and help that improved Chapter 7 significantly.

I thank the members of the Crypto Club for the nice discussions on various interesting
cryptographic topics. Many topics in this thesis have been discussed in those club ses-
sions. Special thanks go to Berry Schoenmakers, Boris Škorić, José Villegas, Peter van
Liesdonk, Tomas Toft, and Mikkel Krøigaard for the many club sessions spent on my
research problems.

One of the properties of the Crypto and Coding group at the Eindhoven University of
Technology is a very nice working atmosphere. Coming to the office was very enjoyable
due to my office mates Peter van Liesdonk, Christiane Peters, José Villegas, Jing Pan,
Peter Schwabe, Mehmet Kiraz, Reza Farashahi, Peter Birkner, Michael Naehrig, Antonino
Somine, Mayla Bruso, Elisa Costante, Bruno Pontes Soares, Daniel Trivellato, Gaëtan
Bisson, Relinde Jurrius, Jan-Jaap van Oosterwijk, Thijs Laarhoven, Dion Boesten, and
Meilof Veeningen. I’m very grateful for the nice after-lunch coffee breaks with Peter L,
Meilof and Relinde. Special thanks go to Henk van Tilborg for being a very accessible
leader of the group and for organizing the daily tea-breaks in which all Ph.D students of
the group could enjoy nice social discussions. Last, but certainly not least in this respect,

217

218 Acknowledgements

I wish to thank our secretary Anita Klooster and our administrator Floortje Haasen for
their patience, support and very nice social conversations.

I couldn’t complete my Ph.D. studies without the support of my family and friends. I
am very grateful for their support in good times and in bad times. Especially, I wish to
thank Marionne van de Camp, who has proofread my thesis and has given me valuable
comments on style, language and formatting and Brigitte Gedike for designing the cover
of this thesis.

Finally, I wish to thank my dear wife Yvonne for her unconditional love and support.
She makes me feel confident and strong.

Sebastiaan de Hoogh
Oosterhout, July 2012

Curriculum Vitae

Sebastiaan de Hoogh was born on July 11, 1981 in Dongen, the Netherlands. He finished
his pre-university education at the Sint-Oelbertgymnasium in Oosterhout, and started his
studies in mathematics at the Eindhoven University of Technology in September 2001.

During the second year of his studies in mathematics he was selected with three other
students to take part in a project about queueing theory. In this project a problem of the
travel agency TUI was solved. In 2005 he did an internship at the Coding and Crypto group
at the Eindhoven University of Technology under supervision of dr. Benne de Weger. The
internship was to study the differential cryptanalysis which has been used to find collisions
for some well known cryptographic hash functions. He received his Bachelor’s of Science
degree in 2006.

In 2007 he spent six months in Sydney Australia for an internship at the Macquarie
University. Together with dr. Scott Contini he worked on improving the running time
of the cryptographic hash function VSH, the Very Smooth Hash function. In 2008, after
writing his Master’s thesis On the speed of VSH, he received his Master’s of Science degree
in Industrial and Applied Mathematics. The degree was awarded cum laude.

He started as a Ph.D. student at the Crypto and Coding group at the Eindhoven Uni-
versity of Technology under supervision of dr. Berry Schoenmakers. This research was
part of the EU-FP7 project SecureSCM which is about secure supply chain management
and has led to various solutions to secure supply chain management using multiparty
computation. In 2012 he works on the Commit project THeCS, which is about thrusted
health-care services. Here, the results of SecureSCM and this thesis can be applied.

219

STATEMENTS

accompanying the dissertation

Design of Large Scale Applications of Secure Multiparty Computation:
Secure Linear Programming

by

Sebastiaan Jacobus Antonius de Hoogh

1. Let (x] and [y] bn Hecrctly shared (or homomorphic encrypted) k bit numbers
and let log*(k) := min{ijlogi(k) ~ l} . There exists a protocol that , after
a preprocessing stage, runs in log' (k) interactive rounds and requires log(k)
openings (or decryptions) for securely computing the secret bit [x = y].

2. Universally Verifiable Multiparty Computation is achieved by applying the
Fiat-Shamir heuristic, or Generalized Fiat-Shamir heuristic [AABN02], to the
rnultiparty B-protocol of [CDNOl].

3. Let p be prime. Let P C S11 be a permutation group, which is represented
by either rotation or affine transforma tion. There exist s au-uniform directed
hypf~rgrnph on p vertices such that P is precisely its group of automorphisms,
where u = 2 if P is represented by rotations and u = 3 if P is represented by
affine transformations.

F\trthermorn, if P C Sp-t1 is represented by Mobius transformations, then
there exists a 4-uniform directed hypergraph on p + 1 vertices such that P is
precisely its group of automorphisms.

4. Conjecture There exists a 5-uniforrn <lirectcd hypergraph on 11 vertic1~s such
that the Mathieu group M 11 is precisely its group of automorphisms. Abo,
there exists a. 6-uniform directed hypergraph on 12 vertices such that the
Mathieu group M12 is precisely its group of automorphisms.

5. Univernally Verifiable Mult iparty Computation that is also Univen;ally Com
posable is achieved by apply ing the Fiat-Shamir heuristic, or Generalize<! Fiat
Sharnir heuristic [AABN02], to the multipa.rty 2:-protocol of [DN03].

6. The protocols for linear programming by [LA06] are inefficient. and incorrect:
in every iteration the size of the valueH in the tableau doubles; this leads
to exponentially large values. Furthermore, the solution extraction <loco not
cheek independcncy of the columns; hence the result may be infeasible.

7. Let A be an m x n matrix and 7r he a function that rotates the columns and
rows of A, i.e. , there exist s 0 S r1 < m and 0 ~ r 2 < n such that t he j -th
row of 7r(A) is equal to the (j + r 1 mod m)-th row of A for all 0 S j < m and
the i-th column of 7r(A) is equal to the (i + r 2 mod n)-th column of A for all
0 ~ i < n. To prove knowledge of 7r the protocol of [TWlO] with respect to
the Cayley graph of the group (Zm x Zn, +) can be used.

8. The running t i m<'~~ of the protocols in this thesis can be improved by applying
packed secret sharing if there are more than 5 parties.

9. It is only a matter of time beforn rnultiparty computation will he used in
practice to solve real life problems.

10. Having a degree at a t echnical university does not at all guarantee enough
t echnical insight to become a skilled handyman.

11. If a cryptographer says that a system is secure, then he means that under
certain circumstances (the model) the system satisfies certain properties (the
corresponding security ddinition) .

12. Security in practice iH not a matter of mathematics or computer science; it is
a matter of psychology.

13. Personal experience shows that carnival is the stro11g/\~t form of team building:

References

We z~in er weer bij en dat is prirna
V'foa, Eiland·ia

We lw'Udcn van de r.rypto en kojjie is een must
W c w~rken door tot 's avonds laat nog lang niet uit_qehlust

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprem
pre. From identification to signatures via the fiat-sh arnir transform:
Minimizing a.ssumptio11s for secmit.y and forward-security. In EURO
CRYPT, pages 418 433, 2002.

[CDNOl] R. Cramer , I. Damgilrd, and J.B. Nielsen . .Multiparty computation from
threshold homomorphic encryption. In EUROCRYPT 2001, volume
2045 of LNCS, pages 280-300. Spri11gcr-V1~rlag , 2001.
Full vcrnion (Oct 2000): http://cprint.iacr.org/2000/055 .

[DN03) I. Damgi'\J·d and J .B. Nielsen. Univernally composable efficient multiparty
computation from threshold homomorphic encryption. In CRYPTO
2003, volume 272Y of LNCS, p1tges 247-264. Springer-Vcrlag, 2003.

[LAOG] .J. Li and M. Atallah. Secure 1t11d Private Collaborative Linear Program
ming. In Proc. 2nd International Conference on Colfoboro.tive Comput~
ing: Networking, Applications and Worksharing (Colal>orateCom 2006),
pages 1Y- 2G, Atlanta, USA, 2006.

[TWlO] Bjorn Terelius a11d Douglas Wikstrom. ProofH of Restricted Shuffles. In
AFRJCACRYPT, pages 100-113, 2010.

	Summary
	Contents
	Introduction
	Cryptographic Primitives
	Basic Primitives
	Indistinguishability
	Secret Sharing
	Commitment Schemes

	Zero-Knowledge Proofs
	-protocols
	Noninteractive zero-knowledge proofs

	Multiparty Computation Model
	Real Model
	Ideal Model
	Hybrid Model
	Multiparty Computation from Shamir Secret Sharing

	Linear Optimization
	Linear Programming
	Simplex Algorithm
	Interior Point Methods
	Initial Feasible Solution
	Verification of the Result

	Implementations of the Simplex Iterations
	Large Tableau Simplex
	Small Tableau Simplex
	Revised Simplex

	Implementations of the Simplex Initializations
	Standard two-phase Simplex
	Two-Phase Simplex with One Artificial Variable
	Big-M Method

	Building Blocks for Secure Linear Programming
	Statistical Security
	Efficient Primitives for Shamir Secret Sharing
	Encoding Signed Integers as Prime Field Elements
	Noninteractive Random Number Generation
	Efficient Arithmetic for Shamir Secret Sharing

	Arithmetic Circuits for Prefix and k-ary Operations
	Multiplication
	Prefix-Or
	Bitwise Comparison
	Bitwise Addition
	Bit Decomposition

	Integer Comparison
	Equality Tests
	Less Than Zero Tests

	Fixed Point Arithmetic
	Truncation
	Division

	Secret Indexing

	Secure Linear Programming
	Secure Simplex Iterations
	Large Tableau Simplex
	Small Tableau Simplex
	Revised Simplex

	Secure Simplex Initialization
	Standard two-phase Simplex
	Two-Phase Simplex with One Artificial Variable
	Big-M Method

	Secure Simplex Verification
	Verification of Optimality
	Verification of Infeasibility
	Verification of Unboundedness

	Performance Comparison

	Universal Verifiability
	Universally Verifiable Secure Computation
	Multiparty -protocols
	Non-interactive Multiparty -proofs

	Efficient Universally Verifiable Computation from Certificate Validation

	Restricted Shuffling
	Proofs of Restricted Shuffles
	Rotation and Rescaling
	Affine Transformations
	Möbius Transforms
	Other Permutation groups

	Conclusions
	Bibliography
	Secure Simplex Protocols
	Simplex Iteration
	Large Tableau Simplex
	Small Tableau Simplex
	Revised Simplex

	Simplex Initialization
	Standard two-phase Simplex
	Two-Phase Simplex with One Artificial Variable
	Big-M Method
	Output Solution
	Alternative Iterations

	Simplex Verification
	Large Tableau Simplex
	Small Tableau Simplex
	Revised Simplex

	Index
	List of symbols
	List of Protocols
	Acknowledgements
	Curriculum Vitae

