

Priorities among multiple queues for processor co-allocation in
multicluster systems
Citation for published version (APA):
Bucur, A. I. D., & Epema, D. H. J. (2003). Priorities among multiple queues for processor co-allocation in
multicluster systems. In Proceedings of the 36th Annual Simulation Symposium (ANSS-36, Orlando FL, USA,
March 30-April 2, 2003) (pp. 15-27). Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/SIMSYM.2003.1192794

DOI:
10.1109/SIMSYM.2003.1192794

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1109/SIMSYM.2003.1192794
https://doi.org/10.1109/SIMSYM.2003.1192794
https://research.tue.nl/en/publications/4676dc45-58bf-4ddc-ab36-373efd6f1608

Priorities among Multiple Queues for
Processor Co-Allocation in Multicluster Systems

A.I.D. Bucur and D.H.J. Epema
Faculty of Information Technology and Systems

Delft University of Technology
P.O. Box 5031, 2600 GA Delft, The Netherlands
e-mail: A.I.D.Bucur, D.H.J.Epema@its.tudelft.nl

Abstract

In systems consisting of multiple clusters of proces-
sors which employ space sharing for scheduling jobs,
such as our Distributed ASCI1 Supercomputer (DAS), co-
allocation, i.e., the simultaneous allocation of processors to
single jobs in multiple clusters, may be required. In order
to handle both single-cluster (local) jobs and multi-cluster
(global) jobs, such systems may have only local schedulers
(which then need to be aware of the whole system), or only
a single global scheduler, or both, and each scheduler has
its own queue. In this paper we assess with simulations
the response times of both local and global jobs in multi-
cluster systems for different configurations of queues, for
different priority orders in which the associated schedulers
are allowed to schedule jobs, and for different job-stream
compositions.

1 Introduction

Over the last decade, clusters and distributed-memory
multiprocessors consisting of hundreds or thousands of
standard CPUs have become very popular. In addition,
recent work in computational and data GRIDs [3, 13] en-
ables applications to access resources in different and pos-
sibly widely dispersed locations simultaneously—that is,
to employ processor co-allocation [8]—to accomplish their
goals, effectively creating single multicluster systems. In
such systems, jobs may be submitted with numbers of com-
ponents that vary between one and the number of clusters.
Whereas single-component jobs may still be handled by lo-
cal cluster schedulers, for the multi-component ones, ei-
ther a separate global scheduler has to be introduced (which

1In this paper, ASCI refers to the Advanced School for Computing and
Imaging in The Netherlands, which came into existence before, and is un-
related to, the US Accelerated Strategic Computing Initiative.

may then also deal with single-component jobs), or the local
schedulers have to be made aware of the whole multicluster
system. In this paper we assess with simulations the average
response time of both single- and multi-component jobs in
multicluster systems for different configurations of queues,
for different priority orders in which the associated sched-
ulers are allowed to schedule jobs, and for several ways in
which jobs with different numbers of components are dis-
tributed among the queues.

Most of the research on processor scheduling in paral-
lel computer systems has been dedicated to multiprocessors
and single-cluster systems (see, e.g., [12]), but hardly any
attention has been devoted to multicluster systems. Two
important elements of co-allocation that are absent when
scheduling jobs in single clusters are the structure of jobs
and the way they are spread across the clusters, and the
number of schedulers in the system and how they interfere.
Of course, using co-allocation does not mean that all jobs
have to be split up into components and spread over the
clusters, small jobs can still go to a single cluster. In this pa-
per we consider what we call unordered job requests: Jobs
specify the numbers of processors they need (exclusively)
in the separate clusters—so we consider space sharing for
rigid jobs [4]—but they are indifferent as to the clusters in
which these numbers of processors are obtained. In general,
there is in the system a mix of jobs with different numbers
of job components.

We design six scheduling policies, some of which have
several versions: one with only a global queue, one with
only local queues, and four with both, in which case single-
component jobs go to the local queues and multi-component
ones to the global queue. An important conclusion is that in
the latter case, which will be the most common in practice,
the best performance is often obtained by giving priority
to the local queues, but in a restricted way taking care that
global jobs do get some chance to run.

Other important factors influencing the performance of

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

co-allocation in multiclusters which we studied previously
are the job structure and sizes, and the sizes of the clusters in
the system [6], and the ratio of the speeds of local and wide-
area communications [7]. Also in [9], co-allocation (called
multi-site computing there) is studied, with as performance
metric the (average weighted) response time. There, jobs
only specify a total number of processors, and are split up
across the clusters. The slow wide-area communication is
accounted for by a factor r by which the total execution
times are multiplied. Co-allocation is compared to keeping
jobs local and to only sharing load among the clusters, as-
suming that all jobs fit in a single cluster. One of the most
important findings is that for r less than or equal to ����, it
pays to use co-allocation.

Our five-cluster second-generation Distributed ASCI Su-
percomputer (DAS) [1, 10] (and its predecessor), which was
an important motivation for this work, was designed to as-
sess the feasibility of running parallel applications across
wide-area systems [5, 14, 16]. In the most general setting,
GRID resources are very heterogeneous; in this paper we re-
strict ourselves to homogeneous multicluster systems, such
as the DAS. Showing the viability of co-allocation in such
systems may be regarded as a first step in assessing the ben-
efit of co-allocation in more general GRID environments.

2 The Model

In this section we describe our model of multicluster sys-
tems based on the DAS system.

2.1 The DAS System

The DAS [2, 10] is a wide-area computer system consist-
ing of four clusters of identical Pentium Pro processors, one
with 128, the other three with 24 processors each. The clus-
ters are interconnected by ATM links for wide-area com-
munications, while for local communication inside the clus-
ters Myrinet LANs are used. The system was designed for
research on parallel and distributed computing. On single
DAS clusters a local scheduler is used that allows users to
request a number of processors bounded by the cluster’s
size, for a time interval which does not exceed an imposed
limit.

2.2 The Workload

Although co-allocation is possible on the DAS, so far it
has not been used enough to let us obtain statistics on the
sizes of the jobs’ components. However, from the log of
the largest cluster of the system we found that over a period
of three months, the cluster was used by 20 different users
who ran ��� ��� jobs. The sizes of the job requests took 58
values in the interval ��� ����, for an average of ����	 and

a coefficient of variation of ����; their density is presented
in Fig. 1. The results comply with the distributions we
use for the job-component sizes in that there is an obvious
preference for small numbers and powers of two.

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120

N
um

be
r

of
 J

ob
s

Nodes Requested

powers of 2
other numbers

Figure 1. The density of the job-request sizes
for the largest DAS cluster (128 processors)

From the jobs considered, ��� 	�
 were recorded in the
log with both starting and ending time, and we could com-
pute their service time. Due to the fact that during working
hours jobs are restricted to at most �� minutes of service
(they are automatically killed after that period), �	�	�� of
the recorded jobs ran less than ��minutes. Figure 2 presents
the density of service time values on the DAS, as it was ob-
tained from the log. The average service time is 356.45
seconds and the coefficient of variation is ���
.

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 J

ob
s

Service Time (s)

Figure 2. The density of the service times for
the largest DAS cluster (128 processors)

2.3 The Structure of the System

We model a multicluster system consisting of C clusters
of processors, cluster i having Ni processors, i � �� � � � � C.
We assume that all processors have the same service rate.

By a job we understand a parallel application requiring
some number of processors, possibly in multiple clusters

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

(co-allocation). Jobs are rigid, so the numbers of processors
requested by and allocated to a job are fixed. We call a task
the part of a job that runs on a single processor. We assume
that jobs only request processors and we do not include in
the model other types of resources. For interarrival times
we use exponential distributions.

2.4 The Structure of Job Requests and the Place-
ment Policies

Jobs that require co-allocation have to specify the num-
ber and the sizes of their components, i.e., of the sets of
tasks that have to go to the separate clusters. The distribu-
tion of the sizes of the job components is D�q� defined as
follows: D�q� takes values on some interval �n�� n�� with
� � n� � n�, and the probability of having job-component
size i is pi � qi�Q if i is not a power of 2 and pi � �qi�Q
if i is a power of 2, with Q such that the pi sum to �. This
distribution favours small sizes, and sizes that are powers
of two, which has been found to be a realistic choice [11].
A job is represented by a tuple of C values, each of which
is either generated from the distribution D�q� or is of size
zero. We consider only unordered requests, where by the
components of the tuple the job only specifies the numbers
of processors it needs in the separate clusters, allowing the
scheduler to choose the clusters for the components. Un-
ordered requests model applications like FFT, where tasks
in the same job component share data and need intensive
communication, while tasks from different components ex-
change little or no information.

To determine whether an unordered request fits, we try to
schedule its components in decreasing order of their sizes
on distinct clusters. We use Worst Fit (WF) to place the
components on clusters.

2.5 The Scheduling Policies

In a multicluster system where co-allocation is used, jobs
can be either single-component or multi-component, and
in a general case both types are simultaneously present in
the system. It is useful to make this division since the
single-component jobs do not use co-allocation while multi-
component jobs do. A scheduler dealing with the first
type of jobs can be local to a cluster and does not need
any knowledge about the rest of the system. For multi-
component jobs, the scheduler needs global information for
its decisions.

Treating both types of jobs equally, or keeping single-
component jobs local and scheduling only multi-component
jobs globally over the entire multicluster system, having a
single global scheduler or schedulers local to each cluster,
all these are decisions that influence the performance of the
system. We consider the following approaches:

1. [GS] The system has one global scheduler with one
global queue, for both single- and multi-component
jobs. All jobs are submitted to the global queue. The
global scheduler knows at any moment the number of
idle processors in each cluster and based on this infor-
mation chooses the clusters for each job.

2. [LS] Each cluster has its own local scheduler with
a local queue. All queues receive both single- and
multi-component jobs and each local scheduler has
global knowledge about the numbers of idle proces-
sors. However, single-component jobs are scheduled
only on the local cluster. The multi-component jobs
are co-allocated over the entire system. When schedul-
ing is performed all enabled queues are repeatedly vis-
ited, and in each round at most one job from each
queue is started. When the job at the head of a queue
does not fit, the queue is disabled until the next job
departs from the system.

Depending on the order in which the queues are en-
abled at job departures we define four variations of LS.

[LS-OR] At each job departure all the queues are en-
abled in a fixed order, starting with the same queue.

[LS-RD] At each job departure all the queues are en-
abled, in a fixed order, starting with a queue randomly
chosen. All queues have the same probability to be
enabled first.

[LS-RO] At each job departure all the queues are en-
abled, in the same order in which the processors on
the corresponding clusters are released by the depart-
ing job (which is the same as the order in which the
processors were allocated with WF): the queues asso-
ciated to the clusters holding larger job components are
enabled first. If the job has fewer components than the
number of clusters, the queues local to the clusters not
holding any component are enabled last.

[LS-DO] At each job departure the queues are enabled
in the same order in which they were disabled.

3. [GP] Again both global and local schedulers with their
corresponding queues. Like before, the global queue
receives the multi-component jobs while the single-
component jobs are placed in the local queues. The
local schedulers are allowed to start jobs only when
the global scheduler has an empty queue.

4. [LP] Both global and local schedulers, but this time
the local schedulers have priority: the global scheduler
can schedule jobs only when at least one local queue
is empty. When a job departs, if one or more of the
local queues are empty both the global queue and the
local queues are enabled. If no local queue is empty

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

only the local queues are enabled and repeatedly vis-
ited; the global queue is enabled and added to the list of
queues which are visited when at least one of the local
queues gets empty. When both the global queue and
the local queues are enabled at job departures, depend-
ing on the order in which this happens we differentiate
the following variations.

[LP-LF] Always, first the local queues are enabled and
then the global queue.

[LP-GF] The queues are always enabled starting with
the global queue.

[LP-RD] At each job departure, either the global
queue is enabled first or all the local queues, with equal
probability.

5. [EQ] The system has both a global scheduler with a
global queue, and local schedulers with local queues.
Multi-component jobs go to the global queue and are
scheduled by the global scheduler using co-allocation
over the entire system. Single-component jobs are
placed in one of the local queues and are scheduled by
the local scheduler only on its corresponding cluster.

When a job departs all queues are enabled and repeat-
edly visited in a pre-defined order. We consider three
different ways in which queues are enabled at depar-
tures.

[EQ-LF] First the local queues are enabled and then
the global queue

[EQ-GF] First the global queue is enabled, followed
by the local queues.

[EQ-RD] At each job departure, either first the local
schedulers are enabled and then the global one, or the
other way around, both choices occurring with equal
probability.

6. [LQ] Both global and local schedulers; at any moment
either the local schedulers are allowed to work, or the
global one, depending on the lengths of their queues.
The global queue is enabled if it is longer than all the
local queues, otherwise the local queues are enabled.
This strategy might seem to favour the local schedulers
(the global scheduler is only permitted to schedule jobs
when its queue is longer than all the others), but our re-
sults show that this is not the case. It takes into account
the fact that each of the local schedulers accesses just
one cluster, so they can be simultaneously enabled. To
allow the local schedulers to work only when more of
their queues are longer than the global queue would
be much to the disadvantage of the local schedulers,
especially if their queues are unbalanced.

For the policies with both local and global schedulers, the
order in which the local queues are enabled does not matter
since the jobs in them are only started on the local clusters.

In the extreme case, GP can indefinitely delay the single-
component jobs, and LP can do the same with the multi-
component jobs. In practice, an aging mechanism has to be
implemented in order to prevent this behaviour.

In all the cases considered, both the local and the global
schedulers use the First Come First Served (FCFS) policy
to choose the next job to run. We choose not to include
communication in our model because it would not change
the quality of the results since all policies are tested with
identical job streams (the same numbers of components).

3 Performance Evaluation

In this section we assess the performance of multiclus-
ter systems for the six scheduling policies introduced (Sect.
2.5), depending on the job-stream composition and the
way the single-component jobs are spread among the local
queues.

The simulations are for a system with 	 clusters of ��
processors each, and the job-component sizes are gener-
ated from D����� on the interval ��� ��. The simulation pro-
grams were implemented using the CSIM simulation pack-
age [15]. For the distribution of service times we use an
exponential distribution with mean �.

Jobs can have between � and 	 components, and the
percentages of jobs with the different numbers of compo-
nents influence the performance of the system. We express
the job-stream composition as a tuple of four values rep-
resenting, in this order, the percentages of 1-, 2-, 3- and
4-component jobs submitted to the system.

We consider nine job-stream compositions depending on
the percentages of jobs with different numbers of compo-
nents. For all these compositions we consider first that lo-
cal queues are balanced in the sense that they receive the
same percentages of jobs submitted locally. For job-stream
composition ���� �� �� ��� we add the case when the local
queues are unbalanced, one of them receiving 	�� and the
other three ��� of the jobs submitted locally. All the ten
cases which result are presented in Table 1.

When there are both local and global queues in the sys-
tem we can expect that the performance differs between the
global and local queues and is dependent on the policy. This
is why for the EQ, GP, LP and LQ policies we depict beside
the total average response time, the average response times
for the local queues and the global queue.

When comparing the bar charts in this section to each
other, one must be aware that the displayed results are at
different utilizations. In each chart, the utilizations are cho-
sen high enough so that at least one of the policies is close
to the maximum utilization.

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

Table 1. The ten cases considered, depending
on the job-stream compositions and the way
jobs are spread among the local queues

% 1-comp. % 2-comp. % 3-comp. % 4-comp. bal.

25 25 25 25 yes
100 0 0 0 yes
50 0 0 50 yes
0 0 0 100 yes
50 25 25 0 yes
0 50 50 0 yes
50 50 0 0 yes
80 0 0 20 yes
90 0 0 10 yes
80 0 0 20 no

3.1 Policies with multiple versions

For the LS, LP and EQ policies the order in which the
queues are enabled at job departures has a significant influ-
ence on the performance, as the results in this section show.
Depending on this order, we defined four versions of LS and
three versions of LP and EQ, which are being compared be-
low.

3.1.1 The LS policy

We compare the four versions of LS for nine of the ten cases
introduced in Table 1: when all jobs are single-component
they are restricted to their corresponding cluster and the or-
der of enabling the queues does not influence the results.

In Fig. 3 the local queues are balanced, while in Fig.
4 they are not. In all the cases with balanced queues the
LS-DO version of the policy, where queues are enabled in
the order in which they were disabled, displays the best per-
formance. It treats all jobs and queues fairly, keeping in
balance the numbers of jobs run from each queue, and since
the queues receive equal percentages of the job stream, their
lengths stay similar. When after a departure the queues are
repeatedly visited, those which get disabled earlier managed
to schedule fewer or at most the same number of jobs as the
queues disabled later, so enabling them first is a good way
to keep the queues balanced.

The worst performance in Fig. 3a - g is shown by LS-
OR. Here the queues are enabled each time in the same
order, an approach which tends to favour and keep empty
the queues visited earlier (especially the first queue), while
allowing the queues visited last to grow. When scheduling
decisions are taken, there are up to four jobs (when no queue
is empty) from which to choose one that fits in the system.
The OR version unbalances the lengths of the queues and,
emptying the queues visited first, it also reduces the set of

jobs among which the system searches for one that fits.
LS-RD displays very good performance in Fig. 3a - h

due to the fact that at each departure it randomly chooses
the queue to be enabled first, which maintains in general
balanced queue lengths. However, it does not take into ac-
count the job stream and it can delay large jobs that are hard
to fit, decreasing the performance. Unlike LS-RD, LS-DO
remembers the jobs that did not fit and enables the corre-
sponding queues in the same order helping this way the
large jobs to run: a queue repeatedly disabled because of
the same (large) job advances in the visiting order if the
other queues manage sooner to schedule their jobs, finally
being enabled first at each departure until its job fits. This
yields a better queue lengths balance when the DO version
is used, and as a consequence a better performance.

In the cases in Fig. 3a - f, the performance of LS-RO is
close to that of LS-RD. The RO variation of the policy is
good for local jobs: when the load of the system is high and
a job releases its processors, there is a good chance that the
clusters hosting larger components will have larger numbers
of idle processors. Enabling first the queues correspond-
ing to those clusters gives the single-component jobs in the
queues a better chance to run, before a multi-component job
takes the processors away. This variation of the LS policy
looks at the load of the system and not at the lengths of the
queues. It assumes that keeping the load of the system bal-
anced keeps the queues balanced as well, and that schedul-
ing first the local jobs, restricted to their cluster, yields bet-
ter performance since for the global jobs the components
can be shuffled.

When local jobs do not represent the majority, LS-RO
displays good performance. However, for a high percentage
of local jobs, as Fig. 3g, h show, LS-RO is a bad choice. The
explanation resides in the way the local and the global jobs
interact there: at high loads, a queue that gets disabled with
a multi-component job at its top while all the other queues
have local jobs that fit has very little chance to have its job
scheduled until another multi-cluster job appears in another
queue and gets scheduled, or some of the other queues be-
come empty. When the local jobs scheduled from the other
queues end, those queues will be visited first, leaving little
room for the multi-component job.

Comparing the versions of LS for job-stream composi-
tions with more than ��� local jobs, we find that DO bal-
ances the queue lengths (and also the load of the system,
since all queues receive the same percentages of jobs with
different numbers of components) adapting to the workload,
RD balances the load but does not adapt to the jobs in the
system, OR keeps the queue lengths unbalanced due to the
way queues are visited, and RO causes the worst unbalance
for the queues, taking the worst decisions by avoiding ex-
actly the queues which have jobs that do not fit. LS-OR
improves for a very low percentage of global jobs (see Fig.

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

0

2

4

6

8

10

12

14

16

18

OR RD RO DO

Total Average

Utilization 0.900

(25, 25, 25, 25)

a)

0

2

4

6

8

10

12

14

16

OR RD RO DO

Total Average

Utilization 0.870

(50, 0, 0, 50)

b)

0

2

4

6

8

10

12

14

OR RD RO DO

Total Average

Utilization 0.898

(0, 0, 0, 100)

c)

0

2

4

6

8

10

12

14

OR RD RO DO

Total Average

Utilization 0.906

(50, 25, 25, 0)

d)

0

2

4

6

8

10

12

14

16

18

OR RD RO DO

Total Average

Utilization 0.920

(0, 50, 50, 0)

e)

0

2

4

6

8

10

12

14

16

18

OR RD RO DO

Total Average

Utilization 0.917

(50, 50, 0, 0)

f)

0

2

4

6

8

10

12

14

16

OR RD RO DO

Total Average

Utilization 0.831

(80, 0, 0, 20)

g)

0

2

4

6

8

10

12

14

16

18

OR RD RO DO

Total Average

Utilization 0.803

(90, 0 , 0, 10)

h)

Figure 3. Response times for the four versions of LS, several job-stream compositions, and balanced
local queues

3h) because when there are just single-component jobs it
does not matter in which order the queues are visited.

0

2

4

6

8

10

12

14

16

OR RD RO DO

Total Average

Utilization 0.776

(80, 0, 0, 20)
unbalanced local

queues

Figure 4. Response times for the four
versions of LS, job-stream composition
���� �� �� ��� and unbalanced local queues

Figure 4 shows the average response time for the vari-
ations of the LS policy when ��� of jobs are single-
component and the queues are unbalanced — one queue
receives 	�� of the jobs arriving to the system. OR dis-
plays the best performance because it gives priority exactly

to the queue receiving more jobs, visiting it first after each
job departure. DO, RD and RO have higher response times
because they treat all queues the same, ignoring the fact that
one of them receives twice as many jobs and letting the cor-
responding queue grow. RO has the worst performance due
to the high percentage of single-component jobs.

3.1.2 The LP policy

In this section we compare the three versions of the LP pol-
icy defined. Since with LP the local queues only get single-
component jobs, which are restricted to the local cluster, the
relative order in which they are enabled does not matter.

Only seven of the cases considered are relevant here: for
���� single-component jobs there are only local queues,
while for ���� multi-component jobs there is only the
global queue. In Fig. 5 the local queues are balanced, while
in Fig. 6 the unbalanced case is assessed.

All charts in Fig. 5 display the best total performance
for LP-GF when at each job departure the global queue is
enabled first; also the average response time for the global
queue is the smallest for the GF variation of the policy.

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

0
2
4
6
8

10
12
14
16
18
20

LF GF RD

Local

Total Average

Global

Utilization 0.884

(25, 25, 25, 25)

0
2
4
6
8

10
12
14
16
18
20

LF GF RD

Local

Total Average

Global

Utilization 0.863

(50, 0, 0, 50)

0
2
4
6
8

10
12
14
16
18
20

LF GF RD

Local

Total Average

Global

Utilization 0.905

(50, 25, 25, 0)

0

2

4

6

8

10

12

14

16

18

LF GF RD

Local

Total Average

Global

Utilization 0.919

(50, 50, 0, 0)

0

5

10

15

20

25

LF GF RD

Local

Total Average

Global

Utilization 0.839

(80, 0, 0, 20)

0

5

10

15

20

25

LF GF RD

Local

Total Average

Global

Utilization 0.836

(90, 0, 0, 10)

Figure 5. Response times for the three versions of LP, several job-stream compositions, and balanced
local queues

Looking at the local queues, we notice that enabling first
the global queue deteriorates very little their performance:
in most cases there is a very small increase in response time
for the local queues compared to LP-LF. On the other hand,
for the global queue enabling first the local queues with LP-
LF causes a large increase in response time compared to
LP-GF.

For LP-GF, the performance of the local queues gets
worse compared to LP-LF when the global jobs have fewer
components, since they fit better on the system and leave
less room for the local jobs (see job-stream composition
���� ��� �� ��). When there is a high percentage of global
jobs and they have many components, enabling the global
queue first does not bother much the local jobs and has a
good effect on the global jobs.

We can conclude that LP-GF is the best choice for the
job-stream compositions in Fig. 5, while having a higher
total average response time and a very bad performance
for the global jobs makes LP-LF the worst option. In all
the cases from the figure, LP-RD has a total performance
worse than LP-GF and better than LP-LF, and the average
response times for the global and local queues have values
situated between those displayed by the GF and LF ver-
sions. This is due to the fact that LP-RD randomly chooses
at each departure whether to enable first the global queue or
the local queues, treating both types of queues equally.

When the local queues are unbalanced (see Fig. 6), LP-
LF has the best total performance because always enabling
the local queues first allows the queue with a higher load to
fit its jobs without being bothered by the multi-component
jobs from the global queue. No other choice can improve

0

2

4

6

8

10

12

14

16

LF GF RD

Local

Total Average

Global

Utilization 0.805

(80, 0, 0, 20)
unbalanced local

queues

Figure 6. Response times for the three
versions of LP, job-stream composition
���� �� �� ��� and unbalanced local queues

the situation for the most loaded queue as long as local jobs
are restricted to the local cluster. On the negative side, LP-
LF has a bad performance for the global queue. Here, LP-
GF provides a high total average and a very high average
response time for the local queues. LP-RD has a slightly
worse total performance than LP-LF and a higher response
time for the local queues, but a much lower response time
for the global queue. If we are interested to have a good
total performance or a low response time for the local jobs,
LP-LF is the best option in this case, but if we also want
a low response time for the global queue, LP-RD should
be chosen since its total performance and average response
time for the local queues are not much worse than those
of LP-LF, and it gives a much lower response time for the
global jobs.

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

0

2

4

6

8

10

12

14

16

18

LF GF RD

Local

Total Average

Global

Utilization 0.883

(25, 25, 25, 25)

0
2
4
6
8

10
12
14
16
18
20

LF GF RD

Local

Total Average

Global

Utilization 0.863

(50, 0, 0, 50)

0

5

10

15

20

25

LF GF RD

Local

Total Average

Global

Utilization 0.906

(50, 25, 25, 0)

0
2
4
6
8

10
12
14
16
18
20

LF GF RD

Local

Total Average

Global

Utilization 0.920

(50, 50, 0, 0)

0

5

10

15

20

25

30

35

LF GF RD

Local

Total Average

Global

Utilization 0.841

(80, 0, 0, 20)

0

10

20

30

40

50

60

70

80

LF GF RD

Local

Total Average

Global

Utilization 0.845

(90, 0, 0, 10)

Figure 7. Response times for the three versions of EQ, several job-stream compositions, and balanced
local queues

3.1.3 The EQ policy

Like with the LP policy, for the EQ policy we defined three
different versions; also in this case local queues only get
single-component jobs and the order in which these queues
are enabled does not matter. Again, only seven of the cases
are relevant since for ���� single-component jobs there are
only local queues, while when all jobs are multi-component
there is only the global queue. In the charts in Fig. 7 the
local queues are balanced, while in Fig. 8 they are not.

Similar to the LP policy, all the charts in Fig. 7 display
the best total performance for the GF version of the EQ pol-
icy; also the average response time for the global queue is
the smallest for EQ-GF. In most cases, enabling first the
global queue deteriorates very little the response time of
the local queues compared to EQ-LF, while for the global
queue enabling first the local queues with EQ-LF, causes a
large increase in response time.

For EQ-GF, the average response time of the local
queues gets worse compared to EQ-LF when the global
jobs have fewer components, since they fit better on the sys-
tem and leave less room for the local jobs (see composition
���� ��� �� ��). Compared to LP, for EQ this deterioration
is significantly larger. While even the GF version of LP
gives priority to local jobs, EQ-GF does not. Here, when the
global jobs have few components the response time is lower
for the global queue than for the local queues, which can be
explained by the fact that the local jobs are restricted to their
clusters and global jobs can be scheduled on any clusters
where they fit. For a high percentage of global jobs with
many components, enabling the global queue first does not

bother much the local jobs and has a very good effect on the
global jobs. In such cases EQ-GF is the best option, while
EQ-LF which has a higher total average response time, and
a very bad performance for the global jobs is the worst.

Similarly as for LP, in all these cases EQ-RD has a to-
tal performance worse than EQ-GF and better than EQ-LF,
and the average response times for the global and the lo-
cal queues have values situated between those displayed by
the GF and LF versions. For the job-stream composition
���� ��� �� �� EQ-RD can be the most appropriate choice
because its total performance is only slightly worse than
that of EQ-GF, it is almost as good as EQ-LF for the local
queues and much better for the global queue.

Similarly to LS, for unbalanced local queues EQ-LF has
the best performance. On the other hand, EQ-LF has a
rather bad performance for the global queue. Here, EQ-GF
provides a much worse total performance and a very high
average response time for the local queues. EQ-RD has a
slightly worse total performance than EQ-LF and slightly
higher response time for the local queues, but a much lower
response time for the global queue. If we look for a good
total performance or a low response time for the local jobs
EQ-LF is the best option for this case, but if we also want a
low response time for the global queue, EQ-RD should be
chosen.

3.2 Performance comparison of the policies

Figures 9 — 18 compare the average response time for
the six policies and the ten cases considered. When a policy
has more versions, the one with the best total performance
is depicted, for each job-stream composition. For Figs. 9 —

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

14 LS-DO, LP-GF and EQ-GF were chosen, while in Fig.
18 LS-OR, LP-LF and EQ-LF are represented.

0

5

10

15

20

25

30

LF GF RD

Local

Total Average

Global

Utilization 0.805

(80, 0, 0, 20)
unbalanced local

queues

Figure 8. Response times for the three
versions of EQ, job-stream composition
���� �� �� ��� and unbalanced local queues

3.2.1 Dealing with both single- and multi-component
jobs

For all the cases in this section we depict the response times
at two utilization values; at the second value the system
is already saturated for some of the policies (indicated by
SAT).

Figure 9 compares the policies for a job stream contain-
ing 1-, 2-, 3- and 4-component jobs in equal proportions,
at two utilization values. The best performance is obtained
for LS, where all jobs go to the local schedulers and all four
schedulers are allowed to spread the multi-component jobs
over the entire system. At any moment, the system tries
to schedule up to four jobs (when no queue is empty), one
from each of the four local queues, and the FCFS policy is
transformed this way into a form of backfilling with a win-
dow of size 4. This explains why LS is better than the other
policies. A disadvantage for LS compared to GS is that LS
can place 1-component jobs only on the cluster where they
were submitted, while the GS can choose from the four clus-
ters one where the job fits. However, in the case in Fig. 9,
only ��� of jobs have one component, so their negative in-
fluence on the performance of LS is small.

GP, LP, EQ, and LQ try to schedule up to 5 jobs at a time,
but since
�� of the jobs in the system are multi-component
and they all go to the global queue, and only the rest of ���
is distributed among the local queues, their performance is
worse than that of LS.

GP displays the worst performance; it gives priority to
the global scheduler and only allows the local schedulers to
run jobs when the global queue is empty. Even if the job at
the head of the global queue does not fit, the policy does not
allow jobs from the local queues to run and this deteriorates
the performance. The average response time for the global
queue is the best from all the policies, but the average re-
sponse time for the local queues is much worse than for the

0

5

10

15

20

25

30

35

40

GS LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.878

0

5

10

15

20

25

30

35

GS LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.886

SAT.SAT.

Figure 9. Response times for the schedul-
ing policies for job-stream composition
���� ��� ��� ��� and balanced local queues

other policies. Since most of the jobs are multi-component,
the global queue is the longest in most of the cases when a
scheduling decision has to be taken and LQ behaves simi-
larly to GP, its performance being the second worst. For the
utilization value in the second chart, the system is saturated
for both GS and LQ.

LP and EQ also run mostly jobs from the global queue,
but they do not delay the jobs from the local queues when
the job at the top of the global queue does not fit and this im-
proves their performance. LP has a slightly better total av-
erage, and although it favours the local queues enabling the
global queue only when at least one local queue is empty, it
also has a better average response time for the global queue
than EQ. Since there are few local jobs in the system, LP
favouring them does not delay the multi-component jobs,
on the contrary, imposing an order among queues and not
randomly mixing jobs from the local and global queues al-
lows jobs to fit better.

Figures 10, 11 and 12 show that for GP the performance
improves with the decrease of the percentages of jobs with
� and 	 components: the local, global and total average
response times for GP are smaller in Fig 12. Since jobs
with more components cause a higher capacity loss, it is
a bad choice not to allow the local schedulers to try to fit
jobs from their own queues when the job at the head of the
global queue does not fit. Waiting for enough idle proces-
sors in multiple clusters for that job results in a deteriora-
tion of the performance. This is shown also by the fact that

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

0

5

10

15

20

25

GS LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.866

0

5

10

15

20

25

30

35

GS LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.882

SAT.SAT.

Figure 10. Response times for the schedul-
ing policies for job-stream composition
���� �� �� ��� and balanced local queues

0

5

10

15

20

25

30

GS LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.906

0

5

10

15

20

25

30

35

GS LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.909

SAT.

Figure 11. Response times for the schedul-
ing policies for job-stream composition
���� ��� ��� �� and balanced local queues

LQ has worse performance when the percentage of multi-
component jobs is higher.

The best performance in Figs. 10 and 11 is displayed
by LP and EQ. This suggests that allowing first the 1-

0

5

10

15

20

25

30

GS LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.919

0

5

10

15

20

25

30

35

GS LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.930

SAT.SAT.SAT.

Figure 12. Response times for the schedul-
ing policies for job-stream composition
���� ��� �� �� and balanced local queues

component jobs, which are restricted to a certain cluster, to
be placed and only then trying to schedule multi-component
jobs for which the scheduler can shuffle the components, is
a good choice when there are many jobs with 3 and 4 com-
ponents. It also seems that when none of the local queues is
empty, delaying the global jobs to wait for the local jobs to
fit does not deteriorate much the performance of LP when
at most ��� of jobs are local; this choice is an advantage
for LS when the percentage of local jobs is smaller (see Fig.
9).

The differences in performance are larger in Fig. 10
where there are ��� 4-component jobs. In Figs. 11 and
12, where there are no 4-component jobs, all policies dis-
play more similar performance.

EQ has a good performance for all chosen job mixes be-
cause it tries to fit as many jobs as possible from all queues
without taking into account the characteristics of the job
stream. Favouring the multi-component jobs by enabling
the global queue first at job departures also has a positive
influence on performance. In Fig. 12 EQ is slightly better
than LP due to the fact that there are many 1-component
jobs and the 2-component jobs fit very well on the system.

Also when there is a higher percentage of local jobs (see
Figs. 13 and 14) EQ displays the best performance; here
LP is worse because for ��� and ��� local jobs the policy
significantly delays the global jobs. GS also shows good
results for a high percentage of single-component jobs due
to the fact that it does not restrict the local jobs to the cor-

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

0

2

4

6

8

10

12

14

16

18

GS LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.875

0

5

10

15

20

25

30

35

40

45

GS LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.883
SAT. SAT.

Figure 13. Response times for the schedul-
ing policies for job-stream composition
���� �� �� ��� and balanced local queues

0

5

10

15

20

25

GS LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.868

0

5

10

15

20

25

30

35

40

45

GS LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.889
SAT. SAT.

Figure 14. Response times for the schedul-
ing policies for job-stream composition
���� �� �� ��� and balanced local queues

responding cluster; at ��� local jobs its performance ap-
proaches that of EQ. LQ has a rather good performance
in these two cases, balancing the lengths of the local and
global queues.

Increasing the percentage of 1-component jobs would
improve the performance of GS and deteriorate all the oth-
ers (when there are ���� single-component jobs GP, EQ,
LQ and LP all become LS). Increasing the percentage of
multi-component jobs would improve the performance of
LS, but worsen it for the rest (when there are only multi-
component jobs GP, EQ, LQ and LP become GS).

3.2.2 Dealing with only single- or multi-component
jobs

Figures 15, 16 and 17 compare only the GS and LS strate-
gies. The system in Fig. 15 contains only single-component
jobs, so EQ, GP, LP, and LQ are reduced to LS. In the other
two cases there are only multi-component jobs, so EQ, GP,
LP and LQ become GS. We also used these cases to check
our simulations and gain confidence in the results.

0

2

4

6

8

10

12

14

16

GS LS

Local

Total Average

Global

Utilization 0.917

Figure 15. Response times for the schedul-
ing policies for job-stream composition
����� �� �� �� and balanced local queues

When there are only single-component jobs in the sys-
tem (Fig. 15), GS has better performance due to the fact that
it chooses the clusters for the jobs (with WF), while with LS
jobs can be scheduled only on the clusters they were submit-
ted to. With single-component jobs GS does a sort of load
balancing over the entire system while LS keeps the clusters
in isolation.

In Figures 16 and 17 LS proves to be better because for
multi-component jobs the local schedulers are not restricted
to their own clusters and there are up to four jobs at a time
from which to choose one that fits in the system.

3.2.3 The unbalanced case

For the policies defining local queues, Fig. 18 compares the
performance for a job-stream composition with ��� local
jobs and unbalanced local queues (�� of the local jobs go
to one queue).

Although LS with its OR version favours the local queue
receiving the highest percentage of jobs, always enabling
it first at job departures, its performance is worse than that
of EQ and LP. Due to the separate global queue, EQ and

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

0

5

10

15

20

25

30

35

GS LS

Local

Total Average

Global

Utilization 0.890

Figure 16. Response times for the schedul-
ing policies for job-stream composition
��� �� �� ���� and balanced local queues

0

5

10

15

20

25

GS LS

Local

Total Average

Global

Utilization 0.906

Figure 17. Response times for the schedul-
ing policies for job-stream composition
��� ��� ��� �� and balanced local queues

0

5

10

15

20

25

LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.768

0

5

10

15

20

25

30

35

LS GP LP EQ LQ

Local

Total Average

Global

Utilization 0.818
SAT. SAT. SAT.

Figure 18. Response times for the schedul-
ing policies for job-stream composition
���� �� �� ��� and unbalanced local queues

LP look at the top of five queues for a job that fits, com-
pared to only four queues in the case of LS. Both LP and
EQ favour the local queues at job departures (the LF ver-
sions) but LP gives slightly worse results because it delays
more the multi-component jobs by not letting them run un-
less at least one local queue is empty.

3.3 Local versus global queues

In this section we discuss the performance of global and
local jobs when there are both global and local queues, i.e.,
for LP, EQ, GP and LQ.

Considering the separate results for local and global
queues, we notice that while LP provides the best results
for local jobs, GP is the best for the global jobs. LP and EQ
display a low response time for both the local and the global
queues, with EQ showing better performance than LP for
the global queue, while LP is better for the local queues.

If there is a high percentage of multi-component jobs LQ
yields a smaller average response time for the global queue,
while when there is a high percentage of single-component
jobs it provides better response time for the local queues.
LQ is fair to all jobs from the perspective that if there is a
large job, be it single- or multi-cluster, which is difficult to
fit on the system, not only will LQ give that job a chance
to run sooner than with other policies (unless they directly
favour that type of jobs), but it will also limit the delay for
the jobs behind it in the queue. In fact, LQ keeps the lengths
of the queues balanced, switching its behaviour between GP
and LP depending on the queue lengths. On the negative
side, with LQ the performance of jobs of one type is more
sensitive to the performance of jobs of the other type than
for EQ, GP or LP.

When none of the local queues is empty the LP pol-
icy strongly favours the local schedulers by not letting the
global scheduler run. However, when at least one local
queue is empty and a job departs, the global scheduler is
enabled first (LP-GF). This decision has a positive effect
on the overall performance but slightly deteriorates the per-
formance of the local queues and makes it dependent on
the global jobs: the better the global jobs fit, the worse the
performance of the local jobs is. This dependency is even
stronger for EQ.

From these four policies the most practical would be ei-
ther LP or EQ, since the other two delay the local jobs and
it can be expected that the organizations owning the differ-
ent clusters would not like their local jobs to be delayed
in favour of the global, multi-component jobs. In most of
the cases, for both EQ and LP the GF version gave better
results: at job departures, enabling first the global queue
improves the total average response time and has little in-
fluence on the local jobs. Our results show that, for policies
like LP and EQ, even a high percentage of global jobs in

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

the system does not deteriorate the performance of the local
jobs. However, users submitting multi-component jobs to
a system implementing such a policy should be aware that
the performance of their jobs is much influenced by the lo-
cal jobs and it can be significantly lower than the overall
performance of the system.

4 Conclusions

In this paper we evaluated different scheduling policies
for co-allocation, with unordered requests, in multicluster
systems.

For a high percentage of single-component jobs, allow-
ing them to run on any of the clusters, even if scheduled by
a single global scheduler, proved to be a better choice than
keeping them local to the cluster they were submitted to.

For multi-component jobs, having more schedulers in the
system and distributing the jobs among them improves the
performance: any of the jobs at the heads of the queues
can be chosen to run if it fits, which generates a form of
backfilling with a window equal to the number of queues in
the system.

When dealing with unbalanced local queues, the
scheduling policy should give priority to the local queues if
there are both local queues and a global queue in the system.
When there are only local queues (the global jobs are also
submitted locally) the queue receiving a higher percentage
of jobs should be favoured by the policy.

We might expect that if the clusters have different own-
ers a policy that favours the local jobs would be preferred.
For this reason, although EQ-GF gives in most of the cases
with balanced queues slightly better results, a version of LP
can be more suited. We can then choose LP-GF because
although at job departures it favours the global queue, we
have shown that this does not significantly worsen the per-
formance for the local jobs, while it is better for both the to-
tal performance and the average response time for the global
jobs. Choosing LP-LF instead would bring too little im-
provement for the local jobs to make the loss in total perfor-
mance and in the global jobs’ performance worthwhile.

References

[1] The Distributed ASCI Supercomputer (DAS).
www.cs.vu.nl/das2.

[2] The Distributed ASCI Supercomputer (DAS) site.
http://www.cs.vu.nl/das.

[3] The Global Grid Forum.
http://www.gridforum.org.

[4] K. Aida, H. Kasahara, and S. Narita. Job Scheduling Scheme
for Pure Space Sharing Among Rigid Jobs. In D. Feitelson
and L. Rudolph, editors, 4th Workshop on Job Scheduling
Strategies for Parallel Processing, volume 1459 of LNCS,
pages 98–121. Springer-Verlag, 1998.

[5] H. Bal, A. Plaat, M. Bakker, P. Dozy, and R. Hofman. Op-
timizing Parallel Applications for Wide-Area Clusters. In
Proc. of the 12th International Parallel Processing Sympo-
sium, pages 784–790, 1998.

[6] A. Bucur and D. Epema. The Influence of the Structure
and Sizes of Jobs on the Performance of Co-allocation. In
D. Feitelson and L. Rudolph, editors, 6th Workshop on Job
Scheduling Strategies for Parallel Processing, volume 1911
of LNCS, pages 154–173. Springer-Verlag, 2000.

[7] A. Bucur and D. Epema. The Influence of Communication
on the Performance of Co-allocation. In D. Feitelson and
L. Rudolph, editors, 7th Workshop on Job Scheduling Strate-
gies for Parallel Processing, volume 2221 of LNCS, pages
66–86. Springer-Verlag, 2001.

[8] K. Czajkowski, I. Foster, and C. Kesselman. Resource Co-
Allocation in Computational Grids. In 8th IEEE Int’l Symp.
on High Perf. Distrib. Comp., pages 219–228, 1999.

[9] C. Ernemann, V. Hamscher, U. Schwiegelshohn,
R. Yahyapour, and A. Streit. On Advantages of Grid
Computing for Parallel Job Scheduling. In Cluster Com-
puting and the GRID, 2nd IEEE/ACM Int’l Symposium
CCGRID2002, pages 39–46, 2002.

[10] H. B. et al. The Distributed ASCI Supercomputer Project.
ACM Operating Systems Review, 34(4):76–96, 2000.

[11] D. Feitelson and L. Rudolph. Theory and Practice in Paral-
lel Job Scheduling. In D. Feitelson and L. Rudolph, editors,
3rd Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, volume 1291, pages 1–34. Springer-Verlag, 1997.

[12] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik,
and P. Wong. Theory and Practice in Parallel Job Schedul-
ing. In D. Feitelson and L. Rudolph, editors, 3rd Workshop
on Job Scheduling Strategies for Parallel Processing, vol-
ume 1291 of LNCS, pages 1–34. Springer-Verlag, 1997.

[13] I. Foster and C. K. (eds). The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1999.

[14] T. Kielmann, R. Hofman, H. Bal, A. Plaat, and R. Bhoed-
jang. MagPIe: MPI’s Collective Communication Operations
for Clustered Wide Area Systems. In ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming, pages
131–140, 1999.

[15] Mesquite Software, Inc. The CSIM18 Simulation Engine,
User’s Guide.

[16] A. Plaat, H. Bal, R. Hofman, and T. Kielmann. Sensitivity
of Parallel Applications to Large Differences in Bandwidth
and Latency in Two-Layer Interconnects. Future Generation
Computer Systems, 17:769–782, 2001.

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

